
iSeries

iSeries Access for Windows Programming

ERserver
���

iSeries

iSeries Access for Windows Programming

ERserver
���

© Copyright International Business Machines Corporation 1999, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Part 1. iSeries Access for Windows programming 1

Chapter 1. Code disclaimer information . 3

Chapter 2. What’s new for V5R2 . 5

Chapter 3. Print this topic . 7

Chapter 4. iSeries Access for Windows® C/C++ APIs. 9
iSeries Access for Windows C/C++ APIs overview . 9

API groups, header files, import libraries, and DLLs 10
iSeries system name formats for ODBC Connection APIs. 12
OEM, ANSI, and Unicode considerations . 13
Obsolete iSeries Access for Windows APIs . 14
Return codes and error messages . 16

iSeries Access for Windows Administration APIs . 32
Administration APIs listing . 32
Example: Administration APIs . 40

iSeries Access for Windows Communications and Security APIs 45
System object attributes . 45
iSeries Access for Windows Communications and Security system object APIs listing 49
iSeries Access for Windows Communications system list APIs listing 109
Example: Using iSeries Access for Windows communications APIs 132

iSeries Access for Windows Data Queues APIs . 144
Data queues . 144
Ordering data queue messages . 145
Working with data queues . 145
Typical use of data queues . 145
iSeries Access for Windows Data Queues APIs listing 146
Example: Using Data Queues APIs . 206

iSeries Access for Windows Data Transformation and National LanguageSupport (NLS) APIs 207
iSeries Access for Windows data transformation APIs. 207
iSeries Access for Windows national language support (NLS) APIs 229

iSeries Access for Windows Directory Update APIs 261
Typical use of iSeries Access for Windows Directory Update APIs 261
Requirements for Directory Update entries . 262
Options for Directory Update entries . 262
Directory Update package files syntax and format 263
Directory Update sample program . 264
iSeries Access for Windows Directory Update API listing 264

iSeries Access for Windows PC5250 emulation APIs 284
IBM Lightweight Directory Access Protocol (LDAP) APIs. 284
iSeries Access for Windows Multimedia APIs . 285

Ultimedia System Facilities API capabilities overview 285
Ultimedia System Facilities API types overview . 286

iSeries Objects APIs for iSeries Access for Windows 286
iSeries objects attributes . 288
iSeries Objects API for iSeries Access for Windows listing 316
Example: Using iSeries Objects APIs for iSeries Access for Windows 397

iSeries Access for Windows Remote Command/Distributed Program Call APIs 399
Typical use of iSeries Access for Windows Remote Command/Distributed Program Call APIs 400
iSeries Access for Windows Remote Command/Distributed Program Call APIs listing 401
Example: Using Remote iSeries Access for Windows Command/Distributed Program Call APIs 420

© Copyright IBM Corp. 1999, 2002 iii

iSeries Access for Windows Serviceability APIs . 422
History log and trace files . 423
Error handles . 424
Typical use of Serviceability APIs . 424
iSeries Access for Windows Serviceability APIs listing 424
Example: Using iSeries Access for Windows erviceability APIs 490

iSeries Access for Windows System Object Access (SOA) APIs 491
SOA objects . 492
iSeries object views . 492
Typical use of System Object Access APIs for iSeries Access for Windows 492
iSeries Access for Windows System Object Access programming considerations. 500
System Object Access APIs for iSeries Access for Windows listing 501

Chapter 5. iSeries Access for Windows Database Programming 555
iSeries Access for Windows OLE DB Provider . 555
iSeries Access for Windows ODBC . 556

ODBC APIs . 557
Implementation issues of ODBC APIs . 586
iSeries Access for Windows ODBC performance 602
Choosing an interface to access the ODBC driver 639
ODBC programming examples . 640

iSeries Access for Windows database APIs . 646
iSeries Access for Windows database APIs overview 647
Typical use of iSeries Access for Windows database APIs 649
Objects that process data on the PC or iSeries server 650
Code page support in Windows . 651
iSeries Access for Windows database APIs listing 652
Example: Using SQL to access database functions 845

Chapter 6. Java programming. 849

Chapter 7. ActiveX programming . 851

iv iSeries: iSeries Access for Windows Programming

||

Part 1. iSeries Access for Windows programming

As an iSeries™ application developer, explore this topic to reference and use iSeries Access for Windows
technical programming information, tools, and techniques. This information includes programming
concepts, capabilities, and examples that are useful when writing applications to access the resources of
an iSeries server. If a basic working knowledge of iSeries Access for Windows and its components is
needed see the Welcome Wizard and the User’s Guide, which are shipped with iSeries Access for
Windows.

Note: To launch these components from a Windows PC, select Start —> Programs —> IBM iSeries
Access for Windows, and select the component. If you do not see either of the components in
your iSeries Access for Windows folder, they are not installed. Run Selective Setup to install them.

See the iSeries Access for Windows - Setup book for related information. (Welcome Wizard is
always installed).

Client/server applications can be developed and tailored to the needs of your business using this topic.
Various programming techniques are described so you can connect, manage, and take advantage of the
rich functions provided by the server.

Find information for your iSeries Access for Windows programming needs by selecting from the following
topics:

What’s new for V5R2
Find a summary of the new function that is included in the programming topics for this release.

Print this topic
Find how to view and print a PDF version of iSeries Access for Windows programming.

C/C++ application programming interfaces
Find APIs to access the iSeries server from your client-based applications.

Database programming (OLE DB Provider, ODBC and Database APIs)
Find tips and techniques on database interfaces. You can access iSeries database files and stored procedures
and use them to perform various server tasks. Although C/C++ interfaces are shown, knowing C/C++ is not a
requirement for the use of the APIs associated with these interfaces.

Java™ programming
Find information on developing web-based applications using Java programming.

ActiveX programming
Find how to use ActiveX programming methods to access iSeries resources through the use of ActiveX
automation technology.

Plug-ins for iSeries Navigator
Find a convenient way to integrate your own functions and applications into a single user interface.

Programmer’s Toolkit
Find a primary information source for developing applications with iSeries Access for Windows.

© Copyright IBM Corp. 1999, 2002 1

../../books/c4155073.pdf
../rzakx/rzakxkickoff.htm

2 iSeries: iSeries Access for Windows Programming

Chapter 1. Code disclaimer information

This document contains programming examples.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties of any kind. The implied
warranties of non-infringement, merchantability and fitness for a particular purpose are expressly
disclaimed.

© Copyright IBM Corp. 1999, 2002 3

4 iSeries: iSeries Access for Windows Programming

Chapter 2. What’s new for V5R2

Chapter 5, “iSeries Access for Windows Database Programming” on page 555

This page highlights changes to iSeries Access for Windows programming topic for V5R2.

New database programming support

For V5R2, both OLE DB and ODBC support 64–bit functions as well as 32–bit functions. Database APIs
have been updated to support several new functions and two new ODBC drivers.
v 64-bit support for all 32-bit functions (For restrictions see Restrictions when using the 64-bit iSeries

Access for Windows ODBC Driver.)
v iSeries Access for Windows C/C++ APIs now offer support for the following:

– Independent disk pools (also known as independent ASPs)

– Row identifier information (ROWID)

– Extended column information

– Kerberos principal
v There are now two new supported drivers for iSeries Access for Windows ODBC drivers.

– 64-bit ODBC driver

– Linux ODBC driver

Changed MAPI support

V5R2M0 iSeries Access for Windows does not support Messaging Application Programming Interface
(MAPI). If you were using MAPI for the purpose of having your mail application access the system
distribution directory (SDD), it is recommended that you now use Lightweight Directory Access Protocol
(LDAP) instead. iSeries Navigator provides configuration support so that SDD information is published to
LDAP.

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:
v The image to mark where new or changed information begins.
v The image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the Memo to Users.

© Copyright IBM Corp. 1999, 2002 5

../rzaii/rzaiiodbcadm.htm
../rzahy/rzahyrzahywelpo.htm
../rzahy/rzahyrzahywelpo.htm
../rzaq9.pdf

6 iSeries: iSeries Access for Windows Programming

Chapter 3. Print this topic

You can view, print, and download a PDF version of iSeries Access for Windows programming. You must
have Adobe® Acrobat® Reader installed to view PDF files. Download a copy of Acrobat from

http://www.adobe.com/prodindex/acrobat/readstep.html .

To view, print, and download the PDF version, select iSeries Access for Windows programming (about
2.25 MB, or 848 pages). Print the entire document, or select and print a range of pages.

To save a PDF on your workstation for viewing or printing:
1. Open the PDF in your browser (select the link above).
2. In the menu of your browser, select File.
3. Select Save As...
4. Navigate to the directory in which you would like to save the PDF.
5. Select Save.

© Copyright IBM Corp. 1999, 2002 7

http://www.adobe.com/prodindex/acrobat/readstep.html
rzaik.pdf

8 iSeries: iSeries Access for Windows Programming

Chapter 4. iSeries Access for Windows® C/C++ APIs

iSeries Access for Windows provides C/C++ application programming interfaces (APIs) for accessing
iSeries resources. These APIs are intended primarily for C/C++ programmers. However, they also may be
called from other languages that support calling C-style APIs.

iSeries Access for Windows C/C++ APIs overview information:
“iSeries Access for Windows C/C++ APIs overview”

iSeries Access for Windows C/C++ APIs topics:
v Administration — Listing of APIs
v Communications and Security — Listing of APIs
v Database programming (OLE DB Provider, ODBC and Database APIs)

– Listing of ODBC APIs
v iSeries Data Queues — Listing of APIs
v Data transformation and national language support(NLS) — Listing of APIs
v Directory Update
v PC5250 emulation
v IBM® Lightweight Directory Access Protocol (LDAP)
v Multimedia
v iSeries Objects
v Remote Command/Distributed Program Call
v Serviceability
v System Object Access (SOA)

Note: Read the Chapter 1, “Code disclaimer information” on page 3 for important legal information.

iSeries Access for Windows C/C++ APIs overview
See the following topics for iSereis Access for Windows C/C++ APIs overview information:
v “API groups, header files, import libraries, and DLLs”
v “iSeries system name formats for ODBC Connection APIs” on page 12
v “OEM, ANSI, and Unicode considerations” on page 12
v “Obsolete iSeries Access for Windows APIs” on page 14
v “Return codes and error messages” on page 16

API groups, header files, import libraries, and DLLs
For each iSeries Access for Windows C/C++ API group, the table below provides:
v Links to the API documentation
v Required interface definition (header) files, where applicable
v Associated import library files, where applicable
v Associated Dynamic Link Library (DLL) files

Access interface definition files for all iSeries Access for Windows C/C++ API groups in the iSeries Access
for WindowsProgrammer’s Toolkit.

How to access iSeries Access for Windows header files in the Toolkit:

1. Find the Programmer’s Toolkit icon in your iSeries Access for Windows program directory
and launch it. If it is not displayed in the program directory, install the Toolkit.

2. In the left navigation panel, select the appropriate API group.

Note: Names of some API categories in the Programmer’s Toolkit differ from the names that
are used in iSeries Access for Windows programming:

© Copyright IBM Corp. 1999, 2002 9

To find this iSeries Access for Windows programming API
group header file:

Select this Programmer’s Toolkit topic:

Administration Client Information

Data transformation Data Manipulation

National language support

LDAP Directory

Serviceability Error Handling

AS/400® Object AS/400 Operations

System Object Access

3. Select the C/C++ APIs subtopic in the left navigation panel.

4. In the right display panel, find the header (.h) file and select it.

Note: In addition to interface descriptions and definitions, the iSeries Access for Windows API
group topics in the Toolkit include links to other information resources.

About import libraries:
The import libraries that are shipped with the Programmer’sToolkit were built with the Microsoft®

Visual C++ compiler. As a result, they are in the Common Object File Format (COFF). Some
compilers, such as Borland’s C compiler, do not support COFF. To access the iSeries Access for
Windows C/C++ APIs from these compilers, you must create Object Model Format (OMF) import
libraries by using the IMPLIB tool. For example:
implib cwbdq.lib %windir%\system32\cwbdq.dll

Note: As of V5R1, the format for certain import libraries has changed to make the file sizes smaller. This
includes cwbapi.lib and fzzmapiwlib. These libraries will not work with Microsoft Visual C++ 5.0 or
earlier. If you need to call the APIs from Microsoft Visual C++ 5.0 or earlier, you can can get the
import libraries built using the old format at import libraries
.(http://www.ibm.com/eserver/iseries/access/toolkit/importlibraries.htm)

Table 1. iSeries Access for Windows C/C++ API groups, header files, library files, and DLL files

API group Header file
Import
library DLL

Administration cwbad.h cwbapi.lib cwbad.dll

Communications
and Security

cwbcosys.h
cwbco.h
cwb.h

cwbapi.lib cwbco.dll

AS/400 Data
Queues

cwbdq.h cwbapi.lib cwbdq.dll

Data
transformation

cwbdt.h cwbapi.lib cwbdt.dll

Directory Update cwbup.h cwbapi.lib cwbup.dll

Emulation
(Standard
HLLAPI interface)

hapi_c.h pscal32.lib pcshll.dll
pcshll32.dll

Emulation
(Enhanced
HLLAPI interface)

ehlapi32.h ehlapi32.lib ehlapi32.dll

10 iSeries: iSeries Access for Windows Programming

http://www.ibm.com/eserver/iseries/access/toolkit/importlibraries.htm
http://www.ibm.com/eserver/iseries/access/toolkit/importlibraries.htm

Table 1. iSeries Access for Windows C/C++ API groups, header files, library files, and DLL files (continued)

API group Header file
Import
library DLL

Emulation
(Windows
EHLLAPI
interface)

whllapi.h whllapi.lib whllapi.dll

whlapi32.lib whllapi32.dll

Emulation (HACL
interface)

eclall.hpp pcseclva.lib pcseclva.dll

pcseclvc.lib pcseclvc.dll

Emulation
(PCSAPI
interface)

pcsapi.h pcscal32.lib pcsapi.dll
pcsapi32.dll

Multimedia fzzmapi.h fzzmapiw.lib fzzmapiw.dll

National language
support

(General NLS)

cwbnl.h cwbapi.lib cwbnl.dll

National language
support

(Conversion NLS)

cwbnlcnv.h cwbapi.lib cwbnl1.dll

National language
support

(Dialog-box NLS)

cwbnldlg.h cwbapi.lib cwbnldlg.dll

AS/400 objects cwbobj.h cwbapi.lib cwbobj.dll

ODBC sql.h
sqlext.h
sqltypes.h
sqlucode.h

odbc32.lib odbc32.dll

Database APIs
(Optimized SQL)

cwbdb.h cwbapi.lib cwbdb.dll

OLE DB Provider ad400.h
da400.h

cwbzzodb.dll

See the OLE DB Section of the Microsoft Universal Data

Access Web Site for more information

Remote
Command/Distributed
Program Call

cwbrc.h cwbapi.lib cwbrc.dll

Serviceability cwbsv.h cwbapi.lib cwbsv.dll

System Object
Access

cwbsoapi.h cwbapi.lib cwbsoapi.dll

Who should read iSeries Access for Windows programming
This information is designed for client/server application developers who have a basic working knowledge
of iSeries Access for Windows and its components. For detailed information about iSeries Access for
Windows and its components, see the Welcome Wizard and the User’s Guide, which are shipped with
iSeries Access for Windows.

Note: To launch these components from a Windows PC, select Start –> Programs –> IBM iSeries
Access for Windows, and select the component. If you do not see either of the components in

Chapter 4. iSeries Access for Windows® C/C++ APIs 11

http://www.microsoft.com/data/oledb/default.htm
http://www.microsoft.com/data/oledb/default.htm

your iSeries Acess for Windows folder, they are not installed. Run Selective Setup to install them.

See the iSeries Access for Windows - Setup book for related information.

Programmer’s Toolkit
The iSeries Access for Windows Programmer’s Toolkit—an installable component of iSeries Access for
Windows—should be used as the primary source of information about iSeries Access for Windows
application development. This includes programming with iSeries Access for Windows ActiveX Automation
Objects, ADO/OLE DB, and Java. The Programmer’s Toolkit contains links to header files, sample
programs, and complete documentation.

Note: No portion of the Toolkit or the iSeries Access for Windows product may be redistributed with the
resulting applications.

The Programmer’s Toolkit consists of two parts:

Programmer’s Toolkit component of iSeries Access for Windows

This includes:
v The Toolkit help file and other Windows help documentation
v C/C++ header files
v C import libraries
v ActiveX automation type libraries
v iSeries ADO Wizards for Visual Basic for the iSeries Access for Windows OLE DB provider

Programmer’s Toolkit Web site

This includes sample applications and tools that may be useful for developing iSeries Access for
Windows applications. This site is updated regularly; check it periodically for new information.

Follow these links for instructions on how to install and launch the Programmer’s Toolkit.

Installing the Programmer’s Toolkit: To install the Programmer’s Toolkit:
1. If you are installing iSeries Access for Windows for the first time, perform an iSeries Access for

Windows Custom Install. If iSeries Access for Windows already is installed, select Start –> Programs
–> IBM iSeries Access for Windows –> Selective Setup.

2. Follow the prompts until the Component Selection dialog displays.
3. Select the Programmer’s Toolkit option, and follow the prompts to completion.

See also “Launching the Programmer’s Toolkit”.

Launching the Programmer’s Toolkit: To launch the Programmer’s Toolkit, select Start –> Programs
–> IBM iSeries Access for Windows –> Programmer’s Toolkit.

Note: The iSeries Access for Windows installation program does not create the Toolkit icon unless you
have installed the Programmer’s Toolkit on your personal computer. See “Installing the
Programmer’s Toolkit” for instructions.

iSeries system name formats for ODBC Connection APIs
APIs that take an iSeries system name as a parameter accept names in the following formats:

v TCP/IP network name (system.network.com)

v System name without a network identifier (SYSTEM)

v IP address (1.2.3.4)

OEM, ANSI, and Unicode considerations
Most of the iSeries Access for Windows C/C++ APIs that accept string parameters exist in three forms:
v One that expects string parameters to be expressed in the OEM code page (the default)

12 iSeries: iSeries Access for Windows Programming

../../books/c4155073.pdf
http://www.ibm.com/eserver/iseries/access/toolkit

v One that expects string parameters to be expressed in the ANSI code page
v One that expects string parameters to be expressed in Unicode

The generic version of the iSeries Access for Windows C/C++ APIs follows the same form as the default
OEM version. Only a single name for each function appears in this information, but there are three
different system entry points. For example:
cwbNL_GetLang();

compiles to:

cwbNL_GetLang(); //CWB_OEM or undefined

or:

cwbNL_GetLangA(); //CWB_ANSI defined

or:

cwbNL_GetLangW(); //CWB_UNICODE defined

API types, name formats, and pre-processor definitions

API type API name format (if it exists) Pre-processor definition

OEM cwbXX_xxx None (may specify CWB_OEM
explicitly)

ANSI cwbXX_xxxA CWB_ANSI

UNICODE cwbXX_xxxW CWB_UNICODE

Note:

v Data transformation APIs (cwbDT_xxx) do not follow the ″A″ and ″W″ suffix conventions. The
generic version of the APIs uses ″String″ as part of the function name. The ANSI/OEM version
uses ″ASCII″ as part of the function name. The Unicode version uses ″Wide″ as part of the
function name. There is no difference between OEM and ANSI character sets in cwbDT_xxx
APIs, which handle numeric strings. Therefore, ANSI and OEM versions of the relevant APIs are
the same. For example:
cwbDT_HexToString();

compiles to:

cwbDT_HexToASCII(); //CWB_UNICODE not defined

or:

cwbDT_HexToWide(); //CWB_UNICODE defined

See the data transformation cwbdt.h header file for more details.

v For Unicode APIs that take a buffer and a length for passing strings (for example,
cwbCO_GetUserIDExW), the length is treated as the number of bytes. It is not treated as the
number of characters.

Using single and mixed API types:
You can write applications that use a single API type, or that combine several API types. Link to
the following topics for more information:
v “Using a single iSeries Access for Windows API type” on page 14
v “Using mixed iSeries Access for Windows API types” on page 14

Chapter 4. iSeries Access for Windows® C/C++ APIs 13

Writing generic applications:
To ensure maximum portability of your applications, consider writing a generic application. Link to
the following topic for more information:

v “Writing a generic iSeries Access for Windows application”

Using a single iSeries Access for Windows API type
To restrict your application to a particular type of iSeries Access for Windows API, you must define
one—and only one—of the following pre-processor definitions:

CWB_OEM_ONLY

CWB_ANSI_ONLY

CWB_UNICODE_ONLY

For example, when writing a pure ANSI application, you specify both CWB_ANSI_ONLY and CWB_ANSI.
Refer to the individual Programmer’s Toolkit header files for details of these pre-processor definitions and
API names. See “API groups, header files, import libraries, and DLLs” on page 9 for more information.

Using mixed iSeries Access for Windows API types
You can mix ANSI, OEM, and Unicode APIs by using explicit API names. For example, you can write an
ANSI iSeries Access for Windows application by specifying the CWB_ANSI pre-processor definition, but
still call a Unicode version of an API by using the ″W″ suffix.

Writing a generic iSeries Access for Windows application
Generic applications allow maximum portability because the same source code can be compiled for OEM,
ANSI, and Unicode. Generic applications are built by specifying different pre-processor definitions, and by
using the generic version of the iSeries access for Windows APIs (the ones without the ″A″ or ″W″
suffixes). Following is a short list of guidelines for writing a generic application:
v Instead of including the usual <string.h> for manipulating strings, include <TCHAR.H>.
v Use generic data types for characters and strings. Use ’TCHAR’ for ’char’ in your source code.
v Use the _TEXT macro for literal characters and strings. For example, TCHAR A[]=_TEXT("A Generic

String").
v Use generic string manipulation functions. For example, use _tcscpy instead of strcpy.
v Be especially careful when using the ’sizeof’ operator - always remember that a Unicode character

occupies two bytes. When determining the number of characters in a generic TCHAR array A, instead
of the simple sizeof(A), use sizeof(A)/sizeof(TCHAR).

v Use proper pre-processor definitions for compilation. When compiling your source for Unicode in Visual
C++, you should also use the pre-processor definitions UNICODE and _UNICODE. Instead of defining
_UNICODE in the MAK file, you may want to define it at the beginning of your source code as:
#ifdef UNICODE

#define _UNICODE
#endif

For a complete description of these guidelines, see the following resources:
1. Richter, J. Advanced Windows: The Developer’s Guide to the Win32 API for Windows NT® 3.5 and

Windows 95, Microsoft Press, Redmond, WA, 1995.
2. Kano, Nadine Developing International Software for Windows 95 and Windows NT: a handbook for

software design, Microsoft Press, Redmond, WA, 1995.

3. Microsoft Knowledge Base articles

4. MSDN Library

Obsolete iSeries Access for Windows APIs
Some of the APIs that were provided by Client Access have been replaced with new APIs in this release.
While these older, obsolete APIs are still supported, it is recommended that you use the newer iSeries
Access for Windows APIs.

14 iSeries: iSeries Access for Windows Programming

|
|
|

http://support.microsoft.com/support/
http://msdn.microsoft.com/library/default.asp

Following is a list, by function, of obsolete APIs. For each obsolete API, a link to the newer iSeries Access
for Windows replacement API is provided, when available.

Note: All of the APPC and License Management APIs are obsolete, and are not supported for iSeries
Access for Windows.

Obsolete iSeries Access APIs listing:
v “Obsolete Communications APIs”
v “Obsolete Data Queues APIs”
v “Obsolete Remote Command/Distributed Program Call APIs”
v “Obsolete Security APIs”
v “Obsolete System Object Access (SOA) API” on page 16

Obsolete Communications APIs
v cwbCO_IsSystemConfigured (not available)

iSeries Access for Windows does not require pre-configuration of an iSeries server connection to
connect to and use that system. For this reason, programs that need to connect to an iSeries server
(either explicitly, by calling cwbCO_Connect, or implicitly, as the result of a call to a different API such
as cwbRC_RunCmd) do not need to check to see if the connection has been pre-configured. Therefore,
the above API no longer should be necessary.

v cwbCO_IsSystemConnected (use “cwbCO_IsConnected” on page 85)

Most iSeries Access for Windows APIs work with iSeries System Objects, rather than with iSeries server
names. There can be multiple iSeries System Objects created and connected to the same iSeries
server within the same process. The cwbCO_IsSystemConnected API will return an indication of
whether at least one System Object is connected to the iSeries server, within the current process. The
cwbCO_IsConnected API is used to determine if a specific iSeries System Object is connected.

v cwbCO_GetUserID (use “cwbCO_GetUserIDEx” on page 81)

Most iSeries Access for Windows APIs work with iSeries System Objects, rather than with iSeries server
names. There can be multiple iSeries System Objects created and connected to the same iSeries
server, within the same process, but using different user IDs. The cwbCO_GetUserID API will return the
user ID of the first iSeries System Object, in the current process, for the specified iSeries server. The
cwbCO_GetUserIDEx API will return the user ID for a specific iSeries System Object.

v cwbCO_GetHostVersion (use “cwbCO_GetHostVersionEx” on page 71)

The behavior of these APIs is the same. However, use of the cwbCO_GetHostVersionEx API is more
efficient.

Obsolete Data Queues APIs
v cwbDQ_Create (use “cwbDQ_CreateEx” on page 155)
v cwbDQ_Delete (use “cwbDQ_DeleteEx” on page 161)
v cwbDQ_Open (use “cwbDQ_OpenEx” on page 189)
v cwbDQ_StartSystem (use “cwbCO_Connect” on page 59)

Note: To achieve the same effect as cwbDQ_StartSystem when you use cwbCO_Connect, you must
connect to the data queue’s service. See “cwbCO_Connect” on page 59 for details.

v cwbDQ_StopSystem (use “cwbCO_Disconnect” on page 65)

Note: To achieve the same effect as cwbDQ_StopSystem when you use cwbCO_Disconnect, you must
disconnect from the data queue’s service. See “cwbCO_Disconnect” on page 65 for details.

Obsolete Remote Command/Distributed Program Call APIs
v cwbRC_StartSys (use “cwbRC_StartSysEx” on page 418).
v cwbRC_GetSysName (use “cwbCO_GetSystemName” on page 80).

Obsolete Security APIs
v cwbSY_CreateSecurityObj (use “cwbCO_CreateSystem” on page 61).
v cwbSY_DeleteSecurityObj (use “cwbCO_DeleteSystem” on page 64).

Chapter 4. iSeries Access for Windows® C/C++ APIs 15

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

v cwbSY_SetSys (use “cwbCO_CreateSystem” on page 61 and pass a system name on the call).
v cwbSY_VerifyUserIDPwd (use “cwbCO_VerifyUserIDPassword” on page 106).
v cwbSY_ChangePwd (use “cwbCO_ChangePassword” on page 57).
v cwbSY_GetUserID (use “cwbCO_GetUserIDEx” on page 81).
v cwbSY_Logon (use “cwbCO_Signon” on page 102).
v cwbSY_LogonUser (use “cwbCO_SetUserIDEx” on page 99, “cwbCO_SetPassword” on page 93, or

“cwbCO_Signon” on page 102).
v cwbSY_GetDateTimeCurrentSignon (use “cwbCO_GetSignonDate” on page 79)
v cwbSY_GetDateTimeLastSignon (use “cwbCO_GetPrevSignonDate” on page 77)
v cwbSY_GetDateTimePwdExpires (use “cwbCO_GetPasswordExpireDate” on page 74)
v cwbSY_GetFailedAttempts (use “cwbCO_GetFailedSignons” on page 69)

Obsolete Serviceability APIs
The following Serviceability APIs for reading problem log service records are obsolete:

cwbSV_GetCreatedBy (not available)

cwbSV_GetCurrentFix (not available)

cwbSV_GetFailMethod (not available)

cwbSV_GetFailModule (not available)

cwbSV_GetFailPathName (not available)

cwbSV_GetFailProductID (not available)

cwbSV_GetFailVersion (not available)

cwbSV_GetOriginSystemID (not available)

cwbSV_GetOriginSystemIPAddr (not available)

cwbSV_GetPreviousFix (not available)

cwbSV_GetProblemID (not available)

cwbSV_GetProblemStatus (not available)

cwbSV_GetProblemText (not available)

cwbSV_GetProblemType (not available)

cwbSV_GetSeverity (not available)

cwbSV_GetSymptomString (not available)

Obsolete System Object Access (SOA) API
CWBSO_CreateListHandle (use “CWBSO_CreateListHandleEx” on page 508)

Return codes and error messages
The iSeries Access for Windows C/C++ application programming interfaces (APIs) support the return of an
integer return code on most functions. The return codes indicate how the function completed.

iSeries Access for Windows return codes categories:
v “iSeries Access for Windows return codes that correspond to operating system errors” on

page 17
v “iSeries Access return codes” on page 18
v “iSeries Access for Windows component-specific return codes” on page 22

iSeries Access for Windows logs error messages in the History Log, and on the iSeries System.

Error messages in the History Log:

Starting the History Log:
By default, the History Log is not active. To ensure that error messages are written to this
file, History logging must be started. See the iSeries Access for Windows User’s Guide,
which is shipped with iSeries Access for Windows, for information on starting the History
Log

16 iSeries: iSeries Access for Windows Programming

Viewing logged messages:
To view messages that have been logged in the History Log, select Start —> Programs
—>iSeries Access for Windows—> Service —> History Log.

The entries in the History Log consist of messages with and without message IDs. Messages with
message IDs have online help available. Messages without message IDs do not have online help
available. To display the cause and recovery information associated with a message that has a
message ID, double-click on it. You also can view any message that has a message ID by
selecting the Message topic in the online iSeries Access for Windows User’s Guide.

Error messages on the iSeries system:
iSeries Access for Windows also has associated messages that are logged on the iSeries server.
These messages begin with PWS or IWS. To display a specific PWSxxxx or IWSxxxx message,
type the appropriate command at the iSeries command line prompt, where xxxx is the number of
the message:
DSPMSGD RANGE(IWSxxxx) MSGF(QIWS/QIWSMSG)

DSPMSGD RANGE(PWSxxxx) MSGF(QIWS/QIWSMSG)

iSeries Access for Windows return codes that correspond to operating system
errors
0 CWB_OK

Successful completion.
1 CWB_INVALID_FUNCTION

Function not supported.
2 CWB_FILE_NOT_FOUND

File not found.
3 CWB_PATH_NOT_FOUND

Path not found.
4 CWB_TOO_MANY_OPEN_FILES

The system cannot open the file.
5 CWB_ACCESS_DENIED

Access is denied.
6 CWB_INVALID_HANDLE

The list handle is not valid.
8 CWB_NOT_ENOUGH_MEMORY

Insufficient memory, may have failed to allocate a temporary buffer.
15 CWB_INVALID_DRIVE

The system cannot find the drive specified.
18 CWB_NO_MORE_FILES

No more files are found.
21 CWB_DRIVE_NOT_READY

The device is not ready.
31 CWB_GENERAL_FAILURE

General error occurred.
32 CWB_SHARING_VIOLATION

The process cannot access the file because it is being used by
another process.

33 CWB_LOCK_VIOLATION
The process cannot access the file because another process has
locked a portion of the file.

38 CWB_END_OF_FILE
End of file has been reached.

50 CWB_NOT_SUPPORTED
The network request is not supported.

53 CWB_BAD_NETWORK_PATH
The network path was not found.

54 CWB_NETWORK_BUSY
The network is busy.

55 CWB_DEVICE_NOT_EXIST
The specified network resource or device is no longer available.

59 CWB_UNEXPECTED_NETWORK_ERROR
An unexpected network error occurred.

65 CWB_NETWORK_ACCESS_DENIED

Chapter 4. iSeries Access for Windows® C/C++ APIs 17

Network access is denied.
80 CWB_FILE_EXISTS

The file exists.
85 CWB_ALREADY_ASSIGNED

The local device name is already in use.
87 CWB_INVALID_PARAMETER

A parameter is invalid.
88 CWB_NETWORK_WRITE_FAULT

A write fault occurred on the network.
110 CWB_OPEN_FAILED

The system cannot open the device or file specified.
111 CWB_BUFFER_OVERFLOW

Not enough room in the output buffer. Use *bufferSize to determine
the correct size.

112 CWB_DISK_FULL
There is not enough space on the disk.

115 CWB_PROTECTION_VIOLATION
Access is denied.

124 CWB_INVALID_LEVEL
The system call level is not correct.

142 CWB_BUSY_DRIVE
The system cannot perform a JOIN or SUBST at this time.

252 CWB_INVALID_FSD_NAME
The device name is incorrect.

253 CWB_INVALID_PATH
The network path specified is incorrect.

iSeries Access return codes
The following return codes apply only to iSeries Access:
v “Global iSeries Access return codes”
v “iSeries Access for Windows -specific return codes” on page 19

Global iSeries Access return codes:
4000 CWB_USER_CANCELLED_COMMAND

Command cancelled by user.
4001 CWB_CONFIG_ERROR

A configuration error has occurred.
4002 CWB_LICENSE_ERROR

A license error has occurred.
4003 CWB_PROD_OR_COMP_NOT_SET

Internal error due to failure to properly register and use a
product or component.

4004 CWB_SECURITY_ERROR
A security error has occurred.

4005 CWB_GLOBAL_CFG_FAILED
The global configuration attempt failed.

4006 CWB_PROD_RETRIEVE_FAILED
The product retrieve failed.

4007 CWB_COMP_RETRIEVE_FAILED
The computer retrieve failed.

4008 CWB_COMP_CFG_FAILED
The computer configuration failed.

4009 CWB_COMP_FIX_LEVEL_UPDATE_FAILED
The computer fix level update failed.

4010 CWB_INVALID_API_HANDLE
Invalid request handle.

4011 CWB_INVALID_API_PARAMETER
Invalid parameter specified.

4012 CWB_HOST_NOT_FOUND
AS/400 system inactive or does not exist.

4013 CWB_NOT_COMPATIBLE
Client Access program or function not at correct level.

4014 CWB_INVALID_POINTER
A pointer is NULL.

4015 CWB_SERVER_PROGRAM_NOT_FOUND
AS/400 application not found.

18 iSeries: iSeries Access for Windows Programming

4016 CWB_API_ERROR
General API failure.

4017 CWB_CA_NOT_STARTED
Client Access has not been started.

4018 CWB_FILE_IO_ERROR
Record could not be read.

4019 CWB_COMMUNICATIONS_ERROR
A communications error occurred.

4020 CWB_RUNTIME_CONSTRUCTOR_FAILED
The C Run-time contstructor failed.

4021 CWB_DIAGNOSTIC
Unexpected error. Record the message number and data in the
message and contact IBM Support.

4022 CWB_COMM_VERSION_ERROR
Data queues will not run with this version of communications.

4023 CWB_NO_VIEWER
The viewer support for Client Access/400 was not installed.

4024 CWB_MODULE_NOT_LOADABLE
A filter DLL was not loadable.

4025 CWB_ALREADY_SETUP
Object has already been set up.

4026 CWB_CANNOT_START_PROCESS
Attempt to start process failed. See other error code(s).

4027 CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input UNICODE characters have no representation in the
code page that is being used.

8998 CWB_UNSUPPORTED_FUNCTION
The function is unsupported.

8999 CWB_INTERNAL_ERROR
An internal error occurred.

iSeries Access for Windows -specific return codes:
v “Security return codes”
v “Communications return codes” on page 20
v “Configuration return codes” on page 20
v “Automation Object return codes” on page 20
v “WINSOCK return codes” on page 20
v “SSL return codes” on page 21

Security return codes:
8001 CWB_UNKNOWN_USERID
8002 CWB_WRONG_PASSWORD
8003 CWB_PASSWORD_EXPIRED
8004 CWB_INVALID_PASSWORD
8006 CWB_INCORRECT_DATA_FORMAT
8007 CWB_GENERAL_SECURITY_ERROR
8011 CWB_USER_PROFILE_DISABLED
8013 CWB_USER_CANCELLED
8014 CWB_INVALID_SYSNAME
8015 CWB_INVALID_USERID
8016 CWB_LIMITED_CAPABILITIES_USERID
8019 CWB_INVALID_TP_ON_HOST
8022 CWB_NOT_LOGGED_ON
8026 CWB_EXIT_PGM_ERROR
8050 CWB_TIMESTAMPS_NOT_SET
8257 CWB_PW_TOO_LONG
8258 CWB_PW_TOO_SHORT
8259 CWB_PW_REPEAT_CHARACTER
8260 CWB_PW_ADJACENT_DIGITS
8261 CWB_PW_CONSECUTIVE_CHARS
8262 CWB_PW_PREVIOUSLY_USED
8263 CWB_PW_DISALLOWED_CHAR
8264 CWB_PW_NEED_NUMERIC

Chapter 4. iSeries Access for Windows® C/C++ APIs 19

8266 CWB_PW_MATCHES_OLD
8267 CWB_PW_NOT_ALLOWED
8268 CWB_PW_CONTAINS_USERID
8270 CWB_PW_LAST_INVALID_PWD

Communications return codes:
8400 CWB_INV_AFTER_SIGNON
8401 CWB_INV_WHEN_CONNECTED
8401 CWB_INV_BEFORE_VALIDATE
8403 CWB_SECURE_SOCKETS_NOTAVAIL
8404 CWB_RESERVED1
8405 CWB_RECEIVE_ERROR
8406 CWB_SERVICE_NAME_ERROR
8407 CWB_GETPORT_ERROR
8408 CWB_SUCCESS_WARNING
8409 CWB_NOT_CONNECTED
8410 CWB_DEFAULT_HOST_CCSID_USED

Configuration return codes:
8500 CWB_RESTRICTED_BY_POLICY
8501 CWB_POLICY_MODIFY_MANDATED_ENV
8502 CWB_POLICY_MODIFY_CURRENT_ENV
8503 CWB_POLICY_MODIFY_ENV_LIST
8504 CWB_SYSTEM_NOT_FOUND
8505 CWB_ENVIRONMENT_NOT_FOUND
8506 CWB_ENVIRONMENT_EXISTS
8507 CWB_SYSTEM_EXISTS
8508 CWB_NO_SYSTEMS_CONFIGURED
8580 CWB_CONFIGERR_RESERVED_START
8599 CWB_CONFIGERR_RESERVED_END

Automation Object return codes:
8600 CWB_INVALID_METHOD_PARM
8601 CWB_INVALID_PROPERTY_PARM
8602 CWB_INVALID_PROPERTY_VALUE
8603 CWB_OBJECT_NOT_INITIALIZED
8604 CWB_OBJECT_ALREADY_INITIALIZED
8605 CWB_INVALID_DQ_ORDER
8606 CWB_DATA_TRANSFER_REQUIRED
8607 CWB_UNSUPPORTED_XFER_REQUEST
8608 CWB_ASYNC_REQUEST_ACTIVE
8609 CWB_REQUEST_TIMED_OUT
8610 CWB_CANNOT_SET_PROP_NOW
8611 CWB_OBJ_STATE_NO_LONGER_VALID

WINSOCK return codes:
10024 CWB_TOO_MANY_OPEN_SOCKETS
10035 CWB_RESOURCE_TEMPORARILY_UNAVAILABLE
10038 CWB_SOCKET_OPERATION_ON_NON_SOCKET
10047 CWB_PROTOCOL_NOT_INSTALLED
10050 CWB_NETWORK_IS_DOWN
10051 CWB_NETWORK_IS_UNREACHABLE
10052 CWB_NETWORK_DROPPED_CONNECTION_ON_RESET
10053 CWB_SOFTWARE_CAUSED_CONNECTION_ABORT
10054 CWB_CONNECTION_RESET_BY_PEER
10055 CWB_NO_BUFFER_SPACE_AVAILABLE
10057 CWB_SOCKET_IS_NOT_CONNECTED
10058 CWB_CANNOT_SEND_AFTER_SOCKET_SHUTDOWN
10060 CWB_CONNECTION_TIMED_OUT
10061 CWB_CONNECTION_REFUSED
10064 CWB_HOST_IS_DOWN
10065 CWB_NO_ROUTE_TO_HOST
10091 CWB_NETWORK_SUBSYSTEM_IS_UNAVAILABLE
10092 CWB_WINSOCK_VERSION_NOT_SUPPORTED

20 iSeries: iSeries Access for Windows Programming

11001 CWB_HOST_DEFINITELY_NOT_FOUND
The iSeries system name was not found during TCP/IP address lookup.

11002 CWB_HOST_NOT_FOUND_BUT_WE_ARE_NOT_SURE
The iSeries system name was not found during TCP/IP address lookup.

11004 CWB_VALID_NAME_BUT_NO_DATA_RECORD
The iSeries service name was not found in the local SERVICES file.

SSL return codes:
20001 CWB_SSL_ERROR_NO_CIPHERS

An I/O error occurred accessing the key database.
20002 CWB_SSL_ERROR_NO_CERTIFICATE

Open of the key database failed.
20004 CWB_SSL_ERROR_BAD_CERTIFICATE

Incorrect key database password.
20006 CWB_SSL_ERROR_UNSUPPORTED_CERTIFICATE_TYPE

Write to the key database failed.
20010 CWB_SSL_ERROR_IO

Certificate expired.
20011 CWB_SSL_ERROR_BAD_MESSAGE

Key already exists in the key database.
20012 CWB_SSL_ERROR_BAD_MAC

A bad message authentication code was received.
20013 CWB_SSL_ERROR_UNSUPPORTED

.
20014 CWB_SSL_ERROR_BAD_CERT_SIG

Duplicate key name in the key database.
20015 CWB_SSL_ERROR_BAD_CERT

Duplicate label in the key database.
20016 CWB_SSL_ERROR_BAD_PEER

Invalid password format for the key database.
20017 CWB_SSL_ERROR_PERMISSION_DENIED
20018 CWB_SSL_ERROR_SELF_SIGNED
20020 CWB_SSL_ERROR_BAD_MALLOC
20021 CWB_SSL_ERROR_BAD_STATE
20022 CWB_SSL_ERROR_SOCKET_CLOSED
20023 CWB_SSL_ERROR_INITIALIZATION_FAILED
20024 CWB_SSL_ERROR_HANDLE_CREATION_FAILED
20025 CWB_SSL_ERROR_BAD_DATE
20026 CWB_SSL_ERROR_BAD_KEY_LEN_FOR_EXPORT
20027 CWB_SSL_ERROR_NO_PRIVATE_KEY
20028 CWB_SSL_BAD_PARAMETER
20029 CWB_SSL_ERROR_INTERNAL
20030 CWB_SSL_ERROR_WOULD_BLOCK
20031 CWB_SSL_ERROR_LOAD_GSKLIB
20040 CWB_SSL_SOC_BAD_V2_CIPHER
20041 CWB_SSL_SOC_BAD_V3_CIPHER
20042 CWB_SSL_SOC_BAD_SEC_TYPE
20043 CWB_SSL_SOC_NO_READ_FUNCTION
20044 CWB_SSL_SOC_NO_WRITE_FUNCTION
20050 CWB_SSL_ERROR_NOT_SERVER
20051 CWB_SSL_ERROR_NOT_SSLV3
20052 CWB_SSL_ERROR_NOT_SSLV3_CLIENT
20099 CWB_SSL_ERROR_UNKNOWN_ERROR
20100 CWB_SSL_ERROR_BAD_BUFFER_SIZE
20101 CWB_SSL_ERROR_BAD_SSL_HANDLE
20102 CWB_SSL_ERROR_TIMEOUT
25001 CWB_SSL_KEYFILE_IO_ERROR
25002 CWB_SSL_KEYFILE_OPEN_FAILED
25003 CWB_SSL_KEYFILE_BAD_FORMAT
25004 CWB_SSL_KEYFILE_BAD_PASSWORD
25005 CWB_SSL_KEYFILE_BAD_MALLOC
25006 CWB_SSL_KEYFILE_NOTHING_TO_WRITE
25007 CWB_SSL_KEYFILE_WRITE_FAILED
25008 CWB_SSL_KEYFILE_NOT_FOUND
25009 CWB_SSL_KEYFILE_BAD_DNAME
25010 CWB_SSL_KEYFILE_BAD_KEY
25011 CWB_SSL_KEYFILE_KEY_EXISTS

Chapter 4. iSeries Access for Windows® C/C++ APIs 21

25012 CWB_SSL_KEYFILE_BAD_LABEL
25013 CWB_SSL_KEYFILE_DUPLICATE_NAME
25014 CWB_SSL_KEYFILE_DUPLICATE_KEY
25015 CWB_SSL_KEYFILE_DUPLICATE_LABEL
25016 CWB_SSL_BAD_FORMAT_OR_INVALID_PW
25098 CWB_SSL_WARNING_INVALID_SERVER_CERT
25099 CWB_SSL_WARNING_INVALID_SERVER_PRIV_KEY
25100 CWB_SSL_ERR_INIT_PARM_NOT_VALID
25102 CWB_SSL_INIT_SEC_TYPE_NOT_VALID
25103 CWB_SSL_INIT_V2_TIMEOUT_NOT_VALID
25104 CWB_SSL_INIT_V3_TIMEOUT_NOT_VALID
25105 CWB_SSL_KEYFILE_CERT_EXPIRED

iSeries Access for Windows component-specific return codes
v “Administration APIs return code”
v “Communications APIs return codes”
v “Database APIs return codes”
v “Data Queues APIs return codes” on page 25
v “Directory Update APIs return codes” on page 27
v “National language support APIs return codes” on page 27
v “iSeries Object APIs return codes” on page 28
v “Remote Command/Distributed Program Call APIs return codes” on page 28
v “Security APIs return codes” on page 29
v “Serviceability APIs return codes” on page 30
v “System Object Access APIs return codes” on page 30

Administration APIs return code:
6001 CWBAD_INVALID_COMPONENT_ID

The component ID is invalid.

Communications APIs return codes:

6001 CWBCO_END_OF_LIST
The end of system list has been reached. No system name was returned.

6002 CWBCO_DEFAULT_SYSTEM_NOT_DEFINED
The setting for the default system has not been defined.

6003 CWBCO_DEFAULT_SYSTEM_NOT_CONFIGURED
The default system is defined, but no connection to it is
configured.

6004 CWBCO_SYSTEM_NOT_CONNECTED
The specified system is not currently connected in the current process.

6005 CWBCO_SYSTEM_NOT_CONFIGURED
The specified system is not currently configured.

6007 CWBCO_INTERNAL_ERROR
Internal error.

6008 CWBCO_NO_SUCH_ENVIRONMENT
The specified environment does not exist.

6009 CWB_TIMED_OUT
The connect timeout value associated with the stem object
expired before the connection attempt completed,
so we stopped waiting.

Database APIs return codes:
6001 CWBDB_CANNOT_CONTACT_SERVER

An error was encountered which prevented the Data Access server from
being started.

6002 CWBDB_ATTRIBUTES_FAILURE
An error was encountered during attempt to set the Data Access
server attributes.

6003 CWBDB_SERVER_ALREADY_STARTED
An attempt to start the Data Access server was made while a valid
server was running. Stop the server before restarting it.

22 iSeries: iSeries Access for Windows Programming

6004 CWBDB_INVALID_DRDA_PKG_SIZE
The valid submitted for the DRDA package size was invalid.

6005 CWBDB_REQUEST_MEMORY_ALLOCATION_FAILURE
A memory allocation attempt by a request handle failed.

6006 CWBDB_REQUEST_INVALID_CONVERSION
A Request handle failed in an attempt to convert data.

6007 CWBDB_SERVER_NOT_ACTIVE
The Data Access server is not started. It must be started before
continuing.

6008 CWBDB_PARAMETER_ERROR
Attempt to set a parameter failed. Re-try. If error persists, there
may be a lack of available memory.

6009 CWBDB_CLONE_CREATION_ERROR
Could not create a clone request.

6010 CWBDB_INVALID_DATA_FORMAT_FOR_CONNECTION
The data format object was not valid for this connection.

6011 CWBDB_DATA_FORMAT_IN_USE
The data format object is already being used by another request.

6012 CWBDB_INVALID_DATA_FORMAT_FOR_DATA
The data format object does not match the format of the data.

6013 CWBDB_STRING_ARG_TOO_LONG
The string provided was too long for the parameter.

6014 CWBDB_INVALID_INTERNAL_ARG
Invalid internally generated argument (not user supplied).

6015 CWBDB_INVALID_NUMERIC_ARG
Value of numeric argument is invalid.

6016 CWBDB_INVALID_ARG
Value of argument is invalid.

6017 CWBDB_STMT_NOT_SELECT
The statement provided was not a SELECT statement. This call requires
a SELECT statement.

6018 CWBDB_STREAM_FETCH_NOT_COMPLETE
The connection is in stream fetch mode. Cannot perform desired
operation until stream fetch has ended.

6019 CWBDB_STREAM_FETCH_NOT_ACTIVE
The connection is not in stream fetch mode and must be in order to
perform the desired operation.

6020 CWBDB_MISSING_DATA_PROCESSOR
Pointer to data processor in request object is null.

6021 CWBDB_ILLEGAL_CLONE_REQUEST_TYPE
Cannot create a clone of an attributes request.

6022 CWBDB_UNSOLICITED_DATA
Data were received from the server, but none were requested.

6023 CWBDB_MISSING_DATA
Data were requested from the server, but not all were received.

6024 CWBDB_PARM_INVALID_BITSTREAM
Bitstream within a parameter is invalid.

6025 CWBDB_CONSISTENCY_TOKEN_ERROR
The data format used to interpret the data from the iSeries does not
match the data returned.

6026 CWBDB_INVALID_FUNCTION
The function is invalid for this type of request.

6027 CWBDB_FORMAT_INVALID_ARG
A parameter value passed to the API was not valid.

6028 CWBDB_INVALID_COLUMN_POSITION
The column position passed to the API was not valid.

6029 CWBDB_INVALID_COLUMN_TYPE
The column type passed to the API was not valid.

6030 CWBDB_ROW_VECTOR_NOT_EMPTY
Invalid or corrupted format handle.

6031 CWBDB_ROW_VECTOR_EMPTY
Invalid or corrupted format handle.

6032 CWBDB_MEMORY_ALLOCATION_FAILURE
An error occurred while attempting to allocate memory.

6033 CWBDB_INVALID_CONVERSION
An invalid type conversion was attempted.

6034 CWBDB_DATASTREAM_TOO_SHORT

Chapter 4. iSeries Access for Windows® C/C++ APIs 23

The data stream received from the host was too short.
6035 CWBDB_SQL_WARNING

The database server received a warning from an SQL operation.
6036 CWBDB_SQL_ERROR

The database server received an error from an SQL operation.
6037 CWBDB_SQL_PARAMETER_WARNING

The database server received a warning about a parameter used in an
SQL operation.

6038 CWBDB_SQL_PARAMETER_ERROR
The database server received an error about a parameter used in an
SQL operation.

6039 CWBDB_LIST_SERVER_WARNING
The database server returned a warning from a catalog operation.

6040 CWBDB_LIST_SERVER_ERROR
The database server returned an error from a catalog operation.

6041 CWBDB_LIST_PARAMETER_WARNING
The database server returned a warning about a parameter used in a
catalog operation.

6042 CWBDB_LIST_PARAMETER_ERROR
The database server returned an error about a parameter used in a
catalog operation.

6043 CWBDB_NDB_FILE_SERVER_WARNING
The database server returned a warning from a file processing
operation.

6044 CWBDB_NDB_FILE_SERVER_ERROR
The database server returned an error from a file processing operation.

6045 CWBDB_FILE_PARAMETER_WARNING
The database server returned a warning about a parameter used in a
file processing operation.

6046 CWBDB_FILE_PARAMETER_ERROR
The database server returned an error about a parameter used in a
file processing operation.

6047 CWBDB_GENERAL_SERVER_WARNING
The database server returned a general warning.

6048 CWBDB_GENERAL_SERVER_ERROR
The database server returned a general error.

6049 CWBDB_EXIT_PROGRAM_WARNING
The database server returned a warning from an exit program.

6050 CWBDB_EXIT_PROGRAM_ERROR
The database server returned an error from an exit program.

6051 CWBDB_DATA_BUFFER_TOO_SMALL
Target data buffer is smaller than source buffer.

6052 CWBDB_NL_CONVERSION_ERROR
Received error back from PiNlConverter.

6053 CWBDB_COMMUNICATIONS_ERROR
Received a communications error during processing.

6054 CWBDB_INVALID_ARG_API
Value of argument is invalid - API level.

6055 CWBDB_MISSING_DATA_HANDLER
Data handler not found in data handler list.

6056 CWBDB_REQUEST_DATASTREAM_NOT_VALID
Invalid datastream in catalog request.

6057 CWBDB_SERVER_UNABLE
Server incapable of performing desired function.

The following return codes are returned by the
cwbDB_StartServerDetailed API:

6058 CWBDB_WORK_QUEUE_START_ERROR
Unable to start server because of client work queue problem.

6059 CWBDB_WORK_QUEUE_CREATE_ERROR
Unable to start server because of client work queue problem.

6060 CWBDB_INITIALIZATION_ERROR
Unable to start server because of client initialization problem.

6061 CWBDB_SERVER_ATTRIBS_ERROR
Unable to start server because of server attribute problem.

6062 CWBDB_CLIENT_LEVEL_ERROR

24 iSeries: iSeries Access for Windows Programming

Unable to start server because of set client level problem.
6063 CWBDB_CLIENT_LFC_ERROR

Unable to start server because of set client language feature
code problem.

6064 CWBDB_CLIENT_CCSID_ERROR
Unable to start server because of set client CCSID problem.

6065 CWBDB_TRANSLATION_INDICATOR_ERROR
Unable to start server because of set translation indicator error.

6066 CWBDB_RETURN_SERVER_ATTRIBS_ERROR
Unable to start server because of return server attribute problem.

6067 CWBDB_SERVER_ATTRIBS_REQUEST
Unable to start server because of missing server attributes request
object.

6068 CWBDB_RETURN_ATTRIBS_ERROR
Unable to start server because of return attribute problem.

6069 CWBDB_SERVER_ATTRIBS_MISSING
Unable to start server because returned server attributes too short
(missing data).

6070 CWBDB_SERVER_LFC_CONVERSION_ERROR
Unable to start server because of data conversion error on server
language feature code field of server attributes.

6071 CWBDB_SERVER_LEVEL_CONVERSION_ERROR
Unable to start server because of data conversion error on server
functional level field of server attributes.

6072 CWBDB_SERVER_LANGUAGE_TABLE_ERROR
Unable to start server because of data conversion error on server
language table ID field of server attributes.

6073 CWBDB_SERVER_LANGUAGE_LIBRARY_ERROR
Unable to start server because of data conversion error on server
language library ID field of server attributes.

6074 CWBDB_SERVER_LANGUAGE_ID_ERROR
Unable to start server because of data conversion error on server
language ID field of server attributes.

6075 CWBDB_COMM_DEQUEUE_ERROR
Unable to start server because of communications error.

6076 CWBDB_COMM_ENQUEUE_ERROR
Unable to start server because of communications error.

6077 CWBDB_UNSUPPORTED_COLUMN_TYPE
An unsupported column type was found in the data.

6078 CWBDB_SERVER_IN_USE
A connection to the database server for the given connection
handle is already being used by another connection handle which
was created with the same system object handle.

6099 CWBDB_LAST_STREAM_CHUNK
Stream fetch complete.
NOTE: Informational; not an error. There is no message or help text
for this return code.

Data Queues APIs return codes:

6000 CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

6001 CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

6002 CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

6003 CWBDQ_INVALID_READ_HANDLE
Invalid data queue read handle.

6004 CWBDQ_INVALID_QUEUE_LENGTH
Invalid maximum record length for a data queue.

6005 CWBDQ_INVALID_KEY_LENGTH
Invalid key length.

6006 CWBDQ_INVALID_ORDER
Invalid queue order.

6007 CWBDQ_INVALID_AUTHORITY
Invalid queue authority.

Chapter 4. iSeries Access for Windows® C/C++ APIs 25

6008 CWBDQ_INVALID_QUEUE_TITLE
Queue title (description) is too long or cannot be converted.

6009 CWBDQ_BAD_QUEUE_NAME
Queue name is too long or cannot be converted.

6010 CWBDQ_BAD_LIBRARY_NAME
Library name is too long or cannot be converted.

6011 CWBDQ_BAD_SYSTEM_NAME
System name is too long or cannot be converted.

6012 CWBDQ_BAD_KEY_LENGTH
Length of key is not correct for this data queue or key length is
greater than 0 for a LIFO or FIFO data queue.

6013 CWBDQ_BAD_DATA_LENGTH
Length of data is not correct for this data queue. Either the data
length is zero or it is greater than the maximum allowed of
31744 bytes (64512 bytes for V4R5 and later versions of OS/400).
Note: The maximum allowed data lengh when
connected to OS/400 V4R5MO and later systems has been increased
to 64512 bytes. When connected to earlier releases of OS/400,
64512 bytes of data may be written to a data queue, but the
maximum length of data that may be read from a data queue
is 31744 bytes.

6014 CWBDQ_INVALID_TIME
Wait time is not correct.

6015 CWBDQ_INVALID_SEARCH
Search order is not correct.

6016 CWBDQ_DATA_TRUNCATED
Returned data was truncated.

6017 CWBDQ_TIMED_OUT
Wait time has expired and no data has been returned.

6018 CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

6019 CWBDQ_USER_EXIT_ERROR
Error in user exit program or invalid number of exit programs.

6020 CWBDQ_LIBRARY_NOT_FOUND
Library not found on system.

6021 CWBDQ_QUEUE_NOT_FOUND
Queue not found on system.

6022 CWBDQ_NO_AUTHORITY
No authority to library or data queue.

6023 CWBDQ_DAMAGED_QUEUE
Data queue is in an unusable state.

6024 CWBDQ_QUEUE_EXISTS
Data queue already exists.

6025 CWBDQ_INVALID_MESSAGE_LENGTH
Invalid message length - exceeds queue maximum record length.

6026 CWBDQ_QUEUE_DESTROYED
Queue destroyed while waiting to read or peek a record.

6027 CWBDQ_NO_DATA
No data was received.

6028 CWBDQ_CANNOT_CONVERT
Data cannot be converted for this data queue. The data queue
can be used but data cannot be converted between ASCII and EBCDIC.
The convert flag on the data object will be ignored.

6029 CWBDQ_QUEUE_SYNTAX
Syntax of the data queue name is incorrect. Queue name must follow
iSeries object syntax. First character must be alphabetic and all
following characters alphanumeric.

6030 CWBDQ_LIBRARY_SYNTAX
Syntax of the library name is incorrect. Library name must follow
iSeries object syntax. First character must be alphabetic and all

26 iSeries: iSeries Access for Windows Programming

following characters alphanumeric.
6031 CWBDQ_ADDRESS_NOT_SET

Address not set. The data object was not set with cwbDQ_SetDataAddr(),
so the address cannot be retrieved. Use cwbDQ_GetData() instead of
cwbDQ_GetDataAddr().

6032 CWBDQ_HOST_ERROR
Host error occurred for which no return code is defined. See the
error handle for the message text.

6033 CWBDQ_INVALID_SYSTEM_HANDLE
System handle is invalid.

6099 CWBDQ_UNEXPECTED_ERROR
Unexpected error.

Directory Update APIs return codes:
6000 CWBUP_ENTRY_NOT_FOUND

No update entry matched search value.
6001 CWBUP_SEARCH_POSITION_ERROR

Search starting position is not valid.
6002 CWBUP_PACKAGE_NOT_FOUND

The package file was not found.
6003 CWBUP_POSITION_INVALID

Position that is given is not in range.
6004 CWBUP_TOO_MANY_ENTRIES

The maximum number of update entries already exist. No more can be
created.

6005 CWBUP_TOO_MANY_PACKAGES
Maximum number of package files already exists for this entry.

6006 CWBUP_STRING_TOO_LONG
The text string parameter passed in is longer than CWBUP_MAX_LENGTH.

6007 CWBUP_ENTRY_IS_LOCKED
Another application is currently changing the update entry list. No
changes are allowed at this time.

6008 CWBUP_UNLOCK_WARNING
Application did not have the update entries locked.

National language support APIs return codes:
6101 CWBNL_ERR_CNV_UNSUPPORTED

An attempt was made to convert character data from a code page to
another code page but this conversion is not supported.

6102 CWBNL_ERR_CNV_TBL_INVALID
A conversion table is in a format that is not recognized.

6103 CWBNL_ERR_CNV_TBL_MISSING
An attempt was made to use a conversion table, but the table was not
found.

6104 CWBNL_ERR_CNV_ERR_GET
A code page conversion table was being retrieved from the server
when an error occurred.

6105 CWBNL_ERR_CNV_ERR_COMM
A code page conversion table was being retrieved from the server
when a communications error occurred.

6106 CWBNL_ERR_CNV_ERR_SERVER
A code page conversion table was being retrieved from the server
when a server error occurred.

6107 CWBNL_ERR_CNV_ERR_STATUS
While converting character data from one code page to another, some
untranslatable characters were encountered.

6108 CWBNL_ERROR_CONVERSION_INCOMPLETE_MULTIBYTE_INPUT_CHARACTER
While converting character data an incomplete multibyte character
was found.

6109 CWBNL_ERR_CNV_INVALID_SISO_STATUS
The SISO parameter is incorrect.

6110 CWBNL_ERR_CNV_INVALID_PAD_LENGTH
The pad length parameter is incorrect.

Chapter 4. iSeries Access for Windows® C/C++ APIs 27

The following return codes are for language APIs:

6201 CWBNL_ERR_STR_TBL_INVALID
Message file not in a recognized format. It has been corrupted.

6202 CWBNL_ERR_STR_TBL_MISSING
Message file could not be found.

6203 CWBNL_ERR_STR_NOT_FOUND
The message file is missing a message.

6204 CWBNL_ERR_NLV_NO_CONFIG
The language configuration is missing.

6205 CWBNL_ERR_NLV_NO_SUBDIR
The language subdirectory is missing.

6206 CWBNL_DEFAULT_HOST_CCSID_USED
A default server CCSID (500) is used.

The following return codes are for locale APIs:

6301 CWBNL_ERR_LOC_TBL_INVALID
6302 CWBNL_ERR_LOC_TBL_MISSING
6303 CWBNL_ERR_LOC_NO_CONFIG
6304 CWBNL_ERR_LOC_NO_LOCPATH

iSeries Object APIs return codes:
6000 CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.
6001 CWBOBJ_RC_INVALID_TYPE

Incorrect object type.
6002 CWBOBJ_RC_INVALID_KEY

Incorrect key.
6003 CWBOBJ_RC_INVALID_INDEX

Bad index to list.
6004 CWBOBJ_RC_LIST_OPEN

The list is already opened.
6005 CWBOBJ_RC_LIST_NOT_OPEN

The list has not been opened.
6006 CWBOBJ_RC_SEEKOUTOFRANGE

Seek offset is out of range.
6007 CWBOBJ_RC_SPLFNOTOPEN

Spooled file has not been opened.
6007 CWBOBJ_RC_RSCNOTOPEN

Resource has not been opened.
6008 CWBOBJ_RC_SPLFENDOFFILE

End of file was reached.
6008 CWBOBJ_RC_ENDOFFILE

End of file was reached.
6009 CWBOBJ_RC_SPLFNOMESSAGE

The spooled file is not waiting on a message.
6010 CWBOBJ_RC_KEY_NOT_FOUND

The parameter list does not contain the specified key.
6011 CWBOBJ_RC_NO_EXIT_PGM

No exit program registered.
6012 CWBOBJ_RC_NOHOSTSUPPORT

Host does not support function.

Remote Command/Distributed Program Call APIs return codes:
6000 CWBRC_INVALID_SYSTEM_HANDLE

Invalid system handle.
6001 CWBRC_INVALID_PROGRAM

Invalid program handle.
6002 CWBRC_SYSTEM_NAME

System name is too long or cannot be converted.
6003 CWBRC_COMMAND_STRING

Command string is too long or cannot be converted.
6004 CWBRC_PROGRAM_NAME

Program name is too long or cannot be converted.
6005 CWBRC_LIBRARY_NAME

28 iSeries: iSeries Access for Windows Programming

Library name is too long or cannot be converted.
6006 CWBRC_INVALID_TYPE

Invalid parameter type specified.
6007 CWBRC_INVALID_PARM_LENGTH

Invalid parameter length.
6008 CWBRC_INVALID_PARM

Invalid parameter specified.
6009 CWBRC_TOO_MANY_PARMS

Attempt to add more than 25 parameters to a program.
6010 CWBRC_INDEX_RANGE_ERROR

Index is out of range for this program.
6011 CWBRC_REJECTED_USER_EXIT

Command rejected by user exit program.
6012 CWBRC_USER_EXIT_ERROR

Error in user exit program.
6013 CWBRC_COMMAND_FAILED

Command failed.
6014 CWBRC_PROGRAM_NOT_FOUND

Program not found or could not be accessed.
6015 CWBRC_PROGRAM_ERROR

Error occurred when calling the program.
6016 CWBRC_COMMAND_TOO_LONG

Command string is longer than the maximum of 6000 characters.
6099 CWBRC_UNEXPECTED_ERROR

Unexpected error.

Security APIs return codes:
6000 CWBSY_UNKNOWN_USERID

User ID does not exist.
6002 CWBSY_WRONG_PASSWORD

Password is not correct for specified user ID.
6003 CWBSY_PASSWORD_EXPIRED

Password has expired.
6004 CWBSY_INVALID_PASSWORD

One or more characters in the password are not valid or the password
is too long.

6007 CWBSY_GENERAL_SECURITY_ERROR
A general security error occurred. The user profile does not have a
password or the password validation program found an error in the
password.

6009 CWBSY_INVALID_PROFILE
The AS/400 user profile is not valid.

6011 CWBSY_USER_PROFILE_DISABLED
The iSeries user profile (user ID) has been set to disabled.

6013 CWBSY_USER_CANCELLED
The user cancelled from the user ID/password prompt.

6015 CWBSY_INVALID_USERID
One or more characters in the user ID is not valid or the user ID is
too long.

6016 CWBSY_UNKNOWN_SYSTEM
The system specified is unknown.

6019 CWBSY_TP_NOT_VALID
The PC could not validate the iSeries security server. This could
indicate tampering with the IBM supplied security server program on
the iSeries.

