Debugger APIs (V5R2)

Table of Contents

Debugger APIs
o Using source debugger APIs

« How acompiler uses the APIsto generate debug data for ILE programs

« How asource debugger uses the APIsto debug ILE or OPM programs

« Source Debugger APIs (Integrated Language Environment (ILE) APIs)
o Debug Session Contraol APIs

= APIs
= Change Current Thread (QteChangeCurrentThread)

= Change Thread Status (QteChangeT hreadStatus)

= End Source Debug (QteEndSourceDebug)

= #*Register Service Entry Point Stop Handler (QteRegSrvEntPntStpHdlr)<
= Retrieve Debug Attribute (QteRetrieveDebugAttribute)

= Retrieve Debugged Threads (QteRetrieveDebuggedThreads)

= Retrieve Module Views (QteRetrieveM oduleViews())

= Retrieve Source Path Name (QteRetrieveSourcePathName)

= Set Debug Attribute (QteSetDebugAttribute)

= Start Source Debug (QteStartSourceDebug())

= Stop Debugged Job (QteStopDebuggedJob)

= EXxit Programs
= Debug Session Handler

= Program Stop Handler
= #Service Entry Point Stop Handler
o Create View APIs
= Add View Description (QteAddViewDescription)
= Add View File (QteAddViewFile)
= AddView Map (QteAddViewMap)
= Add View Text (QteAddViewText)
= End View Creation (QteEndViewCreation)
= Start View Creation (QteStartViewCreation)
o View Information APIs
= Map View Position (QteMapViewPosition())

Reqgister Debug View (QteRegisterDebugView)

Remove Debug View (QteRemoveDebugView)

Retrieve Statement View (QteRetrieveStatementView)

Retrieve Stopped Position (QteRetrieveStoppedPosition)

Retrieve View File (QteRetrieveViewFile)

Retrieve View Line Information (QteRetrieveViewLinelnformation)

Retrieve View Text (QteRetrieveViewText())

o Fast-path Debugger APIs

= Add Breakpoint (QteAddBreakpoint)

Remove All Breakpoints (QteRemoveAllBreakpoints)

Remove Breakpoint (QteRemoveBreakpoint)

= Step (QteStep)
o Submit Debug Command API

o Dump Module Variables API

« Retrieve Program Variable API (Original program model (OPM) API)

Debugger APIs

The Debugger APIs can be used for program debugging on the server. The Debugger APIsinclude:
« Source Debugger APIs (Integrated Language Environment (ILE) APIs)

« Retrieve Program Variable API (Original program model (OPM) API)

The debugger API user can use these APIs independently of each other or together as needed. For general
information about the integrated language environment, seethe ILE Concggts@‘ book.

Select one of the following for more information:
» Using source debugger APIs

« How acompiler uses the APIsto generate debug data for ILE programs

« How asource debugger uses the APIsto debug ILE or OPM programs

APIs by category

Using Source Debugger APIs

The Source Debugger APIs can be used to write debuggers for the i Series. The users of these APIsinclude:

« The source debugger that is shipped with the OS/400 licensed program. A sour ce debugger isa
tool for debugging Integrated Language Environment (ILE) programs or original program model
(OPM) programs by displaying a representation of their source code.

« Any other debugger that IBM or a business partner writes.

Debugger functions are designed to help you write and maintain your applications. Y ou can run your
programsin a special testing environment while closely observing and controlling the processing of these
programs in the testing environment. Y ou can write a debugger application that interacts with the APIs
provided in this chapter, or you can use the debugger provided with the system.

No specia commands specifically for testing are contained in the program being tested. The same program
being tested can run normally without changes. All debugger APIs must be called within the job in which
the Start Debug (STRDBG) command isissued. The debugger APIs should not be called from within the
program being tested. With the debugger APIs provided, you interact with your programs symbolicaly in
the same terms as the high-level language (HLL) in the program. Y ou refer to variables by their names and
to locations as the line and the column within aview. In addition, the debugger functions are only
applicable to the job in which they are set up. The same program can be used at the same time in another
job without being affected by the debugger functions set up.

Debugger APIs| APIs by category

How a compiler uses the APIs to generate
debug data for ILE programs

To enable source-level debugging of ILE programs, view information must be stored with the compiled
program. The ILE compilers use the Create View APIsto create view information. This information is then
available to source-level debugger applications through the Source Debugger APIs.

Thefirst API that is called isthe Start View Creation (QteStartViewCreation) API, which is used to
initialize the debug view creation environment.

The views being created are described by the Add View Description (QteAddViewDescription) API.
Examples of views created by a compiler are text views (for example, the input source) and listing views
(for example, acompiler output listing). A parameter passed back by this API is the view number, whichis
used by subsequent APIsto identify the view being processed.

Thetext of aview comes from files (for example, the input source file to the compiler) or supplied text (for
example, macro expansion text). The supplied text is stored with the view information in the program
object. Thefiletext is copied at source debugging time when the text isretrieved. Thus, the view
information stored for the file text contains references to the files containing the text and not the text itself.
Thefilesto be used in aview are described by use of the Add View File (QteAddViewFile) API.

The Add View Text (QteAddViewText) API isused to describe how the text for aview is constructed. The

view text can be composed of pieces of text, which are concatenated together when the text is retrieved,
according to the instructions specified through this API.

The Add View Map (QteAddViewMap) API isused to map positions in one view to positions in another
view. Thisis necessary to be able to relate positions in one view to equivalent positionsin another view. In
some cases a map can be generated automatically without using this API (see QteAddViewDescription
API). Other maps may need to be supplied to allow certain source debugger functions such as breakpoint
processing, in which the breakpoint parameters are supplied by the system in terms of the statement view
only.

When the view creation processing is complete, acal to the End View Creation (QteEndViewCreation)
APl isrequired.

To use aCreate View AP, the application must bind to the service program QTECRTVSin QSYS. All
Create View API functions are then available to the application.

Top | Debugger APIs | APIs by category

How a source debugger uses the APIs to
debug ILE or OPM programs

The Start Debug command has a parameter, SRCDBGPGM, that specifies which program is called when an
ILE or OPM program is debugged. The system calls this program, indicating that the debug session isto
begin. It also calls this program when the user wants to show the Display Module Source display. When
OPM programs are to be debugged, the additional OPMSRC(* Y ES) parameter must be specified on the
Start Debug command.

When the system calls the source debugger program, indicating the start of a debug session, that program
uses source debugger APIsto perform debug functions. The first API that is called isthe Start Source

Debug (QteStartSourceDebug) API, which indicates to the system that a source debugger is running.

When an ILE program is debugged, the Retrieve Module Views (QteRetrieveModuleViews) APl isused to

obtain information about the views available in the modules of that program. For an OPM program,
information about the views available for that program is obtained. These views previously were created by
the compiler by using the create view APIsfor ILE programs. For OPM programs, the views were created
by using OPTION(* SRCDBG) or OPTION(*LSTDBG) on the appropriate OPM language create program
command. The OPM CL, COBOL, and RPG languages are supported by the source debugger APIs. A view
istext that is displayed by the source debugger. A module may have several views, depending on the debug
data supplied by the compiler of that module. OPM programs always have a statement view, and either a
source or listing view, depending on the OPM compiler option selected. See the appropriate language
reference manual to determine which views are available.

To be debugged, a module has to have at |east one view: the statement view. A statement view isa
low-level view that contains information about each high-level statement in that module. Thisview is not
meant to be displayed, although there istext associated with that view. The information in the statement
view text can be used by the source debugger to determine the following:

» Procedure name
« Statement number
« Statement type associated with any high-level language statement in the module

The source debugger application uses the Register Debug View (QteRegisterDebugView) API to register

the views of a program. Once these views are registered, various debug operations can be performed against
these views. These operations include:

« Retrieving the text associated with the views
« Adding abreakpoint to the program at a certain location in aview

« Displaying variables that are defined in the program

The source debugger application usesthe Retrieve View Text (QteRetrieveViewText) API to retrieve the

text of aview. Every view has text associated with it that can be retrieved using the QteRetrieveViewText
API.

When a program is being debugged and it stops at a breakpoint, the system indicates that it has stopped by
calling the Program-Stop Handler exit program. This program is passed a line number in the statement view
where the program being debugged has stopped.

The Map View Position (QteMapViewPosition) APl is used to map positionsin one view to positionsin
another view. For example, if the source debugger currently is displaying a source view in amodule, and a
breakpoint occurs, the Program-Stop Handler exit program is called. This program is passed aline number
in the statement view of that module, which indicates at which statement the program has stopped. To show
the position in the source view where the program has stopped, the application maps the statement view

position to a source view pasition. This mapping function is made possible by maps, which are created by
the ILE compiler using the create view APIs, or by the debug data, which is created by OPM compilers.

When the debug session is over, the source debugger application issues the End Source Debug
(QteEndSourceDebug) API, which removes all ILE and OPM programs from debug mode. No source
debugger APIs can be issued until the source debug session is ended with the End Debug Command and
started again with the Start Debug command.

The Create View APIsrequire the application to bind to the service program QTECRTVSin library QSYS.
All other Source Debugger APIs require the application to bind to the service program QTEDBGS in
library QSY S. All source debugger API functions are then available to the application.

For a coding example of how to write a source debugger, see Using Source Debugger APIsin the API
examples.

Top | Debugger APIs | APIs by category

Source Debugger APIs

The source debugger APIs are divided into the following functional areas:

Debug Session Control APIs

Create View APIs

View Information APIs

Fast-path Debugger APIs

Submit Debug Command API, which allows a program to issue debug language statements. Debug

language statements permit programs to enter breakpoints, run one or more statements of a program
being debugged, and evaluate expressions. Debug commands are a part of the API that takes on
free-form expressions. They are referred to as the debug language that the the program may supply
to the source debugger support.

Dump Module Variables API, which gets alist of all the variable names and current values of those
variables.

Debugger APIs| APIs by category

Debug Session Control APIs

Debug session control APIs are used to start the source debug session, determine which programs, modules,
and views are referenced, and control certain attributes of the debug environment.

The Debug Session Control APIs are;

Change Current Thread (QteChangeCurrentThread) changes the current thread to any thread being
debugged.

Change Thread Status (QteChangeThreadStatus) changes the debug status for threads being
debugged.

End Source Debug (QteEndSourceDebug) takes the job out of debug mode.

#Register Service Entry Point Stop Handler (QteRegSrvEntPntStpHdir) registers a special event
handler to handle Service Entry breakpoint events.<%

Retrieve Debug Attribute (QteRetrieveDebugAttribute) retrieves the attributes of the source debug
Session.

Retrieve Debugged Threads (QteRetrieveDebuggedThreads) retrieves information for threads being
debugged.

Retrieve Module Views (QteRetrieveM oduleViews()) returns to the caller the list of modules and
views that are associated with a specific ILE or OPM program.

Retrieve Source Path Name (QteRetrieveSourcePathName) returns the full source path name for a
Java sourcefile.

Set Debug Attribute (QteSetDebugAttribute) sets the attributes of the source debug session.
Start Source Debug (QteStartSourceDebug()) enables your session to use the source debugger.

Stop Debugged Job (QteStopDebuggedJob) causes debug to halt all threads being debugged in a
job.

Debug session control exit programs are used to process breakpoints and start, stop, and display screens
within the source debug session. The debug session control exit programs are:

Debug Session Handler manages the source debugger, telling it when to start, stop, and display its
screens. This program is registered on the Start Debug Command.

Program Stop Handler is registered on the Start Source Debug API. This program is called by the
source debugger support when an ILE or OPM program stops at a breakpoint or for other reasons.

#»Service Entry Point Stop Handler is a user-written program that handles the service entry point
program-stop condition. <%

Top | Debugger APIs | APIs by category

Change Current Thread
(QteChangeCurrentThread) API

Required Parameter Group:

1 Thread ID Input Char(8)
2 Error code /0 Char(*)

Default Public Authority: *USE
Service Program: QTETHRD

Threadsafe: No

The Change Current Thread (QteChangeCurrentThread) API changes the current thread to any thread being
debugged.

Note: A job may have severa threads, each of which are debugged if the job is debugged.
By default, the current thread is the initial thread of the debugged job, or the thread at a
debug stop.

A current thread has several properties that distinguish it from other threads being debugged:

« Debug commands are runin this thread.

« Thisisthefirst thread released after areturn to the base debug support after a debug stop
(breakpoint, step, watch, or unmonitored exception).

« If there are multiple debug stops at the same time, this thread is the first one processed.

Before the current thread can be changed the new current thread must be stopped or halted and is waiting
for debug to restart it. If thisis not true, an error isreturned to the API caller and the current thread is not
changed.

Threads debugging is supported if aservice job is used to debug a job that was spawned by native threads
support. If thisis not the debug environment present when this API is called, a CPF958B error is returned.

Required Parameter Group

Thread ID
INPUT; CHAR(8)

Thisis an 8-byte handle assigned by the system.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

Message | D Error Message Text

CPF3CF1E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9541 E Not in debug mode.

CPF9549 E Error addressing API parameter.

CPF9589 E Thread &1 not stopped or halted.

CPF958A E Thread &1 not found.

CPF958B E Threads debugging not supported.

API Introduced: V4R2

Top | Debugger APIs| APIs by category

Change Thread Status
(QteChangeThreadStatus) API

Required Parameter Group:

1 Thread debug status Input Char(10)
2 Thread array Input Array of
Char(8)
3 Number of threads Input Binary(4)
4 Error code 1/0 Char(*)

Service Program: QTETHRD

Threadsafe: No

The Change Thread Status (QteChangeThreadStatus) API changes the debug status for threads being
debugged.

Note: A job may have severa threads, each of which are debugged if the job is debugged.

By default, the current thread isthe initial thread of the debugged job, or the thread at a

debug stop.
Before the debug status of athread can be changed, the thread must be stopped or halted by debug support.
If any thread specified in the thread array has not been stopped or halted by debug support, an error is
returned to the API caller and the debug status of all threads is unchanged.

Threads debugging is supported if aservice job is used to debug ajob that was spawned by native threads
support. If thisis not the debug environment present when this APl is called, a CPF958B error is returned.

Authorities and Locks

None

Required Parameter Group

Thread debug status
INPUT; CHAR(10)

The desired debug status for the thread identifiers specified in the thread array parameter. The valid
debug status values are:

*ENABLE Enable the specified threads.
*DISABLE Disable the specified threads.

Thread array
INPUT; ARRAY OF CHAR(8)

The thread identifiers for which debug status is changed. Each thread identifier in the thread array
is 8 bytes long. The number of thread identifiersis specified in the number of threads parameter.

If the number of threads parameter is minus one, the first and only thread array parameter must be a
special value. In this case, all other thread array parameters are ignored. Valid special values are:

*ALL The debug status for all threadsis changed to the debug status specified in the thread
debug status parameter.

Number of threads
INPUT; BINARY (4)
The number of thread identifiers provided in the thread array parameter. The number of threads
parameter must be greater than zero or aminus one. If it has avalue of minus one, the first and only

thread array parameter must be a special value. If it is greater than zero, the number specified isthe
number of thread array parameters that must be provided.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF3CI1EE Required parameter & 1 omitted.
CPF3CF1 E Error code parameter not valid.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPFO%41 E Not in debug mode

CPFO549 E Error addressing APl parameter.
CPF958A E Thread &1 not found.

CPF958B E Threads debugging not supported.
CPF958C E Number of threads not valid.
CPF959B E Thread status value not valid.
CPF959C E Thread array special value not valid.
CPF959D E Thread status cannot be changed.

API Introduced: V4R3

Top | Debugger APIs | APIs by category

End Source Debug (QteEndSourceDebug) API

Required Parameter Group:
1 Error code /0 Char(*)

Default Public Authority: *USE
Service Program: QTEDBGS

Threadsafe: No

The End Source Debug (QteEndSourceDebug) API is used to end the source debug support. All ILE and
OPM programs being debugged under the source debug support are removed from debug mode. All
registered views to programs being debugged are no longer valid.

Required Parameter

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF3CF1lE Error code parameter not valid.

CPF3CF2E Error(s) occurred during running of &1 API.
CPF9541 E Not in debug mode.

CPF9549 E Error addressing API parameter.

API Introduced: V2R3

Top | Debugger APIs| APIs by category

»Register Service Entry Point Stop Handler
(QteRegSrvEntPntStpHdIr) API

Required Parameter Group:

1 Quadlified program name Input Char(20)
2 Error Code /0 Char(*)

Service Program Name: QTEDBGS
Default Public Authority: * USE

Threadsafe: No

The Register Service Entry Point Stop Handler API registers aspecial event handler to handle Service
Entry breakpoint events. The Start Source Debug (QteStartSourceDebug) APl must be called before this
API can beissued.

Authorities and Locks

Program Authority
*EXECUTE

Library Authority
*EXECUTE

Required Parameter Group

Qualified program name
INPUT; CHAR(20)

The name of the exit program that is called when a service entry point is encountered.

The first 10 characters contain the program name. The second 10 characters contain the name of the
library in which the program is located. Both entries must be |eft-justified.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message I D Error Message Text

CPF3CF1 Error code parameter not valid.

CPF3CF2 Errors occurred during running of API.

CPF9541 Not in debug mode.

CPF9549 Error addressing APl parameter.

CPF9803 Cannot allocate object in library.

CPF9809 Library cannot be accessed.

CPF9810 Library not found.

CPF9811 Programin library not found.

CPF9820 Not authorized to use library.

CPF9821 Not authorized to program in library.
&

API introduced: V5R2

Top | Debugger APIs| APIs by category

Retrieve Debug Attribute
(QteRetrieveDebugAttribute) API

Required Parameter Group:

1 Debug attribute Input Char(10)
2 Attribute value Output Char(10)
3 Error code /10 Char(*)

Service Program: QTEDBGS

Threadsafe: No

The Retrieve Debug Attribute (QteRetrieveDebugAttribute) API is used to retrieve the attributes of the
source debug session. These attributes may be any of the following:

« Default attributes established when the debug session was started
« Attributes changed with the Set Debug Attribute API

« Attributes changed by the Change Debug (CHGDBG) command

The attributes of the debug environment cannot be retrieved unlessthe job is currently in debug mode.

Required Parameter Group

Debug attribute
INPUT; CHAR(10)

The name of the debug environment attribute that is retrieved. The valid values for this parameter
are:

*UPDPROD Retrieves the value of the update production files attribute.
*DEBUGJOB Retrieves anindicator of which job is being debugged.
*OPMSRC Retrieves the value of the OPM source debug attribute.

Attribute value
OUTPUT; CHAR(10)

The current value of the attribute identified in the debug attribute parameter.

When the debug attribute parameter contains * UPDPROD, the attribute value parameter can have
one of the following values:

*YES Allow the updating of production files while in debug mode.

*NO Do not allow the updating of production files while in debug mode.

When the debug attribute parameter contains * DEBUGJOB, the attribute value parameter can have
one of the following values:

*LOCAL The debug session is debugging programs that run in the job in which thisAPI is
running.

*REMOTE The debug session is debugging programs that run in the job specified in the Start
Service Job (STRSRVJOB) command.

When the debug attribute parameter contains * OPM SRC, the attribute value parameter can have
one of the following values:

*YES Allow OPM programs that have source debug data to be debugged by using the ILE debug
APIs.

*NO Do not allow OPM programs to be debugged by using the ILE debug APIs.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message I D Error Message Text

CPF3CF1E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9541 E Not in debug mode.

CPF9549 E Error addressing API parameter.

CPF9559 E Debug attribute parameter not valid.

API Introduced: V2R3

Top | Debugger APIs | APIs by category

Retrieve Debugged Threads
(QteRetrieveDebuggedThreads) API

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format hame Input Char(8)

4 Thread array Input Array of
Char(8)

5 Number of threads Input Binary(4)

6 Error code /10 Char(*)

Service Program: QTETHRD

Threadsafe: No

The Retrieve Debugged Threads (QteRetrieveDebuggedThreads) API retrieves information for threads
being debugged.

Note: A job may have several threads, each of which is debugged if the job is debugged.
By default, the current thread isthe initial thread of the debugged job or the thread at a
debug stop.

Information about the requested threads is returned in the receiver variable. This allows the writer of a
debugger to maintain and control alist of threads that are being debugged. If this API is processed when
threads are active, the information returned by the APl may no longer be accurate. Check the job status flag
to see what state the job was in when the API was processed.

Threads debugging is supported if aservice job is used to debug a job that was spawned by native threads
support. If thisis not the debug environment present when this API is called, a CPF958B error is returned.

Authorities and Locks

None

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The receiver variable that receives the information requested. Y ou can specify the size of this area
to be smaller than the format requested as long as you specify the length parameter correctly. Asa
result, the API returns only the data the area can hold. For more information, see Format of

Receiver Variable. Entries are only returned in their entirety. The API never returns anything less.

If thereis not enough space for the entire entry, that entry is not returned and bytes available and
bytes returned are not equal.

Length of receiver variable
INPUT; BINARY (4)
The length of the receiver variable. The length of receiver variable parameter may be specified up
to the size of the receiver variable specified in the user program. If the length of receiver variable

parameter specified is larger than the allocated size of the receiver variable in the user program, the
results are not predictable. The minimum length is 8 bytes.

Format name
INPUT; CHAR(8)

The content and format of the information returned in the receiver variable. The possible format
names are:

THDLO100 Basic thread debug information.
THDLO0200 Extended thread debug information.

Thread array
INPUT; ARRAY OF CHAR(8)
The thread identifiers (IDs) for which debug information is returned. In the thread array parameter,
thread 1Ds are specified and debug information about the requested threads is returned in the

receiver variable. Each thread identifier in the thread array is 8 byteslong. The number of thread
identifiersis specified in the number of threads parameter.

If the number of threads parameter is minus one, the first thread array parameter must be a specia
value. In this case, all other thread array parameters areignored. Valid specia values are:

*ALL Thread debug information for all threads is returned.
*CURRENT Thread debug information for the current thread is returned.
*INITIAL Thread debug information for theinitial thread is returned.
*ENABLE Thread debug information for all enabled threadsis returned.
*DISABLE Thread debug information for all disabled threads is returned.

Number of threads
INPUT; BINARY (4)

The number of thread identifiers provided in the thread array parameter. The number of threads
parameter must be greater than zero or minus one. If it has avalue of minus one, the first and only
thread array parameter must be a special value. If it is greater than zero, the number specified isthe
number of thread array parameters that must be provided.

Error code
1/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Receiver Variable

The following receiver variable formats are returned based on the format name parameter:

THDLO0100 Format

The following table shows the format of the receiver variable for the THDL 0100 format. For more

information on the fields, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

[8 [8 [CHAR® [Jobstausflag

[9 | 9 [CHAR®) |Reserved

| 12 | C |BINARY(4) |Offsetto thread records

| 16 | 10 |BINARY(4) |Number of thread records
| 20 | 14 |BINARY(4) |Sizeof thread record

| | |ICHAR(*) |Reserved

Note: The following fields repeat the number of times specified in the number of

thread records field.

| | [CHAR®) |[Thread ID

| | ICHAR(1) |Current thread flag

| | [CHAR(D) |initial thread flag

| | |ICHAR(1) |Thread run state

| | ICHAR(1) | Thread debug status

THDLO0200 Format

The following table shows the format of the receiver variable for the THDL 0200 format. For more

information on the fields, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

[8 [8 [CHAR®M [Jobstausflag

[9 | 9 [CHAR®) |Reserved

| 12 | C |BINARY(4) |Offsetto thread records

| 16 | 10 |BINARY(4) |Number of thread records
| 20 | 14 |BINARY(4) |Sizeof thread record

| | |ICHAR(*) |Reserved

Note: The following fields repeat the number of times specified in the number of
thread records field.

| | |CHAR(8) |Thread ID

| | ICHAR(1) |Current thread flag

| | |CHAR(1) |Initia| thread flag

| | |ICHAR(1) |Thread run state

| | ICHAR(1) | Thread debug status

| | |CHAR(3) |R%erved

| | |ICHAR(1) |top of stack flag

| | IBINARY(4) |Statement view ID stopped in

| | IBINARY(4) |Linein statement view stopped in

Field Descriptions

Bytes available. The number of bytes of data available to be returned to the user.
Bytesreturned. The number of bytes of data returned to the user.

Current thread flag. Whether the thread is the current thread or not. Possible values are:

0 Thethread is not the current thread.
1 Thethread isthe current thread.

Initial thread flag. Whether the thread is the initial thread or not. Possible values are:

0 Thethread is not theinitial thread.
1 Thethreadistheinitial thread.

Job statusflag. The status of the job when the API was processed.

0 Thejob isstopped by debug. The information returned by this API is accurate.

1 Thejobisrunning and has not been stopped by debug (for example, breakpoint, step, watch, or
unmonitored exception). If threads are running it is not possible for debug to present a stable
debugging environment. The information returned by this APl may no longer be accurate.

Linein statement view stopped in. If the thread is stopped in a module that has been registered under
debug, thisisthe line number in the modul€e's statement view where the thread is stopped. See the statement
view ID stopped in field for more information. Thisfield is only applicable for the current thread. If the
thread being returned is not the current thread then this field will contain a-1.

Number of thread records. The number of thread records that are returned in the receiver variable. Each
record has the same format, and is repeated in the receiver variable.

Offset to thread records. The offset in bytes from the start of the receiver variable to the first requested
thread information record.

Reserved. Anignored field.

Size of thread record. The number of bytes occupied by each thread record.

Statement view I1D stopped in. Theview ID of apreviously registered debug statement view. It isthe
statement view 1D of the highest module found on the call stack that has been registered under debug. If no
statement views on the stack are registered, the thread is not stopped by debug, or if the thread is not the
current thread a value of -1 isreturned.

Thread debug status. The debug status of the thread.

0 Thethread is disabled.
1 Thethread is enabled.

Thread ID. Thisis an 8-byte thread handle assigned by the system.

Thread run state. The debug run status of the thread.

0 Thethread isrunning.

1 Thethread is currently stopped at a breakpoint, step, watch or unmonitored exception. When this
happens all other threads are halted.

2 Thisisathread that was halted by debug because of a debug stop that occurred in one of the debugged
job'sthreads. The reason for stopping or halting al threadsisto provide a static debugging
environment.

Top of stack flag. Whether the stopped view ID is at the top of the call stack or not. Possible values are:

blank Thisis not the current thread. Thisfield is only applicable for the current thread.
0 Theview ID isnot at the top of the call stack.
1 Theview ID is at the top of the call stack.

Error Messages

Message I D Error Message Text

CPF3C19E Error occurred with receiver variable specified.
CPF3CIEE Required parameter &1 omitted.

CPF3C21 E Format name & 1 is not valid.

CPF3C24 E Length of the receiver variableis not valid.
CPF3CF1E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9541 E Not in debug mode.

CPF9549 E Error addressing APl parameter.

CPF958A E Thread &1 not found.

CPF958B E Threads debugging not supported.

CPF958C E Number of threads not valid.

CPF958E E Thread array special value not valid.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V4R2

Top | Debugger APIs| APIs by category

Retrieve Module Views
(QteRetrieveModuleViews) API

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format hame Input Char(8)

4 Qualified program name Input Char(20) or
Char(*)

5 Program type Input Char(10)

6 Module name Input Char(10) or
Binary(4)

7 Returned library name Output Char(10) or
Char(*)

8 Error code /0 Char(*)

Service Program: QTEDBGS

Threadsafe: No

The Retrieve Module Views (QteRetrieveMaoduleViews) APl is used to return alist of modules and views
associated with a specified program to the caller of the API. Thelist includes al of the following:

« All modules bound to the program that can be debugged

» Every view (by number and type) that was created by the compiler when the module object was
created

« Viewscreated by the OPM RPG, OPM COBOL, and OPM CL compilers using the * SRCDBG and
*LSTDBG options

« Viewscreated by the JAVA language support in OS/400

If you specify amodule name, alist of views for that module is returned. If you specify * ALL for the
module name, the list includes all modules for a given program.

