Communications APIs (V5R2)

Table of Contents

« Communications APIs

« APIs
0 User-Defined Communications Support APIs

» Disable Link (QOLDLINK)
= Enable Link (QOLELINK)
= Query Line Description (QOLQLIND)
= Receive Data (QOLRECV)
= Send Data (QOLSEND)
= Set Filter (QOLSETF)
» Set Timer (QOLTIMER)
o Data Stream Tranglation APIs
= Using the Data Stream APIs
» End Data Stream Translation Session (QDOENDTS)
» Start Data Stream Trangation Session (QDOSTRTYS)
= Trangdate Data Stream (QDOTRNDS)
o OptiConnect APIs
» Close Path (QzdmClaosePath)

» Close Stream (QzdmCloseStream)

= Open Path (QzdmOpenPath)

= Open Stream (QzdmOpenStream)

= Receive Control (QzdmReceiveControl)
» Receive Request (QzdmReceiveRequest)

= Receive Response (QzdmReceiveResponse)
» Send Request (QzdmSendRequest)
= Send Response (QzdmSendResponse)
= Wait Message (QzdmWaitM essage)
o TCP/IP Management APIs
= Change Connection Attribute (QTOCCCNA)
= #List Neighbor Cache Table (QtocL stNeighbor Thl)«
= List Network Connections (QtocL stNetCnn)
= List Network Interface (QtocL stNetlfc)

« Related topics

List Network Routes (QtocL stNetRte)

List Physical Interface ARP Table (QtocL stPhylfcARPThI)

List Physical Interface Data (QtocL stPhylfcDta)

List PPP Connection Profiles (QtocL stPPPCnnPrf)

List TCP/IP Point-to-Point Jobs (QTOCL PPJ)

Remove ARP Table Entry (QtocRmvARPTDIE)

Retrieve Network Connection Data (QtocRtvNetCnnDta)

Retrieve PPP Connection Profiles (QtocRtvPPPCnnPrf)

Retrieve TCP/IP Attributes (QtocRtvTCPA)

Update DNS APl (QTOBUPDT)

o User-defined communications

0 Programming design considerations

o Configuration and queue entries

o Debugging of user-defined communications applications

Communications APIs

The Communications APIs provide the information needed to write user-defined communications
applications, programming examples, and debugging information. The Data Stream Trandlation APIs allow
a user-written application program that creates 3270 data streams to run on the an i Series server using 5250
data streams. The OptiConnect APIs can be used to move user data between two or more systemsthat are
connected by an OptiConnect fiber-optic bus. The TCP/IP Management APIs allow you to retrieve
information about your TCP/IP setup and status, and change certain system values related to TCP/IP.
Communications APIs include the following:

» User-Defined Communications Support APIs
« Data Stream Trandation APIs

« OptiConnect APIs

o TCP/IP Management APIs

For information on user-defined communications support, read the following topics:
 User-defined communications

« Programming design considerations

« Configuration and queue entries

« Debugging of user-defined communications appliations

APIs by category

User-Defined Communications Support APIs

User-defined communications support is made up of seven callable APIsthat provide servicesfor a
user-defined communications application program.

The user-defined communications Support APIs are;
« Disable Link (QOLDLINK) disables oneor al links.

o Enable Link (QOLELINK) enableslink for input and output.

o Query Line Description (QOLQLIND) queries an existing line description.
» Receive Data (QOLRECV) receives data from the link.

« Send Data (QOLSEND) sends data from the link.

o Set Filter (QOLSETF) activates or deactivates filters.

o Set Timer (QOLTIMER) sets or cancels atimer.

Top | Communications APIs | APIs by category

Disable Link (QOLDLINK) AP

Required Parameter Group:

1 Returncode Output Binary(4)

2 Reason code Output Binary(4)

3 Communications handle Input Char(10)

4 Vary option Input Char(1)
Threadsafe: No

The Disable Link (QOLDLINK) API disables one or al linksthat are currently enabled in the job in which
the application program is running. When alink is disabled, all system resources that the link is using are
released, the input and output buffers and descriptors for that link are deleted, and input or output on that
link is no longer possible.

In addition to an application program explicitly disabling alink by calling the QOLDLINK AP,
user-defined communications support will implicitly disable alink in the following cases:

« When the network device associated with an enabled link is varied off from the job in which it was
enabled

« When ajob endsin which one or more links were enabled

« When the application program that enabled the link ends abnormally

« When the Reclaim Resource (RCLRSC) command is used

« When an unmonitored escape message is received

For each link that is successfully disabled, either explicitly or implicitly, the disable-complete entry will be
sent to the data queue or user queue specified on the call to the QOLELINK API when the link was
enabled. See Disable-Complete Entry for the format of the disable-complete entry.

Required Parameter Group

Return code
OUTPUT; BINARY (4)

The recovery action to take. See Return and Reason Codes.

Reason code
OUTPUT; BINARY (4)

The error that occurred. See Return and Reason Codes.

Communications handle
INPUT; CHAR(10)

The name of the link to disable. The specia value of *ALL (left-justified and padded on the right
with spaces) may be used to disable all links currently enabled in the job that the application
program is running in.

Vary option
INPUT; CHAR(1)

The vary option for the network device description associated with each link being disabled. The
valid values are as follows:

X'00' Do not vary off the network device description.
X'01' Vary off the network device description.

Return and Reason Codes

Figure 1-1. Return and Reason Codesfor the QOLDLINK API

| Return / Reason Code | Meaning | Recovery
| 0/0 |Operation successful. |Continue processing.

83/1004 Vary option not valid. |Correct the vary option
parameter. Then, try the request
again.

83/3001 Link not enabled. Correct the communications
handle parameter. Then, try the
request again.

API Introduced: V2R1

Top | Communications APIs | APIs by category

Enable Link (QOLELINK) API

Required Parameter Group:

1 Returncode Output Binary(4)
2 Reason code Output Binary(4)
3 Dataunitsize Output Binary(4)
4 Dataunits created Output Binary(4)
5 LAN user datasize Output Binary(4)
6 X.25dataunitsize Input Binary(4)
7 Input buffer Input Char(20)
8 Input buffer descriptor Input Char(20)
9 Output buffer Input Char(20)
10 Output buffer descriptor Input Char(20)
11 Key length Input Binary(4)
12 Key vaue Input Char(256)
13 Qudlified queue name Input Char(20)
14 Linedescription Input Char(10)
15 Communications handle Input Char(10)

Optional Parameter Group:

16 Queuetype Input Char(1)

17 Network interface description Input Char(10)

18 Extended operations Input Char(2)
Threadsafe: No

The Enable Link (QOLELINK) API enables alink for input and output on a communications line. The
communications line, described by the line description parameter, must be a token-ring, Ethernet, wireless,
FDDI, or X.25 line. The link being enabled can only be accessed within the job in which the QOLELINK
API was called.

Before calling the QOLELINK API to enable alink, you must configure the following objects:

« Token-ring, Ethernet, wireless, FDDI, or X.25 line description
« Dataqueue or user queue

« Network interface description for X.25 networks running over ISDN
See for more information on configuration.

The QOLELINK API creates the input and output buffers and buffer descriptors used for the link being
enabled. The network controller description and the network device description, associated with the link
being enabled, are aso created, if necessary. In addition, the following are varied on, if necessary.

o Linedescription

« Network controller description
» Network device description

« Network interface descriptions used by the line description

If the X.25 switched network interface list has multiple network interface descriptions configured, all of
them can be varied on at one time. For more information on varying on network interface descriptions, refer

to the Communications M anagement @ book.

When the QOLELINK API returns, your application program should examine the codes to determine the
status of the link. Successful return and reason codes (both zero) indicate the link is being enabled and an
enable-complete entry will be sent to the data queue or user queue specified on the call to the QOLELINK
APl when the enable operation completes. See Enable-Complete Entry for more information on the
enable-complete entry. Unsuccessful return and reason codes indicate the link could not be enabled and the
enable-complete entry will not be sent to the data queue or user queue. Return and Reason Codes provides
more information on the QOLELINK API return and reason codes.

Authorities and Locks

User Space Authority
*READ

User Space Library Authority
*USE and *ADD. *OBJOPR plus *READ is equivalent to * USE.

User Space Lock
*EXCL

Required Parameter Group

Return code
OUTPUT; BINARY (4)

The recovery action to take. See Return and Reason Codes.

Reason code
OUTPUT; BINARY (4)

The error that occurred. See Return and Reason Codes.

Data unit size
OUTPUT; BINARY (4)
The total number of bytes allocated for each data unit in the input and output buffers. For

token-ring links, thisincludes user data (LAN user data size parameter), general LAN header
information, and optional routing information. For Ethernet, wireless, and FDDI links, this includes

user data (LAN user data size parameter) and general LAN header information. For X.25 links, this
includes user data (X.25 user data size parameter). For more information on the general LAN
header, see Figure 1-11.

Data units created
OUTPUT; BINARY (4)

The number of data units created for the input buffer and the output buffer. This parameter also
specifies the number of elements created for the input buffer descriptor and the output buffer
descriptor. The only valid valueis:

8 All protocols

Note: Because user-defined communications support always returns an 8, you should write your
application program to avoid having to recompile should this value ever change.

LAN user datasize
OUTPUT; BINARY (4)

The number of bytes allocated for token ring, Ethernet, wireless, or FDDI in each data unit of the
input and output buffers. This does not include general LAN header information and optional
routing information.

The content of this parameter is only valid when enabling a token-ring, Ethernet, wireless, or FDDI
link.

Note: The maximum amount of token-ring, Ethernet, wireless, or FDDI user data that can be sent
or received in each data unit is determined on a service access point basis in the line description or
by the 1502 byte maximum for Ethernet Version 2 frames, and may be less than the LAN user data
size. See Query Line Description (QOLQLIND) API for information on retrieving these values.

X.25 data unit size
INPUT; BINARY (4)
The number of bytes allocated for X.25 user data in each data unit of the input and output buffers.

Thisisequal to the maximum amount of X.25 user data that can be sent or received in each data
unit. The content of this parameter is only valid when enabling an X.25 link.

Range 512 bytes-4096 bytes

Input buffer
INPUT; CHAR(20)

The name and library of the input buffer that the QOLELINK API creates for thislink. The first 10
characters specify the name for the input buffer and the second 10 characters specify the name of
an existing library that the input buffer will be created in. Both entries are left-justified. The special
values of *LIBL and * CURLIB can be used for the library name.

Note: A user space object with the same name as the input buffer must not already exist in the
specified library.

Input buffer descriptor
INPUT; CHAR(20)

The name and library of the input buffer descriptor that the QOLELINK API createsfor thislink.
Thefirst 10 characters specify the name of the input buffer descriptor and the second 10 characters

specify the name of an existing library that the input buffer descriptor will be created in. Both
entries are left-justified. The special values of *LIBL and * CURLIB can be used for the library
name.

Note: A user space object with the same name as the input buffer descriptor must not already exist
in the specified library.

Output buffer
INPUT; CHAR(20)

The name and library of the output buffer that the QOLELINK API creates for thislink. The first
10 characters specify the name of the output buffer and the second 10 characters specify the name
of an existing library that the output buffer will be created in. Both entries are | eft-justified. The
special values of *LIBL and * CURLIB can be used for the library name.

Note: A user space object with the same name as the output buffer must not already exist in the
specified library.

Output buffer descriptor
INPUT; CHAR(20)
The name and library of the output buffer descriptor that the QOLELINK API createsfor thislink.
Thefirst 10 characters specify the name of the output buffer descriptor and the second 10
characters specify the name of an existing library that the output buffer descriptor will be created

in. Both entries are | eft-justified. The special values of *LIBL and * CURLIB can be used for the
library name.

Note: A user space object with the same name as the output buffer descriptor must not already exist
in the specified library.

Key length
INPUT; BINARY (4)

The key length when using a keyed data queue or user queue.

0 The data queue or user queue is not keyed.
Range 1-256
Key value

INPUT; CHAR(256)

The key value (left justified) when using a keyed data queue or user queue.
Qualified queue name
INPUT; CHAR(20)

The name and library of the data queue or user queue where the enable-compl ete, disable-complete,
permanent-link-failure, and incoming-data entries for this link will be sent. See Queue Entries for

more information about these queue entries. Thefirst 10 characters specify the name of an existing
queue and the second 10 characters specify the library in which the queue is located. Both entries
are left-justified. The special values of *LIBL and * CURLIB can be used for the library name.

Line description
INPUT; CHAR(10)

The name of the line description that describes the communications line the link being enabled will

use. An existing token-ring, Ethernet, wireless, FDDI, or X.25 line description must be used.
Communications handle
INPUT; CHAR(10)

The name assigned to the link being enabled. Any name complying with system object naming
conventions may be used.

Optional Parameter Group

Queuetype
INPUT; CHAR(1)
The type of queue you specified for the Queue name parameter.

D Dataqueue
U User queue

Network interface description
INPUT; CHAR(10)

The name of the network interface description. This value is specified if you are running X.25 and
need to specify a particular network interface to use. Otherwise, this value should be set to blanks.

Note: This parameter along with the line description parameter causes only the network interface
description specified to be varied on. If thisvalue is not specified and the line description parameter
contains a switched network interface list, all network interface descriptions within the list are
varied on when the QOLELINK API iscalled.

Specifying this parameter causes only the line and the network interface that are passed to be varied
on during enable processing.

Extended operations
INPUT; CHAR(1)

Indicates whether or not extended operations are supported.

Extended operations affect all connections (UCEPs, PCEPs) on thelink. X'B311' and X'B111' are
receive extended operations. X'B110' is a send extended operation.

1 Operations supported
0 Operations not supported

Return and Reason Codes

Figure 1-2. Return and Reason Codesfor the QOLELINK API

Return / Reason Meaning Recovery
Code

0/0

Operation successful, link
enabling.

Wait to receive the enable-complete
entry from the data queue or user
gueue before doing input/output on
thislink.

81/9999 Internal system error detected. [See messages in the job log for
Escape message CPF91F0 will [further information. Then, report the
be sent to the application problem using the ANZPRB
program when thisreturnand |command.
reason code is received.

82/1000 User data size not valid for X.25 |Correct the X.25 user data size
link. parameter. Then, try the request

again.

82/1001 Key length not valid. Correct the key length parameter.
Then, try the request again.

82/1002 Queue name not valid. Correct the queue name parameter.
Then, try the request again.

82/1003 Communications handle not Correct the communications handle

valid. parameter. Then, try the request
again.

82/1012 Queue type not valid. Queue type must be D or U. Correct
the queue type and try the request
again.

82/1013 Extended operationsvalue not |[Extended operations value must be 1

valid. or 0. Correct the extended operations
value and try the request again.

82/1020 Group parameters not valid (not |Pass all parameters within the group
all the parameters within a and try the operation again.
group were passed).

82/2000 Line name not valid or protocol |The line name specified must be for
is not supported. aline of type Ethernet, wireless,

token ring, FDDI, or X.25. Correct
the line name and try the request
again.

82/2001 Line description, network See messages in the job log
controller description, or indicating the affected object and
network device description not [recommended recovery. Do the
inavalid state. recovery, and try the request again.

82/2002 Not authorized to the line See messages in the job log
description or network indicating the affected abject and get
controller description. authorization to it. Then, try the

request again.

82/2003 Could not allocate the network |Try the request again. If the problem
device description. continues, report the problem using

the ANZPRB command.

82/2004 Could not create the network See messages in the job log
controller description or indicating the affected object and
network device description. recommended recovery. Do the

recovery, and try the request again.

82/2005 Could not vary on the network | See messages in thejob log

interface, line description,
network controller description,
or network device description.

indicating the affected object and
recommended recovery. Do the
recovery, and try the request again.

82/2006 Line description not found. Correct the line description
parameter. Then, try the request
again.

82/2007 Line description damaged. Delete and re-create the line
description. Then, try the request
again.

82/2008 Unsupported interface. An error |The network interface value is not
occurred that indicated the correct for the line name value.
network interface specified Correct the configuration or your
cannot be associated with the |application.
line specified. For example, you
specified a network interface for
atoken-ring, Ethernet, or
wirelessline.

82/2009 Network interface description [Specify the correct network interface
not found. name and try the request again.

82/2010 Network interface description [Check the network interface
specified could not be used. description for possible errors.

Correct any errors and try the
request again.

82/2400 An error occurred while See messages in the job log
creating the input buffer, input |indicating the affected object and
buffer descriptor, output buffer, [recommended recovery. Do the
or output buffer descriptor. recovery, and try the request again.

82/3000 Communications handle aready |Either disable the link that was
assigned to another link that is |assigned this communications
enabled in thisjob. handle, or correct the

communications handle parameter so
it does not specify a communications
handle that is already assigned to a
link enabled in thisjob. Then, try the
request again.

82/3005 Line description already in use |Disable thelink that is using thisline
by another link that isenabled |description. Then, try the request
in thisjob. again.

Error Messages

Message ID
CPF3C90E
CPFIO1FO E
CPFO872 E

Error Message Text

Literal value cannot be changed.

Interna system error.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Communications APIs | APIs by category

Query Line Description (QOLQLIND) API

Required Parameter Group:

1 Returncode Output Binary(4)
2 Reason code Output Binary(4)
3 Number of bytes Output Binary(4)
4 User buffer Output Char(*)
5 Linedescription Input Char(10)
6 Format Input Char(2)

Optional Parameter Group:

7 Length of user buffer Input Binary(4)
8 Bytesavailable Output Binary(4)
Threadsafe: No

The Query Line Description (QOLQLIND) API queries an existing token-ring, Ethernet, wireless, FDDI,
framerelay, or X.25 line description. The data received from the query is placed in the user buffer
parameter.

The line description to be queried does not have to be associated with any links the application program has
enabled. However, datain the line description may change after it is queried.

Required Parameter Group

Return code
OUTPUT; BINARY (4)

The recovery action to take. See Return and Reason Codes.

Reason code
OUTPUT; BINARY (4)

The error that occurred. See Return and Reason Codes.

Number of bytes
OUTPUT,; BINARY (4)

The number of bytes of data returned in the user buffer.
User buffer
OUTPUT; CHAR(*)

The buffer where the data from the query will be received. Any unused space in the buffer will be
filled with X'00". The length of this character structure is determined using Figure 1-3.

Figure 1-3. User Buffer Format

Format Group Length of Char (*)
Parameter
Passed
1| No | 256
lor2 Yes Specified by the length user
buffer parameter.

Note: Y ou are recommended to set the length user buffer value to a number large enough to hold
the system maximum values of virtual circuits, SAPs, and group addresses with additional space
left for future needs.

Line description
INPUT; CHAR(10)

The name of the line description to query. An existing token-ring, Ethernet, wireless, FDDI, frame
relay, or X.25 line description must be used.

Format
INPUT; CHAR(2)

The format of the data returned in the user buffer. The valid values are as follows:

X'01' Useformat O1.
X'02' Useformat 02.

See Format of Datain the User Buffer for more information.

Optional Parameter Group

Length of user buffer
INPUT; BINARY (4)

The number of bytes available for the API to usein the user buffer parameter. The valid values are
from O to 32,767.

Notes:

1. This parameter isrequired if format 2 is specified in the format parameter. It is optional if
format 1 is specified.

2. If length user buffer is specified, bytes available must also be specified.

3. If additional information exists that could not be reported, the bytes available parameter
will contain alarger value than the bytes returned parameter.

Bytes available
OUTPUT; BINARY (4)

Thetotal number of bytes of available information.

Notes:
1. Thisparameter isrequired if format 2 is specified in the format parameter. It is optional if

format 1 is specified.
2. If bytes available is specified, length user buffer must also be specified.

3. If the bytes available parameter contains a number larger than the bytes returned parameter,
thereis additional information that the application cannot access.

4. If the return code parameter is nonzero, thisvalueis set to zero.

Format of Data in the User Buffer

The data received in the user buffer from the query is made up of two parts. The first portion starts at offset
0 from the top of the user buffer and contains general query data. The format of this data does not depend
on value of the format parameter supplied to the QOLQLIND API.

General Query Data

| Field | Type | Description
Line description CHAR(10) The name of the token-ring, Ethernet,

wireless, FDDI, framerelay, or X.25
line description that was queried.

Linetype CHAR(D) The type of line description that was
queried. The valid values are as follows:

X04'" X.25
X'05' Token-ring
X'09' Ethernet
X'0D' FDDI
XOE' Framerelay
X'10' Wireless

Status CHAR(D) The current status of the line description.
Thevalid values are as follows:

X'00' Varied off

X'01' Varied off pending
X'02'" Varied on pending
X'03 Varied on

X'04'" Active

X'05' Connect pending
X'06' Recovery pending
X'07" Recovery canceled
X'08' Failed

X'09' Diagnostic mode
X'FF' Unknown

The second portion of the user buffer startsimmediately after the general query data and contains data
specific to the type of line description that was queried. The format of this data depends on the value of the
format parameter supplied to the QOLQLIND API.

LAN Specific Data-Format 01

| Field | Type | Description
Local adapter CHAR(6) Specifies, in packed form, the local
address adapter address of thisline. The special

value of X'000000000000' indicates that
the preset default address for the adapter
card was configured. However, the line
description must be varied on before this
address can be retrieved.

Line speed CHAR(1) The speed of thisline. The valid values
are asfollows:

X'01' 4 megabits/second

X'02' 10 megabits/second
X'03' 16 megabits/second
X'04' 100 megabits/second

Line capability

CHAR(I)

The capability of thisline. The valid
values are asfollows:

X'00'
X'01'
X'02'
X'03'

Non-Ethernet
Ethernet Version 2
Ethernet 802.3

Both Ethernet Version 2 and
Ethernet 802.3

Lineframe size

BINARY (2)

The maximum frame size possible on
thisline.

Ethernet Version 2
frame size

BINARY (2)

The maximum size for Ethernet Version
2 frames. Thiswill be 1502 if thelineis
capable of Ethernet Version 2 traffic.
Otherwise, it will be zero.

Number of SSAPs

BINARY(2)

The number of source service access
points (SSAPs) configured for thisline.

INote: The following

3 rows are repeated for each SSAP configured for thisline.

SSAP

CHAR(D)

The configured source service access
point.

SSAP type

CHAR(I)

The SSAP type. Thevalid values are as
follows:

X'00" Non-SNA SSAP
X'01' SNA SSAP

SSAP frame size

BINARY (2)

The maximum frame size allowed on
this SSAP.

Number of group
addresses

BINARY (2)

The number of group addresses
configured for thisline.

Note: Thiswill always be zero for a
token-ring line description.

Note: The following row is repeated for each group address configured for thisline.

Group address

CHAR(6)

Specifies a group address, in packed
form.

L AN Specific Data-For mat 02

| Field | Type | Description
Local adapter CHAR(6) Specifies, in packed form, the local
address adapter address of thisline. The special

value of X'000000000000' indicates that
the preset default address for the adapter
card was configured. However, the line

description must be varied on before this

address can be retrieved.

Line speed CHAR(D)

The speed of thisline. The valid values
are asfollows:

X'01' 4 megabits/second

X'02" 10 megabits/second
X'03' 16 megabits/second
X'04' 100 megabits/second

X'05' Framerelay (line speedis
specified separately)

Line capability CHAR(D

The capability of thisline. The valid
values are as follows:

X'00" Non-Ethernet
X'01' Ethernet Version 2
X'02' Ethernet 802.3

X'03' Both Ethernet Version 2 and
Ethernet 802.3

Lineframesize BINARY (2)

The maximum frame size possible on
thisline.

Ethernet Version2 [BINARY (2)
frame size

The maximum size for Ethernet Version
2 frames. Thiswill be 1502 if thelineis
capable of Ethernet Version 2 traffic.
Otherwise, it will be zero.

Functional address [CHAR(6)
field

The hexadecimal functional address
configured for the line. An address of
X'000000000000" indicates there are no
functional addresses configured on this
line description.

Architecture Reference book, SC30-3374.

Note: For additional information on functional addresses, refer to the Token-Ring

Number of group [BINARY (2)
addresses

The number of group addresses
configured for thisline. Thisvalueis
valid for Ethernet and wirelessline
descriptions only.

Offset to group BINARY (2)
addresses

Offset within this structure to the array
of group addresses

Number of SSAPs [BINARY (2)

The number of SSAPs configured for
thisline.

Offsetto SSAPs |BINARY(2)

Offset within this structure to the array
of SSAPs

FR line speed BINARY (4)

Framerelay line speed. Thisvalueis
valid only when the line type field is set

to X'OE".

|Reserved |ICHAR(*)

|Re£erved for extension

|Note: The following row is duplicated by the number of group addresses.

Group address CHAR(6) Specifies a group address, in packed
form.
|Note: The following three rows are duplicated by the number of SSAPs.
SSAP CHAR(D) The configured source service access
point.
SSAP type CHAR(D The SSAP type. Thevalid values are as
follows:
X'00" Non-SNA SSAP
X'01l' SNA SSAP
SSAP frame size BINARY (2) The maximum frame size allowed on
this SSAP.

X.25 Specific Data-Format 01

| Field | Type | Description
Local network CHAR(D) Specifies, in hexadecimal, the number of
address length binary coded decimal (BCD) digitsin
the local network address.
Local network CHAR(9) Specifies, in BCD, the local network
address address of thisline.
Extended network [CHAR(1) Specifies whether network addressing is
addressing extended to permit the use of 17 digitsin
an address. Thevalid values are as
follows:
X'01' Network addresses may be up to
15 digits
X'02' Network addresses may be up to
17 digits
Addressinsertion [CHAR(1) Specifies whether the system inserts the

local network addressin call request and
call accept packets. The valid values are
asfollows:

'Y Thelocal network addressis
inserted in call request and call
accept packets.

'N' Thelocal network addressis not
inserted in call request and call
accept packets.

Modulus CHAR(D) The X.25 modulus value. Thevalid
values are asfollows:

X'01' Modulus 8
X'02' Modulus 128

X.25 DCE support |CHAR(L) Specifies whether the system
communicates using the integrated X.25
DCE support. This alows the system,
acting as the DCE, to communicate with
another system without going through an
X.25 network. The valid values are as
follows:

X'01' The system does not
communicate using the X.25
DCE support

X'02' The system does communicate
using the X.25 DCE support

X'03' The system negotiates whether
it communicates using the X.25

DCE support.
Transmit maximum [(BINARY (2) The transmit maximum packet size
packet size configured for thisline.
Receive maximum [BINARY (2) The receive maximum packet size
packet size configured for thisline.
Transmit default BINARY (2) The transmit default packet size
packet size configured for thisline.
Receive default BINARY (2) The receive default packet size
packet size configured for thisline.
Transmit default BINARY (1) The transmit default window size
window size configured for thisline.
Receive default BINARY (1) The receive default window size
window size configured for thisline.
Number of logical [BINARY (2) The number of logical channels
channels configured for thisline.

Note: The following 4 rows are repeated for each logical channel configured for this
line

Logical channel CHAR(D Thelogical channel group number. This
group number together with the logical channel number
makes up the logical channdl identifier.
Logica channel CHAR(D) Thelogical channel number. This
number together with the logical channel group

number makes up the logical channel
identifier.

Logica channel
type

CHAR(I)

Thelogical channel type. The valid
values are asfollows:

X'01' Switched virtual circuit (SVC).

X'02' Permanent virtual circuit (PVC)
that is eligible for use by a
network controller.

Note: This does not necessarily
mean that thisPVC isavailable
for use. Another job running on
the network controller attached
to thisline may already have
thisPVCin use.

X'22' PVCthatisnot eligible for use
by a network controller. For
example, aPVC that is aready
attached to an asynchronous
controller description.

Logical channel
direction

CHAR(D)

The direction of calls allowed on the
logical channel. The valid values are as
follows:

X'00" Not applicable (PVC logica
channel).

X'01'" Only incoming calls are allowed
on thislogical channel.

X'02' Only outgoing calls are allowed
on thislogical channel.

X'03'" Both incoming and outgoing
calls are allowed on thislogical

channel.
X.25 Specific Data-For mat 02
| Field | Type Description
Local network CHAR(1) Specifies, in hexadecimal, the number of
address length binary coded decimal (BCD) digitsin
the local network address.
Local network CHAR(9) Specifies, in BCD, the local network
address address of thisline.

Extended network
addressing

CHAR(I)

Specifies whether network addressing is
extended to permit the use of 17 digitsin
an address. Thevalid values are as
follows:

X'01' Network addresses may be up to
15 digits

X'02' Network addresses may be up to
17 digits

Addressinsertion

CHAR(D)

Specifies whether the system inserts the
local network addressin call request and
call accept packets. The valid values are
asfollows:

'Y Thelocal network addressis
inserted in call request and call
accept packets.

'N' Thelocal network addressis not
inserted in call request and call
accept packets.

Modulus

CHAR(D)

The X.25 modulus value. The valid
values are as follows:

X'01' Modulus 8
X'02' Modulus 128

X.25 DCE support

CHAR(I)

Specifies whether the system
communicates using the integrated X.25
DCE support. This allows the system,
acting as a DCE, to communicate with
another system without going through an
X.25 network. The valid values are as
follows:

X'01' The system does not
communicate using the X.25
DCE support

X'02' The system does communicate
using the X.25 DCE support

X'03' The system negotiates whether
it communicates using the X.25
DCE support.

Transmit maximum
packet size

BINARY (2)

The transmit maximum packet size
configured for thisline.

'Receive maximum 'BI NARY (2) 'The receive maximum packet size
packet size configured for thisline.
Transmit default BINARY (2) The transmit default packet size
packet size configured for thisline.
Receive default BINARY (2) The receive default packet size
packet size configured for thisline.
Transmit default BINARY (1) The transmit default window size
window size configured for thisline.
Receive default BINARY (1) The receive default window size
window size configured for thisline.
Number of logical [BINARY (2) The number of logical channels
channels configured for thisline.
Maximum frame BINARY (2) The maximum frame size configured in
size the line description. The valid values are
asfollows:
o 1024
o 2048
« 4096
ISDN interface CHAR(D) Indicatesif the line uses an ISDN
interface. The valid values are as
follows:
X'00" X.25 line does not run over an
ISDN interface.
X'01' X.25linerunsover an ISDN
interface.

Note: The following section applies only if the ISDN interface is specified as X'01'".
The sections of format 02 on the call direction field to the offset to logical channel
array field are not meaningful if an ISDN interface is not used and will return zeros
in these fieldsif an ISDN interface is not specified.

Call direction

CHAR(D)

The direction of the ISDN call. The
valid values are as follows:

X'00" Incoming switched call
X'01' Outgoing switched call

X'02' Either anonswitched call or not
| SDN-capable.

INote: The following

fields are only meaningful if the line description is switched.

Length of call ID
information

BINARY (2)

Length includes type and plan, as
described below, and the call identify
information element.

Type of number and
numbering plan

BINARY (D)

Type and plan as represented by the
following bit sequence: tttt pppp, where
tttt equals the category of the calling
number and pppp equals the numbering
plan identification used when the calling
party number was created.

Type
'0000
XXXX

Type
'0001
XXXX

Type
'0010
XXXX

Type
'0011
XXXX

Type
'0100
XXXX

Type
'0110
XXXX

Type
'0111
XXXX

Plan
"XXXX
0000

Plan
"XXXX
0001

Plan
"XXXX
0011

Plan
"XXXX
0100

Plan
"XXXX
1000'

Plan
"XXXX
1001

Plan
"XXXX
11171

Unknown number

I nternational number

National number

Network specific number

Subscriber number

Abbreviated number

Reserved for extension

Unknown

| SDN/tel ephony numbering

plan

Data numbering plan

Telex numbering plan

National standard

numbering plan

Private numbering plan

Reserved for extension

Note: Refer to CCITT Recommendation
Q.931 for more information.

|Reserved IBINARY (1) |Reserved for extension.

Cdl ID digits CHAR(128) Calling party number of remote system
received off the D-channel, specified in
A5 code (ASCII).

Length of BINARY (2) Length includes type, odd-even
subaddress indicator, and the subaddress
information information element. Values can range

from X'0001' to X'00FF'. The user
specified subaddress is restricted to 20

bytes.
Type of subaddress |BINARY (1) Type and odd-even indicator as
and odd-even represented by the following bit
indicator sequence: tttt ixxx, where tttt equals the

type of subaddress and i equals whether
the address has an even or odd number
of digits.

Type '0000 xxxx' NSAP
Type'0010 xxxx' User specified
Typeremaining Reserved

Plan "xooxx Oxxx' Even number of
address digits

Plan "xxxx Ixxx' Odd number of
address digits

Note: Refer to CCITT Recommendation
Q.931 for more information.

|Reserved IBINARY (1) |Reserved for extension.

Subaddress CHAR(128) Calling party subaddress information,
received from the D-channel, specified
in the A5 code set (a superset of

ASCII).
Offset to logical BINARY (2) Offset within this structure to the array
channel array of logical channels
|Reserved |ICHAR(*) |Reserved for extension

Note: Thefollowing 5 rows are repeated for each logical channel configured for this
line. This section is not specific to ISDN interfaces.

Logical channel CHAR(D Thelogical channel group number. This

group number together with the logical channel number
makes up the logical channdl identifier.

Logica channel CHAR(D) Thelogical channel number. This

number together with the logical channel group
number makes up the logical channel
identifier.

Logica channel
type

CHAR(I)

Thelogical channel type. The valid
values are asfollows:

X'01'
X'02'

Switched virtual circuit (SVC).

Permanent virtual circuit (PVC)
that is eligible for use by a
network controller.

Note: This does not
necessarily mean that
thisPVCisavailable for
use. Another job
running on the network
controller attached to
this line may already
have thisPVC in use.

Typeof cals
allowed

CHAR(D)

Types of calls supported on the logical
channel. Thevalid values are as follows:

X'00'

Xor

X'02'

X'03'

Not applicable (PVC logical
channel).

Only incoming calls are allowed
on thislogical channel.

Only outgoing calls are allowed
on thislogical channel.

Both incoming and outgoing
calls are allowed on thislogical
channel.

Availability

CHAR(D)

Specifies whether the virtual circuit is
available or currently isin use. Thevalid
values are as follows:

X'00
Xor

Available

In use

Return and Reason Codes

Return and Reason Codesfor the QOLQLIND API

Return / Reason

Code

Meaning

Recovery

00/0000 Operation Continue processing.
successful.

Notes:

1. When calling QOLQLIND
(specifying an X.25 line
description, format 1, and not
specifying group parameters),
up to 54 logical channels can be
contained in the user buffer
becauseitislimited to asize of
256 bytes. To increase the size
of the user buffer sothat it is
sufficient to contain all of the
logical channels, the group
parameters should be used. To
determine if there are more than
54 |ogical channels configured,
use the Display Line Description
(DSPLIND) command.

2. The application should check to
ensure that the bytes available
value returned is less than or
equal to the bytes returned
value. If so, thereis additional
information that the application
may want to receive. To receive
thisinformation, the application
must re-issue the call, specifying
the length user buffer equal to or
greater than the bytes available
value.

81/9999 Internal system See messages in the job log for further
error detected. information. Report the problem using
Escape message the ANZPRB command.

CPFO1FO0 will be
sent to the
application program
when this return and
reason codeis
received.

83/1005 Format not valid. Correct the format parameter. Try the

request again.

83/1014 Length user buffer [Correct the length user buffer valueto a
value not valid. This|zero or a positive value less than 32K
value cannot be and try the operation again.
negative.

83/1020 Group parameters |All parameters within the group must be
not valid. specified. Correct the parameter list and

try the request again.

83/1021 Required parameter |Format 2 was requested and the required
not specified. group parameters (length user buffer and
bytes available) were not specified.
Correct the parameter list and try the
request again.
83/1998 User buffer Either the length user buffer valueis
parameter too small. [negative or it contains a positive value
and the system was not able to put the
datainto the user buffer provided by the
application. Correct the application and
try the request again.
83/2000 Line description not |Correct the line description parameter.
configured for Try the request again.
token-ring,
Ethernet, wireless,
or X.25.
83/2002 Not authorizedto |Get authorization to the line description.
line description. Try the request again.
83/2006 Line description not |Correct the line description parameter.
found. Try the request again.
83/2007 Line description Delete and re-create the line description.
damaged. Try the request again.

Error Messages

Message | D Error Message Text
CPF3C90 E Literal value cannot be changed.
CPFI1FO E Internal system error.

CPFO872 E

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Communications APIs | APIs by category

Receive Data (QOLRECV) API

Required Parameter Group:
1 Returncode Output Binary(4)
2 Reason code Output Binary(4)
3 Existing user connection end Output Binary(4)
point ID
4 New provider connection end Output Binary(4)
point ID
5 Operation Output Char(2)
6 Number of data units Output Binary(4)
7 Dataavailable Output Char(1)
8 Diagnostic data Output Char(40)
9 Communications handle Input Char(10)
Threadsafe: No

The Receive Data (QOLRECV) API performs an input operation on alink that is currently enabled in the
job in which the application program is running. The type of datareceived is returned in the operation
parameter. The dataitself, is returned in the input buffer that was created when the link was enabled. For
X'0001' operations, a description of that datais also be returned in the input buffer descriptor that is created
when the link was enabled.

The QOLRECV API can receive different types of data depending on the type of communications line the
link isusing. See LAN Input Operations for more information on the types of datathat can be received on

links using a token-ring, Ethernet, wireless, or FDDI communications line. See X.25 SVC and PV C Input
Operations for more information on the types of datathat can be received on links using an X.25
communications line.

Note: The QOLRECV API should only be called when the user-defined communications support has data
available to be received. Thisisindicated either by an incoming-data entry on the data queue or user queue,
or by the data available parameter on the QOLRECV API.

Required Parameter Group

Return code
OUTPUT; BINARY (4)

The recovery action to take. See Return and Reason Codes.

Reason code
OUTPUT; BINARY (4)

The error that occurred. See Return and Reason Codes.

Existing user connection end point ID

OUTPUT; BINARY (4)

The user connection end point (UCEP) ID that the data was received on. For linksusing a
token-ring, Ethernet, wireless, or FDDI communications line, the content of this parameter will
awaysbe 1.

For links using an X.25 communications line, the content of this parameter is only valid when the
operation parameter is X'0001', X'B001', X'B101', X'B301', or X'BFO1'. It will contain the UCEP
ID that was provided in the new user connection end point ID parameter on the call to the
QOLSEND API with operation X'B0O00' or X'B400'.

Note: If anincoming X.25 SVC call isrejected by the user-defined communications application
program by calling the QOLSEND API with operation X'B100', the content of this parameter will
be set to zero when notification of the completion of the X'B100' operation is received from the
QOLRECV API (operation X'B101").

New provider connection end point ID
OUTPUT; BINARY (4)

The provider connection end point (PCEP) 1D for the connection that is to be established. This
identifier must be used on al subsequent calls to the QOLSEND API for this connection.

The content of this parameter isonly valid for links using an X.25 communications line and when
the operation parameter is X'B201".

Operation
OUTPUT; CHAR(2)

The type of datareceived by the application program. With the exception of X'0001', all values are
only valid for links using an X.25 communications line. The valid values are as follows:

X'0001' User data.

X'BO01' Completion of the X'BO00' output operation.
X'B101' Completion of the X'B100' output operation.
X'B111' Completion of the X'B110' output operation.

Cleanup of al connections complete. No data is associated with this operation.
X'B201' Incoming X.25 switched virtua circuit (SVC) call.
X'B301' Connection failure or reset indication received.
X'B311' Connection failure applying to al connections for this link.
This operation is only received when the extended operations parameter for the
QOLELINK API is set to operations supported.
X'BFO1' Completion of the reset (X'BFOO0') output operation.

Note: The special value of X'0000" will be returned in the operation parameter to indicate no data
was received from the QOLRECV API. See Return and Reason Codes for more information.

Number of data units
OUTPUT; BINARY (4)
The number of data unitsin the input buffer that contain data. Any value between 1 and the number

of data units created in the input buffer may be returned when the operation parameter is X'0001'".
Otherwise, any value between 0 and 1 may be returned.

Note: The number of data units created in the input buffer was returned in the data units created
parameter on the call to the QOLELINK API. See Enable Link (QOLELINK) API for more

information.

Data available
OUTPUT; CHAR(1)

Specifies whether more datais available for the user-defined communications application program
to receive. The valid values are as follows:

X'00'" No more datais available for the user-defined communications application program to
receive.

X'01' Moredatais available for the user-defined communications application program to
receive. The QOLRECV APl must be called again prior to any other operations.

Note: Anincoming-data entry will be sent to the data queue or user queue only when the content of
this parameter is X'00' and then more data is subsequently available to be received. See for more
information.

Diagnostic data
OUTPUT; CHAR(40)

Specifies additional diagnostic data. See Format of Diagnostic Data Parameter for more
information.

The content of this parameter is only valid when the operation parameter is X'B001', X'B101',
X'B301', X'B311, or X'BFO1'.

Communications handle
INPUT; CHAR(10)

The name of the link on which to receive the data.

Format of Diagnostic Data Parameter

The format of the diagnostic data parameter is shown below. The contents of the fields within this
parameter are only valid on X'B001', X'B101', X'B301', X'B311', and X'BFO1' operations for the indicated
return and reason codes.

| Field | Type | Description
|Reserved ICHAR(2) |Reserved for extension.
Error code CHAR(4) Specifies hexadecimal diagnostic information

that can be used to determine recovery actions.

The content of thisfield is only valid for 83/4001
and 83/4002 return/reason codes.

Time stamp CHAR(8) The time the error occurred.

The content of thisfield isonly valid for 83/4001
and 83/4002 return/reason codes.

Error log CHAR(%) The hexadecimal identifier that can be used for
identifier locating error information in the error log.
The content of thisfield isonly valid for 83/4001
and 83/4002 return/reason codes.
|Reserved |CHAR(10) |Reserved for extension.
Indicators CHAR(1) The indicators that the user-defined

communications application program can use to
diagnose a potential error condition. Thisisa
bit-sensitive field.

Thevalid valuesfor bit O (leftmost bit) are as
follows:

'0'B Either thereis no messagein the
QSY SOPR message queue, or thereisa
message and it does not have the
capability to run problem analysis report
(PAR) to determine the cause of the error.

'1'B Thereisamessage in the QSY SOPR
message queue for this error, and it does
have the capability to run problem
analysis report (PAR) to determine the
cause of the error.

Thevalid values for bit 1 are asfollows:

'0'B Theline error can be retried.
'1'B Thelineerror is not able to be restarted.

The valid values for bit 2 are as follows:

'0'B The cause and diagnostic codes fields are
not valid.

'1'B The cause and diagnostic codes fields are
valid.

The valid values for bit 3 are as follows:

'0'B Theerror has not been reported to the
system operator message queue.

'1'B The error has been reported to the system
operator message queue.

Thevalid values for bit 4 are as follows:

'0'B A reset request packet was transmitted on
the network

'1'B A reset confirmation packet was
transmitted on the network instead of a
reset request packet.

The content of bit 4 isonly valid for
operation X'BFO1' with 00/0000
return/reason codes.

The content of the indicatorsfield is only valid
for 83/4001, 83/4002, and 83/3202 return/reason
codes, and 00/0000 return/reason codes for
operation X'BFOL'.

X.25 cause code |CHAR(1) Specifies additional information on the condition

reported. See the X.25 Network Support @‘
book for interpreting the values of thisfield.

The content of thisfield isonly valid for
83/4001, 83/4002 and 83/3202 return/reason
codes.

X.25 diagnostic [CHAR(1) Specifies additional information on the condition

code @
reported. See the X.25 Network Support
book for interpreting the values of thisfield.

The content of thisfield isonly valid for
83/4001, 83/4002 and 83/3202 return/reason
codes.

|Reserved ICHAR(2) |Reserved for extension.

Error offset BINARY (4) The offset from the top of the input buffer to the
incorrect datain the input buffer.

The content of thisfield isonly valid for a
83/1999 return/reason code.

|Reserved ICHAR(4) |Reserved for extension.

LAN Input Operations

The only type of data that an application program can receive from the QOLRECV API on linksusing a
token-ring, Ethernet, wireless, or FDDI communications lineis user data (operation X'0001"). User-defined
communications support returns the following information for each data frame received from the
QOLRECV API:

» Oneor more data units. The first data unit contains ageneral LAN header, routing information if a
token ring is used, and user data.

« Tota length of the data unit. Thisinformation is reported in the corresponding input buffer
descriptor element.

For example, suppose two data frames came in from the network and the user-defined communications
application program was notified of this by an incoming-data entry on the data queue or user queue. On
return from the QOLRECV API, the information for the first frame would be in the first data unit of the

input buffer and described in the first element of the input buffer descriptor. The information for the second
frame would be in the second data unit of the input buffer and described in the second element of the input
buffer descriptor. The number of data units parameter would be set to 2.

Data Unit Format-L AN Operation X'0001'

Each data frame received from the QOLRECV API corresponds to a data unit in the input buffer. The
information in each of these data units is made up of ageneral LAN header, routing information (for
token-ring links only), followed by user data.

The general LAN header is used to pass information about the frame to the communications support. The
fieldsin the general LAN header are used for all LAN link types, although some of them are link specific.
For example, routing information is only for token-ring links, and the length of routing information is X'00'
to X'18'. For non-token-ring links, the length of the routing information is always X'00". Also, DSAP and
SSAP are defined for protocols that use the 802.2 logical link control interface and do not apply to Ethernet
Version 2. A DSAP and SSAP of X'00 tells the communications support that the data frame is an Ethernet
Version 2 frame.

Format of the General LAN Information

| Field | Type | Description

Length of BINARY (2) The length of the general LAN information in
general LAN the data unit, including thisfield. Thisfield is
information aways set to 16.

Sending adapter [CHAR(6) Specifies, in packed form, the adapter address
address from which this frame was sent. The possible

values returned in this field depend on the filters
activated for thislink. See Set Filter (QOLSETF)

API for more information.

Note: Because user-defined communications
support only allows connectionless service over
LANSs, all framesreceived on asingle cal to the
QOLRECV API may not have the same source
adapter address.

DSAPaddress |CHAR(1) The service access point on which the iSeries
server received this frame. The possible values

returned in thisfield depend on thefilters
activated for thislink. See Set Filter (QOLSETF)

API for more information.

Note: The Ethernet Version 2 standard does not
define a DSAP address in an Ethernet Version 2
frame. Therefore, when receiving Ethernet
Version 2 frames, the DSAP address will be null
(X'00".

SSAPaddress |CHAR(1) The service access point on which the source
system sent this frame. The possible values
returned in this field depend on the filters
activated for thislink. See Set Filter (QOLSETF)

API for more information.

Note: The Ethernet Version 2 standard does not
define a SSAP address in an Ethernet Version 2
frame. Therefore, when receiving Ethernet

Version 2 frames, the SSAP address will be null

(X'00).
|Reserved ICHAR(2) |Reserved for extension.
Length of BINARY (2) The length of the routing information in the data
token-ring unit. For links using a token-ring
routing communications line, any value between 0 and
information 18 may be returned, where 0 indicates that there

IS no routing information.

For links using an Ethernet, wireless, or FDDI
communications line, the content of thisfield is
not applicable and will be set to 0 indicating that
thereis no routing information.

Length of user [BINARY (2) The length of the user datain the data unit. This
data will be less than or equal to the maximum frame
size allowed on the service access point returned
in the DSAP addressfield. See Query Line
Description (QOLQLIND) API to determine the
maximum frame size allowed on the service
access point returned in the DSAP address field.

For Ethernet Version 2 frames, thiswill be at
least 48 and not more than 1502 (including 2
bytes for the Ethernet type field).

Note: Ethernet 802.3 frames will be padded
when the user datais less than 46 bytes.

Token-ring routing information follows the general LAN header. The length of thisfield is specified by the
length of token-ring routing information field found in the general LAN header. If the length of the routing
information is nonzero, the user data follows the routing information header.

The following table shows the fields and offsets used for Ethernet 802.3, wireless, and token-ring frames
without routing information.

General LAN User Data
Header
| 0 | 16

The length of the user datais described in the length of user datafield in the general LAN header. For
Ethernet Version 2 frames, the first 2 bytes of user data are used for the frame type. The typefieldisa
2-byte field that specifies the upper layer protocol of the frame.

The adapter address, DSAP, SSAP, and frame type fields are all used to define inbound routing information
used by the QOLSETF API. Refer to Set Filter (QOLSETF) API for information on the QOLSETF API and

how inbound routing information is used to route inbound data to the application program.

Note: Inbound routing information is not related to the token-ring routing information described in the
general LAN header.

The following table shows the fields and offsets used for token-ring frames with routing information.

General LAN Routing User Data
Header I nfor mation
0 16 16 + Length of Routing
Information

The following table shows the fields and offsets used for Ethernet Version 2 frames.

Note: For Ethernet Version 2, the frame type field is the first 2 bytes of user data, following the general
LAN information, with user data starting at offset 18.

General LAN | User Data
Header | FrameType | Data
| 0 | 16 | 18

Input Buffer Descriptor Element Format-L AN Operation X'0001'

The information returned in each data unit of the input buffer will be described in the corresponding
element of the input buffer descriptor. The following table shows the format of each element in the input
buffer descriptor.

| Field | Type | Description

Length BINARY (2) [The number of bytes of
information in the
corresponding data unit of the
input buffer. Thiswill be equal
to the length of the general LAN
information with the length of
the routing information and the
length of the user data. See
Figure 1-11 for general LAN
information fields and
descriptions.

|Reserved |ICHAR(30) |Reserved for extension.

X.25 SVC and PVC Input Operations

The following table shows the types of data that can be received from the QOLRECV API on links using an
X.25 communications line.

| Operation | Meaning
| X'0001' |User data (SVC or PVC).

X'B0OOT1 Completion of the X'BO0OO' output
operation (SVC or PVC).

X'B101' Completion of the X'B100' output
operation (SVC or PVC).

X'B201' |I ncoming X.25 call (SVC).
X'B301 Connection failure or reset indication
(SvCor PVC).

X'B311 Connection failure applying to all
connections for thislink.

X'BFOL' Completion of the X'BFOQ' output
operation (SVC or PVC).

X.25 Operation X'0001'

This operation indicates that user data was received on an X.25 SVC or PV C connection. User-defined
communications support will return the following information:

« User datain the next data unit of the input buffer, starting with the first data unit

« A description, in the corresponding element of the input buffer descriptor, of the user datain that
data unit

For example, suppose two data units of user data came in from the network and the application program
was notified of this by an incoming-data entry on the data queue or user queue. On return from the
QOLRECV API, thefirst portion of the user datawould be in the first data unit of the input buffer and
described in the first element of the input buffer descriptor. The second portion of the user data would bein
the second data unit of the input buffer and described in the second element of the input buffer descriptor.
The number of data units parameter would be set to 2.

User-defined communications support will automatically reassemble the X.25 data packet(s) from a
complete packet sequence into the next data unit of the input buffer. If the amount of user datain a
complete packet sequence is more than what can fit into a data unit, the more dataindicator field in the
corresponding element of the input buffer descriptor will be set to X'01' and the next data unit will be used
for the remaining user data, and so on.

Data Unit Format-X.25 Operation X'0001'
Each data unit in the input buffer consists solely of user data and starts offset 0 from the top of the data unit.
Input Buffer Descriptor Element Format-X.25 Operation X'0001'

The user data returned in each data unit of the input buffer will be described in the corresponding element
of the input buffer descriptor.

| Field | Type | Description

Length

BINARY(2)

The number of bytes of user datain the
corresponding data unit of the input buffer. This
will always be less than or equal to the X.25 user
data size parameter that was specified on the call
to the QOLELINK API when the link was
enabled. See Enable Link (QOLELINK) API for

more information.

Note: The maximum amount of user datain a
data unit of the input buffer may be further
limited by the maximum data unit assembly size
for aconnection. See Send Data (QOL SEND)

API for more information.

More data
indicator

CHAR(D)

Specifies whether the remaining amount of user
data from a complete X.25 packet sequenceis
more than can fit into the corresponding data
unit. The valid values are as follows:

X'00" The remaining amount of user datafrom
acomplete X.25 packet sequence fit into
the corresponding data unit.

X'01' Theremaining amount of user datafrom

acomplete X.25 packet sequence could

not al fit into the corresponding data
unit. The next data unit will be used.

Quadlified data
indicator

CHAR(D)

Specifies whether the X.25 qudlifier bit (Q-bit)
was set on or off in al X.25 packets reassembled
into the corresponding data unit. The valid
values are asfollows:

X'00" The Q-bit was set off in al X.25 packets
reassembled into the corresponding data
unit.

X'01' The Q-bit wasset oninall X.25 packets
reassembled into the corresponding data
unit.

Interrupt packet
indicator

CHAR(D)

Specifies whether the user datain the
corresponding data unit was received in an X.25
interrupt packet. The valid values are as follows:

X'00' The user datain the corresponding data
unit was received in one or more data
packets.

X'01' The user datain the corresponding data
unit was received in an X.25 interrupt
packet.

Delivery CHAR(1) Specifies whether the X.25 delivery confirmation
confirmation bit (D-bit) was set on or off in all X.25 packets
indicator reassembled into the corresponding data unit.
Thevalid values are asfollows:

X'00" The D-bit was set off in all X.25 packets
reassembled into the corresponding data
unit.

X'01' The D-bit wassetoninall X.25 packets
reassembled into the corresponding data
unit.

Note: A packet-level confirmationis
sent by the input/output processor (10P)
when a packet is received with the X.25
D-hit set on.

|Reserved |CHAR(26) |Reserved for extension.

X.25 Operation X'B001'

This operation indicates that a X'BO0O' output operation has completed. User-defined communications
support will return the data for this operation (if any) in the first data unit of the input buffer. The input
buffer descriptor is not used.

Datawill be returned in the input buffer for the following return and reason codes:
« 0/0

» 83/1999

« 83/4002 (only when the number of data units parameter is set to one)

The format of the data returned in the input buffer for the X'BO01' operation depends on whether the
X'BO0Q' output operation was used to initiate an SV C call or to open a PV C connection. Each format will
be explained below.

Note: The formats below only apply to 0/0 and 83/4002 return and reason codes. When the X'B001'
operation is received with a 83/1999 return and reason code, the data returned starts at offset O from the top
of thefirst data unit in the input buffer and contains the data specified in the output buffer on the X'BOOO'
output operation. See Send Data (QOLSEND) API for more information.

Data Unit Format-X.25 Operation X'B001' (Completion of SVC Call)

The datareturned starts at offset O from the top of the first data unit in the input buffer.

|Field IType |Description

|Reserved ICHAR(2) |Reserved for extension.

Logical channel [CHAR(2) Thelogical channel identifier assigned to the
identifier SV C connection.!

Transmit packet |BINARY (2) The negotiated transmit packet size for this
size connection.1

Transmit BINARY (2) The negotiated transmit window size for this
window size connection.1

'Receive packet [BINA RY (2) 'The negotiated receive packet size for this

size connection.t

Receive BINARY (2) The negotiated receive window size for this

window size connection.1

|Reserved |ICHAR(32) |Reserved for extension.

Délivery CHAR(1) Specifies whether the X.25 delivery confirmation

confirmation bit (D-bit) was set on or off in the call connected

support packet. This also specifies the D-bit support for
this connection.! The valid values are as follows:

X'00" The D-bit was set off in the call
connected packet. D-hit will be
supported for sending data but not for
receiving data.

Note: When thisvalueis returned and
an X.25 packet is received with the
D-hit set on, the input/output processor
(10P) will send areset packet.

X'01' The D-bit was set on in the call
connected packet. D-bit will be
supported for sending data and for
receiving data.

|Reserved |ICHAR(11) |Reserved for extension.

X.25facilities [BINARY (1) The number of bytes of datain the X.25 facilities

length field. Any value between 0 and 109 may be
returned.

IX.25faciliies |CHAR(109) |The X.25 facilities data.

|Reserved |CHAR(48) |Reserved for extension.

Cdl/clear user |BINARY(2) The number of bytes of datain the call/clear user

datalength datafield. Any value between 0 and 128 may be
returned.

Cdl/clear user |CHAR(128) For a 0/0 return and reason code, this specifies

data the call user data. For an 83/4002 return and
reason code, this specifies the clear user data.

|Reserved ICHAR(168) |Reserved for extension.

1 The content of thisfield is only valid for a 0/0 return and reason code.

Data Unit Format-X.25 Operation X'B001' (Completion of Open PVC)

The data returned starts at offset O from the top of the first data unit in the input buffer.

[Fidd

| Type

| Description

| Reserved

[CHAR(@)

| Reserved for extension.

Transmit packet [BINARY (2) The negotiated transmit packet size for this
Size connection.

Note: Thiswill be the same as the requested
transmit packet size specified on the X'BOOO'
output operation.

Transmit BINARY (2) The negotiated transmit window size for this
window size connection.

Note: Thiswill be the same as the requested
transmit window size specified on the X'B000
output operation.

Receive packet [BINARY (2) The negotiated receive packet size for this
Size connection.

Note: Thiswill be the same as the requested
receive packet size specified on the X'B00O'
output operation.

Receive BINARY (2) The negotiated receive window size for this
window size connection.

Note: Thiswill be the same as the requested
receive window size specified on the X'BO0O'
output operation.

|Reserved ICHAR(500) |Reserved for extension.

X.25 Operation X'B101'

This operation indicates that a X'B100' output operation has completed. User-defined communications
support will return the data for this operation (if any) in the first data unit of the input buffer. The input
buffer descriptor is not used.

Datawill be returned in the input buffer for the following return and reason codes:
« 0/0 (only when the number of data units parameter is set to one)

» 83/1999

Note: The format below only applies for a 0/0 return and reason code. When the X'B101' operation is
received with an 83/1999 return and reason code, the data returned starts at offset O from the top of the first
data unit in the input buffer and contains the data specified in the output buffer on the X'B100' output
operation. See Send Data (QOLSEND) API for more information.

Data Unit Format-X.25 Operation X'B101'

The data returned starts at offset 0 from the top of the first data unit in the input buffer.

| Field | Type | Description

Clear type CHAR(2) Thetype of clear user data returned. The valid
values are asfollows:
X'0001" Clear confirmation dataincluded.
X'0002' Clear indication dataincluded.
|Cause code |ICHAR(1) |The X.25 cause code.
|Diagnostic code | CHAR(1) |The X .25 diagnostic code.
|Reserved |ICHAR(4) |Reserved for extension.
X.25facilities |BINARY(1) The number of bytes of datain the X.25 facilities
length field. Any value between 0 and 109 may be
returned.
IX.25faciliies |CHAR(109) |The X.25 facilities data.
|Reserved |CHAR(48) |Reserved for extension.
Clear user data |BINARY(2) The number of bytes of datain the clear user
length datafield. Any value between 0 and 128 may be
returned.
Clear user data |CHAR(128) |Theclear user data.
|Reserved ICHAR(216) |Reserved for extension.

X.25 Operation X'B111'

This operation indicates a X'B110' output operation has completed. All connections have been closed and
the clean up of connection control information is complete. All UCEPs and PCEPs are freed. Thereisno
data associated with this operation.

X.25 Operation X'B201'

This operation indicates that an incoming X.25 SVC call was received. User-defined communications
support returns the data for this operation in the first data unit of the input buffer. The input buffer
descriptor is not used.

Note: It isthe responsibility of the application program to either accept or reject theincoming call. Thisis
done by calling the QOLSEND API with operation X'B400' or X'B100', respectively.

Data Unit Format-X.25 Operation X'B201'

The data returned starts at offset 0 from the top of the first data unit in the input buffer.

| Field | Type | Description

|Reserved ICHAR(2) |Reserved for extension.

Logical channel |[CHAR(2) Thelogical channel identifier assigned to the
identifier incoming SVC call.

Transmit packet [BINARY (2) The requested transmit packet size for this
size connection.

Transmit BINARY (2) The requested transmit window size for this
window size connection.

Receive packet [BINARY (2) The requested receive packet size for this
size connection.

Receive BINARY (2) The regquested receive window size for this
window size connection.
|Reserved |CHAR(?) |Reserved for extension.
Calling DTE BINARY (1) The number of binary coded decimal (BCD)
address length digitsin the calling DTE address.
Caling DTE CHAR(16) Specifies, in binary coded decimal (BCD), the
address calling DTE address. The address will be left
justified and padded on the right with BCD
Zeros.
|Reserved |ICHAR(8) |Reserved for extension.
Delivery CHAR(1) Specifies whether the X.25 delivery confirmation
confirmation bit (D-bit) was set on or off in the incoming call
support packet. The valid values are as follows:
X'00" The D-bit was set off in theincoming
call packet.
X'01' The D-bit was set on in theincoming
call packet.
|Reserved ICHAR(9) |Reserved for extension.
Reverse CHAR(L) Specifies reverse charging options. The valid
charging values are asfollows:
indicator
X'00" Reverse charging not requested.
X'01' Reverse charging requested.
Fast select CHAR(L) Specifies fast select options. The valid values are
indicator asfollows:
X'00" Fast select not requested.
X'01' Fast select with restriction requested.
X'02' Fast select without restriction requested.
X.25facilities [BINARY (1) The number of bytes of datain the X.25 facilities
length field. Any value between 0 and 109 may be
returned.
IX.25faciliies |CHAR(109) |The X.25 facilities data.
|Reserved |CHAR(48) |Reserved for extension.
Call user data |BINARY(2) The number of bytes of datain the call user data
length field. Any value between 0 and 128 may be
returned.
Cadll user data |CHAR(128) The call user data.
Note: TheiSeries server treats the first byte of

call user data as the protocal identifier (PID).

Caled DTE BINARY (1) The number of binary coded decimal (BCD)

address length digitsin the called DTE address.

Cdled DTE CHAR(16) Specifies, in binary coded decimal (BCD), the

address caled DTE address. The address will be
left-justified and padded on the right with BCD
Zeros.

|Reserved ICHAR(111) |Reserved for extension.

X.25 Operation X'B301'

This operation indicates that a failure has occurred, or areset indication has been received, on an X.25 SVC
or PV C connection. User-defined communications support will return data for this operation in the first data
unit of the input buffer only on a 83/4002 return and reason code when the number of data units parameter
is set to one. The input buffer descriptor is not used.

Note: The diagnostic data parameter will contain the X.25 cause and diagnostic codes when areset
indication is received.

Data Unit Format-X.25 Operation X'B301'

The data returned starts at offset O from the top of the first data unit in the input buffer.

| Field | Type | Description

|Reserved |ICHAR(8) |Reserved for extension.

X.25facilities |BINARY(1) The number of bytes of datain the X.25 facilities

length field. Any value between 0 and 109 may be
returned.

IX.25faciliies |CHAR(109) |The X.25 facilities data.

|Reserved |CHAR(48) |Reserved for extension.

Clear user data |BINARY(2) The number of bytes of datain the clear user

length datafield. Any value between 0 and 128 may be
returned.

Clear user data |CHAR(128) |Theclear user data.

|Reserved ICHAR(216) |Reserved for extension.

X.25 Operation X'B311'

This operation indicates that an error has occurred that has caused the system to close all connections on the
link. The error may be a system error or a network error. The error information is returned in the diagnostic
data and no additional datais provided.

Note: This operation isonly received when the extended operation parameter on the QOLELINK API is set
to operation supported. If the extended operations are not supported and an error occurs that will close al
connections, X'B301' isreceived for each connection.

X.25 Operation X'BFO1'

This operation indicates that a X'BFOO' output operation has been completed. Neither the input buffer nor
the input buffer descriptor is used for this operation.

Note: When the X'BFO1' operation is received with a 0/0 return and reason code, the diagnostic data
parameter will contain information indicating if areset request or reset confirmation packet was sent.

Return and Reason Codes

The return and reason codes that can be returned from the QOLRECV API depend on the type of
communications line the link is using and on the type of data (operation) that was received.

LAN Return and Reason Codes

The following table shows the return and reason codes that indicate data could not be received from the
QOLRECV API.

Note: When these return and reason codes are returned, all output parameters except the return and reason
codes will contain hexadecimal zeros.

Return/ Meaning Recovery
Reason Code

0/3203 No data available to be received. |Ensure that user-defined
communications support has
data available to be received
before calling the QOLRECV
API. Try the request again.

80/2200 Queue error detected. Escape Ensure the link is disabled and
message CPFO1F1 will besent |see messagesin thejob log for
to the application program when |[further information. Correct the
this return and reason code is error, enable the link, and try the
received. request again.

80/2401 Input buffer or input buffer Ensurethelink is disabled and
descriptor error detected. Escape [see messages in the job log for
message CPF91F1 will besent |further information. Correct the
to the application program when |error, enable the link, and try the
this return and reason code is request again.

received.

80/3002 A previous error occurred on Ensurethelink is disabled and
thislink that was reported to the |see messagesin thejob log for
application program by escape [further information. If escape

message CPF91F0 or CPF91F1. |message CPF91F0 was sent to

However, the application the application program, then
program has attempted another |report the problem using the
operation. ANZPRB command. Otherwise,
correct the error, enable the link,
and try the request again.
80/4000 Error recovery has been Ensure the link is disabled and
canceled for thislink. see messages in the job log for

further information. Correct the
condition, enable the link, and
try the request again.

80/9999 Internal system error detected. | See messagesin thejob log for
Escape message CPF91FO will |further information. Report the
be sent to the application problem using the ANZPRB
program when thisreturnand |command.

reason code is received.

83/3001 Link not enabled. Correct the communications
handle parameter. Try the
request again.

83/3004 Link isenabling. Wait for the enable-complete
entry to be sent to the data queue
or user queue. If thelink was
successfully enabled, try the
request again.

Return and Reason Codesfor LAN Operation X'0001'

Return/ Meaning Recovery
Reason Code
| 0/0 |User data received successfully. |Continue processing.

X.25 Return and Reason Codes

The following table shows the return and reason codes that indicate data could not be received from the
QOLRECV API.

Note: When these return and reason codes are returned, al output parameters except the return and reason
codes will contain hexadecimal zeros.

Return/ M eaning Recovery
Reason Code

0/3203 No data available to be received. |Ensure that user-defined
communications support has
data available to be received
before calling the QOLRECV
API. Try the request again.

80/2200 Queue error detected. Escape Ensure thelink is disabled and
message CPF91F1 will besent |see messagesin the job log for
to the application program when |[further information. Correct the
this return and reason code is error, enable the link, and try the
received. request again.

80/2401 Input buffer or input buffer Ensurethelink is disabled and
descriptor error detected. Escape [see messages in the job log for
message CPF91F1 will be sent |further information. Correct the
to the application program when |error, enable the link, and try the
this return and reason code is request again.

received.

80/3002 A previous error occurred on Ensure the link is disabled and
thislink that was reported to the |see messagesin thejob log for
application program by escape |further information. If escape

message CPF91F0 or CPFI91F1. |message CPF91FO0 was sent to

However, the application the application program, then
program has attempted another |report the problem using the
operation. ANZPRB command. Otherwise,
correct the error, enable the link,
and try the request again.
80/4000 Error recovery has been Ensurethelink is disabled and
canceled for thislink. see messages in the job log for

further information. Correct the
condition, enable the link, and
try the request again.

80/9999 Internal system error detected. | See messagesin the job log for
Escape message CPF91F0 will |further information. Report the
be sent to the application problem using the ANZPRB
program when thisreturnand |command.
reason code is received.

83/3001 Link not enabled. Correct the communications
handle parameter. Try the
reguest again.

83/3004 Link is enabling. Wait for the enable-complete

entry to be sent to the data queue
or user queue. If thelink was
successfully enabled, try the
request again.

Return and Reason Codesfor X.25 Operation X'0001'

Return/ M eaning Recovery
Reason Code
| 0/0 |User data received successfully. |Continue processing.

Return and Reason Codesfor X.25 Operation X'B0O01'

Return/ Meaning Recovery
Reason Code
0/0 The X'B0O0OQ' output operation |Continue processing.
was successful.

83/1999 Incorrect datawas specified in |Correct the incorrect data. Then,
output buffer when the X'BO0O' [try the X'BOOO' output operation
output operation was issued. again.

Note: The data specified in the
output buffer will be copied into
the input buffer and the error
offset field in the diagnostic data
parameter will point to the
incorrect data.

83/3204 Connection ending because a Wait for notification of the
X'B100' output operation was |completion of the X'B100'
issued. output operation from the

QOLRECV API (X'B101'
operation).

83/4001 Link failure, system starting Wait for the link to recover.
error recovery for thislink. The [Then, try the X'B0O00' output
connection has ended. operation again.

83/4002 Connection failure. The Correct any errors and try the
connection has ended. The X'B0O00' output operation again.
diagnostic data parameter will
contain more information on this
error.

83/4005 All SVC channels are currently |Wait for avirtual circuit to

in use, or the requested PVC
channel isaready in use.

become available. Then, try the
X'B0O0OQ' output operation again.

Return and Reason Codesfor X.25 Operation X'B101'

output buffer when the X'B100'
output operation was issued.

Note: The data specified in the
output buffer will be copied into
the input buffer and the error
offset field in the diagnostic data
parameter will point to the

incorrect data.

Return/ Meaning Recovery
Reason Code
0/0 The X'B100' output operation |Continue processing.

was successful. The connection
has ended.

83/1007 Connection identifier not valid |Continue processing.
because connection has already
ended.

83/1999 Incorrect datawas specified in |Correct the incorrect data. Then,

try the X'B100' output operation
again.

Return and Reason Codesfor X.25 Operation X'B111'

Return/ Meaning Recovery
Reason Code
0/0 The X'B100' output operation |Continue processing.

was successful. The connection
has ended.

83/1007 Connection identifier not valid |Continue processing.
because connection has already
ended.

83/3205 The X'B110' operation is Correct the application.
rejected because the application
has not received the X'B311'
operation prior to requesting the
X'B110' operation.

Return and Reason Codesfor X.25 Operation X'B201'

Return/ Meaning Recovery
Reason Code
0/0 Incoming X.25 SV C call Continue processing.
received successfully.

Return and Reason Codesfor X.25 Operation X'B301'

incoming user data that can be
held by user-defined
communications support for the
application program on this
connection has been exceeded.

Return/ Meaning Recovery
Reason Code
83/3201 The maximum amount of Issue the X'B100' output

operation to end the connection.

diagnostic data parameter will
contain more information on this
error.

83/3202 A reset indication has been Issue the X'BFOO' output
received on this connection. The |operation to send a reset
X.25 cause and diagnostic code |confirmation packet.
fieldsin the diagnostic data
parameter will contain the cause
and diagnostic codes of the reset
indication.
83/4001 Link failure, system starting Issue the X'B100' output
error recovery for thislink. operation to end the connection.
83/4002 Connection failure. The Issue the X'B100' output

operation to end the connection.

Return and Reason Codesfor X.25 Operation X'B311'

that affects all connections on
thislink. All connections that
were active on thislink are
closed or cleared. The diagnostic
data contains more information
on this error.

Return/ M eaning Recovery
Reason Code
83/4001 Link failure, system starting Issue the X'B110' operation to
error recovery for thislink. All |free the connections.
connections that were active on
thislink are closed or cleared.
83/4002 A network error has occurred Issue the X'B110' operation to

free the connections.

