
Directory Services APIs (V5R2)

Table of Contents

Directory Services APIs●

LDAP API Overview●

LDAP Version Support●

Accessing Schema Information●

API Prototype Changes●

Deprecated APIs●

LDAP Client API Error Conditions●

Controls for LDAP APIs●

APIs

ldap_abandon (Abandon an LDAP Operation in Progress)❍

ldap_abandon_ext (Abandon an LDAP Operation with Controls)❍

ldap_add (Perform an LDAP Add Operation)❍

ldap_add_ext (Perform an LDAP Add Operation with Controls)❍

ldap_add_ext_s (Perform an LDAP Add Operation with Controls (Synchronous))❍

ldap_add_s (Perform an LDAP Add Operation (Synchronous))❍

ldap_app_ssl_client_init_np (Initialize the LDAP Client for a Secure Connection using
DCM)

❍

ldap_app_ssl_init_np (Initializes an SSL Connection)❍

ldap_app_ssl_start_np (Start a Secure LDAP Connection using DCM)❍

ldap_ber_free (Free storage allocated for BerElement)❍

ldap_bind (Perform an LDAP Bind Request)❍

ldap_bind_s (Perform an LDAP Bind Request (Synchronous))❍

ldap_compare (Perform an LDAP Compare Operation)❍

ldap_compare_ext (Perform an LDAP Compare Operation with Controls)❍

ldap_compare_ext_s (Perform an LDAP Compare Operation with Controls (Synchronous))❍

ldap_compare_s (Perform an LDAP Compare Operation (Synchronous))❍

ldap_controls_free (Free an array of LDAPControl structures)❍

ldap_control_free (Free Storage Allocated by the LDAP Library)❍

ldap_count_attributes (Retrieve Count of Attributes for an LDAP Entry)❍

ldap_count_entries (Retrieve Count of LDAP Entries)❍

ldap_count_messages (Count messages in a result chain, as returned by ldap_result)❍

●

ldap_count_references (Count continuation references in a result chain of search results)❍

ldap_count_values (Retrieve Count of Attribute Values)❍

ldap_count_values_len (Retrieve Count of Binary Attribute Values)❍

ldap_default_dn_get (Retrieve the User's Default DN)❍

ldap_default_dn_set (Store the User's Default DN)❍

ldap_delete (Perform an LDAP Delete Operation)❍

ldap_delete_ext (Perform an LDAP Delete Operation with Controls)❍

ldap_delete_ext_s (Perform an LDAP Delete Operation with Controls (Synchronous))❍

ldap_delete_s (Perform an LDAP Delete Operation (Synchronous))❍

ldap_dn2ufn (Convert a Distinguished Name into a User Friendly Name)❍

ldap_enetwork_domain_get (Retrieve the User's Default eNetwork Domain Name)❍

ldap_enetwork_domain_set (Store the User's Default eNetwork Domain Name)❍

ldap_err2string (Retrieve LDAP Error Message String)❍

ldap_explode_dn (Break a Distinguished Name into Its Components)❍

ldap_explode_dns (Break a DNS-style Distinguished Name into Its Components)❍

ldap_explode_dn_utf8 (Break a UTF8 codepage Distinguished Name into Its Components)❍

ldap_explode_rdn (Break a Relative Distinguished Name into Its Components)❍

ldap_explode_rdn_utf8 (Break a UTF8 codepage Relative Distinguished Name into Its
Components)

❍

ldap_extended_operation (Perform extended operations)❍

ldap_extended_operation_s (Perform extended operations synchronously)❍

ldap_first_attribute (Retrieve First Attribute in an Entry)❍

ldap_first_entry (Retrieve First LDAP Entry)❍

ldap_first_message (Retrieve First LDAP Message)❍

ldap_first_reference (Return first continuation reference in a chain of search results)❍

ldap_free_urldesc (Retrieve the Distinguished Name of an Entry)❍

ldap_get_dn (Extract the DN from an entry)❍

ldap_get_entry_controls_np (Extract server controls from an entry)❍

ldap_get_errno (Retrieve Error Information)❍

ldap_get_iconv_local_codepage (Get the Active LDAP Code Page)❍

ldap_get_lderrno (Retrieve Error Information)❍

ldap_get_locale (Get Active LDAP Locale)❍

ldap_get_option (Retrieve LDAP Options)❍

ldap_get_values (Retrieve a Set of Attribute Values from an Entry)❍

ldap_get_values_len (Retrieve a Set of Binary Attribute Values)❍

ldap_init (Perform an LDAP Initialization Operation)❍

ldap_is_ldap_url (Verify LDAP URL)❍

ldap_memfree (Free Memory Allocated by LDAP API)❍

ldap_modify (Perform an LDAP Modify Entry Request)❍

ldap_modify_ext (Perform an LDAP Modify Entry Request with Controls)❍

ldap_modify_ext_s (Perform an LDAP Modify Entry Request with Controls
(Synchronous))

❍

ldap_modify_s (Perform an LDAP Modify Entry Request (Synchronous))❍

ldap_modrdn (Perform an LDAP Modify RDN Request)❍

ldap_modrdn_s (Perform an LDAP Modify RDN Request (Synchronous))❍

ldap_mods_free (Free LDAP Modify Storage)❍

ldap_msgfree (Free LDAP Result Message)❍

ldap_msgid (Retrieve Message ID Associated with an LDAP Message)❍

ldap_msgtype (Retrieve Type of an LDAP Message)❍

ldap_next_attribute (Retrieve Next Attribute in an Entry)❍

ldap_next_entry (Retrieve Next LDAP Entry)❍

ldap_next_message (Retrieve Next LDAP Message)❍

ldap_next_reference (Retrieve Next Continuation Reference in a Chain of Search Results)❍

ldap_open (Perform an LDAP Open Operation)❍

ldap_parse_extended_result (Parse extended result)❍

ldap_parse_reference_np (Extract information from a continuation reference)❍

ldap_parse_result (Extract information from results)❍

ldap_parse_sasl_bind_result (Extract server credentials from SASL bind results)❍

ldap_perror (Print LDAP Error Information)❍

ldap_rename (Asynchronously rename an entry)❍

ldap_rename_s (Synchronously rename an entry)❍

ldap_result (Retrieve Result of an Asynchronous LDAP Operation)❍

ldap_result2error (Retrieve LDAP Error Information)❍

ldap_sasl_bind (Perform an LDAP SASL Bind Request)❍

ldap_sasl_bind_s (Perform an LDAP SASL Bind Request (Synchronous))❍

ldap_search (Perform an LDAP Search Operation)❍

ldap_search_ext (Asynchronously search the directory using controls)❍

ldap_search_ext_s (Synchronously search the directory using controls)❍

ldap_search_s (Perform an LDAP Search Operation (Synchronous))❍

ldap_search_st (Perform an LDAP Search Operation (Timed Synchronous))❍

ldap_server_conf_save (Store Server Information into Local Configuration)❍

ldap_server_free_list (Free the List of LDAP Servers)❍

ldap_server_locate (Locate Suitable LDAP Servers)❍

ldap_set_iconv_local_charset (Set the Active LDAP Character Set)❍

ldap_set_iconv_local_codepage (Set the Active LDAP Code Page)❍

ldap_set_lderrno (Set Error Information)❍

ldap_set_locale (Change the Locale Used by LDAP)❍

ldap_set_option (Set LDAP Options)❍

ldap_set_rebind_proc (Set Rebind Procedure)❍

ldap_simple_bind (Perform a Simple LDAP Bind Request)❍

ldap_simple_bind_s (Perform a Simple LDAP Bind Request (Synchronous))❍

ldap_ssl_client_init (Initializes the SSL library)❍

ldap_ssl_init (Initializes an SSL connection)❍

ldap_ssl_start (Start a Secure LDAP Connection)❍

ldap_unbind (Perform an LDAP Unbind Request)❍

ldap_unbind_ext (Perform an LDAP Unbind Request)❍

ldap_unbind_s (Perform an LDAP Unbind Request (Synchronous))❍

ldap_url_parse (Parse an LDAP URL)❍

ldap_url_parse_utf8 (Parse a UTF8 codepage LDAP URL string)❍

ldap_url_search (Perform an LDAP URL Search Operation)❍

ldap_url_search_s (Perform an LDAP URL Search Operation (Synchronous))❍

ldap_url_search_st (Perform an LDAP URL Search Operation (Timed Synchronous))❍

ldap_value_free (Free memory allocated by ldap_get_values)❍

ldap_value_free_len (Free Memory Allocated by ldap_get_values_len())❍

ldap_version (Obtain LDAP version and SSL cipher information)❍

ldap_xlate_local_to_unicode (Convert String From the Local Code Page to UCS-2 (or
UNICODE) Encoding)

❍

ldap_xlate_local_to_utf8 (Convert String From the Local Code Page to UTF-8 Encoding)❍

ldap_xlate_unicode_to_local (Convert String From the UCS-2 (or UNICODE) Encoding to
Local Code Page)

❍

ldap_xlate_utf8_to_local (Convert String From the UTF-8 Encoding to Local Code Page)❍

QgldCfgDirSvr (Configure Directory Server)❍

QgldChgDirSvrA (Change Directory Server Attributes)❍

QgldExportLdif (Export LDIF File)❍

QgldImportLdif (Import LDIF File)❍

QgldLstDirSvrA (List Directory Server Attributes)❍

QgldPubDirObj (Publish Directory Object)❍

QgldRtvDirSvrA (Retrieve Directory Server Attributes)❍

QGLDSSDD (Synchronize System Distribution Directory to LDAP)❍

Directory Services APIs
The Lightweight Directory Access Protocol (LDAP) client APIs can be used to access LDAP-enabled
directories in a network. Administrative and configuration APIs for OS/400 Directory Services are
included.

Select one of the following for more information:

LDAP API Overview●

LDAP Version Support●

Accessing Schema Information●

API Prototype Changes●

Deprecated APIs●

LDAP Client API Error Conditions●

The Directory Services APIs are:

ldap_abandon (Abandon an LDAP Operation in Progress)●

ldap_abandon_ext (Abandon an LDAP Operation with Controls)●

ldap_add (Perform an LDAP Add Operation)●

ldap_add_ext (Perform an LDAP Add Operation with Controls)●

ldap_add_ext_s (Perform an LDAP Add Operation with Controls (Synchronous))●

ldap_add_s (Perform an LDAP Add Operation (Synchronous))●

ldap_app_ssl_client_init_np (Initialize the LDAP Client for a Secure Connection using DCM)●

ldap_app_ssl_init_np (Initializes an SSL Connection)●

ldap_app_ssl_start_np (Start a Secure LDAP Connection using DCM)●

ldap_ber_free (Free storage allocated for BerElement)●

ldap_bind (Perform an LDAP Bind Request)●

ldap_bind_s (Perform an LDAP Bind Request (Synchronous))●

ldap_compare (Perform an LDAP Compare Operation)●

ldap_compare_ext (Perform an LDAP Compare Operation with Controls)●

ldap_compare_ext_s (Perform an LDAP Compare Operation with Controls (Synchronous))●

ldap_compare_s (Perform an LDAP Compare Operation (Synchronous))●

ldap_controls_free (Free an array of LDAPControl structures)●

ldap_control_free (Free Storage Allocated by the LDAP Library)●

ldap_count_attributes (Retrieve Count of Attributes for an LDAP Entry)●

ldap_count_entries (Retrieve Count of LDAP Entries)●

ldap_count_messages (Count messages in a result chain, as returned by ldap_result)●

ldap_count_references (Count continuation references in a result chain of search results)●

ldap_count_values (Retrieve Count of Attribute Values)●

ldap_count_values_len (Retrieve Count of Binary Attribute Values)●

ldap_default_dn_get (Retrieve the User's Default DN)●

ldap_default_dn_set (Store the User's Default DN)●

ldap_delete (Perform an LDAP Delete Operation)●

ldap_delete_ext (Perform an LDAP Delete Operation with Controls)●

ldap_delete_ext_s (Perform an LDAP Delete Operation with Controls (Synchronous))●

ldap_delete_s (Perform an LDAP Delete Operation (Synchronous))●

ldap_dn2ufn (Convert a Distinguished Name into a User Friendly Name)●

ldap_enetwork_domain_get (Retrieve the User's Default eNetwork Domain Name)●

ldap_enetwork_domain_set (Store the User's Default eNetwork Domain Name)●

ldap_err2string (Retrieve LDAP Error Message String)●

ldap_explode_dn (Break a Distinguished Name into Its Components)●

ldap_explode_dns (Break a DNS-style Distinguished Name into Its Components)●

ldap_explode_dn_utf8 (Break a UTF8 codepage Distinguished Name into Its Components)●

ldap_explode_rdn (Break a Relative Distinguished Name into Its Components)●

ldap_explode_rdn_utf8 (Break a UTF8 codepage Relative Distinguished Name into Its
Components)

●

ldap_extended_operation (Perform extended operations)●

ldap_extended_operation_s (Perform extended operations synchronously)●

ldap_first_attribute (Retrieve First Attribute in an Entry)●

ldap_first_entry (Retrieve First LDAP Entry)●

ldap_first_message (Retrieve First LDAP Message)●

ldap_first_reference (Return first continuation reference in a chain of search results)●

ldap_free_urldesc (Retrieve the Distinguished Name of an Entry)●

ldap_get_dn (Extract the DN from an entry)●

ldap_get_entry_controls_np (Extract server controls from an entry)●

ldap_get_errno (Retrieve Error Information)●

ldap_get_iconv_local_codepage (Get the Active LDAP Code Page)●

ldap_get_lderrno (Retrieve Error Information)●

ldap_get_locale (Get Active LDAP Locale)●

ldap_get_option (Retrieve LDAP Options)●

ldap_get_values (Retrieve a Set of Attribute Values from an Entry)●

ldap_get_values_len (Retrieve a Set of Binary Attribute Values)●

ldap_init (Perform an LDAP Initialization Operation)●

ldap_is_ldap_url (Verify LDAP URL)●

ldap_memfree (Free Memory Allocated by LDAP API)●

ldap_modify (Perform an LDAP Modify Entry Request)●

ldap_modify_ext (Perform an LDAP Modify Entry Request with Controls)●

ldap_modify_ext_s (Perform an LDAP Modify Entry Request with Controls (Synchronous))●

ldap_modify_s (Perform an LDAP Modify Entry Request (Synchronous))●

ldap_modrdn (Perform an LDAP Modify RDN Request)●

ldap_modrdn_s (Perform an LDAP Modify RDN Request (Synchronous))●

ldap_mods_free (Free LDAP Modify Storage)●

ldap_msgfree (Free LDAP Result Message)●

ldap_msgid (Retrieve Message ID Associated with an LDAP Message)●

ldap_msgtype (Retrieve Type of an LDAP Message)●

ldap_next_attribute (Retrieve Next Attribute in an Entry)●

ldap_next_entry (Retrieve Next LDAP Entry)●

ldap_next_message (Retrieve Next LDAP Message)●

ldap_next_reference (Retrieve Next Continuation Reference in a Chain of Search Results)●

ldap_open (Perform an LDAP Open Operation)●

ldap_parse_extended_result (Parse extended result)●

ldap_parse_reference_np (Extract information from a continuation reference)●

ldap_parse_result (Extract information from results)●

ldap_parse_sasl_bind_result (Extract server credentials from SASL bind results)●

ldap_perror (Print LDAP Error Information)●

ldap_rename (Asynchronously rename an entry)●

ldap_rename_s (Synchronously rename an entry)●

ldap_result (Retrieve Result of an Asynchronous LDAP Operation)●

ldap_result2error (Retrieve LDAP Error Information)●

ldap_sasl_bind (Perform an LDAP SASL Bind Request)●

ldap_sasl_bind_s (Perform an LDAP SASL Bind Request (Synchronous))●

ldap_search (Perform an LDAP Search Operation)●

ldap_search_ext (Asynchronously search the directory using controls)●

ldap_search_ext_s (Synchronously search the directory using controls)●

ldap_search_s (Perform an LDAP Search Operation (Synchronous))●

ldap_search_st (Perform an LDAP Search Operation (Timed Synchronous))●

ldap_server_conf_save (Store Server Information into Local Configuration)●

ldap_server_free_list (Free the List of LDAP Servers)●

ldap_server_locate (Locate Suitable LDAP Servers)●

ldap_set_iconv_local_charset (Set the Active LDAP Character Set)●

ldap_set_iconv_local_codepage (Set the Active LDAP Code Page)●

ldap_set_lderrno (Set Error Information)●

ldap_set_locale (Change the Locale Used by LDAP)●

ldap_set_option (Set LDAP Options)●

ldap_set_rebind_proc (Set Rebind Procedure)●

ldap_simple_bind (Perform a Simple LDAP Bind Request)●

ldap_simple_bind_s (Perform a Simple LDAP Bind Request (Synchronous))●

ldap_ssl_client_init (Initializes the SSL library)●

ldap_ssl_init (Initializes an SSL connection)●

ldap_ssl_start (Start a Secure LDAP Connection)●

ldap_unbind (Perform an LDAP Unbind Request)●

ldap_unbind_ext (Perform an LDAP Unbind Request)●

ldap_unbind_s (Perform an LDAP Unbind Request (Synchronous))●

ldap_url_parse (Parse an LDAP URL)●

ldap_url_parse_utf8 (Parse a UTF8 codepage LDAP URL string)●

ldap_url_search (Perform an LDAP URL Search Operation)●

ldap_url_search_s (Perform an LDAP URL Search Operation (Synchronous))●

ldap_url_search_st (Perform an LDAP URL Search Operation (Timed Synchronous))●

ldap_value_free (Free memory allocated by ldap_get_values)●

ldap_value_free_len (Free Memory Allocated by ldap_get_values_len())●

ldap_version (Obtain LDAP version and SSL cipher information)●

ldap_xlate_local_to_unicode (Convert String From the Local Code Page to UCS-2 (or UNICODE)
Encoding)

●

ldap_xlate_local_to_utf8 (Convert String From the Local Code Page to UTF-8 Encoding)●

ldap_xlate_unicode_to_local (Convert String From the UCS-2 (or UNICODE) Encoding to Local
Code Page)

●

ldap_xlate_utf8_to_local (Convert String From the UTF-8 Encoding to Local Code Page)●

QgldCfgDirSvr (Configure Directory Server)●

QgldChgDirSvrA (Change Directory Server Attributes)●

QgldExportLdif (Export LDIF File)●

QgldImportLdif (Import LDIF File)●

QgldLstDirSvrA (List Directory Server Attributes)●

QgldPubDirObj (Publish Directory Object)●

QgldRtvDirSvrA (Retrieve Directory Server Attributes)●

QGLDSSDD (Synchronize System Distribution Directory to LDAP)●

APIs by category

LDAP API Overview
Lightweight Directory Access Protocol (LDAP) is an Internet protocol to access directory servers. The
directories on the Internet may be "pure" LDAP directories; that is, they only communicate through LDAP,
or they may be X.500 or other types of servers that allow access through LDAP. Access to servers that are
not pure LDAP servers is accomplished through an LDAP gateway. Gateways from LDAP to other
protocols also are common. Client programs that allow a user to access an LDAP directory are called
LDAP clients. Applications that extract information from an LDAP directory are referred to as
LDAP-enabled.

The LDAP client is part of the OS/400. The LDAP client is used by OS/400 and customer applications for
access to LDAP-enabled directories in the network. The directories being accessed may or may not be
located on an OS/400 server. The applications access the LDAP client by using these client APIs. TCP/IP is
always used to access remote directories, and the administrator can configure the connection to use the
Secure Sockets Layer (SSL). Also, the administrator can select to use Kerberos.

The LDAP APIs are designed to provide a suite of functions that can be used to develop directory enabled
applications. Directory-enabled applications typically connect to one or more directories and perform
various directory-related operations, such as:

Adding entries●

Searching the directory and obtaining the resulting list of entries●

Deleting entries●

Modifying entries●

Renaming entries●

The type of information that is managed in the directory depends on the nature of the application.
Directories are often used to provide public access to information about people, including:

Phone numbers●

E-mail addresses●

Fax numbers●

Mailing addresses●

Increasingly, directories are being used to manage and publish other types of information, including:

Configuration information●

Public key certificates (managed by certification authorities)●

Access control information●

Locating information (how to find a service)●

The LDAP APIs provide for both synchronous and asynchronous access to a directory. Asynchronous
access makes it easy for your application to do other work while waiting for the results of a potentially
lengthy directory operation to be returned by the server.

Typical API Usage

The basic interaction is as follows. A connection is made to an LDAP server by calling ldap_init (or
ldap_ssl_init, which is used to establish a secure connection over Secure Sockets Layer (SSL)).

An LDAP bind operation is performed by calling ldap_simple_bind or ldap_sasl_bind. The bind
operation is used to authenticate to the directory server. Note that the LDAP V3 API and protocol permits

the bind to be skipped, in which case the access rights associated with anonymous access are obtained.

Next, other operations are performed by calling one of the synchronous or asynchronous routines (that is,
ldap_search_s or ldap_search followed by ldap_result).

Results returned from these routines are interpreted by calling the LDAP parsing routines, which include
operations such as:

ldap_first_entry, ldap_next_entry●

ldap_get_dn●

ldap_first_attribute, ldap_next_attribute●

ldap_get_values●

ldap_parse_result (new for LDAP V3)●

etc.●

The LDAP connection is terminated by calling ldap_unbind.

The ldap_set_rebind_proc routine can be used to define the entry-point of a routine to be called when an
LDAP bind operation needs to occur when handling a client referral to another server.

Displaying Results

Results obtained from the ldap search routines can be accessed by calling ldap_first_entry and
ldap_next_entry to step through the entries returned, ldap_first_attribute and ldap_next_attribute to
step through an entry's attributes, ldap_get_values to retrieve a given attribute's value, and then calling
printf or some other display or usage method to display the values.

Uniform Resource Locators (URLS)

The ldap_is_ldap_url routines can be used to test a URL to see if it is an LDAP URL, to parse LDAP
URLs into their component pieces, and to initiate searches directly using an LDAP URL.

Examples of these routines are ldap_url_parse, ldap_url_search_s, and ldap_is_ldap_url.

Secure Socket Layer (SSL) Support

The LDAP APIs have been extended to support connections that are protected by the Secure Socket Layer
(SSL) protocol. This can be used to provide strong authentication between the client and server, as well as
data encryption of LDAP messages that flow between the client and the LDAP server. The
ldap_ssl_client_init() and ldap_ssl_init() APIs are provided to initialize the SSL function, and to create a
secure SSL connection (respectively).

When using ldap_ssl_client_init(), the application ID used is QIBM_GLD_DIRSRV_CLIENT, identified
as client application "Directory Services Client" in Digital Certificate Manager (DCM). To use OS/400
application IDs other than the default which have an association to a certificate store and a particular
certificate in that store, the following OS/400-specific APIs are provided:

Version 2 API

ldap_app_ssl_start_np() (deprecated)●

Version 3 API

ldap_app_ssl_client_init_np()●

When using ldap_ssl_init(), the server is not contacted until the connection is used; that is, by ldap_bind()
or ldap_search(). If an SSL error occurs while trying to connect, the SSL error code can be retrieved for the
connection with the ldap_get_option() API using the LDAP_OPT_EXT_ERROR option.

Top | Directory Services (LDAP) APIs | APIs by category

LDAP Version Support
The LDAP toolkit has been enhanced to support both LDAP Version 2 and LDAP Version 3 APIs and
protocols. The LDAP toolkit APIs and protocols are based on the Internet Draft, which is classified as a
"work in progress."

The LDAP APIs provide typical directory functions such as read, write, and search. With the advent of
support for LDAP Version 3 APIs and protocols, the following features are also supported:

LDAP V3 referrals●

Improved internationalization with UTF-8 support for Distinguished Names (DNs) and strings that
are passed into, and returned from the LDAP APIs (when running as an LDAP V3 application and
LDAP_OPT_UTF8_IO is set to LDAP_UTF8_XLATE_OFF). The default, when running as an
LDAP V3 or V2 application, for DNs and strings that are passed into or returned from LDAP APIs
is limited to the local codepage character set.

In general, the connection-associated LDAP Version 3 APIs (APIs that have ld as one of their
parameters) are designed to accept and return string data in either UTF-8 encoded format or in the
local code page format, depending on the LDAP_OPT_UTF8_IO option value set using the
ldap_set_option() API to LDAP_UTF8_XLATE_ON (the default) or
LDAP_UTF8_XLATE_OFF.

The following LDAP APIs (and related APIs) accept and return UTF-8 encoded string data when
the LDAP_OPT_UTF8_IO option is set to LDAP_UTF8_XLATE_OFF. Otherwise, they accept
or return string data in the local code page (the default).

ldap_add (and family)❍

ldap_bind (and family)❍

ldap_compare (and family)❍

ldap_delete (and family)❍

ldap_parse_reference_np❍

ldap_get_dn❍

ldap_get_values❍

ldap_modify (and family)❍

ldap_parse_result❍

ldap_rename (and family)❍

ldap_search (and family)❍

ldap_url_search (and family)❍

APIs that are NOT associated with a connection (APIs that do not have ld as one of their
parameters), always expect and return string data (DNs, for example) in local code page.
The following LDAP APIs (and related APIs) will accept and return string data in the local code
page.

ldap_init❍

ldap_ssl_init❍

ldap_explode_dn❍

ldap_explode_rdn❍

ldap_server_locate❍

●

ldap_server_conf_save❍

ldap_is_ldap_url❍

ldap_default_dn_set/get❍

As a non-standard extension to the API set on OS/400 only, two APIs have been added that allow
input of string data in UTF8. These are:

ldap_explode_dn_utf8❍

ldap_explode_rdn_utf8❍

The ability for an application to access schema information published by LDAP V3 servers (see
Accessing Schema Information).

●

The ability for certain LDAP Version 3 operations to be extended with the use of controls.
Controls can be sent to a server, or returned to the client with any LDAP message. This type of
control is called a server control.

The LDAP API also supports a client-side extension mechanism, which can be used to define client
controls. The client-side controls affect the behavior of the LDAP client library, and are never sent
to the server. Note that client-side controls are not defined for this client library.

A common data structure is used to represent both server-side and client-side controls:

 typedef struct ldapcontrol {
 char *ldctl_oid;
 struct berval ldctl_value;
 char ldctl_iscritical;
 } LDAPControl, *PLDAPControl;

The LDAPControl fields have the following definitions:

ldctl_oid

The control type, represented as a string.

ldctl_value

The data associated with the control. The control may not include data.

ldctl_iscritical

Whether the control is critical or not. If the field is non-zero, the operation is carried out
only if it is recognized and supported by the server (or the client for client-side controls).

If using any of the ber_xxx functions to set up the berval structure, you must specify
QSYS/QGLDBRDR as one of the the bind service programs when creating the program.

●

With this toolkit, an application that uses the ldap_open API defaults to the LDAP V2 protocol. In this
way, existing LDAP applications will continue to work, and can interoperate with both LDAP V2 servers
and LDAP V3 servers.

An application that uses the ldap_init API defaults to the LDAP V3 protocol (with optional bind). An
LDAP V3 application will not necessarily interoperate with an LDAP server that supports only LDAP V2
protocols.

An application can use the ldap_set_option API to change its LDAP protocol version. This should be done
after using ldap_open or ldap_init but before issuing a bind or other operation that results in contacting the
server.

Top | Directory Services (LDAP) APIs | APIs by category

Accessing Schema Information
LDAP V3 servers permit applications to access schema and other related information. For example, the
ldapsearch utility can be used to obtain the subschemasubentry, attributeTypes, and objectClasses from
IBM's SecureWay Directory Server. First use ldapsearch to get the root DSE to find the entry containing
the schema (called the subschemasubentry) for the server, as follows:

ldapsearch -V 3 -h hostname -p port
 -s base -b "" "objectClass=*" subschemaSubentry

The subschemasubentry on SecureWay directories is cn=schema by default. To retrieve the schema itself,
search on the subschemasubentry entry, as follows:

ldapsearch -V 3 -h hostname -p port
 -s base -b "cn=schema" "objectclass=*"

The "-V 3" option is used to force ldapsearch to bind as an LDAP V3 application.

Directory Services (LDAP) APIs | APIs by category

API Prototype Changes
For many of the LDAP APIs, the prototype has changed. On many of the API prototypes where a "char *"
is used, the prototype has changed to use a "const char *". This is the result of changes to the standards.
OS/400 is providing a way to transition to the new prototypes. Inserting

#define _QGLDNOCONST

in applications code prior to the include of ldap.h causes the definition of the old prototypes that use "char
*" to be made available. If _QGLDNOCONST, which is the default, is not defined, the definition of the
new prototypes that use "const char *" is made available.

In some future release, the use of _QGLDNOCONST will be withdrawn.

Directory Services (LDAP) APIs | APIs by category

Deprecated APIs
The following is a list of APIs that are still supported, although their use is deprecated. Use of the newer
replacement APIs is strongly encouraged.

ldap_ssl_start() - use ldap_ssl_client_init() and ldap_ssl_init()●

ldap_open() - use ldap_init()●

ldap_bind() - use ldap_simple_bind()●

ldap_bind_s() - use ldap_simple_bind_s()●

ldap_modrdn() - use ldap_rename()●

ldap_modrdn_s() - use ldap_rename_s()●

ldap_result2error() - use ldap_parse_result()●

ldap_perror() - use ldap_parse_result()●

OS/400-specific APIs:

ldap_app_ssl_start_np() - use ldap_app_ssl_client_init_np() and ldap_app_ssl_init_np().●

Directory Services (LDAP) APIs | APIs by category

LDAP Client API Error Conditions
When most LDAP APIs fail to complete successfully, ld_errno usually indicates one of the following
errors. Under some conditions, ld_errno could indicate an error other than those listed here.

LDAP_SUCCESS 0x00 - The request was successful.

LDAP_OPERATIONS_ERROR 0x01 - An operations error occurred.

LDAP_PROTOCOL_ERROR 0x02 - A protocol violation was detected.

LDAP_TIMELIMIT_EXCEEDED 0x03 - An LDAP time limit was exceeded.

LDAP_SIZELIMIT_EXCEEDED 0x04 - An LDAP size limit was exceeded.

LDAP_COMPARE_FALSE 0x05 - A compare operation returned false.

LDAP_COMPARE_TRUE 0x06 - A compare operation returned true.

LDAP_STRONG_AUTH_NOT_SUPPORTED 0x07 - The LDAP server does not support strong
authentication.

LDAP_STRONG_AUTH_REQUIRED 0x08 - Strong authentication is required for the
operation.

LDAP_PARTIAL_RESULTS 0x09 - Partial results only returned.

LDAP_REFERRAL 0X0A - Referral returned.

LDAP_ADMIN_LIMIT_EXCEEDED 0X0B - Administration limit exceeded.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION 0X0C - Critical extension not supported.

LDAP_NO_SUCH_ATTRIBUTE 0x10 - The attribute type specified does not exist in
the entry.

LDAP_UNDEFINED_TYPE 0x11 - The attribute type specified is not valid.

LDAP_INAPPROPRIATE_MATCHING 0x12 - Filter type not supported for the specified
attribute.

LDAP_CONSTRAINT_VIOLATION 0x13 - An attribute value specified violates some
constraint (for example, a postal address has too
many lines, or a line that is too long).

LDAP_TYPE_OR_VALUE_EXISTS 0x14 - An attribute type or attribute value specified
already exists in the entry.

LDAP_INVALID_SYNTAX 0x15 - An attribute value was specified that is not
valid.

LDAP_NO_SUCH_OBJECT 0x20 - The specified object does not exist in the
directory.

LDAP_ALIAS_PROBLEM 0x21 - An alias in the directory points to a
nonexistent entry.

LDAP_INVALID_DN_SYNTAX 0x22 - A distinguished name was specified that is
syntactically not valid.

LDAP_IS_LEAF 0x23 - The object specified is a leaf.

LDAP_ALIAS_DEREF_PROBLEM 0x24 - A problem was encountered when
dereferencing an alias.

LDAP_INAPPROPRIATE_AUTH 0x30 - Inappropriate authentication was specified
(for example, LDAP_AUTH_SIMPLE was
specified and the entry does not have a user
password attribute).

LDAP_INVALID_CREDENTIALS 0x31 - Credentials that are not valid were presented
(for example, the wrong password).

LDAP_INSUFFICIENT_ACCESS 0x32 - The user has insufficient access to perform
the operation.

LDAP_BUSY 0x33 - The directory system agent is busy.

LDAP_UNAVAILABLE 0x34 - The directory system agent is unavailable.

LDAP_UNWILLING_TO_PERFORM 0x35 - The directory system agent is unwilling to
perform the operation.

LDAP_LOOP_DETECT 0x36 - A loop was detected.

LDAP_NAMING_VIOLATION 0x40 - A naming violation occurred.

LDAP_OBJECT_CLASS_VIOLATION 0x41 - An object class violation occurred (for
example, a must attribute was missing from the
entry).

LDAP_NOT_ALLOWED_ON_NONLEAF 0x42 - The operation is not allowed on a nonleaf
object.

LDAP_NOT_ALLOWED_ON_RDN 0x43 - The operation is not allowed on a relative
distinguished name.

LDAP_ALREADY_EXISTS 0x44 - The entry already exists.

LDAP_NO_OBJECT_CLASS_MODS 0x45 - Object class modifications are not allowed.

LDAP_RESULTS_TOO_LARGE 0x46 - Results too large.

LDAP_AFFECTS_MULTIPLE_DSAS 0X47 - Affects multiple DSAS.

LDAP_OTHER 0x50 - An unknown error occurred.

LDAP_SERVER_DOWN 0x51 - The LDAP API cannot contact the LDAP
server.

LDAP_LOCAL_ERROR 0x52 - Some local error occurred. This usually
indicates that either the LDAP support (OS/400
option 32) is not installed on the system, or a
malloc() operation has failed

LDAP_ENCODING_ERROR 0x53 - An error was encountered while the API was
encoding parameters to send to the LDAP server.

LDAP_DECODING_ERROR 0x54 - An error was encountered while the API was
decoding a result from the LDAP server.

LDAP_TIMEOUT 0x55 - A time limit was exceeded while API was
waiting for a result.

LDAP_AUTH_UNKNOWN 0x56 - The authentication method specified to
ldap_bind() is not known.

LDAP_FILTER_ERROR 0x57 - A filter that is not valid was supplied to
ldap_search() (for example, unbalanced
parentheses).

LDAP_USER_CANCELLED 0x58 - User cancelled

LDAP_PARAM_ERROR 0x59 - An LDAP API was called with a bad
parameter (for example, a NULL ld pointer).

LDAP_NO_MEMORY 0x5A - A memory allocation (for example, a
malloc() call) failed in an LDAP API.

LDAP_CONNECT_ERROR 0x5b - Connection error

LDAP_NOT_SUPPORTED 0x5c - Not Supported

LDAP_CONTROL_NOT_FOUND 0x5d - Control not found

LDAP_NO_RESULTS_RETURNED 0x5e - No results returned

LDAP_MORE_RESULTS_TO_RETURN 0x5f - More result to return

LDAP_URL_ERR_NOTLDAP 0x60 - URL doesn't begin with ldap://

LDAP_URL_ERR_NODN 0x61 - URL has no DN (required).

LDAP_URL_ERR_BADSCOPE 0x62 - URL scope string is invalid.

LDAP_URL_ERR_MEM 0x63 - can't allocate memory space.

LDAP_CLIENT_LOOP 0x64 - Client loop

LDAP_REFERRAL_LIMIT_EXCEEDED 0x65 - Referral limit exceeded

LDAP_SSL_ALREADY_INITIALIZED 0x70 - ldap_ssl_client_init successfully called
previously in this process.

LDAP_SSL_INITIALIZE_FAILED 0x71 - SSL initialization call failed.

LDAP_SSL_INITIALIZE_NOT_CALLED 0x72 - Call ldap_ssl_client_init before attempting to
use an ssl connection.

LDAP_SSL_PARAM_ERROR 0x73 - An invalid ssl parameter was previously
specified.

LDAP_SSL_HANDSHAKE_FAILED 0x74 - Failed to connect to ssl server.

LDAP_SSL_GET_CIPHER_FAILED 0x75 - Failed to identify the maximum SSL
encryption level for this host.

LDAP_SSL_NOT_AVAILABLE 0x76 - The SSL library cannot be loaded.

LDAP_SSL_KEYRING_NOT_FOUND 0x77 - SSL Keyring file not found

LDAP_SSL_PASSWORD_NOT_SPECIFIED 0x78 - SSL password not specified

LDAP_NO_EXPLICIT_OWNER 0x80 - No explicit owner found

LDAP_NO_LOCK 0x81 - Could not obtain lock

LDAP_DNS_NO_SERVERS 0x85 - No LDAP servers found

LDAP_DNS_TRUNCATED 0x86 - Warning truncated DNS results

LDAP_DNS_INVALID_DATA 0x87 - Invalid DNS Data

LDAP_DNS_RESOLVE_ERROR 0x88 - Can't resolve system domain or nameserver

LDAP_DNS_CONF_FILE_ERROR 0x89 - DNS Configuration file error

LDAP_XLATE_E2BIG 0xA0 - Output buffer overflow

LDAP_XLATE_EINVAL 0xA1 - Input buffer truncated

LDAP_XLATE_EILSEQ 0xA2 - Unusable input character

LDAP_XLATE_NO_ENTRY 0xA3 - No codeset point to map to

LDAP_REG_FILE_NOT_FOUND 0xB0 - NT Registry - file not found

LDAP_REG_CANNOT_OPEN 0xB1 - NT Registry - cannot open

LDAP_REG_ENTRY_NOT_FOUND 0xB2 - NT Registry entry not found

LDAP_CONF_FILE_NOT_OPENED 0xC0 - Plugin configuration file not opened

LDAP_PLUGIN_NOT_LOADED 0xC1 - Plugin library not loaded

LDAP_PLUGIN_FUNCTION_NOT_RESOLVED 0xC2 - Plugin function not resolved

LDAP_PLUGIN_NOT_INITIALIZED 0xC3 - Plugin library not initialized

LDAP_PLUGIN_COULD_NOT_BIND 0xC4 - Plugin function could not bind

LDAP_SASL_GSS_NO_SEC_CONTEXT 0xD0 - gss_init_sec_context failed

Top | Directory Services (LDAP) APIs | APIs by category

Controls for LDAP APIs
Certain LDAP Version 3 operations can be extended with the use of controls. Controls can be sent to a
server, or returned to the client with any LDAP message. This type of control is called a server control.

The LDAP API also supports a client-side extension mechanism, which can be used to define client
controls. The client-side controls affect the behavior of the LDAP client library, and are never sent to the
server. Note that client-side controls are not defined for this client library.

A common data structure is used to represent both server-side and client-side controls:

 typedef struct ldapcontrol {
 char *ldctl_oid;
 struct berval ldctl_value;
 char ldctl_iscritical;
 } LDAPControl, *PLDAPControl;

The LDAPControl fields have the following definitions:

ldctl_oid The control type, represented as a string.

ldctl_value The data associated with the control. Note that the control may not include data.

ldctl_iscritical Whether the control is critical. If the field is nonzero, the operation will be carried out
only if it is recognized and supported by the server (or the client for client-side
controls).

Directory Services APIs | APIs by category

ldap_abandon()--Abandon an LDAP Operation
in Progress

 Syntax

 #include <ldap.h>

 int ldap_abandon(
 LDAP *ld,
 int msgid)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_abandon() function is used to abandon or cancel an LDAP operation in progress. The msgid
passed should be the message ID of an outstanding LDAP operation, as returned by a call to an
asynchronous LDAP operation such as ldap_search(), ldap_modify(), and so on.

The ldap_abandon() APIs check to see if the result of the operation has already been returned by the
server. If it has, it deletes it from the queue of pending messages. If not, it sends an LDAP abandon
operation to the the LDAP server.

The caller can expect that the result of an abandoned operation will not be returned from a future call to
ldap_result().

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

msgid

(Input) The message ID of an outstanding LDAP operation, as returned by a call to an
asynchronous LDAP operation such as ldap_search() or ldap_modify().

Return Value

LDAP_SUCCESS

if the request was successful.

-1

if the request was not successful.

Error Conditions

If ldap_abandon() is not successful, ld_errno will be set to indicate the error. See LDAP Client API Error
Conditions for possible LDAP error codes values and ldap_get_errno() function to retrieve the error
information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_abandon API.

Related Information

ldap_abandon_ext() -- Abandon (abort) an asynchronous operation with controls.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_abandon_ext()--Abandon (abort) an
Asynchronous Operation with Controls

 Syntax

 #include <ldap.h>

 int ldap_abandon_ext(
 LDAP *ld,
 int msgid,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_abandon_ext() function is used to abandon or cancel an LDAP operation in progress. The msgid
passed should be the message ID of an outstanding LDAP operation, as returned by a call to an
asynchronous LDAP operation such as ldap_search(), ldap_modify(), and so on.

This API checks to see if the result of the operation has already been returned by the server. If it has, the
result is removed from the queue of pending messages. If not, it sends an LDAP abandon operation to the
the LDAP server.

The caller can expect that the result of an abandoned operation will not be returned from a future call to
ldap_result().

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

msgid

(Input) The message ID of an outstanding LDAP operation, as returned by a call to an
asynchronous LDAP operation such as ldap_search or ldap_modify.

serverctrls

(Input) A list of LDAP server controls. This parameter may be set to null. See LDAP Controls for
more information about server controls.

clientctrls

(Input) A list of LDAP client controls. This parameter may be set to null. See LDAP Controls for
more information about client controls.

Return Value

LDAP_SUCCESS

if the ldap_abandon() was successful.

Other LDAP error code

if the request was not successful.

Error Conditions

If ldap_abandon_ext() is not successful, LDAP error code will be returned. See LDAP Client API Error
Conditions for possible LDAP error codes values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_abandon_ext API.

Related Information

ldap_abandon() -- Abandon (abort) an asynchronous operation.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_add()--Perform an LDAP Add Operation

 Syntax

 #include <ldap.h>

 int ldap_add(
 LDAP *ld,
 const char *dn,
 LDAPMod **attrs)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_add() function is used to perform an LDAP add operation.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

dn

(Input) The DN of the entry to add.

attrs

(Input) The entry's attributes, specified using the LDAPMod structure, as defined for
ldap_modify(). The mod_type and mod_vals fields should be filled in. The mod_op field is ignored
unless ORed with the constant LDAP_MOD_BVALUES. In this case, the mod_op field is used to
select the mod_bvalues case of the mod_vals union.

Return Value

Message ID of the operation initiated

if the request was successfully sent. A subsequent call to ldap_result(), can be used to obtain the
result of the operation.

-1

if the request was not successful.

Error Conditions

If ldap_add() is not successful, ld_errno will be set to indicate the error. See LDAP Client API Error
Conditions for possible LDAP error code values and ldap_get_errno() function to retrieve the error
information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_add API.

Related Information

ldap_add_s() -- Synchronously add an entry.●

ldap_add_ext() -- Asynchronously add an entry with controls.●

ldap_add_ext_s() -- Synchronously add an entry with controls.●

ldap_modify() -- Asynchronously modify an entry.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_add_ext()--Perform an LDAP Add
Operation with Controls

 Syntax

 #include <ldap.h>

 int ldap_add_ext(
 LDAP *ld,
 const char *dn,
 LDAPMod **attrs,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_add_ext() function is used to perform an LDAP add operation with controls.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

dn

(Input) The DN of the entry to add.

attrs

(Input) The entry's attributes, specified using the LDAPMod structure, as defined for
ldap_modify(). The mod_type and mod_vals fields should be filled in. The mod_op field is ignored
unless ORed with the constant LDAP_MOD_BVALUES. In this case, the mod_op field is used to
select the mod_bvalues case of the mod_vals union.

serverctrls

(Input) A list of LDAP server controls. This parameter may be set to null. See LDAP Controls for

more information about server controls.

clientctrls

(Input) A list of LDAP client controls. This parameter may be set to null. See LDAP Controls for
more information about client controls.

msgidp

(Output) This result parameter is set to the message ID of the request if the ldap_add_ext() call
succeeds.

Return Value

LDAP_SUCCESS

if the request was successful. If successful, ldap_add_ext() places the message ID of the request in
*msgidp. A subsequent call to ldap_result() can be used to obtain the result of the operation.

another LDAP error code

if the request was not successful.

Error Conditions

If ldap_add_ext() is not successful, an LDAP error code will be returned. See LDAP Client API Error
Conditions for possible LDAP error code values. The error code indicates if the operation completed
successfully. The ldap_parse_result() API is used to check the error code in the result.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_add_ext API.

Related Information

ldap_add() -- Asynchronously add an entry.●

ldap_add_s() -- Synchronously add an entry.●

ldap_add_ext_s() -- Synchronously add an entry with controls.●

ldap_modify_ext() -- Asynchronously modify an entry with controls.●

The ldap_add_ext() API supports LDAP V3 server controls and client controls.

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_add_ext_s()--Perform an LDAP Add
Operation with Controls (Synchronous)

 Syntax

 #include <ldap.h>

 int ldap_add_ext_s(LDAP *ld,
 const char *dn,
 LDAPMod **attr,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_add_ext_s() function is used to perform synchronous LDAP add operation with controls.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

dn

(Input) The DN of the entry to add.

attrs

(Input) The entry's attributes, specified using the LDAPMod structure, as defined for
ldap_modify(). The mod_type and mod_vals fields should be filled in. The mod_op field is ignored
unless ORed with the constant LDAP_MOD_BVALUES. In this case, the mod_op field is used to
select the mod_bvalues case of the mod_vals union.

serverctrls

(Input) A list of LDAP server controls. This parameter may be set to null. See LDAP Controls for
more information about server controls.

clientctrls

(Input) A list of LDAP client controls. This parameter may be set to null. See LDAP Controls for
more information about client controls.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_add_ext_s() will return an LDAP error code if not successful. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_add_ext_s API.

Related Information

ldap_add() -- Asynchronously add an entry.●

ldap_add_s() -- Synchronously add an entry.●

ldap_add_ext() -- Asynchronously add an entry with controls.●

ldap_modify_ext_s() -- Synchronously modify an entry with controls.●

The ldap_add_ext_s() API supports LDAP V3 server controls and client controls.

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_add_s()--Perform an LDAP Add Operation
(Synchronous)

 Syntax

 #include <ldap.h>

 int ldap_add_s(
 LDAP *ld,
 const char *dn,
 LDAPMod **attrs)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_add_s() function is used to perform synchronous LDAP add operation.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

dn

(Input) The DN of the entry to add.

attrs

(Input) The entry's attributes, specified using the LDAPMod structure, as defined for
ldap_modify(). The mod_type and mod_vals fields should be filled in. The mod_op field is ignored
unless ORed with the constant LDAP_MOD_BVALUES. In this case, the mod_op field is used to
select the mod_bvalues case of the mod_vals union.

Return Value

LDAP_SUCCESS

if the request was successfully sent.

another LDAP error code

if the request was not successfully sent.

Error Conditions

If ldap_add_s() is not successful, ld_errno will be set to indicate the error. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_add_s API.

Related Information

ldap_add() -- Asynchronously add an entry.●

ldap_add_ext_s() -- Synchronously add an entry with controls.●

ldap_add_ext() -- Asynchronously add an entry with controls.●

ldap_modify_s() -- Synchronously modify an entry.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_app_ssl_client_init_np()--Initialize the
LDAP Client for a Secure Connection using
DCM

 Syntax

 #include <ldap.h>
 #include <ldapssl.h>

 int ldap_app_ssl_client_init_np(
 char *dcm_identifier,
 int *pSSLReasonCode)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_app_ssl_client_init_np() is an LDAP V3 function used to initialize the LDAP client using the
Digital Certificate Manager (DCM) to control the digital certificate in preparation for making a secure
connection (using Secure Sockets Layer (SSL)) to a LDAP server.

ldap_app_ssl_client_init_np() must be called prior to ldap_app_ssl_init_np() to establish a connection, and
prior to any kind of ldap_bind(), whether it be an ldap_sasl_bind_s() or an ldap_simple_bind_s().
ldap_app_ssl_client_init_np() must be called only once per job, while multiple ldap_app_ssl_init_np() or
secure connections can be done, allowing one (DCM) initialization to be done for many connections. Once
the secure connection is established all subsequent LDAP messages that flow over the secure connection are
encrypted, including the ldap_bind() parameters, until ldap_unbind() is called.

Either ldap_ssl_client_init() or ldap_app_ssl_client_init_np() (but not both) can be called in an application
process. If you are not going to use SSL client authentication (LDAP SASL bind with the EXTERNAL
mechanism), use ldap_ssl_client_init().

Authorities and Locks

*R authority is needed to the selected Certificate Store and *X to the associated directories.

Parameters

dcm_identifier

(Input) An identifier string that corresponds to a secure application registered with DCM. If NULL is
used, then the default Directory Services client application ID will be used
(QIBM_GLD_DIRSRV_CLIENT).

pSSLReasonCode

(Output) A pointer to the SSL Reason Code, which provides additional information in the event that
an error occurs during initialization of the SSL stack (when ldap_app_ssl_client_init_np() is
called). See QSYSINC/H.LDAPSSL for reason codes that can be returned.

Examples

The following scenario depicts the recommended calling sequence where the entire set of LDAP transactions
are "protected" by using a secure SSL connection:

 rc = ldap_app_ssl_client_init_np (dcm_identifier, &reasoncode);
 ld = ldap_app_ssl_init_np(ldaphost, ldapport);
 rc = ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, &ciphers);
 rc = ldap_sasl_bind_s(ld, NULL, LDAP_MECHANISM_EXTERNAL, NULL,
NULL, NULL);

 ...additional LDAP API calls

 rc = ldap_unbind(ld);

The following scenario depicts the calling sequence for multiple connections using one DCM identifier:

 rc = ldap_app_ssl_client_init_np (dcm_identifier, &reasoncode);
 ld = ldap_app_ssl_init_np(ldaphost, ldapport);
 rc = ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, &ciphers);
 rc = ldap_sasl_bind_s(ld, NULL, LDAP_MECHANISM_EXTERNAL, NULL,
NULL, NULL);

 /* For multiple secure connections using the same dcm_identifier. */

 ld1 = ldap_app_ssl_init_np(ldaphost, ldapport);
 rc = ldap_sasl_bind_s(ld, NULL, LDAP_MECHANISM_EXTERNAL, NULL,
NULL, NULL);

 ld2 = ldap_app_ssl_init_np(ldaphost, ldapport);
 rc = ldap_sasl_bind_s(ld, NULL, LDAP_MECHANISM_EXTERNAL, NULL,
NULL, NULL);

 ...additional LDAP API calls

 rc = ldap_unbind(ld);
 rc = ldap_unbind(ld1);
 rc = ldap_unbind(ld2);

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

If ldap_app_ssl_client_init_np() is not successful it will return an LDAP error code. See LDAP Client API
Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_ssl_client_init_np API.

Related Information

ldap_app_ssl_init_np() -- Initializes an SSL Connection.●

ldap_app_ssl_start_np() -- Start a Secure LDAP Connection using DCM.●

ldap_ssl_client_init() -- Initializes the SSL Library.●

ldap_ssl_init() -- Initializes an SSL connection.●

ldap_ssl_start() -- Creates a secure SSL connection (deprecated).●

ldap_bind() -- Bind to the directory server.●

ldap_sasl_bind_s() -- Synchronously bind to the directory using Simple Authentication Security
Layer (SASL).

●

ldap_unbind() -- unbind from the LDAP server and close the connection.●

API introduced: V5R1

Top | Directory Services APIs | APIs by category

ldap_app_ssl_init_np --Initializes an SSL
Connection

 Syntax

 #include <ldap.h>
 #include <ldapssl.h>

 LDAP *ldap_app_ssl_init_np(
 char *host,
 int port)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_app_ssl_init_np() routine is used to initialize a secure SSL session with a server. Note that the
server is not actually contacted until an operation is performed that requires it, allowing various options to
be set after initialization. Once the secure connection is established, all subsequent LDAP messages that
flow over the secure connection are encrypted, including the ldap_simple_bind() parameters, until
ldap_unbind() is called.