The module name parameter must be specified as either * ALL or blanks for OPM programs. The statement
view and a source view (or the statement view and alisting view) are always returned. The module name
field isreturned as blanks.

This API also supports JAVA class file debug views. In this case the program type parameter must be
*CLASS and the qualified program name parameter must be a null-terminated JAV A class file name. The
class path name of the file that contains the JAVA classfileisreturned in the returned library name
parameter. For JAVA, the module name parameter must be specified as abinary field that contains the
number of bytes provided in the returned library name field for JAV A class path hame information.

Information returned by the Retrieve Module Views AP is used by the calling program as input parameters
to the Register Debug View API. Every module returned has at least one view associated with it. Thisisthe

statement view. It can be assumed that any additional views returned have text associated with them, and
source debug can be done on these modules.

Authorities

The authorities required are dependent on the program type parameter. If the program type is * PGM or
*SRVPGM, the authorities are as follows;

Program Authority
Either * SERVICE and *USE, or *CHANGE

Library Authority
*USE

If the program typeis * CLASS, the authorities are as follows:
Class File Authority
*R

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
A variable that is to receive the information requested. Y ou can specify the size of this areato be
smaller than that needed to hold the information. In this case, only part of the information is

returned. However, the number of bytesthat the APl needsto return all of theinformation is still
returned.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable. The minimum length is 8 bytes.

It is suggested that alength of 8 be passed to the API, which fillsin the first two fields of the
receiver variable. One of the fields, bytes available, indicates how much space must be provided.
This space can then be obtained, and a second call to the API can be made.

Format name
INPUT; CHAR(8)

The content and format of the module view information that is returned. The only valid value for
this parameter is:

VEWL0100 Module view information. For more information, see VEWL 0100 Format.

Qualified program name
INPUT; CHAR(20) or CHAR(*)

The format of this parameter is dependent on the program type parameter. If the program typeis
*PGM or * SRVPGM, the format of this parameter is as follows:

o The name of a program about which module and view information is listed.
o Thefirst 10 characters contain the program name.
o The second 10 characters contain the name of the library where the program can be located.

o Both entries must be left-justified.

The following special values may be used for the library name:

*CURLIB Thejob's current library.
*LIBL Thelibrary list.

If the program typeis * CLASS, the format of this parameter is as follows:

The null-terminated class file name of the JAVA class.
Program type
INPUT; CHAR(10)

Thetype of program for which aview isto be registered. Thisis the object type of the program
object. The allowable values are:

*PGM ILE or OPM program
*SRVPGM |LE service program
*CLASS JAVA classfile name

Module name
INPUT; CHAR(10) or BINARY (4)
The format of this parameter is dependent on the program type parameter.If the program typeis
*PGM or * SRVPGM, the format of this parameter is as follows:
o A module nameor *ALL (*ALL refersto all modulesin the program).

o The module name parameter must be specified as either * ALL or blanks for OPM
programs.
If the program type is* CLASS, the format of this parameter is as follows:

o A 4-byte binary field. Thisfield contains the number of bytes provided in the returned
library name parameter for returning JAV A class path name information.

o The value specified in this parameter must be at least 8 bytes.

Returned library name
OUTPUT; CHAR(10) or CHAR(*)
The format of this parameter is dependent on the program type parameter.If the program typeis
*PGM or * SRVPGM, the format of this parameter is OUTPUT CHAR(10) asfollows:

o Thelibrary where the program was found. Thisis useful when *LIBL or *CURLIB is
specified for the program library.

If the program type is* CLASS, the format of this parameter is OUTPUT CHAR(*) asfollows:

o Class path name information for the requested class file. For more information, see Format
of JAVA Returned Library Name Parameter.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

VEWLO0100 Format

The following table shows the format of the receiver variable for the VEWL 0100 format.For more
information on the fields, see Field Descriptions.

Offset
Dec | Hex ’Type ’Field
0O | O |[BINARY(4) |Bytesreturned
4 | 4 |BINARY(4) |Bytesavailable
8 | 8 |[BINARY(4) |[Number of elements

Note: The following fields repeat once for each element.

| |CHAR(10) IModule name

| |ICHAR(10) |View type

| |CHAR(20) |Compiler ID

| |CHAR(10) |Main indicator
| |ICHAR(13) |View timestamp
|
|
|
|

|CHAR(50) |View description
[CHAR@B) [Reserved
IBINARY(4) |View number
IBINARY(4) |Number of views

All views for amodule are listed together in the receiver variable. The number of views field contains the
total number of views for the module. The views are contiguous.

Field Descriptions

Bytes available. The number of bytes of data available to be returned to the user.
Bytesreturned. The number of bytes of datareturned to the user.

Compiler ID. The ID of the compiler that generated this view. For unique identification the first 4 bytes are
used as follows:

X'00050000" ILEC

X'00050001" CSET C++ cooperative compiler
X'00060000" ILECL

X'00060001' OPM CL

x'00070000' OPM COBOL

x'00070001' ILE COBOL

X'00170001' OPM RPG

x'00170002' ILE RPG

X'001D0000" JAVA

Main indicator. Whether the module is a main module (entry point) for the program. The main indicator
field can have one of the following values:

*MAIN Moduleisamain module
*NOMAIN Moduleisnot amain module

There is at most one main module per program. Service programs contain no main entry point. *MAIN is
aways returned for OPM programs. For JAVA classfiles* MAIN isreturned if the class file hasamain
procedure. Otherwise, *NOMAIN isreturned for JAVA.

Module name. The name of the module for thislist entry. For OPM programs and JAV A classfiles, the
module name is returned as blanks.

Number of elements. The number of elements returned in the receiver variable. Each element has the same
format, and it isrepeated in the receiver variable. If the number of elementsis zero and the receiver variable
has room for at least one element, the program has no views in the modul e requested. If the module
requested is* ALL, zero elements indicate the program cannot be debugged. For OPM programs, a
CPF9584 error code is returned, instead of azero number of elements value, if the program cannot be
debugged. For class files, a CPF9599 error code is returned, instead of a zero number of elements value, if
the program cannot be debugged.

Number of views. The number of viewsin thismodule listed in the receiver variable
Reserved. Anignored field.
View description. A character string that describes the view.

View number. A number that identifies a view within a module. Each view has a unique view number,
which is used when you specify a specific view to register using the Register Debug View API.

View timestamp. The timestamp indicating when the view was created. It has the format of the American
National Standard timestamp.

View type. The type of view. The view type can be one of the following values:

*TEXT Thisisaview where text comes from files or text supplied by the processor.
*LISTING Thisisaview where text comes entirely from text supplied by the processor.

*STATEMENT Thisisaview consisting of statement identifiers. All modules have a statement view.

Format of JAVA Returned Library Name Parameter

When the program type parameter is* CLASS, class path name information is returned in the returned
library name parameter. The following table shows the format of the returned library name parameter when
the JAVA classfile view information is retrieved. For more information on the fields, see Field

Descriptions.

| Offset ’ ’

| Dec | Hex |Type Fied

| 0 | 0 |BINARY(4) |Bytesreturned

[4 | 4 |BINARY(4) |[Bytesavailable

| 8 | 8 |BINARY(4) |Offsettoclasspath name
| C | C |BINARY(4) |Lengthof class path name
| | |ICHAR(*) |Class path name

Field Descriptions

Bytes available. The number of bytes available to be returned in the returned library name parameter. If the
bytes available value is larger than the bytes provided value passed in the module name parameter, the API
should be called again with avalue that is at |east as large as the bytes available. If the space provided is not
large enough, the string space is filled with as many characters of the class path name as will fit.

Bytes returned. The number of bytes returned in the returned library name parameter.

Class path name. The path name of the file that contains the class file that was retrieved.

Length of class path name. The length of the class path name returned.

Offset to class path name. The offset from the start of the returned library name parameter to the class
path name.

Error Messages

Message ID Error Message Text
CPF3C21 E Format name & 1 is not valid.
CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1lE Error code parameter not valid.
CPF3CF2E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9549 E Error addressing API parameter.
CPF954F E Module &1 not found.

CPF955F E Program & 1 not a bound program.

CPF9584 E OPM program & 1 cannot be added to ILE debug environment.

CPF9585 E
CPFO587 E
CPFO591 E
CPF9592 E
CPFO593 E
CPF9594 E
CPF9599 E
CPF9801 E
CPF9802 E
CPF9803 E
CPF9809 E
CPF9810 E
CPF9820 E

Program & 1 already active in OPM debug environment.
Module name value &1 not valid.

Vaue specified in module name parameter is not valid.
Classfile not found.

Not authorized to classfile.

JAVA classfile not available.

Classfile cannot be debugged.

Object &2 in library &3 not found.

Not authorized to object &2 in & 3.

Cannot allocate object &2 in library & 3.

Library &1 cannot be accessed.

Library &1 not found.

Not authorized to use library & 1.

API Introduced: V2R3

Top | Debugger APIs| APIs by category

Retrieve Source Path Name
(QteRetrieveSourcePathName) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format hame Input Char(8)
4 Sourcefile name Input Char(*)
5 Error code /0 Char(*)

Service Program: QTEDBGSI

Threadsafe: No

The Retrieve Source Path Name (QteRetrieveSourcePathName) API returns the full source path name for a
Java source file.

This APl expects the DEBUGSOURCEPATH environment variable to be set to one or more directory
paths that contain Java source files. These directory paths are used to search for the Java source file
specified by the source file name parameter. If the Java source file is found, the full source path nameis
returned in the receiver variable. If the Java source file is not found or if the DEBUGSOURCEPATH
environment variable is not set, a CPF959E error is returned.

Authorities and Locks

Directory Authority
*X

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
A variable that is to receive the information requested. Y ou can specify the size of this areato be
smaller than that needed to hold the information. In this case, only part of the information is

returned. The number of bytes that the API needsto return all of the information, however, is still
returned.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable. The minimum length is 8 bytes.

It is suggested that alength of 8 be passed to the API, which fillsin the first two fields of the

receiver variable. The bytes available field indicates how much space must be provided. This space
can then be obtained and a second call can be made to the API.

Format name
INPUT; CHAR(8)

The content and format of the full source path information that is returned. The only valid value for
this parameter is:

SRCP0100 Source path information. For more information, see SRCP0100 Format.

Sour ce file name
INPUT; CHAR(*)

The null-terminated Java source file name (such as Hello.java).
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

SRCPO0100 Format

The following table shows the format of the receiver variable for the SRCP0100 format. For more
information on the fields, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |BINARY(4) |Offsetto source path name
| 12 | C |BINARY(4) |Length of source path name
| | |ICHAR(*) |Source path name

Field Descriptions

Bytes available. The number of bytes of data available to be returned to the user.

Bytesreturned. The number of bytes of data returned to the user.

L ength of source path name. The length of the full source path name returned.

Offset to sour ce path name. The offset from the start of the receiver variable to the source path name.
Sour ce path name. The path name of where the Java source file resides. The Java source file nameis

returned as part of the source path name (for example, /home/javasource/Hello.java). The source path name
isreturned in the CCSID of the job.

Error Messages

Message | D Error Message Text

CPF3C19E Error occurred with receiver variable specified.
CPR3C1EE Required parameter & 1 omitted.

CPF3C21 E Format name & 1 is not valid.

CPF3C24 E Length of the receiver variableis not valid.
CPF3CF1E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9541 E Not in debug mode.

CPF959E E Source file not found.

API Introduced: V4R5

Top | Debugger APIs| APIs by category

Set Debug Attribute (QteSetDebugAttribute)
API

Required Parameter Group:

1 Debug attribute Input Char(10)
2 Attribute value Input Char(10)
3 Error code 1/0 Char(*)

Default Public Authority: *USE
Service Program: QTEDBGS

Threadsafe: No

The Set Debug Attribute (QteSetDebugAttribute) API is used to set the attributes of the source debug
session.

The attributes of the debug session cannot be set unless the job is currently in debug mode. The jobisputin
debug mode by acall to the Start Source Debug (QteStartSourceDebug) API.

The*UPDPROD value on the debug attribute parameter sets the update production files attribute of the
debug session.

You can use filesin production libraries while you are in debug mode. To prevent database filesin
production libraries from being changed unintentionally, you can specify avalue of *NO. Then, only files
in test libraries can be opened for updating or adding new records. If you want to open database filesin
production libraries for updating or adding new libraries, or if you want to delete members from production
physical files, you can specify * YES. Theinitial setting when the Start Source Debug API isissuedis*NO.
However, this vaue can be changed at any time while in debug mode.

Y ou can use this function with the library list. In the library list for your debug job, you can place atest
library before a production library. In the test library, you should have copies of the production files that
might be updated by the program being debugged. Then, when the program runs, it uses the filesin the test
library. Therefore, production files cannot be unintentionally updated.

The * OPM SRC value on the debug attribute parameter sets the OPM source debug attribute of the debug
session. It isused to enable or disable the OPM source debug support. When this support is enabled, OPM
RPG, OPM COBOL, and OPM CL programs can be debugged by using the ILE debug APIsif they were
compiled with the * SRCDBG or *LSTDBG option on the following CL commands:

« Create RPG/400 Program (CRTRPGPGM)

o Create COBOL Program (CRTCBLPGM)

« Create Control language Program (CRTCLPGM)

o Create SQL RPG Program (CRTSQLRPG)

« Create SQL COBOL Program (CRTSQLCBL)

« Create Auto Report RPG Program (CRTRPTPGM)

Theinitia value of the * OPM SRC attribute is set by the Start Debug (STRDBG) command, and can aso be
changed by the Change Debug (CHGDBG) command. Changing the * OPM SRC value has no effect on

programs that are already under debug. They remain in the debug environment (ILE or OPM) that they are
currently added to.

Required Parameter Group

Debug attribute
INPUT; CHAR(10)
The name of the debug session that isto be set. The value of the debug attribute must be:

*UPDPROD Set the value of the update production files attribute.
*OPMSRC Set the value of the OPM source debug attribute.

Attributevalue
INPUT; CHAR(10)

The value of the attribute specified in the debug attribute parameter.

When the debug attribute parameter specifies * UPDPROD, the attribute value parameter can have
one of the following values:

*YES Allow the updating of production files while in debug mode.
*NO Do not allow the updating of production files while in debug mode.

When the debug attribute parameter specifies * OPM SRC, the attribute value parameter can have
one of the following values:

*YES Allow OPM programs that have source debug data to be debugged by using the ILE debug
APIs.

*NO Do not allow OPM programs to be debugged by using the ILE debug APIs.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message I D Error Message Text
CPF3CF1E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9541 E Not in debug mode.

CPF9549 E Error addressing APl parameter.
CPF9550 E Vaue for debug attribute not valid.
CPF9559 E Debug attribute parameter not valid.

API Introduced: V3R1

Top | Debugger APIs| APIs by category

Start Source Debug (QteStartSourceDebug)
API

Required Parameter Group:

1 Quadified program name Input Char(20)
2 Error code /0 Char(*)

Default Public Authority: *USE
Service Program: QTEDBGS

Threadsafe: No

The Start Source Debug (QteStartSourceDebug) API lets you use the source debugging APIsin your
session. This alows the debugging of any ILE programs or service programs that contain debug
information. OPM CL, OPM RPG, and OPM COBOL programs that are created with

OPTION(* SRCDBG) or OPTION(*LSTDBG) may also be debugged.

Y our job must be put in debug mode before this API isissued. Debug mode is a special environment in
which the debug functions can be used in addition to routine system functions. Debug functions cannot be
used outside debug mode. To start debug mode, you must issue the Start Debug (STRDBG) command.
The Start Source Debug APl must be used before an ILE or OPM program can be debugged. This API
requires that you specify a user exit program to be called by the source debugger support to handle
breakpoints, steps, and unmonitored exceptions.

Y our job remains in debug mode until an End Source Debug (QteEndSourceDebug) API isissued or until
your current routing step ends.

If the job is servicing another jab, the job will actually debug the job being serviced.

Authorities

Program Authority
*USE

Library Authority
*USE

Required Parameter Group

Qualified program name
INPUT; CHAR(20)

The name of the exit program that is called whenever a breakpoint, a program step, or an

unmonitored exception occurs. See Program-Stop Handler Exit Program for a discussion of the
parameters passed to this program to assist in processing breakpoint, step, and exception
information.

The first 10 characters contain the program name. The second 10 characters contain the name of the
library where the program is located. Both entries must be left-justified.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Error Messages

Message|D Error Message Text

CPF3CF1E Error code parameter not valid.

CPF3CF2E Error(s) occurred during running of & 1 API.
CPF9540 E Already in debug mode.

CPF9541 E Not in debug mode.

CPF9803E Cannot alocate object &2 inlibrary & 3.
CPF9809 E Library &1 cannot be accessed.

CPF9810E Library &1 not found.

CPF9811E Program &1inlibrary &2 not found.
CPF9820 E Not authorized to use library & 1.

CPF9821 E Not authorized to program &1 inlibrary & 2.
CPF9549 E Error addressing APl parameter.

API introduced: V2R3

Top | Debugger APIs | APIs by category

Stop Debugged Job (QteStopDebuggedJob)
API

Required Parameter Group:
1 Error code 1/0 Char(*)

Default Public Authority: *USE
Service Program: QTETHRD

Threadsafe: No

The Stop Debugged Job (QteStopDebuggedJob) API causes debug to halt all threadsin ajob being
debugged. The job stopped is being serviced and debugged by the job calling the QteStopDebuggedJob
API. This API isallowed for servicing of both threaded and nonthreaded applications.

Required Parameter Group

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9541 E Not in debug mode.

CPF958F E Debug is not servicing ajob.

CPF9590 E Debugged job not stopped.

API Introduced: V4R2

Top | Debugger APIs | APIs by category

Debug Session Handler Exit Program

Required Parameter Group:

1 Reason Input Char(10)
2 Program list Input Char(*)
3 Number of programs Input Binary(4)
Threadsafe: No

The Debug Session Handler exit program is a user-written program that manages the Integrated L anguage
Environment (ILE) debugger. It determines when the debugger starts, stops, and shows its displays.

The name of the program is specified in the SRCDBGPGM parameter of the Start Debug (STRDBG)
command. This program is called by the STRDBG command to initialize the user-written debugger, and is
called by the End Debug (ENDDBG) command to end it. It is also called by the STRDBG and the Display
Module Source (DSPMODSRC) commands to show the Display Module Source display.

If aJAVA classfile name was specified in the JAVA parameter of the STRDBG command, the Debug
Session Handler exit program will be called during debug initialization with areason of * STARTJAVA.
This cal will be in addition to a separate call with a* START reason if ILE or OPM programs were also
specified in the STRDBG PGM parameter.

Required Parameter Group

Reason
INPUT; CHAR(10)

The reason the program was called. Valid reasons include:

*START The program-stop handler should be initialized by the Start Source Debug AP if
this has not been done. The program list parameter format consists of 30-character
entries. See the program list parameter description below.

*STARTJAVA The program-stop handler should be initialized by the Start Source Debug API if
this has not been done. The program list parameter format consists of JAVA class
file names. See the program list parameter description below.

*STOP The program-stop handler should be removed by the End Source Debug API.
*DISPLAY The debugger should display itself.

*RLSIOB The batch job being debugged has been released from the job queue. Thisisonly
supported for a debug session handler running in a batch job.

Program list
INPUT; CHAR(*)

The format of this parameter depends on the value of the reason parameter. If the reason parameter
is*START, the program list format is as follows:

Thelist that isto receive alist of ILE or OPM programs to add to the debugger. Thislist contains
the number of program entries, each entry being 30 charactersin length. The first 10 characters
contain the name of the program. The second 10 characters contain the name of the library where
the program islocated. The third 10 characters contain the type of object being named and can be
*PGM (acalable program) or * SRVPGM (a service program). Each name is left-justified within
the field.

If the reason parameter is* STARTJAVA, the format isas follows:

A list of JAVA classfile name entries. For more information see Format of *STARTJAVA
Program List Parameter. The number of list entriesis contained in the number of programs
parameter.

If the reason parameter is*DISPLAY, the format is asfollows:

The eight character thread identifier of the current thread. Thisisvalid only if threads debugging is
alowed and the Number of programs parameter contains avalue of 1.

If the reason parameter is* Stop or *RLSJOB, this parameter is not valid.

Number of programs

INPUT; BINARY (4)

The format of this parameter depends on the value of the reason parameter. If the reason parameter
iS*START or *STARTJAVA, theformat is as follows:

The number of programs stored in the program list parameter.
If the reason parameter is*DISPLAY, the format is as follows:

The status of the threaded job. Thisisvalid only if threads debugging is alowed.

0 Thejobisrunning and has not been stopped by debug (for example, breakpoint, step, watch, or
unmonitored exception).

1 Thejobisstopped by debug.

If the reason parameter is* Stop or *RLSJOB, this parameter is not valid.

Format of *STARTJAVA Program List Parameter

When the reason parameter is*STARTJAVA the program list parameter contains JAVA class file names.
The following table shows the format of the program list parameter for the * STARTJAV A reason. For
more information on the fields, see Field Descriptions.

| Offset

| Dec | Hex ’Type ’Field

Note: The following fields are repeated for each input class file name. The number
of programs parameter contains the number of class file names.

| 0 | 0 |BINARY(4) |Offsettoclassfilename

| 4 | 4 |BINARY(4) |Length of classfile name

Note: Following all of the above fieldsis a string space containing the input class
file names.

| | [CHAR(*) [Class file names

Field Descriptions

Classfile names. The class file names that are specified on the STRDBG command.

Length of classfile name. The length of the class file name.

Offset to classfile name. The offset from the start of the program list parameter to the class file name.

Exit Program Introduced: V2R3

Top | Debugger APIs| APIs by category

Program-Stop Handler Exit Program

Required Parameter Group:

1 Quadlified program name Input Char(20) or Char(*)
2 Programtype Input Char(10)

3 Module name Input Char(10)

4 Stop reason Input Char(10)

5 Receiver variable Input Char(*)

6 Number of entries Input Binary(4)

7 Message data Input Char(*)

QSY SINC Member Name: ETEPGMST

Threadsafe: No

The Program-Stop Handler exit program is a user-written program that handles program-stop conditions.

This program must be identified to the Source Debugger support with the Start Source Debug
(QteStartSourceDebug) API.

Breakpoint- and step-program stop conditions are reported using stop reasons 2, 3, and 4. The location at
which the program-stop condition occurred is specified in the receiver variable parameter and isin terms of
the statement view. The user-supplied program may use the Map View Position (QteM apViewPosition)
API to determine the location to which this program maps any other registered view.

Watch-program stop conditions are reported using stop reasons 5 and 6. For watch-program stop
conditions, the program stopped might not have debug data. In this case, the machine interface (MI)
number is reported for OPM programs and the statement number is reported for ILE programs and Java
classfiles. If the program can be debugged, the line number in the statement view is reported for OPM
programs, ILE programs, and Java class files. Other information is also included in the receiver variable to
identify the program that caused the watch condition to be satisfied.

Unmonitored-exception-program stop conditions are represented through stop reason 1. Unmonitored
exceptions are reported through this exit program only when the program and module identified have been
created with debug data. Without debugging data, the message that is the cause of the unmonitored
exception is issued, and the Program-Stop Handler exit program is not called.

When ajob being debugged by a servicing job is stopped by the QteStopDebuggedJob API, reason code 7
is reported. When this reason code is reported, none of the other input parameters are used and can be
ignored.

Debugging of threaded jobsis enabled by the thread ID field that is contained in the parameters passed to
the stop handler. Threads debugging is supported if aservice job is used to debug ajob that was spawned
by native threads support. For nonthreaded applications, the thread 1D passed will always be that of the
initial job thread.

Required Parameter Group
Qualified program name
INPUT; CHAR(20) or CHAR(*)

The format of this parameter is dependent on the program type parameter. If the program typeis
*PGM or * SRVPGM, the format of this parameter is as follows:

The name of the program that is stopped as aresult of a breakpoint, program step, or unmonitored
exception. This parameter may also be the name of the program that is stopped because a watch
condition has been satisfied.

The first 10 characters contain the name of the program. The second 10 characters contain the name
of the library where the program is located. Each name is | eft-justified.

If the program typeis * CLASS, the format of this parameter is as follows:

The null-terminated class file name of the JAVA class.
Program type
INPUT; CHAR(10)

The object type of the program that is stopped. The possible values are:
*PGM Bound program or OPM program
*SRVPGM Service program
*CLASS JAVA classfile

Module name
INPUT; CHAR(10)

The name of the module (left-justified) that is stopped. The value of thisfield is blank for OPM
programs and JAVA classfiles.

Stop reason
INPUT; CHAR(10)

The reason the program was called. Each character of this parameter has a specific meaning. The
characters and their meanings are:

1 This reason is set when an unmonitored exception is received by the program being
serviced by the source debugger support.

0 No unmonitored exception

1 Unmonitored exception

2 The program stopped because an unconditional or conditional breakpoint was satisfied.
0 No break condition
1 Break condition

3 The program stopped because a step condition was reached.
0 No step condition
1 Step condition

4 The program stopped because a conditional breakpoint was set and there was afailurein
running the condition. The program is stopped at the break position specified.

0 No break condition failure

1 Break condition failure

5 The program stopped because a watch condition set with the watch debug statement was
satisfied.

0 No watch condition

1 Watch condition

6 The program stopped because there was a failure in processing the watch condition.
0 Nowatch condition failure

1 Watch condition failure

7 The debugged job being serviced was stopped by the QteStopDebuggedJob API.
0 Debugged job not stopped
1 Debugged job stopped

8-10 Reserved. These characters are set to 0.

Receiver variable
INPUT; CHAR(*)

Stop Reasons 1, 2, 3, 4:

If only stop reason 1, 2, 3, or 4 is present, the following receiver variable format is
passed:

A list of locations within the statement view where the program stop condition
occurred. Thislist contains the number of entries where each number is defined as
follows:

Stopped locations Array of BINARY (4)
The line number in the statement view where the program is
stopped.

Thread ID CHAR(8)
The thread identification of the thread where the program is
stopped. This value immediately follows the last stopped
location.

Stop Reasons 5, 6:

Whenever stop reason 5 or 6 is present (other stop reasons can be present also), the
following receiver variable format is passed:

Information about the watch stop condition, including the program stopped and the
program that caused the watch condition to be satisfied. See Format of

Watch-Program Stop Reason for Receiver Variable.

Stop Reason 7:

For stop reason 7, the receiver variable parameter is not used and can be ignored.
Number of entries
INPUT; BINARY (4)

The number of positions stored in the receiver variable parameter. In some cases, it is not known
exactly where a program is stopped; therefore, multiple positions are given. Each entry specifies
one position in the statement view. This number is not less than one nor greater than three. At least
one stopped position will be identified; if stopped at more than one position, no more than the first
three positions are made available.

This parameter is valid when stop reason 1, 2, 3, or 4 isthe only reason present (stop reason 5 or 6
cannot be present). If stop reason 5 or 6 is present, the receiver variable contains the equivalent
number of stopped locations parameter.

M essage data
INPUT; CHAR(*)

Information about the message. The information in this parameter is valid only when the stop
reason specified is an unmonitored exception. For a detailed description of the format, see Format

of Message Data.

Format of Watch-Program Stop Reason for Receiver Variable

The following table shows the information supplied in the receiver variable parameter when a stop reason
of 5 or 6 is present. For more information on the fields, see Field Descriptions.