Return and Reason Codesfor X.25 Operation X'BF01'

Return/
Reason Code Meaning Recovery
0/0 The X'BFOO' output operation |Continue processing.
was successful. The diagnostic
data parameter will contain
information indicating if areset
reguest or reset confirmation
packet was sent.

83/1006 Operation not valid. Do not issue the X'BFOO' output
operation on connections that do
not support resets.

83/3201 The maximum amount of Wait to receive afailure

incoming user datathat can be |notification from the

held by user-defined QOLRECV API indicating this

communications support for the [condition (X'B301' operation,

application program on this 83/3201 return and reason code).

connection has been exceeded. | Then issue the X'B100' output
operation to end the connection.

83/3204 Connection ending becausea (Wait for notification of the
X'B100' output operation was [completion of the X'B100'

issued. output operation from the
QOLRECV API (X'B101'
operation).
83/4001 Link failure, system starting Wait to receive afailure
error recovery for thislink. notification from the

QOLRECV API indicating this
condition (X'B301' operation,
83/4001 return and reason code).
Then, issue the X'B100' output
operation to end the connection.

83/4002 Connection failure. Wait to receive afailure
notification from the
QOLRECV API indicating this
condition (X'B301' operation,
83/4002 return and reason code).
Then, issue the X'B100' output
operation to end the connection.

Error Messages

Message | D Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF91F0 E Internal system error.

CPFI1F1 E User-defined communications application error.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Communications APIs | APIs by category

Send Data (QOLSEND) API

Required Parameter Group:

1 Return code Output Binary(4)
2 Reason code Output Binary(4)
3 Diagnostic data Output Char(40)
4 New provider connection end point ID Output Binary(4)
5 New user end point connection 1D Input Binary(4)
6 Existing provider connection end point 1D Input Binary(4)
7 Communications handle Input Char(10)
8 Operation Input Char(2)

9 Number of data units Input Binary(4)

Default Public Authority: *USE

Threadsafe: No

The Send Data (QOLSEND) API performs output on alink that is currently enabled in the job in which the
application program is running. The operation parameter allows you to specify the type of output operation
to perform. The application program must provide the data associated with the output operation in the
output buffer that was created when the link was enabled. For X'0000" operations, the application program
must also provide a description of that datain the output buffer descriptor that was created when the link
was enabled.

The types of output operations that can be performed on alink depend on the type of communications line
that the link isusing. See LAN Output Operations for more information on output operations that are

supported on links using a token-ring, Ethernet, wireless, or FDDI communications line. See X.25 SVC and
PV C Output Operations for more information on output operations that are supported on links using an
X.25 communications line.

Required Parameter Group

Return code
OUTPUT; BINARY (4)

The recovery action to take. See Return and Reason Codes.

Reason code
OUTPUT; BINARY (4)

The error that occurred. See Return and Reason Codes.

Diagnostic data
OUTPUT; CHAR(40)

Additional diagnostic data. See Diagnostic Data Parameter Format for more information.

The content of this parameter is only valid when the operation parameter is set to X'0000' or
X'B400'.

New provider connection end point ID
OUTPUT,; BINARY (4)

The provider connection end point (PCEP) 1D for the connection that is to be established. This
identifier must be used on al subsequent calls to the QOLSEND API for this connection.

The content of this parameter isonly valid for links using an X.25 communications line and when
the operation parameter is set to X'B00O".
New user connection end point 1D
INPUT; BINARY (4)
The user connection end point (UCEP) ID for the connection that is to be established. Thisisthe

identifier on which all incoming data for this connection will be received. Any numeric value
except zero should be used. See Receive Data (QOLRECV) API for more information.

The content of this parameter isonly valid for links using an X.25 communications line and when
the operation parameter is set to X'BO00' or X'B400'.

Existing provider connection end point ID
INPUT; BINARY (4)

The PCEP ID for the connection on which this operation will be performed. For linksusing a
token-ring, Ethernet, or wireless communications line, the content of this parameter must always be
setto 1.

For links using an X.25 communications line, the content of this parameter is only valid when the
operation parameter is set to X'0000', X'B100', X'B400', or X'BFOQ'". It must contain the PCEP ID
that was returned in the new provider connection end point ID parameter from the call to the
QOLSEND API with operation X'B00Q', or the PCEP 1D that was returned in the new provider
connection end point ID parameter from the call to the QOLRECV API with operation X'B201'
(incoming call). See Receive Data (QOLRECV) API for more information on receiving X.25 calls.

Communications handle
INPUT; CHAR(10)

The name of the link on which to perform the output operation.
Operation
INPUT; CHAR(2)

The type of output operation to perform. With the exception of X'0000', all values are only valid for
links using an X.25 communications line. The valid values are as follows:

X'0000" Send data.

X'BO0O" Send call request packet (SVC) or open PV C connection.

X'B100' Send clear packet (SVC) or close PV C connection.

X'B110' Initiate final cleanup of all connections that were closed by the system.
This operation is only valid when the application receives an X'B311' operation to
receive connection failure data.

X'B400" Send call accept packet (SVC).

X'BFOO' Send reset request packet or reset confirmation packet (SVC or PVC).

Number of data units
INPUT; BINARY (4)

The number of data unitsin the output buffer that contain data. Any value between 1 and the
number of data units created in the output buffer may be used.

The content of this parameter is only valid when the operation parameter is set to X'0000'.

Note: The number of data units created in the output buffer was returned in the data units created
parameter on the call to the QOLELINK API. See Enable Link (QOLELINK) API for more

information.

Diagnostic Data Parameter Format

The format of the diagnostic data parameter is shown below. The contents of the fields within this
parameter are only valid on X'0000" and X'B400" operations for the indicated return and reason codes.

| Field | Type | Description
|Reserved ICHAR(2) |Reserved for extension.
Error code CHAR(4) Specifies hexadecimal diagnostic information

that can be used to determine recovery actions.
See Error Codesfor more information.

The content of thisfieldisonly valid for
83/4001, 83/4002, and 83/4003 return/reason
codes.

Time stamp CHAR(8) The time the error occurred.

The content of thisfield isonly valid for
83/4001, 83/4002, and 83/4003 return/reason

codes.
Error log CHAR(4) The hexadecimal identifier that can be used for
identifier locating error information in the error log.

The content of thisfield isonly valid for
83/4001, 83/4002, and 83/4003 return/reason
codes.

|Reserved |CHAR(10) |Reserved for extension.

Indicators

CHAR(I)

Specifies indicators the user-defined
communications application program can use for
diagnosing a potential error condition. Thisisa
bit sensitive field.

Thevalid values for bit O (Ieftmost bit) are as
follows:

'0'B Either thereisno messagein the
QSY SOPR message queue, or thereisa
message and it does not have the
capability to run problem analysis report
(PAR) to determine the cause of the error.

'"1'B Thereisamessagein the QSY SOPR
message queue for this error, and it does
have the capahility to run problem
analysis report (PAR) to determine the
cause of the error.

The valid values for bit 1 are as follows:

'0'B Theline error can beretried.
'1'B Theline error cannot beretried.

The valid values for bit 2 are as follows:

'0'B The cause and diagnostic codes fields are
not valid.

'1'B The cause and diagnostic codes fields are
valid.

The valid values for bit 3 are as follows:

'0'B The error has not been reported to the
system operator message queue.

'1'B The error has been reported to the system
operator message queue.

For example, consider the following values for
the indicatorsfield:

X'20' A condition has caused X.25 cause and
diagnostic codes to be passed to the
application. Thisinformation can
determine the cause of the condition.

X'50' An error has occurred and been reported
to the QSY SOPR message queue. The
error cannot be retried.

X'FO' An error has occurred and been reported
to the QSY SOPR message queue. The
error cannot be retried, and has X.25
cause and diagnostic codes associated
with it. Also a problem analysis report
can be generated to determine the
probable cause.

The content of thisfield isvalid only for
83/4001, 83/4002, 83/3202 and 83/4003
return/reason codes.

X.25 cause code [CHAR(2) Specifies additional information on the condition

reported. See the X.25 Network Support @‘
book for interpreting the values of thisfield.

The content of thisfieldisonly valid for
83/4001, 83/4002 and 83/3202 return/reason
codes.

X.25 diagnostic |CHAR(1) Specifies additional information on the condition

code @
reported. See the X.25 Network Support
book for interpreting the values of thisfield.

The content of thisfield isonly valid for
83/4001, 83/4002 and 83/3202 return/reason
codes.

|Reserved ICHAR(1) |Reserved for extension.

Error offset BINARY (4) The offset from the top of the output buffer to
the incorrect datain the output buffer.

The content of thisfieldisonly valid for a
83/1999 return/reason code.

|Reserved |CHAR(4) |Reserved for extension.

LAN Output Operations

The only output operation supported on links using a token-ring, Ethernet, wireless, or FDDI
communications line is X'0000' (send user data). For each data frame to be sent on the network, the
application program must provide the following information:

« General LAN information, optional routing information, and user datain the next data unit of the
output buffer, starting with the first data unit

« A description, in the corresponding element of the output buffer descriptor, of the information in
that data unit.

For example, suppose a user-defined communications application program wants to send two data frames.
The information for the first frame would be placed in first data unit of the output buffer and described in

the first element of the output buffer descriptor. The information for the second frame would be placed in

the second data unit of the output buffer and described in the second element of the output buffer

descriptor. The number of data units parameter on the call to the QOLSEND API would be set to 2.

Note: The X'0000" operation is synchronous. Control will not return from the QOLSEND API until the
operation completes.

Data Unit Format-L AN Operation X'0000

Each data frame to be sent on the network corresponds to a data unit in the output buffer. The information
in each of these data unitsis made up of general LAN information, optional routing data, and user data.

| Field | Type | Description

Length of BINARY (2) The length of the general LAN information in
general LAN the data unit. This must be set to 16.

information

Destination CHAR(6) Specifies, in packed form, the adapter address to
adapter address which this data frame will be sent.

Note: Because user-defined communications
support only allows connectionless service over
LANSs, it isnot necessary for all frames being
sent on asingle output operation to have the
same destination adapter address.

DSAP address |CHAR(1) The service access point on which the
destination system will receive this frame. Any
value may be used.

Note: The Ethernet Version 2 standard does not
use logical link control, which utilizes SAPs.
Therefore, to send Ethernet Version 2 frames, a
null DSAP address (X'00") must be specified in
the DSAP address field. Also, the Ethernet
Standard (ETHSTD) parameter in the Ethernet
line description must be configured as either
*ETHV2 or *ALL.

SSAPaddress |[CHAR(1) The service access point on which the i Series
server will send this frame. Any service access
point configured in the token-ring, Ethernet,
wireless, or FDDI line description may be used.

Note: The Ethernet Version 2 standard does not
use logical link control, which utilizes SAPs.
Therefore, to send Ethernet Version 2 frames, a
null SSAP address (X'00") must be specified in
the SSAP address field. Also, the Ethernet
Standard (ETHSTD) parameter in the Ethernet
line description must be configured as either
*ETHV2 or *ALL.

Access control

CHAR(I)

Specifies outbound frame priority and is mapped
to the access priority bitsin the access control
field of 802.5 frames. For linksusing a
token-ring communications line, any value
between X'00" and X'07' may be used, where
X'00" isthe lowest priority and X'07' isthe
highest priority.

For links using an Ethernet or wireless
communications line, the content of thisfield is
not applicable and must be set to X'00'.

Priority control

CHAR(D)

Specifies how to interpret the value set in the
access control field. For links using atoken-ring
communications line, the valid values are as
follows:
X'00" Useany priority lessthan or equal to

the value set in the access control field.
X'01' Usethepriority exactly equal to the
value set in the access control field.

X'FF' UsetheiSeries server default priority.

For links using an Ethernet or wireless
communications line, the content of thisfield is
not applicable and must be set to X'00'.

Length of
routing
information

BINARY(2)

The length of the routing information in the data
unit. For links using atoken-ring
communications line, any value between 0 and
18 may be used, where O indicates that there is
no routing information.

For links using an Ethernet or wireless
communications line, the content of thisfield is
not applicable and must be set to 0 indicating
that there is no routing information.

Length of user
data

BINARY(2)

The length of the user datain the data unit. This
must be less than or equal to the maximum frame
size allowed on the service access point specified
in the SSAP address field. See Query Line

Description (QOLOQLIND) API to determine the

maximum frame size allowed on the service
access point specified in the SSAP address field.

For Ethernet Version 2 frames, this must be at
least 48 and not more than 1502 (including 2
bytes for the Ethernet type field).

Note: Ethernet 802.3 frames will be padded
when the user datais less than 46 bytes.

Output Buffer Descriptor Element Format-L AN Operation X'0000'

The information specified in each data unit of the output buffer must be described in the corresponding

element of the output buffer descriptor.

| Field | Type | Description

Length BINARY (2) The number of bytes of information in the
corresponding data unit of the output buffer. This
must be equal to the length of the general LAN
information plus the length of the routing
information plus the length of the user data. See
Figure 1-35 for more information on the format
of the general LAN information.

|Reserved |CHAR(30) |Reserved for extension.

X.25 SVC and PVC Output Operations

The following table shows the output operations that are supported on links using an X.25 communications
line.

| Operation | Meaning
X'0000' Send user data (SVC or PVC).

Note: Thisisasynchronous operation. Control will not return
from the QOLSEND API until the operation completes.

X'B000' Send a call request packet (SVC) or open the PV C connection.

Note: Thisis an asynchronous operation. Notification of the
completion of this operation will be returned from the QOLRECV
API with operation X'B001' only after control returns from the
QOLSEND API with a 0/0 return and reason code. See Receive

Data (QOLRECV) API for more information.
X'B100' Send aclear packet (SVC) or close the PV C connection.

Note: Thisis an asynchronous operation. Notification of the
completion of this operation will be returned from the QOLRECV
APl with operation X'B101' only after control returns from the
QOLSEND API with a0/0 return and reason code. See Receive

Data (QOLRECV) API for more information.

X'B110' Close all connections which were cleared by the reason givenin
the connection failure date received on X 'B311..

Note: Thisis an asynchronous operation. Notification of the
completion of this operation will be returned from the QOLRECV
APl with operation X'B111' only after control returns from the
QOLSEND API with a0/0 return and reason code. See Receive

Data (QOLRECV) API for more information.
X'B400' Send a call accept packet (SVC only).

Note: Thisisasynchronous operation. Control will not return
from the QOLSEND API until the operation completes.

X'BFOO' Send areset request or reset confirmation packet (SVC or PVC).

Note: Thisisan asynchronous operation. Natification of the
completion of this operation will be returned from the QOLRECV
API with operation X'BFO1' only after control returns from the
QOLSEND API with a0/0 return and reason code. See Receive

Data (QOLRECV) API for more information.

Note: The maximum number of outstanding asynchronous operations (notification
of completion not yet received from the QOLRECV API) isfive. All calls made to
the QOLSEND API or QOLSETF API under this condition will be rejected with a
return and reason code of 83/3200.

X.25 Operation X'0000'

This operation alows the application program to send user dataon an SV C or PV C X.25 connection. The
application must provide the following information:

« User datain the next data unit of the output buffer, starting with the first data unit

«» A description, in the corresponding element of the output buffer descriptor, of the user dataiin that
data unit.

For example, suppose a user-defined communications application program wants to send two data units of
user data. Thefirst portion of the user data would be placed in first data unit of the output buffer and
described in the first element of the output buffer descriptor. The second portion of the user data would be
placed in the second data unit of the output buffer and described in the second element of the output buffer
descriptor. The number of data units parameter on the call to the QOLSEND API would be set to 2.

User-defined communications support automatically fragments the user data in each data unit into one or
more appropriately sized X.25 packets based on the negotiated transmit packet size for the connection. All
packets constructed for a data unit, except for the last (or only) packet, will always have the X.25 more data
bit (M-bit) set on. See Output Buffer Descriptor Element Format-X.25 Operation X'0000' for more

information on how to set the X.25 M-bit on or off in the last (or only) packet constructed for a data unit.

Data Unit Format-X.25 Operation X'000'

Each data unit in the output buffer consists solely of user data and starts offset O from the top of the data
unit.

Output Buffer Descriptor Element Format-X.25 Operation X'0000'

The user data specified in each data unit of the output buffer must be described in the corresponding
element of the output buffer descriptor.

| Field | Type | Description

Length BINARY (2) The number of bytes of user datain the
corresponding data unit of the output
buffer. This must always be less than or
equal to the X.25 user data size
parameter that was specified on the call
to the QOLELINK API when the link
was enabled. See Enable Link

(QOLELINK) API for more
information.

More dataindicator

CHAR(I)

Specifies whether the X.25 more data bit
(M-hit) should be set on or off in the last
(or only) X.25 packet constructed for the
corresponding data unit. The valid
values are as follows:

X'00' Set the M-hit off in the last (or
only) X.25 packet constructed
for the corresponding data unit.

X'01' Setthe M-bit onin thelast (or
only) X.25 packet constructed
for the corresponding data unit.

Note: When thisvalueis
selected, the length field must
be set to amultiple of the
negotiated transmit packet size
for the connection.

Qualified data
indicator

CHAR(D)

Specifies whether the X.25 qualifier bit
(Q-bit) should be set on or off in al
X.25 packets constructed for the
corresponding data unit. The valid
values are as follows:

X'00" Set the Q-bit off in all X.25
packets constructed for the
corresponding data unit.

X'01' SettheQ-bitoninall X.25
packets constructed for the
corresponding data unit.

Interrupt packet
indicator

CHAR(D)

Specifies whether the user data in the
corresponding data unit should be sent in
an X.25 interrupt packet. The valid
values are as follows:

X'00" Send the user datain the
corresponding data unit in one
or more X.25 data packets.

X'01' Send the user datain the
corresponding data unit in an
X.25 interrupt packet. An
interrupt packet causes the data
to be expedited.

Note: When thisvalueis
selected, the length field must
be set to a value between 1 and
32, and the number of data units
parameter on the call to the
QOLSEND API must be set to
1. Also, the contents of the more
data indicator, qualified data
indicator, and delivery
confirmation indicator fields are

ignored.
Delivery CHAR(1) Specifies whether the X.25 delivery
confirmation confirmation bit (D-bit) should be set on
indicator or off in al X.25 packets constructed for

the corresponding data unit. The valid
values are as follows:

X'00" Set the D-bit off inall X.25
packets constructed for the
corresponding data unit.

X'01' SettheD-bitoninall X.25
packets constructed for the
corresponding data unit.

Note: TheiSeries server does
not fully support delivery
confirmation when sending user
data. Confirmation isfrom the
local data circuit equipment
(DCE).

|Reserved |CHAR(26) |Reserved for extension.

X.25 Operation X'B000'

This operation allows the application program to either initiate an SV C call or to open a PV C connection.
The application must provide the data for this operation in the first data unit of the output buffer. The output
buffer descriptor is not used.

The format of the data required for the X'BO0OO' operation depends on whether it is used to initiate an SVC
call or to open a PV C connection. Each format is explained in the following table.

Note: When initiating an SV C call, the i Series server chooses an available SV C to use. The logical channel
identifier of the SV C that was chosen will be returned when natification of the completion of X'B000' is
received from the QOLRECV API (operation X'B001"). See Receive Data (QOLRECV) API for more

information.

Data Unit Format-X.25 Operation X'B000' (Initiate an SVC Call)

The data for this operation starts at offset O from the top of the first data unit in the output buffer. The

following table shows the format of the data required for the X'B00O' operation when initiating an SVC
call.

| Field | Type | Description

|Reserved |ICHAR(1) | This field must be set to X'02'.

|Reserved ICHAR(3) | This field must be set to hexadecimal zeros.
Transmit packet |BINARY (2) The requested transmit packet size for this
size connection. The valid values are 64, 128, 256,

512, 1024, 2048, and 4096. The value specified
must be less than or equal to the transmit
maximum packet size configured for thisline.
The special value of X'FFFF may be specified to
use the transmit default packet size configured
for thisline.

See Query Line Description (QOLQLIND) AP
for information on determining the transmit
maximum packet size and the transmit default
packet size configured for thisline.

Transmit BINARY (2) The requested transmit window size for this
window size connection. The valid values are as follows:
1-7 When modulus 8 is configured for
thisline.
1-15 When modulus 128 is configured for
thisline.

X'FFFF' Use the transmit default window size
configured for thisline.

See Query Line Description (QOLQLIND) API
for information on determining the modulus
value and the transmit default window size
configured for thisline.

Receive packet [BINARY (2) The requested receive packet size for this

size connection. The valid values are 64, 128, 256,
512, 1024, 2048, and 4096. The value specified
must be less than or equal to the receive
maximum packet size configured for thisline.
The special value of X'FFFF may be specified to
use the receive default packet size configured for
thisline.

See Query Line Description (QOLQLIND) API
for information on determining the receive
maximum packet size and the receive default
packet size configured for thisline.

Receive
window size

BINARY(2)

The regquested receive window size for this
connection. The valid values are as follows:

1-7 When modulus 8 is configured for
thisline.

1-15 When modulus 128 is configured for

thisline.

X'FFFF' Usethereceive default window size
configured for thisline.

See Query Line Description (QOLQLIND) API
for information on determining the modulus
value and the receive default window size
configured for thisline.

| Reserved

[CHAR()

|Thisfie|d must be set to hexadecimal zeros.

DTE address
length

BINARY (1)

The number of binary coded decimal (BCD)
digitsinthe DTE addressto call. Thevalid
values are as follows:

1-15 When extended network addressing is
not configured for thisline.

1-17 When extended network addressing is
configured in the line description.

See Query Line Description (QOLQLIND) AP
to determine if extended network addressing is
configured for thisline.

DTE address

CHAR(16)

Specifies, in binary coded decimal (BCD), the
DTE address to cal. The address must be | eft
justified and padded on the right with BCD
Zeros.

| Reserved

|ICHAR(8)

|Thisfie|d must be set to hexadecimal zeros.

Delivery
confirmation
support

CHAR(I)

Specifies whether the X.25 delivery confirmation
bit (D-bit) should be set on or off in the call
request packet. The valid values are asfollows:

X'00' Set the D-bit off in the call request
packet.

X'01' Setthe D-bit onin the call request
packet.

| Reserved

[CHAR()

|Thisfie|d must be set to hexadecimal zeros.

Closed user CHAR(1) Specifies whether the closed user group (CUG)
group indicator identifier should be included in the call packet.
Thevalid values are asfollows:
X'00'" Do not include the CUG identifier in the
call packet.
X'01' Include the CUG identifier in the call
packet.

Closed user CHAR(L) The CUG identifier to beincluded in the call
group identifier packet. The valid values are as follows:

X'00 When the closed user group

indicator field is set to X'00'
X'00'-X'99" When the closed user group
indicator field is set to X'01'

Reverse CHAR(1) Specifies reverse charging options. The valid
charging values are as follows:
indicator

X'00" Do not request reverse charging.

X'01' Reguest reverse charging.
Fast select CHAR(1) Specifies fast select options. The valid values are
indicator asfollows:

X'00' Do not request fast select.

X'01' Request fast select with restriction.

X'02' Request fast select without restriction.
X.25facilities |BINARY(1) The number of bytes of datain the X.25 facilities
length field. Any value between 0 and 109 may be used.

Note: TheiSeries server codes the closed user
group, reverse charging, and fast select facilities
in the X.25 facilities field, if the user requested
them in the above fields. Additionally, if the
network user identification parameter
(NETUSRID) is specified in the line description,
the network user identification (NUI) facility is
coded in the field, following the other additional
facilities, if present. Finally, if the packet and
window size values specified are different than
the network default, the facilities containing
these values are coded in the field aswell. The
system will update the X.25 facilities length field
appropriately for each facility to which the

i Series server adds the X.25 facilitiesfield. This
length cannot exceed 109 bytes.

X.25 facilities

CHAR(109)

Specifies additional X.25 facilities data
reguested.

Note: The application programmer should not
code the facilities for NUI, fast select, reverse
charging, closed user group, packet size, or
window sizein thisfield. By doing so, thisfield
could contain duplicate facilities, which may not
be consistently supported by al X.25 networks.

| Reserved

[CHAR(48)

|Thisfie|d must be set to hexadecimal zeros.

Call user data
length

BINARY(2)

The number of bytes of datain the call user data
field. The valid values are as follows:

0-16 When thefast select indicator field is
set to X'00'.

0-128 When the fast select indicator field is
set to X'01' or X'02'.

|Ca|| user data

[CHAR(128)

|The call user data.

| Reserved

[CHAR(128)

|Thisfie|d must be set to hexadecimal zeros.

Control
information

CHAR(D)

Specifies control information for this connection.
Thisisabit-sensitive field with bit O (leftmost
bit) defined for reset support. The remaining bits
are undefined and should be set off ('0'B).

The valid values for bit O are asfollows:

'0'B Resets are not supported on this
connection.

When this value is selected, the X'BFOO'
output operation will not be valid on this
connection. Also, areset indication
packet received on this connection will
cause the connection to be ended.

'1'B Resets are supported on this connection.

When this value is selected, the X'BFO0'
output operation will be valid on this
connection. Also, the user-defined
communications application program will
be required to handle reset indications
received on this connection.

For example, consider the following values for
the control information field:

X'00" Resets are not supported on this
connection.

X'80" Resets are supported on this connection.

| Reserved

[CHAR)

|Thisfie|d must be set to hexadecimal zeros.

Maximum data
unit assembly
size

BINARY (4)

The maximum number of bytes of user data that
isreceived in acomplete X.25 packet sequence
before passing the user data to the application.
Any value between 1024 and 32767 may be
used, and should be set to the largest va ue that
the application will support.

1. The system attemptsto assemble the

entire packet sequence before passing
the data to the application. The only
exception to thisis when the size of the
packet sequence exceeds the value the
user specified for thisfield.

. If the number of bytes of user data

received in a complete X.25 packet
seguence is more than can fit into one
data unit of the input buffer, the more
dataindicator field in the corresponding
element of the input buffer descriptor
will be set to X'01' and the remaining
user datawill befilled in the next data
unit. See Receive Data (QOLRECV)

API for more information.

. Thereis no limitation on the number of

bytes of user datathat can be sentin a
complete X.25 packet sequence.
However, the QOLSEND API may need
to called more than once.

Automatic flow
control

BINARY(2)

Relates to the amount of datathat will be held by
user-defined communications support before
sending areceive not ready (RNR) packet to the
sending system. The recommended value for this
field is 32, but any value between 1 and 128 may

Note: A receiveready (RR) packet will be sent
when the user-defined communications
application program receives some of the data.

| Reserved

|CHAR(30)

|Thisfie|d must be set to hexadecimal zeros.

Data Unit Format-X.25 Operation X'B000' (Open a PVC Connection)

The data for this operation starts at offset O from the top of the first data unit in the output buffer. The
following table shows the format of the data required for the X'B00O' operation when opening a PV C

connection.
| Field | Type | Description
|Reserved ICHAR(1) | This field must be set to hexadecimal zeros.

| Reserved

[CHAR()

|Thisfie|d must be set to hexadecimal zeros.

Logical channel
identifier

CHAR(2)

Thelogical channel identifier of the PVC to
open. Any PVC configured for thislinethat is
eigible to be used by the network controller that
the link is using may be specified and must be in
the range of X'0001'-X'0FFF'.

See Query Line Description (QOLQLIND) API
for information on determining the PVCs
configured for thisline that are eligible to be
used by the network controller the link is using.

Transmit packet
size

BINARY(2)

The requested transmit packet size for this
connection. The valid values are 64, 128, 256,
512, 1024, 2048, and 4096. The value specified
must be less than or equal to the transmit
maximum packet size configured for thisline.
The special value of X'FFFF may be specified to
use the transmit default packet size configured
for thisline.

See Query Line Description (QOLOLIND) API
for information on determining the transmit
maximum packet size and the transmit default
packet size configured for thisline.

Transmit
window size

BINARY(2)

The requested transmit window size for this
connection. The valid values are as follows:

1-7 When modulus 8 is configured for

thisline.

1-15 When modulus 128 is configured for

thisline.

X'FFFF' Usethe transmit default window size

configured for thisline.

See Query Line Description (QOLOLIND) API
for information on determining the modulus
value and the transmit default window size
configured for thisline.

Receive packet
size

BINARY(2)

The requested receive packet size for this
connection. Thevalid values are 64, 128, 256,
512, 1024, 2048, and 4096. The value specified
must be less than or equal to the receive
maximum packet size configured for thisline.
The special value of X'FFFF may be specified to
use the receive default packet size configured for
thisline.

See Query Line Description (QOLQLIND) API
for information on determining the receive
maximum packet size and the receive default

packet size configured for thisline.

Receive
window size

BINARY(2)

The regquested receive window size for this
connection. The valid values are as follows:

1-7 When modulus 8 is configured for
thisline.

1-15 When modulus 128 is configured for
thisline.

X'FFFF' Usethereceive default window size
configured for thisline.

See Query Line Description (QOLQLIND) API
for information on determining the modulus
value and the receive default window size
configured for thisline.

| Reserved

[CHAR(32)

|Thisfie|d must be set to hexadecimal zeros.

Delivery
confirmation
support

CHAR(D)

The X.25 delivery confirmation bit (D-bit)
support for this connection. The valid values are
asfollows:

X'00" D-bit will be supported for sending data
but not for receiving data.

Note: When thisvalue is selected and an
X.25 packet is received with the D-bit
set on, the input/output processor (10P)
will send areset packet.

X'01'" D-bit will be supported for sending data
and for receiving data.

| Reserved

|CHAR(427)

|Thisfie|d must be set to hexadecimal zeros.

Control
information

CHAR(D)

Specifies control information for this connection.
Thisis abit-sensitive field with bit O (Ieftmost
bit) defined for reset support. The remaining bits
are undefined and should be set off ('0'B).

Thevalid values for bit O are as follows:

'0'B Resets are not supported on this
connection.

When thisvalueis selected, the X'BFOO'
output operation will not be valid on this
connection. Also, areset indication
packet received on this connection will
cause the connection to be ended.

'"1'B Resets are supported on this connection.

When thisvalueis selected, the X'BFOO'
output operation will be valid on this
connection. Also, the user-defined
communications application program will
be required to handle reset indications
received on this connection.

For example, consider the following values for
the control information field:

X'00" Resets are not supported on this
connection.

X'80" Resets are supported on this connection.

|Reserved ICHAR(3) | This field must be set to hexadecimal zeros.
Maximum data |BINARY (4) The maximum number of bytes of user data that
unit assembly isreceived in acomplete X.25 packet sequence
size before passing the user data to the application.

Any value between 1024 and 32767 may be
used, and should be set to the largest value that
the application will support.

Notes:

1. The system attemptsto assemble the
entire packet sequence before passing
the data to the application. The only
exception to this is when the size of the
packet sequence exceeds the value the
user specified for thisfield.

2. If the number of bytes of user data
received in a complete X.25 packet
sequence is more than can fit into one
data unit of the input buffer, the more
data indicator field in the corresponding
element of the input buffer descriptor
will be set to X'01' and the remaining
user datawill befilled in the next data
unit. See Receive Data (QOLRECV)

API for more information.

3. Thereisno limit of the number of bytes
of user datathat can be sentin a
complete X.25 packet sequence.
However, the QOLSEND API may need
to caled more than once.

Automatic flow [BINARY (2) Relates to the amount of data that will be held by
control user-defined communications support before
sending areceive not ready (RNR) packet to the
sending system. The recommended value for this
field is 32, but any value between 1 and 128 may
be used.

Note: A receive ready (RR) packet will be sent
when the user-defined communications
application program receives some of the data.

|Reserved |CHAR(30) | This field must be set to hexadecimal zeros.

X.25 Operation X'B100'

This operation allows the application program to either send a clear packet on an SVC, closean SVC
connection that was cleared by the remote system, or to close a PV C connection. The application must
provide the data for this operation in the first data unit of the output buffer. The output buffer descriptor is
not used.

The format of the data required for the X'B100' operation is the same whether or not it is used to send a
clear packet on an SVC or to close a PV C connection. The format of the data required for the X'B100'
operation should be set to hexadecimal zeros if it is used to close an SV C connection that was previously
cleared by the remote system.

Notes:

1. TheiSeries server provides the confirmation of the clear indication, however, the local user-defined
communications application must issue the X'B100' operation to free the PCEP for the connection.

2. Closing aPVC connection will cause areset packet to be sent to the remote system.
Data Unit Format-X.25 Operation X'B100'

The datafor this operation starts at offset O from the top of the first data unit in the output buffer. The
following table shows the format of the data required for the X'B100' operation.

| Field | Type | Description

|Reserved ICHAR(2) | This field must be set to hexadecimal zeros.
|Cause code |ICHAR(1) |The X.25 cause code.

|Diagnostic code | CHAR(1) |The X .25 diagnostic code.

|Reserved |ICHAR(4) | This field must be set to hexadecimal zeros.

X.25facilities |BINARY(1) The number of bytes of datain the X.25 facilities
lengthl field. Any value between 0 and 109 may be used.

IX.25 facilitiest |CHAR(109) |The X.25 facilities data.
|Reserved |CHAR(48) | This field must be set to hexadecimal zeros.

Clear user data |BINARY(2) The number of bytes of datain the clear user
lengthl datafield. Any value between 0 and 128 may be
used.

Clear user datal |CHAR(128) The clear user data.

Note: The CCITT standard recommends that this
field only be present in conjunction with the fast
select or call deflection selection facility. The
iSeries server does not enforce this restriction,
however.

|Reserved ICHAR(216) |Thisfield must be set to hexadecimal zeros.
1Thisfield is not used for PV C connections and should be set to hexadecimal zeros.

X.25 Operation X'B110'

This operation alows the application program to clean up al internal control information on all the
connections over the link and free up all PCEPs and UCEPs. This operation is only valid following the

receipt of the X'B311' operation that reports the connection failure data to the application. There is no data
associated with this operation.

X.25 Operation X'B400

This operation allows the application program to accept an incoming SVC call. The application must

provide the data for this operation in the first data unit of the output buffer. The output buffer descriptor is
not used.

Note: Notification of incoming calls are received from the QOLRECV API with operation X'B201'. See
Receive Data (QOLRECV) API for more information.

Data Unit Format-X.25 Operation X'B400'

The data for this operation starts at offset O from the top of the first data unit in the output buffer. The
following table shows the format of the data required for the X'B400' operation.

| Field | Type | Description

|Reserved |ICHAR(1) | This field must be set to hexadecimal zeros.
|Reserved ICHAR(3) | This field must be set to hexadecimal zeros.
Transmit packet [BINARY (2) The transmit packet size for this connection. The
size valid values are 64, 128, 256, 512, 1024, 2048,

and 4096. The value specified must be less than
or equal to the transmit maximum packet size
configured for thisline. The special value of
X'FFFF may be specified to use the transmit
default packet size configured for thisline.

See Query Line Description (QOLQLIND) API
for information on determining the transmit
maximum packet size and the transmit default
packet size configured for thisline.

Transmit
window size

BINARY(2)

The transmit window size for this connection.
The valid values are as follows:

1-7 When modulus 8 is configured for
thisline.

1-15 When modulus 128 is configured for
thisline.

X'FFFF' Usethetransmit default window size
configured for thisline.

See Query Line Description (QOLQLIND) API
for information on determining the modulus
value and the transmit default window size
configured for thisline.

Receive packet
Size

BINARY(2)

The receive packet size for this connection. The
valid values are 64, 128, 256, 512, 1024, 2048,
and 4096. The value specified must be less than
or equal to the receive maximum packet size
configured for thisline. The special value of
X'FFFF may be specified to use the receive
default packet size configured for thisline.

See Query Line Description (QOLQLIND) API
for information on determining the receive
maximum packet size and the receive default
packet size configured for thisline.

Receive
window size

BINARY(2)

The receive window size for this connection. The
valid values are as follows;

1-7 When modulus 8 is configured for
thisline.

1-15 When modulus 128 is configured for
thisline.

X'FFFF' Usethereceive default window size
configured for thisline.

See Query Line Description (QOLOLIND) API
for information on determining the modulus
value and the receive default window size

configured for thisline.

| Reserved

[CHAR(32)

|Thisfie|d must be set to hexadecimal zeros.

Delivery
confirmation
support

CHAR(I)

Specifies whether the X.25 delivery confirmation
bit (D-bit) should be set on or off in the call
accept packet. This also specifies the D-bit
support for this connection. The valid values are
asfollows:

X'00' Set the D-bit off in the call accept
packet. D-bit will be supported for
sending data but not for receiving data.

Note: When thisvalueis selected and an
X.25 packet is received with the D-bit
set on, the input/output processor (I0P)
will send areset packet.

Set the D-bit on in the call accept
packet. D-bit will be supported for
sending data and for receiving data.

Xor

| Reserved

[CHAR(1D)

|Thisfie|d must be set to hexadecimal zeros.

X.25 facilities
length

BINARY (1)

The number of bytes of datain the X.25 facilities
field. Any value between 0 and 109 may be used.

Note: TheiSeries server codes the packet and
window size facilitiesin thisfield, if necessary.
Thetotal length of all facilities cannot exceed
109 bytes.

X.25 facilities

CHAR(109)

The X.25 facilities data.

Note: The application programmer should not
code the facilities for packet or window sizesin
thisfield. By doing so, this field could contain
duplicate facilities, which may not be
consistently supported by all X.25 networks.

| Reserved

|CHAR(306)

|Thisfie|d must be set to hexadecimal zeros.

Control
information

CHAR(D)

Specifies control information for this connection.
Thisis abit-sensitive field with bit O (Ieftmost
bit) defined for reset support. The remaining bits
are undefined and should be set off ('0'B).

Thevalid values for bit O are as follows:

'0'B Resets are not supported on this
connection.

When thisvalueis selected, the X'BFOO'
output operation will not be valid on this
connection. Also, areset indication
packet received on this connection will
cause the connection to be ended.

'"1'B Resets are supported on this connection.

When thisvalueis selected, the X'BFOO'
output operation will be valid on this
connection. Also, the user-defined
communications application program will
be required to handle reset indications
received on this connection.

For example, consider the following values for
the control information field:

X'00" Resets are not supported on this
connection.

X'80" Resets are supported on this connection.

|Reserved ICHAR(3) | This field must be set to hexadecimal zeros.
Maximum data |BINARY (4) The maximum number of bytes of user data that
unit assembly can be received in acomplete X.25 packet

size sequence on this connection. If thislimitis

exceeded, the connection will be ended. Any
value between 1024 and 32767 may be used.

Notes:

1. If the number of bytes of user data
received in a complete X.25 packet
seguence is more than can fit into one
data unit of the input buffer, the more
dataindicator field in the corresponding
element of the input buffer descriptor
will be set to X'01' and the remaining
user datawill befilled in the next data
unit. See Receive Data (QOLRECV)

API for more information.

2. Thereisno limitation on the number of
bytes of user datathat can be sentin a
complete X.25 packet sequence.
However, the QOLSEND APl may need
to caled more than once.

Automatic flow [BINARY (2)
control

Relates to the amount of datathat will be held by
user-defined communications support before
sending areceive not ready (RNR) packet to the
sending system. The recommended value for this
field is 32, but any value between 1 and 128 may
be used.

Note: A receive ready (RR) packet will be sent
when the user-defined communications

application program receives some of the data.

|Reserved |CHAR(30)

|Thisfie|d must be set to hexadecimal zeros.

X.25 Operation X'BFO0Q'

This operation alows an application program to send a reset request packet or areset confirmation packet
on an X.25 SV C or PV C connection. The application must provide the X.25 cause and diagnostic codes
required for this operation in the first data unit of the output buffer. The output buffer descriptor is not used.

Information indicating whether a reset request or reset confirmation packet was sent is returned when
notification of the completion of the X'BFOO' operation is received from the QOLRECV API (operation
X'BFOL'). Thisinformation will bein the diagnostic data parameter of the QOLRECV API. See Receive

Data (QOLRECV) API for more information.

A reset confirmation packet will be sent under the following conditions:

« After areset indication packet has been received on the connection and the application has received
it from the QOLRECV API (X'B301' operation, 83/3202 return and reason code)

« After areset indication packet has been received on the connection but before the application has
received it from the QOLRECV API

« When areset indication packet is received on the connection at the same time the X'BFOO' output
operation isissued

Thisis known as areset collision. In this case, user-defined communications support will discard
the reset indication and, therefore, the application program will not receive it from the QOLRECV
API. However, the cause and diagnostic codes from the reset indication are returned in the
diagnostic data parameter of the QOLRECV program when the application receives notification of
the completion of the X'BFOO' operation. See Receive Data (QOLRECV) API for more

information.

A reset request packet will be sent when none of the above conditions are true.

Notes:

1. Datanot yet received by the application program on a connection will not be deleted when a
X'BFOO' operation isissued on that connection. This data will be received before the notification of
the completion of the X'BFOO' operation is received from the QOLRECV API (operation X'BFOL').
Data received after the notification of the completion of the X'BFOO' operation is received should
be treated as new data.

2. The X'BFOQ' operation is only valid on connections that support resets. See X.25 Operation
X'BO0Q' and X.25 Operation X'B400' for more information on specifying reset support.

Data Unit Format-X.25 Operation X'BFO0'

Thefirst 2 bytes of the data unit in the output buffer are used for this operation. The first byte contains the
X.25 cause code. The second byte contains the X.25 diagnostic code.

Return and Reason Codes

The return and reason codes that can be returned from the QOLSEND API depend on the type of
communications line the link is using and on the operation that was requested.

Return and Reason Codesfor LAN Operation X'0000'

Meaning Recovery

Return/
Reason Code

0/0

|Operation successful.

|Continue processing.

80/2200 Queue error detected. Escape Ensure thelink is disabled and
message CPF91F1 will besent |see messagesin the job log for
to the application program when |[further information. Then
this return and reason code is correct the error, enable the link,
received. and try the request again.

80/2401 Output buffer or output buffer |Ensure the link is disabled and
descriptor error detected. Escape [see messages in the job log for
message CPF91F1 will besent |further information. Then
to the application program when |correct the error, enable the link,
this return and reason codeis |and try the request again.
received.

80/3002 A previous error occurred on Ensure the link is disabled and
thislink that was reported to the |see messagesin thejob log for
application program by escape |further information. If escape
message CPF91F0 or CPFI91F1. |message CPF91FO0 was sent to
However, the application the application program, then
program has attempted another |report the problem using the
operation. ANZPRB command. Otherwise,

correct the error, enable the link,
and try the request again.

80/4000 Error recovery has been Ensurethelink is disabled and
canceled for thislink. see messages in the job log for

further information. Correct the
condition, enable the link, and
try the request again.

80/8000 The amount of user datain a Ensurethelink is disabled.
data unit of the output buffer is |Correct the error, enable the
greater than the maximum frame (link, and try the request again.
size allowed on the
communicationslinethelink is
using. Escape message
CPF91F1 will be sent to the
application program when this
return and reason code is
received.

80/9999 Internal system error detected. | See messagesin the job log for
Escape message CPF91F0 will |further information. Report the
be sent to the application problem using the ANZPRB
program when thisreturnand |command.
reason code is received.

83/1006 Output operation not valid. Correct the operation parameter.

Try the request again.

83/1007 Connection identifier not valid. |Correct the existing provider
connection end point ID
parameter. Try the request
again.

83/1008 Number of data units not valid. |Correct the number of data units

parameter. Try the request

again.

83/1998 The amount of datain a data Correct the amount of user data,
unit of the output buffer isnot |or the total amount of
correct. generalLAN information,
routing information, and user
datain the offending data unit.
Try the request again.
83/1999 Incorrect datain adataunit of |Correct theincorrect data. Try
the output buffer. The error the request again.
offset field in the diagnostic data
parameter will point to the
incorrect data.

83/3001 Link not enabled. Correct the communications
handle parameter. Try the
request again.

83/3004 Link isenabling. Wait for the enable-complete
entry to be sent to the data queue
or user queue. If thelink was
successfully enabled, try the
request again.

83/4001 Link failure, system starting Wait for the link to recover. Try

error recovery for thislink. the request again.

83/4003 Error detected by the Correct the error, and try the

input/output processor (10P). request again.
The diagnostic data parameter

will contain more information

on thiserror.

General X.25 Return and Reason Codes

The following table shows the return and reason codes that can be received from the QOLSEND API for

any requested operation.
Return/ M eaning Recovery
Reason Code
80/2200 Queue error detected. Escape Ensure the link is disabled and

message CPF91F1 will be sent
to the application program when
this return and reason code is
received.

see messages in the job log for
further information. Correct the
error, enable the link, and try the
request again.

80/2401

Output buffer or output buffer
descriptor error detected. Escape
message CPF91F1 will be sent
to the application program when
this return and reason code is
received.

Ensurethelink is disabled and
see messages in the job log for
further information. Correct the
error, enable the link, and try the
request again.

80/3002

A previous error occurred on
thislink that was reported to the
application program by escape
message CPF91F0 or CPFIO1F1.
However, the application has
attempted another operation.

Ensurethelink is disabled and
see messages in the job log for
further information. If escape
message CPFI1F0 was sent to
the application program, report
the problem using the ANZPRB
command. Otherwise, correct
the error, enable the link, and try

the request again.

80/4000

Error recovery has been
canceled for thislink.

Ensure thelink is disabled and
see messages in the job log for
further information. Correct the
condition, enable the link, and
try the request again.

use by asynchronous operations
that have not yet completed.

80/9999 Internal system error detected. | See messagesin thejob log for
Escape message CPF91F0 will |further information. Report the
be sent to the application problem using the ANZPRB
program when thisreturnand |command.
reason code is received.

83/1006 Output operation not valid. Correct the operation parameter.

Try the request again.

83/3001 Link not enabled. Correct the communications
handle parameter. Try the
request again.

83/3004 Link isenabling. Wait for the enable-complete
entry to be sent to the data queue
or user queue. If thelink was
successfully enabled, try the
reguest again.

83/3200 All resources are currently in Wait for at least one of the

asynchronous operations to
complete. Notification of
completion of these operations
will be received from the
QOLRECV API. Try the request

again.

Return and Reason Codesfor X.25 Operation X'0000'

Return/

Reason Code Meaning Recovery
| 0/0 |Operation successful. |Continue processing.

83/1007 Connection identifier not valid. |Correct the existing provider
connection end point ID
parameter. Try the request
again.

83/1008 Number of data units not valid. |Correct the number of data units
parameter. Try the request
again.

83/1997 The amount of user datain a Correct the amount of user data
data unit of the output buffer is |in the offending data unit. Try
not amultiple of the negotiated |the request again.
transmit packet size, and the
more data indicator in the
corresponding element of the
output buffer descriptor is set to
X'01..

83/1998 The amount of user datain a Correct the amount of user data
data unit of the output buffer is |in the offending data unit. Try
not correct. the request again.

83/3201

The maximum amount of
incoming user data that can be
held by user-defined
communications support for the
application program on this
connection has been exceeded.

Wait to receive afailure
notification from the
QOLRECV API indicating this
condition (X'B301' operation,
83/3201 return and reason code).
Issue the X'B100' output
operation to end the connection.

input/output processor.

83/3202 A reset indication has been Wait to receive notification from
received on this connection. The |the QOLRECV API indicating
X.25 cause and diagnostic code [this condition (X'B301'
fieldsin the diagnostic data operation, 83/3202 return and
parameter will contain the cause |reason code). Issue the X'BF0O0'
and diagnostic codes of the reset [output operation to send a reset
indication. confirmation packet.

83/3205 Connection not in avalid state. |[Ensure the connectionisina
valid state for this operation. Try
the request again.

83/4001 Link failure, system starting Wait to receive afailure

error recovery for thislink. notification from the
QOLRECV API indicating this
condition (X'B301' or X'B311'
operation, 83/4001 return and
reason code). Issue the X'B100'
output operation to end the
connection.

83/4002 Connection failure. Wait to receive afailure
notification from the
QOLRECV API indicating this
condition (X'B301' operation,
83/4002 return and reason code).
Issue the X'B100' output
operation to end the connection.

83/4003 Data not sent. Error detected by |Try the request again. If the

error persists, usethe ANZPRB
command to analyze and report
the problem.

Return and Reason Codesfor X.25 Operation X'B000'

use.

Return/ M eaning Recovery
Reason Code
0/0 Operation initiated. Wait for notification of the
completion of the X'BOOO'
operation from the QOLRECV
APl (X'BOO1' operation).
83/4005 All connections are currently in |Wait for a connection to become

available and try the request
again.

Return and Reason Codesfor X.25 Operation X'B100'

Return/
Reason Code

Meaning

Recovery

0/0

Operation initiated.

Wait for notification of the
completion of the X'B100'
operation from the QOLRECV
APl (X'B101' operation).

83/1007 Connection identifier not valid. |Correct the existing provider
connection end point ID
parameter. Try the request
again.

83/3205 Connection not in avalid state. |Ensure the connectionisina

valid state for this operation. Try
the request again.

Return and Reason Codesfor X.25 Operation X'B110'

Return/ M eaning Recovery
Reason Code
0/0 Operation initiated. Wait for notification of the
completion of the X'B110'
operation from the QOLRECV
APl (X'B111' operation).
Return and Reason Codesfor X.25 Operation X'B400'
Return/ Meaning Recovery
Reason Code
| 0/0 |Operation successful. |Continue processing.

83/1007 Connection identifier not valid. |Correct the existing provider
connection end point ID
parameter. Try the request
again.

83/1999 Incorrect datain adataunit of |Correct the incorrect data. Try

the output buffer. The error the request again.
offset field in the diagnostic data

parameter will point to the

incorrect data.

83/3205 Connection not in avalid state. [Ensure the connectionisin a
valid state for this operation. Try
the request again.

83/4001 Link failure, system starting Issue the X'B100' output

error recovery for thislink. operation to end the connection.

83/4004 Inbound call timed out. Issue the X'B100' output

operation to end the connection.

Return and Reason Codesfor X.25 Operation X'BF0O0'

Return/ Meaning Recovery
Reason Code
0/0 Operation initiated. Wait for notification of the

completion of the X'BF0O0'
operation from the QOLRECV
APl (X'BFO1' operation).

83/1007 Connection identifier not valid. |Correct the existing provider
connection end point 1D
parameter. Try the request

again.

83/3205 Connection not in avalid state. [Ensure the connectionisin a
valid state for this operation. Try
the request again.

Error Messages

Message I D Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF91F0 E Internal system error.

CPFO1F1E User-defined communications application error.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top| Communications APIs | APIs by category

Set Filter (QOLSETF) AP

Required Parameter Group:

1 Return code Output Binary(4)

2 Reason code Output Binary(4)

3 Error offset Output Binary(4)

4 Communications handle Input Char(10)
Threadsafe: No

The Set Filter (QOLSETF) API activates and/or deactivates one or more filtersfor alink that is currently
enabled in the job in which the application program is running. The application program must provide the
required filter information in the output buffer that was created when the link was enabled. The output
buffer descriptor is not used. See Format of Filter Information for details on the format of the filter

information in the output buffer.

Filters contain inbound routing information that user-defined communications support uses to route
incoming datato alink that is enabled by an application program. The incoming data that is routed depends
on the type of communications line the link is using. On an X.25 communications line, the incoming datais
an incoming switched virtual circuit (SVC) call. On atoken-ring, Ethernet, wireless, or FDDI
communications line, the incoming datais the actual data frame.

Thetype of filters activated for alink determine the way incoming datais routed to that link.
Note: All activefiltersfor alink must be of the same type.

For links using atoken-ring, Ethernet, wireless, or FDDI communications line, there are three types of
filters. Thefollowing list of filtersisfrom most to |east restrictive:

« Destination service access point (DSAP), source service access point (SSAP), frame type, optional
sending adapter address, and protocol (or group) ID.

« Destination service access point (DSAP), source service access point (SSAP), optional frame type,
and sending adapter address

o DSAP, SSAP, and optional frametype

« DSAP
For links using an X.25 communications line, there are two types of filters. The following list of filtersis
from most to least restrictive:

« Protocal identifier (PID) and calling data terminal equipment (DTE) address

TheiSeries server treats the first byte of call-user datain an X.25 call request packet as the PID.
« PID
The order for checking filters when multiple links are using the same communications line, is from most to

least restrictive. For example, suppose two user-defined communications application programs (application
program A and B) in different jobs each have alink enabled that use the same token-ring communications

line. Further suppose that application program A has activated a filter on DSAP X'22' and application
program B has activated afilter on DSAP X'22' and SSAP X'22'. If adataframe comesin with a DSAP of
X'22' and an SSAP of X'22', application program B will receive the frame. If a dataframe comesin with a
DSAP of X'22' and an SSAP not equal to X'22', application program A will receive the frame.

Required Parameter Group

Return code
OUTPUT: BINARY (4)

The recovery action to take. See Return and Reason Codes.

Reason code
OUTPUT; BINARY (4)

The error that occurred. See Return and Reason Codes.

Error offset
OUTPUT; BINARY (4)

The offset from the top of the output buffer to the incorrect filter header data or to the incorrect

filter in the filter list.

The content of this parameter isonly valid for 83/1999 and 83/3003 return/reason codes.
Communications handle

INPUT; CHAR(10)

The name of the link on which to perform the filter operation.

Format of Filter Information

The application must provide all filter information in the output buffer that was created when the link was
enabled. The application should treat the output buffer as one large space with the size equal to the number
of data units created for the output buffer multiplied by the size of each data unit. Thisinformationis
returned by the QOLELINK API when the link was enabled.

The filter information in the output buffer is made up of two parts. The first portion starts at offset O from
the top of the output buffer and contains filter header data. The second portion of the filter information
startsimmediately after the filter header data in the output buffer and contains the filters that make up the
filter list.

Filter Header Data

| Field | Type | Description

Function CHAR(1) The filter function to perform. The valid values
are asfollows:

X'00' Deactivate al filtersthat are currently
active for thislink and activate the
filters specified in the filter list for this
link.

X'01' Activate thefilters specified in the filter
list for thislink. All filters currently
active for thislink will remain active.

X'02' Deactivate the filters specified in the
filter list that are currently active for this
link.

Filter type CHAR(L) Thetype of thefiltersin thefilter list. All filters
in the filter list must be of thistype. In addition,
this must be the same type as the filters currently
activefor thislink, if any. Thevalid values are as
follows:

X'00" PID.

Thisfilter typeisonly applicable for
links using an X.25 communications
line and only appliesto incoming SVC
calls.

X'01' PID and calling DTE address.

Thisfilter typeisonly applicable for
links using an X.25 communications
line and only appliesto incoming SVC
cals.

X'02'" DSAP.

Thisfilter typeisonly applicable for
links using atoken-ring, Ethernet,
wireless, or FDDI communications line.

X'03' DSAP, SSAP, and optional frame type.

Thisfilter typeisonly applicable for
links using a token-ring, Ethernet,
wireless, or FDDI communications line.

X'04' DSAP, SSAP, optional frametype, and
sending adapter address.

Thisfilter typeisonly applicable for
links using atoken-ring, Ethernet,
wireless, or FDDI communications line.

X'08' DSAP, SSAP, frame type, optional and
sending adapter address, and protocol
identifier (or organization ID).

Thisfilter typeisonly applicable for
linksusing aLAN communications line.

Note: Thefilter type field must be set even if
there are no filtersin the filter list.

Number of BINARY (2) The number of filtersin thefilter list. Any value
filters between 0 and 256 may be used.

Note: The maximum number of filters that can
be specified in thefilter list isalso limited by the
total size of the output buffer which may
accommodate |ess than 256 filters.

Filter length BINARY (2) The length of each filter in thefilter list. This
value must be 16 for filter types X'00" and X'01',
and 14 for filter types X'02', X'03, and X'04',
and 25 for filter type X'08'.

Note: Thefilter length field must be set even if
there are no filtersin the filter list.

The format of each filter in the previouslist of filtersis described in the following table. All filtersin the
list of filters must be contiguous with each other and be of the type specified in the filter type field in the
filter header data.

X.25 Filters (Filter Types X'00" and X'01")

| Field | Type | Description
PID length CHAR(1) The length of the PID on which to route
incoming calls. The valid values are as follows:

X'00" Route incoming callswith no PID
specified. That is, with no call user data
in the call request packet.

X'01' Routeincoming callswith the PID being
treated as the first byte of call user data
in the call request packet.

PID CHAR(L) The PID on which to route incoming calls. This
should be set to X'00' when the PID length field
is set to X'00'. Otherwise, any value may be
used.

Note: Care should be taken when setting the PID
field to an SNA PID (X'C3, X'C6', X'CB',
X'CE"), asynchronous PID (X'01', X'CQ", or
TCP/IP PID (X'CC'"). See the X.25 Network

Support @ book for more information.

Caling DTE
address length

CHAR(I)

Specifies, in hexadecimal, the number of binary
coded decimal (BCD) digitsin the calling DTE
address on which to route incoming calls. The
valid values are asfollows:

X'00' For filter type X'00'".

X'01'-X'0OF" For filter type X'01' when
extended network addressing is
not configured in the line
description. See Query Line
Description (QOLQLIND) API to
determine if extended network
addressing is configured for this
line.

X'01'-X'11" For filter type X'01' when
extended network addressing is
configured in the line description.
See Query Line Description
(QOLQLIND) API to determine if
extended network addressing is
configured for thisline.

Caling DTE
address

CHAR(12)

Specifies, in binary coded decimal (BCD), the
calling DTE address on which to route incoming
cals. This should be set to BCD zeros when the
calling DTE address length field is set to X'00'".
Otherwise, any valid DTE address left-justified
and padded on the right with BCD zeros may be
used.

Additional
routing data

CHAR(D)

Specifies additional data on which to route
incoming calls. Thisfield is applicable for all
X.25 filter types and is bit-sensitive with bit O
(leftmost bit) defined for reverse charging
options and bit 1 defined for fast select options.
The remaining bits are undefined and should be
set off ('0'B).

The valid values for bit O are as follows:
'0'B Accept reverse charging.
'1'B Do not accept reverse charging.

Thevalid valuesfor bit 1 are asfollows;

'0'B Accept fast select.
'1'B Do not accept fast select.

For example, consider the following values for
the additional routing data field:

X'00" Accept reverse charging and accept fast

select.

X'40" Accept reverse charging and do not
accept fast select.

X'80" Do not accept reverse charging and
accept fast select.

X'CO' Do not accept reverse charging and do
not accept fast select.

LAN Filters (Filter TypesX'02', X'03', and X'04')

Field

| Type

Description

DSAP address
length

CHAR(D)

The length of the DSAP address on which to
route incoming frames. This must be set to X'01'.

DSAP address

CHAR(D)

The DSAP address on which to route incoming
frames. The DSAP address is the service access
point on which the incoming frame arrived. Any
service access point configured in the token-ring,
Ethernet, wireless, or FDDI line description as
*NONSNA may be used.

Note: The Ethernet Version 2 standard does not
use logical link control, which utilizes SAPs.
Therefore, to receive Ethernet Version 2 frames,
anull DSAP address (X'00") must be specified in
the DSAP address field. Also, the Ethernet
Standard (ETHSTD) parameter in the Ethernet
line description must be configured as either
*ETHV2 or *ALL.

SSAP address
length

CHAR(D)

The length of the SSAP address on which to
route incoming frames. The valid values are as
follows:

X'00" For filter type X'02'.
X'01' For filter types X'03 and X'04".

SSAP address

CHAR(D)

The SSAP address on which to route incoming
frames. The SSAP addressiis the service access
point on which the incoming frame was sent.
Thevalid values are as follows:

X'00 For filter type X'02'.

X'00-X'FF' For filter types X'03' and X'04'.

Note: The Ethernet Version 2
standard does not use logical link
control, which utilizes SAPs.
Therefore, to receive Ethernet
Version 2 frames, anull SSAP
address (X'00") must be specified
in the SSAP addressfield. Also,
the Ethernet Standard (ETHSTD)
parameter in the Ethernet line
description must be configured as
either *ETHV2 or *ALL.

Frame type
length

CHAR(D)

The length of the frame type on which to route
incoming frames. The valid values are as
follows:

X'00 For filter type X'02'. Also for
filter types X'03' and X'04'
when the DSAP address and
SSAP address fields are not

both set to X'00'.

X'00' or X'02' For filter types X'03' and X'04'
when the 'DSAP address and
SSAP address fields are both
set to X'00'.

Frame type

CHAR(2)

The frame type on which to route incoming
frames. The frame type is defined in an Ethernet
Version 2 frame to indicate the upper layer
protocol being used. This must be set to X'0000°
when the frame type length field is set to X'00'.
Otherwise, any value except X'80D5'
(encapsulated LLC) may be used, but should be
in the range of X'05DD'-X'FFFF'.

Sending adapter
address length

CHAR(D)

Specifies, in hexadecimal, the length of the
sending adapter address on which to route
incoming frames. The valid values are as
follows:

X'00" For filter types X'02' and X'03".
X'06" For filter type X'04".

Sending adapter
address

CHAR(6)

Specifies, in packed form, the sending adapter
address on which to route incoming frames. This
must be set to X'000000000000' when the
sending adapter address length field is set to
X'00'. Otherwise, any valid adapter address may
be used.

LAN Filters (Filter Type X'08')

Field

Type

Description

DSAP address
length

CHAR(D)

The length of the DSAP address on which to
route incoming frames. This must be set to X'01'".

DSAP address

CHAR(D)

The DSAP address on which to route incoming
frames. The DSAP address is the service access
point on which the incoming frame arrived. Any
service access point configured in the token-ring,
Ethernet, wireless, or FDDI line description as
*NONSNA may be used.

Note: The Ethernet Version 2 standard does not
use logical link control, which utilizes SAPs.
Therefore, to receive Ethernet Version 2 frames,
anull DSAP address (X'00") must be specified in
the DSAP addressfield. Also, the Ethernet
Standard (ETHSTD) parameter in the Ethernet
line description must be configured as either
*ETHV2 or *ALL.

SSAP address
length

CHAR(I)

The length of the SSAP address on which to
route incoming frames. The valid values are as
follows:

X'01' For filter type X'08'".

SSAP address

CHAR(D)

The SSAP address on which to route incoming
frames. The SSAP address is the service access
point on which the incoming frame was sent.
Thevalid values are as follows:

X'00'-X'FF' For filter type X'08'.

Note: The Ethernet Version 2
standard does not use logical link
control, which utilizes SAPs.
Therefore, to receive Ethernet
Version 2 frames, anull SSAP
address (X'00") must be specified
in the SSAP addressfield. Also,
the Ethernet Standard (ETHSTD)
parameter in the Ethernet line
description must be configured as
either *ETHV2 or *ALL.

Frame type CHAR(1) The length of the frame type on which to route
length incoming frames. The valid values are as
follows:

X'02' For filter type X'08'".

Frametype CHAR(2) The frame type on which to route incoming
frames. The frame type is defined in an Ethernet
Version 2 frame to indicate the upper layer
protocol being used. This must be set to X'0000'
when the frame type length field is set to X'00'.
Otherwise, any value except X'80D5'
(encapsulated LLC) may be used, but should be
in the range of X'05DD'-X'FFFF'.

Sending adapter [CHAR(1) In hexadecimal, the length of the sending adapter
address length address on which to route incoming frames. The
valid values are as follows:

X'00' or
X'06' For filter type X'08'.

Sending adapter |CHAR(6) In packed form, the sending adapter address on
address which to route incoming frames. This must be
set to X'000000000000" when the sending
adapter address length field is set to X'00'".
Otherwise, any valid adapter address may be

used.

Protocol 1D CHAR(L) In hexadecimal, the length of the protocol ID on

length which to route incoming frames. This must be
set to X'03.

Protocol 1D CHAR(3) In hexadecimal, the protocol 1D (or organization
ID) to route incoming frames.

Reserved field [CHAR(7) Thisfield must be initialized to hexadecimal

zeros, X'00000000000000".

General Rules for Using Filters

Thefollowingisalist of rulesfor activating and deactivating filters:
« All activefiltersfor alink must be of the same type

« A link can have a maximum of 256 active filters

« The maximum number of filtersthat can be specified in the filter list can be no more than 256, and
may be less, depending on the size of the output buffer

« A request to activate afilter for alink that already has the same filter active will be successful, but

the filter will only be activated once
» A request to deactivate afilter for alink that has no such filter active will be successful

« If thereturn and reason code from the QOLSETF API is not 0/0, none of the specified filters were
activated or deactivated

« Onceafilter isactivated, it will remain active until one of the following occurs:

o Itisdeactivated by explicitly calling the QOLSETF API

o Thelink that the filter was active for is disabled

Return and Reason Codes

Return/Reason Meaning Recovery
Code
| 0/0 |Operation successful. |Continue processing.

80/2200 Queue error detected. Escape Ensurethelink is disabled and
message CPF91F1 will besent |see messagesin the job log for
to the application program when |[further information. Then
this return and reason code is correct the error, enable the link,
received. and try the request again.

80/2401 Output buffer error detected. Ensure the link is disabled and
Escape message CPFI1F1 will |see messagesin the job log for
be sent to the application further information. Then
program when this return and correct the error, enable the link,
reason code is received. and try the request again.

80/3002 A previous error occurred on Ensurethelink is disabled and
thislink that was reported to the |see messagesin thejob log for
application program by escape [further information. If escape
message CPF91F0 or CPF91F1. |message CPF91F0 was sent to
However, the application the application program, then
program has attempted another |report the problem using the
operation. ANZPRB command. Otherwise,

correct the error, enable the link,
and try the request again.

80/4000 Error recovery has been Ensurethelink is disabled and
canceled for thislink. see messages in the job log for

further information. Then
correct the condition, enable the
link, and try the request again.

80/9999 Internal system error detected. |See messagesin the job log for
Escape message CPF91F0 will |further information. Then, report
be sent to the application the problem using the ANZPRB
program when this return and command.
reason code is received.

83/1998

The size of the output buffer is
not large enough for the
specified number of filters.

Reduce the number of filtersin
the filter list so that the size of
thefilter list plus the size of the
filter header datais less than or
equal to the size of the output
buffer. Try the request again.

83/1999 Incorrect filter header data or Correct the incorrect filter
incorrect filter in the filter list. If |header data or the incorrect filter
thefilter header dataiis in thefilter list. Try the request
incorrect, the error offset again.
parameter will point to the field
inerror. If afilter in thefilter list
isincorrect, the error offset
parameter will point to the
beginning of the incorrect filter.

83/3001 Link not enabled. Correct the communications
handle parameter. Try the
request again.

83/3003 One of the following istrue of a |Do one of the following, and try

filter in thefilter list. Theerror [the request again:

offset parameter will painttothe | g the job that has

beginning of the offending filter. already activated the
o Thefilter isaready filter

activated by another job
using the same
communicationsline

o The service access
point, specified in the
DSAP address field of
thefilter, is not
configured in the
token-ring, Ethernet,
wireless, or FDDI line
description

o The DSAP addressfield
of the filter contains the
null DSAP address
(X'00", but the Ethernet
Standard (ETHSTD)
parameter in the
Ethernet line description
is not configured as
*ETHV2or *ALL

« The service access
point, specified in the
DSAP address field of
thefilter, is configured
in the token-ring,
Ethernet, wireless, or
FDDI line description
for SNA use only

« Configure the service
access point in the
token-ring, Ethernet,
wireless, or FDDI line
description

« Deélete the Ethernet line
description, and create
another Ethernet line
description specifying
*ETHV2or *ALL in
the Ethernet Standard
(ETHSTD) parameter

« Changethe service
access point in the
token-ring, Ethernet, or
wireless line description
to non-SNA use
(*NONSNA)

| (*SNA)

83/3004 Link is enabling. Wait for the enable-complete
entry to be sent to the data queue
or user queue. If thelink was
successfully enabled, try the
request again.

83/3200 All resources are currently in Wait for at least one of the

use by asynchronous operations |asynchronous operations to

that have not yet completed. complete. Notification of
completion of these operations

Note: Thisreturn and reason will be received from the

codeisonly possiblefor links |QOLRECV API. Try the request

using an X.25 communications [again.

line. See Send Data

(QOLSEND) API for more

information.

83/4001 Link failure, system starting Wait for the link to recover. Try

error recovery for thislink. the request again.

Error Messages

Message ID
CPF3C90E
CPFO1FO E
CPFI1F1 E
CPF9872 E

Error Message Text
Literal value cannot be changed.
Internal system error.

User-defined communications application error.

Program or service program & 1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Communications APIs | APIs by category

Set Timer (QOLTIMER) API

Required Parameter Group:

1 Returncode Output Binary(4)
2 Reason code Output Binary(4)
3 Timer set Output Char(8)
4 Timer to cancel Input Char(8)
5 Qualified queue name Input Char(20)
6 Operation Input Char(2)

7 Interval Input Binary(4)
8 Establish count Input Binary(4)
9 Key length Input Binary(4)
10 Keyvaue Input Char(256)
11 User data Input Char(60)

Optional Parameter:
12 Queuetype Input Char(2)

Threadsafe: No

The Set Timer (QOLTIMER) API either sets or cancels atimer. Up to 128 timers, each uniquely identified
by a name (timer handle), can be set in the job in which the application program is running.

When the QOLTIMER API iscalled to set atimer, atimer handle (timer set parameter) is returned to the
application program. The timer handle, along with the user data supplied when the timer was set, is
included in the timer-expired entry that is sent to the data queue or user queue when the specified amount of
time for thistimer has elapsed. The timer is then reestablished, if necessary.

For example, suppose a user-defined communications application program sets atimer with afive-second
interval to be established two times. After five seconds, the timer-expired entry for this timer will be sent to
the data queue or user queue specified when the timer was set. The timer will then be automatically
reestablished, and five seconds later, another timer-expired entry for thistimer will be sent to the data
queue or user queue. See Timer-Expired Entry for the format of the timer-expired entry.

In addition to setting atimer, the application program can call the QOLTIMER API to cancel one or al
timers currently set in the job in which the application program is running. User-defined communications
support will implicitly cancel atimer in the following cases:

« After atimer has expired the specified number of times (establish count parameter)
« When ajob ends that had one or more timers set

Note: User-defined communications support does not associate timers with links. If necessary, that
association must be done by the application.

Required Parameter Group

Return code
OUTPUT; BINARY (4)

The recovery action to take. See Return and Reason Codes.

Reason code
OUTPUT; BINARY (4)
The error that occurred. See Return and Reason Codes.

Timer set
OUTPUT; CHAR(8)

The name of the timer (timer handle) that was set. TIMEROO1, TIMEROOQ2, ... , TIMER128 are the
possible values.
The content of this parameter is only valid when setting atimer.

Timer to cancel
INPUT; CHAR(8)

The name of the timer (timer handle) to cancel. TIMEROO1, TIMEROQOZ, ... , TIMER128 may be
used as values. The specia value of *ALL (left-justified and padded on right with spaces) may be
used to cancel al timers currently set in the job in which the user-defined communications
application program is running.
The content of this parameter is only valid when canceling atimer.

Qualified queue name
INPUT; CHAR(20)

The name and library of the data queue or user queue where the timer-expired entry will be sent
when the timer expires. The first 10 characters specify the name of the data queue or user queue
and the second 10 characters specify the library in which the queue is located. Both entries are
left-justified. The specia values of *LIBL and * CURLIB may be used for the library name.
The content of this parameter is only valid when setting atimer.
Operation

INPUT; CHAR(1)
The timer operation to perform. The valid values are as follows:

X'01' Setatimer.