Note that when connecting to an LDAP V2 server, one of the ldap_simple_bind() or ldap_bind() calls must
be completed before other operations can be performed on the session (with the exception of
ldap_set/get_option()). The LDAP V3 protocol does not require a bind operation before performing other
operations.

The ciphers for the encryption of the connection are based on the current Crypto Access Provider licensed
program loaded: AC1, AC2 or AC3. See ldap_get or set_option() for more information on setting the
ciphers to be used.

Authorities and Locks

*R authority is needed to the selected Certificate Store and *X to the associated directories.

Parameters

host

(Input) Several methods are supported for specifying one or more target LDAP servers, including
the following:

Explicit Host List Specifies the name of the host on which the LDAP server is
running. The host parameter may contain a blank-separated list of
hosts to try to connect to, and each host may optionally be of the
form host:port. If present, the :port overrides the port parameter.

The following are typical examples:

ld=ldap_app_ssl_init_np ("server1", ldaps_port);
ld=ldap_app_ssl_init_np ("server2:1200", ldaps_port);
ld=ldap_app_ssl_init_np ("server1:800 server2:2000 server3",
ldaps_port);

Localhost If the host parameter is null, it is assumed that the LDAP server is
running on the local host.

Default Hosts If the host parameter is set to "ldaps://" the LDAP library will
attempt to locate one or more default LDAP servers, with SSL
ports, using the SecureWay ldap_server_locate() function. The port
specified on the call is ignored, since ldap_server_locate() returns
the port.

For example, the following two are equivalent:

ld=ldap_app_ssl_init_np ("ldaps://", ldaps_port);
ld=ldap_app_ssl_init_np (LDAPS_URL_PREFIX,
LDAPS_PORT);

If more than one default server is located, the list is processed in
sequence, until an active server is found.

The LDAP URL can include a Distinguished Name, used as a filter
for selecting candidate LDAP servers based on the server's suffix
(or suffixes). If the most significant portion of the DN is an exact
match with a server's suffix (after normalizing for case), the server
is added to the list of candidate servers. For example, the following
will only return default LDAP servers that have a suffix that
supports the specified DN:

ld=ldap_app_ssl_init_np ("ldaps:///cn=fred, dc=austin, dc=ibm,
dc=com", LDAPS_PORT)

In this case, a server that has a suffix of "dc=austin, dc=ibm,
dc=com" would match. If more than one default server is located,
the list is processed in sequence, until an active server is found.

If the LDAP URL contains a host name and optional port, the host
is used to create the connection. No attempt is made to locate the
default server(s), and the DN, if present, is ignored.

For example, the following two are equivalent:

ld=ldap_app_ssl_init_np ("ldaps://myserver", LDAPS_PORT);
ld=ldap_app_ssl_init_np ("myserver", LDAPS_PORT);

Local Socket If the host parameter is prefixed with "/", the host parameter is
assumed to be the name of a UNIX socket (that is, socket family is
AF_UNIX) and port is ignored. This will fail for
ldap_app_ssl_init_np() because UNIX sockets do not support SSL,
nor is it necessary since data will not be flowing over the network.

Host with Privileged Port If a specified host is prefixed with "privport://", then the LDAP
library will use the rresvport() function to attempt to obtain one of
the reserved ports (512 through 1023), instead of an "ephemeral"
port. The search for a reserved port starts at 1023 and stops at 512.
If a reserved port cannot be obtained, ldap_app_ssl_init_np() will
fail.

For example:

ld=ldap_app_ssl_init_np ("privport://server1, ldaps_port");
ld=ldap_app_ssl_init_np ("privport://server2:1200", ldaps_port);
ld=ldap_app_ssl_init_np ("privport://server1:800 server2:2000
privport://server3", ldaps_port);

port

(Input) The port number to which to connect. If the default IANA-assigned SSL port of 636 is
desired, LDAPS_PORT should be specified. The value specified for this parameter is ignored in
some situations; see the description for the host parameter.

Return Value

Session Handle

if the request was successful. The Session Handle returned by ldap_app_ssl_init_np() is a pointer
to an opaque data type representing an LDAP session. The ldap_get_option() and ldap_set_option()
APIs are used to access and set a variety of session-wide parameters; see these APIs for more
information.

NULL

if the request was not successful.

Error Conditions

ldap_app_ssl_init_np() will return NULL if not successful.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_app_ssl_init_np API.

Related Information

ldap_app_ssl_client_init_np() -- Initialize the Client for a Secure LDAP Connection using DCM.●

ldap_ssl_client_init() -- Initializes the SSL library.●

ldap_app_ssl_start_np() -- Creates a secure SSL connection (deprecated).●

ldap_ssl_start() -- Creates a secure SSL connection (deprecated).●

Example

The following scenario depicts the recommended calling sequence where the entire set of LDAP
transactions are protected by using a secure SSL connection:

 rc = ldap_app_ssl_client_init_np (dcm_identifier, &reasoncode);
 ld = ldap_app_ssl_init_np(ldaphost, ldapport);
 rc = ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, &ciphers);
 rc = ldap_sasl_bind_s(ld, NULL, LDAP_MECHANISM_EXTERNAL, NULL,
NULL, NULL);

 ...additional LDAP API calls

 rc = ldap_unbind(ld);

API introduced: V5R1

Top | Directory Services APIs | APIs by category

ldap_app_ssl_start_np()--Start a Secure LDAP
Connection using DCM

 Syntax

 #include <ldap.h>
 #include <ldapssl.h>

 int ldap_app_ssl_start_np(LDAP *ld,
 char *dcm_identifier)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

This is a deprecated API.

The ldap_app_ssl_start_np() function is used to start a secure connection (using Secure Sockets Layer (SSL))
to an LDAP server using the Digital Certificate Manager (DCM) to control the digital certificate.

ldap_app_ssl_start_np() must be called after ldap_open() and prior to ldap_bind(). Once the secure
connection is established for the ld, all subsequent LDAP messages that flow over the secure connection are
encrypted, including the ldap_bind() parameters, until ldap_unbind() is called.

Authorities and Locks

*R authority is needed to the selected Certificate Store and *X to the associated directories.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

dcm_identifier

(Input) An identifier string that corresponds to a secure application registered with DCM. The use of
NULL assumes that in a prior use of the this API a valid DCM identifier for an application has been
used and that it is to be used again for this connection. This allows multiple connections without going
through the initialization of SSL with a DCM identifier more than once.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

ldap_app_ssl_start_np() will return an LDAP error code if not successful. See LDAP Client API Error
Conditions for possible LDAP error code values. Depending on the error code, errno information also may be
available.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_app_ssl_start_np API.

Related Information

ldap_app_ssl_client_init_np() -- Initialize the Client for a Secure LDAP Connection using DCM●

ldap_ssl_client_init() -- Initializes the SSL Library●

ldap_ssl_init() -- Initializes an SSL connection●

ldap_ssl_start() -- Creates a secure SSL connection●

ldap_bind() -- Bind to the directory server●

ldap_unbind() -- Unbind from the LDAP server and close the connection●

ldap_open() -- Open a connection to an LDAP server●

Example

The following scenario depicts the recommended calling sequence where the entire set of LDAP transactions
are "protected" by using a secure SSL connection, including the dn and password that flow on the
ldap_simple_bind():

 ld = ldap_open (ldaphost, ldapport);
 rc = ldap_app_ssl_start_np(ld, dcm_identifier);
 rc = ldap_simple_bind_s(ld, binddn, passwd);

 ...additional LDAP API calls

 rc = ldap_unbind(ld);

The following scenario depicts the calling sequence for multiple connections using one DCM identifier:

 ld = ldap_open (ldaphost, ldapport);
 rc = ldap_app_ssl_start_np(ld, dcm_identifier);
 rc = ldap_simple_bind_s(ld, binddn, passwd);

 /* For multiple secure connections using the same dcm_identifier. */

 ld1 = ldap_open (ldaphost, ldapport);
 rc = ldap_app_ssl_start_np(ld1, NULL);
 rc = ldap_simple_bind_s(ld1, binddn, passwd);

 ld2 = ldap_open (ldaphost, ldapport);
 rc = ldap_app_ssl_start_np(ld2, NULL);
 rc = ldap_simple_bind_s(ld2, binddn, passwd);

 ...additional LDAP API calls

 rc = ldap_unbind(ld);
 rc = ldap_unbind(ld1);
 rc = ldap_unbind(ld2);

API introduced: V4R4

Top | Directory Services APIs | APIs by category

ldap_ber_free()--Free storage allocated by the
LDAP library

 Syntax

 #include <ldap.h>

 void ldap_ber_free(
 BerElement *berptr)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_ber_free() routine is used to free the BerElement pointed to by berptr.

Authorities and Locks

No OS/400 authority is required.

Parameters

berptr

(Input) The address of the BerElement to be freed, as returned from ldap_first_attribute() and
ldap_next_attribute().

Return Value

None.

Error Conditions

The ldap_ber_free() API does not return an error code.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_ber_free API.

Related Information

ldap_first_attribute() -- Retrieve First Attribute in an Entry●

ldap_next_attribute() -- Retrieve Next Attribute in an Entry●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_bind()--Perform an LDAP Bind Request

 Syntax

 #include <ldap.h>

 int ldap_bind(
 LDAP *ld,
 const char *dn,
 const char *cred,
 int method)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_bind() function provides general authentication routines, where in principle an authentication
method can be chosen. In this toolkit, method must be set to LDAP_AUTH_SIMPLE.

The ldap_bind() function is used to authenticate a distinguished name (DN) to a directory server. When
connecting to an LDAP V2 server, after a connection is made by using the ldap_open() API, an LDAP
bind API must be called before any other LDAP APIs can be called for that connection. Binding the
connection is not required for LDAP V3.

ldap_bind() is an asynchronous request. The result of the operation can be obtained by a subsequent call to
ldap_result().

Since this API is deprecated, ldap_simple_bind() should be used instead.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

dn

(Input) The distinguished name of the entry to bind as.

cred

(Input) The credentials with which to authenticate. Arbitrary credentials can be passed using this

parameter. In most cases, this is the user's password.

method

(Input) Selects the authentication method to use. Specify LDAP_AUTH_SIMPLE for simple
authentication. Simple authentication is the only supported method.

Note that use of the ldap_bind() API is deprecated.

Return Value

Message ID of the Initiated Request

if the ldap_bind() was successful.

-1

if the request was not successful.

Error Conditions

If ldap_bind() is not successful, ld_errno will be set to indicate the error. See LDAP Client API Error
Conditions for possible LDAP error code values. Use ldap_get_errno() function to retrieve the error
information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_bind API.

Related Information

ldap_bind_s() -- Synchronously bind to the directory (deprecated).●

ldap_sasl_bind() -- Asynchronously bind to the directory using SASL.●

ldap_sasl_bind_s() -- Synchronously bind to the directory using SASL.●

ldap_simple_bind() -- Asynchronously bind to the directory using simple authentication.●

ldap_simple_bind_s() -- Synchronously bind to the directory using simple authentication.●

ldap_unbind() -- Asynchronously unbind from the LDAP server and close the connection.●

ldap_unbind_s() -- Synchronously unbind from the LDAP server and close the connection.●

ldap_set_rebind_proc() -- Sets the entry-point of a routine during the chasing of referrals.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_bind_s()--Perform an LDAP Bind Request
(Synchronous)

 Syntax

 #include <ldap.h>

 int ldap_bind_s(
 LDAP *ld,
 const char *dn,
 const char *cred,
 int method)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_bind_s() function provide synchronous general authentication routines, where in principle an
authentication method can be chosen. In this toolkit, method must be set to LDAP_AUTH_SIMPLE.

The ldap_bind_s() function is used to authenticate a distinguished name (DN) to a directory server. When
connecting to an LDAP V2 server, after a connection is made by using the ldap_open() API, an LDAP
bind API must be called before any other LDAP APIs can be called for that connection. Binding the
connection is not required for LDAP V3.

ldap_bind_s() is synchronous request.

Since this APIs is deprecated, ldap_simple_bind_s() should be used instead.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

dn

(Input) The distinguished name of the entry to bind as.

cred

(Input) The credentials with which to authenticate. Arbitrary credentials can be passed using this
parameter. In most cases, this is the user's password.

method

(Input) Selects the authentication method to use. Specify LDAP_AUTH_SIMPLE for simple
authentication. Simple authentication is the only supported method.

Note that use of the ldap_bind_s() APIs is deprecated.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_bind_s() API will return an LDAP error code if not successful. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_bind_s API.

Related Information

ldap_bind() -- Asynchronously bind to the directory (deprecated).●

ldap_sasl_bind() -- Asynchronously bind to the directory using SASL.●

ldap_sasl_bind_s() -- Synchronously bind to the directory using SASL.●

ldap_simple_bind() -- Asynchronously bind to the directory using simple authentication.●

ldap_simple_bind_s() -- Synchronously bind to the directory using simple authentication.●

ldap_unbind() -- Asynchronously unbind from the LDAP server and close the connection.●

ldap_unbind_s() -- Synchronously unbind from the LDAP server and close the connection.●

ldap_set_rebind_proc() -- Sets the entry-point of a routine during the chasing of referrals.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_compare()--Perform an LDAP Compare
Operation

 Syntax

 #include <ldap.h>

 int ldap_compare(
 LDAP *ld,
 const char *dn,
 const char *attr,
 const char *value)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_compare() function is used to perform an LDAP compare operation. The API uses as input the
distinguished name (DN) of the entry on which to perform the compare, and uses an attr and value (the
attribute type and value to compare to those found in the entry).

Binary values are not supported by this API. Use ldap_compare_ext() if binary values must be compared.

ldap_compare() is an asynchronous request. The result of the operation can be obtained by a subsequent
call to ldap_result().

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

dn

(Input) The DN of the entry upon which to perform the compare.

attr

(Input) The attribute type to use in the comparison.

value

(Input) The string attribute value to compare against the value in the entry.

Return Value

Message ID of the Operation Initiated

if the request was successful.

-1

if the request was not successful.

Error Conditions

If ldap_compare() is not successful, ld_errno will be set to indicate the error. See LDAP Client API Error
Conditions for possible LDAP error code values. Use ldap_get_errno() function to retrieve the error
information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_compare API.

Related Information

ldap_compare_s() -- Synchronous compare to a directory entry.●

ldap_compare_ext() -- Asynchronous compare to a directory entry with controls.●

ldap_compare_ext_s() -- Synchronous compare to a directory entry with controls.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_compare_ext()--Perform an LDAP
Compare Operation with Controls

 Syntax

 #include <ldap.h>

 struct berval {
 unsigned long bv_len;
 char *bv_val;
 };

 int ldap_compare_ext(
 LDAP *ld,
 const char *dn,
 const char *attr,
 const berval *bvalue,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_compare_ext() function is used to perform an LDAP compare operation with controls. The
ldap_compare_ext() API initiates an asynchronous compare operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

dn

(Input The distinguished name (DN) of the entry upon which to perform the compare.

attr

(Input) The attribute type to use in the comparison.

bvalue

(Input) The attribute value to compare against the value in the entry. This is a pointer to a struct
berval, making it possible to compare binary values.

serverctrls

(Input) Specifies a list of LDAP server controls. This parameter may be set to null. See LDAP
Controls for more information about server controls.

clientctrls

(Input) A list of LDAP client controls. This parameter may be set to null. See LDAP Controls for
more information about client controls.

msgidp

(Output) This result parameter is set to the message ID of the request if the ldap_compare_ext()
call succeeds.

Return Value

LDAP_SUCCESS

if the request was successfully sent. If successful, ldap_compare_ext() places the message ID of
the request in *msgidp. A subsequent call to ldap_result() can be used to obtain the result of the
operation. Once the operation has completed, ldap_result() returns a result that contains the status
of the operation in the form of an error code. The error code indicates if the operation completed
successful (LDAP_COMPARE_TRUE or LDAP_COMPARE_FALSE).

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_compare_ext() API will return an LDAP error code if not successful. See LDAP Client API
Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_compare_ext API.

Related Information

ldap_compare() -- Asynchronous compare to a directory entry.●

ldap_compare_s() -- Synchronous compare to a directory entry.●

ldap_compare_ext_s() -- Synchronous compare to a directory entry with controls.●

The ldap_compare_ext() API supports LDAP V3 server controls and client controls.

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_compare_ext_s()--Perform an LDAP
Compare Operation with Controls
(Synchronous)

 Syntax

 #include <ldap.h>

 struct berval {
 unsigned long bv_len;
 char *bv_val;
 };

 int ldap_compare_ext_s(
 LDAP *ld,
 const char *dn,
 const char *attr,
 const berval *bvalue,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_compare_ext_s() function is used to perform a synchronous LDAP compare operation with
controls.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

dn

(Input) The distinguished name (DN) of the entry upon which to perform the compare.

attr

(Input) The attribute type to use in the comparison.

bvalue

(Input) The attribute value to compare against the value in the entry. This is a pointer to a struct
berval, making it possible to compare binary values.

serverctrls

(Input) A list of LDAP server controls. This parameter may be set to null. See LDAP Controls for
more information about server controls.

clientctrls

(Input) A list of LDAP client controls. This parameter may be set to null. See LDAP Controls for
more information about client controls.

Return Value

LDAP_COMPARE_TRUE

if the entry contains the attribute value.

LDAP_COMPARE_FALSE

if the entry does not contain the attribute value.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_compare_ext_s() API will return an LDAP error code if not successful. See LDAP Client API
Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_compare_ext_s API.

Related Information

ldap_compare() -- Asynchronous compare to a directory entry.●

ldap_compare_s() -- Synchronous compare to a directory entry.●

ldap_compare_ext() -- Asynchronous compare to a directory entry with controls.●

The ldap_compare_ext_s() API supports LDAP V3 server controls and client controls.

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_compare_s()--Perform an LDAP Compare
Operation (Synchronous)

 Syntax

 #include <ldap.h>

 int ldap_compare_s(
 LDAP *ld,
 const char *dn,
 const char *attr,
 const char *value)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_compare_s() function is used to perform an LDAP compare operation. The API uses as input the
distinguished name (DN) of the entry on which to perform the compare, and uses an attr and value (the
attribute type and value to compare to those found in the entry).

Binary values are not supported by this API. Use ldap_compare_ext_s() if binary values must be compared.
ldap_compare_s() is a synchronous request.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

dn

(Input) The distinguished name (DN) of the entry upon which to perform the compare.

attr

(Input) The attribute type to use in the comparison.

value

(Input) The string attribute value to compare against the value in the entry.

Return Value

LDAP_COMPARE_TRUE

if the entry contains the attribute value.

LDAP_COMPARE_FALSE

if the entry does not contain the attribute value.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_compare_s() API will return an LDAP error code if not successful. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_compare_s API.

Related Information

ldap_compare() -- Asynchronous compare to a directory entry.●

ldap_compare_ext() -- Asynchronous compare to a directory entry with controls.●

ldap_compare_ext_s() -- Synchronous compare to a directory entry with controls.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_controls_free()--Free storage allocated by
the LDAP library

 Syntax

 #include <ldap.h>

 void ldap_controls_free(LDAPControl **ctrls)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_controls_free() routine is used to free storage allocated by the LDAP APIs that uses an array of
LDAPControl structure.

Authorities and Locks

No OS/400 authority is required.

Parameters

ctrls

(Input) The address of an LDAPControl list, represented as a NULL-terminated array of pointers to
LDAPControl structures.

Return Value

None.

Error Conditions

The ldap_controls_free() API does not return an error code.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_controls_free API.

Related Information

ldap_ber_free() -- Free storage allocatd for BerElement structure.●

ldap_memfree() -- Free storage that has been allocated by the LDAP client library.●

ldap_control_free() -- Free a single LDAPControl structure.●

ldap_msgfree() -- Free LDAP Result Message.●

ldap_mods_free() -- Free an array of pointers to mod structures.●

ldap_parse_result() -- Extract Information from Results●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_control_free()--Free storage allocated by
the LDAP library

 Syntax

 #include <ldap.h>

 void ldap_control_free(LDAPControl *ctrl)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_control_free() routine is used to free storage allocated by the LDAP APIs that uses an
LDAPControl structure.

Authorities and Locks

No OS/400 authority is required.

Parameters

ctrl

(Input) The address of an LDAPControl structure.

Return Value

None.

Error Conditions

The ldap_control_free() API does not return an error code.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_control_free API.

Related Information

ldap_controls_free() -- Free an array of LDAPControl structures.●

ldap_parse_result() -- Extract Information from Results●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_count_attributes()--Retrieve Count of
Attributes for an LDAP Entry

 Syntax

 #include <ldap.h>

 int ldap_count_attributes(
 LDAP *ld,
 LDAPMessage *entry)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_count_attributes() function returns a count of the number of attributes in an LDAP entry.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

entry

(Input) The attribute information as returned by ldap_first_entry() or ldap_next_entry().

Return Value

Number of Attributes

if the request was successful.

-1

if the request was not successful.

Error Conditions

The ldap_count_attributes() API returns -1 if a null entry is passed as input to ldap_count_attributes().

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_count_attributes API.

Related Information

ldap_first_attribute() -- Return first attribute name in an entry.●

ldap_next_attribute() -- Return next attribute name in an entry.●

ldap_first_entry() -- Retrieve First LDAP Entry●

ldap_next_entry() -- Retrieve Next LDAP Entry●

API Introduce: V4R3

Top | Directory Services APIs | APIs by category

ldap_count_entries()--Retrieve Count of LDAP
Entries

 Syntax

 #include <ldap.h>

 int ldap_count_entries(
 LDAP *ld,
 LDAPMessage *result)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_count_entries() API returns the number of entries contained in a search result chain. It can also
be used to count the number of entries that remain in a chain if called with a message, entry or continuation
reference returned by ldap_first_message(), ldap_next_message(), ldap_first_entry(),
ldap_next_entry(), ldap_first_reference() or ldap_next_reference(), respectively.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

result

(Input) The result returned by a call to ldap_result() or by one of synchronous search routines
(ldap_search_s() or ldap_search_st()).

Return Value

Number of Entries

If the request is successful, ldap_count_entries() returns the number of entries contained in a
search result chain. It can also be used to count the number of entries that remain in a chain if
called with a message, entry or continuation reference.

-1

if the request was not successful.

Error Conditions

If ldap_count_entries() is not successful, ld_errno will be set to indicate the error. See LDAP Client API
Error Conditions for possible LDAP error code values. Use ldap_get_errno() function to retrieve the error
information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_count_entries API.

Related Information

ldap_first_entry() -- Return first entry in a chain of search results.●

ldap_next_entry() -- Return next entry in a chain of search results.●

ldap_get_entry_controls_np() -- Extract server controls from an entry.●

ldap_first_reference() -- Return first continuation reference in a chain of search results.●

ldap_next_reference() -- Return next continuation reference in a chain of search results.●

ldap_count_references() -- Return number of continuation reference in a chain of search results.●

ldap_parse_reference_np() -- Extract information from a continuation reference.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_count_messages()--Count messages in a
result chain

 Syntax

 #include <ldap.h>

 int ldap_count_messages(LDAP *ld,
 LDAPMessage *result)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_count_messages() routine is used to step through the list of messages in a result chain, as
returned by ldap_result(). It is used to count the number of messages returned. The ldap_msgtype() API can
be used to distinguish between the different message types.

In addition to returning the number of messages contained in a chain of results, the ldap_count_messages()
API can be used to count the number of messages that remain in a chain if called with a message, entry, or
reference returned by ldap_first_message(), ldap_next_message(), ldap_first_entry(),
ldap_next_entry(), ldap_first_reference() and ldap_next_reference().

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

result

(Input) The result returned by a call to ldap_result() or one of the synchronous search routines
(ldap_search_s(), ldap_search_st(), or ldap_search_ext_st()).

Return Value

Number of Messages

If the request was successful, ldap_count_messages() API retuns the number of messages in a
result chain or number of messages that remain in a chain, as returned by ldap_result().

-1

if the request was not successful.

Error Conditions

If ldap_count_messages() is not successful, ld_errno will be set to indicate the error. See LDAP Client
API Error Conditions for possible LDAP error code values. Use ldap_get_errno() function to retrieve the
error information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_count_messages API.

Related Information

ldap_first_message() -- Return first message in a result chain.●

ldap_next_message() -- Return next message in a result chain.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_count_references()--Count continuation
references in a chain of search results

 Syntax

 #include <ldap.h>

 int ldap_count_references(LDAP *ld,
 LDAPMessage *result)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_count_references() API is used to count the number of continuation references returned. It can
also be used to count the number of continuation references that remain in a chain.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

result

(Input) The result returned by a call to ldap_result() or one of the synchronous search routines
(ldap_search_s(), ldap_search_st(), or ldap_search_ext_s()).

Return Value

Number of continuation reference

If the request was successful, ldap_count_references() API returns the number of continuation
references in a result chain or number of continuation references that remain in a chain, as returned
by ldap_result().

-1

if the request was not successful.

Error Conditions

If ldap_count_references() is not successful, ld_errno will be set to indicate the error. See LDAP Client
API Error Conditions for possible LDAP error code values. Use ldap_get_errno() function to retrieve the
error information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_count_references API.

Related Information

ldap_first_reference() -- Return first continuation reference in a result chain, as returned by
ldap_result.

●

ldap_next_reference() -- Return next continuation reference in a result chain, as returned by
ldap_result.

●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_count_values()--Retrieve Count of
Attribute Values

 Syntax

 #include <ldap.h>

 int ldap_count_values(
 char **vals)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_count_values() function returns the number of values in the array returned by the
ldap_get_values() function.

Authorities and Locks

No OS/400 authority is required.

Parameters

vals

(Input) A pointer to a null-terminated array of attribute values, as returned by ldap_get_values().

Return Value

Number of Values

if the request is successful, ldap_count_values() returns the number of values in the array returned
by the ldap_get_values() function.

-1

if the request was not successful.

Error Conditions

If ldap_count_values() is not successful, ld_errno will be set to indicate the error. See LDAP Client API
Error Conditions for possible LDAP error code values. Use ldap_get_errno() function to retrieve the error
information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_count_values API.

Related Information

ldap_get_values() -- Return an attribute's values.●

ldap_get_values_len() -- Return an attribute's binary values.●

ldap_count_values_len() -- Return number of binary values.●

ldap_value_free() -- Free memory allocated by ldap_get_values.●

ldap_value_free_len() -- Free memory allocated by ldap_get_values_len.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_count_values_len()--Retrieve Count of
Binary Attribute Values

 Syntax

 #include <ldap.h>

 struct berval {
 unsigned long bv_len;
 char *bv_val;
 };

 int ldap_count_values_len(
 struct berval **bvals)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_count_values_len() function returns the number of values in the array returned by the
ldap_get_values_len() function. The array of values returned can be freed by calling ldap_value_free_len().

Authorities and Locks

No OS/400 authority is required.

Parameters

bvals

(Input) A pointer to a null-terminated array of pointers to berval structures, as returned by
ldap_get_values_len().

Return Value

Number of Values

if the request is successful, ldap_count_values_len() returns the number of values in the array
returned by the ldap_get_values_len() function.

-1

if the request was not successful.

Error Conditions

if ldap_count_values_len() is not successful, ld_errno will be set to indicate the error. See LDAP Client
API Error Conditions for possible LDAP error code values. Use ldap_get_errno() function to retrieve the
error information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_count_values_len API.

Related Information

ldap_get_values() -- Return an attribute's values.●

ldap_get_values_len() -- Return an attribute's binary values.●

ldap_count_values() -- Return number of values.●

ldap_value_free() -- Free memory allocated by ldap_get_values().●

ldap_value_free_len() -- Free memory allocated by ldap_get_values_len().●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_default_dn_get()-- Retrieve the User's
Default DN

 Syntax

#include <ldap.h>

int ldap_default_dn_get(
 char **default_dn,
 char *filename)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_default_dn_get() API is used to retrieve the user's default DN. To free the returned string, use
ldap_memfree().

An application stores the default DN on disk by calling ldap_default_dn_set(). For OS/400 the default file
(used when filename is NULL) where the default DN stored is called ldap_user_info and will be found in
the user's home directory. A user's home directory is specified in the user's profile.

Authorities and Locks

The caller must have Execute (*X) authority to each directory in the path name preceding the name of the
user information file. The caller must have Read (*R) authority to the user information file.

Parameters

default_dn

(output) Specifies the user's default Distinguished Name. Free *default_dn with ldap_memfree()
when no longer needed.

filename

(Input) Specifies an alternative location for the user's default Distinguished Name storage. If only a
filename is given for the filename parameter then the file will be checked in the current directory,
otherwise, if a path is given as well as a filename as part of the filename parameter, the file will be
checked following the given path. If filename is NULL, a file called ldap_user_info in the user's
home directory will be read.

Return Value

LDAP_SUCCESS

if the default DN was retrieved.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_default_dn_get() API will return an LDAP error code if not successful. See LDAP Client API
Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_default_dn_get API.

Related Information

ldap_default_dn_set() -- Store the User's Default DN.●

ldap_enetwork_domain_set() -- Store the User's Default eNetwork Domain Name.●

ldap_enetwork_domain_get() -- Retrieve the User's Default eNetwork Domain Name.●

ldap_memfree() -- Free Memory Allocated by LDAP API●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_default_dn_set()-- Store the User's Default
DN

 Syntax

#include <ldap.h>

int ldap_default_dn_set(
 char *default_dn,
 char *filename)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_default_dn_set() API is used to store the user's default DN. The DN can be obtained by calling
ldap_default_dn_get().

The default DN is stored on disk. For OS/400 the default file the information will be stored in will be called
ldap_user_info and will be put into the user's home directory. A user's home directory is specified in the
user's profile. The home directory must be created prior to calling ldap_default_dn_set() and is not created
as part of the creation of a user's profile. It will be stored in the local character set format.

Authorities and Locks

The caller must have Execute (*X) authority to each directory in the path name preceding the name of the
user information file. The caller must have Write (*W) authority to the user information file. If the filename
file doesn't exist in the directory when calling ldap_default_dn_set, the caller must have Write (*W)
authority to the file's parent directory.

Parameters

default_dn

(input) Specifies the user's default Distinguished Name.

filename

(Input) Specifies an alternative location for the user's default Distinguished Name storage. If only a
filename is given for the filename parameter then a file will be created in the current directory,
otherwise, if a path is given as well as a filename as part of the filename parameter, the file will be
created following the given path. If filename is NULL, a file called ldap_user_info will be created
into the user's home directory.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_default_dn_set() API will return an LDAP error code if not successful. See LDAP Client API
Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of the ldap_default_dn_set API.

Related Information

ldap_default_dn_get() -- Retrieve the User's Default DN.●

ldap_enetwork_domain_set() -- Store the User's Default eNetwork Domain Name.●

ldap_enetwork_domain_get() -- Retrieve the User's Default eNetwork Domain Name.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_delete()--Perform an LDAP Delete
Operation

 Syntax

#include <ldap.h>

int ldap_delete(
 LDAP *ld,
 const char *dn)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_delete() routine initiates an asynchronous LDAP operation to delete a leaf entry. The result of the
operation can be obtained by a subsequent call to ldap_result().

Note that the entry to delete must be a leaf entry (that is, it must have no children). Deletion of entire
subtrees in a single operation is not supported by LDAP.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the DN of the entry to be deleted.

Return Value

Message ID of the Operation Initiated

If the request was successful.

-1

If the request was not successful.

Error Conditions

If ldap_delete() is not successful, ld_errno will be set to indicate the error. See LDAP Client API Error
Conditions for possible LDAP error code values. Use ldap_get_errno() function to retrieve the error
information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_delete API.

Related Information

ldap_delete_s() -- Synchronous delete an entry.●

ldap_delete_ext() -- Asynchronous delete an entry with controls.●

ldap_delete_ext_s() -- Synchronous delete an entry with controls.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_delete_ext()--Perform an LDAP Delete
Operation with Controls

 Syntax

#include <ldap.h>

int ldap_delete_ext(LDAP *ld,
 const char *dn,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_delete_ext() routine initiates an asynchronous LDAP operation to delete a leaf entry with
controls.

Note that the entry to delete must be a leaf entry (that is, it must have no children). Deletion of entire
subtrees in a single operation is not supported by LDAP.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the Distinguished Name (DN) of the entry to be deleted.

serverctrls

(Input) Specifies a list of LDAP server controls. This parameter may be set to null. See LDAP
Controls for more information about server controls.

clientctrls

(Input) Specifies a list of LDAP client controls. This parameter may be set to null. See LDAP
Controls for more information about client controls.

msgidp

(Output) This result parameter is set to the message id of the request if the ldap_delete_ext() call
succeeds.

Return Value

LDAP_SUCCESS

if the request was successfully sent, ldap_delete_ext() places the message id of the request in
*msgidp. A subsequent call to ldap_result() can be used to obtain the result of the operation. Once
the operation has completed, ldap_result() returns a result that contains the status of the operation
(in the form of an error code). The error code indicates if the operation completed successfully.

another LDAP error code

if the request was not successfully.

Error Conditions

The ldap_delete_ext() API will return an LDAP error code if not successful. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_delete_ext API.

Related Information

ldap_delete() -- Asynchronous delete an entry.●

ldap_delete_s() -- Synchronous delete an entry.●

ldap_delete_ext_s() -- Synchronous delete an entry with controls.●

The ldap_delete_ext() API supports LDAP V3 server controls and client controls.

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_delete_ext_s()--Perform an LDAP Delete
Operation with Controls

 Syntax

#include <ldap.h>

int ldap_delete_ext_s(LDAP *ld,
 const char *dn,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_delete_ext_s() routine initiates a synchronous LDAP operation to delete a leaf entry with
controls.

Note that the entry to delete must be a leaf entry (that is, it must have no children). Deletion of entire
subtrees in a single operation is not supported by LDAP.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the Distinguished Name (DN) of the entry to be deleted.

serverctrls

(Input) Specifies a list of LDAP server controls. This parameter may be set to null. See LDAP
Controls for more information about server controls.

clientctrls

(Input) Specifies a list of LDAP client controls. This parameter may be set to null. See LDAP
Controls for more information about client controls.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_delete_ext_s() API will return an LDAP error code if not successful. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_delete_ext_s API.

Related Information

ldap_delete() -- Asynchronous delete an entry.●

ldap_delete_s() -- Synchronous delete an entry.●

ldap_delete_ext() -- Asynchronous delete an entry with controls.●

The ldap_delete_ext_s() API supports LDAP V3 server controls and client controls.

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_delete_s()--Perform an LDAP Delete
Operation (Synchronous)

 Syntax

#include <ldap.h>

int ldap_delete_s(
 LDAP *ld,
 const char *dn)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_delete_s() routine initiates a synchronous LDAP operation to delete a leaf entry.

Note that the entry to delete must be a leaf entry (that is, it must have no children). Deletion of entire
subtrees in a single operation is not supported by LDAP.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the Distinguished Name (DN) of the entry to be deleted.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_delete_s() will return an LDAP error code if not successful. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_delete_s API.

Related Information

ldap_delete() -- Asynchronous delete an entry.●

ldap_delete_ext() -- Asynchronous delete an entry with controls.●

ldap_delete_ext_s() -- Synchronous delete an entry with controls.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_dn2ufn()--Convert a Distinguished Name
into a User Friendly Name

 Syntax

#include <ldap.h>

char *ldap_dn2ufn(
 const char *dn)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_dn2ufn() function takes a distinguished name (DN) and converts into a "friendlier"
representation by removing the attribute type that is associated with each relative distinguished name
(RDN). For example, the DN "cn=John Doe,ou=Widget Division,ou=Austin,o=IBM,c=US" would be
returned in its "friendlier" form as "John Doe, Widget Division, Austin, IBM, US". Space for the
user-friendly name will have been obtained by the API, and should be freed by the caller with a call to
ldap_memfree().

Authorities and Locks

No OS/400 authority is required.

Parameters

dn

(Input) Specifies the DN to be converted (as returned from ldap_get_dn()).

Return Value

Character String

if the request was successful.

NULL

if the request was not successful.

Error Conditions

If ldap_dn2ufn() is not successful, then there was no memory available for the character string.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_dn2ufn API.

Related Information

ldap_get_dn() -- Extract the DN from an entry.●

ldap_explode_rdn() -- Break a Relative Distinguished Name into Its Components.●

API introduced: V5R1

Top | Directory Services APIs | APIs by category

ldap_enetwork_domain_get()-- Retrieve the
User's Default eNetwork Domain Name

 Syntax

#include <ldap.h>

int ldap_enetwork_domain_get(
 char **edomain,
 char *filename)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_enetwork_domain_get() API is used to retrieve the user's default eNetwork domain name. To
free the returned string, use ldap_memfree().

The eNetwork domain name (along with the user's default Domain Name Service (DNS) domain name) is
used to identify the user's LDAP authentication domain. For example, if a user's eNetwork domain name is
"chicago", and the user's DNS domain is midwest.illinois.com, then information can be published in DNS
that associates ldap.chicago.midwest.illinois.com with a collection of LDAP servers (master(s) and
replicas). This permits applications to easily find an appropriate LDAP authentication server, by using the
ldap_server_locate() API.

An application stores the eNetwork domain name on disk by calling ldap_enetwork_domain_set(). For
OS/400 the default file where the eNetwork domain name stored is called ldap_user_info and will be
found in the user's home directory. A user's home directory is specified in the user's profile.

Authorities and Locks

The caller must have Execute (*X) authority to each directory in the path name preceding the name of the
user information file. The caller must have Read (*R) authority to the user information file.

Parameters

edomain

(Output) Specifies the name of the eNetwork domain to which the user belongs.

filename

(Input) Specifies an alternative location for the user's default eNetwork domain name. If only a
filename is given for the filename parameter then the file will be found in the current directory,
otherwise, if a path is given as well as a filename as part of the filename parameter, the file will be
found by following the given path.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_enetwork_domain_get() will return an LDAP error code if not successful. See LDAP Client
API Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_enetwork_domain_get API.

Related Information

ldap_default_dn_set() -- Store the User's Default DN.●

ldap_default_dn_get() -- Retrieve the User's Default DN.●

ldap_enetwork_domain_set() -- Store the User's Default eNetwork Domain Name.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_enetwork_domain_set()-- Store the User's
Default eNetwork Domain Name

 Syntax

#include <ldap.h>

int ldap_enetwork_domain_set(
 char *edomain,
 char *filename)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_enetwork_domain_set() API is used to store the user's default eNetwork domain name
(specified as a NULL terminated string).

The eNetwork domain name (along with the user's default Domain Name Service (DNS) domain name) is
used to identify the user's LDAP authentication domain. For example, if a user's eNetwork domain name is
"chicago", and the user's DNS domain is midwest.illinois.com, then information can be published in DNS
that associates ldap.chicago.midwest.illinois.com with a collection of LDAP servers (master(s) and
replicas). This permits applications to easily find an appropriate LDAP authentication server, by using the
ldap_server_locate() API.

An application can retrieve the eNetwork domain name by calling ldap_enetwork_domain_get().

The eNetwork domain name is stored on disk. For OS/400 the default file the information will be stored in
will be called ldap_user_info and will be put into the user's home directory. A user's home directory is
specified in the user's profile. The home directory must be created prior to calling
ldap_enetwork_domain_set() and is not created as part of the creation of a user's profile. It will be stored
in the local character set format.

Authorities and Locks

The caller must have Execute (*X) authority to each directory in the path name preceding the name of the
user information file. The caller must have Write (*W) authority to the user information file. If the file
doesn't exist in the directory, the caller must have Write (*W) authority to the file's parent directory.

Parameters

edomain

(Input) Specifies the name of the eNetwork domain to which the user belongs.

filename

(Input) Specifies an alternative location for the user's default eNetwork domain name. If only a
filename is given for the filename parameter then a file will be created in the current directory,
otherwise, if a path is given as well as a filename as part of the filename parameter, the file will be
created following the given path.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_enetwork_domain_set() API will return an LDAP error code if not successful. See LDAP Client
API Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_enetwork_domain_set API.

Related Information

ldap_default_dn_set() -- Store the User's Default DN.●

ldap_default_dn_get() -- Retrieve the User's Default DN.●

ldap_enetwork_domain_get() -- Retrieve the User's Default eNetwork Domain Name.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_err2string()--Retrieve LDAP Error
Message String

 Syntax

#include <ldap.h>

char *ldap_err2string(
 int error)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_err2string() function is used to retrieve the text description corresponding to an LDAP error
code.

The text description returned will be provided in English only.

The string returned from ldap_err2string() should not be freed when use of the string is complete.

Authorities and Locks

No OS/400 authority is required.

Parameters

error

(Input) Specifies the LDAP error code returned by a previous call to ldap_result2error(),
ldap_get_errno(), or a synchronous LDAP API.

Return Value

LDAP error description String

a textual description of the LDAP error code.

Error Conditions

The ldap_err2string() API will return "Unknown Error" if the LDAP error code is unknown. See LDAP
Client API Error Conditions for possible LDAP error codes and their description.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_err2string API.

Related Information

ldap_get_errno() -- Retrieve Error Code set.●

ldap_perror() -- Print an LDAP error indication to standard error.●

ldap_result2error() -- Extract LDAP error indication from LDAP result.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_explode_dn()--Break a Distinguished
Name into Its Components

 Syntax

#include <ldap.h>

char **ldap_explode_dn(
 const char *dn,
 int notypes)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_explode_dn() function uses the distinguished name in local codepage returned by ldap_get_dn()
and breaks it up into its component parts. Each part is known as a Relative Distinguished Name (RDN). If
the dn is in UTF8, use ldap_explode_dn_utf8().

ldap_explode_dn() returns a NULL-terminated array, each component of which contains an RDN from the
DN. The notypes parameter is used to request that only the RDN values be returned, not their types.

For example, the distinguished name cn=Bob,c=US would return as either "cn=Bob","c=US",NULL or
"Bob","US", NULL depending on whether notypes was 0 or 1, respectively. The result can be freed by
calling ldap_value_free().

Authorities and Locks

No OS/400 authority is required.

Parameters

dn

(Input) Specifies the DN to be exploded (as returned from ldap_get_dn()).

notypes

(Input) Specifies if type information is to be returned with each RDN. If non-zero, the type
information will be stripped. If zero, the type information is retained. For example, setting notypes
to 1 would result in the RDN "cn=Fido" being returned as "Fido".

Return Value

Relative Distinguished Name (RDN)

if the request was successful.

NULL

if the request was not successful.

Error Conditions

If ldap_explode_dn() is not successful, then there was no memory available for either the array or its
component parts.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_explode_dn API.

Related Information

ldap_get_dn() -- Extract the DN from an entry.●

ldap_explode_dn_utf8() -- Break a UTF8 Distinguided Name into its components.●

ldap_explode_rdn() -- Break a Relative Distinguished Name into its components.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_explode_dns()--Break a DNS-style
Distinguished Name into Its Components

 Syntax

#include <ldap.h>

char **ldap_explode_dns(
 const char *dn)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_explode_dns() function takes a Domain Name System (DNS)-style distinguished name and
breaks it up into its component parts.

ldap_explode_dns() returns a NULL-terminated array of character strings.

For example, the DNS-style distinguished name rochester.ibm.com would be returned as an array of
components "rochester","ibm","com",NULL. The result can be freed by calling ldap_value_free().

Authorities and Locks

No OS/400 authority is required.

Parameters

dn

(Input) Specifies the DNS-style DN to be exploded.

Return Value

An array of character strings.

if the request was successful.

NULL

if the request was not successful.

Error Conditions

If ldap_explode_dns() is not successful, no memory is available for the array or its components.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_explode_dns API.

Related Information

ldap_explode_dn() -- Break a Distinguished Name into its components.●

ldap_explode_dn_utf8() -- Break a UTF8 codepage Distinguished Name into Its Components●

ldap_explode_rdn() -- Break a Relative Distinguished Name into its components.●

ldap_explode_rdn_utf8() -- Break a UTF8 codepage Relative Distinguished Name into Its
Components

●

API introduced: V5R1

Top | Directory Services APIs | APIs by category

ldap_explode_dn_utf8()--Break a UTF8
codepage Distinguished Name into Its
Components

 Syntax

#include <ldap.h>

char **ldap_explode_dn_utf8(
 char *dn,
 int notypes)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_explode_dn_utf8() function uses the distinguished name in UTF8 characters returned by
ldap_get_dn() and breaks it up into its component parts. Each part is known as a Relative Distinguished
Name (RDN). If the dn is in local codepage, use ldap_explode_dn().

ldap_explode_dn_utf8() returns a NULL-terminated array, each component of which contains an RDN
from the DN. The notypes parameter is used to request that only the RDN values be returned, not their
types.

For example, the distinguished name cn=Bob,c=US would return as either "cn=Bob","c=US",NULL or
"Bob","US", NULL depending on whether notypes was 0 or 1, respectively. The result can be freed by
calling ldap_value_free().

Authorities and Locks

No OS/400 authority is required.

Parameters

dn

(Input) The DN to be exploded in UTF8 codepage (as returned from ldap_get_dn()).

notypes

(Input) Whether type information is to be returned with each RDN. If non-zero, the type
information is stripped. If zero, the type information is retained. For example, setting notypes to 1
would result in the RDN "cn=Fido" being returned as "Fido".

Return Value

Relative Distinguished Name (RDN)

The request was successful.

NULL

The request was not successful. The ldap_get_errno() API can be used to obtain the error code.

Error Conditions

If ldap_explode_dn_utf8() is not successful, ld_errno is set to indicate the error. See LDAP Client API
Error Conditions for possible LDAP error code values. Use the ldap_get_errno() function to retrieve the
error information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_explode_dn_utf8 API.

Related Information

ldap_explode_dn() -- Break a Distinguished Name into Its Components.●

ldap_explode_rdn() -- Break a Relative Distinguished Name into Its Components.●

ldap_explode_rdn_utf8() -- Break a UTF8 codepage Relative Distinguished Name into Its
Components.

●

API introduced: V5R1

Top | Directory Services APIs | APIs by category

ldap_explode_rdn()--Break a Relative
Distinguished Name into Its Components

 Syntax

#include <ldap.h>

char **ldap_explode_rdn(
 const char *rdn,
 int notypes)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_explode_rdn() function uses the relative distinguished name (RDN) in the local CCSID (as
returned by ldap_explode_dn(), for example) and breaks it up into its component parts. If the RDN is in
UTF8, use ldap_explode_rdn_utf8().

ldap_explode_rdn() returns a NULL-terminated array of character strings. The notypes parameter is used
to request that only the component values be returned, not their types.

For example, the RDN "ou=Research+cn=Bob" would return as either {"ou=Research", "cn=Bob", NULL}
or {"Research","Bob", NULL}, depending on whether notypes was 0 or 1, respectively. The result can be
freed by calling ldap_value_free().

Authorities and Locks

No OS/400 authority is required.

Parameters

rdn

(Input) Specifies the RDN to be exploded (perhaps as returned by ldap_explode_dn()). Multiple
RDNs can be concatenated using a plus sign ('+').

notypes

(Input) Specifies if type information is to be returned with each RDN. If non-zero, the type
information will be stripped. If zero, the type information is retained. For example, setting notypes
to 1 would result in the RDN "cn=Fido" being returned as "Fido".

Return Value

Components of Relative Distinguished Name (RDN)

if the request was successful.

NULL

if the request was not successful.

Error Conditions

If ldap_explode_rdn() is not successful, then there was no memory available for either the array or its
component parts.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_explode_rdn API.

Related Information

ldap_explode_dn() -- Break a Distinguished Name into its components.●

ldap_explode_rdn_utf8() -- Break a UTF8 Relative Distinguished Name into its components.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_explode_rdn_utf8()--Break a UTF8
codepage Relative Distinguished Name into Its
Components

 Syntax

#include <ldap.h>

char **ldap_explode_rdn_utf8(
 char *rdn,
 int notypes)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_explode_rdn_utf8() function uses the relative distinguished name (RDN) in UTF8 characters (as
returned by, ldap_explode_dn_utf8(), for example) and breaks it up into its component parts. If the RDN is
in local codepage, use ldap_explode_rdn().

ldap_explode_rdn_utf8() returns a NULL-terminated array of character strings. The notypes parameter is
used to request that only the component values be returned, not their types.

For example, the RDN "ou=Research+cn=Bob" would return as either {"ou=Research", "cn=Bob", NULL}
or {"Research","Bob", NULL}, depending on whether notypes was 0 or 1, respectively. The result can be
freed by calling ldap_value_free().

Authorities and Locks

No OS/400 authority is required.

Parameters

rdn

(Input) The RDN to be exploded (perhaps as returned by ldap_explode_dn_utf8()). Multiple RDNs
can be concatenated using a plus sign ('+').

notypes

(Input) Whether type information is to be returned with each RDN. If non-zero, the type
information is stripped. If zero, the type information is retained. For example, setting notypes to 1
would result in the RDN "cn=Fido" being returned as "Fido".

Return Value

Components of Relative Distinguished Name (RDN)

The request was successful.

NULL

The request was not successful. The ldap_get_errno() API can be used to obtain the error code.

Error Conditions

If ldap_explode_rdn_utf8() is not successful, ld_errno will be set to indicate the error. See LDAP Client
API Error Conditions for possible LDAP error code values. Use the ldap_get_errno() function to retrieve
the error information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_explode_rdn_utf8 API.

Related Information

ldap_explode_dn() -- Break a Distinguished Name into Its Components.●

ldap_explode_dn_utf8() -- Break a UTF8 codepage Distinguished Name into Its Components.●

ldap_explode_rdn() -- Break a Distinguished Name into Its Components.●

API introduced: V5R1

Top | Directory Services APIs | APIs by category

ldap_extended_operation()--Perform extended
operations.

 Syntax

#include <ldap.h>

int ldap_extended_operation(
 LDAP *ld,
 const char *reqoid,
 const struct berval *reqdata,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_extended_operation() function is used to initiate an asynchronous extended operation, which
returns LDAP_SUCCESS if the extended operation was successfully sent, or an LDAP error code if not. If
successful, the ldap_extended_operation() API places the message id of the request in *msgid. A
subsequent call to ldap_result() can be used to obtain the result of the extended operation, which can then
be passed to ldap_parse_extended_result() to obtain the Object IDentifier (OID) and data contained in the
response.

If the LDAP server does not support the extended operation, the server will reject the request. To determine
if the requisite extended operation is supported by the server, get the rootDSE of the LDAP server, and
check for the supportedExtension attribute. If the values for this attribute include the OID of your extended
operation, then the server supports the extended operation. If the supportedExtension attribute is not present
in the rootDSE, then the server is not configured to support any extended operations.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

reqoid

(Input) Specifies the dotted-OID text string that identifies the extended operation to be performed

by the server.

reqdata

(Input) Specifies the arbitrary data required by the extended operation (if NULL, no data is sent to
the server).

serverctrls

(Input) Specifies a list of LDAP server controls. This parameter may be set to null. See LDAP
Controls for more information about server controls.

clientctrls

(Input) Specifies a list of LDAP client controls. This parameter may be set to null. See LDAP
Controls for more information about client controls.

msgidp

(Output) This result parameter is set to the message id of the request if the
ldap_extended_operation() call succeeds.

Return Value

LDAP_SUCCESS

if the request was successful. ldap_extended_operation() places the message id of the request in
*msgidp. To check the result of this operation, call ldap_result() and ldap_parse_extended_result()
APIs. The server may also return an OID and result data.

another LDAP error code

if the request was not successful.

Error Conditions

If ldap_extended_operation() is not successful, will return a -1 instead of a valid msgid, setting the
session error in the LD structure, which can be obtained by using ldap_get_errno().

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_extended_operation API.