6022 CWBSY_NOT_LOGGED_ON
There is no user currently logged on for the specified system.

6025 CWBSY_SYSTEM_NOT_CONFIGURED
The system specified in the security object has not been configured.

6026 CWBSY_NOT_VERIFIED
The user ID and password defined in the object has not yet been
verified. You must verify using cwbSY_VerifyUserIDPwd API.

6255 CWBSY_INTERNAL_ERROR
Internal error. Contact IBM Service.

The following return codes are for change password APIs:

Chapter 4. iSeries Access for Windows® C/C++ APIs 29

6257 CWBSY_PWD_TOO_LONG
The new password contains too many characters. The maximum number of
characters allowed is defined by the iSeries system value, QPWDMAXLEN.

6258 CWBSY_PWD_TOO_SHORT
The new password does not contain enough characters. The minimum
number of characters allowed is defined by the iSeries system value,
QPWDMINLEN.

6259 CWBSY_PWD_REPEAT_CHARACTER
The new password contains a character used more than once. The iSeries
configuration (system value QPWDLMTREP) does not allow passwords to
contain a repeat character.

6260 CWBSY_PWD_ADJACENT_DIGITS
The new password contains two numbers next to each other. The iSeries
configuration (system value QPWDLMTAJC) does not allow passwords to
contain consecutive digits.

6261 CWBSY_PWD_CONSECUTIVE_CHARS
The new password contains a character repeated consecutively. The
iSeries configuration (system value QPWDLMTREP) does not allow a
password to contain a character repeated consecutively.

6262 CWBSY_PWD_PREVIOUSLY_USED
The new password matches a previously used password. The iSeries
configuration (system value QPWDRQDDIF) requires new passwords to be
different than any previous password.

6263 CWBSY_PWD_DISALLOWED_CHAR
The new password uses an installation disallowed character. iSeries
configuration (system value QPWDLMTCHR) restricts certain characters
from being used in new passwords.

6264 CWBSY_PWD_NEED_NUMERIC
The new password must contain a number. The iSeries configuration
(system value QPWDRQDDGT) requires new passwords contain one or more
numeric digits.

6266 CWBSY_PWD_MATCHES_OLD
The new password matches an old password in one or more character
positions. The AS/400 configuration (system value QPWDPOSDIF) does
not allow the same character to be in the same position as a
previous password.

6267 CWBSY_PWD_NOT_ALLOWED
The password was rejected.

6268 CWBSY_PWD_MATCHES_USERID
The password matches the user ID.

6269 CWBSY_PWD_PRE_V3
The old password was created on a pre-V3 system which used a
different encryption technique. Password must be changed manually on
the AS/400.

6270 CWBSY_LAST_INVALID_PASSWORD
The next invalid will disable the user profile.

Serviceability APIs return codes:
6000 CWBSV_INVALID_FILE_TYPE

Unusable file type passed-in.
6001 CWBSV_INVALID_RECORD_TYPE

Unusable record type passed-in.
6002 CWBSV_INVALID_EVENT_TYPE

Unusable event type detected.
6003 CWBSV_NO_ERROR_MESSAGES

No error messages associated with error handle.
6004 CWBSV_ATTRIBUTE_NOT_SET

Attribute not set in current message.
6005 CWBSV_INVALID_MSG_CLASS

Unusable message class passed-in.

System Object Access APIs return codes:

0 CWBSO_NO_ERROR
No error occurred.

30 iSeries: iSeries Access for Windows Programming

1 CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

2 CWBSO_LOW_MEMORY
Not enough memory is available for the request.

3 CWBSO_BAD_LISTTYPE
The value specified for type of list is not valid.

4 CWBSO_BAD_HANDLE
The handle specified is not valid.

5 CWBSO_BAD_LIST_HANDLE
The list handle specified is not valid.

6 CWBSO_BAD_OBJ_HANDLE
The object handle specified is not valid.

7 CWBSO_BAD_PARMOBJ_HANDLE
The parameter object handle specified is not valid.

8 CWBSO_BAD_ERR_HANDLE
The error handle specified is not valid.

9 CWBSO_BAD_LIST_POSITION
The position in list specified does not exist.

10 CWBSO_BAD_ACTION_ID
An action ID specified is not valid for the type of list.

11 CWBSO_NOT_ALLOWED_NOW
The action requested is not allowed at this time.

12 CWBSO_BAD_INCLUDE_ID
The filter ID specified is not valid for this list.

13 CWBSO_DISP_MSG_FAILED
The request to display the message failed.

14 CWBSO_GET_MSG_FAILED
The error message text could not be retrieved.

15 CWBSO_BAD_SORT_ID
A sort ID specified is not valid for the type of list.

16 CWBSO_INTERNAL_ERROR
An internal processing error occurred.

17 CWBSO_NO_ERROR_MESSAGE
The error handle specified contains no error message.

18 CWBSO_BAD_ATTRIBUTE_ID
The attribute key is not valid for this object.

19 CWBSO_BAD_TITLE
The title specified is not valid.

20 CWBSO_BAD_FILTER_VALUE
The filter value specified is not valid.

21 CWBSO_BAD_PROFILE_NAME
The profile name specified is not valid.

22 CWBSO_DISPLAY_FAILED
The window could not be created.

23 CWBSO_SORT_NOT_ALLOWED
Sorting is not allowed for this type of list.

24 CWBSO_CANNOT_CHANGE_ATTR
Attribute is not changeable at this time.

25 CWBSO_CANNOT_READ_PROFILE
Cannot read from the specified profile file.

26 CWBSO_CANNOT_WRITE_PROFILE
Cannot write to the specified profile file.

27 CWBSO_BAD_SYSTEM_NAME
The system name specified is not a valid iSeries system name.

28 CWBSO_SYSTEM_NAME_DEFAULTED
No system name was specified on the "CWBSO_CreateListHandle" call
for the list.

29 CWBSO_BAD_FILTER_ID
The filter ID specified is not valid for the type of list.

iSeries Access for Windows Administration APIs
iSeries Access for Windows Administration APIs provide functions that access information about the
iSeries Access for Windows code that is installed on the PC. Administration APIs allow you to determine:
v The version and service level of iSeries Access for Windows
v The install status of individual components

Chapter 4. iSeries Access for Windows® C/C++ APIs 31

v The install status of iSeries Navigator plug-ins

iSeries Access for Windows Administration APIs required files:

Header file Import library Dynamic Link Library

cwbad.h cwbapi.lib cwbad.dll

Programmer’s Toolkit:
The Programmer’s Toolkit provides Administration APIs documentation, access to the cwbad.h
header file, and links to sample programs. To access this information, open the Programmer’s
Toolkit and select Client Information —> C/C++ APIs.

iSeries Access for Windows Administration APIs topics:
v iSeries Access for Windows Administration APIs listing
v “Example: Administration APIs” on page 40
v “Administration APIs return code” on page 22

Related topics:

v “iSeries system name formats for ODBC Connection APIs” on page 12

v “OEM, ANSI, and Unicode considerations” on page 12

Administration APIs listing
v cwbAD_GetClientVersion

v cwbAD_GetProductFixLevel

v cwbAD_IsComponentInstalled

v cwbAD_IsOpNavPluginInstalled

32 iSeries: iSeries Access for Windows Programming

cwbAD_GetClientVersion

Purpose: Get the version of the iSeries Access for Windows product that currently is installed on a PC.

Syntax:

unsigned int CWB_ENTRY cwbAD_GetClientVersion(
unsigned long *version
unsigned long *release
unsigned long *modificationLevel);

Parameters:

unsigned long *version - output
Pointer to a buffer where the version level of the iSeries Access for Windows product is returned.

unsigned long *release - output
Pointer to a buffer where the release level of the iSeries Access for Windows product is returned.

unsigned long *modificationLevel - output
Pointer to a buffer where the modification level of the iSeries Access for Windows product is returned.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
One or more pointer parameters are null.

Usage: If the return code is not CWB_OK, the values in version, release, and modificationLevel are
meaningless.

Chapter 4. iSeries Access for Windows® C/C++ APIs 33

cwbAD_GetProductFixLevel

Purpose: Returns the current fix level of iSeris Access for Windows.

Syntax:

unsigned int CWB_ENTRY cwbAD_GetProductFixLevel(
char *szBuffer
unsigned long *ulBufLen);

Parameters:

char *szBuffer - output
Buffer into which the product fix level string will be written.

unsigned long * ulBufLen - input/output
Size of szBuffer, including space for the NULL terminator. On output, will contain the length of the fix
level string, including the terminating NULL.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Buffer overflow. The required length is returned in ulBufLen.

CWB_INVALID_POINTER
Invalid pointer.

Usage: Returns the fix level of the iSeries Access for Windows product. Returns an empty string if fixes
have not been applied.

34 iSeries: iSeries Access for Windows Programming

cwbAD_IsComponentInstalled

Purpose: Indicates whether a specific iSeries Access for Windows component is installed.

Syntax:

unsigned long CWB_ENTRY cwbAD_IsComponentInstalled(
unsigned long ulComponentID,
cwb_Boolean *bIndicator);

Parameters:

unsigned long ulComponentID - input
Must be set to one of the following component IDs:

CWBAD_COMP_SSL
Secure Sockets Layer

CWBAD_COMP_SSL_128_BIT
Secure Sockets Layer 128 bit

CWBAD_COMP_SSL_56_BIT
Secure Sockets Layer 56 bit

CWBAD_COMP_SSL_40_BIT
Secure Sockets Layer 40 bit

CWB_COMP_BASESUPPORT
iSeries Access for Windows required programs

CWBAD_COMP_OPTIONAL_COMPS
iSeries Access for Windows Optional Components

CWBAD_COMP_DIRECTORYUPDATE
Directory Update

CWBAD_COMP_IRC
Incoming Remote Command

CWBAD_COMP_MAPI
MAPI

CWBAD_COMP_OUG
User’s Guide

CWBAD_COMP_OPNAV
iSeries Navigator

CWBAD_COMP_DATA_ACCESS
Data Access

CWBAD_COMP_DATA_TRANSFER
Data Transfer

CWBAD_COMP_DT_BASESUPPORT
Data Transfer Base Support

CWBAD_COMP_DT_EXCEL_ADDIN
Data Transfer Excel Add-in

CWBAD_COMP_DT_WK4SUPPORT
Data Transfer WK4 file support

CWBAD_COMP_ODBC
ODBC

Chapter 4. iSeries Access for Windows® C/C++ APIs 35

CWBAD_COMP_OLEDB
OLE DB Provider

CWBAD_COMP_AFP_VIEWER
AFP™ Workbench Viewer

CWBAD_COMP_JAVA_TOOLBOX
Java Toolbox

CWBAD_COMP_PC5250
PC5250 Display and Printer Emulator

PC5250 Display and Printer Emulator subcomponents:

CWBAD_COMP_PC5250_BASE_KOREAN

CWBAD_COMP_PC5250_PDFPDT_KOREAN

CWBAD_COMP_PC5250_BASE_SIMPCHIN

CWBAD_COMP_PC5250_PDFPDT_SIMPCHIN

CWBAD_COMP_PC5250_BASE_TRADCHIN

CWBAD_COMP_PC5250_PDFPDT_TRADCHIN

CWBAD_COMP_PC5250_BASE_STANDARD

CWBAD_COMP_PC5250_PDFPDT_STANDAR

CWBAD_COMP_PC5250_FONT_ARABIC

CWBAD_COMP_PC5250_FONT_BALTIC

CWBAD_COMP_PC5250_FONT_LATIN2

CWBAD_COMP_PC5250_FONT_CYRILLIC

CWBAD_COMP_PC5250_FONT_GREEK

CWBAD_COMP_PC5250_FONT_HEBREW

CWBAD_COMP_PC5250_FONT_LAO

CWBAD_COMP_PC5250_FONT_THAI

CWBAD_COMP_PC5250_FONT_TURKISH

CWBAD_COMP_PC5250_FONT_VIET

CWBAD_COMP_PRINTERDRIVERS
Printer Drivers

CWBAD_COMP_AFP_DRIVER
AFP printer driver

CWBAD_COMP_SCS_DRIVER
SCS printer driver

CWBAD_COMP_OP_CONSOLE
Operations Console

CWBAD_COMP_TOOLKIT
Programmer’s Toolkit

CWBAD_COMP_TOOLKIT_BASE
Headers, Libraries, and Documentation

CWBAD_COMP_TOOLKIT_VBW
Visual Basic Wizard

CWBAD_COMP_EZSETUP
EZ Setup

CWBAD_COMP_TOOLKIT_JAVA_TOOLS
Programmer’s Toolkit Tools for Java

36 iSeries: iSeries Access for Windows Programming

CWBAD_COMP_SCREEN_CUSTOMIZER_ENABLER
Screen Customizer Enabler

CWBAD_COMP_OPNAV_BASESUPPORT
iSeries Navigator Base Support

CWBAD_COMP_OPNAV_BASE_OPS
iSeries Navigator Basic Operations

CWBAD_COMP_OPNAV_JOB_MGMT
iSeries Navigator Job Management

CWBAD_COMP_OPNAV_SYS_CFG
iSeries Navigator System Configuration

CWBAD_COMP_OPNAV_NETWORK
iSeries Navigator Networks

CWBAD_COMP_OPNAV_SECURITY
iSeries Navigator Security

CWBAD_COMP_OPNAV_USERS_GROUPS
iSeries Navigator Users and Groups

CWBAD_COMP_OPNAV_DATABASE
iSeries Navigator Database

CWBAD_COMP_OPNAV_MULTIMEDIA
iSeries Navigator Multimedia

CWBAD_COMP_OPNAV_BACKUP
iSeries Navigator Backup

CWBAD_COMP_OPNAV_APP_DEV
iSeries Navigator Application Development

CWBAD_COMP_OPNAV_APP_ADMIN
iSeries Navigator Application Administration

CWBAD_COMP_OPNAV_FILE_SYSTEMS
iSeries Navigator File Systems

CWBAD_COMP_OPNAV_MGMT_CENTRAL
iSeries Navigator Management Central

CWBAD_COMP_OPNAV_MGMT_COMMANDS
iSeries Navigator Management Central - Commands

CWBAD_COMP_OPNAV_MGMT_PACK_PROD
iSeries Navigator Management Central - Packages and Products

CWBAD_COMP_OPNAV_MGMT_MONITORS
iSeries Navigator Management Central - Monitors

CWBAD_COMP_OPNAV_LOGICAL_SYS
iSeries Navigator Logical Systems

CWBAD_COMP_OPNAV_ADV_FUNC_PRES
iSeries Navigator Advanced Function Presentation

cwb_Boolean *bIndicator - output
Will contain CWB_TRUE if the component is installed. Will return CWB_FALSE if the component is not
installed. Will not be set if an error occurs.

Return Codes: The following list shows common return values.

Chapter 4. iSeries Access for Windows® C/C++ APIs 37

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Invalid pointer.

CWB_INVALID_COMPONENT_ID
The component ID is invalid for this release.

38 iSeries: iSeries Access for Windows Programming

cwbAD_IsOpNavPluginInstalled

Purpose: Indicates whether a specific iSeries Navigator plug-in is installed.

Syntax:

unsigned long CWB_ENTRY cwbAD_IsOpNavPluginInstalled(
const char *szPluginName,
cwb_Boolean *bIndicator);

Parameters:

const char* szPluginName - input
Pointer to a null-terminated string that contains the name of the plug-in.

cwb_Boolean *bIndicator - output
Will contain CWB_TRUE if the plug-in is installed. Will return CWB_FALSE if the component is not
installed. Will not be set if an error occurs.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
One of the pointer parameters is NULL.

Usage: If the return value is not CWB_OK, the value in bIndicator is meaningless.

Chapter 4. iSeries Access for Windows® C/C++ APIs 39

Example: Administration APIs
This example demonstrates how an application might use iSeries Access for Windows Administration APIs.
In this example, the APIs are used to get and display:

v The current iSeries Access for Windows Version/Release/Modification level

v The current service pack (fix) level

v The components that currently are installed on the PC

The user then is allowed to enter iSeries Navigator plug-in names, and is informed whether the plug-in is
installed.

Usage notes:
Include cwbad.h *

Link with cwbapi.lib

#include <windows.h>
#include <stdio.h>

#include "cwbad.h"

/*
* This is the highest numbered component ID we know about (it is
* the ID of the last component defined in cwbad.h).
*/
#define LAST_COMPID_WE_KNOW_ABOUT (CWBAD_COMP_SSL_40_BIT)

/*
* Array of component names, taken from comments for component IDs
* in cwbad.h, so we can display human-readable component descriptions.
* In the compDescr array, the component ID for a component must match
* the index in the array of that component’s description.
*
* For a blank or unknown component name, we provide a string to display
* an indication that the component ID is unknown, and what that ID is.
*/
static char* compDescr[LAST_COMPID_WE_KNOW_ABOUT + 1] = {

"", // #0 is not used
"Required programs",
"Optional Components",
"Directory Update",
"Incoming Remote Command",
"", // not used,
"Online User’s Guide",
"iSeries Navigator",
"Data Access",
"Data Transfer",
"Data Transfer Base Support",
"Data Transfer Excel Add-in",
"Data Transfer WK4 file support",
"ODBC",
"OLE DB Provider",
"AFP Workbench Viewer",
"iSeries Java Toolbox",
"5250 Display and Printer Emulator",
"Printer Drivers",
"AFP printer driver",
"SCS printer driver",
"iSeries Operations Console",
"iSeries Access Programmer’s Toolkit",
"Headers, Libraries, and Documentation",

40 iSeries: iSeries Access for Windows Programming

"Visual Basic Wizards",
"EZ Setup",

"Java Toolkit"
"Screen customizer" // #27
"", "", "", "", "", //------------ #28-29

"", "", "", "", "", // #30-34
"", "", "", "", "", // #35-39
"", "", "", "", "", // #40-44
"", "", "", "", "", // #45-49
"", "", "", "", "", // not #50-54
"", "", "", "", "", // #55-59
"", "", "", "", "", // #60-64
"", "", "", "", "", // #65-69
"", "", "", "", "", // used #70-74
"", "", "", "", "", // #75-79
"", "", "", "", "", // #80-84
"", "", "", "", "", // #85-89
"", "", "", "", "", // #90-94
"", "", "", "", "", //------------ #95-99
"iSeries Navigator Base Support", // #100
"iSeries Navigator Basic Operations",
"iSeries Navigator Job Management",
"iSeries Navigator System Configuration",
"iSeries Navigator Networks",
"iSeries Navigator Security",
"iSeries Navigator Users and Groups",
"iSeries Navigator Database",
"iSeries Navigator Multimedia",
"iSeries Navigator Backup",
"iSeries Navigator Application Development",
"iSeries Navigator Application Administrat",
"iSeries Navigator File Systems",
"iSeries Navigator Management Central",

"iSeries Navigator Management Central - Commands",
"iSeries Navigator Management Central - Packages and Products",
"iSeries Navigator Logical Systems",
"iSeries Navigator Advanced Function Presentation",
"", //------------ #119

"", "", "", "", "", // not #120-124
"", "", "", "", "", // #125-129
"", "", "", "", "", // #130-134
"", "", "", "", "", // used #135-139
"", "", "", "", "", // #140-144
"", "", "", "", "", //------------ #145-149
"PC5250: BASE_KOREAN", // #150
"PC5250: PDFPDT_KOREAN",
"PC5250: BASE_SIMPCHIN",
"PC5250: PDFPDT_SIMPCHIN",
"PC5250: BASE_TRADCHIN",
"PC5250: PDFPDT_TRADCHIN",
"PC5250: BASE_STANDARD",
"PC5250: PDFPDT_STANDARD",
"PC5250: FONT_ARABIC",
"PC5250: FONT_BALTIC",
"PC5250: FONT_LATIN2",
"PC5250: FONT_CYRILLIC",
"PC5250: FONT_GREEK",
"PC5250: FONT_HEBREW",
"PC5250: FONT_LAO",
"PC5250: FONT_THAI",
"PC5250: FONT_TURKISH",
"PC5250: FONT_VIET",
"", "", //------------ #168-169

Chapter 4. iSeries Access for Windows® C/C++ APIs 41

"", "", "", "", "", // #170-174
"", "", "", "", "", // not #175-179
"", "", "", "", "", // #180-184
"", "", "", "", "", // used #185-189
"", "", "", "", "", // #190-194
"", "", "", "", "", //------------ #195-199
"Secure Sockets Layer (SSL)",
"SSL 128-bit subcomponent",
"SSL 56-bit subcomponent",
"SSL 40-bit subcomponent" } ; // last one defined

static char unknownComp[] = "unknown, ID= ";
static char* pInsertID = &(unknownComp[12]); // insert ID here!

/**
* Show the iSeries Access for Windows Version/Release/Modification level
**/
void showCA_VRM()
{

ULONG caVer, caRel, caMod;
UINT rc;
char fixlevelBuf[MAX_PATH];
ULONG fixlevelBufLen = sizeof(fixlevelBuf);

printf("iSeries Access level installed:\n\n");

rc = cwbAD_GetClientVersion(&caVer;, &caRel;, &caMod;);
if (rc != CWB_OK)
{

printf(" Error %u occurred when calling cwbAD_GetClientVersion()\n\n",
rc);

}
else
{

printf(" Version %lu, Release %lu, Modification %lu\n\n",
caVer, caRel, caMod);

printf("iSeries Access service pack level installed:\n\n");
rc = cwbAD_GetProductFixLevel(fixlevelBuf, &fixlevelBufLen;);
if (rc != CWB_OK)
{

printf(" Error %u occurred when calling "
"cwbAD_GetProduceFixLevel()\n\n", rc);

}
else if (fixlevelBuf[0] == ’\0’) // empty, no service packs applied
{

printf(" None\n\n");
}
else
{

printf(" %s\n\n", fixlevelBuf);
}

}
}

/**
* Call iSeries Access for Windows API to determine if the component is installed,
* and pass back:
* NULL if the component is not installed or an error occurs,

42 iSeries: iSeries Access for Windows Programming

* OR
* A string indicating the component name is unknown if the
* component ID is higher than we know about OR the component
* description is blank,
* OR
* The human-readable component description if we know it.
**/
char* isCompInstalled(ULONG compID)
{

cwb_Boolean bIsInstalled;
char* pCompName;

UINT rc = cwbAD_IsComponentInstalled(compID, &bIsInstalled;);

/*
* Case 1: Error OR component not installed, return NULL to
* indicate not installed.
*/
if ((rc != CWB_OK) || (bIsInstalled == CWB_FALSE))
{

pCompName = NULL;
}

/*
* Case 2: Component IS installed, but we do not know its name,
* return component name unknown string.
*/
else if ((compID > LAST_COMPID_WE_KNOW_ABOUT) ||

(compDescr[compID][0] == ’\0’))
{

pCompName = unknownComp;
sprintf(pInsertID, "%lu", compID);

}

/*
* Case 3: Component IS installed, we have a name, return it
*/
else
{

pCompName = compDescr[compID];
}

return pCompName;
}

/**
* List the iSeries Access for Windows components that currently are installed.
**/
void showCA_CompInstalled()
{

ULONG compID;
char* compName;

printf("iSeries Access components installed:\n\n");

/*
* Try all components we know about, plus a bunch more in case some
* have been added (via service pack).
*/
for (compID = 0;

compID < (LAST_COMPID_WE_KNOW_ABOUT + 50);

Chapter 4. iSeries Access for Windows® C/C++ APIs 43

compID++)
{

compName = isCompInstalled(compID);
if (compName != NULL)
{

printf(" %s\n", compName);
}

}

printf("\n");
}

/**
* MAIN PROGRAM BODY
**/
void main(void)
{

UINT rc;
char pluginName[MAX_PATH];
cwb_Boolean bPluginInstalled;

printf("=======================================\n");
printf("iSeries Access What’s Installed Reporter\n");
printf("=======================================\n\n");

showCA_VRM();
showCA_CompInstalled();

/*
* Allow user to ask by name what plug-ins are installed.
*/
while (TRUE) /* REMINDER: requires a break to exit the loop! */
{

printf("Enter plug-in to check for, or DONE to quit:\n");
gets(pluginName);
if (stricmp(pluginName, "DONE") == 0)
{

break; /* exit from the while loop, we are DONE at user’s request */
}

rc = cwbAD_IsOpNavPluginInstalled(pluginName, &bPluginInstalled;);
if (rc == CWB_OK)
{

if (bPluginInstalled == CWB_TRUE)
{

printf("The plug-in ’%s’ is installed.\n\n", pluginName);
}
else
{

printf("The plug-in ’%s’ is NOT installed.\n\n", pluginName);
}

}
else
{

printf(
"Error %u occurred when calling cwbAD_IsOpNavPluginInstalled.\n\n",
rc);

}

44 iSeries: iSeries Access for Windows Programming

} // end while (TRUE)

printf("\nEnd of program.\n\n");
}

iSeries Access for Windows Communications and Security APIs
The iSeries Access for Windows Communications and Security topic shows you how to use iSeries Access
for Windows application programming interfaces (APIs) to:

v Get, use, and delete an iSeries system object. Various iSeries Access for Windows APIs require a
system object. It holds information about connecting to, and validating security (user ID, password, and
signon date and time) on, an iSeries system. For more information, see “System object attributes” and
“System object attributes listing” on page 46.

v Obtain information about environments and connections that are configured in the system list when
you use iSeries Access for Windows. The system list is a list of all currently configured environments,
and of systems within those environments. The system list is stored and managed ″per user,″ and is not
available to other users.

Note: It is not necessary for you to explicitly configure new systems to add them to the system list.
They are added automatically when you connect to a new system.

iSeries Access for Windows Communications and Security APIs required files:

Header file Import library Dynamic Link
Library

System object APIs System list APIs cwbapi.lib cwbco.dll

cwbcosys.h cwbco.h

Programmer’s Toolkit:
The Programmer’s Toolkit provides Communications and Security documentation, access to the
cwbco.h and cwbcosys.h header files, and links to sample programs. To access this information,
open the Programmer’s Toolkit and select Communications and Security —> C/C++ APIs.

iSeries Access for Windows Communications and Security topics:
v iSeries Access for Windows Communications and Security system object APIs listing
v iSeries Access for Windows Communications system list APIs listing
v “Example: Using iSeries Access for Windows communications APIs” on page 132
v “Communications APIs return codes” on page 22
v “Security APIs return codes” on page 29
v “Global iSeries Access return codes” on page 18

Related topics:

v “iSeries system name formats for ODBC Connection APIs” on page 12

v “OEM, ANSI, and Unicode considerations” on page 12

System object attributes
System object attributes affect the behavior of signing on and communicating with the iSeries system
that the system object represents.

Most attributes can be changed until a successful signon has occurred (either as the result of a successful
call to “cwbCO_Signon” on page 102 or to “cwbCO_Connect” on page 59). After the signon has taken
place successfully, calling the API that tries to change the value of such an attribute will fail with return
code CWB_INV_AFTER_SIGNON. The only two attributes that can be changed after a successful signon
are the Window Handle and Connect Timeout.

Chapter 4. iSeries Access for Windows® C/C++ APIs 45

Some values and the ability to change them may be controlled via policies. Policies are controls that a
systems administrator can set up to mandate default attribute values, and to prohibit changes to attributes.
The default values that are specified in the System object attributes listing topic (link below) are used
under the following conditions:

v If policies do not specify or suggest different values

v If a value for such an attribute has not been configured explicitly for the iSeries system in the system list

If an attribute’s default value may be set by policy, this also is noted. If changing an attribute’s value can
be prohibited by policy, then:

v An API is provided to check for the attribute’s modifiability.

v A specific return code is provided by the attribute’s set method if the set fails because of such a policy.

To view a listing of system object attributes:
See “System object attributes listing”

System object attributes listing
Following is a list of system object attributes. It includes descriptions, requirements, and considerations.
Also listed with each attribute are:

v The APIs that you can use to get and to set it

v What its default value is when the system object is created

Note: The attributes’ settings apply ONLY to the system object for which they are set, NOT to any other
system objects, even if other system objects have the same iSeries system name.

iSeries system name:
The iSeries system with which to communicate and use by way of this instance of a system
object. This can be set only at the time cwbCO_CreateSystem or cwbCO_CreateSystemLike is
called. Note that the system name is used as the unique identifier when validating security
information for a specific user ID: If two different system objects contain different system names
that represent the same physical iSeries system, the user ID and password require separate
validation for the two system objects. For example, this applies if the system names ″SYS1″ and
″SYS1.ACME.COM″ represent the same iSeries system. This may result in double prompting, and
the use of different default user IDs when connecting.

Get by using cwbCO_GetSystemName

Default:
There is no default, since this is explicitly set when the system object is created.

Description
Description of the configured connection to the iSeries system.

Set using iSeriesNavigator.

Retreive using cwbCO_GetDescription

The description is stored with each system object, and never changed for that system object. If the
description is changed using iSeries Navigator, system objects for that system that existed before
the change was made are not changed. Only new system objects will contain the new description.

Default:
Blank. This may be overridden by policies.

User ID:
The user ID used to logon to the iSeries system.

Get by using cwbCO_GetUserIDEx

Set by using cwbCO_SetUserIDEx

46 iSeries: iSeries Access for Windows Programming

Default:
The first time that you connect to the iSeries system which is named in the system object,
you may be prompted:
v To specify a default user ID
v To specify that the default user ID should be the same as your Windows user ID
v That no default will be used

On subsequent connection attempts, the default user ID that is used will depend on which
option you chose when prompted during the first connection attempt.

Password:
The password used to signon to the iSeries system.

Set by using cwbCO_SetPassword

Default:
Blank (no password set) if the user ID that is set in the system object never has signed on
to the iSeries system that is named in the system object. If a previous successful signon
or connection has been made to the iSeries system that is named in the system object,
that password may be used for the next signon or connection attempt. The system will no
longer cache a password in the iSeries Access for Windows volatile password cache if the
password comes in through the cwbCO_SetPassword() API. Previously, this would have
gone into the volatile (i.e. session) password cache.

Default user mode:
Controls behavior that is associated with the default user ID, including where to obtain it and
whether to use it. If it is not set (if the value is CWBCO_DEFAULT_USER_MODE_NOT_SET), the
user may be prompted to choose which behavior is desired at the time a signon is attempted.

Get by using cwbCO_GetDefaultUserMode

Set by using cwbCO_SetDefaultUserMode

Check for modify restriction by using cwbCO_CanModifyDefaultUserMode

Default:
CWBCO_DEFAULT_USER_MODE_NOT_SET

Note: The default may be overridden by policies.

Prompt mode:
Controls when iSeries Access for Windows will prompt the user for user ID and password. See the
declaration comments for cwbCO_SetPromptMode for possible values and for associated
behaviors.

Get by using cwbCO_GetPromptMode

Set by using cwbCO_SetPromptMode

Default:
CWBCO_PROMPT_IF_NECESSARY

Window handle:
The window handle of the calling application. If this is set, any prompting that iSeries Access for
Windows does related to iSeries signon will use the window handle, and will be modal to the
associated window. This means that the prompt never will be hidden UNDER the main application
window if its handle is associated with the system object. If no window handle is set, the prompt
might be hidden behind the main application window, if one exists.

Get by using cwbCO_GetWindowHandle

Set by using cwbCO_SetWindowHandle

Chapter 4. iSeries Access for Windows® C/C++ APIs 47

Default:
NULL (not set)

Validate mode:
Specifies, when validating user ID and password, whether communication with the iSeries system
to perform this validation actually occurs. See the declaration comments for
cwbCO_SetValidateMode and cwbCO_GetValidateMode for possible values and for associated
behaviors.

Get by using cwbCO_GetValidateMode

Set by using cwbCO_SetValidateMode

Default:
CWBCO_VALIDATE_IF_NECESSARY

Use Secure Sockets:
Specifies whether iSeries Access for Windows will use secure sockets to authenticate the server
(iSeries system) and to encrypt data that is sent and received. There are some cases where
secure sockets cannot be used (for example, when the software support for Secure Sockets has
not been installed on the PC). Accordingly, an application or user request for secure sockets use
may fail, either at the time the cwbCO_UseSecureSockets API is called, or at connect time. If no
such failure occurs, then secure sockets is being used, and cwbCO_IsSecureSockets will return
CWB_TRUE.

Get by using cwbCO_IsSecureSockets

Set by using cwbCO_UseSecureSockets

Check for modify restriction by using cwbCO_CanModifyUseSecureSockets

Default:
Whatever has been configured for this iSeries system in the System List will be used. If no
configuration for this iSeries system exists, or if the configuration specifies to use the
iSeries Access default, then secure sockets will not be used (CWB_FALSE).

Note: The default may be overridden by policies.

Port lookup mode:
Specifies how to retrieve the remote port for an iSeries host service. It specifies whether to look it
up locally (on the PC), on the iSeries system, or to simply use the default (″standard″) port for the
specified service. If local lookup is selected, the standard TCP/IP method of lookup in the
SERVICES file on the PC is used. If server lookup is specified, a connection to the iSeries system
server mapper is made to retrieve the port number by lookup from the iSeries system service
table. If either the local or server lookup method fails, then connecting to the service will fail. For
more information and for possible values, see the API declaration for cwbCO_SetPortLookupMode.

Get by using cwbCO_GetPortLookupMode

Set by using cwbCO_SetPortLookupMode

Check for modify restriction by using cwbCO_CanModifyPortLookupMode

Default:
Whatever has been configured for this iSeries system in the System List will be used. If no
configuration for this iSeries system exists, the default is
CWBCO_PORT_LOOKUP_SERVER.

Note: The default may be overridden by policies.

Persistence mode:
Specifies whether the iSeries system named in this system object may be added to the System

48 iSeries: iSeries Access for Windows Programming

List (if not already in the list) once a successful call to cwbCO_Connect has completed. See
cwbCO_SetPersistenceMode for more information and for possible values.

Get by using cwbCO_GetPersistenceMode

Set by using cwbCO_SetPersistenceMode

Check for modify restriction by using cwbCO_CanModifyPersistenceMode

Default:
CWBCO_MAY_MAKE_PERSISTENT

Note: The default may be overridden by policies.

Connect timeout
Specifies how long iSeries Access for Windows will wait for a connection attempt to complete. This
setting does not affect how long the TCP/IP communications stack will wait before giving up. The
TCP/IP communications stack might timeout before the iSeries Access connection timeout has
expired. See cwbCO_SetConnectTimeout for more information and possible values. This value
may be changed for a system object at any time.

get using cwbCO_GetConnectTimeout

set using cwbCO_SetConnectTimeout

Default:
CWBCO_CONNECT_TIMEOUT_DEFAULT

Note: The default may be overridden by policies.

iSeries Access for Windows Communications and Security system
object APIs listing
The following Communications and Security system object APIs are listed alphabetically, by function:

Function Communications and Security system object APIs

Create and delete a system object cwbCO_CreateSystem
cwbCO_CreateSystemLike
cwbCO_DeleteSystem

Connect to and disconnect from the
iSeries system, and for related behavior

cwbCO_Connect
cwbCO_Verify
cwbCO_Disconnect
cwbCO_IsConnected
cwbCO_SetPersistenceMode
cwbCO_GetPersistenceMode
cwbCO_SetConnectTimeout
cwbCO_GetConnectTimeout

Chapter 4. iSeries Access for Windows® C/C++ APIs 49

Function Communications and Security system object APIs

Security validation and data cwbCO_SetUserIDEx
cwbCO_GetUserIDEx
cwbCO_SetPassword
cwbCO_SetValidateMode
cwbCO_GetValidateMode
cwbCO_SetDefaultUserMode
cwbCO_GetDefaultUserMode
cwbCO_SetPromptMode
cwbCO_GetPromptMode
cwbCO_GetWindowHandle
cwbCO_SetWindowHandle
cwbCO_Signon
cwbCO_HasSignedOn
cwbCO_VerifyUserIDPassword
cwbCO_GetSignonDate
cwbCO_GetPrevSignonDate
cwbCO_GetPasswordExpireDate
cwbCO_GetFailedSignons
cwbCO_ChangePassword

Get and set other system object
attributes, or determine if they can be
set (if they are restricted by policies)

cwbCO_GetDescription
cwbCO_GetSystemName
cwbCO_UseSecureSockets
cwbCO_IsSecureSockets
cwbCO_SetPortLookupMode
cwbCO_GetPortLookupMode
cwbCO_SetIPAddressLookupMode
cwbCO_GetIPAddressLookupMode
cwbCO_SetIPAddress
cwbCO_GetIPAddress
cwbCO_CanModifyDefaultUserMode
cwbCO_CanModifyIPAddressLookupMode
cwbCO_CanModifyIPAddress
cwbCO_CanModifyPortLookupMode
cwbCO_CanModifyPersistenceMode
cwbCO_CanModifyUseSecureSockets
cwbCO_GetHostCCSID
cwbCO_GetHostVersionEx

50 iSeries: iSeries Access for Windows Programming

cwbCO_CanModifyDefaultUserMode

Purpose: Indicates whether the default user mode for the specified system object may be modified.

Syntax:

UINT CWB_ENTRY cwbCO_CanModifyDefaultUserMode(
cwbCO_SysHandle system,
cwb_Boolean *canModify);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwb_Boolean *canModify - output
Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage: This value may not be modified if policy settings prohibit its modification, or if a successful signon
or connection that is using the specified system object already has occurred. In these cases, canModify
will be set to CWB_FALSE. The results returned from this API are correct only at the time of the call.

If policy settings are changed or a signon or connection is performed using this system object, the results
of this API could become incorrect. This must be considered and managed, especially in a multi-threaded
application.

Chapter 4. iSeries Access for Windows® C/C++ APIs 51

cwbCO_CanModifyIPAddress

Purpose: Indicates whether IP Address that is used to connect may be modified for this system object.

Syntax:

UINT CWB_ENTRY cwbCO_CanModifyIPAddress(
cwbCO_SysHandle system,
cwb_Boolean *canModify);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwb_Boolean *canModify - output
Set to CWB_TRUE if the IP Address may be modified, otherwise set to CWB_FALSE.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage: This value may not be modified if policy settings prohibit its modification, or if a successful signon
or connection by using the specified system object already has occurred. In these cases, canModify will be
set to CWB_FALSE. This value may not be modified if the IP Address Lookup Mode is not
CWBCO_IPADDR_LOOKUP_NEVER, and policy settings prohibit modification of the IP Address Lookup
Mode. In that case, canModify will be set to CWB_FALSE. The results returned from this API are correct
only at the time of the call. If policy settings are changed or a signon or connection is performed using this
system object, the results of this API could become incorrect. This must be considered and managed,
especially in a multi-threaded application.

52 iSeries: iSeries Access for Windows Programming

cwbCO_CanModifyIPAddressLookupMode

Purpose: Indicates whether the IP Address Lookup Mode may be modified for this system object.

Syntax:

UINT CWB_ENTRY cwbCO_CanModifyIPAddressLookupMode(
cwbCO_SysHandle system,
cwb_Boolean *canModify);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwb_Boolean *canModify - output
Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage: This value may not be modified if policy settings prohibit its modification, or if a successful signon
or connection using the specified system object already has occurred. In these cases, canModify will be
set to CWB_FALSE. The results returned from this API are correct only at the time of the call.

If policy settings are changed or a signon or connection is performed using this system object, the results
of this API could become incorrect. This must be considered and managed, especially in a multi-threaded
application.

Chapter 4. iSeries Access for Windows® C/C++ APIs 53

cwbCO_CanModifyPersistenceMode

Purpose: Indicates whether persistence mode for the specified system object may be modified.

Syntax:

UINT CWB_ENTRY cwbCO_CanModifyPersistenceMode(
cwbCO_SysHandle system,
cwb_Boolean *canModify);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwb_Boolean *canModify - output
Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage: This value may not be modified if policy settings prohibit its modification, or if a successful signon
or connection by using the specified system object has already occurred. In these cases, canModify will be
set to CWB_FALSE. The results returned from this API are correct only at the time of the call. If policy
settings are changed or a signon or connection is performed using this system object, the results of this
API could become incorrect. This must be considered and managed, especially in a multi-threaded
application.

54 iSeries: iSeries Access for Windows Programming

cwbCO_CanModifyPortLookupMode

Purpose: Indicates whether the port lookup mode for the specified system object may be modified.

Syntax:

UINT CWB_ENTRY cwbCO_CanModifyPortLookupMode(
cwbCO_SysHandle system,
cwb_Boolean *canModify);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwb_Boolean *canModify - output
Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage: This value may not be modified if policy settings prohibit its modification, or if a successful signon
or connection by using the specified system object already has occurred. In these cases, canModify will be
set to CWB_FALSE. The results returned from this API are correct only at the time of the call. If policy
settings are changed or a signon or connection is performed using this system object, the results of this
API could become incorrect. This must be considered and managed, especially in a multi-threaded
application.

Chapter 4. iSeries Access for Windows® C/C++ APIs 55

cwbCO_CanModifyUseSecureSockets

Purpose: Indicates whether the secure sockets use setting may be modified for this system object.

Syntax:

UINT CWB_ENTRY cwbCO_CanModifyUseSecureSockets(
cwbCO_SysHandle system,
cwb_Boolean *canModify);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwb_Boolean *canModify - output
Set to CWB_TRUE if the secure sockets use setting may be modified, otherwise set to CWB_FALSE.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage: This value may not be modified if policy settings prohibit its modification, or if a successful signon
or connection using the specified system object has already occurred. In these cases, canModify will be
set to CWB_FALSE. The results returned from this API are correct only at the time of the call. If policy
settings are changed or a signon or connection is performed using this system object, the results of this
API could become incorrect. This must be considered and managed, especially in a multi-threaded
application.

56 iSeries: iSeries Access for Windows Programming

cwbCO_ChangePassword

Purpose: Changes the password of the specified user on the iSeries system from a specified old to a
specified new value. This API does NOT use the user ID and password that currently are set in the given
system object, nor does it change these values.

Syntax:

UINT CWB_ENTRY cwbCO_ChangePassword(
cwbCO_SysHandle system,
LPCSTR userID,
LPCSTR oldPassword,
LPCSTR newPassword,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the
iSeries system.

LPCSTR userID - input
A pointer to an ASCIIZ string that contains the user ID. The maximum length is
CWBCO_MAX_USER_ID + 1 characters, including the null terminator.

LPCSTR oldPassword - input
A pointer to a buffer which contains the old password. The maximum length is
CWBCO_MAX_PASSWORD + 1 bytes, including the null terminator.

LPCSTR newPassword - input
A pointer to a buffer which contains the new password. The maximum length is
CWBCO_MAX_PASSWORD + 1 bytes, including the null terminator.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
A pointer parameter is NULL.

CWB_GENERAL_SECURITY_ERROR
A general security error occurred. The user profile does not have a password or the password
validation program found an error in the password.

CWB_INVALID_PASSWORD
One or more characters in the new password is invalid or the password is too long.

CWB_INVALID_USERID
One or more characters in the user ID is invalid or the user ID is too long.

CWB_UNKNOWN_USERID
The supplied user ID is not known to this system.

CWB_WRONG_PASSWORD
Password is not correct.

Chapter 4. iSeries Access for Windows® C/C++ APIs 57

CWB_USER_PROFILE_DISABLED
The user ID has been disabled.

CWB_PW_TOO_LONG
New password longer than maximum accepted length.

CWB_PW_TOO_SHORT
New password shorter than minimum accepted length.

CWB_PW_REPEAT_CHARACTER
New password contains a character used more than once.

CWB_PW_ADJACENT_DIGITS
New password has adjacent digits.

CWB_PW_CONSECUTIVE_CHARS
New password contains a character repeated consecutively.

CWB_PW_PREVIOUSLY_USED
New password was previously used.

CWB_PW_DISALLOWED_CHAR
New password uses an installation-disallowed character.

CWB_PW_NEED_NUMERIC
New password must contain at least one numeric.

CWB_PW_MATCHES_OLD
New password matches old password in one or more character positions.

CWB_PW_NOT_ALLOWED
New password exists in a dictionary of disallowed passwords.

CWB_PW_CONTAINS_USERID
New password contains user ID as part of the password.

CWB_PW_LAST_INVALID_PWD
The next invalid password will disable the user profile.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage: Valid password lengths depend on the current setting of the iSeries system password level.
Password levels 0 and 1 allow passwords up to 10 characters in length. Password levels 2 and 3 allow
passwords up to 128 characters in length.

58 iSeries: iSeries Access for Windows Programming

cwbCO_Connect

Purpose: Connect to the specified iSeries host service.

Syntax:

UINT CWB_ENTRY cwbCO_Connect(
cwbCO_SysHandle system,
cwbCO_Service service,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the
iSeries system to connect to.

cwbCO_Service service - input
The service to connect to on the iSeries system. Valid values are those listed in “Defines for
cwbCO_Service” on page 108, except for the values CWBCO_SERVICE_ANY and
CWBCO_SERVICE_ALL. Only one service may be specified for this API, unlike for
cwbCO_Disconnect, which can disconnect multiple services at once.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_SERVICE_NAME_ERROR
The service identifier is not a valid value, or was a combination of values (only a single value is
allowed for this API).

CWB_CONNECTION_TIMED_OUT
It took too long to find the iSeries system, so the attempt timed out.

CWB_CONNECTION_REFUSED
The iSeries system refused to accept our connection attempt.

CWB_NETWORK_IS_DOWN
A network error occurred, or TCP/IP is not configured correctly on the PC.

CWB_NETWORK_IS_UNREACHABLE
The network segment to which the iSeries system is connected currently is not reachable from the
segment to which the PC is connected.

CWB_TIMED_OUT
The connect timeout value associated with the system object expired before the connection
attempt completed, so we stopped waiting.

Note: Other return codes may be commonly returned as the result of a failed security validation attempt.
See the list of common return codes in the comments for cwbCO_Signon.

Usage: If signon to the iSeries system has not yet occurred, the signon will be performed first when
cwbCO_Connect is called. If you want the signon to occur at a separate time, call cwbCO_Signon first,

Chapter 4. iSeries Access for Windows® C/C++ APIs 59

then call cwbCO_Connect at a later time. For more information about signon and its behavior, see
comments for cwbCO_Signon. If the signon attempt fails, a connection to the specified service will not be
established.

If the iSeries system as named in the specified system object does not exist in the System List, and the
system object Persistence Mode is set appropriately, then when cwbCO_Connect or cwbCO_Signon is first
successfully called, the iSeries system, as named in the system object, will be added to the System List.
For more information about the Persistence Mode, see the comments for cwbCO_SetPersistenceMode.

If a connection to the specified service already exists, no new connection will be established, and
CWB_OK will be returned. Each time this API is successfully called, the usage count for the connection to
the specified service will be incremented.

Each time cwbCO_Disconnect is called for the same service, the usage count will be decremented. When
the usage count reaches zero, the actual connection is ended.

Therefore, it is VERY IMPORTANT that for every call to the cwbCO_Connect API there is a later paired
call to the cwbCO_Disconnect API, so that the connection can be ended at the appropriate time. The
alternative is to call the cwbCO_Disconnect API, specifying CWBCO_SERVICE_ALL, which will disconnect
all existing connections to ALL services madethrough the specified system object, and reset all usage
counts to 0.

If the return code is CWB_TIMED_OUT, you may want to increase the connect timeout value for this
system object, by calling cwbCO_SetConnectTimeout, and try connecting again. If you want iSeries
Access to not give up until the TCP/IP communication stack itself does, set the connect timeout to
CWBCO_CONNECT_TIMEOUT_NONE, and try connecting again.

60 iSeries: iSeries Access for Windows Programming

cwbCO_CreateSystem

Purpose: Create a new system object and return a handle to it that can be used with subsequent calls.
The system object has many attributes that can be set or retrieved. See“System object attributes” on
page 45 for more information.

Syntax:

UINT CWB_ENTRY cwbCO_CreateSystem(
LPCSTR systemName,
cwbCO_SysHandle *system);

Parameters:

LPCSTR systemName - input
Pointer to a buffer that contains the NULL-terminated name of the iSeries system. This can be its host
name, or the iSeries system’s dotted-decimal IP address itself. It must not be zero length and must not
contain blanks. If the name specified is not a valid iSeries system host name or IP address string (in
the form ″nnn.nnn.nnn.nnn″), any connection attempt or security validation attempt will fail.

cwbCO_SysHandle *system - output
The system object handle is returned in this parameter.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_POINTER
One of the pointer parameters is NULL.

CWB_INVALID_SYSNAME
The system name is not valid.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from creating a system object for a system not already
defined in the System List.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.

Usage: When you are done using the system object, you must call cwbCO_DeleteSystem to free
resources the system object is using. If you want to create a system object that is like one you already
have, use cwbCO_CreateSystemLike.

Chapter 4. iSeries Access for Windows® C/C++ APIs 61

cwbCO_CreateSystemLike

Purpose: Create a new system object that is similar to a given system object. You may either provide a
specific system name for the new system object, or specify NULL to use the given system object’s name.
All attributes of the given system object are copied into the new one, with the following exceptions:

v User ID

v Password

v System name, if a different one is specified

v IP address, when the system names are different.

See “System object attributes listing” on page 46 for a list of system object attributes.

Syntax:

UINT CWB_ENTRY cwbCO_CreateSystemLike(
cwbCO_SysHandle systemToCopy,
LPCSTR systemName
cwbCO_SysHandle *system);

Parameters:

cwbCO_SysHandle systemToCopy - input
Handle that was returned by a previous call to either cwbCO_CreateSystem or
cwbCO_CreateSystemLike. It identifies the iSeries system. This is the object that will be ″copied.″

LPCSTR systemName - input
Pointer to a buffer that contains the NULL-terminated name of the iSeries system to use in the new
system object. If NULL or the empty string is passed, the name from the given system object is copied
into the new system object. If a system name is specified, it can be the host name, or the iSeries
system’s dotted-decimal IP address. If the name that is specified is not a valid iSeries system host
name or IP address string (in the form ″nnn.nnn.nnn.nnn″), any connection attempt or security
validation attempt will fail.

cwbCO_SysHandle *newSystem - output
The system object handle of the new system object is returned in this parameter.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
A pointer that is supplied to the API is not valid.

CWB_INVALID_SYSNAME
The system name is not valid.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from creating a system object for a system not already
defined in the System List.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.

Usage: When you are done using the new system object, you must call cwbCO_DeleteSystem to free
resources that the system object is using.

The state of the new system object might not be the same as that of the given system object, since user
ID and password validation has not been performed yet for the new one. Also, the new system object has
no connections associated with it, whereas the given system object may. Because of this, even though you
might not be able to change attributes of the given system object because of its state, you might be able

62 iSeries: iSeries Access for Windows Programming

to change the attributes of the new system object because of its possibly different state.

Chapter 4. iSeries Access for Windows® C/C++ APIs 63

cwbCO_DeleteSystem

Purpose: Deletes the system object that is specified by its handle, and frees all resources the system
object has used.

Syntax:

UINT CWB_ENTRY cwbCO_DeleteSystem(
cwbCO_SysHandle system);

Parameters:

cwbCO_SysHandle system - input
Handle that was returned by a previous call to either cwbCO_CreateSystem or
cwbCO_CreateSystemLike. It identifies the iSeries system.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

Usage: Before the system object resources are freed, if there are any connections that were made using
the specified system object, they will be ended, forcefully if necessary. To determine if there are active
connections, call cwbCO_IsConnected. If you want to know whether disconnecting any existing
connections was successful, call cwbCO_Disconnect explicitly before calling this API.

64 iSeries: iSeries Access for Windows Programming

cwbCO_Disconnect

Purpose: Disconnect from the specified iSeries host service.

Syntax:

UINT CWB_ENTRY cwbCO_Disconnect(
cwbCO_SysHandle system,
cwbCO_Service service,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbCO_SysHandle system - input
Handle that was returned by a previous call to either cwbCO_CreateSystem or
cwbCO_CreateSystemLike. It identifies the iSeries system from which to disconnect.

cwbCO_Service service - input
The service from which to disconnect on the iSeries system. Valid values are those listed at the start
of this file, except for the value CWBCO_SERVICE_ANY. If CWBCO_SERVICE_ALL is specified, the
connections to ALL connected services will be ended, and all connection usage counts reset back to
zero.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_SERVICE_NAME_ERROR
The service identifier is invalid.

CWB_NOT_CONNECTED
The single service was not connected.

Usage: This function should be called when a connection that is established by using cwbCO_Connect
no longer is needed.

If any service specified cannot be disconnected, the return code will indicate this error. If more than one
error occurs, only the first one will be returned as the API return code.

Usage Notes for individual service disconnect:
This function will cause the usage count for this system object’s specified service to be
decremented, and may or may not end the actual connection. For more information, read the
Usage Notes for the cwbCO_Connect API.

Disconnecting a service that is not currently connected results in CWB_NOT_CONNECTED.

An individual service is gracefully disconnected.

Usage Notes for CWBCO_SERVICE_ALL:
The return code CWB_NOT_CONNECTED is not returned when CWBCO_SERVICE_ALL is
specified, regardless of the number of connected services.

Requesting that all active services be disconnected may generate messages on the iSeries.

Chapter 4. iSeries Access for Windows® C/C++ APIs 65

cwbCO_GetConnectTimeout

Purpose: This function gets, for the specified system object, the connection timeout value, in seconds,
currently set.

Syntax:

UINT CWB_ENTRY cwbCO_GetConnectTimeout(
cwbCO_SysHandle system,
PULONG timeout);

Parameters:

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the
iSeries system.

PULONG timeout - output
Returns the timeout value, in seconds. This value will be from CWBCO_CONNECT_TIMEOUT_MIN to
CWBCO_CONNECT_TIMEOUT_MAX, or will be CWBCO_CONNECT_TIMEOUT_NONE if no
connection timeout is desired.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The timeout pointer is NULL.

Usage: None.

66 iSeries: iSeries Access for Windows Programming

cwbCO_GetDefaultUserMode

Purpose: This function gets, for the specified system object, the default user mode that currently is set.

Syntax:

UINT CWB_ENTRY cwbCO_GetDefaultUserMode(
cwbCO_SysHandle system,
cwbCO_DefaultUserMode *mode);

Parameters:

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the
iSeries system.

cwbCO_DefaultUserMode * mode - output
Returns the default user mode for this system object. See comments for cwbCO_SetDefaultUserMode
for the list of possible values and their meanings.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage: None.

Chapter 4. iSeries Access for Windows® C/C++ APIs 67

cwbCO_GetDescription

Purpose: This function gets the text description associated with a specified system object.

Syntax:

#if !(defined(CWB_ANSI_ONLY) || defined(CWB_UNICODE_ONLY))
UINT CWB_ENTRY cwbCO_GetDescription(

cwbCO_SysHandle system,
LPSTR description,
PULONG length);

#endif // OEM-only selection

#if !(defined(CWB_OEM_ONLY) || defined(CWB_UNICODE_ONLY))
UINT CWB_ENTRY cwbCO_GetDescriptionA(

cwbCO_SysHandle system,
LPSTR description,
PULONG length);

#endif // ANSI-only selection

#if !(defined(CWB_ANSI_ONLY) || defined(CWB_OEM_ONLY))
UINT CWB_ENTRY cwbCO_GetDescriptionW(

cwbCO_SysHandle system,
LPWSTR description,
PULONG length);

#endif // UNICODE-only selection

// UNICODE/ANSI API selection
#if (defined(CWB_UNICODE) && (!(defined(CWB_OEM) || defined(CWB_ANSI))))

#define cwbCO_GetDescription cwbCO_GetDescriptionW
#elif (defined(CWB_ANSI) && (!(defined(CWB_OEM) || defined(CWB_UNICODE))))

#define cwbCO_GetDescription cwbCO_GetDescriptionA
#endif // of UNICODE/ANSI selection

Parameters:

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the
iSeries system.

LPSTR description - output
Pointer to a buffer that will contain the NULL-terminated description. The description will be at most
CWBCO_MAX_SYS_DESCRIPTION characters long, not including the terminating NULL.

PULONG length - input/output
Pointer to the length of the description buffer. If the buffer is too small to hold the description, including
space for the terminating NULL, the size of the buffer needed will be filled into this parameter.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
One of the pointer parameters passed in is NULL.

CWB_BUFFER_OVERFLOW
The description buffer is not large enough to hold the entire description.

68 iSeries: iSeries Access for Windows Programming

cwbCO_GetFailedSignons

Purpose: Retrieves the number of unsuccessful security validation attempts since the last successful
attempt.

Syntax:

UINT CWB_ENTRY cwbCO_GetFailedSignons(
cwbCO_SysHandle system,
PUSHORT numberFailedAttempts);

Parameters:

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the
iSeries system.

PUSHORT numberFailedAttempts - output
A pointer to a short that will contain the number of failed logon attempts if this call is successful.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The numberFailedAttempts pointer is NULL.

CWB_INV_BEFORE_VALIDATE
The user ID and password that were set in the specified system object have not been validated
yet, so this information is not available.

Usage: You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or
cwbCO_Connect before using this API. If you want to ensure that the value that is returned is recent, you
either must call cwbCO_VerifyUserIDPassword explicitly, or set the Validate Mode to
CWBCO_VALIDATE_ALWAYS before you call cwbCO_Signon or cwbCO_Connect.

Chapter 4. iSeries Access for Windows® C/C++ APIs 69

cwbCO_GetHostCCSID

Purpose: Returns the associated CCSID of the iSeries system that is represented by the given system
object that was in use when the signon to the iSeries system occurred, and that is associated with the
user ID that is set in the sytem object.

Syntax:

UINT CWB_ENTRY cwbCO_GetHostCCSID(
cwbCO_SysHandle system,
PULONG pCCSID);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

PULONG pCCSID - output
The host CCSID is copied into here if successful.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
the CCSID pointer is NULL.

CWB_DEFAULT_HOST_CCSID_USED
Host CCSID 500 is returned because this API is unable to determine the host CCSID appropriate
for the user ID as set in the system object.

Usage: This API does not make or require an active connection to the host system to retrieve the
associated CCSID value.However, it does depend on a prior successful connection to the host system by
using the same user ID as is set in the specified system object. This is because the CCSID that is
returned is the one from the specific user profile, NOT the iSeries system’s default CCSID. To retrieve a
host CCSID without requiring a user ID, call cwbNL_GetHostCCSID.

70 iSeries: iSeries Access for Windows Programming

cwbCO_GetHostVersionEx

Purpose: Get the version and release level of the host.

Syntax:

UINT CWB_ENTRY cwbCO_GetHostVersionEx(
cwbCO_SysHandle system,
PULONG version,
PULONG release);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

PULONG version - output
Pointer to a buffer where the version level of the system is returned.

PULONG release - output
Pointer to a buffer where the release level of the system is returned.

Return Codes: The following list shows common return values:

CWB_OK
Successful Completion.

CWB_NOT_CONNECTED
The system has never been connected to when using the currently active environment.

CWB_INVALID_POINTER
One of the pointers passed in is NULL.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate a temporary buffer.

Usage: The host version is retrieved and saved whenever a connection is made to the iSeries system. If
no connection has been made yet to this iSeries system in the currently-active environment, this
information will not be available, and the error code CWB_NOT_CONNECTED will be returned. If you
know that a connection to the iSeries system recently was made successfully, it is likely that the version
and release levels returned are current. If you want to make sure that the values are available and
recently have been retrieved, call cwbCO_Signon or cwbCO_Connect for this system object first, then call
cwbCO_GetHostVersionEx.

Chapter 4. iSeries Access for Windows® C/C++ APIs 71

cwbCO_GetIPAddress

Purpose: This function gets, for the specified system object, the IP address of the iSeries system it
represents. This is the IP address that was used to connect to the iSeries system (or was set some other
way, such as by using cwbCO_SetIPAddress), and will be used for later connections, when using the
specified system object.

Syntax:

UINT CWB_ENTRY cwbCO_GetIPAddress(
cwbCO_SysHandle system,
LPSTR IPAddress,
PULONG length);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned by cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

LPSTR IPAddress - output
Pointer to a buffer that will contain the NULL-terminated IP address in dotted-decimal notation (in the
form ″nnn.nnn.nnn.nnn″ where each ″nnn″ is in the range of from 0 to 255).

PULONG length - input/output
Pointer to the length of the IPAddress buffer. If the buffer is too small to hold the output, including
room for the terminating NULL, the size of the buffer needed will be filled into this parameter and
CWB_BUFFER_OVERFLOW will be returned.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
One of the input pointers is NULL.

CWB_BUFFER_OVERFLOW
The IPAddress buffer is not large enough to hold the entire IPAddress string.

Usage: None.

72 iSeries: iSeries Access for Windows Programming

cwbCO_GetIPAddressLookupMode

Purpose: This function gets, for the specified system object, the indication of when, if ever, the iSeries
system’s IP address will be looked up dynamically.

Syntax:

UINT CWB_ENTRY cwbCO_GetIPAddressLookupMode(
cwbCO_SysHandle system,
cwbCO_IPAddressLookupMode *mode);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned by cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwbCO_IPAddressLookupMode * mode - output
Returns the IP address lookup mode that currently is in use. See comments for
“cwbCO_SetIPAddressLookupMode” on page 91 for possible values and their meanings.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage: None.

Chapter 4. iSeries Access for Windows® C/C++ APIs 73

cwbCO_GetPasswordExpireDate

Purpose: Retrieves the date and time the password will expire for the user ID that is set in the given
system object on the iSeries system that it represents.

Syntax:

UINT CWB_ENTRY cwbCO_GetPasswordExpireDate(
cwbCO_SysHandle system,
cwb_DateTime *expirationDateTime);

Parameters:

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the
iSeries system.

cwb_DateTime * expirationDateTime - output
A pointer to a structure that contains the date and time at which the password will expire for the
current user ID, in the following format:

Bytes Content

1 - 2 Year (Example: 1998 = 0x07CF)

3 Month (January = 0x01)

4 Day (First day = 0x01;31st day = 0x1F)

5 Hour (Midnight = 0x00;23rd hour = 0x17)

6 Minute (On the hour = 0x00; 59th minute = 0x3B)

7 Second (On the minute = 0x00; 59th second = 0x3B)

8 One-hundredth of a second (on the second = 0x00; maximum = 0x63)

Note: On a given day, the maximum time is 23 hours, 59 minutes, and 59.99 seconds. Midnight is 0
hours, 0 minutes, and 0.0 seconds on the following day.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The pointer to the cwb_DateTime structure is NULL.

CWB_INV_BEFORE_VALIDATE
The user ID and password that were set in the specified system object have not been validated
yet, so this information is not available.

Usage: You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or
cwbCO_Connect before using this API. If you want to ensure that the value that is returned is recent, you
either must call cwbCO_VerifyUserIDPassword explicitly, or set the Validate Mode to
CWBCO_VALIDATE_ALWAYS before you call cwbCO_Signon or cwbCO_Connect.

74 iSeries: iSeries Access for Windows Programming

cwbCO_GetPersistenceMode

Purpose: This function gets, for the specified system object, if the system it represents, along with its
attributes, will be added to the System List (if not already in the list) once a successful signon has
occurred.

Syntax:

UINT CWB_ENTRY cwbCO_GetPersistenceMode(
cwbCO_SysHandle system,
cwbCO_PersistenceMode *mode);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwbCO_PersistenceMode * mode - output
Returns the persistence mode. See comments for cwbCO_SetPersistenceMode for possible values
and their meanings.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage: None.

Chapter 4. iSeries Access for Windows® C/C++ APIs 75

cwbCO_GetPortLookupMode

Purpose: This function gets, for the specified system object, the mode or method by which host service
ports are looked up when they are needed by iSeries Access for Windows to establish a service
connection.

Syntax:

UINT CWB_ENTRY cwbCO_GetPortLookupMode(
cwbCO_SysHandle system,
cwbCO_PortLookupMode *mode);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned by cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwbCO_PortLookupMode * mode - output
Returns the host service port lookup mode. See comments for cwbCO_SetPortLookupMode for
possible values and their meanings.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage: None.

76 iSeries: iSeries Access for Windows Programming

cwbCO_GetPrevSignonDate

Purpose: Retrieves the date and time of the previous successful security validation.

Syntax:

UINT CWB_ENTRY cwbCO_GetPrevSignonDate(
cwbCO_SysHandle system,
cwb_DateTime *signonDateTime);

Parameters:

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem orcwbCO_CreateSystemLike. It identifies the
iSeries system.

cwb_DateTime * signonDateTime - output
A pointer to a structure that contains the date and time at which the previous signon occurred, in the
following format:

Bytes Content

1 - 2 Year (Example: 1998 = 0x07CF)

3 Month (January = 0x01)

4 Day (First day = 0x01;31st day = 0x1F)

5 Hour (Midnight = 0x00;23rd hour = 0x17)

6 Minute (On the hour = 0x00; 59th minute = 0x3B)

7 Second (On the minute = 0x00; 59th second = 0x3B)

8 One-hundredth of a second (on the second = 0x00; maximum = 0x63)

Note: On a given day, the maximum time is 23 hours, 59 minutes, and 59.99 seconds. Midnight is 0
hours, 0 minutes, and 0.0 seconds on the following day.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The pointer to the cwb_DateTime structure is NULL.

CWB_INV_BEFORE_VALIDATE
The user ID and password that were set in the specified system object have not been validated
yet, so this information is not available.

Usage: You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or
cwbCO_Connect before using this API. If you want to ensure that the value that is returned is recent, you
either must call cwbCO_VerifyUserIDPassword explicitly, or set the Validate Mode to
CWBCO_VALIDATE_ALWAYS before you call cwbCO_Signon or cwbCO_Connect.

Chapter 4. iSeries Access for Windows® C/C++ APIs 77

cwbCO_GetPromptMode

Purpose: This function gets, for the specified system object, the prompt mode that currently is set.

Syntax:

UINT CWB_ENTRY cwbCO_GetPromptMode(
cwbCO_SysHandle system,
cwbCO_PromptMode *mode);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwbCO_PromptMode * mode - output
Returns the prompt mode. See comments for cwbCO_SetPromptMode for possible values and their
meanings.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage: None.

78 iSeries: iSeries Access for Windows Programming

cwbCO_GetSignonDate

Purpose: Retrieves the date and time of the current successful security validation.