X'02' Cancel atimer.

Interval
INPUT; BINARY (4)

The number of milliseconds for which to set thistimer. Any value between 1,048 and 3,600,000
may be used.

The content of this parameter is only valid when setting atimer.

Establish count
INPUT; BINARY (4)

The number of times this timer will be established. Any value between 1 and 60 may be used. The
specia value of -1 may be used to always have thistimer established after it expires.

The content of this parameter is only valid when setting atimer.
Key length
INPUT; BINARY (4)

The key length when using a keyed data queue or user queue. Any value between 0 and 256 may be
used, where 0 indicates the data queue or user queue is not keyed.

The content of this parameter is only valid when setting a timer.
Key value
INPUT; CHAR(256)

The key value when using a keyed data queue or user queue.

The content of this parameter is only valid when setting atimer.
User data
INPUT; CHAR(60)

The user datathat is to be included in the timer-expired entry when the timer expires.
The content of this parameter is only valid when setting atimer.

Note: Thisdatais treated as character data only and should not contain pointers.

Optional Parameter

Queuetype
INPUT; CHAR(2)

The type of queue you specified for the queue name parameter.

D Dataqueue
U User queue

Return and Reason Codes

’Return/Reason M eaning Recovery

Code
| 0/0 |Operation successful. |Continue processing.

81/9999 Internal system error detected. | See messagesin the job log for
Escape message CPF91F0 will |further information. Report the
be sent to the application problem using the ANZPRB
program when thisreturnand |command.
reason code is received.

82/1011 Queue type not valid. Correct the queue type
parameter. Try the request
again.

83/1001 Key length not valid. Correct the key length
parameter. Try the request
again.

83/1009 Timer operation not valid. Correct the operation parameter.
Try the request again.

83/1010 Timer interval not valid. Correct the interval parameter.
Try the request again.

83/1011 Number of timesto establish Correct the establish count

timer not valid. parameter. Try the request
again.

83/3400 Timer not valid on cancel Correct the timer to cancel
operation. parameter. Try the request

again.

83/3401 All timersare currently set for [Cancel atimer. Try the request
the requested set operation. again.

83/3402 Timer not set on cancel Continue processing.
operation.

Error Messages

M essage | D
CPF3C90 E
CPF91F0 E
CPF9872 E

Error Message Text
Literal value cannot be changed.
Internal system error.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Communications APIs | APIs by category

Data Stream Translation APIs

The data stream trandation APIs allow your user-written applications access to the data stream tranglation
routines for 5250, 3270, and formatted buffer display data streams. Only display device data streams are
supported by these APIs. For more information on display data streams using formatted buffers, see the

SNA Upline Facility Proqramminq@ book.

For additional information, see Using the Data Stream APIs.

The data stream trandation APIs are:
« End Data Stream Tranglation Session (QDOENDTS) ends a session for data stream trandlation.

« Start Data Stream Trangation Session (QDOSTRTYS) starts a session for data stream trand ation.
« Trangdate Data Stream (QDOTRNDS) trand ates a data stream in one format to another format.

Top | Communications APIs | APIs by category

Using the Data Stream Translation APIs

Using the data stream APIs, your applications can:
« Trandate from a 3270 output data stream to a formatted buffer
« Trandate from a 3270 output data stream to a 5250 data stream
« Trandate from aformatted output buffer to a 5250 data stream
« Trandate from aformatted input buffer to a 3270 data stream
« Trandate from a 5250 input data stream to a formatted buffer
« Trandate from a 5250 input data stream to a 3270 data stream
« Trandlate from a 5250 read screen format to a 3270 read buffer format
« Trangate from a 5250 read screen with extended attributes to a 3270 read buffer format

The following figures show the translation options avail able when your application calls the data stream
trandation APIs.

Trandationsfor Qutput Operations

3270 Formatted 5240
data > buffer > data
stream strearm

+

Trandationsfor Input Operations

3270 Fommatied 2250
data 4 puffer « data
stream stream

When your application callsthe QDOSTRTS AP, atrandation session is opened using a user-specified
device as abasis for the trandation parameters. Y ou can open as many sessions as you need, because for
every session a unique translation session handleis passed back to your application.

A call to the QDOTRNDS API does the actual data stream translation using the specified parameters to

indicate the type of trandation. Multiple translation sessions can be active at the sametime. A trandation
session remains open, that is the handle remains valid, until the QDOENDTS API is called using that handle
or the job that called QDOSTRTS ends. Thefinal call to the QDOENDTS API closes or ends the tranglation
session.

Note: If you are using the same trandation parameters for many translations, you may decide to use only
one QDOSTRTS call for each unique set of parameters to enhance performance.

Programming Restrictions

The 5250 data streams generated by the QDOTRNDS API for your application have the following
restrictions:

« Read commands are not added to the end of a data stream. Y our application is responsible for
sending Read modified datatag (MDT) fields to the destination display.

« |If the device for which the data stream is intended does not support datain row 1, column 1 then
thislocation isrestricted from usein the input field.

« The number of input fields is dependent on the type of work station controller. The followingisa
list of the maximum number of input and output fields allowed per device:

126 3270 display station

255 5250 local display station

126 5250 pass-through

126 5251 display station

230 5294 Remote Control Unit

255 5394 Remote Control Unit

255 5494 Remote Control Unit

254 Client Access running work station function

« Fieldsthat are detectable by light pens are not supported.

There are some 3270 data stream commands, orders, and attributes that are not supported. For alist of the
3270 data stream commands, orders, and attributes that are supported, see the 3270 Device Emulation

Suggort@ book on the V5R1 Supplemental Manuals Web site.

All parameter values must be uppercased and left justified.

Top | Communications APIs | APIs by category

End Data Stream Translation Session
(QDOENDTS) API

Required Parameter Group:

1 Trandationsession handle Input Char(16)
2 Error code /0 Char(*)
Threadsafe: No

The End Data Stream Trandlation Session (QDOENDTS) API ends a session for data stream tranglation.

Required Parameter Group

Trangation session handle
INPUT; CHAR(16)

The name of the trandation session. This name is returned to your application following the call to
the QDOSTRTS API.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1E Error code parameter not valid.

CPF5D58 E Tranglation session handle parameter value not valid.

CPF5D67 E Severe error occurred while addressing parameter list.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R2

Top | Communications APIs | APIs by category

Start Data Stream Translation Session
(QDOSTRTS) API

Required Parameter Group:

1 Trandationsession handle Output Char(16)

2 Display device name Input Char(10)

3 Default screen size Input Char(10)

4 Alternate screen size Input Char(10)

5 Error code /0 Char(*)
Threadsafe: No

The Start Data Stream Translation Session (QDOSTRTS) API initiates a session for data stream tranglation.
Y our application can start as many translation sessions as you heed.

Authorities and Locks

Device Authority

The user must have at least * USE authority to the device specified in the display device name
parameter.

Required Parameter Group

Tranglation session handle
OUTPUT; CHAR(16)
The name of the translation session. This name is supplied to your application so that you can keep

track of aparticular session. It is also required that you pass this name to the other data stream
APIs.

Display device name
INPUT; CHAR(10)

The name of the 5250 device for which the trandation is being done. The 5250 data stream that is
generated depends on the capabilities of the display device. Y ou can specify the following values:

Name The name of adisplay device that is known to the system.

Note: An error will occur if the job you are using for data stream trandation is
not authorized to the device you specify.
*REQUESTER The display device that is associated with thisjob isto be used.

Note: An error will occur if thereisno display device associated with thisjob.
For example, the job is a batch job.

*BASC The display device is assumed to have the lowest common characteristics. The
following characteristics are assumed:

o Thedisplay is monochrome.

o Thedisplay has a screen size of 24x80. If alarger screen size is specified
when *BASIC is specified for the display device name, an error occurs.

o Inputinrow 1, column 1is not supported.
o The Home key does not work like the 3270 home key.
o The maximum number of input fieldsis 126.

o Thelanguage is defaulted to the Keyboard Type (QKBDTY PE) system
value.

o Thedisplay does not support extended attributes.

Note: The full capabilities of the device can be determined only if a 5250 query has been sent to
the device. The 5250 query is sent the first time a user signs on after the device is varied on. The
results remain in effect until the device is varied off. If no one has signed on since the device was
varied on, some of the characteristics will default to those assumed for *BASIC display devices.

Default screen size
INPUT; CHAR(10)

The size of the screen for the selected display device. Either this value or the alternate screen size
valueis used depending on the command used in the 3270 data stream. The possible screen sizes
are:

024X080 24 lines by 80 columns
027X132 27 linesby 132 columns
*DEVMAX The maximum screen size allowed by the device

Alternate screen size
INPUT; CHAR(10)

The alternate size of the screen for the selected display device. Either this value or the default
screen size value is used depending on the command used in the 3270 data stream. The possible
screen sizes are;

024X080 24 lines by 80 columns
027X132 27 lines by 132 columns
*DEVMAX The maximum screen size allowed by the device

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

Message | D
CPF3C90 E
CPF3CF1E
CPF5D50 E
CPF5D51 E
CPF5D52 E
CPF5D5B E
CPF5D61 E
CPF5D66 E
CPF5D67 E
CPF5D68 E
CPF5D69 E
CPF9872 E

Error Message Text

Literal value cannot be changed.

Error code parameter not valid.

Display device description & 1 not found.

Device &1 isnot adisplay device.

Not authorized to display device & 1.

Vaue &1 for default screen size parameter not valid.
Vaue for display device parameter not valid.

Value for alternate screen size parameter not valid.
Severe error occurred while addressing parameter list.
Default screen size parameter is not valid.

Alternate screen size parameter is not valid.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R2

Top | Communications APIs | APIs by category

Translate Data Stream (QDOTRNDS) API

Required Parameter Group:
1 Trandationsession handle Input Char(16)
2 Tobuffer Output Char(*)
3 To buffer output length Output Binary(4)
4 To buffer length Input Binary(4)
5 To buffer type Input Char(10)
6 From buffer Input Char(*)
7 From buffer length Input Binary(4)
8 From buffer type Input Char(10)
9 Operation Input Char(2)
10 Error code I1/O0 Char(*)
Threadsafe: No

The Tranglate Data Stream (QDOTRNDS) API tranglates data from one format to another format. The data
formats depend on the parameter values you specify.

Required Parameter Group

Trandation session handle
INPUT; CHAR(16)
The name of the trandation session. This name is returned to your application following the call to
the QDOSTRTS API.
To buffer
OUTPUT; CHAR(*)
The buffer used to contain the output of the data stream trandlation. This value should be large
enough to contain the expected results.
To buffer output length
OUTPUT; BINARY (4)

The length of the trandated data that is placed in the to buffer parameter.
To buffer length
INPUT; BINARY (4)

The length of the buffer that is available for output.
To buffer type
INPUT; CHAR(10)

Thetype of datato be put into the to buffer parameter. The possible values are:

5250 Create a 5250 data stream

3270 Create a 3270 data stream
3270RB Create a 3270 data stream for the data stream that is expected in response to a 3270
Read Buffer command

*FORMAT Create aformatted buffer for the data. See the SNA Upline Facility Programming,
SC41-5446, book to determine the format of the buffer header.

See Figure 1-3 for alist of the allowable combinations of this parameter with the operations and
from buffer type parameters.

From buffer
INPUT; CHAR(*)

The buffer that contains the data to be trand ated.
From buffer length
INPUT; BINARY (4)

The length of the data contained in the from buffer parameter.
From buffer type
INPUT; CHAR(10)

Thetype of datathat is contained in the from buffer parameter. The possible values are:

5250 Contains a 5250 data stream
5250RS Contains a 5250 data stream that results from a 5250 Read Screen command

5250RSE Contains a 5250 data stream that results from a 5250 Read Screen with Extended
Attributes command

3270 Contains a 3270 data stream

*FORMAT Contains aformatted buffer for the data. See the SNA Upline Facility Programming
book, SC41-5446, to determine the format of the buffer header.

See Figure 1-3 for alist of the allowable combinations of this parameter with the operations and to
buffer type parameters.

Operation
INPUT; CHAR(1)

Indicates whether the data to be translated is input or output data. Y ou can specify the following
values:

| Thedatato betrangated is for an input operation
O Thedatato betrandlated isfor an output operation

See Figure 1-3 for alist of the allowable combinations of this parameter with the to buffer type and
from buffer type parameters.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

The following table lists the valid combinations of the from buffer type, to buffer type, and operations

parameters.

| Operation | From BufferType | To BufferType
| 0 3270 [FFORMAT

| 0o [3270 5250

| o) [FFORMAT 5250

| | 5250 [FFORMAT

| | 5250 [3270

| | [FFORMAT 3270

| | [5250RS [3270RB

| | |5250RSE |3270RB

Error Messages

M essage | D
CPF3C90 E
CPF3CF1E
CPF5D53 E
CPF5D54 E
CPF5D55 E
CPF5D56 E
CPF5D57 E
CPF5D58 E
CPF5D59 E
CPF5D5A E
CPF5D5C E

Error Message Text

Literal value cannot be changed.

Error code parameter not valid.

To and from buffers overlap.

Vaue &1 for operation parameter not valid.

Vaue &1 isnot valid for the To buffer type parameter.
Vaue &1 isnot valid for the From buffer type parameter.
Combination of parameter values not valid.
Trandation session handle parameter value not valid.
Value &1 for from buffer length parameter not valid.
Vaue &1 for the to buffer length parameter not valid.
3270 data stream in from buffer not valid.

An error was found while translating the 3270 data stream in the from buffer. The error
code for tranglation was & 1.

X'0002" A 3270 command or order that is not supported or not valid was detected in the
data stream.

X'0003' A parameter or address that is not valid was detected in the 3270 data stream.

X'0004' Excessfields were detected in the data stream. A certain number of these fields
are allowed based on the device specified on the QDOSTRTS call. This number
of fields was exceeded.

X'0021" A set buffer address order is missing after arow-column AlD code.
X'0863 A character set attribute that is not valid was found in the data stream.

CPF5D5D E 5250 data stream in from buffer not valid.

An error was found while translating the 5250 data stream in the from buffer. The error
code for the translation was & 1.

X'0001" A 5250 AID code that was not correct was found in the data stream.
X'0020" A cursor position that was not valid was detected in the 5250 data stream.
X'0021' A set buffer address order is missing after arow-column AlD code.
X'0022' A set buffer address order that was not valid was found in the data stream.

X'D030" A data stream resulting from a Read Screen with Extended Attributes command
was specified for adisplay device that does not support extended attributes.

CPF5D5E E Return code in formatted buffer indicates error. Codes returned in this message arelisted in
SNA Upline Facility Programming, SC41-5446.

CPF5D5F E Dataintegrity error in from buffer. The error code for the translation was & 1. The possible
error codes are:

X'0023' Character not valid.

X'0050" Shift out (X'OE") and shift in (X'OF") not correctly balanced in a DBCS session.
X'0051" Shift out (X'OE') and shift in (X'OF) inaDBCSfield.

X'0052" The dead positionin aDBCSfield is not null.

X'0053' A DBCS character isnot valid.

CPF5D60 E To buffer not large enough for translation output.
CPF5D62 E Error occurred in trandation routines.

CPF5D63 E Dataintegrity error in formatted buffer. The error code for the translation was & 1. The
possible error codes are:

X'0023' Character not valid.

X'0050" Shift out (X'OE") and shift in (X'OF") not correctly balanced in a DBCS session.
X'0051" shift out (X'OE") or shift in (X'OF) in aDBCSfidld.

X'0052' The dead position in aDBCSfield is not null.

X'0053' A DBCS character isnot valid.

CPF5D64 E To buffer length not valid for to buffer.

CPF5D65 E From buffer length not valid for from buffer.

CPF5D67 E Severe error occurred while addressing parameter list.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R2

Top | Communications APIs | APIs by category

OptiConnect APIs

The OptiConnect APIs are used to move user data between two or more servers that are connected by the
OptiConnect fiber-optic bus. The OptiConnect APIs require that the OptiConnect hardware and software
products have been installed on al of the systems that will be used for communications. A maximum of
32K B (where KB equals 1024 bytes) of data may be transferred in a single send or receive function.

Note: To use these APIs, you need the OptiConnect for OS/400 feature.

The OptiConnect APIs are:

Close Path (QzdmClosePath) closes an OptiConnect path.

Close Stream (QzdmCloseStream) closes an OptiConnect stream.

Open Path (QzdmOpenPath) opens an OptiConnect path.

Open Stream (QzdmOpenStream) opens an OptiConnect stream.

Receive Control (QzdmReceiveControl) receives a control message on an OptiConnect stream.

Receive Request (QzdmReceiveReguest) receives areguest or a message over an OptiConnect
path.

Receive Response (QzdmReceiveResponse) receives an acknowledgement and the response data
over an OptiConnect path.

Send Request (QzdmSendRequest) sends a request or a message over an OptiConnect path.

Send Response (QzdmSendResponse) sends an acknowledgement and the response data over an
OptiConnect path.

Wait Message (QzdmWaitMessage) waits for a message on an OptiConnect stream.

Top | Communications APIs | APIs by category

Close Path (QzdmClosePath) API

Required Parameter Group:

1 Request variable Input Char(*)

2 Length of request variable Input Binary(4)

3 Format name of request Input Char(8)
variable

4 Error code /0 Char(*)

Library Name/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXCLUDE

Threadsafe: No

The Close Path (QzdmClosePath) API is used to close an OptiConnect path. The Close Path
(QzdmClosePath) API should be performed after the path is no longer needed to free the system resources
associated with the path.

The system that initiated the last transaction, by using the Send Reguest (QzdmSendRequest) API, should
be the system that closes the path after the transaction is completed with the Receive Response
(QzdmReceiveResponse) API. If the system that received the request using the Receive Request
(QzdmReceiveRequest) APl is the system that closes the path after issuing the Send Response
(QzdmSendResponse) API, then unpredictable results may occur. Thisis due to the Close Path
(QzdmClosePath) API being able to close the path before the response is actually received by the other
system that uses the Receive Response (QzdmReceiveResponse) API.

After the Close Path (QzdmClosePath) API has been issued, the other system should complete the close
sequence by issuing the Receive Control (QzdmReceiveControl) API to receive the close path message
from the closing system.

Restrictions

The following restrictions apply:

« The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to
calling this API.

« A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

« A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to
caling thisAPI.

Authority and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Request variable
INPUT; CHAR(*)

The request variable structure that describes the input for the Close Path (QzdmClosePath) API.
Length of request variable

INPUT; BINARY (4)

The length of the request variable, in bytes. The length of the request variable must be at least equal

to the length of the input format, and less than or equal to the maximum length of 4KB.
Format name of request variable

INPUT; CHAR(8)

The format of the information that is provided as input for the Close Path (QzdmClosePath) API.

The format CPTHO0100 is the only supported format used by this API for the request variable. See
CPTHO0100 Format for more information on the CPTHO0100 format.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

CPTHO100 Format

The following table defines the information required for Format CPTHO0100.

| Offset

| Dec | Hex |Type Field

| 0 | 0 |CHAR(16) |Stream identifier
| 16 | 10 |CHAR() |Path identifier

Field Descriptions

Path identifier. The OptiConnect path that is to be closed. Thisfield is provided as output with the Open
Path (QzdmOpenPath) API.

Stream identifier. The OptiConnect stream that is to be used for communications. Thisfield is provided as
output with the Open Stream (QzdmOpenStream) API.

Error Messages

Message | D
CPF24B4 E
CPF3C1D E
CPF3C21 E
CPF3C0E
CPF3CF1 E
CPF9872 E
CPFADFO E
CPFADF1 E
CPFADF3 E
CPFADF5 E
CPFADF6 E

Error Message Text

Severe error while addressing parameter list.

Length specified in parameter & 1 not valid.

Format name & 1 is not valid.

Literal value cannot be changed.

Error code parameter not valid.

Program or service program &1 in library &2 ended. Reason code & 3.
The OptiConnect QSOC subsystem must be active.

OptiConnect communication error.

OptiConnect path not valid or closed.

OptiConnect API internal error, function code & 1, return code & 2.
Reguest variable not valid, reason code & 1.

API introduced: V3R7

Top | Communications APIs | APIs by category

Close Stream (QzdmCloseStream) API

Required Parameter Group:

1 Request variable Input Char(*)

2 Length of request variable Input Binary(4)

3 Format name of request Input Char(8)
variable

4 Error code /0 Char(*)

Library Name/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXCLUDE

Threadsafe: No

The Close Stream (QzdmCloseStream) API is used to close an OptiConnect stream. The Close Stream
(QzdmCloseStream) API should be performed after the stream is no longer needed to free the system
resources associated with the stream.

Restrictions

The following restrictions apply:
« The OptiConnect QSOC subsystem must be started on the system prior to calling thisAPI.

« A stream must be opened to the OptiConnect device driver on the system by using the Open Stream
(QzdmOpenStream) API prior to calling this API.

Authority and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Request variable
INPUT; CHAR(*)
The request variable structure that describes the input for the Close Stream (QzdmCloseStream)
APIL.
Length of request variable
INPUT; BINARY (4)

The length of the request variable, in bytes. The length of the request variable must be at least equal
to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable
INPUT; CHAR(8)

The format of the information that is provided as input for the Close Stream (QzdmCloseStream)
API. The CSTR0100 format is used by this API for the request variable. See CSTR0100 Format for

more information on the CSTR0100 format.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

CSTR0100 Format

The following table defines the information required for Format CSTRO02100.

| Offset
| Dec | Hex |Type Field
| 0 | 0 |CHAR(16) |Stream identifier

Field Descriptions

Stream identifier. The OptiConnect stream that is to be closed. Thisfield is provided as output with the
Open Stream (QzdmOpenStream) API.

Error Messages

Message | D Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CID E Length specified in parameter &1 not valid.

CPF3C21 E Format name & 1 is not valid.

CPF3C0 E Literal value cannot be changed.

CPF3CF1E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.
CPFADFO E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF5 E OptiConnect API internal error, function code & 1, return code & 2.
CPFADF6 E Request variable not valid, reason code & 1.

API introduced: V3R7

Top | Communications APIs | APIs by category

Open Path (QzdmOpenPath) API

N

o Ol

Required Parameter Group:

Library Name/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXCLUDE

Threadsafe: No

Receiver variable Output Char(*)
Length of receiver variable Input Binary(4)
Format name of receiver Input Char(8)
variable

Request variable Input Char(*)
Length of request variable Input Binary(4)
Format name of request Input Char(8)
variable

Error code /0 Char(*)

The Open Path (QzdmOpenPath) API is used to open an OptiConnect path. The Open Path
(QzdmOpenPath) API returns a path identifier that is then required as input for subsequent OptiConnect
APIsthat require a path identifier.

Restrictions

The following restrictions apply:

The OptiConnect QSOC subsystems must be started on both the local and remote systems prior to
calling this API.

A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

A user profile must exist on the remote system by the same name as the user profile that is running
the Open Path (QzdmOpenPath) API on the local system.

It is the responsibility of the user to verify that the user profile name on the remote system is the
same as the user profile name on the local system. The purpose of this verification is to ensure that
the user's authority is the same on both systems.

If ajob description (*JOBD) is specified in the user profile on the remote system, the job
description must also reside on the remote system.

A maximum of 256 path identifiers may be opened for asingle job.

Authority and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
Thereceiver variable that is to receive the output control information from the Open Path
(QzdmOpenPath) API.
Length of receiver variable
INPUT; BINARY (4)
The length of the receiver variable, in bytes. The length of the receiver variable must be at least
equal to or greater than the length of the output format.
Format name of receiver variable
INPUT; CHAR(8)

The format of the information that is returned from the Open Path (QzdmOpenPath) API. The
OPRCO0100 format is used by this API for the receiver variable. See OPRC0100 Format for more

information on the OPRC0100 format.
Request variable
INPUT; CHAR(*)

The regquest variable structure that describes the input for the Open Path (QzdmOpenPath) API.
Length of request variable
INPUT; BINARY (4)
The length of the request variable, in bytes. The length of the request variable must be at least equal
to the length of the input format, and less than or equal to the maximum length of 4KB.
Format name of request variable
INPUT; CHAR(8)

The format of the information that is provided as input for the Open Path (QzdmOpenPath) API.
The OPRQO0100 format is used by this API for the request variable. See OPRQ0100 Format for

more information on the OPRQ0100 format.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

OPRCO0100 Format

The following table defines the information returned for Format OPRCO0100.

| Offset
| Dec | Hex |Type Field
[0 [0 [CHAR® [Path identifier

OPRQO0100 Format

The following table defines the information required for format OPRQ0100.

| Offset ’

| Dec | Hex |Type Field

| 0 0 |CHAR(16) |Stream identifier

| 16 10 |CHAR(8) |Remote system name
|

|

|
|

24 | 18 |CHAR(10) |Program name
|

34 22 |CHAR(10) |Program library name

Field Descriptions

Path identifier. The OptiConnect path that is to be used for communications. Thisfield is provided as
output with the Open Path (QzdmOpenPath) API. This field must then be provided asinput on all
subsequent OptiConnect APIsthat require a path identifier.

The path identifier is associated with the stream identifier that is provided as input, as a stream-identifier
and path-identifier pair. For most applications, this stream-identifier and path-identifier pair needs to be
used for al subsequent Opti Connect APIsthat are used to control communications on the local system.

Remote system name. The name of the remote system to which the OptiConnect path is being opened.
Thisisthe current system name as displayed on the Display Network Attributes (DSPNETA) display on the
remote system.

Program name. The program name on the remote system that controls communications on the remote
system. This programis called by the OptiConnect agent job (QZDMAGNT) on the remote system, and is
passed a stream-identifier and path-identifier pair.

For most applications, this stream-identifier and path-identifier pair needs to be used for al subsequent
OptiConnect APIs that are used to control communications on the remote system.

Program library name. The program library name on the remote system in which the program is
contained.

Stream identifier. The OptiConnect stream that isto be used for communications. Thisfield is provided as
output on the Open Stream (QzdmOpenStream) API.

The stream identifier is associated with the path identifier that is provided as output, as a stream-identifier
and path-identifier pair. For most applications, this stream-identifier and path-identifier pair needs to be

used for al subsequent Opti Connect APIsthat are used to control communications on the local system.

Error Messages

Message ID
CPF24B4 E
CPF3CID E
CPF3C21E
CPF3C90E
CPF3CF1E
CPF9872 E
CPFADFO E
CPFADF1E
CPFADF2 E
CPFADF5 E
CPFADF6 E
CPFADF7 E
CPFADF8 E
CPFADF9 E
CPFADFA E
CPFADFB E
CPFADFD E

Error Message Text

Severe error while addressing parameter list.

Length specified in parameter & 1 not valid.

Format name & 1 is not valid.

Literal value cannot be changed.

Error code parameter not valid.

Program or service program &1 in library & 2 ended. Reason code & 3.
The OptiConnect QSOC subsystem must be active.

OptiConnect communication error.

OptiConnect path open error.

OptiConnect API internal error, function code & 1, return code & 2.
Request variable not valid, reason code & 1.

OptiConnect API open path error, function code & 1, return code & 2.
Program name not found.

Program library name not found.

User not authorized to program.

Open path rejected.

Remote system & 1 not found or not valid.

API introduced: V3R7

Top | Communications APIs | APIs by category

Open Stream (QzdmOpenStream) API

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name of receiver Input Char(8)
variable

4 Error code /0 Char(*)

Library Name/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXCLUDE

Threadsafe: No

The Open Stream (QzdmOpenStream) API is used to open an OptiConnect stream. The Open Stream
(QzdmOpenStream) API returns a stream identifier, which is then required as input for subsequent
OptiConnect APIs that require a stream identifier.

Restrictions

The following restrictions apply:
« The OptiConnect QSOC subsystem must be started on the local system prior to calling this API.

« A maximum of 256 stream identifiers may be opened for asingle job.

Authority and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
The receiver variable that is to receive the output control information from the Open Stream
(QzdmOpenStream) API.
Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable, in bytes. The length of the receiver variable must be at least
equal to or greater than the length of the output format.

Format name of receiver variable
INPUT; CHAR(8)

The format of the information that is returned from the Open Stream (QzdmOpenStream) API. The
OSTR0100 format is used by this API for the receiver variable. See OSTR0100 Format for more

information on the OSTR0100 format.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

OSTR0100 Format

The following table defines the information returned for Format OSTR0100.

| Offset
| Dec | Hex |Type Field
| 0 | 0 |CHAR(16) |Stream identifier

Field Descriptions

Stream identifier. The OptiConnect stream that is to be used for communications. Thisfield is provided as
output with the Open Stream (QzdmOpenStream) API. Thisfield must then be provided asinput on all
subsequent OptiConnect API requests that require a stream identifier.

Error Messages

M essage | D Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CID E Length specified in parameter & 1 not valid.

CPF3C21 E Format name & 1 isnot valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.
CPFADFO E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF5 E OptiConnect API internal error, function code & 1, return code & 2.

API introduced: V3R7

Top | Communications APIs | APIs by category

Receive Control (QzdmReceiveControl) API

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name of receiver Input Char(8)
variable

4 Request variable Input Char(*)

5 Length of request variable Input Binary(4)

6 Format name of request Input Char(8)
variable

7 Error code /0 Char(*)

Library Name/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXCLUDE

Threadsafe: No

The Receive Control (QzdmReceiveControl) API is used to receive a control message on an OptiConnect
stream.

When the Close Path (QzdmClosePath) API isissued on a system to close a path, the system that is at the
other end of the path must issue the Receive Control (QzdmReceiveControl) API to complete the close path
sequence. If the Receive Control (QzdmReceiveControl) API is not issued, the stream identifier that is
associated with the path that is being closed is not available for subsequent communications until the
control messageis received.

Restrictions

The following restrictions apply:

« The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to
calling this API.

« A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

« A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to
caling thisAPI.

Authority and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
Thereceiver variable that is to receive the output control information from the Receive Control
(QzdmReceiveControl) API.
Length of receiver variable
INPUT; BINARY (4)
The length of the receiver variable, in bytes. The length of the receiver variable must be at least
equal to or greater than the length of the output format.
Format name of receiver variable
INPUT; CHAR(8)

The format of the information that is returned from Receive Control (QzdmReceiveControl) API.
The RCRC0100 format is used by this API for the receiver variable. See RCRC0100 Format for

more information on the RCRC0100 format.
Request variable
INPUT; CHAR(*)

The reguest variable structure that describes the input for the Receive Control
(QzdmReceiveControl) API.

Length of request variable
INPUT; BINARY (4)
The length of the request variable, in bytes. The length of the request variable must be at least equal
to the length of the input format, and less than or equal to the maximum length of 4KB.
Format name of request variable
INPUT; CHAR(8)
The format of the information that is provided as input for the Receive Control

(QzdmReceiveControl) API. The RCRQO0100 format is used by this API for the request variable.
See RCRO0100 Format for more information on the RCRQO100 format.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

RCRCO0100 Format

The following table defines the information returned for Format RCRC0100.

| Offset

| Dec | Hex |Type Field

| 0 | 0 |CHAR(1) |Control message type
| 1 | 1 |CHAR(9 |Control message data

RCRQ0100 Format

The following table defines the information required for Format RCRQO0100.

| Offset
| Dec | Hex |Type Fied
| 0 | 0 |CHAR(16) |Stream identifier

Field Descriptions

Control message data. The control message data returned for the control message type. For example, the
control message data for the close path message contains the path identifier of the path that is being closed.

Control message type. The type of control message to be received. Thisfield is provided as output on the
Receive Control (QzdmReceiveControl) API.

The possible value follows:

1 Close path message

Stream identifier. The OptiConnect stream that is used for communications. Thisfield is provided as
output with the Open Stream (QzdmOpenStream) API.

Error Messages

Message | D Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CID E Length specified in parameter & 1 not valid.

CPF3C21 E Format name & 1 isnot valid.

CPF3C0 E Literal value cannot be changed.

CPF3CF1E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.
CPFADFO E The OptiConnect QSOC subsystem must be active.

CPFADF1 E
CPFADF4 E
CPFADF5 E
CPFADF6 E

OptiConnect communication error.

OptiConnect detected sequence error.

OptiConnect API internal error, function code & 1, return code & 2.
Reguest variable not valid, reason code & 1.

API introduced: V3R7

Top | Communications APIs | APIs by category

Receive Request (QzdmReceiveRequest) API

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name of receiver Input Char(8)
variable

4 Request variable Input Char(*)

5 Length of request variable Input Binary(4)

6 Format name of request Input Char(8)
variable

7 Error code /0 Char(*)

Library Name/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXECUTE

Threadsafe: No

The Receive Reguest (QzdmReceiveRequest) AP is used to receive arequest or a message over an
OptiConnect path. A maximum of 32KB of data may be transferred in a single receive request.

Restrictions

The following restrictions apply:

« The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to
calling this API.

« A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

« A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to
calling this API.

« If thereceiving system does not provide alarge enough data buffer to receive al of the data, the
datathat will fit into the data buffer is moved, but the remaining datais truncated. The user must
then increase the size of the data buffer and then retry the entire transaction.

A maximum of 16 transactions may be in progress for a stream-identifier and path-identifier pair.

Authority and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
Thereceiver variable that is to receive the output control information from the Receive Request
(QzdmReceiveRequest) API.
Length of receiver variable
INPUT; BINARY (4)
The length of the receiver variable, in bytes. The length of the receiver variable must be at least
equal to or greater than the length of the output format.
Format name of receiver variable
INPUT; CHAR(8)

The format of the information that is returned from the Receive Request (QzdmReceiveRequest)
APIl. The RQRCO0100 format is used by this API for the receiver variable. See RORC0100 Format

for more information on the RQRC0100 format.
Request variable
INPUT; CHAR(*)

The regquest variable structure that describes the input for the Receive Request
(QzdmReceiveRequest) API.

Length of request variable
INPUT; BINARY (4)
The length of the request variable, in bytes. The length of the request variable must be at least equal
to the length of the input format, and less than or equal to the maximum length of 4KB.
Format name of request variable
INPUT; CHAR(8)
The format of the information that is provided as input for the Receive Request

(QzdmReceiveRequest) API. The RQRQO0100 format is used by this API for the request variable.
See RORQ0100 Format for more information on the RQRQO0100 format.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

RQRC0100 Format

The following table defines the information returned for Format RQRC0100.

Offset
Dec Hex |Type Field
0 0 |CHAR(8 | Transaction identifier
8 8 |[CHAR() |Pathidentifier

14 |BINARY(4) |Current output datalength
18 |BINARY(4) |Maximum response datalength

|
|
|
16 | 10 |BINARY(4) |Tota request datalength
|
|

RQRQ0100 Format

The following table defines the information required for Format RQRQO0100.

| Offset

| Dec | Hex

o 0 |[CHAR(16) |Streamidentifier
[16 [10 [BINARY(4) |Timeoutvalue
|

|

|

Type ’Field

|
|

20 | 14 |[BINARY(4) |Offset to output descriptors
|

24 18 [BINARY(4) [Number of output descriptors
28 | 1C |CHAR(4) |Reserved
These fields |PTR(SPP) |DaIa buffer pointer

repeat for &N [BINARY(@) |Databuffer length
output descriptor
|CHAR(12) |R&eerved

Field Descriptions

Current output data length. The total datalength of the request that was moved to the user's data buffer
area. If the current output data length is less than the total request data length, then this indicates that not all
of the datawas received. It isthe responsibility of the user's application program to retry the entire
transaction by using alarger data buffer size for the Receive Request (QzdmReceiveRequest) API to
receive all of the data.

Data buffer length. The length of the data buffer that is used for receiving data.

Data buffer pointer. The pointer to the data buffer that is used for receiving data.

Maximum response data length. The maximum length that is allowed for the response data. Thisfieldis
provided by the user asinput on the Send Request (QzdmSendRequest) API and indicates the maximum
response data length allowed for the Send Response (QzdmSendResponse) API.

Number of output descriptors. The number of output descriptors that are used. An output descriptor

describes where the output data may be found. The output descriptor consists of a space pointer to a data
buffer and the length of the data buffer. A maximum of three output descriptors may be specified.

Offset to output descriptors. The offset to the output descriptors.

Path identifier. The OptiConnect path that is to be used for communications. Thisfield is provided as
output on the Receive Request (QzdmReceiveRequest) API.

Reserved. A reserved space for the purpose of aligning pointer values on a 16-byte boundary. Thisfield
must be initialized to binary 0.

Stream identifier. The OptiConnect stream that is used for communications. Thisfield is provided as
output on the Open Stream (QzdmOpenStream) API.

Time-out value. A length of time, in milliseconds, to wait for the Receive Request (QzdmReceiveRequest)
API to complete. If the Receive Request (QzdmReceiveRequest) API does not complete before the
specified time-out value, then the exception CPFADFE is returned. The user should then re-issue the
Receive Request (QzdmReceiveRequest) API and specify the same time-out value or an increased time-out
value.

The Receive Reguest (QzdmReceiveRequest) API remains outstanding, and control is not returned to the
user application until either of the following occurs:

« Therequest either completes successfully or unsuccessfully.

» Thetime-out value has been exceeded.

A vaue of -1 may be specified, which indicates to wait forever for the Receive Request
(QzdmReceiveRequest) API to complete.

Total request data length. The total datalength of the request that is available to be received. Thisfieldis
provided as output on the Receive Request (QzdmReceiveRequest) API.

Transaction identifier. The specific transaction associated with this Receive Request
(QzdmReceiveRequest) API. Thisfield is provided as output on the Receive Request
(QzdmReceiveRequest) API. Thisfield must then be provided as input on the corresponding Send
Response (QzdmSendResponse) API.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPF3C1D E Length specified in parameter & 1 not valid.
CPF3C21 E Format name & 1 isnot valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.
CPFADFOE The OptiConnect QSOC subsystem must be active.
CPFADFLE OptiConnect communication error.

CPFADF3E OptiConnect path not valid or closed.

CPFADF4E OptiConnect detected sequence error.

CPFADF5 E OptiConnect API internal error, function code &1, return code & 2.
CPFADF6 E Request variable not valid, reason code & 1.

CPFADFE E Time-out occurred.

CPFADFFE Transaction was terminated.

API introduced: V3R7

Top | Communications APIs | APIs by category

Receive Response (QzdmReceiveResponse)
API

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name of receiver Input Char(8)
variable

4 Regquest variable Input Char(*)

5 Length of request variable Input Binary(4)

6 Format name of request Input Char(8)
variable

7 Error code 1/0 Char(*)

Library Name/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXECUTE

Threadsafe: No

The Receive Response (QzdmReceiveResponse) API is used to receive an acknowledgement and the
response data over an OptiConnect path. A maximum of 32KB of data may be received in asingle receive
response.

The response data is received into the output buffers, which were previously defined in the output
descriptors on the Send Request (QzdmSendRequest) API.

Restrictions

The following restrictions apply:

« The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to
calling this API.

« A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

« A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to
caling thisAPI.

« If thereceiving system does not provide alarge enough data buffer to receive al of the data, the
datathat will fit into the data buffer is moved, but the remaining datais truncated. The user must
then increase the size of the data buffer, and then retry the entire transaction.

« A maximum of 16 transactions may be in progress for a stream-identifier and path-identifier pair.

Authority and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
The receiver variable that is to receive the output control information from the Receive Response
(QzdmReceiveResponse) API.
Length of receiver variable
INPUT; BINARY (4)
The length of the receiver variable, in bytes. The length of the receiver variable must be at least
equal to or greater than the length of the output format.
Format name of receiver variable
INPUT; CHAR(8)

The format of the information that is returned from the Receive Response (QzdmReceiveResponse)
API. The RSRC0100 format is used by this API for the receiver variable. See RSRC0100 Format

for more information on the RSRC0100 format.
Request variable
INPUT; CHAR(*)

The request variable structure that describes the input for the Receive Response
(QzdmReceiveResponse) API.

Length of request variable
INPUT; BINARY (4)

The length of the request variable, in bytes. The length of the request variable must be at least equal
to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable
INPUT; CHAR(8)
The format of the information that is provided as input for the Receive Response

(QzdmReceiveResponse) API. The RSRQ0100 format is used by this API for the request variable.
See RSRQ0100 Format for more information on the RSRQ0100 format.

Error code
1/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

RSRCO0100 Format

The following table defines the information returned for Format RSRC0100.

| Offset

| Dec | Hex |Type Field

| 0 | 0 |CHAR(®¥) |Acknowledgement data

| 4 | 4 |BINARY(4) |Actual response datalength

RSRQ0100 Format

The following table defines the information required for Format RSRQO0100.

| Offset

| Dec | Hex |Type Field

| 0 | 0 |CHAR(16) |Stream identifier

| 16 | 10 |CHAR() |Path identifier

[24 [18 [BINARY(4) |Timeoutvale

| 28 | 1C |CHAR() | Transaction identifier

Field Descriptions

Acknowledgement data. The acknowledgement data for the request. Thisfield is provided as input on the
Send Response (QzdmSendResponse) API.

Actual response data length. The actual length that was received for the response data. If the response
data that was sent from the Send Response (QzdmSendResponse) API islarger than the buffer that was
provided with the Send Request (QzdmSendRequest) API, not al of the data was received. It isthe
responsibility of the user's application program to retry the entire transaction by using alarger data buffer
size for the Send Request (QzdmSendRequest) API to receive all of the data with the Receive Response
(QzdmReceiveResponse) API.

Path identifier. The OptiConnect path that is used for communications. Thisfield is provided as output on
the Open Path (QzdmOpenPath) API.

Stream identifier. The OptiConnect stream that is used for communications. Thisfield is provided as
output on the Open Stream (QzdmOpenStream) API.

Time-out value. A length of time, in milliseconds, to wait for the Receive Response
(QzdmReceiveResponse) APl to complete. If the Receive Response (QzdmReceiveResponse) APl does not
complete before the specified time-out value, the exception CPFADFE is returned. The user should then
re-issue the Receive Response (QzdmReceiveResponse) APl and specify the same time-out value or an
increased time-out value.

The Receive Response (QzdmReceiveResponse) APl remains outstanding, and control is not returned to the
user application until either of the following occurs:

« Therequest either completes successfully or unsuccessfully.
« Thetime-out value has been exceeded.

A value of -1 may be specified, which indicates to wait forever for the Receive Response
(QzdmReceiveResponse) APl to complete.

Transaction identifier. The specific transaction associated with this Receive Response

(QzdmReceiveResponse) API. Thisfield is provided as output on the Send Request (QzdmSendRequest)

AP,

Error Messages

M essage | D
CPF24B4 E
CPF3CID E
CPF3C21 E
CPF3C90 E
CPF3CF1E
CPF9872 E
CPFADFO E
CPFADF1E
CPFADF3E
CPFADF5 E
CPFADF6 E
CPFADFE E
CPFADFF E

Error Message Text

Severe error while addressing parameter list.

Length specified in parameter & 1 not valid.

Format name & 1 isnot valid.

Literal value cannot be changed.

Error code parameter not valid.

Program or service program &1 in library & 2 ended. Reason code & 3.
The OptiConnect QSOC subsystem must be active.

OptiConnect communication error.

OptiConnect path not valid or closed.

OptiConnect API internal error, function code &1, return code & 2.
Request variable not valid, reason code & 1.

Time-out occurred.

Transaction was terminated.

API introduced: V3R7

Top | Communications APIs | APIs by category

Send Request (QzdmSendRequest) API

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name of receiver Input Char(8)
variable

4 Request variable Input Char(*)

5 Length of request variable Input Binary(4)

6 Format name of request Input Char(8)
variable

7 Error code /0 Char(*)

Library Name/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXECUTE

Threadsafe: No

The Send Request (QzdmSendRequest) API is used to send arequest or a message over an OptiConnect
path. A maximum of 32KB of data may be transferred in a single send request.

Restrictions
The following restrictions apply:
« The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to
calling this API.

« A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

« A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to
calling this API.

« A maximum of 16 transactions may bein progress for a stream-identifier and path-identifier pair.

Authority and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
Thereceiver variable that is to receive the output control information from the Send Request
(QzdmSendRequest) API.
Length of receiver variable
INPUT; BINARY (4)
The length of the receiver variable, in bytes. The length of the receiver variable must be at least
equal to or greater than the length of the output format.
Format name of receiver variable
INPUT; CHAR(8)

The format of the information that is returned from the Send Reguest (QzdmSendRequest) API.
The SRRCO0100 format is used by this API for the receiver variable. See SRRC0100 Format for

more information on the SRRC0100 format.
Request variable
INPUT; CHAR(*)

The request variable structure that describes the input for the Send Request (QzdmSendReguest)
APIL.

Length of request variable
INPUT; BINARY (4)
The length of the request variable, in bytes. The length of the request variable must be at least equal
to the length of the input format, and less than or equal to the maximum length of 4KB.
Format name of request variable
INPUT; CHAR(8)

The format of the information that is provided as input for the Send Request (QzdmSendRequest)
API. The SRRQO0100 format is used by this API for the request variable. See SRRQ0100 Format

for more information on the SRRQ0100 format.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

SRRCO0100 Format

The following table defines the information returned for Format SRRC0100.

| Offset
| Dec | Hex |Type Field
| 0 | 0 |CHAR(S | Transaction identifier

SRRQ0100 Format

The following table defines the information required for Format SRRQO100.

Offset
Dec Hex [Type Field
0 0 |CHAR(16) |Stream identifier
16 10 |CHAR(8) |Path identifier
24 18 |BINARY(4) |Maximum response datalength

|

| |

| |

| |

| |

| 28 | 1C |BINARY(4) |Offset toinput descriptors
| |

| |

| |

|

32 20 |BINARY(4) |Number of input descriptors
36 24 |BINARY(4) |Offset to output descriptors
40 28 |BINARY(4) |Number of output descriptors
4 [2C [CHAR@) |Reserved

Thesefields |PTR(SPP) \Data buffer pointer

repeat for each [B|NARY(4) [Databuffer length
Pt AeSeNPIOT (e AR(Z) |Resarved
Thesefields |PTR(SPP) |Data buffer pointer
repeat for 2N [BINARY(4) |Databuffer length
output descriptor

[CHAR(12) |Reserved

Field Descriptions

Data buffer length. The length of the data buffer that is used for the input or output data.
Data buffer pointer. The pointer to the input data buffer that is used for input or output data.

Maximum response data length. The maximum length that is allowed for the response data. Thisfield is
provided as output on the Receive Request (QzdmReceiveRequest) API and indicates the maximum
response data length alowed for the Send Response (QzdmSendResponse) API. If the response datathat is
sent from the Send Response (QzdmSendResponse) API islarger than the buffer that is provided with the
Send Request (QzdmSendRequest) API, not all of the datais received. It isthe responsibility of the user's
application program to retry the entire transaction by using alarger data buffer size for the Send Request
(QzdmSendRequest) API to receive all of the data with the Receive Response (QzdmReceiveResponse)
APIL.

Number of output descriptors. The number of output descriptors that are used. An output descriptor
describes where the output data that is to be received from the remote system may be found. The output
descriptor consists of a space pointer to a data buffer and the length of the data buffer. A maximum of three
output descriptors may be specified. The total length of the output buffers must be equal to the maximum
response data length that is specified.

Number of input descriptors. The number of input descriptors that are used. An input descriptor describes
where the input data that isto be sent to the remote system may be found. The input descriptor consists of a

space pointer to a data buffer and the length of the data buffer. A maximum of three input descriptors may

be specified.

Offset to output descriptors. The offset to the output descriptors.

Offset to input descriptors. The offset to the input descriptors.

Path identifier. The OptiConnect path that is used for communications. Thisfield is provided as output on
the Open Path (QzdmOpenPath) API.

Reserved. A reserved space for the purpose of aligning pointer values on a 16-byte boundary. Thisfield
must be initialized to binary O.

Stream identifier. The OptiConnect stream that is used for communications. Thisfield is provided as
output on the Open Stream (QzdmOpenStream) API.

Transaction identifier. The specific transaction associated with this Send Request. Thisfield is provided
as output on the Send Request (QzdmSendRequest) API. Thisfield must then be provided asinput on the
corresponding Receive Response (QzdmReceiveResponse) API.

Error Messages

Message ID
CPF24B4 E
CPF3CID E
CPF3C21E
CPF3C90E
CPF3CF1E
CPF9872 E
CPFADFO E
CPFADF1E
CPFADF3 E
CPFADF5 E
CPFADF6 E

Error Message Text

Severe error while addressing parameter list.

Length specified in parameter &1 not valid.

Format name & 1 is not valid.

Literal value cannot be changed.

Error code parameter not valid.

Program or service program &1 in library &2 ended. Reason code & 3.
The OptiConnect QSOC subsystem must be active.

OptiConnect communication error.

OptiConnect path not valid or closed.

OptiConnect API internal error, function code & 1, return code & 2.
Request variable not valid, reason code & 1.

API introduced: V3R7

Top | Communications APIs | APIs by category

Send Response (QzdmSendResponse) API

Required Parameter Group:

1 Request variable Input Char(*)

2 Length of request variable Input Binary(4)

3 Format name of request Input Char(8)
variable

4 Error code /0 Char(*)

Library Name/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXECUTE

Threadsafe: No

The Send Response (QzdmSendResponse) API is used to send an acknowledgement and the response data
over an OptiConnect path. A maximum of 32KB of data may be transferred in a single send response.

Restrictions

The following restrictions apply:

« The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to
calling this API.

« A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

« A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to
calling this API.

« If thereceiving system does not provide alarge enough data buffer to receive al of the data, the
datathat will fit into the data buffer is moved, but the remaining datais truncated. The user must
increase the size of the data buffer and then retry the entire transaction.

A maximum of 16 transactions may be in progress for a stream-identifier and path-identifier pair.

Authority and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Request variable
INPUT; CHAR(*)
The reguest variable structure that describes the input for the Send Response (QzdmSendResponse)
APIL.
Length of request variable
INPUT; BINARY (4)
The length of the request variable, in bytes. The length of the request variable must be at |east equal
to the length of the input format, and less than or equal to the maximum length of 4KB.
Format name of request variable
INPUT; CHAR(8)
The format of the information that is provided as input for the Send Response

(QzdmSendResponse) API. The SRSP0100 format is used by this APl for the request variable. See
SRSP0100 Format for more information on the SRSP0100 format.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

SRSP0100 Format

The following table defines the information required for Format SRSP0100.

| Offset ’

| Dec | Hex |Type Fied

[0 [0 |[CHAR@6) [Streamidentifier

| 16 | 10 |CHAR(9) | Transaction identifier

| 24 | 18 |BINARY(4) |Actual response datalength
| 28 | 1C |CHAR(%) |Acknowledgement data

| 32 | 20 |BINARY(4) |Offsettoinput descriptors

| 36 | 24 |BINARY(4) |Number of input descriptors
| 40 | 28 |CHAR(9 |Reserved

These fields |PTR(SPP) |Data buffer pointer

repeat for each - [BINARY(4) _[Data buiffer Tength
P POl [CHAR(®D) |Reserved

Field Descriptions

Acknowledgement data. The acknowledgement data for the request. Thisfield is provided as output on the
Receive Response (QzdmReceiveResponse) APl and indicates the acknowledgement data.

Actual response data length. The actual length that is sent for the response data. If the response data that
issent islarger than the buffer that is provided on the Send Request (QzdmSendRequest) API, not al of the
datais sent. It isthe responsibility of the user's application program to retry the entire transaction by using a
larger data buffer size for the Send Reguest (QzdmSendReqguest) API to receive al of the data with the
Receive Response (QzdmReceiveResponse) API.

Data buffer length. The length of the data buffer that is used for sending data.

Data buffer pointer. The pointer to the data buffer that is used for sending data.

Number of input descriptors. The number of input descriptors that are used. An input descriptor describes
where the input data may be found. The input descriptor consists of a space pointer to a data buffer and the
length of the data buffer. A maximum of three input descriptors may be specified.

Offset to input descriptors. The offset to the input descriptors.

Reserved. A reserved space for the purpose of aligning pointer values on a 16-byte boundary. Thisfield
must beinitialized to binary 0.

Stream identifier. The OptiConnect stream that is used for communications. Thisfield is provided as
output on the Open Stream (QzdmOpenStream) API.

Transaction identifier. The specific transaction associated with this Send Response (QzdmSendResponse)
API. Thisfield is provided as output on the Receive Request (QzdmReceiveRequest) API.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CID E Length specified in parameter &1 not valid.

CPF3C21 E Format name & 1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1lE Error code parameter not valid.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFADFO E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF3 E OptiConnect path not valid or closed.

CPFADF4 E OptiConnect detected sequence error.

CPFADF5 E OptiConnect API internal error, function code & 1, return code & 2.
CPFADF6 E Request variable not valid, reason code & 1.

CPFADFFE

Transaction was terminated.

API introduced: V3R7

Top | Communications APIs | APIs by category

Wait Message (QzdmWaitMessage) API

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name of receiver Input Char(8)
variable

4 Request variable Input Char(*)

5 Length of request variable Input Binary(4)

6 Format name of request Input Char(8)
variable

7 Error code /0 Char(*)

Library Name/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXECUTE

Threadsafe: No

The Wait Message (QzdmWaitMessage) API is used to wait for a message on an OptiConnect stream. The
message may be a request message, a response message, or a control message.

Restrictions
The following restrictions apply:

« The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to
calling this API.

« A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

« A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to
calling this API.

Authority and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
The receiver variable that is to receive the output control information from the Wait Message
(QzdmWaitMessage) API.
Length of receiver variable
INPUT; BINARY (4)
The length of the receiver variable, in bytes. The length of the receiver variable must be at least
equal to or greater than the length of the output format.
Format name of receiver variable
INPUT; CHAR(8)

The format of the information that is returned from the Wait Message (QzdmWaitMessage) API.
The WMRCO0100 format is used by this API for the receiver variable. See WM RC0100 Format for

more information on the WMRCO0100 format.
Request variable
INPUT; CHAR(*)

The request variable structure that describes the input for the Wait M essage (QzdmWaitM essage)
APIL.

Length of request variable
INPUT; BINARY (4)
The length of the request variable, in bytes. The length of the request variable must be at least equal
to the length of the input format, and less than or equal to the maximum length of 4KB.
Format name of request variable
INPUT; CHAR(8)

The format of the information that is provided as input for the Wait Message (QzdmWaitM essage)
API. The WMRQO0100 format is used by this API for the request variable. See WMRQ0100 Format

for more information on the WMRQO0100 format.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

WMRCO0100 Format

The following table defines the information returned for Format WMRCO0100.
| Offset

| Dec | Hex |Type Field
| 0 | 0 |CHARQ) |Message type

WMRQO0100 Format

The following table defines the information required for Format WMRQ0100.

| Offset
| Dec | Hex |Type Field

| 0 | 0 |CHAR(16) |Stream identifier
| 16 | 10 |BINARY(4) |Time-outvalue

Field Descriptions

M essage type. The type of message that isreceived. Thisfield is provided as output on the Wait Message
(QzdmWaitMessage) API.

Possible values follow:

1 Request message
2 Response message
3 Control message

Stream identifier. The OptiConnect stream that is used for communications. Thisfield is provided as
output on the Open Stream (QzdmOpenStream) API.

Time-out value. A length of time, in milliseconds, to wait for the Wait Message (QzdmWaitMessage) AP
to complete. If the Wait Message (QzdmWaitMessage) APl does not complete before the specified time-out
value, the exception CPFADFE is returned. The user should then re-issue the Wait Message

(QzdmWaitM essage) API and specify the same time-out value or an increased time-out value.

The Wait Message (QzdmWaitMessage) APl remains outstanding, and control is not returned to the user
application until either of the following occurs:

« Therequest either completes successfully or unsuccessfully.

« Thetime-out value has been exceeded.

A value of -1 may be specified, which indicates to wait forever for the Wait Message (QzdmWaitM essage)
API to complete.

Error Messages

Message I D Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPF3CID E Length specified in parameter & 1 not valid.
CPF3C21 E Format name & 1 is not valid.

CPF3C90 E
CPF3CF1E
CPF9872 E
CPFADFO E
CPFADF1 E
CPFADF5 E
CPFADF6 E
CPFADFE E

Literal value cannot be changed.

Error code parameter not valid.

Program or service program &1 in library & 2 ended. Reason code & 3.
The OptiConnect QSOC subsystem must be active.

OptiConnect communication error.

OptiConnect API internal error, function code &1, return code & 2.
Request variable not valid, reason code & 1.

Time-out occurred.

API introduced: V3R7

Top | Communications APIs | APIs by category

TCP/IP Management

The TCP/IP Management APIs allow you to retrieve information about your TCP/IP setup and status, and
change certain system values related to TCP/IP.

The TCP/IP Management APIs are:

Change Connection Attribute (QTOCCCNA) can change the attribute of a socket or connection
directly.

#»List Neighbor Cache Table (QtocL stNeighborThl) returns alist of al entriesin the IPv6
Neighbor Cache table for a specified line or for all lines4

List Network Connections (QtocL stNetCnn) returns a non-detailed list of al the network

connections for a specified net connection type or alist of the subset of network connections for a
specified net connection.

List Network Interface (QtocLstNetlfc) returns adetailed list of al logical TCP/IP interfaces.
List Network Routes (QtocL stNetRte) returns a detailed list of all routes.

List Physical Interface ARP Table (QtocLstPhylfcARPTDI) returns alist of all entriesin the
Address Resolution Protocol (ARP) table for the specified time.

List Physical Interface Data (QtocL stPhylfcDta) returns alist of physical interfaces and detailed
information about TCP/IP-related data for each of the listed physical interfaces.

List PPP Connection Profiles (QtocL stPPPCnnPrf) returns alist of PPP connection profiles with
some basic information about each profile.

List TCP/IP Point-to-Point Jobs (QTOCL PPJ) returns information about each connection job
currently associated with the specified point-to-point connection profile.

Remove ARP Table Entry (QtocRmvARPTbIE) removes one or all dynamic entries from the ARP
table for the specified line.

Retrieve Network Connection Data (QtocRtvNetCnnDta) retrieves the details of any specified
connection-including jobs using the connection.

Retrieve PPP Connection Profiles (QtocRtvPPPCNNPrf) retrieves the details of a specific PPP
connection job profile.

Retrieve TCP/IP Attributes (QtocRtvTCPA) retrieves TCP/IP attributes.

Update DNS API (QTOBUPDT) alows the caller to send one or more update instructions to an
i Series dynamic DNS (Domain Name System) server.

See Resource Reservation Setup Protocol APIsfor information on APIs that perform your integrated

services reservation.

Top | Communications APIs | APIs by category

Change Connection Attribute (QTOCCCNA) API

Required Parameter Group:
1 Change information Input Char(*)
2 Length of change Input Binary(4)
information
3 Change information format Input Char(8)
4 Error code /10 Char(*)
Threadsafe: Yes

The Change Connection Attribute (QTOCCCNA) API can change the attribute of a socket or connection
directly. A valid socket descriptor is not required. Instead, the socket or connection to be changed is
identified by specifying the associated port and | P address information.

The SO_DEBUG socket option is the only attribute that can be changed.

Authorities and Locks

Default public authority
*EXCLUDE.

Required Parameter Group

Change information
INPUT; CHAR(*)

The socket or connection that is changed.
Change information format
INPUT; CHAR(8)

The format of the change information input data. The possible values are:

TCPAOOO1 Change the connection attribute of a connection. The connection isidentified by
specifying the local and remote values for the IP address and port number. See
TCPAQ0O1 Format below.

UDPAQO001 Change the connection attribute of a socket. The socket isidentified by specifying
itslocal IP address and local port number. See UDPA0OO1 Format below.

L ength of changeinformation
INPUT; BINARY (4)

Thetotal length in bytes of the change information input variable.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

TCPAOOO1 Format

Use this format when changing a connection. For detailed descriptions of the fieldsin this table, see Field
Descriptions.

Offset
Dec Hex ’Type ’Field
0 0 |BINARY(4) |Attributeto change
4 4 |BINARY(4) |Attribute value
8 8 |BINARY(4) |Loca| |P address

|
|
|
|
12 | C |[BINARY(4) |Local port number
|
|
|

16 10 [BINARY(4) [Remote|P address
20 14 |BINARY(4) |Remote port number
24 18 | |

UDPAOOO1 Format

Use this format when changing a socket. For detailed descriptions of the fieldsin thistable, see Field
Descriptions.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |BINARY(4) |Attributeto change
[4 [4 |[BINARY(4) |[Attributevalue

[8 [8 |[BINARY(4) |Local IPaddress

| 12 | C |BINARY(4) |Local port number
RN |

Field Descriptions

Attribute to change. The possible valueis:

1 Change the debug attribute (SO_DEBUG socket option) of the connection.

Attribute value. Possible values are:

0 Thedebug attribute is not set.
1 Thedebug attribute is set.

Local IP address. Thelocal internet address used by the connection in binary form.

Local port number. Thelocal system port number used by the connection.

Remote | P address. The remote internet address used by the connection in binary form.

Remote port number. The remote system port number used by the connection.

Error Messages

Message ID
CPF3C17E
CPF3C21E
CPF3ClE

CPF3CF1E
CPF3CF2 E
CPF9872 E
TCP2670 E
TCP3BO3 E
TCP3B04 E
TCP9999 E

Error Message Text

Error occurred with input data parameter.

Format name & 1 isnot valid.

Required parameter & 1 omitted.

Error code parameter not valid.

Error(s) occurred during running of &1 API.

Program or service program & 1 in library & 2 ended. Reason code & 3.
Not able to complete request. TCP/IP services are not available.
Connection & 1:& 2, & 3:& 4, not found.

Socket &1:& 2, & 3:&4, not found.

Internal system error in program & 1.

API introduced: V5R1

Top | Communications APIs | APIs by category

»L1st Neighbor Cache Table
(QtocLstNeighborTbl) API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Linename Input Char(10)
4 Error Code 1/0 Char(*)

Service Program: QTOCNETSTS Threadsafe: Yes

The List Neighbor Cache Table (QtocLstNeighborThl) API returns alist of al entriesin the IPv6 Neighbor
Cache table for a specified line or for al lines.

TCP/IP must be active on this system; otherwise, error message TCP84CO0 will be issued.

Authorities and Locks

User Space Library Authority
*EXECUTE

User Space Authority
*CHANGE

User Space Lock
*SHRNUP

Required Parameter Group
Qualified user space name
INPUT; CHAR(20)

The user space that receives the information, and the library in which it islocated. The first 10
characters contain the user space name, and the second 10 characters contain the library name. Y ou
can use these special valuesfor the library name:

*CURLIB Thejob'scurrent library.
*LIBL Thelibrary list.

Format name
INPUT; CHAR(8)

The format of the space information to be returned. The format names supported are:

NNCTO100 List of Neighbor Cache table entries for a specified line. Refer to NNCT0100
Format for details on the format.

Line name
INPUT; CHAR(10)

The name of the IPv6 enabled physical interface for which to retrieve Neighbor Cache table entries.
The following special value may be used:

*ALL Request all Neighbor Cache entriesfor all 1Pv6 enabled linesin the system.

Error Code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Neighbor Cache Table Lists

To request alist of Neighbor Cache table entries for aline, use format NNCTO0100.

The Neighbor Cache table list consists of:
o A user area
» A generic header
« Aninput parameter section
« A header section
« A list data section:
o NNCTO0100 format.

For details about the user area and generic header, see User Space Format for List APIs. For details about
the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the result
may not be valid. For examples of how to process lists, see APl Examples.

Input Parameter Section

| Offset

| Dec | Hex |Type Fied
|

|

0 | 0 [CHAR(10) |User space name specified
10 | A |CHAR(10) |User space library name specified

[20

14

[CHAR(®)

|Format name specified

[28

1C

[CHAR(10)

|Line name specified

Header Section

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |User space name

| 10 | A |CHAR(10) |User space library name used
| 20 | 14 |CHAR(10) |Linename used

NNCT0100 Format

The following information about an entry in the Neighbor Cache table is returned for the NNCT0100

format. For detailed descriptions of the fields in the table, see Field Descriptions.

| Offset ’ ’
| Dec | Hex |Type Field
| 0 | 0 |CHAR(45) |Internet |Pv6 address
| 45 | 2D |CHAR(3) |Reserved
| 48 | 30 |CHAR(16) |Internet |1Pv6 address binary
| 64 | 40 |CHAR(17) |Link layer address
| 81 | 51 |CHAR(7) |Reserved
| 8 | 58 |BINARY(8) |Link layer address binary
| 9% | 60 |CHAR(10) |Line name
| 106 | 6A |CHAR(2) |Reserved
[108 | 6C |[BINARY(4) [Reachability state
| 112 | 70 |CHAR(8) |Reachability state change - date
| 120 | 78 |CHAR(9) |Reachability state change - time
[120 | 81 [CHAR() [Reserved
| 132 | 84 |BINARY(4) |Reachability state error information
| 136 | 83 |BINARY(4) |Timeinreachable state
[140 | 8C |[BINARY(4) [isrouter
144 90 |BINARY(4) Number of unicast neighbor solicitation packets
sent
148 94 |BINARY(4) Number of multicast neighbor solicitation
packets sent
| 152 | 98 |BINARY(4) |Delay first probetime
| 156 | 9C |BINARY(4) |Max unicast solicits
| 160 | AO |BINARY(4) |Max multicast solicits

Field Descriptions

Delay first probetime. The current value of the configured stack attribute named Neighbor solicitation
delay first probe time. This attribute controls how long a Neighbor Cache entry will stay in the DELAY
state before the stack will send another Neighbor Solicitation and move this Neighbor Cache entry's
Reachability state to PROBE if reachability still has not been confirmed. Valid values range from 3 through
10 seconds.

Internet 1Pv6 address. The IPv6 address of the neighbor in 1Pv6 address format notation. Thisfieldis
NULL padded.

Internet 1Pv6 address binary. The binary representation of the neighbor's | Pv6 address. Even though this
field is defined as a character field, binary datawill be returned in it.

Isrouter. Whether this neighbor is arouter. Possible values are;
0 No, thisneighbor is not arouter.

1 Yes, thisneighbor isarouter.

Line name. The name of the communications line description that identifies the physical interface which is
directly connected to this neighbor.

Link layer address. The MAC address of the neighbor's network interface. Format:
XXXX XX XX XX: XX, where each X' is a hexadecimal digit.

Link layer addressbinary. The binary representation of the neighbor's six byte link layer address.

Max multicast solicits. The current value of the configured Neighbor solicitation max multicast solicits
stack attribute. This attribute controls the maximum number of multicast Neighbor Solicitations which will
be sent out when the system is performing link-layer address resolution for another host (neighbor). If no
Neighbor Advertisement is received after the maximum number of Neighbor Solicitations have been sent
out, address resolution has failed, and an ICMPv6 error message will be returned to the application. Valid
values range from 1 through 5 transmissions.

Max unicast solicits. The current value of the configured Neighbor solicitation max unicast solicits stack
attribute. This attribute controls the maximum number of unicast Neighbor Solicitations which will be sent
out when the system is performing link-layer address resolution for another host with unicast Neighbor
Solicitations. Multicast is the normal way to perform Neighbor Discovery, but unicast Neighbor
Solicitations will be used if the local physical interface is not multicast-capable. If no Neighbor
Advertisement is received after the maximum number of Neighbor Solicitations have been sent out, address
resolution has failed, and an ICMPv6 error message will be returned to the application. Valid values range
from 1 through 5 transmissions.

Number of multicast neighbor solicitation packets sent. The total number of multicast Neighbor
Solicitations which have been sent from the local system to this neighbor.

Number of unicast neighbor solicitation packets sent. The total number of unicast Neighbor Solicitations
which have been sent from the local system to this neighbor.

Reserved. Anignored field.

Reachability state. The reachability state of this neighbor cache entry. Possible values are:

-1 ERROR - An error has occured while verifying the reachability of this neighbor. Use the returned
Reachability state error information field value for more information about this error.

1 INCOMPLETE - Addressresolution is being performed on the entry. Specifically, a Neighbor
Solicitation has been sent to the solicited-node multicast address of the target, but the corresponding
Neighbor Advertisement has not yet been received.

2 REACHABLE - Positive confirmation was received that the forward path to the neighbor was
functioning properly. While REACHABLE, no specia action takes place as packets are sent.

3 STALE- The STALE stateis entered upon receiving an unsolicited Neighbor Discovery message
that updates the cached link-layer address. Receipt of such a message does not confirm reachability,
and entering the STALE state insures reachability is verified quickly if the entry is actually being
used. However, reachability is not actually verified until the entry is actually used. While STALE,
no action takes place until a packet is sent.

4 DELAY - Thisneighbor is assumed to be reachable, and the system is now trying to verify
reachability.

5 PROBE - A reachability confirmation is actively being sought by retransmitting Neighbor
Solicitations every "Retransmit interval" seconds until areachability confirmation is received.

6 DELETING - The TCP/IP stack is currently in the process of deleting this neighbor entry from the
Neighbor Cache.

Reachability state change - date. The date of the last change of this neighbor's Reachability state. The
format of the charactersin thisfieldis"YYYYMMDD".

The meaning of those charactersis asfollows:

YYYY Year
MM Month
DD Day

Reachability state change - time. The time of the last change of this neighbor's Reachability state. The
format of the charactersin thisfield is"HHMM SSmmm".

The meaning of those charactersis asfollows:

HH Hours
MM Minutes
SS Seconds

mmm Milliseconds

Reachability state error information. The error code for this Neighbor Cache entry when the
Reachability state is ERROR. Thisvalueis only useful when the Reachability state field value is ERROR.
Possible values are:

0 Noerror.

1 Unknown. An unknown error has occurred.

Reserved. Anignored field.

Timein reachable state. The length of time, in seconds, that this neighbor has been in the Reachabl e state.

The following specia value may be returned:

-1 Thisneighbor currently is not in the Reachable state.

Error Messages

Message I D
TCP84C0 E
TCP84C3 E
TCP84AC5 E
TCP84C6 E
TCP84C9 |
TCP84CB E
TCPBACCE
CPF24B4 E
CPF3C21 E
CPF3C90 E
CPF3CF1E
CPF8100 E
CPF9801 E
CPF9802 E
CPF9803 E
CPFO807 E
CPF9808 E
CPF9810 E
CPF9820 E
CPF9830 E
CPF9872 E

Error Message Text

TCP/IP stack not active.

The specified line name does not exist.

API error providing TCP/IP Network Status information.
Internal operationserror - RESULT &1 CC &2 RC &3 ERRNO &4.
Information returned incomplete.

Specified line & 1 not configured for 1Pv6.

Specified line &1 does not support Neighbor Discovery for |Pv6.
Severe error while addressing parameter list.

Format name &1 is not valid.

Literal value cannot be changed.

Error code parameter not valid.

All CPF81xx messages could be returned. xx is from 01 to FF.
Object &2 in library &3 not found.

Not authorized to object &2 in & 3.

Cannot allocate object &2 in library & 3.

One or more librariesin library list deleted.

Cannot alocate one or more libraries on library list.

Library &1 not found.

Not authorized to use library & 1.

Cannot assign library & 1.

Program or service program &1 in library & 2 ended. Reason code & 3.