Related Information

ldap_add_ext() -- Asynchronously add an entry with controls.●

ldap_add_ext_s() -- Synchronously add an entry with controls.●

ldap_compare_ext() -- Asynchronous compare to a directory entry with controls.●

ldap_compare_ext_s() -- Synchronous compare to a directory entry with controls.●

ldap_delete_ext() -- Asynchronous delete an entry with controls.●

ldap_delete_ext_s() -- Synchronous delete an entry with controls.●

ldap_modify_ext() -- Asynchronously modify an entry with controls.●

ldap_modify_ext_s() -- Synchronously modify an entry with controls.●

ldap_parse_extended_result() -- Parse extended result.●

ldap_sasl_bind() -- Asynchronously bind to the directory using the Simple Authentication Security
Layer (SASL).

●

ldap_sasl_bind_s() -- Synchronously bind to the directory using the Simple Authentication Security
Layer (SASL).

●

ldap_search_ext() -- Asynchronously search the directory with controls.●

ldap_search_ext_s() -- Synchronously search the directory with controls.●

ldap_rename() -- Asynchronously rename an entry with controls.●

ldap_rename_s() -- Synchronously rename an entry with controls.●

ldap_unbind_ext() -- Unbind with controls.●

The ldap_extended_operation() API supports LDAP V3 server controls and client controls.

API introduced: V5R1

Top | Directory Services APIs | APIs by category

ldap_extended_operation_s()--Perform
extended operations synchronously

 Syntax

 #include <ldap.h>

 int ldap_extended_operation_s(
 LDAP *ld,
 const char *reqoid,
 const struct berval *reqdata,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 char **retoidp,
 struct berval **retdatap)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_extended_operation_s() function is used to perform a synchronous LDAP extended operation,
which returns LDAP_SUCCESS if the extended operation completed successfully, or an LDAP error code
if not. The retoid and retdata parameters are filled in with the Object IDentifier (OID) and data from the
response. If no OID or data was returned, these parameters are set to NULL, respectively.

If the LDAP server does not support the extended operation, the operation will fail. To determine if the
requisite extended operation is supported by the server, get the rootDSE of the LDAP server and check for
the supportedExtension attribute. If the values for this attribute include the object identifier of your
extended operation, then the server supports the extended operation. If the supportedExtension attribute is
not present in the rootDSE, then the server is not configured to support any extended operations.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

reqoid

(Input) Specifies the dotted-OID text string that identifies the extended operation to be performed
by the server.

reqdata

(Input) Specifies the arbitrary data required by the extended operation (if NULL, no data is sent to
the server).

serverctrls

(Input) Specifies a list of LDAP server controls. This parameter may be set to null. See LDAP
Controls for more information about server controls.

clientctrls

(Input) Specifies a list of LDAP client controls. This parameter may be set to null. See LDAP
Controls for more information about client controls.

retoidp

(Output) This result parameter is set to point to a character string that is set to an allocated,
dotted-OID text string returned from the server. This string should be disposed of using the
ldap_memfree() API. If no OID is returned, *retoidp is set to NULL.

retdatap

(Output) This result parameter is set to a pointer to a berval structure pointer that is set to an
allocated copy of the data returned by the server. This struct berval should be disposed of using
ber_bvfree(). If no data is returned, *retdatp is set to NULL.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

If ldap_extended_operation_s() is not successful, it will return the LDAP error code resulting from the
operation.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_extended_operation_s API.

Related Information

ldap_add_ext() -- Asynchronously add an entry with controls.●

ldap_add_ext_s() -- Synchronously add an entry with controls.●

ldap_compare_ext() -- Asynchronous compare to a directory entry with controls.●

ldap_compare_ext_s() -- Synchronous compare to a directory entry with controls.●

ldap_delete_ext() -- Asynchronous delete an entry with controls.●

ldap_delete_ext_s() -- Synchronous delete an entry with controls.●

ldap_modify_ext() -- Asynchronously modify an entry with controls.●

ldap_modify_ext_s() -- Synchronously modify an entry with controls.●

ldap_sasl_bind() -- Asynchronously bind to the directory using the Simple Authentication Security
Layer (SASL).

●

ldap_sasl_bind_s() -- Synchronously bind to the directory using the Simple Authentication Security
Layer (SASL).

●

ldap_search_ext() -- Asynchronously search the directory with controls.●

ldap_search_ext_s() -- Synchronously search the directory with controls.●

ldap_rename() -- Asynchronously rename an entry with controls.●

ldap_rename_s() -- Synchronously rename an entry with controls.●

ldap_unbind_ext() -- Unbind with controls.●

The ldap_extended_operation_s() API supports LDAP V3 server controls and client controls.

API introduced: V5R1

Top | Directory Services APIs | APIs by category

ldap_first_attribute()--Retrieve First Attribute in
an Entry

 Syntax

 #include <ldap.h>

 char *ldap_first_attribute(
 LDAP *ld,
 LDAPMessage *entry,
 BerElement **berptr)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_first_attribute() function returns the first attribute in an entry. The ldap_first_attribute() and
ldap_next_attribute() functions are used to step through the attributes in an LDAP entry.

ldap_first_attribute() takes an entry returned by ldap_first_entry() or ldap_next_entry() and returns a
pointer to a buffer containing a null terminated string that is the first attribute type in the entry. This buffer
must be freed when its use is completed using ldap_memfree(). *berptr also must be freed when its use is
completed using ldap_ber_free().

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(),
ldap_app_ssl_init_np(), or ldap_open().

entry

(Input) The attribute information as returned by ldap_first_entry() or ldap_next_entry().

berptr

(Output) A pointer to a BerElement that will be allocated to keep track of the current position. It is
an input and output parameter for subsequent calls to ldap_next_attribute(). The BerElement
structure is opaque to the application. Free *berptr when its use is completed using ber_free.

Return Value

Pointer to a buffer containing the first attribute type in the entry

if the request was successful.

NULL

if the request was not successful.

Error Conditions

If ldap_first_attribute() is not successful, NULL is returned, and ld_errno will be set to indicate the error.
See LDAP Client API Error Conditions for possible LDAP error code values. Use ldap_get_errno()
function to retrieve the error information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_first_attribute API.

Related Information

ldap_first_entry() -- Retrieve first LDAP entry.●

ldap_next_entry() -- Retrieve next LDAP entry.●

ldap_count_attributes() -- Retrieve count of attributes for an LDAP entry.●

ldap_next_attribute() -- Return next attribute name in an entry.●

ldap_get_values() -- Retrieve a set of attribute values from an entry.●

ldap_get_values_len() -- Retrieve a set of binary attribute values.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_first_entry()--Retrieve First LDAP Entry

 Syntax

 #include <ldap.h>

 LDAPMessage *ldap_first_entry(
 LDAP *ld,
 LDAPMessage *result)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_first_entry() function takes the result from a call to ldap_result(), ldap_search_s(), or
ldap_search_st() and returns a pointer to the first entry in the result.

The ldap_first_entry(), ldap_next_entry(), and ldap_count_entries() functions are used to parse results
received from ldap_result() or the synchronous LDAP search functions ldap_search_s() and
ldap_search_st().

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

result

(Input) The result returned by a call to ldap_result() or one of the synchronous search routines
(ldap_search_s() or ldap_search_st()).

Return Value

Pointer to the next entry in the result

if the request was successful.

NULL

if the request was not successful.

Error Conditions

If ldap_first_entry() is not successful, NULL is returned, ld_errno will be set to indicate the error. See
LDAP Client API Error Conditions for possible LDAP error code values. Use ldap_get_errno() function to
retrieve the error information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_first_entry API.

Related Information

ldap_next_entry() -- Return next entry in a chain of search results.●

ldap_count_entries() -- Return number of entries in a chain of search results.●

ldap_get_entry_controls_np() -- Extract server controls from an entry.●

ldap_first_reference() -- Return first continuation reference in a chain of search results.●

ldap_next_reference() -- Return next continuation reference in a chain of search results.●

ldap_count_references() -- Return number of continuation reference in a chain of search results.●

ldap_parse_reference_np() -- Extract information from a continuation reference.●

ldap_first_message -- Retrieve first LDAP message.●

ldap_next_message() -- Retrieve next LDAP message.●

ldap_msgfree() -- Free LDAP result message.●

ldap_msgtype() -- Retrieve Type of an LDAP Message●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_first_message()--Retrieve First LDAP
Message

 Syntax

 #include <ldap.h>

 LDAPMessage *ldap_first_message(LDAP *ld,
 LDAPMessage *result)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_first_message() routine is used to step through the list of messages in a result chain, as returned
by ldap_result(). It is used to return a pointer to the first message in the list.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init() , or
ldap_open().

result

(Input) The result returned by a call to ldap_result() or one of the synchronous search routines
(ldap_search_s(), ldap_search_st(), or ldap_search_ext_s()).

Return Value

LDAPMessage *

Pointer to the first message.

NULL

when no message exists in the result set or if an error occurs.

Error Conditions

If ldap_first_message() is not successful, ld_errno will be set to indicate the error. See LDAP Client API
Error Conditions for possible LDAP error code values. Use ldap_get_errno() function to retrieve the error
information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_first_message API.

Related Information

ldap_count_messages() -- Return the number of message in a result chain.●

ldap_first_entry() -- Retrieve first LDAP entry.●

ldap_first_reference() -- Return first continuation reference in a chain of search results.●

ldap_msgfree() -- Free LDAP result message.●

ldap_msgid() -- Retrieve message ID associated with an LDAP message.●

ldap_msgtype() -- Retrieve type of an LDAP message.●

ldap_next_message() -- Retrieve next LDAP message.●

ldap_result2error() -- Retrieve LDAP error information●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_first_reference()--Retrieve First
Continuation Reference in a Chain of Search
Results

 Syntax

 #include <ldap.h>

 LDAPMessage *ldap_first_reference(LDAP *ld,
 LDAPMessage *result)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_first_reference() is used to return the first continuation reference from the search result chain.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

result

(Input) The result returned by a call to ldap_result() or one of the synchronous search routines
(ldap_search_s(), ldap_search_st(), or ldap_search_ext_s()).

Return Value

LDAPMessage *

Pointer to the first continuation reference. The pointer returned from ldap_first_reference() should
be supplied on a subsequent call to ldap_next_reference() to get the next continuation reference.

NULL

when no more continuation references exist in the result set to be returned.

Error Conditions

If ldap_first_reference() is not successful, ld_errno will be set to indicate the error. See LDAP Client API
Error Conditions for possible LDAP error code values. Use ldap_get_errno() function to retrieve the error
information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_first_reference API.

Related Information

ldap_first_entry() -- Return first entry in a chain of search results.●

ldap_next_entry() -- Return next entry in a chain of search results.●

ldap_count_entry() -- Return number of entry in a chain of search results.●

ldap_get_entry_controls_np() -- Extract server controls from an entry.●

ldap_count_reference() -- Return the number of continuation reference in a chain of search results.●

ldap_next_reference() -- Return next continuation reference in a chain of search results.●

ldap_parse_reference_np() -- Extract information from a continuation reference.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_free_urldesc()--Free an LDAP URL
Description

 Syntax

 #include <ldap.h>

 typedef struct ldap_url_desc {
 char *lud_host; /* LDAP host to contact */
 int lud_port; /* port on host */
 char *lud_dn; /* base for search */
 char **lud_attrs; /* NULL-terminate list of attributes */
 int lud_scope; /* a valid LDAP_SCOPE_... value */
 char *lud_filter; /* LDAP search filter */
 char *lud_string; /* for internal use only */
 } LDAPURLDesc;

 void ldap_free_urldesc(
 LDAPURLDesc *ludp)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_free_urldesc() function is called to free an LDAP URL description that was obtained from a call
to the ldap_url_parse() function.

Authorities and Locks

No OS/400 authority is required.

Parameters

ludp

(Input) Points to the LDAP URL description, as returned by ldap_url_parse().

Return Value

None.

Error Conditions

The ldap_free_urldesc() API does not return an error code.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_free_urldesc API.

Related Information

ldap_is_ldap_url() -- Check a URL string to see if it is an LDAP URL.●

ldap_url_parse() -- Break up an LDAP URL string into its components.●

ldap_url_search() -- Asynchronously search using an LDAP URL.●

ldap_url_search_s() -- Synchronously search using an LDAP URL.●

ldap_url_search_st() -- Synchronously search using an LDAP URL and a timeout.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_get_dn()--Retrieve the Distinguished
Name of an Entry

 Syntax

#include <ldap.h>

char *ldap_get_dn(
 LDAP *ld,
 LDAPMessage *entry)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_get_dn() function takes an entry as returned by ldap_first_entry() or ldap_next_entry() and
returns a copy of the entry's Distinguished Name (DN). Memory for the DN will have been allocated and
should be freed by a call to ldap_memfree().

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(),ldap_ssl_init(), or
ldap_open().

entry

(Input) The entry whose dn is to be retrieved, as returned by Specifies the LDAP pointer returned
by a previous call to ldap_first_entry() or ldap_next_entry().

Return Value

Copy of the entry's DN

if the request was successful.

NULL

if the request was not successful.

Error Conditions

If ldap_get_dn() is not successful, ld_errno will be set to indicate the error. See LDAP Client API Error
Conditions for possible LDAP error code values. Use ldap_get_errno() function to retrieve the error
information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_get_dn API.

Related Information

ldap_explode_dn() -- Convert a DN into its component parts.●

ldap_explode_dn_utf8() -- Break a UTF8 codepage Distinguished Name into its components●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_get_entry_controls_np()--Extract Server
Controls from an Entry

 Syntax

#include <ldap.h>

int ldap_get_entry_controls_np(
 LDAP *ld,
 LDAPMessage *entry,
 LDAPControl ***serverctrlsp)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_get_entry_controls_np() routine is used to retrieve an array of server controls returned in an
individual entry in a chain of search results.

Note the suffix "_np" which shows the API is in a preliminary implementation, and is not documented in
the Internet Draft. The Internet community may standardize this API in the future.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

entry

(Input) Specifies a pointer to an entry returned on a previous call to ldap_first_entry() or
ldap_next_entry().

serverctrlsp

(Input) Specifies a pointer to a result parameter that is filled in with an allocated array of controls
copied out of the entry. The control array should be freed by calling ldap_controls_free().

Return Value

LDAP_SUCCESS

if the call was successful

another LDAP error code

if the call was not successful.

Error Conditions

The ldap_get_entry_controls_np() API will return LDAP error code if not successful. See LDAP Client
API Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_get_entry_controls_np API.

Related Information

ldap_first_entry() -- Return first entry in a chain of search results.●

ldap_next_entry() -- Return next entry in a chain of search results.●

ldap_count_entry() -- Return the number of entry in a chain of search results.●

ldap_first_reference() -- Return first continuation reference in a chain of search results.●

ldap_next_reference() -- Return next continuation reference in a chain of search results.●

ldap_count_references() -- Return number of continuation reference in a chain of search results.●

ldap_parse_reference_np() -- Extract information from a continuation reference.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_get_errno()--Retrieve Error Information

 Syntax

#include <ldap.h>

int ldap_get_errno(
 LDAP *ld)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_get_errno() function retrieves information about the most recent error that occurred for an LDAP
operation. This function can be called for any LDAP API that does not return an error.

The ldap_get_lderrno() API returns more error information than ldap_get_errno().

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

Return Value

LDAP error code

See LDAP Client API Error Conditions for possible LDAP error codes values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_get_errno API.

Related Information

ldap_err2string() -- Convert LDAP error indication to a string.●

ldap_get_lderrno() -- Retrieve Error Information.●

ldap_perror() -- Print an LDAP error indication to standard error.●

ldap_result2error() -- Extract LDAP error indication from LDAP result.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_get_iconv_local_codepage()-- Get the
Active LDAP Code Page

 Syntax

#include <ldap.h>

char *
ldap_get_iconv_local_codepage ()

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: No

The ldap_get_iconv_local_codepage() API is used to obtain the active LDAP code page. It returns the
value of a global variable ldap_global_codepage set by ldap_set_iconv_local_codepage(). To free the
returned string, use ldap_memfree().

Authorities and Locks

No OS/400 authority is required.

Parameters

No parameter are passed to ldap_get_iconv_local_codepage().

Return Value

LDAP Code page

if the request was successful.

NULL

if the request was not successful.

Error Conditions

If ldap_get_iconv_local_codepage() is not successful, it returns NULL.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_get_iconv_local_codepage API.

Related Information

ldap_xlate_local_to_utf8() -- Convert String From the Local to UTF-8 Code Page.●

ldap_xlate_utf8_to_local() -- Convert String From UTF-8 to Local Code Page.●

ldap_xlate_local_to_unicode() -- Convert String From the Local to UCS-2 Code Page.●

ldap_xlate_unicode_to_local() -- Convert String From UCS-2 to Local Code Page.●

ldap_set_iconv_local_codepage() -- Set the Active LDAP Code Page.●

ldap_set_iconv_local_charset() -- Set the Active LDAP Character set.●

ldap_set_locale() -- Change the Locale Used by LDAP.●

ldap_get_locale() -- Get the Locale Used by LDAP.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_get_lderrno()--Retrieve Error Information

 Syntax

#include <ldap.h>

int ldap_get_lderrno(
 LDAP *ld,
 char **dn,
 char **errmsg)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_get_lderrno() function retrieves information about the most recent error that occurred for an
LDAP operation. This function can be called for any LDAP API that does not return an error.

When an error occurs at the LDAP server, the server returns both an LDAP result code and a message
containing any additional information about the error from the server. If the error occurred because an entry
specified by a Distinguished Name (DN) could not be found, the server may also return the portion of the
DN that identifies an existing entry. Use ldap_get_lderrno() to obtain both the message containing error
information and the matched DN.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Output) The distinguished name (DN) that identifies an existing entry, indicating how much of the
name in the request was recongnized by the server. The DN is returned when an
LDAP_NO_SUCH_OBJECT error is returned from the server on some previous operation. The
matched DN string should be freed by calling ldap_memfree().

errmsg

(Output) The text of the error message, as returned from the server. The error message string should
be freed by calling ldap_memfree().

Return Value

LDAP error code

See LDAP Client API Error Conditions for possible LDAP error codes values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_get_lderrno API.

Related Information

ldap_err2string() -- Convert LDAP error indication to a string.●

ldap_get_errno() -- Obtain information from most recent error.●

ldap_perror() -- Print an LDAP error indication to standard error.●

ldap_result2error() -- Extract LDAP error indication from LDAP result.●

ldap_set_lderrno() -- Set Error Information●

API introduced: V5R1

Top | Directory Services APIs | APIs by category

ldap_get_locale()-- Get Active LDAP Locale

 Syntax

#include <ldap.h>

char *ldap_get_locale()

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: No

The ldap_get_locale() API is used to obtain the active LDAP locale. To free the returned string, use
ldap_memfree().

Authorities and Locks

No OS/400 authority is required.

Parameters

No parameters are passed to ldap_get_locale()

Return Value

Active LDAP Locale

if the request was successful.

NULL

if the request was not successful.

Error Conditions

If ldap_get_locale() is not successful, it returns NULL.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_get_locale API.

Related Information

ldap_xlate_local_to_utf8() -- Convert String From the Local to UTF-8 Code Page.●

ldap_xlate_utf8_to_local() -- Convert String From UTF-8 to Local Code Page.●

ldap_xlate_local_to_unicode() -- Convert String From the Local to UCS-2 Code Page.●

ldap_xlate_unicode_to_local() -- Convert String From UCS-2 to Local Code Page.●

ldap_get_iconv_local_codepage() -- Get the Active LDAP Code Page.●

ldap_set_iconv_local_codepage() -- Set the Active LDAP Code Page.●

ldap_set_iconv_local_charset() -- Set the Active LDAP Character set.●

ldap_set_locale() -- Change the Locale Used by LDAP.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_get_option()--Retrieve LDAP Options

 Syntax

#include <ldap.h>

int ldap_get_option(
 LDAP *ld,
 int optionToGet,
 void *optionValue)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_get_option() function is used to query settings associated with the specified LDAP connection.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().
If a NULL ld is passed in, the default value for the option is retrieved.

optionToGet

(Input) The option value that is to be queried on the ldap_get_option() call. See below for the list
of supported options.

optionValue

(Input) The address of the storage in which to return the queried value using ldap_get_option().

The following session settings can be get using the ldap_get_option() API:

LDAP_OPT_SIZELIMIT maximum number of entries that can be returned on a search
operation

LDAP_OPT_TIMELIMIT maximum number of seconds to wait for search results.

LDAP_OPT_REFHOPLIMIT maximum number of referrals in a sequence that the client can
follow

LDAP_OPT_DEREF rules for following aliases at the server.

LDAP_OPT_REFERRALS whether or not referrals should be followed by the client.

LDAP_OPT_DEBUG debug options.

LDAP_OPT_SSL_CIPHER SSL ciphers to use.

LDAP_OPT_SSL_TIMEOUT SSL timeout for refreshing session keys

LDAP_OPT_REBIND_FN address of application's setrebindproc procedure.

LDAP_OPT_PROTOCOL_VERSION LDAP protocol version to use (V2 or V3).

LDAP_OPT_SERVER_CONTROLS default server controls.

LDAP_OPT_CLIENT_CONTROLS default client library controls.

LDAP_OPT_UTF8_IO mode for converting string data between the local code page
and UTF-8

LDAP_OPT_HOST_NAME current host name

LDAP_OPT_ERROR_NUMBER error number

LDAP_OPT_ERROR_STRING error string

LDAP_OPT_EXT_ERROR extended error code

LDAP_OPT_EXT_GSS_ERR GSSAPI extended error code

Additional details on specific options for ldap_get_option() are provided in the following sections.

LDAP_OPT_SIZELIMIT

Specifies the maximum number of entries that can be returned on a search operation. Note: the actual size
limit for operations is also bounded by the maximum number of entries that the server is configured to
return. Thus, the actual size limit will be the lesser of the value specified on this option and the value
configured in the LDAP server. The default sizelimit is unlimited, specified with a value of zero (thus
deferring to the sizelimit setting of the LDAP server).

Examples:

 sizevalue=50;
 ldap_set_option(ld, LDAP_OPT_SIZELIMIT, &sizevalue);
 ldap_get_option(ld, LDAP_OPT_SIZELIMIT, &sizevalue);

LDAP_OPT_TIMELIMIT

Specifies the number of seconds to wait for search results. Note: the actual time limit for operations is also
bounded by the maximum time that the server is configured to allow. Thus, the actual time limit will be the
lesser of the value specified on this option and the value configured in the LDAP server. The default is
unlimited (specified with a value of zero).

Examples:

 timevalue=50;
 ldap_set_option(ld, LDAP_OPT_TIMELIMIT, &timevalue);
 ldap_get_option(ld, LDAP_OPT_TIMELIMIT, &timevalue);

LDAP_OPT_REFHOPLIMIT

Specifies the maximum number of hops that the client library will take when chasing referrals. The default
is 5.

Examples:

 hoplimit=7;
 ldap_set_option(ld, LDAP_OPT_REFHOPLIMIT, &hoplimit);
 ldap_get_option(ld, LDAP_OPT_REFHOPLIMIT, &hoplimit);

LDAP_OPT_DEREF

Specifies alternative rules for following aliases at the server. The default is LDAP_DEREF_NEVER.

Supported values:

LDAP_DEREF_NEVER 0

LDAP_DEREF_SEARCHING 1

LDAP_DEREF_FINDING 2

LDAP_DEREF_ALWAYS 3

Examples:

 int deref = LDAP_DEREF_NEVER;
 ldap_set_option(ld, LDAP_OPT_DEREF, &deref);
 ldap_get_option(ld, LDAP_OPT_DEREF, &deref);

LDAP_OPT_REFERRALS

Specifies whether the LDAP library will automatically follow referrals returned by LDAP servers or not. It
can be set to one of the constants LDAP_OPT_ON or LDAP_OPT_OFF. By default, the LDAP client
will follow referrals.

Examples:

 int value;
 ldap_set_option(ld, LDAP_OPT_REFFERALS, (void *)LDAP_OPT_ON);
 ldap_get_option(ld, LDAP_OPT_REFFERALS, &value);

LDAP_OPT_DEBUG

Specifies a bit-map that indicates the level of debug trace for the LDAP library.

Supported values:

LDAP_DEBUG_OFF 0x000

LDAP_DEBUG_TRACE 0x001

LDAP_DEBUG_PACKETS 0x002

LDAP_DEBUG_ARGS 0x004

LDAP_DEBUG_CONNS 0x008

LDAP_DEBUG_BER 0x010

LDAP_DEBUG_FILTER 0x020

LDAP_DEBUG_CONFIG 0x040

LDAP_DEBUG_ACL 0x080

LDAP_DEBUG_STATS 0x100

LDAP_DEBUG_STATS2 0x200

LDAP_DEBUG_SHELL 0x400

LDAP_DEBUG_PARSE 0x800

LDAP_DEBUG_ANY 0xffff

Examples:

 int value;
 int debugvalue= LDAP_DEBUG_TRACE | LDAP_DEBUG_PACKETS;
 ldap_set_option(ld, LDAP_OPT_DEBUG, &debugvalue);
 ldap_get_option(ld, LDAP_OPT_DEBUG, &value);

LDAP_OPT_SSL_CIPHER

Specifies a set of one or more ciphers to be used when negotiating the cipher algorithm with the LDAP
server. The first cipher in the list that is common with the list of ciphers supported by the server is chosen.
For the export version of the library, the value used is "0306". For the domestic version of the library, the
default value is "05040A090306". Note that the cipher string supported by the export version of the LDAP
client library is fixed and cannot be modified.

Supported ciphers:

LDAP_SSL_RC4_MD5_EX 03

LDAP_SSL_RC2_MD5_EX 06

LDAP_SSL_RC4_SHA_US 05 (Non-export only)

LDAP_SSL_RC4_MD5_US 04 (Non-export only)

LDAP_SSL_DES_SHA_US 09 (Non-export only)

LDAP_SSL_3DES_SHA_US 0A (Non-export only)

LDAP_SSL_AES_SHA_US
2F (Non-export only)

Examples:

 char *setcipher = "2F090A";
 char *getcipher;
 ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, setcipher);
 ldap_get_option(ld, LDAP_OPT_SSL_CIPHER, &getcipher);

Use ldap_memfree() to free the memory returned by the call to ldap_get_option().

LDAP_OPT_SSL_TIMEOUT

Specifies in seconds the SSL inactivity timer. After the specified seconds, in which no SSL activity has
occurred, the SSL connection will be refreshed with new session keys. A smaller value may help increase
security, but will have a small impact on performance. The default SSL timeout value is 43200 seconds.

Examples:

 value = 100;
 ldap_set_option(ld, LDAP_OPT_SSL_TIMEOUT, &value);
 ldap_get_option(ld, LDAP_OPT_SSL_TIMEOUT, &value)

LDAP_OPT_REBIND_FN

Specifies the address of a routine to be called by the LDAP library when the need arises to authenticate a
connection with another LDAP server. This can occur, for example, when the LDAP library is chasing a
referral. If a routine is not defined, referrals will always be chased using the anonymous identity. A default
routine is not defined.

Examples:

 extern LDAPRebindProc proc_address;
 LDAPRebindProc value;
 ldap_set_option(ld, LDAP_OPT_REBIND_FN, &proc_address);
 ldap_get_option(ld, LDAP_OPT_REBIND_FN, &value);

LDAP_OPT_PROTOCOL_VERSION

Specifies the LDAP protocol to be used by the LDAP client library when connecting to an LDAP server.
Also used to determine which LDAP protocol is being used for the connection. For an application that uses
ldap_init() to create the LDAP connection the default value of this option will be LDAP_VERSION3 for
communicating with the LDAP server. The default value of this option will be LDAP_VERSION2 if the
application uses the deprecated ldap_open() API. In either case, the
LDAP_OPT_PROTOCOL_VERSION option can be used with ldap_set_option() to change the default.
The LDAP protocol version should be reset prior to issuing the bind (or any operation that causes an
implicit bind).

Examples:

 version2 = LDAP_VERSION2;
 version3 = LDAP_VERSION3;
 /* Example for Version 3 application setting version to version 2 */
 ldap_set_option(ld, LDAP_OPT_PROTOCOL_VERSION, &version2);
 /* Example of Version 2 application setting version to version 3 */
 ldap_set_option(ld, LDAP_OPT_PROTOCOL_VERSION, &version3);
 ldap_get_option(ld, LDAP_OPT_PROTOCOL_VERSION, &value);

The value returned by ldap_get_option() when LDAP_OPT_PROTOCOL_VERSION is specified can
be used to determine how parameters should be passed to the ldap_set_option() call. The easiest way to
work with this compatibility feature is to guarantee that calls to ldap_set_option() are all performed while
LDAP_OPT_PROTOCOL_VERSION is set to the same value. If this cannot be guaranteed by the
application, then follow the format of the example below when coding the call to ldap_set_option():

Examples:

 int sizeLimit=100;

 int protocolVersion;

 ldap_get_option(ld, LDAP_OPT_PROTOCOL_VERSION, &protocolVersion);

 if (protocolVersion == LDAP_VERSION2) {
 ldap_set_option(ld, LDAP_OPT_SIZELIMIT, (void *)sizeLimit);
 } else { /* the protocol version is LDAP_VERSION3 */
 ldap_set_option(ld, LDAP_OPT_SIZELIMIT, &sizeLimit);

 }

LDAP_OPT_SERVER_CONTROLS

Specifies a default list of server controls to be sent with each request. The default list can be overridden by
specifying a server control, or list of server controls, on specific APIs. By default, there are no settings for
Server Controls.

Example:

 ldap_set_option(ld, LDAP_OPT_SERVER_CONTROLS, &ctrlp);

LDAP_OPT_CLIENT_CONTROLS

Specifies a default list of client controls to be processed by the client library with each request. Since client
controls are not defined for this version of the library, the ldap_set_option() API can be used to define a set
of default, non-critical client controls. If one or more client controls in the set is critical, the entire list is
rejected with a return code of LDAP_UNAVAILABLE_CRITICAL_EXTENSION.

LDAP_OPT_UTF8_IO

Specifies whether the LDAP library will automatically convert string data to and from the local code page.
It can be set to one of the constants LDAP_UTF8_XLATE_ON or LDAP_UTF8_XLATE_OFF. By
default, the LDAP library will convert string data.

When conversion is disabled, the LDAP library assumes that data received from the application by LDAP
APIs is already represented in UTF-8. Similarly, the LDAP library assumes that the application is prepared
to receive string data from the LDAP library represented in UTF-8 (or as binary).

When LDAP_UTF8_XLATE_ON is set (the default), the LDAP library assumes that string data received
from the application by LDAP APIs is in the default (or explicitly designated) code page. Similarly, all
string data returned from the LDAP library (back to the application) is converted to the designated local
code page.

Notes:

Only string data supplied on connection-based APIs will be translated (that is, only those APIs that
include an ld will be subject to translation).

1.

Translation of strings from a UTF-8 encoding to local code page may result in loss of data when
one or more characters in the UTF-8 encoding cannot be represented in the local code page. When
this occurs, a substitution character replaces any UTF-8 characters that cannot be converted to the
local code page.

2.

Example:

 int value;
 ldap_get_option(ld, LDAP_OPT_UTF8_IO, &value);

LDAP_OPT_HOST_NAME

This is a read-only option that returns a pointer to the hostname for the original connection (as specified on
ldap_init(), ldap_open(), or ldap_ssl_init()).

Example:

 char *hostname;
 ldap_get_option(ld, LDAP_OPT_HOST_NAME, &hostname);

Use ldap_memfree() to free the memory returned by the call to ldap_get_option().

LDAP_OPT_ERROR_NUMBER

This is a read-only option that returns the error code associated with the most recent LDAP error that
occurred for the specified LDAP connection.

Example:

 int error;
 ldap_get_option(ld, LDAP_OPT_ERROR_NUMBER, &error);

LDAP_OPT_ERROR_STRING

This is a read-only option that returns the text message associated with the most recent LDAP error that
occurred for the specified LDAP connection.

Example:

 char *error_string;
 ldap_get_option(ld, LDAP_OPT_ERROR_STRING, &error_string);

Use ldap_memfree() to free memory returned by the call to ldap_get_option().

LDAP_OPT_EXT_ERROR

This is a read-only option that returns the extended error code. For example, if an SSL error occurred when
attempting to call an ldap_search_s() API, the actual SSL error can be obtained by using
LDAP_OPT_EXT_ERROR.

Example:

 int exterror;
 ldap_get_option(ld, LDAP_OPT_EXT_ERROR, &exterror);

Returns errors reported by the SSL library.

LDAP_OPT_EXT_GSS_ERR

This is a read-only option that returns the extended error code from SASL binds using the GSSAPI
mechanism.

Example:

 int gsserror;
 ldap_get_option(ld, LDAP_OPT_EXT_GSS_ERR, &gsserror);

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_get_option() API will return an LDAP error code if not successful. See LDAP Client API Error
Conditions for possible values for LDAP error codes.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_get_option API.

Related Information

ldap_init() -- Initializes a session with an LDAP server.●

ldap_set_option() -- Set an option associated with an LDAP descriptor.●

ldap_version() -- Obtain LDAP version and SSL cipher information.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_get_values()--Retrieve a Set of Attribute
Values from an Entry

 Syntax

#include <ldap.h>

char **ldap_get_values(
 LDAP *ld,
 LDAPMessage *entry,
 const char *attr)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_get_values() function is used to retrieve attribute values from an LDAP entry as returned by
ldap_first_entry() or ldap_next_entry(). ldap_get_values() uses the entry and the attribute attr whose values
are wanted and returns a NULL-terminated array of the attribute's values. The returned array should be
freed with ldap_value_free() when it is no longer needed.

Use ldap_get_values_len() to get binary attribute values.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

entry

(Input) Specifies an LDAP entry as returned from ldap_first_entry() or ldap_next_entry().

attr

(Input) Specifies the attribute whose values are desired.

Return Value

Array of Values

if the request was successful.

NULL

if the request was not successful.

Error Conditions

The ldap_get_values() API will return NULL and set the ld_errno error code, if not successful. See LDAP
Client API Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_get_values API.

Related Information

ldap_get_values_len() -- Return an attribute's binary values.●

ldap_count_values() -- Return number of values.●

ldap_count_values_len() -- Return number of binary values.●

ldap_value_free() -- Free memory allocated by ldap_get_values().●

ldap_value_free_len() -- Free memory allocated by ldap_get_values_len().●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_get_values_len()--Retrieve a Set of Binary
Attribute Values

 Syntax

#include <ldap.h>

struct berval {
 unsigned long bv_len;
 char *bv_val;
};

struct berval **ldap_get_values_len(
 LDAP *ld,
 LDAPMessage *entry,
 const char *attr)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_get_values_len() function is used to retrieve attribute values that are binary in nature from an
LDAP entry as returned by ldap_first_entry() or ldap_next_entry().

The ldap_get_values_len() API uses the same parameters as ldap_get_values(), but returns a
NULL-terminated array of pointers to berval structures, each containing the length of and a pointer to a
value. Use ldap_value_free_len() to free the returned attribute values when they are no longer needed.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

entry

(Input) Specifies an LDAP entry as returned from ldap_first_entry() or ldap_next_entry().

attr

(Input) Specifies the attribute whose values are desired.

Return Value

NULL-terminated array of pointers to berval structures

if the request was successful.

NULL

if the request was not successful.

Error Conditions

The ldap_get_values_len() API will return NULL and set the ld_errno error code if not successful. See
LDAP Client API Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_get_values_len API.

Related Information

ldap_get_values() -- Return an attribute's values.●

ldap_count_values() -- Return number of values.●

ldap_count_values_len() -- Return number of binary values.●

ldap_value_free() -- Free memory allocated by ldap_get_values().●

ldap_value_free_len() -- Free memory allocated by ldap_get_values_len().●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_init()--Perform an LDAP Initialization Operation

 Syntax

#include <ldap.h>

LDAP *ldap_init(
 char *host,
 int port)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_init() API is used to allocate an LDAP structure, which is used to identify the connection and to maintain
per-connection information.

The ldap_init() API returns a pointer to an LDAP structure, which should be passed to subsequent calls to other LDAP
functions such as ldap_bind() and ldap_search().

ldap_init() initializes a session with an LDAP server. The server is not actually contacted until an operation is performed that
requires it, allowing various options to be set after initialization, but before actually contacting the host. It allocates an LDAP
structure which is used to identify the connection and maintain per-connection information. Although still supported, the use
of ldap_open() is deprecated. Use of ldap_init() instead of ldap_open() is recommended.

Authorities and Locks

No OS/400 authority is required.

Parameters

host

(Input) Several methods are supported for specifying one or more target LDAP servers, including the following:

Explicit
Host List

Specifies the name of the host on which the LDAP server is running. The host parameter may contain a
blank-separated list of hosts to try to connect to, and each host may optionally be of the form host:port. If
present, the :port overrides the port parameter.

The following are typical examples:

ld=ldap_init ("server1", ldap_port);
ld=ldap_init ("server2:1200", ldap_port);
ld=ldap_init ("server1:800 server2:2000 server3", ldap_port);

Localhost If the host parameter is NULL, the LDAP server will be assumed to be running on the local host.

Default
Hosts

If the host parameter is set to LDAP_URL_PREFIX ("ldap://") the LDAP library will attempt to locate
one or more default LDAP servers, with non-SSL ports, using the SecureWay ldap_server_locate()
function. The port specified on the call is ignored, since ldap_server_locate() returns the port.

For example, the following two are equivalent:

ld=ldap_init ("ldap://", ldap_port);
ld=ldap_init (LDAP_URL_PREFIX, LDAP_PORT);

If more than one default server is located, the list is processed in sequence, until an active server is found.

The LDAP URL can include a Distinguished Name (DN), used as a filter for selecting candidate LDAP
servers based on the server's suffix (or suffixes). If the most significant portion of the DN is an exact
match with a server's suffix (after normalizing for case), the server is added to the list of candidate
servers. For example, the following will only return default LDAP servers that have a suffix that supports
the specified DN:

ld=ldap_init ("ldap:///cn=fred, dc=austin, dc=ibm, dc=com", LDAP_PORT);

In this case, a server that has a suffix of "dc=austin, dc=ibm, dc=com" would match. If more than one
default server is located, the list is processed in sequence, until an active server is found.

If the LDAP URL contains a host name and optional port, the host is used to create the connection. No
attempt is made to locate the default server(s), and the DN, if present, is ignored.

For example, the following two are equivalent:

ld=ldap_init ("ldap://myserver", LDAP_PORT);
ld=ldap_init ("myserver", LDAP_PORT);

Local
Socket

If the host parameter is prefixed with "/", the host parameter is assumed to be the name of a UNIX socket
(that is, socket family is AF_UNIX) and port is ignored. Use of a UNIX socket requires the LDAP server
to be running on the local host. In addition, the LDAP server must be listening on the specified UNIX
socket. The OS/400 Secureway Directory Services server listens on the /tmp/s.slapd local socket, in
addition to any configured TCP/IP ports.

For example:

ld=ldap_init ("/tmp/s.slapd", ldap_port);

Host with
Privileged
Port

If a specified host is prefixed with "privport://", then the LDAP library will use the rresvport() function to
attempt to obtain one of the reserved ports (512 through 1023), instead of an "ephemeral" port. The search
for a reserved port starts at 1023 and stops at 512. If a reserved port cannot be obtained, the function call
will fail.

For example:

ld=ldap_init ("privport://server1,ldap_port");
ld=ldap_init ("privport://server2:1200", ldap_port);
ld=ldap_init ("privport://server1:800 server2:2000 privport://server3",
ldap_port);

port

Specifies the port number to which to connect. If the default IANA-assigned port of 389 is desired, LDAP_PORT
should be specified.

Return Value

Pointer to an LDAP structure

if the request was successful.

NULL

if the request was not successful.

Error Conditions

The ldap_init() API will return NULL if not successful.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_init API.

Related Information

ldap_open() -- Open a connection to an LDAP server (deprecated).●

ldap_ssl_init() -- Initializes an SSL Connection●

ldap_set_option() -- Set an option associated with an LDAP descriptor.●

ldap_get_option() -- Get an option associated with an LDAP descriptor.●

ldap_version() -- Obtain LDAP version and SSL cipher information.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_is_ldap_url()--Verify LDAP URL

 Syntax

#include <ldap.h>

int ldap_is_ldap_url(
 char *url)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_is_ldap_url() function is used to check a string to verify if it could be an LDAP URL. It can be
used as a quick check for an LDAP URL.

Authorities and Locks

No OS/400 authority is required.

Parameters

url

(Input) Specifies a pointer to the URL string.

Return Value

NON-ZERO

if url begins with "ldap://" or "ldaps://".

ZERO

if not LDAP URL.

Error Conditions

The ldap_is_ldap_url() API return a ZERO if the input string (url) does not begin with "ldap://" or
"ldaps://".

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_is_ldap_url API.

Related Information

ldap_free_urldesc() -- Frees an LDAP URL description.●

ldap_url_parse() -- Break up an LDAP URL string into its components.●

ldap_url_search() -- Asynchronously search using an LDAP URL.●

ldap_url_search_s() -- Synchronously search using an LDAP URL.●

ldap_url_search_st() -- Synchronously search using an LDAP URL and a timeout.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_memfree()--Free Memory Allocated by
LDAP API

 Syntax

#include <ldap.h>

void ldap_memfree(
 char *mem)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_memfree() API is used to free storage that is allocated by some of the LDAP APIs. Refer to the
specific LDAP API documentation to see which memory free API to use for any memory allocated.

Authorities and Locks

No OS/400 authority is required.

Parameters

mem

(Input) Specifies the address of storage that was allocated by the LDAP library.

Return Value

NONE

Error Conditions

The ldap_memfree() API does not return an error code.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_memfree API.

Related Information

ldap_ber_free() -- Free the BerElement structure.●

ldap_control_free() -- Free a single LDAPControl structure.●

ldap_controls_free() -- Free an array of LDAPControl structures.●

ldap_free_urldesc -- Free an LDAP URL Description●

ldap_mods_free() -- Free an array of pointers to mod structures.●

ldap_msgfree() -- Free the LDAPMessage structure.●

ldap_server_free_list -- Free the List of LDAP Servers●

ldap_value_free -- Free memory allocated by ldap_get_values●

ldap_value_free_len -- Free Memory Allocated by ldap_get_values_len●

API Introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_modify()--Perform an LDAP Modify Entry
Request

 Syntax

#include <ldap.h>

typedef struct ldapmod {
 int mod_op;
 char *mod_type;
 union {
 char **modv_strvals;
 struct berval **modv_bvals;
 } mod_vals;
} LDAPMod;

#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_modify(
 LDAP *ld,
 const char *dn,
 LDAPMod **mods)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_modify() API is an asynchronous request. The result of the operation can be obtained by a
subsequent call to ldap_result().

The mod_op field is used to specify the type of modification to perform and should be one of the following:

LDAP_MOD_ADD 0x00

LDAP_MOD_DELETE 0x01

LDAP_MOD_REPLACE 0x02

This field also indicates the type of values included in the mod_vals union. For binary data, you must also
bitwise OR the operation type with LDAP_MOD_BVALUES (0x80). This indicates that the values are
specified in a NULL-terminated array of struct berval structures. Otherwise, the mod_values will be used
(that is, the values are assumed to be a NULL-terminated array of NULL-terminated character strings).

The mod_type field specifies the name of attribute to add, delete, or replace.

The mod_vals field specifies a pointer to a NULL-terminated array of values to add, modify or delete
respectively. Only one of the mod_values or mod_bvalues variants should be used, with mod_bvalues being

selected by ORing the mod_op field with the constant LDAP_MOD_BVALUES. mod_values is a
NULL-terminated array of NULL-terminated strings and mod_bvalues is a NULL-terminated array of
berval structures that can be used to pass binary values such as images.

For LDAP_MOD_ADD modifications, the given values are added to the entry, creating the attribute if
necessary.

For LDAP_MOD_DELETE modifications, the given values are deleted from the entry, removing the
attribute if no values remain. If the entire attribute is to be deleted, the mod_values field should be set to
NULL. The server will return an error if the attribute doesn't exist.

For LDAP_MOD_REPLACE modifications, the attribute will have the listed values after the
modification, having been created if necessary, or removed if the mod_values field is NULL. The server
will NOT return an error if the value doesn't exist.

All modifications are performed in the order in which they are listed.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the Distinguished Name (DN) of the entry to be modified.

mods

(Input) Specifies a NULL-terminated array of modifications to make to the entry. Each element of
the mods array is a pointer to an LDAPMod structure.

Return Value

Message ID of the Operation Initiated

if the request was successful. A subsequent call to ldap_result(), can be used to obtain the result of
the modify.

-1

if the request was not successful.

Error Conditions

If ldap_modify() is not successful, ld_errno will be set to indicate the error. See LDAP Client API Error
Conditions for possible LDAP error code values. Use ldap_get_errno() function to retrieve the error
information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_modify API.

Related Information

ldap_add() -- Asynchronously add an entry.●

ldap_delete() -- Perform an LDAP Delete Operation.●

ldap_modify_s() -- Synchronous modify to a directory entry.●

ldap_modify_ext() -- Asynchronous modify to a directory entry with controls.●

ldap_modify_ext_s() -- Synchronous modify to a directory entry with controls.●

ldap_modrdn() -- Asynchronously modify the RDN of an entry.●

ldap_modrdn_s() -- Synchronously modify the RDN of an entry.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_modify_ext()--Perform an LDAP Modify
Entry Request with Controls

 Syntax

#include <ldap.h>

typedef struct ldapmod {
 int mod_op;
 char *mod_type;
 union {
 char **modv_strvals;
 struct berval **modv_bvals;
 } mod_vals;
} LDAPMod;

#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_modify_ext(LDAP *ld,
 const char *dn,
 LDAPMod **mods,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_modify_ext() routine initiates an asynchronous modify operation with controls. dn is the
Distinguished name of the entry to modify, and mods is a NULL-terminated array of modifications to make
to the entry. Each element of the mods array is a pointer to an LDAPMod structure.

The mod_op field is used to specify the type of modification to perform and should be one of the following:

LDAP_MOD_ADD 0x00

LDAP_MOD_DELETE 0x01

LDAP_MOD_REPLACE 0x02

This field also indicates the type of values included in the mod_vals union. For binary data, you must also
bitwise OR the operation type with LDAP_MOD_BVALUES (0x80). This indicates that the values are
specified in a NULL-terminated array of struct berval structures. Otherwise, the mod_values will be used
(that is, the values are assumed to be a NULL-terminated array of NULL-terminated character strings).

The mod_type field specifies the name of attribute to add, delete, or replace.

The mod_vals field specifies a pointer to a NULL-terminated array of values to add, replace, or delete. Only
one of the mod_values or mod_bvalues variants should be used, with mod_bvalues being selected by
ORing the mod_op field with the constant LDAP_MOD_BVALUES. mod_values is a NULL-terminated
array of NULL-terminated strings and mod_bvalues is a NULL-terminated array of berval structures that
can be used to pass binary values such as images.

For LDAP_MOD_ADD modifications, the given values are added to the entry, creating the attribute if
necessary.

For LDAP_MOD_DELETE modifications, the given values are deleted from the entry, removing the
attribute if no values remain. If the entire attribute is to be deleted, the mod_values field should be set to
NULL. The server will return an error if the attribute doesn't exist.

For LDAP_MOD_REPLACE modifications, the attribute will have the listed values after the
modification, having been created if necessary, or removed if the mod_vals field is NULL. The server
should NOT return an error if the value doesn't exist.

All modifications are performed in the order in which they are listed.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the Distinguished Name of the entry to be modified.

mods

(Input) Specifies a NULL-terminated array of modifications to make to the entry. Each element of
the mods array is a pointer to an LDAPMod structure.

serverctrls

(Input) Specifies a list of LDAP server controls. This parameter may be set to NULL. See LDAP
Controls for more information about server controls.

clientctrls

(Input) Specifies a list of LDAP client controls. This parameter may be set to NULL. See LDAP
Controls for more information about client controls.

msgidp

(output) This result parameter is set to the message id of the request if the ldap_modify_ext() call
succeeds.

Return Value

LDAP_SUCCESS

if the request was successfully sent. If successful, ldap_modify_ext() places the message id of the
request in *msgidp. A subsequent call to ldap_result() can be used to obtain the result of the
operation. Once the operation has completed, ldap_result() returns a result that contains the status
of the operation (in the form of an error code). The error code indicates whether or not the
operation completed successfully. The ldap_parse_result() API is used to check the error code in
the result.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_modify_ext() API will return an LDAP error code if not successful. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_modify_ext API.

Related Information

ldap_add_ext() -- Asynchronously add an entry with controls.●

ldap_delete_ext() -- Perform an LDAP delete operation with controls.●

ldap_modify() -- Asynchronous modify to a directory entry.●

ldap_modify_s() -- Synchronous modify to a directory entry.●

ldap_modify_ext_s() -- Synchronous modify to a directory entry with controls.●

ldap_modrdn() -- Asynchronously modify the RDN of an entry.●

ldap_modrdn_s() -- Synchronously modify the RDN of an entry.●

The ldap_modify_ext() API supports LDAP V3 server controls and client controls.

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_modify_ext_s()--Perform an LDAP Modify
Entry Request with Controls

 Syntax

#include <ldap.h>

typedef struct ldapmod {
 int mod_op;
 char *mod_type;
 union {
 char **modv_strvals;
 struct berval **modv_bvals;
 } mod_vals;
} LDAPMod;

#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_modify_ext_s(
 LDAP *ld,
 const char *dn,
 LDAPMod **mods,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_modify_ext_s() API initiates a synchronous modify operation with controls. dn is the
Distinguished name of the entry to modify, and mods is a NULL-terminated array of modifications to make
to the entry. Each element of the mods array is a pointer to an LDAPMod structure.

The mod_op field is used to specify the type of modification to perform and should be one of the following:

LDAP_MOD_ADD 0x00

LDAP_MOD_DELETE 0x01

LDAP_MOD_REPLACE 0x02

This field also indicates the type of values included in the mod_vals union. For binary data, you must also
bitwise OR the operation type with LDAP_MOD_BVALUES (0x80). This indicates that the values are
specified in a NULL-terminated array of struct berval structures. Otherwise, the mod_values will be used
(that is, the values are assumed to be a NULL-terminated array of NULL-terminated character strings).

The mod_type field specifies the name of attribute to add, delete, or replace.

The mod_vals field specifies a pointer to a NULL-terminated array of values to add, modify or delete
respectively. Only one of the mod_values or mod_bvalues variants should be used, with mod_bvalues being
selected by ORing the mod_op field with the constant LDAP_MOD_BVALUES. mod_values is a
NULL-terminated array of NULL-terminated strings and mod_bvalues is a NULL-terminated array of
berval structures that can be used to pass binary values such as images.

For LDAP_MOD_ADD modifications, the given values are added to the entry, creating the attribute if
necessary.

For LDAP_MOD_DELETE modifications, the given values are deleted from the entry, removing the
attribute if no values remain. If the entire attribute is to be deleted, the mod_values field should be set to
NULL. The server will return an error if the attribute doesn't exist.

For LDAP_MOD_REPLACE modifications, the attribute will have the listed values after the
modification, having been created if necessary, or removed if the mod_values field is NULL. The server
will NOT return an error if the value doesn't exist.

All modifications are performed in the order in which they are listed.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the Distinguished Name of the entry to be modified.

mods

(Input) Specifies a NULL-terminated array of modifications to make to the entry. Each element of
the mods array is a pointer to an LDAPMod structure.

serverctrls

(Input) Specifies a list of LDAP server controls. This parameter may be set to null. See LDAP
Controls for more information about server controls.

clientctrls

(Input) Specifies a list of LDAP client controls. This parameter may be set to null. See LDAP
Controls for more information about client controls.

Return Value

LDAP_SUCCESS

if the request was successfully sent.

LDAP error code

if the request was not successfully sent.

Error Conditions

The ldap_modify_ext_s() will return an LDAP error code if not successful. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_modify_ext_s API.