Syntax:

UINT CWB_ENTRY cwbCO_GetSignonDate(
cwbCO_SysHandle system,
cwb_DateTime *signonDateTime);

Parameters:

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the
iSeries system.

cwb_DateTime * signonDateTime - output
A pointer to a structure that will contain the date and time at which the current signon occurred, in the
following format:

Bytes Content

1 - 2 Year (Example: 1998 = 0x07CF)

3 Month (January = 0x01)

4 Day (First day = 0x01;31st day = 0x1F)

5 Hour (Midnight = 0x00;23rd hour = 0x17)

6 Minute (On the hour = 0x00; 59th minute = 0x3B)

7 Second (On the minute = 0x00; 59th second = 0x3B)

8 One-hundredth of a second (on the second = 0x00; maximum = 0x63)

Note: On a given day, the maximum time is 23 hours, 59 minutes, and 59.99 seconds. Midnight is 0
hours, 0 minutes, and 0.0 seconds on the following day.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The pointer to the cwb_DateTime structure is NULL.

CWB_INV_BEFORE_VALIDATE
The user ID and password set in the specified system object have not been validated yet, so this
information is not available.

Usage: You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or
cwbCO_Connect before using this API. If you want to ensure that the value returned is recent, you must
either call cwbCO_VerifyUserIDPassword explicitly, or set the Validate Mode to
CWBCO_VALIDATE_ALWAYS before you call cwbCO_Signon or cwbCO_Connect.

Chapter 4. iSeries Access for Windows® C/C++ APIs 79

cwbCO_GetSystemName

Purpose: This function gets the iSeries system name that is associated with the specified system object.

Syntax:

UINT CWB_ENTRY cwbCO_GetSystemName(
cwbCO_SysHandle system,
LPSTR sysName,
PULONG length);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

LPSTR sysName - output
Pointer to a buffer that will contain the NULL-terminated system name. The name will be
CWBCO_MAX_SYS_NAME characters long at most, not including the terminating NULL.

PULONG length - input/output
Pointer to the length of the sysName buffer. If the buffer is too small to hold the system name,
including room for the terminating NULL, the size of the buffer needed will be filled into this parameter
and CWB_BUFFER_OVERFLOW will be returned.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
One of the pointer parameters passed in is NULL.

CWB_BUFFER_OVERFLOW
The sysName buffer is not large enough to hold the entire system name.

Usage: None.

80 iSeries: iSeries Access for Windows Programming

cwbCO_GetUserIDEx

Purpose: This function gets the current user ID that is associated with a specified system object. This is
the user ID that is being used for connections to the iSeries server.

Syntax:

UINT CWB_ENTRY cwbCO_GetUserIDEx(
cwbCO_SysHandle system,
LPSTR userID,
PULONG length);

Parameters:

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies
the iSeries system.

LPSTR userID - output
Pointer to a buffer that will contain the NULL-terminated user ID. The user ID will be at most
CWBCO_MAX_USER_ID characters long.

PULONG length - input/output
Pointer to the length of the userID buffer. If the buffer is too small to hold the user ID, including space
for the terminating NULL, the size of the buffer needed will be filled into this parameter.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
One of the pointer parameters passed in is NULL.

CWB_BUFFER_OVERFLOW
The userID buffer is not large enough to hold the entire user ID name.

Usage: The user ID may or may not have been validated on the iSeries system yet. To make sure it has
been, call cwbCO_Signon or cwbCO_Connect before calling this API.

If no user ID has been set and a signon has not occurred for the system object, the returned user ID will
be the empty string, even if a default user ID has been configured for the iSeries system.

Chapter 4. iSeries Access for Windows® C/C++ APIs 81

cwbCO_GetValidateMode

Purpose: This function gets, for the specified system object, the validate mode currently set.

Syntax:

UINT CWB_ENTRY cwbCO_GetValidateMode(
cwbCO_SysHandle system,
cwbCO_ValidateMode *mode);

Parameters:

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the
iSeries system.

cwbCO_ValidateMode * mode - output
Returns the validate mode. See comments for cwbCO_SetValidateMode for possible values and their
meanings.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage: None.

82 iSeries: iSeries Access for Windows Programming

cwbCO_GetWindowHandle

Purpose: This function gets, for the specified system object, the window handle, if any, that currently is
associated with it.

Syntax:

UINT CWB_ENTRY cwbCO_GetWindowHandle(
cwbCO_SysHandle system,
HWND *windowHandle);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

HWND * pWindowHandle - output
Returns the window handle associated with the system object, or NULL if no window handle is
associated with it.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The windowHandle pointer is NULL.

Usage: None.

Chapter 4. iSeries Access for Windows® C/C++ APIs 83

cwbCO_HasSignedOn

Purpose: Returns an indication of whether the specified system object has ″signed on″ (whether the user
ID and password have been validated at some point in the life of the specified system object).

Syntax:

UINT CWB_ENTRY cwbCO_HasSignedOn(
cwbCO_SysHandle system,
cwb_Boolean *signedOn);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwb_Boolean * signedOn - output
A pointer to a cwb_Boolean into which is stored the indication of ″signed-on-ness.″ If the specified
system object has signed on, it will be set to CWB_TRUE, otherwise it will be set to CWB_FALSE.
(On error it will be set to CWB_FALSE as well.)

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The signedOn pointer is NULL.

Usage: A returned indication of CWB_TRUE does not mean that the user ID and password have been
validated within a certain time period, but only that since the system object’s creation, a signon has
occurred. That signon may not have caused or included a connection and security validation flow to the
iSeries system. This means that, even if CWB_TRUE is returned, the next call to the system object that
requires a successful signon might connect and attempt to re-validate the user ID and password, and that
validation, and hence the signon, may fail. The signedOn indicator reflects the results of the most-recent
user ID and password validation. If user ID and password validation (signon) has occurred successfully at
one time, but since then this validation has failed, signedOn will be set to CWB_FALSE.

84 iSeries: iSeries Access for Windows Programming

cwbCO_IsConnected

Purpose: Find out if any, and how many, connections to the iSeries system that are using the specified
system object currently exist.

Syntax:

UINT CWB_ENTRY cwbCO_IsConnected(
cwbCO_SysHandle system,
cwbCO_Service service,
PULONG numberOfConnections);

Parameters:

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the
iSeries system.

cwbCO_Service service - input
The service to check for a connection. Any of the cwbCO_Service values listed in “Defines for
cwbCO_Service” on page 108 are valid. To find out if ANY service is connected, specify
CWBCO_SERVICE_ANY. To find out how many services are connected using this system object,
specify CWBCO_SERVICE_ALL.

PULONG numberOfConnections - output
Used to return the number of connections active for the service(s) that are specified. If the service
specified is not CWBCO_SERVICE_ALL, the value returned will be either 0 or 1, since there can be at
most one active connection per service per system object. If CWBCO_SERVICE_ALL is specified, this
could be from zero to the possible number of services, since one connection per service might be
active.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion, all services specified are connected, or if CWBCO_SERVICE_ANY is
specified, at least one service is connected.

CWB_NOT_CONNECTED
If a single service was specified, that service is not connected. If the value
CWBCO_SERVICE_ANY was specified, there are NO active connections. If the value
CWBCO_SERVICE_ALL was specified, there is at least one service that is NOT connected.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_SERVICE_NAME_ERROR
The service identifier is invalid.

CWB_INVALID_POINTER
The numberOfConnections parameter is NULL.

Usage: If CWBCO_SERVICE_ALL was specified and CWB_NOT_CONNECTED is returned, there may
be some active connections, and the count of active connections still will be passed back. To find out how
many connections through the specified system object exist, call this API and specify
CWBCO_SERVICE_ALL. If the return code is either CWB_OK or CWB_NOT_CONNECTED, the number
of connections that exist is stored in numberOfConnections.

Chapter 4. iSeries Access for Windows® C/C++ APIs 85

cwbCO_IsSecureSockets

Purpose: This function gets (for the specified system object) whether Secure Sockets is being used (if
connected), or would be attempted (if not currently connected) for a connection.

Syntax:

UINT CWB_ENTRY cwbCO_IsSecureSockets(
cwbCO_SysHandle system,
cwb_Boolean *inUse);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwb_Boolean * inUse - output
Returns whether iSeries Access is using, or will try to use, secure sockets for communication:

CWB_TRUE
IS in use or would be if connections active.

CWB_FALSE
NOT in use, would not try to use it.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The inUse pointer is NULL.

Usage: This flag is an indication of what iSeries Access for Windows will TRY to do for any future
communications. If CWB_TRUE is returned, then any attempt to communicate to the iSeries system that
cannot be performed using secure sockets will fail.

86 iSeries: iSeries Access for Windows Programming

cwbCO_SetConnectTimeout

Purpose: This function sets, for the specified system object, the number of seconds iSeries Access for
Windows will wait before giving up on a connection attempt and returning an error.

Syntax:

UINT CWB_ENTRY cwbCO_SetConnectTimeout(
cwbCO_SysHandle system,
ULONG timeout);

Parameters:

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the
iSeries system.

ULONG timeout - input
Specifies the connection timeout value, in seconds. The value must be from
CWBCO_CONNECT_TIMEOUT_MIN to CWBCO_CONNECT_TIMEOUT_MAX, or if no timeout is
desired, use CWBCO_CONNECT_TIMEOUT_NONE. If the value is below the minimum, then
CWBCO_CONNECT_TIMEOUT_MIN will be used; if it is above the maximum,
CWBCO_CONNECT_TIMEOUT_MAX will be used.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

Usage: If no timeout value has been suggested by policy, and none has been explicitly set using this
API, the connect timeout used is CWBCO_CONNECT_TIMEOUT_DEFAULT.

Chapter 4. iSeries Access for Windows® C/C++ APIs 87

cwbCO_SetDefaultUserMode

Purpose: This function sets, for the specified system object, the behavior with respect to any configured
default user ID.

Syntax:

UINT CWB_ENTRY cwbCO_SetDefaultUserMode(
cwbCO_SysHandle system,
cwbCO_DefaultUserMode mode);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwbCO_DefaultUserMode mode - input
Specifies what will be done with the default user ID. Possible values are:

CWBCO_DEFAULT_USER_MODE_NOT_SET
No default user mode is currently in use. When this mode is active, and the Prompt Mode
setting does not prohibit prompting, the user will be prompted at signon or connect time to
select which of the remaining default user modes should be used from then on. The signon or
connect cannot succeed until one of these other mode values is selected. Setting the Default
User Mode back to this value will cause the prompt to appear the next time a default user ID
is needed by iSeries Access.

CWBCO_DEFAULT_USER_USE
When no user ID has explicitly been set (by using cwbCO_SetUserIDEx) and a signon is to
occur, use the default user ID that is configured for the iSeries system as named in the system
object.

CWBCO_DEFAULT_USER_IGNORE
Specifies never to use a default user ID. When a signon takes place and no user ID has
explicitly been set for this system object instance, the user will be prompted to enter a user ID
if the Prompt Mode allows it (see cwbCO_SetPromptMode comments), and no initial value for
the user ID will be filled in in the prompt.

CWBCO_DEFAULT_USER_USEWINLOGON
The user ID that is used when logging on to Windows will be used as the default if no user ID
explicitly has been set for this system object (by using cwbCO_SetUserIDEx).

CWBCO_DEFAULT_USER_USE_KERBEROS
The kerberos principal created when logging into a Windows domain will be used as the
default if no user ID has explicitly been set for this system object (using
cwbCO_SetUserIDEx).

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

88 iSeries: iSeries Access for Windows Programming

CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer
may be changed.

CWB_KERB_NOT_AVAILABLE
Kerberos security package is not available on this version of Windows.

Usage: This API cannot be used after a successful signon has occurred for the specified system object.
A signon has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this
system object. The default user mode set with this API will be ignored if a user ID has been set explicitly
with the cwbCO_SetUserIDEx API.

Error code CWB_KERB_NOT_AVAILABLE will be returned if you attempt to set
CWBCO_DEFAULT_USER_USE_KERBEROS on a Windows platform that does not support Kerberos.

Chapter 4. iSeries Access for Windows® C/C++ APIs 89

cwbCO_SetIPAddress

Purpose: This function sets, for the specified system object, the IP address that will be used to connect
to the iSeries system. It also changes the IP Address Lookup Mode for the system object to
CWBCO_IPADDR_LOOKUP_NEVER. These changes will NOT affect any other system object that exists
or is created later.

Syntax:

UINT CWB_ENTRY cwbCO_SetIPAddress(
cwbCO_SysHandle system,
LPCSTR IPAddress);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

LPCSTR IPAddress - input
Specifies the IP address as a character string, in dotted-decimal notation (″nnn.nnn.nnn.nnn″), where
each ″nnn″ is a decimal value ranging from 0 to 255. The IPAddress must not be longer than
CWBCO_MAX_IP_ADDRESS characters, not including the terminating NULL character.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The IPAddress parameter does not contain a valid IP address.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred by using the specified system object, so this setting no longer
may be changed.

Usage: This API cannot be used after a successful signon has occurred for the specified system object.
A signon has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this
system object.

Use this API to force use of a specific IP address whenever any connection is made using the specified
system object. Since the IP Address Lookup Mode is set to NEVER lookup the IP address, the address
specified always will be used, unless before a connect or signon occurs, the IP Address Lookup Mode is
changed by calling cwbCO_SetIPAddressLookupMode.

90 iSeries: iSeries Access for Windows Programming

cwbCO_SetIPAddressLookupMode

Purpose: This function sets, for the specified system object, when iSeries Access for Windows
dynamically will lookup the iSeries system’s IP address when a connection is to be made. If the system
name that is specified when cwbCO_CreateSystem or cwbCO_CreateSystemLike was called is an actual
IP address, this setting is ignored, because iSeries Access for Windows never needs to lookup the
address.

Syntax:

UINT CWB_ENTRY cwbCO_SetIPAddressLookupMode(
cwbCO_SysHandle system,
cwbCO_IPAddressLookupMode mode);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwbCO_IPAddressLookupMode mode - input
Specifies when the dynamic address lookup can occur. Possible values are:

CWBCO_IPADDR_LOOKUP_ALWAYS
Every time a connection is to occur, dynamically lookup the iSeries system’s IP address.

CWBCO_IPADDR_LOOKUP_1HOUR
Lookup the IP address dynamically if it has been at least one hour since the last lookup for
this iSeries system.

CWBCO_IPADDR_LOOKUP_1DAY
Lookup the IP address dynamically if it has been at least one day since the last lookup for this
iSeries system.

CWBCO_IPADDR_LOOKUP_1WEEK
Lookup the IP address dynamically if it has been at least one week since the last lookup for
this iSeries system.

CWBCO_IPADDR_LOOKUP_NEVER
Never dynamically lookup the IP address of this iSeries system, always use the IP address
that was last used for this iSeries system on this PC.

CWBCO_IPADDR_LOOKUP_AFTER_STARTUP
Lookup the IP address dynamically if Windows has been re-started since the last lookup for
this iSeries system.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred by using the specified system object, so this setting no longer
may be changed.

Chapter 4. iSeries Access for Windows® C/C++ APIs 91

Usage: This API cannot be used after a successful signon has occurred for the specified system object.
A signon has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this
system object.

Setting this to a value other than CWB_IPADDR_LOOKUP_ALWAYS could shorten the time to connect to
the iSeries system, since the dynamic lookup may cause network traffic and take many seconds to
complete. If the dynamic lookup is not performed, there is a risk that the IP address of the iSeries system
will have changed and a connection will either fail or will be made to the wrong iSeries system.

92 iSeries: iSeries Access for Windows Programming

cwbCO_SetPassword

Purpose: This function sets the password to associate with the specified system object. This password
will be used when connecting to the iSeries server with either the cwbCO_Signon or cwbCO_Connect call,
and when a user ID has been set with the cwbCO_SetUserIDEx call.

Syntax:

UINT CWB_ENTRY cwbCO_SetPassword(
cwbCO_SysHandle system,
LPCSTR password);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

LPCSTR password - input
A pointer to a buffer that contains the NULL-terminated password. The maximum length is
CWBCO_MAX_PASSWORD + 1 bytes in length, including the NULL terminator.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The password pointer is NULL.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.

CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer
may be changed.

Usage: This API cannot be used after a successful signon has occurred for the specified system object.
A signon has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this
system object. A password set with this API will not be used unless a corresponding user ID has been set
with cwbCO_SetUserIDEx.

Valid password lengths depend on the current setting of the iSeries system password level. Password
levels 0 and 1 allow passwords up to 10 characters in length. Password levels 2 and 3 allow passwords
up to 128 characters in length.

Chapter 4. iSeries Access for Windows® C/C++ APIs 93

cwbCO_SetPersistenceMode

Purpose: This function sets for the specified system object if the system it represents (as named in the
system object), along with its attributes, may be added to the System List (if not already in the list) once a
signon successfully has occurred.

Syntax:

UINT CWB_ENTRY cwbCO_SetPersistenceMode(
cwbCO_SysHandle system,
cwbCO_PersistenceMode mode);

Parameters:

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the
iSeries system.

cwbCO_PersistenceMode mode - input
Specifies the persistence mode. Possible values are:

CWBCO_MAY_MAKE_PERSISTENT
If the system that is named in the specified system object is not yet in the System List, add it
to the list once a successful signon has completed. This will make the system, as defined by
this system object, available for selection by this AND other applications running, now or in the
future, on this personal computer (until the system is deleted from this list).

CWBCO_MAY_NOT_MAKE_PERSISTENT
The system that is named in the specified system object (along with its attributes) may NOT
be added to the System List.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer
may be changed.

Usage: This API cannot be used after a successful signon has occurred for the specified system object.
A signon has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this
system object.

If the system as named in the system object already is in the System List, this setting has no effect.

94 iSeries: iSeries Access for Windows Programming

cwbCO_SetPortLookupMode

Purpose: This function sets, for the specified system object, how a host server port lookup will be done.

Syntax:

UINT CWB_ENTRY cwbCO_SetPortLookupMode(
cwbCO_SysHandle system,
cwbCO_PortLookupMode mode);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned by cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwbCO_PortLookupMode mode - input
Specifies port lookup method. Possible values are:

CWBCO_PORT_LOOKUP_SERVER
Lookup of a host server port will be done by contacting the host (iSeries) server mapper each
time the connection of a service is to be made when one does not yet exist. The server
mapper returns the port number that is then used to connect to the desired service on the
iSeries system.

CWBCO_PORT_LOOKUP_LOCAL
Lookup of a host server port will be done by lookup in the SERVICES file on the PC itself.

CWBCO_PORT_LOOKUP_STANDARD
The ″standard″ port—that set by default for a given host server and in use if no one has
changed the services table on the iSeries system for that service—will be used to connect to
the desired service.

The latter two modes eliminate the iSeries server mapper connection and its associated delay, network
traffic, and load on the iSeries system.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred by using the specified system object, so this setting no longer
may be changed.

Usage: This API cannot be used after a successful signon has occurred for the specified system object.
A signon has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this
system object.

Use CWBCO_PORT_LOOKUP_SERVER to be most certain of the accuracy of the port number for a
service; however, this requires an extra connection to the server mapper on the iSeries system every time
a new connection to a service is to be made.

Chapter 4. iSeries Access for Windows® C/C++ APIs 95

Use CWBCO_PORT_LOOKUP_STANDARD to achieve the best performance, although if the system
administrator has changed the ports of any iSeries Access host service in the service table on that iSeries
system, this mode will not work.

Use CWBCO_PORT_LOOKUP_LOCAL for best performance when the port for a iSeries Access host
service has been changed on the iSeries system represented by the system object. For this to work,
entries for each host service port must be added to a file on the PC named SERVICES. Each such entry
must contain first the standard name of the host service (for example, ″as-rmtcmd″ without the quotes)
followed by spaces and the port number for that service. The SERVICES file should be located in the
Windows install directory in Windows 95/98, or in subdirectory system32\drivers\etc under the Windows NT
install directory in Windows NT.

96 iSeries: iSeries Access for Windows Programming

cwbCO_SetPromptMode

Purpose: This function sets, for the specified system object, the prompt mode, which specifies when and
if the user should be prompted for user ID and password, or other information, when a signon is
performed.

Syntax:

UINT CWB_ENTRY cwbCO_SetPromptMode(
cwbCO_SysHandle system,
cwbCO_PromptMode mode);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwbCO_PromptMode - input
Specifies the prompt mode. Possible values are:

CWBCO_PROMPT_IF_NECESSARY
iSeries Access for Windows will prompt if either the user ID or password have not been
explicitly set or cannot be retrieved from the persistent configuration for this system, the
password cache (if enabled), or by some other means.

If the Default User Mode has not been set, and if for this iSeries system the user has not been
prompted yet for default user ID, iSeries access for Windows will prompt for it at
cwbCO_Connect or cwbCO_Signon time

CWBCO_PROMPT_ALWAYS
iSeries Access for Windows will always prompt when a signon is to occur for the specified
system object, even if a successful signon using the same user ID to the same iSeries system
has occurred using a different system object. Since a signon can occur only once for a system
object, this means that exactly one prompt per system object will occur. Additional explicit
signon calls will do nothing (including prompt). See two exceptions to using this mode in the
usage notes below.

CWBCO_PROMPT_NEVER
iSeries Access for Windows never will prompt for user ID and password, or for default user ID.
When this mode is used, a call to any API that requires a signon for completion (for example,
cwbCO_Signon or cwbCO_Connect) will fail if either the user ID or password have not been
set and cannot be programmatically retrieved (from the iSeries password cache). This mode
should be used when either

v iSeries Access for Windows is running on a PC that is unattended or for some other reason
cannot support end-user interaction.

v The application itself is prompting for or otherwise fetching the user ID and password, and
explicitly setting them by using cwbCO_SetUserIDEx and cwbCO_SetPassword.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

Chapter 4. iSeries Access for Windows® C/C++ APIs 97

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer
may be changed.

Usage: This API cannot be used after a successful signon has occurred for the specified system object.
A signon has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this
system object. Setting the prompt mode to CWBCO_PROMPT_ALWAYS will not prompt the user in the
following two cases:

v A user ID and password explicitly have been set with the cwbCO_setUserIDEx and
cwbCO_SetPassword APIs.

v Use Windows logon info (CWBCO_DEFAULT_USER_USEWINLOGON) has been set with the
cwbCO_SetDefaultUserMode API.

98 iSeries: iSeries Access for Windows Programming

cwbCO_SetUserIDEx

Purpose: This function sets the user ID to associate with the specified system object. This user ID will
be used when connecting to the iSeries server with either the cwbCO_Signon or cwbCO_Connect call.

Syntax:

UINT CWB_ENTRY cwbCO_SetUserIDEx(
cwbCO_SysHandle system,
LPCSTR userID);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries server system.

LPCSTR userID - input
Pointer to a buffer that contains the NULL-terminated user ID. The user ID must not be longer than
CWBCO_MAX_USER_ID characters, not including the terminating NULL character.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The userID pointer is NULL.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.

CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer
may be changed.

Usage: This API cannot be used after a successful signon has occurred for the specified system object.
A signon has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this
system object. Setting a user ID explicitly with this API will cause any default user mode set with the
cwbCO_SetDefaultUserMode API to be ignored.

Chapter 4. iSeries Access for Windows® C/C++ APIs 99

cwbCO_SetValidateMode

Purpose: This function sets, for the specified system object, the validate mode, which affects behavior
when validating the user ID and password.

Syntax:

UINT CWB_ENTRY cwbCO_SetValidateMode(
cwbCO_SysHandle system,
cwbCO_ValidateMode mode);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwbCO_ValidateMode mode - input
Specifies the validate mode. Possible values are:

CWBCO_VALIDATE_IF_NECESSARY
If validation of this user ID on this iSeries system has occurred from this PC within the last 24
hours, and the validation was successful, then use the results of the last validation and do not
connect to validate at this time. There may be other scenarios where re-validation will occur;
iSeries Access for Windows will re-validate as needed.

CWBCO_VALIDATE_ALWAYS
Communication with the iSeries system to validate user ID and password will occur every time
this validation is requested or required. Setting this mode forces the validation to occur (when
the system object is not signed on yet). Once a system object is signed on, this setting is
ignored.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred using the specified system object, so this setting no longer may
be changed.

Usage: This API cannot be used after a successful signon has occurred for the specified system object.
A signon has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this
system object.

100 iSeries: iSeries Access for Windows Programming

cwbCO_SetWindowHandle

Purpose: This function sets, for the specified system object, the window handle to use if any prompting
is to be done that is associated with the system object (for example, prompting for user ID and password).
When so set (to a non-NULL window handle), such a prompt would appear ’modal’ to the main application
window and therefore never would get hidden behind that window.

Syntax:

UINT CWB_ENTRY cwbCO_SetWindowHandle(
cwbCO_SysHandle system,
HWND windowHandle);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

HWND windowHandle - input
Specifies the window handle to associate with the system object. If NULL, no window handle is
associated with the system object.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

Usage: This API may be used any time to change the window handle for the specified system object,
even after a successful signon.

Chapter 4. iSeries Access for Windows® C/C++ APIs 101

cwbCO_Signon

Purpose: Sign the user on to the iSeries system that is represented by the specified system object by
using user ID and password.

Note: Passing an incorrect password on the cwbCO_Signon API increments the invalid signon attempts
counter for the specified user. The user profile is disabled if sufficient invalid passwords are sent to
the host.

Syntax:

UINT CWB_ENTRY cwbCO_Signon(
cwbCO_SysHandle system,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_UNKNOWN_USERID
The supplied user ID is not known to this system.

CWB_WRONG_PASSWORD
Password is not correct.

CWB_PASSWORD_EXPIRED
Password has expired.

CWB_USER_PROFILE_DISABLED
The user ID has been disabled.

CWB_INVALID_PASSWORD
One or more characters in the password is invalid or the password is too long.

CWB_INVALID_USERID
One or more characters in the user ID is invalid or the user ID is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

CWB_USER_CANCELLED
The user cancelled the signon process.

Other return codes commonly may be returned as a result of a failed attempt to connect to the signon
server. For a list of such return codes, see comments for cwbCO_Connect.

102 iSeries: iSeries Access for Windows Programming

Usage: Both whether the user is prompted for user ID and password, and whether the iSeries system
actually is contacted during user validation, are influenced by current system object settings, such as user
ID, password, Prompt Mode, Default User Mode, and Validate Mode. See declarations for the get/set APIs
of these attributes for more information. If the iSeries system as named in the specified system object
does not exist in the System List, and the system object Persistence Mode is set appropriately, then when
cwbCO_Connect or cwbCO_Signon first is called successfully, the iSeries system, as named in the system
object, will be added to the System List.

For more information about the Persistence Mode, see the comments for cwbCO_SetPersistenceMode. If
successful, and iSeries server password caching is enabled, the password will be stored for the resulting
user ID in the PC’s iSeries server password cache.

See also:
v “Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 108
v “Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 108

Chapter 4. iSeries Access for Windows® C/C++ APIs 103

cwbCO_UseSecureSockets

Purpose: Specify that all communication to the iServer system that uses the specified system object
either must use secure sockets or must not use secure sockets.

Syntax:

UINT CWB_ENTRY cwbCO_UseSecureSockets(
cwbCO_SysHandle system,
cwb_Boolean useSecureSockets);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iServer system.

cwb_Boolean useSecureSockets - input
Specifies whether to require secure sockets use when communicating with the iServer system that the
specified system object handle represents. Use the appropriate value:

CWB_TRUE
Require secure sockets use for communication

CWB_FALSE
Do not use secure sockets for communication

CWB_TIMED_OUT
The connect timeout value associated with the system object expired before the connection
verification attempt completed, so we stopped waiting.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_SECURE_SOCKETS_NOTAVAIL
Secure sockets is not available. It may not be installed on the PC, prohibited for this user, or not
available on the iServer system.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred by using the specified system object, so this setting no longer
may be changed.

Usage: Even if a connection to the specified service already exists for the given system object, a new
connection is attempted. The attributes of the given system object, such as whether to use secure sockets,
are used for this connection attempt. It is therefore possible that connection verification may fail given the
passed system object, but might succeed to the same system given a system object whose attributes are
set differently. The most obvious example of this is where secure sockets use is concerned, since the
non-secure-sockets version of the service may be running on the iServer system, while the secure-sockets
version of the service might not be running, or vice-versa.

iSeries Access for Windows may or may not be able to detect at the time this API is called if Secure
Sockets will be available for use at connect time for this iSeries system. Even if
CWB_SECURE_SOCKETS_NOTAVAIL is NOT returned, it may be determined at a later time that secure
sockets is not available.

104 iSeries: iSeries Access for Windows Programming

cwbCO_Verify

Purpose: Verifies that a connection can be made to a specific host service on an iSeries system.

Syntax:

UINT CWB_ENTRY cwbCO_Verify(
cwbCO_SysHandle system,
cwbCO_Service service,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbCO_SysHandle system - input
Handle previously returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It identifies the
iSeries system to which to verify connectability.

cwbCO_Service service - input
The service to verify connectability to on the iSeries system. Valid values are those listed in “Defines
for cwbCO_Service” on page 108, except for the value CWBCO_SERVICE_ANY. To verify
connectability of ALL services, specify CWBCO_SERVICE_ALL.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_SERVICE_NAME_ERROR
The service identifier is invalid.

CWB_COMMUNICATIONS_ERROR
An error occurred attempting to verify a connection to the service.

Usage: This API does not require user ID and password to be set, nor will it cause a signon to occur,
thus it will never prompt for this information. It does not change the state of the system object in any way.

If a connection to any specified service already exists, no new connection will be established, and
connectability will be considered verified for that service.

If CWBCO_SERVICE_ALL is specified for verification, the return code will be CWB_OK only if ALL
services can be connected to. If any one verification attempt fails, the return code will be that from the first
failure, although verification of the other services still will be attempted.

Since this API does not establish a usable connection, it automatically will disconnect when the verification
is complete; therefore, do NOT call cwbCO_Disconnect to end the connection.

Chapter 4. iSeries Access for Windows® C/C++ APIs 105

cwbCO_VerifyUserIDPassword

Purpose: This function verifies the correctness of the user ID and password passed in, on the iSeries
system that the specified system object represents. If the user ID and password are correct, it also
retrieves data related to signon attempts and password expiration.

Note: Passing an incorrect password on the cwbCO_VerifyUserIDPassword API increments the invalid
signon attempts counter for the specified user. The user profile is disabled if sufficient invalid
passwords are sent to the host.

Syntax:

UINT CWB_ENTRY cwbCO_VerifyUserIDPassword(
cwbCO_SysHandle system,
LPCSTR userID,
LPCSTR password,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the iSeries system.

LPCSTR userID - input
Pointer to a buffer that contains the NULL-terminated user ID, which must not exceed
CWBCO_MAX_USER_ID characters in length, not including the terminating NULL.

LPCSTR password - input
A pointer to a buffer that contains the NULL-terminated password. The maximum length is
CWBCO_MAX_PASSWORD + 1 bytes in length, including the NULL terminator.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
A pointer supplied to the API is not valid.

CWB_UNKNOWN_USERID
The supplied user ID is not known to this system.

CWB_WRONG_PASSWORD
Password is not correct.

CWB_PASSWORD_EXPIRED
Password has expired.

CWB_USER_PROFILE_DISABLED
The user ID has been disabled.

CWB_INVALID_PASSWORD
One or more characters in the password is invalid or the password is too long.

106 iSeries: iSeries Access for Windows Programming

CWB_INVALID_USERID
One or more characters in the user ID is invalid or the user ID is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate a temporary buffer.

CWB_API_ERROR
General API failure.

Usage: Valid password lengths depend on the current setting of the iSeries system password level.
Password levels 0 and 1 allow passwords up to 10 characters in length. Password levels 2 and 3 allow
passwords up to 128 characters in length.

See “Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 108 and
“Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 108.

Chapter 4. iSeries Access for Windows® C/C++ APIs 107

Defines for cwbCO_Service
The following are values that define cwbCO_Service:
v CWBCO_SERVICE_CENTRAL
v CWBCO_SERVICE_NETFILE
v CWBCO_SERVICE_NETPRINT
v CWBCO_SERVICE_DATABASE
v CWBCO_SERVICE_ODBC
v CWBCO_SERVICE_DATAQUEUES
v CWBCO_SERVICE_REMOTECMD
v CWBCO_SERVICE_SECURITY
v CWBCO_SERVICE_DDM
v CWBCO_SERVICE_MAPI
v CWBCO_SERVICE_USF
v CWBCO_SERVICE_WEB_ADMIN
v CWBCO_SERVICE_TELNET
v CWBCO_SERVICE_MGMT_CENTRAL
v CWBCO_SERVICE_ANY
v CWBCO_SERVICE_ALL

Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword
Following are listed some of the significant differences between cwbCO_Signon and
cwbCO_VerifyUserIDPassword:
v cwbCO_VerifyUserIDPassword requires that a user ID and password be passed-in (system object

values for these will NOT be used), and will not prompt for this information. cwbCO_Signon may use
prompting, depending on other system object settings, and in that case will use whatever values are
supplied by the user for user ID and password in its validation attempt.

v Since cwbCO_VerifyUserIDPassword never will prompt for user ID and password, these settings in the
specified system object will not be changed as a result of that call. A call to cwbCO_Signon, however,
may change the user ID or password of the system object as the result of possible prompting for this
information.

v cwbCO_VerifyUserIDPassword ALWAYS will result in a connection to the iSeries system being
established to perform user ID and password validation, and to retrieve current values (such as date
and time of last successful signon) related to signon attempts. cwbCO_Signon, however, might not
connect to validate the user ID and password, but instead may use recent results of a previous
validation. This is affected by recency of previous validation results as well as by the Validation Mode
attribute of the given system object.

v The password will be cached in the iSeries password cache only in the case of the successful
completion of cwbCO_Signon, never as the result of a call to cwbCO_VerifyUserIDPassword.

v cwbCO_VerifyUserIDPassword NEVER will set the system object state to ’signed on’, whereas a
successful cwbCO_Signon WILL change the state to ’signed on’. This is important because when a
system object is in a ’signed on’ state, most of its attributes may no longer be changed.

Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword
Both APIs, when using a connection to validate the user ID and password, also retrieve current data
related to signon attempts. This data then can be retrieved by using the following APIs:

v cwbCO_GetSignonDate

v cwbCO_GetPrevSignonDate

v cwbCO_GetPasswordExpireDate

v cwbCO_GetFailedSignons

108 iSeries: iSeries Access for Windows Programming

iSeries Access for Windows Communications system list APIs listing
The following Communications system list APIs are listed alphabetically, by function:

Function APIs

Create a list of configured systems, either in the
currently active environment or in a different environment.
Retrieve the number of entries in the list, and each entry
in succession.

cwbCO_CreateSysListHandle
cwbCO_CreateSysListHandleEnv
cwbCO_GetSysListSize
cwbCO_GetNextSysName
cwbCO_DeleteSysListHandle

Obtain information about individual systems that are
configured or connected in the current process.
Unless the environment name is passed as a parameter,
these APIs work only with the currently active
environment:

cwbCO_GetDefaultSysName
cwbCO_GetConnectedSysName
cwbCO_IsSystemConfigured
cwbCO_IsSystemConfiguredEnv*
cwbCO_IsSystemConnected
cwbCO_GetUserID
cwbCO_GetActiveConversations
cwbCO_GetHostVersion

Obtain the names of environments that have been
configured.

cwbCO_GetNumberOfEnvironments
cwbCO_GetEnvironmentName
cwbCO_GetActiveEnvironment

Determine if the calling application can modify
environments and connection information.

cwbCO_CanConnectNewSystem
cwbCO_CanSetActiveEnvironment
cwbCO_CanModifyEnvironmentList
cwbCO_CanModifySystemList
cwbCO_CanModifySystemListEnv

Chapter 4. iSeries Access for Windows® C/C++ APIs 109

cwbCO_CanConnectNewSystem

Purpose: Indicates whether the user may connect to a system not currently configured in the System List
within the active environment.

Syntax:

cwb_Boolean CWB_ENTRY cwbCO_CanConnectNewSystem();

Parameters: None

Return Codes: The following list shows common return values:

CWB_TRUE
Can connect to systems not already configured.

CWB_FALSE
Cannot connect to systems not already configured.

Usage: If this API returns CWB_FALSE, a call to cwbCO_CreateSystem with a system name not
currently configured will fail, as will various other iSeries Access for Windows APIs that take system name
as a parameter.

110 iSeries: iSeries Access for Windows Programming

cwbCO_CanModifyEnvironmentList

Purpose: Indicates whether the user can create/remove/rename environments.

Syntax:

cwb_Boolean CWB_ENTRY cwbCO_CanModifyEnvironmentList();

Parameters:

None

Return Codes: The following list shows common return values.

CWB_TRUE
Can create/remove/rename/delete environments.

CWB_FALSE
Cannot create/remove/rename/delete environments.

Usage: This API indicates whether environments can be manipulated. To see if systems within an
environment may be manipulated, use the cwbCO_CanModifySystemList and
cwbCO_CanModifySystemListEnv APIs.

Chapter 4. iSeries Access for Windows® C/C++ APIs 111

cwbCO_CanModifySystemList

Purpose: Indicates whether the user can add/remove/delete systems within the active environment. Note
that systems ″suggested″ by the administrator via policies cannot be removed.

Syntax:

cwb_Boolean CWB_ENTRY cwbCO_CanModifySystemList();

Parameters:

None

Return Codes: The following list shows common return values:

CWB_TRUE
Can modify system list.

CWB_FALSE
Cannot modify system list.

Usage: This API indicates whether systems within the active environment can be manipulated. To see if
environments can be manipulated see the cwbCO_CanModifyEnvironmentList API.

112 iSeries: iSeries Access for Windows Programming

cwbCO_CanModifySystemListEnv

Purpose: Indicates whether the user can add/remove/delete systems within an input environment. Note
that systems ″suggested″ by the administrator via policies cannot be removed.

Syntax:

cwb_Boolean CWB_ENTRY cwbCO_CanModifySystemListEnv(
char *environmentName);

Parameters:

char *environmentName - input
Pointer to a string that contains the desired environment name. If this pointer is NULL, or if it points to
an empty string, the currently active environment is used.

Return Codes: The following list shows common return values:

CWB_TRUE
Can modify system list.

CWB_FALSE
Cannot modify system list, or an error occurred, such as having been passed a non-existent
environment name.

Usage: This API indicates whether systems within an environment can be manipulated. To see if
environments can be manipulated see the cwbCO_CanModifyEnvironmentList API.

Chapter 4. iSeries Access for Windows® C/C++ APIs 113

cwbCO_CanSetActiveEnvironment

Purpose: Indicates whether the user can set an environment to be the active environment.

Syntax:

cwb_Boolean CWB_ENTRY cwbCO_CanSetActiveEnvironment();

Parameters:

None

Return Codes: The following list shows common return values:

CWB_TRUE
Can set the active environment.

CWB_FALSE
Cannot set the active environment.

Usage: None

114 iSeries: iSeries Access for Windows Programming

cwbCO_CreateSysListHandle

Purpose: Creates a handle to a list of configured system names in the active environment.

Syntax:

unsigned int CWB_ENTRY cwbCO_CreateSysListHandle(
cwbCO_SysListHandle *listHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbCO_SysListHandle *listHandle - output
Pointer to a list handle that will be passed back on output. This handle is needed for other calls using
the list.

cwbSV_ErrorHandle errorHandle - input
If the API call fails, the message object that is associated with this handle will be filled in with message
text that describes the error. If this parameter is zero, no messages will be available.

Return Codes: The following list shows common return values:

CWB_OK
Successful Completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_POINTER
Pointer to the list handle is NULL.

Usage: cwbCO_DeleteSysListHandle must be called to free resources that are allocated with this API.

Chapter 4. iSeries Access for Windows® C/C++ APIs 115

cwbCO_CreateSysListHandleEnv

Purpose: Creates a handle to list of configured system names of the specified environment.

Syntax:

unsigned int CWB_ENTRY cwbCO_CreateSysListHandleEnv(
cwbCO_SysListHandle *listHandle,
cwbSV_ErrHandle errorHandle,
LPCSTR pEnvironment);

Parameters:

cwbCO_SysListHandle *listHandle - output
Pointer to a list handle that will be passed back on output. This handle is needed for other calls that
are using the list.

cwbSV_ErrorHandle errorHandle - input
If the API call fails, the message object that is associated with this handle will be filled in with message
text that describes the error. If this parameter is zero, no messages will be available.

LPCSTR pEnvironment
Pointer to a string containing the desired environment name. If pEnvironment is the NULL pointer, or
points to the NULL string (″\0″), the system list of the current active environment is returned.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_INVALID_POINTER
Pointer to the list handle is NULL.

CWBCO_NO_SUCH_ENVIRONMENT
The specified environment does not exist.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage: cwbCO_DeleteSysListHandle must be called to free resources allocated with this API.

116 iSeries: iSeries Access for Windows Programming

cwbCO_DeleteSysListHandle

Purpose: Deletes a handle to a list of configured system names. This must be called when you are
finished using the system name list.

Syntax:

unsigned int CWB_ENTRY cwbCO_DeleteSysListHandle(
cwbCO_SysListHandle listHandle);

Parameters:

cwbCO_SysListHandle - listHandle
A handle to the system name list to delete.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

Usage: Use this API to delete the list created with the cwbCO_CreateSysListHandle or
cwbCO_CreateSysListHandleEnv API.

Chapter 4. iSeries Access for Windows® C/C++ APIs 117

cwbCO_GetActiveConversations

Purpose: Get the number of active conversations of the system.

Syntax:

int CWB_ENTRY cwbCO_GetActiveConversations(
LPCSTR systemName);

Parameters:

LPCSTR systemName - input
Pointer to a buffer that contains the system name.

Return Codes: The number of active conversations, if any, is returned. If the systemName pointer is
NULL, points to an empty string, the system is not currently connected, or system name contains one or
more Unicode characters which cannot be converted, 0 will be returned.

Usage: This API returns the number of conversations active for the specified iSeries system within the
CURRENT PROCESS ONLY. There may be other conversations active within other processes running on
the PC.

118 iSeries: iSeries Access for Windows Programming

cwbCO_GetActiveEnvironment

Purpose: Get the name of the environment currently active.

Syntax:

unsigned int CWB_ENTRY cwbCO_GetActiveEnvironment(
char *environmentName,
unsigned long *bufferSize);

Parameters:

char *environmentName - output
Pointer to a buffer into which will be copied the name of the active environment, if the buffer that is
passed is large enough to hold it. The buffer should be large enough to hold at least
CWBCO_MAX_ENV_NAME + 1 characters, including the terminating NULL character.

unsigned long * bufferSize - input/output

input Size of the buffer pointed to by *environmentName.

output
Size of buffer needed.

Return Codes: The following list shows common return values:

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
One or more pointer parameters are NULL.

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold entire environment name. Use *bufferSize to determine
the correct size. No error message is logged to the History Log since the caller is expected to
recover from this error and continue.

CWBCO_NO_SUCH_ENVIRONMENT
No environments have been configured, so there is no active environment.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

Usage:

Chapter 4. iSeries Access for Windows® C/C++ APIs 119

cwbCO_GetConnectedSysName

Purpose: Get the name of the connected system corresponding to the index.

Syntax:

unsigned int CWB_ENTRY cwbCO_GetConnectedSysName(
char *systemName,
unsigned long *bufferSize,
unsigned long index);

Parameters:

char *systemName - output
Pointer to a buffer that will contain the system name. This buffer should be large enough to hold at
least CWBCO_MAX_SYS_NAME + 1 characters, including the terminating NULL character.

unsigned long * bufferSize - input/output

input Size of the buffer pointed to by *systemName.

output
Size of buffer needed.

unsigned long index
Indicates which connected system to retrieve the name for. The first connected system’s index is 0,
the second index is 1, and so on.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
Pointer to system name or pointer to buffer size needed is NULL. Check messages in the History
Log to determine which are NULL.

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold entire system name. Use *bufferSize to determine the
correct size. No error message is logged to the History Log since the caller is expected to recover
from this error and continue.

CWBCO_END_OF_LIST
The end of connected system list has been reached. No system name was returned.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

Usage: Connections for which system names can be retrieved are those within the current process only.

120 iSeries: iSeries Access for Windows Programming

cwbCO_GetDefaultSysName

Purpose: Get the name of the default system in the active environment.

Syntax:

unsigned int CWB_ENTRY cwbCO_GetDefaultSysName(
char *defaultSystemName,
unsigned long bufferSize,
unsigned long *needed,
cwbSV_ErrHandle errorHandle);

Parameters:

char *defaultSystemName - output
Pointer to a buffer that will contain the NULL-terminated system name. This buffer should be large
enough to hold at least CWBCO_MAX_SYS_NAME + 1 characters, including the terminating NULL
character.

unsigned long bufferSize - input
Size of input buffer.

unsigned long *needed - output
Number of bytes needed to hold entire system name including the terminating NULL.

cwbSV_ErrorHandle errorhandle - input
If the API call fails, the message object associated with this handle will be filled in with message text
that describes the error. If this parameter is zero, no messages will be available.

Return Codes: The following list shows common return values:

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
Pointer to the system name or pointer to buffer size needed is NULL. Check messages in the
History Log to determine which are NULL.

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold the entire system name. Use *needed to determine the
correct size. No error message is logged to the History Log since the caller is expected to recover
from this error and continue.

CWBCO_DEFAULT_SYSTEM_NOT_DEFINED
The setting for the default system has not been defined in the active environment.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

Usage:

Chapter 4. iSeries Access for Windows® C/C++ APIs 121

cwbCO_GetEnvironmentName

Purpose: Get the name of the environment corresponding to the index.

Syntax:

unsigned int CWB_ENTRY cwbCO_GetEnvironmentName(
char *environmentName,
unsigned long *bufferSize,
unsigned long index);

Parameters:

char *environmentName - output
Pointer to a buffer that will contain the environment name. This buffer should be large enough to hold
at least CWBCO_MAX_ENV_NAME + 1 characters, including the terminating NULL character.

unsigned long * bufferSize - input/output

input Size of the buffer pointed to by *environmentName.

output
Size of buffer needed, if the buffer provided was too small.

unsigned long index - input
0 corresponds to the first environment.

Return Codes: The following list shows common return values:

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
One or more pointer parameters are NULL.

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold entire environment name. Use *bufferSize to determine
the correct size. No error message is logged to the History Log since the caller is expected to
recover from this error and continue.

CWBCO_END_OF_LIST
The end of the environments list has been reached. No environment name was returned.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

Usage:

122 iSeries: iSeries Access for Windows Programming

cwbCO_GetHostVersion

Purpose: Get the version and release level of the host.

Syntax:

unsigned int CWB_ENTRY cwbCO_GetHostVersion(
LPCSTR system,
unsigned int * version,
unsigned int * release);

Parameters:

LPCSTR systemName - input
Pointer to a buffer that contains the system name.

unsigned int * version - output
Pointer to a buffer where the version level of the system is returned.

unsigned int * release - output
Pointer to a buffer where the release level of the system is returned.

Return Codes: The following list shows common return values:

CWB_OK
Successful Completion.

CWBCO_SYSTEM_NOT_CONFIGURED
The system is not configured in the currently active environment.

CWBCO_SYSTEM_NOT_CONNECTED
The system has never been connected to when using the currently active environment.

CWB_INVALID_POINTER
One of the pointers passed is NULL.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage: The host version is retrieved and saved whenever a connection is made to the system; this API
does not go to the host to get it on each call. The system must have been connected previously, though
not necessarily at the time the API is called. Host information can only be retrieved for systems configured
in the currently active environment.

Chapter 4. iSeries Access for Windows® C/C++ APIs 123

cwbCO_GetNextSysName

Purpose: Get the name of the next system from a list of systems.

Syntax:

unsigned int CWB_ENTRY cwbCO_GetNextSysName(
cwbCO_SysListHandle listHandle,
char *systemName,
unsigned long bufferSize,
unsigned long *needed);

Parameters:

cwbCO_SysListHandle handleList - input
Handle to a list of systems.

char *systemName - output
Pointer to a buffer that will contain the system name. This buffer should be large enough to hold at
least CWBCO_MAX_SYS_NAME + 1 characters, including the terminating NULL character.

unsigned long bufferSize - input
Size of the buffer pointed to by systemName.

unsigned long *needed - output
Number of bytes needed to hold entire system name.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
Pointer to system name or pointer to buffer size needed is NULL. Check messages in the History
Log to determine which are NULL.

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold entire system name. Use *needed to determine the
correct size. No error message is logged to the History Log since the caller is expected to recover
from this error and continue.

CWBCO_END_OF_LIST
The end of the system list has been reached. No system name was returned.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

Usage: If the system list passed in was created using the API cwbCO_CreateSystemListHandle, then the
system returned is configured in the currently active environment, unless between these API calls the user
has removed it or switched to a different environment. If cwbCO_CreateSysListHandleEnv was called to
create the system list, then the system returned is configured in the environment passed to that API,
unless the user has since removed it.

124 iSeries: iSeries Access for Windows Programming

cwbCO_GetNumberOfEnvironments

Purpose: Get the number of iSeries Access environments that exist. This includes both the active and all
non-active environments.

Syntax:

unsigned int CWB_ENTRY cwbCO_GetNumberOfEnvironments(
unsigned long *numberOfEnv);

Parameters:

unsigned long *numberOfEnv - output
On output this will be set to the number of environments.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
The numberOfEnv pointer parameter is NULL.

Usage: None.

Chapter 4. iSeries Access for Windows® C/C++ APIs 125

cwbCO_GetSysListSize

Purpose: Gets the number of system names in the list.

Syntax:

unsigned int CWB_ENTRY cwbCO_GetSysListSize(
cwbCO_SysListHandle listHandle,
unsigned long *listSize);

Parameters:

cwbCO_SysListHandle listHandle - input
Handle of the list of systems.

unsigned long *listSize - output
On output this will be set to the number of systems in the list.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
Pointer to the list size is NULL.

Usage: None.

126 iSeries: iSeries Access for Windows Programming

cwbCO_GetUserID

Purpose: Get signon or default user ID of the input system as it is configured and possibly connected in
the currently active environment. This API is obsolete, and has been replaced.

Syntax:

unsigned int CWB_ENTRY cwbCO_GetUserID(
LPCSTR systemName,
char *userID,
unsigned int userID_Type,
unsigned long *bufferSize);

Parameters:

LPCSTR systemName - input
Pointer to a buffer that contains the system name.

char *userID - output
Pointer to a buffer where the desired userID of the system is returned. This buffer should be large
enough to hold at least CWBCO_MAX_USER_ID + 1 characters, including the terminating NULL
character.

unsigned int userID_Type - input
Specify whether current user ID of connected system (CWBCO_CURRENT_USER_ID) or default user
ID of configured system (CWBCO_DEFAULT_USER_ID) is to be returned.

unsigned long * bufferSize - input/output
Pointer to a value that indicates the size of the userID buffer. If the buffer is not big enough, the value
needed is returned.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
One or more input pointers are invalid.

CWB_INVALID_PARAMETER
The value for userID_Type is invalid.

CWB_BUFFER_OVERFLOW
Not enough room in userID buffer to store the user ID. Use *bufferSize to determine the correct
size. No error message is logged to the History Log since the caller is expected to recover from
this error and continue.

CWBCO_SYSTEM_NOT_CONNECTED
The system of the ″current user ID″ is not connected.

CWBCO_SYSTEM_NOT_CONFIGURED
The system of the ″default user ID″ is not configured in the currently active environment.

CWBCO_INTERNAL_ERROR
Internal error.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Chapter 4. iSeries Access for Windows® C/C++ APIs 127

Usage: If the default user ID is specified, and none was entered when the connection was configured,
CWB_OK will be returned and the user ID sent back to the caller will be the empty string, ″\0″. The user
ID retrieved will be that of the specified system from the currently active environment.

128 iSeries: iSeries Access for Windows Programming

cwbCO_IsSystemConfigured

Purpose: Check if the input system is configured in the environment currently in use.

Syntax:

cwb_Boolean CWB_ENTRY cwbCO_IsSystemConfigured(
LPCSTR systemName);

Parameters:

LPCSTR systemName - input
Pointer to a buffer that contains the system name.

Return Codes: The following list shows common return values:

CWB_TRUE:
System is configured.

CWB_FALSE:
System is not configured, systemName is NULL, or system name contains one or more Unicode
characters that cannot be converted.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 129

cwbCO_IsSystemConfiguredEnv

Purpose: Check if the input system is configured in the environment specified.

Syntax:

cwb_Boolean CWB_ENTRY cwbCO_IsSystemConfiguredEnv(
LPCSTR systemName,
LPCSTR pEnvironment);

Parameters:

LPCSTR systemName - input
Pointer to a buffer that contains the system name.

LPCSTR pEnvironment - input
Pointer to a buffer that contains the environment name. If pEnvironment is NULL, or if it points to an
empty string, the environment currently in use is checked.

Return Codes: The following list shows common return values:

CWB_TRUE:
System is configured.

CWB_FALSE:
System is not configured, systemName is NULL, or system name contains one or more Unicode
characters that cannot be converted.

Usage: None

130 iSeries: iSeries Access for Windows Programming

cwbCO_IsSystemConnected

Purpose: Check if the input system is currently connected.

Syntax:

cwb_Boolean CWB_ENTRY cwbCO_IsSystemConnected(
LPCSTR systemName);

Parameters:

LPCSTR systemName - input
Pointer to a buffer that contains the system name.

Return Codes: The following list shows common return values.

CWB_TRUE:
System is connnected.

CWB_FALSE:
System is not connected, systemName is NULL, or system name contains one or more Unicode
characters that cannot be converted.

Usage: This API indicates connection status within the current process only. The system may be
connected within a different process, but this has no effect on the output of this API.

Chapter 4. iSeries Access for Windows® C/C++ APIs 131

Example: Using iSeries Access for Windows communications APIs
The example program below shows the use of communications APIs to retrieve and display the names of
the default (managing) system, along with all the systems that are configured in the active environment.

/***
*
* Module:
* GETSYS.C
*
* Purpose:
* This module is used to demonstrate how an application might use the
* Communication API’s. In this example, these APIs are used to get
* and display the list of all configured systems. The user can then
* select one, and that system’s connection properties (the attributes
* of the created system object) are displayed. All Client Access
* services are then checked for connectabliity, and the results displayed.
*
* Usage Notes:
*
* Include CWBCO.H, CWBCOSYS.H, and CWBSV.H
* Link with CWBAPI.LIB
*
* IBM grants you a nonexclusive license to use this as an example
* from which you can generate similar function tailored to your own
* specific needs. This sample is provided in the form of source
* material which you may change and use.
* If you change the source, it is recommended that you first copy the
* source to a different directory. This will ensure that your changes
* are preserved when the tool kit contents are changed by IBM.
*
* DISCLAIMER
* ----------
*
* This sample code is provided by IBM for illustrative purposes only.
* These examples have not been thoroughly tested under all conditions.
* IBM, therefore, cannot guarantee or imply reliability,
* serviceability, or function of these programs. All programs
* contained herein are provided to you "AS IS" without any warranties
* of any kind. ALL WARRANTIES, INCLUDING BUT NOT LIMITED TO THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, ARE EXPRESSLY DISCLAIMED.
*
* Your license to this sample code provides you no right or licenses to
* any IBM patents. IBM has no obligation to defend or indemnify against
* any claim of infringement, including but not limited to: patents,
* copyright, trade secret, or intellectual property rights of any kind.
*
*
*
*
*
* COPYRIGHT
* ---------
* 5769-XE1 (C) Copyright IBM CORP. 1996, 1998
* All rights reserved.
* US Government Users Restricted Rights -
* Use, duplication or disclosure restricted
* by GSA ADP Schedule Contract with IBM Corp.
* Licensed Material - Property of IBM
*

132 iSeries: iSeries Access for Windows Programming

*
***/

#include windows.h
#include stdio.h

#include "cwbsv.h" /* Service APIs for retrieving any FAILURE messages */
#include "cwbco.h" /* Comm APIs for enumerating systems configured */
#include "cwbcosys.h" /* Comm APIs for creating and using system objects */

#define SUCCESS (0)
#define FAILURE (1)

/*
* Arrays of attribute description strings, for human-readable
* display of these values.
*/
char* valModeStr[2] = { "CWBCO_VALIDATE_IF_NECESSARY" ,

"CWBCO_VALIDATE_ALWAYS" } ;

char* promptModeStr[3] = { "CWBCO_PROMPT_IF_NECESSARY" ,
"CWBCO_PROMPT_ALWAYS" ,
"CWBCO_PROMPT_NEVER" } ;

char* dfltUserModeStr[4] = { "CWBCO_DEFAULT_USER_MODE_NOT_SET" ,
"CWBCO_DEFAULT_USER_USE" ,
"CWBCO_DEFAULT_USER_IGNORE" ,
"CWBCO_DEFAULT_USER_USEWINLOGON" } ;

char* IPALModeStr[6] = { "CWBCO_IPADDR_LOOKUP_ALWAYS" ,
"CWBCO_IPADDR_LOOKUP_1HOUR" ,
"CWBCO_IPADDR_LOOKUP_1DAY" ,
"CWBCO_IPADDR_LOOKUP_1WEEK" ,
"CWBCO_IPADDR_LOOKUP_NEVER" ,
"CWBCO_IPADDR_LOOKUP_AFTER_STARTUP" } ;

char* portLookupModeStr[3] = { "CWBCO_PORT_LOOKUP_SERVER" ,
"CWBCO_PORT_LOOKUP_LOCAL" ,
"CWBCO_PORT_LOOKUP_STANDARD" } ;

char* cwbBoolStr[2] = { "False", "True" } ;

/* NOTE! The corresponding service CONSTANT integers start
* at 1, NOT at 0; that is why the dummy "FAILURE" value
* was added at position 0.
*/
char* serviceStr[15] = { "CWBCO_SERVICE_THISISABADSERVICE!",

"CWBCO_SERVICE_CENTRAL" ,
"CWBCO_SERVICE_NETFILE" ,
"CWBCO_SERVICE_NETPRINT" ,
"CWBCO_SERVICE_DATABASE" ,
"CWBCO_SERVICE_ODBC" ,
"CWBCO_SERVICE_DATAQUEUES" ,
"CWBCO_SERVICE_REMOTECMD" ,
"CWBCO_SERVICE_SECURITY" ,
"CWBCO_SERVICE_DDM" ,
"CWBCO_SERVICE_MAPI" ,
"CWBCO_SERVICE_USF" ,
"CWBCO_SERVICE_WEB_ADMIN" ,

Chapter 4. iSeries Access for Windows® C/C++ APIs 133

"CWBCO_SERVICE_TELNET" ,
"CWBCO_SERVICE_MGMT_CENTRAL" } ;

/*
* Node in a singly-linked list to hold a pointer
* to a system name. Note that the creator of an
* instance of this node must allocate the space to
* hold the system name himself, only a pointer is
* supplied here.
*/
typedef struct sysListNodeStruct SYSLISTNODE, *PSYSLISTNODE;
struct sysListNodeStruct
{

char* sysName;
cwbCO_SysHandle hSys;
PSYSLISTNODE next;

} ;

/**
* Add a system name to the list of configured systems we will keep around.
**/
UINT addSystemToList(

char* sysName,
SYSLISTNODE** ppSysList)

{
SYSLISTNODE* pNewSys;
char* pNewSysName;

pNewSys = (SYSLISTNODE*) malloc (sizeof(SYSLISTNODE));
if (pNewSys == NULL)
{

return FAILURE;
}

pNewSysName = (char*) malloc (strlen(sysName) + 1);
if (pNewSysName == NULL)
{

free (pNewSys);
return FAILURE;

}

strcpy(pNewSysName, sysName);
pNewSys->sysName = pNewSysName;
pNewSys->hSys = 0; /* delay creating sys object until needed */
pNewSys->next = *ppSysList;
*ppSysList = pNewSys;

return SUCCESS;
}

/**
* Clear the list of system names and clean up used storage.
**/

134 iSeries: iSeries Access for Windows Programming

void clearList(SYSLISTNODE* pSysList)
{

PSYSLISTNODE pCur, pNext;

pCur = pSysList;

while (pCur != NULL)
{

pNext = pCur->next;
free (pCur->sysName);
free (pCur);
pCur = pNext;

}
}

/**
* Retrieve and display Client Access FAILURE messages.
**/
void reportCAErrors(cwbSV_ErrHandle hErrs)
{

ULONG msgCount;
UINT apiRC;
UINT i;
char msgText[200]; /* 200 is big enuf to hold most msgs */
ULONG bufLen = sizeof(msgText); /* holds size of msgText buffer */
ULONG lenNeeded; /* to hold length of buf needed */

apiRC = cwbSV_GetErrCount(hErrs, &msgCount);
if (CWB_OK != apiRC)
{

printf("Failed to get message count, cwbSV_GetErrCount rc=%u\n", apiRC);
if ((CWB_INVALID_POINTER == apiRC) ||

(CWB_INVALID_HANDLE == apiRC))
{

printf(" --> likely a programming FAILURE!\n");
}
return;

}

bufLen = sizeof(msgText);
for (i=1; i<=msgCount; i++)
{

apiRC = cwbSV_GetErrTextIndexed(hErrs, i, msgText, bufLen, &lenNeeded);
if ((CWB_OK == apiRC) ||

(CWB_BUFFER_OVERFLOW == apiRC)) /* if truncated, that’s ok */
{

printf("CA FAILURE #%u: %s\n", i, msgText);
}
else
{

printf("CA FAILURE #%u unuvailable, cwbSV_GetErrTextIndexed rc=%u\n",
i, apiRC);

}
}

}

/**
* Build the list of systems as it is currently configured in Client

Chapter 4. iSeries Access for Windows® C/C++ APIs 135

* Access.
**/
UINT buildSysList(

SYSLISTNODE** ppSysList)
{

cwbSV_ErrHandle hErrs;
cwbCO_SysListHandle hList;
char sysName[CWBCO_MAX_SYS_NAME + 1];
ULONG bufSize = sizeof(sysName);
ULONG needed;
UINT apiRC;
UINT myRC = SUCCESS;
UINT rc = SUCCESS;

/* Create a FAILURE handle so that, in case of FAILURE, we can
* retrieve and display the messages (if any) associated with
* the failure.
*/
apiRC = cwbSV_CreateErrHandle(&hErrs);
if (CWB_OK != apiRC)
{

/* Failed to create a FAILURE handle, use NULL instead.
* This means we’ll not be able to get at FAILURE messages.
*/
hErrs = 0;

}

apiRC = cwbCO_CreateSysListHandle(*hList, hErrs);
if (CWB_OK != apiRC)
{

printf("Failure to get a handle to the system list.\n");
reportCAErrors(hErrs);
myRC = FAILURE;

}

/* Get each successive system name and add the system to our
* internal list for later use.
*/
while ((CWB_OK == apiRC) && (myRC == SUCCESS))
{

apiRC = cwbCO_GetNextSysName(hList, sysName, bufSize, &needed);

/* Note that since the sysName buffer is as large as it will
* ever need to be, we don’t check specifically for the return
* code CWB_BUFFER_OVERFLOW. We could instead choose to use a
* smaller buffer, and if CWB_BUFFER_OVERFLOW were returned,
* allocate one large enough and call cwbCO_GetNextSysName
* again.
*/
if (CWB_OK == apiRC)
{

myRC = addSystemToList(sysName, ppSysList);
if (myRC != SUCCESS)
{

printf("Failure to add the next system name to the list.\n");
}

}
else if (CWBCO_END_OF_LIST != apiRC)
{

printf("Failed to get the next system name.\n");

136 iSeries: iSeries Access for Windows Programming

myRC = FAILURE;
}

} /* end while (to build a list of system names) */

/*
* Free the FAILURE handle if one was created
*/
if (hErrs != 0) /* (non-NULL if it was successfully created) */
{

apiRC = cwbSV_DeleteErrHandle(hErrs);
if (CWB_INVALID_HANDLE == apiRC)
{

printf("Failure: FAILURE handle invalid, could not delete!\n");
myRC = FAILURE;

}
}

return myRC;
}

/**
* Get a system object given an index into our list of systems.
**/
UINT getSystemObject(

UINT sysNum,
SYSLISTNODE* pSysList,
cwbCO_SysHandle* phSys)

{
SYSLISTNODE* pCur;
UINT myRC, apiRC;

pCur = pSysList;
for (; sysNum > 1; sysNum--)
{

/* We have come to the end of the list without finding
* the system requested, break out of loop and set FAILURE rc.
*/
if (NULL == pCur)
{

myRC = FAILURE;
break;

}

pCur = pCur->next;
}

/* If we’re at a real system node, continue
*/
if (NULL != pCur)
{

/* We’re at the node/sysname of the user’s choice. If no
* Client Access "system object" has yet been created for this
* system, create one. Pass back the one for the selected system.
*/
if (0 == pCur->hSys)
{

apiRC = cwbCO_CreateSystem(pCur->sysName, &(pCur->hSys));
if (CWB_OK != apiRC)
{

Chapter 4. iSeries Access for Windows® C/C++ APIs 137

printf(
"Failed to create system object, cwbCO_CreateSystem rc = %u\n",
apiRC);

myRC = FAILURE;
}

}
*phSys = pCur->hSys;

}

return myRC;
}

/**
* Allow the user to select a system from the list we have.
**/
UINT selectSystem(

UINT* pNumSelected,
SYSLISTNODE* pSysList,
BOOL refreshList)

{
UINT myRC = SUCCESS;
SYSLISTNODE* pCur;
UINT sysNum, numSystems;
char choiceStr[20];

/* If the user wants the list refreshed, clear any existing list
* so we can rebuilt it from scratch.
*/
if (refreshList)
{

clearList(pSysList);
pSysList = NULL;

}

/* If the list of system names is NULL (no list exists), build
* the list of systems using Client Access APIs.
*/
if (NULL == pSysList)
{

myRC = buildSysList(&pSysList);
if (SUCCESS != myRC)
{

*pNumSelected = 0;
printf("Failed to build sys list, cannot select a system.\n");

}
}

if (SUCCESS == myRC)
{

printf("-- \n");
printf("The list of systems configured is as follows:\n");
printf("-- \n");
for (sysNum = 1, pCur = pSysList;

pCur != NULL;
sysNum++, pCur = pCur->next)

{
printf(" %u) %s\n", sysNum, pCur->sysName);

}

138 iSeries: iSeries Access for Windows Programming

numSystems = sysNum - 1;

printf("Enter the number of the system of your choice:\n");
gets(choiceStr);
*pNumSelected = atoi(choiceStr);

if (*pNumSelected > numSystems)
{

printf("Invalid selection, there are only %u systems configured.\n");
*pNumSelected = 0;
myRC = FAILURE;

}
}

return myRC;
}

/**
* Display a single attribute and its value, or a failing return code
* if one occurred when trying to look it up.
**/
void dspAttr(

char* label,
char* attrVal,
UINT lookupRC,
BOOL* pCanBeModified,
UINT canBeModifiedRC)

{
if (CWB_OK == lookupRC)
{

printf("%25s : %-30s ", label, attrVal);
if (CWB_OK == canBeModifiedRC)
{

if (pCanBeModified != NULL)
{

printf("%s\n", cwbBoolStr[*pCanBeModified]);
}
else
{

printf("(N/A)\n");
}

}
else
{

printf("(Error, rc=%u)\n", canBeModifiedRC);
}

}
else
{

printf("%30s : (Error, rc=%u)\n", label, lookupRC);
}

}

/**
*
* Load the host/version string into the buffer specified. The

Chapter 4. iSeries Access for Windows® C/C++ APIs 139

* buffer passed in must be at least 7 bytes long! A pointer to
* the buffer itself is passed back so that the output from this
* function can be used directly as a parameter.
*
**/
char* hostVerModeDescr(

ULONG ver,
ULONG rel,
char* verRelBuf)

{
char* nextChar = verRelBuf;

if (verRelBuf != NULL)
{

*nextChar++ = ’v’;
if (ver < 10)
{

*nextChar++ = ’0’ + (char)ver;
}
else
{

*nextChar++ = ’?’;
*nextChar++ = ’?’;

}

*nextChar++ = ’r’;
if (rel < 10)
{

*nextChar++ = ’0’ + (char)rel;
}
else
{

*nextChar++ = ’?’;
*nextChar++ = ’?’;

}

*nextChar = ’\0’;
}

return verRelBuf;
}

/**
* Display all attributes of the system whose index in the passed list
* is passed in.
**/
void dspSysAttrs(

SYSLISTNODE* pSysList,
UINT sysNum)

{
cwbCO_SysHandle hSys;
UINT rc;
char sysName[CWBCO_MAX_SYS_NAME + 1];
char IPAddr[CWBCO_MAX_IP_ADDRESS + 1];
ULONG bufLen, IPAddrLen;
ULONG IPAddrBufLen;
UINT apiRC, apiRC2;
cwbCO_ValidateMode valMode;

140 iSeries: iSeries Access for Windows Programming

cwbCO_DefaultUserMode dfltUserMode;
cwbCO_PromptMode promptMode;
cwbCO_PortLookupMode portLookupMode;
cwbCO_IPAddressLookupMode IPALMode;
ULONG ver, rel;
char verRelBuf[10];
ULONG verRelBufLen;
cwb_Boolean isSecSoc;
cwb_Boolean canModify;

IPAddrBufLen = sizeof(IPAddr);
verRelBufLen = sizeof(verRelBuf);

rc = getSystemObject(sysNum, pSysList, &hSys);
if (rc == FAILURE)
{

printf("Failed to get system object for selected system.\n");
return;

}

printf("\n\n");
printf("---\n");
printf(" S y s t e m A t t r i b u t e s \n");
printf("---\n");
printf("\n");
printf("%25s : %-30s %s\n", "Attribute", "Value", "Modifiable");
printf("%25s : %-30s %s\n", "---------", "-----", "----------");
printf("\n");

apiRC = cwbCO_GetSystemName(hSys, sysName, &bufLen);
dspAttr("System Name", sysName, apiRC, NULL, 0);

apiRC = cwbCO_GetIPAddress(hSys, IPAddr, &IPAddrLen);
dspAttr("IP Address", IPAddr, apiRC, NULL, 0);

apiRC = cwbCO_GetHostVersionEx(hSys, &ver, &rel);
dspAttr("Host Version/Release",

hostVerModeDescr(ver, rel, verRelBuf), apiRC, NULL, 0);

apiRC = cwbCO_IsSecureSockets(hSys, &isSecSoc);
apiRC2 = cwbCO_CanModifyUseSecureSockets(hSys, &canModify);
dspAttr("Secure Sockets In Use", cwbBoolStr[isSecSoc],

apiRC, &canModify, apiRC2);

apiRC = cwbCO_GetValidateMode(hSys, &valMode);
canModify = CWB_TRUE;
dspAttr("Validate Mode", valModeStr[valMode], apiRC,

&canModify, 0);

apiRC = cwbCO_GetDefaultUserMode(hSys, &dfltUserMode);
apiRC2 = cwbCO_CanModifyDefaultUserMode(hSys, &canModify);
dspAttr("Default User Mode", dfltUserModeStr[dfltUserMode], apiRC,

&canModify, apiRC2);

apiRC = cwbCO_GetPromptMode(hSys, &promptMode);
canModify = CWB_TRUE;
dspAttr("Prompt Mode", promptModeStr[promptMode], apiRC,

&canModify, 0);

apiRC = cwbCO_GetPortLookupMode(hSys, &prtLookupMode);

Chapter 4. iSeries Access for Windows® C/C++ APIs 141

apiRC2 = cwbCO_CanModifyPortLookupMode(hSys, &canModify);
dspAttr("Port Lookup Mode", portLookupModeStr[portLookupMode], apiRC,

&canModify, apiRC2);

apiRC = cwbCO_GetIPAddressLookupMode(hSys, &IPALMode);
apiRC2 = cwbCO_CanModifyIPAddressLookupMode(hSys, &canModify);
dspAttr("IP Address Lookup Mode", IPALModeStr[IPALMode], apiRC,

&canModify, apiRC2);

printf("\n\n");
}

/**
* Display connectability to all Client Access services that are
* possible to connect to.
**/
void dspConnectability(

PSYSLISTNODE pSysList,
UINT sysNum)

{
UINT rc;
UINT apiRC;
cwbCO_Service service;
cwbCO_SysHandle hSys;

rc = getSystemObject(sysNum, pSysList, &hSys);
if (rc == FAILURE)
{

printf("Failed to get system object for selected system.\n");
}
else
{

printf("\n\n");
printf("---\n");
printf(" S y s t e m S e r v i c e s S t a t u s \n");
printf("---\n");
for (service=(cwbCO_Service)1;

service <= CWBCO_SERVICE_MGMT_CENTRAL;
service++)

{
apiRC = cwbCO_Verify(hSys, service, 0); // 0=no err handle
printf(" Service ’%s’: ", serviceStr[service]);
if (apiRC == CWB_OK)
{

printf("CONNECTABLE\n");
}
else
{

printf("CONNECT TEST FAILED, rc = %u\n", apiRC);
}

}
}

printf("\n");
}

142 iSeries: iSeries Access for Windows Programming

/**
* MAIN PROGRAM BODY
**/
void main(void)
{

PSYSLISTNODE pSysList = NULL;
UINT numSelected;
UINT rc;
char choiceStr[10];
UINT choice;

rc = buildSysList(&pSysList);
if (SUCCESS != rc)
{

printf("Failure to build the system list, exiting.\n\n");
exit(FAILURE);

}

do
{

printf("Select one of the following options:\n");
printf(" (1) Display current system attributes\n");
printf(" (2) Display service connectability for a system\n");
printf(" (3) Refresh the list of systems\n");
printf(" (9) Quit\n");
gets(choiceStr);
choice = atoi(choiceStr);
switch (choice)
{

// ---- Display current system attributes ---------------
case 1 :
{

rc = selectSystem(&numSelected, pSysList, FALSE);
if (SUCCESS == rc)
{

dspSysAttrs(pSysList, numSelected);
}

break;
}

// ---- Display service connectability for a system -----
case 2 :
{

rc = selectSystem(&numSelected, pSysList, FALSE);
if (SUCCESS == rc)
{

dspConnectability(pSysList, numSelected);
}

break;
}

// ---- Refresh the list of systems ---------------------
case 3 :
{

clearList(pSysList);
pSysList = NULL;
rc = buildSysList(&pSysList);
break;

Chapter 4. iSeries Access for Windows® C/C++ APIs 143

}

// ---- Quit --
case 9 :
{

printf("Ending the program!\n");
break;

}

default :
{

printf("Invalid choice. Please make a different selection.\n");
}

}
} while (choice != 9);

/* Cleanup the list, we’re done */
clearList(pSysList);
pSysList = NULL;

printf("\nEnd of program.\n\n");
}

iSeries Access for Windows Data Queues APIs
Use iSeries Access for Windows Data Queues application programming interfaces (APIs) to provide easy
access to iSeries data queues. Data queues allow you to create client/server applications that do not
require the use of communications APIs.

iSeries Access for Windows Data Queues APIs required files:

Header file Import library Dynamic Link Library

cwbdq.h cwbapi.lib cwbdq.dll

Programmer’s Toolkit:
The Programmer’s Toolkit provides Data Queues documentation, access to the cwbdq.h header
file, and links to sample programs. To access this information, open the Programmer’s Toolkit and
select Data Queues —> C/C++ APIs.

iSeries Access for Windows Data Queues APIs topics:
v “Data queues”
v “Ordering data queue messages” on page 145
v “Working with data queues” on page 145
v “Typical use of data queues” on page 145
v iSeries Access for Windows Data Queues APIs listing
v “Example: Using Data Queues APIs” on page 206
v “Data Queues APIs return codes” on page 25

Related topics:

v “iSeries system name formats for ODBC Connection APIs” on page 12

v “OEM, ANSI, and Unicode considerations” on page 12

Data queues
A data queue is a system object that exists on the iSeries system.