Watch Receiver Variable Header

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Watch number

| 4 | 4 |BINARY(4) |Offset to stopped program information
| 8 | 8 |BINARY(4) |Offset towatch interrupt information

Watch Stopped Program Information

The following table shows the stopped program information that is supplied in the receiver variable
parameter. This data structure is accessible by adding the offset to stopped program information field in the

receiver variable header to the address of the receiver variable.

| Offset ’ ’
| Dec | Hex |Type Field
| 0 | 0 |BINARY(4) |Offsetto stopped procedure name
| 4 | 4 |BINARY(4) |Length of stopped procedure name
| 8 | 8 |BINARY(4) |Offset to stopped locations
| 12 | C |BINARY(4) |Number of stopped locations
| 16 | 10 |CHAR(1) |Stopped locations flag
[17 [11 [CHAR® |Reserved
[20 [14 [CHAR® |[ThreadID
| | |ICHAR(*) |Reserved
’ ’ Array of ’Stopped locations
BINARY (4)
| | ICHAR(*) |Stopped procedure name

Watch Interrupt Information

The following table shows the watch-interrupt information that is supplied in the receiver variable
parameter. This data structure is accessible by adding the offset to watch interrupt information field in the

receiver variable header to the address of the receiver variable.

| Offset ’ ’
| Dec | Hex |Type Field
| 0 | 0 |CHAR(26) |Qualified interrupt job name
| 26 | 1A |CHAR(20) |Qualified interrupt program name
| 46 | 2E |CHAR(10) |Interrupt program type
| 56 | 38 |CHAR(10) |Interrupt module name
| 66 | 42 |CHAR(1) |Interrupt locations flag
[67 [43 [CHAR®) |Reserved
| 68 | 44 |BINARY(4) |Offsettointerrupt procedure name
| 72 | 48 |BINARY(4) |Length of interrupt procedure name
| 76 | 4C |BINARY(4) |Offset tointerrupt locations
| 80 | 50 |BINARY(4) |Number of interrupt locations
| 84 | 54 |CHAR(9 |Thread ID
| 92 | 5C |BINARY(4) |Offsettointerrupt classfile name
| 96 | 60 |BINARY(4) |Lengthof interrupt classfile name
| | |ICHAR(*) |Reserved
Array of Interrupt locations
’ ’ BINARY (4)

| | ICHAR(*) |Interrupt procedure name
| | [CHAR(¥) [Interrupt class file name

Field Descriptions

Interrupt classfile name. The Java class file name of the Java class containing the locations that caused
the watch condition to be satisfied. For OPM and ILE programs, the Java class file name is not returned.

Interrupt locations. A list of locations, of the type described by the interrupt locations flag, that caused the
watch condition to be satisfied.

Interrupt locations flag. The type of the locations in the interrupt locations field. All locations are of the
same type.

1 Linenumber in statement view
2 Statement number

3 MI number

Interrupt module name. The name of the module (Ieft-justified) in the program that caused the watch
condition to be satisfied. The value of thisfield is blank for OPM programs and JAV A classfiles.

Interrupt procedur e name. The procedure name of the procedure that contains the program locations that
caused the watch condition to be satisfied. For OPM programs the procedure name is not returned.

Interrupt program type. The object type of the program that caused the watch condition to be satisfied.
The possible values follow:

*PGM Bound program or OPM program
*SRVPGM Service program
*CLASS JAVA classfile

Length of interrupt class file name. The length of the interrupt class file name. Thisfield iszero if thereis
no interrupt class file name available (for example, OPM and ILE programs).

Length of interrupt procedure name. The length of the interrupt procedure name. Thisfield is zero if
thereis no interrupt procedure name available (for example, OPM programs).

L ength of stopped procedure name. The length of the stopped procedure name. Thisfield is zero if there
is no stopped procedure name available (for example, OPM programs).

Number of interrupt locations. The number of locations in the program that caused the watch condition to
be satisfied. At most, three locations are returned.

Number of stopped locations. The number of stopped program locations. At most, three stop locations are
returned.

Offset to interrupt classfile name. The offset from the start of the receiver variable to the name of the
Java class file containing the location that caused the watch condition to be satisfied. The field is zero if
thereis no interrupt class file name available (for example, OPM and ILE programs).

Offset to interrupt locations. The offset from the start of the receiver variable to thelist of locationsin the
program that caused the watch condition to be satisfied.

Offset to interrupt procedur e name. The offset from the start of the receiver variable to the name of the
procedure that contains the program location that caused the watch condition to be satisfied. Thisfield is
zero if thereis no interrupt procedure name available (for example, OPM programs).

Offset to stopped locations. The offset from the start of the receiver variable to the stopped program
location entries.

Offset to stopped procedure name. The offset from the start of the receiver variable to the name of the
procedure that contains the stopped program location. Thisfield is zero if there is no stopped procedure
name available (for example, OPM programs).

Offset to stopped program information. The offset from the start of the receiver variable to the stop
information for the program that is stopped as a result of the watch condition being satisfied.

Offset to watch interrupt infor mation. The offset from the start of the receiver variable to the watch
interrupt information. This data structure describes the program that caused the interruption.

Qualified interrupt job name. The name of the job that caused the watch condition to be satisfied. The
first 10 characters contain the job name. The second 10 characters contain the user profile name. The next 6
characters contain the job number. Each name is | eft-justified.

Note: Thisfield isthe same as the name of the job being debugged. Watch program interruptions in other
jobs are ignored.

Qualified interrupt program name. The name of the program that caused the watch condition to be
satisfied. Thefirst 10 characters contain the name of the program. The second 10 characters contain the
name of the library where the program is located. Each name is left-justified. The value of thisfield is blank
for Java classfiles.

Reserved. Anignored field.

Stopped locations. A list of locations, of the type described by the stop location flag, where the program
stop condition occurred.

Stopped locations flag. The type of the locationsin the stop locations field. All stop locations are of the
same type.

1 Linenumber in the statement view
2 Statement number

3 MI number

Stopped procedure name. The name of the procedure that contains the stopped locations. For OPM
programs the procedure name is not returned.

Thread ID. Thisis an 8-byte thread identification that is assigned by the system. It identifies the thread
associated with the stopped or interrupt locations fields.

Watch number. The watch number identifier of the watch condition being satisfied. Thisis the same
number that is returned by the Submit Debug Command APl when the watch condition was set.

Format of Message Data

The following table shows the information supplied in the message data parameter. For more information
on the fields, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Length of message data
4 [4 [CHAR® [Message 1D

| 11 | B |CHAR(20) |Message file

[31 [IF [CHAR() |Reserved

| 32 | 20 |CHAR(512) |Messagedata

Field Descriptions

Length of message data. The length of the data available in the message data parameter, in bytes. This
field contains the length of the available message data for the predefined message indicated in the message
ID field.

M essage data. The values for substitution variables in the predefined message specified in the message ID
field and located in the message file field.

M essage file. The name of the message file that contains the message identified in the message ID field.

The first 10 characters contain the message file name. The second 10 characters contain the name of the
library where the file can be located. Both entries are left-justified.

Message | D. The identifying code of the message.
Reserved. Anignored field.

Exit program introduced: V2R3

Top | Debugger APIs| APIs by category

»Service Entry Point Stop Handler Exit Program

Required Parameter Group:

1 Quadlified program name Input Char(*)
2 Program type Input Char(10)
3 Module name Input Char(10)
4 Stop information Input Char(*)
5 Fully qudified job name Input Char(30)

QSY SINC Member Name: ETEPSEPH

Threadsafe: No

The Service Entry Point Stop Handler exit program is a user-written program that handles the service
entry point program-stop condition.

This program must be identified to the Source Debugger support with the Register Service Entry Point
Handler (QteRegSrvEntPntStpHdIr) API.

The location at which the service entry point was encountered is specified in the stop information parameter
and isin terms of the statement view. The user-supplied program may use the Map View Position
(QteMapViewPosition) API to determine the location to which this program maps any other registered
view.

Debugging of threaded jobs is enabled by the thread ID field that is contained in the parameters passed to
the stop handler. Threads debugging is supported if aservicejob is used to debug ajob that was spawned
by native threads support. For nonthreaded applications, the thread 1D passed will aways be that of the
initial job thread.

Required Parameter Group

Qualified program name
INPUT; CHAR(*)
The format of this parameter is dependent on the program type parameter. If the program typeis
*PGM or * SRVPGM, the format of this parameter is asfollows:
o The name of the program that is stopped as aresult of a service entry point.
o Thefirst 10 characters contain the name of the program. The second 10 characters contain
the name of the library where the program is located. Each name is | eft-justified.
If the program type is* CLASS, the format of this parameter is as follows:
o The null-terminated class file name of the JAVA class.

Program type
INPUT; CHAR(10)

The abject type of the program that is stopped.

The possible values are:

*PGM Bound program or OPM program

*SRVPGM Service program
*CLASS JAVA classfile

Module name
INPUT; CHAR(10)

The name of the module (left-justified) that is stopped. The value of thisfield is blank for OPM

programs and JAVA classfiles.

Stop information
INPUT; CHAR(*)

A list of locations within the statement view where the program stop condition occurred.

Thread ID

Offset to stopped locations

Number of stopped locations

Sopped locations

Fully qualified job name
INPUT; CHAR(30)

CHAR(8)
The thread identification of the thread where the program is
stopped.

BINARY (4)
The offset from the start of the stop information to the first stop
location.

BINARY (4)

The number of positions stored in the stop information

parameter. In some cases, it is not known exactly where a
program is stopped; therefore, multiple positions are given. Each
entry specifies one position in the statement view. This number is
not less than one nor greater than three. At least one stopped
position will be identified; if stopped at more than one position,
no more than the first three positions are made available.

Array of BINARY (4)
The line number in the statement view where the program is
stopped.

The name of the job in which the program stop condition occurred. The fully qualified job name
consists of three parts. Thefirst 10 characters contain the job name. The next 10 characters contain
the user name. The last 10 characters contain the 6-character job number followed by 4 blanks.

&

Exit program introduced: V5R2

Top | Debugger APIs | APIs by category

Create View APIs

The create view APIs create view information, which is then available to source-level debugger
applications through the source debugger APIs.
The create view APIs are:

o Add View Description (QteAddViewDescription) describes aview to be created.

« Add View File (QteAddViewFile) describes the files that can be used to construct the text for a
view.

« AddView Map (QteAddViewMap) describes how to map positionsin one view to positionsin
another view.

o Add View Text (QteAddViewText) describes the pieces of text making up the view text.

» End View Creation (QteEndViewCreation) completes view creation processing.

« Start View Creation (QteStartViewCreation) initializes the view creation environment.

Top | Debugger APIs| APIs by category

Add View Description (QteAddViewDescription)
API

Required Parameter Group:

1 Previousview number Input Binary(4)
2 Viewtype Input Char(10)
3 Input/output Input Char(10)
4 Create map Input Char(10)
5 View description Input Char(50)
6 View number Output Binary(4)
7 Error code 1/0 Char(*)

Default Public Authority: *USE
Service Program: QTECRTVS

Threadsafe: No

The program uses the Add View Description (QteAddViewDescription) APl to add anew view in the
existing view information. The added view can then be used on subsegquent APIs when providing text and
map details associated with this view.

It isthe responsibility of each processor to create its input view, which is the root source file read by the
processor. Each processor must also create its output view, which is the source produced by the processor.
Other intermediate views may be produced, but, as a minimum, there must be a map between a processor's
input and output view.

If aprocessor discards views produced by previous preprocessors, then it is not necessary for the input
source view to be created. For example, the C compiler can create only alisting file view, aslong as it
discards all previous views.

It is possibleto create several views at onetime. It isthe responsibility of the processes creating multiple
views to manage them.

When aview is created, a handle to that view is returned in the form of aview number. This number is
needed when adding text or maps that refer to the view. Once a view has been created, it cannot be created
again. However, text and maps can be added to the view if it already exists. Thus, one processor can create
the view, and another processor can add a map to the view, if that processor knows the view number.

There is only one statement view per module. If the statement view is created more than once, an error
results. However, the statement view number is returned. This allows one processor to create the statement
view and another processor to determine which number the view is.

Note: The following restrictions apply to the adding of views.

1. If a*TEXT view isadded and that view refersto text in a previous view, the previous view must
also bea*TEXT view.

2. The*INPUT and *OUTPUT views of a processor must be * TEXT views. A processor does not
have to create these views.

Required Parameter Group

Previous view number
INPUT; BINARY (4)

The view number of a previous view whose text is used in creating the text for this view. When
describing text for this view, it can be indicated that part of the text isadirect copy of text in the
previous view. This allows the API to automatically generate a map between this view and the
previous view.

Asan example, if a preprocessor takes as input some source, changes it by expanding macros or
SQL statements, and outputs the changed source, then the output view would have the input view
asits previous view. When creating text from the output view, some of the text could come from
the input view.

The previous view of a* TEXT view must also be a* TEXT view.

If thereis no previous view, specify zero for the view number.
View type
INPUT; CHAR(10)

The type of view being created. Not all view types need be present in the view information. View
type can be one of the following values:

*TEXT The view may contain supplied text as aresult of macro expansions. Text may
also come from a previous view or from files.
*LISTING Text for this view comes entirely from supplied text. Thus, the entire text for this

view is encapsulated with the view debug data and is not dependent on the
existence of sourcefiles.

*STATEMENT Thisview has no source text. Instead, the text of the view consists of HLL
statement number, statement type, and the procedure dictionary ID. Thisview is
necessary because breakpoint positions are given in terms of positionsin this
view.

I nput/output
INPUT; CHAR(10)
Indicates whether the view isan input view, an output view, or an intermediate view. An input view

isthe view created from the output of the previous processor, or the view created from the root
sourcefile. It is not necessary for each processor to have an input view.

An output view isthe view created by the processor to be input to the next processor. If a processor
creates views that will not be used by any subsequent processors, then no output view is specified.

The allowable values for this parameter are:

*INPUT Theview isaninput view. This meansthat it must come from aroot source file
created by the user or by a previous processor, generally the input file specified on
Start View Creation.

*OUTPUT Theview is an output view. This meansthat it forms the text of aview that may be
read by a subsequent processor, and is generally stored in the output file specified on
Start View Creation.

blank The view is neither an input nor an output view, but is an intermediate view
produced by the processor.

Create map
INPUT; CHAR(10)

Specifies whether the using program will be supplying mapping information for this view, or
whether the source debugger support should infer (create) the mapping at the time the text is
described.

The purpose of the automatic mapping isto allow the ease of creating an include view. An include
view has a previous view (usualy the input view) which consists of only onefile. The include view
getsitstext from thisfile and from include files.

This parameter applies only when the view type specified in the previous parameter is* TEXT, and
when this view has a previous view. A map can then be inferred from the previous view to this
view. To do so, the following criteria must be met:

o Thisview must contain text from the previous view whenever possible.

o Thefirst file specified on the QteAddViewFile API call for this view must be the file which
is equivalent to the previous view.

o When constructing the include view, the line with the include statement must never be
included in the text of the view. Instead, it is replaced with the file that is specified.

Create map can be one of the following values:

YES The source debugger support should infer the map between this TEXT view and its
previous view based on the text added with the QteAddViewText API. Thisisthe only
map to this view that isinferred.

NO The program creating this TEXT view uses the QteAddViewMap API to provide
mapping information for this view.

View description
INPUT; CHAR(50)
A character string that describes the view being created. The source debugger has the option of
displaying this text with the view for identification purposes. The description should be
left-justified.

View number
OUTPUT; BINARY (4)
A number used to identify the view. Other APIs must be passed this number when they require a
view.

Error code
1/0; CHAR(*)
The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID
CPF3CF1E
CPF3CF2 E
CPF9547 E
CPF9549 E
CPF954B E
CPF954D E
CPF9555 E
CPF9556 E
CPF955A E
CPF955D E

Error Message Text

Error code parameter not valid.

Error(s) occurred during running of &1 API.
Previous view not correct.

Error addressing API parameter.
Statement view already exists.

View type not valid.

Create Map parameter not valid.

API not valid at thistime.

Input Output parameter not valid.

View dataoverflow. All debug data lost.

API Introduced: V3R1

Top | Debugger APIs| APIs by category

Add View File (QteAddViewFile) API

Required Parameter Group:

1 Filedescriptor buffer Input Char(*)
2 Number of entries Input Binary(4)
3 Format hame Input Char(8)
4 View number Input Binary(4)
5 Error code /10 Char(*)

Default Public Authority: *USE
Service Program: QTECRTV S

Threadsafe: No

The Add View File (QteAddViewFile) API provides alist of filesthat can be used when describing text for
apreviously added view. If afileis read more than once (such as a multiple included file), it should be
added multiple times. When this file needsto be identified to other APIs, itsfileindex is given, whichisan
index into the list of files supplied. The first file supplied has an index of zero.

Thefirst file added to aview must be the root file for that view. For example, if a processor produces a
source view, where aroot file includes other files, the root file must be specified as thefirst file for the
view. Thisistrue even if thefileis not the first file to produce view text (which would happen if an include
statement is on the first line of thefile).

All files for aview must be added at one time, with one call to this API.

Required Parameter Group

Filedescriptor buffer
INPUT; CHAR(*)

The input variable containing the list of files that make up the specified view text.

The source debugger support does not validate the existence of thisfile. Thisvalidation is done
when text from thefile is retrieved.
Number of entries

INPUT; BINARY (4)
The number of filesthat are provided in the file descriptor buffer parameter.

Many files may be described in asingle file descriptor buffer. However, each entry must represent
asinglefile, and this parameter must be a count of the number of files provided.

For format FILA0200, the number specifies the number of format entries, each containing seven
fields, that are present before the external file names buffer.

Format name

INPUT; CHAR(8)

The content and format of the information supplied by the calling program in the file descriptor
buffer. The valid values for format name are:

FILAO100 OS/400 file

FILAO200 Externa file (workstation file not on an iSeries server) or OS/400 integrated file
systemfile

For more information, see FILA0100 Format or FILA0200 Format.

View number
INPUT; BINARY (4)
The number assigned by the debug support as an output parameter on the Add View Description

API, which must be called prior to thisAPI. If afileisused for more than one view, it must be
supplied once for each view in which it is used.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

FILAO100 Format

| Offset ’ ’

| Dec | Hex |Type Field

[0 | 0 |[CHAR@0) [OS/400 filename

| 10 | A |CHAR(10) |Os/400filelibrary

| | 14 |CHAR(10) |0S/400 member name

FILAO200 Format

| Offset
| Dec | Hex ’Type ’Field
Note: Thefirst seven fields repeat the number of times specified in the number of
entries parameter.
| IBINARY(4) |Offset of file name
| IBINARY(4) |Length of file name
| IBINARY(4) |Fileflag
| IBINARY(4) |CCSID of file name
|
|

ICHAR(2) |Country or region ID of file name
ICHAR(3) |Language ID of file name

| | [CHAR(3) [Reserved
|Note: The following field occurs after the preceding header fields.
| | [CHAR(¥) [File names buffer

Field Descriptions

0OS/400filelibrary. The name of the library that contains the file being listed. It is an OS/400 object name,
left-justified, and padded with blanks.

0S/400 file name. The name of the OS/400 file being listed. It is an OS/400 object name, left-justified, and
padded with blanks.

0S/400 member name. The name of the member in the file being listed. It is an OS/400 object name,
left-justified, and padded with blanks.

CCSID of filename. The CCSID thefile nameisin. A value of zero indicates to use the CCSID value of
the job. A value of 65 535 causes an error message to be sent and the request to be ended.

Country or region I D of file name. The country or region ID of the file name. A value of blanks indicates
that the country or region 1D of job should be used.

File flag. Whether the file is an OS/400 integrated file system file or an external file (aworkstation file not
on an iSeries server).

0 External file
1 OS/400 integrated file system file

File names buffer. The names of external files or OS/400 integrated file system files being listed. The file
names are laid out one after another in this buffer. There is a pair of offset and length fields for each file
name in this buffer.

Language I D of file name. The language ID of the file name. A value of blanksindicates to use the
language ID value of the job.

Length of file name. Thisisthe length in bytes of the external file name in the external file names buffer.

Offset of file name. This offset from the start of the file descriptor buffer specifies the start of an externa
file name.

Reserved. Reserved for future use.

Error Messages

Message I D Error Message Text
CPF3C21 E Format name & 1 isnot valid.
CPF3CF1E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9542 E View not found.

CPF9549 E Error addressing APl parameter.
CPF9556 E API not valid at thistime.

CPF9558 E View aready contains file descriptors.
CPF955B E Number of entries not valid.

CPF955D E View data overflow. All debug data lost.
CPF956B E File name length not valid.

CPF956C E File name offset not valid.

CPFO575 E Fileflag not valid.

CPF9581 E CCSID of file name parameter not valid.

API Introduced: V3R1

Top | Debugger APIs| APIs by category

Add View Map (QteAddViewMap) API

Required Parameter Group:

1 Map descriptor buffer Input Char(*)
2 Number of entries Input Binary(4)
3 Format hame Input Char(8)
4 From view number Input Binary(4)
5 Toview number Input Binary(4)
6 Error code /0 Char(*)

Default Public Authority: *USE
Service Program: QTECRTVS

Threadsafe: No

The Add View Map (QteAddViewMap) API is used to map positions in one view to positions in another
view. Both the view being mapped from and the view being mapped to must be previously added with the
Add View Description API.

When mapping one view to another view, positions on both views are specified. There are two ways of
specifying a position in the view:

« A line and column number in the view can be specified. Thisisthe line number of the text of the
view. The text is the concatenation of all text described by text descriptors.

« Alternatively, afileindex, and aline and column in the file, can be specified. This allows view
positions to be specified in terms of file positions.

A few rules must be followed when using the file method to specify positions. These rules pertain to the
view for which file positions are to be specified:

1. Theview must be atext view (type * TEXT).

2. All positions in the view must be specified using the file method. File positions and view positions
may not be mixed.

3. Theview may have a*TEXT view as a previous view, but the text from the previous view must
consist of exactly one text descriptor, and that text descriptor must indicate that text comes from a
file.

All linesin the from view must map to a position in the to view. For this reason, the first element in the
mapping must specify line 1 of the from view.

This API is aso used when mapping locationsin aview to HLL statement numbers (the *STATEMENT
view). Thisis accomplished by referencing the locations in the from view parameters (from view number
and from line) and specifying the statement view number in the to view parameters (to view number and to
line).

This APl is aso used when mapping HLL statement numbers (the statement view) to block numbers. This
isaccomplished by putting positionsin the* STATEMENT view in the from line parameter and the block
number in the to line parameter.

All the map positions for the two views must be added at once, with one call to this API. For this reason,
the maps must be built up in a buffer as the processor produces its output. At the end of view creation, all
maps are then supplied to this API.

Required Parameter Group

Map descriptor buffer
INPUT; CHAR(*)
The input variable containing view-mapping information that isto be passed to the API. This
variable may contain multiple sets of information as long as each format in the variable is the same
and the number of entriesis specified appropriately.
Note: It isrequired that all map descriptors for aview be supplied with one call to this API.
Number of entries
INPUT; BINARY (4)

The number of map descriptors that are provided in the map descriptor buffer parameter.

Many map entries may be described in a single map descriptor buffer. However, each entry must
represent a single map descriptor, and this parameter must be a count of the number of entries
provided.

Each entry must contain all fields indicated, but, depending on the type of map being described by
the entry, certain fields will not be used by the API.

Format name
INPUT; CHAR(8)

The content and format of the information supplied by the calling program in the map descriptor
buffer. The valid values for format name are:

MAPAQ100 Line and column mapping

From view number
INPUT; BINARY (4)

The number of the view being mapped from. This nhumber must have been obtained from a
previously added view with the Add View Description API.

Note: The from view number cannot refer to a statement view unless amap block is being created.
In other words, a statement view cannot be mapped to atext view. However, text views may be
mapped to the statement view.

To view number
INPUT; BINARY (4)

The number of the view being mapped to. This number must have been obtained from aview
previously added with the Add View Description API. The special value supported is:

-1 Thismay be specified when providing amap from a*STATEMENT view to block
identifiers.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

MAPAO0100 Format

The following table shows the information supplied in the MAPA0100 format:

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Fromfileindex
| 4 | 4 |BINARY(4) |Fromline

| 8 | 8 |BINARY(4) |Fromcolumn
[12 [C [BINARY(4) |[Tofileindex
[16 [10 [BINARY(4) |[Toline

| 20 | 14 |BINARY(4) |Tocolumn

[24 [18 [BINARY(4) |Maptype

Field Descriptions

From column. The column number where text islocated. Thisisthe character position on the line
specified above. Column numbers in the range 1 through 255 can be specified.

Note: Column numbers are not supported at this time. For upward compatibility, you
should specify avalue of 1.

From fileindex. The number of thefile, if the position is specified in terms of afile. Thisfile must have
been added and used in atext descriptor of the view. If the position is specified in terms of aview, thefile
index must be set to special value -1.

When file 0 is specified and the view has a previous view, then thisfile is assumed to mean alinein the
previous view, because the first file specified in the file descriptor must be the root source file used to
construct this view. Thisroot source file is the same as the previous view.

From line. The line number of the view or file where the text is mapped from.

When the from view isa* STATEMENT view, this parameter indicates which statement to map from. Its
position in the *STATEMENT view is supplied, the first statement having position 1.

Map type. Specifies how text from the from view is being mapped to the to view at the position indicated.

0 Thetypeisnot supplied, and is alowed only for statement or block mappings where the type is aways
known.

1 Thetext from the from view is being copied to the to view at the specified positions.

2 Thetext intheto view isan expansion of text in the from view at the specified positions. Thisis
because of amacro expansion or an include statement.

To column. The column number specifying the starting character position within the line where thetext is
to go. Column numbers in the range 1 through 255 can be specified.

Note: Column numbers are not supported at this time. For upward compatibility, you
should specify avalue of 1.

Tofileindex. The number of thefile, if the position is specified in terms of afile. Thisfile must have been
added and used in atext descriptor of the view. If the position is specified in terms of aview, the file index
must be set to special value-1.

When file 0 is specified and the view has a previous view, then thisfileis assumed to mean alinein the
previous view, because the first file specified in the file descriptor must be the root source file used to
construct this view. Thisroot sourcefile is the same as the previous view.

To line. The line number of the view or file where the text is mapped to.

When theto view isa*STATEMENT view, this parameter indicates which statement to map to, the first
view having position 1.

When the to view is ablock view (special value -1), this parameter indicates which block number to map
to.

Error Messages

Message ID Error Message Text

CPF3C21 E Format name & 1 isnot valid.

CPF3CF1 E Error code parameter not valid.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9543 E From view not found.

CPF9544 E To view not found.

CPFO549 E Error addressing APl parameter.
CPF9551 E File not found.

CPF9552 E Cannot map between views.

CPF9553 E Map type not defined.

CPF9556 E APl not valid at thistime.

CPF955B E Number of entries not valid.

CPF955D E View dataoverflow. All debug datalost.

API Introduced: V3R1

Top | Debugger APIs | APIs by category

Add View Text (QteAddViewText) API

Required Parameter Group:

1 View number Input Binary(4)
2 Text descriptor buffer Input Char(*)
3 Number of entries Input Binary(4)
4 Format name Input Char(8)
5 Supplied text buffer Input Char(*)
6 Length of text buffer Input Binary(4)
7 Error code /0 Char(*)

Default Public Authority: *USE
Service Program: QTECRTV S

Threadsafe: No

The Add View Text (QteAddViewText) API isused to describe a piece of text of apreviously added view.
As aprocessor reads its input source, it creates at least one view. This API isissued to add the directions for
re-creating the text of these views. For the debugger to show the text that makes up a view, the location of
the pieces of text that make up the view must be specified.

When the view is reconstructed by the debugger, the pieces of text will be retrieved and concatenated into a
single piece of text, following the directions given when this APl is called. Thus, when it is mentioned that
text is copied, it isreferring to alater time, when the view is reconstructed.

All the text for aview must be added at once, with one call to this API. For this reason, the text must be
built up in a buffer as the processor produces its output. At the end of view creation, all text is then supplied
tothisAPI.

If any text comes from files, the file descriptors must have been previously added to the view with the Add
View File (QteAddViewFile) API.