Related Information

ldap_add_ext_s() -- Synchronously add an entry with controls.●

ldap_delete_ext_s() -- Perform an LDAP Delete Operation with Controls (Synchronous)●

ldap_modify() -- Asynchronous modify to a directory entry.●

ldap_modify_s() -- Synchronous modify to a directory entry.●

ldap_modify_ext() -- Asynchronous modify to a directory entry with controls.●

ldap_modrdn() -- Asynchronously modify the RDN of an entry.●

ldap_modrdn_s() -- Synchronously modify the RDN of an entry.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_modify_s()--Perform an LDAP Modify
Entry Request (Synchronous)

 Syntax

#include <ldap.h>

typedef struct ldapmod {
 int mod_op;
 char *mod_type;
 union {
 char **modv_strvals;
 struct berval **modv_bvals;
 } mod_vals;
} LDAPMod;

#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_modify_s(
 LDAP *ld,
 const char *dn,
 LDAPMod **mods)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_modify_s() performs a synchronous request.

The mod_op field is used to specify the type of modification to perform and should be one of the following:

LDAP_MOD_ADD 0x00

LDAP_MOD_DELETE 0x01

LDAP_MOD_REPLACE 0x02

This field also indicates the type of values included in the mod_vals union. For binary data, you must also
bitwise OR the operation type with LDAP_MOD_BVALUES (0x80). This indicates that the values are
specified in a NULL-terminated array of struct berval structures. Otherwise, the mod_values will be used
(that is, the values are assumed to be a NULL-terminated array of NULL-terminated character strings).

The mod_type field specifies the name of attribute to add, delete, or replace.

The mod_vals field specifies a pointer to a NULL-terminated array of values to add, modify or delete

respectively. Only one of the mod_values or mod_bvalues variants should be used, with mod_bvalues being
selected by ORing the mod_op field with the constant LDAP_MOD_BVALUES. mod_values is a
NULL-terminated array of NULL-terminated strings and mod_bvalues is a NULL-terminated array of
berval structures that can be used to pass binary values such as images.

For LDAP_MOD_ADD modifications, the given values are added to the entry, creating the attribute if
necessary.

For LDAP_MOD_DELETE modifications, the given values are deleted from the entry, removing the
attribute if no values remain. If the entire attribute is to be deleted, the mod_values field should be set to
NULL. The server will return an error if the attribute doesn't exist.

For LDAP_MOD_REPLACE modifications, the attribute will have the listed values after the
modification, having been created if necessary, or removed if the mod_values field is NULL. The server
will NOT return an error if the value doesn't exist.

All modifications are performed in the order in which they are listed.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(),ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the Distinguished Name of the entry to be modified.

mods

(Input) Specifies a NULL-terminated array of modifications to make to the entry. Each element of
the mods array is a pointer to an LDAPMod structure.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error

if the request was not successful.

Error Conditions

The ldap_modify_s() API will return an LDAP error code if not successful. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_modify_s API.

Related Information

ldap_add_s() -- Perform an LDAP add operation (synchronous).●

ldap_delete_s() -- Perform an LDAP delete operation (synchronous).●

ldap_modify() -- Perform an LDAP modify entry request.●

ldap_modify_ext() -- Asynchronous modify to a directory entry with controls.●

ldap_modify_ext_s() -- Synchronous modify to a directory entry with controls.●

ldap_modrdn() -- Asynchronously modify the RDN of an entry.●

ldap_modrdn_s() -- Synchronously modify the RDN of an entry.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_modrdn()--Perform an LDAP Modify RDN
Request

 Syntax

#include <ldap.h>

int ldap_modrdn(
 LDAP *ld,
 const char *dn,
 const char *newrdn,
 int deleteoldrdn)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_modrdn() function is used to perform an LDAP modify relative distinguished name (RDN)
operation. The function takes the distinguished name of the entry whose RDN is to be changed, and
newrdn, the new RDN to give the entry. The deleteoldrdn parameter is used as a boolean value to indicate
whether the old RDN values should be deleted from the entry or not.

ldap_modrdn() performs an asynchronous request. The result of the operation can be obtained by a
subsequent call to ldap_result().

In LDAP V2, the ldap_modrdn() and ldap_modrdn_s() APIs were used to change the name of an LDAP
entry. They could only be used to change the least significant component of a name (the RDN or relative
distinguished name). LDAP V3 provides the Modify DN protocol operation that allows more general name
change access. The ldap_rename() and ldap_rename_s() routines are used to change the name of an entry,
and the use of the ldap_modrdn() and ldap_modrdn_s() routines are deprecated.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the DN of the entry whose RDN is to be changed.

newrdn

(Input) Specifies the new RDN to be given to the entry.

deleteoldrdn

(Input) Specifies a boolean value. When set to 1, the old RDN value is to be deleted from the entry.
When set to 0, the old RDN value should be retained as a non-distinguished value.

Return Value

Message ID of the Operation Initiated

if the request was successful. A subsequent call to ldap_result(), can be used to obtain the result of
the modify.

-1

if the request was not successful.

Error Conditions

If ldap_modrdn() is not successful, ld_errno will be set to indicate the error. See LDAP Client API Error
Conditions for possible LDAP error code values. Use the ldap_get_errno() function to retrieve the error
information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_modrdn API.

Related Information

ldap_add() -- Perform an LDAP add operation.●

ldap_delete() -- Perform an LDAP delete operation.●

ldap_modify() -- Asynchronous modify to a directory entry.●

ldap_modrdn_s() -- Synchronously modify the RDN of an entry.●

ldap_rename() -- Asynchronously rename an entry.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_modrdn_s()--Perform an LDAP Modify
RDN Request (Synchronous)

 Syntax

#include <ldap.h>

int ldap_modrdn_s(
 LDAP *ld,
 const char *dn,
 const char *newrdn,
 int deleteoldrdn)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_modrdn_s() function is used to perform an LDAP modify relative distinguished name (RDN)
operation. The function takes the distinguished name of the entry whose RDN is to be changed, and
newrdn, the new RDN to give the entry. The deleteoldrdn parameter is used as a boolean value to indicate
whether the old RDN values should be deleted from the entry or not.

ldap_modrdn_s() performs a synchronous request.

In LDAP V2, the ldap_modrdn() and ldap_modrdn_s() APIs were used to change the name of an LDAP
entry. They could only be used to change the least significant component of a name (the RDN or relative
distinguished name). LDAP V3 provides the Modify DN protocol operation that allows more general name
change access. The ldap_rename() and ldap_rename_s() routines are used to change the name of an entry,
and the use of the ldap_modrdn() and ldap_modrdn_s() routines are deprecated.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the DN of the entry whose RDN is to be changed.

newrdn

(Input) Specifies the new RDN to be given to the entry.

deleteoldrdn

(Input) Specifies a boolean value. When set to 1, the old RDN value is to be deleted from the entry.
When set to 0, the old RDN value should be retained as a non-distinguished value.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error

if the request was not successful.

Error Conditions

The ldap_modrdn_s() will return an LDAP error code if not successful. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_modrdn_s API.

Related Information

ldap_add() -- Perform an LDAP add operation.●

ldap_delete() -- Perform an LDAP delete operation.●

ldap_modify() -- Asynchronous modify to a directory entry.●

ldap_modrdn() -- Asynchronously modify the RDN of an entry.●

ldap_rename_s() -- Synchronously rename an entry.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_mods_free()--Free LDAP Modify Storage

 Syntax

#include <ldap.h>

void ldap_mods_free(
 LDAPMod **mods,
 int freemods)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_mods_free() function is used to free storage associated with the ldap_modify() and related LDAP
APIs.

ldap_mods_free() can be used to free each element of a NULL-terminated array of modification structures.
If freemods is nonzero, the mods pointer itself is freed, otherwise freeing mods is left to the caller.

Authorities and Locks

No OS/400 authority is required.

Parameters

mods

(Input) Specifies a NULL-terminated array of modifications to make to the entry. Each element of
the mods array is a pointer to an LDAPMod structure.

freemods

(Input) Specifies whether or not the mods pointer is to be freed in addition to the NULL-terminated
array of LDAPMod structures.

Return Value

None

Error Conditions

The ldap_mods_free() API does not return an error code.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_mods_free API.

Related Information

ldap_ber_free() -- Free the BerElement structure.●

ldap_control_free() -- Free a single LDAPControl structure.●

ldap_controls_free() -- Free an array of LDAPControl structures.●

ldap_free_urldesc -- Free an LDAP URL Description●

ldap_mods_free() -- Free an array of pointers to mod structures.●

ldap_memfree() -- Free storage allocated by the LDAP client library.●

ldap_modify() -- Perform an LDAP modify entry request.●

ldap_msgfree() -- Free the LDAPMessage structure.●

ldap_server_free_list -- Free the List of LDAP Servers●

ldap_value_free -- Free memory allocated by ldap_get_values●

ldap_value_free_len -- Free Memory Allocated by ldap_get_values_len●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_msgfree()--Free LDAP Result Message

 Syntax

#include <ldap.h>

int ldap_msgfree(
 LDAPMessage *msg)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_msgfree() routine is used to free the memory allocated for an LDAP message by ldap_result(),
ldap_search_s(), ldap_search_ext_s() or ldap_search_st(). It takes a pointer to the result to be freed and
returns the type of the message it freed.

Authorities and Locks

No OS/400 authority is required.

Parameters

msg

(Input) Specifies pointer to the memory allocated for an LDAP message by ldap_result(),
ldap_search_s(), ldap_search_ext_s() or ldap_search_st().

Return Values

Message Type

the type of the message freed.

ZERO

if the input pointer to LDAPMessage structure is NULL.

Error Conditions

The ldap_msgfree() API returns ZERO if the input pointer to LDAPMessage structure is NULL.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_msgfree API.

Related Information

ldap_ber_free() -- Free the BerElement structure.●

ldap_control_free() -- Free a single LDAPControl structure.●

ldap_controls_free() -- Free an array of LDAPControl structures.●

ldap_free_urldesc -- Free an LDAP URL Description●

ldap_memfree() -- Free storage allocated by the LDAP client library.●

ldap_mods_free() -- Free an array of pointers to mod structures.●

ldap_result -- Retrieve result of an asynchronous LDAP operation.●

ldap_search_ext_s -- Synchronously search the directory using controls.●

ldap_search_s -- Perform an LDAP search operation (synchronous).●

ldap_search_st -- Perform an LDAP search operation (timed synchronous).●

ldap_server_free_list -- Free the List of LDAP Servers●

ldap_value_free -- Free memory allocated by ldap_get_values●

ldap_value_free_len -- Free Memory Allocated by ldap_get_values_len●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_msgid()--Retrieve the Message ID
Associated with an LDAP Message

 Syntax

#include <ldap.h>

int ldap_msgid(
 LDAPMessage *msg)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_msgid() routine returns the message ID associated with an LDAP message. Use ldap_msgid() to
match the result(s) of an asynchronous operation with the original operation.

Authorities and Locks

No OS/400 authority is required.

Parameters

msg

(Input) Specifies a pointer to a result, as returned from ldap_first_message(), ldap_next_message,
ldap_first_entry(), ldap_next_entry(), ldap_first_reference(), or ldap_next_reference().

Return Value

Message ID

if the call was successful.

ZERO

if the input pointer to LDAPMessage structure is NULL.

Error Conditions

ldap_msgid() returns ZERO if the input pointer to LDAPMessage structure is NULL.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_msgid API.

Related Information

ldap_add() -- Perform an LDAP add operation.●

ldap_add_ext() -- Perform an LDAP add operation with controls.●

ldap_bind() -- Perform an LDAP bind request.●

ldap_compare() -- Perform an LDAP compare operation.●

ldap_compare_ext() -- Perform an LDAP compare operation with controls.●

ldap_delete() -- Perform an LDAP delete operation.●

ldap_delete_ext() -- Perform an LDAP delete operation with controls.●

ldap_extended_operation() -- Perform extended operations.●

ldap_first_entry() -- Retrieve first LDAP entry.●

ldap_first_message() -- Retrieve First LDAP message.●

ldap_first_reference() -- Return first continuation reference in a chain of search results.●

ldap_modify() -- Perform an LDAP modify entry request.●

ldap_modify_ext() -- Perform an LDAP modify entry request with controls.●

ldap_modrdn() -- Perform an LDAP modify RDN request.●

ldap_msgtype() -- Returns the type of an LDAP message.●

ldap_next_entry() -- Retrieve next LDAP entry.●

ldap_next_message() -- Retrieve Next LDAP message.●

ldap_next_reference() -- Retrieve next continuation reference in a chain of search results.●

ldap_rename() -- Asynchronously rename an entry.●

ldap_result() -- Wait for result from an asynchronous operation.●

ldap_sasl_bind() -- Perform an LDAP SASL bind request.●

ldap_search() -- Perform an LDAP search operation.●

ldap_search_ext() -- Asynchronously search the directory using controls.●

ldap_simple_bind() -- Perform a simple LDAP bind request.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_msgtype()--Retrieve the Type of an LDAP
Message

 Syntax

#include <ldap.h>

int ldap_msgtype(
 LDAPMessage *msg)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_msgtype() API returns the type of an LDAP message.

Authorities and Locks

No OS/400 authority is required.

Parameters

msg

(Input) Specifies a pointer to a result, as returned from ldap_first_message(), ldap_next_message,
ldap_first_entry(), ldap_next_entry(), ldap_first_reference(), or ldap_next_reference().

Return Value

Message Type

if the call was successful. Message types are as follows:

LDAP_RES_BIND (0x61) Result of an LDAP bind operation.

LDAP_RES_SEARCH_ENTRY
(0x64) An entry.

LDAP_RES_SEARCH_RESULT
(0x65) Result of an LDAP search operation (LDAP v3).

LDAP_RES_MODIFY (0x67) Result of an LDAP modify operation.

LDAP_RES_ADD (0x69) Result of an LDAP add operation.

LDAP_RES_DELETE (0x6b) Result of an LDAP delete operation.

LDAP_RES_MODRDN (0x6d) Result of an LDAP modrdn operation.

LDAP_RES_COMPARE (0x6f) Result of an LDAP compare operation.

LDAP_RES_SEARCH_REFERENCE
(0x73) A search reference.

LDAP_RES_EXTENDED (0x78) Result of an LDAP extended operation (LDAP v3).

LDAP_RES_REFERRAL (0xa3) A referral.

ZERO

if the input pointer to LDAPMessage structure is NULL.

Error Conditions

The ldap_msgtype() API returns ZERO if the input pointer to LDAPMessage structure is NULL.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_msgtype API.

Related Information

ldap_first_entry() -- Retrieve first LDAP entry.●

ldap_first_message() -- Retrieve first LDAP message.●

ldap_first_reference() -- Retrieve first continuation reference in a chain of search results.●

ldap_msgid() -- Returns the ID of an LDAP message.●

ldap_next_message() -- Retrieve next LDAP message.●

ldap_result() -- Wait for result from an asynchronous operation.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_next_attribute()--Retrieve Next Attribute in
an Entry

 Syntax

 #include <ldap.h>

 char *ldap_next_attribute(
 LDAP *ld,
 LDAPMessage *entry,
 BerElement *berptr)

 Default Public Authority: *USE
 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_next_attribute() function returns the next attribute in an entry.

The ldap_next_attribute() function takes an entry returned by ldap_first_entry() or ldap_next_entry() and
returns a pointer to a buffer containing the next attribute type in the entry. This string must be freed when
its use is completed using ldap_memfree().

The ldap_first_attribute() and ldap_next_attribute() functions are used to step through the attributes in an
LDAP entry.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

entry

(Input) The attribute information as returned by ldap_first_entry() or ldap_next_entry().

berptr

(Input/Output) This parameter specifies a pointer to a BerElement that was allocated by
ldap_first_attribute() to keep track of the current position. The BerElement structure is opaque to
the application. The caller should free berptr using ldap_ber_free() when finished.

Return Value

Pointer to a buffer containing the next attribute type in the entry

if the request was successful.

NULL

When there are no attributes left to be retrieved.

Error Conditions

If ldap_next_attribute() is not successful, NULL is returned, and ld_errno will be set to indicate the error.
See LDAP Client API Error Conditions for possible LDAP error code values. Use ldap_get_errno()
function to retrieve the error information. It is left to the user to free outstanding BerElements using
ldap_ber_free().

Error Messages

The following message may be sent from this function.

Message ID Error Message Text
CPF3CF2 E Error(s) occurred during running of ldap_next_attribute API.

Related Information

ldap_first_attribute() -- Retrieve first attribute in an entry.●

ldap_first_entry() -- Retrieve first LDAP entry.●

ldap_next_entry() -- Retrieve next LDAP entry.●

ldap_count_attributes() -- Retrieve count of attributes for an LDAP entry.●

ldap_get_values() -- Retrieve a set of attribute values from an entry.●

ldap_get_values_len() -- Retrieve a set of binary attribute values.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_next_entry()--Retrieve Next LDAP Entry

 Syntax

#include <ldap.h>

LDAPMessage *ldap_next_entry(
 LDAP *ld,
 LDAPMessage *entry)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_next_entry() function takes the result from a previous call to ldap_first_entry() or
ldap_next_entry() and returns a pointer to the next entry in a chain of results.

The entry returned by ldap_next_entry() can be used by functions such as ldap_get_dn(),
ldap_first_attribute(), and ldap_get_values(), as well as other functions to obtain additional information
about the entry.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(),ldap_ssl_init(), or
ldap_open().

entry

(Input) Specifies a pointer to an entry returned on a previous call to ldap_first_entry() or
ldap_next_entry().

Return Value

Pointer to the next entry in the result

if the request was successful.

NULL

When there are no attributes left to be retrieved.

Error Conditions

If ldap_next_entry() is not successful, NULL is returned, ld_errno will be set to indicate the error. See
LDAP Client API Error Conditions for possible LDAP error code values. Use ldap_get_errno() function to
retrieve the error information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_next_entry API.

Related Information

ldap_first_entry() -- Return first entry in a chain of search results.●

ldap_count_entries() -- Return number of entries in a chain of search results.●

ldap_get_entry_controls_np() -- Extract server controls from an entry.●

ldap_first_reference() -- Return first continuation reference in a chain of search results.●

ldap_next_reference() -- Return next continuation reference in a chain of search results.●

ldap_count_references() -- Return number of continuation reference in a chain of search results.●

ldap_parse_reference_np() -- Extract information from a continuation reference.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_next_message()--Retrieve Next LDAP
Message

 Syntax

#include <ldap.h>

LDAPMessage *ldap_next_message(
 LDAP *ld,
 LDAPMessage *msg)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_next_message() function is used to step through the list of messages in a result chain, as returned
by ldap_result() and ldap_first_message(). It is used to return a pointer to the next message from the list.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

msg

(Input) Specifies the message returned by a previous call to ldap_first_message() or
ldap_next_message().

Return Value

LDAPMessage *

pointer to the next message in list.

NULL

when no more messages exist in the result set to be returned or if an error occurs.

Error Conditions

If ldap_next_message() is not successful, ld_errno will be set to indicate the error. See LDAP Client API
Error Conditions for possible LDAP error code values. Use the ldap_get_errno() function to retrieve the
error information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_next_message API.

Related Information

ldap_count_messages() -- Return the number of messages in a result chain.●

ldap_first_entry() -- Retrieve first LDAP entry.●

ldap_first_message() -- Retrieve first LDAP message.●

ldap_first_reference() -- Return first continuation reference in a chain of search results.●

ldap_msgfree() -- Free LDAP Result Message.●

ldap_msgid() -- Retrieve Message ID Associated with an LDAP Message.●

ldap_msgtype() -- Retrieve Type of an LDAP Message.●

ldap_result2error() -- Retrieve LDAP Error Information.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_next_reference()--Retrieve the next
Continuation Reference in a Chain of Search
Results

 Syntax

#include <ldap.h>

LDAPMessage *ldap_next_reference(
 LDAP *ld,
 LDAPMessage *result)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_next_reference() function is used to return the next continuation reference from the search result
chain.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

result

(Input) Specifies the result returned by a call to ldap_result() or one of the synchronous search
routines (ldap_search_s(), ldap_search_st(), or ldap_search_ext_s()).

ref

(Input) Specifies a pointer to a search continuation reference returned on a previous call to
ldap_first_reference() or ldap_next_reference().

Return Value

LDAPMessage *

pointer to the next continuation reference.

NULL

when no more continuation references exist in the result set to be returned.

Error Conditions

If ldap_next_reference() is not successful, ld_errno will be set to indicate the error. See LDAP Client API
Error Conditions for possible LDAP error code values. Use the ldap_get_errno() function to retrieve the
error information.

Error Messages

The following message may be sent from this function

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_next_reference API.

Related Information

ldap_first_entry() -- Return first entry in a chain of search results.●

ldap_next_entry() -- Return next entry in a chain of search results.●

ldap_count_entry() -- Return number of entry in a chain of search results.●

ldap_get_entry_controls_np() -- Extract server controls from an entry.●

ldap_count_reference() -- Return the number of continuation reference in a chain of search results.●

ldap_first_reference() -- Return first continuation reference in a chain of search results.●

ldap_parse_reference_np() -- Extract information from a continuation reference.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_open()--Perform an LDAP Open Operation

 Syntax

#include <ldap.h>

LDAP *ldap_open(
 char *host,
 int port)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_open() function opens a connection to an LDAP server and allocates an LDAP structure, which is used to identify
the connection and to maintain per-connection information.

The ldap_open() function returns a pointer to an LDAP structure, which should be passed to subsequent calls to other LDAP
functions such as ldap_bind() and ldap_search().

Although still supported, the use of ldap_open() is deprecated. The ldap_open() API allocates an LDAP structure and opens
a connection to the LDAP server. Use of ldap_init() instead of ldap_open() is recommended.

As a rule of thumb, the LDAP application is typically running as LDAP version 2 when it uses ldap_open() to create the
LDAP connection. The LDAP application is typically running as LDAP version 3 when it uses ldap_init() to create the
LDAP connection. However, it was possible with the LDAP V2 API to call ldap_init() so that there may be cases where this
rule of thumb is not true.

Authorities and Locks

No OS/400 authority is required.

Parameters

host

(Input) Several methods are supported for specifying one or more target LDAP servers, including the following:

Explicit
Host List

Specifies the name of the host on which the LDAP server is running. The host parameter may contain a
blank-separated list of hosts to try to connect to, and each host may optionally be of the form host:port. If
present, the :port overrides the port parameter.

The following are typical examples:

ld=ldap_open ("server1", ldap_port);
ld=ldap_open ("server2:1200", ldap_port);
ld=ldap_open ("server1:800 server2:2000 server3", ldap_port);

Localhost If the host parameter is NULL, the LDAP server will be assumed to be running on the local host.

Default
Hosts

If the host parameter is set to LDAP_URL_PREFIX ("ldap://") the LDAP library will attempt to locate
one or more default LDAP servers, with non-SSL ports, using the SecureWay ldap_server_locate()
function. The port specified on the call is ignored, since ldap_server_locate() returns the port.

For example, the following two are equivalent:

ld=ldap_open ("ldap://", ldap_port);
ld=ldap_open (LDAP_URL_PREFIX, LDAP_PORT);

If more than one default server is located, the list is processed in sequence, until an active server is found.

The LDAP URL can include a Distinguished Name (DN), used as a filter for selecting candidate LDAP
servers based on the server's suffix (or suffixes). If the most significant portion of the DN is an exact
match with a server's suffix (after normalizing for case), the server is added to the list of candidate
servers. For example, the following will only return default LDAP servers that have a suffix that supports
the specified DN:

ld=ldap_open ("ldap:///cn=fred, dc=austin, dc=ibm, dc=com", LDAP_PORT);

In this case, a server that has a suffix of "dc=austin, dc=ibm, dc=com" would match. If more than one
default server is located, the list is processed in sequence, until an active server is found.

If the LDAP URL contains a host name and optional port, the host is used to create the connection. No
attempt is made to locate the default server(s), and the DN, if present, is ignored.

For example, the following two are equivalent:

ld=ldap_open ("ldap://myserver", LDAP_PORT);
ld=ldap_open ("myserver", LDAP_PORT);

Local
Socket

If the host parameter is prefixed with "/", the host parameter is assumed to be the name of a UNIX socket
(that is, socket family is AF_UNIX) and port is ignored. Use of a UNIX socket requires the LDAP server
to be running on the local host. In addition, the LDAP server must be listening on the specified UNIX
socket. The OS/400 Secureway Directory Services server listens on the /tmp/s.slapd local socket, in
addition to any configured TCP/IP ports.

For example:

ld=ldap_open ("/tmp/s.slapd", ldap_port);

Host with
Privileged
Port

If a specified host is prefixed with "privport://", then the LDAP library will use the rresvport() function to
attempt to obtain one of the reserved ports (512 through 1023), instead of an "ephemeral" port. The search
for a reserved port starts at 1023 and stops at 512. If a reserved port cannot be obtained, the function call
will fail.

For example:

ld=ldap_open ("privport://server1,ldap_port");
ld=ldap_open ("privport://server2:1200", ldap_port);
ld=ldap_open ("privport://server1:800 server2:2000 privport://server3",
ldap_port);

port

(Input) Specifies the TCP port number the server is listening on. If the default IANA-assigned port of 389 is desired,
LDAP_PORT should be specified. To use the default SSL port 636 for SSL connections, use LDAPS_PORT.

Return Value

Pointer to an LDAP structure

if the request was successful.

NULL

if the request was not successful.

Error Conditions

The ldap_open() API will return NULL and set the ld_errno error code, if not successful. See LDAP Client API Error
Conditions for possible LDAP error codes values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_open API.

Related Information

ldap_init() -- Initializes a session with an LDAP server.●

ldap_set_option() -- Set an option associated with an LDAP descriptor.●

ldap_get_option() -- Get an option associated with an LDAP descriptor.●

ldap_version() -- Obtain LDAP version and SSL cipher information.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_parse_extended_result()--Parse extended
result

 Syntax

#include <ldap.h>

int ldap_parse_extended_result(
 LDAP *ld,
 LDAPMessage *res,
 char **resultoidp,
 struct berval **resultdatap,
 int freeit)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_parse_extended_result() function is used to parse the result of an extended operation intiated by
ldap_extended_operation().

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

res

(Input) Specifies the result of an LDAP operation as returned by ldap_first_message() or
ldap_next_message() where the message type is LDAP_RES_EXTENDED.

resultoidp

(Input) This result parameter specifies a pointer which is set to point to an allocated, dotted-OID
text string returned from the server. This string should be disposed of using the ldap_memfree()
API. If no OID is returned, *resultoidp is set to NULL.

resultdatap

(Input) This result parameter specifies a pointer to a berval structure pointer that is set to an
allocated copy of the data returned by the server. This struct berval should be disposed of using
ber_bvfree(). If no data is returned, *resultdatap is set to NULL.

freeit

(Input) Specifies a boolean value that determines if the LDAP result (as specified by res) is to be
freed. Any non-zero value will result in res being freed after the requested information is extracted.
Alternatively, the ldap_msgfree() API can be used to free the result at a later time.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

If ldap_extended_result() is not successful, ld_errno will be set to indicate the error. See LDAP Client
API Error Conditions for possible LDAP error code values. ldap_get_errno() function to retrieve the error
information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_parse_extended_result API.

Related Information

ldap_extended_operation -- Perform extended operation●

ldap_extended_operation_s -- Perform extended operations synchronously.●

ldap_first_message() -- Retrieve first LDAP message.●

ldap_msgtype() -- Retrieve the type of an LDAP message.●

ldap_next_message() -- Retrieve next LDAP message.●

ldap_result -- Retrieve Result of an Asynchronous LDAP Operation●

The ldap_parse_extended_result() API supports LDAP V3 server controls and client controls.

API introduced: V5R1

Top | Directory Services APIs | APIs by category

ldap_parse_reference_np()--Extract Information
from a Continuation Reference

 Syntax

#include <ldap.h>

int ldap_parse_reference_np(LDAP *ld,
 LDAPMessage *ref,
 char ***referralsp,
 LDAPControl ***serverctrlsp,
 int freeit)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_parse_reference_np() function is used to retrieve the list of alternate servers returned in an
individual continuation reference in a chain of search results. This routine is also used to obtain an array of
server controls returned in the continuation reference.

Note the suffix "_np" which shows the API is in a preliminary implementation, and is not documented in
the Internet Draft. The internet community may standardize this API in the future.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

ref

(Input) Specifies a pointer to a search continuation reference returned on a previous call to
ldap_first_reference() or ldap_next_reference().

referralsp

(Output) Specifies a pointer to a result parameter that is filled in with the contents of the referrals
field from the LDAPMessage ref, indicating zero or more alternate LDAP servers where the
request should be retried. The referrals array should be freed by calling ldap_value_free(). NULL

may be supplied for this parameter to ignore the referrals field.

serverctrlsp

(Input) Specifies a pointer to a result parameter that is filled in with an allocated array of controls
copied out of the LDAPMessage ref. The control array should be freed by calling
ldap_controls_free().

freeit

(Input) Specifies a boolean value that determines if the LDAP result chain (as specified by ref) is to
be freed. Any non-zero value will result in the LDAP result chain being freed after the requested
information is extracted. Alternatively, the ldap_msgfree() API can be used to free the LDAP result
chain at a later time.

Return Value

LDAP_SUCCESS

if the call was successful.

another LDAP error code

if the call was not successful.

Error Conditions

The ldap_parse_reference_np() function will return an LDAP error code if not successful. See LDAP
Client API Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_parse_reference_np API.

Related Information

ldap_first_entry() -- Return first entry in a chain of search results.●

ldap_next_entry() -- Return next entry in a chain of search results.●

ldap_count_entry() -- Return number of entry in a chain of search results.●

ldap_get_entry_controls_np() -- Extract server controls from an entry.●

ldap_count_reference() -- Return the number of continuation reference in a chain of search results.●

ldap_first_reference() -- Return first continuation reference in a chain of search results.●

ldap_next_reference() -- Return next continuation reference in a chain of search results.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_parse_result()--Extract Information from
Results

 Syntax

#include <ldap.h>

int ldap_parse_result(
 LDAP *ld,
 LDAPMessage *res,
 int *errcodep,
 char **matcheddnp,
 char **errmsgp,
 char ***referralsp,
 LDAPControl ***servctrlsp,
 int freeit)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_parse_result() routine is used to:

Obtain the LDAP error code field associated with an LDAPMessage res.●

Obtain the portion of the DN that the server recognizes for a failed operation.●

Obtain the text error message associated with the error code returned in an LDAPMessage res.●

Obtain the list of alternate servers from the referrals field.●

Obtain the array of controls that may be returned by the server.●

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

res

(Input) Specifies the result of an LDAP operation as returned by ldap_result() or one of the

synchronous LDAP API operation calls.

errcodep

(Output) Specifies a pointer to the result parameter that will be filled in with the LDAP error code
field from the LDAPMessage res. The LDAPResult message is produced by the LDAP server, and
indicates the outcome of the operation. NULL can be specified for errcodep if the error code is to
be ignored.

matcheddnp

(Output) Specifies a pointer to a result parameter. When LDAP_NO_SUCH_OBJECT is returned
as the LDAP error code, this result parameter will be filled in with a Distinguished Name indicating
how much of the name in the request was recognized by the server. NULL can be specified for
matcheddnp if the matched DN is to be ignored. The matched DN string should be freed by calling
ldap_memfree().

errmsgp

(Output) Specifies a pointer to a result parameter that is filled in with the contents of the error
message from the LDAPMessage res. The error message string should be freed by calling
ldap_memfree().

referralsp

(Output) Specifies a pointer to a result parameter that is filled in with the contents of the referrals
field from the LDAPMessage res, indicating zero or more alternate LDAP servers where the
request should be retried. The referrals array should be freed by calling ldap_value_free(). NULL
may be supplied for this parameter to ignore the referrals field.

serverctrlsp

(Ourput) Specifies a pointer to a result parameter that is filled in with an allocated array of controls
copied out of the LDAPMessage res. The control array should be freed by calling
ldap_controls_free().

freeit

(Input) Specifies a boolean value that determines if the LDAP result chain (as specified by res) is to
be freed. Any non-zero value will result in the LDAP result chain being freed after the requested
information is extracted. Alternatively, the ldap_msgfree() API can be used to free the LDAP result
chain at a later time.

Return Value

LDAP_SUCCESS

if the result was successfully located and parsed.

another LDAP error code

if not successfully parsed.

Error Conditions

The ldap_parse_result() function will return an LDAP error code if not successful. See LDAP Client API
Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_parse_result API.

Related Information

ldap_first_message() -- Retrieve first LDAP message.●

ldap_next_message() -- Retrieve next LDAP message.●

ldap_parse_extended_result() -- Parse extended result.●

ldap_parse_sasl_bind_result() -- Extract server credentials from SASL bind results.●

ldap_result() -- Retrieve result of an asynchronous LDAP operation.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_parse_sasl_bind_result()--Extract Server
Credentials from SASL Bind Results

 Syntax

#include <ldap.h>

int ldap_parse_sasl_bind_result(
 LDAP *ld,
 LDAPMessage *res,
 struct berval **servercredp,
 int freeit)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_parse_sasl_bind_result() function is used to obtain server credentials, as a result of an attempt
to perform mutual authentication.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

res

(Input) Specifies the result of an LDAP operation as returned by ldap_result() or one of the
synchronous LDAP API operation calls.

servercredp

(Output) Specifies a pointer to a result parameter. For SASL bind results, this result parameter will
be filled in with the credentials returned by the server for mutual authentication (if returned). The
credentials, if returned, are returned in a struct berval. NULL may be supplied to ignore this field.

freeit

(Input) Specifies a boolean value that determines if the LDAP result chain (as specified by ref) is to
be freed. Any non-zero value will result in the LDAP result chain being freed after the requested
information is extracted. Alternatively, the ldap_msgfree() API can be used to free the LDAP result

chain at a later time.

Return Value

LDAP_SUCCESS

if the result was successfully located and parsed.

another LDAP error code

if not successfully parsed.

Error Conditions

The ldap_parse_sasl_bind_result() function will return an LDAP error code if not successful. See LDAP
Client API Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_parse_sasl_bind_result API.

Related Information

ldap_first_message() -- Retrieve first LDAP message.●

ldap_next_message() -- Retrieve next LDAP message.●

ldap_parse_result() -- Extract information from results.●

ldap_sasl_bind() -- Perform an LDAP SASL bind request.●

ldap_sasl_bind_s() -- Perform an LDAP SASL bind request (synchronous).●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_perror()--Print LDAP Error Information

 Syntax

#include <ldap.h>

void ldap_perror(
 LDAP *ld,
 const char *s)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_perror() function prints an indication of the error on standard error. The error string printed out
will be in English only.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

s

(Input) Specifies the message prefix, which is prepended to the string form of the error code stored
in the LDAP structure. The string form of the error is the same string that would be returned by a
call to ldap_err2string().

Return Value

None

Error Conditions

The ldap_perror() API does not return an error code.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_perror API.

Related Information

ldap_get_errno() -- Retrieve error code set.●

ldap_get_lderrno() -- Retrieve error information.●

ldap_err2string() -- Convert LDAP error indication to a string.●

ldap_result2error() -- Extract LDAP error indication from LDAP result.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_rename()--Asynchronously Rename an
Entry

 Syntax

#include <ldap.h>

int ldap_rename(
 LDAP *ld,
 const char *dn,
 const char *newrdn,
 const char *newparent,
 int deleteoldrdn,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_rename() routine initiates an asynchronous modify DN operation

In LDAP version 2, the ldap_modrdn() API was used to change the name of an LDAP entry. It could only
be used to change the least significant component of a name (the RDN or relative distinguished name). The
LDAP version 3 protocol provides the Modify DN protocol operation that allows more general name
change access. The ldap_rename() routine is used to change the name of an entry. The ldap_modrdn()
routine is deprecated.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the DN of the entry whose DN is to be changed.

newrdn

(Input) Specifies the new RDN to be given to the entry.

newparent

(Input) Specifies the new parent, or superior entry. If this parameter is NULL, only the RDN of the
entry is changed. The root DN may be specified by passing a zero length string, "". The newparent
parameter should always be NULL when using version 2 of the LDAP protocol; otherwise the
server's behavior is undefined.

deleteoldrdn

(Input) Specifies a boolean value. When set to 1, the old RDN value is to be deleted from the entry.
When set to 0, the old RDN value should be retained as a non-distinguished value. This parameter
only has meaning if newrdn is different from the old RDN.

serverctrls

(Input) Specifies a list of LDAP server controls. This parameter may be set to null. See LDAP
Controls for more information about server controls.

clientctrls

(Input) Specifies a list of LDAP client controls. This parameter may be set to null. See LDAP
Controls for more information about client controls.

msgidp

(Output) This result parameter is set to the message id of the request if the ldap_rename() call
succeeds.

Return Value

LDAP_SUCCESS

if the request was successfully sent. ldap_rename() places the message id of the request in
*msgidp. A subsequent call to ldap_result() can be used to obtain the result of the operation. Once
the operation has completed, ldap_result() returns a result that contains the status of the operation
(in the form of an error code). The error code indicates if the operation completed successfully. The
ldap_parse_result() API is used to check the error code in the result.

another LDAP error code

in case of an error.

Error Conditions

If ldap_rename() is not successful, an error code will be returned. See LDAP Client API Error Conditions
for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_rename API.

Related Information

ldap_rename_s() -- Synchronously rename an entry.●

ldap_result() -- Retrieve result of an asynchronous LDAP operation.●

ldap_modrdn() -- Asynchronously modify the RDN of an entry (deprecated).●

ldap_modrdn_s() -- Synchronously modify the RDN of an entry (deprecated).●

The ldap_rename() API supports LDAP V3 server controls and client controls.

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_rename_s()--Synchronously Rename an
Entry

 Syntax

#include <ldap.h>

int ldap_rename_s(
 LDAP *ld,
 const char *dn,
 const char *newrdn,
 const char *newparent,
 int deleteoldrdn,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_rename_s() routine performs a synchronous modify DN operation.

In LDAP version 2, the ldap_modrdn_s() API was used to change the name of an LDAP entry
synchronously. It could only be used to change the least significant component of a name (the RDN or
relative distinguished name). The LDAP V3 protocol provides the Modify DN protocol operation that
allows more general name change access. The ldap_rename_s() routine is used to change the name of an
entry, and the use of the ldap_modrdn_s() routine is deprecated.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the DN of the entry whose DN is to be changed.

newrdn

(Input) Specifies the new RDN to be given to the entry.

newparent

(Input) Specifies the new parent, or superior entry. If this parameter is NULL, only the RDN of the
entry is changed. The root DN may be specified by passing a zero length string, "". The newparent
parameter should always be NULL when using version 2 of the LDAP protocol; otherwise the
server's behavior is undefined.

deleteoldrdn

(Input) Specifies a boolean value. When set to non-zero, the old RDN value is removed from the
entry. When set to 0, the old RDN value will be retained as a non-distinguished value. This
parameter only has meaning if newrdn is different from the old RDN.

serverctrls

(Input) Specifies a list of LDAP server controls. This parameter may be set to null. See LDAP
Controls for more information about server controls.

clientctrls

(Input) Specifies a list of LDAP client controls. This parameter may be set to null. See LDAP
Controls for more information about client controls.

Return Value

LDAP_SUCCESS

if the request was successfully.

another LDAP error code

in case of an error.

Error Conditions

If ldap_rename_s() is not successful, an error code will be returned. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_rename_s API.

Related Information

ldap_rename() -- Asynchronously rename an entry.●

ldap_modrdn() -- Asynchronously modify the RDN of an entry (deprecated).●

ldap_modrdn_s() -- Synchronously modify the RDN of an entry (deprecated).●

The ldap_rename_s() API supports LDAP V3 server controls and client controls.

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_result()--Retrieve Result of an
Asynchronous LDAP Operation

 Syntax

#include <sys/time.h>
#include <ldap.h>

int ldap_result(
 LDAP *ld,
 int msgid,
 int all,
 struct timeval *timeout,
 LDAPMessage **result)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_result() function is used to wait for and return the result of an operation previously initiated by
one of the LDAP asynchronous operation functions (such as ldap_search() and ldap_modify()).

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

msgid

(Input) Specifies the message ID of the operation whose results are to be returned. The parameter
can be set to LDAP_RES_ANY if any result is desired.

all

(Input) This parameter only has meaning for search results. For search results, all is used to specify
how many search result messages will be returned on this call to ldap_result(). Specify
LDAP_MSG_ONE to retrieve one search result message (for example, a single entry). Specify
LDAP_MSG_ALL to request that all results of a search be received. ldap_result() will wait until
all results are received before returning the results in a single chain. Specify
LDAP_MSG_RECEIVED to indicate that all results retrieved so far should be returned in the result
chain.

timeout

(Input) Specifies how long in seconds to wait for results (as identified by the supplied msgid) to be
returned from ldap_result. A NULL value causes ldap_result() to wait until results for the
operation identified by msgid are available. To poll, the timeout parameter should be non-NULL,
pointing to a zero-valued timeval structure.

result

(Output) Contains the result of the asynchronous operation identified by msgid. This value should
be freed by ldap_msgfree() when the result is no longer needed.

Return Value

-1

If ldap_result() was unsuccessful, sets the appropriate LDAP error, and ldap_get_errno() API can
be used to obtain the error code.

0

If ldap_result() times out or there is no message available.

If successful,

it returns one of the following result types:

LDAP_RES_BIND 0x61L

LDAP_RES_SEARCH_ENTRY 0x64L

LDAP_RES_SEARCH_RESULT 0x65L

LDAP_RES_MODIFY 0x67L

LDAP_RES_ADD 0x69L

LDAP_RES_DELETE 0x6bL

LDAP_RES_MODRDN 0x6dL

LDAP_RES_COMPARE 0x6fL

LDAP_RES_SEARCH_REFERENCE 0X73L

LDAP_RES_EXTENDED 0X78L

LDAP_EXTENDED_RES_NAME 0X8aL

LDAP_EXTENDED_RES_VALUE 0X8bL

LDAP_RES_REFERRAL 0Xa3L

LDAP_RES_ANY (-1L)

Error Conditions

If ldap_result() is not successful, ld_errno will be set to indicate the error. See LDAP Client API Error
Conditions for possible values of ld_errno field. Use ldap_get_errno() function to retrieve the error
information.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_result API.

Related Information

ldap_count_messages() -- Count messages in a result chain.●

ldap_first_entry() -- Retrieve first LDAP entry.●

ldap_first_message() -- Retrieve first LDAP message.●

ldap_first_reference() -- Retrieve first continuation reference in a chain of search results.●

ldap_msgfree() -- Free LDAP result message.●

ldap_msgid() -- Retrieve the message ID associated with an LDAP message.●

ldap_msgtype() -- Returns the type of an LDAP message.●

ldap_msgid() -- Returns the ID of an LDAP message.●

ldap_parse_result() -- Extract information from results.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_result2error()--Retrieve LDAP Error
Information

 Syntax

#include <ldap.h>

int ldap_result2error(
 LDAP *ld,
 LDAPMessage *res,
 int freeit)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_result2error() API takes a result as produced by ldap_result() or ldap_search_s(), and returns the
corresponding error code.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

res

(Input/Output) Specifies the result, as produced by ldap_result(), to be converted to the error code
with which it is associated.

freeit

(Input) Specifies whether or not the result, res, should be freed as a result of calling
ldap_result2error(). If non-zero, the result, res, will be freed by the call. If zero, res will not be
freed by the call.

Return Value

LDAP error code

The result of the ldap request in res.

Error Conditions

The ldap_result2error() function will return an LDAP error code. See LDAP Client API Error Conditions
for possible LDAP error codes.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_result2error API.

Related Information

ldap_err2string() -- Convert LDAP error indication to a string.●

ldap_get_errno() -- Retrieve error information.●

ldap_perror() -- Print an LDAP error indication to standard error.●

ldap_result() -- Retrieve result of an asynchronous LDAP operation.●

ldap_search_s() -- Perform an LDAP search operation (synchronous).●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_sasl_bind()--Perform an LDAP SASL Bind
Request

 Syntax

#include <ldap.h>

int ldap_sasl_bind(
 LDAP *ld,
 const char *dn,
 const char *mechanism,
 const struct berval *cred,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_sasl_bind() function is used to authenticate a distinguished name (DN) to a directory server
using Simple Authentication Security Layer (SASL).

After a connection is made to an LDAP V2 server an LDAP bind API must be called before any other
LDAP APIs can be called for that connection. For LDAP V3 servers, binding is optional.

ldap_sasl_bind() is an asynchronous request. The result of the operation can be obtained by a subsequent
call to ldap_result().

None of the mechanisms provided with OS/400 support the use of asynchronous SASL bind. You must use
ldap_sasl_bind_s().

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the Distinguished Name of the entry to bind as.

mechanism

(Input) This value can be set to NULL to perform a simple bind. Other mechanisms (EXTERNAL,
CRAM-MD5, and GSSAPI) are implemented, but do not support the asynchronous SASL bind.
You must use ldap_sasl_bind_s() for other mechanisms.

cred

(Input) Specifies the credentials with which to authenticate. Arbitrary credentials can be passed
using this parameter. In most cases, this is the user's password.

serverctrls

(Input) Specifies a list of LDAP server controls. This parameter may be set to null. See LDAP
Controls for more information about server controls.

clientctrls

(Input) Specifies a list of LDAP client controls. This parameter may be set to null. See LDAP
Controls for more information about client controls.

msgidp

(Output) This result parameter is set to the message id of the request if the ldap_sasl_bind() call
succeeds.

Return Value

Message ID of the Operation Initiated

if the request was successful. A subsequent call to ldap_result(), can be used to obtain the result.

Another LDAP error code

if the request was not successful.

Error Conditions

If ldap_sasl_bind() is not successful, an error code will be returned. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_sasl_bind API.

Related Information

ldap_sasl_bind_s() -- Synchronously bind to the directory using the Simple Authentication Security
Layer (SASL).

●

ldap_simple_bind() -- Asynchronously bind to the directory using simple authentication.●

ldap_simple_bind_s() -- Synchronously bind to the directory using simple authentication.●

ldap_unbind() -- Asynchronously unbind from the LDAP server and close the connection.●

ldap_unbind_s() -- Synchronously unbind from the LDAP server and close the connection.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_sasl_bind_s()--Perform an LDAP SASL
Bind Request (Synchronous)

 Syntax

#include <ldap.h>

int ldap_sasl_bind_s(
 LDAP *ld,
 const char *dn,
 const char *mechanism,
 const struct berval *cred,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 struct berval **servercredp)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_sasl_bind_s() function can be used to do general authentication over LDAP through the use of
the Simple Authentication Security Layer (SASL).

After a connection is made to an LDAP V2 server an LDAP bind API must be called before any other
LDAP APIs can be called for that connection. For LDAP V3 servers, binding is optional.

ldap_sasl_bind_s() performs a synchronous request.

Authorities and Locks

For the EXTERNAL mechanism, *R authority is needed to the selected Certificate Store and *X authority
is needed to each directory of its path.

Parameters

ld

(Input) The LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().

dn

(Input) The Distinguished Name of the entry to bind as, may be NULL.

mechanism

(Input) Although a variety of mechanisms have been IANA registered, the mechanisms supported
by the library at this time are:

LDAP_MECHANISM_EXTERNAL mechanism, represented by the string
"EXTERNAL".

❍

LDAP_MECHANISM_CRAMMD5 mechanism, represented by the string
"CRAM-MD5".

❍

LDAP_MECHANISM_GSSAPI mechanism, represented by the string "GSSAPI".❍

By setting mechanism to a NULL pointer, the SASL bind request will be interpreted as a request
for simple authentication (equivalent to using ldap_simple_bind_s()).

The LDAP_MECHANISM_EXTERNAL mechanism indicates to the server that information
external to SASL should be used to determine whether the client is authorized to authenticate. For
this implementation, the system providing the external information must be SSL. The server will
use the identity from the client's X.509 certificate that was chosen using the ldap_ssl_client_init()
and ldap_ssl_init() or ldap_app_ssl_client_init_np() API. The dn and cred parameters must be
NULL.

The LDAP_MECHANISM_CRAMMD5 mechanism is used to authenticate with the server using
a challenge/response protocol that protects the "clear-text" password over the wire. This
mechanism is useful only when the LDAP server can retrieve the user's password. The contents of
the cred berval must be a UTF8 representation of the password. See ldap_xlate_local_to_utf8() for
converting local data to UTF8.

The LDAP_MECHANISM_GSSAPI mechanism is used to enable Kerberos authentication. The
dn parameter must be NULL. If the cred parameter is NULL, then it is assumed that the user has
already authenticated to a Kerberos security server and has obtained a Ticket Granting Ticket
(TGT) using a program such as kinit. The GSSAPI credential handle used to initiate a security
context on the LDAP client side is obtained from the current login context. The cred parameter can
also point to a berval containing a GSSAPI credential handle that will be used to initiate a security
context with the LDAP server. For example, a server application can call ldap_sasl_bind_s with a
credential handle that the server received from a client as a delegated credential handle.

cred

(Input) Specifies the credentials with which to authenticate. Arbitrary credentials can be passed
using this parameter. In most cases, this is the user's password.

serverctrls

(Input) Specifies a list of LDAP server controls. This parameter may be set to null. See LDAP
Controls for more information about server controls.

clientctrls

(Input) Specifies a list of LDAP client controls. This parameter may be set to null. See LDAP
Controls for more information about client controls.

servercredp

(Output) This result parameter will be set to the credentials returned by the server. If no credentials
are returned, it will be set to NULL.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

If ldap_sasl_bind_s() is not successful, an error code is returned. See LDAP Client API Error Conditions
for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_sasl_bind_s API.

Related Information

ldap_init -- Perform an LDAP initialization operation,●

ldap_ssl_client_init -- Initializes the SSL library.●

ldap_ssl_init -- Initializes an SSL connection.●

ldap_app_ssl_client_init_np -- Initialize the LDAP client for a secure connection using DCM.●

ldap_app_ssl_init_np -- Initializes an SSL connection.●

ldap_sasl_bind() -- Asynchronously bind to the directory using the Simple Authentication Security
Layer (SASL).

●

ldap_simple_bind() -- Asynchronously bind to the directory using simple authentication.●

ldap_simple_bind_s() -- Synchronously bind to the directory using simple authentication.●

ldap_unbind() -- Asynchronously unbind from the LDAP server and close the connection.●

ldap_unbind_s() -- Synchronously unbind from the LDAP server and close the connection.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_search()--Perform an LDAP Search
Operation

 Syntax

#include <ldap.h>

int ldap_search(
 LDAP *ld,
 const char *base,
 int scope,
 const char *filter,
 char **attrs,
 int attrsonly)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_search() function is used to perform an LDAP search operation.

ldap_search() is an asynchronous request. A subsequent call to ldap_result() can be used to obtain the results
from the search.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

base

(Input) Specifies the DN of the entry at which to start the search.

scope

(Input) Specifies the scope of the search. It can be LDAP_SCOPE_BASE (to search the base object
itself), or LDAP_SCOPE_ONELEVEL (to search the base object's immediate children), or
LDAP_SCOPE_SUBTREE (to search the base object and all its descendents).

filter

(Input) Specifies a string representation of the filter to apply in the search. Simple filters can be
specified as attributetype=attributevalue. More complex filters are specified using a prefix notation
according to the following BNF:

 <filter> ::= '(' <filtercomp> ')'
 <filtercomp> ::= <and> | <or> | <not> | <simple>
 <and> ::= '&' <filterlist>
 <or> ::= '|' <filterlist>
 <not> ::= '!' <filter>
 <filterlist> ::= <filter> | <filter> <filterlist>
 <simple> ::= <attributetype> <filtertype> <attributevalue>
 <filtertype> ::= '=' | '~=' | '<=' | '>='

The '~=' construct is used to specify approximate matching. The representation for <attributetype>
and <attributevalue> are as described in RFC 2252, "Lightweight Directory Access Protocol (v3):
Attribute Syntax Definitions." In addition, <attributevalue> can be a single * to achieve an attribute
existence test, or can contain text and *'s interspersed to achieve substring matching.