Benefits of using data queues:
Data queues provide many benefits to PC developers and iSeries applications developers,
including:

144 iSeries: iSeries Access for Windows Programming

v They are a fast and efficient means of communication on the iSeries server.
v They have low system overhead and require very little setup.
v They are efficient because a single data queue can be used by a batch job to service several

interactive jobs.
v The contents of a data queue message are free-format (fields are not required), providing

flexibility that is not provided by other system objects.
v Access data queues through an iSeries API and through CL commands, which provides a

straight-forward means of developing client/server applications.

Ordering data queue messages
There are three ways to designate the order of messages on a data queue:

LIFO Last in, first out. The last message (newest) placed on the data queue will be the first message
taken off of the queue.

FIFO First in, first out. The first message (oldest) placed on the data queue will be the first message
taken off of the queue.

KEYED
Each message on the data queue has a key associated with it. A message can be taken off of the
queue only by requesting the key with which it is associated.

Working with data queues
Work with data queues by using iSeries CL commands or callable programming interfaces. Access to data
queues is available to all iSeries applications regardless of the programming language in which the
application is written.

Use the following iSeries system interfaces to work with data queues:

OS/400 commands:

CRTDTAQ
Creates a data queue and stores it in a specified library

DLTDTAQ
Deletes the specified data queue from the system

OS/400 application programming interfaces:

QSNDDTAQ
Send a message (record) to the specified data queue

QRCVDTAQ
Read a message (record) to the specified data queue

QCLRDTAQ
Clear all messages from the specified data queue

QMHQRDQD
Retrieve a data queue description

QMHRDQM
Retrieve an entry from a data queue without removing the entry

Typical use of data queues
A data queue is a powerful program-to-program interface. Programmers who are familiar with programming
on the iSeries servers are accustomed to using queues. Data queues simply represent a method that is
used to pass information to another program.

Because this interface does not require communications programming, use it either for synchronous or for
asynchronous (disconnected) processing.

Chapter 4. iSeries Access for Windows® C/C++ APIs 145

Develop host applications and PC applications by using any supported language. For example, a host
application could use RPG while a PC application might use C++. The queue is there to obtain input from
one side and to pass input to the other.

The following example shows how data queues might be used:
v A PC user might take telephone orders all day, and key each order into a program, while the program

places each request on iSeries data queue.
v A partner program (either a PC program or an iSeries program) monitors the data queue and pulls

information from queue. This partner program could be simultaneously running, or started after peak
user hours.

v It may or may not return input to the initiating PC program, or it may place something on the queue for
another PC or iSeries program.

v Eventually the order is filled, the customer is billed, the inventory records are updated, and information
is placed on the queue for the PC application to direct a PC user to call the customer with an expected
ship date.

Objects

An application that uses the data queue function uses four objects. Each of these objects is identified to
the application through a handle. The objects are:

Queue object:
This object represents the iSeries data queue.

Attribute:
This object describes the iSeries data queue.

Data: Use these objects to write records to, and to read records from, the iSeries data queue.

Read object:
Use this object only with the asynchronous read APIs. It uniquely identifies a request to read a
record from the iSeries data queue. This handle is used on subsequent calls to check if the data
has been returned. See the cwbDQ_AsyncRead API for more information.

iSeries Access for Windows Data Queues APIs listing
In the following table, iSeries Access for Windows Data Queues APIs are listed alphabetically, and
grouped according to function:

Function iSeries Access for Windows Data Queues APIs

Creating, deleting, and opening a data queue

Use these APIs in conjunction with the
cwbCO_SysHandle System Object handle.

cwbDQ_CreateEx
cwbDQ_DeleteEx
cwbDQ_OpenEx

Accessing the iSeries data queue

After the cwbDQ_Open API is used to create a
connection to a specific data queue, the other APIs can
be used to utilize it. Use the cwbDQ_Close API when the
connection no longer is needed.

cwbDQ_AsyncRead
cwbDQ_Cancel
cwbDQ_CheckData
cwbDQ_Clear
cwbDQ_Close
cwbDQ_Create
cwbDQ_Delete
cwbDQ_GetLibName
cwbDQ_GetQueueAttr
cwbDQ_GetQueueName
cwbDQ_GetSysName
cwbDQ_Open
cwbDQ_Peek
cwbDQ_Read
cwbDQ_Write

146 iSeries: iSeries Access for Windows Programming

Function iSeries Access for Windows Data Queues APIs

Declarations for the attributes of a data queue

The attribute object is used when creating a data queue
or when obtaining the data queue attributes.

cwbDQ_CreateAttr
cwbDQ_DeleteAttr
cwbDQ_GetAuthority
cwbDQ_GetDesc
cwbDQ_GetForceToStorage
cwbDQ_GetKeySize
cwbDQ_GetMaxRecLen
cwbDQ_GetOrder
cwbDQ_GetSenderID
cwbDQ_SetAuthority
cwbDQ_SetDesc
cwbDQ_SetForceToStorage
cwbDQ_SetKeySize
cwbDQ_SetMaxRecLen
cwbDQ_SetOrder
cwbDQ_SetSenderID

Declarations for functions that use the data object for
writing to and reading from a data queue

cwbDQ_CreateData
cwbDQ_DeleteData
cwbDQ_GetConvert
cwbDQ_GetData
cwbDQ_GetDataAddr
cwbDQ_GetDataLen
cwbDQ_GetKey
cwbDQ_GetKeyLen
cwbDQ_GetRetDataLen
cwbDQ_GetRetKey
cwbDQ_GetRetKeyLen
cwbDQ_GetSearchOrder
cwbDQ_GetSenderInfo
cwbDQ_SetConvert
cwbDQ_SetData
cwbDQ_SetDataAddr
cwbDQ_SetKey
cwbDQ_SetSearchOrder

Chapter 4. iSeries Access for Windows® C/C++ APIs 147

cwbDQ_AsyncRead

Purpose: Read a record from the iSeries data queue object that is identified by the specified handle. The
AsyncRead will return control to the caller immediately. This call is used in conjunction with the
CheckData API. When a record is read from a data queue, it is removed from the data queue. If the data
queue is empty for more than the specified wait time, the read is aborted, and the CheckData API returns
a value of CWBDQ_TIMED_OUT. You may specifying a wait time from 0 to 99,999 (in seconds) or forever
(-1). A wait time of zero causes the CheckData API to return a value of CWBDQ_TIMED_OUT on its initial
call if there is no data in the data queue.

Syntax:

unsigned int CWB_ENTRY cwbDQ_AsyncRead(
cwbDQ_QueueHandle queueHandle,
cwbDQ_Data data,
signed long waitTime,
cwbDQ_ReadHandle *readHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the iSeries
data queue object.

cwbDQ_Data data - input
The data object to be read from the iSeries data queue.

signed long waitTime - input
Length of time in seconds to wait for data, if the data queue is empty. A wait time of -1 indicates to
wait forever.

cwbDQ_ReadHandle * readHandle - output
Pointer to where the cwbDQ_ReadHandle will be written. This handle will be used in subsequent calls
to the cwbDQ_CheckData API.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_TIME
Invalid wait time.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_INVALID_SEARCH
Invalid search order.

Usage: This function requires that you have previously issued the following APIs:

cwbDQ_Open or cwbDQ_OpenEx

cwbDQ_CreateData

148 iSeries: iSeries Access for Windows Programming

cwbDQ_Cancel

Purpose: Cancel a previously issued AsyncRead. This will end the read on the iSeries data queue.

Syntax:

unsigned int CWB_ENTRY cwbDQ_Cancel(
cwbDQ_ReadHandle readHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDQ_ReadHandle readHandle - input
The handle that was returned by the AsyncRead API.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_READ_HANDLE
Invalid read handle.

Usage: This function requires that you have previously issued the following APIs:

cwbDQ_Open or cwbDQ_OpenEx

cwbDQ_CreateData

cwbDQ_AsyncRead

Chapter 4. iSeries Access for Windows® C/C++ APIs 149

cwbDQ_CheckData

Purpose: Check if data was returned from a previously issued AsyncRead API. This API can be issued
multiple times for a single AsyncRead call. It will return 0 when the data actually has been returned.

Syntax:

unsigned int CWB_ENTRY cwbDQ_CheckData(
cwbDQ_ReadHandle readHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDQ_ReadHandle readHandle - input
The handle that was returned by the AsyncRead API.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_READ_HANDLE
Invalid read handle.

CWBDQ_DATA_TRUNCATED
Data truncated.

CWBDQ_TIMED_OUT
Wait time expired and no data returned.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_QUEUE_DESTROYED
Queue was destroyed.

CWBDQ_NO_DATA
No data.

CWBDQ_CANNOT_CONVERT
Unable to convert data.

Usage: This function requires that you have previously issued the following APIs:

cwbDQ_Open or cwbDQ_OpenEx

cwbDQ_CreateData

cwbDQ_AsyncRead

If a time limit was specified on the AsyncRead, this API will return CWBDQ_NO_DATA until data is
returned (return code will be CWB_OK), or the time limit expires (return code will be
CWBDQ_TIMED_OUT).

150 iSeries: iSeries Access for Windows Programming

cwbDQ_Clear

Purpose: Remove all messages from the iSeries data queue object that is identified by the specified
handle. If the queue is keyed, messages for a particular key may be removed by specifying the key and
key length. These values should be set to NULL and zero, respectively, if you want to clear all messages
from the queue.

Syntax:

unsigned int CWB_ENTRY cwbDQ_Clear(
cwbDQ_QueueHandle queueHandle,
unsigned char *key,
unsigned short keyLength,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the iSeries
data queue object.

unsigned char * key - input
Pointer to the key. The key may contain embedded NULLs, so it is not an ASCIIZ string.

unsigned short keyLength - input
Length of the key in bytes.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_BAD_KEY_LENGTH
Length of key is not correct.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

Usage: This function requires that you have previously issued:

cwbDQ_Open or cwbDQ_OpenEx

Chapter 4. iSeries Access for Windows® C/C++ APIs 151

cwbDQ_Close

Purpose: End the connection with the iSeries data queue object that is identified by the specified handle.
This will end the conversation with the iSeries system.

Syntax:

unsigned int CWB_ENTRY cwbDQ_Close(
cwbDQ_QueueHandle queueHandle);

Parameters:

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open or cwbDQ_OpenEx function. This
identifies the iSeries data queue object.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

Usage: This function requires that you previously issued the following APIs:

cwbDQ_Openor cwbDQ_OpenEx

152 iSeries: iSeries Access for Windows Programming

cwbDQ_Create

Purpose: Create an iSeries data queue object. After the object is created it can be opened using the
cwbDQ_Open API. It will have the attributes that you specify in the attributes handle.

Note: This API is obsolete. Use “cwbDQ_CreateEx” on page 155.

Syntax:

unsigned int CWB_ENTRY cwbDQ_Create(
char *queue,
char *library,
char *systemName,
cwbDQ_Attr queueAttributes,
cwbSV_ErrHandle errorHandle);

Parameters:

char * queue - input
Pointer to the data queue name contained in an ASCIIZ string.

char * library - input
Pointer to the library name contained in an ASCIIZ string. If this pointer is NULL then the current
library will be used (set library to ″*CURLIB″).

char * systemName - input
Pointer to the system name contained in an ASCIIZ string.

cwbDQ_Attr queueAttributes - input
Handle to the attributes for the data queue.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages are retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND
iSeries application not found.

CWB_HOST_NOT_FOUND
iSeries system inactive or does not exist.

CWB_INVALID_POINTER
Bad or null pointer.

CWB_SECURITY_ERROR
A security error has occurred.

CWB_LICENSE_ERROR
A license error has occurred.

CWB_CONFIG_ERROR
A configuration error has occurred.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Chapter 4. iSeries Access for Windows® C/C++ APIs 153

CWBDQ_BAD_QUEUE_NAME
Queue name is incorrect.

CWBDQ_BAD_LIBRARY_NAME
Library name is incorrect.

CWBDQ_BAD_SYSTEM_NAME
System name is incorrect.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR
Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND
Library not found on system.

CWBDQ_NO_AUTHORITY
No authority to library.

CWBDQ_QUEUE_EXISTS
Queue already exists.

CWBDQ_QUEUE_SYNTAX
Queue syntax is incorrect.

CWBDQ_LIBRARY_SYNTAX
Library syntax is incorrect.

Usage: This function requires that you have previously issued the following APIs:

cwbDQ_CreateAttr

cwbDQ_SetMaxRecLen

154 iSeries: iSeries Access for Windows Programming

cwbDQ_CreateEx

Purpose: Create an iSeries data queue object. After the object is created it can be opened using the
cwbDQ_OpenEx API. It will have the attributes that you specify in the attributes handle.

Syntax:

unsigned int CWB_ENTRY cwbDQ_CreateEx(
cwbCO_SysHandle sysHandle,
const char *queue,
const char *library,
cwbDQ_Attr queueAttributes,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbCO_SysHandle sysHandle - input
Handle to a system object

const char * queue - input
Pointer to the data queue name contained in an ASCIIZ string.

const char * library - input
Pointer to the library name contained in an ASCIIZ string. If this pointer is NULL then the current
library will be used (set library to ″*CURLIB″).

cwbDQ_Attr queueAttributes - input
Handle to the attributes for the data queue.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND
iSeries application not found.

CWB_HOST_NOT_FOUND
iSeries system inactive or does not exist.

CWB_INVALID_POINTER
Bad or null pointer.

CWB_SECURITY_ERROR
A security error has occurred.

CWB_LICENSE_ERROR
A license error has occurred.

CWB_CONFIG_ERROR
A configuration error has occurred.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_BAD_QUEUE_NAME
Queue name is incorrect.

Chapter 4. iSeries Access for Windows® C/C++ APIs 155

CWBDQ_BAD_LIBRARY_NAME
Library name is incorrect.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR
Error in user exit program.

CWBDQ_USER_EXIT_ERROR
Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND
Library not found on system.

CWBDQ_NO_AUTHORITY
No authority to library.

CWBDQ_QUEUE_EXISTS
Queue already exists.

CWBDQ_QUEUE_SYNTAX
Queue syntax is incorrect.

CWBDQ_LIBRARY_SYNTAX
Library syntax is incorrect.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR
General API failure.

CWB_INVALID_HANDLE
Invalid system handle.

Usage: This function requires that you have previously issued the following APIs:

cwbDQ_CreateSystem

cwbDQ_CreateAttr

cwbDQ_SetMaxRecLen

156 iSeries: iSeries Access for Windows Programming

cwbDQ_CreateAttr

Purpose: Create a data queue attribute object. The handle returned by this API can be used to set the
specific attributes you want for a data queue prior to using it as input for the cwbDQ_Create or
cwbDQ_CreateEx APIs. It also may be used to examine specific attributes of a data queue after using it
as input for the cwbDQ_GetQueueAttr API.

Syntax:

cwbDQ_Attr CWB_ENTRY cwbDQ_CreateAttr(void);

Parameters:

None

Return Codes: The following list shows common return values.

cwbDQ_Attr — A handle to a cwbDQ_Attr object.
Use this handle to obtain and set attributes. After creation, an attribute object will have the default
values of:
v Maximum Record Length - 1000
v Order - FIFO
v Authority - LIBCRTAUT
v Force to Storage - FALSE
v Sender ID - FALSE
v Key Length - 0

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 157

cwbDQ_CreateData

Purpose: Create the data object. This data object can be used for both reading and writing data to a
data queue.

Syntax:

cwbDQ_Data CWB_ENTRY cwbDQ_CreateData(void);

Parameters:

None

Return Codes: The following list shows common return values.

cwbDQ_Data — A handle to the data object
After creation, a data object will have the default values of:
v data - NULL and length 0
v key - NULL and length 0
v sender ID info - NULL
v search order - NONE
v convert - FALSE

Usage: None

158 iSeries: iSeries Access for Windows Programming

cwbDQ_Delete

Purpose: Remove all data from an iSeries data queue and delete the data queue object.

Note: This API is obsolete. Use “cwbDQ_DeleteEx” on page 161.

Syntax:

unsigned int CWB_ENTRY cwbDQ_Delete(
char *queue,
char *library,
char *systemName,
cwbSV_ErrHandle errorHandle);

Parameters:

char * queue - input
Pointer to the data queue name contained in an ASCIIZ string.

char * library - input
Pointer to the library name contained in an ASCIIZ string. If this pointer is NULL then the current
library will be used (set library to ″*CURLIB″).

char * systemName - input
Pointer to the system name contained in an ASCIIZ string.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND
iSeries application not found.

CWB_HOST_NOT_FOUND
iSeries system inactive or does not exist.

CWB_INVALID_POINTER
Bad or null pointer.

CWB_SECURITY_ERROR
A security error has occurred.

CWB_LICENSE_ERROR
A license error has occurred.

CWB_CONFIG_ERROR
A configuration error has occurred.

CWBDQ_QUEUE_NAME
Queue name is too long.

CWBDQ_LIBRARY_NAME
Library name is too long.

Chapter 4. iSeries Access for Windows® C/C++ APIs 159

CWBDQ_SYSTEM_NAME
System name is too long.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR
Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND
Library not found on system.

CWBDQ_QUEUE_NOT_FOUND
Queue not found on system.

CWBDQ_NO_AUTHORITY
No authority to queue.

CWBDQ_QUEUE_SYNTAX
Queue syntax is incorrect.

CWBDQ_LIBRARY_SYNTAX
Library syntax is incorrect.

Usage: None

160 iSeries: iSeries Access for Windows Programming

cwbDQ_DeleteEx

Purpose: Remove all data from an iSeries data queue and delete the data queue object.

Syntax:

unsigned int CWB_ENTRY cwbDQ_DeleteEx(
cwbCO_SysHandle sysHandle
const char *queue,
const char *library,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbCO_SysHandle - input
Handle to a system object.

const char * queue - input
Pointer to the data queue name contained in an ASCIIZ string.

const char * library - input
Pointer to the library name contained in an ASCIIZ string. If this pointer is NULL then the current
library will be used (set library to ″*CURLIB″).

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND
iSeries application not found.

CWB_HOST_NOT_FOUND
iSeries system inactive or does not exist.

CWB_INVALID_POINTER
Bad or null pointer.

CWB_SECURITY_ERROR
A security error has occurred.

CWB_LICENSE_ERROR
A license error has occurred.

CWB_CONFIG_ERROR
A configuration error has occurred.

CWBDQ_BAD_QUEUE_NAME
Queue name is too long.

CWBDQ_BAD_LIBRARY_NAME
Library name is too long.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

Chapter 4. iSeries Access for Windows® C/C++ APIs 161

CWBDQ_USER_EXIT_ERROR
Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND
Library not found on system.

CWBDQ_QUEUE_NOT_FOUND
Queue not found on system.

CWBDQ_NO_AUTHORITY
No authority to queue.

CWBDQ_QUEUE_SYNTAX
Queue syntax is incorrect.

CWBDQ_LIBRARY_SYNTAX
Library syntax is incorrect.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR
General API failure.

CWB_INVALID_HANDLE
Invalid system handle.

Usage: This function requires that you previously have issued cwbCO_CreateSystem.

162 iSeries: iSeries Access for Windows Programming

cwbDQ_DeleteAttr

Purpose: Delete the data queue attributes.

Syntax:

unsigned int CWB_ENTRY cwbDQ_DeleteAttr(
cwbDQ_Attr queueAttributes);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 163

cwbDQ_DeleteData

Purpose: Delete the data object.

Syntax:

unsigned int CWB_ENTRY cwbDQ_DeleteData(
cwbDQ_Data data);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage: None

164 iSeries: iSeries Access for Windows Programming

cwbDQ_GetAuthority

Purpose: Get the attribute for the authority that other users will have to the data queue.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetAuthority(
cwbDQ_Attr queueAttributes,
unsigned short *authority);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short * authority - output
Pointer to an unsigned short to where the authority will be written. This value will be one of the
following defined types:

CWBDQ_ALL

CWBDQ_EXCLUDE

CWBDQ_CHANGE

CWBDQ_USE

CWBDQ_LIBCRTAUT

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 165

cwbDQ_GetConvert

Purpose: Get the value of the convert flag for a data handle. The convert flag determines if data sent to
and recieved from the host is CCSID converted (for example, between ASCII and EBCDIC).

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetConvert(
cwbDQ_Data data,
cwb_Boolean *convert);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

cwb_Boolean * convert - output
Pointer to a Boolean where the convert flag will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage: None

166 iSeries: iSeries Access for Windows Programming

cwbDQ_GetData

Purpose: Get the data attribute of the data object.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetData(
cwbDQ_Data data,
unsigned char *dataBuffer);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * data - output
Pointer to the data. The data may contain embedded NULLs, so it is not an ASCIIZ string.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 167

cwbDQ_GetDataAddr

Purpose: Get the address of the location of the data buffer.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetDataAddr(
cwbDQ_Data data,
unsigned char **dataBuffer);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * * data - output
Pointer to where the buffer address will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

CWBDQ_ADDRESS_NOT_SET
Address not set with cwbDQ_SetDataAddr.

Usage: Use this function to retrieve the address of the location where the data is stored. The data
address must be set with the cwbDQ_SetDataAddr API, otherwise, the return code
CWBDQ_ADDRESS_NOT_SET will be returned.

168 iSeries: iSeries Access for Windows Programming

cwbDQ_GetDataLen

Purpose: Get the data length attribute of the data object. This is the total length of the data object. To
obtain the length of data that was read, use the cwbDQ_GetRetDataLen API.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetDataLen(
cwbDQ_Data data,
unsigned long *dataLength);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned long * dataLength - output
Pointer to an unsigned long where the length of the data will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 169

cwbDQ_GetDesc

Purpose: Get the attribute for the description of the data queue.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetDesc(
cwbDQ_Attr queueAttributes,
char *description);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

char * description - output
Pointer to a 51 character buffer where the description will be written. The description is an ASCIIZ
string.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage: None

170 iSeries: iSeries Access for Windows Programming

cwbDQ_GetForceToStorage

Purpose: Get the attribute for whether records will be forced to auxiliary storage when they are
enqueued.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetForceToStorage(
cwbDQ_Attr queueAttributes,
cwb_Boolean *forceToStorage);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

cwb_Boolean * forceToStorage - output
Pointer to a Boolean where the force-to-storage indicator will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 171

cwbDQ_GetKey

Purpose: Get the key attribute of the data object, previously set by the cwbDQ_SetKey API. This is the
key that is used for writing data to a keyed data queue. Along with the search order, this key is also used
to read data from a keyed data queue. The key that is associated with the record retrieved can be
obtained by calling the cwbDQ_GetRetKey API.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetKey(
cwbDQ_Data data,
unsigned char *key);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * key - output
Pointer to the key. The key may contain embedded NULLS, so it is not an ASCIIZ string.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage: None

172 iSeries: iSeries Access for Windows Programming

cwbDQ_GetKeyLen

Purpose: Get the key length attribute of the data object.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetKeyLen(
cwbDQ_Data data,
unsigned short *keyLength);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned short * keyLength - output
Pointer to an unsigned short where the length of the key will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 173

cwbDQ_GetKeySize

Purpose: Get the attribute for the key size in bytes.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetKeySize(
cwbDQ_Attr queueAttributes,
unsigned short *keySize);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short * keySize - output
Pointer to an unsigned short where the key size will written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage: None

174 iSeries: iSeries Access for Windows Programming

cwbDQ_GetLibName

Purpose: Retrieve the library name used with the cwbDQ_Open API.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetLibName(
cwbDQ_QueueHandle queueHandle,
char *libName);

Parameters:

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the iSeries
data queue object.

char * libName - output
Pointer to a buffer where the library name will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

Usage: This function requires that you have previously issued cwbDQ_Open.

Chapter 4. iSeries Access for Windows® C/C++ APIs 175

cwbDQ_GetMaxRecLen

Purpose: Get the maximum record length for the data queue.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetMaxRecLen(
cwbDQ_Attr queueAttributes,
unsigned long *maxRecordLength);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a call to cwbDQ_CreateAttr.

unsigned long * maxRecordLength - output
Pointer to an unsigned long where the maximum record length will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage: None

176 iSeries: iSeries Access for Windows Programming

cwbDQ_GetOrder

Purpose: Get the attribute for the queue order. If the order is CWBDQ_SEQ_LIFO, the last record written
is the first record read (Last In First Out). If the order is CWBDQ_SEQ_FIFO, the first record written is the
first record read (First In First Out). If the order is CWBDQ_SEQ_KEYED, the order in which records are
read from the data queue depends on the value of the search order attribute of the data object and the
key value specified for the cwbDQ_SetKey API. If multiple records contain the key that satisfies the
search order, a FIFO scheme is used among those records.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetOrder(
cwbDQ_Attr queueAttributes,
unsigned short *order);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short * order - output
Pointer to an unsigned short where the order will be written. Possible values are:

CWBDQ_SEQ_LIFO

CWBDQ_SEQ_FIFO

CWBDQ_SEQ_KEYED

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 177

cwbDQ_GetQueueAttr

Purpose: Retrieve the attributes of the iSeries data queue object that is identified by the specified
handle. A handle to the data queue attributes will be returned. The attributes then can be retrieved
individually.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetQueueAttr(
cwbDQ_QueueHandle queueHandle,
cwbDQ_Attr queueAttributes,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the iSeries
data queue object.

cwbDQ_Attr queueAttributes - input/output
The attribute object. This was the output from the cwbDQ_CreateAttr call. The attributes will be filled
in by this function, and you should call the cwbDQ_DeleteAttr function to delete this object when you
have retrieved the attributes from it.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

Usage: This function requires that you have previously issued the following APIs:

cwbDQ_Open or cwbDQ_OpenEx

cwbDQ_CreateAttr

178 iSeries: iSeries Access for Windows Programming

cwbDQ_GetQueueName

Purpose: Retrieve the queue name used with the cwbDQ_Open API.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetQueueName(
cwbDQ_QueueHandle queueHandle,
char *queueName);

Parameters:

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the iSeries
data queue object.

char * queueName - output
Pointer to a buffer where the queue name will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

Usage: This function requires that you have previously issued cwbDQ_Open.

Chapter 4. iSeries Access for Windows® C/C++ APIs 179

cwbDQ_GetRetDataLen

Purpose: Get the length of data that was returned. The returned data length will be zero until a
cwbDQ_Read or cwbDQ_Peek API is called.Then it will have the length of the data that actually was
returned.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetRetDataLen(
cwbDQ_Data data,
unsigned long *retDataLength);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned long * retDataLength - output
Pointer to an unsigned long where the length of the data returned will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage: None

180 iSeries: iSeries Access for Windows Programming

cwbDQ_GetRetKey

Purpose: Get the returned key of the data object. This is the key that is associated with the messages
that are retrieved from a keyed data queue. If the search order is a value other than CWBDQ_EQUAL, this
key may be different than the key that is used to retrieve the message.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetRetKey(
cwbDQ_Data data,
unsigned char *key);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * retKey - output
Pointer to the returned key. The key may contain embedded NULLs, so it is not an ASCIIZ string.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 181

cwbDQ_GetRetKeyLen

Purpose: Get the returned key length attribute of the data object. This is the length of the key that is
returned by the cwbDQ_GetKey API.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetRetKeyLen(
cwbDQ_Data data,
unsigned short *retKeyLength);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned short * retKeyLength - output
Pointer to an unsigned short where the length of the key will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage: None

182 iSeries: iSeries Access for Windows Programming

cwbDQ_GetSearchOrder

Purpose: Get the search order of the open attributes. The search order is used when reading or peeking
a keyed data queue to identify the relationship between the key of the record to retrieve and the key value
specified on the cwbDQ_SetKey API. If the data queue order attribute is not CWBDQ_SEQ_KEYED, this
property is ignored.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetSearchOrder(
cwbDQ_Data data,
unsigned short *searchOrder);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned short * searchOrder - output
Pointer to an unsigned short where the order will be written. Possible values are:

CWBDQ_NONE

CWBDQ_EQUAL

CWBDQ_NOT_EQUAL

CWBDQ_GT_OR_EQUAL

CWBDQ_GREATER

CWBDQ_LT_OR_EQUAL

CWBDQ_LESS

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 183

cwbDQ_GetSenderID

Purpose: Get the attribute for whether information about the sender is kept with each record on the
queue.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetSenderID(
cwbDQ_Attr queueAttributes,
cwb_Boolean *senderID);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes that are returned by a previous call to cwbDQ_CreateAttr.

cwb_Boolean * senderID - output
Pointer to a Boolean where the sender ID indicator will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage: None

184 iSeries: iSeries Access for Windows Programming

cwbDQ_GetSenderInfo

Purpose: Get the Sender Information attribute of the open attributes. This information only is available if
the senderID attribute of the Data Queue was set on creation.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetSenderInfo(
cwbDQ_Data data,
unsigned char *senderInfo);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * senderInfo - output
Pointer to a 36 character buffer where the sender information will be written. This buffer contains:

Job Name (10 bytes)

User Name (10 bytes)

Job ID (6 bytes)

User Profile (10 bytes)

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 185

cwbDQ_GetSysName

Purpose: Retrieve the system name that is used with the cwbDQ_Open API.

Syntax:

unsigned int CWB_ENTRY cwbDQ_GetSysName(
cwbDQ_QueueHandle queueHandle,
char *systemName);

Parameters:

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the iSeries
data queue object.

char *systemName - output
Pointer to a buffer where the system name will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

Usage: This function requires that you previously have issued cwbDQ_Open or cwbDQ_OpenEx.

186 iSeries: iSeries Access for Windows Programming

cwbDQ_Open

Purpose: Start a connection to the specified data queue. This will start a conversation with the iSeries
system. If the connection is not successful, a non-zero handle will be returned.

Note: This API is obsolete. Use “cwbDQ_OpenEx” on page 189.

Syntax:

unsigned int CWB_ENTRY cwbDQ_Open(
char *queue,
char *library,
char *systemName,
cwbDQ_QueueHandle *queueHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

char * queue - input
Pointer to the data queue name contained in an ASCIIZ string.

char * library - input
Pointer to the library name that is contained in an ASCIIZ string. If this pointer is NULL, the library list
will be used (set library to ″*LIBL″).

char * systemName - input
Pointer to the system name that is contained in an ASCIIZ string.

cwbDQ_QueueHandle * queueHandle - output
Pointer to a cwbDQ_QueueHandle where the handle will be returned. This handle should be used in
all subsequent calls.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND
iSeries application not found.

CWB_HOST_NOT_FOUND
iSeries system inactive or does not exist.

CWB_COMM_VERSION_ERROR
Data Queues will not run with this version of communications.

CWB_INVALID_POINTER
Bad or null pointer.

CWB_SECURITY_ERROR
A security error has occurred.

CWB_LICENSE_ERROR
A license error has occurred.

Chapter 4. iSeries Access for Windows® C/C++ APIs 187

CWB_CONFIG_ERROR
A configuration error has occurred.

CWBDQ_BAD_QUEUE_NAME
Queue name is too long.

CWBDQ_BAD_LIBRARY_NAME
Library name is too long.

CWBDQ_BAD_SYSTEM_NAME
System name is too long.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR
Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND
Library not found on system.

CWBDQ_QUEUE_NOT_FOUND
Queue not found on system.

CWBDQ_NO_AUTHORITY
No authority to queue or library.

CWBDQ_DAMAGED_QUE
Queue is in unusable state.

CWBDQ_CANNOT_CONVERT
Data cannot be converted for this queue.

Usage: None

188 iSeries: iSeries Access for Windows Programming

cwbDQ_OpenEx

Purpose: Start a connection to the specified data queue. This will start a conversation with the iSeries
system. If the connection is not successful, a non-zero handle will be returned.

Syntax:

unsigned int CWB_ENTRY cwbDQ_OpenEx(
cwbCO_SysHandle sysHandle
const char *queue,
const char *library,
cwbDQ_QueueHandle *queueHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbCO_SysHandle sysHandle - input
Handle to a system object.

const char * queue - input
Pointer to the data queue name contained in an ASCIIZ string.

const char * library - input
Pointer to the library name that is contained in an ASCIIZ string. If this pointer is NULL, the library list
will be used (set library to ″*LIBL″).

cwbDQ_QueueHandle * queueHandle - output
Pointer to a cwbDQ_QueueHandle where the handle will be returned. This handle should be used in
all subsequent calls.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND
iSeries application not found.

CWB_HOST_NOT_FOUND
iSeries system inactive or does not exist.

CWB_COMM_VERSION_ERROR
Data Queues will not run with this version of communications.

CWB_INVALID_POINTER
Bad or null pointer.

CWB_SECURITY_ERROR
A security error has occurred.

CWB_LICENSE_ERROR
A license error has occurred.

CWB_CONFIG_ERROR
A configuration error has occurred.

Chapter 4. iSeries Access for Windows® C/C++ APIs 189

CWBDQ_BAD_QUEUE_NAME
Queue name is too long.

CWBDQ_BAD_LIBRARY_NAME
Library name is too long.

CWBDQ_BAD_SYSTEM_NAME
System name is too long.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR
Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND
Library not found on system.

CWBDQ_QUEUE_NOT_FOUND
Queue not found on system.

CWBDQ_NO_AUTHORITY
No authority to queue or library.

CWBDQ_DAMAGED_QUE
Queue is in unusable state.

CWBDQ_CANNOT_CONVERT
Data cannot be converted for this queue.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR
General API failure.

CWB_INVALID_HANDLE
Invalid system handle.

Usage: This function requires that you previously have issued cwbCO_CreateSystem.

190 iSeries: iSeries Access for Windows Programming

cwbDQ_Peek

Purpose: Read a record from the iSeries data queue object that is identified by the specified handle.
When a record is peeked from a data queue, it remains in the data queue. You may wait for a record if the
data queue is empty by specifying a wait time from 0 to 99,999 or forever (-1). A wait time of zero will
return immediately if there is no data in the data queue.

Syntax:

unsigned int CWB_ENTRY cwbDQ_Peek(
cwbDQ_QueueHandle queueHandle,
cwbDQ_Data data,
signed long waitTime,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open API. This identifies the iSeries data
queue object.

cwbDQ_Data data - input
The data object to be read from the iSeries data queue.

signed long waitTime - input
Length of time in seconds to wait for data, if the data queue is empty. A wait time of -1 indicates to
wait forever.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_TIME
Invalid wait time.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_INVALID_SEARCH
Invalid search order.

CWBDQ_DATA_TRUNCATED
Data truncated.

CWBDQ_TIMED_OUT
Wait time expired and no data returned.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_QUEUE_DESTROYED
Queue was destroyed.

CWBDQ_CANNOT_CONVERT
Unable to convert data.

Usage: This function requires that you have previously issued cwbDQ_Open or cwbDQ_OpenEx and
cwbDQ_CreateData.

Chapter 4. iSeries Access for Windows® C/C++ APIs 191

cwbDQ_Read

Purpose: Read a record from the iSeries data queue object that is identified by the specified handle.
When a record is read from a data queue, it is removed from the data queue. You may wait for a record if
the data queue is empty by specifying a wait time from 0 to 99,999 or forever (-1). A wait time of zero will
return immediately if there is no data in the data queue.

Syntax:

unsigned int CWB_ENTRY cwbDQ_Read(
cwbDQ_QueueHandle queueHandle,
cwbDQ_Data data,
long waitTime,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the iSeries
data queue object.

cwbDQ_Data data - input
The data object to be read from the iSeries data queue.

long waitTime - input
Length of time in seconds to wait for data, if the data queue is empty. A wait time of -1 indicates to
wait forever.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_TIME
Invalid wait time.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_INVALID_SEARCH
Invalid search order.

CWBDQ_DATA_TRUNCATED
Data truncated.

CWBDQ_TIMED_OUT
Wait time expired and no data returned.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_QUEUE_DESTROYED
Queue was destroyed.

CWBDQ_CANNOT_CONVERT
Unable to convert data.

Usage: This function requires that you have previously issued cwbDQ_Open and cwbDQ_CreateData.

192 iSeries: iSeries Access for Windows Programming

cwbDQ_SetAuthority

Purpose: Set the attribute for the authority that other users will have to the data queue.

Syntax:

unsigned int CWB_ENTRY cwbDQ_SetAuthority(
cwbDQ_Attr queueAttributes,
unsigned short authority);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short authority - input
Authority that other users on the iSeries system have to access the data queue. Use one of the
following defined types for authority:

CWBDQ_ALL

CWBDQ_EXCLUDE

CWBDQ_CHANGE

CWBDQ_USE

CWBDQ_LIBCRTAUT

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_INVALID_AUTHORITY
Invalid queue authority.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 193

cwbDQ_SetConvert

Purpose: Set the convert flag. If the flag is set, all data being written will be converted from PC CCSID
(for example, ASCII) to host CCSID (for example, EBCDIC), and all data being read will be converted from
host CCSID (for example, EBCDIC) to PC CCSID (for example, ASCII). Default behavior is no conversion
of data.

Syntax:

unsigned int CWB_ENTRY cwbDQ_SetConvert(
cwbDQ_Data data,
cwb_Boolean convert);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

cwb_Boolean convert - input
Flag indicating if data written to and read from the queue will be CCSID converted.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage: None

194 iSeries: iSeries Access for Windows Programming

cwbDQ_SetData

Purpose: Set the data and data length attributes of the data object. The default is to have no data with
zero length. This function will make a copy of the data.

Syntax:

unsigned int CWB_ENTRY cwbDQ_SetData(
cwbDQ_Data data,
unsigned char *dataBuffer,
unsigned long dataLength);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * dataBuffer - input
Pointer to the data. The data may contain embedded NULLS, so it is not an ASCIIZ string.

unsigned long dataLength - input
Length of the data in bytes.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

CWBDQ_BAD_DATA_LENGTH
Length of data is not correct.

Usage: Use this function if you want to write a small amount of data or you do not want to manage the
memory for the data in your application. Data will be copied and this may affect your application’s
performance.

Chapter 4. iSeries Access for Windows® C/C++ APIs 195

cwbDQ_SetDataAddr

Purpose: Set the data and data length attributes of the data object. The default is to have no data with
zero length. This function will not copy the data.

Syntax:

unsigned int CWB_ENTRY cwbDQ_SetDataAddr(
cwbDQ_Data data,
unsigned char *dataBuffer,
unsigned long dataLength);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * dataBuffer - input
Pointer to the data. The data may contain embedded NULLS, so it is not an ASCIIZ string.

unsigned long dataLength - input
Length of the data in bytes.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

CWBDQ_BAD_DATA_LENGTH
Length of data is not correct.

Usage: This function is better for large amounts of data, or if you want to manage memory in your
application. Data will not be copied so performance will be improved.

196 iSeries: iSeries Access for Windows Programming

cwbDQ_SetDesc

Purpose: Set the attribute for the description of the data queue.

Syntax:

unsigned int CWB_ENTRY cwbDQ_SetDesc(
cwbDQ_Attr queueAttributes,
char *description);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

char * description - input
Pointer to an ASCIIZ string that contains the description for the data queue. The maximum length for
the description is 50 characters.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_INVALID_QUEUE_TITLE
Queue title is too long.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 197

cwbDQ_SetForceToStorage

Purpose: Set the attribute for whether records will be forced to auxiliary storage when they are
enqueued.

Syntax:

unsigned int CWB_ENTRY cwbDQ_SetForceToStorage(
cwbDQ_Attr queueAttributes,
cwb_Boolean forceToStorage);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

cwb_Boolean forceToStorage - input
Boolean indicator of whether each record is forced to auxiliary storage when it is enqueued.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage: None

198 iSeries: iSeries Access for Windows Programming

cwbDQ_SetKey

Purpose: Set the key and key length attributes of the data attributes. This is the key that is used for
writing data to a keyed data queue. In addition to the search order, this key is used to read data from a
keyed data queue. The default is to have no key with zero length; this is the correct value for a non-keyed
(LIFO or FIFO) data queue.

Syntax:

unsigned int CWB_ENTRY cwbDQ_SetKey(
cwbDQ_Data data,
unsigned char *key,
unsigned short keyLength);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * key - input
Pointer to the key. The key may contain embedded NULLS, so it is not an ASCIIZ string.

unsigned short keyLength - input
Length of the key in bytes.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

CWBDQ_BAD_KEY_LENGTH
Length of key is not correct.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 199

cwbDQ_SetKeySize

Purpose: Set the attribute for the key size in bytes.

Syntax:

unsigned int CWB_ENTRY cwbDQ_SetKeySize(
cwbDQ_Attr queueAttributes,
unsigned short keySize);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short keySize - input
Size in bytes of the key. This value should be zero if the order is LIFO or FIFO, and between 1 and
256 for KEYED.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_KEY_LENGTH
Invalid key length.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage: None

200 iSeries: iSeries Access for Windows Programming

cwbDQ_SetMaxRecLen

Purpose: Set the maximum record length for the data queue.

Syntax:

unsigned int CWB_ENTRY cwbDQ_SetMaxRecLen(
cwbDQ_Attr queueAttributes,
unsigned long maxRecordLength);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned long maxLength - input
Maximum length for a data queue record. This value must be between 1 and 31744.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_INVALID_QUEUE_LENGTH
Invalid queue record length.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 201

cwbDQ_SetOrder

Purpose: Set the attribute for the queue order. If the order is CWBDQ_SEQ_LIFO, the last record written
is the first record read (Last In First Out). If the order is CWBDQ_SEQ_FIFO, the first record written is the
first record read (First In First Out). If the order is CWBDQ_SEQ_KEYED, the order in which records are
read from the data queue depends on the value of the search order attribute of the data object and the
key value specified for the cwbDQ_SetKey API. If multiple records contain the key that satisfies the
search order, a FIFO scheme is used among those records.

Syntax:

unsigned int CWB_ENTRY cwbDQ_SetOrder(
cwbDQ_Attr queueAttributes,
unsigned short order);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short order - input
Order in which new entries will be enqueued. Use one of the following defined types for order:

CWBDQ_SEQ_LIFO

CWBDQ_SEQ_FIFO

CWBDQ_SEQ_KEYED

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_INVALID_ORDER
Invalid queue order.

Usage: None

202 iSeries: iSeries Access for Windows Programming

cwbDQ_SetSearchOrder

Purpose: Set the search order of the open attributes. The default is no search order. If the
cwbDQ_SetKey API is called, the search order is changed to equal. Use this API to set it to something
else. The search order is used when reading or peeking a keyed data queue to identify the relationship
between the key of the record to retrieve and the key value specified on the cwbDQ_SetKey API. If the
data queue order attribute is not CWBDQ_SEQ_KEYED, this property is ignored.

Syntax:

unsigned int CWB_ENTRY cwbDQ_SetSearchOrder(
cwbDQ_Data data,
unsigned short searchOrder);

Parameters:

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned short searchOrder - input
Order to use when reading from a keyed queue. Possible values are:

CWBDQ_NONE

CWBDQ_EQUAL

CWBDQ_NOT_EQUAL

CWBDQ_GT_OR_EQUAL

CWBDQ_GREATER

CWBDQ_LT_OR_EQUAL

CWBDQ_LESS

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

CWBDQ_INVALID_SEARCH
Invalid search order.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 203

cwbDQ_SetSenderID

Purpose: Set the attribute for whether information about the sender is kept with each record on the
queue.

Syntax:

unsigned int CWB_ENTRY cwbDQ_SetSenderID(
cwbDQ_Attr queueAttributes,
cwb_Boolean senderID);

Parameters:

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

cwb_Boolean senderID - input
Boolean indicator of whether information about the sender is kept with record on the queue.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage: None

204 iSeries: iSeries Access for Windows Programming

cwbDQ_Write

Purpose: Write a record to the iSeries data queue object that is identified by the specified handle.
Writing with commit ON means that your application will not have control returned to it until after the
message has been enqueued.

Syntax:

unsigned int CWB_ENTRY cwbDQ_Write(
cwbDQ_QueueHandle queueHandle,
cwbDQ_Data data,
cwb_Boolean commit,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open or cwbDQ_OpenEx functions. This
identifies the iSeries data queue object.

cwbDQ_Data data - input
The data object to be written to the iSeries data queue.

cwb_Boolean commit - input
Boolean flag indicating if the data should be committed on write.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_BAD_DATA_LENGTH
Length of data is not correct.

CWBDQ_INVALID_MESSAGE_LENGTH
Invalid message length.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_CANNOT_CONVERT
Unable to convert data.

Usage: This function requires that you previously have issued cwbDQ_Open or cwbDQ_OpenEx, and
cwbDQ_CreateData.

Chapter 4. iSeries Access for Windows® C/C++ APIs 205

Example: Using Data Queues APIs
// Sample Data Queues application

#ifdef UNICODE
#define _UNICODE

#endif
#include <windows.h>

// Include the necessary DQ Classes
#include <stdlib.h>
#include <iostream.h>
#include "cwbdq.h"

/**/

void main()
{

cwbDQ_Attr queueAttributes;
cwbDQ_QueueHandle queueHandle;
cwbDQ_Data queueData;

// Create an attribute object
if ((queueAttributes = cwbDQ_CreateAttr()) == 0)

return;

// Set the maximum record length to 100
if (cwbDQ_SetMaxRecLen(queueAttributes,

100) != 0)
return;

// Set the order to First-In-First-Out
if (cwbDQ_SetOrder(queueAttributes, CWBDQ_SEQ_FIFO) != 0)

return;

// Create the data queue DTAQ in library QGPL on system SYS1
if (cwbDQ_Create(_TEXT("DTAQ"),

_TEXT("QGPL"),
_TEXT("SYSNAMEXXX"),
queueAttributes,
NULL) != 0)

return;

// Delete the attributes
if (cwbDQ_DeleteAttr(queueAttributes) != 0)

return;

// Open the data queue
if (cwbDQ_Open(_TEXT("DTAQ"),

_TEXT("QGPL"),
_TEXT("SYSNAMEXXX"),
&queueHandle,
NULL) != 0)

return;

// Create a data object
if ((queueData = cwbDQ_CreateData()) == 0)

return;

206 iSeries: iSeries Access for Windows Programming

// Set the data length and the data
if (cwbDQ_SetData(queueData, (unsigned char*)"Test Data!", 10) != 0)

return;

// Write the data to the data queue
if (cwbDQ_Write(queueHandle, queueData, CWB_TRUE, NULL) != 0)

return;

// Delete the data object
if (cwbDQ_DeleteData(queueData) != 0)

return;

// Close the data queue
if (cwbDQ_Close(queueHandle) != 0)

return;

}

iSeries Access for Windows Data Transformation and National
LanguageSupport (NLS) APIs
“iSeries Access for Windows data transformation APIs”

iSeries Access for Windowsdata transformation application programming interfaces (APIs) enable
your client/server applications to transform numeric data between iSeries server and PC formats.
Transformation may be required when you send and receive numeric data to and from the iSeries
server. Data transformation APIs support transformation of many numeric formats.

“iSeries Access for Windows national language support (NLS) APIs” on page 228
iSeries Access for Windows national language support APIs enable your applications to get and
save (query and change) the iSeries Access for Windows settings that are relevant to national
language support. You can add convenient functions into your iSeries Access for Windows
applications, including the capability to:
v Select from a list of installed national languages.
v Convert character data from one code page to another. This permits computers that use

different code pages, such as personal computers and the iSeries server, to share information.
v Automatically replace the translatable text (caption and control names) within dialog boxes. This

expands the size of the controls according to the text that is associated with them. The size of
the dialog-box frame also is adjusted automatically.

iSeries Access for Windows data transformation APIs

iSeries Access for Windows data transformation APIs required files:

Header file Import library Dynamic Link Library

cwbdt.h cwbapi.lib cwbdt.dll

Programmer’s Toolkit:
The Programmer’s Toolkit provides data transformation documentation, access to the cwbdt.h
header file, and links to sample programs. To access this information, open the Programmer’s
Toolkit and select Data Manipulation —> C/C++ APIs.

iSeries Access for Windows data transformation APIs topics:
v iSeries Access for Windows data transformation APIs listing
v “Example: Using data transformation APIs” on page 228

Related topics:

Chapter 4. iSeries Access for Windows® C/C++ APIs 207

v “iSeries system name formats for ODBC Connection APIs” on page 12

v “OEM, ANSI, and Unicode considerations” on page 12

iSeries Access for Windows data transformation API listing

Note: iSeries Access for Windows data transformation APIs that accept strings are provided in Unicode
versions. In these APIs, ″ASCII″ is replaced by ″Wide″ (for example, cwbDT_ASCII11ToBin4 has a
Unicode version: cwbDT_Wide11ToBin4). These APIs are indicated in the table that follows. The
Unicode versions have different syntax, parameters and return values than their ASCII counterparts.

See “OEM, ANSI, and Unicode considerations” on page 12 and the cwbdt.h header file for details.

iSeries Access for Windows data transformation API Unicode version

cwbDT_ASCII11ToBin4 cwbDT_Wide11ToBin4

cwbDT_ASCII6ToBin2 cwbDT_Wide6ToBin2

cwbDT_ASCIIPackedToPacked None

cwbDT_ASCIIToHex cwbDT_WideToHex

cwbDT_ASCIIToPacked cwbDT_WideToPacked

cwbDT_ASCIIToZoned cwbDT_WideToZoned

cwbDT_ASCIIZonedToZoned None

cwbDT_Bin2ToASCII6 cwbDT_Bin2ToWide6

cwbDT_Bin2ToBin2 None

cwbDT_Bin4ToASCII11 cwbDT_Bin4ToWide11

cwbDT_Bin4ToBin4 None

cwbDT_EBCDICToEBCDIC None

cwbDT_HexToASCII cwbDT_HexToWide

cwbDT_PackedToASCII cwbDT_PackedToWide

cwbDT_PackedToASCIIPacked None

cwbDT_PackedToPacked None

cwbDT_ZonedToASCII cwbDT_ZonedToWide

cwbDT_ZonedToASCIIZoned None

cwbDT_ZonedToZoned None

208 iSeries: iSeries Access for Windows Programming

cwbDT_ASCII11ToBin4:

Purpose: Translates (exactly) 11 ASCII numeric characters to a 4-byte integer stored most significant byte
first. (The source string is not expected to be zero-terminated.) This function can be used for translating
ASCII numeric data to the iSeries integer format.

Syntax:

unsigned int CWB_ENTRY cwbDT_ASCII11ToBin4(
char *target,
char *source);

Parameters:

char * target - output
Pointer to the target (4 byte integer).

char * source - input
Pointer to the source (11 byte ASCII).

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW
Overflow error.

other Offset of the first untranslated character plus one.

Usage: The target data will be stored with the Most Significant Byte first. This is the format that the
iSeries server uses and is the opposite of the format that is used by the Intel x86 processors. Valid
formats for the ASCII source data are as follows:

[blankspaces][sign][blankspaces][digits] or

[sign][blankspaces][digits][blankspaces]

Examples:
" + 123"
"- 123 "
" +123 "
" 123"
" -123"
"+123 "

Chapter 4. iSeries Access for Windows® C/C++ APIs 209

cwbDT_ASCII6ToBin2:

Purpose: Translates (exactly) 6 ASCII numeric characters to a 2-byte integer stored most significant byte
first. (The source string is not expected to be zero-terminated.) This function can be used for translating
ASCII numeric data to the iSeries integer format.

Syntax:

unsigned int CWB_ENTRY cwbDT_ASCII6ToBin2(
char *target,
char *source);

Parameters:

char * target - output
Pointer to the target (2 byte integer).

char * source - input
Pointer to the source (6 byte ASCII).

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW
Overflow error.

other Offset of the first untranslated character plus one.

Usage: The target data will be stored with the Most Significant Byte first. This is the format that the
iSeries server uses and is the opposite of the format that is used by Intel x86 processors. Valid formats for
the ASCII source data are as follows:

[blankspaces][sign][blankspaces][digits] or

[sign][blankspaces][digits][blankspaces]

Examples:
" + 123"
"- 123 "
" +123 "
" 123"
" -123"
"+123 "

210 iSeries: iSeries Access for Windows Programming

cwbDT_ASCIIPackedToPacked:

Purpose: Translates data from ASCII packed format to packed decimal. This function can be used for
translating data from ASCII files to the iSeries system format.

Syntax:

unsigned int CWB_ENTRY cwbDT_ASCIIPackedToPacked(
char *target,
char *source,
unsigned long length);

Parameters:

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage: The caller must make sure that there is adequate space to hold the target information. This
function checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only
exception is the last half-byte which contains the sign indicator (which can be 0x3 or 0xb).

Chapter 4. iSeries Access for Windows® C/C++ APIs 211

cwbDT_ASCIIToHex:

Purpose: Translates data from ASCII (hex representation) to binary. One byte is stored in the target for
each two bytes in the source.

Syntax:

unsigned int CWB_ENTRY cwbDT_ASCIIToHex(
char *target,
char *source,
unsigned long length);

Parameters:

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source (ASCII hex) data.

unsigned long length - input
Number of bytes of source data to translate/2.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage: For ’length’ bytes of source data ’length’/2 bytes of target data will be stored. The caller must
make sure that there is adequate space to hold the target information.

212 iSeries: iSeries Access for Windows Programming

cwbDT_ASCIIToPacked:

Purpose: Translates ASCII numeric data to packed decimal format. This function can be used for
translating ASCII text data for use on the iSeries server.

Syntax:

unsigned int CWB_ENTRY cwbDT_ASCIIToPacked(
char *target,
char *source,
unsigned long length,
unsigned long decimalPosition);

Parameters:

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data. Must be zero terminated.

unsigned long length - input
Number of bytes of target data to translate.

unsigned long decimalPosition - input
Position of the decimal point.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW
Overflow error.

CWB_NOT_ENOUGH_MEMORY
Unable to allocate temporary memory.

other Offset of the first untranslated character plus one.

Usage: The caller must make sure that there is adequate space to hold the target information. The sign
half-byte will be set to 0xd to indicate a negative number and hex 0xc to indicate a positive number. 0 <=
decimalPosition < (length * 2). Valid formats for the ASCII numeric data are as follows:

[blankspaces][sign][blankspaces][digits] or

[sign][blankspaces][digits][blankspaces] or

[sign][digits][.digits][blankspaces] or

[blankspaces][sign][digits][.digits][blankspaces]

Examples:
" + 123\0"
"- 123 \0"
" +123 \0"
" 123\0"
" -12.3\0"
"+1.23 \0"

Chapter 4. iSeries Access for Windows® C/C++ APIs 213

cwbDT_ASCIIToZoned:

Purpose: Translates ASCII numeric data to EBCDIC zoned decimal format. This function can be used for
translating ASCII text data for for use on the iSeries server.

Syntax:

unsigned int CWB_ENTRY cwbDT_ASCIIToZoned(
char *target,
char *source,
unsigned long length,
unsigned long decimalPosition);

Parameters:

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data. Must be zero terminated.

unsigned long length - input
Number of bytes of target data to translate.

unsigned long decimalPosition - input
Position of the decimal point.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW
Overflow error.

CWB_NOT_ENOUGH_MEMORY
Unable to allocate temporary memory.

other Offset of the first untranslated character plus one.

Usage: The caller must make sure that there is adequate space to hold the information. The sign
half-byte will be set to 0xd to indicate a negative number and hex 0xc to indicate a positive number. 0 <=
decimalPosition <= length. Valid formats for the ASCII numeric data are as follows:

[blankspaces][sign][blankspaces][digits] or

[sign][blankspaces][digits][blankspaces] or

[sign][digits][.digits][blankspaces] or

[blankspaces][sign][digits][.digits][blankspaces]

Examples:
" + 123\0"
"- 123 \0"
" +123 \0"
" 123\0"
" -12.3\0"
"+1.23 \0"

214 iSeries: iSeries Access for Windows Programming

cwbDT_ASCIIZonedToZoned:

Purpose: Translates data from ASCII zoned decimal format to EBCDIC zoned decimal. This function can
be used for translating data from ASCII files for use on the iSeries server.

Syntax:

unsigned int CWB_ENTRY cwbDT_ASCIIZonedToZoned(
char *target,
char *source,
unsigned long length);

Parameters:

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage: The left half of each byte (0x3) in the ASCII zoned decimal format will be converted to 0xf in the
left half-byte of the EBCDIC zoned data except for the last byte (sign). This function checks that the left
half of each byte in the ASCII zoned decimal data must be 0x3 except for the last byte. The high half of
the last byte must be 0x3 or 0xb. The right half of each byte in the ASCII zoned decimal data must be in
the range 0-9.