&

API introduced: V5R2

Top | Communications APIs | APIs by category

List Network Connections (QtocLstNetCnn) API

Required Parameter Group:
1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Connection list qualifier Input Char(*)
4 Connection list qualifier size Input Binary(4)
5 Connection list qualifier format Input Char(8)
6 Error Code /10 Char(*)

Service Program: QTOCNETSTS

Threadsafe; Yes

#The List Network Connections (QtocL stNetCnn) API returns a non-detailed list of all network
connections, or a subset of all network connections for a specified network connection type. With each call
to this APl you can request |Pv4 or |Pv6 connections, but not both at the same time. <

TCP/IP must be active on this system; otherwise error message TCP84CO0 will be issued.

Authorities and Locks

User Space Library Authority
*EXECUTE

User Space Authority
*CHANGE

User Space Lock
*SHRNUP

Required Parameter Group
Qualified user space name
INPUT; CHAR(20)

The user space that is to receive the created list. The first 10 characters contain the user space
name; the second 10 characters contain the name of the library in which the user space islocated.
Y ou can use these special valuesfor the library name:

*CURLIB Thejob's current library
*LIBL Thelibrary list

Format name
INPUT; CHAR(8)

The format of the space information to be returned. The format name supported is:

NCNNO0100 Non-detailed list of selected TCP/IPv4 local system connections. Refer to
NCNNO100 Format for details on the format.

#NCNN0200 Non-detailed list of selected TCP/IPv6 local system connections. Refer to
NCNNO0200 Format for details on the format. <

Connection list qualifier
INPUT; CHAR(*)

A restriction on the network connections to be listed.
Connection list qualifier size
INPUT; BINARY (4)

The size in bytes of the connection list qualifier parameter.
Connection list qualifier format
INPUT; CHAR(8)

The format of the connection list qualifier parameter. The format name supported is:

NCLQO100 IPv4 connection list qualifier. Refer to NCL Q0100 Format for details on the
format.

#*NCLQ0200 |Pv6 connection list qualifier. Refer to NCLQO0200 Format for details on the
format. <

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Connection Status Lists

To request anon-detailed list of local system connections, use format NCNNO100.

The connection description list consists of:
o A user area
» A generic header
« Aninput parameter section
« A header section
A list data section:

o NCNNO100 format, or
o # NCNNO0200 format %

For details about the user area and generic header, see User Space Format for List APIs. For details about
the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the result
may not be valid. For examples of how to processlists, see APl Examples.

Input Parameter Section

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |User space name specified

| 10 | A |CHAR(10) |User space library name specified

| 20 | 14 |CHAR(9 |Format name specified

| 28 | 1C |CHAR(*) |Connection list qualifier specified

’ IBINARY(4) |Connection list qualifier size specified
|ICHAR(8) |Connection list qualifier format specified

Header Section

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |User space name used

| 10 | A |CHAR(10) |User space library name used

NCLQO0100 Format

The following table shows the format of the IPv4 connection list qualifier input parameter, named the
NCLQO0100 format. For detailed descriptions of the fields in the table, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) INet connection type
| 10 | A |CHAR(10) |List request type
[20 [14 [CHAR(12) |Reserved
| |
| |

32 20 |BINARY(4) |Local internet address|ower value
36 24 |BINARY(4) |Local internet address upper value

| 40 | 28 |BINARY(4) |Local portlower value

| 44 | 2C |BINARY(4) |Local port upper value

| 48 | 30 |BINARY(4) |Remoteinternet addresslower value
| 52 | 34 |BINARY(4) |Remoteinternet address upper value
| 56 | 38 |BINARY(4) |Remote port lower value

| 60 | 3C |BINARY(4) |Remote port upper value

Field Descriptions

List request type. The local internet address range, local port range, remote internet address range, and
remote port range for which information is requested. Possible values are:

*ALL All objects returned.
*QUBSET Restrict the objects returned in the list to a specified subset.

L ocal internet addresslower value. The lower value of the local system internet address range, in dotted
decimal format, requested for subsetting the list. The following is a special value:

0 Reqguest al local internet addresses.

Local internet address upper value. The upper value of the local system internet address range, in dotted
decimal format, requested for subsetting the list. The following is a special value:

0 Reqguest only one local internet address specified by the local internet address lower value.

Local port lower value. The lower value of the local system port range requested for subsetting the list.
Valid values range from 1 to 65535. The following is a special value:

0 Request al local ports.

L ocal port upper value. The upper value of the local system port range requested for subsetting the list.
Valid vauesrange from 1 to 65535. The following is a specia value:

0 Reqguest only onelocal port specified in local port lower value.

Net connection type. The type of connection or socket. Possible values are;
*ALL All connection types
*TCP A transmission control protocol (TCP) connection or socket.
*UDP A User Datagram Protocol (UDP) socket.
*1PI An Internet Protocol (IP) over Internetwork Packet Exchange (IPX) connection or socket.
#Note: Asof V5R2, IPover IPX isno longer supported.<%

*IPS AnlInternet Protocol (IP) over SNA connection or socket.

Remoteinternet addresslower value. The lower value of the remote system internet address range, in
dotted decimal format, requested for subsetting the list. The following is a special value:

0 Request al remote internet addresses.

Remoteinternet address upper value. The upper value of the remote system internet address range, in
dotted decimal format, requested for subsetting the list. The following is a special value:

0 Reqguest only one remote internet address specified by the remote internet address lower value.

Remote port lower value. The lower value of the remote system port range requested for subsetting the
list. Valid values range from 1 to 65535. The following is a special vaue:

0 Reqguest al remote ports.

Remote port upper value. The upper value of the remote system port range requested for subsetting the
list. Valid values range from 1 to 65535. The following is a special value:

0 Reguest only one remote port specified in remote port lower value.

Reserved. A reserved field. It must be x'00'.

#» NCLQO0200 Format

The following table shows the format of the IPv6 connection list qualifier input parameter, named the
NCL Q0200 format. For detailed descriptions of the fields in the table, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |Net connection type

| 10 | A |CHAR(10) |List request type

| 20 | 14 |CHAR(12 |Reserved

| 32 | 20 |CHAR(16) |Local internet |Pv6 address lower value

| 48 | 30 |CHAR(16) |Local internet |Pv6 address upper value

| 64 | 40 |BINARY(4) |Local port lower value

| 68 | 44 |BINARY(4) |Local port upper value

| 72 | 48 |CHAR(16) |Remote internet |Pv6 address lower value
| 8 | 58 |CHAR(16) |Remote internet |Pv6 address upper value
| 104 | 68 |BINARY(4) |Remote port lower value

| 108 | 6C |BINARY(4) |Remote port upper value

Field Descriptions

List request type. Thelocal internet address range, local port range, remote internet address range, and
remote port range for which information is requested.

Possible values are:
*ALL All objects returned.
*QUBSET Restrict the objects returned in the list to a specified subset.

L ocal internet 1 Pv6 address lower value. The lower value of the local system internet address range, in
IPv6 address format, requested for subsetting the list. Even though this field is defined as a character field,
it must be stored in binary. It is recommended that you use the Sockets in6_addr structure.

Thefollowing is a special value:

0 Reqguest al local internet IPv6 addresses. Specify this value by filling the whole field with binary
NULLs (x'000000...").

Local internet | Pv6 address upper value. The upper value of the local system internet address range, in
IPv6 address format, requested for subsetting the list. Even though this field is defined as a character field,
it must be stored in binary. It is recommended that you use the Sockets in6_addr structure.

Thefollowing is aspecia value:

0 Request only onelocal internet |Pv6 address specified by the local internet |Pv6 address lower value.
Specify this value by filling the whole field with binary NULLs (x'000000...").

L ocal port lower value. The lower value of the local system port range requested for subsetting the list.
Valid vauesrange from 1 to 65535.

Thefollowing is a special value:

0 Reguest al local ports.

Local port upper value. The upper value of the local system port range requested for subsetting the list.
Valid values range from 1 to 65535.

Thefollowing is aspecia value:

0 Request only onelocal port specified in local port lower value.

Net connection type. The type of connection or socket.
Possible values are:
*ALL All connection types
*TCP A transmission control protocol (TCP) connection or socket.

*UDP A User Datagram Protocol (UDP) socket.

Remoteinternet 1 Pv6 address lower value. The lower value of the remote system internet 1Pv6 address
range, in |Pv6 address format, requested for subsetting the list. Even though thisfield is defined as a

character field, it must be stored in binary. It is recommended that you use the Socketsin6_addr structure.
Thefollowing is aspecia value:

0 Request al remote internet 1Pv6 addresses. Specify this value by filling the whole field with binary
NULLs (x'000000...").

Remoteinternet 1 Pv6 address upper value. The upper value of the remote system internet |Pv6 address
range, in |Pv6 address format, requested for subsetting the list. Even though thisfield is defined as a
character field, it must be stored in binary. It is recommended that you use the Sockets in6_addr structure.

Thefollowing isa specia value:

0 Reqguest only one remote internet |Pv6 address specified by the remote internet | Pv6 address lower
value. Specify this value by filling the whole field with binary NULLs (x'000000...").

Remote port lower value. The lower value of the remote system port range requested for subsetting the
list. Valid values range from 1 to 65535.

Thefollowing is aspecia value:

0 Request al remote ports.

Remote port upper value. The upper value of the remote system port range requested for subsetting the
list. Valid values range from 1 to 65535.

Thefollowing isa specia value:

0 Reguest only one remote port specified in remote port lower value.

Reserved. A reserved field. It must be x'00'" .4

»Format of Returned Connection Data

To retrieve the list of TCP/IPv4 connections, request format NCNNO0100, and you will get arepeating list

of NCNNO100 tables, each one returning information about a single |Pv4 connection. To retrieve the list of
TCP/1Pv6 connections, request format NCNNO0200, and you will get arepeating list of NCNNO200 tables,

each one returning information about a single | Pv6 connection. <X

NCNNO100 Format

The following information about a user space is returned for the NCNNO0100 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(15) |Remote address

| 15 | F |CHAR() |Reserved

| 16 | 10 |BINARY(4) |Remote address binary

[[20 [14 [CHAR(@5) |Local address

[35 | 23 [CHAR()) |Reserved

| 36 | 24 |BINARY(4) |Local addressbinary

| 40 | 28 |BINARY(4) |Remote port

| 44 | 2C |BINARY(4) |Local port

| 48 | 30 |BINARY(4) |TCPstate

| 52 | 34 |BINARY(4) |ldletimein milliseconds
[56 | 38 |[BINARY(8) [Bytesin

| 64 | 40 |BINARY(8) |Bytesout

| 72 | 48 |BINARY(4) |Connection opentype

| 76 | 4C |CHAR(10) |Net connection type
[8 | 56 |[CHAR() |Reserved

| 88 | 58 |[CHAR(10) [Associated user profile
| 98 | 62 |[CHAR(2 |Reserved &

Field Descriptions

#»Associated user profile. The user profile of the job on the local system which first performed a sockets
API bind() of the socket.

Note: Thisfield does not reliably indicate the current user of a connection or socket. To see alist of the
jobs or tasks currently using a connection or socket, use the Retrieve Network Connection Data
(QtocRtvNetCnnDta) API. 4

Bytesin. The number of bytes received from the remote host.
Bytes out. The number of bytes sent to the remote host.

Connection open type. The type of open that was done to start this connection. Thisfield only applies to
TCP connections.

Possible values are:
0 Passive. A remote host opens the connection.
1 Active. Theloca system opens the connection.

2 Not supported. Connection open type not supported by protocol.

Idletimein milliseconds. The length of time since the last activity on this connection. The length of time
is shown in milliseconds.

Local address. Thelocal system internet address, in dotted decimal format, of the connection.
Local addressbinary. Binary representation of the local address.
Local port. The local system port number.

Net connection type. The type of connection or socket. Possible values are:

*TCP A transmission control protocol (TCP) connection or socket.

*UDP A User Datagram Protocol (UDP) socket.

*1PI An Internet Protocol (IP) over Internetwork Packet Exchange (IPX) connection or socket.
#Note: Asof V5R2, IPover IPX isno longer supported.<%

*IPS AnlInternet Protocol (IP) over SNA connection or socket.

Remote address. The internet address, in dotted decimal format, of the remote host.
The following specia value may be returned:

0 Thisconnection isalistening or UDP socket so thisfield does not apply. The "0" is returned as a | eft
adjusted "0" (x'FO404040...").

Remote address binary. Binary representation of the remote address.
The following specia value may be returned:

0 Thisconnectionisalistening or UDP socket so this field does not apply.

Remote port. The remote host port number. Zero is shown if the list entry isfor a UDP socket.
Reserved. Anignored field.
TCP state. A typical connection goes through the states:

0 Listen. Waiting for a connection request from any remote host.
SY N-sent. Waiting for a matching connection request after having sent connection request.
SY N-received. Waiting for a confirming connection request acknowledgement.

Established. The norma state in which datais transferred.

A W N BB

FIN-wait-1. Waiting for the remote host to acknowledge the local system request to end the
connection.

FIN-wait-2. Waiting for the remote host request to end the connection.
Close-wait. Waiting for an end connection request from the local user.
Closing. Waiting for an end connection regquest acknowledgement from the remote host.

Last-ACK. Waiting for the remote host to acknowledge an end connection request.

© 00 N O O

Time-wait. Waiting to allow the remote host enough time to receive the local system's
acknowledgement to end the connection.

10 Closed. The connection has ended.

11 State value not supported by protocol.

#NCNNO0200 Format

The following information about a TCP/IPv6 connection is returned for the NCNNO0200 format. For
detailed descriptions of the fields in the table, see Field Descriptions.

Offset
Dec Hex ’Type ’Fi ed
0 0 |CHAR(45) |Remote IPv6 address
45 [2D [CHARQ) [Reserved
48 30 |CHAR(16) |Remote |Pv6 address binary
64 40 |CHAR(45) |Loca| IPv6 address
109 [6D [CHAR(Q3) [Reserved
112 70 |CHAR(16) |Local IPv6 address binary
80 |BINARY(4) |Remote port

|
|
|
|
|
|
|
|
132 | 84 |[BINARY(4) |Local port
|
|
|
|
|
|
|

136 88 |BINARY(4) |TCPtate

140 8C |BINARY(4) [Idietimein milliseconds
144 [90 |[BINARY(8) |Bytesin

152 98 |BINARY(8) |Bytesout

160 A0 |[BINARY(4) |Connection open type
164 A4 |CHAR(10) INet connection type

174 AE |CHAR(10) |Associated user profile

Field Descriptions

Associated user profile. The user profile of the job on the local system which first performed a sockets
API bind() of the socket.

Note: Thisfield does not reliably indicate the current user of a connection or socket. To see alist of the
jobs or tasks currently using a connection or socket, use the Retrieve Network Connection Data
(QtocRtvNetCnnDta) API.

Bytesin. The number of bytes received from the remote host.

Bytes out. The number of bytes sent to the remote host.

Connection open type. The type of open that was done to start this connection. This field only appliesto
TCP connections.

Possible values are;

0 Passive. A remote host opens the connection.
1 Active. Theloca system opens the connection.

2 Not supported. Connection open type not supported by protocol.

Idletimein milliseconds. The length of time since the last activity on this connection. The length of time

is shown in milliseconds.

Local IPv6 address. Thelocal system internet address, in IPv6 address format, of the connection. This
field isNULL padded.

Local I Pv6 address binary. Binary representation of the local IPv6 address. Even though thisfield is
defined as a character field, abinary IPv6 addressisreturned in it.

Local port. The port number of the local end of the connection.
Net connection type. The type of connection or socket.
Possible values are:
*TCP A transmission control protocol (TCP) connection or socket.

*UDP A User Datagram Protocol (UDP) socket.

Reserved. Anignored field.

Remote | Pv6 address. The internet address, in |Pv6 address format, of the remote host. Thisfield isNULL
padded.

Special values are:

This connection is alistening socket so this field does not apply.

Remote | Pv6 address binary. Binary representation of the remote address. Even though thisfield is
defined as a character field, abinary IPv6 addressisreturned in it.

A specia value that may be returned is:

0 Thisconnection isalistening socket so thisfield does not apply. Thisvalue isreturned as a binary O.

Remote port. The port number of the remote end of the connection.
Special values are:

0 Thisconnection isalistening socket so thisfield does not apply.

TCP state. A typical connection goes through the states:

0 Listen. Waiting for a connection request from any remote host.
SY N-sent. Waiting for a matching connection request after having sent connection request.
SY N-received. Waiting for a confirming connection regquest acknowledgement.

Established. The normal state in which datais transferred.

A W N BB

FIN-wait-1. Waiting for the remote host to acknowledge the local system request to end the
connection.

ol

FIN-wait-2. Waiting for the remote host request to end the connection.

6 Close-wait. Waiting for an end connection request from the local user.

7 Closing. Waiting for an end connection request acknowledgement from the remote host.

8 Last-ACK. Waiting for the remote host to acknowledge an end connection request.

9 Timewait. Waiting to allow the remote host enough time to receive the local system's
acknowledgement to end the connection.

10 Closed. The connection has ended.

11 State value not supported by protocol.

&

Error Messages

M essage | D
TCP84CO E
TCP8AC5 E
TCP84C6 E
TCP8ACTE
CPFOF03 E
CPF24B4E
CPF3CIE E
CPF3C21E
CPF3CF1E
CPF3CF2 E
CPF8100 E
CPF9801 E
CPF9802 E
CPF9803 E
CPF9807 E
CPF9808 E
CPF9810 E
CPF9820 E
CPF9830 E
CPF9872 E

Error Message Text

TCP/IP stack not active.

Error providing TCP/IP Network Status list information.

Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.
Connections list qualifier parameter not valid.

Error in retrieving the user space that was created by the caller.
Severe error while addressing parameter list.

Required parameter & 1 omitted.

Format name &1 is not valid.

Error code parameter not valid.

API contains a problem. See prior messages to determine why the failure occurred.
All CPF81xx messages could be returned. xx is from 01 to FF.
Object &2 inlibrary &3 not found.

Not authorized to object &2 in & 3.

Cannot allocate object &2 in library & 3.

Oneor more librariesin library list deleted.

Cannot allocate one or more libraries on library list.

Library &1 not found.

Not authorized to use library & 1.

Cannot assign library & 1.

Program or service program &1 in library & 2 ended. Reason code & 3.

API introduced: V5R1

Top | Communications APIs | APIs by category

List Network Interfaces (QtocLstNetlfc) API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Error Code /10 Char(*)

Service Program: QTOCNETSTS

Threadsafe; Yes

#The List Network Interfaces (QtocLstNetlfc) API returns alist of all logical TCP/IP interfaces with
details. This API returns al 1Pv4 logical interfaces using one output format name, and all 1Pv6 logical
interfaces using a different output format name.<%

TCP/IP must be active; otherwise error message TCP84CO0 will be issued.

Authorities and Locks

User Space Library Authority
*EXECUTE

User Space Authority
*CHANGE

User Space Lock
*SHRNUP

Required Parameter Group

Qualified user space name
INPUT; CHAR(20)

The user space that is to receive the created list. The first 10 characters contain the user space
name, and the second 10 characters contain the name of the library in which the user spaceis
located. Y ou can use these special valuesfor the library name:

*CURLIB Thejob's current library
*LIBL Thelibrary list

Format name
INPUT; CHAR(8)

The format of the logical interface information to be returned. The format names supported are:

NIFC0100 Detailed information about each TCP/IPv4 network interface. Refer to NIFC0100
Format for details on the format.

#»NIFC0200 Detailed information about each TCP/IPv6 network interface. Refer to NIFC0200
Format for details on the format <.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Interface Lists

To request alist of all logical interfaces, use format NIFC0100. The interface description list consists of :
o A user area
« A generic header
« Aninput parameter section
« A header section
o A list data section:
o NIFC0100 format, or
o #NIFC0200 format <

For details about the user area and generic header, see User Space Format for List APIs. For details about
the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the result
may not be valid. For examples of how to process lists, see APl Examples.

Input Parameter Section

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |User space name specified

| 10 | A |CHAR(10) |User space library name specified
| 20 | 14 |CHAR(9 |Format name specified

Header Section

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |User space name used

| 10 | A |CHAR(10) |User space library name used

»Format of Returned Connection Data

To retrieve the list of TCP/IPv4 network interfaces, request format NIFC0100, and you will get a repeating

list of NIFC0100 tables, each one returning information about a single |Pv4 network interface. To retrieve
thelist of TCP/IPv6 network interfaces, request format NIFC0200, and you will get arepeating list of

NIFC0200 tables, each one returning information about a single IPv6 network interface. 4

NIFC0100 Format

The following information about each TCP/IPv4 logical interface is returned for the NIFC0100 format. For
detailed descriptions of the fields in the table, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(15) |Internet address

| 15 | F |CHAR() |Reserved

| 16 | 10 |BINARY(4) |Internet address binary

| 20 | 14 |CHAR(15) INetwork address

| 35 | 23 |CHAR(1) |Reserved

| 36 | 24 |BINARY(4) |Network address binary
| 40 | 28 |CHAR(10) |Network name

| 50 | 32 |CHAR(10) |Line description

| 60 | 3C |CHAR(10) |Interface name

[70 | 46 [CHAR() |Reserved

| 72 | 48 |BINARY(4) |Interface status

| 76 | 4C |BINARY(4) |Interfacetype of service
[80 | 50 [BINARY(4) |interfaceMTU

| 84 | 54 |BINARY(4) |Interfacelinetype

[88 | 58 |[CHAR(15) |Hostaddress

[7103 | 67 |[CHAR() |Reserved

| 104 | 68 |BINARY(4) |Host address binary

| 108 | 6C |CHAR(15) |Interface subnet mask
[123 [7B [CHAR() |Reserved

| 124 | 7C |BINARY(4) |Interface subnet mask binary

| 128 | 80 |CHAR(15) | Directed broadcast address

| 143 | 8F |CHAR(1) |Reserved

| 144 | 90 |BINARY(4) |Directed broadcast address binary
| 148 | 94 |CHAR(8) |Change date

| 156 | 9C |CHAR(6) |Change time

| 162 | A2 |CHAR(15) |Associated local interface

| 177 | Bl |CHAR(3) |Reserved

| 180 | B4 |BINARY(4) |Associated local interface binary
| 184 | B8 |BINARY(4) |Change status

| 188 | BC |BINARY(4) |Packetrules

| 192 | CO |BINARY(4) |Automatic start

| 196 | C4 |BINARY(4) |TRLAN bit sequencing

| 200 | C8 |BINARY(4) |Interfacetype

| 204 | CC |BINARY(4) |Proxy ARP enabled

| 208 | DO |BINARY(4) |Proxy ARPalowed

| 212 | D4 |BINARY(4) |Configured MTU

| 2216 | D8 |[CHAR(24) |Network name- full €

| #240 | FO |CHAR(24) [Interface name- full 4

Field Descriptions

Associated local interface. The internet address, in dotted decimal notation, of the local interface that has
been associated with thisinterface. The following is a specia value:

*NONE No association has been made between this interface and another local interface.

Associated local interface binary. Binary representation of the associated local interface. The following is
aspecia vaue:

0 No association has been made between this interface and another local interface.

Automatic start. Whether the interface is started automatically when the TCP/IP stack is activated.
Possible values are:

0 NO. Thisinterfaceis not started automatically.
1 YES Thisinterfaceis started automatically.

Change date. The date of the most recent change to this interface in the dynamic tables used by the TCP/IP
protocol stack. It isreturned as 8 charactersin theform YYYYMMDD, where:

YYYY Yea
MM Month

DD Day

Change status. The status of the most recent change to this interface in the dynamic tables used by the
TCP/IP protocol stack.

1 Add interface request processed
2 Changeinterface request processed
3 Start interface request processed
4 Endinterface request processed

Changetime. The time of the most recent change to this interface in the dynamic tables used by the
TCP/IP protocol stack. It isreturned as 6 charactersin the form HHMMSS, where:

HH Hour
MM Minute
SS Second

Configured MTU. The configured maximum transmission unit value specified for thisinterface. The
following is aspecia value:

0 LIND. Theinterfaceis not active currently and the MTU was specified as*LIND.

Directed broadcast address. The internet address, in dotted decimal notation, used to broadcast to all
systems attached to the same network or subnetwork as thisinterface. The following is a specia value:

*NONE Theinterfaceis attached to a network that does not support a broadcast operation.

Directed broadcast address binary. Binary representation of the directed broadcast address. The
following is a specia value:

0 Theinterfaceis attached to a network that does not support a broadcast operation.

Host address. Host portion of the internet address, in dotted decimal notation, as determined by the subnet
mask specified for thisinterface.

Host address binary. Binary representation of the host address.
Interfacelinetype. Type of line used by an interface. The following link protocols are supported:

-1 OTHER-
IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (1PX) interface.
IPS - An Internet Protocol (1P) over SNA interface.

ZNote: Asof V5R2, IP over IPX isno longer supported.<%

-2 NONE - Lineisnot defined. Thisis used for the following interfaces. *LOOPBACK,
*VIRTUALIP, *OPC. Thereis no line type value for these interfaces.

-3 ERROR - Thisvalueisdisplayed if any system errrors other than those for *NOTFND are received
while trying to determine the link type for an interface.

-4 NOTFND - Not found. Thisvalueis displayed if the line description object for this interface cannot
be found.

© 00 N O o b~ W N P

ELAN - Ethernet local area network protocol.

TRLAN - Token-ring local area network protocol.

FR - Frame relay network protocol.

ASYNC - Asynchronous communications protocol.

PPP - Point-to-point Protocol.

WLS - Wireless local area network protocol.

X.25 - X.25 protocol.

DDI - Distributed Data I nterface protocol.

TDLC - Twinaxial Datalink Control. Used for TCP/IP over Twinax.

10 L2TP (Virtual PPP) - Layer Two Tunneling Protocol.

Interface M TU. Maximum transmission unit val ue specified for this interface. The following are special
values:

-1 OTHER.

0

IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (1PX) interface.
IPS - An Internet Protocol (1P) over SNA interface.

#Note: Asof V5R2, IPover IPX isno longer supported.<

LIND - Theinterfaceis not active currently and the MTU was specified as*LIND.

Interface name. Thefirst 10 characters of the name of thisinterface.

Interface name - full. The complete 24 character interface name. 44

I nterface status. Current status of thislogical interface.

0

1
2
3
4

Inactive - The interface has not been started. The interface is not active.
Active - Theinterface has been started and is running.

Starting - The system is processing the request to start thisinterface.
Ending - The system is processing the request to end this interface.

RCYPND - An error with the physical line associated with this interface was detected by the system.
The line description associated with thisinterface isin the recovery pending (RCYPND) state.

RCYCNL - A hardware failure has occurred and the line description associated with thisinterface is
in the recovery canceled (RCY CNL) state.

Failed - The line description associated with this interface has entered the failed state.
Failed (TCP) - An error was detected in the IBM TCP/IP Vertical Licensed Internal Code.
DOD - Point-to-Point (PPP) Dial-on-Demand.

I nterface subnet mask. The subnet mask for the network, subnet, and host address fields of the internet

address, in dotted decimal notation, that defines the subnetwork for an interface.
I nterface subnet mask binary. Binary representation of the interface subnet mask.
Interface type. The interface types are:

0 Broadcast capable

1 Non-broadcast capable

2 Unnumbered network

I nterface type of service. The way in which the internet hosts and routers should make trade-offs between
throughput, delay, reliability and cost. The following are specia values:

-1 OTHER-
IPl - An Internet Protocol (1P) over Internetwork Pack Exchange (1PX) interface.
IPS - An Internet Protocol (IP) over SNA interface.

“Note: Asof V5R2, IPover IPX isno longer supported.<
NORMAL - Used for delivery of datagrams.
MINDELAY - Prompt delivery of datagrams with the minimize delay indication.

1
2
3 MAXTHRPUT - Datagrams with maximize throughput indication.
4 MAXRLB - Datagrams with maximize reliability indication.

5

MINCOST - Datagram with minimize monetary cost indication.

Internet address. The internet address, in dotted decimal notation, of an interface.
Internet address binary. Binary representation of the internet address.

Line description Name of the communications line description that identifies the physical network
associated with an interface. The following are specia values:

*1PI Thisinterfaceis used by Internet Protocol (IP) over Internetwork Packet Exchange
(IPX).

#Note: Asof V5R2, IPover IPX isno longer supported.<%
*1PS Thisinterfaceis used by Internet Protocol (IP) over SNA.

*LOOPBACK Thisisaloopback interface. Processing associated with aloopback interface does not
extend to aphysical line.

*VIRTUALIP Thevirtual interface isa circuitless interface. It is used in conjunction with the
associated local interface (L CLIFC) when adding standard interfaces.

*OPC Thisinterface is attached to the optical bus (OptiConnect).

Networ k address. Internet address, in dotted decimal notation, of the | P network or subnetwork to which
the interface is attached.

Network address binary. Binary representation of the network address.

Network name. Thefirst 10 characters of the name of the network that thisinterface is a part of.
#Network name - full. The complete 24 character name of the network that this interface is a part of. <
Packet rules. The kind of packet rules data available for a particular line.
-1 OTHER - An unknown Packet rules value.
None - No filtersand no NAT are loaded for the line specified.
NAT - NAT isenabled for thisline.
Filters - Filters are defined for thisline.
Filtersand NAT - NAT enabled and filters defined.
Filters and |PSec - Filters and | PSec filters are defined for thisline.

ga A W N —» O

NAT and Filtersand |PSec - NAT enabled and Filters and | Psec filters defined.

Proxy ARP enabled. Whether Proxy ARP is currently active for thisinterface. Proxy ARP allows
physically distinct separate networks to appear asif they are asingle logical network. It provides
connectivity between physically separate network without creating any new logical networks and without
updating any route tables.

0 NO - Proxy ARP not enabled.
1 YES- Proxy ARP enabled.

Proxy ARP allowed. This field applies to Opticonnect (*OPC) and Virtual Ethernet interfaces only. For
those types of interfaces, thisfield indicates whether Proxy ARP has been configured to be allowed or not
allowed.

0 NO - Proxy ARP not allowed.

1 YES- Proxy ARP alowed.

2 Unsupported - Proxy ARP allowed field is not supported by thisinterface.

Reserved. Anignored field.

TRLAN bit sequencing. The order the Address Resolution Protocol (ARP) puts bits into the hardware
address for Token Ring. Possible values are:

1 MSB - The most significant bit is placed first.
2 LSB - Theleast significant bit is placed first.

»NIFC0200 Format

The following information about each TCP/IPv6 logical interfaceis returned for the NIFC0200 format. For
detailed descriptions of the fields in the table, see Field Descriptions.

| Offset
| Dec | Hex |Type Field

[0 [0 |[CHAR@5) |intemet IPv6 address

[45 [2D [CHAR®) |Reserved

| 48 | 30 |CHAR(16) |Internet |Pv6 address binary

| 64 | 40 |CHAR(3 |Interface prefix length

[67 [43 [CHAR®) |Reserved

| 68 | 44 |BINARY(4) |Interface prefix length binary

[72 [48 [BINARY(4) |Addresstype

[76 [4C [BINARY(4) |Addressstate

| 80 | 50 |BINARY(8) |Addresspreferred lifetime

| 8 | 58 |CHAR(9) |Address preferred lifetime expiration date
| 9% | 60 |CHAR(6) |Address preferred lifetime expiration time
| 102 | 66 |CHAR(2) |Reserved

[104 [68 |[BINARY(8) |Addressvalidlifefime

| 112 | 70 |CHAR(8) |Address valid lifetime expiration date
| 120 | 78 |CHAR(®) |Address valid lifetime expiration time
| 126 | 7E |CHAR(10) |Line name

| 136 | 83 |BINARY(4) |Interfacelinetype

| 140 | 8C |CHAR(50) |Interface description

[100 [BE [CHAR@5) |Network IPv6 address

[235 [EB [CHAR@) |Reserved

| 236 | EC |CHAR(16) |Network IPv6 address binary

[252 [FC [CHAR@5) |Host IPv6 address

[297 [129 [CHAR®) |Reserved

| 300 | 12C |CHAR(16) |Host IPv6 address binary

[316 [13C [BINARY(4) |[Interface status

| 320 | 140 |BINARY(4) |Automatic start

| 324 | 144 |BINARY(4) |Packetrules

| 328 | 148 |BINARY(4) |Interface source

| 332 | 14C |BINARY(4) |Duplicate address detection transmits
| 336 | 150 |BINARY(4) |Multicast - number of references
[340 [154 [CHAR@) |Reserved

| 344 | 158 |CHAR(8) |Change date

| 352 | 160 |CHAR(6) |Changetime

[358 [166 |CHAR() |Reserved

Field Descriptions

Addresspreferred lifetime. The length of time that a"valid" addressis preferred, in seconds. When the
preferred lifetime expires, the address becomes Deprecated. See the Address State field description for
more information. Valid values range from -31536000 through 4294967295 seconds. Negative values
indicate that the Address preferred lifetime expired that number of seconds ago.

The following are special values:
-1000000000 Infinite - this address has an infinite preferred lifetime.
-1000000001 Not Applicable - thisaddressis not in the Preferred address state, so this field does not
apply.

Addresspreferred lifetime expiration date. The date when this address will no longer be preferred. If the
Address preferred lifetime expiration date and time are in the future, the addressis still preferred. If the
Address preferred lifetime expiration date and time are in the past, then this addressis no longer preferred.
The Address preferred lifetime expiration date is returned as 8 charactersin the form YYYYMMDD.

The meaning of the charactersis as follows:

YYYY VYea
MM Month
DD Day

The following are special values:
00000000 Infinite - this address has an infinite preferred lifetime which never expires.

00000001 Not Applicable - this addressis not in the Preferred address state, so this field does not
apply.

Address preferred lifetime expiration time. The time when this address will no longer be in the preferred
state. If the Address preferred lifetime expiration date and time are in the future, the addressis still
preferred. If the Address preferred lifetime expiration date and time are in the past, then this addressis no
longer preferred. The Address preferred lifetime expiration time is returned as 6 charactersin the form
HHMMSS.

The meaning of the charactersis as follows:

HH Hour
MM Minute
SS Second

The following are special values:
000000 Infinite - this address has an infinite preferred lifetime which never expires.

000001 Not Applicable - this addressis not in the preferred address state, so thisfield does not apply.

Address state. The current state of this 1Pv6 address. |Pv6 addresses are in different states at different
times, due to Duplicate Address Detection (DAD) and address lifetimes. Unicast and Multicast addresses
have different possible states and the only state that applies to either typeis Failed.

When a unicast addressis one of the two "valid" states, Preferred and Deprecated, it may be used as the
source or destination address of a packet. When a unicast addressisin one of the five "invalid" states it may
not be used as the source or destination address of a packet. The five "invalid" states are: Tentative,
Expired, Inactive, Duplicate and Failed.

When amulticast addressis one of the two "valid" states, Idle Listener and Delaying Listener, it may be
used as the source or destination address of a packet. When a multicast addressisin one of the two
"invalid" states, Non-listener and Failed, it may not be used as the source or destination address of a packet.

Possible values are:

-1

11

12

13

Failed - while attempting to move this address from one state to another, an internal error occurred,
preventing completion of the action necessary to perform the state change.

Inactive - the interface has been ended by the user and no further communications will be
performed using this address. The address is available to be reassigned el sewhere.

Duplicate - A duplicate address was detected on the network during Duplicate Address Detection
(DAD), therefore this address was not moved to the Preferred state.

Tentative - an address whose uniqueness on alink is being verified, prior to its assignment to a
physical interface. A tentative addressis not considered assigned to a physical interface in the usual
sense. A physical interface discards received packets addressed to atentative address, but accepts
Neighbor Discovery packets related to Duplicate Address Detection for the tentative address.

Preferred - an address assigned to a physical interface whose use by upper layer protocolsis
unrestricted. Preferred addresses may be used as the source (or destination) address of packets sent
from (or to) the physical interface.

Deprecated - an address assigned to a physical interface whose use is discouraged, but not
forbidden. A deprecated address should no longer be used as a source address in new
communications, but packets sent from or to deprecated addresses are delivered as expected. A
deprecated address may continue to be used as a source address in communications where switching
to a preferred address causes hardship to a specific upper-layer activity (for example, an existing
TCP connection).

Expired - an address assigned to a physical interface whose use is forbidden. An address transitions
to the expired state when its valid lifetime expires. An IPv6 interface with an expired address will
be removed after a period of time.

Non-listener - the initia state of amulticast address when it first joins a multicast group and it is not
yet listening for any incoming Multicast Listener Discovery requests.

Idle listener - this multicast interface is listening for incoming Multicast Listener Discovery
requests.

Delaying listener - this multicast interface has recieved an incoming Multicast Listener Discovery
regquest and has gone to sleep until it is time to wakeup and take action on that request.

Addresstype. The type of IPv6 address that is assigned to this network interface.

Possible values are:

1

3

Unicast - an identifier for asingle interface. A packet sent to aunicast address is delivered to the
interface identified by that address.

Multicast - an identifier for a set of interfaces (typically belonging to different nodes). A packet sent
to amulticast address is delivered to al interfaces identified by that address.

Anycast - an identifier for a set of interfaces (typically belonging to different nodes). A packet sent to
an anycast address is delivered to one of the interfaces identified by that address (the "nearest” one,
according to the routing protocols measure of distance).

Addressvalid lifetime. The length of time, in seconds, that an addressremainsin a"valid" state (Preferred
or Deprecated). When the valid lifetime expires, the address becomes Expired. See the Address State field
description for more information. Valid values range from -31536000 through 4294967295 seconds.
Negative valuesindicate that the Address valid lifetime expired that number of seconds ago.

The following are special values:
-1000000000 Infinite - this address has an infinite valid lifetime.
-1000000001 Not Applicable - this addressis not in avalid address state, so thisfield does not apply.

Addressvalid lifetime expiration date. The date when this address will expire or did expire. If the
Addressvalid lifetime expiration date and time are in the future, the address has not expired yet. If the
Address valid lifetime expiration date and time are in the past, then this address has expired and is till
being returned for a short period of time to indicate that the interface ceased to function because its valid
lifetime expired. The Address valid lifetime expiration date is returned as 8 charactersin the form
YYYYMMDD.

The meaning of the charactersis asfollows:

YYYY Yea
MM Month
DD Day

The following are special values:
00000000 Infinite - this address has an infinite valid lifetime which never expires.

00000001 Not Applicable - thisaddressis not in avalid address state, so this field does not apply.

Addressvalid lifetime expiration time. The time when this address will expire or did expire. If the
Address valid lifetime expiration date and time are in the future, the address has not expired yet. If the
Address valid lifetime expiration date and time are in the past, then this address has expired and is till
being returned for a short period of time to indicate that the interface ceased to function because its valid
lifetime expired. The Address valid lifetime expiration time is returned as 6 charactersin the form
HHMMSS.

The meaning of the charactersis asfollows:

HH Hour
MM Minute
SS Second

The following are special values:
000000 Infinite - this address has an infinite valid lifetime which never expires.

000001 Not Applicable - this addressis not in avalid address state, so thisfield does not apply.

Automatic start. Whether the interface is started automatically when the TCP/IPv6 stack is activated.
Possible values are:

0 NO. Thisinterfaceis not started automatically.

1 YES. Thisinterfaceis started automatically.

Change date. The date of the most recent change to this interface in the dynamic tables used by the
TCP/IPv6 protocol stack. It isreturned as 8 charactersintheform YYYYMMDD, where:

YYYY VYear
MM Month
DD Day

Changetime. Thetime of the most recent change to this interface in the dynamic tables used by the
TCP/IPv6 protocol stack. It isreturned as 6 characters in the form HHMMSS, where:

HH Hour
MM Minute
SS Second

Duplicate addr ess detection transmits. Specifies the number of Duplicate Address Detection (DAD)
transmissions the stack has sent out on this interface.

Host 1Pv6 address. Host portion of the internet address, in IPv6 address format, as determined by the
prefix length configured for thisinterface. Thisfield is NULL padded.

Host 1Pv6 address binary. Binary representation of the host |Pv6 address. Even though thisfield is
defined as a character field, abinary IPv6 addressisreturned in it.

I nterface description Configured free form comment field about this interface.
Interface line type. Type of line used by the interface. The following link protocols are supported:
-1 OTHER

-2 NONE - Lineisnot defined. Thisvalue is used for the following interfaces: * LOOPBACKS6,
*VIRTUALIP, *OPC. Thereis no line type value for these interfaces.

-3 ERROR - Thisvalueisdisplayed if any system errrors other than those for *NOTFND are received
while trying to determine the link type for an interface.

-4 NOTFND - Not found. Thisvalue is displayed if the line description object for this interface cannot
be found.

ELAN - Ethernet local area network protocol.
TRLAN - Token-ring local area network protocol.
FR - Frame relay network protocol.

ASYNC - Asynchronous communications protocol.

PPP - Point-to-point Protocol.

o o0 A W DN BB

WLS - Wireless local area network protocol.

7 X.25-X.25 protocol.

8 DDl - Digributed Data I nterface protocol.

9 TDLC- Twinaxial Datalink Control. Used for TCP/IP over Twinax.
10 L2TP (Virtual PPP) - Layer Two Tunneling Protocol.

11 1Pv6 Tunneling Line - Any kind of IPv6 over IPv4 tunnel.

Interface prefix length. The prefix length defines how many bits of the interface IPv6 address are in the
prefix. It isazoned decimal number which specifies how many of the left-most bits of the address make up
the prefix. The prefix length is used to generate network and host addresses. Thisfield is NULL padded.

Interface prefix length binary. Binary representation of the interface prefix length.
I nterface sour ce Specifies how thisinterface was added to the TCP/IPv6 stack.
Possible values are:
1 Stateless - the interface was added to the stack by the IPv6 statel ess autoconfiguration mechanism.

2 Stateful - the interface was added to the stack by the 1Pv6 stateful configuration mechanism (that is,
DHCPV6).

3 Manual - the interface was added to the stack by manual configuration.

I nterface status. Current status of thislogical interface.
0 Inactive - Theinterface has not been started. The interfaceis not active.
1 Active- Theinterface has been started and is running.
2 Starting - The system is processing the request to start thisinterface.
3 Ending - The system is processing the request to end thisinterface.
4

RCYPND - An error with the physical line associated with this interface was detected by the system.
The line description associated with thisinterface isin the recovery pending (RCY PND) state.

5 RCYCNL - A hardware failure has occurred and the line description associated with thisinterfaceis
in the recovery canceled (RCY CNL) state.

6 Failed - Theline description associated with this interface has entered the failed state.
7 Failed (TCP) - An error was detected in the IBM TCP/IP Vertical Licensed Internal Code.

Internet | Pv6 address. The internet address, in IPv6 address format, of the interface.

Internet 1Pv6 address binary. Binary representation of the internet |Pv6 address. Even though thisfield is
defined as a character field, abinary IPv6 addressisreturned in it.

Line name. Name of the communications line description that identifies the physical network associated
with an interface. Thisfield isNULL padded.

The following are special values:

*LOOPBACK6 Thisisthe IPv6 loopback interface. Processing associated with aloopback interface
does not extend to a physical line.

*VIRTUALIP Thevirtual interfaceisacircuitless interface. It is used in conjunction with the
associated local interface (L CLIFC) when adding standard interfaces.

*OPC Thisinterface is attached to the optical bus (OptiConnect).
*TNLCFG64 Thisinterface is associated with a configured 6-4 tunneling line.

Multicast - number of references. The number of Sockets clients that have joined this multicast group.
Thefollowing is a special value:

-1 Thisinterfaceisnot aMulticast address and this field does not apply.

Network | Pv6 address. Internet address, in |Pv6 address format, of the |Pv6 network or subnetwork to
which the interface is attached. Thisfield is NULL padded.

Network | Pv6 address binary. Binary representation of the network 1Pv6 address. Even though this field
is defined as a character field, abinary IPv6 addressisreturned init.

Packet rules. The kind of packet rules data available for the particular line this interface is associated with.
-1 OTHER - Anunknown Packet rules value.

None - No filtersand no NAT are loaded for the line specified.

NAT - NAT isenabled for thisline.

Filters - Filters are defined for thisline.

Filtersand NAT - NAT enabled and filters defined.

Filters and |PSec - Filters and 1PSec filters are defined for thisline.

g A W N B~ O

NAT and Filters and IPSec - NAT enabled and Filters and | Psec filters defined.

Reserved. Anignored field. €

Error Messages

Message | D Error Message Text

TCP84CO E TCP/IP stack not active.

TCP84C5 E API error listing TCP/IP Network Status list information.

TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.
TCP84C9 | Information returned incompl ete.

CPFOFO3 E Error in retrieving the user space that was created by the caller.
CPF24B4 E Severe error while addressing parameter list.

CPF3CI1EE
CPF3C21 E
CPF3CF1 E
CPF3CF2 E
CPF8100 E
CPF9801 E
CPF9802 E
CPF9803 E
CPF9807 E
CPF9808 E
CPF9810 E
CPF9820 E
CPF9830 E
CPF9872 E

Required parameter & 1 omitted.

Format name &1 is not valid.

Error code parameter not valid.

API contains a problem. See prior messages to determine why the failure occurred.
All CPF81xx messages could be returned. xx isfrom 01 to FF.
Object &2 in library &3 not found.

Not authorized to object &2 in & 3.

Cannot allocate object &2 in library & 3.

One or more librariesin library list deleted.

Cannot allocate one or more librarieson library list.

Library &1 not found.

Not authorized to use library & 1.

Cannot assign library &1.

Program or service program &1 in library &2 ended. Reason code & 3.

API introduced: V5R1

Top | Communications APIs | APIs by category

List Network Routes (QtocLstNetRte) API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Error Code /10 Char(*)

Service Program: QTOCNETSTS

Threadsafe; Yes

#The List Network Routes (QtocL stNetRte) API returns adetailed list of all routes. This API returns all
| Pv4 routes using one output format name, and all 1Pv6 routes using a different output format name. <

TCP/IP must be active on this system; otherwise, a message will be issued.

Authorities and Locks

User Space Library Authority
*EXECUTE

User Space Authority
*CHANGE

User Space Lock
*SHRNUP

Required Parameter Group

Qualified user space name
INPUT; CHAR(20)

The user space that isto receive the created list. Thefirst 10 characters contain the user space
name, and the second 10 characters contain the name of the library where the user space islocated.
Y ou can use these special valuesfor the library name:

*CURLIB Thejob's current library
*LIBL Thelibrary list

Format name
INPUT; CHAR(8)

The format of the route information to be returned. The format names supported are:

NRTEO0100 Detailed information about each TCP/IPv4 route. Refer to NRTEO0100 Format for
details on the format.

#»NRTE0200 Detailed information about each TCP/IPv6 route. Refer to NRTE0200 Format for
details on the format.<%

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Route Lists

Torequest alist of al routes, use format NRTEO0100.
The route description list consists of:

o A user area

A generic header
An input parameter section
« A header section
o A list data section:
« 0 NRTEO100 format, or
o #NRTEO0200 format#<

For details about the user area and generic header, see User Space Format for List APIs. For details about
the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the result
may not be valid. For examples of how to processlists, see APl Examples.

Input Parameter Section

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |User space name specified

| 10 | A |CHAR(10) |User space library name specified
| 20 | 14 |CHAR() |Format name specified

Header Section

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |User space name used

| 10 | A |CHAR(10) |User space library name used

»Format of Returned Connection Data

To retrieve the list of TCP/IPv4 routes, request format NRTEO0100, and you will get arepeating list of

NRTEOQ100 tables, each one returning information about a single IPv4 route. To retrieve the list of
TCP/IPv6 routes, request format NRTE0200, and you will get arepeating list of NRTEO0200 tables, each

one returning information about a single IPv6 route. 4%

NRTEO0100 Format

The following information about each TCP/IPv4 route is returned for the NRTEO0100 format. For detailed

descriptions of the fields in the table, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(15) |Route destination

| 15 | F |CHAR() |Reserved

| 16 | 10 |BINARY(4) |Routedestination binary
[20 | 14 |[CHAR(5) |Subnet mask

| 35 | 23 |CHAR(1) |Reserved

[736 | 24 |[BINARY(4) |Subnet mask binary

| 40 | 28 |CHAR(15) INext hop

| 55 | 37 |CHAR(1) |Reserved

| 56 | 38 |BINARY(4) |Next hop binary

| 60 | 3C |BINARY(4) |Routestatus

| 64 | 40 |BINARY(4) |Typeof service

[68 | 44 [BINARY(4) |RouteMTU

| 72 | 48 |BINARY(4) |Routetype

| 76 | 4C |BINARY(4) |Routesource

| 80 | 50 |BINARY(4) |Route precedence

| 84 | 54 |BINARY(4) |Local binding interface status
| 8 | 58 |BINARY(4) |Local binding type

| 92 | 5C |BINARY(4) |Local bindinglinetype
| 9% | 60 |CHAR(15) |Local binding interface
| 111 | 6F |CHAR(1) |Reserved

| 112 | 70 |BINARY(4) |Local binding interface binary

| 116 | 74 |CHAR(15) |Local binding subnet mask

| 131 | 83 |CHAR(1) |Reserved

| 132 | 84 |BINARY(4) |Local binding subnet mask binary

| 136 | 88 |CHAR(15) |Local binding network address

| 151 | 97 |CHAR(1) |Reserved

| 152 | 98 |BINARY(4) |Local binding network address binary
| 156 | 9C |CHAR(10) |Local binding line description

| 166 | A6 |CHAR(9) |Change date

| 174 | AE |CHAR(6) |Changetime

Field Descriptions

Change date.The date of the most recent change to this route in the dynamic tables used by the TCP/IP
protocol stack. It isreturned as 8 charactersin theform YYYYMMDD, where:

YYYY Yea
MM Month
DD Day

Change time. The time of the most recent change to this route in the dynamic tables used by the TCP/IP
protocol stack. It isreturned as 6 characters in the form HHMMSS, where:

HH Hour
MM Minute
SS Second

L ocal binding interface. The IP interface to bind to this route.
Local binding interface binary. Binary representation of the local binding interface.
L ocal binding interface status. The current status of thislogical interface.
The possible values are:

0 Inactive - Theinterface has not been started. The interface is not active.

1 Active- Theinterface has been started and and is running.

2 Starting - The system is processing the request to start this interface.
3 Ending - The system is processing the request to end this interface.
4

RCYPND - An error with the physical line associated with this interface was detected by the system.
The line description associated with thisinterface isin the recovery pending (RCYPND) state.

5 RCYCNL - A hardware failure has occurred and the line description associated with thisinterfaceis
in the recovery canceled (RCY CNL) state.

Failed - The line description associated with this interface has entered the failed state.
Failed (TCP) - An error was detected in the IBM TCPF/IP Vertical Licensed Internal Code.
DOD - Point-to-Point (PPP) Dial-on-Demand.

© 0 N O

Active Duplicate IP Address Conflict - Another host on the LAN responded to a packet destined for
thislogical interface.

Local binding line description. Each TCP/IP interface is associated with a network. Thisfield displaysthe
name of the communications line description or virtual line (L2TP) that identifies the network associated
with an interface. The following are special values:

*1PI Thisinterface is used by Internet Protocol (IP) over Internetwork Packet Exchange
(IPX)

ZNote: Asof V5R2, IP over IPX isno longer supported.<%
Thisinterfaceis used by Internet Protocol (IP) over SNA.

*LOOPBACK Thisisaloopback interface. Processing associated with aloopback interface does not
extend to aphysical line.

*VIRTUALIP Thevirtua interface isa circuitless interface. It is used in conjunction with the
associated local interface (L CLIFC) when adding standard interfaces.

*OPC 4 Thisinterfaceis attached to the optical bus (OptiConnect).

L ocal binding line type. Indicates the type of line used by an interface. The following link protocols are
supported:

-1 OTHER-
o IPI - Aninternet Protocol (IP) over Internetwork Pack Exchange (IPX).
« IPS- AnInternet Protocol (IP) over SNA interface.

#Note: Asof V5R2, IPover IPX isno longer supported.<%

-2 NONE - Lineis not defined. Thisis used for the following interfaces: * LOOPBACK,
*VIRTUALIP, *OPC. Thereisno linetype vaue for these interfaces.

-3 ERROR - Thisvaueisdisplayed if any system errrors other than those for *NOTFND are received
while trying to determine the link type for an interface.

-4 NOTFND - Not found. Thisvalueisdisplayed if the line description object for this interface cannot
be found.

ELAN - Ethernet local area network protocol.
TRLAN - Token-ring local area network protocol.

FR - Frame relay network protocoal.

A W N BB

ASYNC - Asynchronous communications protocol.

PPP - Point-to-point Protocol.

WLS - Wirelessloca area network protocol.
X.25 - X.25 protocol.

DDI - Distributed Data Interface protocol.

© 00 N o o

TDLC - Twinaxial Datalink Control. Used for TCP/IP over Twinax.

L ocal binding network address. The internet address, in dotted decimal notation, of the IP network or
subnetwork that the interface is attached to.

L ocal binding network address binary. Binary representation of the local binding network address.

Local binding subnet mask. The subnet mask for the network, subnet, and host address fields of the
internet address, in dotted decimal notation, that defines the subnetwork for an interface.

Local binding subnet mask binary. Binary representation of the local binding subnet mask.
Local binding type. The possible values are;
0 Dynamic

1 Static

Next hop. The internet address of the first system on the path from your system to the route destination in
dotted decimal notation. The following are specia values:

*DIRECT

Thisisthe next hop value of aroute that is automatically created. When an interface is added to this system,
aroute to the network the interface attaches to is also created.

Next hop binary. The binary represenation of the next hop. For * DIRECT thiswill be the local binding
network address.

Reserved. Anignored field.

Route destination. The Internet Protocol (IP) address, in dotted decimal notation, of the ultimate
destination reached by this route. When used in combination with the subnet mask and the type of service
values, the route destination identifies aroute to a network or system.

Route destination binary. The binary representation of the route destination.

Route MTU. A number representing the maximum transmission unit (MTU) value for this route in bytes.
The following are special values:

-1 OTHER-
« IPI - Aninternet Protocol (IP) over Internetwork Pack Exchange (1PX) interface.
« IPS- AnInternet Protocol (1P) over SNA interface.

“Note: Asof V5R2, IPover IPX isno longer supported.<

0 IFC- Therouteisnot currently active and the MTU was specified as *IFC.

Route precedence. Identify priority of route, range 1-10. Lowest priority being 1.
Route sour ce. Specifies how this route was added to the IP routing tables. The possible values are:
-1 OTHER - The route was added by a sockets input/output control (I0Ctl) or other mechanism.
CFG - The route was added with system configuration commands.
ICMP - The route was added by the Internet Control Message Protocol (ICMP) redirect mechanism.
SNMP - The route was added by the Simple Network Management Protocol (SNMP).

w N - O

RIP - The route was added by the Routing Information Protocol (RIP).

Route status. Indicated whether this route is available.

1 YES- Therouter specified by the next hop value for thisinterface is available for use. Thisrouteis
included amoung the routes considered when datagram routing is performed by TCP/IP.

2 NO - Therouter specified by the next hop value for thisinterface is not available for use, interfaceis
not active. Thisrouteis not included amoung the routes considered when datagram routing is
performed.

3 DOD - Thisroute is used for Point-to-Point (PPP) Dial-on-Demand. Currently, this Dial-on-Demand
route is not available. The route will become available when a Dial-on-Demand session is initiated
for the interface this route is associated with.

4 NO GATEWAY - Therouter specified by the next hop value for thisinterface is not available for
use, the router may be experiencing a problem.

Route type. The route types are:
0 DFTROUTE - A default route.
1 DIRECT - A route to anetwork or subnetwork to which this system has a direct physical connection.
2 HOST - A route to a specific remote host.
3 SUBNET - Anindirect route to aremote subnetwork.
4

NET - Anindirect route to a remote network.

Subnet mask. The actual value of the subnet mask in dotted decimal notation.
Subnet mask binary. The binary representation of the subnet mask.

Type of service. Defines how the internet hosts and routers should make trade-offs between throughput,
delay, reliability and cost. The following are specia values:

-1 OTHER-
« IPI - Aninternet Protocol (IP) over Internetwork Pack Exchange (1PX) interface.
« IPS- AnInternet Protocol (1P) over SNA interface.

#Note: Asof V5R2, IP over IPX isno longer supported.<%
1 NORMAL - Used for delivery of datagrams.

MINDELAY - Prompt delivery of datagrams with the minimize delay indication.
MAXTHRPUT - Datagrams with maximize throughput indication.
MAXRLB - Datagrams with maximize reliability indication.

aa A W DN

MINCOST - Datagrams with minimize monetary cost indication.

#NRTEO0200 Format

The following information about each TCP/IPv6 route is returned for the NRTEQ200 format. For detailed

descriptions of the fields in the table, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Fied

| 0 | 0 |CHAR(45) |Route destination

[45 | 2D [CHAR(®) |Reserved

| 48 | 30 |CHAR(16) |Route destination binary
64 [40 [CHAR®) |Prefixlength

[67 | 43 [CHAR() |Reserved

| 72 | 48 |BINARY(4) |Prefix length binary

| 76 | 4C |BINARY(4) |Next hop addressfamily
[80 | 50 |[CHAR@45) |NexthopIPv6

[125 | 7D [CHAR®) |Reserved

| 128 | 80 |CHAR(16) |Next hop IPv6 binary
[144 | 90 [CHAR(15) |NexthopIPv4

[159 | 9F |[CHAR()) |Reserved

| 160 | AO |BINARY(4) |Nexthop IPv4 binary
| 164 | A4 |CHAR(10) |Local binding line name
[174 | AE [CHAR() |Reserved

| 176 | BO |BINARY(4) |Local binding linetype
| 180 | B4 |BINARY(4) |Loca binding line status
| 184 | B8 |BINARY(4) |Routestatus

| 188 | BC |BINARY(8) |Routelifetime remaining
| 196 | C4 |BINARY(4) |Routelifetimeat creation
| 200 | C8 |BINARY(4) |Routesource

| 204 | CC |BINARY(4) |Routetype

| 208 | DO |BINARY(4) |Configured routeMTU

| 212 | D4 |BINARY(4) |Actua routeMTU

| 216 | D8 |BINARY(4) |Ison-link

| 220 | DC |BINARY(4) |Duplicateindicator

| 224 | EO |CHAR(8) |Change date

| 232 | E8 |CHAR(®) |Changetime

| 238 | EE |CHAR(9) |Expiration date

| 246 | F6 |CHAR(6) |Expiration time

Field Descriptions

Actual route MTU. A number representing the maximum transmission unit (MTU) value for thisroute in
bytes.

Thefollowing is a special value:

0 *IP6LINMTU - Therouteis not currently active and the MTU was specified as*IP6LINMTU, the
MTU value of the line to which this route is bound.

Change date. The date of the most recent change to this route in the dynamic tables used by the TCP/IPv6
protocol stack. It isreturned as 8 charactersin theform YYYYMMDD, where:

YYYY VYear
MM Month
DD Day

Changetime. The time of the most recent change to this route in the dynamic tables used by the TCP/IPv6
protocol stack. It isreturned as 6 characters in the form HHMMSS, where:

HH Hour
MM Minute
SS Second

Configured route MTU. A number representing the configured maximum transmission unit (MTU) value
for thisroute in bytes.

Thefollowing is a special value:

0 *IP6LINMTU - Theroute MTU was specified as *IPBLINMTU, the MTU value of the line to which
this route is bound.

Duplicateindicator. Indicates whether this route is a duplicate of another route in the routing table or not,
and also whether there are any routes which are duplicates of this route. Use the Route status field to
determine whether the route isin use or not.

Possible values are:
1 Thisrouteisnot aduplicate of another route and it does not have any duplicates.
2 Thisrouteisnot aduplicate of ancother route but it does have duplicates.

3 Thisrouteisaduplicate of another route.

Expiration date. The date when this route will expire or did expire. If the Expiration date and time arein
the future, the route has not expired yet. If the Expiration date and time are in the past, then this route has

expired and is still being returned for a short period of time to indicate that the route ceased to function
because its lifetime expired. The Expiration date is returned as 8 charactersin theform YYYYMMDD.

The meaning of the charactersis asfollows:

YYYY Yea
MM Month
DD Day

Thefollowing is aspecia value:

00000000 Infinite - this route has an infinite lifetime which never expires.

Expiration time. The time when this route will expire or has expired. If the Expiration date and time arein
the future, the route has not expired yet. If the Expiration date and time are in the past, then this route has
expired and is still being returned for a short period of time to indicate that the route ceased to function
because its lifetime expired. The Expiration time is returned as 6 charactersin the form HHMMSS.

The meaning of the charactersis as follows:

HH Hour
MM Minute
SS Second

Thefollowing isa specia value:

000000 Infinite - this route has an infinite lifetime which never expires.

Ison-link. Indicates whether this route is for a directly attached prefix (network) or not.
Possible values are:
0 Unknown, the on-link status of this route is undetermined.

1 Yes thisisarouteto adirectly attached prefix.

Local binding line name. The name of the communications line description to which this route is bound.
Thisfield isNULL padded.

The following are special values:

*LOOPBACK6 Thisrouteis bound to the loopback interface. Processing associated with the loopback
interface does not extend to a physical line.

*TNLCFG64 Thisinterface is bound to a configured 6-4 tunneling line.

L ocal binding line status. The current operational status of the communications line to which thisrouteis
bound.

Possible values are;

1 Active- Thelineisoperational.

2 Inactive - Thelineisnot operational.

3 Failed - The desired state of the lineis Active, but it is currently in the Inactive state.

Local binding linetype. Indicates the type of line to which thisroute is bound.
Possible values are:
-1 OTHER

-2 NONE - Lineisnot defined. Thisvalue is used for the following interfaces: * LOOPBACKS6,
*VIRTUALIP, *OPC. Thereis no line type value for these interfaces.

-3 ERROR - Thisvalueisdisplayed if any system errrors other than those for *NOTFND are received
while trying to determine the link type for an interface.

-4 NOTFND - Not found. Thisvalueis displayed if the line description object for this interface cannot
be found.

ELAN - Ethernet local area network protocol.
TRLAN - Token-ring local area network protocol.
FR - Frame relay network protocol.

ASYNC - Asynchronous communications protocol.
PPP - Point-to-point Protocol.

WLS - Wireless local area network protocol.

X.25 - X.25 protocaol.

DDI - Distributed Data Interface protocol.

© 00 N o o~ w N P

TDLC - Twinaxial Datalink Control. Used for TCP/IP over Twinax.
10 L2TP (Virtua PPP) - Layer Two Tunneling Protocol.
11 1Pv6 Tunneling Line - Any kind of 1Pv6 over I1Pv4 tunnel.

Next hop address family. The address family of the Next Hop address for this route. Use thisfield to
determine whether the IPv4 or IPv6 Next Hop field contains the value of the next hop.

Possible values are:
1 AF_INET - The next hop is an IPv4 address. Use the Next hop |Pv4 fields.
2 AF_INET6 - The next hop isan IPv6 address. Use the Next hop IPv6 fields.

Next hop I Pv4. The IPv4 internet address of the first system on the path from this system to the route
destination in dotted-decimal format. The next hop will only be an IPv4 address when the route uses an
IPv6 over IPv4 tunnel. Thisfield is only valid when the value of the Next hop address family field is
AF_INET. Thisfield isNULL padded

Next hop 1Pv4 binary. The binary representation of the Next hop IPv4 field. Thisfield isonly valid when
the value of the Next hop address family field is AF_INET.

Next hop IPv6. The IPv6 internet address of the first system on the path from your system to the route
destination in IPv6 address format. Thisfield is only valid when the value of the Next hop address family
fieldisAF_INET®6. ThisfieldisNULL padded.

The following specia value may be returned:

*DIRECT Thisisthe next hop value of aroute that is automatically created. When an interfaceis
added to this system, aroute to the network the interface attachesto is also created.

Next hop 1Pv6 binary. The binary representation of the Next hop I1Pv6 field. Even though thisfield is
defined as a character field, abinary IPv6 addressis returned in it except when the following special
character values are returned. Thisfield is only valid when the value of the Next hop address family field is
AF_INETS6.

The following special value may be returned:

*DIRECT Thisisthe next hop value of aroute that is automatically created. When an interfaceis
added to this system, aroute to the network the interface attachesto is also created.

Prefix length. The prefix length defines how many bits of the route destination 1Pv6 address are in the
prefix. It is azoned decimal number which specifies how many of the left-most bits of the address make up
the prefix. The prefix length is used to generate network and host addresses. Thisfield is NULL padded.

Prefix length binary. Binary representation of the prefix length.

Reserved. Anignored field.

Route destination. The Internet Protocol version 6 (IPv6) address, in IPv6 address format, of the ultimate
destination reached by this route. When used in combination with the prefix length the route destination
identifies aroute to a network or system. Thisfield isSNULL padded.

Route destination binary. The binary representation of the route destination. Even though thisfield is
defined as a character field, abinary I1Pv6 addressisreturnedinit.

Routelifetime at creation. The route lifetime value which this route had when it was first created, either
automatically or by manual configuration. The route lifetime value is the length of time, in seconds, that a
route remainsin the route table. Only routes which are discovered on the network will have route lifetimes
shorter than infinite. Valid values range from 1 through 4294967295 seconds.

Thefollowing is a special value:

0 Infinite - thisroute had an infinite lifetime when it was created.

Route lifetime remaining. The length of time, in seconds, that a route remains in the route table. Only
routes which are discovered on the network will have route lifetimes shorter than infinite. Valid values
range from -31536000 through 4294967295 seconds. Negative values indicate that the route has expired,
but it is being retained for a short period of time to show why the route ceased to function.
Thefollowing is a special value:

-1000000000 Infinite - this route has an infinite lifetime.

Route sour ce. Specifies how this route was added to the IPv6 routing table.

The possible values are:

0 Unknown
1 ICMPv6 Redirect - This route was added by the ICMPv6 redirect mechanism.

2 |ICMPv6 Router Advertisement Router Lifetime - This route was added because of the presence of a
non-zero value in the Router Lifetime field in a Router Advertisement packet received by the system.

3 ICMPv6 Router Advertisement Prefix Information Option - This route was added because of the
presence of a Prefix Information Option on a Router Advertisement packet received by the system.

4 CFG RTE - Thisroute was manually configured.
5 CFG IFC - Thisroute was added when because of a manually configured interface.

6 Autoconfigured Interface - This route was added when because of an interface added by stateless
autoconfiguration.

7 RIP- Thisroute was added by the Routing Information Protocol (RIP).
8 OSPF - Thisroute was added by the Open Shortest Path First (OSPF) routing protocol.

9 ROUTING - Thisroute was determined to be necessary and added by the TCP/IP stack on this
system.

Route status. The current state of the route.
Possible values are:
0 Unknown
1 Active- Thisrouteis currently active and isin the current route search path.

3 Inactive - Thisrouteis not in the current route search path, and is not being used.

Route type. The type of route that thisrouteis.

Possible values are:

0 Unknown
1 DFTROUTE - A default route.
2 DIRECT - A route to a network to which this system has a direct physical connection.
3 HOST - A route to a specific remote host.
4 NET - Anindirect route to a remote network.
&

Error Messages

Message | D Error Message Text
TCP84CO E TCP/IP stack not active.
TCP84C5 E API error providing TCP/IP Network Status list information.

TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.
TCP84C9 | Information returned incomplete.

CPFOFO3 E Error in retrieving the user space that was created by the caller.
CPF24B4 E Severe error while addressing parameter list.

CPF3CLEE Required parameter & 1 omitted.

CPF3C21E Format name &1 is not valid.

CPF3CF1E Error code parameter not valid.

CPF3CF2 E API contains a problem. See prior messages to determine why the failure occurred.
CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.
CPF9801 E Object &2 inlibrary &3 not found.

CPF9802 E Not authorized to object &2in & 3.

CPF9803 E Cannot allocate object &2 in library & 3.

CPF9807 E One or more librariesin library list deleted.

CPF9808 E Cannot allocate one or more librarieson library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library & 1.

CPF9830 E Cannot assign library & 1.

CPFO872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API introduced: V5R1

Top | Communications APIs | APIs by category

List Physical Interface ARP Table
(QtocLstPhylfcARPTDI) API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Linename Input Char(10)
4 Error Code 1/O Char(*)

Service Program: QTOCNETSTS

Threadsafe: Yes

The List Physical Interface ARP Table (QtocL stPhylfcARPTDbI) API returnsalist of al entriesin the ARP
(Address Resolution Protocol) table for the specified line.

TCP/IP must be active on this system; otherwise, error message TCP84CO0 will be issued.

Authorities and Locks

User Space Library Authority
*EXECUTE

User Space Authority
*CHANGE

User Space Lock
*SHRNUP

Required Parameter Group
Qualified user space name
INPUT; CHAR(20)

The user space that receives the information, and the library in which it islocated. The first 10
characters contain the user space name, and the second 10 characters contain the library name. Y ou
can use these special valuesfor the library name:

*CURLIB Thejob'scurrent library.
*LIBL Thelibrary list.

Format name

INPUT; CHAR(8)

The format of the space information to be returned. The format names supported are:
ARPTO0100

List of ARP table entries for a specified interface. Refer to ARPT0100 Format for details on the
format.

Linename
INPUT; CHAR(10)

The name of the physical interface to retrieve ARP table entries for.
Error Code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of ARP Table Lists

To request alist of ARP table entries for an interface, use format ARPT0100.

The ARP table list consists of :
o A user area
« A generic header
« Aninput parameter section
o A header section
o A list data section:
o ARPTO0100 format.

For details about the user area and generic header, see User Space Format for List APIs. For details about
the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the result
may not be valid. For examples of how to processlists, see APl Examples.

Input Parameter Section

| Offset ’ ’

| Dec | Hex |Type Fied

| 0 | 0 |CHAR(10) |User space name specified

| 10 | A |CHAR(10) |User space library name specified
| 20 | 14 |CHAR() |Format name specified

| 28 | 1C |CHAR(10) |Line name specified

Header Section

| Offset ’ ’

| Dec | Hex |Type Fied

| 0 | 0 |CHAR(10) |User space name

| 10 | A |CHAR(10) |User space library name used
| 20 | 14 |CHAR(10) |Line name used

ARPT0100 Format

The following information about an ARP table entry is returned for the ARPT0100 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset
Dec | Hex ’Type ’Fi eld
0 0 |CHAR(15) |Internet address
15 F [CHARQ) |Reserved
16 10 [BINARY(4) |Internet address binary
20 14 [BINARY(4) |[Linetype
18 |BINARY(4) |Ethernet type

|
|
|
|
|
|
2
|
|
|
|
|
|

|
|
|
|
|
28 | 1C |[BINARY(4) |Typeof entry
|
|
|
|
|

32 20 |BINARY(4) |Datalink connection identifier (DLCI)

36 24 |BINARY(4) |Routing information field (RIF) valid mask
40 28 |CHAR(18) |Routing information field (RIF)

58 3A [CHAR(17) |Physical address

75 | 4B [CHAR(D) |Reserved

Field Descriptions

Data link connection identifier (DLCI). Thisfield identifiesalogical connection on asingle physical
Frame Relay link. Each logical connection has a unique integer identifying it. Valid values range from 1 to
255, and thisfield is only valid when the line type field corresponds to Frame Relay.