For example, the filter "(mail=*)" will find any entries that have a mail attribute. The filter
"(mail=*@student.of.life.edu)" will find any entries that have a mail attribute ending in the specified
string.

More complex filters are created using the & and | operators. For example, the filter
"(&(objectclass=person)(mail=*))" will find any entries that have an objectclass of person and a mail
attribute. To put parentheses or asterisks in a filter, escape them with a backslash '\' character. See
RFC 2254, "A String Representation of LDAP Search Filters," for a more complete description of
allowable filters.

attrs

(Input) Specifies a null-terminated array of character string attribute types to return from entries that
match filter. If NULL is specified, all attributes will be returned.

attrsonly

(Input) Specifies attribute information. Attrsonly should be set to 1 to request attribute types only. Set
to 0 to request both attributes types and attribute values.

Return Value

Message ID of the Operation Initiated

if the request was successful. A subsequent call to ldap_result(), can be used to obtain the result.

-1

if the request was not successful.

Error Conditions

If ldap_search() is not successful, -1 will be returned setting the session error(ld_errno) parameters in the
LDAP structure appropriately. See LDAP Client API Error Conditions for possible values for the error codes.
Use ldap_get_errno() to obtain the error code ld_errno.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_search API.

Related Information

ldap_result() -- Retrieve result of an asynchronous LDAP operation.●

ldap_search_s() -- Synchronously search the directory.●

ldap_search_ext() -- Asynchronously search the directory with controls.●

ldap_search_ext_s() -- Synchronously search the directory with controls.●

ldap_search_st() -- Synchronously search the directory with timeout.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_search_ext --Asynchronously Search the
Directory Using Controls

 Syntax

#include <ldap.h>

int ldap_search_ext(
 LDAP *ld,
 const char *base,
 int scope,
 const char *filter,
 char **attrs,
 int attrsonly,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 struct timeval *timeout,
 int sizelimit,
 int *msgidp)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_search_ext() routine initiates an asynchronous search operation.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

base

(Input) Specifies the DN of the entry at which to start the search.

scope

(Input) Specifies the scope of the search. It can be LDAP_SCOPE_BASE (to search the base object
itself), or LDAP_SCOPE_ONELEVEL (to search the base object's immediate children), or
LDAP_SCOPE_SUBTREE (to search the base object and all its descendents).

filter

(Input) Specifies a string representation of the filter to apply in the search. Simple filters can be
specified as attributetype=attributevalue. More complex filters are specified using a prefix notation
according to the following BNF:

 <filter> ::= '(' <filtercomp> ')'
 <filtercomp> ::= <and> | <or> | <not> | <simple>
 <and> ::= '&' <filterlist>
 <or> ::= '|' <filterlist>
 <not> ::= '!' <filter>
 <filterlist> ::= <filter> | <filter> <filterlist>
 <simple> ::= <attributetype> <filtertype> <attributevalue>
 <filtertype> ::= '=' | '~=' | '<=' | '>='

The '~=' construct is used to specify approximate matching. The representation for <attributetype>
and <attributevalue> are as described in RFC 2252, "Lightweight Directory Access Protocol (v3):
Attribute Syntax Definitions." In addition, <attributevalue> can be a single * to achieve an attribute
existence test, or can contain text and *'s interspersed to achieve substring matching.

For example, the filter "(mail=*)" will find any entries that have a mail attribute. The filter
"(mail=*@student.of.life.edu)" will find any entries that have a mail attribute ending in the specified
string.

More complex filters are created using the & and | operators. For example, the filter
"(&(objectclass=person)(mail=*))" will find any entries that have an objectclass of person and a mail
attribute. To put parentheses or asterisks in a filter, escape them with a backslash '\' character. See
RFC 2254, "A String Representation of LDAP Search Filters," for a more complete description of
allowable filters.

attrs

(Input) Specifies a null-terminated array of character string attribute types to return from entries that
match filter. If NULL is specified, all attributes will be returned.

attrsonly

(Input) Specifies attribute information. Attrsonly should be set to 1 to request attribute types only. Set
to 0 to request both attributes types and attribute values.

serverctrls

(Input) Specifies a list of LDAP server controls. This parameter may be set to null. See LDAP
Controls for more information about server controls.

clientctrls

(Input) Specifies a list of LDAP client controls. This parameter may be set to null. See LDAP
Controls for more information about client controls.

sizelimit

(Input) Specifies the maximum number of entries to return. Note that the server may set a lower limit
which is enforced at the server.

timeout

(Input) The local search timeout value and the operation time limit that is sent to the server within the
search request.

msgidp

(Output) This result parameter is set to the message id of the request if the ldap_search_ext() call
succeeds.

Return Value

Message ID of the Operation Initiated

if the request was successful. A subsequent call to ldap_result() can be used to obtain the result.

another LDAP error code

if the request was not successful.

Error Conditions

If ldap_search_ext() is not successful, an error code will be returned. See LDAP Client API Error Conditions
for possible LDAP error codes.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_search_ext API.

Related Information

ldap_result() -- Retrieve result of an asynchronous LDAP operation.●

ldap_search_s() -- Synchronously search the directory.●

ldap_search() -- Asynchronously search the directory.●

ldap_search_ext_s() -- Synchronously search the directory with controls.●

ldap_search_st() -- Synchronously search the directory with timeout.●

The ldap_search_ext() API supports LDAP V3 server controls, client controls, and allow varying size and
time limits to be easily specified for each search operation.

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_search_ext_s -- Synchronously Search the
Directory Using Controls

 Syntax

#include <ldap.h>

int ldap_search_ext_s(
 LDAP *ld,
 const char *base,
 int scope,
 const char *filter,
 char **attrs,
 int attrsonly,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 struct timeval *timeout,
 int sizelimit,
 LDAPMessage **res)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_search_ext_s() routine initiates a synchronous search operation, allowing LDAP controls to be sent
to the server and client.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

base

(Input) Specifies the DN of the entry at which to start the search.

scope

(Input) Specifies the scope of the search. It can be LDAP_SCOPE_BASE (to search the object
itself), or LDAP_SCOPE_ONELEVEL (to search the object's immediate children), or
LDAP_SCOPE_SUBTREE (to search the object and all its descendents).

filter

(Input) Specifies a string representation of the filter to apply in the search. Simple filters can be
specified as attributetype=attributevalue. More complex filters are specified using a prefix notation
according to the following BNF:

 <filter> ::= '(' <filtercomp> ')'
 <filtercomp> ::= <and> | <or> | <not> | <simple>
 <and> ::= '&' <filterlist>
 <or> ::= '|' <filterlist>
 <not> ::= '!' <filter>
 <filterlist> ::= <filter> | <filter> <filterlist>
 <simple> ::= <attributetype> <filtertype> <attributevalue>
 <filtertype> ::= '=' | '~=' | '<=' | '>='

The '~=' construct is used to specify approximate matching. The representation for <attributetype>
and <attributevalue> are as described in RFC 2252, "Lightweight Directory Access Protocol (v3):
Attribute Syntax Definitions." In addition, <attributevalue> can be a single * to achieve an attribute
existence test, or can contain text and *'s interspersed to achieve substring matching.

For example, the filter "(mail=*)" will find any entries that have a mail attribute. The filter
"(mail=*@student.of.life.edu)" will find any entries that have a mail attribute ending in the specified
string.

More complex filters are created using the & and | operators. For example, the filter
"(&(objectclass=person)(mail=*))" will find any entries that have an objectclass of person and a mail
attribute. To put parentheses or asterisks in a filter, escape them with a backslash '\' character. See
RFC 2254, "A String Representation of LDAP Search Filters," for a more complete description of
allowable filters.

attrs

(Input) Specifies a null-terminated array of character string attribute types to return from entries that
match filter. If NULL is specified, all attributes will be returned.

attrsonly

(Input) Specifies attribute information. Attrsonly should be set to 1 to request attribute types only. Set
to 0 to request both attributes types and attribute values.

serverctrls

(Input) Specifies a list of LDAP server controls. This parameter may be set to null. See LDAP
Controls for more information about server controls.

clientctrls

(Input) Specifies a list of LDAP client controls. This parameter may be set to null. See LDAP
Controls for more information about client controls.

sizelimit

(Input) Specifies the maximum number of entries to return. Note that the server may set a lower limit
which is enforced at the server.

timeout

(Input) The local search timeout value and the operation time limit that is sent to the server within the
search request.

res

(Output) Contains the result of the synchronous search operation. This result should be passed to the

LDAP parsing routines (see ldap_first_entry(), ldap_next_entry(), and so on). The caller is
responsible for freeing res with ldap_msgfree().

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error

if the request was not successful. The code can be interpreted by ldap_perror() or ldap_err2string().

Error Conditions

If ldap_search_ext_s() is not successful, an error code will be returned. See LDAP Client API Error
Conditions for possible values for the error codes.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_search_ext_s API.

Related Information

ldap_first_entry() -- Retrieve first LDAP entry.●

ldap_first_reference() -- Return first continuation reference in a chain of search results.●

ldap_count_entries() -- Return number of entries in a chain of search results.●

ldap_msgfree() -- Free LDAP result message.●

ldap_search_s() -- Synchronously search the directory.●

ldap_search() -- Asynchronously search the directory.●

ldap_search_ext() -- Asynchronously search the directory with controls.●

ldap_search_st() -- Synchronously search the directory with timeout.●

The ldap_search_ext_s() API supports LDAP V3 server controls, client controls, and allows varying size
and time limits to be easily specified for each search operation.

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_search_s()--Perform an LDAP Search
Operation (Synchronous)

 Syntax

#include <ldap.h>

int ldap_search_s(
 LDAP *ld,
 const char *base,
 int scope,
 const char *filter,
 char **attrs,
 int attrsonly,
 LDAPMessage **res)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_search_s() function is used to perform a synchronous LDAP search operation.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

base

(Input) Specifies the DN of the entry at which to start the search.

scope

(Input) Specifies the scope of the search. It can be LDAP_SCOPE_BASE (to search the object
itself), or LDAP_SCOPE_ONELEVEL (to search the object's immediate children), or
LDAP_SCOPE_SUBTREE (to search the object and all its descendents).

filter

(Input) Specifies a string representation of the filter to apply in the search. Simple filters can be
specified as attributetype=attributevalue. More complex filters are specified using a prefix notation
according to the following BNF:

 <filter> ::= '(' <filtercomp> ')'

 <filtercomp> ::= <and> | <or> | <not> | <simple>
 <and> ::= '&' <filterlist>
 <or> ::= '|' <filterlist>
 <not> ::= '!' <filter>
 <filterlist> ::= <filter> | <filter> <filterlist>
 <simple> ::= <attributetype> <filtertype> <attributevalue>
 <filtertype> ::= '=' | '~=' | '<=' | '>='

The '~=' construct is used to specify approximate matching. The representation for <attributetype>
and <attributevalue> are as described in RFC 2252, "Lightweight Directory Access Protocol (v3):
Attribute Syntax Definitions." In addition, <attributevalue> can be a single * to achieve an attribute
existence test, or can contain text and *'s interspersed to achieve substring matching.

For example, the filter "(mail=*)" will find any entries that have a mail attribute. The filter
"(mail=*@student.of.life.edu)" will find any entries that have a mail attribute ending in the specified
string.

More complex filters are created using the & and | operators. For example, the filter
"(&(objectclass=person)(mail=*))" will find any entries that have an objectclass of person and a mail
attribute. To put parentheses or asterisks in a filter, escape them with a backslash '\' character. See
RFC 2254, "A String Representation of LDAP Search Filters," for a more complete description of
allowable filters.

attrs

(Input) Specifies a null-terminated array of character string attribute types to return from entries that
match filter. If NULL is specified, all attributes will be returned.

attrsonly

(Input) Specifies attribute information. Attrsonly should be set to 1 to request attribute types only. Set
to 0 to request both attributes types and attribute values.

res

(Output) Contains the result of the synchronous search operation. This result should be passed to the
LDAP parsing routines (see ldap_first_entry(), ldap_next_entry(), and so on). The caller is
responsible for freeing res with ldap_msgfree().

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error

if the request was not successful. The code can be interpreted by ldap_perror() or ldap_err2string().

Error Conditions

If ldap_search_s() is not successful, an error code will be returned. See LDAP Client API Error Conditions
for possible LDAP error codes values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_search_s API.

Related Information

ldap_first_entry() -- Retrieve first LDAP entry.●

ldap_first_reference() -- Return first continuation reference in a chain of search results.●

ldap_count_entries() -- Return number of entries in a chain of search results.●

ldap_msgfree() -- Free LDAP result message.●

ldap_search() -- Asynchronously search the directory.●

ldap_search_ext_s() -- Synchronously search the directory with controls.●

ldap_search_ext() -- Asynchronously search the directory with controls.●

ldap_search_st() -- Synchronously search the directory with timeout.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_search_st()--Perform an LDAP Search
Operation (Timed Synchronous)

 Syntax

#include <sys/time.h>
#include <ldap.h>

int ldap_search_st(
 LDAP *ld,
 const char *base,
 int scope,
 const char *filter,
 char **attrs,
 int attrsonly,
 struct timeval *timeout,
 LDAPMessage **res)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_search_st() function is used to perform an LDAP search operation.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

base

(Input) Specifies the DN of the entry at which to start the search.

scope

(Input) Specifies the scope of the search. It can be LDAP_SCOPE_BASE (to search the object
itself), or LDAP_SCOPE_ONELEVEL (to search the object's immediate children), or
LDAP_SCOPE_SUBTREE (to search the object and all its descendents).

filter

(Input) Specifies a string representation of the filter to apply in the search. Simple filters can be

specified as attributetype=attributevalue. More complex filters are specified using a prefix notation
according to the following BNF:

 <filter> ::= '(' <filtercomp> ')'
 <filtercomp> ::= <and> | <or> | <not> | <simple>
 <and> ::= '&' <filterlist>
 <or> ::= '|' <filterlist>
 <not> ::= '!' <filter>
 <filterlist> ::= <filter> | <filter> <filterlist>
 <simple> ::= <attributetype> <filtertype> <attributevalue>
 <filtertype> ::= '=' | '~=' | '<=' | '>='

The '~=' construct is used to specify approximate matching. The representation for <attributetype>
and <attributevalue> are as described in RFC 2252, "Lightweight Directory Access Protocol (v3):
Attribute Syntax Definitions." In addition, <attributevalue> can be a single * to achieve an attribute
existence test, or can contain text and *'s interspersed to achieve substring matching.

For example, the filter "(mail=*)" will find any entries that have a mail attribute. The filter
"(mail=*@student.of.life.edu)" will find any entries that have a mail attribute ending in the specified
string.

More complex filters are created using the & and | operators. For example, the filter
"(&(objectclass=person)(mail=*))" will find any entries that have an objectclass of person and a mail
attribute. To put parentheses or asterisks in a filter, escape them with a backslash '\' character. See
RFC 2254, "A String Representation of LDAP Search Filters," for a more complete description of
allowable filters.

attrs

(Input) Specifies a null-terminated array of character string attribute types to return from entries that
match filter. If NULL is specified, all attributes will be returned.

attrsonly

(Input) Specifies attribute information. Attrsonly should be set to 1 to request attribute types only. Set
to 0 to request both attributes types and attribute values.

timeout

(Input) The local search timeout value.

res

(Output) Contains the result of the synchronous search operation. This result should be passed to the
LDAP parsing routines (see ldap_first_entry(), ldap_next_entry(), and so on). The caller is
responsible for freeing res with ldap_msgfree().

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

If ldap_search_st() is not successful, an error code will be returned. See LDAP Client API Error Conditions
for possible LDAP error codes.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_search_st API.

Related Information

ldap_first_entry() -- Retrieve first LDAP entry.●

ldap_first_reference() -- Return first continuation reference in a chain of search results.●

ldap_count_entries() -- Return number of entries in a chain of search results.●

ldap_msgfree() -- Free LDAP result message.●

ldap_search_s() -- Synchronously search the directory.●

ldap_search() -- Asynchronously search the directory.●

ldap_search_ext() -- Asynchronously search the directory with controls.●

ldap_search_ext_s() -- Synchronously search the directory with controls.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_server_conf_save()-- Store Server
Information into Local Configuration

 Syntax

#include <ldap.h>

typedef struct LDAP_Server_Info {
 char *lsi_host; /* LDAP server's hostname */
 unsigned short lsi_port; /* LDAP port */
 char *lsi_suffix; /* Server's LDAP suffix */
 char *lsi_query_key; /* service_key[.edomain]*/
 char *lsi_dns_domain; /* Publishing DNS domain */
 int lsi_replica_type;/* master or replica */
#define LDAP_LSI_MASTER 1 /* LDAP Master */
#define LDAP_LSI_REPLICA 2 /* LDAP Replica */
 int lsi_sec_type; /* SSL or non-SSL */
#define LDAP_LSI_NOSSL 1 /* Non-SSL */
#define LDAP_LSI_SSL 2 /* Secure Server */
 unsigned short lsi_priority; /* Server priority */
 unsigned short lsi_weight; /* load balancing weight */
 char *lsi_vendor_info; /* vendor information */
 char *lsi_info; /* LDAP Info string */
 struct LDAP_Server_Info *prev; /* linked list previous ptr */
 struct LDAP_Server_Info *next; /* linked list next ptr */
} LDAPServerInfo;

int ldap_server_conf_save(
 char *filename,
 unsigned long ttl,
 LDAPServerInfo *server_info_listp);

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_server_conf_save() API is used to store server information for the local configuration.

Authorities and Locks

Object Authorities

The caller must have Execute (*X) authority to each directory in the path name preceding the name
of the configuration file. The caller must have Write (*W) authority to the configuration file.

Parameters

server_info_listp

(input) A linked list of LDAPServerInfo structures. Each LDAPServerInfo structure defined in the
list contains information on an LDAP server. This information will be stored in a file and can be
retrieved using ldap_server_locate(). The LDAPServerInfo structure contains the following fields:

lsi_host Fully-qualified hostname of the target server (NULL-terminated string).

lsi_port Integer representation of the LDAP server's port.

lsi_suffix String that specifies a supported suffix for the LDAP server
(NULL-terminated string).

lsi_query_key Specifies the The eNetwork domain to which the LDAP server belongs,
prefixed by the service key. For example, if service key is ldap and eNetwork
domain is sales, then lsi_query_key would be set to ldap.sales. If the server is
not associated with an eNetwork domain (as published in DNS), then
lsi_query_key consists solely of the service key value.

lsi_dns_domain DNS domain in which the LDAP server was published. For example, the DNS
search may have been for ldap.sales.tcp.austin.ibm.com, but the resulting
server(s) has a fully-qualified DNS host name of ldap2.raleigh.ibm.com. In
this example, lsi_host would be set to ldap2.raleigh.ibm.com whilst
lsi_dns_domain would be set to austin.ibm.com. The actual domain in which
the server was " published" may be of interest, particularly when multiple
DNS domains are configured (or supplied as input).

lsi_replica_type Specifies the type of server, LDAP_LSI_MASTER or LDAP_LSI_REPLICA.
If set to zero, the type is unknown.

lsi_sec_type Specifies the port's security type, LDAP_LSI_NOSSL or LDAP_LSI_SSL.
This value is derived from the "ldap" or "ldaps" prefix on the LDAP URL. If
the LDAP URL is not defined, the security type is unknown and lsi_sectype is
set to zero.

lsi_priority The priority value obtained from the SRV RR (or the "pseudo-SRV" TXT
RR). Set to zero if unknown or notavailable.

lsi_weight The weight value obtained from the SRV RR (or the "pseudo-SRV" TXT
RR). Set to zero if unknown or not available.

lsi_vendor_info NULL-terminated string obtained from the ldapvendor TXT RR (if defined).
May be used to identify the LDAP server vendor/version information.

lsi_info NULL-terminated information string obtained from the ldapinfo TXT RR (if
defined). If not defined, lsi_info is set to NULL. This information string can
be used by the LDAP or network administrator to publish additional
information about the target LDAP server.

filename

(input) The configuration filename. Specify NULL to get the default filename,
/QIBM/UserData/OS400/DirSrv/ldap_server_info.conf.

ttl

(input) Specifies the time-to-live (in minutes) for server information saved in the configuration file.
Set ttl to zero if it is intended to be a permanent repository of information.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

If ldap_server_conf_save() is not successful, an LDAP error code will be returned. See LDAP Client API
Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_server_conf_save API.

Related Information

ldap_init() -- Perform an LDAP initialization operation.●

ldap_server_locate() -- Locate suitable LDAP servers.●

ldap_server_free_list() -- Free the list of LDAP servers.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_server_free_list()-- Free the List of LDAP
Servers

 Syntax

#include <ldap.h>

int ldap_server_free_list(
 LDAPServerInfo *server_info_listp);

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_server_free_list() API is used to free the linked list of LDAPServerInfo structures (and all
associated storage) as returned from the ldap_server_locate() API.

Authorities and Locks

No OS/400 authority is required.

Parameters

server_info_listp

(Input) The address of a linked list of LDAPServerInfo structures to be freed.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

If ldap_server_free_list() is not successful, an error code will be returned. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_server_free_list API.

Related Information

ldap_server_conf_save() -- Store server information into local configuration.●

ldap_server_locate() -- Locate suitable LDAP servers.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_server_locate()-- Locate Suitable LDAP
Servers

 Syntax

#include <ldap.h>

typedef struct LDAP_Server_Request {
 int search_source; /* Source for server info */
#define LDAP_LSI_CONF_DNS 0 /* Config first, then DNS (def)*/
#define LDAP_LSI_CONF_ONLY 1 /* Local Config file only */
#define LDAP_LSI_DNS_ONLY 2 /* DNS only */
 char *conf_filename; /* pathname of config file */
 int reserved; /* Reserved, set to zero */
 char *service_key; /* Service string */
 char *enetwork_domain; /* eNetwork domain (eDomain) */
 char **name_servers; /* Array of name server addrs */
 char **dns_domains; /* Array of DNS domains */
 int connection_type; /* Connection type */
#define LDAP_LSI_UDP_TCP 0 /* Use UDP, then TCP (default)*/
#define LDAP_LSI_UDP 1 /* Use UDP only */
#define LDAP_LSI_TCP 2 /* Use TCP only */
 int connection_timeout; /* connect timeout (seconds) */
 char *DN_filter; /* DN suffix filter */
 unsigned char reserved2[64]; /* reserved fields, set to 0 */
} LDAPServerRequest;

typedef struct LDAP_Server_Info {
 char *lsi_host; /* LDAP server's hostname */
 unsigned short lsi_port; /* LDAP port */
 char *lsi_suffix; /* Server's LDAP suffix */
 char *lsi_query_key; /* service_key[.edomain]*/
 char *lsi_dns_domain; /* Publishing DNS domain */
 int lsi_replica_type;/* master or replica */
#define LDAP_LSI_MASTER 1 /* LDAP Master */
#define LDAP_LSI_REPLICA 2 /* LDAP Replica */
 int lsi_sec_type; /* SSL or non-SSL */
#define LDAP_LSI_NOSSL 1 /* Non-SSL */
#define LDAP_LSI_SSL 2 /* Secure Server */
 unsigned short lsi_priority; /* Server priority */
 unsigned short lsi_weight; /* load balancing weight */
 char *lsi_vendor_info; /* vendor information */
 char *lsi_info; /* LDAP Info string */
 struct LDAP_Server_Info *prev; /* linked list previous ptr */
 struct LDAP_Server_Info *next; /* linked list next ptr */
} LDAPServerInfo;

int ldap_server_locate (
 LDAPServerRequest *server_request,

 LDAPServerInfo **server_info_listpp);

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_server_locate() API is used to locate one or more suitable LDAP servers. In general, an
application will use the ldap_server_locate() API as follows:

Prior to connecting to an LDAP server in the enterprise, use ldap_server_locate() to obtain a list of
one or more LDAP servers that have been published in DNS (or in the local configuration file).
Typically an application can simply use the default request settings (by passing a NULL for the
LDAPServerRequest parameter). By default, the API will look for server information in the local
configuration file first (/QIBM/UserData/OS400/DirSrv/ldap_server_info.conf), then move on to
DNS if the local configuration file doesn't exist (or has expired).

●

Once the application has obtained the list of servers, it should walk the list, using the first server
that meets its needs. This will maximize the advantage that can be derived from using the priority
and weighting scheme implemented by the administrator. The application may not want to use the
first server in the list for several reasons:

The client needs to specifically connect using SSL (or non-SSL). In this case, the server
needs to walk the list until it finds a server entry with the appropriate type of security type.
Note that an LDAP server may be listening on both an SSL and non-SSL port. In this case,
the server will have two entries in the server list.

❍

The client specifically needs to connect to a Master (or Replica).❍

The client needs to connect to a server that supports a particular suffix. NOTE that the list
of server's returned in the list can be filtered by specifying DN_filter, which filters out
servers that do not have a suffix under which the DN resides.

❍

There is some other characteristic associated with the desired server (perhaps defined in the
ldapinfo string).

❍

●

Once the client has selected a server, it then issues the ldap_init() or ldap_ssl_init() API. If the
selected server is unavailable, the application is free to move down the list of servers until it either
finds a suitable server it can connect to, or the list is exhausted.

●

Authorities and Locks

Object Authorities

The caller must have Execute (*X) authority to each directory in the path name preceding the name
of the configuration file (/QIBM/UserData/OS400/DirSrv). The caller must have Read (*R)
authority to the configuration file (ldap_server_info.conf).

Parameters

server_request

(Input) Specifies a pointer to an LDAPServerRequest structure. If the default behavior is desired
for all possible input parameters, simply set server_request to NULL. Otherwise, supply the
address of the LDAPServerRequest structure, which contains the following fields:

search_source Specifies where to find the server information.

The options are:

First access the local LDAP DNS configuration file. If the file is
not found, or the file does not contain information for a
combination of the service_key, eDomain and any of the DNS
domains (as specified by the application), then access DNS.

❍

Search the local LDAP DNS configuration file only.❍

Search DNS only.❍

conf_filename Specifies an alternative configuration filename. Specify NULL to use the
default filename and location.

service_key Specifies the search key (that is, the service name string) to be used when
obtaining a list of SRV, "pseudo-SRV TXT" or CNAME alias records
from DNS. If not specified, the default is "ldap". Administrators are
encouraged to use the ldap default when setting up information in DNS
servers, to maximize a client application's ability to find LDAP servers
that have been published in DNS.

enetwork_domain Indicates that LDAP servers belonging to the specified eNetwork domain
are to be located. The criteria for searching DNS to locate the appropriate
LDAP server(s) is constructed by concatenating the following
information:

search_key (defaults to ldap)❍

enetwork_domain❍

DNS domain❍

"tcp"❍

For example, if:

The default search_key of ldap is used❍

The eNetwork domain is sales5❍

The client's default DNS domain is midwest.acme.com❍

Then the DNS "value" used to search DNS for the set of LDAP servers
belonging to the sales5 domain is ldap.sales5.midwest.acme.com.tcp.

If enetwork_domain is set to zero, the following steps are taken to
determine the enetwork_domain:

The locally configured default, if set, will be used (as set with the❍

ldap_enetwork_domain_set() API).❍

If a locally configured default is not set, then a platform-specific
value is used. On Windows NT, the user's logon domain is used.

❍

If a platform-specific eNetwork domain is not defined, then the
eNetwork domain component in the DNS "value" is omitted. In
the above example, this would result in the following string being
used: ldap.midwest.acme.com.tcp.

❍

If enetwork_domain is set to a NULL string, then the eNetwork domain
component in the DNS "value" is omitted. This might be useful for finding
a default eNetwork domain (when a specific edomain name is not known).

name_servers Specifies an array of one or more string representations of DNS name
server IP address (in dotted decimal format; for example,
"122.122.33.49"). If not specified, the locally configured DNS name
server(s) will be used.

dns_domains Specifies an array of one or more DNS domain names. If not specified, the
local DNS domain configuration is used.

Note that domain names supplied here can take the following forms:

austin.ibm.com (standard DNS format)❍

cn=fred, ou=accounting, dc=austin, dc=ibm, dc=com❍

With respect to providing a domain name, these are equivalent. Both result
in a domain name of "austin.ibm.com". This approach makes it easier for
an application to locate LDAP servers to which it needs to bind (based on
a user name space mapped into the DNS name space).

DNS DOMAINS and CONFIGURATION FILE

The local configuration file may contain server information for
combinations of the following:

Service key (typically set to ldap)❍

eNetwork domain❍

DNS domains❍

When the application sets search_source to LDAP_LSI_CONFIG_DNS,
the ldap_server_locate() API will attempt to find server information in the
configuration file for the designated service key, eNetwork domain and
DNS domain(s).

If the configuration file does not contain information that matches this
criteria, the locator API will search DNS, using the specified service key,
eNetwork domain and DNS domain(s). For example:

The application supplies the following three DNS domains:

austin.ibm.com■

raleigh.ibm.com■

miami.ibm.com■

❍

plus, the application uses the default service key (that is, ldap and
specifies sales for the eNetwork domain).

❍

The configuration file contains server information for
austin.ibm.com and miami.ibm.com (with the default service key
and eNetwork domain of sales).

❍

The search_source parameter is set to
LDAP_LSI_CONFIG_DNS, which indicates that both the
configuration file and DNS are to be used if necessary.

❍

The locator API will build a single ordered list of server entries,
with the following:

Server entries for the austin.ibm.com DNS domain, as
extracted from the configuration file.

■

Server entries for the raleigh.ibm.com DNS domain, as
obtained from DNS over the network.

■

Server entries fo rthe miami.ibm.com DNS domain, as
extracted from the configuration file.

■

❍

In other words, the resulting list of servers will contain all the
austin.ibm.com servers first, followed by the raleigh.ibm.com servers,
followed by the miami.ibm.com servers. Within each grouping of servers
(by DNS domain), the entries are sorted by priority and weight.

connection_type Specifies the type of connection to use when communicating with the
DNS name server. The following options are supported:

Use UDP first. It no response is received, or data truncation
occurs, then use TCP.

❍

Only use UDP.❍

Only use TCP.❍

If set to zero, the default is to use UDP first (then TCP).

UDP is the preferred connection type, and typically performs well. You
might want to consider using TCP/IP if:

The amount of data being returned will not fit in the 512-byte
UDP packet.

❍

The transmission and receipt of UDP packets turns out to be
unreliable. This may depend on network characteristics.

❍

connection_timeout Specifies a timeout value when querying DNS (for both TCP and UDP). If
LDAP_LSI_UDP_TCP is specified for connection_type and a response is
not received in the specified time period for UDP, TCP will be attempted.
A value of zero results in an infinite timeout. When the
LDAPServerRequest parameter is set to NULL, the default is ten seconds.
When passing the LDAPServerRequest parameter, this parameter should
be set to a non-zero value if an indefinite timeout is not desired.

DN_filter Specifies a Distinguished Name to be used as a filter, for selecting
candidate LDAP servers based on the server's suffix (or suffixes). If the
most significant portion of the DN is an exact match with a server's suffix
(after normalizing for case), an LDAPServerInfo structure is returned for
the server/suffix combination. If it doesn't match, an LDAPServerInfo
structure is not returned for the server/suffix combination.

reserved2 Represents a reserved area for future function, which should be initialized
to zero.

server_info_listpp

(output) Specifies the address that will be set to point to a linked list of LDAPServerInfo structures.
Each LDAPServerInfo structure defined in the list contains server information obtained from
either:

DNS❍

Local configuration❍

Upon successful return from ldap_server_locate(), server_info_listpp points to a linked list of
LDAPServerInfo structures. The LDAPServerInfo structure (as defined above), contains the
following fields:

lsi_host Fully-qualified hostname of the target server (NULL-terminated string).

lsi_port Integer representation of the LDAP server's port.

lsi_suffix String that specifies a supported suffix for the LDAP server
(NULL-terminated string).

lsi_query_key Specifies the The eNetwork domain to which the LDAP server belongs,
prefixed by the service key. For example, if service key is ldap and eNetwork
domain is sales, then lsi_query_key would be set to ldap.sales. If the server is
not associated with an eNetwork domain (as published in DNS), then
lsi_query_key consists solely of the service key value.

lsi_dns_domain DNS domain in which the LDAP server was published. For example, the DNS
search may have been for ldap.sales.tcp.austin.ibm.com, but the resulting
server(s) has a fully-qualified DNS host name of ldap2.raleigh.ibm.com. In
this example, lsi_host would be set to ldap2.raleigh.ibm.com whilst
lsi_dns_domain would be set to austin.ibm.com. The actual domain in which
the server was "published" may be of interest, particularly when multiple
DNS domains are configured (or supplied as input).

lsi_replica_type Specifies the type of server, LDAP_LSI_MASTER or LDAP_LSI_REPLICA.
If set to zero, the type is unknown.

lsi_sec_type Specifies the port's security type, LDAP_LSI_NOSSL or LDAP_LSI_SSL.
This value is derived from the "ldap" or "ldaps" prefix on the LDAP URL. If
the LDAP URL is not defined, the security type is unknown and lsi_sectype is
set to zero.

lsi_priority The priority value obtained from the SRV RR (or the "pseudo-SRV" TXT
RR). Set to zero if unknown or not available.

lsi_weight The weight value obtained from the SRV RR (or the "pseudo-SRV" TXT
RR). Set to zero if unknown or not available.

lsi_vendor_info NULL-terminated string obtained from the ldapvendor TXT RR (if defined).
May be used to identify the LDAP server vendor/version information.

lsi_info NULL-terminated information string obtained from the ldapinfo TXT RR (if
defined). If not defined, lsi_info is set to NULL. This information string can
be used by the LDAP or network administrator to publish additional
information about the target LDAP server.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

If ldap_server_locate() is not successful, an error code will be returned. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_server_locate API.

Related Information

ldap_init() -- Perform an LDAP initialization operation.●

ldap_server_conf_save() -- Store server information into local configuration.●

ldap_server_free_list() -- Free the list of LDAP servers.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_set_iconv_local_charset()-- Set the Active
LDAP Character Set

 Syntax

#include <ldap.h>

int
ldap_set_iconv_local_charset (char *charset)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_set_iconv_local_charset() API checks if the character set is supported. If supported, the API
calls ldap_set_iconv_local_codepage() to set the global variable ldap_global_codepage to a corresponding
codepage value.

A limited set of the IANA character sets will be supported. Character sets supported include:

Character Set Name Locale Codepage

ISO-8859-1 EN_US 819

ISO-8859-2 HU_HU 912

ISO-8859-5 RU_RU 915

ISO-8859-6 AR_AA 1089

ISO-8859-7 EL_GR 813

ISO-8859-8 IW_IL 916

ISO-8859-9 TR_TR 920

IBM437 n/a 437

IBM850 EN_US 850

IBM852 n/a 852

IBM857 n/a 857

IBM862 n/a 862

IBM864 n/a 864

IBM866 n/a 866

IBM869 n/a 869

TIS-620 TH_TH 874

EUC-JP JA_JP 954

EUC-KR KO_KR 970

EUC-CN ZN_CN 1383

EUC-TW ZH_TW 964

Shift-JIS JA_JP 932

GBK ZH_CN 1386

Big5 ZH_TW 950

Authorities and Locks

No OS/400 authority is required.

Parameters

charset

(input) specifies character set value.

Return Value

LDAP_SUCCESS

if the request was successful.

Other LDAP error code

if the request was not successful.

Error Conditions

The ldap_set_iconv_local_charset() API returns an LDAP error code if not successful. See LDAP Client
API Error Conditions for possible values for LDAP error codes.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_set_iconv_local_charset API.

Related Information

ldap_xlate_local_to_utf8() -- Convert String From the Local to UTF-8 Code Page.●

ldap_xlate_utf8_to_local() -- Convert String From UTF-8 to Local Code Page.●

ldap_xlate_local_to_unicode() -- Convert String From the Local to UCS-2 Code Page.●

ldap_xlate_unicode_to_local() -- Convert String From UCS-2 to Local Code Page.●

ldap_get_iconv_local_codepage() -- Get the Active LDAP Code Page.●

ldap_set_iconv_local_codepage() -- Set the Active LDAP Code Page.●

ldap_set_locale() -- Change the Locale Used by LDAP.●

ldap_get_locale() -- Get the Locale Used by LDAP.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_set_iconv_local_codepage() -- Set the
Active LDAP Code Page

 Syntax

#include <ldap.h>

int
ldap_set_iconv_local_codepage (char *codepage)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_set_iconv_local_codepage() API is used to set a global variable, ldap_global_codepage, to a
value passed by codepage or to a value associated with a locale if codepage is NULL.

NOTE that the word local in the API refers to the value of the global variable ldap_global_codepage if it is
set or a codepage value associated with the current locale.

Authorities and Locks

No OS/400 authority is required.

Parameters

codepage

(input) specifies local code page value.

Return Value

LDAP_SUCCESS

if the request was successful.

Other LDAP error code

if the request was not successful.

Error Conditions

The ldap_set_iconv_local_codepage() API will return an LDAP error code if not successful. See LDAP
Client API Error Conditions for possible values for LDAP error codes.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_set_iconv_local_codepage API.

Related Information

ldap_xlate_local_to_utf8() -- Convert string from the local to UTF-8 code page.●

ldap_xlate_utf8_to_local() -- Convert string from UTF-8 to local code page.●

ldap_xlate_local_to_unicode() -- Convert string from the local to UCS-2 code page.●

ldap_xlate_unicode_to_local() -- Convert string From UCS-2 to local code page.●

ldap_get_iconv_local_codepage() -- Get the active LDAP code page.●

ldap_set_iconv_local_charset() -- Set the active LDAP character set.●

ldap_set_locale() -- Change the locale used by LDAP.●

ldap_get_locale() -- Get the locale used by LDAP.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_set_lderrno() -- Set Error Information

 Syntax

#include <ldap.h>

int ldap_set_lderrno(
 LDAP *ld,
 int error,
 const char *dn,
 const char *errmsg)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_set_lderrno() function sets an error code and other information about an error in the specified
LDAP structure.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

error

(Input) The LDAP error code to be set in the ld.

dn

(Input) The distinguished name (DN) that identifies an existing entry. Normally, it is used to
indicate how much of the name in the request is recongnized by a server on an
LDAP_NO_SUCH_OBJECT error. However, in this case since it is an input to this API it should
be a DN consistent with the error and errmsg parameters input on this API.

errmsg

(Input) The text of the error message, as if returned from a server.

Return Value

LDAP error code

See LDAP Client API Error Conditions for possible LDAP error codes values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_set_lderrno API.

Related Information

ldap_err2string() -- Convert LDAP error indication to a string.●

ldap_perror() -- Print an LDAP error indication to standard error.●

ldap_get_errno() -- Obtain information from most recent error.●

ldap_get_lderrno() -- Retrieve Error Information●

ldap_result2error() -- Extract LDAP error indication from LDAP result.●

API introduced: V5R1

Top | Directory Services APIs | APIs by category

ldap_set_locale() -- Change the Locale Used by
LDAP

 Syntax

#include <ldap.h>

int ldap_set_locale(
 char *locale)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: No

The ldap_set_locale() API is used to change the locale used by LDAP for conversions between the local
code page and UTF-8 or Unicode. Unless explicitly set with the ldap_set_locale() API, LDAP will use the
application's default locale. To force the LDAP library to use another locale, specify the appropriate locale
string.

Note that the specified locale is applicable to all conversions by the LDAP library within the applications
address space. The LDAP locale should be set or changed only when there is no other LDAP activity
occuring within the application on other threads.

Authorities and Locks

*R authority is needed to the selected locale file and *X to the associated directories.

Parameters

locale

(Input) The locale to be used by LDAP when using conversion apis to convert local text to/from
UTF-8 or Unicode. If the locale is not explicitly set, the LDAP library will use the application's
default locale. To force the LDAP library to use another locale, specify the appropriate locale
string.

You can set the value of locale to C, "", LC_C or the IFS pathname of a *LOCALE object. A
locale value of C indicates the default C environment. A locale value of "" tells ldap_set_locale()
to use the default locale for the implementation.

Examples:

 rc = ldap_set_locale(LC_C);

 rc = ldap_set_locale("/qsys.lib/en_us.locale");

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_set_locale() API will return LDAP error code if not successful. See LDAP Client API Error
Conditions for possible values for LDAP error codes.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_set_locale API.

Related Information

ldap_xlate_local_to_utf8() -- Convert string from the local to UTF-8 code page.●

ldap_xlate_utf8_to_local() -- Convert string From UTF-8 to local code page.●

ldap_xlate_local_to_unicode() -- Convert string from the local to UCS-2 code page.●

ldap_xlate_unicode_to_local() -- Convert string from UCS-2 to local code page.●

ldap_get_iconv_local_codepage() -- Get the active LDAP code page.●

ldap_set_iconv_local_codepage() -- Set the active LDAP code page.●

ldap_set_iconv_local_charset() -- Set the active LDAP character set.●

ldap_get_locale() -- Get the locale used by LDAP.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_set_option() -- Set LDAP Options

 Syntax

 #include <ldap.h>

 int ldap_set_option(
 LDAP *ld,
 int optionToSet,
 const void *optionValue)

 Library Name/Service Program: QSYS/QGLDCLNT

 Default Public Authority: *USE

 Threadsafe: Yes

The ldap_set_option() function is used to set options for the specified LDAP connection.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) An LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or ldap_open().
If a NULL ld is passed in, the default option value is set. Later calls to ldap_init(), ldap_ssl_init(),
or ldap_open() will use the set value as the default for the option.

optionToSet

(Input) The option value to be set. See below for the list of supported options.

optionValue

(Input) The address of the value. For LDAP V3 client options, optionValue is the actual value to be
set.

The following session settings can be set using the ldap_set_option() API:

LDAP_OPT_SIZELIMIT Mmaximum number of entries that can be returned on a search
operation

LDAP_OPT_TIMELIMIT Maximum number of seconds to wait for search results

LDAP_OPT_REFHOPLIMIT Maximum number of referrals in a sequence that the client can
follow

LDAP_OPT_DEREF Rules for following aliases at the server

LDAP_OPT_REFERRALS Whether referrals should be followed by the client

LDAP_OPT_DEBUG Client debug options

LDAP_OPT_SSL_CIPHER SSL ciphers to use

LDAP_OPT_SSL_TIMEOUT SSL timeout for refreshing session keys

LDAP_OPT_REBIND_FN Address of application's setrebindproc procedure

LDAP_OPT_PROTOCOL_VERSION LDAP protocol version to use (V2 or V3)

LDAP_OPT_SERVER_CONTROLS Default server controls.

LDAP_OPT_CLIENT_CONTROLS Default client library controls

LDAP_OPT_UTF8_IO String Data type UTF-8 option

The value returned by ldap_get_option() when LDAP_OPT_PROTOCOL_VERSION is specified can be
used to determine how parameters should be passed to the ldap_set_option() call. The easiest way to work
with this compatibility feature is to guarantee that calls to ldap_set_option() are all performed while the
LDAP_OPT_PROTOCOL_VERSION is set to the same value. If this cannot be guaranteed by the
application, then follow the format of the example below when coding the call to ldap_set_option():

 int sizeLimit=100;

 int protocolVersion;

 ldap_get_option(ld, LDAP_OPT_PROTOCOL_VERSION, &protocolVersion);

 if (protocolVersion == LDAP_VERSION2) {
 ldap_set_option(ld, LDAP_OPT_SIZELIMIT, (void *)sizeLimit);
 } else { /* the protocol version is LDAP_VERSION3 */
 ldap_set_option(ld, LDAP_OPT_SIZELIMIT, &sizeLimit);
 }

Additional details on specific options for ldap_set_option() are provided in the following sections.

LDAP_OPT_SIZELIMIT

Specifies the maximum number of entries that can be returned on a search operation. Note: the actual size
limit for operations is also bounded by the maximum number of entries that the server is configured to
return. Thus, the actual size limit will be the lesser of the value specified on this option and the value
configured in the LDAP server. The default sizelimit is unlimited, specified with a value of zero (thus
deferring to the sizelimit setting of the LDAP server).

Examples:

 sizevalue=50;

 ldap_set_option(ld, LDAP_OPT_SIZELIMIT, &sizevalue);
 ldap_get_option(ld, LDAP_OPT_SIZELIMIT, &sizevalue);

LDAP_OPT_TIMELIMIT

Specifies the number of seconds to wait for search results. Note: the actual time limit for operations is also
bounded by the maximum time that the server is configured to allow. Thus, the actual time limit will be the
lesser of the value specified on this option and the value configured in the LDAP server. The default is
unlimited (specified with a value of zero).

Examples:

 timevalue=50;
 ldap_set_option(ld, LDAP_OPT_TIMELIMIT, &timevalue);
 ldap_get_option(ld, LDAP_OPT_TIMELIMIT, &timevalue);

LDAP_OPT_REFHOPLIMIT

Specifies the maximum number of hops that the client library will take when chasing referrals. The default
is 5.

Examples:

 hoplimit=7;
 ldap_set_option(ld, LDAP_OPT_REFHOPLIMIT, &hoplimit);
 ldap_get_option(ld, LDAP_OPT_REFHOPLIMIT, &hoplimit);

LDAP_OPT_DEREF

Specifies alternative rules for following aliases at the server. The default is LDAP_DEREF_NEVER.

Supported values:

0 LDAP_DEREF_NEVER

1 LDAP_DEREF_SEARCHING

2 LDAP_DEREF_FINDING

3 LDAP_DEREF_ALWAYS

Examples:

 int deref = LDAP_DEREF_NEVER;
 ldap_set_option(ld, LDAP_OPT_DEREF,&deref);
 ldap_get_option(ld, LDAP_OPT_DEREF, &deref);

LDAP_OPT_REFERRALS

Specifies whether the LDAP library will automatically follow referrals returned by LDAP servers or not. It
can be set to one of the constants LDAP_OPT_ON or LDAP_OPT_OFF. By default, the LDAP client
will follow referrals.

Examples:

 int value;
 ldap_set_option(ld, LDAP_OPT_REFFERALS, (void *)LDAP_OPT_ON);
 ldap_get_option(ld, LDAP_OPT_REFFERALS, &value);

LDAP_OPT_DEBUG

Specifies a bit-map that indicates the level of debug trace for the LDAP library.

Supported values:

/* Debug levels */

LDAP_DEBUG_OFF 0x000

LDAP_DEBUG_TRACE 0x001

LDAP_DEBUG_PACKETS 0x002

LDAP_DEBUG_ARGS 0x004

LDAP_DEBUG_CONNS 0x008

LDAP_DEBUG_BER 0x010

LDAP_DEBUG_FILTER 0x020

LDAP_DEBUG_CONFIG 0x040

LDAP_DEBUG_ACL 0x080

LDAP_DEBUG_STATS 0x100

LDAP_DEBUG_STATS2 0x200

LDAP_DEBUG_SHELL 0x400

LDAP_DEBUG_PARSE 0x800

LDAP_DEBUG_ANY 0xffff

Examples:

 int value;
 int debugvalue= LDAP_DEBUG_TRACE | LDAP_DEBUG_PACKETS;
 ldap_set_option(ld, LDAP_OPT_DEBUG, &debugvalue);
 ldap_get_option(ld, LDAP_OPT_DEBUG, &value);

An alternative way to set the debug level is to set the LDAP_DEBUG environment variable in the job that
the client application will run in. The environment variable is set to the same numerical value that the value
variable would be set to if ldap_set_option() was used. An example of enabling client trace for an
application using the LDAP_DEBUG environment variable:

 ADDENVVAR ENVVAR(LDAP_DEBUG) VALUE(0X0003)

After the client application has run, use

 DMPUSRTRC jobnumber-of-the-client-job

Then, to display the trace information interactively, use

 DSPPFM QAP0ZDMP QP0Znnnnnn -- where nnnnnn is the job number.

LDAP_OPT_SSL_CIPHER

Specifies a set of one or more ciphers to be used when negotiating the cipher algorithm with the LDAP
server. The first cipher in the list that is common with the list of ciphers supported by the server is chosen.
For the export version of the library, the value used is "0306". For the domestic version of the library, the
default value is "05040A090306". Note that the cipher string supported by the export version of the LDAP
client library is fixed and cannot be modified.

Supported ciphers:

LDAP_SSL_RC4_MD5_EX 03

LDAP_SSL_RC2_MD5_EX 05 (Non-export only)

LDAP_SSL_RC4_SHA_US 04 (Non-export only)

LDAP_SSL_RC4_MD5_US 06

LDAP_SSL_DES_SHA_US 09 (Non-export only)

LDAP_SSL_3DES_SHA_US 0A (Non-export only)

 LDAP_SSL_AES_SHA_US 2F (Non-export only)

Examples:

 char *setcipher = "2F090A";
 char *getcipher;
 ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, setcipher);
 ldap_get_option(ld, LDAP_OPT_SSL_CIPHER, &getcipher);

LDAP_OPT_SSL_TIMEOUT

Specifies in seconds the SSL inactivity timer. After the specified seconds, in which no SSL activity has
occurred, the SSL connection will be refreshed with new session keys. A smaller value may help increase
security, but will have a small impact on performance. The default SSL timeout value is 43200 seconds.

Examples:

 value = 100;
 ldap_set_option(ld, LDAP_OPT_SSL_TIMEOUT, &value);
 ldap_get_option(ld, LDAP_OPT_SSL_TIMEOUT, &value);

LDAP_OPT_REBIND_FN

Specifies the address of a routine to be called by the LDAP library when the need arises to authenticate a
connection with another LDAP server. This can occur, for example, when the LDAP library is chasing a
referral. If a routine is not defined, referrals will always be chased using the anonymous identity. A default
routine is not defined.

Examples:

 extern LDAPRebindProc proc_address;
 LDAPRebindProc value;
 ldap_set_option(ld, LDAP_OPT_REBIND_FN, &proc_address);
 ldap_get_option(ld, LDAP_OPT_REBIND_FN, &value);

LDAP_OPT_PROTOCOL_VERSION

Specifies the LDAP protocol to be used by the LDAP client library when connecting to an LDAP server.
Also used to determine which LDAP protocol is being used for the connection. For an application that uses
ldap_init() to create the LDAP connection the default value of this option will be LDAP_VERSION3 for
communicating with the LDAP server. The default value of this option will be LDAP_VERSION2 if the
application uses the deprecated ldap_open() API. In either case, the
LDAP_OPT_PROTOCOL_VERSION option can be used with ldap_set_option() to change the default.
The LDAP protocol version should be reset prior to issuing the bind (or any operation that causes an
implicit bind).

Examples:

 version2 = LDAP_VERSION2;
 version3 = LDAP_VERSION3;
 /* Example for Version 3 application setting version to version 2 */
 ldap_set_option(ld, LDAP_OPT_PROTOCOL_VERSION, &version2);
 /* Example of Version 2 application setting version to version 3 */
 ldap_set_option(ld, LDAP_OPT_PROTOCOL_VERSION, &version3);
 ldap_get_option(ld, LDAP_OPT_PROTOCOL_VERSION, &value);

LDAP_OPT_SERVER_CONTROLS

Specifies a default list of server controls to be sent with each request. The default list can be overridden by
specifying a server control, or list of server controls, on specific APIs. By default, no server controls will be
sent.

Example:

 ldap_set_option(ld, LDAP_OPT_SERVER_CONTROLS, &ctrlp);

LDAP_OPT_CLIENT_CONTROLS

Specifies a default list of client controls to be processed by the client library with each request. Since client
controls are not defined for this version of the library, the ldap_set_option() API can be used to define a set
of default, non-critical client controls. If one or more client controls in the set is critical, the entire list is
rejected with a return code of LDAP_UNAVAILABLE_CRITICAL_EXTENSION.

LDAP_OPT_UTF8_IO

Specifies whether the LDAP library will automatically convert string data to and from the local code page.
It can be set to one of the constants LDAP_UTF8_XLATE_ON or LDAP_UTF8_XLATE_OFF. By
default, the LDAP library will convert string data.