Required Parameter Group

View number
INPUT; BINARY (4)
The number of the view to which a piece of text is being added. This number must be the same as
the number previoudly returned by the Add View Description API.

Text descriptor buffer
INPUT;CHAR(*)
The input variable containing the text descriptors. Text descriptors define the location of text used
to build the view specified in the view name parameter.

Number of entries

INPUT;BINARY (4)
The number of text descriptors that are provided in the text descriptor buffer parameter.

Many pieces of text may be described in a single text descriptor buffer. However, each entry must
represent a single piece of contiguous text, and this parameter must be a count of the number of
entries provided.

Each entry must contain all fields indicated, but, depending on the type of text being described by
the entry, certain fields will not be used by the API.

If any text is supplied by the calling program, it isidentified by atext descriptor, but the text itself
is contained in the supplied text buffer.

Format name
INPUT; CHAR(8)

The content and format of the information supplied by the calling program in the text descriptor
buffer. The valid values for format name are:

TXTA0100 Used when the text being added to this view can come from any of the following:
o Blanks

o Stored in afile
0 Copied from the previous view

0 Supplied by the calling program within the supplied text buffer parameter

Thisisthecasefor a* TEXT view.

TXTAO0101 Used when the entire text for this view is supplied text. Thisisthe casefor a
*LISTING view.

TXTA0102 Used when statement information for a* STATEMENT view isto be supplied.

TXTAO0103 Used when the entire text for this view is supplied text. Thisisthe casefor a
*LISTING view. Note that thisformat isidentical to TXTA0101; however, when the
TXTAO0103 format is specified, the listing view that is created will be compressed.
When it is reconstructed, it will be decompressed at that time.

Supplied text buffer
INPUT; CHAR(*)

Theinput variable that isto be passed to the API, containing the text that is supplied when atext
descriptor in the text descriptor buffer parameter indicates that text is supplied. Text descriptors
within the text descriptor buffer refer to text locations within this buffer by the offset from the
beginning of the buffer. The piece of text is ended by aNULL (hex 00) character. To conserve
storage, delete the trailing blanks in lines of supplied text, and end the text with anull character.

Note: A line of supplied text must not be more than 255 charactersin length, not counting the
NULL character.

Length of text buffer
INPUT; BINARY (4)

The length of the supplied text buffer.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

TXTAO0100 Format

Offset
Dec | Hex ’Type ’Field
0 | 0 |[CHAR(10) | Text location
10 [A [CHAR(® [Reserved
C [BINARY(d) |Fileindex

20 14 |BINARY(4) |Number of lines
24 18 [BINARY(4) [Fromline

|
|
|
|
12
|
|
|

|
I
16 | 10 |BINARY(4) |Startingoffset
|
I

TXTAO0101 Format

| Offset
| Dec | Hex |Type Field
| 0 | 0 |BINARY(4) |[Starting offset

TXTAO0102 Format

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Proceduredictionary ID
| 4 | 4 |BINARY(4) |Statement number

| 8 | 8 |CHAR() | Statement type

TXTAO0103 Format

| Offset
| Dec | Hex

Type ’Field

| 0 | 0 |BINARY(4) |Starting offset

Field Descriptions

Fileindex. A file member added by the Add View File API. Thisfield isrequired if the text location is set
to *FILE; otherwise, it isignored. Thefirst file added for the specified view isfile O, the second isfile 1,
and so forth.

When the view has a previous view, file 0 should not be specified. File 0 is assumed to mean alinein the
previous view because the first file specified in the file descriptor must be the root source file used to
construct this view. Thisroot source file is the same as the previous view. Instead, * PREVIOUS should be
specified in the text location field. If file O is specified instead of the previous view and the previous view
was created by another preprocessor that created atemporary file as its output, that file may not exist at run
time. In that case, text for the view could not be retrieved. However, if *PREVIOUS is specified, the View
Retrieval API can use the text descriptors of the output view created by the preprocessor to reconstruct the
text.

Note: The source debugger support does not validate the existence of thisfile. It merely
uses the name in the view information to refer to the location of debug data. When the text
of the view is reconstructed, text will be retrieved from the file named in this parameter
(and the member name parameter), and the file name will be validated at that time.

From line. The line number where text is located. If the text location is afile, thisis the line number in that
file. If thetext location is a previous view, this is the line position within that view. This can be thought of
asthe start line position. Thisfield isrequired if the text location is set to *FILE or * PREVIOUS.

Number of lines. The number of lines of text being described. It isintended that views be created in order,
where each piece of text comes directly after the previous text added. Thisfield is required when text
location is set to *FILE or *PREVIOUS.

Proceduredictionary I D. The dictionary number of the procedure where the statement is located.
Reserved. Reserved for future use.

Starting offset. The location within the supplied text buffer of the start of the supplied text. Thisisan
offset from the beginning of the buffer to the start of the text. Thisfield isrequired if the text location is set
to *SUPPLIED in the TXTA0100 format.

Statement number. The HLL statement number of the statement.

Statement type. The type of the statement being added. Possible values are:

X'01" INIT CODE

X'02" PROC ENTRY
X'03" PROC EXIT

X'04'" ALLOC

X05 STMT

X'06' ENTRY

X0o7 EXIT

X'08'" MULTIEXIT

X09
X'10
X111
X'12'
X'13
X'14
X'15'
X'16'
X1r
X'18'

PATH LABEL
PATH CALL BGN
PATH CALL RET
PATH DO BGN
PATH TRUEIF
PATH FALSEIF
PATH WHEN BGN
PATH OTHERW
GOTO

POST COMPOUND

Text location. The location of the text being referred to. Thisfield isrequired for all entries.

*FILE

Thetext isstored in afile.

*PREVIOUS Thetext isacopy of the previous view text. The previous view is specified when the view

is created.

*SUPPLIED Thetext issupplied by the API user within the supplied text buffer parameter. The text that

*BLANK

is supplied by the using program must be in the suppled text buffer parameter and referred
to by atext descriptor within the text descriptor buffer parameter.

The text consists of blank lines. The number of blank lines inserted is specified by the
number of linesfield.

Error Messages

Message I D
CPF3C21E
CPF3CF1E
CPF3CF2E
CPF9542 E
CPF9545 E
CPF9549 E
CPF954E E
CPF9551 E
CPF9552 E
CPF9556 E
CPF9557 E
CPF955B E
CPF955C E
CPF955D E

Error Message Text

Format name & 1 isnot valid.

Error code parameter not valid.

Error(s) occurred during running of &1 API.
View not found.

No previous view.

Error addressing API parameter.

Text location is not valid.

File not found.

Cannot map between views.

API not valid at thistime.

View already contains text descriptors.
Number of entries not valid.

Supplied Text Length parameter not valid.
View dataoverflow. All debug datalost.

CPF9569 E Missing supplied text.
CPF956A E No such text in previous view.

API Introduced: V4R2

Top | Debugger APIs| APIs by category

End View Creation (QteEndViewCreation) API

Required Parameter Group:
1 Error code /0 Char(*)

Default Public Authority: *USE
Service Program: QTECRTV S

Threadsafe: No

The End View Creation (QteEndViewCreation) API is used by a processor when all debug data views have
been created. At that time, views are written to the output file member (if any) specified on the Start View
Creation API. ThisEnd View Creation API should not be called if the view is not complete (for example, if
acompiler that is creating the view fails the compilation).

Authorities

Library Authority
*USE

File Authority
*CHANGE

Required Parameter

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF3CF1lE Error code parameter not valid.

CPF3CF2E Error(s) occurred during running of &1 API.
CPF9546 E View information damaged.

CPF9549 E Error addressing API parameter.

CPF9556 E API not valid at thistime.

CPF955D E
CPF9803 E
CPF9809 E
CPF9810 E
CPF9815 E
CPF9820 E
CPF9822 E

View dataoverflow. All debug datalost.
Cannot allocate object &2 in library & 3.
Library &1 cannot be accessed.

Library &1 not found.

Member &5 file &2 in library & 3 not found.
Not authorized to use library & 1.

Not authorized to file &1 in library & 2.

API Introduced: V3R1

Top | Debugger APIs| APIs by category

Start View Creation (QteStartViewCreation) API

Required Parameter Group:

1 Input file descriptor buffer Input Char(*)

2 Output file descriptor buffer Input Char(*)

3 Format hame Input Char(8)
4 Discard previous views Input Char(10)
5 Processor ID Input Char(20)
6 View CCSID Input Binary(4)
7 Error code /0 Char(*)

Default Public Authority: *USE
Service Program: QTECRTVS

Threadsafe: No

The calling program uses the Start View Creation (QteStartViewCreation) API to initialize the debug view
creation environment. This APl should be the first one of the view creation APIsto be called.

This calling program is usually atext preprocessor or a compiler. In this document, the term processor will
be used to specify any program that reads input text and produces view data for the debugger.

The processor that calls the Start View Creation APl must provide the names of the input source member
read and the output source member created (if any).

The input member name is the name of the root source member read by the processor. If a previously run
processor created this member, then view information is stored with the member. This view information is
combined with that produced by the processor and stored in the output source member specified by the
processor.

If an input member is specified and there is no view information in the associated space of the member, itis
assumed that this member is the root source from which the program is created. It is also assumed that the
processor that specifies this member isthe first processor in the chain of processors that produces the
program.

The processor creating the view supplies the CCSID in which all supplied text is stored. Thus, when view
text is extracted, all supplied text istrandated from this CCSID to the CCSID of the job. When view text
(such as macro expansion text) is supplied, it must be supplied in the same CCSID. Text that comes from
other files may bein any CCSID, asit will automatically be trandated into the job's CCSID when the text is
retrieved.

If no input member is specified, it is assumed that a previous processor created view informationin a
temporary space, instead of storing it in an output member. Thisis the case when a compiler runs and
produces view information. Since the compiler does not produce an output member to be read by another
processor, the view information is stored in atemporary location associated with the process, and no output
fileis specified.

Each processor creates view information that is combined with information produced by previous
processors. The final, and complete, view information is stored by the binder in the module and program

object associated space.
After the view information is complete, the End View Creation API should be called.

Theinput file must exist and be available at the time this API isissued. The output file must exist and be
available at the time the QteEndViewCreation APl isissued.

Authorities

Input file member specified
*USE

Output file member specified
*CHANGE

Required Parameter Group

Input file descriptor buffer
INPUT; CHAR(*)
The name of the file member read by the processor creating debug data. This member may be a
member created by the customer, or it may be the output of apreviously run preprocessor. The
special value of *NONE is used when input from the processor does not come from a source

member. In general, the only processor which would indicate * NONE is the back end of the
compiler.

Thisfile may contain view information if it is created by a previously run preprocessor.

The structure of this parameter is specified by the format name parameter.
Output file descriptor buffer
INPUT; CHAR(*)
The file member written by the processor creating debug data. A special value of *NONE for the
output file indicates that the view information created will remain with the job and will be passed to

the next compilation step without being associated with a specific file. Generally, only the compiler
uses this specia value, asit does not create a source member to be read by another processor.

The associated space of thisfile will contain view information created by this processor in addition
to view information created by any previous preprocessor steps. It is the responsibility of the
processor to create this file and make it available before the QteEndViewCreation AP is called.
The structure of this parameter is specified by the format name parameter.

Format name
INPUT; CHAR(8)

The content and format of the information supplied by the calling program in the input file
descriptor buffer and the output file descriptor buffer. The only valid value for format nameis:

FILAO100 OS/400 file names

Discard previous views
INPUT; CHAR(10)
Whether the program creating debug view information wants the source debugger support to throw
away any previoudy created view information. This allows a processor to force the view

information created to be the only debug data available. In general, processors would specify * NO
to allow any previous processor's view information to be included in the final program object.

*YES The source debugger support does not use any previously built view information but rather
starts with the information provided by the processor creating debug data.

*NO The source debugger support uses any previously built and existing view information and
addsto it the view information created during this compiler step.

Processor ID
INPUT; CHAR(20)

The processor that creates view information.
View CCSID
INPUT; BINARY (4)

The CCSID of any text supplied to the view creation APIs.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

FILAO100 Format

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |File name

| 10 | A |CHAR(10) |Filelibrary

| | 14 |CHAR(10) |Member name

Field Descriptions

Filelibrary. The name of the library that contains the file being listed. It isan OS/400 object name,
left-justified, and padded with blanks.

File name. The name of thefile being listed. It is an OS/400 object name, left-justified, and padded with
blanks.

Member name. The name of the member in the file being listed. It is an OS/400 object name, |eft-justified,
and padded with blanks.

Error Messages

Message ID
CPF3C21E
CPF3CF1E
CPF3CF2E
CPF9549 E
CPF9554 E
CPF9803 E
CPF9809 E
CPF9810 E
CPF9815 E
CPF9820 E
CPF9822 E

Error Message Text

Format name & 1 isnot valid.

Error code parameter not valid.

Error(s) occurred during running of &1 API.
Error addressing APl parameter.

Discard Previous Views parameter not valid.
Cannot alocate object &2 in library & 3.
Library &1 cannot be accessed.

Library &1 not found.

Member &5file &2 inlibrary & 3 not found.
Not authorized to use library & 1.

Not authorized to file &1 in library & 2.

API Introduced: V3R1

Top | Debugger APIs| APIs by category

View Information APIs

View information APIs retrieve view information, including view text information and view mapping
information, and allow the program to set parameters associated with a view.
The view information APIs are:

o Map View Position (QteMapViewPosition()) used to map positions in one view to positionsin
another view.

« Register Debug View (QteRegisterDebugView) registers aview of a module, which allows a
program to be debugged in terms of that view.

« Remove Debug View (QteRemoveDebugView) removes aview of amodule that was previously
registered by the Register Debug View API. Thisis necessary when a program is to be removed
from debug mode so it can be deleted and recompiled.

« Retrieve Statement View (QteRetrieveStatementView) returns the statement view and related
information.

« Retrieve Stopped Position (QteRetrieveStoppedPosition) determinesif a programis on the call
stack and indicates the position in the view at which the program is stopped if it is on the stack.

« Retrieve View File (QteRetrieveViewFile) returns al the files and text information necessary to
construct the text for aview.

« Retrieve View Line Information (QteRetrieveViewLinelnformation) returns information about the
specified number of linesin aregistered view.

« Retrieve View Text (QteRetrieveViewText()) retrieves the text of aview.

Top | Debugger APIs | APIs by category

Map View Position (QteMapViewPosition) API

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)
3 Fromview ID Input Binary(4)
4 From line number Input Binary(4)
5 From column number Input Binary(4)
6 ToviewlID Input Binary(4)
7 Error code /0 Char(*)

Default Public Authority: *USE
Service Program: QTEDBGS

Threadsafe: No

The Map View Position (QteMapViewPosition) APl maps positions from one view to another view within
the same program and module. A specified position in the view identified in the from view 1D parameter is
used for the mapping. The position is specified as aline number and a column number in the from view ID.

A position in one view can map to more than one position in another view. For example, an SQL statement
in the SQL input source view may map to many positions in the C input source view.Thisis because a
single SQL statement may distribute source throughout the output of the SQL processor.

One or more positionsin the to view ID are returned as a line number and a column number.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The variable that is to receive the information requested. Y ou can specify the size of this areato be
smaller than the format requested if you specify the length of receiver variable parameter correctly.
Asaresult, the API returns only the data that the area can hold. For more information on the size
and format of the receiver variable, see Format of Receiver Variable.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable. The minimum length is 8 bytes.

It is suggested that a receiver variable length be given that islarge enough to hold one map
element. Because thisis normally the number of elements returned, asingle call to thisAPI is
usually sufficient.

From view ID
INPUT; BINARY (4)

The identifier of a previously registered view, which is obtained using theRegister Debug View
API. This D specifies the from view in the mapping function provided.

From line number
INPUT; BINARY (4)

The line number in the view specified by the from view |D parameter mapped to aline number in
the view specified by the to view ID parameter.

If the information in the from view ID parameter is a statement view, this parameter represents the
line number in the statement view.

Note: The statement view is the lowest level view. Breakpoints, steps, and unmonitored exceptions
are reported as aline number within this view. Therefore, the statement view must exist and be
registered to accomplish source level debugging.

From column number
INPUT; BINARY (4)

The position in the line specified by the from line number parameter. Column numbers are 1
through 255.

If the from view ID parameter is a statement view, this parameter is not used and should be set to
column one.

Toview ID
INPUT; BINARY (4)
Theidentifier of a previously registered view, which is obtained using the Register Debug View
API. This specifies the to view in the mapping function provided.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Receiver Variable

The following table shows the information supplied in the receiver variable parameter.

Offset
Dec | Hex |Type ’Field
0O | O |[BINARY(4) |Bytesreturned
4 | 4 |BINARY(4) |Bytesavailable
8 | 8 |[BINARY(4) |[Number of map elements

Note: The following fields are repeated for each map element.
| IBINARY(4) |Line number
| IBINARY(4) |Column number

Field Descriptions

Bytes available. The number of bytes of data available to be returned to the user.
Bytesreturned. The number of bytes of data returned to the user.

Column number. The column number within the from line number parameter that maps to the current
position in the to view ID parameter. Column numbers are 1 through 255.

If the view is a statement view, this number is not used and is set to column one.
Line number. The line number in the view specified by the to view ID parameter.

Number of map elements. Theline number and column number fields are repeated this number of times,
once for each map available.

Error Messages

Message I D Error Message Text

CPF3C24 E Length of the receiver variableis not valid.
CPF3CF1E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9541 E Not in debug mode.

CPF9543 E From view not found.

CPF9544 E To view not found.

CPF9548 E Map not available.

CPF9567 E Column number not valid.

CPF9568 E Line number not valid.

CPF9549 E Error addressing API parameter.

API Introduced: V2R3

Top | Debugger APIs | APIs by category

Register Debug View (QteRegisterDebugView)
API

Required Parameter Group:

1 ViewlID Output Binary(4)

2 Number of lines Output Binary(4)

3 Returned library Output Char(10) or
Char(*)

4 View timestamp Output Char(13)

5 Quadlified program name Input Char(20) or
Char(*)

6 Program type Input Char(10)

7 Module name Input Char(10) or
Binary(4)

8 View number Input Binary(4)

9 Error code /10 Char(*)

Service Program: QTEDBGS

Threadsafe: No

The Register Debug View (QteRegisterDebugView) APl registers aview of amodule, which allows a
program to be debugged in terms of that view. An identifier to the view is returned on successful
completion of the API to be used in subsequent view information APIs. A program is considered to be
active under ILE debug only after at least one of its debug viewsis registered.

Views retrieved by the Retrieve Module Views (QteRetrieveM oduleViews) APl can be registered. This
includes both ILE and OPM program views. OPM program views must have been created by the OPM CL,
OPM COBOL, or OPM RPG compiler using the * SRCDBG or *LSTDBG option.

This APl will also register JAVA classfile views. In this case the input program type parameter must be
*CLASS and the input qualified program name parameter must be a null-terminated JAV A classfile name.
The class path name of the file that contains the class fileis returned in the returned library parameter.

If arequest is made to register an aready registered view, no error occurs. Instead, the previous ID is
returned.

Note: Before registering views for a program again, it is recommended that al views for that program first
be removed.

Authorities

The authorities required are dependent on the program type parameter. If the program type is*PGM or
*SRVPGM, the authorities are as follows;

Program Authority
Either * SERVICE and *USE, or *CHANGE

Library Authority
*USE

If the program type is * CLASS, the authorities are as follows:
Class File Authority
*R

Required Parameter Group

View ID
OUTPUT; BINARY (4)
The returned ID of the successfully (or previously) registered debug view. The source debugger

support supplies and maintains the view IDs. If no error is reported by the AP, thisvalueis used
by the program in view ID input parameters that occur on subsequent debugger APIs.

Number of lines
OUTPUT; BINARY (4)

The number of lines of text in the view.
Returned library
OUTPUT; CHAR(10) or CHAR(*)

The format of this parameter is dependent on the program type parameter. If the program typeis
*PGM or * SRVPGM, the format of this parameter is OUTPUT CHAR(10) asfollows:

The library where the program was found. Thisis useful when *LIBL or *CURLIB
is specified for the program library.

If the program typeis* CLASS, the format of this parameter isOUTPUT CHAR(*) asfollows:

Class path name information for the requested class file. For more information, see
Format of JAVA Returned Library Parameter.

View timestamp
OUTPUT; CHAR(13)

The date and time the view was created. If thistimeis greater than the time obtained from the
Retrieve Module Views AP, the view may not be the same as the previous one. Users should run
the Retrieve Module Views API before registering the view. The value is the American National
Standard 13-character timestamp CY Y MMDDHHMMSS format, where:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.
YY Year

MM Month

HH Hour

MM Minute

SS Second

Qualified program name
INPUT; CHAR(20) or CHAR(*)
The format of this parameter is dependent on the program type parameter. If the program typeis
*PGM or * SRVPGM, the format of this parameter is as follows:
o The name of aprogram for which aview isto be registered.
o Thefirst 10 characters contain the program name.
o The second 10 characters contain the name of the library where the program is located.

The following specia values may be used for the library name:

*CURLIB Thejob'scurrent library.
*LIBL Thelibrary list.

If the program type is * CLASS, the format of this parameter is as follows:

The null-terminated class file name of the JAVA class to register.
Program type
INPUT; CHAR(10)

The type of program for which aview isto be registered. Thisis the object type of the program
object. Thevalid values are:

*PGM ILE or OPM program
*SRVPGM ILE service program
*CLASS JAVA classfile

Module name
INPUT; CHAR(10) or BINARY (4)
The format of this parameter is dependent on the program type parameter. If the program typeis
*PGM or * SRVPGM, the format of this parameter is as follows:

o The name of amodule for which aview isto be registered.

o The module name should be | eft-justified.

o The module name parameter must be specified as all blanks for OPM programs.
Information for this parameter is available by using the Retrieve Module Views API to retrieve
available module names for a specified program.

If the program type is* CLASS, the format of this parameter is as follows:

o The module name parameter must contain a 4-byte binary field.

o Thisfield contains the number of bytes provided in the returned library parameter for
returned JAV A class path name information.

o The value specified in this parameter must be at least 8 bytes.

View number
INPUT; BINARY (4)

The number of aview to be registered for subsequent view information and debug command APIs.
If -1is specified, the statement view isregistered. The value -1 is ashortcut to alow the registering
of this view without going through the Retrieve Module Views API to obtain the number.

Information for this parameter is available by using the Retrieve Module Views API to retrieve
available view numbers for modules associated with a specific program.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of JAVA Returned Library Parameter

When the program type parameter is* CLASS, class path name information is returned in the returned
library parameter. The following table shows the format of the returned library parameter when JAVA class
file view information is registered. For more information on the fields, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |BINARY(4) |Offset to class path name
| C | C |BINARY(4) |Length of classpath name
| | ICHAR(*) |Class path name

Field Descriptions

Bytes available. The number of bytes available to be returned in the returned library parameter. If the bytes
available valueis larger than the bytes provided value passed in the module name parameter, the API

should be called again with avalue that is at |east as large as the bytes available. |f the space provided is not
large enough, the string space is filled with as many characters of the class path name as will fit.
Bytesreturned. The number of bytes returned in the returned library parameter.

Class path name. The path name of the file that contains the class file that was retrieved.

L ength of class path name. The length of the class path name returned.

Offset to class path name. The offset from the start of the returned library parameter to the class path
name.

Error Messages

Message | D
CPF3CF1 E
CPF3CF2 E
CPF9541 E
CPF9542 E
CPF9549 E
CPF954F E
CPF955F E
CPF9562 E
CPF9584 E
CPF9585 E
CPF9587 E
CPF9588 E
CPF9591 E
CPF9592 E
CPF9593 E
CPF9594 E
CPF9599 E
CPF9801 E
CPF9802 E
CPF9803 E
CPF9809 E
CPF9810 E
CPF9820 E

Error Message Text

Error code parameter not valid.

Error(s) occurred during running of &1 API.

Not in debug mode.

View not found.

Error addressing APl parameter.

Module &1 not found.

Program & 1 not a bound program.

Module &1 cannot be debugged.

OPM program & 1 cannot be added to ILE debug environment.
Program & 1 already active in OPM debug environment.
Module name value &1 not valid.

OPM source cannot be accessed.

Value specified in module name parameter is not valid.
Classfile not found.

Not authorized to classfile.

JAVA classfile not available.

Classfile cannot be debugged.

Object &2 in library &3 not found.

Not authorized to object &2 in & 3.

Cannot allocate object &2 in library & 3.

Library &1 cannot be accessed.

Library &1 not found.

Not authorized to use library & 1.

API Introduced: V2R3

Top | Debugger APIs | APIs by category

Remove Debug View (QteRemoveDebugView)
API

Required Parameter Group:

1 ViewlID Input Binary(4)
2 Error code /0 Char(*)

Service Program: QTEDBGS

Threadsafe: No

The Remove Debug View (QteRemoveDebugView) APl removes aview of a module that was previously
registered by the Register Debug View API. This API is needed when aprogram is to be removed from
debug, so that it can be deleted and recompiled. Once aview is removed from being debugged, its view
number may not be used again.

If the last registered view of aprogram is removed, all breakpoints are removed from that program, and the
step statement is disabled if it was active.

Required Parameter Group

View ID
INPUT; BINARY (4)
The ID of aview to be removed from debug. This ID was obtained from a previous use of the
Register Debug View API.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message I D Error Message Text

CPF3CF1E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9541 E Not in debug mode.

CPF9542 E View not found.

CPF9549 E Error addressing API parameter.

API Introduced: V2R3

Top | Debugger APIs | APIs by category

Retrieve Statement View
(QteRetrieveStatementView) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 ViewID Input Binary(4)
4 Start line number Input Binary(4)
5 Number of lines Input Binary(4)
6 Error code /10 Char(*)

Service Program: QTEDBGS
Threadsafe: No

The Retrieve Statement View (QteRetrieveStatementView) AP is used to retrieve the statement view and
related information. The statement view information that is retrieved can be useful for breakpoint
processing. The caller must specify the following:

« Theregistered statement view 1D
« The starting statement view line number to be retrieved
« The number of statement view linesto retrieve

« A buffer to contain the statement view and related information

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The receiver variable that receives the information requested. Y ou can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. Asa
result, the API returns only the data that the area can hold. For more information, see Format of

Receiver Variable.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable provided. The length of receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of
receiver variable parameter specified is larger than the allocated size of the receiver variable
specified in the user program, the results are not predictable. The minimum length is 8 bytes.

View ID

INPUT; BINARY (4)

The identifier of the previously registered statement view obtained by using the Register Debug
View (QteRegisterDebugView) API.

Start line number
INPUT; BINARY (4)

The number of the first statement view line that the API isto retrieve. Statement view lines begin at
line 1.

Number of lines

INPUT; BINARY (4)

The number of lines of the statement view to be retrieved. This number includes the line specified
in the start line number parameter. If fewer lines than requested are available, the number of lines

placed in the receiver variable may be less than the number specified. No more than the number of
lines specified is placed in the receiver variable.

The following specia value is supported for this parameter:
0 All linesfrom the start line number to the end of the statement view should be retrieved.

Error code
1/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Receiver Variable

Thereceiver variable consists of :
o A receiver variable header section.

« A section containing the statement view lines.

« A section containing information for each procedure in the statement view.

« A string space containing the statement view procedure names.

«» A section containing offsets to additional information about individual statement view lines.
« A section containing additional information about individual statement view lines.

« A space containing variable length fields that are referenced by other returned data sections.

Variables containing offsets are used to access statement view data. All offsets are relative to the beginning
of the receiver variable.

Receiver Variable Header Section

The following table shows the information supplied in the receiver variable parameter. For more
information on each field, see Field Descriptions.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |BINARY(4) |Offsetto first statement view line

| 12 | C |BINARY(4) |Number of linesreturned

| 16 | 10 |BINARY(4) |Lengthof statement view line

| 20 | 14 |BINARY(4) |Offset to first procedure information structure

’ 24 ’ 18 ’BI NARY(4) |Offset tofirst statement-view-line
additional-information offset.