Ethernet type. Thetype of Ethernet framing in use. ONLY valid if the interface isusing an ELAN
(Ethernet) or WLS (Wireless) line.

-1 Both Ethernet Version 2 and |EEE 802.3 framing (only set for local or proxy entries)
1 Ethernet Version 2

6 |EEE802.3

Internet address. The |P address of the interface in dotted-decimal notation.
Internet address binary. The binary representation of the 1P address.
Linetype. The type of physical line used by an interface. The possible values are:
ELAN - Ethernet local area network protocol.
TRLAN - Token-ring local area network protocol.

1

2

3 FR- Framerelay network protocol.

6 WLS- Wirelesslocal area hetwork protocol.
8

DDI - Distributed Data Interface protocol.

Physical address. The MAC address of the interface. Format: XX:XX:XX:XX:XX:XX, where'X'isa
hexadecimal digit.

Reserved. Anignored field.

Routing information field (RIF). The architected token-ring or FDDI source routing information. Use the
RIF Valid Mask field to determine the validity of thisfield.

Routing information field (RIF) valid mask. Tellswhether the RIF is valid for this ARP entry or not. The
possible values are:

0 TheRIFisnot valid.
1 TheRIFisvalid.

Type of entry. The type of ARP table entry. The possible values are;

1 Dynamic - A norma ARP table entry which will be removed automatically after a period of
inactivity.

2 Locd - Thisinterfaceislocal to this host. Static entry.

3 Proxy - Thisinterface is proxying ARP requests/replies for other machines. Static entry.

Error Messages

TCP84CO E TCP/IP stack not active.

TCP84C3 E The specified line name does not exist.

TCPB4C4 E The specified line name corresponds to a line type that does not support ARP.
TCP84C5 E AP error providing TCP/IP Network Status information.

TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.
TCP84C9 | Information returned incompl ete.

CPF24B4 E Severe error while addressing parameter list.

CPF3C21E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.
CPF9801 E Object &2 inlibrary &3 not found.

CPF9802 E Not authorized to object &2 in & 3.

CPF9803 E Cannot allocate object &2 in library & 3.

CPF9807 E One or more librariesin library list deleted.
CPF9808 E Cannot allocate one or more librarieson library list.
CPF9810E Library &1 not found.

CPF9820 E Not authorized to use library & 1.

CPF9830 E Cannot assign library & 1.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API introduced: V5R1

Top | Communications APIs | APIs by category

List Physical Interface Data (QtocLstPhylfcDta)
API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Error Code /10 Char(*)

Service Program: QTOCNETSTS

Threadsafe: Yes

#The List Physical Interface Data (QtocL stPhylfcDta) API returns alist of physical interfaces and detailed
information about TCP/IP related data for each one. Depending on which output format is requested, |Pv4
and aso IPv6 information can be requested for each physical interface. 44

TCP/IP must be active on this system; otherwise error message TCP84CO0 will be issued.

Authorities and Locks

User Space Library Authority
*EXECUTE

User Space Authority
*CHANGE

User Space Lock
*SHRNUP

Required Parameter Group
Qualified user space name
INPUT; CHAR(20)
The user space that receives the information, and the library in which it is located. The first 10
characters contain the user space name, and the second 10 characters contain the library name. Y ou
can use these special values for the library name:
*CURLIB Thejob's current library.

*LIBL Thelibrary list.

Format name

INPUT; CHAR(8)
The format of the space information to be returned. The format names supported are:

IFCD0100 Basic physica interface data and detailed | Pv4 specific data. Refer to IFCD0100
Format for details on the format.

IFCD0200 Filter and IPSec Physical interface data. Refer to IFCD0100 Format and
|FCD0200 Format for details on the format.

#|FCD0300 Detailed IPv6 specific physical interface data. Refer to IFCD0100 Format and
|FCD0300 Format for details on the format.<%

Error Code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Physical Interface Lists

To request alist of TCP/IP datafor all physical interfaces, use format IFCD0100. For detailed information
about Filter and |PSec physical interface datain addition to the IFCD0100 format data, use format
IFCD0200.

The Physical Interface list consists of
o A user area
« A generic header
« Aninput parameter section
« A header section
« A list data section:
« |FCDO0100 format.
« IFCDO0200 format.
o #IFCDO0300 format<

For details about the user area and generic header, see User Space Format for List APIs. For details about
the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the result
may not be valid. For examples of how to process lists, see APl Examples.

Input Parameter Section

| Offset
| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |User space name specified
| 10 | A |CHAR(10) |User space library name specified
| 20 | 14 |CHAR() |Format name specified

Header Section

Offset
Dec | Hex |Type

’Field

|User space name

|
|
| 0 | 0 |CHAR(10)
| 10 | A |CHAR(10)

|User space library name used

#» Format of Returned Connection Data

To retrieve basic Physical interface data, and 1Pv4 specific statistics about each physical interface, use
format IFCD0100. To retrieve |Pv4 Filter and 1PSec statistics about each physical interface, in addition to

format IFCD0100 information, use format |FCD0200. To retrieve | Pv6 specific information and statistics
about each physical interface, in addition to format IFCD0100 information, use format |FCD0300.4

IFCD0100 Format

The following data about a physical interface is returned for the IFCD0100 format. For detailed

descriptions of the fields in the table, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Linetype

| 4 | 4 |BINARY(4) |Packetrules

| 8 | 8 |BINARY(8) |Total bytesreceived

[16 | 10 |[BINARY(8) |Totd bytessent

| 24 | 18 |BINARY(4) |Total unicast packets received

| 28 | 1C |BINARY(4) |Total non-unicast packets received
| 32 | 20 |BINARY(4) |Total inbound packets discarded

| 36 | 24 |BINARY(4) |Total unicast packets sent

| 40 | 28 |BINARY(4) |Total non-unicast packets sent

| 44 | 2C |BINARY(4) |Total outbound packets discarded
| 48 | 30 |BINARY(4) |Physical interface status

| 52 | 34 |CHAR(10) |Line description

| 62 | 3E |CHAR(17) |Physical address

| 79 | 4F |CHAR() |Date - retrieved

| | 57 |CHAR(6) | Time - retrieved

| [5D [CHAR®) |Reserved

| 96 | 60 |BINARY(4) |Offsetto additional information
| |

| |

64 |BINARY(4) |Length of additional information
68 |BINARY(4) [Internet protocol version 4

Field Descriptions

Date - retrieved. Date when information is retrieved and valid. Format: YYYYMMDD, where:

YYYY Yea
MM Month
DD Day

Internet protocol version. The version of the Internet Protocol (IP) that is currently in use on thisline.
Possible values are:

1 IPv4

2 IPv6

3 IPv4 & IPV6%

Length of additional information. The length in bytes of additional information returned that is not part of
format IFCD0100.

Line description. Each TCP/IP interface is associated with a physical network. This field displays the
name of the communications line description that identifies the physical network associated with an
interface.

The following specia values may also be displayed:

*1PI Thisinterfaceis used by Internet Protocol (IP) over Internetwork Packet Exchange
(IPX). A specific physical lineis not associated with an interface used by IP over
IPX (IP1).

#Note: Asof V5R2, IPover IPX isno longer supported.<%

*IPS Theinterface is used by Internet Protocol (IP) over SNA. A specific physical lineis
not associated with an interface used by 1P over SNA (1PS).

*LOOPBACK The interface is aloopback interface. Processing associated with a loopback interface
does not extend to aphysical line. There is no line description associated with a
loopback address.

£ _LOOPBACK6 Thisline description isthe |Pv6 loopback line. Processing associated with a
loopback line description does not extend to aphysical line.

*VIRTUALIP Thevirtua interface is a circuitless interface. It is used in conjunction with the
associated local interface (LCLIFC) when adding standard interfaces. This special
valueis used to accommodate any of the following cases.

1. Load balancing. Thisisthe means of having afixed source |P address
regardless of which interface the traffic is being distributed.

2. Frame-relay multi-access network to define the local network | P address.
Thisalows for multiple virtual circuits to share the same I P network.

3. Alternate method of network access translation (NAT). This eliminates the
need for aNAT box by assigning a globally unique single I P address directly
to the box without the need to define an entire network.

4. Unnumbered networks. This provides a means of associating alocal source
IP address for an unnumbered point-to-point network.

*OPC This specia vaueisused if you are adding an OptiConnect interface over TCP/IP.
Thisinterface is attached to the optical bus (OptiConnect).

#*TNLCFG64 This specia value means this line description is a Configured 6-4 (IPv6 over |Pv4)
tunneling line. 1Pv6 Neighbor Discovery does not work over a Configured tunnel, so
you don't get the benefit of statel ess autoconfiguration. <

Linetype. Type of line used by an interface. The following link protocols are supported:

-1 OTHER -
IPI - An Internet Protocol IPS - An Internet WLS - Wireless TDLC - Twinaxia
(IP) over Internetwork Protocol (IP) over local areanetwork Datalink Control.
Pack Exchange (I1PX). SNA interface. protocol. Used for TCP/IP
over Twinax.

ZNote: Asof V5R2, IP
over IPX isno longer
supported. &

-2 NONE - Lineisnot defined. Thereisno line type value for these interfaces.

-3 ERROR - Thisvalueisdisplayed if any system errrors other than those for *NOTFND are
received while trying to determine the link type for an interface.

-4 NOTFND - Not found. Thisvalueis displayed if the line description object for this interface
cannot be found.

ELAN - Ethernet local area network protocol.
TRLAN - Token-ring local area network protocol.
FR - Frame relay network protocol.

ASYNC - Asynchronous communications protocol.
PPP - Point-to-point Protocol.

X.25 - X.25 protocol.

DDI - Distributed Data I nterface.

o N o o~ W N PP

OPC - OptiConnect interface.

9 LOOPBACK - Loopback interface.
#10 IPv6 Tunneling Line - Any kind of IPv6 over IPv4 tunnel .4

Offset to additional information. The offset in bytesto the rest of the information if aformat other than
IFCDO0100 is requested.

Packet rules.Indicates what kind of packet rules datais available for a particular line.
0 None- No NAT and no filters are |loaded for the line specified.
NAT - NAT isenabled for thisline.
Filters - Filters are defined for thisline.

1

2

3 NAT and Filters- NAT enabled and Filters defined.

4 Filtersand IPSec - Filters and IPSec filters are defined for thisline.
5

NAT and Filters and IPSec - NAT enabled and Filters and | PSec filters defined.

Physical address. The MAC address of the interface. Format: XX:XX:XX:XX:XX:XX, where'X'isa
hexadecimal digit.

Physical interface status. The current operational state of the physical interface (line).
0 Unknown - The status of this physical interface is unknown.
Active - The physical interface is operational.
Inactive - The physical interface is not operational.
Failed - The desired state of the physical interface isactive, but it is currently in the inactive state.

1
2
3
4 Starting - The system is processing the request to start this physical interface.
5 Ending - The system is processing the request to start this physical interface.
6

Recovery Pending - An error has been detected with this physical interface and the systemis
recovering.

7 Recovery Canceled - An error has been detected with this physical interface and system recovery has
been canceled.

Reserved. Anignored field.

Time- retrieved. Time when information is retrieved and valid. Format: HHMMSS, in 24 hour time,
where;

HH Hour
MM Minute
SS Second

Total bytesreceived. The total number of bytes received on the interface, including framing characters.

Total bytes sent. The total number of bytes transmitted out of the interface, including framing characters.

Total inbound packets discar ded. The number of inbound packets which were chosen to be discarded
even though no errors had been detected to prevent their being deliverable to a higher-layer protocol. One
possible reason for discarding such a packet could be to free up buffer space.

Total non-unicast packets received. The number of non-unicast (that is, broadcast or multicast) packets
delivered to a higher-layer protocol.

Total non-unicast packets sent. The total number of packets that higher-level protocols requested be
transmitted to a non-unicast (that is, broadcast or multicast) address, including those that were discarded or
not sent.

Total outbound packets discarded. The number of outbound packets which were chosen to be discarded
even though no errors had been detected to prevent their being transmitted. One possible reason for
discarding such a packet could be to free up buffer space.

Total unicast packetsreceived. The number of unicast packets delivered to a higher-layer protocol.

Total unicast packets sent. The total number of packets that higher-level protocols requested to be
transmitted to a unicast address, including those that were discarded or not sent.

IFCD0200 Format

Thisformat returns detailed Filter and IPSec Physical interface data in addition to data about a physical
interface from the IFCDO0100 format. For detailed descriptions of the fieldsin the table, see Field

Descriptions.

| Offset
| Dec | Hex ’Type ’Field
| 0 | 0 | |Returns everything from format IFCD0100.
Decimal and |CHAR(8) |Date - filter rules |oaded or unloaded
noxadecimal [CHAR(6) _[Time-filter riles [oaded or Unioaded
reached by using ICHAR(2) |Reserved
the offset to IBINARY(8) |Outhound filter packets discarded
f‘%‘(’)‘};ﬁ;?‘on (ioqg [BINARY(8) [Outhound filter packets permitted
in format IBINARY(8) |Outbound packets non-filtered
IFCD0100. IBINARY(8) |Outbound IPSec packets

’BI NARY(8) |Outbound IPSec packets discarded - no

connection

IBINARY(8) |Outbound IPSec packets discarded - ondemand
IBINARY(8) |Outbound IPSec packets discarded - VPN NAT
IBINARY(8) |Outbound IPSec packets discarded - other
IBINARY(8) |Outbound NAT packets

IBINARY(8) |Outbound NAT packets discarded
IBINARY(8) |Outbound packets discarded - other
IBINARY(8) |Outbound packets discarded - rule exception
IBINARY(8) |Inbound IPSec packets

[BINARY(8)

|Inbound | PSec packets permitted

BINARY (8) Inbound | PSec packets discarded - no
connection

IBINARY(8) |Inbound IPSec packets discarded - no AH/ESP

IBINARY(8) |Inbound IPSec packets discarded - ondemand

IBINARY(8) |Inbound IPSec packets discarded - VPN NAT

BINARY (8) Inbound | PSec packets discarded - anti-replay
fail

BINARY (8) Inbound 1PSec packets discarded - selector
mismatch

BINARY (8) Inbound | PSec packets discarded - mode
mismatch

BINARY (8) Inbound | PSec packets discarded -
authentication error

IBINARY(8) |Inbound IPSec packets discarded - other

IBINARY(8) |Inbound NAT packets

IBINARY(8) |Inbound filter packets discarded

IBINARY(8) |Inbound filter packets permitted

IBINARY(8) |Inbound packets non-filtered

IBINARY(8) |Inbound packets discarded - other

IBINARY(8) |Inbound packets discarded - rule exception

|BINARY(4) |NAT rules

IBINARY(4) |Filter rules

|BINARY(4) |IPSec rules

Field Descriptions

Date - filter rulesloaded or unloaded.

Date when the filter rules were most recently successfully loaded on or unloaded from this interface.

Format: YYYYMMDD, where:

YYYY Yea
MM Month
DD Day

Thefollowing isaspecia value:

00000000 Rules have never been loaded since interface was |oaded.

Filter rules. Indicates whether filter rules exist on the system. The possible values are;

0 Nofilter rules exist.

1 Filter rulesexist.

Inbound I PSec packets. Total inbound |PSec packets (AH or ESP) processed without error.
Inbound I PSec packets permitted. Total inbound packets permitted by pre-IPSec filters.
Inbound I PSec packets discar ded - authentication error. Authentication error or failed.

Inbound I PSec packets discarded - no connection. Total inbound packets discarded because a VPN
connection was not started.

Inbound I PSec packets discarded - no AH/ESP. Total inbound packets discarded because packet should
have had a AH or ESP header, and did not.

Inbound I PSec packets discar ded - ondemand. Total inbound packets discarded due to a starting
on-demand VPN connection.

Inbound I PSec packets discar ded - anti-replay fail. Total inbound packets discarded due to failed
anti-replay audit.

Inbound I PSec packets discarded - mode mismatch. Total inbound packets discarded because the mode
(tunnel or transport) of the packet did not match the mode of the VPN connection.

Inbound I PSec packets discar ded - other. Total inbound packets discarded for other reasons, relating to
| PSec.

Inbound I PSec packets discarded - selector mismatch. Total inbound packets discarded because the
packet did not match the VPN connection (selectors).

Inbound I PSec packets discarded - VPN NAT. Total inbound packets that could not be NAT'd because
an |P address was not available from aVPN NAT pool.

Inbound NAT packets. Total inbound packets processed by conventional NAT.
Inbound filter packets discarded. Total inbound packets discarded by filter action = DENY.
Inbound filter packets permitted. Total inbound packets permitted by filter action = PERMIT.
Inbound packets non-filtered. Total inbound packets not filtered (occurs only when no filters exist).
Inbound packets discarded - other. Total inbound packets discarded for some other reason.
Inbound packets discar ded - rule exception. Total inbound packets discarded for exception reason.
| PSec rules. Indicates whether IPSec filter rules exist on the system. The possible values are:

0 No IPSec filter rules exist.

1 [IPSecfilter rulesexist.

NAT rules. Indicates whether NAT rules exist on the system. The possible values are:
0 NONAT rulesexist.
1 NAT rulesexist.

Outbound filter packets discarded. Total outbound packets discarded by filter action = DENY .

Outbound filter packets permitted. Total outbound packets permitted by filter action = PERMIT.
Outbound packets non-filtered. Total outbound packets not filtered (occurs only when no filters exist).
Outbound | PSec packets. Total outbound |PSec packets (AH or ESP) processed without error.

Outbound | PSec packets discarded - no connection. Total outbound packets that could not be handled by
| PSec because a VPN connection was not started.

Outbound I PSec packets discarded - ondemand. Total outbound packets discarded due to a starting
on-demand VPN connection.

Outbound I PSec packets discarded - other. Total outbound packets that could not be handled for other
reasons.

Outbound I PSec packets discarded - VPN NAT. Tota outbound packets that could not be NAT'd
because an I P address was not available from a VPN NAT pool.

Outbound NAT packets. Total outbound packets processed by conventional NAT.

Outbound NAT packets discarded. Total outbound packets that could not be handled by masquerade
NAT dueto lack of available conversation.

Outbound packets discarded - other. Total outbound packets discarded for some other reason.
Outbound packets discarded - rule exception. Total outbound packets discarded for exception reason.
Reserved. Anignored field.

Time- filter rulesloaded or unloaded. Time when the filter rules were most recently successfully loaded
on or unloaded from this interface. Format: HHMMSS, in 24 hour time, where:

HH Hour
MM Minute
SS Second

Thefollowing is a special value:

000000 Rules have never been loaded since interface was |oaded.

#IFCDO0300 Format

Thisformat returns detailed 1Pv6 specific information and statistics for each Physical interface, in addition
to data about a physical interface from the IFCDO0100 format. For detailed descriptions of the fieldsin the
table, see Field Descriptions.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 | |Returns everything from format IFCD0100.
Decimal and IBINARY (4) |Packet rules- IPv6

hexadecimal [BINARY(8) [Total IPv6 bytesreceived

OffSitgd a{)e __[BINARY(8) [Total 1Pv6 bytes sent
thoottao O [BINARY(4) [Total IPv6 unicast packets recaived
additional IBINARY(4) |Total IPv6 multiicast packets received
!nfforma;i onfield [BINARY(4) [Total IPv6 anycast packes received
I ECDOL00. [BINARY(4) [Total inbound 1Pv6 packets discarded
IBINARY(4) |Total IPv6 unicast packets sent
IBINARY(4) |Total IPv6 multicast packets sent
IBINARY(4) |Total IPv6 anycast packets sent
IBINARY(4) |Total outbound IPv6 packets discarded
|ICHAR(25) |IPv6 interface identifier
|ICHAR(?) |Reserved
IBINARY(8) |IPv6 interfaceidentifier binary
IBINARY(4) |MTU - configured
IBINARY(4) |[MTU - current
IBINARY(4) |Hop limit - configured
IBINARY(4) |Hop limit - current
IBINARY(4) |Use stateless autoconfig
IBINARY(4) |Use stateful address configuration
IBINARY(4) |Useother stateful configuration
IBINARY(4) |Accept router advertisements
IBINARY(4) |Accept redirects
BINARY (4) Neighbor discovery base reachable time -
configured
BINARY (4) Neighbor discovery base reachable time -
current
BINARY(4) |Neighbor discovery reachable time
BINARY (4) Neighbor solicitation retransmit interval -
configured
BINARY (4) Neighbor solicitation retransmit interval -
current
IBINARY(4) |Duplicate address detection max transmits
|ICHAR(15) |Local tunnel endpoint IPv4 address
[CHAR(L) [Reserved
IBINARY(4) |Local tunnel endpoint |Pv4 address binary

Field Descriptions

Accept redirects. Whether the system is currently accepting and using ICMPv6 Redirects that it receives

on this physical interface.

Possible values are:

0 No - thisinterface is not accepting redirects.

1 Yes-thisinterfaceis accepting redirects.

Accept router advertisements. Whether the system is currently accepting and using Router
Advertisements that it receives on this physical interface.

Possible values are:
0 No - thisinterface is not accepting router advertisements.

1 Yes-thisinterfaceis accepting router advertisements.

Duplicate address detection max transmits. The maximum number of consecutive Neighbor Solicitation
messages which will be sent using this physical interface when TCP/IPv6 performs Duplicate Address
Detection (DAD) on atentative address.

The following specia value may be returned:

0 Thisphysical interfaceis currently configured to not perform Duplicate Address Detection.

Hop limit - configured. The configured IPv6 Hop Limit value specified for this physical interface. The
Hop limit field is the |Pv6 replacement for the IPv4 Timeto live (TTL) field. The Hop limit value specifies
arelative limit on the number of hops across which an IPv6 datagram remains active. The Hop limit value
is hop count that is decremented by each gateway to prevent internet routing loops. The default Hop limit
valueis 64. Valid values range from 1 through 255 hops.

Hop limit - current. The IPv6 Hop Limit value currently in effect for this physical interface. The Hop
Limit field isthe IPv6 replacement for the IPv4 Timeto live (TTL) field. The Hop Limit value specifiesa
relative limit on the number of hops across which an 1Pv6 datagram remains active. The Hop Limit valueis
hop count that is decremented by each gateway to prevent internet routing loops. The default Hop Limit
valueis 64. If the current Hop Limit value differs from the configured Hop Limit value, then it has been set
by aHop Limit value received in a Router Advertisement packet. Valid values range from 1 through 255
hops.

| Pv6 interface identifier. A 64-bit number which is combined with prefixes to create complete IPv6
addresses for the physical interface. By default it is based on the link layer (MAC) address, if one exists.
The interface identifier is represented here in standard | Pv6 address format notation. It does not include a
leading "::" for the first 64 bits of afull IPv6 address, and it may include an embedded |1Pv4 address at the
end. Thisfield isNULL padded.

| Pv6 interface identifier binary. Binary representation of the IPv6 interface identifier.

L ocal tunnel endpoint | Pv4 address. The IPv4 address of the local tunnel endpoint of this tunnel, returned
in dotted decimal format. Thisfield isNULL padded.

The following specia value may be returned:

0.0.0.0 Thisphysica interfaceisnot atunnel, so thisfield does not apply.

L ocal tunnel endpoint 1Pv4 address binary. Binary representation of the Local tunnel endpoint |Pv4
address.

The following specia value may be returned:

0 Thisphysical interface is not atunnel, so this field does not apply.

MTU - configured. The configured maximum transmission unit (MTU) value specified for this physical
interface.

Thefollowing is aspecia value:

O LIND -TheMTU was configured as*LIND, the MTU value from the line description.

MTU - current. Maximum transmission unit (MTU) value currently in effect for this physical interface.
Thefollowing isa specia value:

0 LIND - Theinterfaceis not active currently and the MTU was configured as*LIND.

Neighbor discovery base reachable time - configured. The configured Neighbor Discovery (ND) Base
Reachable Time value, in seconds, specified for this physical interface. The ND Base Reachable Time
valueis abase time value used for computing the random ND Reachable Time value. The default ND Base
Reachable Time is 30 seconds. Valid values range from 10 through 100 seconds.

Neighbor discovery basereachabletime - current. The Neighbor Discovery (ND) Base Reachable Time
value, in seconds, currently in effect for this physical interface. The ND Base Reachable Timevaueisa
base time value used for computing the random ND Reachable Time value. The default ND Base
Reachable Time is 30 seconds. If the current ND Base Reachable Time value differs from the configured
value, then it has been set by a ND Base Reachable Time value received in a Router Advertisement packet.
Valid values range from 10 through 100 seconds.

Neighbor discovery reachabletime. The current Neighbor Discovery (ND) Reachable Time value, in
seconds, for this physical interface. The ND Reachable Time value is the amount of time, in seconds, that a
neighbor is considered reachable after receiving areachability confirmation. The ND Reachable Time value
israndomly calculated, using the ND Base Reachable Time and a couple constants. This calculation is
performed to prevent Neighbor Unreachability Detection (NUD) messages from synchronizing with each
other.

Neighbor solicitation retransmit interval - configured. The configured Neighbor Solicitation (NS)
Retransmit Interval value, in seconds, specified for this physical interface. The NS Retransmit Interval is
the time, in seconds, between retransmissions of Neighbor Solicitation messages to a neighbor when
resolving the link-layer address, or when probing the reachability of a neighbor. The default NS retransmit
interval is 1 second. Valid values range from 1 through 10 seconds.

Neighbor solicitation retransmit interval - current. The Neighbor Solicitation (NS) Retransmit Interval
value currently in effect for this physical interface. The NS Retransmit Interval isthe time, in seconds,
between retransmissions of Neighbor Solicitation messages to a neighbor when resolving the link-layer
address, or when probing the reachability of a neighbor. The default NS Retransmit Interval is 1 second. If
the current NS Retransmit Interval value differs from the configured value, then it has been set by aNS
Retransmit Interval value received in a Router Advertisement packet. Valid values range from 1 through 10
seconds.

Packet rules- | Pv6. Indicates what kind of 1Pv6 packet rules are loaded on a particular line.
Possible values are:

-1 Other - An unknown Packet rules value.

0 None- No NAT and no filters are loaded for the line specified.

1 NAT - NAT isenabled for thisline.

2 Filters- Filters are defined for thisline.

3 NAT and Filters- NAT enabled and Filters defined for thisline.
4 Filtersand |PSec - Filters and |PSec filters are defined for thisline.
5 NAT and Filtersand IPSec - NAT enabled and Filters and | PSec filters defined for thisline.

Reserved. Anignored field.

Total inbound I Pv6 packets discar ded. The number of inbound IPv6 packets which were chosen to be
discarded even though no errors had been detected to prevent their being deliverable to a higher-layer
protocol. One possible reason for discarding such a packet could be to free up buffer space.

Total IPv6 anycast packetsreceived. The number of IPv6 anycast packets delivered to a higher-layer
protocol.

Total IPv6 anycast packets sent. The number of IPv6 anycast packets that higher-level protocols
requested be transmitted, including those that were discarded.

Total IPv6 bytesreceived. Thetotal number of 1Pv6 bytes received on the interface, including framing
characters.

Total | Pv6 bytes sent. The total number of 1Pv6 bytes transmitted out of the interface, including framing
characters.

Total IPv6 multicast packetsreceived. The number of I1Pv6 multicast packets delivered to a higher-layer
protocol.

Total IPv6 multicast packets sent. The number of |Pv6 multcast packets that higher-level protocols
reguested be transmitted, including those that were discarded.

Total IPv6 unicast packetsreceived. The number of 1Pv6 unicast packets delivered to a higher-layer
protocol.

Total IPv6 unicast packets sent. The number of 1Pv6 unicast packets that higher-level protocols requested
be transmitted, including those that were discarded.

Total outbound I Pv6 packets discar ded. The number of outbound I1Pv6 packets which were chosen to be
discarded even though no errors had been detected to prevent their being transmitted. One possible reason
for discarding such a packet could be to free up buffer space.

Use other stateful configuration. Whether the TCP/IPv6 stack has been informed by a Router
Advertisement to use non-address stateful (that is, DHCPv6) configuration information that it receives on
this physical interface.

Possible values are:
-1 UNKNOWN - The system has not received any Router Advertisements on this physical interface.

0 NO - The system has been informed to not use any non-address stateful configuration information
that it receives on this physical interface.

1 YES- The system has been informed to use any non-address stateful configuration information that
it receives on this physical interface.

Use stateful address configuration. Whether the TCP/IPv6 stack has been informed by a Router
Advertisement to use stateful (that is, DHCPv6) configuration information that it receives on this physical
interface for the purpose of address autoconfiguration.

Possible values are;

-1 UNKNOWN - The system has not received any Router Advertisements on this physical interface.

0 NO - The system has been informed to not use stateful configuration information that it receives on

this physical interface for the purpose of address autoconfiguration.

1 YES- The system has been informed to use stateful configuration information that it receives on

this physical interface for the purpose of address autoconfiguration.

Use stateless autoconfig. Whether the TCP/IPv6 stack performs stateless autoconfiguration on this

physical interface or not.

Possible values are:

0 NO - The system will not perform the statel ess autoconfig algorithms on this physical interface.

1 YES- The system will perform the stateless autoconfig algorithms on this physical interface.

<

Error Messages

Message I D
TCP84CO E
TCP84AC5 E
TCP84C6 E
CPF24B4 E
CPF3C21 E
CPF3C90 E
CPF3CF1E
CPF8100 E
CPF9801 E
CPF9802 E
CPF9803 E
CPF9807 E
CPF9808 E
CPF9810 E
CPF9820 E
CPF9830 E
CPFO872 E

Error Message Text

TCP/IP stack not active.

API error providing TCP/IP Network Status list information.
Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.
Severe error while addressing parameter list.

Format name & 1 is not valid.

Literal value cannot be changed.

Error code parameter not valid.

All CPF81xx messages could be returned. xx isfrom 01 to FF.
Object &2 in library &3 not found.

Not authorized to object &2 in & 3.

Cannot allocate object &2 in library & 3.

Oneor more librariesin library list deleted.

Cannot allocate one or more librarieson library list.

Library &1 not found.

Not authorized to use library & 1.

Cannot assign library &1.

Program or service program &1 in library &2 ended. Reason code & 3.

API introduced: V5R1

Top | Communications APIs | APIs by category

List PPP Connection Profiles

(QtocLstPPPCnnPrf) API
Required Parameter Group:
1 Quadified user space name Input Char(20)
2 Format name Input Char(8)
3 Error Code /10 Char(*)

Service Program: QTOCPPPAPI

Threadsafe: Yes

The List PPP Connection Profiles APl (QtocL stPPPCnnPrf) returns alist of PPP connection profiles with
some basic information about each profile.

Authorities and Locks

User Space Library Authority
*EXECUTE

User Space Authority
*CHANGE

User Space Lock
*SHRNUP

Required Parameter Group

Qualified user space name
INPUT; CHAR(20)

The user space for which you want to retrieve information, and the library in which it islocated.
Thefirst 10 characters contain the user space name, and the second 10 characters contain the
library name. Y ou can use these special values for the library name;

*CURLIB Thejab's current library
*LIBL Thelibrary list

Format name
INPUT; CHAR(8)

The format of the space information to be returned. The format names supported are:

PRFDO0100 Connection profilelists. Refer to PREFD0100 Format for details on the format.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Format of Connection Profile Lists

To request alist of PPP Connection Profiles, use format PRFD0100.

The PPP Connection Profile list consists of:
o A user area
« A generic header
« An input parameter section
o A header section
o A list data section:
o PRFDO0100 format

For details about the user area and generic header, see User Space Format for List APIs. For details about
the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the result
may not be valid. For examples of how to processlists, see APl Examples.

Input Parameter Section

| Offset ’ ’

| Dec | Hex |Type Fied

| 0 | 0 |CHAR(10) |User space name specified

| 10 | A |CHAR(10) |User space library name specified
| 20 | 14 |CHAR() |Format name specified

Header Section

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |User space name

| 10 | A |CHAR(10) |User space library name used

PRFD0100 Format

The following data about a PPP Connection Profileis returned for the PRFD0100 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset
Dec Hex ’Type ’Field
0 0 |[BINARY(4) |Profile mode
4 4 |BINARY(4) |Connection protocol
8 8 |BINARY(4) |Connection status
12 C |[BINARY(4) [Connection type

|

| |

| |

| |

| |

| |

| 16 | 10 |BINARY(4) |Profilejobtype

| 20 | 14 |BINARY(4) [Multilink connection enabled
| 24 | 18 |CHAR(10) |Profile name

| 34 | 22 |CHAR(10) Line name

| 44 | 2C |CHAR(10) Linetype

[54 | 36 |CHAR(@0) [Jobname

| 64 | 40 |CHAR(10) |Job user profile

[74 [4A [CHAR() [Job number

| 80 | 50 |CHAR(50) |profile description

| 130 | 82 |CHAR(10) | Dial-on-demand peer answer profile
[[140 [8C [CHAR(20) |Reserved

Field Descriptions

Connection protocol. The type of point-to-point connection provided by the profile job.

1 SLIP.
2 PPP.

Connection status. The current connection of job status of the profile job.Vaues are as follows:

1 Inactive
2 Session error

3 Ended - information available

4 Session start submitted
11 Session job starting
12 Session job ending

13 Session ended - job log pending
14 Adding TCP/IP configuration

15 Removing TCP/IP configuration

16 Message pending

17 Sessionerror

18 Starting TCP/IP

19 Ending TCP/IP

21 Cadling remote system

22 Waiting for incoming call

23 Connecting

24 Active

26 Switched line-dial on demand

27 Waiting for incoming call - switched line-answer enabled dial on demand
#28 Waiting for shared line resource

29 Requesting shared line resources

31 LCPinitializing

32 LCPstarting

33 LCPclosing

34 LCPclosed

35 LCPwaiting for configuration request

36 LCP configuring

37 LCP authenticating

41 IPCPinitiaizing

42 |PCP starting

43 IPCPending

44 |PCP stopped

45 |PCP waiting for configuration request

46 |1PCP configuring

47 1PCP opening

51 Multi-connection - waiting for incoming call(s)
52 Multi-connection L2TP initiator waiting for tunnel
53 Multi-connection - at |east one connection active
#¥54 Multi-hop terminator starting multi-hop initiator
55 Multi-hop initiator establishing second hop tunnel
56 Multi-hop initiator tunnel pre-started

57 Multi-hop connection active

58 Starting VPN connection

59 Negotiating IPSEC SA

60 PPPoOE discovery stage

61 PPPOE session stage

Connection type. The type of connection provided by the profile job. Values are:
1 Switched or dialed connection
2 Leased or non-switched connection
3 Virtual circuit connection
24 PPPoE®

Dial-on-demand peer answer profile. Specifies the name of the answer only profile that answers
incoming calls from the remote peer.

Job name. The job name of the job that currently or most recently executed this profile job description.
Thisfield is blank if this connection profile job has not been run.

Job number. The job number of the job that currently or most recently executed this profile job
description. Thisfield is blank if this connection profile job has not been run.

Job user profile. The user profile of the job that currently or most recently executed this profile job
description. Thisfield is blank if this connection profile job has not been run.

Line name. Each TCP/IP interface is associated with a physical network. Thisfield displays the name of
the communications line description that identifies the physical network associated with an interface. May
be blank when Line type selection is* LINEPOOL and no member line has been selected.

Linetype. The type of line connection defined in this connection profile. Possible values are:

*PPP PPP line description
*LINEPOOL Line nameisamember of aline pool
*L2TP L2TP line description

2*PPPOE PPPOE line description
*ERROR The selected line type is undefined or isimproperly defined
Multilink connection enabled. Whether multilink connections are enabled for the profile. Values are:
0 No
1 Yes
Profile description. The text description of the function performed by this profile connection job.

Profilejob type. The type of job support required for the profile.

1 Single connection profile
2 Multi-connection or multilink connection profile

Profile mode. The function provided by the profile job. Values are:

Dial only.
2 Answer only.
3 Dia-on-demand.
4 Answer enabled dial-on-demand.

0 N O O

L2TP virtua Initiator.

Remote peer enabled dial-on-demand.
L2TP initiator-on-demand.

L2TP multihop initiator.

#9 PPPOE initiator.%

Profile name. The name of this connection profile description.

Reserved. Anignored field.

Error Messages

Message I D
CPF24B4 E
CPF3C21 E
CPF3CAA E
CPF3CF1E
CPF811A E
CPFO872 E

Error Message Text

Severe error while addressing parameter list.
Format name & 1 is not valid.

List istoo large for user space & 1.

Error code parameter not valid.

User space &4 in &9 damaged.

Program or service program &1 in library & 2 ended. Reason code & 3.

API introduced: V5R1

Top | Communications APIs | APIs by category

List TCP/IP Point-to-Point Jobs (QTOCLPPJ)
API

Required Parameter Group:
1 Quadified user space name Input Char(20)
2 Format name Input Char(8)
3 Point-to-point connection Input Char(10)
profile name
4 Error code /0 Char(*)
Threadsafe: Yes

The List TCP/IP Point-to-Point Jobs (QTOCLPPJ) API returns information about each connection job
currently associated with the specified point-to-point connection profile.

Authorities and Locks

User Space Authority
*CHANGE

Authority to Library Containing User Space
*EXECUTE

Required Parameter Group

Qualified user space name
INPUT; CHAR(20)

The user space that receives the information and the library in which it islocated. The first 10
characters contain the user space name. The second 10 characters contain the library name. Y ou
can use these special values for the library name:

*CURLIB Thejab's current library
*LIBL Thelibrary list

Format name
INPUT; CHAR(8)

The content and format of the list returned. The possible format nameis:

PPPJ0100 Each entry in the list contains information about a point-to-point job associated with
the specified point-to-point connection profile name. The specified profile must be
active for job information to be returned. If the specified profile is not active, an
empty list will be returned.

See Format of Point-to-Point Jobs List for a description of the format.

Point-to-point connection profile name
INPUT; CHAR(10)
The name of the point-to-point connection profile for which connection job information is being
reguested.
Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Point-to-Point Jobs List

The point-to-point jobs list consists of :
o A userarea

A generic header

Aninput parameter section
« A header section
» A list data section:

o PPPJ0100 format

For details about the user area and generic header, see User Space Format for List APIs. For details about

the remaining items, see the following sections. For detailed descriptions of the fields in the list returned,
see Field Descriptions.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the result
may not be valid. For examples of how to process lists, see APl examples.

Input Parameter Section

| Offset
| Dec | Hex |Type Fied
| 0 | 0 |CHAR(10) |User space name specified

| 10 | A |CHAR(10) |User space library name specified
| 20 | 14 |CHAR() |Format name specified
| 28 | 1C |CHAR(10) | Point-to-point connection profile name specified

Header Section

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |User space name used

| 10 | A |CHAR(10) |User space library name used

| 20 | 14 |CHAR(10) | Point-to-point connection profile name

PPPJ0100 Format

| Offset ’ ’

| Dec | Hex |Type Field

[0 [0 [CHAR@0) [Jobname

| 10 | A |CHAR(10) |Job user name

| 20 | 14 |CHAR(6) |Job number

| 26 | 1A |CHAR(16) |Internal job identifier
| 42 | 2A |CHAR(10) |Line name

| 52 | IBINARY(4) |Connection status

[56 | 38 [CHAR(@5) |Local IPaddress

[71 [47 [CHAR(@5) |RemotelP address

| 8 | 56 |CHAR(49) |Connected user name

Field Descriptions

Connection status. The current status of the connection.

Connected user name. The name of the user who initiated the point-to-point connection. The user nameis
available only if authentication is enabled for the point-to-point connection profile; otherwise, * NONE will
be returned.

Format name. The name of the format used to list the point-to-point connection jobs associated with an
active point-to-point connection profile.

Internal job identifier. A value sent to other APIsto speed the process of locating the job on the system.
Only APIs described in topicl use thisidentifier. The identifier is not valid following an initial program
load (IPL). If you attempt to use it after an IPL, an exception occurs.

Job name. The simple job name of the point-to-point job.
Job number. The system-assigned job number of the point-to-point job.

Job user name. The user name under which the point-to-point job is running. Thiswill be defined as
QTCP for point-to-point connection profiles.

Line name. The name of the line associated with the point-to-point connection.

Local I P address. The IP address assigned to the local end of the point-to-point connection. The IP address
isin dotted decimal format.

Point-to-point connection profile name. The name of the point-to-point connection profile for which
connection job information is being requested.

Remote | P address. The IP address assigned to the remote end of the point-to-point connection. The IP
address isin dotted decimal format.

User space library name. The name of the library containing the user space.

User space hame. The user space used to return the list of point-to-point connection jobs associated with
an active point-to-point connection profile.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1lE Error code parameter not valid.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF3C21 E Format name & 1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.
TCP8211 E Point-to-point profile & 1 not found.

API introduced: V4R4

Top | Communications APIs | APIs by category

Remove ARP Table Entry (QtocRmVvARPTDIE)
API

Required Parameter Group:

1 Linename Input Char(10)

2 Internet address Input Binary(4)
3 Entry type Input Char(10)

4 Error code 1/0 Char(*)

Service Program: QTOCNETSTS

Threadsafe: Yes

The Remove ARP Table Entry (QtocRmvARPTDbIE) API removes one or all dynamic entries from the ARP
(Address Resolution Protocol) table for the specified line. Local interface entries cannot be removed.

TCP/IP must be active on this system; otherwise, error message TCP84CO0 is issued.

Authorities and Locks

Special Authority
*|OSY SCFG

Required Parameter Group

Linename
INPUT; CHAR(10)

The name of the physical interface corresponding to the ARP table from which to remove entries.
Internet address
INPUT; BINARY (4)
The IP address of the entry to remove from the ARP table. This must be 0 when trying to remove
al dynamic ARP entries.
Entry type
INPUT; CHAR(10)

Whether asingle entry or al entries are removed from the ARP table. The possible types are:

*|PADDR The Internet address field corresponds to a single entry to be removed.
*ALL The Internet address field must be 0 and all ARP table entries will be removed.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

MessagelD Error Message Text

TCPB4COE TCP/IP stack not active.

TCP84C1E The specified Internet address was not found in the ARP table.
TCP84C2E ARPentry islocal and cannot be deleted.

TCP84C3 E The specified line name does not exist.

TCP8AC4E The specified line name corresponds to a line type that does not support ARP.
TCP84C6 E Internal operations error.

TCP84C8E ARP API parameter not valid.

CPF24B4E Severeerror while addressing parameter list.

CPF3C90E Literal value cannot be changed.

CPF3CF1E Error code parameter not valid.

CPF8100E All CPF81xx messages could be returned. xx isfrom 01 to FF.
CPF9872E Program or service program &1 in library & 2 ended. Reason code & 3.

API introduced: V5R1

Top | Communications APIs | APIs by category

Retrieve Network Connection Data
(QtocRtvNetCnnDta) API

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name Input Char(8)

4 Socket connection request I nput A Char(*) &
5 Error Code 1/0 Char(*)

Service Program; QTOCNETSTS

Threadsafe: Yes

#The Retrieve Network Connection Data (QtocRtvNetCnnDta) API retrieves detailed information about a
specified IPv4 or IPv6 network connection - including jobs using the connection. It also retrieves
information about 1Pv4 and |Pv6 connection totals.4

TCP/IP must be active on this system, otherwise TCP84C0 message will be issued.

Authorities and Locks

None.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The variable that is to receive the information requested. Y ou can specify the size of this areato be
smaller than the format requested if you specify the length of receiver variable parameter correctly.
Asaresult, the API returns only the data that the area can hold.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable. If thisvalueis larger than the actual size of the receiver
variable, the result may not be predictable. The minimum length is 8 bytes.

Format name
INPUT; CHAR(8)

The format of the space information to be returned. The format names supported are:

NCNDO0100 TCP/IPv4 connection totals. Refer to NCNDO100 Format for details on the
format.

NCND0200 Detailed TCP or UDP connection status for a specific |Pv4 socket connectionin
addition to TCP/IPv4 connection totals. Refer to NCND0100 Format and

NCNDOQ0200 Format for details on the format.

BNCND1100 TCP/IPv6 connection totals. Refer to NCND1100 Format for details on the
format.%%

#NCND1200 Detailed TCP or UDP connection status for a specific |Pv6 socket connection in
addition to TCP/IPv6 connection totals. Refer to NCND1100 Format and

NCND1200 Format for details on the format.<%

#»Socket connection request
INPUT; CHAR(*)
The protocol, local address, local port, remote address and remote port identify the connection for

which information is to be retrieved. This parameter isignored when format NCNDO0100 or format
NCND1100 is requested. Refer to Socket connection request format for details on the format.4%

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

#Socket Connection Request Format

Information passed in the socket connection request parameter must be in one of the following two formats.
Thefirst format isfor IPv4 connections, and the second is for |Pv6 connections. The value of the Protocol
field determines the format of the rest of the Socket Connection Request. For detailed descriptions of the
fieldsin the table, see Field Descriptions.

IPv4 connection (Protocol field value is 1 or 2)

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Protocol

| 4 | 4 |BINARY(4) |Local IPv4 address

| 8 | 8 |BINARY(4) |Local port number

[12 [C |[BINARY(4) |RemotelPv4 address
| 16 | 10 |BINARY(4) |Remote port number

IPv6 connection (Protocol field value is 3 or 4)

| Offset ’ ’

| Dec | Hex |Type Fied

| 0 | 0 |BINARY(4) |Protocol

[4 | 4 |[CHAR(@6) |Local IPv6 address

| 20 | 14 |CHAR(4) |Local port number

| 24 | 18 |CHAR(16) |Remote IPv6 address
| 40 | 28 |BINARY(4) |Remote port number

Field Descriptions

Local 1Pv4 address. The IPv4 address of the host at the local end of the connection.

L ocal 1Pv6 address. The IPv6 address of the host at the local end of the connection. Even though thisfield
is defined as a character field, it must be stored in binary. It is recommended that you use the Sockets
in6_addr structure.

Local port number. The port number of the local end of the connection.

Protocoal. The type and IP version of connection protocol.

Possible values are:
0 TCP/IP connection totals when using format NCNDO100 or format NCND21100.
1 TCP/IPv4 - A Transmission Control Protocol (TCP) over 1Pv4 connection or socket request.
2 UDP/IPv4 - A User Datagram Protocol (UDP) over |Pv4 socket request.
3 TCP/IPv6 - A Transmission Control Protocol (TCP) over IPv6 connection or socket request.
4 UDP/IPv6 - A User Datagram Protocol (UDP) over 1Pv6 socket request.

Remote | Pv4 address. The IPv4 address of the host at the remote end of the connection.

Remote | Pv6 address. The |Pv6 address of the host at the remote end of the connection. Even though this
field is defined as a character field, it must be stored in binary. It is recommended that you use the Sockets
in6_addr structure.

Remote port number. The port number of the remote end of the connection.<%

Format of Returned Connection Data

=
To retrieve the current TCP/IPv4 connection total's, use format NCNDO0100.

To retrieve the current TCP/IPv6 connection total's, use format NCND1100.

For detailed TCP and UDP connection status for a specific |Pv4 socket connection in addition to the

TCP/IPv4 connection total's, use format NCND0200.

For detailed TCP and UDP connection status for a specific |Pv6 socket connection in addition to the

TCP/IPv6 connection totals, use format NCND1200. <%

NCNDO100 Format

Format NCNDO100 returns information regarding the TCP/IPv4 connection totals. For detailed descriptions

of thefieldsin the table, see Field Descriptions.

| Offset
| Dec | Hex ’Type ’Fi eld
| 0 | 0 |BINARY(4) |Bytesreturned
[4 | 4 |BINARY(4) |[Bytesavailable
| 8 | 8 |BINARY(4) |TCP connectionscurrently established
| 12 | C |BINARY(4) |TCPactiveopens
| 16 | 10 |BINARY(4) |TCP passiveopens
| 20 | 14 |BINARY(4) |TCPattempted opensthat failed
| 24 | 18 |BINARY(4) |TCPestablished and then reset
[28 | 1C |[BINARY(4) [TCP segments sent
| 32 | 20 |BINARY(4) |TCPretransmitted segments
| 36 | 24 |BINARY(4) |TCPreset segments
| 40 | 28 |BINARY(4) |TCP segmentsreceived
| 44 | 2C |BINARY(4) |TCP segments received in error
| 48 | 30 |BINARY(4) |UDP datagrams sent
| 52 | 34 |BINARY(4) |UDP datagramsreceived
56 38 |BINARY(4) UDP datagrams not delivered application port
not found
60 3C |BINARY(4) UDP datagrams not delivered other datagrams
in error
| 64 | 40 |BINARY(4) |Offsetto additional information
| 68 | 44 |BINARY(4) |Length of additional information

Field Descriptions

Bytes available. All of the available bytes for use in your application.
Bytesreturned. The number of bytes returned to the user. This may be some but not al the bytes available.

Length of Additional Information.The length in bytes of additional information returned that is not part
of format NCNDO100.

Offset to Additional Information. The offset in bytes to the rest of the information if aformat other than

NCNDO100 is requested.

TCP active opens. The number of times TCP connections have made a direct transition to the SYN-SENT
state from the CLOSED state. This number is an indication of the number of times thislocal system opened
aconnection to aremote system.

TCP attempted opensthat failed. The sum of the number of times TCP connections have made a direct
transition to a, CLOSED state from either the SYN-SENT state or the SYN-RCVD state, or aLISTEN state
from the SYN-RCVD state.

TCP connections currently established. The number if TCP connections for which the current stateis
either ESTABLISHED or CLOSE-WAIT.

TCP established and then reset. The number of times TCP connections have made a direct transition to
the CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state.

TCP passive opens. The number of times TCP connections have made a direct transition to the
SYN-RCVD state from the LISTEN state. This number is an indication of the number of times aremote
system opened a connection to this system.

TCP reset segments. The number of TCP segments sent containing the RST flag.

TCP retransmitted segments. The number of TCP segments transmitted containing one or more
previoudly transmitted octets.

TCP segmentsreceived. The total number of segments received, including those received in error. This
count includes segments received on currently established connections.

TCP segmentsreceived in error. The total number of segments received in error (for example, bad TCP
checksums).

TCP segments sent. The total number of segments sent, including those on current connections but
excluding those containing only retransmitted octets.

UDP datagrams not delivered application port not found. The total number of received UDP datagrams
for UDP users for which there was no application at the destination port.

UDP datagrams not delivered other datagramsin error. The number of received UDP datagrams that
could not be delivered for reasons other than the lack of an application at the destination port.

UDP datagramsreceived. The total number of segments received, including those received in error. This
count includes segments received on currently established connections.

UDP datagrams sent. The total number of UDP datagrams sent from this entity.

NCNDO0200 Format

This format returns detailed information about the TCP connection status in addition to the TCP/IPv4
connection totals (format NCNDO0100). For detailed descriptions of the fields in the table, see Field

Descriptions.

| Offset

| Dec | Hex |Type Field

| 0 | 0 | |Returns everything from format NCND0100

Decima and |BINARY(4)

| Protocol

hexadecimal [BINARY (4)

|Loca| |P address

offsetsare
reached by using |B| NARY (4)

|Local port number

the offset to IBINARY (4)

|Remote |P address

additional [BINARY(4) [Remote port number
information field —
in format IBINARY(4) |Round-trip time
NCNDO100. IBINARY(4) |Round-trip variance
IBINARY(4) |Outgoing bytes buffered
IBINARY(4) |User send next
[BINARY(4) [Send next
IBINARY(4) |Send unacknowledged
IBINARY(4) |Outgoing push number
IBINARY(4) |Outgoing urgency number
IBINARY(4) |Outgoing window number
IBINARY(4) |Incoming bytes buffered
IBINARY(4) |Receive next
IBINARY(4) |User receive next
IBINARY(4) |Incoming push number
IBINARY(4) |Incoming urgency number
IBINARY(4) |Incoming window number
IBINARY(4) |Total retransmissions
IBINARY(4) |Current retransmissions
IBINARY(4) |Maximum window size
IBINARY(4) |Current window size
[BINARY(4) |Last update
IBINARY(4) |Last update acknowledged
IBINARY(4) |Congestion window
IBINARY(4) |Slow start threshold
IBINARY(4) |Maximum segment size
IBINARY(4) |Initial send sequence number
IBINARY(4) |Initial receive sequence number
IBINARY(4) |Connection transport |ayer
IBINARY(4) |TCPstate
IBINARY(4) |Connection open type
IBINARY(4) |Idletimein milliseconds
|CHAR(40) |IP options
[BINARY(4) [Bytesin
IBINARY(4) |Bytesout
IBINARY(4) |Socket state
BINARY (4) Offset to list of socket options associated with
connection
BINARY (4) Number_ of socket options associated with
connection

BINARY (4) Entry length for list of socket options associated
with connection

IBINARY(4) |Offset to list of jobs associated with connection
IBINARY(4) [Number of jobs associated with connection

BINARY (4) Entry length for list of jobs associated with
connection

»CHAR(10) |Associated user profile &
PCHAR(2) |Reserved &

List of Socket Options.

These fields repeat for each socket option.

| Offset

| Dec | Hex ’Type Field

| 0 | 0 |BINARY(4) |Socketoption
| 4 | 4 |BINARY(4) |Optionvalue

List of Jobs/Tasks Associated with this Connection.

These fields repeat for each job or task.

Offset
Dec | Hex ’Type ’Field
0 0 |BINARY(4) |Format entry
4 4 |CHAR(16) | Task name

|
|
[14 [CHAR(10) [Jobname
30 | 1E |CHAR(10) |Job user name
40 | 28 |CHAR(6) |Job number
46 | 2E |CHAR(16) |Internal job identifier

Field Descriptions

#»Associated user profile. The user profile of the job on the local system which first performed a sockets
API bind() of the socket.

Note: Thisfield does not reliably indicate the current user of a connection or socket. To see alist of the
jobs or tasks currently using a connection or socket, use the List of Jobs/Tasks Associated with this
Connection. &

Bytesin. The total number of bytes received on the connection, including framing characters.

Bytes out. The total number of bytes transmitted on the connection, including framing characters.

Congestion window. The number of segments that are sent on the next transmission. If an
acknowledgment is received, the number isincreased. If an acknowledgment is not received, the number is
reset to the smallest allowable number. Thisfield isonly valid for TCP connections.

Connection open type. A TCP connection can be opened in the following ways:
0 Passive - A remote host opens the connection.
1 Active- Theloca system opens the connection.

2 Unsupported - Connection open type not supported by protocol.

Connection transport layer. The transport that a connection is using:
0 IPS
1 IPX

ZNote: Asof V5R2, IPX isno longer supported.<X
2 TCPIP

Current retransmissions. The number of times the local system retransmitted the current segment without
receiving an acknowledgment. Thisis sometimes referred to as the 'backoff count. Thisfield isonly valid
for TCP connections.

Current window size. The current send window size in bytes. Thisfield isonly valid for TCP connections.

Entry length for list of jobs associated with connection. The entry length in bytes of each element in the
list of job connections returned with thisformat. A value of zeroisreturned if the list is empty.

Entry length for list of socket options associated with connection. The entry length in bytes of each
element in the list of socket options returned with thisformat. A value of zeroisreturned if thelistis
empty.

Format entry. Type of list format for job or task connections.
1 Representsajob format. For thisformat the task name will be blank.

2 Represents atask format. For this format the job name, username, number and internal identifier will
be blank.

Idle time. The length of time since the last activity on this connection. The length of timeisreturned in
milliseconds.

Incoming bytes buffered. The current number of bytes that are received and buffered by TCP. These bytes
are available to be read by an application.

Incoming push number. The sequence number of the last byte of pushed datain the incoming data stream.
Thisvaueis zero if no push dataisin the incoming data stream. Thisfield is only valid for TCP
connections.

Incoming urgency number. The sequence number of the last byte of urgent datain the incoming data
stream. Thisvalueis zero if no urgent dataisin the incoming data stream. Thisfield isonly valid for TCP
connections.

Incoming window number. The largest sequence humber in the incoming window of this connection.
Data bytes in the incoming stream having sequence numbers larger than this number are not accepted. This
field isonly valid for TCP connections.

Initial receive sequence number. The first sequence number received on this connection. Thisfield isonly
valid for TCP connections.

Initial send sequence number. The first sequence number sent on this connection. Thisfield isonly valid
for TCP connections.

I P options. Used in displaying the | P datagram options that may have been specified for a connection.
Internal job identifier. A value sent to other APIsto speed the process of locating the job on the system.
Job name. The simple job name as identified to the system.

Job number. System-assigned job or task number.

Job user name. The user name identifies the user profile under which the job is started. The following
specia value may be returned:

*3GNON This connection is atelnet connection and the system is performing sign-on processing or is

displaying a sign-on prompt on it. In this case the Job name field will contain the network
device name, the Job number and Internal job identifier fields will be empty.

L ast update. The sequence number of the incoming segment used for the last window update that occurred
on the connection. Thisfield isonly valid for TCP connections.

L ast update acknowledged. The acknowledgment number of the incoming segment used for the last
window update that occurred on the connection. Thisfield isonly valid for TCP connections.

Local I P address. Thelocal address of this connection on this system.
Local port number. Your local system port number.

Maximum segment size. The size in bytes of the largest segment that may be transmitted on this
connection. Thisfield isonly valid for TCP connections.

Maximum window size. The largest size of the send window, in bytes, during the entire time the
connection has been active. Thisfield isonly valid for TCP connections.

Number of jobs associated with connection. The number of elementsin the list of job connections
returned with this format. A value of zero isreturned if thelist is empty.

Number of socket options associated with connection. The number of elementsin the list of socket
options returned with this format. A value of zero isreturned if thelist is empty.

Offset tolist of jobs associated with connection. The offset in bytesto the first element in the list of job
connections returned with this format. A value of zero isreturned if the list is empty.

Offset to list of socket options associated with connection. The offset in bytesto the first element in the
list of socket options returned with thisformat. A value of zeroisreturned if the list is empty.

Option value. The value returned for a particular socket option. Option is set if anonzero valueis returned.

Outgoing bytes buffered. The current number of bytes that an application has requested to send, but TCP
has not yet sent. If TCP has sent the bytes to the remote system but has not yet received an

acknowledgment, the bytes are considered 'not sent'. They are included in this count.

Outgoing push number. The sequence number of the last byte of push datain the outgoing stream. This
valueis zero if no push dataisin the outgoing data stream. This field is only valid for TCP connections.

Outgoing urgency number. The sequence number of the last byte of urgent datain the outgoing data
stream. Thisvalueis zero if no urgent dataisin the outgoing data stream. Thisfield is only valid for TCP
connections.

Outgoing window number. The largest sequence number in the send window of the connection. The local
TCP application cannot send data bytes with sequence numbers greater than the outgoing window number.

Protocal. Identifies the type of connection protocol.
1 TCP- A Transmission Control Protocol (TCP) connection or socket.

2 UDP - A User Datagram Protocol (UDP) socket.

Receive next. The next sequence number the local TCP is expecting to receive.

Remote | P address. The internet address of the remote host. Zero is shown, if thelist entry isfor aUDP
socket.

Remote port number. The remote host port number. Zero is shown, if the list entry isfor a UDP socket.

Round-trip time. The smoothed round-trip time interval in milliseconds. This is a measure of thetime
required for a segment on the connection to arrive at its destination, to be processed, and to return an
acknowledgment to the client. Thisfield isonly valid for TCP connections.

Round-trip variance.The variance in milliseconds from the previous round-trip time. Thisfield isonly
valid for TCP connections.

Send next. The sequence number of the next byte of datathat the local TCP application sends to the remote
TCP application.

Send unacknowledged. The sequence number of the last segment sent that was not acknowledged. Thisis
the smallest sequence number of the send window. Thisfield isonly valid for TCP connections.

Slow start threshold. The current values for the slow-start threshold and the congestion window are
indirect indicators of the flow of datathrough a TCP connection. These values are used by TCP as part of a
congestion control algorithm. This algorithm ensures that this system sends data at a slow rate at first. After
the first data has been successfully sent, the rate in which datais sent increases. This changeismadein a
controlled manner that is dependent on the amount of congestion in the network. Congestion control occurs
both at connection start time and when congestion is detected. The values used for the slow-start threshold
and the congestion window are determined by TCP and cannot be set by the user.

Socket option. Socket options for this connection.

1 Socket broadcast option Determine if messages can be sent to the broadcast address. This option
isonly supported for sockets with an address family of AF_INET and type SOCK_DGRAM or
SOCK_RAW, or an address family of AF_NS and type SOCK_DGRAM. Option is set if anonzero
valueisreturned.

ZNote: Asof V5R2, the AF_NS address family is no longer supported.<%

10

11

12

Socket bypass route option - Determine if the normal routing mechanism is being bypassed. This
option is only supported by sockets with an address family of AF_INET or AF_NS. Optionis set if
anonzero valueis returned.

ZNote: Asof V5R2, the AF_NS address family is no longer supported. <

Socket debug option - Determineif low-level debugging is active. Option is set if a nonzero value
isreturned.

Socket error - Return any pending errors in the socket. The value returned corresponds to the
standard error codes.

Socket keep alive option - Determine if the connection is being kept up by periodic transmissions.
This option is only supported for sockets with an address family of AF_INET and type
SOCK_STREAM, or an address family of AF_NS and atype of SOCK_SEQPACKET or
SOCK_STREAM. Option is set if anonzero valueis returned.

#Note: Asof V5R2, the AF_NS address family is no longer supported. <

Socket linger option - Determine whether the system attemptsto deliver any buffered data or if the
system discards it when a close() isissued. For sockets that are using a connection-oriented
transport service with an address family of AF_NS or AF_INET, the default is off (which means
that the system attempts to send any queued data, with an infinite wait-time). For sockets that are
using a connection-oriented transport service with an address family of AF_TELEPHONY,, the
default is on with alinger time of 1 second (which means that the system will wait up to 1 second to
send buffered data before clearing the tel ephone connection).

#Note: Asof V5R2, the AF_NS address family is no longer supported. <

Socket linger time - Determine how much time in seconds the system will wait to send buffered
data

Socket out-of-band data option - Determine if out-of-band datais received inline with normal
data. Thisoptionis only supported for sockets with an address family of AF_INET or AF_NS.
Option isset if anonzero valueisreturned.

#Note: Asof V5R2, the AF_NS address family is no longer supported. <
Socket receive buffer size - Determine the size of the receive buffer.

Socket receive low-water mark size - Determine the size of the receive low-water mark. The
default sizeis 1. Thisoption isonly supported for sockets with type SOCK_STREAM and with an
address family of AF_NET.

Socket reuse address option - Determine if the local socket address can be reused. This optionis
only supported by sockets with type SOCK_STREAM and with an address family of AF_INET.
Optionisset if anonzero valueis returned.

Socket send buffer size - Determine the size of the send buffer.

13

Socket type value - Determine the value for the socket type.
Stream type.

Datagram type.

Raw type.

A W N P

Sequential packet type.

Socket state. The current state of the socket.

N~ o o0~ W N BB O

Uninitialized
Unbound
Bound
Listening
Connecting
Connected
Disconnected

Error

Task name. The task name as identified to the system.

TCP state. A typical connection goes through the states:

0

A W DN BB

© 00 N o o

11

Listen, waiting for a connection request from any remote host.

SY N-sent, waiting for a matching connection request after having sent connection request.
SY N-received, waiting for a confirming connection request acknowledgement.
Established, the normal state in which datais transferred.

FIN-wait-1, waiting for the remote host to acknowledge the local system request to end the
connection.

FIN-wait-2, waiting for the remote host request to end the connection.

Close-wait, waiting for an end connection request from the local user.

Closing, waiting for an end connection request acknowledgement from the remote host.
Last-ACK, waiting for the remote host to acknowledge an end connection request.

Time-wait, waiting to allow the remote host enough time to receive the local system's
acknowledgement to end the connection.

Closed, the connection has ended.

State value not supported by protocol.

Total retransmissions. The total number of times the local system retransmitted a segment because an
acknowledgment was not received. Thisis a cumulative count of al segments resent during the entire time
the connection has been active. Thisfield isonly valid for TCP connections.

User send next. The sequence number of the next byte of datato be sent by the client application. This
field isonly valid for TCP connections.

User receive next. The sequence number of the next byte to be passed to the application by TCP.

HNCND1100 Format

Format NCND1100 returns information regarding the TCP/I Pv6 connection totals. For detailed descriptions
of thefields in the table, see Field Descriptions.

[Offset ’ ’
| Dec | Hex |Type Field
| 0 | 0 |BINARY(4) |Bytesreturned
| 4 | 4 |BINARY(4) |Bytesavailable
| 8 | 8 |BINARY(4) |TCP connectionscurrently established
| 12 | C |BINARY(4) |TCPactiveopens
| 16 | 10 |BINARY(4) |TCP passiveopens
| 20 | 14 |BINARY(4) |TCPattempted opensthat failed
| 24 | 18 |BI NARY (4) |TCP established and then reset
| 28 | 1C |BINARY(4) |TCP segments sent
| 32 | 20 |BINARY(4) |TCPretransmitted segments
| 36 | 24 |BI NARY (4) |TCP reset segments
| 40 | 28 |BINARY(4) |TCP segments received
| 44 | 2C |BINARY(4) |TCP segmentsreceived in error
| 48 | 30 |BI NARY (4) |U DP datagrams sent
| 52 | 34 |BINARY(4) |UDP datagrams received
56 38 |BINARY(4) UDP datagrams not delivered - application port
not found
60 3C |[BINARY(4) UDP datagrams not delivered - other datagrams
inerror
| 64 | 40 |BINARY(4) |Offsetto additional information
| 68 | 44 |BINARY(4) |Length of additional information

Field Descriptions

Bytes available. All of the available bytes for use in your application.
Bytesreturned. The number of bytes returned to the user. This may be some but not al the bytes available.

Length of Additional Information.The length in bytes of additional information returned that is not part
of format NCNDO100.

Offset to Additional Information. The offset in bytes to the rest of theinformation if aformat other than
NCNDO100 is reguested.

TCP active opens. The number of times TCP connections have made a direct transition to the SYN-SENT
state from the CLOSED state. This number is an indication of the number of times thislocal system opened
aconnection to aremote system.

TCP attempted opensthat failed. The sum of the number of times TCP connections have made a direct
transition to a, CLOSED state from either the SYN-SENT state or the SYN-RCVD state, or aLISTEN state
from the SYN-RCVD state.

TCP connections currently established. The number if TCP connections for which the current stateis
either ESTABLISHED or CLOSE-WAIT.

TCP established and then reset. The number of times TCP connections have made a direct transition to
the CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state.

TCP passive opens. The number of times TCP connections have made a direct transition to the
SYN-RCVD state from the LISTEN state. This number is an indication of the number of times aremote
system opened a connection to this system.

TCP reset segments. The number of TCP segments sent containing the RST flag.

TCP retransmitted segments. The number of TCP segments transmitted containing one or more
previoudly transmitted octets.

TCP segments received. The total number of segments received, including those received in error. This
count includes segments received on currently established connections.

TCP segmentsreceived in error. The total number of segments received in error (for example, bad TCP
checksums).

TCP segments sent. The total number of segments sent, including those on current connections but
excluding those containing only retransmitted octets.

UDP datagrams not delivered - application port not found. The total number of received UDP
datagrams for UDP users for which there was no application at the destination port.

UDP datagrams not delivered - other datagramsin error. The number of received UDP datagrams that
could not be delivered for reasons other than the lack of an application at the destination port.

UDP datagramsreceived. The total number of segments received, including those received in error. This
count includes segments received on currently established connections.

UDP datagrams sent. The total number of UDP datagrams sent from this entity .4

»NCND1200 Format

This format returns detailed information about the TCP connection status in addition to the TCP/IPv6
connection totals (format NCND1100). For detailed descriptions of the fields in the table, see Field

Descriptions.

| Offset
| Dec | Hex |Type Field

| 0 | 0 | |Returns everything from format NCND1100
Decimal and IBINARY(4) |Protocol

hexadecimal [CHAR(16) |Local IPv6 address

offsetsare

reached by using [BINARY(4)

|Local port number

the offset to |CHAR(16) |Remote | Pv6 address
?r(]i‘(grt:r?gt?lon field IBINARY(4) |Remote [Z.JOI’t. number
in format IBINARY(4) |Round-trip time
NCND1100. IBINARY(4) |Round-trip variance
IBINARY(4) |Outgoing bytes buffered
IBINARY(4) |User send next
[BINARY(#) [Send next
IBINARY(4) |Send unacknowledged
IBINARY(4) |Outgoing push number
IBINARY(4) |Outgoing urgency number
IBINARY(4) |Outgoing window number
IBINARY(4) |Incoming bytes buffered
IBINARY(4) |Receive next
IBINARY(4) |User receive next
IBINARY(4) |Incoming push number
IBINARY(4) |Incoming urgency number
IBINARY(4) |Incoming window number
IBINARY(4) |Total retransmissions
IBINARY(4) |Current retransmissions
IBINARY(4) |Maximum window size
IBINARY(4) |Current window size
[BINARY(4) |Last update
IBINARY(4) |Last update acknowledged
IBINARY(4) |Congestion window
IBINARY(4) |Slow start threshold
IBINARY(4) |Maximum segment size
IBINARY(4) |Initial send sequence number
IBINARY(4) |Initial receive sequence number
IBINARY(4) |Connection transport layer
[BINARY(4) [TCPstate
IBINARY(4) |Connection open type
IBINARY(4) |Idletime
[BINARY(8) [Bytesin
IBINARY(8) |Bytesout
IBINARY(4) |Socket state
|ICHAR(10) |Associated user profile
[CHAR(2) |Reserved
Offset to list of socket options associated with

’BINARY(4)

connection

BINARY (4) Number of socket options associated with
connection

BINARY (4) Entry length for list of socket options associated
with connection

IBINARY(4) |Offset to list of jobs associated with connection
IBINARY(4) |Number of jobs associated with connection
’BI NARY (4) Entry length for list of jobs associated with

connection

List of Socket Options.

These fields repeat for each socket option.

| Offset ’

| Dec | Hex |Type Fied

| 0 | 0 |BINARY(4) |Socketoption
| 4 | 4 |BINARY(4) |Optionvalue

List of Jobs/Tasks Associated with this Connection.

These fields repeat for each job or task.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |BINARY(4) |Entrytype

[4 [4 [CHAR@6) |[Takname

[20 [14 [CHAR{0) [Jobname

| 30 | 1E |CHAR(10) |Job user name

[40 [28 [CHAR() |Jdobnumber

| 46 | 2E |CHAR(16) |Internal job identifier

Field Descriptions

Associated user profile. The user profile of the job on the local system which first performed a sockets
API bind() of the socket.

Note: Thisfield does not reliably indicate the current user of a connection or socket. To see alist of the
jobs or tasks currently using a connection or socket, use the List of Jobs/Tasks Associated with this
Connection.

Bytesin. The total number of bytes received on the connection, including framing characters.