When conversion is disabled, the LDAP library assumes that data received from the application by LDAP
APIs is already represented in UTF-8. Similarly, the LDAP library assumes that the application is prepared
to receive string data from the LDAP library represented in UTF-8 (or as binary).

When LDAP_UTF8_XLATE_ON is set (the default), the LDAP library assumes that string data received
from the application by LDAP APIs is in the default (or explicitly designated) code page. Similarly, all
string data returned from the LDAP library (back to the application) is converted to the designated local
code page.

It is important to note that only string data supplied on connection-based APIs will be translated (that is,
only those APIs that include an ld will be subject to translation). For example, string values passed in to
ldap_search() will be converted, but string values passed in to ldap_init will not.

It is also important to note that translation of strings from a UTF-8 encoding to local code page may result
in loss of data when one or more characters in the UTF-8 encoding cannot be represented in the local code
page. When this occurs, a substitution character replaces any UTF-8 characters that cannot be converted to
the local code page.

For more information on explicitly setting the locale for conversions, see ldap_set_locale().

Examples:

 int value;
 ldap_set_option(ld, LDAP_OPT_UTF8_IO, (void *)LDAP_UTF8_XLATE_ON);
 ldap_get_option(ld, LDAP_OPT_UTF8_IO, &value);

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_set_option() function will return an LDAP error code if not successful. See LDAP Client API
Error Conditions for possible LDAP error codes values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_set_option API.

Related Information

ldap_get_option() -- Retrieve an option associated with an LDAP descriptor.●

ldap_init() -- Initializes a session with an LDAP server.●

ldap_open() -- Open a connection to an LDAP server (deprecated).●

ldap_set_rebind_proc() -- Set rebind procedure●

ldap_version() -- Obtain LDAP version and SSL cipher information.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_set_rebind_proc()--Set Rebind Procedure

 Syntax

#include <ldap.h>

void ldap_set_rebind_proc(
 LDAP *ld,
 LDAPRebindProc rebindproc)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_set_rebind_proc() function is used to set the entry-point of a routine that will be called back to
obtain bind credentials for use when a new server is contacted during the following of an LDAP referral.
Note that this function is only useful when the LDAP_OPT_REFERRALS option is set (this is the
default). If ldap_set_rebind_proc() is never called, or if it is called with a NULL rebindproc parameter, an
unauthenticated simple LDAP bind will always be done when chasing referrals.

rebindproc should be a function that is declared like this:

 int rebindproc(LDAP *ld, char **whop, char **credp,
 int *methodp, int freeit);

The LDAP library will first call the rebindproc to obtain the referral bind credentials, and the freeit
parameter will be zero. The function must set whop, credp, and methodp as appropriate. If the rebindproc
returns LDAP_SUCCESS, referral processing continues, and the rebindproc will be called a second time
with freeit non-zero to give your application a chance to free any memory allocated in the previous call.

If anything but LDAP_SUCCESS is returned by the first call to the rebindproc, referral processing is
stopped and that error code is returned for the original LDAP operation.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

rebindproc

(Input) Specifies the entry-point of a routine that will be called to obtain bind credentials used when

a new server is contacted during the following of an LDAP referral.

Return Value

None

Error Conditions

The ldap_set_rebind_proc() API does not return an error code.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_set_rebind_proc API.

Related Information

ldap_bind() -- Asynchronously bind to the directory (deprecated).●

ldap_bind_s() -- Synchronously bind to the directory (deprecated).●

ldap_sasl_bind() -- Asynchronously bind to the directory using SASL.●

ldap_sasl_bind_s() -- Synchronously bind to the directory using SASL.●

ldap_simple_bind() -- Asynchronously bind to the directory using simple authentication.●

ldap_simple_bind_s() -- Synchronously bind to the directory using simple authentication.●

ldap_unbind() -- Asynchronously unbind from the LDAP server and close the connection.●

ldap_unbind_s() -- Synchronously unbind from the LDAP server and close the connection.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_simple_bind()--Perform a Simple LDAP
Bind Request

 Syntax

#include <ldap.h>

int ldap_simple_bind(
 LDAP *ld,
 const char *dn,
 const char *passwd)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_simple_bind() function is used to authenticate a distinguished name (DN) to a directory server.

For LDAP V2 servers, after a connection is made to an LDAP server by using the ldap_open(), ldap_init(),
or ldap_ssl_init() APIs, an LDAP bind API must be called before any other LDAP APIs can be called for
that connection. For LDAP V3 servers, the bind is optional.

ldap_simple_bind() is an asynchronous request. The result of the operation can be obtained by a
subsequent call to ldap_result().

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the Distinguished Name of the entry to bind as.

passwd

(Input) Specifies the password used in association with DN of the entry in which to bind.

Return Value

Message ID of the Operation Initiated

if the request was successful. A subsequent call to ldap_result(), can be used to obtain the result.

-1

if the request was not successful, setting the session error parameters in the LDAP structure
appropriately, which can be obtained by using ldap_get_lderrno().

Error Conditions

If ldap_simple_bind() is not successful, -1 will be returned setting the session error (ld_errno) parameters
in the LDAP structure appropriately. See LDAP Client API Error Conditions for possible LDAP error code
values. Use ldap_get_lderrno() to obtain the error code ld_errno.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_simple_bind API.

Related Information

ldap_bind() -- Asynchronously bind to the directory (deprecated).●

ldap_bind_s() -- Synchronously bind to the directory (deprecated).●

ldap_sasl_bind() -- Asynchronously bind to the directory using SASL.●

ldap_sasl_bind_s() -- Synchronously bind to the directory using SASL.●

ldap_simple_bind_s() -- Synchronously bind to the directory using simple authentication.●

ldap_unbind() -- Asynchronously unbind from the LDAP server and close the connection.●

ldap_unbind_s() -- Synchronously unbind from the LDAP server and close the connection.●

ldap_set_rebind_proc() -- Sets the entry-point of a routine during the chasing of referrals.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_simple_bind_s()--Perform a Simple LDAP
Bind Request (Synchronous)

 Syntax

#include <ldap.h>

int ldap_simple_bind_s(
 LDAP *ld,
 const char *dn,
 const char *passwd)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_simple_bind_s() function is used to authenticate a distinguished name (DN) to a directory server.

For LDAP V2 servers, after a connection is made to an LDAP server by using the ldap_open(), ldap_init(),
or ldap_ssl_init() APIs, an LDAP bind API must be called before any other LDAP APIs can be called for
that connection. For LDAP V3 servers, the bind is optional.

ldap_simple_bind_s() performs a synchronous request.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

dn

(Input) Specifies the Distinguished Name of the entry to bind as.

passwd

(Input) Specifies the password used in association with DN of the entry in which to bind.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error

if the request was not successful.

Error Conditions

If ldap_simple_bind_s() is not successful, it returns an LDAP error code. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_simple_bind_s API.

Related Information

ldap_bind() -- Asynchronously bind to the directory (deprecated).●

ldap_bind_s() -- Synchronously bind to the directory (deprecated).●

ldap_sasl_bind() -- Asynchronously bind to the directory using SASL.●

ldap_sasl_bind_s() -- Synchronously bind to the directory using SASL.●

ldap_simple_bind() -- Asynchronously bind to the directory using simple authentication.●

ldap_unbind() -- Asynchronously unbind from the LDAP server and close the connection.●

ldap_unbind_s() -- Synchronously unbind from the LDAP server and close the connection.●

ldap_set_rebind_proc() -- Sets the entry-point of a routine during the chasing of referrals.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_ssl_client_init --Initializes the SSL Library.

 Syntax

#include <ldap.h>
#include <ldapssl.h>

int ldap_ssl_client_init(
 char *keyring,
 char *keyring_pw,
 int ssl_timeout,
 int *pSSLReasonCode)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_ssl_client_init() routine is used to initialize the SSL protocol stack for an application process. It
should be called once, prior to making any other LDAP calls. Once ldap_ssl_client_init() has been successfully
called, any subsequent invocations will return a return code of LDAP_SSL_ALREADY_INITIALIZED.

A related API, ldap_app_ssl_client_init_np() is available for using Digital Certificate Manager (DCM)
Application IDs when authenticating the client to the server. Either ldap_ssl_client_init() or
ldap_app_ssl_client_init_np() (but not both) can be called in an application process.

Although still supported, the use of the ldap_ssl_start() API is now deprecated. The ldap_ssl_client_init() and
ldap_ssl_init() or ldap_app_ssl_client_init_np() and ldap_app_ssl_init_np() APIs should be used instead.

Authorities and Locks

Read, *R, authority is needed to the selected Certificate Store and Execute, *X, to the associated directories.

Parameters

keyring

(Input) Specifies the name of a key database file (with "kdb" extension). The key database file typically
contains one or more certificates of certification authorities (CAs) that are trusted by the client. These
types of X.509 certificates are also known as trusted roots. A key database can also be used to store the
client's private key(s) and associated client certificate(s). A private key and associated client certificate
are required only if the LDAP server is configured to require client and server authentication. If the
LDAP server is configured to provide only server authentication, a private key and client certificate are
not required.

A fully-qualified path and filename is recommended. If a filename without a fully-qualified path is
specified, the LDAP library will look in the current directory for the file. The key database file
specified here must have been created using the Digital Certificate Manager (DCM). If a key database
is not supplied, keyring is null, the *SYSTEM Certificate Store is used.

keyring_pw

(Input) Specifies the password that is used to protect the contents of the key database. This password is
important since it protects the private key stored in the key database. The password was specified when
the key database was initially created. A NULL pointer to the password is accepted.

ssl_timeout

(Input) Specifies the SSL timeout value in seconds. The timeout value controls the frequency with
which the SSL protocol stack regenerates session keys. If ssl_timeout is set to 0, the default value
SSLV3_CLIENT_TIMEOUT will be used. Otherwise, the value supplied will be used, provided it is
less than or equal to 86,400. If ssl_timeout is greater than 86,400, LDAP_PARAM_ERROR is
returned.

pSSLReasonCode

(Input) Specifies a pointer to the SSL Reason Code, which provides additional information in the event
that an error occurs during initialization of the SSL stack (when ldap_ssl_client_init() is called). See
QSYSINC/H.LDAPSSL for reason codes that can be returned.

Example

The following scenario depicts the recommended calling sequence where the entire set of LDAP transactions
are "protected" by using a secure SSL connection, including the dn and password that flow on the
ldap_simple_bind():

 rc = ldap_ssl_client_init(keyfile, keyfile_pw, timeout, &sslrc);
 ld = ldap_ssl_init(ldaphost, ldapport, label);
 rc = ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, &ciphers);
 rc = ldap_simple_bind_s(ld, binddn, passwd);

 ...additional LDAP API calls

 rc = ldap_unbind(ld);

The following scenario depicts using the SASL EXTERNAL mechanism for authenticating the client to the
server using the credentials in the SSL certificate:

 rc = ldap_ssl_client_init(keyfile, keyfile_pw, timeout, &sslrc);
 ld = ldap_ssl_init(ldaphost, ldapport, label);
 rc = ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, &ciphers);
 rc = ldap_sasl_bind_s(ld, NULL, LDAP_MECHANISM_EXTERNAL, NULL, NULL, NULL
);

 ...additional LDAP API calls

 rc = ldap_unbind(ld);

Note that the sequence of calls for the deprecated APIs is ldap_open/init(), ldap_ssl_start(), followed by
ldap_bind().

The following ciphers are attempted for the SSL handshake by default, in the order shown.

 (Export Version)

 RC4_MD5_EXPORT
 RC2_MD5_EXPORT

 (Non-export Version)

 RC4_SHA_US
 RC4_MD5_US
 DES_SHA_US
 3DES_SHA_US
 RC4_MD5_EXPORT
 RC2_MD5_EXPORT

See ldap_get/set_option() for more information on setting the ciphers to be used.

The ldap_ssl_client_init() API includes RSA software. RSA is a trademark of RSA Data Security, Inc.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error

if the request was not successful.

Error Conditions

If ldap_ssl_client_init() is not successful, it returns an LDAP error code. See LDAP Client API Error
Conditions for possible values for the error codes.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_ssl_client_init API.

Related Information

ldap_app_ssl_client_init_np() -- Initialize the LDAP Client for a secure connection using DCM.●

ldap_ssl_init() -- Initializes an SSL connection.●

ldap_ssl_start() -- Creates a secure SSL connection (deprecated).●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_ssl_init --Initializes an SSL Connection.

 Syntax

#include <ldap.h>
#include <ldapssl.h>

LDAP *ldap_ssl_init(
 char *host,
 int port,
 char *name)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_ssl_init() routine is used to initialize a secure SSL session with a server. The server is not actually contacted until an
operation is performed that requires it, allowing various options to be set after initialization. Once the secure connection is established
for the ld, all subsequent LDAP messages that flow over the secure connection are encrypted, including the ldap_simple_bind()
parameters, until ldap_unbind() is called.

Although still supported, the use of the ldap_ssl_start() API is now deprecated. The ldap_ssl_client_init() and ldap_ssl_init() or
ldap_app_ssl_client_init_np() and ldap_app_ssl_init_np() APIs should be used instead.

Authorities and Locks

Read, *R, authority is needed to the selected Certificate Store and Execute, *X, to the associated directories.

Parameters

host

(Input) Several methods are supported for specifying one or more target LDAP servers, including the following:

Explicit
Host List

Specifies the name of the host on which the LDAP server is running. The host parameter may contain a
blank-separated list of hosts to try to connect to, and each host may optionally be of the form host:port. If
present, the :port overrides the port parameter. The following are typical examples:

 ld=ldap_ssl_init ("server1", ldaps_port, cert_label);
 ld=ldap_ssl_init ("server2:1200", ldaps_port, cert_label);
 ld=ldap_ssl_init ("server1:800 server2:2000 server3", ldaps_port,
cert_label);

Localhost If the host parameter is null, the LDAP server will be assumed to be running on the local host.

Default
Hosts

If the host parameter is set to "ldaps://" the LDAP library will attempt to locate one or more default LDAP
servers, with SSL ports, using the SecureWay ldap_server_locate() function. The port specified on the call is
ignored, since ldap_server_locate() returns the port. For example, the following two are equivalent:

 ld=ldap_ssl_init ("ldaps://", ldaps_port, cert_label);
 ld=ldap_ssl_init (LDAPS_URL_PREFIX, LDAPS_PORT, cert_label);

If more than one default server is located, the list is processed in sequence, until an active server is found.

The LDAP URL can include a Distinguished Name, used as a filter for selecting candidate LDAP servers
based on the server's suffix (or suffixes). If the most significant portion of the DN is an exact match with a
server's suffix (after normalizing for case), the server is added to the list of candidate servers. For example, the
following will only return default LDAP servers that have a suffix that supports the specified DN:

 ld=ldap_ssl_init ("ldaps:///cn=fred, dc=austin, dc=ibm, dc=com",
LDAPS_PORT, cert_label);

In this case, a server that has a suffix of "dc=austin, dc=ibm, dc=com" would match. If more than one default
server is located, the list is processed in sequence, until an active server is found.

If the LDAP URL contains a host name and optional port, the host is used to create the connection. No attempt
is made to locate the default server(s), and the DN, if present, is ignored. For example, the following two are
equivalent:

 ld=ldap_ssl_init ("ldaps://myserver", LDAPS_PORT, cert_label);
 ld=ldap_ssl_init ("myserver", LDAPS_PORT, cert_label);

Local
Socket

If the host parameter is prefixed with "/", the host parameter is assumed to be the name of a UNIX socket (that
is, socket family is AF_UNIX) and port is ignored. This will fail for ldap_ssl_init() because UNIX sockets do
not support SSL, nor is it necessary since data will not be flowing over the network.

Host with
Privileged
Port

If a specified host is prefixed with "privport://", then the LDAP library will use the rresvport() function to
attempt to obtain one of the reserved ports (512 through 1023), instead of an "ephemeral" port. The search for
a reserved port starts at 1023 and stops at 512. If a reserved port cannot be obtained, the function call will fail.
For example:

 ld=ldap_ssl_init ("privport://server1, ldaps_port, cert_label");
 ld=ldap_ssl_init ("privport://server2:1200", ldaps_port, cert_label);
 ld=ldap_ssl_init ("privport://server1:800 server2:2000
privport://server3", ldaps_port, cert_label);

port

(Input) The port number to which to connect. If the default IANA-assigned SSL port of 636 is desired, LDAPS_PORT should
be specified.

name

(Input) The name, or label, associated with the client private key/certificate pair in the key database. It is used to uniquely
identify a private key/certificate pair, as stored in the key database, and may be something like: Digital ID for Fred Smith.

If the LDAP server is configured to perform Server Authentication, a client certificate is not required (and name can be set to
null). If the LDAP server is configured to perform Client and Server Authentication, a client certificate is required. name can
be set to null if a default certificate/private key pair has been designated as the default (using Using Ikmgui). Similarly, name
can be set to null if there is a single certificate/private key pair in the designated key database.

Example

The following scenario depicts the recommended calling sequence where the entire set of LDAP transactions are "protected" by using
a secure SSL connection, including the dn and password that flow on the ldap_simple_bind():

 rc = ldap_ssl_client_init (keyfile, keyfile_pw, timeout, reasoncode);
 ld = ldap_ssl_init(ldaphost, ldapport, label);
 rc = ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, &ciphers);
 rc = ldap_simple_bind_s(ld, binddn, passwd);

 ...additional LDAP API calls

 rc = ldap_unbind(ld);

The sequence of calls for the deprecated APIs is ldap_open/init(), ldap_ssl_start(), followed by ldap_bind().

See ldap_get or set_option() for more information on setting the ciphers to be used.

Return Value

Session Handle

if the request was successful. If successful, the Session Handle returned by ldap_ssl_init() is a pointer to an opaque data type
representing an LDAP session. The ldap_get_option() and ldap_set_option() APIs are used to access and set a variety of
session-wide parameters. See ldap_get_option() and ldap_set_option() for more information.

NULL

if the request was not successful.

Error Conditions

ldap_ssl_init() will return NULL if not successful.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_ssl_init API.

Related Information

ldap_init() -- Perform an LDAP initialization operation.●

ldap_ssl_client_init() -- Initializes the SSL library.●

ldap_app_ssl_init_np() -- Initializes an SSL Connection.●

ldap_ssl_start() -- Creates a secure SSL connection (deprecated).●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_ssl_start()--Start a Secure LDAP
Connection

 Syntax

#include <ldap.h>
#include <ldapssl.h>

int ldap_ssl_start(
 LDAP *ld,
 char *keyring,
 char *keyring_pw,
 char *name)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_ssl_start() function is used to start a secure connection (using Secure Sockets Layer (SSL)) to an
LDAP server. ldap_ssl_start() accepts the ld from an ldap_open() and performs an SSL handshake to a
server. ldap_ssl_start() must be called after ldap_open() and prior to ldap_bind(). Once the secure
connection is established for the ld, all subsequent LDAP messages that flow over the secure connection are
encrypted, including the ldap_bind() parameters, until ldap_unbind() is called.

Although still supported, the use of the ldap_ssl_start() API is now deprecated. The ldap_ssl_client_init()
and ldap_ssl_init() or ldap_app_ssl_client_init_np() and ldap_app_ssl_init() APIs should be used instead.

Authorities and Locks

Read, *R, authority is needed to the selected Certificate Store and Execute, *X, to the associated
directories.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

keyring

(Input) Specifies the name of a key database file (with "kdb" extension). The key database file
typically contains one or more certificates of certification authorities (CAs) that are trusted by the
client. These types of X.509 certificates are also known as trusted roots. A key database can also be
used to store the client's private key(s) and associated client certificate(s). A private key and

associated client certificate are required only if the LDAP server is configured to require client and
server authentication. If the LDAP server is configured to provide only server authentication, a
private key and client certificate are not required.

Note: Although still supported, use of the ldap_ssl_start() is discouraged (its use has been
deprecated). Any application using the ldap_ssl_start() API should only use a single key database
(per application process).

A fully-qualified path and filename is recommended. If a filename without a fully-qualified path is
specified, the LDAP library will look in the current directory for the file. The key database file
specified here must have been created using Digital Certificate Manager, DCM. If a key database is
not supplied, the default roots are used for trusted Certification Authorities (CAs).

keyring_pw

(Input) Specifies the password that is used to protect the contents of the key database. This
password is important since it protects the private key stored in the key database. The password
was specified when the key database was initially created. A NULL pointer is accepted.

name

(Input) Specifies the name, or label, associated with the client private key/certificate pair in the key
database. It is used to uniquely identify a private key/certificate pair, as stored in the key database.

If the LDAP server is configured to perform Server Authentication, a client certificate is not
required (and name can be set to null). If the LDAP server is configured to perform Client and
Server Authentication, a client certificate is required. name can be set to null if a default
certificate/private key pair has been designated as the default (using Using DCM). Similarly, name
can be set to null if there is a single certificate/private key pair in the designated key database.

Return Value

Skit error code

if the request was successful.

-1

if ld is not set (NULL).

Error Conditions

If ld is not NULL, ldap_ssl_start() returns Skit error code, otherwise it returns -1. See gskssl.h for possible
values of skit error codes.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_ssl_start API.

Related Information

ldap_ssl_init() -- Initializes an SSL connection.●

ldap_ssl_client_init() -- Initializes the SSL library.●

The ldap_ssl_start() API includes RSA software. RSA is a trademark of RSA Data Security, Inc.

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_unbind()--Perform an LDAP Unbind
Request

 Syntax

#include <ldap.h>

int ldap_unbind(
 LDAP *ld)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_unbind() function is used to end the connection to the LDAP server and free the resources
contained in the ld structure.

Once it is called, any open connection to the LDAP server is closed, and the ld structure is invalid. The
ldap_unbind_s() and ldap_unbind() APIs are both synchronous, and can be used interchangeably.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

Return Value

LDAP_SUCCESS

if the request was successful.

LDAP error

if the request was not successful.

Error Conditions

If ldap_unbind() is not successful, it returns an LDAP error code other than LDAP_SUCCESS. See LDAP
Client API Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_unbind API.

Related Information

ldap_bind() -- Asynchronously bind to the directory (deprecated).●

ldap_bind_s() -- Synchronously bind to the directory (deprecated).●

ldap_sasl_bind() -- Asynchronously bind to the directory using SASL.●

ldap_sasl_bind_s() -- Synchronously bind to the directory using SASL.●

ldap_simple_bind() -- Asynchronously bind to the directory using simple authentication.●

ldap_simple_bind_s() -- Synchronously bind to the directory using simple authentication.●

ldap_unbind_ext() -- Perform an LDAP Unbind Request●

ldap_unbind_s() -- Synchronously unbind from the LDAP server and close the connection.●

ldap_set_rebind_proc() -- Sets the entry-point of a routine during the chasing of referrals.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_unbind_ext()--Perform an LDAP Unbind
Request

 Syntax

#include <ldap.h>

int ldap_unbind_ext(
 LDAP *ld,
 LDAPControl **servctrls,
 LDAPControl **clientctrls)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_unbind_ext() function is used to end the connection to the LDAP server and free the resources
contained in the ld structure.

Once it is called, any open connection associated with the LDAP session handle, ld, to the LDAP server is
closed, and any resources associated with the handle are disposed of before returning. The ld structure is
invalid and cannot be used for any further api calls. The ldap_unbind_ext() is synchronous and allows
server and client controls to be included. Note that since there is no server response to an unbind there is no
way to receive a response to a server control sent with an ldap_unbind_ext().

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

serverctrls

(Input) Specifies a list of LDAP server controls. This parameter may be set to null. See LDAP
Controls for more information about server controls.

clientctrls

(Input) Specifies a list of LDAP client controls. This parameter may be set to null. See LDAP
Controls for more information about client controls.

Return Value

LDAP_SUCCESS

if the request was successful.

LDAP error

if the request was not successful.

Error Conditions

If ldap_unbind_ext() is not successful, it returns an LDAP error code other than LDAP_SUCCESS. See
LDAP Client API Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_unbind_ext API.

Related Information

ldap_bind() -- Asynchronously bind to the directory (deprecated).●

ldap_bind_s() -- Synchronously bind to the directory (deprecated).●

ldap_sasl_bind() -- Asynchronously bind to the directory using SASL.●

ldap_sasl_bind_s() -- Synchronously bind to the directory using SASL.●

ldap_simple_bind() -- Asynchronously bind to the directory using simple authentication.●

ldap_simple_bind_s() -- Synchronously bind to the directory using simple authentication.●

ldap_unbind_s() -- Synchronously unbind from the LDAP server and close the connection.●

API introduced: V5R1

Top | Directory Services APIs | APIs by category

ldap_unbind_s()--Perform an LDAP Unbind
Request (Synchronous)

 Syntax

#include <ldap.h>

int ldap_unbind_s(
 LDAP *ld)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_unbind_s() function is used to end the connection to the LDAP server and free the resources
contained in the ld structure.

Once it is called, any open connection to the LDAP server is closed, and the ld structure is invalid. The
ldap_unbind_s() and ldap_unbind() APIs are both synchronous and can be used interchangeably.

Authorities and Locks

No OS/400 authority is required.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error

if the request was not successful.

Error Conditions

If ldap_unbind_s() is not successful, it returns another LDAP error code. See LDAP Client API Error
Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_unbind_s API.

Related Information

ldap_bind() -- Asynchronously bind to the directory (deprecated).●

ldap_bind_s() -- Synchronously bind to the directory (deprecated).●

ldap_sasl_bind() -- Asynchronously bind to the directory using SASL.●

ldap_sasl_bind_s() -- Synchronously bind to the directory using SASL.●

ldap_simple_bind() -- Asynchronously bind to the directory using simple authentication.●

ldap_simple_bind_s() -- Synchronously bind to the directory using simple authentication.●

ldap_unbind() -- Asynchronously unbind from the LDAP server and close the connection.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_url_parse()--Parse an LDAP URL

 Syntax

#include <ldap.h>

typedef struct ldap_url_desc {
 char *lud_host; /* LDAP host to contact */
 int lud_port; /* port on host */
 char *lud_dn; /* base for search */
 char **lud_attrs; /* NULL-terminate list of attributes */
 int lud_scope; /* a valid LDAP_SCOPE_... value */
 char *lud_filter; /* LDAP search filter */
 char *lud_string; /* for internal use only */
} LDAPURLDesc;

int ldap_url_parse(
 char *url,
 LDAPURLDesc **ludpp)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_url_parse() function breaks down the LDAP URL passed in url into its component pieces. The
URLs passed in to ldap_url_parse() must be in the local codepage. Use ldap_url_parse_utf8() for UTF-8
URLs.

The LDAPURLDesc structure returned by this API should be freed with ldap_free_urldesc().

This routine supports the use of LDAP URLs (Uniform Resource Locators). Supported LDAP URLs look
like this, where sections in brackets are optional:

 ldap[s]://[hostport][/[dn[?[attributes][?[scope][?[filter]]]]]]

where:

hostport is a host name with an optional ":portnumber"●

dn is the base DN to be used for an LDAP search operation●

attributes is a comma separated list of attributes to be retrieved●

scope is one of these three strings: base one sub (default=base)●

filter is LDAP search filter as used in a call to ldap_search●

For example:

 ldap://example.ibm.com/c=US?o,description?one?o=ibm

URLs that are wrapped in angle-brackets and/or preceded by "URL:" are also tolerated, including the form

URL:ldapurl.

For example:

 URL:ldaps://example.ibm.com/c=US?o,description?one?o=ibm

This form also is allowed: <URL:ldapurl>

For example:

 <URL:ldap://example.ibm.com/c=US?o,description?one?o=ibm>

Authorities and Locks

No OS/400 authority is required.

Parameters

url

(Input) Specifies a pointer to the URL string.

ludpp

(Output) This result parameter will be set to a LDAPURLDesc structure containing the parsed
URL.

Return Value

LDAP_SUCCESS

If successful, an LDAP URL description is allocated, filled in, and ludpp is set to point to it.

other LDAP Error code

If an error occurs, one of these values is returned:

LDAP_URL_ERR_NOTLDAP URL doesn't begin with "ldap://"

LDAP_URL_ERR_BADSCOPE URL scope string is invalid

LDAP_URL_ERR_MEM can't allocate memory space

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_url_parse API.

Related Information

ldap_free_urldesc() -- Frees an LDAP URL description.●

ldap_is_ldap_url() -- Check a URL string to see if it is an LDAP URL.●

ldap_url_parse_utf8() -- Parse a UTF8 codepage LDAP URL string●

ldap_url_search() -- Asynchronously search using an LDAP URL.●

ldap_url_search_s() -- Synchronously search using an LDAP URL.●

ldap_url_search_st() -- Synchronously search using an LDAP URL and a timeout.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_url_parse_utf8()--Parse a UTF8 codepage
LDAP URL string

 Syntax

#include <ldap.h>

typedef struct ldap_url_desc {
 char *lud_host; /* LDAP host to contact */
 int lud_port; /* port on host */
 char *lud_dn; /* base for search */
 char **lud_attrs; /* NULL-terminate list of attributes */
 int lud_scope; /* a valid LDAP_SCOPE_... value */
 char *lud_filter; /* LDAP search filter */
 char *lud_string; /* for internal use only */
} LDAPURLDesc;

int ldap_url_parse_utf8(
 char *url,
 LDAPURLDesc **ludpp)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_url_parse_utf8() function breaks down the UTF8 codepage LDAP URL string passed in url into
its component pieces. To parse URLs in the local codepage, use ldap_url_parse().

The LDAPURLDesc structure returned by this API should be freed with ldap_free_urldesc().

This routine supports the use of LDAP URLs (Uniform Resource Locators). Supported LDAP URLs look
like this, where sections in brackets are optional:

 ldap[s]://[hostport][/[dn[?[attributes][?[scope][?[filter]]]]]]

where:

hostport is a host name with an optional ":portnumber"●

dn is the base DN to be used for an LDAP search operation●

attributes is a comma separated list of attributes to be retrieved●

scope is one of these three strings: base one sub (default=base)●

filter is LDAP search filter as used in a call to ldap_search●

For example:

 ldap://example.ibm.com/c=US?o,description?one?o=ibm

URLs that are wrapped in angle-brackets and/or preceded by "URL:" are also tolerated, including the form
URL:ldapurl.

For example:

 URL:ldap://example.ibm.com/c=US?o,description?one?o=ibm

This form also is allowed: <URL:ldapurl>.

For example:

 <URL:ldap://example.ibm.com/c=US?o,description?one?o=ibm>

Authorities and Locks

No OS/400 authority is required.

Parameters

url

(Input) A pointer to the UTF8 codepage URL string.

ludpp

(Output) This result parameter will be set to a LDAPURLDesc structure containing the parsed
URL.

Return Value

LDAP_SUCCESS

If successful, an LDAP URL description is allocated, filled in, and ludpp is set to point to it.

other LDAP Error code

If an error occurs, one of these values is returned:

LDAP_URL_ERR_NOTLDAP URL doesn't begin with "ldap://"

LDAP_URL_ERR_BADSCOPE URL scope string is invalid

LDAP_URL_ERR_MEM can't allocate memory space

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_url_parse_utf8 API.

Related Information

ldap_url_parse() -- Parse an LDAP URL.●

ldap_free_urldesc() -- Frees an LDAP URL description.●

ldap_is_ldap_url() -- Check a URL string to see if it is an LDAP URL.●

ldap_url_search() -- Asynchronously search using an LDAP URL.●

ldap_url_search_s() -- Synchronously search using an LDAP URL.●

ldap_url_search_st() -- Synchronously search using an LDAP URL and a timeout.●

API introduced: V5R1

Top | Directory Services APIs | APIs by category

ldap_url_search()--Perform an LDAP URL
Search Operation

 Syntax

#include <ldap.h>

int ldap_url_search(
 LDAP *ld,
 char *url,
 int attrsonly)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_url_search() function is used to perform an asynchronous LDAP search based on the contents of
the url parameter.

This function acts like ldap_search() except that the search parameters are specified by the URL.

This routine supports the use of LDAP URLs (Uniform Resource Locators).

LDAP URLs look like this:

 ldap[s]://[hostport][/[dn[?[attributes][?[scope][?[filter]]]]]]

where:

hostport is a host name with an optional ":portnumber"●

dn is the base DN to be used for an LDAP search operation●

attributes is a comma separated list of attributes to be retrieved●

scope is one of these three strings: base one sub (default=base)●

filter is LDAP search filter as used in a call to ldap_search●

For example:

 ldap://example.ibm.com/c=US?o,description?one?o=ibm

URLs that are wrapped in angle-brackets and/or preceded by "URL:" are also tolerated, including the form
URL:ldapurl.

For example:

 URL:ldap://example.ibm.com/c=US?o,description?one?o=ibm

This form also is allowed: <URL:ldapurl>.

For example:

 <URL:ldap://example.ibm.com/c=US?o,description?one?o=ibm>

Notes:

For search operations, if hostport is omitted, host and port for the current connection are used. If
hostport is specified, and is different from the host and port combination used for the current
connection, the search is directed to that host and port, instead of using the current connection. In
this case, the underlying referral mechanism is used to bind to hostport.

1.

If the LDAP URL does not contain a search filter, the filter defaults to "(objectClass=*)".2.

Return Value

Message ID of the Operation Initiated

if the request was successful. A subsequent call to ldap_result(), can be used to obtain the result.

-1

if the request was not successful.

Error Conditions

If ldap_url_search() is not successful, -1 will be returned setting the session error parameters (ld_error) in
the LDAP structure appropriately, which can be obtained by using ldap_get_lderrno(). See LDAP Client
API Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_url_search API.

Related Information

ldap_free_urldesc() -- Frees an LDAP URL description.●

ldap_is_ldap_url() -- Check a URL string to see if it is an LDAP URL.●

ldap_url_parse() -- Break up an LDAP URL string into its components.●

ldap_url_search_s() -- Synchronously search using an LDAP URL.●

ldap_url_search_st() -- Synchronously search using an LDAP URL and a timeout.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_url_search_s() -- Perform an LDAP URL
Search Operation (Synchronous)

 Syntax

#include <ldap.h>

int ldap_url_search_s(
 LDAP *ld,
 char *url,
 int attrsonly,
 LDAPMessage **res)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_url_search_s() function is used to perform a synchronous LDAP search based on the contents of
urlparameter.

This function acts like ldap_search_s() except that the search parameters are specified by the URL.

This routine support the use of LDAP URLs (Uniform Resource Locators).

LDAP URLs look like this:

 ldap[s]://[hostport][/[dn[?[attributes][?[scope][?[filter]]]]]]

where:

hostport is a host name with an optional ":portnumber"●

dn is the base DN to be used for an LDAP search operation●

attributes is a comma separated list of attributes to be retrieved●

scope is one of these three strings: base one sub (default=base)●

filter is LDAP search filter as used in a call to ldap_search●

For example:

 ldap://example.ibm.com/c=US?o,description?one?o=ibm

URLs that are wrapped in angle-brackets and/or preceded by "URL:" are also tolerated, including the form
URL:ldapurl.

For example:

 URL:ldap://example.ibm.com/c=US?o,description?one?o=ibm

This form also is allowed: <URL:ldapurl>.

For example:

 <URL:ldap://example.ibm.com/c=US?o,description?one?o=ibm>

Notes:

For search operations, if hostport is omitted, host and port for the current connection are used. If
hostport is specified, and is different from the host and port combination used for the current
connection, the search is directed to that host and port, instead of using the current connection. In
this case, the underlying referral mechanism is used to bind to hostport.

1.

If the LDAP URL does not contain a search filter, the filter defaults to "(objectClass=*)".2.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

url

(Input) Specifies a pointer to the URL string.

attrsonly

(Input) Specifies attribute information. Set to 1 to request attribute types only. Set to 0 to request
both attribute types and attribute values.

res

(Output) Contains the result of the synchronous search operation. This result should be passed to
the LDAP parsing routines (see ldap_first_entry(), ldap_next_entry(), and so on). The caller is
responsible for freeing res with ldap_msgfree().

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error

if the request was not successful.

Error Conditions

If ldap_url_search_s() is not successful, it returns an LDAP error code other than LDAP_SUCCESS. See
LDAP Client API Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_url_search_s API.

Related Information

ldap_free_urldesc() -- Frees an LDAP URL description.●

ldap_url_parse() -- Extract information from results.●

ldap_is_ldap_url() -- Check a URL string to see if it is an LDAP URL.●

ldap_url_search() -- Asynchronously search using an LDAP URL.●

ldap_url_search_st() -- Synchronously search using an LDAP URL and a timeout.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_url_search_st()--Perform an LDAP URL
Search Operation (Timed Synchronous)

 Syntax

#include <sys/time.h>
#include <ldap.h>

int ldap_url_search_st(
 LDAP *ld,
 char *url,
 int attrsonly,
 struct timeval *timeout,
 LDAPMessage **res)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_url_search_st() function is used to perform a synchronous LDAP search with a specified timeout
based on the contents of the url parameter.

This function acts like ldap_search_st() except that the search parameters are retrieved from the URL.

This routine supports the use of LDAP URLs (Uniform Resource Locators).

LDAP URLs look like this:

 ldap[s]://[hostport][/[dn[?[attributes][?[scope][?[filter]]]]]]

where:

hostport is a host name with an optional ":portnumber"●

dn is the base DN to be used for an LDAP search operation●

attributes is a comma separated list of attributes to be retrieved●

scope is one of these three strings: base one sub (default=base)●

filter is LDAP search filter as used in a call to ldap_search●

For example:

 ldap://example.ibm.com/c=US?o,description?one?o=ibm

URLs that are wrapped in angle-brackets and/or preceded by "URL:" are also tolerated, including the form
URL:ldapurl.

For example:

 URL:ldap://example.ibm.com/c=US?o,description?one?o=ibm

This form also is allowed: <URL:ldapurl>.

For example:

 <URL:ldap://example.ibm.com/c=US?o,description?one?o=ibm>

Notes:

For search operations, if hostport is omitted, host and port for the current connection are used. If
hostport is specified, and is different from the host and port combination used for the current
connection, the search is directed to that host and port, instead of using the current connection. In
this case, the underlying referral mechanism is used to bind to hostport.

1.

If the LDAP URL does not contain a search filter, the filter defaults to "(objectClass=*)".2.

Authorities and Locks

No OS/400 authority is required. All authority checking is done by the LDAP server.

Parameters

ld

(Input) Specifies the LDAP pointer returned by a previous call to ldap_init(), ldap_ssl_init(), or
ldap_open().

url

(Input) Specifies a pointer to the URL string.

attrsonly

(Input) Specifies attribute information. Set to 1 to request attribute types only. Set to 0 to request
both attribute types and attribute values.

timeout

(Input) Specifies a timeout value for a synchronous search issued by the ldap_url_search_st()
routine.

res

(Output) Contains the result of the synchronous search operation. This result should be passed to
the LDAP parsing routines (see ldap_first_entry(), ldap_next_entry(), and so on). The caller is
responsible for freeing res with ldap_msgfree().

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error

if the request was not successful.

Error Conditions

If ldap_url_search_st() is not successful, it returns an LDAP error code other than LDAP_SUCCESS. See
LDAP Client API Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_url_search_st API.

Related Information

ldap_free_urldesc() -- Frees an LDAP URL description.●

ldap_url_parse() -- Extract information from results.●

ldap_is_ldap_url() -- Check a URL string to see if it is an LDAP URL.●

ldap_url_search() -- Asynchronously search using an LDAP URL.●

ldap_url_search_s() -- Synchronously search using an LDAP URL.●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_value_free()--Free Memory Allocated by
ldap_get_values()

 Syntax

#include <ldap.h>

void ldap_value_free(
 char **vals)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_value_free() function frees the memory allocated by the ldap_get_values() function.

Authorities and Locks

No OS/400 authority is required.

Parameters

vals

(Input) Specifies a pointer to a null-terminated array of attribute values, as returned by
ldap_get_values().

Return Value

None

Error Conditions

ldap_value_free() API does not return an error code.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_value_free API.

Related Information

ldap_get_values() -- Return an attribute's values.●

ldap_get_values_len() -- Return an attribute's binary values.●

ldap_count_values() -- Return number of values.●

ldap_count_values_len() -- Return number of binary values.●

ldap_value_free_len() -- Free memory allocated by ldap_get_values_len().●

API introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_value_free_len()--Free Memory Allocated
by ldap_get_values_len()

 Syntax

#include <ldap.h>

struct berval {
 unsigned long bv_len;
 char *bv_val;
};

void ldap_value_free_len(
 struct berval **vals)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_value_free_len() function frees the memory allocated by the ldap_get_values_len() function.

Authorities and Locks

No OS/400 authority is required.

Parameters

bvals

(Input) Specifies a pointer to a null-terminated array of pointers to berval structures, as returned by
ldap_get_values_len().

Return Value

None

Error Conditions

ldap_value_free_len() API does not return an error code.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_value_free_len API.

Related Information

ldap_get_values() -- Return an attribute's values.●

ldap_get_values_len() -- Return an attribute's binary values.●

ldap_count_values() -- Return number of values.●

ldap_count_values_len() -- Return number of binary values.●

ldap_value_free() -- Free memory allocated by ldap_get_values().●

API Introduced: V4R3

Top | Directory Services APIs | APIs by category

ldap_version -- Obtain LDAP Version and SSL
Cipher Information

 Syntax

#include <ldap.h>
#include <ldapssl.h>

int ldap_version(
 LDAPVersion *version)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_version() routine is used to return the toolkit version (multiplied by 100). It also sets information
in the LDAPVersion structure.

Authorities and Locks

No OS/400 authority is required.

Parameters

version

(Input) Specifies the address of an LDAPVersion structure that contains the following returned
values:

sdk_version Toolkit version, multiplied by 100.

protocol_version Highest LDAP protocol supported, multiplied by 100.

SSL_version SSL version supported, multiplied by 100.

security_level Level of encryption supported, in bits. Set to LDAP_SECURITY_NONE if
SSL not enabled.

ssl_max_cipher A string containing the default ordered set of ciphers supported by this
installation. See LDAP_OPT_SSL_CIPHER in ldap_set_option() for more
information about changing the set of ciphers used to negotiate the secure
connection with the server.

sdk_vendor A pointer to a static string that identifies the supplier of the LDAP library.
This string should not be freed by the application.

sdk_build_level A pointer to a static string that identifies the build level, including the date
when the library was built. This string should not be freed by the application.

Return Value

Software Developer Toolkit Version

Sets information in the LDAPVersion structure and return the SDK VERSION.

Error Conditions

The ldap_version() API does not return an error code.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_version API.

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_xlate_local_to_unicode()-- Convert String
From the Local Code Page to UCS-2 (or
UNICODE) Encoding

 Syntax

#include <ldap.h>

int ldap_xlate_local_to_unicode(
 char *inbufp,
 unsigned long *inlenp,
 char *outbufp,
 unsigned long *outlenp)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_xlate_local_to_unicode() API is used to convert a string from the local code page to the UCS-2
encoding as defined by ISO/IEC 10646-1. This same set of characters is also defined in the UNICODE
standard.

Authorities and Locks

No OS/400 authority is required.

Parameters

inbufp

(Input) A pointer to the address of the input buffer containing the data to be translated.

inlenp

(Input) Length in bytes of the inbufp buffer. This value is decremented when the conversion is
done, such that on return it indicates the length of inlenp buffer that is left to be translated.

outbufp

(Output) A pointer to the address of the output buffer for translated data.

outlenp

(Output) Length in bytes of the outbufp buffer. This value is decremented when the conversion is
done, such that on return it indicates the length of outlenp buffer space left available for translated
data.

Note that in general, the output buffer should be three times as large as the input buffer if the intent

is to translate the entire input buffer in a single call.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_xlate_local_to_unicode() API will return an LDAP error code other than LDAP_SUCCESS if
not successful. See LDAP Client API Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_xlate_local_to_unicode API.

Related Information

ldap_xlate_utf8_to_local() -- Convert string from UTF-8 to local code page.●

ldap_xlate_local_to_utf8() -- Convert string from local to UTF-8 code page.●

ldap_xlate_unicode_to_local() -- Convert string from UCS-2 to local code page.●

ldap_get_iconv_local_codepage() -- Get the active LDAP code page.●

ldap_set_iconv_local_codepage() -- Set the active LDAP code page.●

ldap_set_iconv_local_charset() -- Set the active LDAP character set.●

ldap_set_locale() -- Change the locale used by LDAP.●

ldap_get_locale() -- Get the locale used by LDAP.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_xlate_local_to_utf8()-- Convert String
From the Local Code Page to UTF-8 Encoding

 Syntax

#include <ldap.h>

int ldap_xlate_local_to_utf8(
 char *inbufp,
 unsigned long *inlenp,
 char *outbufp,
 unsigned long *outlenp)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_xlate_local_to_utf8() API is used to convert a string from the local code page to a UTF-8
encoding (which is used by LDAP when communicating with an LDAP V3 compliant server).

Authorities and Locks

No OS/400 authority is required.

Parameters

inbufp

(Input) A pointer to the address of the input buffer containing the data to be translated.

inlenp

(Input) Length in bytes of the inbufp buffer. This value is decremented when the conversion is
done, such that on return it indicates the length of inlenp buffer that is left to be translated.

outbufp

(Output) A pointer to the address of the output buffer for translated data.

outlenp

(Output) Length in bytes of the outbufp buffer. This value is decremented when the conversion is
done, such that on return it indicates the length of outlenp buffer space left available for translatd
data.

Note that in general, the output buffer should be three times as large as the input buffer if the intent
is to translate the entire input buffer in a single call.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_xlate_local_to_utf8() will return an LDAP error code if not successful. See LDAP Client API
Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_xlate_local_to_utf8 API.

Related Information

ldap_xlate_utf8_to_local() -- Convert string from UTF-8 to local code page.●

ldap_xlate_local_to_unicode() -- Convert string from the local to UCS-2 code page.●

ldap_xlate_unicode_to_local() -- Convert string from UCS-2 to local code page.●

ldap_get_iconv_local_codepage() -- Get the active LDAP code page.●

ldap_set_iconv_local_codepage() -- Set the active LDAP code page.●

ldap_set_iconv_local_charset() -- Set the active LDAP character set.●

ldap_set_locale() -- Change the locale used by LDAP.●

ldap_get_locale() -- Get the locale used by LDAP.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_xlate_unicode_to_local() -- Convert String
From the UCS-2 (or UNICODE) Encoding to
Local Code Page

 Syntax

#include <ldap.h>

int ldap_xlate_unicode_to_local(
 char *inbufp,
 unsigned long *inlenp,
 char *outbufp,
 unsigned long *outlenp)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_xlate_unicode_to_local() API is used to convert a UCS-2 encoded string to the local code page
encoding.

It is important to note that translation of strings from a UCS-2 (or UNICODE) encoding to local code page
may result in loss of data when one or more characters in the UCS-2 encoding cannot be represented in the
local code page. When this occurs, a substitution character replaces any UCS-2 characters that cannot be
converted to the local code page.

Authorities and Locks

No OS/400 authority is required.

Parameters

inbufp

(Input) A pointer to the address of the input buffer containing the data to be translated.

inlenp

(Input) Length in bytes of the inbufp buffer. This value is decremented when the conversion is
done, such that on return it indicates the length of inlenp buffer that is left to be translated.

outbufp

(Output) A pointer to the address of the output buffer for translated data.

outlenp

(Output) Length in bytes of the outbufp buffer. This value is decremented when the conversion is

done, such that on return it indicates the length of outlenp buffer space left available for translated
data.

Note that in general, the output buffer should be three times as large as the input buffer if the intent
is to translate the entire input buffer in a single call.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_xlate_unicode_to_local() API will return an LDAP error code if not successful. See LDAP
Client API Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_xlate_unicode_to_local API.

Related Information

ldap_xlate_utf8_to_local() -- Convert string from UTF-8 to local code page.●

ldap_xlate_local_to_utf8() -- Convert string from local to UTF-8 code page.●

ldap_xlate_local_to_unicode() -- Convert string from local to UCS-2 code page.●

ldap_get_iconv_local_codepage() -- Get the active LDAP code page.●

ldap_set_iconv_local_codepage() -- Set the active LDAP code page.●

ldap_set_iconv_local_charset() -- Set the active LDAP character set.●

ldap_set_locale() -- Change the locale used by LDAP.●

ldap_get_locale() -- Get the locale used by LDAP.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

ldap_xlate_utf8_to_local() -- Convert String
From the UTF-8 Encoding to Local Code Page

 Syntax

#include <ldap.h>

int ldap_xlate_utf8_to_local(
 char *inbufp,
 unsigned long *inlenp,
 char *outbufp,
 unsigned long *outlenp)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDCLNT

 Threadsafe: Yes

The ldap_xlate_utf8_to_local() API is used to convert a UTF-8 encoded string to the local code page
encoding.

It is important to note that translation of strings from a UTF-8 encoding to local code page may result in
loss of data when one or more characters in the UTF-8 encoding cannot be represented in the local code
page. When this occurs, a substitution character replaces any UTF-8 characters that cannot be converted to
the local code page.

Authorities and Locks

No OS/400 authority is required.

Parameters

inbufp

(Input) A pointer to the address of the input buffer containing the data to be translated.

inlenp

(Input) Length in bytes of the inbufp buffer. This value is decremented when the conversion is
done, such that on return it indicates the length of the inlenp buffer that is left to be translated.

outbufp

(Output) A pointer to the address of the output buffer for translated data.

outlenp

(Output) Length in bytes of the outbufp buffer. This value is decremented when the conversion is
done, such that on return it indicates the length of outlenp buffer space left available for translated
data.

Note that in general, the output buffer should be three times as large as the input buffer if the intent
is to translate the entire input buffer in a single call.

Return Value

LDAP_SUCCESS

if the request was successful.

another LDAP error code

if the request was not successful.

Error Conditions

The ldap_xlate_utf8_to_local() will return an LDAP error code if not successful. See LDAP Client API
Error Conditions for possible LDAP error code values.

Error Messages

The following message may be sent from this function.

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of ldap_xlate_utf8_to_local API.

Related Information

ldap_xlate_local_to_utf8() -- Convert string from the local to UTF-8 code page.●

ldap_xlate_local_to_unicode() -- Convert string from the local to UCS-2 code page.●

ldap_xlate_unicode_to_local() -- Convert string from UCS-2 to local code page.●

ldap_get_iconv_local_codepage() -- Get the active LDAP code page.●

ldap_set_iconv_local_codepage() -- Set the active LDAP code page.●

ldap_set_iconv_local_charset() -- Set the active LDAP character set.●

ldap_set_locale() -- Change the locale used by LDAP.●

ldap_get_locale() -- Get the locale used by LDAP.●

API introduced: V4R5

Top | Directory Services APIs | APIs by category

Configure Directory Server (QgldCfgDirSvr)

 Required Parameter Group:

1 Input data Input Char(*)
2 Length of input data Input Binary(4)
3 Format name Input Char(8)
4 Error code I/O Char(*)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDUAPI

 Threadsafe: No

The Configure Directory Server (QgldCfgDirSvr) API creates the initial directory server configuration.
This includes identifying the library that will contain the underlying database objects, the administrator of
the server, and the initial set of suffixes to be present on the server.

Authorities and Locks

*ALLOBJ and *IOSYSCFG special authority is required to use this API.

Required Parameter Group

Input data

INPUT; CHAR(*)

Data that describes the desired directory server configuration. The content and format of this
structure are determined by the format name. See Format of Input Data for a description of these
formats.

Length of input data

INPUT; BINARY(4)

The length of the input data structure.

Format name

INPUT; CHAR(8)

The content and format of the input configuration data. The possible format name follows:

CFGD0100 Configure Directory Server.

See Format of Input Data for a description of these formats.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Input Data

For details about the format of the input data, see the following sections. For details about the fields in each
format, see Field Descriptions.

CFGD0100 Format

This format is used to provide initial configuration data about the directory server.