Statement View Section

The statement view is returned as an array of statement lines. The first statement view line can be accessed
by using the first view line offset in the receiver header. The number of lines returned variable in the
receiver header is used to tell how many statement lines were returned. The total number of bytesin each
lineis equa to the line length. Each line has the following format.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |BINARY(4) |Statement number

| 4 | 4 |BINARY(4) |Statement type

’ 8 ’ ’BI NARY(4) |Offset to statement procedure information
structure

Procedure Information Section

The procedure information section contains one variable-length data structure for each procedure in the
statement view. The first procedure information data structure can be accessed by using the first procedure
information offset in the receiver header. Each statement view line contains a statement procedure
information offset that can be used to locate procedure information for the statement line. Each procedure
information data structure has the following format.

| Offset ’ ’

| Dec | Hex |Type Fied

| 0 | 0 |BINARY(4) |Offsetto next procedure information structure
| 4 | 4 |BINARY(4) |Procedure dictionary number

| 8 | 8 |BINARY(4) |Offsetto procedure name

| 12 | C |BINARY(4) |Length of procedure name

| 16 | 10 |BINARY(4) |Offsetto first statement linerange element
| 20 | 14 |BINARY(4) |Number of statement line ranges

|Note: The following fields are repeated for each statement line range.

| | IBINARY(4) |Low line number

| | IBINARY(4) |High line number

Procedure Name String Space

The procedure name string space contains the text of the procedure names in the module. The procedure
name offset in the procedure information section is used to access a procedure name. The procedure name
length is also contained in the procedure information section. The procedure name is converted to the coded
character set identifier (CCSID) of the job.

| Offset

| Dec | Hex |Type Field

| | |ICHAR(*) |Procedure name

Statement-View-Line Additional-Information Offsets Section

If the compiler suppliesit, additional information is returned for individual statement view lines. For
example, a statement may have a name associated with it, such as ablock or label name. Each linein the
statement view section has a corresponding offset to additional information for the line. Thus, the first
offset in this section is used to find the additional information for the first statement view line returned. The
second offset will reference additional information for the second statement view line returned, and so on.
There must be space in the receiver variable for the additional-information offsets of all statement view
lines returned or none of the offsetsis returned. The presence of this section is indicated by a nonzero value
in the offset to first statement-view-line additional-information offset in the receiver header. If this section
is present, there is one offset for each statement view line returned. If there is additional information for a
statement view line, the additional information offset for it is nonzero. Each offset has the following format.

| Offset

| Dec | Hex |Type Field

|Note: Thefollowing field is repeated for each statement view line returned.

’ 0 ’ 0 |BINARY(4) |Offset to statement-view-line additional
information

Statement-View-Line Additional-Information Section

If the compiler suppliesit, additional information is returned for individual statement view lines. For
example, a statement may have a name associated with it, such asablock or label name. The
statement-view-line additional-information section contains one variable-length data structure for each
statement view line that has additional information associated with it. If thereis not enough room in the
receiver variable for al of the additional-information data structures to be returned, the number that fitsis

returned. The additional information data structures are referenced by the offsets in the statement-view-line
additional-information offsets section. Each additional-information data structure has the following format.

| Offset

| Dec | Hex |Type Fied

| 0 | 0 |BINARY(4) |Offsetto statement name
| 4 | 4 |BINARY(4) |Length of statement name

Variable Length Field Section

This section contains space to return variable length fields. These fields are referenced by other returned
data structures through offsets. Usualy, alength field would also be contained within the same data
structure that references afield in this space.

| Offset

| Dec | Hex |Type Field

| | |CHAR(*) |Variab|e length field

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available datais returned if
enough space is provided.

Bytesreturned. The number of bytes of data returned.
High line number. The high view-line number in the statement view of a procedure statement range.

Length of procedure name. The length of the procedure name in the procedure string space. For OPM
programs the procedure name length is set to avalue of 1.

Length of statement name. The length of the statement name associated with the statement view line.
Length of statement view line. The length of each statement view line in the statement view section.
Low line number. The low view-line number in the statement view of a procedure statement range.
Number of linesreturned. The number of statement view lines retrieved by this API. This may be less
than the number of lines requested or available if the receiver variable is not large enough to hold the

number of lines requested.

Number of statement line ranges. The number of statement view line ranges in the procedure information
data structure.

Offset to first procedureinformation structure. The displacement from the start of the receiver variable
to the first procedure information data structure in the procedure information section. Thisvalueis zero
when no procedure information is returned because of insufficient receiver variable space.

Offset to first statement line range element. The displacement from the start of the receiver variable to
the first statement range element in the procedure information data structure.

Offset to first statement view line. The displacement from the start of the receiver variable to the first
statement view line. Thisvalueis zero if no statement view lines are returned because of insufficient
receiver variable space.

Offset to first statement-view-line additional-infor mation offset. The displacement from the start of the
receiver variable to the first statement-view-line additional-information offset. Thisvalueiszero if no
statement-view-line additional -information offsets are returned because of insufficient receiver variable
space, or if the compiler does not support debug data for additional statement view lines.

Offset to next procedur e information structure. The displacement from the start of the receiver variable
to the next procedure information data structure. This value is zero when there are no more procedure
information data structures.

Offset to procedur e name. The displacement from the start of the receiver variable to the procedure name.
Thisvalueis zero if the procedure name is not returned because it would not fit in the procedure string
space.

Offset to statement name. The displacement from the start of the receiver variable to the statement name
that is associated with the statement view line. For example, this could be ablock or label name. This value
is zero if the statement name is not returned because it would not fit in the variable length field section, or
because the compiler did not provide a statement name.

Offset to statement procedure infor mation structure. The displacement from the start of the receiver
variable to appropriate procedure information data structure in the procedure information section. This
valueis zero if the procedure information for this statement was not returned because of insufficient
receiver-variable space.

Offset to statement-view-line additional information. The displacement from the start of the receiver
variable to the statement-view-line additional-information data structure. Thisvalue is zero if no
statement-view-line additional information is returned because of insufficient receiver variable space, or
because there is no additional information for the statement view line.

Procedure dictionary number. The number that uniquely identifies the procedure in this module. For
OPM programs the procedure dictionary number is set to avalue of 0.

Procedur e name. The name of the procedure. The procedure name is converted to the CCSID of the job.
For OPM programs the procedure name is set to a blank value with alength of 1 byte.

Statement number. The number that uniquely identifies the statement in the procedure. This number is
shown on the compiler listing. For OPM programs the statement number is the same as the machine
interface (MI) number.

Statement type. The type number of statement produced by the compiler. Possible values are as follows:

INIT CODE
PROC ENTRY
PROC EXIT
ALLOC
STMT
ENTRY

EXIT
MULTIEXIT
PATH LABEL

© 00 N o o~ WON P

10 PATH CALL BGN
11 PATH CALL RET
12 PATH DO BGN

13 PATH TRUEIF

14 PATH FALSEIF

15 PATH WHEN BGN
16 PATH OTHERW
17 GOTO

18 POST COMPOUND

Variablelength field. A field referenced by an offset in areturned data structure. The datatypeis
determined by where it is referenced. For example, a statement name field is atext string.

Error Messages

Message ID Error Message Text

CPF3C24 E Length of the receiver variable is not valid.
CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.
CPFO%41 E Not in debug mode

CPF9542 E View not found.

CPFO549 E Error addressing APl parameter.

CPF954A E No source text available.

CPF9563 E Number of lines not valid.

CPF9564 E Starting line number not valid.

CPF9582 E View isnot a statement view.

API Introduced: V3R6

Top | Debugger APIs | APIs by category

Retrieve Stopped Position
(QteRetrieveStoppedPosition) API

Required Parameter Group:
1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 ViewID Input Binary(4)
4 Error code 1/0 Char(*)

Service Program: QTEDBGS

Threadsafe: No

The Retrieve Stopped Position (QteRetrieveStoppedPosition) API is used to determine if amodulein a
program is on the call stack. It indicates the position in the view at which the program stopped if the
program is on the stack. The caller must specify aregistered view 1D. The most recently called procedurein
the specified module is the one whose line is returned. If a program is on the stack, the stack is searched
from the most recent call backward until a procedure in the moduleis found. The location in that procedure
isreturned.

If no procedure in the identified module is on the stack, a zero is returned.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The variable that is to receive the information requested. Y ou can specify the size of this areato be
smaller than the format requested if you specify the length of receiver variable parameter correctly.
Asaresult, the API returns only the data that the area can hold. For more information, see Format

of Receiver Variable.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable. The minimum length is 8 bytes.

It is suggested that areceiver variable length be given that islarge enough to hold one position
element. Because this normally is the number of elements that are returned, asingle call to this API
isusually sufficient. Also, this allows the number of stopped positions field to be used to determine
whether the program is stopped. If zero elements are returned, the program is not stopped in the
specified view.

View ID
INPUT; BINARY (4)

The identifier of apreviously registered view obtained using the Register Debug View API.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Receiver Variable

The following table shows the information supplied in the receiver variable parameter. For more
information on the fields see, Field Descriptions.

Offset
Dec | Hex ’Type ’Field
0O | O |[BINARY(4) |Bytesreturned
4 | 4 |BINARY(4) |Bytesavailable
8 | 8 |[BINARY(4) |Number of stopped positions

Note: The following fields are repeated for each stopped position.
| IBINARY(4) |Line number
| IBINARY(4) |Column number

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available datais returned if
enough space is provided.

Bytesreturned. The number of bytes of data returned.

Column number. The column number within the line number specified where the program is stopped in
the view 1D. Column numbers can be 1 through 255.

Line number. The line number within the view ID where the program is stopped. This number represents
the line number within the view that corresponds to text retrieved using the Retrieve View Text API.

Number of stopped positions. A stopped position consists of the line number and column number fields
and are repeated this number of times, once for each position available. If the view is not on the stack, this
number is zero. If thereis no room in the receiver variable to hold any stopped positions, this number is
also zero. Therefore, there should be enough room in the receiver variable to hold at least one stopped
position.

Because of program optimization, it is possible for the API not to know exactly where the view is stopped.
For this reason, more than one position may be returned.

Error Messages

Message | D Error Message Text

CPF3C24 E Length of the receiver variableis not valid.
CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9541 E Not in debug mode.

CPF9542 E View not found.

CPF9548 E Map not available.

CPF9549 E Error addressing APl parameter.

API Introduced: V2R3

Top | Debugger APIs| APIs by category

Retrieve View File (QteRetrieveViewFile) API

Required Parameter Group:

1 Text descriptor receiver variable Output Char(*)
2 Length of text descriptor receiver variable Input Binary(4)
3 Filenamereceiver variable Output Char(*)
4 Length of file name receiver variable Input Binary(4)
5 Format of file name receiver variable Input Char(8)
6 ViewlD Input Binary(4)
7 Error code 1/0 Char(*)

Service Program: QTEDBGS

Threadsafe: No

The Retrieve View File (QteRetrieveViewFile) API isused to retrieve all the files and text information
necessary to construct the text for the entire view specified by the view ID parameter. A list of text
descriptorsis returned. Each text descriptor describes where a piece of text for the view comes from, either
from afile specified in the file name receiver variable or from supplied text that may be obtained using the
Retrieve View Text API.

Required Parameter Group

Text descriptor receiver variable
OUTPUT; CHAR(*)

The output variable containing the list of text descriptors, which describe how the specified view is
constructed. For more information, see Format of Text Descriptor Receiver Variable.

Length of text descriptor receiver variable
INPUT; BINARY (4)
The length in bytes of the text descriptor receiver variable parameter. The minimum length is 8
bytes.
File namereceiver variable
OUTPUT; CHAR(*)

The output variable containing the list of files referenced by the text descriptor receiver variable.
Length of file namereceiver variable
INPUT; BINARY (4)

The length in bytes of the file name receiver variable. The minimum length is 8 bytes.
Format of file namereceiver variable
INPUT; CHAR(8)

The content and format of the information to be supplied by the API in the file name receiver
variable. Theonly valid valueis:

RVFNO100 Format of file name receiver variable

For more information, see Format of File Name Receiver Variable.
View ID
INPUT; BINARY (4)

The identifier of a previously registered view obtained by using the Register Debug View API.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Text Descriptor Receiver Variable

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |BINARY(4) |Number of text descriptor entries

Note: The following three fields are repeated the number of times specified in the
number of text descriptor entriesfield.

| | [BINARY(4) [Filenameindex
| | [BINARY(4) |Line number
| | [BINARY(4) [Number of lines

Format of File Name Receiver Variable

| Offset ’ ’

| Dec | Hex |Type Fied

| 0 | O |BINARY(4) |Bytesreturned

[4 [4 [BINARY(4) |Bytesavalable

| 8 | 8 |BINARY(4) |Number of file name entries

Note: Thefollowing eight fields are repeated the number of times specified on the
number of file name entriesfield.

| IBINARY(4) |Offset of file name

| IBINARY(4) |Length of file name

| ICHAR(8) |File format name

| IBINARY(4) |External or OS/400 IFSfileflag

| | IBINARY(4) |CCSID of file name

| | ICHAR(2) |Country or region ID of file name
| | ICHAR(3) |Language ID of file name

| | [CHAR(3) |Reserved

|Note: The file names buffer follows al file name entries.

| | |ICHAR(*) |File names buffer

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available datais returned if
enough space is provided.

Bytesreturned. The number of bytes of data returned.

CCSID of filename. The CCSID the file nameisin. The value of thisfield is only valid for file format
name RTV F0200.

Country or region ID of file name. The country or region ID of the file name. The value of thisfield is
valid for file format name RTVF0200 only.

External or IFSfileflag. Whether the file is an OS/400 integrated file system file or an external file. A
value of 0 means externa file; avalue of 1 means OS/400 integrated file system file. The value of thisfield
isvalid only for file format name RTVF0200.

File names buffer. A list of file names from which text should be retrieved.

File nameindex. An index into the file name receiver variable array. O isthefirst file entry in the file name
receiver variable. If theindex is-1, the text comes from supplied text.

File format name. Theformat of afilein the file names buffer. Possible formats are:

RTVF0100 OS/400 file (see RTVF0100 Format)
RTVF0200 External or OS/400 HFSfile (see RTVF0200 Format)

Language I D of file name. The language ID of the file name. The value of thisfield isvalid only for file
format name RTV F0200.

Length of file name. The length in bytes of afile namein the file names buffer.

Line number. The line number in the file that is referenced by the file name index to start reading text
from. If the file nameindex is -1, this specifies the line number in the view where the supplied text can be
retrieved using the QteRetrieveViewText API.

Number of file name entries. The number of entries returned in the file name receiver variable.

Number of lines. The number of lines of text described by the text descriptor. The number of linesto read
from the file, which is the number of lines of supplied text to be retrieved using the QteRetrieveViewText
APIL.

Number of text descriptor entries. The number of entries returned in the receiver variable. The file name
index, line number, and number of linesfields are repeated this number of times.

Offset of file name. From the start of the file names buffer, the start of afile name.

Formats of File Format Name

RTVF0100 For mat
Offset
Dec | Hex |Type Fied
0 |CHAR(10) |0S/400 file name

|

|

| 0 |

[10 [A |[CHAR@0) [OS/400 library

| 20 | 14 |CHAR(10) |OS/400 member name

Field Descriptions

0S/400 file name. The name of an OS/400 file from which text should be retrieved. It is an OS/400 object
name, left-justified, and padded with blanks.

0OS/400 library. The name of alibrary that contains the file from which text should be retrieved. It isan
0OS/400 abject name, left-justified, and padded with blanks.

0S/400 member name. The name of the member of the file from which text should be retrieved. It isan
0OS/400 abject name, left-justified, and padded with blanks.

RTVF0200 Format
| Offset
| Dec | Hex |Type Field
0 0 |CHAR(*) External file or OS/400 integrated file system
file name

Field Description

External file or OS/400 integrated file system file name. The name of an external file or OS/400
integrated file system file from which text should be retrieved. The value of thisfield isvalid only for file
format name RTV F0200.

Error Messages

Message D Error Message Text

CPF3C21 E Format name &1 isnot valid.

CPF3C24 E Length of the receiver variable is not valid.
CPF3CF1E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9541E Not in debug mode.

CPF9542 E View not found.

CPFO9549 E Error addressing APl parameter.

CPF954A E No sourcetext available.

API Introduced: V3R1

Top | Debugger APIs| APIs by category

Retrieve View Line Information
(QteRetrieveViewLinelnformation) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Receiver variable length Input Binary(4)
3 Format hame Input Char(8)
4 ViewID Input Binary(4)
5 Start line number Input Binary(4)
6 Number of lines Input Binary(4)
7 Error code 1/0 Char(*)

Service Program: QTEDBGS

Threadsafe: No

The Retrieve View Line Information (QteRetrieveViewLinelnformation) APl is used to retrieve
information about a specified number of linesin aregistered view.

The data returned to the caller of the API indicates whether a given line or range of lines within aview can
be run or not.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
The receiver variable that receives the information requested. Y ou can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. Asa
result, the API returns only the data that the area can hold.

See RTVL 0100 Format for details on the format of the receiver variable.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable provided by the receiver variable parameter. If thisvalueis
larger than the actual amount of storage allocated for the receiver variable, the results are not
predictable. The minimum length is 8 bytes.

Format name
INPUT; CHAR(8)

The format of the information returned. The possible format names are;

RTVL0100 Retrieve view lineinformation.

View ID
INPUT; BINARY (4)
The identifier of a previously registered view obtained by using the Register Debug View
(QteRegisterDebugView) API.

Start line number
INPUT; BINARY (4)
The number of thefirst line in the view for which the API isto retrieve information. This must be
greater than or equal to 1 and less than or equal to the total number of linesin the view.

Number of lines
INPUT; BINARY (4)
The number of linesin the view for which the APl isto retrieve information. This number includes
the line specified in the start line number parameter. Fewer than number of lines elements may be

placed in the receiver variableif fewer lines than requested are available. No more than number of
lines elements are placed in the receiver variable.

The following specia values are supported for this parameter:

-1 All lines associated with this view starting at the value specified for the start line number
parameter should be processed.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

RTVL0100 Format

For a description of the fieldsin the receiver variable, see Field Descriptions.

Offset
Dec Hex ’Type ’Field
0 0 |BINARY(4) |Bytesreturned
4 4 |BINARY(4) |Bytesavailable

C |[BINARY(4) [Number of lineinformation array elements

10 |BINARY(4) |Length of lineinformation array element
|CHAR(*) |R@erved

Note: The following fields describe an element in the line information array and are

repeated the "number of line information array elements’ times. The nth element of

the array (n > 0) describes the start line number + n-1 line in the view, where start
line number is a parameter to this API.

| | [CHARQ) [Line disposition

|

| |

| |

| |

| 8 | 8 |BINARY(4) |Offsettolineinformation array
| |

| |

| |

| | [CHAR() [Reserved

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available datais returned if
enough space is provided.

Bytesreturned. The number of bytes of data returned.

Length of lineinformation array element. The number of bytes occupied by a single element of the line
information array. Line information array elements are contiguous and all have the same length.

Line disposition. Whether the line in the view described by this array element can be run or not. Possible
values are:

0 Linecannot berun

1 Linecanberun

Number of lineinformation array elements. The number of elementsin the line information array that
were returned by this API.

Offset to lineinformation array. The offset (in bytes) from the start of the receiver variable to the first
element of the line information array.

Reserved. Anignored field.

Error Messages

Message ID Error Message Text

CPF3C21 E Format name & 1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.
CPF3CF1lE Error code parameter not valid.

CPF3CF2E Error(s) occurred during running of &1 API.
CPF9541 E Not in debug mode.

CPF9542 E View not found.

CPF9549 E Error addressing API parameter.

CPF9564 E Starting line number not valid.

CPF957A E Number of lines not valid.

CPF957B E Required information not found for operation.

API Introduced: V3R6

Top | Debugger APIs | APIs by category

Retrieve View Text (QteRetrieveViewText) API

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)
3 ViewID Input Binary(4)
4 Start line number Input Binary(4)
5 Number of lines Input Binary(4)
6 Linelength Input Binary(4)
7 Error code /0 Char(*)

Service Program: QTEDBGS

Threadsafe: No

The Retrieve View Text (QteRetrieveViewText) API is used to retrieve source text from a specified view.
This text may be formatted and displayed by the user of this API. The caller must specify the following:

» A registered view ID
» The starting line number to be retrieved
o The number of lines of text to retrieve

« A buffer to contain the text retrieved
All text retrieved, whether it comes from files or as text supplied by a processor, isin the CCSID of the job.

If source files have changed since the view was created, diagnostic messages CPF9561 (for OS/400 files)
and CPF9596 (for OS/400 integrated file system files) are sent to the calling program's message queue for
each file. Error messages CPF9566 (for OS/400 files) and CPF9597 (for OS/400 integrated file system
files) also areissued, and all of the text available is retrieved. The calling program should warn the user that
the view text may be incorrect.

If a source file cannot be accessed because it is deleted or the user is not authorized, error messages
CPF9565 (for OS/400 files) and CPF9598 (for OS/400 integrated file system files) are issued. No more text
isretrieved. Text up to that fileisretrieved and thisisindicated in the fields of the receiver variable. If the
calling program attempts to read text in the view following the file, the starting line number can be set to a
line after the file. The number of linesin the file that should have been read is returned in the exception
data. Thisalowsthe calling program to skip over thisfileif desired.

It is suggested that the calling program buffer the retrieved text to minimize use of this API. Source files
accessed by this API do not remain open across API calls. Performance degradation occurs for every use of
the API that resultsin file access because of opening and closing files.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The variable that is to receive the information requested. Y ou can specify the size of this areato be
smaller than the format requested if you specify the length of receiver variable parameter correctly.
Asaresult, the API returns only the data that the area can hold. For more information, see Format

of Receiver Variable.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable parameter. The minimum length is 8 bytes.
View ID
INPUT; BINARY (4)

Theidentifier of apreviously registered view obtained by using the Register Debug View API.
Start line number
INPUT; BINARY (4)

The number of the first line to be retrieved.
Number of lines
INPUT; BINARY (4)
The number of lines of source text to be retrieved. This number includes the line specified in the
start line number parameter. Fewer than the number of lines may be placed in the receiver variable

if fewer lines than requested are available. No more than the number of lines specified isplaced in
thereceiver variable.

The following specia valueis supported for this parameter:

0 All of the text associated with this view should be retrieved.

Linelength
INPUT; BINARY (4)
The length of each line of text to be retrieved. Each line takes exactly this many characters. If the

actual line of text is shorter, it is padded to the right with blanks. If the line is longer than this
length, it istruncated to fit. The line length must be a number from 1 through 255.

Error code
1/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Receiver Variable

The following tables show the information supplied in the receiver variable parameter. The information
returned depends on the type of view being used. For more information on each field, see Field

Descriptions. For the listing view:

| Offset ’ ’

| Dec | Hex |Type Fied

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |BINARY(4) |Number of linesreturned
| 12 | C |BINARY(4) |Linelength

Note: The following field is repeated for each line returned. The number of
charactersis equal to the line length.

[CHAR(")

|Listing view source line

For the statement view:

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |BINARY(4) |Number of linesreturned
[12 [C [BINARY(4 |Linelength

Note: The following fields are repeated for each line returned. The total number of
charactersin each lineis equal to the line length (10 + 10 + 10 + * = line length).

Note: Thefollowing fields are repeated for each line returned.

[CHAR(12)

| Sequence number

| | |ICHAR(10) |Procedure dictionary number
| | |CHAR(10) | Statement number

| | |ICHAR(10) | Statement type number

| | |ICHAR(*) |Procedure name

For the text view:

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |BINARY(4) |Number of linesreturned
| 12 | C |BINARY(4) |Linelength

|

|

|

[CHAR(")

|Text view source line

Field Descriptions

Bytes available. The number of bytes of data available to be returned.
Bytesreturned. The number of bytes of data returned.
Linelength. Thelength of each line of text in the receiver variable parameter.

Listing view sour ce line. The text associated with each line retrieved. The number of charactersin each
lineisequa to the line length.

Number of linesreturned. The number of lines of source text retrieved by this APl and available in the
receiver variable. This may be less than the number of lines requested or available, if the receiver variable
is not large enough to hold the text requested.

Procedure dictionary number. The number that uniquely identifies the procedure in this module. The
number is left-justified and padded on the right with blanks. For OPM programs the procedure dictionary
number is set to avalue of 0.

Procedure name. The name of the procedure. The name is left-justified and padded on the right with
blanks. For OPM programs the procedure nameis blanks.

Sequence number. If the text is from a source physical file, these 12 bytes contain the sequence number
and source date for that line. If the text is from an OS/400 integrated file system file, these 12 bytes are
blank. If the text is supplied by the compiler, these 12 bytes are blank.

Statement number. The number that uniquely identifies the statement in the procedure. The number is
left-justified and padded on the right with blanks. This number is shown on the compiler listing. For OPM
programs the statement number is the same as the machine interface (MI) number.

Statement type number. The type of statement produced by the compiler. The number is left-justified and
padded on the right with blanks. Possible values are:

INIT CODE
PROC ENTRY
PROC EXIT
ALLOC

STMT

ENTRY

EXIT
MULTIEXIT
PATH LABEL
PATH CALL BGN
PATH CALL RET
PATH DO BGN
PATH TRUEIF
PATH FALSEIF
PATH WHEN BGN
PATH OTHERW

© 0 N OO o WO N P

o S e o g ™ N
o UM W N PP O

17 GOTO

18 POST COMPOUND

Text view sour ce line. The text associated with each line retrieved. The number of charactersin each line

equals the line length minus 12 bytes (the sequence number).

Error Messages

Message ID
CPF3C24 E
CPF3CF1E
CPF3CF2E
CPF9541 E
CPF9542 E
CPF9549 E
CPF954A E
CPF954C E
CPF9560 E
CPF9561 E
CPF9563 E
CPF9564 E
CPF9565 E
CPF9566 E
CPF9596 E
CPF9597 E
CPF9598 E
CPF959A E

Error Message Text

Length of the receiver variable is not valid.
Error code parameter not valid.

Error(s) occurred during running of &1 API.
Not in debug mode.

View not found.

Error addressing APl parameter.

No source text available.

Cannot retrieve text from file.

Line length not valid.

Source file has changed.

Number of lines not valid.

Starting line number not valid.

Source cannot be accessed.

One or more source files have changed.
Source file has changed.

One or more source files have changed.
Source file cannot be accessed.

Source file type not valid.

API Introduced: V2R3

Top | Debugger APIs | APIs by category

Fast-path Debugger APIs

Fast-path debugger APIs alow the caller to bypass the generalized Debug Command API for some of the
simpler, but more common, source debugging functions.
The fast-path debugger API are;
« Add Breakpoint (QteAddBreakpoint) adds a breakpoint to the specified location in aregistered
view.
« Remove All Breakpoints (QteRemoveAllBreakpoints) removes all breakpoints from all modulesin
aprogram.
« Remove Breakpoint (QteRemoveBreakpoint) removes a breakpoint from the specified location in a
registered view.

« Step (QteStep) adds a step to a program specifying that the program will run one or more
statements after which program processing is suspended.

Top | Debugger APIs | APIs by category

Add Breakpoint (QteAddBreakpoint) API

Required Parameter Group:

1 ViewlID Input Binary(4)
2 Line number Input Binary(4)
3 Column number Input Binary(4)
4 Linein statement view Output Binary(4)
5 Error code /10 Char(*)

Default Public Authority: *USE
Service Program: QTEDBGS

Threadsafe: No

The calling program uses the Add Breakpoint (QteAddBreakpoint) API to add a breakpoint at alocation in
aregistered view.