Bytes out. The total number of bytes transmitted on the connection, including framing characters.
Congestion window. The number of segments that are sent on the next transmission. If an
acknowledgment is received, the number isincreased. If an acknowledgment is not received, the number is
reset to the smallest allowable number. Thisfield isonly valid for TCP connections.
Connection open type. The method in which the TCP connection was opened.
Possible values are:

0 Passive - A remote host opened the connection.

1 Active- Theloca system opened the connection.

2 Unsupported - Connection open type not supported by protocol.

Connection transport layer. The transport that the connection is using.
Possible values are:
0 IPS
1 IPX
#Note: Asof V5R2, IPX isno longer supported.<
2 TCPIP

Current retransmissions. The number of times the local system retransmitted the current segment without
receiving an acknowledgment. Thisis sometimes referred to as the 'backoff count'. Thisfield isonly valid
for TCP connections.

Current window size. The current send window size in bytes. Thisfield isonly valid for TCP connections.

Entry length for list of jobs associated with connection. The entry length in bytes of each element in the
list of job connections returned with thisformat. A value of zeroisreturned if the list is empty.

Entry length for list of socket options associated with connection. The entry length in bytes of each
element in the list of socket options returned with this format. A value of zero isreturned if thelist is
empty.

Entry type. Specifies whether this entry isajob or atask.

Possible values are:

1 Representsajob format. For thisformat the task namefield is not applicable.

2 Represents atask format. For this format the job name, username, number and internal job identifier
fields are not applicable.

Idletime. The length of time since the last activity on this connection. The length of timeisreturned in
milliseconds.

Incoming bytes buffer ed. The current number of bytes that are received and buffered by TCP. These bytes
are available to be read by an application.

Incoming push number. The sequence number of the last byte of pushed datain the incoming data stream.

Thisvaueis zero if no push dataisin the incoming data stream. Thisfield is only valid for TCP
connections.

Incoming urgency number. The sequence number of the last byte of urgent datain the incoming data
stream. Thisvalueis zero if no urgent dataisin the incoming data stream. Thisfield isonly valid for TCP
connections.

Incoming window number. The largest sequence number in the incoming window of this connection.
Data bytes in the incoming stream having sequence numbers larger than this number are not accepted. This
field isonly valid for TCP connections.

Initial receive sequence number. The first sequence number received on this connection. Thisfield isonly
valid for TCP connections.

Initial send sequence number. The first sequence number sent on this connection. Thisfield is only valid
for TCP connections.

Internal job identifier. A value sent to other APIs to speed the process of locating the job on the system.
Job name. The simple job name asidentified to the system.
Job number. System-assigned job or task number.
Job user name. The user name identifies the user profile under which the job is started.
The following specia value may be returned:
*JGNON This connection is atelnet connection and the system is performing sign-on processing or is

displaying a sign-on prompt on it. In this case the Job name field will contain the network
device name, and the Job number and Internal job identifier fields will be empty.

L ast update. The sequence number of the incoming segment used for the last window update that occurred
on the connection. Thisfield is only valid for TCP connections.

L ast update acknowledged. The acknowledgment number of the incoming segment used for the last
window update that occurred on the connection. This field is only valid for TCP connections.

Local IPv6 address. Thelocal system internet address, in |Pv6 address format, of the connection. Even
though thisfield is defined as a character field, a binary 1Pv6 addressisreturned init.

Local port number. The port number of the local end of the connection.

Maximum segment size. The size in bytes of the largest segment that may be transmitted on this
connection. Thisfield isonly valid for TCP connections.

Maximum window size. The largest size of the send window, in bytes, during the entire time the
connection has been active. Thisfield is only valid for TCP connections.

Number of jobs associated with connection. The number of elementsin the list of job connections
returned with this format. A value of zero isreturned if the list is empty.

Number of socket options associated with connection. The number of elementsin the list of socket
options returned with this format. A value of zero isreturned if thelist is empty.

Offset to list of jobs associated with connection. The offset in bytesto the first element in thelist of job
connections returned with thisformat. A value of zero isreturned if the list is empty.

Offset to list of socket options associated with connection. The offset in bytes to the first element in the

list of socket options returned with thisformat. A value of zeroisreturned if the list is empty.

Option value. The value returned for a particular socket option. The socket option is set if a nonzero value
isreturned.

Outgoing bytes buffered. The current number of bytes that an application has requested to send, but TCP
has not yet sent. If TCP has sent the bytes to the remote system but has not yet received an
acknowledgment, the bytes are considered 'not sent'. They are included in this count.

Outgoing push number. The sequence number of the last byte of push datain the outgoing stream. This
valueis zero if no push dataisin the outgoing data stream. Thisfield is only valid for TCP connections.

Outgoing urgency number. The sequence number of the last byte of urgent datain the outgoing data
stream. Thisvalueis zero if no urgent dataisin the outgoing data stream. Thisfield is only valid for TCP
connections.

Outgoing window number. The largest sequence number in the send window of the connection. The local
TCP application cannot send data bytes with sequence numbers greater than the outgoing window number.

Protocal. Identifies the type of connection protocol.
1 TCP- A Transmission Control Protocol (TCP) connection or socket.

2 UDP - A User Datagram Protocol (UDP) socket.

Receive next. The next sequence number that TCP is expecting to receive.

Remote | Pv6 address. The local system internet address, in IPv6 address format, of the connection. Even
though thisfield is defined as a character field, a binary IPv6 addressisreturned init.

The following specia value may be returned:

0 This"connection" isalistening socket, and there is no remote |Pv6 address. The zero isreturned asa
series of binary NULLs (x'000000...")

Remote port number. The port number of the remote end of the connection.
The following specia value may be returned:

0 This"connection" is alistening socket and there is no remote port number.

Reserved. Anignored field.

Round-trip time. The smoothed round-trip time interval in milliseconds. This is a measure of the time
required for a segment on the connection to arrive at its destination, to be processed, and to return an
acknowledgment to the client. Thisfield isonly valid for TCP connections.

Round-trip variance.The variance in milliseconds from the previous round-trip time. Thisfield isonly
valid for TCP connections.

Send next. The sequence number of the next byte of data that the local TCP application sends to the remote
TCP application.

Send unacknowledged. The sequence number of the last segment sent that was not acknowledged. Thisis
the smallest sequence number of the send window. Thisfield isonly valid for TCP connections.

Slow start threshold. The current values for the slow-start threshold and the congestion window are

indirect indicators of the flow of datathrough a TCP connection. These values are used by TCP as part of a
congestion control algorithm. This algorithm ensures that this system sends data at a slow rate at first. After
the first data has been successfully sent, the rate in which datais sent increases. This changeismadein a
controlled manner that is dependent on the amount of congestion in the network. Congestion control occurs
both at connection start time and when congestion is detected. The values used for the slow-start threshold
and the congestion window are determined by TCP and cannot be set by the user.

Socket option. Socket options for this connection.

1

Socket broadcast option Determine if messages can be sent to the broadcast address. This option
isonly supported for sockets with an address family of AF_INET and type SOCK_DGRAM or
SOCK_RAW, or an address family of AF_NS and type SOCK_DGRAM. Option is set if a nonzero
valueis returned.

#Note: Asof V5R2, the AF_NS address family is no longer supported. <

Socket bypassroute option - Determine if the normal routing mechanism is being bypassed. This
option is only supported by sockets with an address family of AF_INET or AF_NS. Optionis set if
anonzero valueis returned.

#Note: Asof V5R2, the AF_NS address family is no longer supported. <

Socket debug option - Determineif low-level debugging is active. Option is set if a nonzero value
isreturned.

Socket error - Return any pending errorsin the socket. The value returned corresponds to the
standard error codes.

Socket keep alive option - Determine if the connection is being kept up by periodic transmissions.
This option is only supported for sockets with an address family of AF_INET and type
SOCK_STREAM, or an address family of AF_NS and atype of SOCK_SEQPACKET or
SOCK_STREAM. Option is set if anonzero valueis returned.

ZNote: Asof V5R2, the AF_NS address family is no longer supported. <%

Socket linger option - Determine whether the system attemptsto deliver any buffered data or if the
system discards it when a close() isissued. For sockets that are using a connection-oriented
transport service with an address family of AF_NS or AF_INET, the default is off (which means
that the system attempts to send any queued data, with an infinite wait-time). For sockets that are
using a connection-oriented transport service with an address family of AF_TELEPHONY,, the
default is on with alinger time of 1 second (which means that the system will wait up to 1 second to
send buffered data before clearing the telephone connection).

#Note: Asof V5R2, the AF_NS address family is no longer supported.<

Socket linger time - Determine how much time in seconds the system will wait to send buffered
data

Socket out-of-band data option - Determine if out-of-band datais received inline with normal
data. This option is only supported for sockets with an address family of AF_INET or AF_NS.
Option is set if anonzero valueis returned.

#Note: Asof V5R2, the AF_NS address family is no longer supported. <

Socket receive buffer size - Determine the size of the receive buffer.

10

11

12
13

Socket receive low-water mark size - Determine the size of the receive low-water mark. The
default sizeis 1. Thisoption isonly supported for sockets with type SOCK_STREAM and with an
address family of AF_NET.

Socket reuse address option - Determine if the local socket address can be reused. Thisoption is
only supported by sockets with type SOCK_STREAM and with an address family of AF_INET.
Optionisset if anonzero valueis returned.

Socket send buffer size - Determine the size of the send buffer.
Socket type value - Determine the value for the socket type.
Stream type.

Datagram type.

Raw type.

A W N P

Sequential packet type.

Socket state. The current state of the socket.

Possible values are:

0
1
2
3
4
5
6
7

Uninitialized
Unbound
Bound
Listening
Connecting
Connected
Disconnected

Error

Task name. The task name as identified to the system.

TCP state. A typical connection goes through the states:

0

1
2
3
4

ol

Listen, waiting for a connection request from any remote host.

SY N-sent, waiting for a matching connection request after having sent connection request.
SY N-received, waiting for a confirming connection request acknowledgement.
Established, the normal state in which datais transferred.

FIN-wait-1, waiting for the remote host to acknowledge the local system request to end the
connection.

FIN-wait-2, waiting for the remote host request to end the connection.

Close-wait, waiting for an end connection request from the local user.

7 Closing, waiting for an end connection request acknowledgement from the remote host.

8 Last-ACK, waiting for the remote host to acknowledge an end connection request.

9 Timewait, waiting to alow the remote host enough time to receive the local system's
acknowledgement to end the connection.

10 Closed, the connection has ended.

11 State value not supported by protocol.

Total retransmissions. The total number of times the local system retransmitted a segment because an

acknowledgment was not received. Thisis a cumulative count of al segments resent during the entire time

the connection has been active. Thisfield isonly valid for TCP connections.

User send next. The sequence number of the next byte of data to be sent by the client application. This
field is only valid for TCP connections.

User receive next. The sequence number of the next byte to be passed to the application by TCP.4%

Error Messages

Message I D
TCP84CO E
TCP84AC5 E
TCP84C6 E
TCP84C9 |

TCP84CA E
CPF24B4 E
CPF3C19E
CPF3C1EE
CPF3C21 E
CPF3C24 E
CPF3C90 E
CPF3CF1E
CPF3CF2 E
CPF8100 E

CPFO872 E

Error Message Text

TCP/IP stack not active.

Error providing TCP/IP Network Status list information.

Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.
Information returned incompl ete.

Connection request parameter not valid.

Severe error while addressing parameter list.

Error occurred with receiver variable specified.

Required parameter & 1 omitted.

Format name & 1 is not valid.

Length of the receiver variableis not valid.

Literal value cannot be changed.

Error code parameter not valid.

API contains a problem. See prior messages to determine why the failure occurred.
All CPF81xx messages could be returned. xx isfrom 01 to FF.

Program or service program & 1 in library & 2 ended. Reason code & 3.

API introduced: V5R1

Top | Communications APIs | APIs by category

Retrieve PPP Connection Profiles
(QtocRtvPPPCnnPrf) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Profile name Input Char(10)
4 Format name Input Char(8)
5 Error Code /1O Char(*)

Service Program: QTOCPPPAPI

Threadsafe: Yes

The Retrieve PPP Connection Profiles (QtocRtvPPPCnnPrf) API retrieves the details of a specific PPP
connection job profile. If the connection profile describes multiple connections, then details of each
connection are a so retrieved.

Authorities and Locks

None.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
The variable that is to receive the information requested. Y ou can specify the size of this areato be

smaller than the format requested as long as you specify the length parameter correctly. Asaresult,
the API returns only the data that the area can hold.

Length of receiver variable
INPUT; BINARY (4)
The length of the receiver variable. If the length islarger than the size of the receiver variable, the
results may not be predictable. The minimum length is 8 bytes.
Profile name
INPUT; CHAR(10)

The name of the PPP connection profile to be returned.
Format name
INPUT; CHAR(8)

The format of the retrieved profile to be returned. The format names supported are:

PRFR0100 Connection profile attributes. Refer to PRFR0100 Format for details on the format.

PRFR0200 Connection profile static parameters. Refer to PRFR0100 Format and PRFR0200
Format for details on the format.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Format of Connection Profile Attributes Information

To retrieve the basic connection profile information and current profile job status, use format PRFR0100.
For more detailed profile and connection attributes, use format PRFR0200.

PRFR0100 Format

The following data about a connection profile is returned for the PRFR0100 format. For detailed

descriptions of the fields in the table, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |BINARY(4) |Profilemode

| 12 | C |BINARY(4) |Connection protocol

| 16 | 10 |BINARY(4) |Connection status

| 20 | 14 |BINARY(4) |Connection type

| 24 | 18 |BINARY(4) |Profilejobtype

[28 [IC [BINARY(4) |Reserved

| 32 | 20 |CHAR(10) |Profile name

| 42 | 2A |CHAR(50) |Profile description

[92 [5C [CHAR(6) |Reserved

| 108 | 6C |BINARY(4) |Offset to additional information
| 112 | 70 |BINARY(4) |Length of additional information

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available datais returned if
enough space is provided.

Bytesreturned. The number of bytes of data returned.

Connection protocol. The type of point-to-point connection provided by the profile job.

1 SLIP.
2 PPP.

Connection status. The current connection of job status of the profile job.Vaues are as follows:

1 Inactive

2 Session error

3 Ended - information available

4 Session start submitted

11 Sessionjob starting

12 Session job ending

13 Session ended - job log pending
14 Adding TCP/IP configuration

15 Removing TCP/IP configuration
16 Message pending

17 Session error

18 Starting TCP/IP

19 Ending TCP/IP

21 Cadling remote system

22 Waiting for incoming call

23 Connecting

24 Active

26 Switched line-dial on demand

27 Waiting for incoming call - switched line-answer enabled dial on demand
#»28 Waiting for shared line resource
29 Requesting shared line resources
31 LCPinitializing

32 LCPstarting

33 LCPclosing

34 LCPclosed

35 LCPwaiting for configuration request
36 LCP configuring

37 LCP authenticating

41 IPCPinitializing

42 |PCP starting

43 IPCPending

44 |PCP stopped

45 IPCP waiting for configuration request

46 |1PCP configuring

47 1PCP opening

51 Multi-connection - waiting for incoming call(s)
52 Multi-connection L2TP initiator waiting for tunnel
53 Multi-connection - at |east one connection active
Z¥54 Multi-hop terminator starting multi-hop initiator
55 Multi-hop initiator establishing second hop tunnel
56 Multi-hop initiator tunnel pre-started

57 Multi-hop connection active

58 Starting VPN connection

59 Negotiating IPSEC SA

60 PPPOE discovery stage

61 PPPOE session stage

Connection type. The type of connection provided by the profile job. Values are:

1 Switched or dialed connection
2 Leased or non-switched connection
3 Virtua circuit connection

Length of additional information. The length in bytes of additional information returned that is not part of
format PRFR0100.

Offset to additional infor mation. The offset in bytes to the rest of the information if aformat other than
PRFRO100 is requested.

Profile description. The text description of the function performed by this profile connection job..

Profilejob type. The type of job support required for the profile.

1 Single connection profile
2 Multi-connection or multilink connection profile

Profile mode. The function provided by the profile job. Values are:

1 Did only.

2 Answer only.

3 Dial-on-demand.

4 Answer enabled dial-on-demand.

0 N O O

L2TP virtua Initiator.
Remote peer enabled dial-on-demand.
L2TP initiator-on-demand.
L2TP multihop initiator.

#9 PPPOE initiator.4

Profile name. The name of this connection profile description.

PRFR0200 Format

The following data about a connection profile is returned for the PRFR0200 format. For detailed

descriptions of the fields in the table, see Field Descriptions.

| Offset
| Dec | Hex |Type Field
| 0 | 0 | |Returns everything from format PRFR0100
Decimal and BINARY (4) Move current remote phone number if dial
hexadecimal operation is successful
offsetsare BINARY(4) |Redia when disconnected
reached by using .
the offset to IBINARY(4) |Number of dial attempts
additiond |BINARY(4) |Delay between dial attempts
mf]?orrrpnaation field IBINARY(4) [Maximum number of connections
PRFRO100. IBINARY(4) |Multilink connection enabled
IBINARY(4) |Maximum number of multilink connections
IBINARY(4) |Inactivity timeout
IBINARY(4) |Line definition
|ICHAR(10) |Line name
|ICHAR(10) |Linetype
|ICHAR(15) |L2TP tunnel end-point IP address
|ICHAR(5) |Reserved
IBINARY(4) |Local user ID defined
IBINARY(4) |Local user ID encryption type
|CHAR(10) |Local user 1D validation list name
|ICHAR(6) |Reserved
IBINARY(4) |Remote user ID required for logon
BINARY (4) Remote user |D authentication protocols
allowed
IBINARY(4) |Remote user ID validation method
BINARY (4) Use Radius for connection auditing and
accounting
|ICHAR(10) |Remote user 1D validation list name
|ICHAR(6) |Reserved

[BINARY (4)

|ASCII CCSID of line data

[BINARY ()

|Connection script file defined

|CHAR(10) |Connection script library

|ICHAR(10) |Connection script file

|CHAR(10) |Connection script member

[CHAR(2) |Reserved

IBINARY(4) |DNS definition

[CHAR(15) |[DNSIP address

[CHAR() |Reserved

IBINARY(4) |Local IP address definition

|ICHAR(15) |Local IP address

[CHAR() |Reserved

IBINARY(4) |Remote |P address definition

|ICHAR(15) |Remote |P address (or start of range)

[CHAR() |Reserved

IBINARY(4) |Allow additional remote IP addresses by user ID

’BI NARY (4) Allow remote system to assign the remote IP
addres

IBINARY(4) |Allow IP datagram forwarding

IBINARY(4) |Request VJ header compression

IBINARY(4) |Routing definition

IBINARY(4) |Hide address (full masquerading)

IBINARY(4) |Number of remote |P addresses

[CHAR@) |Reserved

|ICHAR(64) |Line pool list name

|ICHAR(10) |Subsystem description

[CHAR(E) |Reserved

IBINARY(4) |Requires P security protection

|CHAR(40) |IP security connection group

’CHAR(lO) Answer profile this dial-on-demand profile
depends on

[CHAR() |Reserved

IBINARY(4) |Allow remote system to initate call

[BINARY(4) [Allow BACP

IBINARY(4) |Add link percentage

IBINARY(4) |Timeto wait (in seconds) for adding alink

IBINARY(4) |Drop link percentage

IBINARY(4) |Timeto wait (in seconds) for dropping alink

IBINARY(4) |Bandwidth test direction

IBINARY(4) |Usefilter rule

|ICHAR(32) |Filter rule name

IBINARY(4) |Allow L2TP Multihop connections

IBINARY(4) |Allow L2TP outgoing call connections

[BINARY (4)

|L2TP outgoing call line definition

|CHAR(10) |L2TP outgoing call line name
|CHAR(10) |Reserved

BINARY (4) Offset to profile detailed connection parameter
entries

BINARY (4) Number of profile detailed connection
parameter entries

BINARY (4) Entry length of profile detailed connection
parameters

IBINARY(4) |Offset to remote phone number entries
IBINARY(4) |Number of remote phone number entries
IBINARY(4) |Entry Iength of remote phone numbers
[*BINARY (4) [PPPOE server addressing

IBINARY(4) |Persistent PPPoE connection
ICHAR(256) |Requested PPPOE server name
ICHAR(256) |Requested PPPOE service &

Field Descriptions

Add link percentage. The percentage utilization of the connection before adding another link to a
connection. Valid values are:

1

5

10

25

50

75

90 (default)
95

100

Allow additional remote I P addresses by user 1D. Whether additional remote | P addresses may be
specified for specific user ID entries. Valid values are:

0 No
1 Yes

Allow BACP (Bandwidth Allocation Control Protocol). Whether BACP is allowed/required for this
connection. Valid values are:

0 No
1 Yes

Allow | P datagram forwar ding. Whether | P datagrams not destined for this system should be forwarded.

Valid values are;

0 No
1 Yes

Allow L 2TP Multihop connections. Whether L2TP multihop connections are allowed by this profile
connection job. Valid values are:

0 No
1 Yes

Allow L 2TP outgoing call connections. Whether L2TP outgoing call connections are allowed by this
profile connection job. Valid values are:

0 No
1 Yes

Allow remote system to assign the remote | P address. Whether the remote system is alowed to specify
the remote IP address for the connection. Valid values are:

0 No
1 Yes

Allow remote system to initate call. The remote system is allowed to initate a call for an additional link
for the connection. Valid values are:

0 No
1 Yes

Answer profilethisdial-on-demand pr ofile depends on. The name of the answer profile (connection job)
that must be running to answer incoming connections before this profile connection job may be started.

ASCII CCSID of linedata. The ASCII Coded Character Set ID of the line data for the connection that will
be used to trand ate connection dialog to and from the EBCDIC character set of the Connection Script used
by this profile connection job.

Bandwidth test direction. The data direction on the connection to test the bandwidth for adding and
removing links. Valid values are:

0 N/A
1 Inbound and outbound
2 Outbound only

Connection script file. The name of the connection script file that is used by this profile connection job.

Connection script file defined. The connection script file that describes dialog for establishing a
connection with the remote system. Valid values are:

0 No
1 Yes

Connection script library. The library containing a Connection Script file that is used by this profile
connection job.

Connection script member. The member name of the Connection Script file that is used by this profile
connection job.

Delay between dial attempts. The time (in seconds) to wait before next attempting to make a successful
dialed connection. Valid values are:

1-60 (default = 15)

DNS definition. Whether a Domain Name Server | P address isto be added to the DNS address list when a
connection is established for this profile connection job. Valid values are:

0 DNS not used - no address will be added
1 By IPaddress- the IP address is statically specified
2 Dynamic - the IP address will be supplied by the remote system

DNS I P address. The IP address of the Domain Name Server used by this profile connection job.

Drop link percentage. The percentage utilization of the connection before dropping alink of a connection.
Valid values are:

1
5

10

25

40 (default)
75

9

95

100

Entry length of profile detailed connection parameters. The length in bytes of each profile detailed
connection parameter entry returned for this profile. A value of zero isreturned if the list is empty.

Entry length of remote phone numbers. The length in bytes of each remote phone number entry returned
for thisprofile. A value of zerois returned if thelist is empty.

Filter rule name.The name of thefilter rule to be used by this connection profile.

Hide address (full masquerading). Whether all other | P addresses should be hidden by the I P address of
the PPP connections established by this profile connection job. Valid values are:

0 No
1 Yes

I nactivity timeout. The value used for the inactivity timeout in the line description. Valid values are 15 -
65535 seconds.

I P security connection group. The name of the connection group that describes the IP Security details for
connections established by this profile connection job.

L 2TP outgoing call line definition. The line type to be used by this profile connection job for L2TP

outgoing calls. Valid values are:
1 Singleline

2 LinePooal (singleline)

5 ISDN line

L 2TP outgoing call line name. The name of the line to be used by this profile connection job for L2TP
outgoing calls.

L 2TP tunnel end-point address. The |P address of the remote end of the tunnel for an L2TP initiator
profile or the IP address of the local end of the tunnel for an L2TP terminator profile.

Line definition. The line selection method used by this profile connection job. Valid values are:
1 Specified line name

LinePool (singleline)

LinePool (al)

ISDN line

L2TPline

A7 PPPOE virtual line¥

D O W N

Line name. Each TCP/IP interface is associated with a physical network. Thisfield displays the name of
the communications line description that identifies the physical network associated with an interface. May
be blank when Line type selection is* LINEPOOL and no member line has been selected.

Line pool list name. The name of the Line Pooal list that contains the names of line descriptions available
for use by this profile connection job.

Linetype. Thetype of line connection defined in this connection profile. Possible values are:

*PPP PPP line description

*LINEPOOL Line nameisamember of aline pool
*|SDN ISDN line description

*L2TP L2TP line description

A*PPPOE PPPOE line description<,
*ERROR The selected line type is undefined or isimproperly defined

Local IP address. Theloca |P address defined for connections established by this profile connection job.

Local I P address definition. How alocal |P addressis defined for connections established by this profile
connection job. Valid values are:

1 By IPaddress - the IP addressis statically specified
2 Dynamic - the IP address will be negotiated with the remote system

Local user ID defined. The User ID that is defined if authentication is required by the remote system.
Valid values are:

0 No
1 Yes

Local user ID encryption type. The encryption method for the local system user name and password when
authenticating with the remote system. Valid values are:

0 Undefined
1 PAPonly
2 CHAPonly
3 EAPonly

Local user ID validation list name. The name of the validation list containing the local User ID and
password when authenticating with the remote system.

Maximum number of connections. The maximum number of connections supported by this PPP job
profile.

Maximum number of multilink connections. The maximum number of physical connections connections
that can be bundled into a single multi-linked connection.

Move current remote phone number if dial operation is successful. Whether the current remote phone
number should be moved if the call attempt is successful. Valid values are:

0 N/A

1 Do NOT move number (default for non-multilink connections)

2 Move number to the top of thelist (default for multilink connections)
3 Move number to the bottom of the list

Multilink connection enabled. Whether multilink connections are enabled for the profile. Vaues are:

0 No
1 Yes

Number of profile detailed connection parameter entries. The number of profile detailed connection
parameter entries returned for this profile. A value of zero isreturned if thelist is empty.

Number of remote phone number entries. The number of remote phone number entries returned for this
profile. A value of zeroisreturned if the list is empty.

Number of remote | P addresses. The number of |P addresses derived from the Remote | P start address
defined for this profile connection job.

Number of dial attempts. The total number of dial attempts to achieve a successful connection.

Offset to profile detailed connection parameter entries. The offset from the beginning of the receiver
variable, in bytes, to the first element in the profile detailed connection parameter entries returned for this
profile. A value of zero isreturned if the list is empty.

Offset to remote phone number entries. The offset from the beginning of the receiver variable, in bytes,
to the first element in the remote phone number entries returned for this profile. A value of zero isreturned
if thelist isempty.

#Persistent PPPoE connection. Whether PPPOE connections for this profile are re-established when lost
unexpectedly. Vaues are:

0 No

1 Yes

PPPOE server addressing. Describes the method used to select a PPPOE server connection. Valid values
are:

0 Undefined

1 Connect to the default service of the first server that replies (default)
2 Connect to the default service of the requested server

3 Connect to the first server offering the requested service

4 Connect to the requested server offering the requested servicet

Re-dial when disconnected. Whether a dialed connection established by this profile connection job will be
redialed if the connection islost unexpectedly. Valid values are:

0 No
1 Yes

Remote | P address definition. How aremote | P address is defined for connections established by this
profile connection job. Valid values are:

1 By IPaddress - the IP addressis statically specified

2 Dynamic - the | P address will be negotiated with the remote system
3 Route specified - the IP address is specified by remote user

4 Address pool - the IP address will be selected from the address pool
5 DHCP - the IP address will be supplied by the DHCP server

6 Radius- the IP address will be supplied by the Radius server

Remote I P address (or start of | P address pool). The remote |P address (or starting | P address for
multi-connection profiles) defined for connections established by this profile connection job.

Remote user 1D authentication protocols allowed. The allowable protocols for remote user ID
authentication. Valid values are:

N/A

CHAPand PA

CHAP only

PAP only

EAP only

EAP and PAP

EAP and CHAP

EAP, CHAP, and PAP

N o oA W N P O

Remote user 1D required for logon. Remote User ID authentication is required for logon to the local
system. Valid values are:

0 No
1 Yes

Remote user I D validation method. The method for validation of the remote user ID. Valid values are:

0 N/A
1 Validation list
2 Radius

Remote user 1D validation list name. The name of the Validation list containing the remote User 1D and
password for authenticating the connection with the remote system.

#Reguested PPPoE server name. The PPPOE server name requested for this PPPOE initiator profile to
negotiate the remote end of the connection.

Requested PPPOE service. The PPPoE service regquested for this PPPOE initiator profile to negotiate with
the remote end of the connection.<¥

Request VJ header compression. Whether VJ header compression should be performed on I P datagrams.
Valid values are:

0 No
1 Yes

Requires|P security protection . Whether |P security is required for connections established by this
profile connection job. Valid values are:

0 No
1 Yes

Routing definition. The additional routing requested when activating this profile connection job. Valid
values are:

0 Not Used
1 Add default route
2 Additional static routes defined

Subsystem description. The name of the subsystem description in which the connection jobs for this
profile connection job will be run.

Timetowait (in seconds) for adding a link. The time (in seconds) to wait before adding an additional
link after the connection utilization has exceeded the specified percentage. Valid values are:

5-3600 (inincrementsof 5, default = 15)

Timetowait (in seconds) for dropping alink. The time (in seconds) to wait before dropping alink after
the connection utilization has receeded bel ow the specified percentage. Valid values are:

5-3600 (inincrementsof 5, default = 15)

Usefilter rule. Whether afilter rule should be used by the profile connection job. Valid values are:

0 No
1 Yes

Use Radiusfor connection auditing and accounting. Whether Radius should be used for connection

auditing and accounting. Valid values are:

0 No
1 Yes

Connection Profile Detailed Parameters

The following datais returned for each profile detailed connection parameter entry, describing one
connection for a profile. Multiple connection profiles may have one entry for each connection. For detailed
descriptions of the fields in the table, see Field Descriptions.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |BINARY(4) |Connection status

| 4 | 4 |BINARY(4) |Maximum transmission unit (MTU)

| 8 | 8 |BINARY(4) |Maximum links per multilink connection bundle

| 12 | C |BINARY(4) |Number of activelinks

| 16 | 10 |BINARY(4) |Lineinactivity timeout

[20 [14 [CHAR®@ |Reserved

| 24 | 18 |CHAR(6) |Job number

[30 [1E [CHAR{0) [Jobuser

[40 [28 [CHAR({0) [Jobname

| 50 | 32 |CHAR(10) Line name

60 3C |CHAR(15) Activelocal IP address (set when profileis
active)
75 4B |CHAR(15) Active remote | P address (set when profileis

active)

| 90 | 5A |CHAR(6) |Reserved

| 96 | 60 |CHAR(49) |Remote user name

| 144 | 90 |CHAR(64) |Group access policy

| 208 | DO |CHAR(32) |Filter rule name

[240 [FO [CHAR®) |[IPforwardin

| 241 | F1 |CHAR(1) |Proxy ARP routing

| 242 | F2 |CHAR(1) | TCP/IP header compression

| 243 | F3 |CHAR()) |Full masquerading

| 244 | F4 |CHAR(1) |Authentication protocol

| 245 | F5 |CHAR(1) IMultilink protocol enabled

’ 246 ’ F6 ’CHAR(l) Multilink bandwidth utilization monitoring
enabled

| 2247 | F7 |CHAR(Y) |Reserved

| 248 | F8 |BINARY(4) |Detailed connection status

[252 [FC [CHAR®) [Reserved®

Field Descriptions

Active (binary) local | P address. The binary local | P address of the connection established by this profile
connection job.

Active (binary) remote | P addr ess. The binary remote I P address of the connection established by this
profile connection job.

Authentication protocol. The authentication protocol that was negotiated for this profile connection. Valid
values are:

0 N/A

CHAP and PAP
CHAP only

PAP only

EAP only

EAP and PAP

EAP and CHAP

EAP, CHAP, and PAP

N o o WODN P

Connection status. The current status of this profile connection. Valid values are:

N/A

Inactive or ended
Ending

Starting

Waiting for connection
Connecting

o o1~ WO N - O

Active

#Detailed connection status. Additional detail of the current status of this profile connection. Valid values
are:

0 No status set

256 Undefined

257 Connection operational

258 Initializing connection to modem

259 Initializing connection data structures

260 Selecting aline from aline pool

261 Requesting a shared line from current owner
262 Waiting for shared line to be available

263 Initializing modem

264 Incoming call detected

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
300
301
302
303
304
350
351
352
353
354
355
356
357
400
401
402
403
404
405

Dial on-demand connection requested
Waiting for modem to connect
Redialing remote system

Modem connected

Modem disconnected

Authenticating remote user
Negotiating | P address

Activating | P address

Modem or resource failure
Connection profile setings failure
Authentication failure

Modem failure

Retry threshold failure

Remote phone number busy

No local dial tone detected

Remote modem did not answer

| P address activation failure

PPP protocol rejected

PPP connection inactivity timeout
Sent PPPoE initiation packet

Received PPPOE offer from peer

Sent PPPoE request packet to peer
Received PPPOE session-confirmation from peer
Sent PPPoE termination packet to peer
Received PPPOE termination from peer
No response from PPPOE peer

PPPoE peer response did not match request sent
Received error from PPPOE peer
Unable to open communication stream
Unable to send packet to PPPoE peer
Unable to convert packet data

PPPOE link error

Starting L2TP tunnel negotiation
L2TP tunnel negotiation in progress
L2TP tunnel established

Starting L2TP call negotiation
Starting L2TP remote call negotiation
L2TP call established

450 L2TP tunnel authentication failed

451 L2TP tunnel maximum connections exceeded
452 Sent stop L2TP tunnel message to peer

453 Received stop L2TP tunnel message from peer
454 L2TP call maximum connections exceeded
455 Sent stop L2TP call message to peer

456 Received stop L2TP call message from peer<

Filter rule name. The name of the filter rule that isin effect for this profile connection. A value * NONE
means that no filter ruleisin use.

Full masquerading. Whether full masquerading isin effect for this profile connection. Valid values are:

0 No
1 Yes

Group access policy. The name of the group access policy that isin effect for this profile connection. A
value *NONE means that no group policy isin use.

| P forwarding. Whether IP forwarding is active for this profile connection. Valid values are:

0 No
1 Yes
Job name. The job name of this profile connection job.
Job number. The job number of this profile connection job.
Job user. The job user name of this profile connection job.
Line name. The name of the line description used for this profile connection.

Lineinactivity timeout. The value used for the inactivity timeout in the line description. Valid values are
15 - 65535 seconds.

Maximum links per multilink connection bundle. The maximum number of links allowed per bundle for
multilink connections for this profile.

Maximum transmission unit. The maximum size of 1P datagrams that can be sent over connections started
by this profile connection job. Thisvalue isvalid only when the profileis active.

Multilink protocol enabled. Whether multilink connections are allowed for this connection profile. Valid
values are:

0 No
1 Yes

Multilink bandwidth utilization monitoring enabled. Whether bandwidth utilization monitoring is
enabled for this profile connection. Valid values are;

0 No
1 Yes

Number of active links. The number of active links that constitute this profile connection.

Proxy ARP routing. Whether proxy ARP routing isin effect for this profile connection. Valid values are:

0 No
1 Yes

Remote user name. The name of the connected remote user that was authenticated for this profile
connection. Thisvalue isvalid only when authentication is enabled for this connection profile.

TCP/IP header compression. Whether TCP/IP header compression will be performed for this profile
connection. Valid values are:

0 No
1 Yes

Remote Phone Numbers

The following datais returned for each connection profile remote phone number entry. Multilink
connection profiles may have one entry for each connection in the link. Single connection profiles may
have more than one entry to provide backup phone numbers when the primary (first) number is unavailable.
For detailed descriptions of the fields in the table, see Field Descriptions.

Offset
Dec | Hex ’Type ’Field
0 | O [CHAR(48) |Remote phone number
48 [30 [CHAR(16) |Reserved

Field Descriptions

Remote phone number. A phone number that will be used to attempt a switched connection with aremote
system. Valid for Dial profilesonly.

Reserved. Anignored field.

Error Messages

Message I D Error Message Text

TCP8211 E Point-to-point profile & 1 not found
CPF24B4 E Severe error while addressing parameter list.
CPF3C21E Format name &1 is not valid.

CPF3C24 E Length of the receiver variableis not valid.
CPF3C90 E Literal value cannot be changed.
CPF3CF1E Error code parameter not valid.

CPF9872 E Program or service program &1 in library & 2 ended, reason code & 3.

API introduced: V5R1

Top | Communications APIs | APIs by category

Retrieve TCP/IP Attributes (QtocRtvTCPA) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Error code /0 Char(*)

Service Program: QTOCNETSTS

Threadsafe: Yes

#The Retrieve TCP/IP Attributes (QtocRtvTCPA) API retrieves TCP/IPv4 and TCP/IPv6 stack attributes.
L4

Authorities and Locks

None.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The variable that is to receive the information requested. Y ou can specify the size of this areato be
smaller than the format requested if you specify the length of receiver variable parameter correctly.
Asaresult, the API returns only the data that the area can hold.

Length of receiver variable
OUTPUT,; BINARY (4)
The length of the receiver variable. If thisvalueis larger than the actual size of the receiver
variable, the result may not be predictable. The minimum length is 8 bytes.
Format name
INPUT; CHAR(8)

The format of the space information to be returned. The format names supported are:

TCPA0100 TCP/IPv4 stack status. Refer to TCPA0100 Format for details on the format.

TCPA0200 TCP/IPv4 stack attributes in addition to TCP/IPv4 stack status. Refer to
TCPA0100 Format and TCPA 0200 Format for details on the format.

TCPAO300 TCP/IP domain attributes in addition to TCP/IPv4 stack status. Refer to
TCPA0100 Format and TCPA0300 Format for details on the format.

ZTCPA1100 TCP/IPv6 stack status. Refer to TCPA 1100 Format for details on the format. &

HTCPA1200 TCP/IPv6 stack attributes in addition to TCP/IPv6 stack status. Refer to
TCPA1100 Format and TCPA 1200 Format for details on the format. <&

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of TCP/IP Attributes Information

b
To retrieve the current TCP/IPv4 stack status, use format TCPA0100.

For detailed TCP/IPv4 stack attributes in addition to the TCP/IPv4 stack status, use format TCPA0200.

For domain name system information in addition to the TCP/IPv4 stack status, use format TCPAQ300.

To retrieve the current TCP/IPv6 stack status, use format TCPA1100.

For detailed TCP/IPv6 stack attributes in addition to the TCP/IPv6 stack status, use format TCPA1200.4%

TCPAO100 Format

This format returns information regarding the status of the TCP/IPv4 stack. For detailed descriptions of the
fieldsin the table, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |BINARY(4) |TCP/IPv4 stack status

| 12 | C |BINARY(4) |How longactive

| 16 | 10 |CHAR() |When last started - date
| 24 | 18 |CHAR(6) |When last started - time
[30 [1E |[CHAR(®) |Whenlastended - date
| 38 | 26 |CHAR(6) |When last ended - time
| 44 | 2C |CHAR(10) |Who last started - job name

| 54 | 36 |CHAR(10) |Who |ast started - job user name

| 64 | 40 |CHAR(6) |Who last started - job number

| 70 | 46 |CHAR(16) |Who last started - internal job identifier
| 8 | 56 |CHAR(10) |Who last ended - job name

| 9% | 60 |CHAR(10) |Who |ast ended - job user name

| 106 | 6A |CHAR(6) |Who last ended - job number

| 112 | 70 |CHAR(16) |Who last ended - internal job identifier
| 128 | 80 |BINARY(4) |Offset to additional information

| 132 | 84 |BINARY(4) |Length of additional information
[#136 [88 |[BINARY(4) |Limited mode €

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available datais returned if
enough spaceis provided.

Bytesreturned. The number of bytes of data returned.

How long active. How long, in seconds, the TCP/IP stack has been activeiif it is active currently, or how
long it was active the last time it was up if it is currently inactive.

Length of additional information. The length in bytes of additional information returned that is not part of
format TCPA0100.

#Limited mode. The current value of the TCP/IP Limited mode flag. TCP/IPv4 can operate while the
system isin the restricted state, with limited functionality.

Possible values are:
0 No- Thesystemisnot currently running TCP/IPv4 in limited mode.

1 Yes- Thesystem iscurrently running TCP/IPv4 in limited mode. 4%

Offset to additional information. The offset from the beginning of the receiver variable, in bytes, to the
start of the next format if aformat other than TCPA0100 is requested. Thisfield allows expansion of the
basic information. A value of zero isreturned if only the TCPA0100 format is requested.

Reserved. Anignored field.

TCP/1Pv4 stack status. The current status of the system TCP/IPv4 stack. Possible values are:
0 Inactive - The TCP/IPv4 stack is not operational.

Active - The TCP/IPv4 stack is operational.

Starting - The TCP/IPv4 stack not operational, but isin the process of starting.

Ending, immediate - The TCP/IPv4 stack is operational, but isin the process of ending.

A W N B

Ending, controlled - The TCP/IPv4 stack is operational, but isin the process of ending.

When last ended - date. The date when the TCP/IP stack was last ended. Theformat isYYYYMMDD,
where:

YYYY Year
MM Month
DD Day

When last ended - time. The time when the TCP/IP stack was last ended. AThe format isHHMMSS, in
24-hour time, where:

HH Hour
MM Minute
SS Second

When last started - date. The date when the TCP/IP stack was last started. The formatisYYYYMMDD,
where;

YYYY VYea
MM Month
DD Day

When last started - time. The time when the TCP/IP stack was last started. The format is HHMMSS, in
24-hour time, where:

HH Hour
MM Minute
SS Second

Who last ended - internal job identifier. A value sent to other APIsto speed the process of locating the
job on the system. Only OS/400 APIs use thisidentifier. Thisfield isall NULLsif the TCP/IP stack has not
been ended since the last initial program load (IPL), or if the job that ended the TCP/IP stack is no longer
active.

Who last ended - job name. The name of the job responsible for ending the TCP/IP stack the last time it
was ended. If the TCP/IP stack has not been ended since the last initial program load (IPL), thisfield is all
NULLs.

Who last ended - job number. The job number responsible for ending the TCP/IP stack the last time it
was ended. If the TCP/IP stack has not been ended since the last initial program load (1PL), thisfield is all
NULLs.

Who last ended - job user name. The name of the user responsible for ending the TCP/IP stack the last
time it was ended. If the TCP/IP stack has not been ended since the last initial program load (IPL), thisfield
isall NULLs.

Who last started - internal job identifier. A value sent to other APIs to speed the process of locating the
job on the system. Only OS/400 APIs use thisidentifier. Thisfield isall NULLsif the TCP/IP stack has not
been started since the last initial program load (IPL), or if the job that started the TCP/IP stack is no longer
active.

Who last started - job name. The name of the job responsible for starting the TCP/IP stack the last time it
was started. If the TCP/IP stack has not been started since the last initial program load (1PL), thisfield will
beall NULLs.

Who last started - job number. The job number of the job responsible for starting the TCP/IP stack the
last time it was started. If the TCP/IP stack has not been started since the last initial program load (IPL),
thisfield will beall NULLs.

Who last started - job user name. The user name of the job responsible for starting the TCP/IP stack the

last time it was started. If the TCP/IP stack has not been started since the last initial program load (1PL),
thisfield will beall NULLs.

TCPAO0200 Format

Thisformat returns detailed information about the TCP/IPv4 stack attributes in addition to the TCP/I Pv4
stack status (format TCPA0100). For detailed descriptions of the fields in the table, see Field Descriptions.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 | |Returns everything from format TCPA0100

Decimal and IBINARY(4) |IP datagram forwarding

nexadecimal - [BINARY(4) _[UDP checksum

reached by using IBINARY(4) |Log protocol errors

the offset to IBINARY(4) |IP sourcerouting

?%‘z::ggt?lon iy [BINARY(4) [TCP urgent poi nter

in format IBINARY(4) |IP reassembly timeout

TCPA0100. IBINARY(4) |IPtimetolive
BINARY(4) |TCPkeep dive
IBI NARY (4) ITCP receive buffer
BINARY(4) [TCPsend buffer
=BI NARY (4) =A RP cache timeout
IBINARY(4) |MTU path discovery
IBINARY(4) |MTU discovery interval
BINARY(4) |QoS enablement
IBI NARY (4) IQOS timer resolution
IBINARY(4) |QoS data path optimization
IBINARY(4) |Dead gateway detection enablement
IBINARY(4) |Dead gateway detection interval
IBINARY(4) |TCPtime wait timeout
IBINARY(4) |TCP R1 retransmission count
IBINARY(4) |TCP R2 retransmission count
IBINARY (4) [TCP minimum retransmission timeout <€
[#BINARY (4) |TCP close connection message <
IZ*BINARY (4) [Network file cache enablement <
[>BINARY (4) [Network file cache timeout €

| »BINARY (4) |Network file cache size &

Field Descriptions

ARP cachetimeout. The ARP cache time-out value, in minutes The purpose of the time-out valueisto
flush out-of -date cache entries from the ARP cache.

The default ARP cache time-out interval is 5 minutes. Valid values range from 1 through 1440 minutes (24
hours).

Dead gateway detection enablement. Whether dead gateway detection is turned on or off. Dead gateway
detection is a mechanism that involves polling all attached gateways. If no reply isreceived to the polls, all
routes using that gateway are inactivated. Possible values are:

0 Dead gateway detection is off.
1 Dead gateway detection ison. Thisisthe default value.

Dead gateway detection interval. The amount of time, in minutes, between dead gateway detection polls.
When the time interval is exceeded, all attached gateways are polled to determine their availability.

The default dead gateway detection interval is 2 minutes. Valid values range from 1 through 60 minutes.

| P datagram forwar ding. Whether the IP layer forwards Internet Protocol (IP) datagrams between
different networks. It specifies whether the IP layer is acting as a gateway.

Note: IP does not forward datagrams between interfaces on the same subnet.

The 0S/400 implementation of TCP/IP does not include full gateway function as defined in RFC1009.
Subsets of the gateway functions are supported. One of the gateway functions supported is | P datagram
forwarding capabilities. The possible values are:

0 IPdatagramsare not forwarded. Thisisthe default value.

1 IPdatagrams are forwarded.

| P reassembly timeout. The | P datagram reassembly time, in seconds. If thistime is exceeded, a partially
reassembled datagram is discarded and an ICMP time exceeded message is sent to the source host.

The default | P reassembly timeout is 10 seconds. Valid values range from 5 through 120 seconds.

| P sour ce routing. Whether | P source routing currently is on or off. If IP source routing ison, it means that
this system is specifying the route that outgoing | P packets take instead of allowing normal dynamic
routing to take place. Some firewalls will not pass datagrams that have I P source routing switched on. The
possible values are:

0 IPsourcerouting is off.

1 [IPsourcerouting ison. Thisisthe default value.

IPtimetolive. The current TTL value. The IP datagram time-to-live value specifies arelative limit on the
number of hops across which an IP datagram remains active. The time-to-live value acts as a hop count that
is decremented by each gateway to prevent internet routing loops.

Note: Even though this parameter is specified as atime-to-live value, it isnot used asatime vaue. It is
used as a counter. The standard description istime to live as specified in RFCs.

Note: This|P datagram time-to-live value is not used for datagrams sent to an |P multicast group address.
The default | P datagram time-to-live value for datagram sent to an IP multicast group is always 1, as
specified by the Internet standards. Individual multicast applications may override this default using the
IP_MULTICAST_TTL socket option.

The default time-to-live value is 64. Valid values range from 1 through 255.

L og protocol errors. Enables a user to log protocol errors that occur during the processing of TCP/IP data.
These TCP/IP stack layer functions use this parameter to determine if they log protocol-specific errors: IP,
ICMP, ARP, and NAM. TCP and UDP do not log protocol errors.

The 7004 error reference code is logged when the LOGPCLERR(* Y ES) option is specified and inbound
datagrams are silently discarded. Silently discarded means that an ICMP message is not returned to the
originating host when a datagram is discarded because of header errors. Examples of such datagrams
include those with invalid checksums and invalid destination addresses.

The error reference code is for information only. No action should be taken as aresult of this error
reference code. It is generated to assist with remote device or TCP/IP network problem analysis.

Note: These error conditions cannot be processed using an APAR.

The log protocal errors parameter should be used when error conditions require the logging of TCP/IP data,
such as datagrams, to determine network problems.

The dataislogged in the system error log. This error log is available through the Start System Service
Tools (STRSST) command. The possible values are:

0 Protocol errors are not logged.

1 Protocol errors are logged.

MTU discovery interval. The amount of time, in minutes, that the TCP/IP protocol stack will cache the
results of apath MTU discovery. When the timeinterval is exceeded, the path MTU is rediscovered.

The default path MTU discovery interval is 10 minutes. Valid values range from 5 through 40320 minutes
(28 days). A specia vaueis:

-1 *ONCE - Means that path MTUs should not be recalcul ated after the first discovery.

MTU path discovery. Whether the Path Maximum Transmission Unit (MTU) discovery functionis
enabled on this system.

0 MTU Path Discovery is disabled for this system.
1 MTU Path Discovery is enabled for this system. Thisisthe default value.
2

Network file cache enablement. The current enablement status of the Network File Cache (NFC) function.
The Network File Cache is used for the support of FRCA (Fast Response Cache Accelerator). FCRA
dramatically improves the performance of serving non-secure static content by Web and other TCP servers.

Possible values are:

0 *NO - Network file cacheis currently disabled on this system.

1 *YES- Network file cacheis currently enabled on this system.

Network file cache size. The maximum amount of storage that may be used by the Network File Cache
(NFC) for the entire system. This number isthe total storage used by all TCP serversfor caching files. The
storage being allocated is DASD or disk and is not directly allocated from main memory. Valid values
range from 10 through 100000 megabytes (100GB).

Network file cache timeout. The maximum amount of time in seconds that a file can be cached in the
Network File Cache (NFC). This attribute ensures that afileisrefreshed at aregular interval. Valid values
range from 30 through 604800 seconds (one week).

Special values are:

0 *NOMAX - Network file cache entries will not timeout.%

QoS data path optimization. The type of data path optimization in use by Quality of Service (Qo0S). This
field indicates the extent which QoS will batch datagrams so as to optimize performance at the risk of
increasing jitter, or delay. The normal setting maximizes performance by doing more batching of datagram
packets. The MinDelay setting minimizes delay by doing less batching of datagram packets and just
sending them when they are ready. Possible values are:

1 *NORMAL - Maximize performance. This setting is the default.
2 *MINDELAY - Minimize delay.

QoS enablement. Whether Quality of Service (QoS), IP Type of Service (TOS), or neither of thetwo arein
use. Possible values are:

1 *TOS- Type of Service bytesin the IP headersarein use.
2 *YES-QoSisinuse

3 *NO- QoSisnotinuseand the Type of Service byteisnot in use. This setting is the default.

QoStimer resolution. The Quality of Service (QoS) timer resolution value in milliseconds. Thisfield
indicates the amount of control possible over delay variations. A higher timer resolution value contributes
to morejitter (delay), and alower timer resolution uses more CPU time. The timer resolution value that can
betolerated is very dependent on the application. For example, video is highly sensitive to large delay
variations. To achieve a smooth rate of flow, timers need to use small timer increments. The smaller the
resolution, the smoother the data flow, but at a higher cost in terms of system overhead to manage timers.

The default QoS timer resolution is 100 milliseconds. Valid values range from 5 to 5000 milliseconds.

#T CP close connection message. The value of the TCP close connection message attribute. The TCP
close connection message attribute specifies whether abnormally closed TCP connections will be logged by
messages to the QTCP message queue. TCP connections could be abnormally closed for the following
reasons:

» TCP connection closed due to the 10 minute Close_Wait time_out.
» TCP connection closed due to the R2 retry threshold being exceeded.
» TCP connection closed due to the keep alive time-out value being exceeded.

Possible values are:

1 *THRESHOLD - At most, one abnormally closed TCP connection message per minute will be
logged. Thisvalueisthe default setting.

2 *YES- ALL abnormally closed TCP connections will be loged. Note that there are some conditions
that could cause MANY closed connection messages to be logged at the same time.

3 *NO - Abnormally closed TCP connections will not be logged. 4

TCP keep alive. The amount of time, in minutes, that TCP waits before sending out a probe to the other
side of a connection. The probe is sent when the connection is otherwise idle, even when there is no datato
be sent.

The transmission of keep-alive packetsis controlled by individual sockets applications through use of the
SO_KEEPALIVE socket option. For more information, Sockets Programming in the i Series Information

Center.

The default keep-alive time interval is 120 minutes. Valid values range from 1 through 40320 minutes (28
days).

#TCP minimum retransmission timeout. The current value of the configurable TCP minimum
retransmission timeout attribute, in milliseconds. This attribute specifies the amount of time that TCP will
wait for an acknowledgement (ACK) of a packet. When this amount of time has passed without an
acknowledgement, TCP will perform the first retransmission of the packet. The default TCP minimum
retransmission timeout is 250 milliseconds. Valid values range from 100 through 1000 milliseconds.4%

TCP R1 retransmission count. The R1 retransmission count value. The default valueis 3. Vaid values
range from 1 to 15, and R1 must be less than R2.

TCP R2 retransmission count. The R2 retransmission count value. The default valueis 16. Valid values
range from 2 to 16, and R2 must be greater than R1.

TCP receive buffer. What to allocate for the default receive buffer size. The TCP receive window sizeis
based on this value. Decreasing this val ue decreases the amount of data that the remote system can send
before being read by the local application. Decreasing this value may improve performance in situations
where many retransmissions occur due to the overrunning of a network adapter.

Notes:
1. User Datagram Protocol (UDP) does not have a configurable receive buffer size.

2. Thisvalueisalso used as the default receive buffer size by 1P over SNA processing.

3. Setting this parameter does not guarantee the size of the TCP receive buffer. Thisisthe default
buffer size that isused for initial TCP connection negotiations. An individual application can
override this value by using the SO_RCVBUF socket option. For more information, see Sockets

Programming in the i Series Information Center.

The default TCP receive buffer sizeis 8192 (8K) bytes. Valid values range from 512 through 8388608
(8MB) bytes.

TCP send buffer. The TCP send buffer size. This parameter informs TCP what to use for the default send
buffer size. The TCP send buffer size provides alimit on the number of outgoing bytes that are buffered by
TCP. Once thislimit is reached, attempts to send additional bytes may result in the application blocking
until the number of outgoing bytes buffered drops below this limit. The number of outgoing bytes buffered
is decremented when the remote system acknowl edges the data sent.

Notes:
1. Thisvalueis used aso asthe default send buffer size by IP over SNA processing.

2. UDP does not have a configurable send buffer size.

3. Setting this parameter does not guarantee the size of the TCP send buffer. Thisis the default buffer
size that is used for initial TCP connection negotiations. An individual application can override this
value by using the SO_SNDBUF socket option. For more information, see Sockets Programming in
the iSeries Information Center.

The default TCP send buffer sizeis 8192 (8K) bytes. Valid values range from 512 through 8388608 (8M)
bytes.

TCP time wait timeout. The amount of time, in seconds, for which a socket pair (client IP address and
port, server IP address and port) cannot be reused after a connection is closed. The maximum value possible
is2 MSL (maximum segment lifetime). The default value is 120 seconds. Valid values range from 0 (no
timer) to 14400 seconds (240 minutes).

TCP urgent pointer. The convention to follow when interpreting which byte the urgent pointer in the TCP
header pointsto. The urgent pointer in the TCP header points to either the byte immediately following the
last byte of urgent data (BSD convention) or the last byte of the urgent data (RFC convention).

Note: This value must be consistent between the local and remote ends of a TCP connection. Socket
applications that use this value must use it consistently between the client and server applications. This

valueis set on asystem basis. All applications using this system will use this value. The possible values
are:

1 Usethe BSD defined convention. The TCP urgent pointer points to the byte immediately following
the last byte of urgent data. Thisisthe default value.

2 Usethe RFC defined convention. The TCP urgent pointer points to the last byte of the urgent data.

UDP checksum. Whether UDP processing should generate and validate checksums. It is strongly
recommended that you use UDP checksum processing. If you are concerned about obtaining the best
possible performance and are not concerned with the protection provided by UDP checksum processing,
turn UDP checksum processing off. The possible values are:

0 Checksum protection is not provided for UDP data.

1 Checksum protection is provided for UDP data. Thisisthe default value.

TCPAO300 Format

This format returns detailed information about the TCP/IP domain attributes, in addition to the TCP/IPv4
stack status (format TCPA0100). For detailed descriptions of the fields in the table, see Field Descriptions.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |Returns everything from format TCPA0100
Decimal and IBINARY(4) |Offset to list of internet addresses
gﬁxgsca'rrgal [BINARY(4) [Number of internet addresses

reached by using IBINARY(4) |Entry length for list of internet addresses
the offset to IBINARY(4) |DNS protocol

additional -
information field IBI NARY () |Retr|es

iTnggrArgalﬁoo [BINARY(4) [Timeinterval
' IBINARY(4) |Search order
IBINARY(4) |Initial domain name server
IBINARY(4) |DNSlistening port
|CHAR(64) |Host name
ICHAR(255) |Domain name
[CHAR(L) [Reserved
|ICHAR(255) |Domain search list

List of Internet Addresses. These fields repeat for each Domain Name Server (DNS) Internet address.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(15) |Internet address

| 15 | F |CHAR(1) |Reserved

| 16 | 10 |BINARY(4) |Internet addressbinary

Field Descriptions

DNSlistening port. The remote TCP/IP port number used to contact the Domain Name Server (DNS) or
Serverslisted in the Internet address parameter. 53 is the well-known port used for this purpose.

Note: Use of a TCP/IP port number other than the well-known port 53 for use by the Domain Name Server
(DNS) can result in TCP/IP communication problems. Y ou may inadvertently use a port number that is
reserved for use by another TCP/IP application.

The default DNS Listening port is 53. Valid values range from 1 to 65532.

DNS protocol. The TCP/IP protocol used to communicate with the Domain Name Server (DNS) specified
in the Internet address parameter. User Datagram Protocol (UDP) typically is used for this purpose. Use
TCP only if your Domain Name Server (DNS) is specifically configured to use the Transmission Control
Protocol (TCP). Possible values are:

1 Use of the User Datagram Protocol (UDP) to communicate with the Domain Name Server or
Servers.

2 Useof the Transmission Control Protocol (TCP) to communicate with the Domain Name Server or
Servers.

Domain name. The name of the TCP/IP domain of which this system is a member.

Domain search list. The TCP/IP domains to be searched whenever a host name is not given as a Fully
Qualified Domain Name (FQDN). Up to six domains may be specified, separated by spaces. The list is null
terminated.

Entry length for list of internet addresses. The entry length in bytes of each element in the list of Domain
Name Server (DNS) Internet addresses returned with thisformat. A value of zero isreturned if thelist is

empty.

Host name. The TCP/IP host name of this system. Thisfield returns the value specified by the
CHGTCPDMN command, and is the preferred system name if the system has more than one name
corresponding to multiple interfaces.

Note: This system's TCP/IP host name must also be defined in the local host table or the Domain Name
Server (DNS) specified in the Internet address parameter. If no Domain Name Server (DNY) is specified,
thelocal TCP/IP host table is used.

Initial domain name server. How the initial Domain Name Server (DNS) is chosen when doing a name
lookup. The first configured server can always be queried first, or TCP/IP can rotate through the configured
serversin around-robin fashion to provide aform of load balancing on the servers. Possible values are:

1 First. Do not rotate through the configured Domain Name Servers (DNS); always start with the first
one. This setting is the default.

2 Rotate. Rotate through the configured Domain Name Servers (DNS) in around-robin fashion to
choose the first one to query.

Internet address. The |P address of a Domain Name Server (DNS) to be used by this system. There may
be zero, one, two, or three Domain Name Server (DNS) Internet addresses.

If the first Domain Name Server (DNS) in the list does not respond, the second DNS server in the list will
be contacted. If the second DNS server does not respond, the third DNS server will contacted, and so on.

Thisfield is specified in dotted-decimal form.
Internet address binary. The binary representation of a Domain Name Server (DNS) | P address.

Number of internet addresses. The number of elementsin the list of Domain Name Server (DNS) Internet
addresses returned with thisformat. A value of zero isreturned if the list is empty.

Offset to list of internet addresses. The offset from the beginning of the receiver variable, in bytes, to the
first element in the list of Domain Name Server (DNS) Internet addresses returned with thisformat. A value
of zeroisreturned if thelist is empty.

Retries. The number of additional attempts made to establish communication with each Domain Name
Server (DNS), in the event the first attempt fails.

The default number of retriesis 2. Valid values range from 0 to 99.

Search order. Whether to search aDomain Name Server (DNS) first to resolve a TCP/IP host name
conflict, or to search the local TCP/IP host table first.

1 Loca - Thissystem will first search the TCP/IP host table, located on this system, to resolve TCP/IP
host names.

2 Remote - This system will search aremote or local Domain Name Server (DNS) to resolve TCP/IP
host names before searching the local TCP/IP host table. The Domain Name Server (DNS) to useis
specified by the Internet Address parameter. Thisis the default value.

Timeinterval. The length of time in seconds this system will wait before initiating a retry attempt to
connect to a DNS server. The default time interval is 2 seconds. Valid values range from 0 to 99.

#TCPA1100 Format

This format returns information regarding the status of the TCP/IPv6 stack. For detailed descriptions of the
fieldsin the table, see Field Descriptions.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |BINARY(4) |Bytesreturned

[4 [4 |[BINARY(4) [Bytesavailable

[8 [8 |[BINARY(4) |[TCP/IPv6 stack status

| 12 | C |BINARY(4) |Offsetto additional information
| 16 | 10 |BINARY(4) |Length of additional information

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available datais returned if
enough space is provided.

Bytesreturned. The number of bytes of data returned.

Length of additional information. The length in bytes of additional information returned that is not part of
format TCPA1100.

Offset to additional information. The offset from the beginning of the receiver variable, in bytes, to the
start of the next format if format TCPA 1200 is requested. This field allows expansion of the basic
information. A value of zero isreturned if only the TCPA 1100 format is requested.

TCP/I1Pv6 stack status. The current status of the system TCP/IPv6 stack. Possible values are:
0 Inactive- The TCP/IPv6 stack is not operational.

Active - The TCP/IPv6 stack is operational.

Starting - The TCP/IPv6 stack not operational, but isin the process of starting.

Ending, immediate - The TCP/IPv6 stack is operational, but isin the process of ending.

A W DN B

Ending, controlled - The TCP/IPv6 stack is operational, but isin the process of ending.<%

#TCPA1200 Format

Thisformat returns detailed information about the TCP/IPv6 stack attributes in addition to the TCP/IPv6
stack status (format TCPA1100). For detailed descriptions of the fields in the table, see Field Descriptions.

| Offset
| Dec | Hex |Type Field
| 0 | 0 | |Returns everything from format TCPA1100

Decimal and IBINARY(4) |ICMP error message send rate time

hexadecimal - [BJNARY(4) [Router solicitation max delay
offsets are

reached by using |BINARY(4) |Router solicitation interval

the offset to IBINARY(4) |Router solicitation max transmits
?r?f(grt:r?gt?lon fidld [BINARY(4) [Neighbor advertisement max transmits

in format IBINARY(4) |Neighbor solicitation delay first probetime
TCPA1100. IBINARY(4) |Neighbor solicitation max unicast solicits

IBINARY(4) |Neighbor solicitation max multicast solicits
IBINARY(4) |TCPkeepdive

IBINARY(4) |TCP urgent pointer

IBINARY(4) |TCP receive buffer size

IBINARY(4) |TCP send buffer size

IBINARY(4) |TCP R1 retransmission count

IBINARY(4) |TCP R2 retransmission count

IBINARY(4) |TCP closed timewait timeout

IBINARY(4) |TCP minimum retransmission timeout

Field Descriptions

ICMP error message send rate time. The current value of the ICMP error message send rate time
attribute, in milliseconds. The ICMP error message send rate time attribute controls how often ICMPv6
error messages will be sent out by the system. This control mechanism allows the bandwidth and
forwarding costs of sending |CMPv6 error messages to be limited, as in the case of many ICMPv6 error
messages being generated in response to another host sending a stream of erroneous packets. The default
ICMP error message send rate timeis 1000 milliseconds (1 second). Valid values range from 10 through
5000 milliseconds (5 seconds).

Neighbor advertisement max transmits. The current value of the TCP/IPv6 stack Neighbor advertisement
max transmits attribute. The Neighbor advertisement max transmits attribute is specified as a number of
transmissions, and is the maximum number of unsolicited Neighbor Advertisements that the system will
send at atime. The system might send unsolicited Neighbor Advertisements when one of its link-layer
addresses changes (for example, hot-swap of a physical interface card). The default value of the Neighbor
advertisement max transmits attribute is 3 transmissions. Valid values range from 1 through 5
transmissions.

Neighbor solicitation delay first probetime. The current value of the configured Neighbor solicitation
delay first probe time attribute. This attribute controls how long a Neighbor Cache entry will stay in the
DELAY state before the stack will send another Neighbor Solicitation and move the Neighbor Cache
entry's Reachability state to PROBE if reachability still has not been confirmed. The default Neighbor
solicitation delay first probe timeis5 seconds. Valid values range from 3 through 10 seconds.

Neighbor solicitation max multicast solicits. The current value of the configured Neighbor solicitation
max multicast solicits stack attribute. This attribute controls the maximum number of multicast Neighbor
Salicitations which will be sent out when the system is performing link-layer address resolution for another
host (neighbor). If no Neighbor Advertisement is received after the maximum number of Neighbor
Salicitations have been sent out, address resolution has failed, and an ICMPv6 error message will be
returned to the application. The default value of the Neighbor solicitation max multicast solicits attribute is
3 transmissions. Valid values range from 1 through 5 transmissions.

Neighbor solicitation max unicast solicits. The current value of the configured Neighbor solicitation max
unicast solicits stack attribute. This attribute controls the maximum number of unicast Neighbor
Solicitations which will be sent out when the system is performing link-layer address resolution for another
host with unicast Neighbor Salicitations. Multicast is the normal way to perform Neighbor Discovery, but
unicast Neighbor Solicitations will be used if the local physical interface is not multicast-capable. If no
Neighbor Advertisement is received after the maximum number of Neighbor Solicitations have been sent
out, address resolution has failed, and an ICMPv6 error message will be returned to the application. The
default Neighbor solicitation max unicast solicits valueis 3 transmissions. Valid values range from 1
through 5 transmissions.

Router solicitation interval. The Router solicitation interval isthe amount of time, in seconds, to wait
between sending Router Solicitations while waiting for a Router Advertisement in reply. The default Router
solicitation interval is 4 seconds. Valid values range from 2 through 5 seconds.

Router solicitation max delay. The Router solicitation max delay attribute is the amount of time, in
milliseconds, to wait for a Router Advertisement reply after sending the last Router Solicitation. This
attribute is also used to calculate when to send the first Router Solicitation. To avoid congestion on alink
when many hosts start up at the same time (such as after a power failure), the system will wait Router
soliciation max delay seconds before sending the first Router Solicitation. The default Router soliciation
max delay is 1000 milliseconds. Valid values range from 500 through 3000 milliseconds.

Router solicitation max transmits. The maximum number of Router Solicitations to transmit. If no Router
Advertisements are received in response to the transmitted Router Solicitations, the system concludes that
thereis no IPv6 router on its link. The default Router solicitation max transmits value is 3 transmissions.
Valid values range from 1 through 5 transmissions.

TCP closed timewait timeout. The amount of time, in seconds, for which a socket pair (client |P address
and port, server |P address and port) cannot be reused after a connection is closed. The maximum value
possibleis 2 MSL (maximum segment lifetime). The default value is 120 seconds. Valid values range from
0 (no timer) to 14400 seconds (240 minutes).

TCP keep alive. The amount of time, in minutes, that TCP waits before sending out a probe to the other
side of a connection. The probe is sent when the connection is otherwise idle, even when there is no datato
be sent.

The transmission of keep-alive packetsis controlled by individual sockets applications through use of the
SO_KEEPALIVE socket option. For more information, Sockets Programming in the i Series Information

Center.

The default keep-alive time interval is 120 minutes. Valid values range from 1 through 40320 minutes (28
days).

TCP minimum retransmission timeout. The current value of the configurable TCP minimum
retransmission timeout attribute, in milliseconds. This attribute specifies the amount of time that TCP will
wait for an acknowledgement (ACK) of a packet. When this amount of time has passed without an
acknowledgement, TCP will perform the first retransmission of the packet. The default TCP minimum
retransmission timeout is 250 milliseconds. Valid values range from 100 through 1000 milliseconds.

TCP R1 retransmission count. The R1 retransmission count value. The default valueis 3. Vaid values
range from 1 to 15, and R1 must be less than R2.

TCP R2 retransmission count. The R2 retransmission count value. The default valueis 16. Valid values
range from 2 to 16, and R2 must be greater than R1.

TCP receive buffer size. The TCP receive buffer sizein bytes. The TCP receive window sizeis based on
this value. Decreasing this value decreases the amount of data that the remote system can send before being
read by the local application. Decreasing this value may improve performance in situations where many

retransmissions occur due to the overrunning of a network adapter.

Notes:
1. User Datagram Protocol (UDP) does not have a configurable receive buffer size.
2. Thisvalueisalso used as the default receive buffer size by 1P over SNA processing.

3. Setting this parameter does not guarantee the size of the TCP receive buffer. Thisis the default
buffer size that is used for initial TCP connection negotiations. An individual application can
override this value by using the SO_RCVBUF socket option. For more information, see Sockets

Programming in the i Series Information Center.

The default TCP receive buffer sizeis 8192 (8K) bytes. Valid values range from 512 through 8388608
(8MB) bytes.

TCP send buffer size. The TCP send buffer size in bytes. This parameter informs TCP what to use for the
default send buffer size. The TCP send buffer size provides alimit on the number of outgoing bytes that are
buffered by TCP. Once thislimit is reached, attempts to send additional bytes may result in the application
blocking until the number of outgoing bytes buffered drops below this limit. The number of outgoing bytes
buffered is decremented when the remote system acknowledges the data sent.

Notes:
1. Thisvalueisused also asthe default send buffer size by IP over SNA processing.

2. UDP does not have a configurable send buffer size.

3. Setting this parameter does not guarantee the size of the TCP send buffer. Thisisthe default buffer
sizethat is used for initial TCP connection negotiations. Anindividual application can override this
value by using the SO_SNDBUF socket option. For more information, see Sockets Programming in

the iSeries Information Center.

The default TCP send buffer sizeis 8192 (8K) bytes. Valid values range from 512 through 8388608 (8M)
bytes.

TCP urgent pointer. The convention to follow when interpreting which byte the urgent pointer in the TCP
header pointsto. The urgent pointer in the TCP header points to either the byte immediately following the
last byte of urgent data (BSD convention) or the last byte of the urgent data (RFC convention).

Note: Thisvalue must be consistent between the local and remote ends of a TCP connection. Socket
applications that use this value must use it consistently between the client and server applications. This
valueis set on asystem basis. All applications using this system will use this value. The possible values
are:

1 Usethe BSD defined convention. The TCP urgent pointer points to the byte immediately following
the last byte of urgent data. Thisisthe default value.