Chapter 4. iSeries Access for Windows® C/C++ APIs 215

cwbDT_Bin2ToASCII6:

Purpose: Translates a 2-byte integer stored most significant byte first to (exactly) 6 ASCII numeric
characters. (The target will not be zero terminated.) This function can be used for translating numeric data
from an iSeries server to ASCII.

Syntax:

unsigned int CWB_ENTRY cwbDT_Bin2ToASCII6(
char *target,
char *source);

Parameters:

char * target - output
Pointer to the target (6 byte) area.

char * source - input
Pointer to the source (2 byte integer).

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage: The source data is assumed to be stored with the Most significant Byte first. This is the format
that the iSeries server uses and is the opposite of the format used by the Intel x86 processes.

216 iSeries: iSeries Access for Windows Programming

cwbDT_Bin2ToBin2:

Purpose: Reverses the order of bytes in a 2-byte integer. This function can be used for translating a
2-byte integer to or from the iSeries server format.

Syntax:

unsigned int CWB_ENTRY cwbDT_Bin2ToBin2(
char *target,
char *source);

Parameters:

char * target - output
Pointer to the target (2 byte integer).

char * source - input
Pointer to the source (2 byte integer).

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage: The source data and the target data must not overlap. The following example shows the result of
the translation:

Source data: 0x1234

Target data: 0x3412

Chapter 4. iSeries Access for Windows® C/C++ APIs 217

cwbDT_Bin4ToASCII11:

Purpose: Translates a 4-byte integer stored most significant byte first to (exactly) 11 ASCII numeric
characters. (The target will not be zero terminated.) This function can be used for translating numeric data
from an iSeries server to ASCII.

Syntax:

unsigned int CWB_ENTRY cwbDT_Bin4ToASCII11(
char *target,
char *source);

Parameters:

char * target - output
Pointer to the target (11 byte) area.

char * source - input
Pointer to the source (4 byte integer).

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage: The source data is assumed to be stored with the Most Significant Byte first. This is the format
that the iSeries server uses and is the opposite of the format used by the Intel x86 processors.

218 iSeries: iSeries Access for Windows Programming

cwbDT_Bin4ToBin4:

Purpose: Reverses the order of bytes in a 4-byte integer. This function can be used for translating a
4-byte integer to or from the iSeries server format.

Syntax:

unsigned int CWB_ENTRY cwbDT_Bin4ToBin4(
char *target,
char *source);

Parameters:

char * target - output
Pointer to the target (4 byte integer).

char * source - input
Pointer to the source (4 byte integer).

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage: The source data and the target data must not overlap. The following example shows the result of
the translation:

Source data: 0x12345678

Target data: 0x78563412

Chapter 4. iSeries Access for Windows® C/C++ APIs 219

cwbDT_EBCDICToEBCDIC:

Purpose: ’Translates’ (copies unless character value less than 0x40 is encountered) EBCDIC data to
EBCDIC.

Syntax:

unsigned int CWB_ENTRY cwbDT_EBCDICToEBCDIC(
char *target,
char *source,
unsigned long length);

Parameters:

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of target data to translate.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage: The caller must make sure that there is adequate space to hold the target information.

220 iSeries: iSeries Access for Windows Programming

cwbDT_HexToASCII:

Purpose: Translates binary data to the ASCII hex representation. Two ASCII characters are stored in the
target for each byte of source data.

Syntax:

unsigned int CWB_ENTRY cwbDT_HexToASCII(
char *target,
char *source,
unsigned long length);

Parameters:

char * target - output
Pointer to the target (ASCII hex) data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage: For ’length’ bytes of source data ’length’*2 bytes of target data will be stored. The caller must
make sure that there is adequate space to hold the target information.

Chapter 4. iSeries Access for Windows® C/C++ APIs 221

cwbDT_PackedToASCII:

Purpose: Translates data from packed decimal format to ASCII numeric data. This function can be used
for translating data from the the iSeries server for use in ASCII text format.

Syntax:

unsigned int CWB_ENTRY cwbDT_PackedToASCII(
char *target,
char *source,
unsigned long length,
unsigned long decimalPosition);

Parameters:

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

unsigned long decimalPosition - input
Position of the decimal point.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage: The caller must make sure that there is adequate space to hold the target information. This
function checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only
exception is the last half-byte which contains the sign indicator. 0 <= decimalPosition < (length * 2).

222 iSeries: iSeries Access for Windows Programming

cwbDT_PackedToASCIIPacked:

Purpose: Translates data from packed decimal format to ASCII packed format. This function can be used
for translating data from the iSeries server for use in ASCII format.

Syntax:

unsigned int CWB_ENTRY cwbDT_PackedToASCIIPacked(
char *target,
char *source,
unsigned long length);

Parameters:

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage: The caller must make sure that there is adequate space to hold the target information. This
function checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only
exception is the last half-byte which contains the sign indicator (which can be 0-9, 0xd, or 0xb).

Chapter 4. iSeries Access for Windows® C/C++ APIs 223

cwbDT_PackedToPacked:

Purpose: Translates packed decimal data to packed decimal. This function can be used for transferring
data from the iSeries system to no-conversion files and back.

Syntax:

unsigned int CWB_ENTRY cwbDT_PackedToPacked(
char *target,
char *source,
unsigned long length);

Parameters:

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage: The caller must make sure that there is adequate space to hold the target information. This
function checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only
exception is the last half-byte which contains the sign indicator.

224 iSeries: iSeries Access for Windows Programming

cwbDT_ZonedToASCII:

Purpose: Translates EBCDIC zoned decimal data to ASCII numeric format. This function can be used for
translating data from the iSeries server for use in ASCII text format.

Syntax:

unsigned int CWB_ENTRY cwbDT_ZonedToASCII(
char *target,
char *source,
unsigned long length,
unsigned long decimalPosition);

Parameters:

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

unsigned long decimalPosition - input
Position of the decimal point.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW
Overflow error.

other Offset of the first untranslated character plus one.

Usage: The caller must make sure that there is adequate space to hold the target information. The high
half of the last byte of the zoned data indicates the sign of the number. If the high half-byte is 0xb or 0xd,
then a negative number is indicated. Any other value indicates a positive number. This function checks that
the high half of each byte of zoned data must be 0xf except for the last byte. The low half of each byte of
zoned data must be in the range 0-9. 0 <= decimalPosition < length.

Chapter 4. iSeries Access for Windows® C/C++ APIs 225

cwbDT_ZonedToASCIIZoned:

Purpose: Translates data from EBCDIC zoned decimal format to ASCII zoned decimal format. This
function can be used for translating data from the iSeries server for use in ASCII files.

Syntax:

unsigned int CWB_ENTRY cwbDT_ZonedToASCIIZoned(
char *target,
char *source,
unsigned long length);

Parameters:

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage: The caller must make sure that there is adequate space to hold the target information. The left
half-byte (0xf) in the EBCDIC zoned decimal data will be converted to 0x3 in the left half-byte of the ASCII
zoned decimal data except for the last byte (sign). The high half of the last byte of the EBCDIC zoned
decimal data indicates the sign of the number. If the high half-byte is 0xb or 0xb then a negative number is
indicated, any other value indicates a positive number. This function checks that the high half of each byte
of EBCDIC zoned decimal data must be 0xf except for the last byte. The low half of each byte of EBCDIC
zoned decimal data must be in the range 0-9.

226 iSeries: iSeries Access for Windows Programming

cwbDT_ZonedToZoned:

Purpose: Translates data from zoned decimal format to zoned decimal. This function can be used for
translating data from the iSeries server for use in no-conversion files and vice-versa.

Syntax:

unsigned int CWB_ENTRY cwbDT_ZonedToZoned(
char *target,
char *source,
unsigned long length);

Parameters:

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other Offset of the first untranslated character plus one.

Usage: The caller must make sure that there is adequate space to hold the target information. The high
half of the last byte of the zoned data indicates the sign of the number. If the high half-byte is 0xb or 0xb
then a number is indicated, any other value indicates a positive number. This function checks that the high
half of each byte of zoned data must be 0xf except for the last byte. The low half of each byte of zoned
data must be in the range 0-9.

Chapter 4. iSeries Access for Windows® C/C++ APIs 227

Example: Using data transformation APIs
/***/
/* Sample Data Transform Program using cwbDT_Bin4ToBin4 to reverse */
/* the order of bytes in a 4-byte integer. */
/***/

#include <iostream.h>
#include "cwbdt.h"

void main()
{

unsigned int returnCode;
long source,

target;

cout << "Enter source number:\n";

while (cin >> source) {
cout << "Source in Dec = " << dec << source;
cout << "\nSource in Hex = " << hex << source << ’\n’;
if (((returnCode = cwbDT_Bin4ToBin4((char *)&target,(char *)&source)) == CWB_OK)) {

cout << "Target in Dec = " << dec << target;
cout << "\nTarget in Hex = " << hex << target << ’\n’;

} else {
cout << "Conversion failed, Return code = " << returnCode << ’\n’ ;

}; /* endif */
cout << "\nEnter source number:\n";

}; /* endwhile */

}

iSeries Access for Windows national language support (NLS) APIs
iSeries servers support many national languages, through national language support (NLS). NLS allows
users to work on an iSeries system in the language of their choice. The iSeries system also ensures that
the data that is sent to and received from the system appears in the form and order that is expected. By
supporting many different languages, the system operates as intended, from both a linguistic and a cultural
point of view.

All iSeries systems use a common set of program code, regardless of which language you use on the
system. For example, the program code on a U.S. English iSeries system and the program code on a
Spanish iSeries system are identical. Different sets of textual data are used, however, for different
languages. Textual data is a collective term for menus, displays, lists, prompts, options, on-line help
information, and messages. This means that you see Help for the description of the function key for
on-line help information on a U.S. English system, while you see Ayuda on a Spanish system. Using the
same program code with different sets of textual data allows the iSeries system to support more than one
language on a single system.

Note: It is essential to build national language support considerations into the design of the program right
from the start. It is much harder to add NLS or DBCS support after a program has been designed
or coded.

228 iSeries: iSeries Access for Windows Programming

iSeries Access for Windows NLS APIs required files:

NLS API type Header file Import library Dynamic Link Library

General cwbnl.h cwbapi.lib cwbnl.dll

Conversion cwbnlcnv.h cwbnl1.dll

Dialog-box cwbnldlg.h cwbnldlg.dll

Programmer’s Toolkit:
The Programmer’s Toolkit provides NLS documentation, access to the NLS APIs header files, and
links to sample programs. To access this information, open the Programmer’s Toolkit and select
Data Manipulation —> C/C++ APIs.

iSeries Access for Windows NLS APIs topics:
v “Coded character sets”
v iSeries Access for Windows NLS APIs listing
v “Example: iSeries Access for Windows NLS APIs” on page 259

Related topics:

v “iSeries system name formats for ODBC Connection APIs” on page 12

v “OEM, ANSI, and Unicode considerations” on page 12

Coded character sets
Graphic characters are printable or displayable symbols, such as letters, numbers, and punctuation marks.
A collection of graphic characters is called a graphic-character set, and often simply a character set. Each
language requires its own graphic-character set to be printed or displayed properly. Characters are
encoded according to a code page, which is a table that assigns graphic and control characters to specific
values called code points.

Code pages are classified into many types according to the encoding scheme. Two important encoding
schemes for iSeries Access are the Host and PC code pages. Unicode also is becoming an important
encoding scheme. Unicode is a 16-bit worldwide character encoding scheme that is gaining popularity on
both the Host and the personal computer.
v Host code pages are encoded in accordance with IBM Standard of Extended BCD Interchange Code

(EBCDIC) and usually used by S/390 and iSeries servers.
v PC Code pages are encoded based on ANSI X3.4, ASCII and usually used by IBM Personal

Computers.

iSeries Access for Windows NLS APIs listing
The iSeries Access for Windows national language support application programming interfaces (APIs) are
listed in alphabetical order. They provide necessary information for their use. They are grouped into three
functional categories:
v iSeries Access for Windows general national language support APIs
v iSeries Access for Windows conversion national language support APIs
v iSeries Access for Windows dialog-box national language support APIs

iSeries Access for Windows general NLS APIs list: iSeries Access for Windowsis translated into many
languages. One or more of these languages can be installed on the personal computer. The following
iSeries Access for Windows general NLS APIs allow an application to:
v Get a list of installed languages
v Get the current language setting
v Save the language setting

cwbNL_FindFirstLang

cwbNL_FindNextLang

cwbNL_GetLang

cwbNL_GetLangName

Chapter 4. iSeries Access for Windows® C/C++ APIs 229

cwbNL_GetLangPath

cwbNL_SaveLang

230 iSeries: iSeries Access for Windows Programming

cwbNL_FindFirstLang:

Purpose: Returns the first available language.

Syntax:

unsigned int CWB_ENTRY cwbNL_FindFirstLang(
char *mriBasePath,
char *resultPtr,
unsigned short resultLen,
unsigned short *requiredLen,
unsigned long *searchHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

char * mriBasePath - input
Pointer to the mriBasePath, e.g. C:\Program Files\IBM\ClientAccess/400 If NULL, the mriBasePath of
the ClientAccess/400 product is used.

char * resultPtr - output
Pointer to the buffer to contain the result.

unsigned short resultLen - input
Length of the result buffer. Recommended size is CWBNL_MAX_LANG_SIZE.

unsigned short * requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

unsigned long * searchHandle - output
Search handle to be passed on subsequent calls to cwbNL_FindNextLang.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle()
API The messages may be retrieved through the cwbSV_GetErrText() API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_FILE_NOT_FOUND
File not found.

CWB_PATH_NOT_FOUND
Path not found.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage: The result buffer will contain a language.

Chapter 4. iSeries Access for Windows® C/C++ APIs 231

cwbNL_FindNextLang:

Purpose: Returns the next available language.

Syntax:

unsigned int CWB_ENTRY cwbNL_FindNextLang(
char *resultPtr,
unsigned short resultLen,
unsigned short *requiredLen,
unsigned long *searchHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

char * resultPtr - output
Pointer to the buffer to contain the result.

unsigned short resultLen - input
Length of the result buffer. Recommended size is CWBNL_MAX_LANG_SIZE.

unsigned short * requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

unsigned long * searchHandle - output
Search handle to be passed on subsequent calls to cwbNL_FindNextLang.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle()
API. The messages may be retrieved through the cwbSV_GetErrText() API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NO_MORE_FILES
No more files are found.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage: The result buffer will contain a language.

232 iSeries: iSeries Access for Windows Programming

cwbNL_GetLang:

Purpose: Get the current language setting.

Syntax:

unsigned int CWB_ENTRY cwbNL_GetLang(
char *mriBasePath,
char *resultPtr,
unsigned short resultLen,
unsigned short *requiredLen,
cwbSV_ErrHandle errorHandle);

Parameters:

char * mriBasePath - input
Pointer to the mriBasePath, e.g. C:\Program Files\IBM\ClientAccess/400. If NULL, the mriBasePath of
the ClientAccess/400 product is used.

char * resultPtr - output
Pointer to the buffer to contain the result.

unsigned short resultLen - input
Length of the result buffer. Recommended size is CWBNL_MAX_LANG_SIZE.

unsigned short * requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle()
API. The messages may be retrieved through the cwbSV_GetErrText() API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Buffer too small to contain result.

Usage: The result buffer will contain the name of the language subdirectory. This language subdirectory
contains the language-specific files. This language subdirectory name also can be passed to
cwbNL_GetLangName.

Chapter 4. iSeries Access for Windows® C/C++ APIs 233

cwbNL_GetLangName:

Purpose: Return the descriptive name of a language setting.

Syntax:

unsigned int CWB_ENTRY cwbNL_GetLangName(
char *lang,
char *resultPtr,
unsigned short resultLen,
unsigned short *requiredLen,
cwbSV_ErrHandle errorHandle);

Parameters:

char * lang - input
Address of the ASCIIZ string representing the language.

char * resultPtr - output
Pointer to the buffer to contain the result.

unsigned short resultLen - input
Length of the result buffer. Recommended size is CWBNL_MAX_NAME_SIZE.

unsigned short * requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle()
API. The messages may be retrieved through the cwbSV_GetErrText() API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage: The language must be a value returned from one of the following APIs:

cwbNL_GetLang

cwbNL_FindFirstLang

cwbNL_FindNextLang

234 iSeries: iSeries Access for Windows Programming

cwbNL_GetLangPath:

Purpose: Return the complete path for language files.

Syntax:

unsigned int CWB_ENTRY cwbNL_GetLangPath(
char *mriBasePath,
char *resultPtr,
unsigned short resultLen,
unsigned short *requiredLen,
cwbSV_ErrHandle errorHandle);

Parameters:

char * mriBasePath - input
Pointer to the mriBasePath, for example C:\Program Files\IBM\ClientAccess/400. If NULL, the
mriBasePath of the ClientAccess/400 product is used.

char * resultPtr - output
Pointer to the buffer to contain the result.

unsigned short resultLen - input
Length of the result buffer. Recommended size is CWBNL_MAX_PATH_SIZE.

unsigned short * requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle()
API. The messages may be retrieved through the cwbSV_GetErrText() API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_PATH_NOT_FOUND
Path not found.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage: The result buffer will contain the complete path of the language subdirectory. Language files
should be loaded from this path.

Chapter 4. iSeries Access for Windows® C/C++ APIs 235

cwbNL_SaveLang:

Purpose: Save the language setting in the product registry.

Syntax:

unsigned int CWB_ENTRY cwbNL_SaveLang(
char *lang,
cwbSV_ErrHandle errorHandle);

Parameters:

char * lang - input
Address of the ASCIIZ string representing the language.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle()
API. The messages may be retrieved through the cwbSV_GetErrText() API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage: The language must be a value returned from one of the following APIs:

cwbNL_GetLang

cwbNL_FindFirstLang

cwbNL_FindNextLang

The following APIs are affected by this call:

cwbNL_GetLang

cwbNL_GetLangPath

236 iSeries: iSeries Access for Windows Programming

iSeries Access for Windows conversion NLS APIs list: The following iSeries Access for Windows
conversion NLS APIs allow applications to:
v Convert character data from one code page to another
v Determine the current code page setting
v Determine the last CCSID setting
v Convert code page values to and from code character set identifiers (CCSID)

cwbNL_CCSIDToCodePage

cwbNL_CodePageToCCSID

cwbNL_Convert

cwbNL_ConvertCodePages

cwbNL_CreateConverter

cwbNL_DeleteConverter

cwbNL_GetCodePage

cwbNL_GetANSICodePage

cwbNL_GetHostCCSID

Chapter 4. iSeries Access for Windows® C/C++ APIs 237

cwbNL_CCSIDToCodePage:

Purpose: Map CCSIDs to code pages.

Syntax:

unsigned int CWB_ENTRY cwbNL_CCSIDToCodePage(
unsigned long CCSID,
unsigned long *codePage,
cwbSV_ErrHandle errorHandle);

Parameters:

unsigned long CCSID - input
CCSID to convert to a code page.

unsigned long * codePage - output
The resulting code page.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If
the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage: None

238 iSeries: iSeries Access for Windows Programming

cwbNL_CodePageToCCSID:

Purpose: Map code pages to CCSIDs.

Syntax:

unsigned int CWB_ENTRY cwbNL_CodePageToCCSID(
unsigned long codePage,
unsigned long *CCSID,
cwbSV_ErrHandle errorHandle);

Parameters:

unsigned long codePage - input
Code page to convert to a CCSID.

unsigned long * CCSID - output
The resulting CCSID.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If the
parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 239

cwbNL_Convert:

Purpose: Convert strings by using a previously opened converter.

Syntax:

unsigned int CWB_ENTRY cwbNL_Convert(
cwbNL_Converter theConverter,
unsigned long sourceLength,
unsigned long targetLength,
char *sourceBuffer,
char *targetBuffer,
unsigned long *numberOfErrors,
unsigned long *firstErrorIndex,
unsigned long *requiredLen,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbNL_Converter theConverter - output
Handle to the previously opened converter.

unsigned long sourceLength - input
Length of the source buffer.

unsigned long targetLength - input
Length of the target buffer. If converting from an ASCII code page that contains DBCS characters,
note that the resulting data could contain shift-out and shift-in bytes. Therefore, the targetBuffer may
need to be larger than the sourceBuffer.

char *sourceBuffer - input
Buffer containing the data to convert.

char *targetBuffer - output
Buffer to contain the converted data.

unsigned long *numberOfErrors - output
Contains the number of characters that could not be converted properly.

unsigned long *firstErrorIndex - output
Contains the offset of the first character in the source buffer that could not be converted properly.

unsigned long *requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If
the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

240 iSeries: iSeries Access for Windows Programming

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 241

cwbNL_ConvertCodePages:

Purpose: Convert strings from one code page to another. This API combines the following three converter
APIs for the default conversion:

v cwbNL_CreateConverter

v cwbNL_Convert

v cwbNL_DeleteConverter

Syntax:

unsigned int CWB_ENTRY cwbNL_ConvertCodePages(
unsigned long sourceCodePage,
unsigned long targetCodePage,
unsigned long sourceLength,
unsigned long targetLength,
char *sourceBuffer,
char *targetBuffer,
unsigned long *numberOfErrors,
unsigned long *positionOfFirstError,
unsigned long *requiredLen,
cwbSV_ErrHandle errorHandle);

Parameters:

unsigned long sourceCodePage - input
Code page of the data in the source buffer.

unsigned long targetCodePage - input
Code page to which the data should be converted.

unsigned long sourceLength - input.
Length of the source buffer

unsigned long targetLength - input.
Length of the target buffer

char *sourceBuffer - input
Buffer containing the data to convert.

char *targetBuffer - output
Buffer to contain the converted data.

unsigned long *numberOfErrors - output
Contains the number of characters that could not be converted properly.

unsigned long *positionOfFirstError - output
Contains the offset of the first character in the source buffer that could not be converted properly.

unsigned long *requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If
the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

242 iSeries: iSeries Access for Windows Programming

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWBNL_ERR_CNV_UNSUPPORTED
An error occurred while attempting to convert the characters. No conversion was done. The most
common reason is that a conversion table is missing. Conversion tables are either installed with
iSeries Access for Windows, or retrieved from the default iSeries system when needed. There may
have been some problem communicating with the default iSeries system.

CWBNL_ERR_CNV_ERR_STATUS
This return code is used to indicate that while the requested conversion is supported, and the
conversion completed, there were some characters that did not convert properly. Either the source
buffer contained null characters, or the characters do not exist in the target code page.
Applications can choose to ignore this return code or treat it as a warning.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage: The following values may be specified on the sourceCodePage and the targetCodePage
parameters:

Value Meaning
CWBNL_CP_UNICODE_F200 UCS2 Version 1.1 UNICODE
CWBNL_CP_UNICODE UCS2 Current Version UNICODE
CWBNL_CP_AS400 AS/400 host code page
CWBNL_CP_CLIENT_OEM OEM client code page
CWBNL_CP_CLIENT_ANSI ANSI client code page
CWBNL_CP_CLIENT_UNICODE UNICODE client code page
CWBNL_CP_UTF8 UCS transformation form, 8–bit format
CWBNL_CP_CLIENT Generic client code page. Default is

CWBNL_CP_CLIENT_OEM. CWBNL_CP_CLIENT is set to
CWBNL_CP_CLIENT_ANSI when CWB_ANSI is defined,
to CWBNL_CP_CLIENT_UNICODE when CWB_UNICODE
is defined and to CWBNL_CP_CLIENT_OEM when
CWB_OEM is defined.

Chapter 4. iSeries Access for Windows® C/C++ APIs 243

cwbNL_CreateConverter:

Purpose: Create a cwbNL_Converter to be used on subsequent calls to cwbNL_Convert().

Syntax:

unsigned int CWB_ENTRY cwbNL_CreateConverter(
unsigned long sourceCodePage,
unsigned long targetCodePage,
cwbNL_Converter *theConverter,
cwbSV_ErrHandle errorHandle,
unsigned long shiftInShiftOutStatus,
unsigned long padLength,
char *pad);

Parameters:

unsigned long sourceCodePage - input
Code page of the source data.

unsigned long targetCodePage - input
Code page to which the data should be converted.

cwbNL_Converter * theConverter - output
The newly created converter.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If
the parameter is set to zero, no messages will be retrievable.

unsigned long shiftInShiftOutStatus - input
Indicates whether the shift-in and shift-out bytes are part of the input or output data. 0 - False, no
shift-in and shift-out bytes are part of the data string. 1 - True, shift-in and shift-out characters are part
of the data string.

unsigned long padLength - input
Length of pad characters. 0 - No pad characters for this conversion request 1 - 1 byte of pad
character. This is valid only if the target code page is either SBCS or DBCS code page 2 - 2 bytes of
pad characters. This is valid only if the code page is not a single-byte code page.

char * pad - input
The character or characters for padding.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWBNL_ERR_CNV_UNSUPPORTED
An error occurred while attempting to convert the characters. No conversion was done. The most
common reason is that a conversion table is missing. Conversion tables are either installed with
iSeries Access for Windows, or retrieved from the default iSeries system when needed. There may
have been some problem communicating with the default iSeries system.

CWBNL_ERR_CNV_ERR_STATUS
This return code is used to indicate that while the requested conversion is supported, and the

244 iSeries: iSeries Access for Windows Programming

conversion completed, there were some characters that did not convert properly. Either the source
buffer contained null characters, or the characters do not exist in the target code page.
Applications can choose to ignore this return code or treat it as a warning.

CWBNL_ERR_CNV_INVALID_SISO_STATUS
Invalid SISO parameter.

CWBNL_ERR_CNV_INVALID_PAD_LENGTH
Invalid Pad Length parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage: The following values may be specified on the sourceCodePage and the targetCodePage
parameters:

Value Meaning
CWBNL_CP_UNICODE_F200 UCS2 Version 1.1 UNICODE
CWBNL_CP_UNICODE UCS2 Current Version UNICODE
CWBNL_CP_AS400 AS/400 host code page
CWBNL_CP_CLIENT_OEM OEM client code page
CWBNL_CP_CLIENT_ANSI ANSI client code page
CWBNL_CP_CLIENT_UNICODE UNICODE client code page
CWBNL_CP_UTF8 UCS transformation form, 8–bit format
CWBNL_CP_CLIENT Generic client code page. Default is

CWBNL_CP_CLIENT_OEM. CWBNL_CP_CLIENT is set to
CWBNL_CP_CLIENT_ANSI when CWB_ANSI is defined, to
CWBNL_CP_CLIENT_UNICODE when CWB_UNICODE is
defined and to CWBNL_CP_CLIENT_OEM when CWB_OEM is
defined.

Instead of calling cwbNL_ConvertCodePages multiple times with the same code pages:

cwbNL_ConvertCodePages(850, 500, ...);

cwbNL_ConvertCodePages(850, 500, ...);

cwbNL_ConvertCodePages(850, 500, ...);

It is more efficient to create a converter and use it multiple times:

cwbNL_CreateConverter(850, 500, &conv, ...);

cwbNL_Convert(conv, ...);

cwbNL_Convert(conv, ...);

cwbNL_Convert(conv, ...);

cwbNL_DeleteConverter(conv, ...);

Chapter 4. iSeries Access for Windows® C/C++ APIs 245

cwbNL_DeleteConverter:

Purpose: Delete a cwbNL_Converter.

Syntax:

unsigned int CWB_ENTRY cwbNL_DeleteConverter(
cwbNL_Converter theConverter,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbNL_Converter theConverter - input
A previously created converter.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle0 API. The messages may be retrieved with the cwbSV_GetErrText API. If
the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Invalid handle.

Usage: None

246 iSeries: iSeries Access for Windows Programming

cwbNL_GetCodePage:

Purpose: Get the current code page of the client system.

Syntax:

unsigned int CWB_ENTRY cwbNL_GetCodePage(
unsigned long *codePage,
cwbSV_ErrHandle errorHandle);

Parameters:

unsigned long * codePage - output
Returns the current code page of the client system or the OEM code page character conversion
override value, if one is specified on the Language tab of the iSeries Access Properties dialog.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If
the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 247

cwbNL_GetANSICodePage:

Purpose: Get the current ANSI code page of the client system.

Syntax:

unsigned int CWB_ENTRY cwbNL_GetANSICodePage(
unsigned long *codePage,
cwbSV_ErrHandle errorHandle);

Parameters:

unsigned long * codePage - output
Returns the current ANSI code page of the client system or the ANSI code page character conversion
override value, if one is specified on the Language tab of the iSeries Access Properties dialog.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If
the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage: None

248 iSeries: iSeries Access for Windows Programming

cwbNL_GetHostCCSID:

Purpose: Returns the associated CCSID of a given host system or the managing system or the EBCDIC
code page character conversion override value, if one is specified on the Language tab of the iSeries
Access Properties dialog.

Syntax:

unsigned long CWB_ENTRY cwbNL_GetHostCCSID(
char * system,
unsigned long * CCSID);

Parameters:

char * system - input
The name of the host system. If NULL, the managing system is used.

unsigned * CCSID - output
Length of the result buffer.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWBNL_DEFAULT_HOST_CCSID_USED
Host CCSID 500 is returned

Usage: This API does not make or require an active connection to the host system to retrieve the
associated CCSID value. However, it does depend on a prior successful connection to the host system. If
no prior successful connection was made to the host system, the API determines the most appropriate
associated host CCSID by using an internal mapping table.

Chapter 4. iSeries Access for Windows® C/C++ APIs 249

iSeries Access for Windows dialog-box NLS API list: iSeries Access for Windows dialog-box NLS
APIs are interfaces that are used to manipulate the translatable text within dialog boxes.

The following iSeries Access for Windows dialog-box NLS APIs allow applications to:
v Replace translatable text with a dialog box
v Expand dialog-box controls according to the text

cwbNL_CalcControlGrowthXY

cwbNL_CalcDialogGrowthXY

cwbNL_GrowControlXY

cwbNL_GrowDialogXY

cwbNL_LoadDialogStrings

cwbNL_LoadMenu

cwbNL_LoadMenuStrings

cwbNL_SizeDialog

Usage notes
This module works ONLY on the following kinds of dialog-box controls:
v Static text
v Button
v Group box
v Edit box
v Check box
v Radio button

It does NOT work on complex controls such as Combo box.

250 iSeries: iSeries Access for Windows Programming

cwbNL_CalcControlGrowthXY:

Purpose: Routine to calculate the growth factor of an individual control within a dialog box.

Syntax:

unsigned int CWB_ENTRY cwbNL_CalcControlGrowthXY(
HWND windowHandle,
HDC hDC,
float* growthFactorX,

float* growthFactorY);

Parameters:

HWND windowHandle - input
Window handle of the control for which to calculate the growth factor.

HDC hDC - input
Device context. Used by GetTextExtentPoint32 to determine extent needed for the translated string in
the control.

float* growthFactorX - output
+/- growth to the width needed to contain the string for the control.

float* growthFactorY - output
+/- growth to the height needed to contain the string for the control.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion

Usage: It is assumed that the translated text has been loaded into the control prior to calling this function.
A control that does not contain text will return a 1.00 growth factor. This means that it does not need to
change size.

Chapter 4. iSeries Access for Windows® C/C++ APIs 251

cwbNL_CalcDialogGrowthXY:

Purpose: Routine to calculate the growth factor of a dialog box. All of the controls within the dialog box
will looked at to determine how much the dialog-box size needs to be adjusted.

Syntax:

unsigned int CWB_ENTRY cwbNL_CalcDialogGrowthXY(
HWND windowHandle,
float* growthFactorX,

float* growthFactorY);

Parameters:

HWND windowHandle - input
Window handle of the dialog box for which to calculate the growth factor.

float* growthFactorX - output
+/- growth to the width needed to contain the string for all of the controls in the dialog box.

float* growthFactorY - output
+/- growth to the height needed to contain the string for all of the controls in the dialog box.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion

Usage: It is assumed that the translated text has been loaded into the controls prior to calling this
function.

252 iSeries: iSeries Access for Windows Programming

cwbNL_GrowControlXY:

Purpose: Routine to grow an individual control within a dialog box.

Syntax:

unsigned int CWB_ENTRY cwbNL_GrowControlXY(
HWND windowHandle,
HWND parentWindowHandle,
float growthFactorX,
float growthFactorY,
cwb_Boolean growAllControls);

Parameters:

HWND windowHandle - input
Window handle of the control to be resized.

HWND parentWindowHandle - input
Window handle of the dialog box that contains the controls.

float growthFactorX - input
Multiplication factor for growing the width of the control. 1.00 = Stay same size. 1.50 = 1 1/2 times
original size.

float growthFactorY - input
Multiplication factor for growing the height of the control. 1.00 = Stay same size. 1.50 = 1 1/2 times
original size.

cwb_Boolean growAllControls - input
CWB_TRUE = All controls will be resized by the growthFactor. CWB_FALSE = Only controls with text
will be resized.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion

Usage: Care should be used to not pass in a growth factor that will cause a control to not fit on the
physical display.

Chapter 4. iSeries Access for Windows® C/C++ APIs 253

cwbNL_GrowDialogXY:

Purpose: Internal routine to growth the dialog box and its controls proportionally based off of a growth
factor that is input.

Syntax:

unsigned int CWB_ENTRY cwbNL_GrowDialogXY(
HWND windowHandle,
float growthFactorX,
float growthFactorY,
cwb_Boolean growAllControls);

Parameters:

HWND windowHandle - input
Window handle of the window owning the controls.

float growthFactorX - input
Multiplication factor for growing the dialog box, ie. 1.00 = Stay same size, 1.50 = 1 1/2 times original
size.

float growthFactorY - input
Multiplication factor for growing the dialog box, ie. 1.00 = Stay same size, 1.50 = 1 1/2 times original
size.

cwb_Boolean growAllControls - input
CWB_TRUE = All controls will be resized by the growthFactor, CWB_FALSE = Only controls with text
will be resized.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

Usage: It is assumed that the translated text has been loaded into the controls prior to calling this
function. The dialog-box frame will not be allowed to grow larger than the desktop window size.

254 iSeries: iSeries Access for Windows Programming

cwbNL_LoadDialogStrings:

Purpose: This routine will control the replacement of translatable text within a dialog box. This includes
dialog control text as well as the dialog-box caption.

Syntax:

unsigned int CWB_ENTRY cwbNL_LoadDialogStrings(
HINSTANCE MRIHandle,
HWND windowHandle,

int nCaptionID,
USHORT menuID,
HINSTANCE menuLibHandle,
cwb_Boolean growAllControls);

Parameters:

HINSTANCE MRIHandle - input
Handle of the module containing the strings for the dialog.

HWND windowHandle - input
Window handle of the dialog box.

int nCaptionID - input
ID of the caption string for the dialog box

USHORT menuID - input
ID of the menu for the dialog box.

HINSTANCE menuLibHandle - input
Handle of the module containing the menu for the dialog.

cwb_Boolean growAllControls - input
CWB_TRUE = All controls will be resized by the growthFactor CWB_FALSE = Only controls with text
will be resized.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWBNL_DLG_MENU_LOAD_ERROR
Could not load the menu.

CWBNL_DLG_INVALID_HANDLE
Incorrect MRIHandle.

Usage: This process begins by enumerating, replacing the text of, and horizontally adjusting, all dialog
controls within the dialog box, and finally right-adjusting the dialog box itself, relative to the adjusted
controls therein. These adjustments are made only if the current window extents do not fully encompass
the expansion space required for the text or all controls. After all of the text substitution has been
completed, if a menu ID has been passed, it will be loaded and attached to the dialog box. It is suggested
that this routine is called for every dialog-box procedure as the first thing done during the INITDLG
message processing.

Chapter 4. iSeries Access for Windows® C/C++ APIs 255

cwbNL_LoadMenu:

Purpose: This routine will control the loading of the given menu from a module and replacing the
translatable text within the menu.

Syntax:

HWND CWB_ENTRY cwbNL_LoadMenu(
HWND windowHandle,
HINSTANCE menuResourceHandle,
USHORT menuID,
HINSTANCE MRIHandle);

Parameters:

HWND windowHandle - input
Window handle of the dialog box that contains the menu.

HINSTANCE menuResourceHandle - input
Handle of the resource dll containing the menu.

USHORT menuID - input
ID of the menu for the dialog box.

HINSTANCE MRIHandle - input
Handle of the resource dll containing the strings for the menu.

Return Codes: The following list shows common return values.

HINSTANCE
Handle of the menu.

Usage: None

256 iSeries: iSeries Access for Windows Programming

cwbNL_LoadMenuStrings:

Purpose: This routine will control the replacement of translatable text within a menu.

Syntax:

unsigned int CWB_ENTRY cwbNL_LoadMenuStrings(
HWND WindowHandle,
HINSTANCE menuHandle,
HINSTANCE MRIHandle);

Parameters:

HWND windowHandle - input
Window handle of the dialog box that contains the menu.

HMODULE menuHandle - input
Handle of the menu for the dialog.

HMODULE MRIHandle - input
Handle of the resource DLL containing the strings for the menu.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 257

cwbNL_SizeDialog:

Purpose: This routine will control the sizing of the dialog box and its child controls. The expansion
amount is based off of the length of the text extent and the length of each control. The growth of the
dialog box and its controls will be proportional. By setting the growAllControls to FALSE, only controls with
text will expand or contract. This allows the programmer the flexibility of non-translatable fields to remain
the same size. This may be appropriate for dialogs that contain drop-down lists, combo-boxes, or spin
buttons.

Syntax:

unsigned int CWB_ENTRY cwbNL_SizeDialog(
HWND windowHandle,
cwb_Boolean growAllControls);

Parameters:

HWND windowHandle - input
Window handle of the window owning the controls.

cwb_Boolean growAllControls - input
CWB_TRUE = All controls will be resized by the growthFactor, CWB_FALSE = Only controls with text
will be resized.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion

Usage: This routine assumes that the translated text has already been loaded into the dialog-box
controls. If the text has not been loaded into the controls, use cwbNL_LoadDialog.

258 iSeries: iSeries Access for Windows Programming

Example: iSeries Access for Windows NLS APIs

/* National Language Support Code Snippet */
/* Used to demonstrate how the APIs would be run. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "CWBNL.H"
#include "CWBNLCNV.H"
#include "CWBSV.H"

cwbSV_ErrHandle errhandle;

/* Return the message text associated with the top-level */
/* error identified by the error handle provided. Since */
/* all APIs that fail use the error handle, this was moved */
/* into a separate routine. */
void resolveErr(cwbSV_ErrHandle errhandle)
{

static unsigned char buf[BUFSIZ];
unsigned long retlen;
unsigned int rc;

if ((rc = cwbSV_GetErrText(errhandle, buf, (unsigned long) BUFSIZ, &retlen)) != CWB_OK)
printf("cwbSV_GetErrText() Service API failed with return code 0x%x.\n", rc);

else
printf("%s\n", (char *) buf);

}

void main(void){

/* define some variables
-------------------- */

int SVrc = 0;
int NLrc = 0;
char *myloadpath = "";
char *resultPtr;
char *mylang;
unsigned short resultlen;
unsigned short reqlen;
unsigned long searchhandle;
unsigned long codepage;
unsigned long trgtpage;
char *srcbuf = "Change this string";
char *trgtbuf;
unsigned long srclen;
unsigned long trgtlen;
unsigned long nmbrerrs;
unsigned long posoferr;
unsigned long rqdlen;
unsigned long ccsid;

/* Create an error message object and return a handle to */
/* it. This error handle can be passed to APIs that */
/* support it. If an error occurs, the error handle can */
/* be used to retrieve the message text associated with */
/* the API error. */
SVrc = cwbSV_CreateErrHandle(&errhandle);
if (SVrc != CWB_OK) {

printf("cwbSV_CreateErrHandle failed with return code %d.\n", SVrc);
}

/* Retreive the current language setting. */
resultlen = CWBNL_MAX_LANG_SIZE+1;
resultPtr = (char *) malloc(resultlen * sizeof(char));
NLrc = cwbNL_GetLang(myloadpath, resultPtr, resultlen, &reqlen, errhandle);
if (NLrc != CWB_NO_ERR) {

if (NLrc == CWB_BUFFER_TOO_SMALL)
printf("GetLang buffer too small, recommended size %d.\n", reqlen);

resolveErr(errhandle);
}
printf("GetLang API returned %s.\n", resultPtr);
mylang = (char *) malloc(resultlen * sizeof(char));
strcpy(mylang, resultPtr);

/* Retrieve the descriptive name of a language setting. */
resultlen = CWBNL_MAX_NAME_SIZE+1;
resultPtr = (char *) realloc(resultPtr, resultlen * sizeof(char));
NLrc = cwbNL_GetLangName(mylang, resultPtr, resultlen, &reqlen, errhandle);
if (NLrc != CWB_NO_ERR) {

Chapter 4. iSeries Access for Windows® C/C++ APIs 259

if (NLrc == CWB_BUFFER_TOO_SMALL)
printf("GetLangName buffer too small, recommended size %d.\n", reqlen);

resolveErr(errhandle);
}
printf("GetLangName API returned %s.\n", resultPtr);

/* Return the complete path for language files. */
resultlen = CWBNL_MAX_PATH_SIZE+1;
resultPtr = (char *) realloc(resultPtr, resultlen * sizeof(char));
NLrc = cwbNL_GetLangPath(myloadpath, resultPtr, resultlen, &reqlen, errhandle);
if (NLrc != CWB_NO_ERR) {

if (NLrc == CWB_BUFFER_TOO_SMALL)
printf("GetLangPath buffer too small, recommended size %d.\n", reqlen);

resolveErr(errhandle);
}
printf("GetLangPath API returned %s.\n", resultPtr);

/* Get the code page of the current process. */
NLrc = cwbNL_GetCodePage(&codepage, errhandle);
if (NLrc != CWB_NO_ERR) {

resolveErr(errhandle);
}
printf("GetCodePage API returned %u.\n", codepage);

/* Convert strings from one code page to another. This */
/* API combines three converter APIs for the default */
/* conversion. The three converter APIs it combines are: */
/* cwbNL_CreateConverter */
/* cwbNL_Convert */
/* cwbNL_DeleteConverter */
srclen = strlen(srcbuf) + 1;
trgtlen = srclen;
trgtpage = 437;
trgtbuf = (char *) malloc(trgtlen * sizeof(char));
printf("String to convert is %s.\n",srcbuf);
NLrc = cwbNL_ConvertCodePages(codepage, trgtpage, srclen,

trgtlen, srcbuf, trgtbuf, &nmbrerrs, &posoferr, &rqdlen,
errhandle);

if (NLrc != CWB_NO_ERR) {
resolveErr(errhandle);
printf("number of errors detected is %u.\n", nmbrerrs);
printf("location of first error is %u.\n", posoferr);

}
printf("ConvertCodePages API returned %s.\n", trgtbuf);

/* Map a code page to the corresponding CCSID. */
NLrc = cwbNL_CodePageToCCSID(codepage, &ccsid, errhandle);
if (NLrc != CWB_NO_ERR) {

resolveErr(errhandle);
}
printf("CodePageToCCSID returned %u.\n", ccsid);

cwbSV_DeleteErrHandle(errhandle);

}

iSeries Access for Windows Directory Update APIs
What is iSeries Access for Windows Directory Update?

The iSeries Access for Windows Directory Update function allows users to specify PC directories
for updating from a configured network server or from multiple networked servers. This permits
users to load non-iSeries Access for Windows software products on a server in the network, and
to keep those files updated on PCs. Directory Update is an optionally installable iSeries Access for
Windows component.

How to install iSeries Access for Windows Directory Update:
To install Directory Update, follow these steps when you install iSeries Access for
Windows, or when you run Selective Setup if iSeries Access for Windows is already
installed:

1. Select the iSeries Access for Windows Optional Components check box.

2. Expand the view and make sure that the Directory Update subcomponent also is
selected.

3. Follow the prompts to completion.

260 iSeries: iSeries Access for Windows Programming

iSeries Access for Windows Directory Update C/C++ APIs:
iSeries Access for Windows Directory Update C/C++ application programming interfaces (APIs)
allow software developers to add, change and delete update entries that are used by the iSeries
Access for Windows Directory Update function.

Note: iSeries Access for Windows Directory Update APIs do not actually perform the updates.
They are for configuration purposes only. The task of updating files is handled exclusively
by the Directory Update application.

iSeries Access for Windows Directory Update APIs enable the:
v Creation of update entries.
v Deletion of update entries.
v Modification of update entries.
v Retrieval of information from update entries.
v Retrieval of information such as return codes. For example, only one application can access the

Update entries at a time. If you get a return code that indicates locked, use the information to
find the name of the application that has the entries open.

IMPORTANT: The iSeries Access for Windows client does not include support for network drives or for
universal naming conventions. This now is provided by the iSeries NetServer function.
Network drives that you previously mapped by using iSeries Access should be mapped by
using iSeries NetServer support. Set up the iSeries NetServer that comes with OS/400
V4R2 and beyond in order to perform file serving to the iSeries server.

NetServer information resources:

v iSeries NetServer topic of the iSeries Information Center

v IBM iSeries NetServer Home Page

iSeries Access for Windows Directory Update APIs required files:

Header file Import library Dynamic Link Library

cwbup.h cwbapi.lib cwbup.dll

Programmer’s Toolkit:
The Programmer’s Toolkit provides Directory Update documentation, access to the cwbup.h
header file, and links to sample programs. To access this information, open the Programmer’s
Toolkit and select Directory Update —> C/C++ APIs.

iSeries Access for Windows Directory Update APIs topics:
v “Typical use of iSeries Access for Windows Directory Update APIs”
v “Requirements for Directory Update entries” on page 262
v “Options for Directory Update entries” on page 262
v “Directory Update package files syntax and format” on page 263
v iSeries Access for Windows Directory Update APIs listing
v “Directory Update sample program” on page 264
v “Directory Update APIs return codes” on page 27

Related topics:

v “iSeries system name formats for ODBC Connection APIs” on page 12

v “OEM, ANSI, and Unicode considerations” on page 12

Typical use of iSeries Access for Windows Directory Update APIs
iSeries Access for Windows Directory Update APIs typically are used for creating and configuring update
entries that are used to update files from a mapped network drive. It is important to note that the Update
APIs do not actually update the files, but rely on the Directory Update executable file to do this.

Chapter 4. iSeries Access for Windows® C/C++ APIs 261

../rzahl/rzahlusergoal.htm
http://www.ibm.com/eserver/iseries/netserver

For example, files on the iSeries system might contain customer names and addresses. The files on your
iSeries system are your master files that are updated as new customers are added, deleted, or have a
name or address change. The same files on your networked personal computers are used to perform
selective market mailings (by zip code, state, age, number of children and so on). The files on the iSeries
system are your master files, and you want them secure, but you need to provide the data for work.

You could write a program that uses Directory Update APIs to create and configure update entries, which
would update the files located on your networked personal computers.

Requirements for Directory Update entries
The following are required for Directory Update entries:

Description:
A description displayed by the Directory Update application to show users what is being updated.

Source path:
The path of the source or ″master″ files. For example:
E:\MYSOURCE

or
\\myserver\mysource

Target path:
The path of the files with which you wish to keep synchronized with the master files. For example:
C:\mytarget

Options for Directory Update entries
The following are optional for Directory Update entries:

Package files:
PC files that contain information on other files to be updated. See “Directory Update package files
syntax and format” on page 263 for more information. Package files are added to update entries
by using the “cwbUP_AddPackageFile” on page 265 API.

Callback DLL:
A DLL provided by the application programmer that Directory Update will call into during different
stages of the update process. This allows programmers to perform application unique processing
during the different stages of an update. A callback DLL is added to an update entry using the
“cwbUP_SetCallbackDLL” on page 279 API.

The different stages of update when Directory Update may call into the callback DLL are:

Pre-update:
This is when Directory Update is about to begin its processing of an update entry. The
following entry point prototype must be in the callback DLL: unsigned long
_declspec(dllexport) cwbUP_PreUpdateCallback();

Post-update:
This is when Directory Update has completed moving the files. The following entry point
prototype must be in the callback DLL: unsigned long _declspec(dllexport)
cwbUP_PostUpdateCallback();

Pre-migration:
This is when Directory Update is about to begin version-to-version migration of an update
entry. Version-to-version migrations are triggered by QPTFIDX files. The following entry
point prototype must be in the callback DLL: unsigned long _declspec(dllexport)
cwbUP_PreMigrationCallback();

262 iSeries: iSeries Access for Windows Programming

Post-migration:
This is when Directory Update has completed processing of a version-to-version migration
of an update entry. The following entry point prototype must be in the callback DLL:
unsigned long _declspec(dllexport) cwbUP_PostMigrationCallback();

Attributes:
Set the type or mode of the update to be performed. Combinations of the attributes are allowed.
Attributes are:

File-driven update:
The files in the target directory are compared to the files in the source directory. Target
files with dates older than the source files are updated. No new files will be created in the
target.

Package-driven update:
The package files listed in the update entry are scanned for files to be updated. The dates
of the files that are listed in the package file are compared between the source and the
target directories. The source files with newer dates are updated or moved into the target
directory. If a file that is listed in the package file does not exist in the target, but exists in
the source, the file is created in the target directory.

Subdirectory update:
Subdirectories under the target directory are included in the update.

Onepass update:
Updates occur directly from source to target. If this is not specified, updates occur in two
passes. The first pass of the update will copy the files to be updated into a temporary
directory. Then the PC is restarted. On restart, the files are copied to the target directory.
This is useful for locked files.

Backlevel update:
This controls if updates will occur if the source files are older than the target files.

Directory Update package files syntax and format
Package files contain information that specifies and describes which target files users want to be kept
current with source files.

Package files syntax:
PKGF Description text
MBRF PROG1.EXE
MBRF INFO.TXT
MBRF SUBDIR\SHEET.XLS
DLTF PROG2.EXE

Note: Text must start in the first row and column of the file. Each package file must begin with the PKGF
keyword.

Package files format:
Package files consist of the following elements:

PKGF description (optional):
This identifier indicates that the file is a package file. If this tag is not found in the first four
characters of the file, Directory Update will not process the file while searching for files to
update. A description is optional.

MBRF filename:
This identifies a file as part of the package to be updated. A path name also can be
specified; this indicates that the file is in a subdirectory of the source directory.

Chapter 4. iSeries Access for Windows® C/C++ APIs 263

The path should not contain the drive letter, or begin with a back-slash character (\). When
you begin the update function, you specify a target directory; the path that is specified in
the package file is considered a subdirectory of this target directory.

DLTF filename:
This identifies a file to be deleted from the target directory. A path name also can be
specified; this indicates that the file is in a subdirectory of the target directory. As with the
MBRF identifier, you should not specify a drive letter or begin with a back-slash character
(\).

Related topic:
See “Directory Update sample program” for sample Directory Update APIs and detailed
explanations of their attributes.

Directory Update sample program
A Directory Update C/C++ sample program is available when you link to the Programmer’s Toolkit –

Directory Update Web page . Select dirupdat.exe for a description of the sample, and to download
the samples.

The sample program demonstrates creating, configuring, and deleting Directory Update entries.

See the iSeries Access for Windows User’s Guide for more information.

iSeries Access for Windows Directory Update API listing

Note: It is essential that “cwbUP_FreeLock” on page 270 is called when your application no longer is
accessing the update entries. If cwbUP_FreeLock is not called, other applications will not be able
to access or modify the update entries.

The following iSeries Access for Windows Directory Update APIs are listed alphabetically, and are grouped
by function:

Function iSeries Access for WindowsDirectory Update APIs

Create an update entry cwbUP_CreateUpdateEntry

Delete an update entry cwbUP_DeleteEntry

Obtain access to an update entry cwbUP_FindEntry
cwbUP_FreeLock
cwbUP_GetEntryHandle

Free resources that are associated with an entry handle cwbUP_FreeEntryHandle

Change an update entry cwbUP_AddPackageFile
cwbUP_RemovePackageFile
cwbUP_SetCallbackDLL
cwbUP_SetDescription
cwbUP_SetEntryAttributes
cwbUP_SetSourcePath
cwbUP_SetTargetPath

Obtain information from an update entry cwbUP_GetCallbackDLL
cwbUP_GetDescription
cwbUP_GetEntryAttributes
cwbUP_GetSourcePath
cwbUP_GetTargetPath

Retrieve general Directory Update information cwbUP_GetLockHolderName

264 iSeries: iSeries Access for Windows Programming

http://www.ibm.com/eserver/iseries/access/toolkit/dirupdat.htm
http://www.ibm.com/eserver/iseries/access/toolkit/dirupdat.htm

cwbUP_AddPackageFile

Purpose: Adds a package file to the package file list in the update entry.

Syntax:

unsigned int CWB_ENTRY cwbUP_AddPackageFile(
cwbUP_EntryHandle entryHandle,
char *entryPackage);

Parameters:

cwbUP_EntryHandle entryHandle - input
Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,
cwbUP_GetUpdateEntryHandle, or cwbUP_FindEntry.

char * entryPackage - input
Pointer to a null-terminated string that contains the name of a package file to be added to the update
entry. Do not include the path for this file. The package file must exist in the source and target paths.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Update entry handle is not valid.

CWB_INVALID_POINTER
NULL was passed as an address.

CWBUP_TOO_MANY_PACKAGES
Maximum number of package files already exist for this entry.

CWBUP_STRING_TOO_LONG
The package file name is longer than CWBUP_MAX_LENGTH.

CWBUP_ENTRY_IS_LOCKED
Another application is currently changing the update entry list. No changes are allowed at this
time.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 265

cwbUP_CreateUpdateEntry

Purpose: Creates a new update entry and passes back a handle to it.

Syntax:

unsigned int CWB_ENTRY cwbUP_CreateUpdateEntry(
char * entryDescription,
char * entrySource,
char * entryTarget,
cwbUP_EntryHandle *entryHandle);

Parameters:

char * entryDescription - input
Points to a null-terminated string that contains a description to identify the update entry.

char * entrySource - input
Points to a null-terminated string that contains the source for the update entry. This can be either a
drive and path, or a UNC name.

char * entryTarget - input
Points to a null-terminated strings that contains the target for the update entry. This can be either a
drive and path, or a UNC name.

cwbUP_EntryHandle * entryHandle - input/output
Pointer to a cwbUP_EntryHandle where the handle will be returned. This handle must be used in
subsequent calls to the update entry APIs.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed as an address.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

CWBUP_TOO_MANY_ENTRIES
The maximum number of update entries already exist. No more can be created.

CWBUP_STRING_TOO_LONG
An input string is longer than the maximum of CWBUP_MAX_LENGTH.

CWBUP_ENTRY_IS_LOCKED
Another application is currently changing the update entry list. No changes are allowed at this
time.

Usage: When you use this call, and have completed your processing of the update entry, you must call
cwbUP_FreeEntryHandle. This call will ″unlock″ the entry, and free resources that are associated with it.

266 iSeries: iSeries Access for Windows Programming

cwbUP_DeleteEntry

Purpose: Deletes the update entry from the update entry list.

Syntax:

unsigned int CWB_ENTRY cwbUP_DeleteEntry(
cwbUP_EntryHandle entryHandle);

Parameters:

cwbUP_EntryHandle entryHandle - input
Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,
cwbUP_GetUpdateEntryHandle, or cwbUP_FindEntry.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Update entry handle is not valid.

CWBUP_ENTRY_IS_LOCKED
Another application is currently changing the update entry list. No changes are allowed at this
time.

Usage: After this call, you do not need to call cwbUP_FreeEntryHandle. The entry is ″freed″ when the
entry is successfully deleted. If you retrieved the first update entry by using the cwbUP_GetEntryHandle
API, and then called this API to delete the entry, all of the update entries would shift one position to fill the
slot left by the delete. So, if you then wanted to get the next update item, you would pass the same index
that you did on the previous cwbUP_GetEntryHandle API call.

Chapter 4. iSeries Access for Windows® C/C++ APIs 267

cwbUP_FindEntry

Purpose: Gets a handle to an existing update entry by using entrySource and entryTarget as the search
parameters.

Syntax:

unsigned int CWB_ENTRY cwbUP_FindEntry(
char * entrySource,
char * entryTarget,
unsigned long *searchStart,
cwbUP_EntryHandle *entryHandle);

Parameters:

char * entrySource - input
Points to a null-terminated string that contains the source for the update entry. This can be either a
drive and path, or a UNC name. This string will be used to search for a */ matching update entry.

char * entryTarget - input
Points to a null-terminated string that contains the target for the update entry. This can be either a
drive and path, or a UNC name. This string will be used to search for a matching update entry.

unsigned long * searchStart - input/output
Pointer to an index into the list of update entries to begin the search at. This would be used in cases
where multiple update entries may have matching source and targets. You would use this parameter to
″skip″ over entries in the search, and continue on searching for a matching update entry that is after
searchStart in the list. On successful return, searchStart will be set to the position in the list where the
update entry was found. This should be set to CWBUP_SEARCH_FROM_BEGINNING if you want to
search all update entries.

cwbUP_EntryHandle * entryHandle - input/output
Pointer to a cwbUP_EntryHandle where the handle will be returned. This handle must be used in
subsequent calls to the update entry APIs.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed as an address.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

CWBUP_SEARCH_POSITION_ERROR
Search starting position is not valid.

CWBUP_ENTRY_NOT_FOUND
No update entry matched search value.

CWBUP_STRING_TOO_LONG
An input string is longer than the maximum of CWBUP_MAX_LENGTH.

Usage: The handle that is returned from this call will be used for accessing the update entry with other
Update APIs. When you use this call, and have completed your processing of the update entry, you must
call cwbUP_FreeEntryHandle. This call will ″unlock″ the entry, and free resources with which it is
associated.

268 iSeries: iSeries Access for Windows Programming

cwbUP_FreeEntryHandle

Purpose: Frees an entry handle and all resources with which is is associated.

Syntax:

unsigned int CWB_ENTRY cwbUP_FreeEntryHandle(
cwbUP_EntryHandle entryHandle);

Parameters:

cwbUP_EntryHandle entryHandle - input
The entry handle that is to be freed.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid or has already been

Usage: After this call you can no longer access the update entry. To access the update entry or another
update entry, you would need to get a new entry handle.

Chapter 4. iSeries Access for Windows® C/C++ APIs 269

cwbUP_FreeLock

Purpose: Frees the lock to the update entries. This should be called when the application is done
accessing the update entries. If this is not called, other applications will not be able to access the update
entries.

Syntax:

unsigned int CWB_ENTRY cwbUP_FreeLock();

Parameters:

None

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBUP_UNLOCK_WARNING
Application did not have the update entries locked.

Usage: A lock to the update entries is obtained whenever an application accesses or changes an update
entry. When the application no longer needs to access the update entries, the application should call this
API.

270 iSeries: iSeries Access for Windows Programming

cwbUP_GetCallbackDLL

Purpose: Gets the fully qualified name of the callback DLL for an update entry.

Syntax:

unsigned int CWB_ENTRY cwbUP_GetCallbackDLL(
cwbUP_EntryHandle entryHandle,
char *dllPath,
unsigned long bufferLength,
unsigned long *actualLength);

Parameters:

cwbUP_EntryHandle entryHandle - input
Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,
cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * dllPath - input/output
Pointer to a buffer that will receive the fully qualified name of the DLL that will be called when
individual stages of the update occur.

unsigned long bufferLength - input
Length of the dllPath buffer. Space should be included for the null termination character. If the buffer is
not large enough to hold the entire DLL name, an error will be returned and the actualLength
parameter will be set to the number of bytes the dllPath buffer needs to be.

unsigned long * actualLength - input/output
Pointer to a length variable that will be set to the size of the buffer needed to contain the fully qualified
DLL name.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Update entry handle is not valid.

CWB_INVALID_POINTER
NULL passed as an address parameter.

CWB_BUFFER_OVERFLOW
Buffer is too small to hold return data.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 271

cwbUP_GetDescription

Purpose: Gets the description of the update entry.

Syntax:

unsigned int CWB_ENTRY cwbUP_GetDescription(
cwbUP_EntryHandle entryHandle,
char *entryDescription,
unsigned long bufferLength,
unsigned long *actualLength);

Parameters:

cwbUP_EntryHandle entryHandle - input
Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,
cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * entryDescription - input/output
Pointer to a buffer that will receive the description of the update entry.

unsigned long bufferLength - input
Length of the buffer. An extra byte should be included for the null termination character. If the buffer is
not large enough to hold the entire description, an error will be returned and the actualLength
parameter will be set to the number of bytes the entryDescription buffer needs to be to contain the
data.

unsigned long * actualLength - input/output
Pointer to a length variable that will be set to the size of the buffer needed to contain the description.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Update entry handle is not valid.

CWB_INVALID_POINTER
NULL passed as an address parameter.

CWB_BUFFER_OVERFLOW
Buffer is too small to hold return data.

Usage: None

272 iSeries: iSeries Access for Windows Programming

cwbUP_GetEntryAttributes

Purpose: Gets the attributes of the update entry. These include: one pass update, file driven update,
package driven update, and update subdirectories. Any combination of these is valid.

Syntax:

unsigned int CWB_ENTRY cwbUP_GetEntryAttributes(
cwbUP_EntryHandle entryHandle,
unsigned long *entryAttributes);

Parameters:

cwbUP_EntryHandle entryHandle - input
Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,
cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

unsigned long * entryAttributes - input/output
Pointer to area to receive the attribute values. (See defines section for values)

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Update entry handle is not valid.

CWB_INVALID_POINTER
NULL passed as an address parameter.

Usage: The value that is contained in entryAttributes after this call is made may be a combination of the
attribute flags that are listed near the top of this file.

Chapter 4. iSeries Access for Windows® C/C++ APIs 273

cwbUP_GetEntryHandle

Purpose: Gets a handle to an existing update entry at a given position in the list.

Syntax:

unsigned int CWB_ENTRY cwbUP_GetEntryHandle(
unsigned long entryPosition,
cwbUP_EntryHandle *entryHandle);

Parameters:

unsigned long entryPosition - input
Index into the update entry list of the entry for which you want to retrieve a handle. (Pass in 1 if you
wish to retrieve the first update entry)

cwbUP_EntryHandle * entryHandle - input/output
Pointer to a cwbUP_EntryHandle where the handle will be returned. This handle must be used in
subsequent calls to the update entry APIs.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL was passed as an address.

CWBUP_ENTRY_NOT_FOUND
No update entry at the given position.

CWBUP_POSITION_INVALID
Position that is given is not in range.

Usage: The handle that is returned from this call will be used for accessing the update entry with other
Update APIs. When you use this call, and have completed your processing of the update entry, you must
call cwbUP_FreeEntryHandle. This call will ″unlock″ the entry, and free resources that are associated
with it. You must call cwbUP_FreeEntryHandle once for each time that you call an API that returns an
entry handle.

274 iSeries: iSeries Access for Windows Programming

cwbUP_GetLockHolderName

Purpose: Gets the name of the program that currently has the update entries in a locked state.

Syntax:

unsigned int CWB_ENTRY cwbUP_GetLockHolderName(char *lockHolder,
unsigned long bufferLength,
unsigned long *actualLength);

Parameters:

char * lockHolder - input/output
Pointer to a buffer that will receive the name of the application that is currently locking the update
entries.

unsigned long bufferLength - input
Length of the buffer. An extra byte should be included for the null termination character. If the buffer is
not large enough to hold the entire name, an error will be returned and the actualLength parameter will
be set to the number of bytes the lockHolder buffer needs to be to contain the data.

unsigned long * actualLength - input/output
Pointer to a length variable that will be set to the size of the buffer needed to contain the application
name.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed as an address parameter.

CWB_BUFFER_OVERFLOW
Buffer is too small to hold return data.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 275

cwbUP_GetSourcePath

Purpose: Gets the source path of the update entry.

Syntax:

unsigned int CWB_ENTRY cwbUP_GetSourcePath(
cwbUP_EntryHandle entryHandle,
char *entrySource,
unsigned long bufferLength,
unsigned long *actualLength);

Parameters:

cwbUP_EntryHandle entryHandle - input
Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,
cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * entrySource - input/output
Pointer to a buffer that will receive the source path of the update entry.

unsigned long bufferLength - input
Length of the buffer. An extra byte should be included for the null termination character. If the buffer is
not large enough to hold the entire source path, an error will be returned and the actualLength
parameter will be set to the number of bytes the entrySource buffer needs to be to contain the data.

unsigned long * actualLength - input/output
Pointer to a length variable that will be set to the size of the buffer needed to contain the source path.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Update entry handle is not valid.

CWB_INVALID_POINTER
NULL passed as an address parameter.

CWB_BUFFER_OVERFLOW
Buffer is too small to hold return data.

Usage: None

276 iSeries: iSeries Access for Windows Programming

cwbUP_GetTargetPath

Purpose: Gets the target path of the update entry.

Syntax:

unsigned int CWB_ENTRY cwbUP_GetTargetPath(
cwbUP_EntryHandle entryHandle,
char *entryTarget,
unsigned long bufferLength,
unsigned long *actualLength);

Parameters:

cwbUP_EntryHandle entryHandle - input
Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,
cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * entryTarget - input/output
Pointer to a buffer that will receive the target path of the update entry.

unsigned long bufferLength - input
Length of the buffer. An extra byte should be included for the null termination character. If the buffer is
not large enough to hold the entire target path, an error will be returned and the actualLength
parameter will be set to the number of bytes the entryTarget buffer needs to be to contain the data.

unsigned long * actualLength - input/output
Pointer to a length variable that will be set to the size of the buffer needed to contain the target path.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Update entry handle is not valid.

CWB_INVALID_POINTER
NULL passed as an address parameter.

CWB_BUFFER_OVERFLOW
Buffer is too small to hold return data.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 277

cwbUP_RemovePackageFile

Purpose: Removes a package file from the list of package files that belong to an update entry.

Syntax:

unsigned int CWB_ENTRY cwbUP_RemovePackageFile(
cwbUP_EntryHandle entryHandle,
char *entryPackage);

Parameters:

cwbUP_EntryHandle entryHandle - input
Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,
cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * entryPackage - input
Pointer to a null-terminated string that contains the package file name that is to be removed from the
package file list.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Update entry handle is not valid.

CWB_INVALID_POINTER
NULL passed as an address parameter.