Required Parameter Group

View 1D
INPUT; BINARY (4)

Theidentifier of apreviously registered view obtained by using the Register Debug View API.
Line number
INPUT; BINARY (4)

Thelinein the View ID where the breakpoint is to be added.
Column number
INPUT; BINARY (4)

The column in the line where the breakpoint is to be added.

Note: At thistime, column numbers are ignored. Column one must be specified.
Linein statement view
OUTPUT,; BINARY (4)

The API returns the line number in the statement view where the breakpoint was added.
Error code
1/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID
CPF1938 E
CPF1939 E
CPF1941 E
CPF3CF1E
CPF7102 E
CPF9541 E
CPF9542 E
CPF9549 E
CPF9567 E
CPF9568 E

Error Message Text

Command is not allowed while serviced job is not active.
Time-out occurred waiting for areply from the serviced job.
Serviced job has completed. Debug commands are not allowed.
Error code parameter not valid.

Unable to add breakpoint or trace.

Not in debug mode.

View not found.

Error addressing API parameter.

Column number not valid.

Line number not valid.

API Introduced: V3R1

Top | Debugger APIs| APIs by category

Remove All Breakpoints
(QteRemoveAllBreakpoints) API

Required Parameter Group:

1 View ID Input Binary(4)
2 Removetype Input Char(10)
3 Error code /10 Char(*)

Service Program: QTEDBGS

Threadsafe: No

The calling program uses the Remove All Breakpoints (QteRemoveAllBreakpoints) API to remove all
breakpoints from a program. All breakpointsin al modules will be removed, even though only one view in
the program is specified. It does not matter which view of the program is specified, aslong asitisa
registered view.

Required Parameter Group

View 1D
INPUT; BINARY (4)

Theidentifier of apreviously registered view obtained by using the Register Debug View API.

Removetype
INPUT; CHAR(10)

Specifies which breakpoints are to be removed. The following is allowed:

*PGM All breakpointsin the program or service program specified by view ID are removed.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D
CPF1938 E
CPF1939 E
CPF1941 E
CPF3CF1 E
CPF9541 E
CPF9542 E
CPF9549 E
CPFO578 E

Error Message Text

Command is not allowed while serviced job is not active.
Time-out occurred waiting for areply from the serviced job.
Serviced job has completed. Debug commands are not allowed.
Error code parameter not valid.

Not in debug mode

View not found.

Error addressing APl parameter.

Remove type not valid.

API Introcuced: V3R1

Top | Debugger APIs| APIs by category

Remove Breakpoint (QteRemoveBreakpoint)
API

Required Parameter Group:

1 ViewlID Input Binary(4)
2 Line number Input Binary(4)
3 Column number Input Binary(4)
4 Linein statement view Output Binary(4)
5 Error code /0 Char(*)

Service Program: QTEDBGS

Threadsafe: No

The calling program uses the Remove Breakpoint (QteRemoveBreakpoint) API to remove a breakpoint
from alocation in aregistered view. The APl will complete normally whether or not there was actually a
breakpoint previously added to that location.

Required Parameter Group

View 1D
INPUT; BINARY (4)

The identifier of apreviously registered view obtained by using the Register Debug View API.
Line number
INPUT; BINARY (4)

Thelinein the view ID where the breakpoint is to be removed.
Column number
INPUT; BINARY (4)

The column in the line where the breakpoint is to be removed.

Note: At thistime, column numbers are ignored. Column one must be specified.
Linein statement view
OUTPUT; BINARY (4)

The API returns the line number in the statement view where the breakpoint was removed.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID
CPF1938 E
CPF1939 E
CPF1941 E
CPF3CF1E
CPF9541 E
CPF9542 E
CPF9549 E
CPF9567 E
CPF9568 E

Error Message Text

Command is not alowed while serviced job is not active.
Time-out occurred waiting for areply from the serviced job.
Serviced job has completed. Debug commands are not allowed.
Error code parameter not valid.

Not in debug mode.

View not found.

Error addressing APl parameter.

Column number not valid.

Line number not valid.

API Introduced: V3R1

Top | Debugger APIs| APIs by category

Step (QteStep) API

Required Parameter Group:

1 ViewlID Input Binary(4)
2 Step count Input Binary(4)
3 Steptype Input Char(10)
4 Error code /0 Char(*)

Default Public Authority: *USE
Service Program: QTEDBGS

Threadsafe: No

The calling program uses the Step (QteStep) API to start astep in aprogram. A step count is specified.
When the number of statements specified by the step count is run, the program will be stopped.

Required Parameter Group

View 1D
INPUT; BINARY (4)

Theidentifier of a previously registered view obtained by using the Register Debug View API.
Step count
INPUT; BINARY (4)

The number of statements to be run before the program is to be stopped.

Step type
INPUT; CHAR(10)

Which statements are counted when stepping in the program. The following are allowed:

*INTO Statements in the procedure currently stopped in are counted. Also, if that procedure
calls other procedures, these statements are also counted asthey arerun. Thus, it is
possible to stop the program in a procedure called by the procedure currently stopped.

*OVER Only statementsin the procedure currently stopped in are counted in the step. Thus,
procedures that this procedure calls are stepped over when doing the step. If the program
is not currently stopped, then the step count will start with the first procedure called in
that program, and all procedures that are called by this procedure are not stepped into,
and their statements are not counted.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF1938 E Command is not allowed while serviced job is not active.
CPF1939 E Time-out occurred waiting for areply from the serviced job.
CPF1941 E Serviced job has completed. Debug commands are not allowed.
CPF3CF1lE Error code parameter not valid.

CPF9541 E Not in debug mode.

CPF9542 E View not found.

CPF9549 E Error addressing APl parameter.

CPF9576 E Step count not valid.

CPF9577 E Step type not valid.

API Introduced: V3R1

Top | Debugger APIs| APIs by category

Submit Debug Command
(QteSubmitDebugCommand) API

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)
3 ViewlID Input Binary(4)
4 |nput buffer Input Char(*)

5 Input buffer length Input Binary(4)
6 Compiler ID Input Char(20)
7 Error Code 1/0 Char(*)

Service Program Name: QTEDBGS
Default Public Authority: *USE

Threadsafe: No

The Submit Debug Command (QteSubmitDebugCommand) API allows a client program to issue debug
language statements. Debug language statements permit client programsto enter breakpoints, run one or
more statements of the program under investigation (step), and evaluate expressions. Watch conditions may
also be entered to cause a breakpoint when the contents at a specified storage location are changed.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The variable that is to receive the results of the Submit Debug Command API. For more
information on the structure of the receiver variable, see Variationsin Receiver Variable Structure.

The Submit Debug Command API may have more datato return than can be stored in the receiver
variable. The bytes available field, described in Variations in Receiver Variable Structure, specifies
how large the receiver variable must be to contain the results for the Debug Language statements
submitted. If more datais available than the receiver variable can contain, alarger buffer should be
provided and the API should be reissued.

Length of receiver variable
INPUT; BINARY (4)
The length of the receiver variable. If the length is larger than the size of the receiver variable, the
results may not be predictable. The minimum length is 8 bytes.
View ID
INPUT; BINARY (4)

Anidentifier of aview of amodule whose operation is managed by the source debugger. The view

ID isreturned as aresult of issuing the Register Debug View API. Theview ID isused to find
debug data associated with the module.

Input buffer
INPUT; CHAR(*)
The input variable that is passed to the Submit Debug Command API. The information passed in
the buffer is debug language statements.
Input buffer length
INPUT; BINARY (4)

The length of the data provided in the input buffer.
Compiler ID
INPUT; CHAR(20)
The compiler 1D of the compiler that produced the module being debugged. Thisinformationis

used by the debug translator during expression evaluation. The compiler ID isreturned by the
Retrieve Module Views (QteRetrieveModuleViews) API.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Receiver Variable Format

The following table shows the structure of the receiver variable. For more information on the fields
contained in the table, see Field Descriptions.

Receiver Variable Structure

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned
| 4 | 4 |BINARY(4) |Bytesavailable
| 8 | 8 |BINARY(4) |Entry count

| 12 | C |CHAR(*) |Results array

| | |ICHAR(*) |String space

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available datais returned if
enough space is provided.

Bytesreturned. The number of bytes of data returned.

Entry count. The number of entriesin the results array. The value of the field is the number of entriesin

the results array. Each entry occupies 12 bytes. Depending on the kind of information returned, valuesin
entries vary.

Resultsarray. The results of interpreting debug language statements. Thisis an array of records having
similar structures. Each record in the array occupies 12 bytes. There can be up to three fields in each record.
Each field occupies 4 bytes and can be interpreted as an unsigned (nonnegative) integer. Thefirst fieldin a
record is the result type field and is used to select the remaining fields. Entriesin the result record array fall
into several classes. Variationsin Receiver Variable Structure depicts severa formats of result records.

Statements are interpreted sequentially and the results of each statement are placed in the order in which
statements appear in the input buffer. The evaluate statement can return many valuesif an array or a
structureis evaluated. The entry count field contains the number of entriesin the results array, and the
structure of each entry is summarized in Variationsin Receiver Variable Structure.

String space. A sequence of strings. Each string is an array of characters whose last character isanull
character.

Description of the Structure of the Receiver Variable

Variationsin Receiver Variable Structure illustrates three possible variations in the structure of the receiver
variable. The receiver variable consists of the following structures:

« A header record
This structure consists of three fields:

o Bytesreturned
o Bytesavailable
o Entry count

« A result array

» A string space
|Variations in Receiver Variable Structure
|Header |Bytes Returned |BytesAvailable |Entry Count
|Resuilt array 1 |Result type | |
|Result array 2 |Result type |Count |
|Result array 3 |Result type |Offset |Length
| String space

Each row of Variationsin Receiver Variable Structure occupies 12 bytes. The row containing the headings
describes the remainder of the receiver variable. The number of bytes returned is assigned to that field. The
value of the bytes returned field is always less than or equal to the size of the receiver variable. The number
of bytes available may be greater than the number returned. In that case, the client program should reissue
the Submit Debug Command API to obtain all data produced for the input debug language statements. The
entry count field in the first row indicates the number of 12-byte records, each beginning with aresult type
field, that follow.

Records beginning with aresult type field have the following basic formats.

« Thefirst entry in the array shows arecord containing only one field, result type. Records having
this structure acknowledge that a kind of debug language statement was translated. An example of
thiskind of record isthe result record for a CLEAR PGM statement.

« Thesecond entry in the array shows arecord containing a count field as well as aresult type field.
The count field can serve two purposes:

o It can acknowledge that a debug language statement was properly transated asin the case
of the StepR result record.

o It can enumerate the number of related records to follow as in the case of the BreakR result
record.

« The offset field contains the displacement from the start of the receiver variable to the first byte of
the character string. All character strings are stored at the end of the receiver variable directly after
the record entries. Displacements are measured in bytes.

The length field contains the number of charactersin the character string.

The last character of each string in the string space has an ordinal value of zero. All charactersin
the string space occupy 8 hits. The length of a string in the string space does not include the last
character.

Note: Thelength field will always be set to 512, with each of the 512 characters
occupying 16 bits, for astring of type kStringF_E when debugging a JAVA
executable. Thiswill occur even when the returned string has alength of less than
512. The end of the returned string can be found by locating the first unicode
character in the string that has an ordinal value of zero. As unicode, this character
will occupy 16 bits.

« Thelast row of Variationsin Receiver Variable Structure depicts an arbitrarily large string space

containing character data. Names and other text fields that are referred to in the result type fields
shown in the other rows of Variations in Receiver Variable Structure are stored in this area.

Results Array Entry Structure Summary

The following tables describe each result record in detail. Each result record contains up to three fields and
always occupies 12 bytes. Thefirst field, the result type field, is used as an enumerated type. The result
type field determines the format of each result record.

Each of the following enumeration constants has both a symbolic name and an ordinal value. The terms
symbolic and ordinal refer to enumerations found in programming languages. The symbolic value of an
enumeration constant is the symbol, usually a descriptive word that serves as a keyword for the
programmer (for example, StepR). The ordinal value of an enumeration constant is the integer constant
assigned, usualy by the compiler, to the symbolic value. For example, 1 is assigned for StepR.

StepR (1)

Record format StepR is returned as aresult of evaluating a step statement.

Offset
Dec | Hex ’Type
0 | O |[BINARY(4) |Resulttype
4 | 4 |[BINARY(4) [Stepcount
8 | 8 |[CHAR(®) [Reserved

Field

BreakR (2)

Record format BreakR contains the number of records returned for a break statement.

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Resulttype

| 4 | 4 |BINARY(4) |Break resultscount
| 8 | 8 |CHAR(4) |Reserved

ClearBreakpointR (3)

Record format ClearBreakpointR contains the line number of the breakpoint removed as a result of
interpreting the CLEAR break-position statement.

| Offset ’ ’

| Dec | Hex |Type Field

[0 [0 [BINARY(4) |Resuittype

| 4 | 4 |BINARY(4) |Linenumber
| 8 | 8 |CHAR(4) |Reserved

ClearPgmR (4)

Record format ClearPgmR indicates that all breakpoints have been removed in the current program as result
of interpreting the CLEAR PGM statement.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |BINARY(4) |Resulttype
| 4 | 4 |CHAR(®4) |Reserved

| 8 | 8 |CHAR(4) |Reserved

BreakPositionR (5)

Record format BreakPositionR identifies the line number on which a breakpoint was entered. This may not
be the same line number as the one entered in the break statement.

Offset

[Dec [Hex |Type |Field

| 0 | 0 |BINARY(4) |Resulttype

| 4 | 4 |BINARY(4) |Linenumber
| 8 | 8 |CHAR®) |Reserved

EvaluationR (6)

Record format EvaluationR contains the number of records returned for an eval uate statement that are
referred to in the subsequent ExpressionValueR record.

| Offset ’ ’

| Dec | Hex |Type Field

[0 [0 |[BINARY(4) |Resuttype

| 4 | 4 |BINARY(4) |Evaluation count
| 8 | 8 |BINARY(4) |Reserved

ExpressionTextR (7)

Record format ExpressionTextR describes a character string that contains the expression that was evaluated
by the evaluate statement.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |BINARY(4) |Resulttype

| 4 | 4 |BINARY(4) |Expression text offset
| 8 | 8 |BINARY(4) |Expressiontextlength

ExpressionValueR (8)

Record format ExpressionVa ueR refers to text that contains the formatted value of the expression that is
described by the ExpressionTextR record.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Resulttype

| 4 | 4 |BINARY(4) |Expressionvalueoffset
| 8 | 8 |BINARY(4) |Expressionvaluelength

ExpressionTypeR (9)

Record format ExpressionTypeR contains the type of the expression whose value is referred to in the
ExpressionVaueR record.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Resulttype

| 4 | 4 |BINARY(4) |Expressiontype
| 8 | 8 |CHAR(4) |Reserved

QualifyR (10)

Record format QualifyR is returned as aresult of evaluating a qualify statement.

| Offset ’ ’

| Dec | Hex |Type Field

[0 [0 [BINARY(4) |Resulttype

| 4 | 4 |BINARY(4) |Linenumber
| 8 | 8 |BINARY(4) |Reserved

TypeR (11)

Record format TypeR contains the number of records that are returned for an ATTR statement.
| Offset

| Dec | Hex |Type Fied

| 0 | 0 |BINARY(4) |Resulttype

| 4 | 4 |BINARY(4) |Typerecord count

| 8 | 8 |BINARY(4) |R@erved

TypeDescR (12)

Record format TypeDescR contains the type and length of the program variable.

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Resulttype
| 4 | 4 |BINARY(4) |Type

| 8 | 8 |BINARY(4) |Length

DecimalR (13)

Record format DecimalR is returned only for decimal type variables and contains the total and fractional
number of digitsin the decimal number.

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Resulttype

| 4 | 4 |BINARY(4) |Total digits

| 8 | 8 |BINARY(4) |Fraction digits

ArrayR (14)

Record format ArrayR isreturned only for array type variables and contains the number of dimensionsin
the array. The ArrayR record is followed by a DimensionR record for each dimension.

| Offset

| Dec | Hex ’Type Fied

| 0 | 0 |BINARY(4) |Resulttype
| 4 | 4 |BINARY(4) |Dimensions
[8 | 8 |[BINARY(4) |Reserved

DimensionR (15)

Record format DimensionR is returned only for array type variables and contains the low and high bounds
of the array dimensions. Thereis one DimensionR record for each dimension in the array.

| Offset

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Resulttype
| 4 | 4 |BINARY(4) |Low bound
| 8 | 8 |BINARY(4) |Highbound

WatchR (16)

Record format WatchR contains the number of records returned for awatch statement.

Offset
| Dec | Hex

’Type

’Field

| 0 | 0 |BI NARY (4) |Resu|t type
| 4 | 4 |BINARY(4) |Watch resultscount
| 8 | 8 |BINARY(4) |Reserved

WatchNumberR (17)

Record format WatchNumberR describes the watch condition that was set as aresult of the watch
statement.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |BINARY(4) |Resulttype

| 4 | 4 |BINARY(4) |Watch number
[8 | 8 |[BINARY(4) |Wachlength

ClearWatchNumberR (18)

Record format ClearWatchNumberR contains the watch number that is cleared as aresult of interpreting
the CLEAR WATCH watch-number statement.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Resulttype

| 4 | 4 |BINARY(4) |Watch number
| 8 | 8 |BINARY(4) |Reserved

ClearWatchR (19)

Record format ClearWatchR indicates that all watches in this debug session have been removed as a result
of interpreting the CLEAR WATCH ALL statement.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Resulttype
| 4 | 4 |BINARY(4) |Reserved

| 8 | 8 |BINARY(4) |Reserved

TBreakR (20)

Record format TBreakR contains the number of records that are returned for a tbreak statement.

| Offset

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Resulttype

| 4 | 4 |BINARY(4) |TBreak resultscount
| 8 | 8 |CHAR(4) |Reserved

SBreakR (21)

#*Record format SBreakR contains the number of records that are returned for a sbreak statement.

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Resulttype

| 4 | 4 |BINARY(4) |SBresk resultscount
| 8 | 8 [CHAR®) |Reserved<

Field Descriptions

Break results count. The number of entries returned for the break statement.
Dimensions. The number of dimensionsin the array.
Expression text length. The number of charactersin the expression text.

Expression text offset. The displacement from the start of the receiver variable to the first character of the
expression text. Displacement is measured in bytes.

Expression value length. The number of charactersin the expression value text.

Expression value offset. The displacement from the start of the receiver variable to the first byte of the
expression value text. Displacement is measured in bytes.

Evaluation count. The number of records returned for an evaluate statement.

Expression type. The data type of the expression. The expression type may be one of the following:

Type Enumeration Description
0 kNoType E Typeisnot valid
1 kChar_ 8 E 8-bit character value
2 kChar_16 E 16-hit character value
3 kBool_32 E 32-bit Boolean value
4 kCard_16_E 16-bit unsigned integer value
5 kCard 32 E 32-bit unsigned integer value

6 kint__16 E 16-bit two's complement integer value
7 kint_ 32 E 32-hit two's complement integer value
8 kRea 32 E 32-bit real floating-point value

9 kReal 64 E 64-bit real floating-point value

10 kSpcPtr__E 64 or 128-bit pointer

11 kFncPtr_ E 64 or 128-bit function pointer

12 kMchAddr_E 64 or 128-bit machine pointer

13 kRecord E Structure or record

14 kArray E Array

15 kEnum___ E Enumerated type

16 kString_ E String (:sformat on EVAL)

17 kPacked E Packed decimal

18 kZonedTE_E Zoned, trailing embedded sign

19 kZonedTS E Zoned, trailing separate sign

20 kZonedLE E Zoned, leading embedded sign

21 kZonedLS E Zoned, leading separate sign

22 kBinD_16 E 16-bit binary decimal value

23 kBinD_32 E 32-bit binary decimal value

24 kBinD_64 E 64-bit binary decimal value

25 kTable E Multiple occurrence data structure

26 kind E Indicator

27 kDate E Date

28 kTime___ E Time

29 kTstamp_ E Timestamp

30 kFixedL__ E Fixed-length string

31 kStringF_E String (:f, :a, :u format on EVAL command)

100 kHex E

Hexadecimal (:x format on EVAL command)

Fraction digits. The number of digitsto the right of the decimal point in a decimal number.
High bound. The high boundary of the array dimension.

Length. The program variable length that is returned by the TypeDescR result record. The length units are
bits.

Line number. The number of the line on which the action requested was performed.
L ow bound. The low boundary of the array dimension.

Reserved. Anignored field.

Result type. The ordinal value of the result array.

#»SBreak results count. The number of entries returned for the sbreak statement. 44
Step count. The number of statements processed.

TBreak results count. The number of entries returned for the tbreak statement.
Total digits. The total number of digitsin adecimal number.

Type. The program variable type that is returned by the TypeDescR result record. The meanings of this
field's value are the same as the expression type field.

Typerecord count. The number of records returned for an attr statement.
Watch length. The length in bytes of the storage being watched for this watch condition.

Watch number. The identification number assigned to the watch condition. This number is used by
various debug functions to identify individual watches.

Watch results count. The number of result records returned for the watch statement.

Statement Results

ATTR Statement Results. The Submit Debug Command API returns a description of the symbol table
entry for the program variable entered. A variable number of result records may be produced:

« A TypeR record is returned, which provides a count of the number of records returned for an ATTR
statement.

« A TypeDescR record is returned, which provides the type and size of the program variable.

« A DecimaR record isreturned only if the program variable is adecimal type. This record describes
thetotal and fractional digitsin the decimal number.

« An ArrayR record isreturned only if the program variable is an array. This record returns the
number of dimensionsin an array.

« A DimensionR record isreturned only if the program variable is an array. This record returns the
low and high bounds of the array dimensions.

Break Statement Results. The Submit Debug Command API returns a detailed description of the
break-position and conditional expression of a conditional breakpoint when abreak statement is trandated.

The items returned follow:

« The number of records returned as aresult of evaluating a break statement. Record type BreakR
contains this information.

» The position on which the breakpoint was entered. Record type BreakPositionR contains the line
number of the line on which the breakpoint was entered. Be aware that the input line number may
be mapped to a different line. For example, a breakpoint entered on aline that contains a comment
is mapped to the next line that contains an operational statement.

« Thetext of the expression that defines a conditional breakpoint. Record type ExpressionTextR
refers to the text of the condition.

The break statement isinterpreted. Program operation is managed by OS/400 according to the definition of
the break statement.

Clear Statement Results. One record is returned. The record type depends on the operand following the
keyword CLEAR. If the operand is a line number, the record type is ClearBreakpointR. If the operand is the
keyword PGM, the record typeis ClearPgmR. If the operand is WATCH and awatch number is specified,
the record type is ClearWatchNumberR. If the operand is WATCH and all watches are cleared, the record
typeis ClearWatchR.

The ClearBreakpointR record contains the line number input for the break position.

The clear statement is interpreted. One or more breakpoints are removed from the program under
investigation.

Evaluate Statement Results. An evaluate statement produces a variable number of Result Records. The
first four result records follow:

« An EvauationR record is returned, which enumeratesitself and subsequent records. The
EvaluationR result record always contains an evaluation count of four.

« An Expression text record is returned, which contains the offset and length of the string, which
represents the expression text.

« An Expression value record is returned, which contains the offset and length of the string, which
represents the value of the expression.

Note: Thelength field will always be set to 512, with each of the 512 characters occupying 16 bits,
for astring of type kStringF_E when debugging a JAV A executable. Thiswill occur even when the
returned string has alength of lessthan 512. The end of the returned string can be found by locating
the first unicode character in the string that has an ordinal value of zero. As unicode, this character
will occupy 16 bits.

» An Expression type record is returned, which contains the type of the expression.

A single valueisreturned for an arithmetic expression or scalar variable. Multiple values are returned when
astructure is evaluated. Refer to Examples of Result Records Returned by Submit Debug Command API

for examples of the result records returned when a structure or an array is evaluated.

The evaluate statement is interpreted. Data is formatted according to the type of the input expression. Refer
to Presentation Formats for a description of presentation formats.

Qualify Statement Results. One record is returned. The value of the result type field is QualifyR. The
QualifyR record contains the input line number used to establish the current locality for subsequent
evaluate statements.

A reference to the block that defines the current locality is assigned by the qualify statement.

#»SBreak Statement Results. The Submit Debug Command API returns a detailed description of the
break-position when an sbreak statement is translated. The items returned are:

« The number of records returned as aresult of evaluating a sbreak statement. Record type SBreakR
contains this information.

« The position on which the breakpoint was entered. Record type BreakPositionR contains the line
number of the line on which the breakpoint was entered. Be aware that the input line number may
be mapped to adifferent line. For example, a breakpoint entered on aline that contains a comment
is mapped to the next line that contains an operational statement.

The sbreak statement isinterpreted. Program operation is managed by OS/400 according to the definition of
the sbreak statement. <X

Step Statement Results. One record is returned. The value of the result typefield is StepR. The StepR
record contains the number of statementsto be run when control is given to the program under
investigation.

The step statement is interpreted. Program processing is managed by OS/400 according to the definition of
the step statement.

TBreak Statement Results. The Submit Debug Command API returns a detailed description of the thread
break-position and conditional expression of a conditional breakpoint when atbreak statement is trandated.
The items returned follow:

« The number of records returned as aresult of evaluating atbreak statement. Record type TBreakR
contains this information.

« The position on which the thread breakpoint was entered. Record type BreakPositionR contains the
line number of the line on which the thread breakpoint was entered. Be aware that the input line
number may be mapped to a different line. For example, athread breakpoint entered on aline that
contains a comment is mapped to the next line that contains an operational statement.

» Thetext of the expression that defines a conditional breakpoint for athread. Record type
ExpressionTextR refers to the text of the condition.

The tbreak statement is interpreted. Program operation is managed by OS/400 according to the definition of
the tbreak statement.

Watch Statement Results. The watch statement returns the following result records:

« A WatchR record is returned, which provides a count of the number of result records for the watch
statement.

« A WatchNumberR record is returned, which contains the watch number assigned and the length in
bytes of the storage being watched.

« An ExpressionTextR record, which contains the offset and length of a string. This record represents
the watch statement expression text.

« An ExpressionValueR record, which contains the offset and length of a string. Thisrecord
represents the watch storage location address. Thisvalueis always a text representation of a space
pointer that contains the value of the pointer to the watched storage location (for example,
'SPP:08006F0054001004").

Examples of Result Records Returned by Submit Debug
Command API

This section contains examples of result records returned by the Submit Debug Command API. Each
example contains a fragment of a program, a debug language statement that appears in the input buffer, and
the results produced in the receiver variable.

The null termination symbol denotes the end of a character string in the examples that follow.

Break Statement Example

C Program Fragment

Assume program operation is suspended in the program shown in Figure 1 just before line 6 runs.

Figure 1. Program for Break Example

Line C Source

1 #include stdio.h

2 int T[] ={1,2,3,5,7,11, 13,17, 23, 29};

3 int BinarySearch(int v, int f, int |);

4 mai n()

5 { int result;

6 result = BinarySearch(17,0,9);

7 printf("result="); printf("%",result); printf(" \n");
8

Input Buffer

BREAK 7 WHEN result > 5

Receiver Variable

| Offset |Fie|d |Value
0 Bytes returned 59
Bytes available 59
Entry count 3
12 Result type BreakR
Break results count 3
Reserved
24 Result type BreakPositionR
Line number 7
Reserved
36 Result type ExpressionTextR
Expression text offset 48
Expression text length 10
| 48 |String space |result>5

Scalar Evaluate Statement Example

C Program Fragment

Consider the C program fragment in Figure 2. Variable i defines an integer.