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to database path

4 4 BINARY(4) Length of database path

8 8 BINARY(4) Offset to administrator distinguished name
(DN)

12 C BINARY(4) Length of administrator DN

16 10 BINARY(4) Offset to administrator password

20 14 BINARY(4) Length of administrator password

24 18 BINARY(4) Offset to suffixes

28 1C BINARY(4) Number of suffixes

32 20 BINARY(4) Reserved

 CHAR(*) Database path

 CHAR(*) Administrator DN

 CHAR(*) Administrator password

Suffixes:

0 0 BINARY(4) Displacement to next suffix

4 4 BINARY(4) Displacement to suffix name

8 8 BINARY(4) Length of suffix name

 CHAR(*) Suffix name

Field Descriptions

Administrator DN. The distinguished name of a directory object that has access to all objects in the
directory. This field is specified in UCS-2 (CCSID 13488).

Administrator password. The password used when you connect to the directory as the administrator. This
field is specified in UCS-2 (CCSID 13488).

Database path. The path to an existing library containing the directory database objects. This is an
integrated file system path name, for example, /QSYS.LIB/QDIRSRV.LIB. The library must exist in a
system ASP or a basic user ASP (ASP value of 1 to 32). The library cannot exist in an independent ASP
(ASP value greater than 32). This field is specified in UCS-2 (CCSID 13488).

Displacement to next suffix. The displacement, in bytes, from the start of the current suffix entry to the
next suffix entry.

Displacement to suffix name. The displacement, in bytes, from the start of the current suffix entry to the
suffix name field.

Length of administrator DN. The length, in Unicode characters, of the administrator DN

Length of administrator password. The length, in Unicode characters, of the administrator password
field.

Length of database path. The length, in Unicode characters, of the database path field.

Length of suffix name. The length, in Unicode characters, of the suffix name field.

Number of suffixes. The number of suffixes present in the suffix list.

Offset to administrator DN. The offset, in bytes, from the start of the input data to the administrator DN
field.

Offset to administrator password. The offset, in bytes, from the start of the input data to the administrator
password field.

Offset to database path. The offset, in bytes, from the start of the input data to the database path field.

Offset to suffixes. The offset, in bytes, from the start of the input data to the list of suffixes.

Reserved. A reserved field. This field must be set to zero.

Suffixes. The list of suffixes to be present on the server. At least one must be present in the initial
configuration.

Suffix name. The distinguished name of the root of a directory tree present on the server.This field is
specified in UCS-2 (CCSID 13488).

Error Messages

Message ID Error Message Text

CPF2209 E Library &1 not found.

CPFA0DB E Object name not a QSYS object.

CPFA314 E Memory allocation error.

GLD0205 E Administrator DN not valid.

GLD020A E Suffix not valid.

GLD021C E *ALLOBJ and *IOSYSCFG special authority required.

GLD0223 E Database path not valid.

GLD0228 E Validation list not created.

GLD022A E Server configuration cannot be modified while the server is active.

 GLD0236 E Database library must be in system ASP or basic user ASP.

API Introduced: V4R3

Top | Directory Services APIs | APIs by category

Change Directory Server Attributes
(QgldChgDirSvrA)

 Required Parameter Group:

1 Input data Input Char(*)
2 Length of input data Input Binary(4)
3 Format name Input Char(8)
4 Error code I/O Char(*)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDUAPI

 Threadsafe: No

The Change Directory Server Attributes (QgldChgDirSvrA) API changes the directory server
configuration. It can be used to change the following server properties:

General server properties●

Suffixes served by this server●

Encrypted connection configuration. The Secure Sockets Layer (SSL) is used for encrypted
communication.

●

Performance settings●

Authorities and Locks

*ALLOBJ and *IOSYSCFG special authority is required to use this API with formats CSVR0100,
CSVR0200, CSVR0300, CSVR0400, CSVR0500, CSVR0600, or CSVR0800. *AUDIT special
authority is required to use this API with format CSVR0700.

Required Parameter Group

Input data

INPUT; CHAR(*)

A variable that contains the input data. See Format of Input Data for a description of the data
associated with a specific format name.

Length of input data

INPUT; BINARY(4)

The length of the input data area.

Format name

INPUT; CHAR(8)

The format name identifying the type of information to be changed. The possible format names
follow:

CSVR0100 Basic server configuration

CSVR0200 Add or remove suffixes from this server

CSVR0300 Add, change, or remove directory indexing rules

CSVR0400 Add or change the attributes for publishing users in an LDAP directory.

CSVR0500 Add or change the network server publishing attributes associated with the
LDAP server.

CSVR0600 Add or change referral server information

CSVR0700 Server auditing information

 CSVR0800 IP address information

See Format of Input Data for a description of these formats.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Input Data

For details about the format of the input data, see the following sections. For details about the fields in each
format, see Field Descriptions.

CSVR0100 Format

This format is used to change basic server configuration information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Read only

4 4 BINARY(4) Server is replica

8 8 BINARY(4) Security

12 C BINARY(4) Nonencrypted port number

16 10 BINARY(4) Encrypted port number

20 14 BINARY(4) Current cipher protocols

24 18 BINARY(4) Search time limit

28 1C BINARY(4) Search size limit

32 20 BINARY(4) Maximum connections

36 24 BINARY(4) Reserved

40 28 BINARY(4) Referral port

44 2C BINARY(4) Password format

48 30 BINARY(4) Offset to referral server

52 34 BINARY(4) Length of referral server

56 38 BINARY(4) Offset to administrator DN

60 3C BINARY(4) Length of administrator DN

64 40 BINARY(4) Offset to administrator password

68 48 BINARY(4) Length of administrator password

72 48 BINARY(4) Offset to update DN

76 4C BINARY(4) Length of update DN

80 50 BINARY(4) Offset to update password

84 54 BINARY(4) Length of update password

88 58 BINARY(4) Offset to key ring file

92 5C BINARY(4) Length of key ring file

96 60 BINARY(4) Offset to database path

100 64 BINARY(4) Length of database path

104 64 BINARY(4) Level indicator

Additional fields if level indicator is equal to 1 or greater:

108 68 BINARY(4) SSL authentication method

112 70 BINARY(4) Number of database connections

116 74 BINARY(4) Schema checking level

120 78 BINARY(4) Offset to master server URL

124 7C BINARY(4) Length of master server URL

128 80 BINARY(4) Change log indicator

132 84 BINARY(4) Maximum number of change log entries

136 88 BINARY(4) Terminate idle connections

140 8C BINARY(4) Reserved

Additional fields if level indicator is equal to 2 or greater:

144 90 BINARY(4) Kerberos authentication indicator

148 94 BINARY(4) Offset to Kerberos key tab file

152 98 BINARY(4) Length of Kerberos key tab file

156 9C BINARY(4) Kerberos to DN mapping indicator

160 A0 BINARY(4) Offset to Kerberos administrator ID

164 A4 BINARY(4) Length of Kerberos administrator ID

168 A8 BINARY(4) Offset to Kerberos administrator realm

172 AC BINARY(4) Length of Kerberos administrator realm

176 B0 BINARY(4) Event notification registration indicator

180 B4 BINARY(4) Maximum event registrations for connection

184 B8 BINARY(4) Maximum event registrations for server

188 BC BINARY(4) Maximum operations per transaction

192 C0 BINARY(4) Maximum pending transactions

196 C4 BINARY(4) Transaction time limit

200 C8 BINARY(4) ACL model

204 CC BINARY(4) Reserved

Additional fields if level indicator is equal to 3 or greater:

208 D0 BINARY(4) Level of authority integration

216 D8 BINARY(4) Offset to projected suffix

220 DC BINARY(4) Length of projected suffix

Variable length string fields:

 CHAR(*) Referral server

 CHAR(*) Administrator DN

 CHAR(*) Administrator password

 CHAR(*) Update DN

 CHAR(*) Update password

 CHAR(*) Key ring file

 CHAR(*) Database path

 CHAR(*) Master server URL

 CHAR(*) Kerberos key tab file

 CHAR(*) Kerberos administrator ID

 CHAR(*) Kerberos administrator realm

 CHAR(*) Projected suffix

CSVR0200 Format

This format is used to add or remove suffixes from the server. The input data consists of a header and a
series of change entries. The header identifies the number of suffixes to be added or removed. Each change
entry identifies a suffix and the action to be performed (add or remove the suffix).

Note: Removing a suffix from a server will result in the loss of all directory entries with that suffix.

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to change entry

4 4 BINARY(4) Number of change entries

Change entry

Suffix change entries:

0 0 BINARY(4) Displacement to next entry

4 4 BINARY(4) Action

8 8 BINARY(4) Displacement to suffix

12 C BINARY(4) Length of suffix

CHAR(*) Suffix

CSVR0300 Format

This format is used to add, change, or remove directory indexes. Creating indexes for one or more attributes
allows for faster retrieval of directory entries based on those attributes. The input data consists of a header
and a series of change entries. The header identifies the number of indexes to be added, changed, or
removed. Each change entry identifies an attribute and the action to be performed (add, change, or remove
the indexes).

Starting with V4R5M0, this format is not supported. Database index information is to be changed using an
LDAP client or the Directory Management Tool (DMT) starting with V4R5M0.

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to change entry

4 4 BINARY(4) Number of change entries

Change entries

Add or change attribute index entries:

0 0 BINARY(4) Displacement to next entry

4 4 BINARY(4) Action

8 8 BINARY(4) Displacement to attribute name

12 C BINARY(4) Length of attribute name

16 10 BINARY(4) Index type

20 14 BINARY(4) Reserved

CHAR(*) Attribute name

Delete attribute index entries:

0 0 BINARY(4) Displacement to next entry

4 4 BINARY(4) Action

8 8 BINARY(4) Displacement to attribute name

12 C BINARY(4) Length of attribute name

16 10 BINARY(4) Reserved

CHAR(*) Attribute name

CSVR0400 Format

This format is used to set the attributes for publishing users in an LDAP directory. User information from
the System Distribution Directory (SDD) can be published to an LDAP server by the Synchronize System
Distribution Directory to LDAP (QGLDSSDD) API and from iSeries Navigator. The publishing attributes
define how to publish user information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to the server name

4 4 BINARY(4) Length of server name

8 8 BINARY(4) LDAP port number

12 C BINARY(4) Connection type

16 10 BINARY(4) Offset to parent distinguished name

20 14 BINARY(4) Length of parent distinguished name

24 18 BINARY(4) Reserved

Variable length string fields:

 CHAR(*) Server name

 CHAR(*) Parent distinguished name

CSVR0500 Format

This format is used to set the network server publishing attributes associated with the server.

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to change entries

4 4 BINARY(4) Number of change entries

 Change entries

Add or change publishing agent change entries:

0 0 BINARY(4) Displacement to next entry

4 4 BINARY(4) Action

8 8 BINARY(4) Displacement to publishing agent name

12 C BINARY(4) Length of publishing agent name

16 10 BINARY(4) Displacement to server name

20 14 BINARY(4) Length of server name

24 18 BINARY(4) Displacement to bind DN

28 1C BINARY(4) Length of bind DN

32 20 BINARY(4) Displacement to bind credentials

36 24 BINARY(4) Length of bind credentials

40 28 BINARY(4) LDAP port number

44 2C BINARY(4) Connection type

48 30 BINARY(4) Displacement to parent distinguished name

52 34 BINARY(4) Length of parent distinguished name

56 38 BINARY(4) Disable publishing agent

60 3C BINARY(4) Level indicator

Additional fields if level indicator is equal to 1

64 40 BINARY(4) Kerberos authentication indicator

68 44 BINARY(4) Displacement to Kerberos key tab file

72 48 BINARY(4) Length of Kerberos key tab file

76 4C BINARY(4) Displacement to Kerberos principal

80 50 BINARY(4) Length of Kerberos principal

84 54 BINARY(4) Displacement to Kerberos realm

88 58 BINARY(4) Length of Kerberos realm

 CHAR(*) Publishing agent name

 CHAR(*) Server name

 CHAR(*) Bind DN

 CHAR(*) Bind credentials

 CHAR(*) Parent distinguished name

 CHAR(*) Kerberos key tab file

 CHAR(*) Kerberos principal

 CHAR(*) Kerberos realm

Delete publishing agent change entries:

0 0 BINARY(4) Displacement to next entry

4 4 BINARY(4) Action

8 8 BINARY(4) Displacement to publishing agent name

12 C BINARY(4) Length of publishing agent name

16 10 BINARY(4) Reserved

 CHAR(*) Publishing agent name

CSVR0600 Format

This format is used to change referral server configuration information. The input data consists of a header
and a series of change entries. The header identifies the master server information and the number of
referral servers. This replaces the referral server information, if any, that is currently configured.

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to change entries

4 4 BINARY(4) Number of change entries

 Change entries

Referral server change entries:

0 0 BINARY(4) Displacement to next entry

4 4 BINARY(4) Displacement to referral server URL

8 8 BINARY(4) Length of referral server URL

 CHAR(*) Referral server URL

CSVR0700 Format

This format is used to change the server auditing configuration information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Security audit option for objects

4 4 BINARY(4) Reserved

CSVR0800 Format

This format is used to change the IP address configuration information. The input data consists of a header
and a series of change entries. The header identifies the number of IP addresses in the list. This replaces the
IP address information that is currently configured. At least one IP address value must be specified for the
server.

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to change entry

4 4 BINARY(4) Number of change entries

 Change entry

IP address entries:

0 0 BINARY(4) Displacement to next entry

4 4 BINARY(4) Displacement to IP address

8 8 BINARY(4) Length of IP address

 CHAR(*) IP address

Field Descriptions

ACL model. Indicator of the ACL model to use. The following special values may be specified:

-1 The value of this field does not change.

1 Use the ACL model that supports attribute-level ACL permissions. This may cause compatibility
problems with replication and applications that manage access-class level permissions defined in
releases prior to V5R1M0. Once enabled, this capability can be disabled only by reconfiguring your
server and deleting the directory database.

Action. The action to be performed for a given entry. The following values may be specified:

1 Add suffix, index rule, or publishing agent

2 Change index rule or publishing agent

3 Remove suffix, index rule, or publishing agent

Note: Change is valid only for the CSVR0300 and CSVR0500 formats.

Administrator DN. A distinguished name that has access to all objects in the directory. When either the
administrator DN or the administrator password field is changed, both must be specified. This field is
specified in UCS-2 (CCSID 13488). To leave the value unchanged, specify a length and offset to this field
of zero.

Administrator password. The password used when connecting to the directory server using the
administrator DN. When either the administrator DN or the administrator password field is changed, both
must be specified. This field is specified in UCS-2 (CCSID 13488). To leave the value unchanged, specify
a length and offset to this field of zero.

Attribute index entries. The list of changes to be made to the attribute indexes.

Attribute name. The name of a directory object attribute for which database indexes will be created. This
field is specified in UCS-2 (CCSID 13488). The following special value may be specified:

*DEFAULT Specifies the index types to be created for those attributes that have no explicit rules
defined.

Note: The *DEFAULT attribute entry may be removed or added. Adding or removing *DEFAULT
attribute is equivalent to not creating any indexes, or creating indexes for all attributes, depending on the
index types specified.

Bind credentials. The password used when connecting to the directory server using the bind DN. When
either the bind DN or the bind credentials field is changed, both must be specified. This field is specified in
UCS-2 (CCSID 13488). To leave the value unchanged, specify a length and displacement to this field of
zero.

Bind DN. A distinguished name to use when publishing objects to the directory. When either the bind DN
or the bind credentials field is changed, both must be specified. This field is specified in UCS-2 (CCSID
13488). To leave the value unchanged, specify a length and displacement to this field of zero.

Change entry. A structure identifying a change to be made. The structure identifies the suffix, attribute, or
publishing agent and the operation to be performed (add, change, or delete).

Change log indicator. The indicator of whether to have a change log for entries that are added, changed or
deleted. The following values may be specified:

0 No, do not have a change log

1 Yes, have a change log

-1 The value remains the same

Connection type. The type of connection to use to the LDAP server. The following values may be
specified:

1 Nonsecure

2 Secured, using SSL

-1 The value remains the same

Current cipher protocols. The cipher protocols that the server will allow when using encrypted
connections. The following values may be specified:

-1 The value remains the same

Or the sum of one or more of the following values:

0x0100 Triple Data Encryption Standard (DES) Secure Hash Algorithm (SHA) (U.S.)

0x0200 DES SHA (U.S.)

0x0400 Rivest Cipher 4 (RC4) SHA (U.S.)

0x0800 RC4 Message Digest 5 (MD5) (U.S.)

0x1000 RC2 MD5 (export)

0x2000 RC4 MD5 (export)

 0x4000 Advanced Encryption Standard (AES) SHA (U.S.)

Database path. The path to an existing library containing the directory database objects. This is an
integrated file system path name, for example, /QSYS.LIB/DIRSRV.LIB. By changing this field, you make
the current directory contents inaccessible. By changing the field back to its original value, you restore the
original directory contents. The library must exist in a system ASP or a basic user ASP (ASP value of 1
to 32). The library cannot exist in an independent ASP (ASP value greater than 32). This field is
specified in UCS-2 (CCSID 13488). To leave the value unchanged, specify a length and offset to this field
of zero.

Disable publishing agent. Indicates whether or not the publishing agent is disabled. The following values
may be specified:

0 The publishing agent is enabled.

1 The publishing agent is disabled.

Displacement to attribute name. The displacement, in bytes, from the start of the current entry to the
attribute name field.

Displacement to bind credentials. The displacement, in bytes, from the start of the current entry to the
bind credentials field.

Displacement to bind DN. The displacement, in bytes, from the start of the current entry to the bind DN
field.

Displacement to IP address. The displacement, in bytes, from the start of the current entry to the IP
address field.

Displacement to Kerberos key tab file. The displacement, in bytes, from the start of the current entry to
the Kerberos key tab file field.

Displacement to Kerberos principal. The displacement, in bytes, from the start of the current entry to the
Kerberos principal field.

Displacement to Kerberos realm. The displacement, in bytes, from the start of the current entry to the
Kerberos realm field.

Displacement to next entry. The displacement, in bytes, from the start of the current entry to the next
entry in the input data.

Displacement to parent distinguished name. The displacement, in bytes, from the start of the current
entry to the parent distinguished name field.

Displacement to publishing agent name. The displacement, in bytes, from the start of the current entry to
the publishing agent name field.

Displacement to referral server URL. The displacement, in bytes, from the start of the current entry to the
referral server URL field.

Displacement to server name. The displacement, in bytes, from the start of the current entry to the server
name field.

Displacement to suffix. The displacement, in bytes, from the start of the current entry to the suffix field.

Encrypted port number. The port number to use for encrypted connections. The standard port number for
encrypted connections (SSL) is 636. Valid port numbers are in the range 1 to 65535. The following special
value may be specified:

-1 The value of this field does not change.

Event notification registration indicator. Indicator of whether to allow client to register for event
notification. The following special values may be specified:

-1 The value of this field does not change.

0 Do not allow clients to register for event notification.

1 Allow clients to register for event notification.

Index type. The kind of database indexes that will be created for an attribute. Creating database indexes
improved the performance of directory searches on those attributes. The following values may be specified:

0 No indexes will be maintained for the specified attribute

1 Equal

Note: For a delete request, 0 must be specified for this field.

IP address. The IPv4 address on which the directory server will accept connections. The IP address must
already exist to be specified. A value of hexadecimal zeroes and leading zeroes is not allowed. An address
is expressed in standard dotted-decimal form www.xxx.yyy.zzz; for example, 130.99.128.1. This field is
specified in UCS-2 (CCSID 13488).

The following special value may be specified:

*ALL All IP addresses defined on the local system will be bound to the server.

Kerberos administrator ID. The name of the Kerberos administrator. This field is specified in UCS-2
(CCSID 13488). The following special value may be specified:

*NONE No value is specified.

To leave the value unchanged, specify a length and offset to this field of zero.

Kerberos administrator realm. The realm where the kerberos administrator is registered. This field is
specified in UCS-2 (CCSID 13488). The following special value may be specified:

*NONE No value is specified.

To leave the value unchanged, specify a length and offset to this field of zero.

Kerberos authentication indicator. The following special values may be specified:

-1 The value of this field does not change.

0 Do not support Kerberos authentications.

1 Support Kerberos authentications. Ensure all Kerberos fields are specified.

Kerberos key tab file. The integrated file system path name for the key tab file that contains the server's
secret key used for authentication. The QDIRSRV user profile is given authorization to read this file. This
field is specified in UCS-2 (CCSID 13488). The following special value may be specified:

*NONE No value is specified.

To leave the value unchanged, specify a length and offset or displacement to this field of zero.

Kerberos principal. The principal in the key tab file to use for authentication. This field is specified in
UCS-2 (CCSID 13488). The following special value may be specified:

*NONE No value is specified.

To leave the value unchanged, specify a length and offset or displacement to this field of zero.

Kerberos realm. The realm where the principal is registered to use for authentication. This field is
specified in UCS-2 (CCSID 13488). The following special value may be specified:

*NONE No value is specified.

To leave the value unchanged, specify a length and offset or displacement to this field of zero.

Kerberos to DN mapping indicator.

-1 The value of this field does not change.

0 Map the Kerberos ID to pseudo DN. A pseudo DN can be used to uniquely identify an LDAP user
object of the form 'ibm-kerberosName=principal@realm" or 'ibm-kn=principal@realm".

1 Use associated DN in directory. The LDAP server will attempt to find an entry in the directory that
contains the kerberos principle and realm as one of its attributes. Once found, this DN will then be
used to determine the client's authorizations to the directory.

Key ring file. The path name of the SSL key ring file. A key ring file must be configured when using SSL.
The following special value may be specified:

*NONE No value is specified.

Note: Starting with V4R4M0, this field is ignored for format CSVR0100. This field is specified in UCS-2
(CCSID 13488).

To leave the value unchanged, specify a length and offset to this field of zero.

LDAP port number. The LDAP server's TCP/IP port. The following values may be specified:

-1 The value remains the same

Length of administrator DN. The length, in Unicode characters, of the administrator DN field.

Length of administrator password. The length, in Unicode characters, of the administrator password
field.

Length of attribute name. The length, in Unicode characters, of the the attribute name field.

Length of bind credentials. The length, in Unicode characters, of the bind credentials field.

Length of bind DN. The length, in Unicode characters, of the bind DN field.

Length of database path. The length, in Unicode characters, of the database path field.

Length of IP address. The length, in Unicode characters, of the IP address field.

Length of Kerberos administrator ID. The length, in Unicode characters, of the Kerberos administrator
ID field.

Length of Kerberos administrator realm. The length, in Unicode characters, of the Kerberos
administrator realm field.

Length of Kerberos key tab file. The length, in Unicode characters, of the Kerberos key tab file field.

Length of Kerberos principal. The length, in Unicode characters, of the Kerberos principal field.

Length of Kerberos realm. The length, in Unicode characters, of the Kerberos realm field.

Length of key ring file. The length, in Unicode characters, of the key ring file field.

Length of master server URL. The length, in Unicode characters, of the master server URL field.

Length of parent distinguished name. The length, in Unicode characters, of the parent distinguished
name field.

Length of projected suffix. The length, in Unicode characters, of the projected suffix field.

Length of publishing agent name. The length, in Unicode characters, of the publishing agent name. The
length can be at most 50 Unicode characters.

Length of referral server. The length, in Unicode characters, of the referral server name.

Length of referral server URL. The length, in Unicode characters, of the referral server URL field.

Length of server name. The length, in Unicode characters, of the server name field.

Length of suffix. The length, in Unicode characters, of the the suffix field.

Length of update DN. The length, in Unicode characters, of the update DN field.

Length of update password. The length, in Unicode characters, of the update password field.

Level indicator. The level indicator of the data supplied for a format. See the format descriptions for
possible uses and values of this field.

Level of authority integration. The level of OS/400 authority integration to use to determine if a
distinguished name (DN) can become an LDAP administrator. Allowing a user profile to become an LDAP
administrator can be done by setting the 'Level of authority integration' to '1' and then authorizing specific
user profiles to the 'Directory Services Administrator' function of the operating system through iSeries
Navigator's Application support. The Change Function Usage Information (QSYCHFUI) API, with a
function ID of QIBM_DIRSRV_ADMIN, can also be used to change the list of users that are allowed to be

an LDAP administator. The user profile can be mapped to a DN as a projected user (for example, for user
profile 'FRED', and the projected suffix of 'systemA', the projected user's DN would be
os400-profile=FRED,cn=accounts,os400-sys=systemA).

The following special values may be specified:

-1 The value of this field does not change.

0 Do not apply 'Directory Services Administrator' function identifier to bound distinguished names to
determine LDAP administrators.

1 Allow bound distinguished names that refer directly to user profiles to become LDAP administrators
if the user profile is identified in the 'Directory Services Administrator' function identifier.

Master server URL. The uniform resource locator (URL) of the master server. This field is specified in
UCS-2 (CCSID 13488). The following special value may be specified:

*NONE No value is specified.

To leave the value unchanged, specify a length and offset to this field of zero.

Maximum connections. The maximum number of simultaneous connections that can be established with
the server. The following special values may be specified:

-1 The value of this field does not change.

0 Do not limit the number of connections.

Note: Starting with V5R1M0, this field is no longer supported and is ignored if a value is passed.

Maximum event registrations for connection. The following special values may be specified:

-1 The value of this field does not change.

0 Do not limit the number of event registrations for connection.

Maximum event registrations for server. The following special values may be specified:

-1 The value of this field does not change.

0 Do not limit the number of event registrations for server.

Maximum number of change log entries. The maximum number of change log entries that can be stored.
If the maximum is reached, the change log entries will be deleted starting with the oldest entry. This value
only used if 'Change log indicator' is set to 1. The following special values may be specified:

-1 The value of this field does not change.

0 Do not limit the number of change log entries.

Maximum operations per transaction. The maximum number of operations that are allowed for each
transaction. Transaction support allows a group of directory changes to be handled as a single transaction.
The following special values may be specified:

-1 The value of this field does not change.

Maximum pending transactions. The maximum number of pending transactions allowed. Transaction
support allows a group of directory changes to be handled as a single transaction. The following special
value may be specified:

-1 The value of this field does not change.

Nonencrypted port number. The port number to be used for nonencrypted connections. The standard port
number is 389. Valid port numbers are in the range 1 to 65535. The following special value may be
specified:

-1 The value of this field does not change.

Number of change entries. The number of change entries present in the input data.

Number of database connections. The number of database connections used by the server. Valid numbers
are in the range 4 to 32. The following special value may be specified:

-1 The value of this field does not change.

Offset to administrator DN. The offset, in bytes, from the start of the input data area to the administrator
DN field.

Offset to administrator password. The offset, in bytes, from the start of the input data area to the
administrator password field.

Offset to change entry. The offset, in bytes, from the start of the input data area to the the first change
entry.

Offset to database path. The offset, in bytes, from the start of the input data area to the database path field.

Offset to Kerberos administrator ID. The offset, in bytes, from the start of the input data area to the
Kerberos administrator ID field.

Offset to Kerberos administrator realm. The offset, in bytes, from the start of the input data area to the
Kerberos administrator realm field.

Offset to Kerberos key tab file. The offset, in bytes, from the start of the input data area to the Kerberos
key tab file field.

Offset to key ring file. The offset, in bytes, from the start of the input data area to the key ring file field.

Offset to master server URL. The offset, in bytes, from the start of the input data area to the master server
URL field.

Offset to parent distinguished name. The offset, in bytes, from the start of the input data area to the
parent distinguished name field.

Offset to projected suffix. The offset, in bytes, from the start of the input data area to the projected
suffix field.

Offset to referral server. The offset, in bytes, from the start of the input data area to the referral server
field.

Offset to server name. The offset, in bytes, from the start of the input data to the server name field.

Offset to suffix. The offset, in bytes, from the start of the input data area to the suffix field.

Offset to update DN. The offset, in bytes, from the start of the input data area to the update DN field.

Offset to update password. The offset, in bytes, from the start of the input data area to the update
password field.

Parent distinguished name. The parent distinguished name for published objects. For example, if the
parent distinguished name is "ou=rochester, o=ibm, c=us", a published directory object for user John Smith
might be "cn=john smith, ou=rochester, o=ibm, c=us". This field is specified in UCS-2 (CCSID 13488). To
leave the value unchanged, specify a length and offset to this field of zero.

Password format. The format of the encrypted password. The following values may be specified:

-1 The value of this field does not change.

1 Unencrypted.

2 SHA. (Default)

3 MD5.

4 Crypt (The password is one-way hashed using a modified DES algorithm. The "crypt" algorithm
originally was used by many Unix operating systems for password protection.)

Projected suffix. The suffix under which all projected objects for this server reside including user and
group profiles. This field is specified in UCS-2 (CCSID 13488).

Publishing agent name. The agent that will publish information to a directory server and parent
distinguished name. This field is specified in UCS-2 (CCSID 13488).

Read only. Whether the directory server will allow updates to be made to the directory contents. The
following values may be specified:

-1 The value of this field does not change.

0 Places the directory server into update mode to allow directory updates. This is the normal mode of
operation.

1 Places the directory server into read-only mode.

Referral port. An optional port number to be returned to a client when a request is made for a directory
object that does not reside on this server. The referral port and referral server together are used to form a
referral URL. The referral server and port fields must be configured when changing the Server is replica
field to make this server a replica. Valid port numbers are in the range 1 to 65535.

Starting with V4R5M0, this field is ignored for format CSVR0100. Referral server information can be
changed using the CSVR0600 format of the QgldChgDirSvrA API. The following special values may be
specified:

0 No port number is returned as part of the referral.

-1 The value of this field does not change.

Referral server. The IP name or address of a server to return to a client when a request is made for a
directory object that does not reside on this server. The referral port and referral server are used together to
form a referral URL. The referral server and port fields must be configured when changing the Server is a
replica field to make this server a replica. In this case, the referral is typically to the master server. The
following special value may be specified:

*NONE No value is specified.

Note: Starting with V4R5M0, this field is ignored for format CSVR0100. This field is specified in UCS-2
(CCSID 13488). To leave the value unchanged, specify a length and offset to this field of zero.

Referral server URL. The uniform resource locator (URL) of the referral server. This field is specified in
UCS-2 (CCSID 13488).

Reserved. A reserved field. This field must be set to zero.

Schema checking level. The level of schema checking performed by the server. The following values may
be specified:

-1 The value does not change.

0 None.

1 LDAP version 2.

2 LDAP version 3 strict.

3 LDAP version 3 lenient.

Search size limit. The maximum number of entries that the server will return for a given search request.
The following special values may be specified:

-1 The value of this field does not change.

0 Do not limit the number of entries returned.

Search time limit. The maximum time, in seconds, that the server will spend performing a given search
request. The following special values may be specified:

-1 The value of this field does not change.

0 Do not limit the search time.

Security. Whether the server should use encrypted connections. The following values may be specified:

-1 The value does not change

1 Allow nonencrypted connections only

2 Allow encrypted connections only

3 Allow both encrypted and nonencrypted connections

Security audit option for objects. When the QAUDCTL system value is set to *OBJAUD, then object

auditing can be done in the directory. See the iSeries Security Reference book for information about
Directory Services auditing. The following special values may be specified:

-1 The value of this field does not change.

0 Do not do object auditing of the directory objects.

1 Audit changes to directory objects.

2 Audit all access to directory objects. This includes search, compare and change.

Server is replica. Whether the server is a master server or a replica server. When this field is changed to
make the server a replica, the update DN, update password, and referral fields must be specified. The
following values may be specified:

-1 The value of this field does not change.

0 The server is a master for the directory suffixes present on the server.

1 The server is a replica server for the directory suffixes present on the server.

Server name. The name of the server. This field is specified in UCS-2 (CCSID 13488). To leave the value
unchanged, specify a length and offset to this field of zero.

SSL authentication method. The method used during SSL authentication. The following values may be
specified:

-1 The value does not change.

1 Server authentication.

3 Server and client authentication.

Suffix. The name of the directory suffix to be added or removed from the server. This field is specified in
UCS-2 (CCSID 13488).

Suffix change entries. The list of suffixes to be added or deleted.

Terminate idle connections. The server will terminate idle connections when necessary.

Starting with V5R1M0, this field is no longer supported and is ignored if a value is passed. The following
values may be specified:

0 Do not terminate idle connections.

1 Terminate idle connections.

Transaction time limit. The maximum time, in seconds, that the server will spend performing a transaction
request. Transaction support allows a group of directory changes to be handled as a single transaction. The
following special values may be specified:

-1 The value of this field does not change.

Update DN. The distinguished name that the master server must use when propagating directory updates to
this replica server. This field may be specified only when the server is a replica. When either the update DN
or the update password field is changed, both must be specified. This field is specified in UCS-2 (CCSID
13488). The following special value may be specified:

*NONE No value is specified.

To leave the value unchanged, specify a length and offset to this field of zero.

Update password. The password used when connecting to this server using the update DN. This field may
be specified only when the server is a replica. When either the update DN or the update password field is

changed, both must be specified. This field is specified in UCS-2 (CCSID 13488). To leave the value
unchanged, specify a length and offset to this field of zero. The following special value may be specified:

*NONE No value is specified.

Error Messages

Message ID Error Message Text

CPF2209 E Library &1 not found.

CPFA0A9 E Object not found.

CPFA0DB E Object name not a QSYS object.

CPFA314 E Memory allocation error.

GLD0204 E Attribute name not valid.

GLD0205 E Administrator DN not valid.

GLD0208 E Key ring file name not valid.

GLD0209 E Update DN not valid.

GLD020A E Suffix not valid.

GLD020B E Referral server name not valid.

GLD020D E Index rule already defined for attribute.

GLD020E E Index rule not found for attribute.

GLD0211 E Value &1 specified at offset &2 in input format &3 is not valid.

GLD0212 E Field &1 required when server is using SSL.

GLD0215 E Directory Services server has not been configured.

GLD0217 E A value was specified in list entry &1 that is not valid. Reason code &2.

GLD0219 E Administrator DN and password both required.

GLD021A E Field not allowed when server is not a replica.

GLD021B E Field is required when server is a replica.

GLD021C E The caller of the API must have *ALLOBJ and *IOSYSCFG special authority to
configure the server.

GLD021D E Error occurred when processing the input list of entries.

GLD021E E &1 password is not valid.

GLD021F E The caller of the API must have *AUDIT special authority to set the server auditing
information.

GLD0221 E Offset &1 specified in input data is not valid.

GLD0222 E Length &1 specified in input data is not valid.

GLD0223 E Database path not valid.

GLD0227 E Distinguished names cannot be modified while the server is active.

GLD0229 E Validation list not found.

GLD022D E Publishing &1 agent not found.

GLD022E E Publishing agent &1 is already configured.

GLD022F E Format not supported.

 GLD0231 E Cannot set the password for a projected user.

GLD0232 E Configuration contains overlapping suffixes.

GLD0233 E Cannot set database library to /QSYS.LIB/QUSRDIRCL.LIB.

GLD0235 E IP address is not valid.

GLD0236 E Database library must be in system ASP or basic user ASP.

API Introduced: V4R3

Top | Directory Services APIs | APIs by category

Export LDIF File (QgldExportLdif)

 Required Parameter Group:

1 Input data Input Char(*)
2 Length of input data Input Binary(4)
3 Format name Input Char(8)
4 Error code I/O Char(*)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDUAPI

 Threadsafe: No

The Export LDIF File (QgldExportLdif) API exports the directory server contents to a Lightweight
Directory Access Protocol Data Interchange Format (LDIF) file.

Authorities and Locks

Directory Authority

The caller must provide the administrator DN and password if the caller does not have *ALLOBJ
and *IOSYSCFG special authorities and the caller is not a Directory Services administrator. The
caller is a Directory Services administrator if the Directory Services server has been configured to
grant administrator access to authorized users and the caller is authorized to the 'Directory Services
Administrator' function of the operating system.

Object Authorities

The caller must have Execute (*X) authority to each directory in the path name preceding the name
of the LDIF file. The caller must have Write (*W) authority to the LDIF file.

Required Parameter Group

Input data

INPUT; CHAR(*)

Input data required to identify the LDIF file and the administrator name and password. The content
and format of this structure are determined by the format name. See Format of Input Data for a
description of these formats.

Length of input data

INPUT; BINARY(4)

The length of the input data structure.

Format name

INPUT; CHAR(8)

The content and format of the input data. The possible format name follows:

LDIF0100 Export LDIF file.

See Format of Input Data for a description of this format.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Input Data

For details about the format of the input data, see the following section. For details about the fields in each
format, see Field Descriptions.

LDIF0100 Format

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to LDIF file

4 4 BINARY(4) Length of LDIF file

8 8 BINARY(4) Offset to administrator DN

12 C BINARY(4) Length of administrator DN

16 10 BINARY(4) Offset to administrator password

20 14 BINARY(4) Length of administrator password

24 18 BINARY(4) Offset to subtree DN

28 1C BINARY(4) Length of subtree DN

 CHAR(*) LDIF file

 CHAR(*) Administrator DN

 CHAR(*) Administrator password

 CHAR(*) Subtree DN

Field Descriptions

Administrator DN. The distinguished name of the server administrator. This field is specified in UCS-2
(CCSID 13488).

Administrator password. The password for the server administrator. This field is specified in UCS-2
(CCSID 13488).

LDIF file. The integrated file system path name of the LDIF file to be used. This field is specified in
UCS-2 (CCSID 13488).

Length of administrator DN. The length, in Unicode characters, of the administrator DN field.

Length of administrator password. The length, in Unicode characters, of the administrator password
field.

Length of LDIF file. The length, in Unicode characters, of the LDIF file field.

Length of subtree DN. The length, in Unicode characters, of the subtree DN field.

Offset to administrator DN. The offset, in bytes, from the start of the input data to the administrator DN
field.

Offset to administrator password. The offset, in bytes, from the start of the input data to the administrator
password field.

Offset to LDIF file. The offset, in bytes, from the start of the input data to the LDIF file field.

Offset to subtree DN. The offset, in bytes, from the start of the input data to the subtree DN field.

Subtree DN. The distinguished name (DN) of the root of a directory subtree to export to the LDIF file.
This object, and all descendant objects will be exported. To export the entire directory tree, specify 0 (zero)
for the offset to subtree DN and length of subtree DN fields. This field is specified in UCS-2 (CCSID
13488).

Error Messages

Message ID Error Message Text

GLD0202 E Administrator DN or password not correct.

GLD0213 E Error opening or creating file.

GLD0215 E Server has not been configured.

GLD0218 E *ALLOBJ and *IOSYSCFG special authorities required.

GLD022B E Cannot find object &1.

API Introduced: V4R3

Top | Directory Services APIs | APIs by category

Import LDIF File (QgldImportLdif)

 Required Parameter Group:

1 Input data Input Char(*)
2 Length of input data Input Binary(4)
3 Format name Input Char(8)
4 Error code I/O Char(*)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDUAPI

 Threadsafe: No

The Import LDIF File (QgldImportLdif) API imports directory server data from a Lightweight Directory
Access Protocol Data Interchange Format (LDIF) file.

The Directory Services server must be stopped to use this API. To stop the server, use the End TCP/IP
Server (ENDTCPSVR SVR(*DIRSRV)) command.

Authorities and Locks

Directory Authority

The caller must provide the administrator DN and password if the caller does not have *ALLOBJ
and *IOSYSCFG special authorities and the caller is not a Directory Services administrator. The
caller is a Directory Services administrator if the Directory Services server has been configured to
grant administrator access to authorized users and the caller is authorized to the 'Directory Services
Administrator' function of the operating system.

Object Authorities

The caller must have Execute (*X) authority to each directory in the path name preceding the name
of the LDIF file. The caller must have Read (*R) authority to the LDIF file.

Required Parameter Group

Input data

INPUT; CHAR(*)

Input data required to identify the LDIF file and the administrator name and password. The content
and format of this structure are determined by the format name. See Format of Input Data for a
description of these formats.

Length of input data

INPUT; BINARY(4)

The length of the input data structure.

Format name

INPUT; CHAR(8)

The content and format of the input data. The possible format name follows:

LDIF0100 Import LDIF file.

See Format of Input Data for a description of this format.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Format of Input Data

For details about the format of the input data, see the following section. For details about the fields in each
format, see Field Descriptions.

LDIF0100 Format

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to LDIF file

4 4 BINARY(4) Length of LDIF file

8 8 BINARY(4) Offset to administrator DN

12 C BINARY(4) Length of administrator DN

16 10 BINARY(4) Offset to administrator password

20 14 BINARY(4) Length of administrator password

 CHAR(*) LDIF file

 CHAR(*) Administrator DN

 CHAR(*) Administrator password

Field Descriptions

Administrator DN. The distinguished name of the server administrator. This field is specified in UCS-2
(CCSID 13488).

Administrator password. The password for the server administrator. This field is specified in UCS-2

(CCSID 13488).

LDIF file. The integrated file system path name of the LDIF file to be used. This field is specified in
UCS-2 (CCSID 13488).

Length of administrator DN. The length, in Unicode characters, of the administrator DN field.

Length of administrator password. The length, in Unicode characters, of the administrator password
field.

Length of LDIF file. The length, in Unicode characters, of the LDIF file field.

Offset to administrator DN. The offset, in bytes, from the start of the input data to the administrator DN
field.

Offset to administrator password. The offset, in bytes, from the start of the input data to the administrator
password field.

Offset to LDIF file. The offset, in bytes, from the start of the input data to the LDIF file field.

Error Messages

Message ID Error Message Text

GLD0125 E Directory Services failed for reason code &4.

GLD0202 E Administrator DN or password not correct.

GLD0213 E Error opening or creating file.

GLD0215 E Server has not been configured.

GLD0218 E *ALLOBJ and *IOSYSCFG special authorities required.

GLD0225 E &1 items added to directory, &2 items not added.

GLD0226 E LDAP server is read-only.

API Introduced: V4R3

Top | Directory Services APIs | APIs by category

List Directory Server Attributes
(QgldLstDirSvrA)

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Error code I/O Char(*)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDUAPI

 Threadsafe: No

The List Directory Server Attributes (QgldLstDirSvrA) API retrieves a list of directory server attributes
including the following:

Suffixes present on the server●

Attribute indexes maintained by the underlying database●

Network server publishing attributes associated with the LDAP server.●

IP address information●

Authorities and Locks

User Space Library Authority

*EXECUTE

User Space Authority

*CHANGE

User Space Lock

An exclusive, no-read lock is obtained on the list space.

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The user space that is to receive the created list. The first 10 characters contain the user space
name, and the second 10 characters contain the name of the library where the user space is located.
The content and format of this space is determined by the format name. See Format of Output Data
for a description of these formats.

Format name

INPUT; CHAR(8)

The content and format of the data to be retrieved. The possible format names follow:

LSVR0200 Retrieve a list of suffixes on the server.

LSVR0300 Retrieve a list of database indexes maintained by the server.

LSVR0500 Retrieve a list of network server publishing attributes associated with the LDAP
server.

LSVR0600 Retrieve a list of referral servers.

 LSVR0800 Retrieve a list of IP addresses

See Format of Output Data for a description of these formats.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Output Data

The user space contains:

A user area●

A generic area●

An input parameter section●

A header section●

A list data section:

LSVR0200❍

LSVR0300❍

LSVR0500❍

LSVR0600❍

LSVR0800❍

●

For details about the user area and generic header, see User Space Format for List APIs. For details about
the remaining items, see the following sections. For detailed descriptions of the fields in the list that is
returned, see Field Descriptions.

When you retrieve list entry information from the list space, do not use the entry size that is returned in the
generic header. Instead, use the displacement to next entry field that is returned in each list entry. If you do
not use the displacement to next entry field, the results may not be valid.

LSVR0200 Format

The LSVR0200 format is used to retrieve a list of the directory suffixes present on this server.

Offset

Type FieldDec Hex

0 0 BINARY(4) Displacement to next entry

4 4 BINARY(4) Displacement to suffix

8 8 BINARY(4) Length of suffix

12 C BINARY(4) Reserved

 CHAR(*) Suffix

LSVR0300 Format

The LSVR0300 format is used to retrieve information about database indexes maintained by the server. The
indexes are used to speed up retrieval of objects when a directory server client searches for specified object
attributes.

Starting with V4R5M0, this format is not supported. Database index information is to be retrieved using an
LDAP client or the Directory Management Tool (DMT) starting with V4R5M0.

Offset

Type FieldDec Hex

0 0 BINARY(4) Displacement to next entry

4 4 BINARY(4) Displacement to attribute name

8 8 BINARY(4) Length of attribute name

12 C BINARY(4) Index type

16 10 BINARY(4) Reserved

 CHAR(*) Attribute name

LSVR0500 Format

The LSVR0500 format is used to retrieve the network server publishing attributes associated with the
server.

Offset

Type FieldDec Hex

0 0 BINARY(4) Displacement to next entry

16 10 BINARY(4) Displacement to publishing agent name

12 C BINARY(4) Length of publishing agent name

16 10 BINARY(4) Displacement to server name

20 14 BINARY(4) Length of server name

24 18 BINARY(4) Displacement to bind DN

28 1C BINARY(4) Length of bind DN

32 20 BINARY(4) LDAP port number

36 24 BINARY(4) Connection type

40 28 BINARY(4) Displacement to parent distinguished name

44 2C BINARY(4) Length of parent distinguished name

48 30 BINARY(4) Publishing agent disabled

52 34 BINARY(4) Reserved

56 38 BINARY(4) Kerberos authentication indicator

60 3C BINARY(4) Displacement to Kerberos key tab file

64 40 BINARY(4) Length of Kerberos key tab file

68 44 BINARY(4) Displacement to Kerberos principal

72 48 BINARY(4) Length of Kerberos principal

76 4C BINARY(4) Displacement to Kerberos realm

80 50 BINARY(4) Length of Kerberos realm

 CHAR(*) Publishing agent name

 CHAR(*) Server name

 CHAR(*) Bind DN

 CHAR(*) Parent distinguished name

 CHAR(*) Kerberos key tab file

 CHAR(*) Kerberos principal

 CHAR(*) Kerberos realm

LSVR0600 Format

The LSVR0600 format is used to retrieve a list of referral servers.

Offset

Type FieldDec Hex

0 0 BINARY(4) Displacement to next entry

4 4 BINARY(4) Displacement to referral server URL

8 8 BINARY(4) Length of referral server URL.

12 C BINARY(4) Reserved

 CHAR(*) Referral server URL.

LSVR0800 Format

The LSVR0800 format is used to retrieve a list of the IP addresses to which the directory server connects.

Offset

Type FieldDec Hex

0 0 BINARY(4) Displacement to next entry

4 4 BINARY(4) Displacement to IP address

8 8 BINARY(4) Length of IP address

 CHAR(*) IP address

Field Descriptions

Attribute name. The name of a directory object attribute for which database indexes will be maintained.
This field is specified in UCS-2 (CCSID 13488). The following special value may also be returned:

*DEFAULT The rules for this attribute apply to all attributes for which no explicit rules have been
defined.

Bind DN. A distinguished name to use when publishing objects to the directory.This field is specified in
UCS-2 (CCSID 13488). The following special value may be specified:

*NONE No value is specified.

Connection type. The type of connection to use to the LDAP server. The following values may be
returned:

1 Nonsecure

2 Secured, using SSL

Displacement to attribute name. The displacement, in bytes, from the start of the current entry to the
attribute name field.

Displacement to bind DN. The displacement, in bytes, from the start of the current entry to the bind DN
field.

Displacement to IP address. The displacement, in bytes, from the start of the current entry to the IP
address field.

Displacement to Kerberos key tab file. The displacement, in bytes, from the start of the current entry to
the Kerberos key tab file field.

Displacement to Kerberos principal. The displacement, in bytes, from the start of the current entry to the
Kerberos principal field.

Displacement to Kerberos realm. The displacement, in bytes, from the start of the current entry to the
Kerberos realm field.

Displacement to next entry. The displacement, in bytes, from the start of the current entry to the next
entry.

Displacement to parent distinguished name. The displacement, in bytes, from the start of the current
entry to the parent distinguished name field.

Displacement to publishing agent name. The displacement, in bytes, from the start of the current entry to
the publishing agent name field.

Displacement to referral server URL. The displacement, in bytes, from the start of the current entry to the
referral server URL field.

Displacement to server name. The displacement, in bytes, from the start of the current entry to the server
name field.

Displacement to suffix. The displacement, in bytes, from the start of the current entry to the suffix.

Format name specified. The format name specified on the call to this API.

Index type. The kind of database indexes that will be created for an attribute. Creating database indexes
improved the performance of directory searches on those attributes. The following values may be returned:

0 No indexes will be created for the attribute.

1 Equal

IP address. The IPv4 address on which the directory server will accept connections. An address is
expressed in standard dotted-decimal form www.xxx.yyy.zzz; for example, 130.99.128.1. This field is
specified in UCS-2 (CCSID 13488). The following special value may be returned:

*ALL All IP addresses defined on the local system will be bound to the server.

Kerberos authentication indicator. The following special values may be specified:

0 Do not support Kerberos authentications.

1 Support Kerberos authentications.

Kerberos key tab file. The integrated file system path name for the key tab file that contains the server's
secret key used for authentication. The QDIRSRV user profile is given authorization to read this file. This
field is specified in UCS-2 (CCSID 13488). The following special value may be specified:

*NONE No value is specified.

Kerberos principal. The principal in the key tab file to use for authentication. This field is specified in
UCS-2 (CCSID 13488). The following special value may be specified:

*NONE No value is specified.

Kerberos realm. The realm where the principal is registered to use for authentication. This field is
specified in UCS-2 (CCSID 13488). The following special value may be specified:

*NONE No value is specified.

LDAP port number. The LDAP server's TCP/IP port.

Length of attribute name. The length, in Unicode characters, of the attribute name field.

Length of bind DN. The length, in Unicode characters, of the bind DN field.

Length of IP address. The length, in Unicode characters, of the IP address field.

Length of Kerberos key tab file. The length, in Unicode characters, of the Kerberos key tab file field.

Length of Kerberos principal. The length, in Unicode characters, of the Kerberos principal field.

Length of Kerberos realm. The length, in Unicode characters, of the Kerberos realm field.

Length of parent distinguished name. The length, in Unicode characters, of the parent distinguished
name field.

Length of publishing agent name. The length, in Unicode characters, of the publishing agent name field.

Length of referral server URL. The length, in Unicode characters, of the referral server URL field.

Length of server name. The length, in Unicode characters, of the server name field.

Length of suffix. The length, in Unicode characters, of the suffix field.

Length of update DN. The length, in Unicode characters, of the update DN field.

Parent distinguished name. The parent distinguished name to be used. This field is specified in UCS-2
(CCSID 13488).

Publishing agent name. The agent which will publish information to a directory server and parent
distinguished name. This field is specified in UCS-2 (CCSID 13488).

Publishing agent disabled. Indicates whether or not the publishing agent is disabled. The configuration
data still exists, but publishing has been disabled for the publishing agent. The following values may be
returned:

0 The publishing agent is enabled.

1 The publishing agent is disabled.

Referral server URL. The uniform resource locator (URL) of the referral server. This field is specified in
UCS-2 (CCSID 13488).

Reserved. A reserved field. This field must be set to zero.

Server name. The name of the server. This field is specified in UCS-2 (CCSID 13488).

Suffix. The directory name for the starting point of a directory information tree.This field is specified in
UCS-2 (CCSID 13488).

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

GLD0215 E Server has not been configured.

GLD022F E Format not supported.

API Introduced: V4R3

Top | Directory Services APIs | APIs by category

Publish Directory Object (QgldPubDirObj)

 Required Parameter Group:

1 Input data Input Char(*)
2 Length of input data Input Binary(4)
3 Format name Input Char(8)
4 Error code I/O Char(*)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDPAPI

 Threadsafe: No

The Publish Directory Object (QgldPubDirObj) API publishes objects to the directory server. It can be used
to perform the following publishing requests:

Add a new object to the directory.●

Delete an object from the directory.●

Change an object in the directory.●

Change the relative distinguished name of an object in the directory server.●

Before this API can be called, the Directory Services property page for the system must be configured. This
can be done from iSeries Navigator or by using the Change Directory Server Attributes (QgldChgDirSrvA)
API. The directory server indicates the server to which objects will be published. The parent distinguished
name indicates the suffix in the directory to which objects will be published. This parent distinguished
name is referred to as a publish point.