CWBUP_PACKAGE_NOT_FOUND
The package file was not found.

CWBUP_STRING_TOO_LONG
The package file string is longer than the maximum of CWBUP_MAX_LENGTH.

CWBUP_ENTRY_IS_LOCKED
Another application is currently changing the update entry list. No changes are allowed at this
time.

Usage: None

278 iSeries: iSeries Access for Windows Programming

cwbUP_SetCallbackDLL

Purpose: Sets the fully qualified name of the callback DLL for an update entry.

Syntax:

unsigned int CWB_ENTRY cwbUP_SetCallbackDLL(
cwbUP_EntryHandle entryHandle,
char *dllPath);

Parameters:

cwbUP_EntryHandle entryHandle - input
Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,
cwbUP_GetUpdateEntryHandle, or cwbUP_FindEntry.

char * dllPath - input
Pointer to a null-terminated string that contains the fully qualified name of the DLL that will be called
when individual stages of the update occur.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Update entry handle is not valid.

CWB_INVALID_POINTER
NULL passed as an address parameter.

CWBUP_STRING_TOO_LONG
The callback DLL string is longer than the maximum of CWBUP_MAX_LENGTH.

CWBUP_ENTRY_IS_LOCKED
Another application is currently changing the update entry list. No changes are allowed at this
time.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 279

cwbUP_SetDescription

Purpose: Sets the description of the update entry.

Syntax:

unsigned int CWB_ENTRY cwbUP_SetDescription(
cwbUP_EntryHandle entryHandle,
char *entryDescription);

Parameters:

cwbUP_EntryHandle entryHandle - input
Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,
cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * entryDescription - input
Pointer to a null-terminated string that contains the full description to be associated with the update
entry.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Update entry handle is not valid.

CWB_INVALID_POINTER
NULL passed as an address parameter.

CWBUP_STRING_TOO_LONG
The description string is longer than the maximum of CWBUP_MAX_LENGTH.

CWBUP_ENTRY_IS_LOCKED
Another application is currently changing the update entry list. No changes are allowed at this
time.

Usage: None

280 iSeries: iSeries Access for Windows Programming

cwbUP_SetEntryAttributes

Purpose: Sets any of the following attribute values of the update entry:

CWBUP_FILE_DRIVEN
Updates are based on file date comparisons between target and source files.

CWBUP_PACKAGE_DRIVEN
Updates are based on contents of the package file(s), and comparisons of their files’ dates
between target and source.

CWBUP_SUBDIRECTORY
Update compares and updates directories under the given path.

CWBUP_ONEPASS
Updates occur directly in one pass. If this isn’t specified, updates occur in two passes. The first
pass copies the files to be updated to a temporary directory, and then when the PC is rebooted,
the files are copied to the target directory.

CWBUP_BACKLEVEL_OK
If this is set, updates will occur if the dates of the files on the source and target don’t match. If this
is not set, updates will only occur if the source file is more recent than the target file.

Any combination of these values is valid.

Syntax:

unsigned int CWB_ENTRY cwbUP_SetEntryAttributes(
cwbUP_EntryHandle entryHandle,
unsigned long entryAttributes);

Parameters:

cwbUP_EntryHandle entryHandle - input
Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,
cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

unsigned long entryAttributes - input
Combination of the attribute values. (See defines section for values)

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Update entry handle is not valid.

CWBUP_ENTRY_IS_LOCKED
Another application is currently changing the update entry list. No changes are allowed at this
time.

Usage: An example of this call follows:

rc = cwbUP_SetEntryAttributes(entryHandle, CWBUP_FILEDRIVEN | CWBUP_ONEPASS);

This call would result in the update entry being file driven and the update would occur in one pass.

Chapter 4. iSeries Access for Windows® C/C++ APIs 281

cwbUP_SetSourcePath

Purpose: Sets the source path of the update entry.

Syntax:

unsigned int CWB_ENTRY cwbUP_SetSourcePath(
cwbUP_EntryHandle entryHandle,
char *entrySource);

Parameters:

cwbUP_EntryHandle entryHandle - input
Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,
cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * entrySource - input
Pointer to a null-terminated string that contains the full source path for the update entry.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Update entry handle is not valid.

CWB_INVALID_POINTER
NULL passed as an address parameter.

CWBUP_STRING_TOO_LONG
The source path string is longer than the maximum of CWBUP_MAX_LENGTH.

CWBUP_ENTRY_IS_LOCKED
Another application is currently changing the update entry list. No changes are allowed at this
time.

Usage: None

282 iSeries: iSeries Access for Windows Programming

cwbUP_SetTargetPath

Purpose: Sets the target path of the update entry.

Syntax:

unsigned int CWB_ENTRY cwbUP_SetTargetPath(
cwbUP_EntryHandle entryHandle,
char *entryTarget);

Parameters:

cwbUP_EntryHandle entryHandle - input
Handle that was returned by a previous call to cwbUP_CreateUpdateEntryHandle,
cwbUP_GetUpdateEntryHandle, or to cwbUP_FindEntry.

char * entryTarget - input
Pointer to a null-terminated string that contains the full target path for the update entry.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Update entry handle is not valid.

CWB_INVALID_POINTER
NULL passed as an address parameter.

CWBUP_STRING_TOO_LONG
The target path string is longer than the maximum of CWBUP_MAX_LENGTH.

CWBUP_ENTRY_IS_LOCKED
Another application is currently changing the update entry list. No changes are allowed at this
time.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 283

iSeries Access for Windows PC5250 emulation APIs
The iSeries Access for Windows PC5250 emulator provides desktop users with a graphical user interface
for existing iSeries applications. PC5250 allows users to easily and transparently interact with data and
applications that are stored on the iSeries server. PC5250 provides C/C++ application programming
interfaces (APIs) for enabling workstation programs to interact with iSeries host systems.

iSeries Access for Windows PC5250 C/C++ APIs:

Emulator high-level language API (EHLLAPI)
A simple, single-entry point interface that interprets the emulator screen.

Personal communications session API (PCSAPI)
Use this interface to start, stop, and control emulator sessions.

Host Access Class Library (HACL)
This interface provides a set of classes and methods for developing applications that
access host information at the data-stream level.

iSeries Access for Windows emulation APIs required files:

Emulation interface Header file Import library Dynamic Link Library

Standard HLLAPI hapi_c.h pscal32.lib pcshll.dll
pcshll32.dll

Enhanced HLLAPI ehlapi32.h ehlapi32.lib ehlapi32.dll

Windows EHLLAPI whllapi.h whllapi.lib
whlapi32.lib

whllapi.dll
whllapi32.dll

HACL interface eclall.hpp pcseclva.lib
pcseclvc.lib

pcseclva.dll
pcseclvc.dll

PCSAPI interface pcsapi.h pcscal32.lib pcsapi.dll
pcsapi32.dll

Programmer’s Toolkit:
The Programmer’s Toolkit provides Emulator interfaces documentation, access to header files, and
links to sample applications. To access this information, open the Programmer’s Toolkit and select
Emulation —> C/C++ APIs.

IBM Lightweight Directory Access Protocol (LDAP) APIs
LDAP is a protocol for accessing online directory services directly over TCP/IP. It provides TCP/IP access
to X.500 directories, as well as other stand-alone LDAP servers. LDAP APIs are used to provide both
synchronous and asynchronous access to a directory.

LDAP is a global directory service that is based on a client/server model. One or more LDAP servers
contain data that form the LDAP directory tree. An LDAP client connects to an LDAP server, and makes a
request for information. The server responds with an answer or with a pointer to where the client can
obtain more information. Typically, this is another LDAP server. Regardless of the LDAP server, the client
is always presented with the same view of the directory: A name presented to one LDAP server references
the identical entry that would be referenced at another LDAP server.

The SecureWay Directory Client SDK (Version 3.1.1 for Windows 98/NT/2000/XP) is a Software
Developer’s Kit that provides development support for LDAP applications. The latest version of SDK can
be found at the IBM SecureWay Directory home page at http://www.ibm.com/software/network/directory. It
can be installed by running the /qibm/proddata/os400/dirsrv/usertools/windows/setup.exe program.
This program is installed with OS/400 installation option 3 in V5R2.

You can map a drive to the iSeries server using one of the following predefined share names:

284 iSeries: iSeries Access for Windows Programming

v QIBM

v /qibm QDIRSRV

v /qibm/proddata/os400/dirsrv

For example, \\myas400\qdirsrv\usertools\windows\setup, will map the SDK using the QDIRSRV share
name. This example uses an image for the InstallShield Package For The Web. When executed, this
example will extract the files to a temporary directory on the PC and run the installation program. The user
is prompted for the language to install (English by default), the install path (c:\program files\ibm\ldap by
default), and the program folder (IBM SecureWay Directory). On completion, the temporary files are
deleted.

LDAP C APIs are no longer included with iSeries Access for Windows, however, these APIs are part of the
IBM SecureWay Directory Client SDK for Windows 98/NT/2000/XP. The IBM SecureWay Directory Client
SDK consists of:

v C header files, library files, on-line documentation and sample programs

v Java Naming and Directory Interface (JNDI) LDAP service provider (IBMJNDI)

v LDAP command line utilities

v Directory Management Tool (DMT), a directory content management graphical user interface.

For further information on the IBM SecureWay Directory, see the IBM SecureWay Directory
(www.ibm.com/software/network/directory) home page. For further information on OS/400 Directory
Services, see the home page for iSeries Directory Services (http://www.ibm.com/eserver/iseries/ldap).

iSeries Access for Windows Multimedia APIs
Ultimedia System Facilities (USF) is an object-based multimedia management system, and an integrated
function of OS/400. It provides a series of functions that are available to applications through application
program interfaces (APIs). USF APIs are available to both iSeries server and client PC applications. These
APIs use standard interfaces that are callable from high-level languages (COBOL, RPG, and C). The client
APIs are callable from programs that support C-style APIs. The API requests are routed to either the
iSeries server or a client PC, depending on which platform is best suited to perform the function.

Support for Ultimedia System Facilities APIs resides in the application layer above the operating system. It
uses standard operating system interfaces, including:
v iSeries Access for communications between the iSeries system and the client
v Network drives to store both byte-stream multimedia data and attribute data
v Multimedia extensions that are supplied by Microsoft Windows environments
v Standard graphical user interface-support of the Windows environment
v iSeries security for the protection of objects that are stored in the Ultimedia System Facilities Multimedia

Repository

Programmer’s Toolkit:
The Programmer’s Toolkit provides USF APIs documentation, access to the USF interface
definition (header) files, and links to sample programs. To access this information, open the
Programmer’s Toolkit and select Multimedia —> C/C++ APIs.

iSeries Access for Windows Multimedia topics:
v “Ultimedia System Facilities API capabilities overview”
v “Ultimedia System Facilities API types overview” on page 286

Ultimedia System Facilities API capabilities overview
Ultimedia System Facilities APIs allow you to do the following:
v Add multimedia functions to existing iSeries applications
v Add multimedia interfaces to existing iSeries applications with little modification to the existing

application

Chapter 4. iSeries Access for Windows® C/C++ APIs 285

http://www.ibm.com/software/network/directory
http://www.ibm.com/eserver/iseries/ldap

v Create new iSeries applications that use multimedia
v Create new client applications that use multimedia
v Create cooperative (iSeries and client) applications that use multimedia
v Use the iSeries system as a Multimedia Repository and server for either iSeries-based or client-based

tools or applications
v Use diverse multimedia devices such as digital video adapters, compact disc (CD) players, videodisc

players, videocassette recorders (VCRs), and audio boards through the Multimedia Extensions Media
Control Interface

v Share video media without physically handling the video devices or having players attached to
dedicated viewing stations

v Sequence the delivery and presentation of multiple multimedia objects to the client
v Import and track multimedia objects that were created by industry-standard authoring tools
v Use multimedia input and output such as touch screens, audio output, full-motion video, and images

Ultimedia System Facilities API types overview
The following types of APIs comprise the Ultimedia System Facilities APIs:

Object Management APIs
These APIs query, create, change, and delete Ultimedia System Facilities objects and their
attributes.

Multimedia APIs
These APIs support various ways of capturing, editing, and presenting multimedia objects. They
also allow the integration of multimedia into an iSeries server or client application.

Shared Analog Device Control (SADC) APIs
These APIs control the shared multimedia analog devices that are attached to the iSeries system.

Cooperative Process Management (CPM) APIs
Every client Ultimedia System Facilities application must use the two CPM APIs that start and stop
CPM processing (fzzmInitializeUSFComm and fzzmStopUSFComm). Additional CPM APIs provide
optional functions such as:
v Sending a request for processing from one platform to the other
v Returning request data
v Retrieving data sent from another process

iSeries Objects APIs for iSeries Access for Windows
iSeries Objects for iSeries Access for Windows application programming interfaces (APIs) allow you to
work with iSeries print-related objects. These APIs make it possible to work with iSeries spooled files,
writer jobs, output queues, printers, and more.

By using iSeries Objects APIs, you can write workstation applications that are customized for the user’s
environment. For example, you can write an application to manage spooled files for a single user, or for all
users across a network of iSeries servers. This includes holding, releasing, changing attributes of, deleting,
sending, retrieving and answering messages for the spooled files.

iSeries Objects APIs for iSeries Access for Windows required files:

Header file Import library Dynamic Link Library

cwbobj.h cwbapi.lib cwbobj.dll

Programmer’s Toolkit:
The Programmer’s Toolkit provides iSeries Objects documentation, access to the cwbobj.h header
file, and links to sample programs. To access this information, open the Programmer’s Toolkit and
select iSeries Operations —> C/C++ APIs.

iSeries Objects APIs for iSeries Access for Windows topics:

286 iSeries: iSeries Access for Windows Programming

v “iSeries objects attributes”
v iSeries Objects API for iSeries Access for Windows listing
v “Example: Using iSeries Objects APIs for iSeries Access for Windows” on page 397
v “iSeries Object APIs return codes” on page 28

Related topics:

v “iSeries system name formats for ODBC Connection APIs” on page 12

v “OEM, ANSI, and Unicode considerations” on page 12

iSeries objects attributes
Network Print Server objects have attributes. The Network Print Server supports the following attributes.
Refer to the data stream description for each object/action to determine the attributes that are supported
for that combination.

Chapter 4. iSeries Access for Windows® C/C++ APIs 287

iSeries objects attributes listing

“Advanced Function Printing”
“Align Page” on page 289
“Allow Direct Print” on page 289
“Authority” on page 289
“Authority to Check” on page 289
“Automatically End Writer” on page 289
“Back Margin Offset Across” on page 289
“Back Margin Offset Down” on page 290
“Backside Overlay Library Name” on page 290
“Backside Overlay Name” on page 290
“Back Overlay offset across” on page 290
“Back Overlay Offset Down” on page 290
“Characters per Inch” on page 290
“Code Page” on page 291
“Coded Font Name” on page 291
“Coded Font Library Name” on page 291
“Copies” on page 291
“Copies left to Produce” on page 291
“Current Page” on page 291
“Data Format” on page 292
“Data Queue Library Name” on page 292
“Data Queue Name” on page 292
“Date File Opened” on page 292
“User Specified DBCS Data” on page 292
“DBCS Extension Characters” on page 292
“DBCS Character Rotation” on page 293
“DBCS Characters per Inch” on page 293
“DBCS SO/SI Spacing” on page 293
“Defer Write” on page 293
“Degree of Page Rotation” on page 293
“Delete File After Sending” on page 294
“Destination Option” on page 294
“Destination Type” on page 294
“Device Class” on page 294
“Device Model” on page 294
“Device Type” on page 294
“Display any File” on page 294
“Drawer for Separators” on page 295
“Ending Page” on page 295
“File Separators” on page 295
“Fold Records” on page 295
“Font Identifier” on page 295
“Form Feed” on page 296
“Form Type” on page 296
“Form Type Message Option” on page 296
“Front Margin Offset Across” on page 296
“Front Margin Offset Down” on page 296
“Front Overlay Library Name” on page 296
“Front Overlay Name” on page 297

“Front Overlay Offset Across” on page 297
“Front Overlay Offset Down” on page 297
“Graphic Character Set” on page 297
“Hardware Justification” on page 297
“Hold Spool File” on page 297
“Initialize the writer” on page 298
“Internet Address” on page 298
“Job Name” on page 298
“Job Number” on page 298
“Job Separators” on page 298
“Job User” on page 298
“Last Page Printed” on page 299
“Length of Page” on page 299
“Library Name” on page 299
“Lines Per Inch” on page 299
“Manufacturer Type and Model” on page 299
“Maximum Spooled Output Records” on page 299
“Measurement Method” on page 300
“Message Help” on page 300
“Message ID” on page 300
“Message Queue Library Name” on page 300
“Message Queue” on page 300
“Message Reply” on page 300
“Message Text” on page 301
“Message Type” on page 301
“Message Severity” on page 301
“Number of Bytes to Read/Write” on page 301
“Number of Files” on page 301
“Number of Writers Started to Queue” on page 302
“Object Extended Attribute” on page 302
“Open time commands” on page 302
“Operator Controlled” on page 302
“Order of Files On Queue” on page 302
“Output Priority” on page 302
“Output Queue Library Name” on page 303
“Output Queue Name” on page 303
“Output Queue Status” on page 303
“Overflow Line Number” on page 303
“Pages Per Side” on page 303
“Pel Density” on page 303
“Point Size” on page 304
“Print Fidelity” on page 304
“Print on Both Sides” on page 304
“Print Quality” on page 304
“Print Sequence” on page 304
“Print Text” on page 304
“Printer” on page 305
“Printer Device Type” on page 305
“Printer File Library Name” on page 305
“Printer File Name” on page 305
“Printer Queue” on page 305
“Record Length” on page 305
“Remote System” on page 306

“Replace Unprintable Characters” on page 306
“Replacement Character” on page 306
“Resource library name” on page 306
“Resource name” on page 306
“Resource object type” on page 306
“Restart Printing” on page 307
“Save Spooled File” on page 307
“Seek Offset” on page 307
“Seek Origin” on page 307
“Send Priority” on page 307
“Separator page” on page 307
“Source Drawer” on page 308
“Spool SCS” on page 308
“Spool the Data” on page 308
“Spooled File Name” on page 308
“Spooled File Number” on page 308
“Spooled File Status” on page 308
“Spooled Output Schedule” on page 309
“Starting Page” on page 309
“Text Description” on page 309
“Time File Opened” on page 309
“Total Pages” on page 309
“Transform SCS to ASCII” on page 309
“Unit of Measure” on page 310
“User Comment” on page 310
“User Data” on page 310
“User defined data” on page 310
“User defined object library” on page 310
“User defined object name” on page 310
“User defined object type” on page 311
“User defined option(s)” on page 311
“User driver program” on page 311
“User driver program library” on page 311
“User driver program name” on page 311
“User ID” on page 311
“User ID Address” on page 312
“User transform program library” on page 312
“User transform program name” on page 312
“VM/MVS Class” on page 312
“When to Automatically End Writer” on page 312
“When to End Writer” on page 312
“When to Hold File” on page 313“Width of Page” on page 313
“Workstation Customizing Object Name” on page 313
“Workstation Customizing Object Library” on page 313
“Writer Job Name” on page 313
“Writer Job Number” on page 313
“Writer Job Status” on page 314
“Writer Job User Name” on page 314
“Writer Starting Page” on page 314
“Network Print Server Object Attributes” on page 314

Advanced Function Printing
Key CWBOBJ_KEY_AFP

ID 0x000A

288 iSeries: iSeries Access for Windows Programming

Type char[11]

Description
Indicates whether this spooled file uses AFP resources external to the spooled file. Valid values
are *YES and *NO.

Align Page
Key CWBOBJ_KEY_ALIGN

ID 0x000B

Type char[11]

Description
Indicates whether a forms alignment message is sent prior to printing this spooled file. Valid values
are *YES, *NO.

Allow Direct Print
Key CWBOBJ_KEY_ALWDRTPRT

ID 0x000C

Type char[11]

Description
Indicates whether the printer writer allows the printer to be allocated to a job that prints directly to
a printer. Valid values are *YES, *NO.

Authority
Key CWBOBJ_KEY_AUT

ID 0x000D

Type char[11]

Description
Specifies the authority that is given to users who do not have specific authority to the output
queue. Valid values are *USE, *ALL, *CHANGE, *EXCLUDE, *LIBCRTAUT.

Authority to Check
Key CWBOBJ_KEY_AUTCHK

ID 0x000E

Type char[11]

Description
Indicates what type of authorities to the output queue allow the user to control all the files on the
output queue. Valid values are *OWNER, *DTAAUT.

Automatically End Writer
Key CWBOBJ_KEY_AUTOEND

ID 0x0010

Type char[11]

Description
Specifies if the writer should be automatically ended. Valid values are *NO, *YES.

Back Margin Offset Across
Key CWBOBJ_KEY_BACKMGN_ACR

Chapter 4. iSeries Access for Windows® C/C++ APIs 289

ID 0x0011

Type float

Description
For the back side of a piece of paper, it specifies, how far in from the left side of the page printing
starts. The special value *FRONTMGN will be encoded as -1.

Back Margin Offset Down
Key CWBOBJ_KEY_BACKMGN_DWN

ID 0x0012

Type float

Description
For the back side of a piece of paper, it specifies, how far down from the top of the page printing
starts. The special value *FRONTMGN will be encoded as -1.

Backside Overlay Library Name
Key CWBOBJ_KEY_BKOVRLLIB

ID 0x0013

Type char[11]

Description
The name of the library that contains the back overlay. If the back overlay name field has a special
value, this library field will be blank.

Backside Overlay Name
Key CWBOBJ_KEY_BKOVRLAY

ID 0x0014

Type char[11]

Description
The name of the back overlay. Valid special values include *FRONTMGN.

Back Overlay offset across
Key CWBOBJ_KEY_BKOVL_ACR

ID 0x0016

Type float

Description
The offset across from the point of origin where the overlay is printed.

Back Overlay Offset Down
Key CWBOBJ_KEY_BKOVL_DWN

ID 0x0015

Type float

Description
The offset down from the point of origin where the overlay is printed.

Characters per Inch
Key CWBOBJ_KEY_CPI

290 iSeries: iSeries Access for Windows Programming

ID 0x0017

Type float

Description
The number of characters per horizontal inch.

Code Page
Key CWBOBJ_KEY_CODEPAGE

ID 0x0019

Type char[11]

Description
The mapping of graphic characters to code points for this spooled file. If the graphic character set
field contains a special value, this field may contain a zero (0).

Coded Font Name
Key CWBOBJ_KEY_CODEDFNT

ID 0x001A

Type char[11]

Description
The name of the coded font. A coded font is an AFP resource that is composed of a character set
and a code page. Special values include *FNTCHRSET.

Coded Font Library Name
Key CWBOBJ_KEY_CODEDFNTLIB

ID 0x0018

Type char[11]

Description
The name of the library that contains the coded font. This field may contain blanks if the coded
font name field has a special value.

Copies
Key CWBOBJ_KEY_COPIES

ID 0x001C

Type long

Description
The total number of copies to be produced for this spooled file.

Copies left to Produce
Key CWBOBJ_KEY_COPIESLEFT

ID 0x001D

Type long

Description
The remaining number of copies to be produced for this spooled file.

Current Page
Key CWBOBJ_KEY_CURPAGE

Chapter 4. iSeries Access for Windows® C/C++ APIs 291

ID 0x001E

Type long

Description
Current page that is being written by the writer job.

Data Format
Key CWBOBJ_KEY_DATAFORMAT

ID 0x001F

Type char[11]

Description
Data format. Valid values are *RCDDATA, *ALLDATA.

Data Queue Library Name
Key CWBOBJ_KEY_DATAQUELIB

ID 0x0020

Type char[11]

Description
The name of the library that contains the data queue.

Data Queue Name
Key CWBOBJ_KEY_DATAQUE

ID 0x0021

Type char[11]

Description
Specifies the name of the data queue that is associated with the output queue.

Date File Opened
Key CWBOBJ_KEY_DATE

ID 0x0022

Type char[8]

Description
The date the spooled file was opened. The date is encoded in a character string with the following
format, C YY MM DD.

User Specified DBCS Data
Key CWBOBJ_KEY_DBCSDATA

ID 0x0099

Type char[11]

Description
Whether the spooled file contains double-byte character set (DBCS) data. Valid values are *NO
and *YES.

DBCS Extension Characters
Key CWBOBJ_KEY_DBCSEXTENSN

ID 0x009A

292 iSeries: iSeries Access for Windows Programming

Type char[11]

Description
Whether the system is to process the DBCS extension characters. Valid values are *NO and
*YES.

DBCS Character Rotation
Key CWBOBJ_KEY_DBCAROTATE

ID 0x009B

Type char[11]

Description
Whether the DBCS characters are rotated 90 degrees counterclockwise before printing. Valid
values are *NO and *YES.

DBCS Characters per Inch
Key CWBOBJ_KEY_DBCSCPI

ID 0x009C

Type long

Description
The number of double-byte characters to be printed per inch. Valid values are -1, -2, 5, 6, and 10.
The value *CPI is encoded as -1. The value *CONDENSED is encoded as -2.

DBCS SO/SI Spacing
Key CWBOBJ_KEY_DBCSSISO

ID 0x009D

Type char[11]

Description
Determines the presentation of shift-out and shift-in characters when printed. Valid values are *NO,
*YES, and *RIGHT.

Defer Write
Key CWBOBJ_KEY_DFR_WRITE

ID 0x0023

Type char[11]

Description
Whether print data is held in system buffers before

Degree of Page Rotation
Key CWBOBJ_KEY_PAGRTT

ID 0x0024

Type long

Description
The degree of rotation of the text on the page, with respect to the way the form is loaded into the
printer. Valid values are -1, -2, -3, 0, 90, 180, 270. The value *AUTO is encoded as -1, the value
*DEVD is encoded as -2, and the value *COR is encoded as -3.

Chapter 4. iSeries Access for Windows® C/C++ APIs 293

Delete File After Sending
Key CWBOBJ_KEY_DELETESPLF

ID 0x0097

Type char[11]

Description
Delete the spooled file after sending? Valid values are *NO and *YES.

Destination Option
Key CWBOBJ_KEY_DESTOPTION

ID 0x0098

Type char[129]

Description
Destination option. A text string that allows the user to pass options to the receiving system.

Destination Type
Key CWBOBJ_KEY_DESTINATION

ID 0x0025

Type char[11]

Description
Destination type. Valid values are *OTHER, *AS400, *PSF2.

Device Class
Key CWBOBJ_KEY_DEVCLASS

ID 0x0026

Type char[11]

Description
The device class.

Device Model
Key CWBOBJ_KEY_DEVMODEL

ID 0x0027

Type char[11]

Description
The model number of the device.

Device Type
Key CWBOBJ_KEY_DEVTYPE

ID 0x0028

Type char[11]

Description
The device type.

Display any File
Key CWBOBJ_KEY_DISPLAYANY

294 iSeries: iSeries Access for Windows Programming

ID 0x0029

Type char[11]

Description
Whether users who have authority to read this output queue can display the output data of any
output file on this queue, or only the data in their own files. Valid values are *YES, *NO, *OWNER.

Drawer for Separators
Key CWBOBJ_KEY_DRWRSEP

ID 0x002A

Type long

Description
Identifies the drawer from which the job and file separator pages are to be taken. Valid values are
-1, -2, 1, 2, 3. The value *FILE is encoded as -1, and the value *DEVD is encoded as -2.

Ending Page
Key CWBOBJ_KEY_ENDPAGE

ID 0x002B

Type long

Description
The page number at which to end printing the spooled file. Valid values are 0 or the ending page
number. The value *END is encoded as 0.

File Separators
Key CWBOBJ_KEY_FILESEP

ID 0x002C

Type long

Description
The number of file separator pages that are placed at the beginning of each copy of the spooled
file. Valid values are -1, or the number of separators. The value *FILE is encoded as -1.

Fold Records
Key CWBOBJ_KEY_FOLDREC

ID 0x002D

Type char[11]

Description
Whether records that exceed the printer forms width are folded (wrapped) to the next line. Valid
values are *YES, *NO.

Font Identifier
Key CWBOBJ_KEY_FONTID

ID 0x002E

Type char[11]

Description
The printer font that is used. Valid special values include *CPI and *DEVD.

Chapter 4. iSeries Access for Windows® C/C++ APIs 295

Form Feed
Key CWBOBJ_KEY_FORMFEED

ID 0x002F

Type char[11]

Description
The manner in which forms feed to the printer. Valid values are *CONT, *CUT, *AUTOCUT,
*DEVD.

Form Type
Key CWBOBJ_KEY_FORMTYPE

ID 0x0030

Type char[11]

Description
The type of form to be loaded in the printer to print this spooled file.

Form Type Message Option
Key CWBOBJ_KEY_FORMTYPEMSG

ID 0x0043

Type char[11]

Description
Message option for sending a message to the writer’s message queue when the current form type
is finished. Valid values are *MSG, *NOMSG, *INFOMSG, *INQMSG.

Front Margin Offset Across
Key CWBOBJ_KEY_FTMGN_ACR

ID 0x0031

Type float

Description
For the front side of a piece of paper, it specifies, how far in from the left side of the page printing
starts. The special value *DEVD is encoded as -2.

Front Margin Offset Down
Key CWBOBJ_KEY_FTMGN_DWN

ID 0x0032

Type float

Description
For the front side of a piece of paper, it specifies, how far down from the top of the page printing
starts. The special value *DEVD is encoded as -2.

Front Overlay Library Name
Key CWBOBJ_KEY_FTOVRLLIB

ID 0x0033

Type char[11]

296 iSeries: iSeries Access for Windows Programming

Description
The name of the library that contains the front overlay. This field may be blank if the front overlay
name field contains a special value.

Front Overlay Name
Key CWBOBJ_KEY_FTOVRLAY

ID 0x0034

Type char[11]

Description
The name of the front overlay. Valid special values include *NONE.

Front Overlay Offset Across
Key CWBOBJ_KEY_FTOVL_ACR

ID 0x0036

Type float

Description
The offset across from the point of origin where the overlay is printed.

Front Overlay Offset Down
Key CWBOBJ_KEY_FTOVL_DWN

ID 0x0035

Type float

Description
The offset down from the point of origin where the overlay is printed.

Graphic Character Set
Key CWBOBJ_KEY_CHAR_ID

ID 0x0037

Type char[11]

Description
The set of graphic characters to be used when printing this file. Valid special values include
*DEVD, *SYSVAL, and *JOBCCSID.

Hardware Justification
Key CWBOBJ_KEY_JUSTIFY

ID 0x0038

Type long

Description
The percentage that the output is right justified. Valid values are 0, 50, 100.

Hold Spool File
Key CWBOBJ_KEY_HOLD

ID 0x0039

Type char[11]

Chapter 4. iSeries Access for Windows® C/C++ APIs 297

Description
Whether the spooled file is held. Valid values are *YES, *NO.

Initialize the writer
Key CWBOBJ_KEY_WTRINIT

ID 0x00AC

Type char[11]

Description
The user can specify when to initialize the printer device. Valid values are *WTR, *FIRST, *ALL.

Internet Address
Key CWBOBJ_KEY_INTERNETADDR

ID 0x0094

Type char[16]

Description
The internet address of the receiving system.

Job Name
Key CWBOBJ_KEY_JOBNAME

ID 0x003B

Type char[11]

Description
The name of the job that created the spooled file.

Job Number
Key CWBOBJ_KEY_JOBNUMBER

ID 0x003C

Type char[7]

Description
The number of the job that created the spooled file.

Job Separators
Key CWBOBJ_KEY_JOBSEPRATR

ID 0x003D

Type long

Description
The number of job separators to be placed at the beginning of the output for each job having
spooled files on this output queue. Valid values are -2, 0-9. The value *MSG is encoded as -2. Job
separators are specified when the output queue is created.

Job User
Key CWBOBJ_KEY_USER

ID 0x003E

Type char[11]

298 iSeries: iSeries Access for Windows Programming

Description
The name of the user that created the spooled file.

Last Page Printed
Key CWBOBJ_KEY_LASTPAGE

ID 0x003F

Type long

Description
The number of the last printed page is the file if printing ended before the job completed
processing.

Length of Page
Key CWBOBJ_KEY_PAGELEN

ID 0x004E

Type float

Description
The length of a page. Units of measurement are specified in the measurement method attribute.

Library Name
Key CWBOBJ_KEY_LIBRARY

ID 0x000F

Type char[11]

Description
The name of the library.

Lines Per Inch
Key CWBOBJ_KEY_LPI

ID 0x0040

Type float

Description
The number of lines per vertical inch in the spooled file.

Manufacturer Type and Model
Key CWBOBJ_KEY_MFGTYPE

ID 0x0041

Type char[21]

Description
Specifies the manufacturer, type, and model when transforming print data from SCS to ASCII.

Maximum Spooled Output Records
Key CWBOBJ_KEY_MAXRECORDS

ID 0x0042

Type long

Chapter 4. iSeries Access for Windows® C/C++ APIs 299

Description
The maximum number of records allowed in this file at the time this file was opened. The value
*NOMAX is encoded as 0.

Measurement Method
Key CWBOBJ_KEY_MEASMETHOD

ID 0x004F

Type char[11]

Description
The measurement method that is used for the length of page and width of page attributes. Valid
values are *ROWCOL, *UOM.

Message Help
Key CWBOBJ_KEY_MSGHELP

ID 0x0081

Type char(*)

Description
The message help, which is sometimes known as second-level text, can be returned by a ″retrieve
message″ request. The system limits the length to 3000 characters (English version must be 30 %
less to allow for translation).

Message ID
Key CWBOBJ_KEY_MESSAGEID

ID 0x0093

Type char[8]

Description
The message ID.

Message Queue Library Name
Key CWBOBJ_KEY_MSGQUELIB

ID 0x0044

Type char[11]

Description
The name of the library that contains the message queue.

Message Queue
Key CWBOBJ_KEY_MSGQUE

ID 0x005E

Type char[11]

Description
The name of the message queue that the writer uses for operational messages.

Message Reply
Key CWBOBJ_KEY_MSGREPLY

ID 0x0082

Type char[133]

300 iSeries: iSeries Access for Windows Programming

Description
The message reply. Text string to be provided by the client which answers a message of type
″inquiry″. In the case of message retrieved, the attribute value is returned by the server and
contains the default reply which the client can use. The system limits the length to 132 characters.
Should be null-terminated due to variable length.

Message Text
Key CWBOBJ_KEY_MSGTEXT

ID 0x0080

Type char[133]

Description
The message text, that is sometimes known as first-level text, can be returned by a ″retrieve
message″ request. The system limits the length to 132 characters.

Message Type
Key CWBOBJ_KEY_MSGTYPE

ID 0x008E

Type char[3]

Description
The message type, a 2-digit, EBCDIC encoding. Two types of messages indicate whether one can
″answer″ a ″retrieved″ message: ’04’ Informational messages convey information without asking
for a reply (may require a corrective action instead), ’05’ Inquiry messages convey information and
ask for a reply.

Message Severity
Key CWBOBJ_KEY_MSGSEV

ID 0x009F

Type long

Description
Message severity. Values range from 00 to 99. The higher the value, the more severe or important
the condition.

Number of Bytes to Read/Write
Key CWBOBJ_KEY_NUMBYTES

ID 0x007D

Type long

Description
The number of bytes to read for a read operation, or the number of bytes to write for a write
operation. The object action determines how to interpret this attribute.

Number of Files
Key CWBOBJ_KEY_NUMFILES

ID 0x0045

Type long

Description
The number of spooled files that exist on the output queue.

Chapter 4. iSeries Access for Windows® C/C++ APIs 301

Number of Writers Started to Queue
Key CWBOBJ_KEY_NUMWRITERS

ID 0x0091

Type long

Description
The number of writer jobs started to the output queue.

Object Extended Attribute
Key CWBOBJ_KEY_OBJEXTATTR

ID 0x000B1

Type char[11]

Description
An ″extended″ attribute used by some objects like font resources. This value shows up via
WRKOBJ and DSPOBJD commands on the iSeries server. The title on an iSeries server screen
may just indicate ″Attribute″. In the case of object types of font resources, for example, common
values are CDEPAG, CDEFNT, and FNTCHRSET.

Open time commands
Key CWBOBJ_KEY_OPENCMDS

ID 0x00A0

Type char[11]

Description
Specifies whether the user wants SCS open time commands to be inserted into datastream prior
to spool file data. Valid values are *YES, *NO.

Operator Controlled
Key CWBOBJ_KEY_OPCNTRL

ID 0x0046

Type char[11]

Description
Whether users with job control authority are allowed to manage or control the spooled files on this
queue. Valid values are *YES, *NO.

Order of Files On Queue
Key CWBOBJ_KEY_ORDER

ID 0x0047

Type char[11]

Description
The order of spooled files on this output queue. Valid values are *FIFO, *JOBNBR.

Output Priority
Key CWBOBJ_KEY_OUTPTY

ID 0x0048

Type char[11]

302 iSeries: iSeries Access for Windows Programming

Description
The priority of the spooled file. The priority ranges from 1 (highest) to 9 (lowest). Valid values are
0-9, where 0 represents *JOB.

Output Queue Library Name
Key CWBOBJ_KEY_OUTQUELIB

ID 0x0049

Type char[11]

Description
The name of the library that contains the output queue.

Output Queue Name
Key CWBOBJ_KEY_OUTQUE

ID 0x004A

Type char[11]

Description
The name of the output queue.

Output Queue Status
Key CWBOBJ_KEY_OUTQUESTS

ID 0x004B

Type char[11]

Description
The status of the output queue. Valid values are RELEASED, HELD.

Overflow Line Number
Key CWBOBJ_KEY_OVERFLOW

ID 0x004C

Type long

Description
The last line to be printed before the data that is being printed overflows to the next page.

Pages Per Side
Key CWBOBJ_KEY_MULTIUP

ID 0x0052

Type long

Description
The number of logical pages that print on each side of each physical page when the file is printed.
Valid values are 1, 2, 4.

Pel Density
Key CWBOBJ_KEY_PELDENSITY

ID 0x00B2

Type char[2]

Chapter 4. iSeries Access for Windows® C/C++ APIs 303

Description
For font resources only, this value is an encoding of the number of pels (″1″ represents a pel size
of 240, ″2″ represents a pel size of 320). Additional values may become meaningful as the iSeries
system defines them.

Point Size
Key CWBOBJ_KEY_POINTSIZE

ID 0x0053

Type float

Description
The point size in which this spooled file’s text is printed. The special value *NONE will be encoded
as 0.

Print Fidelity
Key CWBOBJ_KEY_FIDELITY

ID 0x0054

Type char[11]

Description
The kind of error handling that is performed when printing. Valid values are *ABSOLUTE,
*CONTENT.

Print on Both Sides
Key CWBOBJ_KEY_DUPLEX

ID 0x0055

Type char[11]

Description
How the information prints. Valid values are *FORMDF, *NO, *YES, *TUMBLE.

Print Quality
Key CWBOBJ_KEY_PRTQUALITY

ID 0x0056

Type char[11]

Description
The print quality that is used when printing this spooled file. Valid values are *STD, *DRAFT,
*NLQ, *FASTDRAFT.

Print Sequence
Key CWBOBJ_KEY_PRTSEQUENCE

ID 0x0057

Type char[11]

Description
Print sequence. Valid values are *NEXT.

Print Text
Key CWBOBJ_KEY_PRTTEXT

ID 0x0058

304 iSeries: iSeries Access for Windows Programming

Type char[31]

Description
The text that is printed at the bottom of each page of printed output and on separator pages. Valid
special values include *BLANK and *JOB.

Printer
Key CWBOBJ_KEY_PRINTER

ID 0x0059

Type char[11]

Description
The name of the printer device.

Printer Device Type
Key CWBOBJ_KEY_PRTDEVTYPE

ID 0x005A

Type char[11]

Description
The printer data stream type. Valid values are *SCS, *IPDS(*), *USERASCII, *AFPDS.

Printer File Library Name
Key CWBOBJ_KEY_PRTRFILELIB

ID 0x005B

Type char[11]

Description
The name of the library that contains the printer file.

Printer File Name
Key CWBOBJ_KEY_PRTRFILE

ID 0x005C

Type char[11]

Description
The name of the printer file.

Printer Queue
Key CWBOBJ_KEY_RMTPRTQ

ID 0x005D

Type char[129]

Description
The name of the destination printer queue when sending spooled files via SNDTCPSPLF (LPR).

Record Length
Key CWBOBJ_KEY_RECLENGTH

ID 0x005F

Type long

Chapter 4. iSeries Access for Windows® C/C++ APIs 305

Description
Record length.

Remote System
Key CWBOBJ_KEY_RMTSYSTEM

ID 0x0060

Type char[256]

Description
Remote system name. Valid special values include *INTNETADR.

Replace Unprintable Characters
Key CWBOBJ_KEY_RPLUNPRT

ID 0x0061

Type char[11]

Description
Whether characters that cannot be printed are to be replaced with another character. Valid values
are *YES or *NO.

Replacement Character
Key CWBOBJ_KEY_RPLCHAR

ID 0x0062

Type char[2]

Description
The character that replaces any unprintable characters.

Resource library name
Key CWBOBJ_KEY_RSCLIB

ID 0x00AE

Type char[11]

Description
The name of the library that contains the external AFP (Advanced Function Print) resource.

Resource name
Key CWBOBJ_KEY_RSCNAME

ID 0x00AF

Type char[11]

Description
The name of the external AFP resource.

Resource object type
Key CWBOBJ_KEY_RSCTYPE

ID 0x00B0

Type Long

306 iSeries: iSeries Access for Windows Programming

Description
A numerical, bit encoding of external AFP resource object type. Values are 0x0001, 0x0002,
0x0004, 0x0008, 0x0010 corresponding to *FNTRSC, *FORMDF, *OVL, *PAGSEG, *PAGDFN,
respectively.

Restart Printing
Key CWBOBJ_KEY_RESTART

ID 0x0063

Type long

Description
Restart printing. Valid values are -1, -2, -3, or the page number to restart at. The value *STRPAGE
is encoded as -1, the value *ENDPAGE is encoded as -2, and the value *NEXT is encoded as -3.

Save Spooled File
Key CWBOBJ_KEY_SAVESPLF

ID 0x0064

Type char[11]

Description
Whether the spooled file is to be saved after it is written. Valid values are *YES, *NO.

Seek Offset
Key CWBOBJ_KEY_SEEKOFF

ID 0x007E

Type long

Description
Seek offset. Allows both positive and negative values relative to the seek origin.

Seek Origin
Key CWBOBJ_KEY_SEEKORG

ID 0x007F

Type long

Description
Valid values include 1 (beginning or top), 2 (current), and 3 (end or bottom).

Send Priority
Key CWBOBJ_KEY_SENDPTY

ID 0x0065

Type char[11]

Description
Send priority. Valid values are *NORMAL, *HIGH.

Separator page
Key CWBOBJ_KEY_SEPPAGE

ID 0x00A1

Type char[11]

Chapter 4. iSeries Access for Windows® C/C++ APIs 307

Description
Allows a user the option of printing a banner page. Valid values are *YES or *NO.

Source Drawer
Key CWBOBJ_KEY_SRCDRWR

ID 0x0066

Type long

Description
The drawer to be used when the automatic cut sheet feed option is selected. Valid values are -1,
-2, 1-255. The value *E1 is encode as -1, and the value *FORMDF is encoded as -2.

Spool SCS
Key CWBOBJ_KEY_SPLSCS

ID 0x00AD

Type Long

Description
Determines how SCS data is used during create spool file. Valid values are -1, 0, 1, or the page
number. The value *ENDPAGE is encoded as -1. For the value 0, printing starts on page 1. For
the value 1, the entire file prints.

Spool the Data
Key CWBOBJ_KEY_SPOOL

ID 0x0067

Type char[11]

Description
Whether the output data for the printer device is spooled. Valid values are *YES, *NO.

Spooled File Name
Key CWBOBJ_KEY_SPOOLFILE

ID 0x0068

Type char[11]

Description
The name of the spooled file.

Spooled File Number
Key CWBOBJ_KEY_SPLFNUM

ID 0x0069

Type long

Description
The spooled file number.

Spooled File Status
Key CWBOBJ_KEY_SPLFSTATUS

ID 0x006A

Type char[11]

308 iSeries: iSeries Access for Windows Programming

Description
The status of the spooled file. Valid values are *CLOSED, *HELD, *MESSAGE, *OPEN,
*PENDING, *PRINTER, *READY, *SAVED, *WRITING.

Spooled Output Schedule
Key CWBOBJ_KEY_SCHEDULE

ID 0x006B

Type char[11]

Description
Specifies, for spooled files only, when the spooled file is available to the writer. Valid values are
*IMMED, *FILEEND, *JOBEND.

Starting Page
Key CWBOBJ_KEY_STARTPAGE

ID 0x006C

Type long

Description
The page number at which to start printing the spooled file. Valid values are -1, 0, 1, or the page
number. The value *ENDPAGE is encoded as -1. For the value 0, printing starts on page 1. For
the value 1, the entire file prints.

Text Description
Key CWBOBJ_KEY_DESCRIPTION

ID 0x006D

Type [51]

Description
Text to describe an instance of an iSeries object.

Time File Opened
Key CWBOBJ_KEY_TIMEOPEN

ID 0x006E

Type char[7]

Description
The time this spooled file was opened. The time is encoded in a character 0x0005 with the
following format, HH MM SS.

Total Pages
Key CWBOBJ_KEY_PAGES

ID 0x006F

Type long

Description
The number of pages that are contained in a spooled file.

Transform SCS to ASCII
Key CWBOBJ_KEY_SCS2ASCII

ID 0x0071

Chapter 4. iSeries Access for Windows® C/C++ APIs 309

Type char[11]

Description
Whether the print data is to be transformed from SCS to ASCII. Valid values are *YES, *NO.

Unit of Measure
Key CWBOBJ_KEY_UNITOFMEAS

ID 0x0072

Type char[11]

Description
The unit of measure to use for specifying distances. Valid values are *CM, *INCH.

User Comment
Key CWBOBJ_KEY_USERCMT

ID 0x0073

Type char[101]

Description
The 100 characters of user-specified comment that describe the spooled file.

User Data
Key CWBOBJ_KEY_USERDATA

ID 0x0074

Type char[11]

Description
The 10 characters of user-specified data that describe the spooled file. Valid special values include
*SOURCE.

User defined data
Key CWBOBJ_KEY_USRDFNDTA

ID 0x00A2

Type char[]

Description
User defined data to be utilized by user applications or user specified programs that process spool
files. All characters are acceptable. Max size is 255.

User defined object library
Key CWBOBJ_KEY_USRDFNOBJLIB

ID 0x00A4

Type char[11]

Description
User defined object library to search by user applications that process spool files.

User defined object name
Key CWBOBJ_KEY_USRDFNOBJ

ID 0x00A5

Type char[11]

310 iSeries: iSeries Access for Windows Programming

Description
User defined object name to be utilized by user applications that process spool files.

User defined object type
Key CWBOBJ_KEY_USRDFNOBJTYP

ID 0x00A6

Type char[11]

Description
User defined object type pertaining to the user defined object.

User defined option(s)
Key CWBOBJ_KEY_USEDFNOPTS

ID 0x00A3

Type char[*]

Description
User defined options to be utilized by user applications that process spool files. Up to 4 options
may be specifies, each value is length char(10). All characters are acceptable.

User driver program
Key CWBOBJ_KEY_USRDRVPGMDTA

ID 0x00A9

Type char[11]

Description
User data to be used with the user driver program. All characters are acceptable. Maximum size is
5000 characters.

User driver program library
Key CWBOBJ_KEY_USRDRVPGMLIB

ID 0x00AA

Type char[11]

Description
User defined library to search for driver program that processes spool files.

User driver program name
Key CWBOBJ_KEY_USRDRVPGM

ID 0x00AB

Type char[11]

Description
User defined program name that processes spool files.

User ID
Key CWBOBJ_KEY_TOUSERID

ID 0x0075

Type char[9]

Chapter 4. iSeries Access for Windows® C/C++ APIs 311

Description
User ID to which the spooled file is sent.

User ID Address
Key CWBOBJ_KEY_TOADDRESS

ID 0x0076

Type char[9]

Description
Address of user to whom the spooled file is sent.

User transform program library
Key CWBOBJ_KEY_USRTFMPGMLIB

ID 0x00A7

Type char[11]

Description
User defined library search for transform program.

User transform program name
Key CWBOBJ_KEY_USETFMPGM

ID 0x00A8

Type char[11]

Description
User defined transform program name that transforms spool file data before it is processed by the
driver program.

VM/MVS Class
Key CWBOBJ_KEY_VMMVSCLASS

ID 0x0077

Type char[2]

Description
VM/MVS class. Valid values are A-Z and 0-9.

When to Automatically End Writer
Key CWBOBJ_KEY_WTRAUTOEND

ID 0x0078

Type char[11]

Description
When to end the writer if it is to be ended automatically. Valid values are *NORDYF, *FILEEND.
Attribute Automatically end writer must be set to *YES.

When to End Writer
Key CWBOBJ_KEY_WTREND

ID 0x0090

Type char[11]

312 iSeries: iSeries Access for Windows Programming

Description
When to end the writer. Valid value are *CNTRLD, *IMMED, and *PAGEEND. This is different from
when to automatically end the writer.

When to Hold File
Key CWBOBJ_KEY_HOLDTYPE

ID 0x009E

Type char[11]

Description
When to hold the spooled file. Valid values are *IMMED, and *PAGEEND.

Width of Page
Key CWBOBJ_KEY_PAGEWIDTH

ID 0x0051

Type float

Description
The width of a page. Units of measurement are specified in the measurement method attribute.

Workstation Customizing Object Name
Key CWBOBJ_KEY_WSCUSTMOBJ

ID 0x0095

Type char[11]

Description
The name of the workstation customizing object.

Workstation Customizing Object Library
Key CWBOBJ_KEY_WSCUSTMOBJL

ID 0x0096

Type char[11]

Description
the name of the library that contains the workstation customizing object.

Writer Job Name
Key CWBOBJ_KEY_WRITER

ID 0x0079

Type char[11]

Description
The name of the writer job.

Writer Job Number
Key CWBOBJ_KEY_WTRJOBNUM

ID 0x007A

Type char[7]

Description
The writer job number.

Chapter 4. iSeries Access for Windows® C/C++ APIs 313

Writer Job Status
Key CWBOBJ_KEY_WTRJOBSTS

ID 0x007B

Type char[11]

Description
The status of the writer job. Valid values are STR, END, JOBQ, HLD, MSGW.

Writer Job User Name
Key CWBOBJ_KEY_WTRJOBUSER

ID 0x007C

Type char[11]

Description
The name of the user that started the writer job.

Writer Starting Page
Key CWBOBJ_KEY_WTRSTRPAGE

ID 0x008F

Type long

Description
Specifies the page number of the first page to print from the first spooled file when the writer job
starts. This is only valid if the spooled file name is also specified when the writer starts.

Network Print Server Object Attributes
v “NPS Attribute Default Value”

v “NPS Attribute High Limit”

v “NPS Attribute ID” on page 315

v “NPS Attribute Low Limit” on page 315

v “NPS Attribute Possible Value” on page 315

v “NPS Attribute Text Description” on page 315

v “NPS Attribute Type” on page 315

v “NPS CCSID” on page 315

v “NPS Object” on page 316

v “NPS Object Action” on page 316

v “NPS Level” on page 316

NPS Attribute Default Value:

Key CWBOBJ_KEY_ATTRDEFAULT

ID 0x0083

Type dynamic

Description
Default value for the attribute.

NPS Attribute High Limit:

Key CWBOBJ_KEY_ATTRMAX

ID 0x0084

314 iSeries: iSeries Access for Windows Programming

Type dynamic

Description
High limit of the attribute value.

NPS Attribute ID:

Key CWBOBJ_KEY_ATTRID

ID 0x0085

Type long

Description
ID of the attribute.

NPS Attribute Low Limit:

Key CWBOBJ_KEY_ATTRMIN

ID 0x0086

Type dynamic

Description
Low limit of the attribute value.

NPS Attribute Possible Value:

Key CWBOBJ_KEY_ATTRPOSSIBL

ID 0x0087

Type dynamic

Description
Possible value for the attribute. More than one NPS possible value instance may be present in a
code point.

NPS Attribute Text Description:

Key CWBOBJ_KEY_ATTRDESCRIPT

ID 0x0088

Type char(*)

Description
Text description that provides a name for the attribute.

NPS Attribute Type:

Key CWBOBJ_KEY_ATTRTYPE

ID 0x0089

Type long

Description
The type of the attribute. Valid values are the types that are defined by the Network Print Server.

NPS CCSID:

Key CWBOBJ_KEY_NPSCCSID

ID 0x008A

Type long

Chapter 4. iSeries Access for Windows® C/C++ APIs 315

Description
CCSID that the Network Print Server expects that all strings will be encoded in.

NPS Object:

Key CWBOBJ_KEY_NPSOBJECT

ID 0x008B

Type long

Description
Object ID. Valid values are the objects that are defined by the Network Print Server.

NPS Object Action:

Key CWBOBJ_KEY_NPSACTION

ID 0x008C

Type long

Description
Action ID. Valid values are the actions that are defined by the Network Print Server.

NPS Level:

Key CWBOBJ_KEY_NPSLEVEL

ID 0x008D

Type char[7]

Description
The version, release, and modification level of the Network Print Server. This attribute is a
character string encoded as VXRYMY (ie. ″V3R1M0″) where

X is in (0..9)
Y is in (0..9,A..Z)

iSeries Objects API for iSeries Access for Windows listing

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

Function/type iSeries Objects APIs for iSeries Access for Windows

List APIs cwbOBJ_CloseList
cwbOBJ_CreateListHandle
cwbOBJ_DeleteListHandle
cwbOBJ_GetListSize
cwbOBJ_OpenList
cwbOBJ_ResetListAttrsToRetrieve
cwbOBJ_ResetListFilter
cwbOBJ_SetListAttrsToRetrieve
cwbOBJ_SetListFilter
cwbOBJ_SetListFilterWithSplF

Object APIs cwbOBJ_CopyObjHandle
cwbOBJ_DeleteObjHandle
cwbOBJ_GetObjAttr
cwbOBJ_GetObjAttrs
cwbOBJ_GetObjHandleFromID
cwbOBJ_GetObjID
cwbOBJ_RefreshObj
cwbOBJ_SetObjAttrs

316 iSeries: iSeries Access for Windows Programming

Function/type iSeries Objects APIs for iSeries Access for Windows

Parameter object APIs cwbOBJ_CopyParmObjHandle
cwbOBJ_CreateParmObjHandle
cwbOBJ_DeleteParmObjHandle
cwbOBJ_GetParameter
cwbOBJ_SetParameter

Writer job APIs cwbOBJ_EndWriter
cwbOBJ_StartWriter

Output queue APIs cwbOBJ_HoldOutputQueue
cwbOBJ_PurgeOutputQueue
cwbOBJ_ReleaseOutputQueue

AFP resource APIs cwbOBJ_CloseResource
cwbOBJ_CreateResourceHandle
cwbOBJ_DisplayResource
cwbOBJ_OpenResource
cwbOBJ_OpenResourceForSplF
cwbOBJ_ReadResource
cwbOBJ_SeekResource

Spooled file APIs for working with new
spooled files

cwbOBJ_CloseNewSplF
cwbOBJ_CloseNewSplFAndGetHandle
cwbOBJ_CreateNewSplF
cwbOBJ_GetSplFHandleFromNewSplF
cwbOBJ_WriteNewSplF

Spooled file APIs for reading spooled
files

cwbOBJ_CloseSplF
cwbOBJ_OpenSplF
cwbOBJ_ReadSplF
cwbOBJ_SeekSplF

Spooled file APIs for manipulating
iSeries spooled files

cwbOBJ_CallExitPgmForSplF
cwbOBJ_CreateSplFHandle
cwbOBJ_CreateSplFHandleEx
cwbOBJ_DeleteSplF
cwbOBJ_DisplaySplF
cwbOBJ_HoldSplF
cwbOBJ_IsViewerAvailable
cwbOBJ_MoveSplF
cwbOBJ_ReleaseSplF
cwbOBJ_SendNetSplF
cwbOBJ_SendTCPSplF

Spooled file APIs for handling spooled
file messages

cwbOBJ_AnswerSplFMsg
cwbOBJ_GetSplFMsgAttr

Spooled file API for analyzing data cwbOBJ_AnalyzeSplFData

Server program APIs cwbOBJ_DropConnections
cwbOBJ_GetNPServerAttr
cwbOBJ_SetConnectionsToKeep

Chapter 4. iSeries Access for Windows® C/C++ APIs 317

cwbOBJ_AnalyzeSplFData

Purpose: Analyze data for a spooled file and give a best guess as to what the data type is.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_AnalyzeSplFData(
const char *data,
unsigned long bufLen,
cwbOBJ_SplFDataType *dataType,
cwbSV_ErrHandle errorHandle);

Parameters:

const char *data - input
pointer to data to be analyzed.

unsigned long bufLen - input
The length of the buffer pointed to by data.

cwbOBJ_SplFDataType *dataType - output
On output this will contain the data type. If the data type can not be determined, it defaults to
CWBOBJ_DT_USERASCII.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_PARAMETER
Invalid parameter specified.

Usage: This uses the same routine that is used during the creation of spooled files that don’t have a data
type specified or have a data type of *AUTO specified. The result defaults to *USERASCII if it can not be
determined.

318 iSeries: iSeries Access for Windows Programming

cwbOBJ_AnswerSplFMsg

Purpose: Answer the message that the spooled file is waiting on.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_AnswerSplFMsg(
cwbOBJ_ObjHandle splFHandle,
char *msgAnswer,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file to answer the message for.

const char *msgAnswer - input
Pointer to a ASCIIZ string that contains the answer for the message.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

CWBOBJ_RC_SPLFNOMESSAGE
The spooled file isn’t waiting on a message.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 319

cwbOBJ_CallExitPgmForSplF

Purpose: Instructs the iSeries Access Netprint server program, QNPSERVR, to call down its exit
program chain passing this spooled file’s ID and some application specified data as parameters.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_CallExitPgmForSplF(
cwbOBJ_ObjHandle splFHandle,
void *data,
unsigned long dataLen,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file to be passes as a parameter to the exit programs.

void *data - input
Pointer to a block of date that will be passed to the exit programs. The format of this data is exit
program specific.

unsigned long dataLen - input
length of data pointed to by pData.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

CWBOBJ_RC_NO_EXIT_PGM
No exit program is registered with the Network Print server.

Usage: This is a way for a client program to communicate with its server portion to do processing of
spooled files. All exit programs registered with the QNPSERVR program on the iSeries server will be
called, so it is up to the client program and exit program to architect the format of the data in *data such
that the exit program can recognize it. See the iSeries server ’Guide to Programming for Print’ for
information on the interface between the QNPSERVR server program and the exit programs.

320 iSeries: iSeries Access for Windows Programming

cwbOBJ_CloseNewSplF

Purpose: Closes a newly created spooled file.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_CloseNewSplF(
cwbOBJ_ObjHandle newSplFHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle newSplFHandle - input
New spooled file handle. This is the handle passed back on the cwbOBJ_CreateNewSplF() API.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage: Once a spooled file is closed, you can no longer write to it.

Chapter 4. iSeries Access for Windows® C/C++ APIs 321

cwbOBJ_CloseNewSplFAndGetHandle

Purpose: Closes a newly created spooled file and returns a handle to it.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_CloseNewSplFAndGetHandle(
cwbOBJ_ObjHandle newSplFHandle,
cwbOBJ_ObjHandle *splFHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle newSplFHandle - input
New spooled file handle. This is the handle passed back on the cwbOBJ_CreateNewSplF() API.

cwbOBJ_ObjHandle *splFHandle - output
Pointer to an object handle that, upon successful, completion of this call, will hold the spooled file
handle. This handle may be used with other APIs that take a spooled file handle as input.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage: The handle returned in splFHandle must be released with the cwbOBJ_DeleteObjHandle() API in
order to free resources.

322 iSeries: iSeries Access for Windows Programming

cwbOBJ_CloseList

Purpose: Closes an opened list.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_CloseList(
cwbOBJ_ListHandle listHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ListHandle listHandle - input
Handle of the list to be closed. This list must be opened.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

CWBOBJ_RC_LIST_NOT_OPEN
The list isn’t open.

Usage: Closing the list frees the memory used by the list to hold its items. Any object handles gotten with
cwbOBJ_GetObjHandle() API should be released before closing the list to free resources. These handles
are no longer valid.

Chapter 4. iSeries Access for Windows® C/C++ APIs 323

cwbOBJ_CloseResource

Purpose: Closes an AFP Resource object that was previously opened for for reading.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_CloseResource(
cwbOBJ_ObjHandle resourceHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle resourceHandle - input
Handle of the resource to be closed.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid resource handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_RSCNOTOPEN
Resource not opened.

CWBOBJ_RC_SPLFNOTOPEN
Spooled file not open.

Usage: If the handle for the resource was obtained via a call to the cwbOBJ_OpenResourceForSplF()
API, then this api will delete the handle for you (the handle was dynamically allocated for you when you
opened the resource and this call deallocates it).

324 iSeries: iSeries Access for Windows Programming

cwbOBJ_CloseSplF

Purpose: Closes an iSeries spooled file that was previously opened for for reading.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_CloseSplF(
cwbOBJ_ObjHandle splFHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file to be closed.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 325

cwbOBJ_CopyObjHandle

Purpose: Creates a duplicate handle to an object. Use this API to get another handle to the same
iSeries object. This new handle will be valid until the cwbOBJ_DeleteObjHandle() API has been called to
release it.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_CopyObjHandle(
cwbOBJ_ObjHandle objectHandle,
cwbOBJ_ObjHandle *newObjectHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle objectHandle - input
Handle of the object to copy.

cwbOBJ_ObjHandle *newObjectHandle - output
Upon successful competition of this call, this handle will contain the new object handle.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

Usage: If you have a handle to an object in a list and wish to maintain a handle to that object after the
list has been close this API allows you to do that. cwbOBJ_DeleteObjHandle() must be called to release
resources for this handle.

326 iSeries: iSeries Access for Windows Programming

cwbOBJ_CopyParmObjHandle

Purpose: Creates a duplicate parameter list object. All attribute keys and values in the parameter list
object will be copied to the new parameter list object.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_CopyParmObjHandle(
cwbOBJ_ParmHandle parmListHandle,
cwbOBJ_ParmHandle *newParmListHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ParmHandle parmListHandle - input
Handle of the parameter list object to copy.

cwbOBJ_ParmHandle *newParmListHandle - output
Upon successful competition of this call, this handle will contain the new parameter list object handle.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

Usage: The cwbOBJ_DeleteParmObjectHandle API must be called to free resources allocated by this
call.

Chapter 4. iSeries Access for Windows® C/C++ APIs 327

cwbOBJ_CreateListHandle

Purpose: Allocates a handle for a list of objects. After a list handle has been allocated, the filter criteria
may be set for the list with the cwbOBJ_SetListFilter() API, the list may be built with the
cwbOBJ_OpenList() API, etc. cwbOBJ_DeleteListHandle() should be called to deallocated this list handle
and free any resources used by it.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_CreateListHandle(
const char *systemName,
cwbOBJ_ListType type,
cwbOBJ_ListHandle *listHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

const char *systemName - input
Pointer to the system name contained in ASCIIZ string

cwbOBJ_ListType type - input
Type of list to allocate (eg. spooled file list, output queue list, etc).

cwbOBJ_ListHandle *listHandle - output
Pointer to a list handle that will be passed back on output. This handle is needed for other calls using
the list.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.

CWB_API_ERROR
General API failure.

Usage: Caller must call cwbOBJ_DeleteListHandle when done using this list handle. Typical calling
sequence for retrieving a list of objects would be:

1. cwbOBJ_CreateListHandle()

2. cwbOBJ_SetListFilter() { repeated as needed }

3. cwbOBJ_OpenList()

4. cwbOBJ_GetListSize() to get the size of the list.

5. For n=0 to list size - 1 cwbOBJ_GetObjHandle for list item in position n do something with the object
cwbOBJ_DeleteObjHandle()

6. cwbOBJ_CloseList() - You may go back to step 2 here.

7. cwbOBJ_DeleteListHandle()

328 iSeries: iSeries Access for Windows Programming

cwbOBJ_CreateNewSplF

Purpose: Creates a new spooled file on the iSeries server.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_CreateNewSplF(
const char *systemName,
cwbOBJ_ParmHandle *parmListHandle,
cwbOBJ_ObjHandle *printerFileHandle,
cwbOBJ_ObjHandle *outputQueueHandle,
cwbOBJ_ObjHandle *newSplFHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

const char *systemName - input
Pointer to the system name contained in ASCIIZ string

cwbOBJ_ParmHandle *parmListHandle - input
Optional. A pointer to a valid parameter list object handle that contains parameters for creating the
spooled file. Parameters set in this list override what is in the printer file and the *outputQueueHandle
parameter.

cwbOBJ_ObjHandle *printerFileHandle - input
Optional. A pointer to a valid printer file object handle that references the printer file to be used when
creating this spooled file. The printer file must exist on the same system that this spooled file is being
created on.

cwbOBJ_ObjHandle *outputQueueHandle - input
Optional. A pointer to a valid output queue object handle that references the output queue that this
spooled file should be created on. The output queue must exist on the same system that this spooled
file is being created on. If the output queue is set in the *parmListHandle parameter (with
CWBOBJ_KEY_OUTQUELIB & CWBOBJ_KEY_OUTQUE) it will override the output queue specified
by this output queue handle.

cwbOBJ_ObjHandle *newSplFHandle - output
A pointer to a object handle that will be filled in upon successful completion of this call with the newly
created spooled file handle. This handle is needed to write data into and close the new spooled file.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

Chapter 4. iSeries Access for Windows® C/C++ APIs 329

CWB_API_ERROR
General API failure.