2 Usethe RFC defined convention. The TCP urgent pointer pointsto the last byte of the urgent data. 4

Error Messages

Message | D Error Message Text
TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.
CPF24B4 E Severe error while addressing parameter list.

CPF3CI19E
CPF3C21 E
CPF3C24 E
CPF3C90 E
CPF3CF1 E
CPF8100 E
CPF9872 E

Error occurred with receiver variable specified.

Format name &1 is not valid.

Length of the receiver variable is not valid.

Literal value cannot be changed.

Error code parameter not valid.

All CPF81xx messages could be returned. xx isfrom 01 to FF.

Program or service program &1 in library & 2 ended. Reason code & 3.

API introduced: V5R1

Top | Communications APIs | APIs by category

Update DNS API (QTOBUPDT)

Required Parameter Group:
1 Update instructions Input Char(*)
2 Length of update instructions Input Binary(4)
3 Format name of update Input Char(8)
instructions
4 Update key override Input Char(*)
5 Length of update key Input Binary(4)
override
6 Format name of update key Input Char(8)
override
7 Update key name Input Char(*)
8 Length of update key name Input Binary(4)
9 IPaddressof DNS server Input Char(15)
10 Miscellaneous attributes Input Char(*)
11 Length of miscellaneous Input Binary(4)
attributes
12 Format name of Input Char(8)
mi scellaneous attributes
13 Result code Output Binary(4)
14 Error code /10 Char(*)
Program Name: QDNS/QTOBUPDT
Default Public Authority: *USE
Threadsafe: No

The Update DNS API (QTOBUPDT) alowsthe caller to send one or more update instructions to an
iSeries dynamic DNS (Domain Name System) server. The instructions allow for adding or deleting DNS
Resource Records (RRs). The instructions can optionally include any number of prerequisite conditions that
must be true for the actual updates to take place. This API is based on the Berkeley Internet Name Domain
(BIND) version 8.2.x implementation of dynamic DNS updates. Therefore, it aso can be used to send
update requests to DNS servers running on other operating system platforms that conform to BIND Version
8 update protocols.

0S/400 Option 31 (Domain Name System) must be installed to use this API.

Authorities and Locks

If an Integrated File System (IFS) stream file name is specified for any of the parametersthat allow it, then
the user will need * R authority to the stream file and * X authority to the directoriesin the path of the
stream file.

Required Parameter Group

Updateinstructions
INPUT; CHAR(*)

One or more instructions that define which DNS resource records should be updated (added or
deleted) for a specific DNS domain, as well as any prerequistes that must be true for those updates
to take place. Depending on which format name for this parameter is chosen, this parameter will
either contain the actual update instructions themselves or the name of an Integrated File System
file that contains the update instructions.

The syntax for the update instructions themselves is the same as that defined by BIND 8.2.3 for
dynamic DNS updates, which it uses as input to its nsupdate program. Please see Update
Instructions Syntax for descriptions of the update instructions themselves.

Length of update instructions
INPUT; BINARY (4)
The length of the data passed in the Update instructions parameter. If the length islarger than the
size of the Update instructions parameter, the results may not be predictable.
Format name of update instructions
INPUT; CHAR(8)

The format of the data being passed in the Update instructions parameter.

DNSU0100 Data passed represents the actual datathe API should use.

DNSU0200 Data passed represents the path name of an Integrated File System file that contains
the data the API should use.

DNSUQ300 Data passed represents the name of afile that contains the data the API should use.
Thefilenameisin an OS/400 API path name structure. For the format of this
structure, see Path name format.

Update key override
INPUT; CHAR(*)
This APl automatically searches the default DNS dynamic update directory
/QIBM/UserDatal OS400/DNS/_DY N for a dynamic update transaction signature (TSIG) key for
the specific domain being updated. The caller can override the default logic and provide a
transaction signature key directly to the API by using this Update key override parameter.

Depending on which format name for this parameter is chosen, this parameter will either contain
the actual key itsdlf or the path name of an Integrated File System file that contains the key.

Length of update key override
INPUT; BINARY (4)

The length of the data passed in the Update key override parameter. If the length is larger than the
size of the Update key override parameter, the results may not be predictable.

Format name of update key override
INPUT; CHAR(8)

The format of the data being passed in the Update key override parameter.

DNSU0100 Data passed represents the actual datathe APl should use.

DNSU0200 Data passed represents the path name of an Integrated File System (IFS) file that
contains the data the API should use.

DNSUOQ300 Data passed represents the name of afile that contains the data the API should use.
Thefilenameisin an OS/400 APl path name structure. For the format of this
structure, see Path name format.

Update key name
INPUT; CHAR(*)
If the caller is providing atransaction signature key in the update key override parameter, then the
update key name parameter must contain the name of the update key.
Length of update key name
INPUT; BINARY (4)
The length of the data passed in the Update key name parameter. If the length is larger than the size
of the Update key name parameter, the results may not be predictable.
| P address of DNS server
INPUT; CHAR(15)
The IP address, in dotted decimal form, of the DNS server where the API should start searching for

the primary master DNS server for the zone being updated. The parameter must be right padded
with blanks if the data does not take up the entire length.

If this parameter is all blanks on input, the API will automatically search the network to determine
where the primary master DNS server islocated for the zone that contains the domain being
updated.

Miscellaneous attributes
INPUT; CHAR(*)

Optional miscellaneous runtime attributes.
Length of miscellaneous attributes
INPUT; BINARY (4)
The length of the data passed in the Miscellaneous attributes parameter. If the length is larger than
the size of the Miscellaneous attributes parameter, the results may not be predictable.
Format name of miscellaneous attributes
INPUT; CHAR(8)

The format of the data being passed in the Miscellaneous attributes parameter.

DNSA0100 Miscellaneous runtime attributes. Refer to DNSA0100 Format for details on the
format.

Result code
OUTPUT; BINARY (4)

Whether the API processed successfully or not, and if not, what type of problem was encountered.
Any code that is not 0 means that the updates were not completely successful.

0 Successful.
1 Send error. The authoritative name server could not be reached.

2 Failed update packet. The name server has rejected the update, either because it does not
support dynamic update or due to an authentication failure.

3 Prerequisite failure. The update was successfully received and authenticated by the name
server. The prerequisites, however, prevented the update from actually being performed.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Update Instructions Syntax

The syntax of the update instructions for the QTOBUPDT API is the same as the syntax of the update
instructions that are input to the BIND (Berkeley Internet Name Domain) Version 8.2.x program known as
nsupdate. It is a stream file-based input format that requires carriage-return(<cr>) linefeed (<If>)
charactersto define distinct "lines" of input.

In addition to accepting these instructions using stream files, like nsupdate, the QTOBUPDT API has
added the ability (by specifying format DNSUQ0100) for an application program to build the lines of input in
memory and pass them directly to the API without first having to write them to afile. It isimportant to
note, however, that this method still requires that you build the input lines exactly as you would if you were
going to write them to a stream file; that is, separated by the same <cr><If> characters that are described
below.

QTOBUPDT reads input records, one per line, each line contributing a resource record directive to asingle
update request. As described below, the directives can be either prerequisite checks or actual resource
record (RR) data update directives. All domain names used in an update request must belong to the same
DNS zone. A blank line causes the accumulated records to be formatted into a single update request and
transmitted to the zone's authoritative name servers. Additional records may follow, which are formed into
additional, completely independent, update requests for that domain. For any given call to the API, multiple
update requests can be made, but each group of lines belonging to each single update request must be
separated by ablank line. For the last request to be transmitted, you must remember to include a blank line
asthelast line of your input.

Records take one of two general forms. Prerequisite records specify conditions that must be satisfied
before the request will be processed. Update records specify actual data changes to be made to the DNS
database. An "update request” consists of zero or more prerequisites, and one or more updates. Each update
request is processed atomically; that is, al prerequisites must be satisfied, then all updates are performed. If
any of the prerequisites within the specific update request fail, the actual data update directives following
them will not be attempted.

QTOBUPDT API understands the following input record formats:

prereq nxdomain domain-name <cr><If> Requires that no RR of any type exists with name
domain-name.

prereq yxdomain domain-name <cr><If> Requiresthat at least one RR named domain-name
must exist.

prereq nxrrset domain-name [class] type Requiresthat no RR exists of the specified type and

<cr><If> domain-name.

prereq yxrrset domain-name [class] type [data...] Requiresthat a RR exists of the specified type and

<cr><If> domain-name. If datais specified, it must match
exactly.

update delete domain-name [class] [type[data...]] Deletes RRs named domain-name. If type and/or

<cr><If> datais specified, only completely matching records
are deleted.

update add domain-name ttl [class] type data... Adds anew RR with specified ttl, type, and data.

<cr><If>

EXAMPLES

1. Thefollowing exampleillustrates a set of update instructions that could be sent to the QTOBUPDT
API to change an | P address by deleting any existing A records for adomain hame, and then
inserting anew A record. Since no prerequisites are specified, the new record will be added even if
there were no existing records to delete. The trailing blank lineis required to process the request.

o record 1. update delete test.test.com A <cr><lIf>
o record 2: update add test.test.com 3600 A 10.1.1.1 <cr><If>
o record 3: <cr><If>

2. Inthisexample, aCNAME dliasis added to the database only if there are no existing A or CNAME
records for the domain name.

o record 1: prereq nxrrset www.test.com A <cr><If>

o record 2: prereq nxrrset www.test.com CNAME <cr><If>

o record 3: update add www.test.com 3600 CNAME test.test.com <cr><If>
o record 4: <cr><If>

3. To accomplish both of the above independent update requestsin asingle call to the QTOBUPDT
AP, the update instructions submitted would be:

o record 1: update delete test.test.com A <cr><If>

o record 2: update add test.test.com 3600 A 10.1.1.1 <cr><If>

o record 3: <cr><|f>

0 record 4: prereq nxrrset www.test.com A <cr><If>

o record 5: prereq nxrrset www.test.com CNAME <cr><|f>

o record 6: update add www.test.com 3600 CNAME test.test.com <cr><If>
o record 7: <cr><|f>

DNSAO0100 Format

The following isthe format used for passing miscellaneous runtime attributes to the dynamic DNS update
API. For detailed descriptions of the fieldsin this table, see Field Descriptions.

| Offset ’ ’

| Dec | Hex Type Field

| O | 0 | B |Debug flag

|4 | 4 | B Virtual circuit flag

| 8 | 8 | C |Reserved for future use

Field Descriptions

Debug flag. If set on, tellsthe API to create a spooled print file (QPRINT) to the caller's userid.
0 Debug tracing is off (default).

1 Debug tracingison.
Reserved for future use. A reserved field that must be set to hexadecimal zeros.

Virtual circuit flag. If set on, tellsthe API to use a TCP connection instead of the default UDP packets.

0 Use UDP packets to communicate with the DNS server (default).
1 Use TCP to communicate with the DNS server.

Error Messages

Message ID Error Message Text

DNS0300 E Incorrect number of parameters passed.

DNS0301 E The update instructions parameter was null.

DNS0302 E The length of the update instructions parameter is incorrect.
DNS0303 E The format name of the update instructions parameter is incorrect.
DNS0304 E The update key override parameter isnull.

DNS0305 E The format name of the update key override parameter isincorrect.
DNS0306 E The IP address of the DNS server parameter isincorrect.
DNS0307 E The miscellaneous attributes parameter is null.

DNS0308 E The format name of the miscellaneous attributes parameter is incorrect.
DNS0309 D The transaction signature key file could not be opened.

DNS0310 E The length of miscellaneous attributes parameter isincorrect.
DNS0311 E The miscellaneous attributes debug flag is incorrect.

DNS0312 E The miscellaneous attributes virtual circuit flag isincorrect.
DNS0313 E The key name parameter isnull.

DNS0314 E The length of the key name parameter isincorrect.
DNS0315 E The transaction signature key file could not be read.
DNSO30A D The update instructions parameter was incorrect.
DNSO30BD Thedynamic DNS update failed.

DNSO30CD Thedynamic DNS update partially failed.

DNSO30D E The miscellaneous attributes reserved field was not zeros.
DNSO30E E The length of the update key override parameter isincorrect.
DNS030F E The update instructions file could not be opened.

API Introduced: V5R1

Top | Communications APIs | APIs by category

User-Defined Communications

User-defined communications support is a set of application program interfaces (APIs) that are part of the
Operating System/400(R) (0S/400) licensed program. These callable routines allow customers to write their
own communications protocol stacks above the iSeries datalink and physical layer support. The term
user-defined communications is used here to describe this communications protocol support. The term
application program refers to a user-supplied communications application program.

This article defines the user-defined communications support and describes how to write protocols using
the APIs. In addition, it provides two C language program examples that illustrate the use of the APIswhile
performing a simple file transfer between two systems attached to an X.25 packet switched network.

Overview

The user-defined communications APIs alow your application programsto send and receive data, and do
specialized functions such as setting timers.

Y our application programs need to work with the following:
o User-defined communications support

« Input/output buffers and descriptors

« A queue
Figure 1-1 shows an overview of the user-defined communications support.

Figure 1-1. User-Defined Communications Support

L'ser-Defined Communications Application Prograrm

Input/Output Buffers CIUELES

LIser-Defined Communications Support

Token-Hing Ethemet .25 FOO WWireless
SUpport SUpport SUpport Support SUpport

v 4 v v

To Taken- To To FO O To
Fing Ethernet Metwork Wireless
Metwork Metwork i i Metwark
To #.25 To = 25
M et ark M et Ok
(R (IS0
Fecommen-
dations)

FDDI = fiber distributed data interface
|=0M = integrated services digital netw ork
%% = an abbreviation forthe physical interface that

.29 can use:

F = R3-232 and E5-449 (Electronic Industries

Association (EIA) types)
W =% 35 (International Telegraph and Telephone
Consultative Committee (CCITT) Y series types)

=R Z2T(CCITT X senes types)

User-Defined Communications Callable Routines

The APIs provided by the OS/400 licensed program are callable routines that allow an application program
to start, perform, and end communications, and perform specialized functions such as setting timers. These
routines are listed below and are discussed in detail in User-Defined Communications Support APIs.

o Disable Link (QOLDLINK) ends communications

» EnableLink (QOLELINK) starts communications

o Query Line Description (QOLQLIND)

« Receive Data (QOLRECV)

« Send Data (QOLSEND)

o Set Filter (QOLSETF) for inbound routing information

o Set Timer (QOLTIMER) sets or cancelsatimer

Input/Output Buffers and Descriptors

The input/output buffers and descriptors are user space objects (* USRSPC) that contain and describe the
data an application program is sending or receiving. There are separate buffers and descriptors for input and
output.

When an application program is ready to send data, it fills the output buffer with data and provides a
description of that data in the output buffer descriptor. Similarly, when an application program receives
data, the user-defined communications support fills the input buffer with data and provides a description of
that datain the input buffer descriptor.

The OS/400 licensed program also provides callable APIs to allow an application program to manipulate
the datain the user spaces. Some of these APIs are listed below.

« Change User Space (QUSCHGUS)

« Retrieve Pointer to User Space (QUSPTRUS)

« Retrieve User Space (QUSRTVUS)

See User Space APIsfor more information.

Queues

A queue is used by the user-defined communications support to inform an application program of some
action to perform or of an activity that is complete.

The OS/400 licensed program provides APIs that allow your application programs to manipulate the data
and user gueues. Some of these callable APIs are listed below.

» Clear Data Queue (QCLRDTAQ)

o Create User Queue (QUSCRTUQ)

o Delete User Queue (QUSDLTUQ)

« Receive Data Queue (QRCVDTAQ)

« Send Data Queue (QSNDDTAQ)

Seethe CL Proqramminq@ book for more information on data queues.

Terminology

Listed below are termsthat are important in understanding the information contained in this part.
Communications handle. The name an application program assigns and uses to refer to alink.

Connection. The logical communication path from one computer system to another. For example, a
switched virtual circuit (SVC) connection on an X.25 network.

Connectionless service. A method of operation where data can be sent to and received from the remote
computer system without establishing a connection to it. User-defined communications support provides
connectionless service over token-ring, Ethernet, fiber distributed data interface (FDDI), wireless and X.25
networks only. For alocal area network (LAN) environment, connectionless serviceis also known as
unacknowledged service.

Connection-oriented service. A method of operation where a connection to the remote computer system
must first be established before data can be sent to it or received from it. User-defined communications
support provides connection-oriented service over X.25 networks only.

Connection identifier. A local identifier (ID) that a computer system uses to distinguish one connection
from another. When using the user-defined communications support on the server, a connection ID is made
up of auser connection end point ID and a provider connection end point ID.

Disable. The process of deactivating alink so that input and output operations are no longer possible on a
communications line.

Enable. The process of setting up and activating alink for input and output operations on a
communications line.

Filter. The technique used to route inbound data to alink that is enabled by an application program.

Link. Thelogica path between an application program and acommunicationsline. A link is made up of
the following communications objects:

« Network interface description running X.25 over ISDN
o X.25, token-ring, fiber distributed datainterface (FDDI), Ethernet, or wireless line description
« Network controller description

» Network device description of type * USRDFN

Provider connection end point 1D (PCEP ID). The portion of the connection ID that the user-defined
communications support uses to identify the connection. For example, data sent by the application program
will be on the PCEP ID portion of the connection ID.

User connection end point ID (UCEP ID). The portion of the connection ID that the application program
uses to identify the connection. For example, data received by the application program is on the UCEP ID
portion of the connection ID.

Relationship to Communications Standards

Figure 1-2 shows the structure of advanced program-to-program communications (APPC) on the sergver
and its relationship to the International Standards Organization (ISO) protocol model. Note that only the
application layer above the APPC protocol codeis available for definition. The APPC functional
equivalents of the | SO presentation, session, networking, transport, data link, and physical layers are
performed by the OS/400 operating system or Licensed Internal Code, and you cannot replace or change
them. Contrast this with Figure 1-3 which shows how much more of the protocol is defined by the

user-defined communications application than by the APPC application.

Figure 1-2. iSeries APPC versus | SO Model

05400 APPC Intem ational Standards
Proto ol Crganization hadel (1507
APPC Applications Application
Presentation Presentation
Services
Session
Data Flow
Control
Transport
Transmission
Control
Metwork
Fath Comtrol
Data Link Control Data Link
Physical Control Physical

(all layers except
application are 1Bh-
supplied licensed
intemal code)

Figure 1-3 shows the structure for user-defined communications and its relationship to the International
Standards Organization (1SO) protocol model. Note that the available i Series data links and physical layers
limit user-defined communications to run over LAN (token-ring, Ethernet, wireless, or FDDI), or X.25
links, but the portion of the protocol above the datalink layer is completely open to a user-defined

communications application. In addition, these same X.25 and LAN links may be shared between the
application program and other i Series communications protocol s that support X.25 and LAN lines.
Examples include Systems Network Architecture (SNA), asynchronous communications, Transmission
Control Protocol/Internet Protocol (TCP/IP), and Open Systems Interconnection (OSl).

Figure 1-3. iSeries User-Defined versus 1 SO M odel

05400 User-Defined Intem ational Standards
Cormmunications COrganization hodel (1507
Application
Lzer-defined
communications
application Presentation
This structure
iz open tothe Session
application
architect. The
design will dictate T T
how the protocol ranspo
iz organized.
Metwark
¥.25, LAN Data Link Data Link
W24, 8023, ... Physical

Y ou can write protocols that run over local area networks or X.25 networks completely in high-level
languages such as C, COBOL, or RPG. Y ou can also write protocols currently running on other systems to
run on the iSeries. For example, you can write both non-SNA LAN or X.25 packet layer protocols on the
iSeries.

Configuration instructions also need to be supplied with the application program. User-defined
communications support simply opens a pathway to the system datalinks. It is up to you as a protocol
developer to supply any configuration instructions that are in addition to the data link or physical layer
definition. Datalink and physical layer definitions are defined when you use the following commands:

o Create Line Description (DDI) (CRTLINDDI)

o Create Line Description (Ethernet) (CRTLINETH)

» Create Line Description (Token Ring) (CRTLINTRN)

o Create Line Description (Wireless) (CRTLINWLS)
» Create Line Description (X.25) (CRTLINX25)

» Create Network Interface Description (ISDN) (CRTNWIISDN)

Figure 1-4 outlines the difference between standard i Series communications configuration, such as the
iSeries APPC protocol, and user-defined communications configuration.

Figure 1-4. Comparison between User-Defined Communications and APPC Communications

Object APPC Communications User-Defined
Communications
Network ISDN basic rate interface (BRI). [Same as APPC. Only X.25
Interface Describes the physical supported.

Description attachment to an ISDN BRI.
Only used for ISDN. X.25 or

IDLC protocols supported.
Line SDLC, LAN, IDLC, X.25lines |LAN, X.25 lines supported.
Description supported. Containslocal port |Same as APPC except some of
information for i Series the information does not apply

communication |OP (hardware |to user-defined communications.
address, maximum frame size,
exchangeidentifier (XID), local
recovery information, ...).

Controller APPC, host controllers Network controller supported.
Description supported. Describes remote Pathway into network. Only one
system, and parameters must specific parameter--X.25
match the remote hardware time-out value.
(hardware address, XID, ...).
Device APPC device supported. Network device supported. Only
Description Describesremote logical unit |describes the communications
(LU), and parameters must method or type(for example,
match partner LU (remote TCP/IP, OSl, or user-defined
location name, local location communications).
name, ...).
Mode Required. Not available.

Description and
Class-of-Service
(CO9)

Although an APPC network requires one APPC controller description to describe each remote system in the
network, user-defined communications only requires one network controller for communications with an
entire network of remote systems. Thus, LAN and X.25 lines can be shared between user-defined
communications support and any other protocols that support those same line types. For example, APPC
may run over atoken-ring line and use the X'04' Service Access Point (SAP). TCP/IP might run at the same
time using the X'AA' SAP. Y ou might write an application program to use the X'22' SAP, and run at the
same time as the first two. All three protocols can be active at the same time across the same physical
media.

Note: System-specific configuration information must be part of the application program and is not
supplied by IBM.

Local Area Network (LAN) Considerations

User-defined communi cations supports these LAN types:
» Token ring (IEEE 802.5)

Ethernet (IEEE 802.3)

« Ethernet Version 2

Wireless

« FDDI

For token ring (802.5), Ethernet (802.3), and FDDI, user-defined communications uses the |EEE 802.2
logical link control (LLC) layer, which provides type 1 connectionless service. Connectionless serviceis
a so known as unacknowledged service. The LLC layer provides for type 2 connection service as well. For
Ethernet Version 2, no 802.2 layer is available.

The wireless LAN type supports the characteristics of both Ethernet (802.3) and Ethernet Version 2.

Y our application program has access to type 1 unnumbered information (Ul) frames. This connectionless
serviceis commonly referred to as datagram support where protocol data units are exchanged between end
points without establishing a data link connection first.

Thetype 1 operations, test and exchange identifier (XID) frames, are not supported in user-defined
communications. Any XID or test frames that the physical layer of the iSeries receives are processed by the
input/output processor (10P) and never reach your application program.

LAN frames are routed by filtering incoming data using the inbound routing data defined by your
application program. Thefilters are hierarchical and are set up by your application program before
communications is started.

The following list shows the possible settings for LAN inbound routing data (filters) from least selectiveto
most selective.

« Destination Service Access Point (DSAP)
« DSAP, Source Service Access Point (SSAP), and optional Ethernet Version 2 frame type

« DSAP, SSAP, optional Ethernet Version 2 frame type, and adapter address
Because user-defined communications does not allow applications to define the data link and physical

layers, the entire token-ring or Ethernet frame is not available to your applications. The following fields are
the parts of the LAN frame that are available to the user-defined communications support:

« DSAP
« SSAP

o Destination address (DA)

» Routing information (RI)
Thisfield is available only when using token ring.

« Priority control
Thisfield is available only when using token ring.

 Access control
Thisfield is available only when using token ring.

o« Data

For more information on local area networks, seethe LAN, Frame-Relay and ATM Support@ book.

X.25 Considerations

X.25 user-defined communications support includes access to both permanent virtual circuits (PVCs) and
switched virtual circuits (SVCs).

Over X.25 networks, including those using ISDN, your application program can initiate and accept X.25
calls, send and receive data, reset, and clear connections.

X.25 packets are routed by filtering the incoming call request using the inbound routing data that is defined
by your application program. The filters are hierarchical and are set up by the application program before
communicationsiis started.

The following list shows the possible settings for X.25 inbound routing data (filters) from least selective to
most selective.

« Protocal identifier (PID)

o PID, and calling data terminal equipment (DTE) address

When X.25 networks are using I1SDN, natification of incoming calls may be received on the D-channel.
Y ou can decide whether these calls are accepted.

For more information on X.25 networks, see the X.25 Network Support@ book.

Top | Communications APIs | APIs by category

Programming Design Considerations for
Communications APIs

This document outlines concepts related to user-defined communications and how they might relate to the
design of a user-defined communications application. Topics covered are:

« Jobs

« Application program feedback

« Programming languages

« Connection identifiers

« Token-ring, Ethernet, and wireless networks
o X.25 networks

o Queues

o User spaces

Jobs

A fundamental concept in user-defined communicationsis the job. The concept of the job isimportant
because the user-defined communications support performs services for the job requesting the
communications support through one of the user-defined communications APIs. Information used by the
user-defined communications support is kept along with other information about the job. Y ou can display
this information by using the Work with Job (WRKJOB) command and selecting the Work with
communications status option. The user-defined communications information for the job, such as the
communications handle name, last operation, and input and output counts are shown.

A user-defined communications application program (hereafter referred to as an application or application
program), always runs within ajob. This job may be run interactively or in batch and always represents a
separate application to the user-defined communications support. This means that the same protocol can be
actively running in more than one job on the system. Also, more than one job can have links that share the
same line as other jobs running application programs.

Each link that is enabled by an application program logically consists of the line, network controller, and
network device description objects (plus the network interface description object for ISDN links). Many
applications can share the same line and controller description, provided the applications are running in
different jobs, but each application uses a different device description. Up to 256 device descriptions can be
attached to a controller description. This means that there can be a maximum of 256 jobs running
application programs that share the same line at one time. When an application program has finished using
alink and disabling it, the network device description used by the application becomes avail able to another
application.

For end-to-end communication to begin, the application programs on each system must be started. Thereis
no function equivalent to the intersystem communications function (ICF) program start request. Y our
application program is responsible for providing this support, if needed. To provide this support, your
application can have a batch job servicing remote requests to start the user-defined communications
application program. This job can be created to run in any subsystem.

For more information on jobs and subsystems, see the Work M anaqement@ book on the V5R1
Supplemental Manuals Web site.

Y ou can design your application programs so that the entire protocol resides within one job or separate jobs
where each job represents a portion of the protocol.

There is a one-to-one correspondence between a job and the user-defined communications support for that
job. The user-defined communications support for one job does not communicate with the user-defined
communications support for another job. If two applications wish to communicate between themselves, a
method such as a shared queue can be used. Also, the queue can be shared between the two (or more) jobs
and the user-defined communications support for those jobs.

Figure 1-1 shows how user-defined communications relate to the OS/400 job structure and the data queue

or user queue that provides the ability to communicate between your application and the user-defined
communications support.

In thisfigure, one interactive job is running over an X.25 line (X25USA) to a system in Rochester,
Minnesota, using the user-defined communications support. The link was enabled with communications
handle name ROCHESTER.

The user space application programming interfaces (APIs) that the application program is using are shown,
aong with the programming interfaces for data and user queues and the user-defined communications
support APIs.

Figure 1-1. Overview of APl Relationships

(ENG)

QISNDDTAC
User-Defined Communications - -
Application Program QRCYDTAG | WUEUE

(DEC Support
Job name: D5P0R QFGME 000123

F Y F
QUSPTRUS CIOLELINK. | (EMQ) QSHNDDTAC

QUSCHGUS QOLDLINK
QUSRTYUS QOLSETF
QOLRECY
QOLSEND
QOLGLIND
QOLTIMER
. 4 ¥ ¥
User-Defined CIUeLE
LIser Space N)
Support Communications Support Ohject
Four User .
Lty t:l'j,-" Handle:
Spaces ROCHESTER
Line Descripticlr‘l:
MIG5USA
h J

Figure 1-2 showstwo jobs, A and B. Each job is using the user-defined communications support to

communicate with the networks attached to the i Series server by the line description. The figure shows the
relationship between the different APIs and the job which is running the application program.

The lines between the jobs indicate that callable APIs that are used to communicate between the application
program and the system services shown.

Figure 1-2. Application Programming I nterfaceto Job Structure

Job A, Job B
LIser-Defined Ll ser-Defined
Coammunications Q Communications
N LIELIE S
Application Program | | Support || Application Program
lUserDefined Usger Sp?tce Lser-Defined
COmmunications LpHO Communicatons
Support Support
WYireless Ethernet ®.20 Token-RHing
I etwy Ork: M etwork M etwork M ehiork
| |
IS0 R

Thefollowing list pertainsto Figure 1-2.

The applications use the data queue APIs, user space APIs, and user-defined communications APIs.

An application can have more than one link enabled, and can use a separate queue for each link, or
the same queue for some or all the links that it has enabled.

The two jobs can communicate with each other using a common gueue. This queue can be the same
gueue that is used for user-defined communications support or a different one.

Both jobs (or any other job on the system) that has the proper authority to the user spaces, can
access the user spaces.

The user-defined communications support uses the data in the output user spaces that are created
when the link is created. The application making the call to the Send Data (qolsend) API can fill the
output buffer and descriptor, or another application can do this.

The user-defined communications support sends data to the application through the input buffer
and input descriptor that is created when the link on which the data is arriving was created. Either
the application making the call to the Receive Data (QOLRECV) API retrieves the datafrom the
input buffer and descriptor, or another application with access to the user spaces does this.

The application supplies any communications handle (link name) to the link as long asthisnameis
unique among all the other links that the job has enabled.

An application can enable as many links as there are line descriptions that are supported (X.25,

token-ring, Ethernet, wireless, and FDDI) and that are able to be varied on.

« An applicationisableto run over X.25 and LAN links concurrently.

Application Program Feedback

The user-defined communications support uses return and reason codes to indicate the success or failure of
an operation, and provide suggested recovery information. In severe error conditions an escape message is
signaled to the application program. If a severe error occurs, user-defined communicationsis no longer
available to the application.

When the golsend and QOLRECV APIs return to the application and you are running to an X.25 network,
the diagnostic field isfilled in. The reason code indicates whether or not the application program should
look at the data returned in the diagnostic field. The diagnostic field contains additional information on the
error or condition that is reported.

Synchronous and Asynchronous Operations

Most operations that an application program requests on the call to the qolsend API are synchronous
operations. Synchronous operations involve one step, which isto call the qolsend API, passing the
appropriate information. Synchronous operations complete when the golsend API returns to the application
program. The success or failure of the operation is reported in the return and reason codes by the golsend
APIL.

Asynchronous operations do not complete when the golsend API returns to the application. There are two
steps for every asynchronous operation:

1. Call the golsend API toinitiate or request the operation.

2. Call the QOLRECV API to receive the results of the completed operation.

When the golsend API returns to the application program, the request for the operation is successfully
submitted. After the requested operation is complete, the user-defined communications support sends an
incoming data entry (if necessary) to the queue to instruct the application program to call the QOLRECV
API to receive the data. When this call to the QOLRECV AP returns, the return and reason codesin the
parameter list contain the success or failure of the operation. If the operation was unsuccessful dueto an
application template error in the user space used for output, the request data given to golsend using the
output buffer and descriptor is copied into the input buffer and descriptor. The offset to the template error
detected is returned in the parameter list of the QOLRECV API. Asynchronous operations are only used for
open connection requests, close connection requests, and resets.

For either type of operation, the application program is allowed to use the output user spaces again as soon
asthe call to the gqolsend API returns.

Programming Languages

Any program written in an OS/400-supported language can call user-defined communications support. One
consideration for choosing one language over another, is that the programming language must have the
ability to set abyte field to any hexadecimal value. This does not restrict programming in the different
languages, but it does make some languages more appealing than others.

Starting and Ending Communications

Relatively little configuration is required by user-defined communications support to begin
communications to the network. For information on configuration, see Configuration and Queue Entries.

To start communications with a network, your user-defined communications application program enables
the link to the network by calling the Enable Link (QOLELINK) API. Oncethelink is enabled, the
application program can call any of the user-defined communications support APIs, and request any of the
operations supported for the link. When the application program compl etes communications with the
network, it disablesthe link by calling the Disable Link (QOLDLINK) API.

Note: Enabling the link does not result in any communications activity on the network. Disabling alink
may cause communications activity for X.25 linksif connections are active when the link is disabled.

Using Connection ldentifiers

Connection identifiers are used for connection-oriented support over X.25 networks. The connectionless
connection identifiers (UCEP=1, PCEP=1) are used for local area networks. The following examples
(Figure 1-3 through Figure 1-14) illustrate how to use connection identifiers (UCEP and PCEP). They show

how the two step operations, open connection request, and close connection request relate to the UCEP and
PCEP identifiers. Note the outstanding two-step operations. Thisisimportant so that the application can
correctly interpret the PCEP and reuse UCEPs.

The connections in each figure refer to SV C connections, and the examples use the Receive Data Queue
(QRCVDTAQ) API. The same principles apply when using PV C connections and user queues.

Figure 1-3. Example 1. Normal Connection Establishment

Lser-Defined

Application Frogram Communications Support
1. 8end open connec- 2. Application requests
tion regquest for Y C; connection [5G
use next available sends K. 248 call
UCER, 7. QOLSEND | request, uses next | cAlLL REQUEST
available PCEPR 1, e
it and returnsto
3. Record new PCEP H—— application.
and wait far response. ‘C*"J‘LL ACCERT
4. Call accept received
A, Data queue entry for PCEP1. Send
indicates data to he entry to data queue.
received.
O LRECY
— ™ B Fill in user space
iy with result of call
request for LICEP ¥
7. Dpen connection and return.

requestwas
successful. LCER

i1, PCEP (1) in
data state.

1. The application wants to open a connection, so it calls the qolsend API passing it the UCEP it
wants to use for the connection. The application keeps track of the UCEP, PCEP pair. At this point,
the UCEP=7, and the PCEP is undefined.

2. The user-defined communi cations support receives the request, stores the UCEP for the connection,
and uses the next available PCEP, which is 1, and returns to the application, acknowledging the
receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

3. The application records that the PCEP for UCEP=7 is 1. The UCEP=7, PCEP=1 connection is not
yet active. Next, the application calls the Receive Entry From Data Queue (QRCVDTAQ) AP, to
wait for the incoming data entry. The application is expecting the open connection response.

4. The X.25 call accept isreceived for PCEP=1. To inform the application of the incoming data, an
incoming data entry is sent to the data queue.

5. The application's call to the QRCVDTAQ API returns with the incoming dataentry. The
application then issues acall to the QOLRECV API.

6. The user-defined communications support fillsin the input buffer and descriptor with data for the
open connection response operation, and determines the UCEP associated with the data by
examining the PCEP associated with the X.25 call accept. Because the call accept was received for
PCEP=1, the UCEP=7.

7. The application's call to the QOLRECV API returns with successful return and reason codes for the
open connection response operation. This operation was reported for UCEP 7; the UCEP=7,
PCEP=1 connection is now active.

Figure 1-4. Example 2: Connection Request Cleared by Networ k/Remote System
Lser-Defined

Application Program Communications Support
1. 2end open connec- 2. Application requests
tion regquest for SYC; connection (2WC)
uze next availahle send ¥. 24 call
UCER, 7. QOLSEMD | request,uses next | ca|| REGIUEST
available PCEPR 1, -
it and returnsto

3. Record new PCEP 44— application.

and wait for response. CLEAR

4 Call was cleared

a. Data gqueue entry for PCEP 1. Send
indicates data o entry to data queue.
receive,

CQOLRECY
— ™ B. Fill in user space
iy with result of call
request for LICEP ¥
7. Dpen connection and return.

requestwas not
successiul. LUCER

7 available for reuse.

1. The application wishes to open a connection, so it calls the qolsend API, passing it the UCEP it
wants to use for the new connection. The application keeps track of the UCEP, PCEP pair. At this
point, the UCEP=7, and the PCEP is undefined.

2. The user-defined communications support receives the request, stores the UCEP for the connection,
and uses the next available PCEP, which is 1, and returns to the application, acknowledging the
receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

3. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is
not yet active. Next, the application calls the QRCVDTAQ API to wait for the incoming data entry.
The application is expecting the open-connection response.

4. A clear isreceived for PCEP=1. To inform the application of the incoming data, an incoming data
entry is sent to the data queue.

5. The application's call to the QRCVDTAQ API returns with the incoming data entry. The
application then issues acall to the QOLRECV API.

6. The user-defined communications support fillsin the input buffer and descriptor with data for the
open connection response operation, and determines the UCEP for the data by using the PCEP for
which the X.25 call accept was received. Because the call was cleared for PCEP=1, the UCEP=7.
The PCEP=1 is no longer active, and may be reused by the user-defined communications support.

7. The application’'s call to the QOLRECV API returns with unsuccessful return and reason codes for
the open connection response operation. Thus for the PCEP=1, the UCEP=7. The PCEP=1 isno
longer active, and the operation is for UCEP=7. Because the connection is not open, the
user-defined communications support's PCEP=1 no longer implies UCEP=7, and the application's
UCEP=7 may be reused.

Figure 1-5. Example 3: Request to Clear Connection with Outstanding Call (Unsuccessful)
Lizer-Defined

Application Program Communications Support
1. 5end open connec- 2. Application regquests
tion request for SV C; connection (3WC)
use next available send X.25 call
LICER, 7. QOLSEMD request, usesnext | oo REQUEST
available FCEP, 1, -
(rtm and returns to

3. Record new PCEP 44— application.
and wait for response.

b, Hecejve request to
4. 5end close connec- w clear FCEF 1.
tion request for (rtri
FPCEF 1. .
b. Llser space errar
found. Send entry
to data queue.
7. Data queue indicates
data to he recen ed.
QOLRECY a. Fill in user space
wyith the cloge

. (rtm .

4. Close connection o connection regquest
request was not for UCER ¥ and
successiul. LUCERP T, return.

FCEP 1 remains
active.

1. The application wishes to open a connection, so it calls the golsend API passing it the UCEP for the
new connection. The application keeps track of the UCEP, PCEP pair. At this point, the UCEP=7,
and the PCEP is undefined.

2. The user-defined communications support receives the request, stores the UCEP for the connection,
and uses the next available PCEP, which is 1, and returns to the application, acknowledging the
receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.
3. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is

not yet active. Next, the application callsthe QRCVDTAQ API to wait for the incoming data entry.
The application is expecting the open connection response.

4. QRCVDTAQ returns to the application (the dequeue time-out value has elapsed), and the
application no longer wants the UCEP=7 connection. It calls the qolsend APl passing the PCEP=1
to identify the connection to be closed. Then the application callsthe QRCVDTAQ API.

5. The user-defined communications support receives the close connection request, and returns to the
application, acknowledging the receipt of the request.

The user-defined communications support validates the request and finds an error.

6. The user space error isfound. A copy of the user space, which contained an error, is passed back to
the application. To inform the application of the unsuccessful close connection request, an
incoming data entry is sent to the data queue.

7. The application's call to the QRCVDTAQ API returns with the incoming data entry. The
application then issues acall to the QOLRECV API.

8. The user-defined communications support fillsin the input buffer and descriptor with data for the
unsuccessful close connection request operation, and determines the UCEP associated with the data
by examining the PCEP associated with the close connection. Because the close connection request
was for PCEP=1, the UCEP=7.

9. The application’'s call to the QOLRECV API returns with unsuccessful return and reason codes for
the close connection response operation. This operation is for UCEP=7. The connection UCEP=7,
PCEP=1 is till in use by both the application and the user-defined communications support. The
application can either correct the error and reissue the operation, or wait for the call to be accepted
or rejected.

Figure 1-6. Unsuccessful Attempt to Clear Outstanding (Successful) Call

Application Program

Lser-Defined

Communications Support

1. Send apen connec-
tion request for SV,
use next available

2 Application requests
connection (W)
send ¥.25 call

LUCER 7. QOLSERD request, usesnext | oAl REQLUEST
available PCER T -
3. Record new PCEP () and returns to
and weait for application.
response. CALLACCEPT
q. Call accepted for -
4. Send close connec- FCEFP 1. Send to
tion request for data queue.
FCEP 1. QOLSEMD
—
(rtr) b, Recetwe request to
7. Data gqueue indicates | s——— clear PCEFR 1.
data to be received. |oo pECY
—— 9P | 5. Fill in user space
8. Open connection rtri with result of call

request was suUccess-
ful. LCERP Y, PCEF 1
iz active.

11. Data queue indicates
there is data to
receive.

13. Close connection
request was not
successiul. LICEPR
i, PCEP (1) active.

LOLRECY
—>

(i
‘7

request for LICERP ¥
and return.

10. Llser space error.
send entry to data
queue.

12. Fillin user space
wyith close connec-
tion request that
failed for LICEFP ¥
and return.

1. The application wishes to open a connection, so it calls the golsend API, passing the UCEP for the
new connection. The application keeps track of the UCEP, PCEP pair. At this point, the UCEP=7,
and the PCEP is undefined.

. The user-defined communications support receives the request, stores the UCEP for the connection,
and uses the next available PCEP, which is 1, and returns to the application, acknowledging the
receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is
not yet active. Next, the application calls the QRCVDTAQ API to wait for the incoming data entry.
The application is expecting the open connection response.

. QRCVDTAQ returnsto the application (the dequeue time-out val ue has elapsed), and the
application no longer wants the UCEP=7 connection. It calls the golsend APl passing the PCEP=1
to identify the connection to be closed. Then the application callsthe QRCVDTAQ API.

10.

11.

12.

13.

The X.25 call accept is received for PCEP=1. To inform the application of the incoming data, an
incoming data entry is sent to the data queue.

The user-defined communications support receives the close connection request, and returnsto the
application, acknowledging the receipt of the request.

. The application's call to the QRCVDTAQ API returns with the incoming data entry. The

application then issues acall to the QOLRECV API.

. The user-defined communications support fillsin the input buffer and descriptor with data for the

open connection response, and determines the UCEP associated with the data by examining the
PCEP for the X.25 call accept. Because the call accept was received for PCEP=1, the UCEP=7.

The application's call to the QOLRECV API returns with successful return and reason codes for the
open connection request operation. This operation is reported for UCEP=7; the UCEP=7, PCEP=1
connection is now active with an outstanding close connection request. The application calls the
QRCVDTAQAPI.

While processing the close connection request, the user-defined communications support detects an
error in the user space. The user spacethat isin error is copied into the input buffer and descriptor,
so the application is aware of the datain error. To inform the application of the unsuccessful close
connection request, an incoming data entry is sent to the data queue.

The application's call to the QRCVDTAQ API returns with the incoming data entry. The
application then issues a call to the QOLRECV API.

The user-defined communications support fills the input buffer and descriptor with data for the
unsuccessful close connection request operation. By using the PCEP that was requested for the
close connection, the support determines the UCEP with which the data is associated. Because the
close connection request was for PCEP=1, the UCEP is 7. The PCEP=1 is till active.

The application's call to the QOLRECV AP returns with unsuccessful return and reason codes for
the close connection response operation. This operation isfor UCEP 7. The connection UCEP=7,
PCEP=1 is till in use by both the application and the user-defined communications support. The
application can either correct the error and reissue the operation, or wait for the call to be accepted
or rejected.

Figure 1-7. Example 5: Successful Attempt to Clear Outstanding (Successful) Call

Application Program

Lser-Defined

Communications Support

1. Send apen connec-
tion request for SV,
use next available
LICER T.

Fecard new PCEP
and wait for
response.

Send close connec-
tion request for
FCEP 1.

Diata queue indicates
data to be received.

10. Open connection
request was suc-
cessful. LICEP (),
FCEP (1) is active.

12 Data queue indicates

there is data to

Feceive.

14. Cloge connection

request was

syccessful, UCEP
¥ no longer active.

AOLSEND

iy

LDOLSEND

t
l(L

QOLRECY
E—

(rtr)
.‘7

LQOLRECY
—»

(i
‘7

2 Application requests
connection (W)
sends X.2A call
request, uses next
availahle PCEP (1],
and returns to
applic ation.

. Zall accepted far
PCEF 1. Send
entry to data queue.

Receive request to
clear PCEFR 1.

. lgsue clear request

Fill in user space
with result of call

request for UCEP 7

and return.

11. Clear is confirmed.
Send entry to data
fuUeLE.

13 Fill in user space
wyith close connec-
tion regquest
response for LICER
¥ oand return.

CALL REQLIEST

>

CALLACCEPT
ol

CLEAR

-

CLEAR
COMFIRMED

The application wishes to open a connection so it calls the qolsend AP, passing it the UCEP for the

new connection. The application keeps track of the UCEP, PCEP pair. At this point, the UCEP=7,
and the PCEP is undefined.

. The user-defined communications support receives the request, stores the UCEP for the connection,

and uses the next available PCEP, which is 1, and returns to the application, acknowledging the

receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is

not yet active. Next, the application callsthe QRCVDTAQ API to wait for the incoming data entry.
The application is expecting the open connection response.

QRCVDTAQ returns to the application (the dequeue time-out value has elapsed), and the

application no longer wants the UCEP=7 connection. It calls the golsend API passing the PCEP=1

10.

11.

12.

13.

14.

to identify the connection to be closed. The application calls the QRCVDTAQ API.

The X.25 call-accept is received for PCEP=1. To inform the application of the incoming data, an
incoming data entry is sent to the data queue.

The user-defined communications support receives the close connection request, and returnsto the
application, acknowledging the receipt of the request. The application calls QRCVDTAQ API.

The application's call to the QRCVDTAQ API returns with the incoming data entry. The
application then issues acall to QOLRECV.

The user-defined communications support validates the close connection request, and issues an
X.25 clear request.

The user-defined communications support fillsin the input buffer and descriptor with data for the
open connection response, and determines the UCEP that the dataiis for by using the PCEP for the
X.25 call accept. Since the call accept was received for PCEP=1, the UCEPis7.

The application's call to QOLRECV returns with successful return and reason codes for the open
connection request operation. This operation is reported for UCEP=7; the UCEP=7, PCEP=1
connection is now active with an outstanding close connection request.

The clear confirmation is received for PCEP=1. To inform the application of the successful close
connection request, an incoming data entry is sent to the data queue.

The application's call to the QRCVDTAQ AP returns indicating there is datato receive.

The user-defined communications support fills the input buffer and descriptor with data for the
successful close connection request operation, and determines the UCEP associated with the data
by examining the PCEP that was requested for the close connection. Because the close connection
request was for PCEP=1, the UCEP=7. The PCEP=1 is no longer active.

The application's call to the QOLRECV API returns with successful return and reason codes for the
close connection response operation. This operation isfor UCEP 7. The UCEP=7, PCEP=1
connection is no longer active.

Figure 1-8. Example 6: Successful Attempt to Clear Outstanding (Unsuccessful) Call

Application Program

Communications Support

Lser-Defined

1. Send open connec- 2 Application requests
tion regquest for Y C; connection (W)
use next available sends X245 call
LICEPR, T. QOLSEMD request, usesnext | oAl REQLUEST

available PCEP 1, e

3. Record new PCEP () and returns to
and wait for applic ation.
fesponse. CLEAR

4. Send close connec- q. czall cleared for B
tion request for QOLSEND PZCEF 1. Send
FCEP 1. entry to data gueue.

— Py 0
7. Data gqueue indicates .‘7” b. Hecewe request to
datato be recef ed. clear PCEFR 1.
QO LRECY o
—— 9P | 5. Fill in user space
frr with result of un-

8. Qpen connection g successiul call
request was not suc- request for LICEP ¥
cessful. CQutstanding and return.
close request means
LICEP 7 il active. 10, Cloze is successiul

Send entry to data

11. Data gquede indicates queue.
there is data to
FRCRIVE. w 12 Fillinuser space

(rtr with close con-

13. Dutstanding close g nection response
connection returned and return.
not successiul.

LICEP ¥ no longer
active.

1. The application wishes to open a connection, so it callsthe golsend API, passing it the UCEP for

the new connection. The application keeps track of the UCEP, PCEP pair. At this point, the
UCEP=7, and the PCEP is undefined.

2. The user-defined communi cations support receives the request, stores the UCEP for the connection,
and uses the next available PCEP, which is 1, and returns to the application, acknowledging the
receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

3. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is
not yet active. Next, the application callsthe QRCVDTAQ API to wait for the incoming data entry.
The application is expecting the open connection response.

10.

11.

12.

13.

QRCVDTAQ API returnsto the application (the dequeue time-out val ue has elapsed), and the
application no longer wants the UCEP=7 connection. It calls the golsend API passing the PCEP=1
to identify the connection to be closed. Then the application callsthe QRCVDTAQ API.

. The X.25 clear isreceived for PCEP=1. To inform the application of the incoming data, an

incoming data entry is sent to the data queue.

The user-defined communications support receives the close connection request, and returnsto the
application, acknowledging the receipt of the request.

The application's call to the QRCVDTAQ API returns with the incoming data entry. The
application then issues a call to the QOLRECV API.

The user-defined communications support fillsin the input buffer and descriptor with data for the
open connection response, and determines the UCEP that the data is for by using the PCEP that the
X.25 clear isfor. Because the clear was received for PCEP=1, the UCEPis 7.

The application's call to the QOLRECV API returns with unsuccessful return and reason codes for
the open connection request operation. This operation is reported for UCEP=7. Because the close
connection request is outstanding, the UCEP=7, PCEP=1 connection is not fully closed. The
application callsthe QRCVDTAQ API.

The close connection request is validated, but no clear is sent because the connection was cleared
previously. The close is considered successful, and an entry is sent to the data queue.

The application's call to the QRCVDTAQ API returns with the incoming data entry. The
application then issues acall to the QOLRECV API.

The user-defined communications support fillsin the input buffer and descriptor with data for the
successful close connection request operation, and determines the UCEP that the dataiis for by
using the PCEP that the close connection was requested for. Since the close connection request was
for PCEP=1, and the UCEP is 7. The PCEP=1 is no longer active.

The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for
the close connection response operation. This operation isfor UCEP 7. The connection UCEP=7,
PCEP=1 is no longer active.

Figure 1-9. Example 7: Unsuccessful Attempt to Clear Outstanding (Unsuccessful) Call

Lser-Defined

Application Program Cammunications Support

1. Send open connec-
tion regquest for Y C;
use next available

2 Application requests
connection (W)

sends #.25 call
QOLSERMD

LICER, 7. request, usesnext | oAl REQLUEST
availahle PCEP (1) e
3. Record new PCEP () and returns to
and wait for applic ation.
response, CLEAR
4. Send close connec- q. czall cleared for B
tion request for QOLSEND FCEF 1. send
FCEP 1. entry to data gueue.
irtn
7. Data gqueue indicates .‘7” b. Hecewe request to
datato be received. clear PCEFR 1.
QO LRECY o
—— = | 5. Fillinuser space
frr with result of un-
8. Qpen connection g successiul call
request was not suc- request for LICEP ¥
cessful. LICEP ¥ ostill and return. PCEP 1
active. ho longer active.
10. LIser space error
trying to cloge
11. Data gquede indicates LICERP 1. Send
there is data to entry to data
FECEiVE. EOLRECY QquUele.
—
13, Outstanding close (rtn) 12 Fillin uger space

connection returned wiith close con-

unsuccessiul. nection request for
LICER ¥ no longer LICEP T and
active, return.

1. The application wishes to open a connection, so it calls the golsend API passing it the UCEP for the
new connection. The application keeps track of the UCEP, PCEP pair. At this point, the UCEP=7,
and the PCEP is undefined.

2. The user-defined communi cations support receives the request, stores the UCEP for the connection,
and uses the next available PCEP (1); and returns to the application, acknowledging the receipt of
the request.

The user-defined communications support validates the request and issues the X.25 call request.

3. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is
not yet active. Next, the application callsthe QRCVDTAQ API to wait for the incoming data entry.
The application is expecting the open connection response.

10.

11.

12.

13.

The application no longer wants the UCEP=7 connection. It calls the golsend API passing the
PCEP=1 to identify the connection to be closed. The application callsthe QRCVDTAQ API.

The X.25 Clear isreceived for PCEP=1. To inform the application of the incoming data, an
incoming data entry is sent to the data queue.

The user-defined communications support receives the close connection request, and returns to the
application, acknowledging the receipt of the request.

. The application's call to the QRCVDTAQ API returns with the incoming data entry. The

application then issues a call to the QOLRECV API.

The user-defined communications support fillsin the input buffer and descriptor with data for the
open connection response, and determines the UCEP that the datais for by using the PCEP that the
X.25 clear isfor. Because the clear was received for PCEP=1, the UCEPis 7.

The application's call to the QOLRECV API returns with unsuccessful return and reason codes for
the open connection request operation. This operation is reported for UCEP=7. Because the close
connection request is outstanding, the UCEP=7, PCEP=1 connection is not fully closed. The
application callsthe QRCVDTAQ API.

The close connection request is validated, and an error isfound in the user space. An entry is sent
to the data queue.

The application's call to the QRCVDTAQ API returns with the incoming data entry. The
application then issues acall to the QOLRECV API.

The user-defined communications support fillsin the input buffer and descriptor with data for the
unsuccessful close connection request operation, and determines the UCEP that the datais for by
using the PCEP that the close connection was requested for. Since the close connection request was
for PCEP=1, the UCEP is 7. Because the connection was cleared prior to the close connection
reguest, the PCEP=1, UCEP=7 connection is considered no longer active to the user-defined
communications support.

The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for
the close connection response operation. This operation isfor UCEP 7. The connection UCEP=7,
PCEP=1 is no longer active.

Incoming Connections

The following figures show how the application program handles UCEPs and PCEPs for incoming
connections.

Figure 1-10. Example 1: Normal Connection Establishment

Lser-Defined

Application Program Communications Support
CALL REQUEST
1. Incoming call -
2 Data gueue indicates received. Llse next
data to receive. QOLRECY available PCEPR 1,
E—— and send entry to
the data queue.
: . (rtny .
4. Incoming call using | s——— 3 Fill user spaces
PCEF 1. Send call with incorming call
accept use next and return.

available UCEP (7).
CIOLSEMD) 5 Send call accept

for PCEF 1, and

(rin) return to the CALL ACCEPT
- S
6. Call accept was application. -
successful. LICEP=T,
FCEP=1 active. CALL REQUEST
o

1. Anincoming call request is received by the communications support, which determinesif thereis
an application that has afilter satisfying this call request. The communications support uses the
next available PCEP, which is 1, for this new connection. An entry is sent to the data queue.

2. The application has been waiting for its call to the QRCVDTAQ API to complete. The call
completesindicating there is data to be received. The application calls the QOLRECV API.

3. Theinput buffer and descriptor are filled with the incoming call request for PCEP=1, and the
QOLRECV AP returns.

4. The application looks at the operation, which indicates an incoming call indication. The PCEP
reported by the communications support is 1. The application chooses to accept this call, and passes
the UCEP to be used for this new connection. The call is made to the qolsend API with PCEP=1,
UCEP=7.

5. Thecall accept is received and sent for PCEP=1. The qolsend API returns to the application.

6. The call accept request was successful for UCEP=7, PCEP=1. This connection is now active.
Figure 1-11. Example 2: Send Call Accept Not Valid

Lser-Defined

Application Program Communications Support
CALL REQUEST
1. Incoming call -
2. Data gueur indicates received. Llse next
data to receive. QOLRECY availahle PCEP(T)

and send entry to
the data queue.

ttn
(i) 3. Fi_IIu_ser Spaces
4. Incoming call using with incorming call
PCEP 1. Send call and return.

accept use next
available UCEP (7). | @OLSEND) 4. User space for call

- accept notwvalid.
‘ L Return to the
application.

b, Call accept was
hot successiul,
LICEP=Y iz not active
and incoming call is
still outstanding.

1. Anincoming call request is received by the communications support, which determinesiif there is
an application that has afilter satisfying this call request. The communications support uses the
next available PCEP=1 for this new connection. An entry is sent to the data queue.

2. The application has been waiting for its call to the QRCVDTAQ API to complete. It does,
indicating there is data to be received. The application calls the QOLRECV API.

3. Theinput buffer and descriptor are filled with the incoming call request for PCEP=1, and the
QOLRECV AP returns.

4. The application looks at the operation which indicates an incoming call indication. The PCEP
reported by the communications support is 1. The application chooses to accept this call, and passes
the UCEP to be used for this new connection. The call is made to the qolsend API with PCEP=1,
UCEP=7.

5. Thecall accept isreceived and an error isfound in the user space. The qolsend API returnsto the
application, reporting the error and offset. The incoming call is still outstanding for PCEP=1.

The application checks the return and reason codes and finds that an error has occurred. The call
accept was not sent and the incoming call is still waiting for aresponse.

Figure 1-12. Example 3: Send Clear for Incoming Call

Lser-Defined

Application Program Communications Support
CALL REGQLUEST
1. Incoming call -
2. Data queue indicates "EEE_:VEF- PUCSEPH{E;{}J[
data to he received. avallanie |
QOLRECY and send entry to
the data queue.
(riny
3. Fill user spaces
4. Incoming call using with incoming cal
PCEF 1. Request to and retum.
clear thiz call. & cend Cl
. Send Clear
QDLEENE request. Feturn to ZLEAR
(rin) application. -
o . .
6. Clear is confirmed. CLEAR
7. Data queus indicates Send entry to data | conFIRMATION
data to be rec eived. QGLHEC& queLe. 4
(rir)
9 Clear request was #— & Fill user spaces with
successful. PCEP 1 clear confirmation
no langer active. data.

1. Anincoming call request is received by the communications support, which determinesif thereis
an application that has afilter satisfying this call request. The communications support uses the
next available PCEP, which is 1, for this new connection. An entry is sent to the data queue.

2. The application has been waiting for its call to the QRCVDTAQ API to complete. It does,
indicating there is data to be received. The application calls the QOLRECV API.

3. Theinput buffer and descriptor are filled for the incoming call request for PCEP=1, and the
QOLRECV API returns.

4. The application looks at the operation which indicates an incoming call indication. The PCEP
reported by the communications support is 1. The application does not wish to accept the call, so
the user spaceisfilled in for a close connection request and the application calls the golsend API.
The application callsthe QRCVDTAQ API.

5. The close connection request is received and the golsend API returns to the application,
acknowledging the request.

The close connection request is validated and a clear is sent.

6. The clear confirmation is received for PCEP=1 which has no UCEP. An incoming data entry is sent
to the data queue. The application calls the QRCVDTAQ API.

7. The application's call to the QRCVDTAQ API returns with the incoming data entry. The
application calls the QOLRECV API to receive the data.

8. Theinput buffer and descriptor arefilled in with the clear confirmation data. Since the connection
was never established (and the application never assigned a UCEP to this connection), the
QOLRECV API returnsto the application passing a UCEP=0.

9. The close connection request was successful. PCEP=1 is no longer active.
Figure 1-13. Example 4: Send Clear for Incoming Call
User-Defined

Application Program communications Support
CALL REQLUEST
1. Incoming call w
2. Data gueur indicates fEEe_llﬁ-fEii F'UCSEF'H(E;{}J[
data to be received. avaliable :
QOLRECY and send entry to
the data queue.
(rtny
3. Fill user spaces
4. Incaming call using Wltg lﬂj[iﬂmlﬂg call
FCEF 1. Reguest to and return.
clear this c:alll.q QOLSEND _
— | 5. Close connection
(rtr) reguest is received.
-
B Close connection
request is notvalid.
7. Data gqueue indicates Send ertry to data
data to bhe received. QDLHEC.” fquele.
(i) 2. Fill user spaces with
9. Clear request not #4— the close connection
successful. PCEP=1 request and return.
is still active.

1. Anincoming call request is received by the communications support, which determines thereis an
application that has afilter satisfying this call request. The communications support uses the next
available PCEP=1 for this new connection. An entry is sent to the data queue.

2. The application has been waiting for its call to the QRCVDTAQ API to complete. It completes
indicating there is data to be received. The application calls the QOLRECV API.

3. Theinput buffer and descriptor arefilled for the incoming call request for PCEP=1, and the
QOLRECV AP returns.

4. The application looks at the operation which indicates an incoming call indication. The PCEP
reported by the communications support is 1. The application does not wish to accept the call, so
the user spaceisfilled in for aclose connection request and the golsend API. The application calls
the QRCVDTAQ API.

5. The close connection request is received and the golsend API returns to the application,
acknowledging the request.

6. The close connection request is validated and an error isfound. An entry is sent to the data queue.

7. The application's call to the QRCVDTAQ API return, with the incoming data entry. The
application callsthe QOLRECV API to receive the data.

8. Theinput buffer and descriptor are filled in with the unsuccessful close request, and the
QOLRECV API returns to the application.

9. The close connection request was not successful. PCEP=1 is still active.

Closing Connections

The following figures show how the application program closes a connection. The figures apply to both
incoming and outgoing connections.

The next two figuresillustrate that a close connection request never completely guarantees the connection
will be closed.

Figure 1-14. Example 1. Close Connection Request IsNot Valid

Lser-Defined
Application Program Communications Support

1. Connection is
gstablished as LICER
i, PCEP (1)

EOLSEMD
2. Send Cloge con- —— | 3. Receie close con-
nection regquest. (rtri nection request

— and return.

4. Llzer spacewvalue
isincorrect. Send

a. Data gueue indic ates entry 1o data
data to be received. @C'LHECIV quUele.

(rth) 6. Fill user space with
close connection

request and return.

7. Close request was
not successiul
LICEP (7, PCEP (1)
remains active.

1. A connection is established with the PCEP=1, UCEP=7.

2. The application calls the golsend API to close the connection. The application calls the
QRCVDTAQAPI.

3. The user-defined communications support receives the close connection request and returns to the
application, acknowledging the receipt of the request.

4. Thevauein the user spaceis not correct. An entry is sent to the data queue.

5. The application's call to the QRCVDTAQ API returns with the incoming data entry. The
application calls the QOLRECV API to receive the data.

6. The user-defined communications support fills the input user space with data for the close
connection request and determines the UCEP that the datais for by examining the PCEP that was
requested for the close connection.

7. The application's call to the QOLRECV API returns with unsuccessful return and reason codes for
the close connection response. This operation isfor UCEP 7. The connection UCEP=7, PCEP=1is
still active.

Figure 1-15. Example 2: Close Connection Request IsValid

|Iser-Defined
Application Prograrm Communications Support

1. Connection is

established as LICEP CLEAR REQIUEST
(7, PCEF (1) e
2. Send Cloge con- 3. Receive close con-
nection regquest. GIOLSEMND nection request CLEAR
—»| andretum CONFIRMATION

q& 4. Send clearrequest.*

G. Data gqueue indicates 8. Receiwe clear con-
data to he received. firmation ertry to

the data queue.
G OLRECY
—> . .
7. Fill user space with

(rin) close connection
7. Close request was confirmmation and
successful. LICER (1), returm.
FCEP (1) no longer
active.

1. A connection is established with the PCEP=1, UCEP=7.

2. The application calls the golsend API to close the connection. The application calls the
QRCVDTAQAPI.

3. The user-defined communi cations support receives the close connection request and returns to the

application, acknowledging the receipt of the request.

4. The close connection request is received and the golsend API returns to the application,
acknowledging the request. The close connection request is validated and a clear is sent.

5. Theclear confirmation is received for PCEP=1, UCEP=7. An incoming data entry is sent to the
data queue.

6. The application's call to the QRCVDTAQ API returns with the incoming data entry. The
application calls the QOLRECV API to receive the data.

7. The user-defined communications support fills the input user space with data for the close
connection confirmation and determines the UCEP that the datais for by examining the PCEP that
was requested for the close connection.

8. The application's call to the QOLRECV API returns with successful return and reason codes for the
close connection response. This operation isfor UCEP 7. The connection UCEP=7, PCEP=1isno
longer active.

Programming Considerations for LAN
Applications

User-defined communications over LANS use connectionless (unacknowledged) service. Unacknowledged
Information (Ul) frames are the only frames an application program can generate.

For a description of the frame formats for Ethernet Version 2, IEEE 802.3, |IEEE 802.5, wireless, and

FDDI, refer to the LAN, Frame-Relay and ATM Support@‘ book. To determine how the format and the
user buffer are specified, see User-Defined Communications Support APIs.

Operations

User-defined communications support defines many different operations. Not all operations are valid on all
datalinks. The operations which are valid for LAN links are:

« X'0000" and X'0001'. These operations together represent the send- and receive-data operations for
any of the LAN frames types.

Configuration

The service access point (SAP) that the application program usesto send and receive data must be
configured in the line description. The 04, 06, and AA SAPs are created if *SY SGEN is specified on the
CRTLINTRN, CRTLINETH, CRTLINWLS, or CRTLINDDI command. The 04 SAP is used by SNA, and
the 06 and AA SAPs are used by TCP/IP. An application can choose to use any SAP (including SAPs
defined by SNA or IEEE). The line description must be manually configured to include any other SAPs the
application uses. The SAPTY PE for each SAP used must be configured as*NONSNA to be used by
user-defined communications.

Although it is possible to use any SAP configurable on the i Series server, it is not recommended to use
SNA SAPs for user-defined communications, because this may restrict the use of SNA on your iSeries
server. In the same manner, using the same SAP as other well-known protocols, such as TCP/IP, may
restrict the use of these protocols or the application program on the i Series server.

Note: It isnot possible to run an SNA application and a user-defined communications application program
over the same SAP concurrently. It is possible to run a TCP/IP application and a user-defined
communications application over the same SAP concurrently, provided the inbound routing information is
unique among all the non-SNA applications sharing the network controller.

Inbound Routing Information

For an application program to receive datafrom a LAN, it must inform the communi cations support of how
to filter the inbound data and route it to the application. Thisis accomplished by a program call to the Set
Filter (QOLSETF) API. Thefieldsin the incoming frame that are used to route the data are DSAP, SSAP,
MAC address, and type.

The inbound routing information acts as afilter to allow the user-defined application to distinguish its data
from the rest of the data on the LAN. The more selective the inbound routing information is, the less chance
thereisthat the application will be processing unnecessary input requests. Also, more selective inbound
routing information allows multiple jobs running user-defined communications applications to share the
same SAP.

For example, if an application is using 92 SSAP and 92 DSAP but only talking to one remote system, it
may want to set a more selective filter which would include DSAP, SSAP, and the MAC address of the
remote system. Conversely, if an application accepts data on the 04 SAP from all systems sending data on
any SAP, then the application would set afilter for DSAP only, indicating that it will accept all data
arriving on the 04 SAP.

End-to-End Connectivity

Because user-defined communications on a LAN is connectionless, it is up to your application protocol to
define amethod to reach the remote systems it communicates with. There are several waysto do this. One
way isto have each system configured in a database file on the i Series server. Each system could have a
local name that the application program uses to correlate with the MAC address and routing information.
LANSs provide atechnique to broadcast, which can be used to retrieve this information as well. An example
of thisisthe Address Resolution Protocol (ARP) used by TCP/IP, which returns the MAC address and
routing information so that a system without that information can communicate with a new remote system.

Sending and Receiving Data

Maximum Frame Size

The user-defined communications support creates a data unit size which is always large enough to contain
the maximum frame size supported by any of the SAPs configured for non-SNA use,
(SAPTYPE(*NONSNA)). The data unit size is returned in the parameter list on the call to the QOLELINK
API. For Ethernet (802.3), token-ring, FDDI, and wireless LANS, the maximum frame size that the
application can specify is the maximum frame size allowed by the SAP that the frameis sent on. Thereis
no minimum frame size for the Ethernet 802.3, token-ring, FDDI, or wireless LANS.

Ethernet Version 2 does not define SAPs for the higher-layer protocols. Therefore, the maximum frame size
is not determined by the maximum frame size for the SAP that the frame is sent on. The maximum frame
size for Ethernet Version 2 is 1502 bytes. The first 2 bytes are for the type field, and the last 1500 bytes are
for user data. The minimum amount of datathat can be sent is 48 bytes. Thefirst 2 bytes are for the type
field, and the next 46 bytes are for user data. If the lineis configured to handle both Ethernet 802.3 and
Ethernet Version 2 data, the larger of the configured value or 1502 bytes is chosen and reported to the
application on the data unit size parameter returned from the QOLELINK API.

If your application program attempts to send data frames that are larger or smaller than those that are
supported, the output request completes with nonzero return and reason codes, and an error code is returned
to the application in the diagnostic information field.

Application programs access information that is contained in the line description through the Query Line
Description (QOLQLIND) API. It is best to call the QOLQLIND API after the link has been successfully
enabled because the information that the QOLQLIND API passes to the application is accurate for as long
asthelink is enabled. The application uses the information on the frame size for the SAP to send the correct
amount of data over the SAP.

Maximum Amount of Outstanding Data

Most often, the data arrives at a dightly faster rate than the application program can receiveit. The
communications support keeps dataintended for an application so that the application can receiveit.
However, thereisalimit to the amount of data that can be kept for the application to use later. The limit
helps to avoid one system from overrunning another system's resources. When this limit is reached, all new
incoming data frames for that application are discarded until the application picks up one third of the data
that was stored for the application. Because the data consists of unacknowledged information frames, the
higher-layer protocol within the application detects the loss of data, resends the data, or performs other
recovery actions.

Each time the data limit is exceeded, the communi cations support creates an error log entry and puts a
message in the QSY SOPR message queue, indicating that the unacknowledged service has temporarily
stopped receiving incoming frames.

Ethernet to Token-Ring Conversion and Routing

The IBM 8209 Ethernet to token-ring bridge provides additional connectivity options for the i Series server.
Seethe IBM 8209 LAN Bridge Customer Information book, SA21-9994, for more details.

Performance Considerations

The application program enables connectionless traffic to enter the i Series server system from the LAN. In
the call to the QOLSETF API, the DSAP field indicates the SAP which will be activated on the i Series
server. By activating traffic over a SAP, datais taken from the LAN and brought into the i Series server.
Similarly, deactivating traffic over an SAP causes traffic intended for that SAP to be left at the IOP level
rather than to be processed on the i Series server system.

To minimize host processing, the SAP or SAPs that the application uses should be deactivated as soon as
the application no longer wants to receive traffic for the SAP. If the link is disabled and no other
applications are using the SAP(s), they are deactivated automatically by the user-defined communications
support.

Protocols that use broadcast frames as a discovery technique could flood the network with messages and
affect performance on all the systems attached to the network.

Programming Considerations for X.25
Applications

The user-defined communications support interface to an X.25 network is at the packet level, whichisa
connection-oriented level. Y our application program is responsible for ensuring reliable end-to-end
connectivity. End-to-end connectivity means that the application program can initiate, receive, and accept
X.25 calls and handle network errors reported to the application, as well as send and receive data.

Y our application program has access to packets that flow over switched virtual circuits (SVCs) and
permanent virtual circuits (PVCs). The application can have SVC and PV C connections active
concurrently. You can configure up to 64 virtual circuits on an X.25 line description, depending on the

communications /O processor used. The X.25 Network Support@ book provides more information about
configuration limitations.