Authorities and Locks

*ALLOBJ special authority is required to use this API.

Required Parameter Group

Input data

INPUT; CHAR(*)

A variable that contains the input data. See Format of Input Data for a description of the data
associated with a specific format name.

Length of input data

INPUT; BINARY(4)

The length of the input data area. The maximum value for this parameter is 16 776 704.

Format name

INPUT; CHAR(8)

The format name identifying the type of publishing request. The possible format names follow:

POBJ0100 Add a new object to the directory server.

POBJ0200 Delete an object from the directory server.

POBJ0300 Change an object in the directory server.

POBJ0400 Change the relative distinguished name of an object in the directory server.

See Format of Input Data for a description of these formats.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Input Data

For details about the format of the input data, see the following sections. For details about the fields in each
format, see Field Descriptions.

POBJ0100 Format

This format is used to add a new object to the directory server.

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to publishing agent name

4 4 BINARY(4) Length of publishing agent name

8 8 BINARY(4) Offset to object RDN

12 C BINARY(4) Length of object RDN

16 10 BINARY(4) Offset to attribute entries

20 14 BINARY(4) Number of attribute entries

24 18 CHAR(40) Reserved

 CHAR(*) Publishing agent name

 CHAR(*) Object RDN

Attribute entries:

0 0 BINARY(4) Displacement to next entry

4 4 BINARY(4) Displacement to attribute name

8 8 BINARY(4) Length of attribute name

12 C BINARY(4) Displacement to attribute values

16 10 BINARY(4) Number of attribute values

20 14 BINARY(4) Attribute value data type

24 18 CHAR(8) Reserved

 CHAR(*) Attribute name

Attribute values:

0 0 BINARY(4) Displacement to next value

4 4 BINARY(4) Displacement to attribute value

8 8 BINARY(4) Length of attribute value

12 C CHAR(4) Reserved

 CHAR(*) Attribute value

POBJ0200 Format

This format is used to delete an object from the directory server.

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to publishing agent name

4 4 BINARY(4) Length of publishing agent name

8 8 BINARY(4) Offset to object RDN

12 C BINARY(4) Length of object RDN

16 10 BINARY(4) Delete directory subtree

20 14 CHAR(44) Reserved

 CHAR(*) Publishing agent name

 CHAR(*) Object RDN

POBJ0300 Format

This format is used to change an object in the directory server.

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to publishing agent name

4 4 BINARY(4) Length of publishing agent name

8 8 BINARY(4) Offset to object RDN

12 C BINARY(4) Length of object RDN

16 10 BINARY(4) Offset to modification entries

20 14 BINARY(4) Number of modification entries

24 18 BINARY(4) Add object if it does not exist

28 1C CHAR(36) Reserved

 CHAR(*) Publishing agent name

 CHAR(*) Object RDN

Modification entries:

0 0 BINARY(4) Displacement to next entry

4 4 BINARY(4) Change type

8 8 BINARY(4) Displacement to attribute entries

12 C BINARY(4) Number of attribute entries

Attribute entries:

0 0 BINARY(4) Displacement to next entry

4 4 BINARY(4) Displacement to attribute name

8 8 BINARY(4) Length of attribute name

12 C BINARY(4) Displacement to attribute values

16 10 BINARY(4) Number of attribute values

20 14 BINARY(4) Attribute value data type

24 18 CHAR(8) Reserved

 CHAR(*) Attribute name

Attribute values:

0 0 BINARY(4) Displacement to next value

4 4 BINARY(4) Displacement to attribute value

8 8 BINARY(4) Length of attribute value

12 C CHAR(4) Reserved

 CHAR(*) Attribute value

POBJ0400 Format

This format is used to change the relative distinguished name (RDN) of an object in the directory server.

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to publishing agent name

4 4 BINARY(4) Length of publishing agent name

8 8 BINARY(4) Offset to object RDN

12 C BINARY(4) Length of object RDN

16 10 BINARY(4) Offset to new object RDN

20 14 BINARY(4) Length of new object RDN

24 18 BINARY(4) Delete old RDN

28 1C CHAR(36) Reserved

 CHAR(*) Publishing agent name

 CHAR(*) Object RDN

 CHAR(*) New object RDN

Field Descriptions

Add object if it does not exist. Create the object if a request is made to modify an object that does not
exist. The following values may be specified:

0 Do not create the object if it does not exist.

1 Create the object if it does not exist. All required attributes for the object must be specified on the
API in order for the object to be successfully created.

Attribute name. The name of a directory object attribute. This field is specified in UCS-2 (CCSID 13488).

Attribute value. The value of a directory object attribute.

Attribute value data type. The type of data for the attribute values. The following values may be
specified.

1 The attribute values are specified in UCS-2 (CCSID 13488).

2 The attribute values contain binary data.

3 The attribute values contain integer data.

4 The attribute values contain boolean data.

Change type. The type of change being made to a directory object. The following values may be specified:

1 Add a new attribute

2 Delete an attribute

3 Replace an attribute

4 Add an attribute if it does not exist

5 Add an attribute value if it does not exist

6 Delete an attribute if it exists

7 Delete an attribute value if it exists

Delete directory subtree. The directory object and any child directory objects should be deleted. The
following values may be specified:

0 Do not delete the directory subtree. Only the directory object itself will be deleted.

1 Delete the directory subtree.

2 Delete the directory subtree. The root of the subtree will not be deleted.

Delete old RDN. The old relative distinguished name (RDN) of a directory object should be deleted. The
following values may be specified:

0 Do not delete the old RDN. The old RDN attribute value will be retained as an attribute of the object.

1 Delete the old RDN.

Displacement to attribute entries. The displacement, in bytes, from the start of the current entry to the
attribute entries.

Displacement to attribute name. The displacement, in bytes, from the start of the current entry to the
attribute name field.

Displacement to attribute value. The displacement, in bytes, from the start of the current entry to the
attribute value field.

Displacement to attribute values. The displacement, in bytes, from the start of the current entry to the
attribute values.

Displacement to next entry. The displacement, in bytes, from the start of the current entry to the next
entry in the input data.

Displacement to next value. The displacement, in bytes, from the start of the current value to the next
value in the input data.

Length of attribute name. The length, in Unicode characters, of the attribute name field.

Length of attribute value. The length of the attribute value field. If the attribute value is specified in
UCS-2 (CCSID 13488), this is the length in Unicode characters. If the attribute value contains binary data,
this is the length in bytes. If the attribute value contains integer or boolean data, this field must contain the
value 4.

Length of new object RDN. The length, in Unicode characters, of the new object RDN field.

Length of object RDN. The length, in Unicode characters, of the object RDN field.

Length of publishing agent name. The length, in Unicode characters, of the publishing agent name field.

New object RDN. The new relative distinguished name (RDN) of the directory object. This field is
specified in UCS-2 (CCSID 13488).

Number of attribute entries. The number of attribute entries.

Number of attribute values. The number of attribute values.

Number of modification entries. The number of modification entries.

Object RDN. The relative distinguished name (RDN) of the directory object being published. This name,
combined with the publishing point specified during configuration, form a distinguished name (DN). This
field is specified in UCS-2 (CCSID 13488). For example, if the publishing point is 'O=ACME Corp.,
C=US' and the object RDN is 'CN=Bart', the object DN to be published is 'CN=Bart, O=ACME Corp.,
C=US'.

Offset to attribute entries. The offset, in bytes, from the start of the input data area to the attribute entries.

Offset to modification entries. The offset, in bytes, from the start of the input data area to the modification
entries.

Offset to new object RDN. The offset, in bytes, from the start of the input data area to the new object RDN
field.

Offset to object RDN. The offset, in bytes, from the start of the input data area to the object RDN field.

Offset to publishing agent name. The offset, in bytes, from the start of the input data area to the
publishing agent name field.

Publishing agent name. The agent making the publishing request. This determines where in the directory
the object will be published. The publishing agent information must be configured using the
QgldChgDirSvrA API before calling this API. This field is specified in UCS-2 (CCSID 13488).

Reserved. A reserved field. This field must be set to binary zero.

Error Messages

Message ID Error Message Text

CPFA314 E Memory allocation error.

CPFB802 E The caller of the API must have *ALLOBJ special authority.

CPFB803 E Publishing agent &1 is not configured or has been disabled.

CPFB805 E Value specified in input data is not valid.

API Introduced: V4R4

Top | Directory Services APIs | APIs by category

Retrieve Directory Server Attributes
(QgldRtvDirSvrA)

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Error code I/O Char(*)

 Default Public Authority: *USE

 Library Name/Service Program: QSYS/QGLDUAPI

 Threadsafe: No

The Retrieve Directory Server Attributes (QgldRtvDirSvrA) API retrieves information about the directory
server configuration. It can be used to retrieve information about:

General server properties●

Encrypted communications configuration. The Secure Sockets Layer (SSL) is used for encrypted
communications.

●

Performance settings●

Auditing settings●

Authorities and Locks

No OS/400 authority is required for all formats.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable to receive output data. See Format of Output Data for a description of the format of
the output data associated with a specific format name.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable area.

Format name

INPUT; CHAR(8)

The format name identifying the type of information to be retrieved. The possible format names
follow:

RSVR0100 Basic server configuration

RSVR0400 Attributes for publishing users in an LDAP directory

RSVR0700 Server auditing information

See Format of Output Data for a description of these formats.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Output Data

For details about the format of the output data, see the following sections. For details about the fields in
each format, see Field Descriptions.

RSVR0100 Format

This format is used to retrieve basic server configuration information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Version

12 C BINARY(4) Read only

16 10 BINARY(4) Server is replica

20 14 BINARY(4) Security

24 18 BINARY(4) Unencrypted port number

28 1C BINARY(4) Encrypted port number

32 20 BINARY(4) Current cipher protocols

36 24 BINARY(4) Installed cipher protocols

40 28 BINARY(4) Search time limit

44 2C BINARY(4) Search size limit

48 30 BINARY(4) Maximum connections

52 34 BINARY(4) Reserved

56 38 BINARY(4) Referral port

60 3C BINARY(4) Password format

64 40 BINARY(4) Offset to referral server

68 44 BINARY(4) Length of referral server

72 48 BINARY(4) Offset to administrator distinguished name (DN)

76 4C BINARY(4) Length of administrator DN

80 50 BINARY(4) Offset to update DN

84 54 BINARY(4) Length of update DN

88 58 BINARY(4) Reserved

92 5C BINARY(4) Reserved

96 60 BINARY(4) Offset to database path

100 64 BINARY(4) Length of database path

104 68 BINARY(4) Reserved

108 6C BINARY(4) SSL authentication method

112 70 BINARY(4) Number of database connections

116 74 BINARY(4) Schema checking level

120 78 BINARY(4) Offset to master server URL

124 7C BINARY(4) Length of master server URL

128 80 BINARY(4) Change log indicator

132 84 BINARY(4) Maximum number of change log entries

136 88 BINARY(4) Terminate idle connections

140 8C BINARY(4) Kerberos authentication indicator

144 90 BINARY(4) Offset to Kerberos key tab file

148 94 BINARY(4) Length of Kerberos key tab file

152 98 BINARY(4) Kerberos to DN mapping indicator

156 9C BINARY(4) Offset to Kerberos administrator ID

160 A0 BINARY(4) Length of Kerberos administrator ID

164 A4 BINARY(4) Offset to Kerberos administrator realm

168 A8 BINARY(4) Length of Kerberos administrator realm

172 AC BINARY(4) Event notification registration indicator

176 B0 BINARY(4) Maximum event registrations for connection

180 B4 BINARY(4) Maximum event registrations for server

184 B8 BINARY(4) Maximum operations per transaction

188 BC BINARY(4) Maximum pending transactions

192 C0 BINARY(4) Transaction time limit

196 C4 BINARY(4) ACL model

200 C8 BINARY(4) Level of authority integration

204 CC BINARY(4) Offset to projected suffix

208 D0 BINARY(4) Length of projected suffix

 CHAR(*) Referral server

 CHAR(*) Administrator DN

 CHAR(*) Update DN

 CHAR(*) Database path

 CHAR(*) Master server URL

 CHAR(*) Kerberos key tab file

 CHAR(*) Kerberos administrator ID

 CHAR(*) Kerberos administrator realm

 CHAR(*) Projected suffix

RSVR0400 Format

This format is used to retrieve the attributes for publishing users in an LDAP directory. User information
from the system distribution directory can be published to an LDAP server by the Synchronize System
Distribution Directory to LDAP (QGLDSSDD) API and from iSeries Navigator. The publishing attributes
define how to publish user information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Offset to server name

12 C BINARY(4) Length of server name

16 10 BINARY(4) LDAP port number

20 14 BINARY(4) Connection type

24 18 BINARY(4) Offset to parent distinguished name.

28 1C BINARY(4) Length of parent distinguished name.

CHAR(*) Server name

CHAR(*) Parent distinguished name.

RSVR0700 Format

This format is used to retrieve server auditing configuration information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Security audit option for objects

Field Descriptions

ACL model. The ACL model that is being used. The following special values may be returned:

0 The ACL model being used supports access-class level permissions. This is the ACL model the
directory server used prior to V5R1M0.

1 The ACL model being used supports both access-class level permissions and attribute-level ACL
permissions.

Administrator DN. A distinguished name (DN) that has access to all objects in the directory. This field is
specified in UCS-2 (CCSID 13488).

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Change log indicator. The indicator of whether a change log exists for entries that have been added,
changed and deleted. The following values may be returned:

0 No, a change log does not exist

1 Yes, a change log exists

Connection type. The type of connection to use to the LDAP server. The following values may be
returned:

1 Nonsecure

2 Secured, using SSL

Current cipher protocols. The cipher protocols that the server allows when using encrypted connections.
The value is the sum of zero or more of the following values:

0x0100 Triple Data Encryption Standard (DES) Secure Hash Algorithm (SHA) (U.S.)

0x0200 DES SHA (U.S)

0x0400 Rivest Cipher 4 (RC4) SHA (U.S.)

0x0800 RC4 Message Digest (MD) 5 (U.S.)

0x1000 RC2 MD5 (export)

0x2000 RC4 MD5 (export)

0x4000 Advanced Encryption Standard (AES) SHA (U.S.)

Database path. The integrated file system path name of the library containing the directory database. This
field is specified in UCS-2 (CCSID 13488).

Encrypted port number. The port number to use for encrypted connections. The standard port number for
encrypted connections is 636.

Event notification registration indicator. Indicator of whether to allow client to register for event
notification. The following special values may be returned:

0 Do not allow clients to register for event notification.

1 Allow clients to register for event notification.

Installed cipher protocols. The cipher protocols installed on the system. Refer to the current cipher

protocols field for a description of the values.

Kerberos administrator ID. The name of the Kerberos administrator. This field is specified in UCS-2
(CCSID 13488). The following special value may be returned:

*NONE No value is specified.

Kerberos administrator realm. The realm in which the kerberos administrator is registered. This field is
specified in UCS-2 (CCSID 13488). The following special value may be returned:

*NONE No value is specified.

Kerberos authentication indicator. The following special values may be returned:

0 Do not support Kerberos authentications.

1 Support Kerberos authentications.

Kerberos key tab file. The integrated file system path name for the key tab file that contains the server's
secret key used for authentication. This field is specified in UCS-2 (CCSID 13488). The following special
value may be returned:

*NONE No value is specified.

Kerberos to DN mapping indicator.

0 Map the Kerberos ID to pseudo DN. A pseudo DN can be used to uniquely identify an LDAP user
object of the form 'ibm-kerberosName=principal@realm' or 'ibm-kn=principal@realm'.

1 Use associated DN in directory. The LDAP server will attempt to find an entry in the directory that
contains the kerberos principle and realm as one of its attributes. Once found, this DN will then be
used to determine the client's authorizations to the directory.

LDAP port number. The LDAP server's TCP/IP port.

Length of administrator DN. The length, in Unicode characters, of the administrator DN field.

Length of database path. The length, in Unicode characters, of the database path field.

Length of Kerberos administrator ID. The length, in Unicode characters, of the Kerberos Administrator
ID field.

Length of Kerberos administrator realm. The length, in Unicode characters, of the Kerberos
administrator realm field.

Length of Kerberos key tab file. The length, in Unicode characters, of the Kerberos key tab file field.

Length of master server URL. The length, in Unicode characters, of the master server URL field.

Length of parent distinguished name. The length, in Unicode characters, of the parent distinguished
name field.

Length of projected suffix. The length, in Unicode characters, of the projected suffix field

Length of server name. The length, in Unicode characters, of the server name field.

Length of referral server. The length, in Unicode characters, of the referral server field.

Length of update DN. The length, in Unicode characters, of the update DN field.

Level of authority integration. The level of OS/400 authority integration to use to determine if a
distinguished name (DN) can become an LDAP administrator. The following special values may be
specified:

0 Do not apply 'Directory Services Administrator' (QIBM_DIRSRV_ADMIN) function identifier to
bound distinguished names to determine LDAP administrators.

1 Allow bound distinguished names that refer directly to user profiles to become LDAP administrators
if the user profile is identified in the 'Directory Services Administrator' (QIBM_DIRSRV_ADMIN)
function identifier.

Master server URL. The uniform resource locator (URL) of the master server. This field is specified in
UCS-2 (CCSID 13488). The following special value may be returned:

*NONE No value is specified.

Maximum connections. Returns the maximum number of simultaneous connections that can be
established with the server.

Starting with V5R1M0, this field is no longer supported and the value returned is 0. The following special
value may be returned:

0 Do not limit the number of connections.

Maximum event registrations for connection. The following special values may be returned:

0 Do not limit the number of event registrations for connection.

Maximum event registrations for server. The following special values may be returned:

0 Do not limit the number of event registrations for server.

Maximum number of change log entries. The maximum number of change log entries that can be stored.
If the maximum is reached, the change log entries will be deleted starting with the oldest entry. This value
only valid if 'Change log indicator' is set to 1. The following special values may be returned:

0 The number of change log entries is not limited.

Maximum operations per transaction. The maximum number of operations that are allowed for each
transaction. Transaction support allows a group of directory changes to be handled as a single transaction.

Maximum pending transactions. The maximum number of pending transactions allowed. Transaction
support allows a group of directory changes to be handled as a single transaction.

Number of database connections. The number of database connections used by the server.

Offset to administrator DN. The offset, in bytes, from the start of the receiver variable to the administrator
DN field.

Offset to database path. The offset, in bytes, from the start of the receiver variable to the database path
field.

Offset to Kerberos administrator ID. The offset, in bytes, from the start of the input data area to the

Kerberos administrator ID field.

Offset to Kerberos administrator realm. The offset, in bytes, from the start of the input data area to the
Kerberos administrator realm field.

Offset to Kerberos key tab file. The offset, in bytes, from the start of the input data area to the Kerberos
key tab file field.

Offset to master server URL. The offset, in bytes, from the start of the receiver variable to the master
server URL field.

Offset to parent distinguished name. The offset, in bytes, from the start of the receiver variable to the
parent distinguished name field.

Offset to projected suffix. The offset, in bytes, from the start of the input data area to the projected
suffix field.

Offset to referral server. The offset, in bytes, from the start of the receiver variable to the referral server
field.

Offset to server name. The offset, in bytes, from the start of the receiver variable to the server name field.

Offset to update DN. The offset, in bytes, from the start of the receiver variable to the update DN field.

Parent distinguished name. The parent distinguished name for published objects. For example, if the
parent distinguished name is 'ou=rochester, o=ibm, c=us', a published directory object for user John Smith
might be 'cn=john smith, ou=rochester, o=ibm, c=us'. This field is specified in UCS-2 (CCSID 13488).

Password format. The format of the encrypted password. The following values may be returned:

1 Unencrypted.

2 SHA. (Default)

3 MD5.

4 Crypt (The password is one-way hashed using a modified DES algorithm. The 'crypt' algorithm
originally was used by many UNIX operating systems for password protection.)

Projected suffix. The suffix under which all projected objects for this server reside including user and
group profiles. This field is specified in UCS-2 (CCSID 13488).

Read only. Whether the directory server allows changes to be made to the directory contents. The
following values may be returned:

0 The directory server is not read only. Updates are allowed to the directory.

1 The directory server is read only. Updates are not allowed to the directory.

Referral port. An optional port number to be returned to a client when a request is made for a directory
object that does not reside on this server. The referral port and referral server together are used to form a
referral URL. The following special value may be returned:

0 The LDAP port is not specified, the client should use the default LDAP port.

Referral server. The IP name of a server to return to a client when a request is made for a directory object
that does not reside on this server. This field is specified in UCS-2 (CCSID 13488). The referral port and

referral server are used together to form a referral URL. The following special value may be returned:

*NONE No value is specified.

Reserved. A reserved field. This field must be set to zero.

Schema checking level. The level of schema checking performed by the server. The following values may
be returned:

0 None.

1 LDAP version 2.

2 LDAP version 3 strict.

3 LDAP version 3 lenient.

Search size limit. The maximum number of entries that the server will return for a given search request.
The following special value may be returned:

0 Do not limit the number of entries returned.

Search time limit. The maximum time, in seconds, that the server will spend performing a given search
request. The following special value may be returned:

0 Do not limit the search time.

Security. Whether the server is to use encrypted connections. The following values may be returned:

0 Allow unencrypted connections only.

1 Allow encrypted connections only.

2 Allow both encrypted and unencrypted connections.

Note: SSL is used for encrypted connections to the server.

Security audit option for objects. When the QAUDCTL system value is set to *OBJAUD, then object

auditing can be done in the directory. See the iSeries Security Reference book for information about
Directory Services auditing. The following special values may be returned:

0 Do not do object auditing of the directory objects.

1 Audit changes to directory objects.

2 Audit all access to directory objects. This includes search, compare and change.

Server is replica. Whether the server is a master server or a replica server. The following values may be
returned:

0 The server is a master server for the directory suffixes present on the server.

1 The server is a replica server for the directory suffixes present on the server.

Server name. The name of the server. This field is specified in UCS-2 (CCSID 13488).

SSL authentication method. The method used during SSL authentication. The following values may be
returned:

1 Server authentication.

3 Server and client authentication.

Terminate idle connections. The server will terminate idle connections when necessary. The following
values may be returned:

0 Do not terminate idle connections.

1 Terminate idle connections.

Note: Starting with V5R1M0, this field is no longer supported and the value returned is 0.

Transaction time limit. The maximum time, in seconds, that the server will spend performing a transaction
request. Transaction support allows a group of directory changes to be handled as a single transaction.

Unencrypted port number. The port number to be used for unencrypted connections. The standard port
number is 389.

Update DN. The distinguished name that the master server must use when propagating directory updates to
this replica server. This field is specified in UCS-2 (CCSID 13488). The following value may be returned:

*NONE No value is specified.

Use encrypted connections. Whether this server should use encrypted connections when making updates
to the replica server. The following values may be returned:

0 Use unencrypted connections.

1 Use encrypted connections.

Version. Returns the version of the LDAP server.

Error Messages

Message ID Error Message Text

CPFA314 E Memory allocation error.

GLD0215 E Server has not been configured.

API Introduced: V4R3

Top | Directory Services APIs | APIs by category

Synchronize System Distribution Directory to
LDAP (QGLDSSDD)

 Required Parameter Group:

1 Option Input Char(10)
2 LDAP user ID Input Char(1024)
3 LDAP user ID password Input Char(128)
4 No longer used Input Char(1024)
5 No longer used Input Char(128)
6 Error Code I/O Char(*)

 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Synchronize System Distribution Directory to LDAP (QGLDSSDD) API publishes system distribution
directory entries to an LDAP directory and keeps the LDAP directory synchronized with changes made in
the system distribution directory. The following users from the system distribution directory are published:

Local users●

Remote users that have been added to the local system and have a Simple Mail Transfer Protocol
(SMTP) address

●

The system distribution directory users that are not published are:

Shadowed users●

Remote users that do not have a SMTP address●

The Directory Services property page must be set up. In V4R4 and later, users are automatically published
when you set up users in the Directory Services property page for the LDAP server to publish under. Prior
to V4R4, this API (QGLDSSDD) must be called regularly to publish the users because publishing users is
not automatic prior to V4R4. See Usage Notes for the procedures for setting up the Directory Services
property page.

If you are using SSL, the SSL key database information is configured using Digital Certificate Manager.
See Usage Notes for information on accessing the Digital Certificate Manager.

When using a V4R4 or later iSeries Navigator client to publish users to a V4R4 or later server, the
following no longer applies because this is done automatically. The synchronization is restricted to one
LDAP server and one distinguished name to publish to. If you need to change the LDAP server or
distinguished name that the system distribution directory information gets published to, first end the
synchronization (using option value *END). Then change the LDAP server attributes from iSeries
Navigator or from the Change Directory Server Attributes (QgldChgDirSrvA) API. You can then use
option *ALL to initialize all the system distribution directory data to the new LDAP server or distinguished
name.

Before users can be published, the host and domain name must be set using the Change TCP/IP Domain
(CHGTCPDMN) command. The keywords that must be set are HOSTNAME and DMNNAME.

LDAP uses the distinguished name (dn) as the key for the user. For the system distribution directory entries
in LDAP, the distinguished name is the common name (cn) combined with the distinguished name that
LDAP is being published to. See Distinguished Name (dn) and Common Name (cn) for more information.

Note that if changes are made in the LDAP directory, these changes are not synchronized back to the
system distribution directory.

Some entries are automatically prevented from being published to LDAP. They are the *ANY system
distribution directory entries and some other entries that are IBM-supplied starting with Q (QSECOFR,
QDOC, QSYS, QDFTOWN, QUSER for example). A specific user can be prevented from being published
to LDAP by doing the following:

Add the user-defined field QREPL QLDAP to the system distribution directory. This needs to be
done only once per system.

CHGSYSDIRA USRDFNFLD((QREPL QLDAP *ADD *DATA 4))

1.

Specify *NO as the value for the QREPL QLDAP user-defined field for those users that you do not
want to replicate to LDAP. Any other value or absence of the QREPL QLDAP user-defined field
will replicate the user. It is recommended that you either leave the QREPL QLDAP value blank or
specify *YES if you want the user to be replicated.

For example, using Work with Directory Entries (WRKDIRE), option 1 to add a user or option 2 to
change a user, press the F20 key to specify user-defined fields. When using the ADDDIRE or
CHGDIRE commands, specify USRDFNFLD((QREPL QLDAP *NO)) to prevent the user from
being replicated.

2.

If the user is already replicated to LDAP, and *NO is specified in the QREPL QLDAP user-defined
field, then the user will be deleted from the LDAP directory. Likewise, if the value of the QREPL
QLDAP user-defined field is changed to anything but *NO, then the user will be added to the
LDAP directory.

3.

As an administrator, you must understand some additional items that are needed to synchronize the system
distribution directory to LDAP. These include the following:

inetOrgPerson and publisher object classes used in synchronization.●

How the system distribution directory fields map to LDAP attributes.●

What is a distinguished name and common name and why they are important for synchronization.●

How the OS/400 user profile field is used in LDAP.●

See Directory Services (LDAP): Question and Answers for additional information on publishing users.

inetOrgPerson and publisher Object Class

If your LDAP server is not on OS/400, you must ensure that the inetOrgPerson and publisher object classes
are defined in the schema file of the server. The inetOrgPerson object class is used in LDAP to store the
system distribution directory information. The publisher object class requires a new attribute,

publisherName. See SecureWay Directory Schema for documentation on the inetOrgPerson and
publisher object class.

System Distribution Directory to LDAP Mapping

The system distribution directory entry is published to the LDAP directory by using the inetOrgPerson
object class. The following table describes the mapping of system distribution directory fields to attributes
of the inetOrgPerson object class.

Table 1: System Distribution Directory Fields Mapped to LDAP Attributes

System Distribution Directory Field LDAP Attribute

User profile UID

Descriptions description

Last name sn (surname), cn (common name)

First name givenName, cn (common name)

Preferred name cn (common name)

Full name cn (common name)

User ID cn (common name)

Department departmentNumber

Job title title

Telephone number 1 & 2 telephoneNumber

FAX telephone number facsimileTelephoneNumber

Office roomNumber

Address lines 1-4 registeredAddress

SMTP name mail

If the field is blank in the system distribution directory, then the attribute is not created in LDAP for that
user, with the following exceptions:

Last name: If last name is blank, then the user ID is used in the LDAP directory for the surname
(sn) attribute.

●

SMTP name: When a user has a SMTP name, the SMTP userID (SMTPAUSRID) and SMTP
domain (SMTPDMN), or SMTP route (SMTPRTE) is used in the following format:
SMTPAUSRID@SMTPDMN or SMTPRTE if they just have a route. For local users, if the SMTP
name is blank, then the User ID and address fields are used for the mail attribute in the format
'UserID?Address@Domain'. Domain is the value specified on the Change TCP/IP Domain
(CHGTCPDMN) command and the '?' is the default SMTP User ID delimiter value specified on the
Change SMTP Attributes (CHGSMTPA) command.

●

Distinguished Name (dn) and Common Name (cn)

LDAP uses the distinguished name (dn) as the key for the user. For the system distribution directory entries
in LDAP, the distinguished name is the common name (cn) combined with the distinguished name that
LDAP is being published to.

The user will have the following common names in LDAP. The first nonblank one will be used in the
distinguished name:

'First name' 'Middle Name' 'Last name'1.

'Preferred name' 'Last name'2.

'Full name'3.

'UserID'4.

For example, if a user has the following field values in the system distribution directory,

First name: Jonathan●

Middle name: T.●

Preferred name: John●

Last name: Smith●

Full name: Smith, John T.●

User ID: JSMITH●

the user will have the following common names (cn):

cn=Jonathan T. Smith●

cn=John Smith●

cn="Smith, John T."●

cn=JSMITH●

If the distinguished name that LDAP is being published to is 'ou=chicago,o=acme,c=us', then the
distinguished name of this user is 'cn=Jonathan T. Smith,ou=chicago,o=acme,c=us' using the first cn in the
list. The cn value is enclosed in quotation marks if it contains a comma, pound sign, plus sign, equal sign,
less than or greater than sign, or a semicolon. Leading blanks from the system distribution directory fields
are removed for the cn value. For example, if the first name is ' Jane', the cn value will use 'Jane'. Also, the
system distribution directory field values containing quotation marks will not be used when deriving the cn
values as described above.

Attention: If you have two users in the system distribution directory that will resolve to the same
distinguished name, they will overlay each other in the LDAP directory. Sometimes overlaying names is
what you want if you are merging multiple system distribution directories into one LDAP directory. If you
have different users with the same name, ensure they have different distinguished names to prevent
overlaying each other.

This API can run on other OS/400 systems to synchronize the system distribution directory on those
systems to the same LDAP server and distinguished name being published to. If you have the same user on
multiple OS/400 systems, they will become one user in the LDAP directory. The distinguished name (dn)
identifies the user. Note that you can run this API from multiple OS/400 systems to different directory
servers or to the same directory server, but different distinguished name that LDAP is being published to.
You may want to do this if you would like to ensure that information from different system distribution
directories does not overlay each other.

User Profile (UID) for OS/400 Users

For local users, the user profile field is used to set the UID attribute in the LDAP directory. This API does
not publish passwords for security reasons. Therefore, when the LDAP server is on an OS/400, the UID
attribute is used to see if that user exists on the OS/400. The password is verified with the password that is
passed from the client.

If you are publishing the system distribution directory information to a different OS/400 or to a system that
is not an OS/400, then you will need to set the userPassword attribute for those users that you want to
access the LDAP directory. You would set the userPassword attribute for the user after you use the

QGLDSSDD API to publish the system distribution directory users. The following shows a client command
from a UNIX shell that is used to set the userPassword attribute of two users:

ldapmodify -h ldapserver -f /path/filename
 -D cn=Admin -w password

The ldapserver is the server name that was configured in the Directory Services system property. The
/path/filename file contains the distinguished name and password for the users. An example file with two
user entries would be:

dn:cn=Jonathan T. Smith,ou=chicago,o=acme,c=us
changetype: modify
replace: userPassword
userPassword:secret

dn:cn=Barb Jones,ou=chicago,o=acme,c=us
changetype: modify
replace: userPassword
userPassword:secret

Authorities and Locks

*ALLOBJ and *IOSYSCFG special authority is required to use this API.

Required Parameter Group

Option

INPUT; CHAR(10)

The option to use for publishing system distribution directory information to the LDAP directory.
The valid values are:

*ALL All the local users and all the remote users that have been added from this system and
that have an SMTP name will be replicated from the system distribution directory to
the LDAP directory. The LDAP directory is on the LDAP server specified in the
Directory Services dialog of iSeries Navigator. These users will be placed in the
LDAP tree under the distinguished name that is specified in the Directory Services
dialog. See Table 1 for information concerning the system distribution directory fields
that will be used in the LDAP directory.

The *ALL option value also sets up the necessary objects needed to synchronize the
system distribution directory changes to the LDAP directory after the LDAP directory
is replicated.

You must request the *ALL option value first, but it can be specified more than once.
For example, to reload the LDAP directory, you would use the *CHG option value to
send any pending changes to the LDAP directory followed by the *ALL option value.
If you change which LDAP server or distinguished name you want the system
distribution directory entries to be replicated to, you can use the *ALL option value to
replicate to that server or distinguished name.

*CHG The system distribution directory entries that were added, changed, removed, or
renamed since the *ALL or previous *CHG option value was used are updated in the
LDAP directory.

Changes made to the system distribution directory users in the LDAP directory are
overwritten by changes made in the system distribution directory for the attributes
listed above. All other attributes of inetOrgPerson that are changed in LDAP by using
an LDAP client are not overwritten by the *CHG option value.

*END End the synchronization of the system distribution directory to LDAP.

If the LDAP user ID is passed in, then this first synchronizes any changes from the
system distribution directory to the LDAP directory since the last synchronization
request. For example,

CALL PGM(QSYS/QGLDSSDD)
PARM(*END 'LDAPuserID' 'LDAPpassword' 0 0 0)

If the LDAP user ID is not passed in, then the synchronization is just ended and the
changes left in the queue from the last synchronization request are not published. For
example,

CALL PGM(QSYS/QGLDSSDD)
 PARM(*END 0 0 0 0 0)

The users in the LDAP directory where publishing is being ended are not deleted.
They are left in the LDAP directory. Changes made to the system distribution
directory after publishing is ended are no longer queued.

To start replication again after this value is used, call this API with the *ALL option
value. A *CHG option value will result in an error.

*RESET Ensures that all the objects exist for this replication function and clears the queue that
keeps track of the changes made to the system distribution directory.

Specify zero for the LDAP user ID, LDAP user ID password, key database file, and
key database password when you use this value. For example,

CALL PGM(QSYS/QGLDSSDD)
 PARM(*RESET 0 0 0 0 0)

LDAP user ID

INPUT; CHAR(1024)

The LDAP user ID that has administrator authority to add, change, and remove entries in the LDAP
entry. The valid values are:

*CFG Use the configured LDAP user ID that can be specified when publishing users (using
iSeries Navigator). To use kerberos authentication, you must configure publishing users
to authenticate using kerberos. When *CFG is specified for LDAP user ID, then
depending on what has been configured to authenticate for users will be used whether
that is an administrator ID and password or kerberos.

See Usage Notes for the procedure of configuring the Directory Services property page.
If the Directory Services property page is not configured, and the *CFG value is passed,
then error GLD0310 with reason code 12 is signalled. If a value is passed in other than
*CFG and kerberos authentication was configured, then error GLD0310 will occur.

A null-terminated string containing the LDAP user ID that has administrator authority to add,
change, and remove entries in the LDAP entry.

An example user ID is cn=Admin. Specify a zero-length string if the LDAP server does
not require authority checking or the option value *RESET is specified.

LDAP user ID password

INPUT; CHAR(128)

The password for the LDAP user ID. The valid values are:

*CFG Use the configured LDAP user ID password that can be specified when publishing users
(using iSeries Navigator). Specify *CFG if kerberos authentication was configured.

See Usage Notes for the procedure of configuring the Directory Services property page.
If the Directory Services property page is not configured, and the *CFG value is passed,
then error GLD0310 with reason code 12 is signalled. If a value is passed in other than
*CFG and kerberos authentication was configured, then error GLD0310 will occur.

A null-terminated string containing the password for the LDAP user ID.

Specify a zero-length string if the LDAP server does not require authority checking or
the option value *RESET is specified.

No longer used (Formerly 'Key database file')

INPUT; CHAR(1024)

Specify zero (0) as a placeholder for this parameter as it is no longer used.If a value is specified, it
will be ignored for compatibility reasons. If you need SSL key database information configured, it
is now configured using Digital Certificate Manager. See Usage Notes below for more information
on Digital Certificate Manager.

No longer used (Formerly 'Key database password')

INPUT; CHAR(128)

Specify zero (0) as a placeholder for this parameter as it is no longer used.If a value is specified, it
will be ignored for compatibility reasons. If you need SSL key database information configured, it
is now configured using Digital Certificate Manager. See Usage Notes below for more information
on Digital Certificate Manager.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Note: All character data is assumed to be represented in the CCSID (coded character set identifier)
currently in effect for the job. If the CCSID of the job is 65535, the data is assumed to be represented in the
default CCSID of the job.

Usage Notes

If the system distribution directory field values for two users result in the same distinguished name, then
these names will overlay each other in the LDAP directory. To ensure this does not happen when not
intended, you must have unique names for your users before you synchronize the system distribution
directory to an LDAP directory.

Use the Convert SMTP Names (CVTNAMSMTP) command if you have not already done so to convert the
Simple Mail Transfer Protocol (SMTP) fields to the system distribution directory. The SMTP information
is loaded when the option value *ALL is used from this API. If, however, you do not do CVTNAMSMTP
when you change the SMTP information using the Work with Names for SMTP (WRKNAMSMTP)
command, those changes do not go to the LDAP directory. After you use the CVTNAMSMTP command,
the SMTP name is in the system distribution directory in the user-defined fields SMTPAUSRID SMTP,
SMTPDMN SMTP, and SMTPRTE SMTP. When these fields are updated by using the system distribution
directory commands (WRKDIRE, ADDDIRE, CHGDIRE), then LDAP is kept synchronized. If you cannot
do CVTNAMSMTP, then the other option is to periodically use the option value *ALL to reload the LDAP
directory to update all the system distribution directory information including the SMTP information.

Synchronization Procedure

A procedure of synchronizing the system distribution directory with an LDAP directory is as follows:

The Directory Services property page for the LDAP server to publish to must be set up. Use iSeries
Navigator, select 'Properties' of the system, and then 'Directory Services'. In V4R4 and later,
Directory Services will bring up a list of information to publish. Select 'Users' from this list to
configure this information. If your iSeries Navigator or system is prior to V4R4, then just the
Directory Services properties are set and no list is displayed.

The LDAP server to publish to must be specified and must exist. The distinguished name to publish
under must be specified and must be one the server supports. All the users in the system
distribution directory will be placed under the distinguished name (DN) that is specified.

See the Directory Services (LDAP) topic for more information on using iSeries Navigator to
configure the system properties for Directory Services.

Configuring the Directory Services property also can be done using the Change Directory Server
Attributes (QgldChgDirSrvA) API.

1.

If you are synchronizing the system distribution directory to an LDAP server that is not on an
OS/400, then you need to ensure that the inetOrgPerson and publisher object classes are defined in
the schema file for the server. The publisher object class requires a new attribute, publisherName,

so be sure publisherName is also defined in a schema file. See SecureWay Directory Schema
for documentation on the inetOrgPerson and publisher object class.

2.

Ensure the TCP/IP host and domain name are set. Use the Change TCP/IP Domain3.

(CHGTCPDMN) command and prompt by using F4.

Use Change SMTP Attribute (CHGSMTPA) command to set the user ID delimiter value. You can
keep the default set to '?'. Be sure you press Enter so the SMTP attributes are created.

4.

If you need SSL certificate information configured, it is configured using Digital Certificate
Manager. You can get to Digital Certificate Manager from iSeries Navigator under 'Network -
Internet - Digital ID'.

5.

If you are on V4R4 or later, and selected 'Users' in the list when configuring Directory Services
property page, then the system distribution directory users will automatically be published to LDAP
and you will not need to do the following step. You could optionally call it to reinitialize system
distribution directory data to an LDAP server if needed.

Call the Synchronize System Distribution Directory to LDAP API with the *ALL option value. For
example, from the command line, type:

CALL PGM(QSYS/QGLDSSDD)
 PARM(*ALL 'LDAPuserID' 'LDAPpassword' 0 0 0)

The LDAP user ID must have sufficient authority to add, change, and remove entries in the LDAP
directory.

If you have the LDAP user ID and password configured in the Directory Services property page,
you can call the API using *CFG. For example, from the command line, type:

CALL PGM(QSYS/QGLDSSDD)
 PARM(*ALL *CFG *CFG 0 0 0)

For security reasons, it is recommended that you call this API using the *CFG option if the call is
being logged in a job log.

6.

If you are on V4R4 or later, and selected 'Users' in the list when configuring Directory Services
property page, then the system distribution directory users will automatically be published to LDAP
and you will not need to do the following step (although you can optionally call it manually).

Periodically call QGLDSSDD to synchronize the LDAP directory with the system distribution
directory. The command to synchronize the LDAP directory is:

CALL PGM(QSYS/QGLDSSDD)
 PARM(*CHG 'LDAPuserID' 'LDAPpassword' 0 0 0)

If you have the LDAP user ID and password configured in the Directory Services property page,
you can call the API using *CFG. For example, from the command line, type:

CALL PGM(QSYS/QGLDSSDD)
 PARM(*CHG *CFG *CFG 0 0 0)

For security reasons, it is recommended that you call this API using the *CFG option if the call is
being logged in a job log.

The CL program can be run from a job schedule entry to automatically run with scheduled
frequency. Use the Add Job Schedule Entry (ADDJOBSCDE) command or the Work with Job
Schedule Entries (WRKJOBSCDE) command to automatically schedule jobs.

7.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

GLD0301 E Error encountered when accessing the LDAP Directory Server.

GLD0302 E Input option *CHG currently unavailable.

GLD0303 E The caller of this API must have &1 and &2 special authorities.

GLD0304 E Unable to export the system distribution directory entry &1 &2 to the LDAP Directory
Server.

GLD0305 C Synchronization between the system distribution directory and the LDAP directory server
completed.

GLD0309 E Value not valid for input parameter &1.

GLD0310 E Error occurred with QGLDSSDD API. Reason code &1.

GLD0311 E Input parameter &1 is not valid. Reason code &2.

GLD0312 D Error encountered when setting up a secure connection to an LDAP server. The error
number is &1.

API introduced: V4R3

Top | Directory Services APIs | APIs by category

	Directory Services APIs (V5R2)
	Table of Contents
	Directory Services APIs
	LDAP API Overview
	LDAP Version Support
	Accessing Schema Information
	API Prototype Changes
	LDAP Deprecated APIs
	LDAP Client API Error Conditions
	Controls for LDAP APIs
	APIs
	ldap_abandon()--Abandon an LDAP Operation in Progress
	ldap_abandon_ext()--Abandon (abort) an Asynchronous Operation with Controls
	ldap_add()--Perform an LDAP Add Operation
	ldap_add_ext()--Perform an LDAP Add Operation with Controls
	ldap_add_ext_s()--Perform an LDAP Add Operation with Controls (Synchronous)
	ldap_add_s()--Perform an LDAP Add Operation (Synchronous)
	ldap_app_ssl_client_init_np()--Initialize the LDAP Client for a Secure Connection using DCM
	ldap_app_ssl_init_np --Initializes a SSL Connection.
	ldap_app_ssl_start_np()--Start a Secure LDAP Connection using DCM
	ldap_ber_free()--Free storage allocated by the LDAP library
	ldap_bind()--Perform an LDAP Bind Request
	ldap_bind_s()--Perform an LDAP Bind Request (Synchronous)
	ldap_compare()--Perform an LDAP Compare Operation
	ldap_compare_ext()--Perform an LDAP Compare Operation with Controls
	ldap_compare_ext_s()--Perform an LDAP Compare Operation with Controls (Synchronous)
	ldap_compare_s()--Perform an LDAP Compare Operation (Synchronous)
	ldap_controls_free()--Free storage allocated by the LDAP library
	ldap_control_free()--Free storage allocated by the LDAP library
	ldap_count_attributes()--Retrieve Count of Attributes for an LDAP Entry
	ldap_count_entries()--Retrieve Count of LDAP Entries
	ldap_count_messages()--Count messages in a result chain
	ldap_count_references()--Count continuation reference in a result chain of search results
	ldap_count_values()--Retrieve Count of Attribute Values
	ldap_count_values_len()--Retrieve Count of Binary Attribute Values
	ldap_default_dn_get()-- Retrieve the User's Default DN
	ldap_default_dn_set()-- Store the User's Default DN
	ldap_delete()--Perform an LDAP Delete Operation
	ldap_delete_ext()--Perform an LDAP Delete Operation with Controls
	ldap_delete_ext_s()--Perform an LDAP Delete Operation with Controls
	ldap_delete_s()--Perform an LDAP Delete Operation (Synchronous)
	ldap_dn2ufn()--Convert a Distinguished Name into a User Friendly Name
	ldap_enetwork_domain_get()-- Retrieve the User's Default eNetwork Domain Name
	ldap_enetwork_domain_set()-- Store the User's Default eNetwork Domain Name
	ldap_err2string()--Retrieve LDAP Error Message String
	ldap_explode_dn()--Break a Distinguished Name into Its Components
	ldap_explode_dns()--Break a DNS-style Distinguished Name into Its Components
	ldap_explode_dn_utf8()--Break a UTF8 codepage Distinguished Name into Its Components
	ldap_explode_rdn()--Break a Relative Distinguished Name into Its Components
	ldap_explode_rdn_utf8()--Break a UTF8 codepage Relative Distinguished Name into Its Components
	ldap_extended_operation()--Perform extended operations.
	ldap_extended_operation_s()--Perform extended operations synchronously
	ldap_first_attribute()--Retrieve First Attribute in an Entry
	ldap_first_entry()--Retrieve First LDAP Entry
	ldap_first_message()--Retrieve First LDAP Message
	ldap_first_reference()--Retrieve First Continuation Reference in a Chain of Search Results
	ldap_free_urldesc()--Free an LDAP URL Description
	ldap_get_dn()--Retrieve the Distinguished Name of an Entry
	ldap_get_entry_controls_np()--Extract Server Controls from an Entry
	ldap_get_errno()--Retrieve Error Information
	ldap_get_iconv_local_codepage()-- Get the Active LDAP Code Page
	ldap_get_lderrno()--Retrieve Error Information
	ldap_get_locale()-- Get Active LDAP Locale
	ldap_get_option()--Retrieve LDAP Options
	ldap_get_values()--Retrieve a Set of Attribute Values from an Entry
	ldap_get_values_len()--Retrieve a Set of Binary Attribute Values
	ldap_init()--Perform an LDAP Initialization Operation
	ldap_is_ldap_url()--Verify LDAP URL
	ldap_memfree()--Free Memory Allocated by LDAP API
	ldap_modify()--Perform an LDAP Modify Entry Request
	ldap_modify_ext()--Perform an LDAP Modify Entry Request with Controls
	ldap_modify_ext_s()--Perform an LDAP Modify Entry Request with Controls
	ldap_modify_s()--Perform an LDAP Modify Entry Request (Synchronous)
	ldap_modrdn()--Perform an LDAP Modify RDN Request
	ldap_modrdn_s()--Perform an LDAP Modify RDN Request (Synchronous)
	ldap_mods_free()--Free LDAP Modify Storage
	ldap_msgfree()--Free LDAP Result Message
	ldap_msgid()--Retrieve the Message ID Associated with an LDAP Message
	ldap_msgtype()--Retrieve the Type of an LDAP Message
	ldap_next_attribute()--Retrieve Next Attribute in an Entry
	ldap_next_entry()--Retrieve Next LDAP Entry
	ldap_next_message()--Retrieve Next LDAP Message
	ldap_next_reference()--Retrieve the next Continuation Reference in a Chain of Search Results
	ldap_open()--Perform an LDAP Open Operation
	ldap_parse_extended_result()--Parse extended result
	ldap_parse_reference_np()--Extract Information from a Continuation Reference
	ldap_parse_result()--Extract Information from Results
	ldap_parse_sasl_bind_result()--Extract Server Credentials from SASL Bind Results
	ldap_perror()--Print LDAP Error Information
	ldap_rename()--Asynchronously Rename an Entry
	ldap_rename_s()--Synchronously Rename an Entry
	ldap_result()--Retrieve Result of an Asynchronous LDAP Operation
	ldap_result2error()--Retrieve LDAP Error Information
	ldap_sasl_bind()--Perform an LDAP SASL Bind Request
	ldap_sasl_bind_s()--Perform an LDAP SASL Bind Request (Synchronous)
	ldap_search()--Perform an LDAP Search Operation
	ldap_search_ext --Asynchronously Search the Directory Using Controls
	ldap_search_ext_s --Synchronously Search the Directory Using Controls
	ldap_search_s()--Perform an LDAP Search Operation (Synchronous)
	ldap_search_st()--Perform an LDAP Search Operation (Timed Synchronous)
	ldap_server_conf_save()-- Store Server Information into Local Configuration
	ldap_server_free_list()-- Free the List of LDAP Servers
	ldap_server_locate()-- Locate Suitable LDAP Servers
	ldap_set_iconv_local_charset()-- Set the Active LDAP Character Set
	ldap_set_iconv_local_codepage()-- Set the Active LDAP Code Page
	ldap_set_lderrno()--Set Error Information
	ldap_set_locale() -- Change the Locale Used by LDAP
	ldap_set_option() -- Set LDAP Options
	ldap_set_rebind_proc()--Set Rebind Procedure
	ldap_simple_bind()--Perform a Simple LDAP Bind Request
	ldap_simple_bind_s()--Perform a Simple LDAP Bind Request (Synchronous)
	ldap_ssl_client_init --Initializes the SSL Library.
	ldap_ssl_init --Initializes an SSL Connection.
	ldap_ssl_start()--Start a Secure LDAP Connection
	ldap_unbind()--Perform an LDAP Unbind Request
	ldap_unbind_ext()--Perform an LDAP Unbind Request
	ldap_unbind_s()--Perform an LDAP Unbind Request (Synchronous)
	ldap_url_parse()--Parse an LDAP URL string
	ldap_url_parse_utf8()--Parse a UTF8 codepage LDAP URL string
	ldap_url_search()--Perform an LDAP URL Search Operation
	ldap_url_search_s() -- Perform an LDAP URL Search Operation (Synchronous)
	ldap_url_search_st()--Perform an LDAP URL Search Operation (Timed Synchronous)
	ldap_value_free()--Free Memory Allocated by ldap_get_values()
	ldap_value_free_len()--Free Memory Allocated by ldap_get_values_len()
	ldap_version -- Obtain LDAP Version and SSL Cipher Information
	ldap_xlate_local_to_unicode()-- Convert String From the Local Code Page to UCS-2 (or UNICODE) Encoding
	ldap_xlate_local_to_utf8()-- Convert String From the Local Code Page to UTF-8 Encoding
	ldap_xlate_unicode_to_local() -- Convert String From the UCS-2 (or UNICODE) Encoding to Local Code Page
	ldap_xlate_utf8_to_local() -- Convert String From the UTF-8 Encoding to Local Code Page
	Configure Directory Server (QgldCfgDirSvr)
	Change Directory Server Attributes (QgldChgDirSvrA)
	Export LDIF File (QgldExportLdif)
	Import LDIF File (QgldImportLdif)
	List Directory Server Attributes (QgldLstDirSvrA)
	Publish Directory Object (QgldPubDirObj)
	Retrieve Directory Server Attributes (QgldRtvDirSvrA)
	Synchronize System Distribution Directory to LDAP (QGLDSSDD)