Figure 2. Program for Scalar Evaluate Example

Li ne C Source

1 int i = 29;

Input Buffer

EVAL i

Receiver Variable

| Offset |Fie|d |Value

0 Bytes returned 65
Bytes available 65
Entry count 4

12 Result type EvaluationR
Evaluation count 4
Reserved

24 Result type ExpressionTextR
Expression text offset 60
Expression text length 1

36 Result type ExpressionVaueR
Expression value offset 62
Expression value length 2

48 Result type ExpressionTypeR
Expression type kint. 32 E
Reserved

60 |String space li29

Scalar Evaluate Statement Example
RPG Program Fragment
Consider the RPG program fragment in Figure 3. The fragment assigns 1 to a zoned(1,0) variable .

The program is currently stopped at line 2.

Figure 3. RPG Programming L anguage Example, Evaluate

CLONO1Fact or 1++++++OpcodeE+Ext ended- f act or 2

1 C EVAL =1

2 C MOVE *ON *1 NLR
Input Buffer
EVAL |

Receiver Variable

| Offset |Fie|d |Value

0 Bytes returned 64

Bytes available 64
Entry count 4

12 Result type EvaluationR
Evaluation count 4
Reserved

24 Result type ExpressionTextR
Expression text offset 60
Expression text length 1

36 Result type ExpressionValueR
Expression value offset 62
Expression value length 1

48 Result type ExpressionTypeR
Expression type kZonedTE_E
Reserved

60 |String space [

Structure Evaluate Statement Example

C Program Fragment

Consider the C program fragment in Figure 4.

Figure 4. Program for Structure Evaluate Example

Line C Source
1 struct {
2 int i;
3 float f;
4 struct {
5 char c;
6 enume {red,yell ow};
7 } s2;
8 } si={1, 50 {'a , red} };
Input Buffer
EVAL sl
Receiver Variable
| Offset |Fie|d |Value
0 Bytes returned 246
Bytes available 246
Entry count 16

12 Result type EvaluationR
Evaluation count 4
Reserved

24 Result type ExpressionTextR
Expression text offset 204
Expression text length 4

36 Result type ExpressionVaueR
Expression value offset 209
Expression value length 1

48 Result type ExpressionTypeR
Expression type kint__ 32 E
Reserved

60 Result type EvaluationR
Evaluation count 4
Reserved

72 Result type ExpressionTextR
Expression text offset 211
Expression text length 4

84 Result type ExpressionValueR
Expression value offset 216
Expression value length 7

96 Result type ExpressionTypeR
Expression type kReal 64 E
Reserved

108 Result type EvaluationR
Evaluation count 4
Reserved

120 Result type ExpressionTextR
Expression text offset 224
Expression text length 7

132 Result type ExpressionVaueR
Expression value offset 232
Expression value length 1

144 Result type ExpressionTypeR
Expression type kChar_ 8 E
Reserved

156 Result type EvaluationR
Evaluation count 4
Reserved

168 Result type ExpressionTextR
Expression text offset 234
Expression text length 7

180 Result type ExpressionValueR
Expression value offset 242
Expression value length 3

192 Result type ExpressionTypeR
Expression type kEnum E
Reserved

| 204 |String space |See Note.

|Note: s1.i1s1.f5.0E+00s1.s2.casl.s2.ered

Step Statement Example

C Program Fragment

Assume program operation is suspended in the program shown in Figure 5 just before line 6 runs.

Figure5. Program for Step Example

Li ne C Source
1 #i nclude stdio.h
2 int T[] ={1,2,3,5,7,11, 13,17, 23, 29};
3 int BinarySearch(int v, int f, int |);
4 mai n()
5 { int result;
6 result = BinarySearch(17,0,9);
7 printf("result="); printf("%",result); printf(" \n");
8 }

Input Buffer

STEP

Receiver Variable

| Offset |Fie|d |Va|ue
0 Bytes Returned 24
Bytes Available 24
Entry Count 1
12 Result type StepR
Step Count 1
Reserved

ATTR Statement Example
RPG Program Fragment
Consider the RPG program fragment in Figure 6. The fragment assigns 1 to azoned(1,0) variable .

The program is currently stopped at line 2.

Figure 6. RPG Programming L anguage Example, Evaluate

CLONO1Fact or 1++++++OpcodeE+Ext ended- f act or 2

1 C EVAL =1
2 C MOVE *ON *1 NLR
Input Buffer
ATTR |
Receiver Variable
Offset |Field \Value
0 Bytes returned 48
Bytes available 48
Entry count 3
12 Result type TypeR
Type record count 3
Reserved
24 Result type TypeDescR
Type kZonedTE_E
Length 1
36 Result type DecimaR
Total digits 1
Fractiona digits 0

WATCH Statement Example

C Program Fragment

Consider the C program fragment in Figure 7. Variable i defines an integer.

Figure 7. Program for Scalar Evaluate Example

Li ne

1 i nt

C Source

i = 29;

Input Buffer

WATCH i

Receiver Variable

| Offset |Fie|d |Value
0 Bytes returned 83
Bytes available 83
Entry count 4
12 Result type WatchR
Watch results count 4
Reserved
24 Result type WatchNumberR
Watch number 1
Watch length 4
36 Result type ExpressionTextR
Expression text offset 60
Expression text length 1
48 Result type ExpressionVaueR
Expression value offset 62
Expression value length 20
| 60 |String space |See note.

| Note: iSPP:08006F0054001004

Error Messages

Message I D
CPF1938 E
CPF1939 E
CPF1941 E
CPF3C19E
CPF3C24 E
CPF3CF1E
CPF7102 E
CPF7EOL E
CPF7EQ2 E
CPF7EO3 E
CPF7EO4A E
CPF7EQS E
CPF7EO6 E
CPF7EQ7 E
CPF7EQS E

Error Message Text

Command is not allowed while serviced job is not active.
Time-out occurred waiting for areply from the serviced job.
Serviced job has completed. Debug commands are not allowed.
Error occurred with receiver variable specified.

Length of the receiver variableis not valid.

Error code parameter not valid.

Unable to add breakpoint or trace.

Pointer to receiver variableis NULL.

Receiver variable length not valid.

Pointer to input buffer isNULL.

Input buffer length not valid.

Input buffer is not aslong as specified.

Pointer to error code structureis NULL.

Not enough space was provided for error code.

Value of BytesProvided field is not correct.

CPF7EO9 E Vaue of BytesProvided field, &1, is not correct.
CPF7E10 E Internal error occurred.

CPF7EL1E Type error occurred.

CPF7E12E Identifier does not exist.

CPF7E14 E Field does not exist.

CPF7EISE Syntax error occurred.

CPF7E16 E Token error occurred.

CPF7E17 E Structure type error occurred.
CPF7E18E Pointer type error occurred.
CPF7E19E Integral type error occurred.
CPF7E1A E Enumerated type error occurred.
CPF7E1B E Arithmetic type error occurred.
CPF7EICE Scalar type error occurred.
CPF7E1D E Address type error occurred.
CPF7ELIEE Adding type error occurred.
CPF7EIF E Subtracting type error occurred.
CPF7E20E Relational type error occurred.
CPF7E21 E Equality type error occurred.
CPF7E22 E Casting type error occurred.
CPF7E23 E Assignment type error occurred.
CPF7E24 E Line number not found.

CPF7E25E Array type error occurred.
CPF7E26 E Subscript type error occurred.
CPF7E27 E Format type error occurred.
CPF7E28 E Type error occurred.

CPF7E29 E Unsupported bit field alignment.
CPF7E2A E String constants are not supported.
CPF7E2B E Type compatibility error occurred.
CPF7E2CE Too few array dimensions specified.
CPF7E2D E Too many array dimensions specified.
CPF7E2E E Incorrectly formed range expression.

CPF7E2F E
CPF7ES0 E
CPF7ES51 E
CPF7ES52 E
CPF7ES3 E
CPF7E54 E
CPF7ESS E
CPF7ES6 E
CPF7ES57 E
CPF7ES8 E
CPF7ES9 E
CPF7E5A E
CPF7ESB E
CPF7ESCE
CPF7ESD E
CPF7ESE E
CPF7ESF E
CPF7EGO E
CPF7E61 E
CPF7E62 E
CPF7EG3 E
CPF7E64 E
CPFSEO3 E
CPF8E04 E
CPF8EOS E
CPF8EO6 E
CPF8EQ7Y E
CPF8EO8 E
CPF8EO9 E
CPF8EOA E
CPF8EOB E

Range expression expands to exceed input buffer.
Decimal type error occurred.

Decimal size error occurred.
Unsupported syntax.

Assignment size error occurred.

Integer type error occurred.

Constant type error occurred.

Identifier is ambiguous.

Integer constant not valid.

Compiler not valid.

String type error occurred.

Substring extends beyond end of string.
Format length error occurred.
Hexadecimal constant not valid.
Decimal constant size error occurred.
Integer constant size error occurred.
Relational size error occurred.

Constant not a decima number.

System cannot determine which expansion of the template to use.

Watch cannot be set on this variable.
Watch length is not valid.

Clear watch number not found.

Internal error occurred.

Internal error occurred.

Error on equal operator.

Error on not-equal operator.

Error on greater-than operator.

Error on greater-than-or-equal-to operator.
Error on less-than operator.

Error on less-than-or-equal-to operator.

Error on logical-and operator.

CPFSEOC E
CPF8EOD E
CPF8EOE E
CPF8EOF E
CPFSE10 E
CPFSE11E
CPF8E12 E
CPFSE13 E
CPFSE14 E
CPFSE1S E
CPF8E16 E
CPF8E17 E
CPFSE18 E
CPFSE19 E
CPFSE1A E
CPF8E1B E
CPFSE1C E
CPF8E1D E
CPF8EL1E E
CPFSE1F E
CPFSE20 E
CPF8BE21 E
CPF8E22 E
CPFSE23 E
CPF8E24 E
CPFBE25 E
CPF8E26 E
CPF8E27 E
CPFBE28 E
CPFSE29 E
CPF8E2A E

Error on logical-or operator.
Error on logical-exclusive-or operator.
Error on logical-not operator.
Error on add operator.

Error on subtract operator.

Error on negate operator.

Error on multiply operator.

Error on divide operator.

Error on increment operator.
Error on decrement operator.
Error on modulo operator.
Pointer not set for location referenced.
Conversion error.

Error on absolute value operator.
Domain violation occurred.
Domain violation occurred.
Error on write operator.

Error on shift operator.

Error on operand value.

Error on load constant operator.
Error on load address operator.
Error on store indirect operator.
Error on move operator.

Error on fill operator.

Incorrect array index value.

Call stack entry does not exist.
Trandation failed.

Call to user method failed.
Variable not available to display.

Debug recursion error.

Error occurred while processing operation.

CPF8E2B E Watch cannot overlap another active watch.

CPFBE2C E Maximum number of watches exceeded.
CPFO541 E Not in debug mode.

CPF9542 E View not found.

CPF9549 E Error addressing APl parameter.

Debug Language Statements

Debug language statements are the principal mechanism by which a programmer debugs a program.
Programmers control the operation of a program by:

« Entering break statements to select where the program will stop
« Entering step statements to run one or more statements of the program under investigation

« Entering watch statements to stop the program when a specified storage location is changed

The clear statement enables programmersto remove a particular breakpoint or all breakpoints. It can also
be used to clear watches. Information about the state of the program being debugged can be extracted when
program processing is suspended. The evaluate statement permits programmers to display the value of an
expression, or to display an aggregate, and to alter the value of avariable.

Debug language statements are constructed by the client program and placed in the input buffer. If multiple
debug language statements are placed in the input buffer, they must be separated by one or more blanks.
The Submit Debug Command API accepts the debug language statements of ATTR, BREAK, CLEAR,
EVAL, QUAL, # SBREAK, % STEP, TBREAK, and WATCH.

When multiple debug statements are specified in the same input buffer, a QUAL statement must not follow

an EVAL statement. The WATCH debug statement cannot be specified with any other debug statement,
including another WATCH statement.

ATTR Statement

The variable appearing in an ATTR statement is found in the debug symbol table. The symbol table
information for the variable is returned.

The following example shows an ATTR statement:

— AT TR variable—m

Thelocality of variables that appear in an ATTR statement is defined by the most recently run qualify
statement. The program calling this API is advised to issue a qualify statement that defines the stop position
when program operation is suspended.

Break Statement

The break statement permits a programmer to enter a breakpoint. Breakpoints are entered on the program
under investigation. When the program under investigation encounters a breakpoint, operation is
suspended.

The following example shows a break statement:

—p BREAK —position —m-
— EREAK —position B

— »-
WifH EN—» EXPrESsion

The position marks where program operation is suspended when a breakpoint is encountered. Line numbers
are used to identify the position when the break statement is entered. The line number entered is mapped to
a statement by the Submit Debug Command API. A breakpoint causes the program to stop just before the
break statement isrun.

Unconditional and conditional breakpoints can be entered. Unconditional breakpoints are discussed first,
followed by a discussion of conditional breakpoints.

An unconditional breakpoint is entered by issuing the first form of the break statement.

—» BREAK —pe POSITION —w

A line number is entered for the position. Line numbers are associated with each view in that they identify
the lines of sourcein aview. Line numbers are assighed sequentially beginning with line one.

A conditional breakpoint is entered by issuing the second form of the break statement.

—» BREAK —p-position - ——»
WWHEN—» EXpression

The position of aconditional breakpoint is assigned in the same way as the position in an unconditional
breakpoint. A line number is entered for the position.

The condition of a conditional breakpoint is the expression following the reserved word WHEN. The result
of the expression must have a Boolean or alogical value when evaluated. The expression isinterpreted
before the statement on which the breakpoint was entered is run. If the value of the expression is TRUE,
operation of the program investigation is suspended. If the value of the expression is FALSE, operation
continues without interruption.

The locality of variables used in the conditional expression is defined by the line number that defines the
position.

A breakpoint can be replaced by entering another breakpoint using the same position. The most recent

breakpoint entered on a position is the active breakpoint.

BREAK may be replaced by the reserved word AT in the statement that defines the break statement.

— e AT — e pOSIHON —
—p AT —pposition C

— »-
WiYH EN—e EXPrESSIOnN

For threaded applications, breakpoints that are specified with the break statement are global to all threadsin
the job being debugged. These are called job breakpoints. Thread-specific breakpoints are set with the
tbreak statement. A job may not have both ajob breakpoint and thread breakpoints at the same position.
When ajob breakpoint isin effect and a thread breakpoint is specified, the job breakpoint is replaced. When
thread breakpoints are in effect and a job breakpoint is specified, the thread breakpoints are replaced.

Clear Statement

The clear statement enables a programmer to remove a particular breakpoint or all breakpointsin a
program. Particular breakpoints are identified by the number of the line on which they are active. All
breakpoints in a program are designated by the keyword PGM. The clear statement is also used to clear one
or all watch conditions. The keyword WATCH followed by the ALL keyword clears all watch conditions.
If awatch number is specified after the WATCH keyword, only the watch represented by that watch
number is cleared.

The following example shows a clear statement:

— CLEAR —® position—- =
— PG
— WATCH ALL -
Lwatch LI tjerJ

For threaded applications, if athread breakpoint isin effect at the position specified, it iscleared in the
current thread only. If the breakpoint is ajob breakpoint, it is cleared for the job. When the clear statement
with the PGM keyword is specified, it will remove all job and thread breakpoints.

Evaluate Statement

The expression appearing in an evaluate statement is evaluated, and the value of the expression is returned.
The value of an expression is formatted according to the expression type.

The following example shows an evaluate statement:

-

— EVAL—I EXprESSION
L formatting Dpntil:lnJ

An evaluate statement allows a programmer to display the value of an expression or an aggregate, or to
ater the value of avariable. The precise definition of what can be displayed or altered is dependent on the
language of the module being debugged.

Variables can be displayed or atered when program processing is suspended. Program operation is
temporarily suspended as a result of encountering a breakpoint or completing a step statement. It isalso
suspended when awatch condition is satisfied.

Variables are formatted according to their type recorded in the HLL symbol table, and according to the
language of the module being debugged. Formats available include integer, hexadecimal, exponential, and
address, among others.

Variables also may be formatted using the formatting option. The formatting option has the general form
of: :<format code> <length>, such as EVAL STRING :s50.

The:<format code> can be one of the following:

Format Code Description

'C An EBCDIC single-character format

'X A hexadecimal format

'S An EBCDIC character-string format (only for the C and C++
languages)

f An EBCDIC character-string format (only for the C and C++

languages). This returned type can be used by the source debugger
to indicate that alternative formatting was requested by the user.
a An ASCII character-string format (only for the ILE languages).
The string is converted from the job CCSID's related-ASCI|
CCSID to the job CCSID.
u A Unicode character-string format (only for ILE languages). The
string is converted from Unicode CCSID 13488 to the job CCSID.

The <length> is a positive integer that indicates the number of bytesto format. The defaults for the format
codes are asfollows:

Format Code Default

'C 1

‘X The length of the expression value
'S 30

f 1024

‘a 1024

u 1024

Thelocality of variables that appear in an evaluate statement is defined by the most recently run qualify
statement. The program calling this API is advised to issue aqualify statement that defines the stop position
when program operation is suspended.

EVAL may be replaced by the reserved word LIST in the statement that defines the eval uate statement.

— LIST —pec=xprassion [=
L far matting -:-|:-'ci-:-nJ

The following table describes the formatting of data by type.

|Prwentati on Formats
IType Format |Example

\kChar__8 E lc A

|kChar_16_E |Shift-out cc... shift-in |

IkEnum___E |cecec (dd) |yellow (25)

\kString__E |cecccecee |Hello World

kint 32_E -dd..d 676
dd..d

kPacked E dd.ddd 5678.01
-dd.ddd

kZonedTE_E dd.ddd 5678.01
-dd.ddd

kZonedTS E dd.ddd 5678.01
-dd.ddd

kZonedLE_E dd.ddd 5678.01
-dd.ddd

kZonedLS E dd.ddd 5678.01
-dd.ddd

kBinD_16_E dd.ddd 5678.01
-dd.ddd

kBIinD 32 E dd.ddd 5678.01
-dd.ddd

kBinD_64_E dd.ddd 5678.01
-dd.ddd

kFixedL__E |ccece |Hello World

|kHex E [XX XX XX XX |FLF2F3

[kCard 32_E [ad...d [546

kRea 64 E +d.d...dE+dd -1.2345678901234E-95
-d.d...dE-dd

KSpchPtr_E Pointer types: SPP*NULL
BEP (behavior) IVP.COFE001001201003
IVP (invocation) SPP:COCE100201021003
LBL (Iabel)
MTP (method)
OBP (object)
PRP (procedure)
SPP (space)
SYP (system)

For threaded applications, the EVAL statement is run in the current thread.

Locality

Locality is the term used to describe the range over which an entity may be referred to in amodule. The
terms locality and scope are synonymous. By this definition, the locality of an entity is always confined to
the compilation unit in which it was declared.

Entity isaformal way of describing all things that can be declared in amodule. Variables, procedures,
labels, types, and constants are entities.

Thelocality of an entity is defined by the block in which it is declared. An entity isvisible in the block in
which it is declared and al subordinate blocks. A variable can be referred to in the block in whichitis
declared.

An entity may be declared in ablock that encloses other blocks. The entity declared in the outer, enclosing
block isvisiblein inner blocks if the name does not collide with other entitiesin inner blocks. A variable
declared in an outer block can be referred to in an inner block if no variable of the same nameis declared in
the inner block.

To fully qualify aparticular locality in a program, both program and module must be identified.

Qualify Statement

The qualify statement permits a programmer to define the locality of variables that appear in succeeding
evaluate statements. Locality is defined by the line number operand on the qualify statement. The locality
assigned isthat block in which the line number appears.

The following example shows a qualify statement:

— QUAL— position—pw

The locality assigned when a qualify statement isissued remainsin effect until the next qualify statement is
issued. The Submit Debug Command API keeps the locality assigned for the purpose of evaluating
expressions. Users of the Submit Debug Command API are advised to issue the qualify statement whenever
program operation is suspended. Use the line number of the stopped position to identify the current locality.
In thisway, programmers may issue severa evaluate statements that refer to variables that are defined in
the locality of the stopped position.

For threaded applications, the QUAL statement is run in the current thread.

SBreak Statement

#The sbreak statement permits a programmer to enter a service entry breakpoint. Service entry breakpoints
are entered on the program about to be spawned by another program. When the spawned program
encounters a service entry breakpoint, operation is suspended.

The following example shows a shreak statement:

— SEREAK —0Siton

J g
—— |JSEF = userid
RBAFXERT-0

The position marks where program operation is suspended when a service entry breakpoint is encountered.
Line numbers are used to identify the position when the sbreak statement is entered. The line number
entered is mapped to a statement by the Submit Debug Command API. A service entry breakpoint causes
the program to stop just before the sbreak statement is run.

The userid specifies the user profile under which ajob must be executing for the service entry point being
set to be activein that job. If the userid is not specified, it defaults to the user profile under which the job in
which the sbreak command isissued is running.

A service entry point, job breakpoint or thread breakpoint cannot exist at the same time at the same
position. Only one of the three types of breakpoints may exist at a specified position. If the shreak
command is issued for a position in which one of the three types of breakpoints aready exists, the existing
breakpoint will be replaced by the service entry point. <%

Step Statement

The step statement permits a programmer to run one or more statements of the program under investigation
for testing purposes. The program being tested runs the number of statements specified in the
statement-count operand. Operation of the program under test is suspended at completion of the step
statement.

The following example shows a step statement:

—= STEF—=

—» STEF—OWER—»

— STERP—W|NTO —=

—» STEP - | - OVER
— statement-count [T

If no valueis entered for the statement-count, one statement is run.

The reserved words OVER and INTO direct the source debugger to step over or into procedures,
respectively. If OVER appears in a step statement, the source debugger does not suspend operation in any
procedures that are called. Procedures and functions are run without interruption.

The INTO reserved word directs the source debugger to stop in procedures that are called.

If neither INTO or OVER is entered on the step statement, OVER is assumed.

There are some step limitations. The following code cannot be entered using the step statement:
« Proceduresin modules that have no debug data.
« Modules that are optimized at level 40.

For threaded applications, the STEP statement is run in the current thread. Each thread can step
independently of each other, at the same time.

TBreak Statement

The threak statement permits a programmer to enter a breakpoint for the current thread. Breakpoints are
entered on the program under investigation. When the program under investigation encounters a breakpoint
in the thread, operation is suspended. The tbreak statement has the same format and operation as the break
statement.

Each thread in a threaded application may have a different thread breakpoint at the same position. Job
breakpoints and thread breakpoints cannot coexist.

A tbreak statement entered at the same position as atbreak that was specified earlier in the samethread is
replaced by the new thread breakpoint.

A tbreak statement entered at the same position as a job breakpoint that was specified earlier replaces the
job breakpoint with athread breakpoint.

A break statement entered at the same position as thread breakpoints that were specified earlier replaces al
thread breakpoints at that position with ajob breakpoint that isin effect for al threads.

Watch Statement

The watch statement permits a programmer to request a breakpoint when the content of a specified storage
location is changed from its current value. After the watch condition is successfully set, a change to the
content of the watched storage |ocation causes program operation to be suspended. Then the Program Stop
Handler exit program that is specified on the Start Source Debug API is called.

The following shows the syntax of the watch statement:

— e YA TCH—e EXQrESSioN >
— watch |EﬂQt|"I—

The expression is used to determine the address of the storage location to watch. The expression must
resolveto an Ivalue (that is, alocation that can be assigned to). If an expression is specified that is not
supported, error code CPF7EG2 is returned. The scope of the expression variablesin awatch statement is
defined by the most recently issued QUAL debug language statement.

The length of the watch comparison operation is the same as the expression type length, or the length
specified with the optional watch length parameter. For example, if a4-byte binary integer is specified
without the watch length parameter, the comparison length is 4 bytes. If the watch length parameter is
specified, it overrides the length of the expression in determining the watch length. The watch length
specification format is a colon character followed by the length in bytes to watch. For example, the watch
command below would watch 2 bytes starting at the first byte of variableii:

watchi : 2

The watch length must be in the range 1 through 128 bytes. If the watch length is not valid, error code
CPF7EG3 is returned.

The maximum number of watches that can be active across the entire system is guaranteed to be at |east
128, but may range up through 256, depending on how the watched storage is mapped by the system. This
includes dedicated service tools (DST) watches. Exceeding this number resultsin error code CPFBE2C
being returned. A user session may have as many watches as are available.

There are some restrictions on overlapping watch locations. If any of the following conditions are true,
error code CPF8EZ2B is returned:

» Watchesin same job: Two watch locations may not overlap in any way.

« Watchesin different jobs: Two watch locations may not start at the same storage address.
Otherwise, overlap is permitted.

A watch condition is cleared by using the CLEAR debug language statement.

It isimportant to understand that the watch statement establishes the watched storage location address when
the watch statement is entered, and it does not change. This can cause misleading results if atemporary
storage location is watched and that storage location is reused while the application is running. An example
of thisisthe automatic storage of an ILE C procedure, which can be reused if the procedure ends.

The WATCH debug statement cannot be specified with any other debug statement, including another
WATCH statement.

For threaded applications, the WATCH statement is run in the current thread. The address watched is global
to all threads. Any thread changing awatched location will cause a breakpoint in that thread.

API introduced: V2R3

Top | Debugger APIs | APIs by category

Dump Module Variables
(QteDumpModuleVariables) API

Required Parameter Group:
1 Receiver variable Output Char(*)
2 Receiver variable length Input Binary(4)
3 Format hame Input Char(8)
4 Qualified program name Input Char(20)
5 Program type Input Char(10)
6 Module name Input Char(10)
7 Dataoption Input Binary(4)
8 Continuation handle Input Char(16)
9 Error code /10 Char(*)

Service Program: QTEDMPV
Default Public Authority: *USE

Threadsafe: No

The Dump Module Variables (QteDumpModuleVariables) API isused to get alist of all the variable names
and current values of those variables. Variable values may only be requested if an active call stack entry for
the module specified exists in the job in which this API is called. Values existing in program static or
automatic storage are not accessible by this API unless the program has a current call stack entry. All
variables that were defined by the compiler and stored in the module HLL symbol table will be returned.
This API supportsthe ILE CL, ILE COBOL, and ILE RPG compilers.

The module for which variable information is being requested must contain debug data. See the debug view
(DBGVIEW) parameter of the Create RPG Module (CRTRPGMOD), Create COBOL Module
(CRTCBLMOD), or Create CL Module (CRTCLMOD) command. It is not necessary that the job in which
the program is running be in debug mode to use this API.

Variable names and, optionally, their values will be provided within the block in which they were declared.
This APl does not guarantee that those variables are returned in any particular order within the block.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
The variable that isto receive the list of program variables and current values for the specified
module.
Receiver variable length
INPUT; BINARY (4)

The length of the receiver variable that is provided in the previous parameter. This value must be at
least 48 to provide space for the receiver variable header section. The bytes available field tells the
caller what sizeisrequired to receive the entire results of the request.

Format name
INPUT; CHAR(8)

The format of the information returned for the module. The possible format nameis:

DMPV0100 Dump module variables.

Qualified program name
INPUT; CHAR(20)

The name of the program for which the variables and values will be provided.

The first 10 characters contain the name of the program. The second 10 characters contain the name
of the library where the program is located. Each name will be |eft-justified. The specia values of
*LIBL and * CURLIB may be specified.

Program type
INPUT; CHAR(10)

The object type of the program. The possible values are:

*PGM ILE program
*SRVPGM ILE service program

This API cannot be used to dump variable information for an OPM program.
M odule name
INPUT; CHAR(10)
The name of the module (left-justified) within the program. The module must be written in one of
the supported ILE languages or an error is reported.
Data option
INPUT; BINARY (4)

The content of the information returned for the module. The possible values are:

0 Variable namesonly.

1 Variable names and current values in default character format (the type associated with the
variable will be used in determining the format of the value returned).