The Display Connection Status (DSPCNNSTS) command shows the virtual circuitsthat arein use by a
network device, and the state of each connection. This command also displays the active inbound routing
information that the application program uses to route calls.

X.25 Packet Types Supported

A packet isthe basic unit of information transmitted through an X.25 network. The following table lists the
X.25 packet types along with the type of service provided. Services for Switched Virtual Circuit (SVC) and
Permanent Virtual Circuit (PVC) connections are identified as well as services that are not accessible (N/A)
to an application program.

|Packet Type | Application Input or Access | SVC | PVC | N/A

Data Q,D bits of the general format identifier X X
(GFI)

Note: The modulus used is configured in
the line description. The open connection
regquest allows the user-defined
communications support to set the actual
window size used.

Interrupt 32 bytes of data X X

Note: On theiSeries server, the X.25
packet layer provides the confirmation of
the receipt of this packet. The call to the
golsend API does not return until the
interrupt is confirmed by the remote
system.

Reset request |Cause and diagnostic codes X X

Note: The application program provides
the confirmation of this packet.

Reset Cause and diagnostic codes

indication
Note: The application program provides
the confirmation of this packet.

Reset Note: User-defined communications

confirmation |support detects and reports reset
collisions to the application on the reset
confirmation.

Incoming Remote DTE, local virtual circuit, packet

Cdll and window sizes, up to 109 bytes of
additional facilities, up to 128 bytes of
bytes of call user data

Call Request [Remote DTE, local virtua circuit, packet
and window sizes, up to 109 bytes of
additional facilities, up to 128 bytes of
bytes of cal user data

Call Accept |Packet and window sizes, up to 109 bytes
of additional facilities

Call Negotiated packet and window sizes,

Connected |facilities

Clear request [Cause and diagnostic codes, facilities, up
to 128 bytes of clear user data

Clear Cause and diagnostic codes, facilities, up

indication |to 128 bytes of clear user data
Note: The X.25 packet layer support
provides the confirmation on this request.

Clear The X.25 packet layer support provides

confirmation |this support.

Receive The flow of RR and RNR packetsis

Ready (RR) |determined by the automatic flow control
field of Format I, specified in the open
connection request.

Receive Not |The flow of RR and RNR packetsis

Ready determined by the automatic flow control

(RNR) field of Format I, specified in the open
connection request.

Reject (REJ) |This packet is not necessarily available
on all networks and is not supported by
the iSeries server.

Restart These packets affect all virtual circuits on

Request, theline.

Indication,

and

Confirmation

Diagnostic |This packet is not necessarily available
on all networks and is not supported by
the iSeries server.

Registration |This packet is not necessarily available

Request and |on all networks and is not supported by

Confirmation

the i Series server.

Operations

User-defined communications support defines many different operations. The X'B00O' operation either
initiates an X.25 SV C call request, or arequest to open a PV C. By using this operation, an application
program initiates an open connection request. The X'B100' operation either initiates an X.25 SVC clear
request (or confirms the connection failure), or requests closing a PV C. By using this operation, an
application program initiates a close connection request. The application can use the X'BFO0' operation to
cause the SVC or PV C connection to be reset.

The open connection request, close connection request, and reset request (or response) operations are
two-step operations. See Synchronous and Asynchronous Operations for more information on programming

for two-step operations.

The X'B400' operation initiates an X.25 SV C call accept. This operation is known as a call accept
operation. The X'0000' operation initiates an X.25 Data packet for a SV C or PVC connection. This
operation is called a send data operation. The call accept and send data operations are one-step operations.
See Synchronous and Asynchronous Operations for more information on programming for one step

operations.

The application program does not request the other available X.25 operations. These X.25 operations are
inbound packets for responses from the asynchronous operations that are reported to the application in the
parameter list of the QOLRECV API. The X'B201' operation indicates an incoming X.25 SVC cal and is
known as the call indication operation. The X'B301' operation indicates that atemporary (reset) or
permanent (clear) connection failure has occurred. It is known as the connection failure indication
operation. Finally, the X'0000" operation indicates incoming data. It is known as the receive data operation.

Connections

User-defined communications support allows X.25 connections over both switched and permanent virtual
circuits. Y our application program can have one or many connections active at once. They can be either
SVC, PVC, or both. The Display Connection Status (DSPCNNSTS) command shows the state of the
connection, logical channel identifier, virtual circuit type, and other information about the call. The states of
the connection include activate pending, active, deactivate pending.

When the open connection request or call accept operations are not yet complete, the connection state is
activate pending. Once the open connection request or call accept operations are complete with return and
reason codes of zero, the connection state is active. When the close connection request is not yet compl ete,
or if the connection is cleared by the network, but a close connection request has not been issued by the
application program, the connection state is deactivate pending.

Notes:

1. The connection enters the active state when the call accept packet is sent on the network, whichis
independent of the application program receiving the results of the open connection request.
Likewise, a connection can become completely closed (deactivated, and no longer appears on the
DSPCNNSTS screen) independent of the application program receiving the results of the close
connection request. This closing occurs when the application confirms the connection failure.

2. A correctly encoded close connection request will always be successful. The only time a close
connection request is not successful is when the application program has coded the close
connection request incorrectly. See Using Connection Identifiers for more information.

Connection ldentifiers

To differentiate between connections, user-defined communications support and an application program
both use connection identifiers from the time the connection is started to the time the connection has
successfully ended.

User-defined communications support assigns an identifier for each connection. Thisidentifier is reported
back to your application program as the provider connection end point (PCEP). In the same manner, your
application program assigns an identifier for each connection and reports it to the communications support
as the user connection end point (UCEP). This exchange of identifiers allows both the communications
support and the application program to refer to a connection in a consistent manner. The UCEP and PCEP
are exchanged during the open connection request during the following operations:

« A PVCisopened.
« Anoutgoing call is requested.

« Thecall indication is received and the call accept is accepted.

User-defined communi cations support identifies a connection only in terms of PCEP and UCEP. For
example, the user-defined communications support passes information to an application program and
reports the UCEP to which the information pertains. In the same manner the application program initiates
requests for a connection identified by the PCEP.

User-defined communi cations support uses PCEPs over again as they become free. PCEPs become free
when the application program receives notification that the open connection request never completed
successfully, or the close connection request completed successfully. This means that PCEPs are not used
over again until the application calls the QOLRECV API, which returns either the open connection request
or the close connection request. Until the PCEP is freed, the connection cannot be reused.

User-defined communications support places no restrictions on the value of the UCEP, and does not verify
its uniqueness. Because user-defined communications passes al incoming data and connection failure
indications to the application program using the UCEP connection identifier, the application should ensure
uniqueness of each UCEP. See Using Connection Identifiers for information on how to reuse connection

identifiers.

Connection Information

In order to ensure reliable end-to-end connectivity, an application program must keep track of the control
information for each connection it is responsible for. Some of this control information is shown in the
following list.

« State of the connection (activating, active, deactivating, reset)

« PCEP for this connection

« SVC or PVC connection indicator

» Negotiated frame sizes, maximum data unit size

« Connection isno longer active indicator or state

« Other application specific information

The application program can use the UCEP as an index into the program's data structures, which keep track
of this control information.

Switched Virtual Circuit (SVC) Connectivity

Configuration

All the users of an X.25 line description share the SV Csthat are configured for that line description. These
users are SNA, asynchronous X.25, OSl, TCP/IP, and user-defined communications. Y ou should define the
line description with enough SV Cs to accommodate all of the users of the X.25 line.

Any SV Csdefined in the X.25 line description that are not in use by any controllers (including the network

controller) are available to an application program. The available SV Cs are distributed as they are requested
by the users of the X.25 line description.

See the X.25 Network Support@l book for more information on configuring X.25 line descriptions.

For user-defined communications, the application uses an SVC when it either initiates a call, or receives an
incoming call. The SVC isno longer in use when the application successfully initiates a clear request to the
SVC. Like PVCs, SVCsalow only one application program to have an active connection using the virtua
circuit at atime.

Inbound Routing Information

Before an application program can receive and accept an incoming call, it must first describe to the
user-defined communications support the X.25 calls that should be routed to the application. The
application does this by issuing a program call to the QOLSETF API, specifying the inbound routing
information in the filter.

The inbound routing information that an application program specifiesis the first byte of call user data
called the protocol 1D, or the protocol 1D combined with the calling DTE address. In addition, the
application specifies whether it will accept calls with fast select and reverse charging indicated. The
application program can either accept or reject any calls of which it receives indications. The advantage of
using filtersto allow the system to reject some calls (based on protocol 1D, calling DTE address, fast select,
and reverse charging indicated in the incoming call) is that the application is relieved of some of the callsit
would always reject.

Once the connection is active, data flows end-to-end between systems and does not need any other
technique to route it to the appropriate application.

End-to-End Connectivity

End-to-end connectivity is achieved when one system initiates a call and another accepts the call. When this
happens, a connection is established, and the state of the connection is active. It remains active until either
one of the application programs initiates a clear request, or the network (or system) clears the connection

due to an error condition.

Permanent Virtual Circuit (PVC) Connectivity

Configuration

SNA and asynchronous X.25 controllers use PV Cs on the X.25 line by configuring the controller
description to logically attach to the PV C. Thisis not true for users of the network controller description.
When aPVC isin use by an application program, the system will logically attach the network controller to
the PV C. This means that any PV C defined in the X.25 line description and not attached to any controller
(including the network controller) is available for use by any application that has alink enabled for the
network to which the line is attached.

Because the attaching of PV Csto applications is programmable, one job can have an open connection over
the PV C, end the connection, and then another job can open a different connection over the same PVC.
Like SVCs, PVCsalow only one application program at atime to have an active connection using the
virtua circuit.

Inbound Routing Information

By definition, the PV C does not require a call to set up a path from one system to another system. Asits
name suggests, this path always exists (permanent). Because there is no incoming call to route, the
application has no need to set afilter for the inbound routing information. Once the application has opened
the PVC, thereis no other information needed for the system to route packets on the PV C to the
application.

End-to-End Connectivity

The application is responsible for opening and closing PV C connections. To open a PV C, the application
uses the open connection request operation, just asit doesto initiate an X.25 SVC call. To close the PVC,
the application uses the close connection request just asit doesto clear the SV C call.

Both systems that want to communi cate end-to-end must first open the virtual circuit on the local system.
When the PV C is opened on the i Series server it is considered active and in use by the application. Thisis
true even if the corresponding remote system doesn't have the virtual circuit active. On the i Series server,
an open connection request always completes with return and reason codes of zero aslong asthe PVCis
defined in the line description and is not in use by another application. There is no way to detect whether
true end-to-end connectivity exists on the PVC.

If the virtual circuit is not active on both systems, and one system attempts to communicate with the other,
the virtual circuit on the system with the open PV C connection is reset. An application that supports X.25
resets, sees the reset arrive as aresult of the attempt to send data. In order to continue, the application
responds to the reset. An application that does not support X.25 resets sees a connection failure. The
application closes the PV C and opens the PV C again in order to continue to use the PV C.

Similarly, when a PV C connection is closed from one system, the other system sees areset (if reset is
supported by that application) or a connection failureif reset is not supported. If the application sees areset,
it must respond to the reset before communications can continue on that connection.

Sending and Receiving Data Packets

Data Sizes

Data units larger and smaller than the negotiated transmit packet size can be sent by an application
program. Each data unit will be segmented into the appropriate packet sizes by the i Series server.
Contiguous data larger than the negotiated packet size can also be sent. The datais divided into individual
packets and sent out with the more-data indicator on. The application program should request that the data
unit size be amultiple of the transmit and receive packet sizes configured in the line description. The
application program sets other important values that pertain to each connection. See X.25 SVC and PVC

Output Operations for information about these values.

The values your application supplies should be carefully determined and tailored to the needs of the
application. Similarly, your application uses the values returned from the system to ensure that the
application does not exceed negotiated limitations.

The application uses three values to determine how to fill the user-space output buffer. These values are:
« Dataunit size

o Maximum data unit assembly size

» Negotiated transmit packet size

The data unit size is the value that an application specifies when the link is enabled. The maximum data
unit assembly sizeisthetotal length of contiguous input data that is assembled by the i Series server before
passing it to the application. Contiguous data units have the more-data indicator set on in each descriptor
for al the data unitsin the sequence except the last data unit, which has the more-data indicator set off. The
application specifies the maximum data unit assembly size on the open connection request. The maximum
data unit assembly size should always be greater than the data unit size to make full use of the user spaces.
The negotiated transmit packet size is returned when the open connection request completes. The
application uses these values together to determine how to fill in the user space output buffer.

Note: If the maximum data unit assembly size is exceeded, the datais passed up to the
application with the more-data indicator on. If the connection is abnormally reset or
cleared, the application may not receive the rest of the contiguous data, which wasin
progress during the connection failure.

If the two applications remain without exceeding the maximum data unit assembly size
supported on the remote system, the system guarantees that the application receives the
complete, contiguous data packet sequence.

See Maximum Amount of Qutstanding Data for related information on incoming data limitations.

Interrupts

The interrupt is aspecia data packet. The X.25 network imposes the restriction that a DTE cannot have
more than one outstanding interrupt on any virtual call in each direction. An application program issues an
interrupt by calling the golsend API. The golsend API does not return to the application program until the
interrupt confirmation has been received. It isimportant to understand the interrupt confirmation procedures
of the remote DTE and its implications to the local system and application.

Flow Control

The iSeries server sends the Receive Ready (RR) and Receive Not Ready (RNR) packets on behalf of the
application program. The distribution of these packetsis based on the automatic flow control field in the

open connection request operation. The automatic flow control (RR/RNR) is sent to prevent one system
from overrunning another system with data.

When the automatic flow control value is exceeded for a connection because aremote system is sending
data at arate too fast for the local system, an RNR packet is sent on behalf of the application on that local
system. Once the application on the local system receives the data, an RR is sent to allow more data to be
received by the local system's communications support.

The automatic flow control value should be set high enough so that RR/RNR processing does not affect
performance on the virtua circuit, and low enough that the application can process the data fast enough. If
an application is coded properly, the RR and RNR processing is not noticed by the application, just as for
other system users of X.25.

To avoid situations where the virtual circuit is not operational because an RNR was sent, or to avoid
excessive amounts of RR and RNR processing, the application program should always attempt to receive
all the data from the communications support. An application that is not coded correctly can cause another
application to wait indefinitely for an RR to open the virtual circuit for communications. When the
applications are coded correctly, the RR and RNR packet sequences are not noticed by the applications.

Maximum Amount of Outstanding Data

The communications support sets aside a limited amount of data for the applicationsit is servicing. For
X.25, itis 128K for each connection. If the 128K limitation is met, an error log entry is created and the
connection is cleared (SV Cs) or reset (PVCs) by the system. Before this limit is reached, the i Series server
attempts to slow the incoming data traffic by issuing an RNR on behalf of the application. An RR is sent
after the application has received one-third of the amount of outstanding data.

Reset Support
When an application program initiates areset, it is also responsible for discarding any data that the

user-defined communications support has received. The user-defined communications support only
discards dataif the connection is closed.

X.25 Call Control

The X.25 support routes X.25 calls arriving to the i Series server primarily based on the protocol 1D field.
Thisfield isthe first byte of call-user datain the X.25 call packet. For more information on the X.25

support, see the X.25 Network Support@ book.

Performance Considerations

The X'0000' operation is completely synchronous. This meansthat control is not returned to the application
until all the data passed in the data units are sent and confirmed by the DCE. Some implications of this are:

« If the application sends data on a connection that has data flow turned off (the remote system sent
an RNR to the local iSeries server), a subsequent call to the golsend API with operation X'0000'
will not return until the remote system sends the RR to turn flow back on for the connection.

« When transmitting Interrupt packets, control is not returned to the application until the interrupt is
confirmed by the remote DTE. If the remote DTE is an i Series server, the interrupt is confirmed by
the iSeries server X.25 packet layer support. If the network is congested, the use of Interrupt
packets may cause a decrease in performance for the application.

In these situations, it may be appropriate to have one job for each connection (each virtual circuit).

Queue Considerations

An application program uses a data queue or user queue for communications between the application and
the communications support. The application should create the queue prior to the call to the QOLELINK

API. For more information on creating and using a queue, see the CL Proqramminq@ book. The link will
never be fully enabled if the queue does not exist. For example, in Figure 1-16, communicationsis no

longer available when the user-defined communications support detects that the data queue has been
deleted. The same istrue for user queues.

Figure 1-16. Using the Data Queue

COMMUNICATIONS
AP PLICATICON SUPPORT

(Link is enabled, application is
successtully using the link.)

Incoming data from
the netwaorl.

CALL Q0L (At call)

An atternpt is made to

send the incoming data
LSNDOTAL entry to the data queue.

Error:

data gueue
not found. -

The link using this
data queue will no longer
be usable.

Any subsequent CALL
6072200 Retum will return with

and Reason L odes return and reason codes
- indicating a severe
application error.

In addition to using a queue for communications between the application and the user-defined
communications support, the application can use the queue to provide communications with other
applications.

If multiple processes are using the same queue, the queue can be manipulated so that each process receives
gueue entries based on the unique key for each application. This allows the jobs to put many kinds of
entries on the queue. For example, one key value is used for communications between the application and
the system, and another key value is used for communications between the user-defined communications
applications and other applications. Key values can also serve as away to prioritize entries on the queue.

The content of the queue entries that the application defines and usesis not restricted by the user-defined
communications support. User-defined communications support never attempts to receive any entries from
the queue. It isthe responsibility of the application to receive the entries from the queue and perform the
appropriate actions for an entry based on its handle (or timer handle).

This means that it might be necessary for the application to clear the old messages from the queueif it has
been used. For example, if alink is disabled, all communications entries for that link (denoted by the
communications handle) prior to the disable complete entry are no longer valid.

Note: Timer support does not depend on the user-defined communications support; therefore, timer entries
are still valid.

The following example shows an incoming data entry that the application receivesis no longer valid
because the application made a request to disable the link.

Figure 1-17. Application Disablesthe Link

COMMUNICATIONS

AP PLICATION

SUPPORT

(Link is enabled, application is
successfully using the link.)

CALL QOLDOLIME

N

Incoming data.

N

Fetum from CIOLDLMN

.

The application will now
call QECYDTAC waiting
to receive the disahle
complete entry

The incoming data entry
will be recerved and
discarded by the
application

The application will now
call ARCWYDTAC (again)
and receive the disable
complete entry.

Incoming data entry
added to data gqueue
lncoming data is

discarded and disable
link is requested

Disable complete entry
added to data gueue

User Space Considerations

Y our application uses user space objects (*USRSPC) to hold the input and output buffers and descriptors.
TheiSeries server provides APIs you can use to manipulate the user spaces.

When you use the user-defined communications support, you create the user spaces, atotal of four, as part
of an enable link request (the QOLELINK API). For each link, there is an input buffer, input buffer
descriptor, output buffer, and output buffer descriptor. The buffers and descriptors are used to pass
information to and from your application program. The buffers are used to contain user data. The
descriptors are used to describe the data (length and other qualifiers). If the enable link request is not
successful (return and reason codes are nonzero), the user spaces are not created.

Figure 1-18. User Spaces

LIser-Defined Communications

Application
——— outpt | | ALt ——
Data Data Buffer| | Data Buffer Data
Descriptor Descriptor

Lser-Defined Communications
Support

The buffers are divided into equally sized, contiguous sections called data units. The output buffer contains
datato be sent on the network. The input buffer contains data received from the network. The size of each
dataunit, aswell asthe number of data units created, is returned from the QOLELINK APl when thelink is
enabled.

The buffer descriptors are divided into equally sized, contiguous sections called descriptor elements. Each
descriptor element describes the datain the corresponding data unit of the buffer. For example, descriptor
element 1 describes the datain data unit 1 of the buffer. The size of each descriptor element is 32 bytes.

For compl ete and specific information about the input/output buffers, descriptors, data units, and data
elements, see the sections in User-Defined Communications Support APIs describing the individual APIs.

Y our application provides the library and name of the user space object that is created. The descriptive text
for the object always contains the name of the job that is using these spaces. Finally, when thelink is
disabled (either explicitly or implicitly), these user spaces are deleted by the user-defined communications
support. See Disable Link API for more information on disabling the link.

The application reads from the input buffer and descriptor, and writes to the output buffer and descriptor.
Similarly, the user-defined communications support reads from the output buffer anddescriptor and writes
to the input buffer and descriptor. As soon asthe call to the qolsend API or the QOLRECV API is
complete, the application can access these user spaces.

If changes or deletions to the user spaces occur while they are in use by the user-defined communications

support, a severe application error is reported to the application, and communications over the link
associated with the user spacesis no longer possible.

Figure 1-19. Input/Output Operations

LIser-Defined Communicatons

Application B E—
. A
Application Application
writes data
to outpLt reads data
from input
LSEr Spaces.
LSEr Spaces.
v \d g
Data Data Buffer| |Data Buffer Data
Descriptor Descrptor
Data is read from Data is written to
LUSEr Spaces by LUSEr Spaces by

User-Defined Communications
Support

The user-defined communications support defines logical views for the user spaces. These views are
sometimes called formats. Thereis aformat for filters, sending and receiving LAN frames, and sending and
receiving X.25 packets. See Send Data APl and Receive Data API for details on these formats.

Y our application must set all the data fields required for the format. There are two types of byte fieldsin the
buffer and descriptors, character (CHAR) and binary (BIN). Binary implies that the valueisused as a
numeric value. Sometimes this might be a 1-byte numeric value; for example, 12 = X'0C'. If you write the
application in alanguage that is not capable of setting this type of binary field, the field should be declared
as character and set to X'0C'. The character type contains an EBCDIC value, printable or not printable. In
contrast, al parameter values are either character or 4-byte binary. See Programming Languages for help in
writing your application so that it can provide the expected input for the user-defined communications
support.

The communications support never changes the output buffer; therefore, your application is responsible for
initializing the buffer and descriptor for the next operation, if necessary. The datain the output buffer can
also be used to help determine why a particular operation is not successful.

For performance reasons, your application should attempt to fill the output buffer as completely as possible.

Finally, for security reasons, your application chooses the library the user space object will residein. The
library can be any system library, including QTEMP. The advantage (or disadvantage) of using QTEMP for
user space objectsisthat only the job which has enabled the links has access to the user spaces. Thisis
because a QTEMP library exists for each job on the system. If the user space objects are in any other
library, any job having authority to the library that the user spaces are in can access them.

Return Codes and Reason Codes

When control returns from a user-defined communications API to your application program, the status of
the operation is located in the reason code and return code output parameters for each API.

Return codes are 4-byte numbers that determine the recovery action to take. They are grouped into the
following categories:

o 00 -- Operation successful, no recovery needed

80 -- Irrecoverable error, need to disable link

81 -- lrrecoverable error, do not need to disable link

« 82 -- Recoverable error, enablelink failed

» 83-- Recoverable error, see recovery actions

Reason_codes are 4-byte numbers that determine what error occurred. They are grouped into the following
categories:

« 0000 -- No error

o 1xxx -- Parameter validation or format error

o 20xx -- Line, controller, or device description error

o 22xx -- Data queue error

o 24xx -- Buffer or buffer descriptor error

o 30xx -- Link state error

« 32xx -- Connection state error

o 34xx -- Timer state error

o 4xxx -- Communication error

o 8xxx -- Application error

« 9999 -- A condition in which an Authorized Program Analysis Report (APAR) may be submitted
Note: 'X' represents any decimal number. For example, 1xxx represents the range 1000 - 1999.

For complete and specific information about the reason codes and return codes, see the sectionsin
User-Defined Communications Support APIs describing the individual APIs.

Messages

The following messages are used to signal the success or failure of operations performed by the
user-defined communications APIs:

« Information

Message |D Error Message Text
CPI91FO| X.25 network error occurred.
CPI91F1 | ISDN network error occurred.

« Escape

Message D Error Message Text

CPF91FO E Internal system error.

CPFO1F1 E User-defined communications application error.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3

« Diagnostic

Message ID Error Message Text

CPD91F0 D Error detected in program & 1. Condition codeis & 2.
CPD91F1 D Unexpected error detected in program & 1. Condition codeis & 2.
CPD91F2 D User space &1 or &3 not accessible.

CPD91F3 D Datalimit exceeded. Some data not sent.

CPD91F4 D Error while accessing queue &1 in library & 2.
CPD91F5 D Error while accessing queue. Time & 1 canceled.
CPD91F6 D Error occurred on line &1 whilein use.

CPD91F7 D Recovery canceled for network interface &3 or line & 1.
CPD91F8 D Error while accessing queue &1 in library & 2.
CPD91F9 D Error while enabling line & 1.

Top | Communications APIs | APIs by category

Configuration and Queue Entries

« Configure user-defined communications support

« Set up the entries that user-defined communications support can send to the queue

Configuring User-Defined Communications Support

This section describes what needs to be configured before your application program can use the
user-defined communications APIs. Y ou can either use the system-supplied menus or the Control Language
(CL) commands to do this configuration. For more information on using queue APIs, see the Object APIs

in the Information Center.

Links
Links allow your application program to use a token-ring, Ethernet, FDDI, wireless, or X.25
communications line. A link is made up of the following communications objects:

« Token-ring, Ethernet, FDDI, wireless, or X.25 line description

« Network controller description

« Network device description of type * USRDFN

« Network interface description for ISDN (X.25 only)

Y ou need to configure the line description; user-defined communications support automatically configures
anetwork controller and a network device description of type * USRDFN when the link is enabled. If you
areusing X.25 over ISDN, the network interface description must also be configured. The network
interface, line, controller, and device descriptions are automatically varied on, if necessary.

Use the following commands to create or change line descriptions:
o CRTLINDDI -- Create Line Description (DDI)

o CHGLINDDI -- Change Line Description (DDI)

o CRTLINETH -- Create Line Description (Ethernet)

o CHGLINETH -- Change Line Description (Ethernet)

o CRTLINTRN -- Cresate Line Description (Token-Ring)
o CHGLINTRN -- Change Line Description (Token-Ring)

o CRTLINWLS -- Create Line Description (Wireless)

o CHGLINWLS-- Change Line Description (Wireless)
o CRTLINX25 -- Cresate Line Description (X.25)

o CHGLINX25 -- Change Line Description (X.25)

Use the following commands to create or change controller descriptions:
e CRTCTLNET -- Create Controller Description (Network)

o CHGCTLNET -- Change Controller Description (Network)

Use the following commands to create or change device descriptions:
o CRTDEVNET -- Create Device Description (Network)

o CHGDEVNET -- Change Device Description (Network)

Use the following commands to create or change network interface descriptions:
o« CRTNWIISDN -- Create Network Interface Description (ISDN)

o« CHGNWIISDN -- Change Network Interface Description (ISDN)

See the Communications Confiquration'@' book on the V5R1 Supplemental Manuals Web site for more
information on configuring communications.

Queue

User-defined communi cations support uses a queue to inform your application program of some action to
take or of an activity that is complete. Y ou must create the queue before the link is enabled.

The size of each queue entry must be large enough to accommodate the user-defined communications
support entries. See the following Queue Entries for more information on the entries that user-defined

communications support can send to the queue.

Use the Create Data Queue (CRTDTAQ) command to create your data queues. Use the QUSCRTUQ and
QUSDLTUQ APIsto create and delete your user queues.

Queue Entries

This section describes the entries user-defined communications support can send to the queue.

General Format

The length of each entry is always at |east 80 bytes. When using a keyed queue, however, each entry can be
as large as 336 bytes, depending on the size of the key value supplied to the user-defined communications
support.

Table 1-1 shows the general format of each user-defined communications support entry.

Table 1-1. Queue Entry General Format

Entry type Entry ID Char (2) Entry data Key CHAR(256)

Char (10) Char (68)
| Bytes 1-10 | 11-12 | 13-80 | 81-336
Entry type

This indicates the type of entry on the queue and will be * USRDFN for all user-defined communications
support entries.

Entry ID

This uniquely identifies each entry within an entry type. User-defined communications support has five
entries defined:

« Enable-complete entry (entry 1D ='00")

« Disable-complete entry (entry ID ='01")

o Permanent-link-failure entry (entry 1D ='02)
« Incoming-dataentry (entry ID ='03")

o Timer-expired entry (entry ID ='04")
Note: The entry type of *USRDFN and all associated entry |1Ds, either defined or undefined, are reserved

for user-defined communications support. Therefore, your application program should not define entries
using this entry type.

Entry data

This datais useful to your application program and varies according to the entry ID.

Key

When using a keyed queue, thisis the key value supplied to the user-defined communications support.

Enable-Complete Entry

The enable-complete entry is sent to the queue when the enable link operation is complete. Thisentry is
only sent after the Enable Link (QOLELINK) API returns to your application program with a successful
return and reason code.

Note: The QOLELINK API only initiates the enabling of the link. Y our application program must wait for
the enable-complete entry before attempting to perform input or output on the link.

Table 1-2 shows the format of the enable-complete entry.

Table 1-2. Enable-Complete Entry

*USRDFN '000 [Communications| Status Reserved Key
handle
| Bytes 1-10 | 11-12 | 13-22 | 23 | 24-80 | 81-336

Communications handle

The name of the link that is being enabled. Y our application program supplies this name when the
QOLELINK APl iscalled.

Status

This indicates the outcome of the enable link operation. A character value of zero indicates the enable link
operation was successful and I/O is now possible on thislink. A character value of one indicates the enable
link operation was not successful (the job log contains messages indicating the reason). The user-defined
communications support disables the link when the enable link operation does not compl ete successfully
and the disable-compl ete entry is not sent to the queue.

Key

The key value associated with the enable-complete entry when using a keyed queue. Y our application
program supplies this key value when the QOLELINK API is called. When using a non-keyed queue
(indicated by supplying a key length of zero to the QOLELINK API) thisfield is not present.

Disable-Complete Entry

The disable-compl ete entry is sent to the queue when alink is successfully disabled. Thisentry is always
the last entry sent by the user-defined communications support on this link and, therefore, provides away
for your application program to remove any enable-complete, incoming-data, or permanent-link-failure
entries previously sent to the queue.

Note: User-defined communications support does not associate timers with links.
Therefore, it ispossible for atimer-expired entry to be sent to the queue after thelink is
disabled. Y our user-defined communications application program is responsible for
handling this.

Table 1-3 shows the format of the disable-compl ete entry.

Table 1-3. Disable-Complete Entry

*USRDFN ‘01 Communications| Reserved Key
handle
| Bytes 1-10 | 11-12 | 13-22 | 23-80 | 81-336

Communications handle

The name of the link that has been disabled. Y our application program supplies this name when the
QOLELINK API iscalled to enable the link.

Key

The key value associated with the disable-complete entry, when using a keyed queue. Y our application
program supplies this key value when the QOLELINK API is called to enable the link. When using a
non-keyed queue (indicated by supplying akey length of zero to the QOLELINK API) thisfield is not
present.

Permanent-Link-Failure Entry

The permanent-link-failure entry is sent to the queue when error recovery is canceled on alink. You must
disable and then enabl e the link to recover.

Table 1-4 shows the format of the permanent-link-failure entry.

Table 1-4. Permanent-Link-Failure Entry

*USRDFN '02 Communications Reserved Key
handle
| Bytes 1-10 | 11-12 | 13-22 | 23-80 | 81-336

Communications handle

The name of the link on which the failure has occurred. Y our application program supplies this name when
the QOLELINK API iscalled to enable the link.

Key

The key value associated with the permanent-link-failure entry, when using a keyed queue. Y our
application program supplies this key value when the QOLELINK API is called to enable the link. When
using a non-keyed queue (indicated by supplying akey length of zero to the QOLELINK API) thisfieldis
not present.

Incoming-Data Entry

The incoming-data entry is sent to the queue when the user-defined communications support has data for
your application program to receive. Y our application program should call the Receive Data (QOLRECV)
API to pick up the data when this entry is received.

Note: Another incoming-data entry is not sent to the queue until your application program picks up al the
data from the user-defined communications support. The data available parameter on the call to the
QOLRECV API indicates that the receipt of datais not complete.

Table 1-5 shows the format of the incoming-data entry.

Table 1-5. Incoming-Data Entry

*USRDFN '03 Communications| Reserved Key
handle
| Bytes 1-10 | 11-12 | 13-22 | 23-80 | 81-336

Communications handle

The name of the link on which the data has come in. Y our application program supplies this name when the
QOLELINK API iscalled to enable the link.

Key
The key value associated with the incoming-data entry, when using a keyed queue. Y our application

program supplies this key value when the QOLELINK API is called to enable the link. When using a
non-keyed gueue (indicated by supplying a key length of zero to the QOLELINK API) thisfield is not
present.

Timer-Expired Entry

The timer-expired entry is sent to the queue when atimer, previously set by your application program, ends.
Table 1-6 shows the format of the timer-expired entry.

Table 1-6. Timer-Expired Entry

| *USRDFN | '04' | Timer handle | User data | Key
| Bytes1-10 | 11-12 | 1320 | 21-80 | 81-33%6

Timer handle

The name of the expired (ended) timer. Y our application program returns this name when the Set or Cancel
Timer (QOLTIMER) API is called to set the timer.

User data

The data associated with the expired timer. Y our application program supplies this data when the
QOLTIMER API iscalled to set the timer.

Key

The key value associated with the timer-expired entry, when using a keyed queue. Y our application
program supplies this key value when the QOLTIMER API is called to set the timer. When using a
non-keyed queue (indicated by supplying akey length of zero to the QOLTIMER API) thisfield is not
present.

Top | Communications APIs | APIs by category

Debugging of User-Defined Communications Applications

This section isintended to help you debug your user-defined communications applications. It contains information about:
« System services and tools
« Error codes reported to the application program and QSY SOPR operation
« Common error list

System Services and Tools

There are several tools on the i Series server you can use to debug your user-defined communications application. Some of the system
provided tools that are useful for developing user-defined communications applications include the following CL commands:

« Program Debug (STRDBG)
« Work with Job, Work with Communications Status (WRKJOB OPTION(* CMNSTS))
« Work with Job, Display Job Log (WRKJOB OPTION(* JOBLOG))
« Display Connection Status (DSPCNNSTYS)
« Display Inbound Routing Data (press F6 (Display inbound routing information) following the DSPCNNSTS command)
o Check Communications Trace (CHKCMNTRC)
« Delete Communications Trace (DLTCMNTRC)
« End Communications Trace (ENDCMNTRC)
o Print Communications Trace (PRTCMNTRC)
« Start Communications Trace (STRCMNTRC)
« Start System Service Tools (STRSST)
o Work with communications trace
o Work with error log
« Dump System Object (DMPSY SOBJ)

Program Debug

Program debug (STRDBG) allows you to trace the program and variables, set stops, change variables, and display variables. Y ou can
use this function to verify that the parameters are passed correctly.

Work with Communications Status

The Work with Job command, Work with Communications Status option, (WRKJOB OPTION(* CMNSTS)) shows the enabled links
and operation counts for each link. It also reports information such as the communications handle the last operation requested, and the
total input, output, and other operations requested. Thisinformation is shown for every link enabled by the job.

Display Job Log

The Work with Job command, selecting the Display job log option (WRKJOB OPTION(* JOBLOG)) alows you to view the messages
in the job log that help determine the exact cause of the problem.

Display Connection Status

The Display Connection Status (DSPCNNSTS) command shows information about the switched virtual circuits (SVCs) and permanent
virtual circuits (PVCs) that are in use by the application using the device description.

Note: The Display Line Description (DSPLIND) command also shows for each line, the SV Csthat are in use, available, or attached to
acontroller description. Thisis not true for PVCs.

Display Inbound Routing Information

Pressing F6 (Display inbound routing information) when the Display Connection Status display is shown (DSPCNNSTS command)
shows the results of the calls to the Set Filter (QOLSETF) API. It also helps to determine which device description has set afilter with
duplicate inbound routing information.

Work with Communications Trace

Using the communications trace function you can obtain information about a communications line. Y ou can access the communications
trace function through the following CL commands:

o Check Communications Trace (CHKCMNTRC)
« Delete Communications Trace (DLTCMNTRC)
« End Communications Trace (ENDCMNTRC)
o Print Communications Trace (PRTCMNTRC)
« Start Communications Trace (STRCMNTRC)

For more information on using the communications trace CL commands, see the Communications M anagement @ book.

Y ou can al'so access the communications trace function through the system service tools. Y ou can use this function by entering the Start
System Service Tools (STRSST) command and selecting the option to start a service tool.

Using the option to Work with communications trace shows data just as it appears to the network. If the application requests that data

be sent and the request does not appear in the communications trace, the request is rejected. The return and reason codes, and the error
code reported in the parameter list for the Send Data (QOLSEND) API indicates the reason the request was rej ected.

Work with Error Log

The error log utility is part of the system service tools. You can use it by entering the Start System Service Tools (STRSST) command
and selecting the option to start a service tool.

Some communications errors are reported by the system to the error log. A remote application that is communicating with a

user-defined communications application on the local system, could cause an entry to be generated in the error log if one of the
following conditions are met:

« Whenusing aLAN, datais not received by the application and exceeds internal threshold values (3 MB).

« When using an X.25 network, datais not received by the application and exceeds internal threshold values (128K B).

For both cases, the associated message in QSY SOPR identifies the error log that contains the error log entry. The error log entry
containsinformation only.

Dump System Object to View User Spaces

The Dump System Object (DMPSY SOBJ) command is used to inspect the user spaces after they are filled in by your application. The
following examples indicate what the user spaces look like for some of the operations.

User Spaceto Set a Filter to Route Inbound Data

This user spaceisfilled in to activate two X.25 filters which will route any X.25 call containing X'BB', or X'DD' in the first byte of call
user data (protocol ID byte).

Figure 1-1. User Spaceto Set a Filter to Route Incoming X.25 Calls

5738SS1 V2RIM) 910524 Os/ 400 DUWP 006625/ QGSECOFR/ QPADEV0001
12/21/90 12:42: 07 PAGE 1

DVPSYSOBJ PARAMETERS

0BJ- QUTBUFFER CONTEXT- USRDFNCVN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE
NAVE- OUTBUFFER
LI BRARY- USRDFNCVN
CREATI ON- 12/21/90 12: 40:
OMNER- QSECOFR
ATTRI BUTES- 0800
SPACE ATTRI BUTES-

000000 00000080 00000060
- OUTBUFFER *

000020 40404040 40404040
\ *

000040 00000000 00000000
(a *
SPACE-

000000 01000002 001001BB
Y t *

000020 00000000 00000000
*

LINES 000040 TO

PO NTERS-

NONE
O R DATA-
TEXT-

000000 DBD7CLCA C5ESFOFO
* QPADEVOOO1QSECOFR 006625
SERVI CE-

000000 40404040 40404040
l *

000020 40404040 40404040
V2RIMD0901221124004 *

000040 40404040 40404040
*

000060 40404040 40404040

000080 00000000 00000000
*

0000A0 00000000 00000000
*
END OF DUMP

* ok ok ok Kk

END OF L

03

1934D6E4
E0000000

0005004D

00000000
00000000

001FFF

FOF1D8E2
*

40404040
404040E5
40404040
40404040

00000000

* USRSPC

19 SUBTYPE-
04 SUBTYPE-
00002200

08 SUBTYPE-
00AO00AQ00 0000

40404040 40404040

00800000 00000000

34
01

01

40404040

00000000

00000000 00000000 00000000

STI

TYPE-
TYPE-
Sl ZE-
TYPE-
ADDRESS-
E3C2E4C6 C6C5D940
00000000 00002000
42000400 00000000
00000000 00000000
00000000 00000000
SAME AS ABOVE
C5C3D6C6 D9404040
40404040 40404040
F2DOF1D4 FOFOF9FO
40404040 40404040
40404040 40404040
00000000 00000000

N G

* ok ok ok Kk

User Spacefor X'B000' Operation, I nitiating an SVC Call

000001DD

00000000

FOFOF6F6

40F14040

F1F2F2F1

40404040

40404040

00000000

00000000

00000000

F2F5

40404040

FLF2F4F0

40404040

00000000

40400000

The user space below has been filled in to initiate an SV C call specifying the following:

« Default packet and window sizes

o D-hit (not selected)

« Reverse charging (not selected)

o Fast select (not selected)

« Closed user group (not selected)

« Other facilities (not selected)

« Onebyte of call user data, X'BB', which isthe protocol identifier

o X.25reset not supported by the user-defined communications application program

« 16KB isthe maximum amount of contiguous data to be received

« Automatic flow control value of 32

Figure 1-2. User Spaceto Send an SVC Call

5738SS1 V2RIM) 910524
12/21/90 12:47:42
DVPSYSOBJ PARAMETERS
0OBJ- QUTPUTBUF

Os/ 400 DUWP

PACE 1

CONTEXT- USRDFNCWN

00000000

00000000

40404040

FOF44040

40404040

00000000

00000000

006625/ QGSECOFR/ QPADEV0001

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- OUTPUTBUF TYPE- 19 SUBTYPE- 34
LI BRARY- USRDFNCIWN TYPE- 04 SUBTYPE- 01
CREATI ON- 12/21/90 12:36:28 S| ZE- 00001200

ONNER- QSECOFR TYPE- 08 SUBTYPE- 01
ATTRI BUTES- 0800 ADDRESS- 00A00100 0000

SPACE ATTRI BUTES-

000000 00000080 00000060 1934D6E4 E3D7EAE3 C2EAC640 40404040 40404040 40404040 *
- OUTPUTBUF *

000020 40404040 40404040 EO000000 00000000 00001000 00800000 00000000 00000000 *
\ *
000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000 *
(a *
SPACE-

000000 02000000 FFFFFFFF FFFFFFFF 00000000 00000008 40100001 00000000 00000000 *

*

000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *

LI NES 000040 TO 0000BF SAME AS ABOVE
000000 00000000 00000000 00000000 00000000 00000000 00000001 BBOOOOOO 00000000 *
Y *
0000EO0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *

LINES 000100 TO 0001BF SAME AS ABOVE
0001C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00004000 *

0001E0 00200000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *
000200 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *

LI NES 000220 TO 000FFF SAME AS ABOVE
PO NTERS-

000000 D8D7C1C4 C5ES5FOF0 FOF2DBE2 C5C3D6C6 D9404040 FOFOF6F6 F2F7
* QPADEVO002QSECOFR 006627 *
SERVI CE-

000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 *
1 *

000020 40404040 40404040 404040E5 F2D9F1D4 FOFOF9FO0 F1F2F2F1 F1F2F3F6 F2F84040 *
V2R1M)0901221123628 *

000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 ~*

*

000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 *
000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000 *

0000A0 00000000 00000000 *

*

END OF DUMP
*# x5 %+ END OF LI STI NG * * * %

User Space Containing an Incoming X.25 Call, Operation X'B201'

This user space shows the following:
« Thecall isusing SVC 005

« Both transmit and receive packet sizes are 128
« Both transmit and receive window sizesare 7
« Thecaling DTE address is 40100000

o Thecaled DTE addressis 40200000

« No other facilities are requested

« Onebyte of call user data, X'BB', which isthe protocol identifier

The application received this call because it had set afilter to indicate to the system that it should route incoming X.25 callsthat have
the first byte of call user data (the protocol identifier) equal to X'BB' to the application.

Figure 1-3. User Space Containing an Incoming X.25 Call

5763SS1 V3RIM) 940909 Os/ 400 DUwP 023099/ QSYSOPR/ QPADEV0014 03/ 07/ 94
11:57:24 PAGE 1

DMPSYSOBJ PARAMETERS

OBJ- | NBUFFER CONTEXT- USRDFNCWN

TYPE- *ALL SUBTYPE-*ALL

OBJECT TYPE- SPACE * USRSPC

NAME- | NBUFFER TYPE- 19 SUBTYPE- 34
LI BRARY- USRDFNCIWN TYPE- 04 SUBTYPE- 01
CREATI ON- 03/07/94 11:53:15 Sl ZE- 0000002200

ONNER- QSYSOPR TYPE- 08 SUBTYPE- 01
ATTRI BUTES- 0800 ADDRESS- 000001DE7AQ0 0000

SPACE ATTRI BUTES-

000000 OOFFFFO0 00000060 1934C9D5 C2E4C6C6 C5D94040 40404040 40404040 40404040 *
- I NBUFFER *

000020 40404040 40404040 EO0000000 00000000 00002000 00810000 00000000 00000000 *
\ a *

000040 00000000 00000000 00D601DE 73000400 00000000 00000000 00000000 00000000 *
O£ *
SPACE-

000000 00000005 00800007 00800007 00000000 00000008 40100000 00000000 00000000 *

*

000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *

LI NES 000040 TO 0000BF SAME AS ABOVE
0000C0O 00000000 00000000 00000000 00000000 00000000 00000001 BBOOOOOO 00000000 *

0000EO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *

LI NES 000100 TO 00013F SAME AS ABOVE
000140 00000000 00000000 00000000 00000000 00000000 00000000 08402000 00000000 *

000160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *

LI NES 000180 TO 001FFF SAME AS ABOVE
PO NTERS-
NONE
O R DATA-
TEXT-
000000 D8D7C1C4 C5ESFOF0 F1F4DBE2 E8E2DGD7 D9404040 FOF2F3F0 F9F9
* QPADEV0014QSYSOPR 023099 *
SERVI CE-
000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 ~*
l *
000020 40404040 40404040 404040E5 F3D9F1D4 FOFOF9F4 FOF3FOF7 F1F1F5F3 F1F54040 *
V3R1IM)0940307115315 *
000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 *

*

000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 *

*

000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000 *

*

0000A0 00000000 00000000 *

*

USAGE-
000000 DBE2ESE2 D6D7DO40 4040D9C3 C8CLE2F3 F2FO
*QSYSOPR RCHAS320 *
END OF DUMP
* % xxx END OF LI STI NG * * * **

User Spaceto Accept an Incoming X.25 Call, Operation X'B400'

This user space was filled in to accept the incoming call, request default packet and window sizes, and no other additional facilities. The
amaximum amount of contiguous datais set at 16KB and the automatic flow control is set at 32.

Figure 1-4. User Spaceto Accept an Incoming X.25 Call

5738SS1 V2RIM) 910524 Os/ 400 DUwP 006625/ QSECOFR/ QPADEV0001
12/21/90 12:48:06 PAGE 1

DVPSYSOBJ PARAMETERS

0OBJ- QUTBUFFER CONTEXT- USRDFNCVN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE * USRSPC

NAME- OUTBUFFER TYPE- 19 SUBTYPE- 34
LI BRARY- USRDFNCIVN TYPE- 04 SUBTYPE- 01
CREATI ON- 12/21/90 12:40: 03 Sl ZE- 00002200

ONNER- QSECOFR TYPE- 08 SUBTYPE- 01

ATTRI BUTES- 0800 ADDRESS- 00A00A00 0000
SPACE ATTRI BUTES-

000000 00000080 00000060 1934D6E4 E3C2EACS CBCS5DO40 40404040 40404040 40404040 *
- OUTBUFFER *

000020 40404040 40404040 E0000000 00000000 00002000 00800000 00000000 00000000 *
\ *

000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000 *
(a *
SPACE-

000000 00000000 FFFFFFFF FFFFFFFF 00000000 00000000 00000000 00000000 00000000 *

000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *
*

LINES 000040 TO O001BF SAMVE AS ABOVE

0001CO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00004000 *
*

0001E0 00200000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *
*

000200 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *

LINES 000220 TO OO1FFF SAMVE AS ABOVE

POl NTERS-

NONE
O R DATA-
TEXT-

000000 DBD7ClC4 CSESFOFO0 FOFLDBE2 C5C3D6CS D9404040 FOFOF6F6 F2F5
* QPADEVOOO1QSECOFR 006625 *
SERVI CE-

000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 *
1 *

000020 40404040 40404040 404040E5 F2DOF1D4 FOFOFOFO F1F2F2F1 F1F2F4FO0 FOF44040 *
V2RLMD0901221124004 *

000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 *

000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 *
*

000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000 *
*

0000A0 00000000 00000000 *
*
END OF DUMP

* ok ok ok *

END OF LI STI NG * * * * x

User Spacesfor Sending Data, Operation X'0000'

Two user spaces are shown below. The first is the output buffer and the second is the output buffer descriptor.

The user spaces below are filled in to send three data units of 512 bytes each. The first two data units have the more data indicator
turned on, indicating that all the data units are contiguous.

Note: Thislink was enabled, specifying a data unit size of 512 bytes.

Figure 1-5. User Space (Buffer) to Send Three Data Units

5738SS1 V2RIM) 910524

12/21/90 12:55:19 PAGE
DVPSYSOBJ PARAMETERS
0OBJ- QUTPUTBUF
OBJTYPE- *USRSPC
OBJECT TYPE- SPACE
NAME- QUTPUTBUF
LI BRARY- USRDFNCWN
CREATI ON- 12/21/90 12: 36:
ONNER- QSECOFR
ATTRI BUTES- 0800
SPACE ATTRI BUTES-
000000 00000080 00000060
- OUTPUTBUF *
000020 40404040 40404040
\ *
000040 00000000 00000000
(a *
SPACE-
000000 FOF10000 00000000
*
000020 00000000 00000000

*

LI NES 000040 TO

Os/ 400 DUWP 006625/ QGSECOFR/ QPADEV0001
1
CONTEXT- USRDFNCVN
* USRSPC
TYPE- 19 SUBTYPE- 34
TYPE- 04 SUBTYPE- 01
28 Sl ZE- 00001200
TYPE- 08 SUBTYPE- 01
ADDRESS- 00A00100 0000

1934D6E4 E3D7E4E3 C2EAC640 40404040 40404040 40404040 *

E0000000 00000000 00001000 00800000 00000000 00000000 *

0005004D 42000400 00000000 00000000 00000000 00000000 *

00000000 00000000 00000000 00000000 00000000 00000000 *01

00000000 00000000 00000000 00000000 00000000 00000000 *

0001FF SAME AS ABOVE

000200 FOF20000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
*

000220 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
*

LINES 000240 TO 0003FF SAME AS ABOVE

000400 FOF30000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
*

000420 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
*

LINES 000440 TO O0OFFF SAME AS ABOVE

PO NTERS-

NONE
O R DATA-
TEXT-

000000 DBD7CLCA CSE5FOF0 FOF2DS8E2 C5C3D6C6 D9404040 FOFOFG6F6 F2F7
* QPADEVOO02QSECOFR 006627 *
SERVI CE-

000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040
l *

000020 40404040 40404040 404040E5 F2DOF1D4 FOFOF9FO0 F1F2F2F1 F1F2F3F6 F2F84040
V2R1M)0901221123628 *

000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
*

000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000

000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000
*

0000A0 00000000 00000000
*
END OF DUMP

** % %% END OF LI STI NG * * *

Figure 1-6. User Space (Descriptor Element) to Describe the Three Data Units
5738SS1 V2RIMD 910524 0S/ 400 DUMP 006625/ QGSECOFR/ QPADEV0001
12/21/90 12:55:58 PAGE 1
DMPSYSOBJ PARAMETERS
0BJ- OUTPUTBUFD CONTEXT- USRDFNCMN
OBJTYPE- *USRSPC
OBJECT TYPE- SPACE * USRSPC
NANE- QUTPUTBUFD TYPE- 19 SUBTYPE- 34
LI BRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01
CREATI ON- 12/21/90 12: 36: 27 Sl ZE- 00000400
OWNER- QSECOFR TYPE- 08 SUBTYPE- 01
ATTRI BUTES- 0800 ADDRESS- 009FFEO0 0000

SPACE ATTRI BUTES-

000000 00000080 00000060 1934D6E4 E3D7EAE3 C2EAC6CA 40404040 40404040 40404040
- OUTPUTBUFD *

000020 40404040 40404040 EO000000 00000000 00000200 00800000 00000000 00000000
\ *
000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000
(a *
SPACE-

000000 02000100 00000000 00000000 00000000 00000000 00000000 00000000 00000000

*

000020 02000100 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000040 02000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

LI NES 000080 TO 0001FF SAME AS ABOVE
PO NTERS-

000000 D8D7C1C4 CS5ES5FOF0 FOF2DBE2 C5C3D6C6 D9404040 FOFOF6F6 F2F7
* QPADEVO002QSECOFR 006627 *
SERVI CE-

000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040
1 *

000020 40404040 40404040 404040E5 F2D9F1D4 FOFOF9F0 F1F2F2F1 F1F2F3F6 F2F74040
V2R1M)0901221123627 *

000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040

*

000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000
000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000
0000A0 00000000 00000000

*

END CF DUWP

*02

*03

*xxxx END OF LI STI NG * * * *

User Spacesfor Receiving Data, Operation X'0001'
Two user spaces are shown below. Thefirst is the input buffer and the second is the input buffer descriptor.

The user spaces below are filled in showing that 2 data units were received. The first data unit has the more data indicator turned on in
the buffer descriptor for the data unit. This means that the X.25 more indicator was turned on in all the X.25 packets that this data unit
contains. The second data unit does not have the more data indicator turned on, indicating that the last X.25 packet in the data unit had
the X.25 more indicator turned off. The first and second data unit are considered to be logically contiguous to the application program.

Note: Thislink was enabled specifying a data unit size of 1024 bytes. The sending system sent the data in data unit sizes of 512 bytes
and they were combined into the 1024 byte data unit size by the local system. The data unit size is not negotiated end-to-end, neither is
the maximum amount of contiguous data or the automatic flow control. Because the values are important, each application should be
aware of what the other application has specified for each value. Refer to Sending and Receiving Data Packets for more information.

Figure 1-7. User Space (Buffer) Containing the Three Data Units

5738SS1 V2RIM) 910524 Os/ 400 DUWP 006625/ QSECOFR/ QPADEV0001
12/21/90 12:59: 33 PAGE 1

DVPSYSOBJ PARAMETERS

0OBJ- | NBUFFER CONTEXT- USRDFNCVN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE * USRSPC

NAME- | NBUFFER TYPE- 19 SUBTYPE- 34
LI BRARY- USRDFNCWN TYPE- 04 SUBTYPE- 01
CREATI ON- 12/21/90 12:40:03 Sl ZE- 00002200

ONNER- QSECOFR TYPE- 08 SUBTYPE- 01
ATTRI BUTES- 0800 ADDRESS- 00A00400 0000

SPACE ATTRI BUTES-

000000 00000080 00000060 1934C9D5 C2E4C6C6 C5D94040 40404040 40404040 40404040 *
- | NBUFFER *

000020 40404040 40404040 EO000000 00000000 00002000 00800000 00000000 00000000 *
\ *
000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000 *
(a *
SPACE-

000000 FOF10000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *01

*

000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *

LI NES 000040 TO 0001FF SAME AS ABOVE
000200 FOF20000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *02

000220 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *

LI NES 000240 TO 0003FF SAME AS ABOVE
000400 FOF30000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *03

000420 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *

LI NES 000440 TO 001FFF SAME AS ABOVE
PO NTERS-

000000 D8D7C1C4 C5ESFOF0 FOF1DBE2 C5C3D6C6 D9404040 FOFOF6F6 F2F5
* QPADEVO0O01QSECOFR 006625 *
SERVI CE-

000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 *
1 *
000020 40404040 40404040 404040E5 F2DOF1D4 FOFOF9F0 F1F2F2F1 F1F2FAFO FOF34040 *
V2R1M)0901221124003 *

000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 *

*

000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 *
000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00OOO0O00 *
0000A0 00000000 00000000 *

*

END OF DUMP
* % xxx END OF LI STI NG * * * **

Figure 1-8. User Space (Descriptor Element) Describing the Three Data Units

5738SS1 V2RIM) 910524 0s/ 400 DUWP 006625/ QGSECOFR/ QPADEV0001

12/21/90 12:59: 41 PAGE 1
DVPSYSOBJ PARAMETERS
OBJ- | NBUFFERD CONTEXT- USRDFNCWN
OBJTYPE- *USRSPC
OBJECT TYPE- SPACE * USRSPC
NANE- | NBUFFERD TYPE- 19 SUBTYPE- 34
LI BRARY- USRDFNCWN TYPE- 04 SUBTYPE- 01
CREATION- 12/21/90 12:40: 03 Sl ZE- 00000400
OWKER- QSECOFR TYPE- 08 SUBTYPE- 01
ATTRI BUTES- 0800 ADDRESS- 00A00200 0000
SPACE ATTRI BUTES-

000000 00000080 00000060 1934COD5 C2E4C6C6 CSDICA40 40404040 40404040 40404040 *
- I NBUFFERD *

000020 40404040 40404040 E0000000 00000000 00000200 00800000 00000000 00000000
\ *

000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000
(a *
SPACE-

000000 04000100 00000000 00000000 00000000 00000000 00000000 00000000 00000000
*

000020 02000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
*

000040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
*

LINES 000060 TO 0001FF SAME AS ABOVE

PO NTERS-

NONE
O R DATA-
TEXT-

000000 DBD7ClCA CSE5FOF0 FOF1DBE2 C5C3D6C6 — D9404040 FOFOF6F6 F2F5
* QPADEVOOO1QSECOFR 006625 *
SERVI CE-

000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040
l *

000020 40404040 40404040 404040E5 F2DOF1D4 FOFOFOF0 FLF2F2F1 F1F2F4F0 FOF34040
V2RIMD0901221124003 *

000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
*

000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000

000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000
*

0000A0 00000000 00000000
*
END OF DUMP

***xxx END OF LI STI NG * * * **

User Spaceto Clear a Connection or Call, Operation X'B100'

This user space was filled in to end an SV C connection or clear an incoming call. No facilities or clear user data are requested with this,
but cause and diagnostic codes are specified (these are not SO or SNA codes).

Figure 1-9. User Spaceto Send an SVC Clear

5738SS1 V2RIM) 910524 0s/ 400 DUWP 006625/ QSECOFR/ QPADEV0001
12/ 21/ 90 13:14:48 PAGE 1
DVPSYSOBJ PARAMETERS
OBJ- OQUTBUFFER CONTEXT- USRDFNCVN
OBJTYPE- *USRSPC
OBJECT TYPE- SPACE *USRSPC
NAME- OUTBUFFER TYPE- 19 SUBTYPE- 34
LI BRARY- USRDFNCIWN TYPE- 04 SUBTYPE- 01
CREATI ON- 12/21/90 12:40:03 Sl ZE- 00002200
ONNER- QSECOFR TYPE- 08 SUBTYPE- 01
ATTRI BUTES- 0800 ADDRESS- 00AO00AO0 0000
SPACE ATTRI BUTES-

000000 00000080 00000060 1934D6E4 E3C2EACG C6C5D940 40404040 40404040 40404040
- OUTBUFFER *

000020 40404040 40404040 EO000000 00000000 00002000 00800000 00000000 00000000
\ *

000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000
(a *
SPACE-

000000 OOOOBEBE 00000000 00000000 00000000 00000000 00000000 00000000 00000000

*

000020

*

00000000 00000000

00000000 00000000

00000000 00000000 00000000 00000000

LI NES 000040 TO 001FFF SAME AS ABOVE
PO NTERS-

TEXT-
000000 D8D7C1C4 C5ES5FOF0 FOF1DBE2 C5C3D6C6 D9404040 FOFOF6F6 F2F5
* QPADEVO001QSECOFR 006625 *
SERVI CE-

000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 *
1 *

000020 40404040 40404040 404040E5 F2D9OF1D4 FOFOF9F0 F1F2F2F1 F1F2FAFO FOF44040 *
V2R1M)0901221124004 *

000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 ~

*

000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 *

*

000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000 *

*

0000A0 00000000 00000000 *

*

END OF DUMP
*# x5 %+ END OF LI STI NG * * * %

Error Codes

The system and user-defined communications support reports important information that is useful for determining recovery actions
when an error occurs. Thisinformation isreferred to as error codes that are reported either to the job log or to the QSY SOPR message
queue. For acomplete list of the messages that are signaled by the user-defined communications API's, see M essages.

In some cases error codes are reported to your application in the error specific parameter. The following sections list the valid error
codes. Some of the error codes represent actual coding errors, others only report additional information. For information about the error
codes for the individual user-defined communications APIs, see User-Defined Communications Support APIs.

Local Area Network (LAN) Error Codes

Figure 1-10 shows the valid hexadecimal codes your application can receive as aresult of a call to the QOLSEND API using operation

code X'0000'. The codes indicate that the data was never sent on the line. Associated with these error codes is a message in QSY SOPR,
indicating the device description that caused the error, and the error code. After receiving the error code, the link will still be enabled
and usable.

These error codes indicate to your application that a coding error was made and should be corrected.

Figure 1-10. Error Codes Received While Sending Data over LAN

| Error Code Description | Cause
3300 2A55 Routing length not valid Routing length is not valid, or
length does not equal lengthin
routing field.
3300 2A5D Maximum frame size limit Length of datais greater than
exceeded maximum frame size supported
by the source SAP
5300 2A7B Access Control not valid Access Control specified is not
supported
3300 2AA9 SAP address not valid SAP addressis not configured in
the line description
3300 2AA9 SAP address not valid SAP addressis not configured in
the line description
3300 2AD4 Datalength too small (Ethernet |Data must be at least 48 bytes
Version 2 only) long (46 bytes of data, plus 2
bytes for the Ethernet type field)
3300 2AD5 Ethernet typefield isnot valid |Ethernet type field (first two
(Ethernet Version 2 only) bytes of data)

X.25 Error Codes

Figure 1-11 shows the valid error codes your application can receive as aresult of
« A cal to the QOLSEND API with operation X'B400' to accept an SVC call

« A call to the Receive Data (QOLRECV) API which returns the results of the open connection request operation, X'B101'

« The connection failure indication, reported by operation X'B301'

These error codes indicate to your application that a coding error was made, or afailure condition occurred.

Figure 1-11. Error Codes Reported on X'B001', X'B301', and X'B400" Operations

| Error Code Description | Cause

1200 3122 Outgoing channel not available |Thelogical channel isstill
active and in the process of

being deactivated

3200 3050 Restart in progress Temporary condition; retry
operation

3200 3172 Outgoing channel not available |[Temporary condition; retry
operation

3200 3368 Remote address length not valid |Remote address length not
supported by the network

3200 3384 Facility field error A facility was encoded
incorrectly or a duplicate facility
was encoded

3200 3388 Facility field too long The total length of the facilities,

which includes user-specified
facilities, the NUI facility from
the line description, and system
generated facilities, exceeded
X.25 limits (109 bytes)

3200 338C Response restricted by fast User datais not allowed with
select restriction
3200 33%4 User data not allowed User datais not allowed on the
call accept if fast select was not
requested.

3200 33CC Call user datalength not valid | Thelength of call user datais
greater than 16 and fast select is
not selected.

4200 3210 Reset request transmitted The virtua circuit was reset by
the local system. Refer to cause
and diagnostic codes to
determine recovery.

4200 3220 Clear request transmitted The virtua circuit was cleared
by the local system. Refer to
cause and diagnostic codes to
determine recovery.

4200 3222 Clear request transmitted The virtua circuit was cleared
by the local system because
there was a problem with the
packet sizein the call accept.
Thisiseither aconfiguration
problem or a network problem.
Verify that the default packet
sizein the line description is
correct.

4200 3224 Clear reguest transmitted The virtua circuit was cleared
by the local system because
there was a problem with the
window sizein the call accept.
Thisis either a configuration
problem or a network problem.
Verify that the default window
sizein theline descriptionis
correct.

4200 3230 Restart request transmitted The virtua circuit was cleared
by the local system. Refer to
cause and diagnostic codes for
more information.

|4200 3280 Time-out on call Call timed out

4600 3134 Clear indication wasreceived | Thevirtua circuit was cleared
by either the remote system or
the network. Refer to cause and
diagnostic codes for more
information.

4600 3138 Restart indication received Temporary condition; refer to
the cause and diagnostic codes
reported to correct the problem,
then retry the operation

Figure 1-12 shows the valid error codes your application can receive as aresult of acall to the QOLRECV API with an operation code
returned as X'B101".

These error codes indicate to your application that the connection was cleared or reset for the following reasons.

Figure 1-12. Error Codes Reported on the X'B101' Operation

| Error Code Description Cause

3200 3388 Facility field too long The total length of the facilities,
which includes user-specified
facilities, the NUI facility from
the line description, and system
generated facilities, exceeded
X.25 limits (109 bytes)

3200 3394 User data not allowed User datais not allowed when
fast select is not selected.

3200 33CC Call user datalength not valid | Thelength of call user datais
greater than 16 and fast select is
not selected.

4200 3240 Time-out on reset The clear request resulted in an
X.25 reset, which timed out

4200 3284 Time-out on clear The remote system did not
respond to the CLEAR within
the time-out value

4600 3134 Clear indication was received Thevirtual circuit was cleared
by either the remote system or
the network. Refer to cause and
diagnostic codes for more
information.

Figure 1-13 shows the valid error codes your application can receive as aresult of acall to the QOLRECV API, returning the operation
code, X'BFO1".

These error codes indicate to your application that the connection was cleared or reset for the following reasons.

Figure 1-13. Error Codes Reported on the X'BF01' Operation

| Error Code | Description | Cause

3200 3050

Network Restart in progress

Temporary condition;
connection is no longer active.

3200 3A0C

Close pending

The virtua circuit is being
closed.

3200 3A0D

Reset pending

Thevirtua circuitisin the
process of being reset by either
the remote system or the
network.

4200 3210

Reset packet transmitted

A Reset packet was transmitted
from the local system.

4200 3240

Time-out on reset

The clear request resulted in an
X.25 reset, which timed out

4600 3130

Reset indication was received

Thevirtua circuit received a
reset by either the remote system
or the network. Refer to cause
and diagnostic codes for more
information.

4600 3134

Clear indication was received

The virtua circuit was cleared
by either the remote system or
the network. Refer to cause and
diagnostic codes for more
information.

Figure 1-14 shows the valid error codes your application can receive as aresult of acall to the QOLSEND API with an operation code

returned as X'0000'.

These error codes indicate to your application that the connection was cleared or reset for the following reasons.

Figure 1-14. Error Codes Resulting from a X'0000' Operation

| Error Code

Description

| Cause

3200 3050

Network restart in progress

Temporary condition;
connection is no longer active.

3200 336A

Q/M bit sequence not valid

If the datais qualified, the Q bit
must be set for all data units.

3200 33C8

Data length not valid

The length of the packet is not
supported for this virtual circuit.

3200 3A0C

Close pending

The virtua circuit isbeing
closed.

3200 3A0D

Reset pending

The virtua circuit isin the
process of being reset by either
the remote system or the
network.

4200 3284

Interrupt timed out

Thelocal DTE sent an interrupt
packet. The responseto this
packet was not received within
the time-out period, and the
connection has been reset by the
i Series server.

4600 3130

Reset indication was received

Thevirtua circuit received a
reset by either the remote system
or the network. Refer to cause
and diagnostic codes for more
information.

4600 3134

Clear indication was received

The virtua circuit was cleared
by either the remote system or
the network. Refer to cause and
diagnostic codes for more

information.

Common Errors and Messages

This section shows some of the common errors that you or your application programmer may encounter. Some of these errors are
detected by the APIs and reported to the application by the unsuccessful return and reason codes returned on each API. Other errors are
program design errors, that your application programmer must detect and correct. The errors are listed by category:
Parameter Errors

« Switching use of connection identifiers (PCEP and UCEP)

« Switching use of timer handles

« Not encoding parametersif not used

« Operation code not in hexadecimal format

« Parameter not declared with proper length
User SpaceErrors
« Not encoding reserved space for fields not used
« Not initializing user space fields as necessary.
The output user spaces can only be changed by the user-defined communications application. Operations are validated on each
request. If there are fields that the current operation does not use, they should be set to contain zeros with X'00', to prevent a
template error resulting from information on the previous operation still being in the user space. Not resetting the indicatorsin
the output buffer descriptors on each operation and not zeroing out fields before making a call request may result in template
errors.
QueueErrors
« Queue not created
« Queue created with different key length than specified in the parameter list of the Enable Link (QOLELINK) API
Receive Data (QOLRECV) API Errors
« Not checking the more data output parameter and issuing another call to the QOLRECV API
« Not calling the QOLSETF API to set thefilter to route inbound data to the application

« Using the wrong data unit descriptor for the data unit (each data unit has its own descriptor)

Send Data (QOLSEND) API Errors

« After acal tothe QOLSEND API with an operation code of X'B0O0O', X'B100', or X'BFOO', the application should then call the
QRCVDTAQ API and wait for incoming data to be placed on the queues. The success or failure of these operations is reported
through the QOLRECV API with operation codes of X'B001', X'B101' and X'BFO1', respectively.

« Using the wrong data unit descriptor for the data unit (each data unit has its own descriptor)
EnableLink (QOLELINK) API Errors
« User space names not unique

« Queue not created before program call

« Linedescription not created or incorrect prior to program call

Query Line Description (QOLQLIND) API Errors
« Parameter buffer not large enough

Top | Communications APIs | APIs by category

	Communications APIs (v5R2)
	Table of Contents
	Communications APIs
	User-Defined Communications Support APIs
	Disable Link (QOLDLINK) API
	Enable Link (QOLELINK) API
	Query Line Description (QOLQLIND) API
	Receive Data (QOLRECV) API
	Send Data (QOLSEND) API
	Set Filter (QOLSETF) API
	Set Timer (QOLTIMER) API

	Data Stream Translation APIs
	Using the Data Stream Translation APIs
	End Data Stream Translation Session (QD0ENDTS) API
	Start Data Stream Translation Session (QD0STRTS) API
	Translate Data Stream (QD0TRNDS) API

	OptiConnect APIs
	Close Path (QzdmClosePath) API
	Close Stream (QzdmCloseStream) API
	Open Path (QzdmOpenPath) API
	Open Stream (QzdmOpenStream) API
	Receive Control (QzdmReceiveControl) API
	Receive Request (QzdmReceiveRequest) API
	Receive Response (QzdmReceiveResponse) API
	Send Request (QzdmSendRequest) API
	Send Response (QzdmSendResponse) API
	Wait Message (QzdmWaitMessage) API

	TCP/IP Management
	Change Connection Attribute (QTOCCCNA) API
	List Neighbor Cache Table (QtocLstNeighborTbl) API
	List Network Connections (QtocLstNetCnn) API
	List Network Interface (QtocLstNetIfc) API
	List Network Routes (QtocLstNetRte) API
	List Physical Interface ARP Table (QtocLstPhyIfcARPTbl) API
	List Physical Interface Data (QtocLstPhyIfcDta) API
	List PPP Connection Profiles (QtocLstPPPCnnPrf) API
	List TCP/IP Point-to-Point Jobs (QTOCLPPJ) API
	Remove ARP Table Entry (QtocRmvARPTblE) API
	Retrieve Network Connection Data (QtocRtvNetCnnDta) API
	Retrieve PPP Connection Profiles (QtocRtvPPPCnnPrf) API
	Retrieve TCP/IP Attributes (QtocRtvTCPA) API
	Update DNS API (QTOBUPDT)

	Related topics
	User-Defined Communications
	Programming Design Considerations for Communications APIs
	Configuration and Queue Entries
	Debugging of User-Defined Communications Applications