Usage: If the parmListHandle is NULL, or doesn’t specify an attribute, the attribute is taken from the
printer file used. If the output queue is specified with the *parmListHandle, this will override what is
specified in the *outputQueueHandle parameter. If the output queue is not specified (not in the
*parmListHandle AND outputQueueHandle is NULL), the output queue used is taken from the printer file. If
the printer file is not specified (printerFileHandle is NULL), the server will use the default network print
printer file, *LIBL/QNPSPRTF. The following parameter keys may be set in the pParmListHandl object:

CWBOBJ_KEY_ALIGN - Align page
CWBOBJ_KEY_BKOVRLLIB - Back overlay library name
CWBOBJ_KEY_BKOVRLAY - Back overlay
CWBOBJ_KEY_BKOVL_ACR - Back overlay offset across
CWBOBJ_KEY_BKOVL_DWN - Back overlay offset down
CWBOBJ_KEY_CPI - Characters Per Inch
(1)CWBOBJ_KEY_CODEPAGE - Code page
CWBOBJ_KEY_COPIES - Copies
CWBOBJ_KEY_DBCSDATA - Contains DBCS Data
CWBOBJ_KEY_DBCSEXTENSN - Process DBCS Extension

characters
CWBOBJ_KEY_DBCSROTATE - DBCS character rotation
CWBOBJ_KEY_DBCSCPI - DBCS CPI
CWBOBJ_KEY_DBCSSISO - DBCS SO/SI spacing
CWBOBJ_KEY_DFR_WRITE - Defer writing
CWBOBJ_KEY_ENDPAGE - Ending page
(2)CWBOBJ_KEY_FILESEP - File Separators
CWBOBJ_KEY_FOLDREC - Fold records
CWBOBJ_KEY_FONTID - Font identifier
CWBOBJ_KEY_FORMFEED - Form feed
CWBOBJ_KEY_FORMTYPE - Form type
CWBOBJ_KEY_FTOVRLLIB - Front overlay library name
CWBOBJ_KEY_FTOVRLAY - Front overlay
CWBOBJ_KEY_FTOVL_ACR - Front overlay offset across
CWBOBJ_KEY_FTOVL_DWN - Front overlay offset down
(1)CWBOBJ_KEY_CHAR_ID - Graphic character set ID
CWBOBJ_KEY_JUSTIFY - Hardware Justification
CWBOBJ_KEY_HOLD - Hold spooled file
CWBOBJ_KEY_LPI - Lines per inch
CWBOBJ_KEY_MAXRECORDS - Maximum spooled file records
CWBOBJ_KEY_OUTPTY - Output priority
CWBOBJ_KEY_OUTQUELIB - Output queue library name
CWBOBJ_KEY_OUTQUE - Output queue
CWBOBJ_KEY_OVERFLOW - Overflow line number
CWBOBJ_KEY_PAGELEN - Page length
CWBOBJ_KEY_MEASMETHOD - Measurement method
CWBOBJ_KEY_PAGEWIDTH - Page width
CWBOBJ_KEY_MULTIUP - Logical number of pages

per side
CWBOBJ_KEY_POINTSIZE - The default font’s point size
CWBOBJ_KEY_FIDELITY - Print fidelity
CWBOBJ_KEY_DUPLEX - Print on both sides
CWBOBJ_KEY_PRTQUALITY - Print quality
CWBOBJ_KEY_PRTTEXT - Print text
CWBOBJ_KEY_PRINTER - Printer device name
CWBOBJ_KEY_PRTDEVTYPE - Printer device type
CWBOBJ_KEY_RPLUNPRT - Replace unprintable characters
CWBOBJ_KEY_RPLCHAR - Replacement character
CWBOBJ_KEY_SAVESPLF - Save spooled file after

printing

330 iSeries: iSeries Access for Windows Programming

CWBOBJ_KEY_SRCDRWR - Source drawer
CWBOBJ_KEY_SPOOL - Spool the data
CWBOBJ_KEY_SPOOLFILE - Spool file name
CWBOBJ_KEY_SCHEDULE - When spooled file available
CWBOBJ_KEY_STARTPAGE - Starting page
CWBOBJ_KEY_UNITOFMEAS - Unit of measure
CWBOBJ_KEY_USERCMT - User comment (100 chars)
CWBOBJ_KEY_USERDATA - User data (10 chars)
CWBOBJ_KEY_SPLSCS - Spool SCS Data
CWBOBJ_KEY_USRDFNDTA - User defined data
(3)CWBOBJ_KEY_USRDFNOPTS - User defined options
CWBOBJ_KEY_USRDFNOBJLIB - User defined object library
CWBOBJ_KEY_USRDFNOBJ - User defined object
CWBOBJ_KEY_USRDFNOBJTYP - User defined object type

Notes:

1. Code page and graphic character set are dependent on each other. If you specify one of these, you
must specify the other.

2. The special value of *FILE is not allowed when using this attribute to create a new spooled file.

3. Up to 4 user defined options may be specified.

Chapter 4. iSeries Access for Windows® C/C++ APIs 331

cwbOBJ_CreateParmObjHandle

Purpose: Allocate a parameter list object handle. The parameter list object can be used to hold a list of
parameters that can be passed in on other APIs.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_CreateParmObjHandle(
cwbOBJ_ParmHandle *parmListHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ParmHandle *parmListHandle - output
Handle of the parameter object.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage: The cwbOBJ_DeleteParmObjectHandle API must be called to free resources allocated by this
call.

332 iSeries: iSeries Access for Windows Programming

cwbOBJ_CreateResourceHandle

Purpose: Create a resource handle for a particular AFP resource on a specified system.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_CreateResourceHandle(
const char *systemName,
const char *resourceName,
const char *resourceLibrary,
cwbOBJ_AFPResourceType resourceType,
cwbOBJ_ObjHandle *objectHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

const char *systemName - input
Pointer to the system name contained in an ASCIIZ string.

const char *resourceName - input
Pointer to the name of the AFP resource.

const char *resourceLibrary - input
Pointer to the name of the iSeries library that contains the resource.

cwbOBJ_AFPResourceType resourceType - input
Specifies what type of resource this is. Must be one of the following:
v CWBOBJ_AFPRSC_FONT
v CWBOBJ_AFPRSC_FORMDEF
v CWBOBJ_AFPRSC_OVERLAY
v CWBOBJ_AFPRSC_PAGESEG
v CWBOBJ_AFPRSC_PAGEDEF

cwbOBJ_ObjHandle *objectHandle - output
On output this will contain the resource handle.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR
General API failure.

Usage: Use this API to get a handle to a resource if you know the name library and type of resource. If
you don’t know either of these or want to choose from a list, use the list APIs to list AFP resources
instead. This API does no checking of the AFP resource on the host. The first time this handle is used to
retrieve data for the resource, a host error will be encountered if the resource file doesn’t exist.

Chapter 4. iSeries Access for Windows® C/C++ APIs 333

cwbOBJ_CreateSplFHandle

Purpose: Create a spooled file handle for a particular spooled file on a specified system.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_CreateSplFHandle(
const char *systemName,
const char *jobName,
const char *jobNumber,
const char *jobUser,
const char *splFName,
const unsigned long splFNumber,
cwbOBJ_ObjHandle *objectHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

const char *systemName - input
Pointer to the system name contained in an ASCIIZ string.

const char *jobName - input
Pointer to the name of the iSeries job that created the spooled file in an ASCIIZ string.

const char *jobNumber - input
Pointer to the number of the iSeries job that created the spooled file in an ASCIIZ string.

const char *jobNumber - input
Pointer to the user of the iSeries job that created the spooled file in an ASCIIZ string.

const char *splFName - input
Pointer to the name of the spooled file in an ASCIIZ string.

const unsigned long splFNumber - input
The number of the spooled file.

cwbOBJ_ObjHandle *objectHandle - output
On output this will contain the spooled file handle.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage: This API does no checking of the spooled file on the host. The first time this handle is used to
retrieve data for the spooled file, a host error will be encountered if the spooled file doesn’t exist.

334 iSeries: iSeries Access for Windows Programming

cwbOBJ_CreateSplFHandleEx

Purpose: Create a spooled file handle for a particular spooled file on a specified system.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_CreateSplFHandleEx(
const char *systemName,
const char *jobName,
const char *jobNumber,
const char *jobUser,
const char *splFName,
const unsigned long splFNumber,
const char *createdSystem,
const char *createdDate,
const char *createdTime,
cwbOBJ_ObjHandle *objectHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

const char *systemName - input
Pointer to the system name contained in an ASCIIZ string.

const char *jobName - input
Pointer to the name of the iSeries job that created the spooled file in an ASCIIZ string.

const char *jobNumber - input
Pointer to the number of the iSeries job that created the spooled file in an ASCIIZ string.

const char *jobNumber - input
Pointer to the user of the iSeries job that created the spooled file in an ASCIIZ string.

const char *splFName - input
Pointer to the name of the spooled file in an ASCIIZ string.

const unsigned long splFNumber - input
The number of the spooled file.

const char *createdSystem - input
Pointer to the name of the system the spooled file was created on in an ASCIIZ string.

const char *createdDate - input
Pointer to the date the spooled file was created in an ASCIIZ string.

const char *createdTime - input
Pointer to the time the spooled file was created in an ASCIIZ string.

cwbOBJ_ObjHandle *objectHandle - output
On output this will contain the spooled file handle.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Chapter 4. iSeries Access for Windows® C/C++ APIs 335

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage: This API does not check the spooled file on the host. The first time this handle is used to retrieve
data for the spooled file, a host error will be encountered if the spooled file doesn’t exist.

336 iSeries: iSeries Access for Windows Programming

cwbOBJ_DeleteListHandle

Purpose: Deallocates a list handle that was previously allocated with the cwbOBJ_CreateListHandle()
API. This will free any resources associated with the list.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_DeleteListHandle(
cwbOBJ_ListHandle listHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ListHandle listHandle - input
List handle that will be deleted.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_INVALID_HANDLE
List handle not found.

Usage: If the list associated with this handle is opened, this call will close it. If there are opened handles
to objects in this list, they will no longer be valid. After this call returns successfully, the list handle is no
longer valid.

Chapter 4. iSeries Access for Windows® C/C++ APIs 337

cwbOBJ_DeleteObjHandle

Purpose: Releases a handle to an object.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_DeleteObjHandle(
cwbOBJ_ObjHandle objectHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle objectHandle - input
Handle of the object to release.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

Usage: None

338 iSeries: iSeries Access for Windows Programming

cwbOBJ_DeleteParmObjHandle

Purpose: Deallocate a parameter list object handle and free the resources used by it.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_DeleteParmObjHandle(
cwbOBJ_ParmHandle parmListHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ParmHandle parmListHandle - input
Handle of the parameter object.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not a parameter object handle.

Usage: After this call returns successfully, the parmListHandle is no longer valid.

Chapter 4. iSeries Access for Windows® C/C++ APIs 339

cwbOBJ_DeleteSplF

Purpose: Delete an iSeries spooled file.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_DeleteSplF(
cwbOBJ_ObjHandle splFHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file to be deleted.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

Usage: After this calls returns successfully, cwbOBJ_DeleteObjHandle() should be called to release the
splFHandle.

340 iSeries: iSeries Access for Windows Programming

cwbOBJ_DisplayResource

Purpose: Displays the specified AFP resource to the user.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_DisplayResource(
cwbOBJ_ObjHandle resourceHandle,
const char *view,
const unsigned long flags,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle resourceHandle - input
Handle of the AFP Resource object. It must be an overlay or a pagesegment type of resource.

const char *view - input
Optional, may be NULL. If specified, it is a pointer to an ASCIIZ string that specifies the view to use
when invoking the AFP viewer. There are two predefined views shipped with the viewer: LETTER (8.5″
x 11″) and SFLVIEW (132 column). Users may also add their own.

const unsigned long flags - input
Any of following bits may be set: CWBOBJ_DSPSPLF_WAIT - instructs this call to wait until the viewer
process has successfully opened the resource before returning. If this bit is 0, this API will return after
it starts the viewer process. If it is 1, this API will wait for the viewer to get the resource open before
returning. All other bits must be set to 0.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate a temporary buffer.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_NO_VIEWER
The viewer support for ClientAccess/400 was not installed.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the code page that is being used.

CWB_API_ERROR
General API failure.

CWBOBJ_RC_INVALID_TYPE
The handle given for resourceHandle is not a handle to an overlay or pagesegment resource.

Usage: Use this API to bring up the AFP viewer on the specified AFP resource. The type of the resource
must be an overlay or a pagesegment. A return code of CWB_NO_VIEWER means that the viewer
component was not installed on the workstation.

Chapter 4. iSeries Access for Windows® C/C++ APIs 341

cwbOBJ_DisplaySplF

Purpose: Displays the specified spooled file to the user.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_DisplaySplF(
cwbOBJ_ObjHandle splFHandle,
const char *view,
const unsigned long flags,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the parameter object.

const char *view - input
Optional, may be NULL. If specified it is a pointer to an ASCIIZ string that specifies the view to use
when invoking the spooled file viewer. The are two predefined views shipped with the viewer:

1. LETTER (8.5″ x 11″)

2. SFLVIEW (132 column)

Users may also add their own.

const unsigned long flags - input
Any of following bits may be set: CWBOBJ_DSPSPLF_WAIT - instructs this call to wait until the viewer
process has successfully opened the spooled file before returning. If this bit is 0, this API will return
after it starts the viewer process. If it is 1, this API will wait for the viewer to get the spooled file open
before returning. All other bits must be set to 0.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_NO_VIEWER
The viewer support for ClientAccess/400 was not installed.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage: Use this API to bring up the AFP viewer on the specified spooled file. The AFP viewer can view
AFP data, SCS data and plain ASCII text data. A return code of CWB_NO_VIEWER means that the viewer
component was not installed on the workstation.

342 iSeries: iSeries Access for Windows Programming

cwbOBJ_DropConnections

Purpose: Drops all unused conversations to all systems for the network print server for this process.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_DropConnections(
cwbSV_ErrHandle errorHandle);

Parameters:

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage: The CWBOBJ.DLL maintains a pool of available conversations to the network print server for use
on the APIs. These conversations normally time out after not having been used for 10 to 20 minutes and
are then dropped. This API allows the application to clean up the pool of conversations immediately
without waiting for the timeout. It can also be used at the end of the process to make sure that any
conversations are terminated. This API will drop all connections to all servers for this process that are not
″in use.″ In use connections include those with open spooled files on them (for creating or reading from).

Chapter 4. iSeries Access for Windows® C/C++ APIs 343

cwbOBJ_EndWriter

Purpose: Ends an iSeries writer job.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_EndWriter(
cwbOBJ_ObjHandle writerHandle,
cwbOBJ_ParmHandle *parmListHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle writerHandle - input
Handle of the writer job to be stopped. This handle can be obtained by either listing writers and getting
the writer handle from that list or from starting a writer and asking for the writer handle to be returned.

cwbOBJ_ParmHandle *parmListHandle - input
Optional. A pointer to a valid parameter list object handle that contains parameters for ending the
writer.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage: After this calls returns successfully, cwbOBJ_DeleteObjHandle(should be called to release the
writerHandle. The following parameter key’s may be set in the pParmListHandl object:
v CWBOBJ_KEY_WTREND - When to end the writer. May be any these special values:

*CNTRLD - end the writer after the current file is done printing.

*IMMED - end the writer immediately

*PAGEEND - end the writer at the end of the current page.

344 iSeries: iSeries Access for Windows Programming

cwbOBJ_GetListSize

Purpose: Get the size of an opened list.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_GetListSize(
cwbOBJ_ListHandle listHandle,
unsigned long *size,
cwbOBJ_List_Status *listStatus,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ListHandle listHandle - input
Handle of the list to get the size of. This list must be opened.

unsigned long *size - output
On output, this will be set to the current size of the list.

cwbOBJ_List_Status *listStatus - output
Optional, may be NULL. This will always be CWBOBJ_LISTSTS_COMPLETED for lists opened
synchronously.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_LIST_NOT_OPEN
The list isn’t open.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 345

cwbOBJ_GetNPServerAttr

Purpose: Get an attribute of the QNPSERVR program on a specified system.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_GetNPServerAttr(
const char *systemName,
cwbOBJ_KeyID key,
void *buffer,
unsigned long bufLen,
unsigned long *bytesNeeded,
cwbOBJ_DataType *keyType,
cwbSV_ErrHandle errorHandle);

Parameters:

const char *systemName - input
Pointer to the system name contained in an ASCIIZ string.

cwbOBJ_KeyID key - input
Identifying key of the attribute to retrieve.

void *buffer - output
The buffer that will hold the attribute value. If this call returns successfully. The value of the key
determines what type of data will be put into pBuffer. The type is also returned to the *keyType
parameter, if provided.

unsigned long bufLen - input
The length of the buffer pointed to by pBuffer.

unsigned long *bytesNeeded - output
On output, this will be the number of bytes needed to hold result.

cwbOBJ_DataType *keyType - output
Optional, may be NULL. On output this will contain the type of data used to represent this attribute
and what is stored at *buffer.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Buffer too small.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_KEY
Key isn’t valid.

346 iSeries: iSeries Access for Windows Programming

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage: The following attributes may be retrieved from the QNPSERVR program:

v CWBOBJ_KEY_NPSCCSID - Server CCSID

v CWBOBJ_KEY_NPSLEVEL - Server code level

Chapter 4. iSeries Access for Windows® C/C++ APIs 347

cwbOBJ_GetObjAttr

Purpose: Get an attribute of an object.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_GetObjAttr(
cwbOBJ_ObjHandle objectHandle,
cwbOBJ_KeyID key,
void *buffer,
unsigned long bufLen,
unsigned long *bytesNeeded,
cwbOBJ_DataType *keyType,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle objectHandle - input
Handle of the object to get the attribute for.

cwbOBJ_KeyID key - input
Identifying key of the attribute to retrieve. The CWBOBJ_KEY_XXX constants define the key ids. The
type of object pointed to by objectHandle determine which keys are valid.

void *buffer - output
The buffer that will hold the attribute value, if this call returns successfully. The value of the key
determines what type of data will be put into pBuffer. The type is also returned to the *keyType
parameter, if provided.

unsigned long bufLen - input
The length of the buffer pointed to by pBuffer.

unsigned long *bytesNeeded - output
On output, this will be the number of bytes needed to hold result.

cwbOBJ_DataType *keyType - output
Optional, may be NULL. On output this will contain the type of data used to represent this attribute
and what is stored at *buffer.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW
Buffer too small.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_KEY
Key isn’t valid.

348 iSeries: iSeries Access for Windows Programming

CWB_API_ERROR
General API failure.

Usage: The following attributes may be retrieved for these object types:

v CWBOBJ_LIST_SPLF:

CWBOBJ_KEY_AFP - AFP resources used
CWBOBJ_KEY_ALIGN - Align page
CWBOBJ_KEY_BKMGN_ACR - Back margin across
CWBOBJ_KEY_BKMGN_DWN - Back margin down
CWBOBJ_KEY_BKOVRLLIB - Back overlay library name
CWBOBJ_KEY_BKOVRLAY - Back overlay name
CWBOBJ_KEY_BKOVL_ACR - Back overlay offset across
CWBOBJ_KEY_BKOVL_DWN - Back overlay offset down
CWBOBJ_KEY_CPI - Characters per inch
CWBOBJ_KEY_CODEDFNTLIB - Coded font library name
CWBOBJ_KEY_CODEDFNT - Coded font
CWBOBJ_KEY_COPIES - Copies (total)
CWBOBJ_KEY_COPIESLEFT - Copies left to produce
CWBOBJ_KEY_CURPAGE - Current page
CWBOBJ_KEY_DATE - Date file was opened
CWBOBJ_KEY_PAGRTT - Degree of page rotation
CWBOBJ_KEY_ENDPAGE - Ending page
CWBOBJ_KEY_FILESEP - File separators
CWBOBJ_KEY_FOLDREC - Wrap text to next line
CWBOBJ_KEY_FONTID - Font identifier to use (default)
CWBOBJ_KEY_FORMFEED - Form feed
CWBOBJ_KEY_FORMTYPE - Form type
CWBOBJ_KEY_FTMGN_ACR - Front margin across
CWBOBJ_KEY_FTMGN_DWN - Front margin down
CWBOBJ_KEY_FTOVRLLIB - Front overlay library name
CWBOBJ_KEY_FTOVRLAY - Front overlay
CWBOBJ_KEY_FTOVL_ACR - Front overlay offset across
CWBOBJ_KEY_FTOVL_DWN - Front overlay offset down
CWBOBJ_KEY_CHAR_ID - Graphic character set
CWBOBJ_KEY_JUSTIFY - Hardware justification
CWBOBJ_KEY_HOLD - Hold the spool file
CWBOBJ_KEY_JOBNAME - Name of the job that created file
CWBOBJ_KEY_JOBNUMBER - Number of the job that created file
CWBOBJ_KEY_USER - Name of the user that created file
CWBOBJ_KEY_LASTPAGE - Last page that printed
CWBOBJ_KEY_LPI - Lines per inch
CWBOBJ_KEY_MAXRECORDS - Maximum number of records allowed
CWBOBJ_KEY_OUTPTY - Output priority
CWBOBJ_KEY_OUTQUELIB - Output queue library name
CWBOBJ_KEY_OUTQUE - Output queue
CWBOBJ_KEY_OVERFLOW - Overflow line number
CWBOBJ_KEY_PAGELEN - Page length
CWBOBJ_KEY_MEASMETHOD - Measurement method
CWBOBJ_KEY_PAGEWIDTH - Page width
CWBOBJ_KEY_MULTIUP - Logical pages per physical side
CWBOBJ_KEY_POINTSIZE - The default font’s point size
CWBOBJ_KEY_FIDELITY - The error handling when printing
CWBOBJ_KEY_DUPLEX - Print on both sides of paper
CWBOBJ_KEY_PRTQUALITY - Print quality
CWBOBJ_KEY_PRTTEXT - Text printed at bottom of each page
CWBOBJ_KEY_PRTDEVTYPE - Printer dev type (data stream type)
CWBOBJ_KEY_PRTRFILELIB - Printer file library
CWBOBJ_KEY_PRTRFILE - Printer file
CWBOBJ_KEY_RECLENGTH - Record length
CWBOBJ_KEY_RPLUNPRT - Replace unprintable characters

Chapter 4. iSeries Access for Windows® C/C++ APIs 349

CWBOBJ_KEY_RPLCHAR - Character to replace unprintables
CWBOBJ_KEY_RESTART - Where to restart printing at
CWBOBJ_KEY_SAVESPLF - Save file after printing
CWBOBJ_KEY_SRCDRWR - Source drawer
CWBOBJ_KEY_SPOOLFILE - Spool file name
CWBOBJ_KEY_SPLFNUM - Spool file number
CWBOBJ_KEY_SPLFSTATUS - Spool file status
CWBOBJ_KEY_STARTPAGE - Starting page to print
CWBOBJ_KEY_TIME - Time spooled file was opened at
CWBOBJ_KEY_PAGES - Number of pages in spool file
CWBOBJ_KEY_UNITOFMEAS - Unit of measure
CWBOBJ_KEY_USERCMT - User comment
CWBOBJ_KEY_USERDATA - User data
CWBOBJ_KEY_USRDFNDTA - User defined data
CWBOBJ_KEY_USRDFNOPTS - User defined options
CWBOBJ_KEY_USRDFNOBJ - User defined object
CWBOBJ_KEY_USRDFNOBJLIB- User defined object library
CWBOBJ_KEY_USRDFNOBJTYP- User defined object type

v CWBOBJ_LIST_OUTQ:
CWBOBJ_KEY_AUTHCHCK - authority to check
CWBOBJ_KEY_DATAQUELIB - data queue library
CWBOBJ_KEY_DATAQUE - data queue
CWBOBJ_KEY_DESCRIPTION - text description
CWBOBJ_KEY_DISPLAYANY - users can display any file on queue
CWBOBJ_KEY_JOBSEPRATR - number of job separators
CWBOBJ_KEY_NUMFILES - total spooled files on output queue
CWBOBJ_KEY_NUMWRITERS - number of writers started to queue
CWBOBJ_KEY_OPCNTRL - operator controlled
CWBOBJ_KEY_ORDER - order on queue (sequence)
CWBOBJ_KEY_OUTQUELIB - output queue library name
CWBOBJ_KEY_OUTQUE - output queue
CWBOBJ_KEY_OUTQUESTS - output queue status
CWBOBJ_KEY_PRINTER - printer
CWBOBJ_KEY_SEPPAGE - print banner page
CWBOBJ_KEY_USRDFNDTA - user defined data
CWBOBJ_KEY_USRDFNOBJ - user defined object
CWBOBJ_KEY_USRDFNOBJLIB- user defined object library
CWBOBJ_KEY_USRDFNOBJTYP- user defined object type
CWBOBJ_KEY_USRDFNOPTS - user defined options
CWBOBJ_KEY_USRDRVPGM - user driver program
CWBOBJ_KEY_USRDRVPGMLIB- user driver program library
CWBOBJ_KEY_USRDRVPGMDTA- user driver program data
CWBOBJ_KEY_USRTFMPGM - user data transform program
CWBOBJ_KEY_USRTFMPGMLIB- user data transform program library
CWBOBJ_KEY_WRITER - writer job name
CWBOBJ_KEY_WTRJOBNUM - writer job number
CWBOBJ_KEY_WTRJOBSTS - writer job status
CWBOBJ_KEY_WTRJOBUSER - writer job user

v CWBOBJ_LIST_PRTD:

CWBOBJ_KEY_AFP - AFP resources used
CWBOBJ_KEY_CODEPAGE - code page
CWBOBJ_KEY_DEVCLASS - device class
CWBOBJ_KEY_DEVMODEL - device model
CWBOBJ_KEY_DEVTYPE - device type
CWBOBJ_KEY_DRWRSEP - drawer to use for separators
CWBOBJ_KEY_FONTID - font identifier
CWBOBJ_KEY_FORMFEED - form feed
CWBOBJ_KEY_CHAR_ID - graphic character set
CWBOBJ_KEY_MFGTYPE - manufacturer’s type & model
CWBOBJ_KEY_MSGQUELIB - message queue library
CWBOBJ_KEY_MSGQUE - message queue
CWBOBJ_KEY_POINTSIZE - default font’s point size
CWBOBJ_KEY_PRINTER - printer
CWBOBJ_KEY_PRTQUALITY - print quality
CWBOBJ_KEY_DESCRIPTION - text description

350 iSeries: iSeries Access for Windows Programming

CWBOBJ_KEY_SCS2ASCII - transform SCS to ASCII
CWBOBJ_KEY_USRDFNDTA - user defined data
CWBOBJ_KEY_USRDFNOPTS - user defined options
CWBOBJ_KEY_USRDFNOBJLIB- user defined object library
CWBOBJ_KEY_USRDFNOBJ - user defined object
CWBOBJ_KEY_USRDFNOBJTYP- user defined object type
CWBOBJ_KEY_USRTFMPGMLIB- user data transform

program library
CWBOBJ_KEY_USRTFMPGM - user data transform program
CWBOBJ_KEY_USRDRVPGMDTA- user driver program data
CWBOBJ_KEY_USRDRVPGMLIB- user driver program library
CWBOBJ_KEY_USRDRVPGM - user driver program

v CWBOBJ_LIST_PRTF:

CWBOBJ_KEY_ALIGN - align page
CWBOBJ_KEY_BKMGN_ACR - back margin across
CWBOBJ_KEY_BKMGN_DWN - back margin down
CWBOBJ_KEY_BKOVRLLIB - back side overlay library
CWBOBJ_KEY_BKOVRLAY - back side overlay name
CWBOBJ_KEY_BKOVL_DWN - back overlay offset down
CWBOBJ_KEY_BKOVL_ACR - back overlay offset across
CWBOBJ_KEY_CPI - characters per inch
CWBOBJ_KEY_CODEDFNTLIB - coded font library name
CWBOBJ_KEY_CODEPAGE - code page
CWBOBJ_KEY_CODEDFNT - coded font
CWBOBJ_KEY_COPIES - copies (total)
CWBOBJ_KEY_DBCSDATA - contains DBCS character set data
CWBOBJ_KEY_DBCSEXTENSN - process DBCS extension

characters
CWBOBJ_KEY_DBCSROTATE - rotate DBCS characters
CWBOBJ_KEY_DBCSCPI - DBCS CPI
CWBOBJ_KEY_DBCSSISO - DBCS SI/SO positioning
CWBOBJ_KEY_DFR_WRITE - defer write
CWBOBJ_KEY_PAGRTT - degree of page rotation
CWBOBJ_KEY_ENDPAGE - ending page number to print
CWBOBJ_KEY_FILESEP - number of file separators
CWBOBJ_KEY_FOLDREC - wrap text to next line
CWBOBJ_KEY_FONTID - Font identifier to use (default)
CWBOBJ_KEY_FORMFEED - type of paperfeed to be used
CWBOBJ_KEY_FORMTYPE - name of the form to be used
CWBOBJ_KEY_FTMGN_ACR - front margin across
CWBOBJ_KEY_FTMGN_DWN - front margin down
CWBOBJ_KEY_FTOVRLLIB - front side overlay library
CWBOBJ_KEY_FTOVRLAY - front side overlay name
CWBOBJ_KEY_FTOVL_ACR - front overlay offset across
CWBOBJ_KEY_FTOVL_DWN - front overlay offset down
CWBOBJ_KEY_CHAR_ID - graphic character set for this file
CWBOBJ_KEY_JUSTIFY - hardware justification
CWBOBJ_KEY_HOLD - hold the spool file
CWBOBJ_KEY_LPI - lines per inch
CWBOBJ_KEY_MAXRCDS - maximum number of records allowed
CWBOBJ_KEY_OUTPTY - output priority
CWBOBJ_KEY_OUTQUELIB - output queue library
CWBOBJ_KEY_OUTQUE - output queue
CWBOBJ_KEY_OVERFLOW - overflow line number
CWBOBJ_KEY_LINES_PAGE - page length in lines per page
CWBOBJ_KEY_PAGELEN - page length in Units of Measurement
CWBOBJ_KEY_MEASMETHOD - measurement method

(*ROWCOL or *UOM)
CWBOBJ_KEY_CHAR_LINE - page width in characters per line
CWBOBJ_KEY_PAGEWIDTH - width of page in Units of Measure

Chapter 4. iSeries Access for Windows® C/C++ APIs 351

CWBOBJ_KEY_MULTIUP - logical pages per physical side
CWBOBJ_KEY_POINTSIZE - the default font’s point size
CWBOBJ_KEY_FIDELITY - the error handling when printing
CWBOBJ_KEY_DUPLEX - print on both sides of paper
CWBOBJ_KEY_PRTQUALITY - print quality
CWBOBJ_KEY_PRTTEXT - text printed at bottom of each page
CWBOBJ_KEY_PRINTER - printer device name
CWBOBJ_KEY_PRTDEVTYPE - printer dev type (data stream type)
CWBOBJ_KEY_PRTRFILELIB - printer file library
CWBOBJ_KEY_PRTRFILE - printer file
CWBOBJ_KEY_RPLUNPRT - replace unprintable characters
CWBOBJ_KEY_RPLCHAR - character to replace unprintables
CWBOBJ_KEY_SAVE - save spooled file after printing
CWBOBJ_KEY_SRCDRWR - source drawer
CWBOBJ_KEY_SPOOL - spool the data
CWBOBJ_KEY_SCHEDULE - when available to the writer
CWBOBJ_KEY_STARTPAGE - starting page to print
CWBOBJ_KEY_DESCRIPTION - text description
CWBOBJ_KEY_UNITOFMEAS - unit of measure
CWBOBJ_KEY_USERDATA - user data
CWBOBJ_KEY_USRDFNDTA - User defined data
CWBOBJ_KEY_USRDFNOPTS - User defined options
CWBOBJ_KEY_USRDFNOBJLIB- User defined object library
CWBOBJ_KEY_USRDFNOBJ - User defined object
CWBOBJ_KEY_USRDFNOBJTYP- User defined object type

v CWBOBJ_LIST_WTR:
CWBOBJ_KEY_WRITER - writer job name
CWBOBJ_KEY_WTRJOBNUM - writer job number
CWBOBJ_KEY_WTRJOBSTS - writer job status
CWBOBJ_KEY_WTRJOBUSER - writer job user

v CWBOBJ_LIST_LIB:
CWBOBJ_KEY_LIBRARY - the library name
CWBOBJ_KEY_DESCRIPTION - description of the library

v CWBOBJ_LIST_RSC:
CWBOBJ_KEY_RSCNAME - resource name
CWBOBJ_KEY_RSCLIB - resource library
CWBOBJ_KEY_RSCTYPE - resource object type
CWBOBJ_KEY_OBJEXTATTR - object extended attribute
CWBOBJ_KEY_DESCRIPTION - description of the resource
CWBOBJ_KEY_DATE - date object was last modified
CWBOBJ_KEY_TIME - time object was last modified

352 iSeries: iSeries Access for Windows Programming

cwbOBJ_GetObjAttrs

Purpose: Get several attributes of an object.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_GetObjAttrs(
cwbOBJ_ObjHandle objectHandle,
unsigned long numAttrs,
cwbOBJ_GetObjAttrParms *getAttrParms,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle objectHandle - input
Handle of the object to get the attribute for.

unsigned long numAttrs - input
number of attributes to retrieve

cwbOBJ_GetObjAttrParms *getAttrParms - input
an array of numAttrs elements that for each attribute to retrieve gives the attribute key (id), the buffer
where to store the value for that attribute and the size of the buffer

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW
Buffer too small.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_KEY
Key isn’t valid.

CWB_API_ERROR
General API failure.

Usage: See the Usage Notes in cwbOBJ_GetObjAttr to see which attribute are valid for the various types
of objects.

Chapter 4. iSeries Access for Windows® C/C++ APIs 353

cwbOBJ_GetObjHandle

Purpose: Get list object. This call gets a handle to an object in an opened list. The handle returned must
be released with the the cwbOBJ_DeleteObjHandle when the caller is done with it to release resources.
The handle returned is only valid while the list is opened.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_GetObjHandle(
cwbOBJ_ListHandle listHandle,
unsigned long ulPosition,
cwbOBJ_ObjHandle *objectHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ListHandle listHandle - input
Handle of the list to get the object handle from. This list must be opened.

unsigned long ulPosition - input
The position within the list of the object to get a handle for. It is 0 based. Valid values are 0 to the
number of objects in the list - 1. You can use cwbOBJ_GetListSize() to get the size of the list.

cwbOBJ_ObjHandle *objectHandle - output
On return, this will contain the handle of the object.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_LIST_NOT_OPEN
The list isn’t open.

CWBOBJ_RC_INVALID_INDEX
The ulPosition is out of range.

Usage: None

354 iSeries: iSeries Access for Windows Programming

cwbOBJ_GetObjHandleFromID

Purpose: Regenerate an object handle from it’s binary ID and type. cwbOBJ_DeleteObjHandle() must be
called to free resources when you are done using the object handle.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_GetObjHandleFromID(
void *idBuffer,
unsigned long bufLen,
cwbOBJ_ObjType objectType,
cwbOBJ_ObjHandle *objectHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

void *idBuffer - input
The buffer that holds the id of this object.

unsigned long bufLen - input
The length of the data pointed to by pIDBuffer.

cwbOBJ_ObjType type - input
Type of object this ID is for. This must match the type of object the ID was taken from.

cwbOBJ_ObjHandle *objectHandle - output
If this call returns successfully, this will be the handle to the object. This handle should be released
with the cwbOBJ_DeleteObjHandle() API when done using it.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_INVALID_TYPE
objectType is not correct.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 355

cwbOBJ_GetObjID

Purpose: Get the id of an object. This is the data the uniquely identifies this object on the server. The
data gotten is not readable and is binary. It can be passed back on the cwbOBJ_GetObjHandleFromID()
API to get a handle back to that object.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_GetObjID(
cwbOBJ_ObjHandle objectHandle,
void *idBuffer,
unsigned long bufLen,
unsigned long *bytesNeeded,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle objectHandle - input
Handle of the object to get the ID from.

void *idBuffer - output
The buffer that will hold the ID of this object.

unsigned long bufLen - input
The length of the buffer pointed to by pIDBuffer.

unsigned long *bytesNeeded - output
On output, this will be the number of bytes needed to hold the ID.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW
Buffer too small.

Usage: None

356 iSeries: iSeries Access for Windows Programming

cwbOBJ_GetParameter

Purpose: Gets the value of a parameter in a parameter list object.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_GetParameter(
cwbOBJ_ParmHandle parmListHandle,
cwbOBJ_KeyID key,
void *buffer,
unsigned long bufLen,
unsigned long *bytesNeeded,
cwbOBJ_DataType *keyType,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ParmHandle parmListHandle - input
Handle of the parameter object.

cwbOBJ_KeyID key - input
The id of the parameter to set.

void *buffer - output
The buffer that will hold the attribute value. If this call returns successfully. The value of the key
determines what type of data will be put into pBuffer. The type is also returned to the *keyType
parameter, if provided.

unsigned long bufLen - input
The length of the buffer pointed to by buffer.

unsigned long *bytesNeeded - output
On output, this will be the number of bytes needed to hold result.

cwbOBJ_DataType *keyType - output
Optional, may be NULL. On output this will contain the type of data used to represent this attribute
and what is stored at *buffer.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW
Buffer too small.

CWBOBJ_RC_KEY_NOT_FOUND
Key isn’t specified in parameter list.

CWB_API_ERROR
General API failure.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 357

cwbOBJ_GetSplFHandleFromNewSplF

Purpose: Uses a new spooled file handle to generate a spooled file handle. See notes below about
using this API on a new spool file that was created with data type automatic.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_GetSplFHandleFromNewSplF(
cwbOBJ_ObjHandle newSplFHandle,
cwbOBJ_ObjHandle *splFHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle newSplFHandle - input
New spooled file handle. This is the handle passed back on the cwbOBJ_CreateNewSplF() API.

cwbOBJ_ObjHandle *splFHandle - output
Pointer to an object handle that, upon successful completion of this call, will hold the spooled file
handle. This handle may be used with other APIs that take a spooled file handle as input.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_SPLFNOTOPEN
Spooled file hasn’t been created on the host yet.

Usage: The handle returned in splFHandle must be released with the cwbOBJ_DeleteObjHandle() API in
order to free resources.

If you are using automatic data typing for the spooled file (the attribute of CWBOBJ_KEY_PRTDEVTYPE
was set to *AUTO or or wasn’t specified on the cwbOBJ_CreateNewSplF() API) then creation of the
spooled file will be delayed until sufficient data has been written to the spooled file to determine the type of
the data (*SCS, *AFPDS or *USERASCII). If the new spooled file is in this state when you call this API,
the return code will be CWBOBJ_RC_SPLFNOTOPEN.

358 iSeries: iSeries Access for Windows Programming

cwbOBJ_GetSplFMsgAttr

Purpose: Retrieves an attribute of a message that’s associated with a spooled file.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_GetSplFMsgAttr(
cwbOBJ_ObjHandle splFHandle,
cwbOBJ_KeyID key,
void *buffer,
unsigned long bufLen,
unsigned long *bytesNeeded,
cwbOBJ_DataType *keyType,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file.

cwbOBJ_KeyID key - input
Identifying key of the attribute to retrieve. The CWBOBJ_KEY_XXX constants define the key ids.

void *buffer - output
The buffer that will hold the attribute value, if this call returns successfully. The value of the key
determines what type of data will be put into pBuffer. The type is also returned to the *keyType
parameter, if provided.

unsigned long bufLen - input
The length of the buffer pointed to by pBuffer.

unsigned long *bytesNeeded - output
On output, this will be the number of bytes needed to hold result.

cwbOBJ_DataType *keyType - output
Optional, may be NULL. On output this will contain the type of data used to represent this attribute
and what is stored at *buffer.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW
Buffer too small.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_KEY
Key isn’t valid.

Chapter 4. iSeries Access for Windows® C/C++ APIs 359

CWBOBJ_RC_SPLFNOMESSAGE
The spooled file isn’t waiting on a message.

CWB_API_ERROR
General API failure.

Usage: The following keys are valid:
CWBOBJ_KEY_MSGTEXT - Message text
CWBOBJ_KEY_MSGHELP - Message help text
CWBOBJ_KEY_MSGREPLY - Message reply
CWBOBJ_KEY_MSGTYPE - Message type
CWBOBJ_KEY_MSGID - Message ID
CWBOBJ_KEY_MSGSEV - Message severity
CWBOBJ_KEY_DATE - Message date
CWBOBJ_KEY_TIME - Message time

Message formatting characters will appear in the message text and should be used as follows:

&N Force the text to a new line indented to column 2. If the text is longer than 1 line, the next lines
should be indented to column 4 until the end of text or another format control character is found.

&P Force the text to a new line indented to column 6. If the text is longer than 1 line, the next lines
should be indented to column 4 until the end of text or another format control character is found.

&B Force the text to a new line indented to column 4. If the text is longer than 1 line, the next lines
should be indented to column 6 until the end of text or another format control character is found.

360 iSeries: iSeries Access for Windows Programming

cwbOBJ_HoldOutputQueue

Purpose: Holds an iSeries output queue.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_HoldOutputQueue(
cwbOBJ_ObjHandle queueHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle queueHandle - input
Handle of the output queue to be held.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not a valid queue handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 361

cwbOBJ_HoldSplF

Purpose: Holds a spooled file.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_HoldSplF(
cwbOBJ_ObjHandle splFHandle,
cwbOBJ_ParmHandle *parmListHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file to be held.

cwbOBJ_ParmHandle *parmListHandle - input
Optional. A pointer to a valid parameter list object handle that contains parameters for holding the
spooled file.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

Usage: The following parameter key may be set in the parmListHandle object:

v CWBOBJ_KEY_HOLDTYPE

- what type of hold to do. May be ″*IMMED″ or ″*PAGEEND″. ″*IMMED″ is the default.

362 iSeries: iSeries Access for Windows Programming

cwbOBJ_IsViewerAvailable

Purpose: Checks if the spooled file viewer is available.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_IsViewerAvailable(
cwbSV_ErrHandle errorHandle);

Parameters:

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion (viewer is installed).

CWB_NO_VIEWER
Viewer not installed.

Usage: Use this function to test for the presence of the viewer on the workstation. If the viewer is
installed this function will return CWB_OK. If the viewer is not available, the function will return
CWB_NO_VIEWER and the errorHandle parameter (if provided) will contain an appropriate error message.
Using this function, applications can check for viewer support without calling the cwbOBJ_DisplaySplF()
API.

Chapter 4. iSeries Access for Windows® C/C++ APIs 363

cwbOBJ_MoveSplF

Purpose: Moves an iSeries spooled file to another output queue or to another position on the same
output queue.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_MoveSplF(
cwbOBJ_ObjHandle splFHandle,
cwbOBJ_ObjHandle *targetSplFHandle,
cwbOBJ_ObjHandle *outputQueueHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file to be moved.

cwbOBJ_ObjHandle *targetSplFHandle - input
Optional. The handle of another spooled file on the same system, that specifies the spooled file to
move this spooled file after. If this is specified, *outputQueueHandle is not used.

cwbOBJ_ObjHandle *outputQueueHandle - input
Optional. The handle of an output queue on the same system that specifies which output queue to
move the spooled file to. The spooled file will be moved to the first position on this queue. This
parameter is ignored if targetSplFHandle is specified.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

Usage: If both targetSplFHandle and outputQueueHandle are NULL, the spooled file will be moved to the
first position on the current output queue.

364 iSeries: iSeries Access for Windows Programming

cwbOBJ_OpenList

Purpose: Open the list. This actually builds the list. Caller must call the cwbOBJ_ClostList() API when
done with the list to free resources. After the list is opened, the caller may use other APIs on the list to do
things such as get the list size and get object handles to items in the list.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_OpenList(
cwbOBJ_ListHandle listHandle,
cwbOBJ_List_OpenType openType,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ListHandle listHandle - input
Handle of the list to open.

cwbOBJ_List_OpenType openHandle - input
Manner in which to open the list. Must be set to CWBOBJ_LIST_OPEN_SYNCH

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

CWBOBJ_RC_LIST_OPEN
The list is already open.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_NOHOSTSUPPORT
Host doesn’t support this type of list.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 365

cwbOBJ_OpenResource

Purpose: Opens an AFP resource object for reading.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_OpenResource(
cwbOBJ_ObjHandle resourceHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle resourceHandle - input
Handle of the AFP resource file to be opened for reading.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid resource handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_NOHOSTSUPPORT
Host doesn’t support working with resources.

Usage: The resource should be closed with the cwbOBJ_CloseResource() API when done reading from
it.

366 iSeries: iSeries Access for Windows Programming

cwbOBJ_OpenResourceForSplF

Purpose: Opens an AFP Resource object for reading for a spooled file that is already opened for
reading. The API is useful if you are reading an AFP Spooled file and run into an external AFP Resource
that you need to read. By using this API you can open that resource for reading without having to first list
the resource.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_OpenResourceForSplF(
cwbOBJ_ObjHandle splFHandle,
const char *resourceName,
const char *resourceLibrary,
unsigned long resourceType,
const char *reserved,
cwbOBJ_ObjHandle *resourceHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file that is already opened for reading and that the resource will be opened
against. The same conversation (and same instance of the the network print server program on the
iSeries server) will be used for reading the resource and spooled file.

const char *resourceName - input
Pointer to the name of the AFP Resource in an ASCIIZ string.

const char *resourceLibrary - input
Optional, may be NULL. Pointer to the iSeries library of the AFP Resource in an ASCIIZ string. If no
library is specified, the library list of the spooled file is used to search for the resource.

unsigned long resourceType - input
An unsigned long integer with one of the following bits on:

CWBOBJ_AFPRSC_FONT

CWBOBJ_AFPRSC_FORMDEF

CWBOBJ_AFPRSC_OVERLAY

CWBOBJ_AFPRSC_PAGESEG

CWBOBJ_AFPRSC_PAGEDEF

Specifies what type of resource to open.

const char *reserved -
Reserved, must be NULL.

cwbOBJ_OBJHandle *resourceHandle - output
Pointer to an OBJHandle that on successful return will contain the dynamically allocated resource
handle that can be used to read, seek and eventually close the resource.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_FILE_NOT_FOUND
The resource wasn’t found.

Chapter 4. iSeries Access for Windows® C/C++ APIs 367

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_INVALID_HANDLE
Handle is not valid resource handle.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_SPLFNOTOPEN
The spooled file is not opened.

CWBOBJ_RC_NOHOSTSUPPORT
Host doesn’t support working with resources.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR
General API failure.

Usage: This call, if successful, will generate a temporary resource handle and return it in the
resourceHandle parameter. This handle will be deleted automatically when the caller calls the
cwbOBJ_CloseResource() API with it.

The resource should be closed with the cwbOBJ_CloseResource()) API when done reading from it.

368 iSeries: iSeries Access for Windows Programming

cwbOBJ_OpenSplF

Purpose: Opens an iSeries spooled file for reading.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_OpenSplF(
cwbOBJ_ObjHandle splFHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file to be opened for reading.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage: The spooled file should be closed with the cwbOBJ_CloseSplF() API when done reading from it.

Chapter 4. iSeries Access for Windows® C/C++ APIs 369

cwbOBJ_PurgeOutputQueue

Purpose: Purges spooled files on an iSeries output queue.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_PurgeOutputQueue(
cwbOBJ_ObjHandle queueHandle,
cwbOBJ_ParmHandle *parmListHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle queueHandle - input
Handle of the output queue to be purged.

cwbOBJ_ParmHandle * parmListHandle - input
Optional. A pointer to a valid parameter list object handle that contains parameters for purging the
output queue.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage: The parameters specified in parmListHandle, if provided, will specify which spooled files are
purged. If parmListHandle is NULL, all spooled files for the current user are purged. The following
parameter key’s may be set in the parmListHandle object:

v CWBOBJ_KEY_USER

- which user’s spooled files to purge. May be a specific user ID, ″*ALL″ or ″*CURRENT″.
″*CURRENT″ is the default.

v CWBOBJ_KEY_FORMTYPE

- which spooled files to purge base on what formtype they have. May be a specific formtype, ″*ALL″
or ″*STD″. ″*ALL″ is the default.

v CWBOBJ_KEY_USERDATA

- which spooled files to purge base on what userdata they have. May be a specific value or ″*ALL″.
″*ALL″ is the default.

370 iSeries: iSeries Access for Windows Programming

cwbOBJ_ReadResource

Purpose: Reads bytes from the current read location.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_ReadResource(
cwbOBJ_ObjHandle resourceHandle,
char *bBuffer,
unsigned long bytesToRead,
unsigned long *bytesRead,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle resourceHandle - input
Handle of the AFP resource object to be read from.

char *buffer - input
Pointer to buffer to hold the bytes read from the resource.

unsigned long bytesToRead - input
Maximum number of bytes to read. The number read may be less than this.

unsigned long *bytesRead - output
Number of bytes actually read.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_RSCNOTOPEN
Resource file has not been opened yet.

CWBOBJ_RC_ENDOFFILE
The end of file was read.

Usage: The cwbOBJ_OpenResource() API must be called with this resource handle before this API is
called OR the handle must be retrieved with a call to the cwbOBJ_OpenResourceForSplF() API. If the end
of file is reached when reading, the return code will be CWBOBJ_RC_ENDOFFILE and bytesRead will
contain the actual number of bytes read.

Chapter 4. iSeries Access for Windows® C/C++ APIs 371

cwbOBJ_ReadSplF

Purpose: Reads bytes from the current read location.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_ReadSplF(
cwbOBJ_ObjHandle splFHandle,
char *bBuffer,
unsigned long bytesToRead,
unsigned long *bytesRead,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file to be read from.

char *buffer - input
Pointer to buffer to hold the bytes read from the spooled file.

unsigned long bytesToRead - input
Maximum number of bytes to read. The number read may be less than this.

unsigned long *bytesRead - output
Number of bytes actually read.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_SPLFNOTOPEN
Spooled file has not been opened yet.

CWBOBJ_RC_SPLFENDOFFILE
The end of file was read.

Usage: The cwbOBJ_OpenSplF() API must be called with this spooled fil handle before this API is called.
If the end of file is reached when reading, the return code will be CWBOBJ_SPLF_ENDOFFILE and
bytesRead will contain the actual number of bytes read.

372 iSeries: iSeries Access for Windows Programming

cwbOBJ_RefreshObj

Purpose: Refreshes the object with the latest information from the iSeries server. This will ensure the
attributes returned for the object are up to date.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_RefreshObj(
cwbOBJ_ObjHandle objectHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle objectHandle - input
Handle of the object to be refreshed.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage: The following object types may be refreshed:

v CWBOBJ_LIST_SPLF (spooled files)

v CWBOBJ_LIST_PRTF (printer files)

v CWBOBJ_LIST_OUTQ (output queues)

v CWBOBJ_LIST_PRTD (printer devices)

v CWBOBJ_LIST_WTR (writers)

Example: Assume listHandle points to a spooled file list with at least one entry in it.
cwbOBJ_ObjHandle splFileHandle;
ulRC = cwbOBJ_GetObjHandle(listHandle,
0,
&splFileHandle,
NULL);
if (ulRC == CWB_NO_ERROR)
{

ulRC = cwbOBJ_RefreshObj(splFileHandle);
.....
get attributes for object
.....
ulRC = cwbOBJ_DeleteObjHandle(splFileHandle);

}

Chapter 4. iSeries Access for Windows® C/C++ APIs 373

cwbOBJ_ReleaseOutputQueue

Purpose: Releases an iSeries output queue.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_ReleaseOutputQueue(
cwbOBJ_ObjHandle queueHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle queueHandle - input
Handle of the output queue to be released.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not a valid queue handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage: None

374 iSeries: iSeries Access for Windows Programming

cwbOBJ_ReleaseSplF

Purpose: Releases a spooled file.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_ReleaseSplF(
cwbOBJ_ObjHandle splFHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file to be released.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 375

cwbOBJ_ResetListAttrsToRetrieve

Purpose: Resets the list attributes to retrieve information to its default list.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_ResetListAttrsToRetrieve(
cwbOBJ_ListHandle listHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ListHandle listHandle - input
List handle to reset.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

Usage: Use this call to reset the list handle’s list of attributes to retrieve after calling
cwbOBJ_SetListAttrsToRetrieve().

376 iSeries: iSeries Access for Windows Programming

cwbOBJ_ResetListFilter

Purpose: Resets the filter on a list to what it was when the list was first allocated (the default filter).

Syntax:

unsigned int CWB_ENTRY cwbOBJ_ResetListFilter(
cwbOBJ_ListHandle listHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ListHandle listHandle - input
Handle of the list to have its filter reset.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not allocated list handle.

Usage: The list must be closed and reopened for the change to take affect.

Chapter 4. iSeries Access for Windows® C/C++ APIs 377

cwbOBJ_SeekResource

Purpose: Moves the current read position on a resource that is open for reading.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_SeekResource(
cwbOBJ_ObjHandle resourceHandle,
cwbOBJ_SeekOrigin seekOrigin,
signed long seekOffset,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle resourceHandle - input
Handle of the AFP resource file to be seeked.

cwbOBJ_SeekOrigin seekOrigin - input
Where to seek from. Valid values are:

CWBOBJ_SEEK_BEGINNING - seek from the beginning of file

CWBOBJ_SEEK_CURRENT - seek from the current read position

CWBOBJ_SEEK_ENDING - seek from the end of the file

signed long seekOffset - input
Offset (negative or positive) from the seek origin in bytes to move the current read pointer to.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_RSCNOTOPEN
Resource has not been opened yet.

CWBOBJ_RC_SEEKOUTOFRANGE
Seek offset out of range.

Usage: The cwbOBJ_OpenResource() API must be called with this resource handle before this API is
called OR the handle must be retrieved with a call to the cwbOBJ_OpenResourceForSplF() API.

378 iSeries: iSeries Access for Windows Programming

cwbOBJ_SeekSplF

Purpose: Moves the current read position on a spooled file that is open for reading.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_SeekSplF(
cwbOBJ_ObjHandle splFHandle,
cwbOBJ_SeekOrigin seekOrigin,
signed long seekOffset,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file to be closed.

cwbOBJ_SeekOrigin seekOrigin - input
Where to seek from. Valid values are:

v CWBOBJ_SEEK_BEGINNING - seek from the beginning of file

v CWBOBJ_SEEK_CURRENT - seek from the current read position

v CWBOBJ_SEEK_ENDING - seek from the end of the file

signed long seekOffset - input
Offset (negative or positive) from the seek origin in bytes to move the current read pointer to.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_SPLFNOTOPEN
Spooled file has not been opened yet.

CWBOBJ_RC_SEEKOUTOFRANGE
Seek offset out of range.

Usage: The cwbOBJ_OpenSplF() API must be called with this spooled file handle before this API is
called.

Chapter 4. iSeries Access for Windows® C/C++ APIs 379

cwbOBJ_SendNetSplF

Purpose: Sends a spooled file to another user on the same system or to a remote system on the
network.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_SendNetSplF(
cwbOBJ_ObjHandle splFHandle,
cwbOBJ_ParmHandle parmListHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file to be sent.

cwbOBJ_ParmHandle parmListHandle - input
Required. A handle of a parameter list object that contains the parameters for sending the spooled file.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWB_INVALID_PARAMETER
invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

Usage: The equivalent of a send net spooled file (SNDNETSPLF) command will be issued against the
spooled file. The following parameter key’s MUST be set in the parmListHandl object:

v CWBOBJ_KEY_TOUSERID

Specifies user ID to send the spooled file to.

v CWBOBJ_KEY_TOADDRESS

Specifies the remote system to send the spooled file to. ″*NORMAL″ is the default.

The following parameter key’s may be set in the parmListHandle object:

v CWBOBJ_KEY_DATAFORMAT

Specifies the data format in which to transmit the spooled file. May be ″*RCDDATA″ or ″*ALLDATA″.
″*RCDDATA″ is the default.

v CWBOBJ_KEY_VMMVSCLASS

Specifies the VM/MVS SYSOUT class for distributions sent to a VM host system or to an MVS host
system. May be ″A″ to ″Z″ or ″0″ to ″9″. ″A″ is the default.

v CWBOBJ_KEY_SENDPTY

380 iSeries: iSeries Access for Windows Programming

Specifies the queueing priority used for this spooled file when it is being routed through a snad
network. May be ″*NORMAL″ or ″*HIGH″. ″*NORMAL″ is the default.

Chapter 4. iSeries Access for Windows® C/C++ APIs 381

cwbOBJ_SendTCPSplF

Purpose: Sends a spooled file to be printed on a remote system. This is the iSeries server version of the
TCP/IP LPR command.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_SendTCPSplF(
cwbOBJ_ObjHandle splFHandle,
cwbOBJ_ParmHandle parmListHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file to be sent.

cwbOBJ_ParmHandle parmListHandle - input
Required. A handle of a parameter list object that contains the parameters for sending the spooled file.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

CWBOBJ_KEY_SEPPAGE
Specifies wether or not to print the separator page.

CWBOBJ_KEY_USRDTATFMLIB
Specifies the name of the user data transform library.

CWBOBJ_KEY_USRDTATFM
Specifies the name of the user data transform.

Usage: The equivalent of an iSeries server send TCP/IP spooled file (SNDTCPSPLF) command will be
issued against the spooled file. The following parameter key’s MUST be set in the parmListHandl object:

v CWBOBJ_KEY_RMTSYSTEM

Specifies the remote system to which the print request is sent. May be a remote system name or
″*INTNETADR″.

v CWBOBJ_KEY_RMTPRTQ

Specifies the name of the destination print queue.

382 iSeries: iSeries Access for Windows Programming

The following parameter key’s may be set in the parmListHandle object:

v CWBOBJ_KEY_DELETESPLF

Specifies whether to delete the spooled file after it has been successfully sent. May be ″*NO″ or
″*YES″. ″*NO″ is the default.

v CWBOBJ_KEY_DESTOPTION

Specifies a destination-dependant option. These options will be sent to the remote system with the
spooled file.

v CWBOBJ_KEY_DESTINATION

Specifies the type of system to which the spooled file is being sent. When sending to other iSeries
systems, this value should be ″*AS/400″. May also be ″*OTHER″, ″*PSF/2″. ″*OTHER″ is the
default.

v CWBOBJ_KEY_INTERNETADDR

Specifies the internet address of the receiving system.

v CWBOBJ_KEY_MFGTYPE

Specifies the manufacturer, type and model when transforming print data for SCS to ASCII.

v CWBOBJ_KEY_SCS2ASCII

Specifies wether the print data is to be transformed for SCS to ASCII. May be ″*NO″ or ″*YES″.
″*NO″ is the default.

v CWBOBJ_KEY_WSCUSTMOBJ

Specifies the name of the workstation customizing object.

v CWBOBJ_KEY_WSCUSTMOBJL

Specifies the name of the workstation customizing object library.

Chapter 4. iSeries Access for Windows® C/C++ APIs 383

cwbOBJ_SetConnectionsToKeep

Purpose: Set the number of connections that should be left active for a particular system. Normally, the
cwbobj.dll will time out and drop connections after they have not been used for a while. With this API you
can force it to leave open a certain number of connections for this system.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_SetConnectionsToKeep(
const char *systemName
unsigned int connections
cwbSV_ErrHandle errorHandle);

Parameters:

const char *systemName - input
Pointer to the system name contained in ASCIIZ string.

unsigned int connections - input
The number to of connections to keep open.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_PARAMETER
Invalid parameter specified.

Usage: The default number of connections left open per system is 0. The connections are made per
process, so this API only affects connections under the process it is called under. Setting the number of
connections to be left open does not open any new connections.

384 iSeries: iSeries Access for Windows Programming

cwbOBJ_SetListAttrsToRetrieve

Purpose: An optional function that may be applied to list handle before the list is opened. The purpose of
doing this is to improve efficiency by allowing the cwbOBJ_OpenList() API to retrieve just the attributes of
each object that the application will b using.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_SetListAttrsToRetrieve(
cwbOBJ_ListHandle listHandle,
unsigned long numKeys,
const cwbOBJ_KeyID *keys,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ListHandle listHandle - input
List handle to apply the list of attribute keys to.

unsigned long numKeys - input
The number of keys pointed to by the ’keys’ parameter. May be 0, which means that no attributes are
needed for objects in the list.

const cwbOBJ_KeyID *keys - input
An array of numKeys keys that are the IDs of the attributes to be retrieved for each object in the list
when the list is opened.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

CWB_INVALID_PARAMETER
Invalid parameter specified.

Usage: This call is used to provide a clue to the cwbOBJ_OpenList() API as to what attributes the
application is interested in for the objects that are listed. Using this information, the cwbOBJ_OpenList()
API can be more efficient. The attribute keys that are valid in the ’keys’ list depend on type of object being
listed (set on cwbOBJ_CreateListHandle()) Call cwbOBJ_ResetListAttrsToRetrieve() to reset the list to its
default list of keys.

Chapter 4. iSeries Access for Windows® C/C++ APIs 385

cwbOBJ_SetListFilter

Purpose: Sets filters for the list. This filter is applied the next time cwbOBJ_OpenList() is called.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_SetListFilter(
cwbOBJ_ListHandle listHandle,
cwbOBJ_KeyID key,
const char *value,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ListHandle listHandle - input
List handle that this filter will be applied to.

cwbOBJ_KeyID key - input
The id of the filtering field to be set.

const void *value - input
The value this field should be set to.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_INVALID_HANDLE
List handle not found.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage: The value of key will determine the type that is pointed to value. The length of value is
determined by its type. The following filters may be set against these list types Spooled File Lists:

v CWBOBJ_LIST_SPLF:

CWBOBJ_KEY_USER

Specifies which user’s spooled files are to be listed. May be a specific user ID or one of these
special values: *ALL - all users. *CURRENT - list spooled files for the current user only.
*CURRENT is the default.

CWBOBJ_KEY_OUTQUELIB

Specifies which libraries to search for output queues in. May be a specific name or one of these
special values: ″″ - if the OUTQUEUE key word is *ALL, this combination will search all output
queue on the system. *CURLIB - the current library *LIBL - the library list *LIBL is the default if
the OUTQUE filter is not *ALL. ″″ is the default if the OUTQU filter is set to *ALL.

CWBOBJ_KEY_OUTQUE

Specifies which output queues to search for spooled files on May be a specific name or the
special value *ALL. *ALL is the default.

CWBOBJ_KEY_FORMTYPE

386 iSeries: iSeries Access for Windows Programming

Specifies which spooled files are listed by the form type attribute that they have. May be a
specific name or one of these special values: *ALL - spooled files with any form type are listed.
*STD - spooled files with the form type of *STD are listed *ALL is the default.

CWBOBJ_KEY_USERDATA

Specifies which spooled files are listed by the user data that they have. May be a specific value
or one of these special values: *ALL - spooled files with any user data value are listed. *ALL is
the default.

Output Queue Lists:

v CWBOBJ_LIST_OUTQ:

CWBOBJ_KEY_OUTQUELIB

Specifies which libraries to search for output queues in. May be a specific name, a generic name
or any of these special values: *ALL - all libraries *ALLUSER - all user-defined libraries, plus
libraries containing user data and having names starting with Q *CURLIB - the current library
*LIBL - the library list *USRLIBL - the user portion o the library list. *LIBL is the default.

CWBOBJ_KEY_OUTQUE

Specifies which output queues to list. May be a specific name, a generic name or *ALL. *ALL
is the default.

Printer Device Description Lists:

v CWBOBJ_LIST_PRTD:

CWBOBJ_KEY_PRINTER

Specifies which printer device to list. May be a specific name, a generic name or *ALL. *ALL is
the default.

Printer File Lists:

v CWBOBJ_LIST_PRTF:

CWBOBJ_KEY_PRTRFILELIB

Specifies which libraries to search for printer files in. May be a specific name, a generic name or
any of these special values:

*ALL - all libraries

*ALLUSER - all user-defined libraries, plus libraries containing user data and having names
starting with Q

*CURLIB - the current library

*LIBL - the library list

*USRLIBL - the user portion o the library list.

*ALL is the default.

CWBOBJ_KEY_PRTRFILE

Specifies which printer files to list. May be a specific name, a generic name or *ALL. *ALL is the
default.

Writer Job Lists:

v CWBOBJ_LIST_WTR:

CWBOBJ_KEY_WRITER

Specifies which writer jobs to list. May be a specific name, a generic name or *ALL. *ALL is the
default.

CWBOBJ_KEY_OUTQUELIB & CWBOBJ_KEY_OUTQUE

Chapter 4. iSeries Access for Windows® C/C++ APIs 387

These filters are used together to get a list of writers activ to a particular output queue. If the
OUTQUE key is specified the WRITER key is ignored. (all writers for the specified output queue
are listed). If the OUTQUE key is specified and the OUTQUELIB isn’t, the OUTQUEULIB will
default to *LIBL - the system library list. The default is for neither of these to be specified.

Library Lists:

v CWBOBJ_LIST_LIB:

CWBOBJ_KEY_LIBRARY

Specifies which libraries to list. May be a specific name, a generic name or any of these special
values:

*ALL - all libraries

*CURLIB - the current library

*LIBL - the library list

*USRLIBL - the user portion o the library list.

*USRLIBL is the default.

v CWBOBJ_LIST_RSC:

Resources can be lists in a spooled file (lists all of the external AFP resources used by this spooled
file) or in a library or set of libraries. To list resources for a spooled file, use the
cwbOBJ_SetListFilterWithSplF API along with the SetListFilter API for the RSCTYPE and RSCNAME
attributes.

CWBOBJ_KEY_RSCLIB

Specifies which libraries to search for resources in. This filter is ignored if the list is filter by
spooled file (i.e. SetListFilterWithSplF). May be a specific name, a generic name or any of
these special values:

*ALL - all libraries

*ALLUSR - All user-defined libraries, plus libraries containing user data and having names
starting with Q.

*CURLIB - the current library

*LIBL - the library list

*USRLIBL - the user portion o the library list.

*LIBL is the default.

CWBOBJ_KEY_RSCNAME

Specifies which resources to list by name. May be a specific name, a generic name or *ALL.

*ALL is the default.