2 Variable names, the current values in default character format, and the current values in hex
format.

Continuation handle
INPUT; CHAR(16)

The handle used to continue from a previous call to this API that resulted in partially complete
information. Y ou can determine if a previous call resulted in partially complete information by
checking the continuation handle variable in the receiver variable header section following the API
call.

If the APl is not attempting to continue from a previous call, this parameter must be set to blanks.
Otherwise, avalid continuation value must be supplied. When continuing, the first entry in the
returned receiver variable parameter isthe entry that immediately follows the last entry returned in
the previous call.
An error will occur under the following conditions:

o The continuation handle is not blank on the first request for a given set of input parameters.

o The continuation handle is not the same as provided in the receiver variable header section
on the previous call to this API.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of the Receiver Variable

The receiver variable area consists of:
« A receiver variable header section.

« A module variable header section for each variable returned by the Dump Module Variables API.
The module variable header section consists of:

o A fixed-length header section

o A variable-length section containing the information requested for the module variable.

Receiver Variable Header Section

Table 1. Receiver Variable Header Section

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |BINARY(4) |Number of variable sections
| 12 | C |CHAR(10) |Returned library

[22 [16 |[CHAR(10) |Reserved

|

32 | 20 |CHAR(16) |Continuation handle

Note: The following information is repeated as many times as the value specified in
the number of variable sectionsfield.

| | | [Module variable header section

|Modu|evariab|e section

Module Variable Header Section

This table describes the common header area to each subsequently defined module variable section.

Table2. Module Variable Header Section

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Lengthof module variable section
| 4 | 4 |BINARY(4) |Offsetto nextvariable

| 8 | 8 |BINARY(4) |Variableentry type

This portion of the module variable section will always start in the next available 4-word boundary to
ensure proper alignment of the BINARY (4) fields within each section. The caller must use the offset to next
variable field to find the start of the next module variable section and use the length of module variable
section to determine the length of the current section.

Module Variable Section (Scalar Variable Entry Type)

The following table is used when the variable entry being returned is scalar. This section could occur by
itself or following an array definition.

Table 3. Scalar Variable Section

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Variabletype

[4 [4 |BINARY(4) [Totd digits

| 8 | 8 |BINARY(4) |Precision

| 12 | C |BINARY(4) |Scaling factor

| 16 | 10 |BINARY(4) |Offsetto variable name

| 20 | 14 |BINARY(4) |Length of variable name
| 24 | 18 |BINARY(4) |Length of default value

| 28 | 1C |BINARY(4) |Length of hexadecimal value
| 32 | 20 |BINARY(4) |String content descriptor
| 36 | 24 |BINARY(4) |Length of string prefix

| | ICHAR(*) |Variable name

| | ICHAR(*) |Default value

| | |ICHAR(*) |Hexadecimal value

All variable values will be returned in displayable character format. For example, if the internal
representation of a 2-byte unsigned integer is X'0345' the data returned through this API in the default value
areawill be'837 ' (X'F8F3F7404040", and in the hex value areawill be '0345' (X'FOF3F4F5)).

When the scalar values of an array are being retrieved, the values will be returned in row major order, with
no separating characters. The data option parameter will be used to determine if any values are displayed
and in what form.

0 No vaueswill be returned.

1 Only the default value of each scalar will be returned. The length of default value field will specify the
length of each value. Each scalar value in the array will be provided in row major order.

2 The default value and the hex value of each scalar will be returned. The length of default value field
and the length of hex value field will specify the length of each value. Each scalar value in the array
will be provided with each representation in row major order with the default value leading each pair
of values.

Module Variable Section (Array Definition Entry Type)

The following table is used when the variable entry being returned is an array. This section will define the
array and will be followed by one or more scalar variable sections.

Table 4. Array Definition Variable Section

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Number of scalar fields
| 4 | 4 |BINARY(4) |Offsettofirst variable
| 8 | 8 |BINARY(4) |Offsettodimensions

| 12 | C |BINARY(4) |Offsettoarray name

| 16 | 10 |BINARY(4) |Number of array dimensions
| 20 | 14 |BINARY(4) |Length of array name

| | IBINARY(4) |Dimension lower bound
| | IBINARY(4) |Dimension upper bound
| | |ICHAR(*) |Array name

Module Variable Section (Block Definition Entry Type)

The following table is used when the variable entry being returned is a block definition. One of these
sections will exist for each block defined in the program. A block definition entry will precede all other
variable entry sections for variables defined within the specified block.

Table5. Block Definition Variable Section

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Block number

| 4 | 4 |BINARY(4) |Offsettoblock name
| 8 | 8 |BINARY(4) |Lengthof block name

| | ICHAR(*) |Block name

Field Descriptions

Array name. Thefield containing the name of the array.
Block name. The field containing the name of the block.
Block number. The number of the block.

Bytes available. The number of bytes of data available to be returned. All available datais returned if
enough space is provided.

Bytesreturned. The number of bytes of data returned.

Continuation handle. When not all the requested data can be returned on asingle call to this API, avalue
will be supplied in this field which may be used to continue on the next call to this API.

Default value. The value of the variable represented in the default format for the variable type.
Dimension lower bound. The lower bound of an array dimension.
Dimension upper bound. The upper bound of an array dimension.

Hexadecimal value. The value of the variable represented in hexadecimal format asit is stored in the
machine.

Length of array name. The length of the array name field.

Length of block name. The length of the block name field (may be zero if no name is associated with the
block).

Length of default value. The length of the data in the default value field. Thiswill be zero if the data
option parameter is 0.

Length of hexadecimal value. The length of the datain the hexadecimal value field. Thiswill be zero if
the data option parameter isO or 1.

L ength of module variable section. The module variable entry section length, including the length of the
module variable section header.

Length of string prefix. The length of the string prefix (may be 0 if no prefix is associated with the string).
Length of variable name. The length of the variable name field.

Number of array dimensions. The number of dimensionsin the array. The dimension upper and lower
bound fields are repeated for each array dimension.

Number of scalar fields. Number of scalar fieldsin each array element. There will be one module variable
section for each scalar following an array definition header.

Number of variable sections. The number of variable entries returned by the API. These include block
variable entries, scalar variable entries, and array variable entries.

Offset to array name. Offset to the start of the array name field.

Offset to block name. Offset to the start of the block name field.

Offset to dimensions. Offset to the start of the first dimension lower bound field.

Offset to first variable. Offset to the start of the module variable header section for the first scalar variable.

Offset to next module variable header section. Offset to the start of the next module variable header
section.

Offset to variable name. Offset to the start of the variable name field.
Precision. The precision associated with a decimal type (packed, zoned, or binary decimal).
Reserved. Anignored field.

Returned library. The library where the program was found. Thisis useful when *LIBL or *CURLIB is
specified for the program library portion of the program name parameter.

Scaling factor . The scaling factor associated with a decimal type (packed, zoned, or binary decimal).

String content descriptor. The type of the string variable. It may be one of the following values:

An error occurred evauating the variable
A null-terminated unicode string

A length-prefix-2 unicode string

A length-prefix-4 unicode string

A fixed-length unicode string

A variable-length unicode string

A null-terminated graphic string

A length-prefix-2 graphic string

A length-prefix-4 graphic string

© 0o N oo o~ WON - O

A fixed-length graphic string

=
o

A variable-length graphic string
A date string

A packed date string

A time string

(S S S =
AN w N P

A packed time string
15 A timestamp string

Total digits. The total number of digits associated with a decimal type (packed, zoned, or binary decimal).

Variable entry type. The type of variable section that follows the modul e variable header section. It may
be one of the following values:

O Scdlar variable
1 Array definition
2 Block definition

Variable name. The field containing the name of the variable.

Variable type. The datatype of the variable. It may be one of the following values:

0 Anerror occurred evaluating the variable
An 8-hit (1-byte) character
A 16-bit character

A 32-bit quantity having ordinal values of zero or one. Zero isthe ordinal value for FALSE, and oneis
the ordinal value for TRUE.

A 16-bit unsigned integer

A 32-bit unsigned integer

A 16-bit two's complement (signed) integer
A 32-bit two's complement (signed) integer
A 32-bit IEEE 754 floating point value
A 64-bit |IEEE 754 floating point value
10 A 128-bit space pointer

11 A fixed-length character string

12 A packed decimal

13 A zoned trailing embedded sign

14 A zoned leading embedded sign

15 A zoned trailing separate sign

16 A zoned leading separate sign

17 A 16-bit binary decimal

18 A 32-bit binary decimal

19 A 64-hit binary decimal

20 A 32-bit index value

21 An 8-bit unsigned integer

22 An 8-bit signed integer

23 A 64-bit unsigned integer

24 A 64-bit signed integer

25 A variable-length character string

W N -

© 00 ~NO 01 b~

Error Messages

Message ID Error Message Text

CPF3C21 E Format name & 1 is not valid.

CPF3CF1lE Error code parameter not valid.

CPF3CF2E Error(s) occurred during running of &1 API.
CPF9549 E Error addressing APl parameter.

CPF954F E Module &1 not found.

CPF955F E Program & 1 not a bound program.

CPF9562 E Module &1 cannot be debugged.

CPF956D E Parameter does not match on continuation request.

CPF956E E Program language of module not supported.

CPF956F E Continuation handle parameter not valid.

CPF9573 E Program type parameter not valid.
CPF9574 E Call stack entry does not exist.
CPF9579 E Data option specified not valid.
CPF9801 E Object &2 in library &3 not found.
CPF9802 E Not authorized to object &2 in &3.
CPF9803 E Cannot allocate object &2 in library & 3.
CPF9809 E Library &1 cannot be accessed.
CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library & 1.

API Introduced: V3R1

Top | Debugger APIs| APIs by category

Retrieve Program Variable (QTERTVPV) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Programvariable Input Char(132)
4 Basing pointer Input Array(5) of
Char(132)
5 Starting position Input Binary(4)
6 Length of string Input Binary(4)
7 Output format Input Char(10)
8 Program Input Char(10)
9 Recursion level Input Binary(4)
10 Error code /0 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Retrieve Program Variable (QTERTVPV) API retrieves the current value of one program variablein a
program that is being debugged. The information is returned to the calling program in areceiver variable.
The amount of returned information is limited to the size of the receiver variable. Thisinformation is
similar to the information returned using the Display Program Variable (DSPPGMVAR) command.

Restriction

This APl isvalid only in debug mode and supports original program model (OPM) programs only. It
cannot be used if the user is servicing another job and that job is on ajob queue, or is held, suspended, or
ended.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
The variable that is to receive the information requested. The minimum size for this areais 8 bytes.
If the size of thisareais smaller than the available information, the API returns only the data that
the area can hold.

See Format of Receiver Variable for details about the format.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable. If thisvalueis larger than the actual size of storage allocated for
the receiver variable, the results are not predictable. The minimum length is 8 bytes.

Program variable
INPUT; CHAR(132)

The name of the program variable whose value is to be retrieved. Possible values follow:

*CHAR This specia valueis specified instead of avariable name if abasing pointer is
also specified. This special value returns a character view of the area addressed
by a pointer.

Program The name of the program variable. For information about program variables, see

variable name the topic on program-variable description in the Control Language (CL)
information.

Basing pointer
INPUT; ARRAY (5) of CHAR(132)

In languages where a program variable may be based on a pointer variable, you can specify the
basing pointers for the variable to be retrieved. Up to five basing pointers may be specified. If the
basing pointer is an element in an array, the subscript representing an element in the array must be
specified. Up to 132 characters can be specified for one basing pointer name. If no basing pointer is
specified, then the structure must be initialized to blanks. If one or more basing pointers are
specified, then the subsequent array entries must be initialized to blanks. For more information on
basing pointers, refer to the topic on basing-pointer description in the Control Language (CL)

information in the i Series Information center.
Starting position
INPUT; BINARY (4)

For string variables only, the starting position in the string from which its value is being retrieved.
For abit string, the value is the starting bit position. For a character string, the value is the starting
character position.

This parameter isignored on nonstring variables but must be initialized to any number greater than
0.
Length of string
INPUT; BINARY (4)
For string variables only, the length of the string retrieved, starting at the position specified by the

start parameter. For a bit string, this value is the number of bitsto retrieve. For a character string,
this value is the number of charactersto retrieve.

0 The value of the string variable is retrieved to the end of the string or retrieved
for 200 bytes, whichever isless. If the string variable has a maximum length of
zero, only O isallowed.

Retrieve length The length of datato retrieve.

This parameter is ignored on nonstring variables but must be initialized to any
number O or greater.

Output format
INPUT; CHAR(10)

The format in which the value is to be returned.

*CHAR The value of the program variableis returned in character form.
*HEX Thevalue of the program variableis returned in hexadecimal form.

Program
INPUT; CHAR(10)

The name of the program that contains the program variable to be retrieved.

*DFTPGM The program currently specified as the default program will be used.
Program name The name of the program whose program variableis retrieved.

Recursion level
INPUT; BINARY (4)

Therecursion level of the program that contains the program variable.

0 Thelast (most recent) call of the program is the one from which the automatic program
variable isretrieved.

n The number of the recursion level of the program from which the automatic program variable
isretrieved.

This parameter isignored on static variables but must be initialized to any number O or greater.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Receiver Variable

The following table shows the information supplied in the receiver variable parameter. For more
information on each field, see Field Descriptions.

Offset
Dec | Hex ’Type ’Field
0 0 |BINARY(4) |Bytesreturned
4 4 |BINARY(4) |Bytesavailable
8 8 |BINARY(4) |Variabletype
C |[BINARY(4) |Dataerror

|
|
|
|
|
| 12
|
|
|
|
|

|
|
|
|
16 | 10 |POINTER |Pointer to variable
|
|
|
|

32 20 [BINARY(4) |Bitpostion

36 24 |BINARY(4) |Variablelength

40 28 |BINARY(4) |Variable precision

44 2C [BINARY(4) [Number of array dimensions

| 48 | 30 |BINARY(4) |Number of array elements returned
’ 52 ’ 34 ’ARRAY(lS) of |[Subscript bounds
BINARY (4)
| 172 | AC |BINARY(4) |Elementlength
| 176 | BO |BINARY(4) |Character string length
[180 | B4 |[CHAR(4) |Reserved
| 244 | F4 |CHAR(*) Dataretrieved

The following tables show the information supplied in the data retrieved field. The variable type field,
which is enclosed in parentheses, indicates which table is used.

Data for Binary Numeric (1)

| Offset ’

| Dec | Hex |Type Field

| 244 | F4 |CHAR(7) |Message ID
[251 [FB [CHAR(QD) [Reserved

| 252 | FC |CHAR(*) |Variable value

Data for Floating Point (2)

| Offset ’ ’

| Dec | Hex |Type Field

| 244 | F4 |CHAR(?) [Message ID
| 251 | FB |CHAR() |Reserved

| 252 | FC |CHAR(*) |Variable value

Data for Zoned Decimal (3)

| Offset ’

| Dec | Hex |Type Field

| 244 | F4 |CHAR(7) |Message ID
[251 [FB [CHAR(QD) [Reserved

| 252 | FC |CHAR(*) |Variable value

Data for Packed Decimal (4)

| Offset ’ ’

| Dec | Hex |Type Field

| 244 | F4 |CHAR(7) |Message |D
| 251 | FB |CHAR(1) |Reserved

| 252 | FC |CHAR(*) |Varigble value

Data for Fixed Character (5)

| Offset

| Dec | Hex ’Type ’Field

244 [F4 [CHAR(7) |MessagelD
[251 [FB [CHAR®) |Reserved

| 252 | FC |CHAR(*) |Variable value

Data for Varying Character (6)

| Offset ’ ’

| Dec | Hex |Type Field

[244 | F4 [CHAR(®) [Message 1D
| 251 | FB |CHAR(1) |Reserved

| 252 | FC |BINARY(4) |Varying character length
| 256 | 100 |CHAR(*) |Variable value
Data for Fixed Bit (7)

| Offset ’ ’

| Dec | Hex |Type Field

[244 [F4 [CHAR() [Message 1D
[251 [FB [CHAR(D) |Reserved

[252 [FC [CHAR() |Variablevalue

Data for Unsigned Binary (8)

| Offset ’ ’

| Dec | Hex |Type Field

| 244 | F4 |CHAR(7) |Message |D
| 251 | FB |CHAR(1) |Reserved

| 252 | FC |CHAR() |Variable value

Data for Space Pointer (9)

| Offset

| Dec | Hex ’Type ’Field

| 244 | F4 |CHAR(7) |Message ID

[251 [FB [CHAR(@) |Reserved

| 252 | FC |CHAR(8) |Hexadecimal offset

[260 [104 [CHAR®) |Reserved

[268 [10C [CHAR(30) |Object addressed by pointer
| 298 | 12A |CHAR(10) |Library name

| 308 | 134 |CHAR(9) |Object type

Data for Data Pointer (10)

| Offset ’ ’

| Dec | Hex |Type Field

| 244 | F4 |CHAR(7) |Message ID

| 251 | FA |CHAR(1) |Reserved

| 252 | FB |CHAR(8) |Hexadecimal offset
| 260 | 104 |CHAR(30) |Object addressed by pointer
| 290 | 122 |CHAR(10) |Library name

| 300 | 12C |CHAR(8) |Object type

| 308 | 134 |BINARY(4) |Datatype

| 312 | 138 |BINARY(4) |Datalength

| 316 | 13C |BINARY(4) |Dataprecision

| 320 | 140 |BINARY(4) |Datastringlength
| 324 | 144 |BINARY(4) |Elementlength

| 328 | 148 |CHAR(*) |Data

Data for Instruction Definition List (11)

| Offset ’ ’

| Dec | Hex |Type Field

244 [F4 [CHAR() [Message 1D

[251 [FB [CHAR() |Reserved

| 252 | FC |CHAR(9) |Instruction number

[260 [104 [CHAR(®) |Reserved

| 268 | 10C |CHAR(30) |Object addressed by pointer
| 298 | 12A |CHAR(10) |Library name

[7308 [134 [CHAR() [Object type

Data for System Pointer (12)

| Offset ’ ’

| Dec | Hex |Type Field

[244 [F4 [CHAR() |MessagelD

[251 [FB [CHAR@) |Reserved

| 252 | FC |CHAR(16) |Authorization

| 268 | 10C |CHAR(30) |Object addressed by pointer
| 298 | 12A |CHAR(10) |Library name

| 308 | 134 |CHAR(8) |Object type

Data for Machine Space Pointer (13)

| Offset ’ ’

IDec [Hex |Type Field

[244 | F4 [CHAR(Y) |MessagelD

| 251 | FB |CHAR(1) |Reserved

[252 [FC |[CHAR(®) |Hexadecimal offset
[260 [104 [CHAR®) |Reserved

| 268 | 10C |CHAR(30) |Object addressed by pointer
| 298 | 12A |CHAR(10) |Library name

| 308 | 134 |CHAR(8) |Object type

Data for Exception Description (14)

Offset
Dec Hex ’Type ’Fi ed
244 [F4 [CHAR() [Message ID
251 FB |CHAR(1) |Reserved
252 [FC |[CHAR®) [Control
253 FD |CHAR(1) |Handler type
254 FE |CHAR(8) |Instruction number
262 106 |CHAR(10) |Program name

282 11A |CHAR(2 |Reserved

284 11C [BINARY(4) [Compare string length
288 120 |CHAR(28) |Compare string

316 | 13C [CHARQ) [JobTog

317 | 13D |CHAR® [Message type

320 140 |[BINARY(4) [Number of message IDs
324 Array of messages

|

| |
| |
| |
| |
| |
| |
| |
| 272 | 110 |CHAR(10) |Library name
| |
| |
| |
| |
| |
=]

144 [ARRAY(*) of
CHAR(?)

Field Descriptions

Array of messages. An array of the number of message IDs s returned.
Authorization. Pointer authorization.

Bit position. The starting bit position, 1-8, for bit strings returned in *HEX format. The least significant bit
is 1 and 8 the most significant bit. Thisfield will be initialized to O for any other variable type.

Bytes available. The number of bytes of data available to be returned. All available datais returned if
enough space is provided.

Bytesreturned. The number of bytes of data returned.

Character string length. For output format * CHAR, this value is the length of the returned character
string. For output format *HEX, thisvalueisinitialized to 0. For fixed character, varying character, and
fixed bit variables this field contains the actual length of the data returned for * CHAR and * HEX output
formats. For pointers and exception monitors thisfield is 0.

Comparison string. The specified comparison string.
Comparison string length. The length of the comparison string. Thisvalueis O if avalueis not specified.

Control. Exception monitor control action. The following values may be returned:
X'00" Default
X0l Off

X'02' Resignal
X'04' Defer
X'05' Handle

Data. The data addressed by the pointer. Thisfield is returned in the corresponding output format for the
variable type (data type).

Data error. Whether an error was returned when returning a variable.

0 No errors were returned with the variable data.
1 Oneor more errors were returned with the variable data.

Data length. The length of the data addressed by the pointer. Thisisthe same value asin the variable
length field in the header.

Data precision. The precision of the data addressed by the pointer. Thisis the same value asin the variable
precision field in the header.

Dataretrieved. If an error is encountered while retrieving the data, CPD messages may be returned instead
of the variable data. The structure of this parameter is dependent on the object type. The format of the data
depends on the variable type field.

Data string length. The string length of the data addressed by the pointer. Thisis the same value asin the
variable string length field in the header.

Data type. The type of data addressed by the pointer. Thisis the same value asin the variable type field in
the header.

Element length. The length of the data element returned. If thisfield is 0, each element can be a different
length and the user must go to the element to get the element length.

Handler type. Exception monitor handler type.

'00'X External handler
'01'X Cdl interna handler
'02'X Branch point handler

Hexadecimal offset. Hexadecimal offset of the space pointed to by the space or machine space pointer.

Instruction number. The exception handler instruction number for a monitor with an internal handler or
X'0' for an external handler.

Job log. Put messages on job log.

0 No
1 Yes

Library name. The library containing the object addressed by the pointer, *LIBL, or X'0' for internal
monitors.

Message I D. If an error was received with the variable data, this field contains the diagnostic message ID.
If no error was received with the variable€'s data, this field contains blanks.

M essage type. Message types being monitored.

100 Escape
010 Notify
001 Status

More than one message type can be monitored at atime. If the first and third characters are 1's, then escape
and status messages are being monitored.

Number of array dimensions. If the variable isan array or an element of an array, thisfield is the number
of array dimensions. Otherwise, thisfield isinitialized to O.

Number of array elementsreturned. If the variable isan array, thisfield isthe number of array elements
returned. Otherwise, thisfield isinitialized to 0.

Number of message I Ds. The number of message identifiers being monitored.
Object addressed by pointer. The fully qualified name of the object addressed by the pointer.
Object type. The Machine Interface (MI) type of the object addressed by the pointer.

Pointer to variable. Pointer to variable, if applicable. For example, a pointer is not returned to a variable of
type machine space pointer or for an exception description. For system security reasons a pointer is not
returned if the security level is 50 and if the job using the API is servicing and debugging another job.

Program name. External handler program name or X'0' for an internal monitor.
Reserved. Anignored field.

Subscript bounds. The subscript lower bounds and subscript upper bounds for each array dimension. If the
variable is not an element of an array, or the dimension is not used, the subscript lower and upper bounds
areinitialized to 0.

Varying character length. The actual length of the varying character string.

Variable length. The length of the variable value. For bit strings, this value is the number of bits. For
packed and zoned variables, this value is the number of digits. For pointers and exception monitors this
field is 0. For all other variable types, this value is the number of bytes.

Variable precision. The number of decimal digits or fractional digits for zoned and packed variables. For
any other variable type, thisfield will beinitialized to 0.

Variable type. The following are the possible variable types:

Binary numeric
Floating point
Zoned decimal
Packed decimal
Fixed character
Varying character
Fixed bit
Unsigned binary

© 00 N o 0ok~ W NP

Space pointer
10 Data pointer

11 Instruction definition list
12 System pointer
13 Machine space pointer

14 Exception description

Variable value. The value of the variable being retrieved.

The following messages may be returned in thisfield:

CPD1901
CPD1902
CPD1903
CPD1904
CPD1905
CPD1906
CPD1907
CPD1908
CPD1909
CPD1910
CPD1911
CPD1913
CPD1914

Variable contains invalid decimal data.

Pointer to be displayed not set to any address.
Floating-point value displayed is not exact.

Object not found for system pointer with initial value.
Variable not found for data pointer with initial value.
Variable to be displayed contained in deleted object.
Variable refers to object with freed storage.

Space addressing error for variable.

Pointer alignment error. Pointer not on 16-byte boundary.
High-level language (HLL) pointer invalid.

START plus LEN values exceed length of string.
Space addressing error for variable.

Pointer addresses a deleted object.

Error Messages

Message ID
CPF1902 E
CPF1903 E
CPF1905 E
CPF1906 E
CPF1915 E
CPF1919 E
CPF1927 E
CPF1938 E
CPF1939 E
CPF1941 E
CPF24B4 E
CPF3C19E

Error Message Text

No default program exists.

Program & 1 not in debug mode.

Starting position parameter is not valid.

Command is not valid. No programs in debug mode.

Length parameter is not valid.

Recursion level parameter isnot valid.

Output format name not valid.

Command is not allowed while serviced job is not active.
Time-out occurred waiting for areply from the serviced job.
Serviced job has completed. Debug commands are not allowed.
Severe error while addressing parameter list.

Error occurred with receiver variable specified.

CPF3C24 E
CPF7133 E
CPF9549 E
CPFO872 E

Length of the receiver variable is not valid.

Variable or basing pointer name missing.

Error addressing API parameter.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R3

Top | Debugger APIs| APIs by category

	Debugger APIs (V5R2)
	Table of Contents
	Debugger APIs
	Using Source Debugger APIs
	How a compiler uses the APIs to generate debug data for ILE programs
	How a source debugger uses the APIs to debug ILE or OPM programs
	Source Debugger APIs
	Debug Session Control APIs
	APIs
	Change Current Thread (QteChangeCurrentThread) API
	Change Thread Status (QteChangeThreadStatus) API
	End Source Debug (QteEndSourceDebug) API
	Register Service Entry Point Stop Handler (QteRegSrvEntPntStpHdlr) API
	Retrieve Debug Attribute (QteRetrieveDebugAttribute) API
	Retrieve Debugged Threads (QteRetrieveDebuggedThreads) API
	Retrieve Module Views (QteRetrieveModuleViews) API
	Retrieve Source Path Name (QteRetrieveSourcePathName) API
	Set Debug Attribute (QteSetDebugAttribute) API
	Start Source Debug (QteStartSourceDebug) API
	Stop Debugged Job (QteStopDebuggedJob) API

	Exit Programs
	Debug Session Handler Exit Program
	Program-Stop Handler Exit Program
	Service Entry Point Stop Handler Exit Program

	Create View APIs
	Add View Description (QteAddViewDescription) API
	Add View File (QteAddViewFile) API
	Add View Map (QteAddViewMap) API
	Add View Text (QteAddViewText) API
	End View Creation (QteEndViewCreation) API
	Start View Creation (QteStartViewCreation) API

	View Information APIs
	Map View Position (QteMapViewPosition) API
	Register Debug View (QteRegisterDebugView) API
	Remove Debug View (QteRemoveDebugView) API
	Retrieve Statement View (QteRetrieveStatementView) API
	Retrieve Stopped Position (QteRetrieveStoppedPosition) API
	Retrieve View File (QteRetrieveViewFile) API
	Retrieve View Line Information (QteRetrieveViewLineInformation) API
	Retrieve View Text (QteRetrieveViewText) API

	Fast-path Debugger APIs
	Add Breakpoint (QteAddBreakpoint) API
	Remove All Breakpoints (QteRemoveAllBreakpoints) API
	Remove Breakpoint (QteRemoveBreakpoint) API
	Step (QteStep) API

	Submit Debug Command (QteSubmitDebugCommand) API
	Dump Module Variables (QteDumpModuleVariables) API

	Retrieve Program Variable (QTERTVPV) API