CWBOBJ_KEY_RESCTYPE

Specifies which type of resources to list. May be any combination of the following bits
logically OR’d together:

CWBOBJ_AFPRSC_FONT

CWBOBJ_AFPRSC_FORMDEF

CWBOBJ_AFPRSC_OVERLAY

CWBOBJ_AFPRSC_PAGESEG

CWBOBJ_AFPRSC_PAGEDEF

388 iSeries: iSeries Access for Windows Programming

cwbOBJ_SetListFilterWithSplF

Purpose: Sets filter for a list to a spooled file. For listing resources this limits the resources returned by
the openList to those used by the spooled file.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_SetListFilterWithSplF(
cwbOBJ_ListHandle listHandle,
cwbOBJ_ObjHandle splFHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ListHandle listHandle - input
List handle that this filter will be applied to.

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file to filter on.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWBOBJ_RC_INVALID_TYPE
Incorrect type of list.

CWB_INVALID_HANDLE
List handle not found or bad spooled file handle.

Usage: Filtering by spooled file is used when listing AFP resources so the list type must be
CWBOBJ_LIST_RSC. If you filter resources based on a spooled file you cannot also filter based on a
library or libraries. The resource library filter will be ignored if both are specified. Resetting a list filter will
also reset the spooled file filter to nothing.

Chapter 4. iSeries Access for Windows® C/C++ APIs 389

cwbOBJ_SetObjAttrs

Purpose: Change the attributes of the object on the server.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_SetObjAttrs(
cwbOBJ_ObjHandle objectHandle,
cwbOBJ_ParmHandle parmListHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle objectHandle - input
Handle to the object that is to be changed.

cwbOBJ_ParmHandle parmListHandle - input
Handle to the parameter object which contains the attributes that are to be modified for the object.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage: The following objects allow these attributes to be changed:

v CWBOBJ_LIST_SPLF (spooled files):

CWBOBJ_KEY_ALIGN - Align page
CWBOBJ_KEY_BKOVRLLIB - Back overlay library name
CWBOBJ_KEY_BKOVRLAY - Back overlay
CWBOBJ_KEY_BKOVL_ACR - Back overlay offset across
CWBOBJ_KEY_BKOVL_DWN - Back overlay offset down
CWBOBJ_KEY_COPIES - Copies
CWBOBJ_KEY_ENDPAGE - Ending page
CWBOBJ_KEY_FILESEP - File separators
CWBOBJ_KEY_FORMFEED - Form feed
CWBOBJ_KEY_FORMTYPE - Form type
CWBOBJ_KEY_FTOVRLLIB - Front overlay library name
CWBOBJ_KEY_FTOVRLAY - Front overlay
CWBOBJ_KEY_FTOVL_ACR - Front overlay offset across
CWBOBJ_KEY_FTOVL_DWN - Front overlay offset down
CWBOBJ_KEY_OUTPTY - Output priority
CWBOBJ_KEY_OUTQUELIB - Output queue library name
CWBOBJ_KEY_OUTQUE - Output queue
CWBOBJ_KEY_MULTIUP - Logical number of pages per side
CWBOBJ_KEY_FIDELITY - Print fidelity
CWBOBJ_KEY_DUPLEX - Print on both sides
CWBOBJ_KEY_PRTQUALITY - Print quality

390 iSeries: iSeries Access for Windows Programming

CWBOBJ_KEY_PRTSEQUENCE - Print sequence
CWBOBJ_KEY_PRINTER - Printer
CWBOBJ_KEY_RESTART - Where to restart printing at
CWBOBJ_KEY_SAVESPLF - Save spooled file after printing
CWBOBJ_KEY_SCHEDULE - When spooled file available
CWBOBJ_KEY_STARTPAGE - Starting page
CWBOBJ_KEY_USERDATA - User data
CWBOBJ_KEY_USRDFNDTA - User defined data
CWBOBJ_KEY_USRDFNOPTS - User defined options
CWBOBJ_KEY_USRDFNOBJLIB - User defined object library
CWBOBJ_KEY_USRDFNOBJ - User defined object
CWBOBJ_KEY_USRDFNOBJTYP - User defined object type

v CWBOBJ_LIST_PRTF (printer files):

CWBOBJ_KEY_ALIGN - Align page
CWBOBJ_KEY_BKMGN_ACR - Back margin offset across
CWBOBJ_KEY_BKMGN_DWN - Back margin offset down
CWBOBJ_KEY_BKOVRLLIB - Back overlay library name
CWBOBJ_KEY_BKOVRLAY - Back overlay
CWBOBJ_KEY_BKOVL_ACR - Back overlay offset across
CWBOBJ_KEY_BKOVL_DWN - Back overlay offset down
CWBOBJ_KEY_CPI - Characters Per Inch
CWBOBJ_KEY_CODEPAGE - Code page
CWBOBJ_KEY_CODEDFNTLIB - Coded font library name
CWBOBJ_KEY_CODEDFNT - Coded font name
CWBOBJ_KEY_COPIES - Copies
CWBOBJ_KEY_DBCSDATA - Contains DBCS Data
CWBOBJ_KEY_DBCSEXTENSN - Process DBCS Extension characters
CWBOBJ_KEY_DBCSROTATE - DBCS character rotation
CWBOBJ_KEY_DBCSCPI - DBCS CPI
CWBOBJ_KEY_DBCSSISO - DBCS SO/SI spacing
CWBOBJ_KEY_DFR_WRITE - Defer writing
CWBOBJ_KEY_ENDPAGE - Ending page
CWBOBJ_KEY_FILESEP - File Separators(*FILE not

allowed)
CWBOBJ_KEY_FOLDREC - Fold records
CWBOBJ_KEY_FONTID - Font identifier
CWBOBJ_KEY_FORMFEED - Form feed
CWBOBJ_KEY_FORMTYPE - Form type
CWBOBJ_KEY_FTMGN_ACR - Front margin offset across
CWBOBJ_KEY_FTMGN_DWN - Front margin offset down
CWBOBJ_KEY_FTOVRLLIB - Front overlay library name
CWBOBJ_KEY_FTOVRLAY - Front overlay
CWBOBJ_KEY_FTOVL_ACR - Front overlay offset across
CWBOBJ_KEY_FTOVL_DWN - Front overlay offset down
CWBOBJ_KEY_CHAR_ID - Graphic character set ID
CWBOBJ_KEY_JUSTIFY - Hardware Justification
CWBOBJ_KEY_HOLD - Hold spooled file
CWBOBJ_KEY_LPI - Lines per inch
CWBOBJ_KEY_MAXRECORDS - Maximum spooled file records
CWBOBJ_KEY_OUTPTY - Output priority
CWBOBJ_KEY_OUTQUELIB - Output queue library name
CWBOBJ_KEY_OUTQUE - Output queue
CWBOBJ_KEY_OVERFLOW - Overflow line number
CWBOBJ_KEY_PAGELEN - Page Length
CWBOBJ_KEY_MEASMETHOD - Measurement method
CWBOBJ_KEY_PAGEWIDTH - Page width
CWBOBJ_KEY_MULTIUP - Logical number of pages per side
CWBOBJ_KEY_POINTSIZE - The default font’s point size
CWBOBJ_KEY_FIDELITY - Print fidelity
CWBOBJ_KEY_DUPLEX - Print on both sides

Chapter 4. iSeries Access for Windows® C/C++ APIs 391

CWBOBJ_KEY_PRTQUALITY - Print quality
CWBOBJ_KEY_PRTTEXT - Print text
CWBOBJ_KEY_PRINTER - Printer
CWBOBJ_KEY_PRTDEVTYPE - Printer Device Type
CWBOBJ_KEY_RPLUNPRT - Replace unprintable characters
CWBOBJ_KEY_RPLCHAR - Replacement character
CWBOBJ_KEY_SAVESPLF - Save spooled file after printing
CWBOBJ_KEY_SRCDRWR - Source drawer
CWBOBJ_KEY_SPOOL - Spool the data
CWBOBJ_KEY_SCHEDULE - When spooled file available
CWBOBJ_KEY_STARTPAGE - Starting page
CWBOBJ_KEY_DESCRIPTION - Text description
CWBOBJ_KEY_UNITOFMEAS - Unit of measure
CWBOBJ_KEY_USERDATA - User data
CWBOBJ_KEY_USRDFNDTA - User defined data
CWBOBJ_KEY_USRDFNOPTS - User defined options
CWBOBJ_KEY_USRDFNOBJLIB - User defined object library
CWBOBJ_KEY_USRDFNOBJ - User defined object
CWBOBJ_KEY_USRDFNOBJTYP - User defined object type

v CWBOBJ_LIST_OUTQ (output queues):

v CWBOBJ_LIST_PRTD (printer devices):

v CWBOBJ_LIST_WTR (writers):

v CWBOBJ_LIST_LIB (libraries):

NONE

392 iSeries: iSeries Access for Windows Programming

cwbOBJ_SetParameter

Purpose: Sets the value of a parameter in a parameter list object.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_SetParameter(
cwbOBJ_ParmHandle parmListHandle,
cwbOBJ_KeyID key,
const void *value,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ParmHandle parmListHandle - input
Handle of the parameter object.

cwbOBJ_KeyID key - input
The id of the parameter to set.

void *value - input
The value to set the parameter to. The type that value points to is determined by the value of key.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not a parameter object handle.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 393

cwbOBJ_StartWriter

Purpose: Starts an iSeries writer job.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_StartWriter(
cwbOBJ_ObjHandle *printerHandle,
cwbOBJ_ObjHandle *outputQueueHandle,
cwbOBJ_ParmHandle *parmListHandle,
cwbOBJ_ObjHandle *writerHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle *printerHandle - input
Required. A pointer to a valid printer object handle that identifies which printer this writer is to be
started to.

cwbOBJ_ObjHandle *outputQueueHandle - input
Optional. A pointer to a valid output queue object handle that identifies which output queue this writer
is to be started from. If the parmListHandle is also specified and contains the
CWBOBJ_KEY_OUTQUE parameter key, this parameter is ignored.

cwbOBJ_ParmHandle *parmListHandle - input
Optional. A pointer to a valid parameter list object handle that contains parameters for starting the
writer.

cwbOBJ_ObjHandle *writerHandle - output
Optional. A pointer to a writer object handle that will be filled in upon successful return from this API. If
this parameter is specified, the caller must call cwbOBJ_DeleteObjHandle() to release resources
allocated for this writer handle.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage: Calling this API causes the writer job to be submitted to run. The writer job may fail to start even
though this API returns successfully (the job may be successfully submitted, but fail to start). This is the
behavior of the STRPRTWTR command on the iSeries server. The following parameter keys may be set in
the parmListHandle object:
CWBOBJ_KEY_ALIGN - Align page
CWBOBJ_KEY_ALWDRTPRT - Allow direct printing
CWBOBJ_KEY_AUTOEND - Automatically end writer (*YES,*NO)
CWBOBJ_KEY_DRWRSEP - Drawer to use for separators

394 iSeries: iSeries Access for Windows Programming

CWBOBJ_KEY_FILESEP - Number of file separators
CWBOBJ_KEY_FORMTYPE - Name of the form to be used
CWBOBJ_KEY_JOBNAME - Name of the job that created file
CWBOBJ_KEY_JOBNUMBER - Number of the job that created file
CWBOBJ_KEY_USER - Name of the user that created file
CWBOBJ_KEY_FORMTYPEMSG - Form type message option
CWBOBJ_KEY_MSGQUELIB - Message queue library
CWBOBJ_KEY_MSGQUE - Message queue name
CWBOBJ_KEY_OUTQUELIB - Output queue library
CWBOBJ_KEY_OUTQUE - Output queue
CWBOBJ_KEY_SPOOLFILE - Spool file name
CWBOBJ_KEY_SPLFNUM - Spool file number
CWBOBJ_KEY_WTRSTRPAGE - Page to start the writer on
CWBOBJ_KEY_WTREND - When to end the writer
CWBOBJ_KEY_WRITER - Writer job name
CWBOBJ_KEY_WTRINIT - When to initialize the printer device

Chapter 4. iSeries Access for Windows® C/C++ APIs 395

cwbOBJ_WriteNewSplF

Purpose: Writes data into a newly created spooled file.

Syntax:

unsigned int CWB_ENTRY cwbOBJ_WriteNewSplF(
cwbOBJ_ObjHandle newSplFHandle,
const char *data,
unsigned long dataLen,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbOBJ_ObjHandle newSplFHandle - input
New spooled file handle. This is the handle passed back on the cwbOBJ_CreateNewSplF() API.

const char *data - input
Pointer to the data buffer that will be written into the spooled file.

unsigned long ulDataLen - input
Length of the data to be written.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_NO_ERROR
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage: None

396 iSeries: iSeries Access for Windows Programming

Example: Using iSeries Objects APIs for iSeries Access for Windows
The following example shows a typical calling sequence for retrieving a list of spooled files:

/**/
/* List all spooled files for the current user and */
/* display them to the user. */
/**/

#ifdef UNICODE
#define _UNICODE

#endif
#include <windows.h>

#include <stdio.h>
#include "CWBOBJ.H"
main(int argc, char *argv[], char *envp[])
{
cwbOBJ_ListHandle listHandle;
cwbOBJ_ObjHandle splFHandle;
unsigned int ulRC;
unsigned long ulListSize, ulObjPosition, ulBytesNeeded;
cwbOBJ_KeyID keysWanted[] = { CWBOBJ_KEY_SPOOLFILE,

CWBOBJ_KEY_USER };
unsigned long ulNumKeysWanted = sizeof(keysWanted)/sizeof(*keysWanted);
char szSplFName[11];
char szUser[11];

ulRC = cwbOBJ_CreateListHandle(_TEXT("ANYAS400"),
CWBOBJ_LIST_SPLF,
&listHandle,
0);

if (ulRC == CWB_OK)
{

/* Set up the filter for the list to be opened with */
/* NOTE: this is just for example, the user defaults */
/* to *CURRENT, so this isn’t really needed. */

cwbOBJ_SetListFilter(listHandle, CWBOBJ_KEY_USER,
_TEXT("*CURRENT"), 0);

/* Optionally call to cwbOBJ_SetListAttrsToRetrieve to*/
/* make walking the list faster */
ulRC = cwbOBJ_SetListAttrsToRetrieve(listHandle,

ulNumKeysWanted,
keysWanted,
0);

/* open the list - this will build the list of spooled*/
/* files. */
ulRC = cwbOBJ_OpenList(listHandle,

CWBOBJ_LIST_OPEN_SYNCH,
0);

if (ulRC == CWB_OK)
{

/* Get the number of items that are in the list */
ulRC = cwbOBJ_GetListSize(listHandle,

&ulListSize,
(cwbOBJ_List_Status *)0,
0);

Chapter 4. iSeries Access for Windows® C/C++ APIs 397

if (ulRC == CWB_OK)
{

/* walk through the list of items, displaying */
/* each item to the user */

ulObjPosition = 0;
while (ulObjPosition < ulListSize)
{

/***/
/* Get a handle to the next spooled file in*/
/* the list. This handle is valid while */
/* the list is open. If you want to */
/* maintain a handle to the spooled file */
/* after the list is closed, you could call*/
/* cwbOBJ_CopyObjHandle() after this call. */
/***/
ulRC = cwbOBJ_GetObjHandle(listHandle,

ulObjPosition,
&splFHandle,
0);

if (ulRC == CWB_OK)
{

/**/
/* call cwbOBJ_GetObjAttr() to get info */
/* about this spooled file. May also */
/* call spooled file specific APIs */
/* with this handle, such as */
/* cwbOBJ_HoldSplF(). */
/**/

ulRC = cwbOBJ_GetObjAttr(splFHandle,
CWBOBJ_KEY_SPOOLFILE,
(void *)szSplFName,
sizeof(szSplFName),
&ulBytesNeeded,
NULL,
0);

if (ulRC == CWB_OK)
{

ulRC = cwbOBJ_GetObjAttr(splFHandle,
CWBOBJ_KEY_USER,
(void *)szUser,
sizeof(szUser),
&ulBytesNeeded,
NULL,
0);

if (ulRC == CWB_OK)
{

printf("%3u: %11s %s\n",
ulObjPosition, szSplFName, szUser);

} else {
/* ERROR on GetObjAttr! */

}
} else {

/* ERROR on GetObjAttr! */
}
/* free this object handle */
cwbOBJ_DeleteObjHandle(splFHandle, 0);

398 iSeries: iSeries Access for Windows Programming

} else {
/* ERROR on GetObjHandle! */

}
ulObjPosition++;

}
} else {
/* ERROR on GetListSize! */

}
cwbOBJ_CloseList(listHandle, 0);

} else {
/* ERROR on OpenList! */

}

cwbOBJ_DeleteListHandle(listHandle, 0);
}

iSeries Access for Windows Remote Command/Distributed Program
Call APIs
iSeries Access for Windows Remote Command APIs:

The iSeries Access for Windows Remote Command application programming interfaces (APIs)
enable your PC application to start non-interactive commands on the iSeries system and to
receive completion messages from these commands. The iSeries server command can send up to
ten reply messages.

iSeries Access for Windows Distributed Program Call API:
The iSeries Access for Windows Distributed Program Call API allows your PC application to call
any iSeries program or command. Input, output and in/out parameters are handled through this
function. If the program runs correctly, the output and the in/out parameters will contain the data
returned by the iSeries program that was called. If the program fails to run correctly on the iSeries
server, the program can send up to ten reply messages.

The iSeries Access for Windows Remote Command/Distributed Program Call APIs allow the PC
application programmer to access functions on the iSeries system. User program and system
commands can be called without requiring an emulation session. A single iSeries program serves
commands and programs, so only one iSeries job is started for both.

iSeries Access for Windows Remote Command/Distributed Program Call APIs required files:

Header file Import library Dynamic Link Library

cwbrc.h cwbapi.lib cwbrc.dll

Programmer’s Toolkit:
The Programmer’s Toolkit provides Remote Command and Distributed Program Call
documentation, access to the cwbrc.h header file, and links to sample programs. To access this
information, open the Programmer’s Toolkit and select either Remote Command or Distributed
Program Call —> C/C++ APIs.

iSeries Access for Windows Remote Command/Distributed Program Call APIs topics:
v “Typical use of iSeries Access for Windows Remote Command/Distributed Program Call APIs”

on page 400
v iSeries Access for Windows Remote Command/Distributed Program Call APIs listing
v “Example: Using Remote iSeries Access for Windows Command/Distributed Program Call APIs”

on page 420
v “Remote Command/Distributed Program Call APIs return codes” on page 28

Related topics:

v “iSeries system name formats for ODBC Connection APIs” on page 12

Chapter 4. iSeries Access for Windows® C/C++ APIs 399

v “OEM, ANSI, and Unicode considerations” on page 12

Typical use of iSeries Access for Windows Remote
Command/Distributed Program Call APIs
An application that uses the iSeries Access for Windows Remote Command/Distributed Program Call
function uses objects. Each of these objects are identified to the application through a handle:

System object
This represents an iSeries system. The handle to the system object is provided to the StartSysEx
function to identify the system on which the commands or APIs will be run.

Command request object
This represents the request to the iSeries system. Commands can be run and programs can be
called on this object.

Note: The Command Request object previously was known as the ″system object″ in iSeries
Access for Windows.

Program object
This represents the iSeries program. Parameters can be added, and the program can be sent to
the system to run the program.

There is not a separate object for commands. The command string is sent directly to the command
request.

An application that uses the Remote Command/Distributed Program Call APIs first creates a system object
by calling the “cwbCO_CreateSystem” on page 61 function. This function returns a handle to the system
object. This handle then is used with the “cwbRC_StartSysEx” on page 418 function to start a conversation
with the iSeries system. The cwbRC_StartSysEx function returns a handle to the command request. Use
the command request handle to call programs or to run commands. The APIs that are associated with the
command request object are:

“cwbRC_StartSysEx” on page 418

“cwbRC_CallPgm” on page 404

“cwbRC_RunCmd” on page 413

“cwbRC_StopSys” on page 419

A command is a character string that is to be run on the iSeries system. Because it is a simple object (a
character string) no additional object will need to be created in order to run a command. The command
string simply is a parameter on the cwbRC_RunCmd API.

A program is a complex object that is created with the cwbRC_CreatePgm API, which requires the
program name and the library name as parameters. The handle that is returned by this function can have
0 to 35 parameters associated with it. Parameters are added with the cwbRC_AddParm function.
Parameters types can be input, output, or input/output. These parameters need to be in a format with
which the iSeries program can work (that is, one for which no data transform or data conversion will
occur). When all of the parameters have been added, the program handle is used with the
cwbRC_CallPgm API on the command request object. The APIs that are associated with the program
object are:

“cwbRC_CreatePgm” on page 405

“cwbRC_AddParm” on page 402

“cwbRC_GetParmCount” on page 411

“cwbRC_GetParm” on page 410

“cwbRC_GetPgmName” on page 412

“cwbRC_GetLibName” on page 409

400 iSeries: iSeries Access for Windows Programming

“cwbRC_SetParm” on page 415

“cwbRC_SetPgmName” on page 417

“cwbRC_SetLibName” on page 414

“cwbRC_DeletePgm” on page 406

iSeries Access for Windows Remote Command/Distributed Program
Call APIs listing
The following iSeries Access for Windows Remote Command/Distributed Program Call APIs are listed
alphabetically, and are grouped according to function:

Function
iSeries Access for WindowsRemote Command/Distributed
Program Call APIs

Access the remote command server program on
the iSeries system.The request handle is used
to run commands and to call programs.

cwbRC_StartSysEx
cwbRC_GetClientCCSID
cwbRC_GetHostCCSID
cwbRC_StopSys

Run an iSeries command. cwbRC_RunCmd

Access programs and their parameters. cwbRC_CreatePgm
cwbRC_AddParm
cwbRC_CallPgm
cwbRC_GetParmCount
cwbRC_GetParm
cwbRC_GetPgmName
cwbRC_GetLibName
cwbRC_SetParm
cwbRC_SetPgmName
cwbRC_SetLibName
cwbRC_DeletePgm

Chapter 4. iSeries Access for Windows® C/C++ APIs 401

cwbRC_AddParm

Purpose: Add a parameter to the program that is identified by the handle. This function should be called
once for each parameter that is to be added to the program. When the program is called the parameters
will be in the same order that they are added using this function.

Syntax:
unsigned int CWB_ENTRY cwbRC_AddParm(

cwbRC_PgmHandle program,
unsigned short type,
unsigned long length,
const unsigned char *parameter);

Parameters:

cwbRC_PgmHandle program - input
Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

unsigned short type - input
The type of parameter this is. Use one of the defined parameter types: CWBRC_INPUT,
CWBRC_OUTPUT, CWBRC_INOUT. If you want to automatically convert between local CCSID and
host CCSID, add the appropriate convert flag to this field with a bitwise, or use one of the defined
parameter types:

CWBRC_TEXT_CONVERT

CWBRC_TEXT_CONVERT_INPUT

CWBRC_TEXT_CONVERT_OUTPUT

The last two types are intended for use with CWBRC_INOUT when conversion is only needed in one
direction.

unsigned long length - input
The length of the parameter. If this is an CWBRC_OUTPUT parameter, the length should be the length
of the buffer where the returned parameter will be written.

const unsigned char * parameter - input
Pointer to a buffer that will contain: the value if the type is CWBRC_INPUT or CWBRC_INOUT, or the
place where the returned parameter is to be written if the type is CWBRC_OUTPUT or
CWBRC_INOUT.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWBRC_INVALID_TYPE
Invalid type specified.

CWBRC_INVALID_PARM_LENGTH
Invalid parameter length.

CWBRC_INVALID_PARM
Invalid parameter.

Usage: Parameter data is assumed to be binary. No conversion will be performed on the parameter data
unless one of the conversion flags is set. For example:

402 iSeries: iSeries Access for Windows Programming

cwbRC_AddParm(hPgm,
CWBRC_INOUT | CWBRC_TEXT_CONVERT_OUTPUT,
bufferSize,
buffer);

will use the buffer as is to send to the host, and will convert the output (eg to ASCII) before putting the
result into the buffer.

Chapter 4. iSeries Access for Windows® C/C++ APIs 403

cwbRC_CallPgm

Purpose: Calls the program identified by the handle. The return code will indicate the success or failure
of the program. Additional messages can be returned by using the message handle that is returned.

Syntax:

unsigned int CWB_ENTRY cwbRC_CallPgm(
cwbRC_SysHandle system,
cwbRC_PgmHandle program,
cwbSV_ErrHandle msgHandle);

Parameters:

cwbRC_SysHandle system - input
Handle that was returned by a previous call to the cwbRC_StartSysEx function. It identifies the iSeries
system.

cwbRC_PgmHandle program - input
Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object. object.

cwbSV_ErrHandle msgHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrTextIndexed API. If the parameter is
set to zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWBRC_INVALID_SYSTEM_HANDLE
Invalid system handle.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWBRC_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBRC_USER_EXIT_ERROR
Error in user exit program.

CWBRC_PROGRAM_NOT_FOUND
Program not found.

CWBRC_PROGRAM_ERROR
Error when calling program.

Usage: None

404 iSeries: iSeries Access for Windows Programming

cwbRC_CreatePgm

Purpose: This function creates a program object given a program and library name. The handle that is
returned can be used to add parameters to the program and then call the program.

Syntax:

unsigned int CWB_ENTRY cwbRC_CreatePgm(
const char *programName,
const char *libraryName,
cwbRC_PgmHandle *program);

Parameters:

const char *programName - input
Pointer to an ASCIIZ string that contains the name of the program that you want to call.

const char *libraryName - input
Pointer to an ASCIIZ string that contains the name of the library where the program resides.

cwbRC_PgmHandle * program - output
Pointer to a cwbRC_PgmHandle where the handle of the program will be returned.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_PROGRAM_NAME
Program name is too long.

CWBRC_LIBRARY_NAME
Library name is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage: You should create a separate program object for each program you want to call on the iSeries
server. You can use the functions described in this file to change the values of the parameters being sent
to the program, but cannot change the number of parameters being sent.

Chapter 4. iSeries Access for Windows® C/C++ APIs 405

cwbRC_DeletePgm

Purpose: This function deletes the program object that is identified by the handle provided.

Syntax:

unsigned int CWB_ENTRY cwbRC_DeletePgm(
cwbRC_PgmHandle program);

Parameters:

cwbRC_PgmHandle program - input
Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBRC_INVALID_PROGRAM
Invalid program handle.

Usage: None.

406 iSeries: iSeries Access for Windows Programming

cwbRC_GetClientCCSID

Purpose: Get the coded character set identifier (CCSID) associated with the current process. This
CCSID along with the host CCSID can be used to convert EBCDIC data returned by some iSeries
program to ASCII data that can be used in client applications.

Syntax:

unsigned int CWB_ENTRY cwbRC_GetClientCCSID(
cwbRC_SysHandle system,
unsigned long *clientCCSID);

Parameters:

cwbRC_SysHandle system - input
Handle that was returned by a previous call to the cwbRC_StartSysEx function. It identifies the iSeries
server system.

unsigned long * clientCCSID - output
Pointer to an unsigned long where the client CCSID will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_INVALID_SYSTEM_HANDLE
Invalid system handle.

Usage: See related APIs in the CWBNLCNV.H file.

Chapter 4. iSeries Access for Windows® C/C++ APIs 407

cwbRC_GetHostCCSID

Purpose: Get the coded character set identifier (CCSID) associated with the iSeries server job. This
CCSID along with the client CCSID can be used to convert EBCDIC data returned by some iSeries
programs to ASCII data that can be used in client applications.

Syntax:

unsigned int CWB_ENTRY cwbRC_GetHostCCSID(
cwbRC_SysHandle system,
unsigned long *hostCCSID);

Parameters:

cwbRC_SysHandle system - input
Handle that was returned by a previous call to the cwbRC_StartSysEx function. It identifies the iSeries
system.

unsigned long * hostCCSID - output
Pointer to an unsigned long where the host CCSID will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_INVALID_SYSTEM_HANDLE
Invalid system handle.

Usage: See related APIs in the CWBNLCNV.H file.

408 iSeries: iSeries Access for Windows Programming

cwbRC_GetLibName

Purpose: Get the name of the library that was used when creating this program object.

Syntax:

unsigned int CWB_ENTRY cwbRC_GetLibName(
cwbRC_PgmHandle program,
char *libraryName);

Parameters:

cwbRC_PgmHandle program - input
Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

char * libraryName - output
Pointer to a ten character buffer where the name of the library will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate the temporary buffer.

CWB_API_ERROR
General API failure.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 409

cwbRC_GetParm

Purpose: Retrieve the parameter identified by the index. The index will range from 0 to the total number
of parameters - 1. This number can be obtained by calling the cwbRC_GetParmCount API.

Syntax:

unsigned int CWB_ENTRY cwbRC_GetParm(
cwbRC_PgmHandle program,
unsigned short index,
unsigned short *type,
unsigned long *length,
unsigned char **parameter);

Parameters:

cwbRC_PgmHandle handle - input
Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

unsigned short index - input
The number of the specific parameter in this program that should be retrieved. This index is
zero-based.

unsigned short * type - output
Pointer to the type of parameter this is. The value will be one of the defined parameter types:

CWBRC_INPUT

CWBRC_OUTPUT

CWBRC_INOUT

unsigned long * length - input
Pointer to the length of the parameter.

unsigned char * * parameter - output
Pointer to a buffer that will contain the address of the actual parameter.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWBRC_INDEX_RANGE_ERROR
Index is out of range.

Usage: None

410 iSeries: iSeries Access for Windows Programming

cwbRC_GetParmCount

Purpose: Get the number of parameters for this program object.

Syntax:

unsigned int CWB_ENTRY cwbRC_GetParmCount(
cwbRC_PgmHandle program,
unsigned short *count);

Parameters:

cwbRC_PgmHandle handle - input
Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

unsigned short * count - output
Pointer to an unsigned short where the parameter count will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_INVALID_PROGRAM
Invalid program handle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 411

cwbRC_GetPgmName

Purpose: Get the name of the program that was used when creating this program.

Syntax:

unsigned int CWB_ENTRY cwbRC_GetPgmName(
cwbRC_PgmHandle program,
char *programName);

Parameters:

cwbRC_PgmHandle program - input
Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

char * programName - output
Pointer to a ten character buffer where the name of the program will be written.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate the temporary buffer.

CWB_API_ERROR
General API failure.

Usage: None

412 iSeries: iSeries Access for Windows Programming

cwbRC_RunCmd

Purpose: Issues the command on the system identified by the handle. The return code will indicate
success or failure of the command. Additional messages can be returned by using the message handle
that is returned.

Syntax:

unsigned int CWB_ENTRY cwbRC_RunCmd(
cwbRC_SysHandle system,
const char *commandString,
cwbSV_ErrHandle msgHandle);

Parameters:

cwbRC_SysHandle system - input
Handle that was returned by a previous call to the cwbRC_StartSysEx function. It identifies the iSeries
system.

const char *commandString - input
Pointer to a string that contains the command to be issued on the iSeries system. This is an ASCIIZ
string.

cwbSV_ErrHandle msgHandle - output
Any messages returned from the iSeries server will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrTextIndexed
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_INVALID_SYSTEM_HANDLE
Invalid system handle.

CWBRC_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBRC_USR_EXIT_ERROR
Error in user exit program.

CWBRC_COMMAND_FAILED
Command failed.

CWBRC_COMMAND_TOO_LONG
Command string is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 413

cwbRC_SetLibName

Purpose: Set the name of the library for this program object.

Syntax:

unsigned int CWB_ENTRY cwbRC_SetLibName(
cwbRC_PgmHandle program,
const char *libraryName);

Parameters:

cwbRC_PgmHandle program - input
Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

const char *libraryName - input
Pointer to an ASCIIZ string that contains the name of the library where the program resides.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWBRC_LIBRARY_NAME
Library name is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage: Use this function to change the name of the name of the library that contains the program you
want to call. This function should not be used to call a different program with different parameters.

414 iSeries: iSeries Access for Windows Programming

cwbRC_SetParm

Purpose: Set the parameter value identified by the index. The index will range from 0 to the total number
of parameters - 1. This number can be obtained by calling the cwbRC_GetParmCount API. Note that this
function is to be used to change a parameter. Use cwbRC_AddParm to create the parameter.

Syntax:

unsigned int CWB_ENTRY cwbRC_SetParm(
cwbRC_PgmHandle program,
unsigned short index,
unsigned short type,
unsigned long length,
const unsigned char *parameter);

Parameters:

cwbRC_PgmHandle handle - input
Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

unsigned short index - input
The number of the specific parameter in this program that should be changed. This index is
zero-based.

unsigned short type - input
The type of parameter this is. Use one of the defined parameter types:

CWBRC_INPUT

CWBRC_OUTPUT

CWBRC_INOUT

If you want to automatically convert between local CCSID and host CCSID, add the appropriate
convert flag to this field with a bitwise-OR. Use one of the defined parameter types:

CWBRC_TEXT_CONVERT

CWBRC_TEXT_CONVERT_INPUT

CWBRC_TEXT_CONVERT_OUTPUT

The latter two are intended for use with CWBRC_INOUT when conversion is only needed in one
direction.

unsigned long length - input
The length of the parameter. If this is an CWBRC_OUT parameter, the length should be the length of
the buffer where the returned parameter will be written.

const unsigned char * parameter - input
Pointer to a buffer that will contain the value if the type is CWBRC_INPUT or CWBRC_INOUT, or the
place where the return parameter is to be written if the type is CWBRC_OUTPUT or CWBRC_INOUT.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWBRC_INVALID_TYPE
Invalid type specified.

CWBRC_INVALID_PARM_LENGTH
Invalid parameter length.

Chapter 4. iSeries Access for Windows® C/C++ APIs 415

CWBRC_INVALID_PARM
Invalid parameter.

Usage: Parameter data is assumed to be binary. No conversion will be performed on the parameter data
unless one of the conversion flags is set. For example:

cwbRC_SetParm(hPgm,
CWBRC_INOUT | CWBRC_TEXT_CONVERT_OUTPUT,
bufferSize,
buffer);

will use the buffer as is to send to the host, and will convert the output (for example, to ASCII) before
putting the result into the buffer.

416 iSeries: iSeries Access for Windows Programming

cwbRC_SetPgmName

Purpose: Set the name of the program for this program object.

Syntax:

unsigned int CWB_ENTRY cwbRC_SetPgmName(
cwbRC_PgmHandle program,
const char *programName);

Parameters:

cwbRC_PgmHandle program - input
Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

const char *programName - input
Pointer to an ASCIIZ string that contains the name of the program that you want to call.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWBRC_PROGRAM_NAME
Program name is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage: Use this function to change the name of the program that you want to call. This function should
not be used to change the program object to call a different program with different parameters.

Chapter 4. iSeries Access for Windows® C/C++ APIs 417

cwbRC_StartSysEx

Purpose: This function starts a conversation with the specified system. If the conversation is successfully
started, a handle is returned. Use this handle with all subsequent calls to issue commands or call
programs. When the conversation no longer is needed, use the handle with the cwbRC_StopSys API to
end the conversation. The cwbRC_StartSysEx API may be called multiple times within an application. If
the same system object handle is used on StartSysEx calls, only one conversation with the iSeries server
will be started. If you want multiple conversations to be active, you must call StartSysEx multiple times,
specifying different system object handles.

Syntax:

unsigned int CWB_ENTRY cwbRC_StartSysEx(
const cwbCO_SysHandle systemObj,
cwbRC_SysHandle *request);

Parameters:

const cwbCO_SysHandle systemObj - input
Handle to an existing system object of the system on which you want programs and commands to be
run.

cwbRC_SysHandle *request - output
Pointer to a cwbRC_SysHandle where the handle of the command request will be returned.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND
iSeries application not found.

CWB_HOST_NOT_FOUND
iSeries system inactive or does not exist.

CWB_SECURITY_ERROR
A security error has occurred.

CWB_LICENSE_ERROR
A license error has occurred.

CWB_CONFIG_ERROR
A configuration error has occurred.

CWBRC_SYSTEM_NAME
System name is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage: None.

418 iSeries: iSeries Access for Windows Programming

cwbRC_StopSys

Purpose: This function stops a conversation with the system specified by the handle. This handle can no
longer be used to issue program calls or commands.

Syntax:

unsigned int CWB_ENTRY cwbRC_StopSys(
cwbRC_SysHandle system);

Parameters:

cwbRC_SysHandle system - input
Handle that was returned by a previous call to the cwbRC_StartSysEx function. It identifies the iSeries
system.

Return Codes: The following list shows common return values:

CWB_OK
Successful completion.

CWBRC_INVALID_SYSTEM_HANDLE
Invalid system handle.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 419

Example: Using Remote iSeries Access for Windows
Command/Distributed Program Call APIs
#ifdef UNICODE

#define _UNICODE
#endif
#include <windows.h>

// Include the necessary RC/DPC Classes
#include <stdlib.h>
#include <iostream.h>
#include <TCHAR.H>
#include "cwbrc.h"
#include "cwbcosys.h"
/**/

void main()
{

cwbCO_SysHandle system;
cwbRC_SysHandle request;
cwbRC_PgmHandle program;

// Create the system object
if ((cwbCO_CreateSystem("AS/400SystemName",&system)) != CWB_OK)

return;

// Start the system
if ((cwbRC_StartSysEx(system,&request)) != CWB_OK)

return;

// Call the command to create a library
char* cmd1 = "CRTLIB LIB(RCTESTLIB) TEXT(’RC TEST LIBRARY’)";
if ((cwbRC_RunCmd(request, cmd1, 0)) != CWB_OK)

return;

cout << "Created Library" << endl;

// Call the command to delete a library
char* cmd2 = "DLTLIB LIB(RCTESTLIB)";
if ((cwbRC_RunCmd(request, cmd2, 0)) != CWB_OK)

return;

cout << "Deleted Library" << endl;

// Create a program object to create a user space
if (cwbRC_CreatePgm(_TEXT("QUSCRTUS"),

_TEXT("QSYS"),
&program) != CWB_OK)

return;

// Add the parameters
// name is DPCTESTSPC/QGPL

unsigned char name[20] = {0xC4,0xD7,0xC3,0xE3,0xC5,0xE2,0xE3,0xE2,0xD7,0xC3,
0xD8,0xC7,0xD7,0xD3,0x40,0x40,0x40,0x40,0x40,0x40};

// extended attribute is not needed
unsigned char attr[10] = {0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40};

// initial size is 100 bytes
unsigned long size = 0x64000000;

420 iSeries: iSeries Access for Windows Programming

// initial value is blank
unsigned char init = 0x40;

// public authority is CHANGE
unsigned char auth[10] = {0x5C,0xC3,0xC8,0xC1,0xD5,0xC7,0xC5,0x40,0x40,0x40};

// description is DPC TEMP SPACE
unsigned char desc[50] = {0xC4,0xD7,0xC3,0x40,0xE3,0xC5,0xD4,0xD7,0x40,0xE2,

0xD7,0xC1,0xC3,0xC5,0x40,0x40,0x40,0x40,0x40,0x40,
0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,
0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,
0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40};

if (cwbRC_AddParm(program, CWBRC_INPUT, 20, name) != CWB_OK)
return;

if (cwbRC_AddParm(program, CWBRC_INPUT, 10, attr) != CWB_OK)
return;

if (cwbRC_AddParm(program, CWBRC_INPUT, 4, (unsigned char*)&size) != CWB_OK)
return;

if (cwbRC_AddParm(program, CWBRC_INPUT, 1, &init) != CWB_OK)
return;

if (cwbRC_AddParm(program, CWBRC_INPUT, 10, auth) != CWB_OK)
return;

if (cwbRC_AddParm(program, CWBRC_INPUT, 50, desc) != CWB_OK)
return;

// Call the program
if (cwbRC_CallPgm(request, program, 0) != CWB_OK)

return;

cout << "Created User Space" << endl;

// Delete the program
if (cwbRC_DeletePgm(program) != CWB_OK)

return;

// Create a program object to delete a user space
if (cwbRC_CreatePgm(_TEXT("QUSDLTUS"),

_TEXT("QSYS"),
&program) != CWB_OK)

return;

// Add the parameters
// error code structure will not be used
unsigned long err = 0x00000000;

if (cwbRC_AddParm(program, CWBRC_INPUT, 20, name) != CWB_OK)
return;

if (cwbRC_AddParm(program, CWBRC_INOUT, 4, (unsigned char*)&err) != CWB_OK)
return;

// Call the program

Chapter 4. iSeries Access for Windows® C/C++ APIs 421

if (cwbRC_CallPgm(request, program, 0) != CWB_OK)
return;

// Delete the program
if (cwbRC_DeletePgm(program) != CWB_OK)

return;

cout << "Deleted User Space" << endl;

// Stop the system
if (cwbRC_StopSys(request) != CWB_OK)

return;

// Delete the system object
if (cwbCO_DeleteSystem(system) != CWB_OK)
return;

}

iSeries Access for Windows Serviceability APIs
The iSeries Access for Windows Serviceability application programming interfaces (APIs) allow you to log
service file messages and events within your program. A set of APIs allows you to read the records from
the service files that are created. These APIs allow you to write a customized service-file browser.

The following general categories of iSeries Access for Windows Serviceability API functions are provided:
v Writing message text to the History log
v Writing Trace entries to the Trace file
v Reading service files
v Retrieving message text that is associated with error handles

Why you should use iSeries Access for Windows Serviceability APIs:
The iSeries Access for Windows Serviceability APIs provide an efficient means of adding message
logging and trace points to your code. Incorporate these functions into programs that are shipped
as part of your product, and use them to help debug programs that are under development. The
file structure supports multiple programs (that are identified by unique product and component
strings) logging to the same files simultaneously. This provides a complete picture of logging
activity on the client workstation.

iSeries Access for Windows Serviceability APIs required files:

Header file Import library Dynamic Link Library

cwbsv.h cwbapi.lib cwbsv.dll

Programmer’s Toolkit:
The Programmer’s Toolkit provides Serviceability documentation, access to the cwbsv.h header
file, and links to sample programs. To access this information, open the Programmer’s Toolkit and
select Error Handling —> C/C++ APIs.

iSeries Access for Windows Serviceability APIs topics:
v “History log and trace files” on page 423
v “Error handles” on page 424
v “Typical use of Serviceability APIs” on page 424
v iSeries Access for Windows Serviceability APIs listing
v “Example: Using iSeries Access for Windows erviceability APIs” on page 490
v “Serviceability APIs return codes” on page 30

422 iSeries: iSeries Access for Windows Programming

History log and trace files
History log:

The log functions allow you to write message text the iSeries Access for Windows History Log.
The message text needs to be displayable ASCII character data.

iSeries Access for Windows has instrumented all of its programs to log messages to the iSeries
Access for Windows History Log. Messages also are logged by the DLLs that are supplied with
the product.

The History Log is a file where message text strings are logged through the
cwbSV_LogMessageText API. The log provides a history of activity that has taken place on the
client workstation.

Trace files:
The trace functions allow you to log low-level events that occur as your program runs. For
example, you want to track various return codes that were received from calling other functions. If
your program is sending and receiving data, you may want to log the significant fields of the data
(for example, function byte or bytes, and data length) to aid in debugging if something goes wrong.
Use the Detailed data trace function (cwbSV_LogTraceData) to accomplish this.

Another form of trace, the Entry Point trace function, allows you to track entry into and exit from
your routines. iSeries Access for Windows defines two different types of entry point trace points:

API trace point:
Use the API (application programming interface) trace point to track entry and exit from
routines that you externalize to other programs.

SPI trace point:
Use the SPI (system programming interface) trace point to track entry and exit from key
internal routines of the program that you want to trace.

The key piece of information that is provided on the APIs is a one-byte eventID. It allows you to
identify which API or SPI is being entered or exited. Data such as input values can be traced on
entry, as well as tracing output values on exit from a routine. These trace functions are intended to
be used in pairs (for example, cwbSV_LogAPIEntry and cwbSV_LogAPIExit) in the routines that
utilize them. These types of trace points provide a flow of control through the code.

iSeries Access for Windows has instrumented the procedural APIs described in this topic with
Entry/Exit API trace points. When one of these procedural APIs is called, entry and exit trace
points are logged to the Entry Point trace file if tracing is active. The Entry/Exit SPI trace logs
internal calling sequences. The Detailed data trace function logs data which is useful in debugging
problems.

iSeries Access for Windows supports the following types of traces:

Detailed (Data):
Allows you to trace a buffer of information at a point in your code via the
cwbSV_LogTraceData API. This buffer can be a mixture of ASCII and/or binary values (for
example, C-struct). The data is logged in binary form.

Entry/Exit (API):
A specialized form of trace which allows you to trace entry into and exit from your
externalized routines via the cwbSV_LogAPIEntry and cwbSV_LogAPIExit APIs.

Entry/Exit (SPI):
A specialized form of trace that allows you to trace entry into and exit from your key
internal routines by using the cwbSV_LogSPIEntry and cwbSV_LogSPIExit APIs.

Chapter 4. iSeries Access for Windows® C/C++ APIs 423

Error handles
The error handle functions allow you to create an error handle (cwbSV_CreateErrHandle) to use on iSeries
Access for Windows APIs that support it. If an error occurs (a non-zero return code) on the iSeries Access
for Windows API call, you can call other error handle functions to retrieve information such as:

v The number of error messages (cwbSV_GetErrCount) that are associated with the return code

v The message text (cwbSV_GetErrTextIndexed) for each of the error messages

Typical use of Serviceability APIs
History log:

Serviceability APIs provide a tracking mechanism for activity that is taking place on the client
workstation. As a result, you can use the message-logging APIs to log messages to the iSeries
Access for Windows History Log. Examples of messages to log include an indication that your
application was started, and other significant events. For example, a log message may indicate
that a file successfully was transferred to the iSeries server, a database query failed for some
reason, or that a job was submitted for printing.

The product and component strings that you provide when you are using the Serviceability APIs
allow your messages and events to be distinguished from other entries in the service files. The
recommended hierarchy is to define a product ID, with one or many component IDs defined under
it.

Error handles:
Use the error-handle parameter on iSeries Access for Windows C/C++ APIs to retrieve message
text that is associated with a failure return code. This enables your application to display the
message text, instead of providing your own text for the set of iSeries Access return codes.

iSeries Access for Windows Serviceability APIs listing

Note: Distinguish between API & SPI trace points:
Definitions:

- API (Application Programming Interface)
- SPI (System Programming Interface)

The recommended convention is that API entry/exit trace points should be put in routines that you
externalize (export) to your users. Use SPI entry/exit trace points in key internal (non-exported)
routines that you want to trace.

The following iSeries Access for Windows Serviceability APIs are listed alphabetically, and are grouped
according to function:

Function iSeries Access for WindowsServiceability APIs

Writing message text to a history log cwbSV_CreateMessageTextHandle
cwbSV_DeleteMessageTextHandle
cwbSV_LogMessageText
cwbSV_SetMessageComponent
cwbSV_SetMessageProduct
cwbSV_SetMessageClass

Writing trace data to a detail trace file cwbSV_CreateTraceDataHandle
cwbSV_DeleteTraceDataHandle
cwbSV_LogTraceData
cwbSV_SetTraceComponent
cwbSV_SetTraceProduct

424 iSeries: iSeries Access for Windows Programming

Function iSeries Access for WindowsServiceability APIs

Writing trace points to an entry/exit trace file cwbSV_CreateTraceAPIHandle
cwbSV_CreateTraceSPIHandle
cwbSV_DeleteTraceAPIHandle
cwbSV_DeleteTraceSPIHandle
cwbSV_LogAPIEntry
cwbSV_LogAPIExit
cwbSV_LogSPIEntry
cwbSV_LogSPIExit
cwbSV_SetAPIComponent
cwbSV_SetAPIProduct
cwbSV_SetSPIComponent
cwbSV_SetSPIProduct

Reading service files cwbSV_ClearServiceFile
cwbSV_CloseServiceFile
cwbSV_GetMaxRecordSize
cwbSV_GetRecordCount
cwbSV_GetServiceFileName
cwbSV_OpenServiceFile

Reading service file records cwbSV_CreateServiceRecHandle
cwbSV_DeleteServiceRecHandle
cwbSV_ReadNewestRecord
cwbSV_ReadNextRecord
cwbSV_ReadOldestRecord
cwbSV_ReadPrevRecord

Reading service record header information cwbSV_GetComponent
cwbSV_GetDateStamp
cwbSV_GetProduct
cwbSV_GetServiceType
cwbSV_GetTimeStamp

Reading history log service records cwbSV_GetMessageText

Reading detail trace file service records cwbSV_GetTraceData

Reading entry/exit trace file service records cwbSV_GetTraceAPIData
cwbSV_GetTraceAPIID
cwbSV_GetTraceAPIType
cwbSV_GetTraceSPIData
cwbSV_GetTraceSPIID
cwbSV_GetTraceSPIType

Retrieving message text associated with error handles cwbSV_CreateErrHandle
cwbSV_DeleteErrHandle
cwbSV_GetErrClass
cwbSV_GetErrClassIndexed
cwbSV_GetErrCount
cwbSV_GetErrFileName
cwbSV_GetErrFileNameIndexed
cwbSV_GetErrLibName
cwbSV_GetErrLibNameIndexed
cwbSV_GetErrSubstText
cwbSV_GetErrSubstTextIndexed
cwbSV_GetErrText
cwbSV_GetErrTextIndexed

Chapter 4. iSeries Access for Windows® C/C++ APIs 425

cwbSV_ClearServiceFile

Purpose: Clears the service file that is identified by the handle that is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_ClearServiceFile(
cwbSV_ServiceFileHandle serviceFile,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbSV_ServiceFileHandle serviceFileHandle - input
Handle that was returned by a previous call to the cwbSV_OpenServiceFile() function.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_FILE_IO_ERROR
File could not be cleared.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: None

426 iSeries: iSeries Access for Windows Programming

cwbSV_CloseServiceFile

Purpose: Closes the service file identified by the handle provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_CloseServiceFile(
cwbSV_ServiceFileHandle serviceFile,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbSV_ServiceFileHandle serviceFileHandle - input
Handle that was returned by a previous call to the cwbSV_OpenServiceFile() function.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_FILE_IO_ERROR
File could not be closed.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 427

cwbSV_CreateErrHandle

Purpose: This function creates an error message object and returns a handle to it. This error handle can
be passed to iSeries Access for Windows APIs that support it. If an error occurs on one of these APIs, the
error handle can be used to retrieve the error messages text that is associated with the API error.

Syntax:

unsigned int CWB_ENTRY cwbSV_CreateErrHandle(
cwbSV_ErrHandle *errorHandle);

Parameters:

cwbSV_ErrHandle *errorHandle - input/output
Pointer to a cwbSV_ErrHandle where the handle will be returned.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed as handle address.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

Usage: None

428 iSeries: iSeries Access for Windows Programming

cwbSV_CreateMessageTextHandle

Purpose: This function creates a message text object and returns a handle to it. This message handle
can be used in your program to write message text to the currently active history log. The message text is
supplied in a buffer passed on the cwbSV_LogMessageText() call.

Syntax:

unsigned int CWB_ENTRY cwbSV_CreateMessageTextHandle(
char *productID,
char *componentID,
cwbSV_MessageTextHandle *messageTextHandle);

Parameters:

char * productID - input
Points to a null-terminated string that contains a product identifier to be used on this message entry.
Parameter is optional, if null, no productID is set. NOTE: A maximum of CWBSV_MAX_PRODUCT_ID
characters will be logged for the product ID. Larger strings will be truncated.

char * componentID - input
Points to a null-terminated string that contains a component identifier to be used on this message
entry. Parameter is optional, if null, no componentID is set. NOTE: A maximum of
CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger strings will be
truncated.

cwbSV_MessageTextHandle * messageTextHandle - input/output
Pointer to a cwbSV_MessageTextHandle where the handle will be returned. This handle should be
used in subsequent calls to the message text functions.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

Usage: It is recommended that you set a unique product ID and component ID in the message handle
before using it to log message text. These ID’s will distinguish your messages from other messages in the
history log.

Chapter 4. iSeries Access for Windows® C/C++ APIs 429

cwbSV_CreateServiceRecHandle

Purpose: This function creates a service record object and returns a handle to it.

Syntax:

unsigned int CWB_ENTRY cwbSV_CreateServiceRecHandle(
cwbSV_ServiceRecHandle *serviceRecHandle);

Parameters:

cwbSV_ServiceRecHandle * serviceRecHandle - input/output
Pointer to a cwbSV_ServiceRecordHandle where the handle will be returned. This handle should be
used in subsequent calls to the service record functions.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed as handle address.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

Usage: This handle can be used in your program to read records from an open service file and extract
information from the record.

430 iSeries: iSeries Access for Windows Programming

cwbSV_CreateTraceAPIHandle

Purpose: This function creates a trace API object and returns a handle to it. This trace API handle can
be used in your program to log entry to and exit from your API entry points.

Syntax:

unsigned int CWB_ENTRY cwbSV_CreateTraceAPIHandle(
char *productID,
char *componentID,
cwbSV_TraceAPIHandle *traceAPIHandle);

Parameters:

char * productID - input
Points to a null-terminated string that contains a product identifier to be used on this message entry.
Parameter is optional, if null, no productID is set. NOTE: A maximum of CWBSV_MAX_PRODUCT_ID
characters will be logged for the product ID. Larger strings will be truncated.

char * componentID - input
Points to a null-terminated string that contains a component identifier to be used on this message
entry. Parameter is optional, if null, no componentID is set. NOTE: A maximum of
CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger strings will be
truncated.

cwbSV_TraceAPIHandle * traceAPIHandle - input/output
Pointer to a cwbSV_TraceAPIHandle where the handle will be returned. This handle should be used in
subsequent calls to the trace API functions.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

Usage: It is recommended that you set a unique product ID and component ID in the trace data handle
before using it to log trace entries. These ID’s will distinguish your trace entries from other entries in the
trace file.

Chapter 4. iSeries Access for Windows® C/C++ APIs 431

cwbSV_CreateTraceDataHandle

Purpose: This function creates a trace data object and returns a handle to it. This trace handle can be
used in your program to log trace information to trace files. The trace information is supplied in a buffer
passed on cwbSV_LogTraceData() calls.

Syntax:

unsigned int CWB_ENTRY cwbSV_CreateTraceDataHandle(
char *productID,
char *componentID,
cwbSV_TraceDataHandle *traceDataHandle);

Parameters:

char * productID - input
Points to a null-terminated string that contains a product identifier to be used on this message entry.
Parameter is optional, if null, no productID is set. NOTE: A maximum of CWBSV_MAX_PRODUCT_ID
characters will be logged for the product ID. Larger strings will be truncated.

char * componentID - input
Points to a null-terminated string that contains a component identifier to be used on this message
entry. Parameter is optional, if null, no componentID is set. NOTE: A maximum of
CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger strings will be
truncated.

cwbSV_TraceDataHandle * traceDataHandle - input/output
Pointer to a cwbSV_TraceDataHandle where the handle will be returned. This handle should be used
in subsequent calls to the trace data functions.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

Usage: It is recommended that you set a unique product ID and component ID in the trace data handle
before using it to log trace entries. These ID’s will distinguish your trace entries from other entries in the
trace file.

432 iSeries: iSeries Access for Windows Programming

cwbSV_CreateTraceSPIHandle

Purpose: This function creates a trace SPI object and returns a handle to it. This trace SPI handle can
be used in your program to log entry to and exit from your SPI entry points.

Syntax:

unsigned int CWB_ENTRY cwbSV_CreateTraceSPIHandle(
char *productID,
char *componentID,
cwbSV_TraceSPIHandle *traceSPIHandle);

Parameters:

char * productID - input
Points to a null-terminated string that contains a product identifier to be used on this message entry.
Parameter is optional, if null, no productID is set. NOTE: A maximum of CWBSV_MAX_PRODUCT_ID
characters will be logged for the product ID. Larger strings will be truncated.

char * componentID - input
Points to a null-terminated string that contains a component identifier to be used on this message
entry. Parameter is optional, if null, no componentID is set. NOTE: A maximum of
CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger strings will be
truncated.

cwbSV_TraceSPIHandle * traceSPIHandle - input/output
Pointer to a cwbSV_TraceSPIHandle where the handle will be returned. This handle should be used in
subsequent calls to the trace SPI functions.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

Usage: It is recommended that you set a unique product ID and component ID in the trace data handle
before using it to log trace entries. These ID’s will distinguish your trace entries from other entries in the
trace file.

Chapter 4. iSeries Access for Windows® C/C++ APIs 433

cwbSV_DeleteErrHandle

Purpose: This function deletes the error message object that is identified by the handle that is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_DeleteErrHandle(
cwbSV_ErrHandle errorHandle);

Parameters:

cwbSV_ErrHandle errorHandle - output
Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This call should be made when the handle is no longer needed.

434 iSeries: iSeries Access for Windows Programming

cwbSV_DeleteMessageTextHandle

Purpose: This function deletes the message text object that is identified by the handle that is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_DeleteMessageTextHandle(
cwbSV_MessageTextHandle messageTextHandle);

Parameters:

cwbSV_MessageTextHandle messageTextHandle - input
Handle that was returned by a previous call to the cwbSV_CreateMessageTextHandle() function.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Unusable handle passed in on request.

Usage: This call should be made when the handle is no longer needed.

Chapter 4. iSeries Access for Windows® C/C++ APIs 435

cwbSV_DeleteServiceRecHandle

Purpose: This function deletes the service record object that is identified by the handle that is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_DeleteServiceRecHandle(
cwbSV_ServiceRecHandle serviceRecHandle);

Parameters:

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This call should be made when the handle is no longer needed.

436 iSeries: iSeries Access for Windows Programming

cwbSV_DeleteTraceAPIHandle

Purpose: This function deletes the trace API object that is identified by the handle that is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_DeleteTraceAPIHandle(
cwbSV_TraceAPIHandle traceAPIHandle);

Parameters:

cwbSV_TraceAPIHandle traceAPIHandle - input
Handle that was returned by a previous call to the cwbSV_CreateTraceAPIHandle() function.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This call should be made when the handle is no longer needed.

Chapter 4. iSeries Access for Windows® C/C++ APIs 437

cwbSV_DeleteTraceDataHandle

Purpose: This function deletes the trace data object that is identified by the trace handle that is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_DeleteTraceDataHandle(
cwbSV_TraceDataHandle traceDataHandle);

Parameters:

cwbSV_TraceDataHandle traceDataHandle - input
Handle that was returned by a previous call to the cwbSV_CreateTraceDataHandle() function.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This call should be made when the handle is no longer needed.

438 iSeries: iSeries Access for Windows Programming

cwbSV_DeleteTraceSPIHandle

Purpose: This function deletes the trace SPI object that is identified by the handle that is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_DeleteTraceSPIHandle(
cwbSV_TraceSPIHandle traceSPIHandle);

Parameters:

cwbSV_TraceSPIHandle traceSPIHandle - input
Handle that was returned by a previous call to the cwbSV_CreateTraceSPIHandle() function.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This call should be made when the handle is no longer needed.

Chapter 4. iSeries Access for Windows® C/C++ APIs 439

cwbSV_GetComponent

Purpose: Returns the component ID value for the service record object that is identified by the handle
provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetComponent(
cwbSV_ServiceRecHandle serviceRecHandle,
char *componentID,
unsigned long componentIDLength,
unsigned long *returnLength);

Parameters:

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

char * componentID - input/output
Pointer to a buffer that will receive the component ID that is stored in the record that is identified by
the handle.

unsigned long componentIDLength - input
Length of the receive buffer passed in. It should include space for the ending null character. If the
buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_COMP_ID.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: The service record handle needs to be filled in by a call to a ″read″ function before calling this
routine, otherwise a NULL string will be returned. This function is valid for all service record types.

440 iSeries: iSeries Access for Windows Programming

cwbSV_GetDateStamp

Purpose: Returns the date stamp (in localized format) for the service record that is identified by the
handle that is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetDateStamp(
cwbSV_ServiceRecHandle serviceRecHandle,
char *dateStamp,
unsigned long dateStampLength,
unsigned long *returnLength);

Parameters:

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

char * dateStamp - input/output
Pointer to a buffer that will receive the datestamp that is stored in the record that is identified by the
handle.

unsigned long dateStampLength - input
Length of the receive buffer passed in. It should include space for the ending null character. If the
buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_DATE_VALUE.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: The service record handle needs to be filled in by a call to a ″read″ function before calling this
routine, otherwise a NULL string will be returned. This function is valid for all service record types.

Chapter 4. iSeries Access for Windows® C/C++ APIs 441

cwbSV_GetErrClass

Purpose: Returns the message class associated with the top-level (most recent) error that is identified by
the error handle that is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetErrClass(
cwbSV_ErrHandle errorHandle,
unsigned long *errorClass);

Parameters:

cwbSV_ErrHandle errorHandle - input
Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.

unsigned long * errorClass - output
Pointer to a variable that will receive the error class that is stored in the error that is identified by the
handle.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_NO_ERROR_MESSAGES
No error messages associated with error handle.

Usage: None

442 iSeries: iSeries Access for Windows Programming

cwbSV_GetErrClassIndexed

Purpose: Returns the message class associated with the error index provided. An index value of 1 will
retrieve the lowest-level (for example, the oldest) message that is associated with the error handle. An
index value of ″cwbSV_GetErrCount()’s returned errorCount″ will retrieve the top-level (for example, the
most recent) message associated with the error handle.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetErrClassIndexed(
cwbSV_ErrHandle errorHandle,
unsigned long errorIndex,
unsigned long *errorClass);

Parameters:

cwbSV_ErrHandle errorHandle - input
Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.

unsigned long errorIndex - input
Index value that indicates which error text to return if multiple errors are associated with the error
handle.

unsigned long * errorClass - output
Pointer to a variable that will receive the error class that is stored in the error that is identified by the
index.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_NO_ERROR_MESSAGES
No error messages associated with error handle.

Usage: Valid index values are from 1 to cwbSV_GetErrCount()’s return value. Index values less than 1
act as if 1 was passed. Index values greater than cwbSV_GetErrCount() act as if errorCount was passed.

Chapter 4. iSeries Access for Windows® C/C++ APIs 443

cwbSV_GetErrCount

Purpose: Returns the number of messages associated with the error handle provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetErrCount(
cwbSV_ErrHandle errorHandle,
unsigned long *errorCount);

Parameters:

cwbSV_ErrHandle errorHandle - input
Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.

unsigned long * errorCount - input/output
Pointer to variable that receives the number of messages associated with this error handle. If zero is
returned, no errors are associated with the error handle.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: None

444 iSeries: iSeries Access for Windows Programming

cwbSV_GetErrFileName

Purpose: Returns the message file name for the top-level (the. most recent) message added to the error
handle provided. This message attribute only pertains to messages returned from the iSeries server. The
file name is the name of the iSeries server message file that contains the message.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetErrFileName(
cwbSV_ErrHandle errorHandle,
char *fileName,
unsigned long fileNameLength,
unsigned long *returnLength);

Parameters:

cwbSV_ErrHandle errorHandle - input
Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.

char * fileName - input/output
Pointer to a buffer that will receive the message file name stored in the error identified by the handle.
The value returned is an ASCIIZ string.

unsigned long fileNameLength - input
Length of the receive buffer passed in. It should include space for the terminating null character. If the
buffer is too small, the value will be truncated and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_MSGFILE_NAME.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Invalid handle.

CWBSV_NO_ERROR_MESSAGES
No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET
Attribute not set in current message.

Usage: iSeries server messages may be added to the error handle when using the cwbRC_CallPgm()
and cwbRC_RunCmd() API’s. In these cases, you can use this API to retrieve the message file name for
the iSeries server messages contained in the error handle. If there is no message file name attribute for
the message, return code CWBSV_ATTRIBUTE_NOT_SET will be returned.

Chapter 4. iSeries Access for Windows® C/C++ APIs 445

cwbSV_GetErrFileNameIndexed

Purpose: Returns the message file name for the message identified by the index provided. This
message attribute only pertains to messages returned from the iSeries server. The file name is the name
of the iSeries server message file containing the message.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetErrFileNameIndexed(
cwbSV_ErrHandle errorHandle,
unsigned long index,
char *fileName,
unsigned long fileNameLength,
unsigned long *returnLength);

Parameters:

cwbSV_ErrHandle errorHandle - input
Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.

unsigned long index - input
Index value indicating which message file name to return if multiple errors are associated with the
error handle. The valid index range is from 1 to the number of messages contained in the error
handle. The number of messages can be obtained by calling the cwbSV_GetErrCount() API.

char * fileName - input/output
Pointer to a buffer that will receive the message file name stored in the error identified by the index.
The value returned is an ASCIIZ string.

unsigned long fileNameLength - input
Length of the receive buffer passed in. It should include space for the terminating null character. If the
buffer is too small, the value will be truncated and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_MSGFILE_NAME.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Invalid handle.

CWBSV_NO_ERROR_MESSAGES
No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET
Attribute not set in current message.

Usage: iSeries server messages may be added to the error handle when using the cwbRC_CallPgm()
and cwbRC_RunCmd() API’s. In these cases, you can use this API to retrieve the message file name for
the iSeries server messages contained in the error handle. If there is no message file name attribute for
the message, return code CWBSV_ATTRIBUTE_NOT_SET will be returned. An index value of 1 works
with the lowest-level (i.e. oldest) message in the error handle. An index value equal to the count returned

446 iSeries: iSeries Access for Windows Programming

by the cwbSV_GetErrCount() API works with the top-level (i.e. most recent) message in the error handle.
Index values less than 1 act as if 1 was passed in. Index values greater than the number of messages
contained in the error handle act as if the returned count value from the cwbSV_GetErrCount() API was
passed in.

Chapter 4. iSeries Access for Windows® C/C++ APIs 447

cwbSV_GetErrLibName

Purpose: Returns the message file library name for the top-level (i.e. most recent) message added to the
error handle provided. This message attribute only pertains to messages returned from the iSeries server.
The library name is the name of the iSeries library containing the message file for the message.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetErrLibName(
cwbSV_ErrHandle errorHandle,
char *libraryName,
unsigned long libraryNameLength,
unsigned long *returnLength);

Parameters:

cwbSV_ErrHandle errorHandle - input
Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.

char * libraryName - input/output
Pointer to a buffer that will receive the message file library name stored in the error identified by the
handle. The value returned is an ASCIIZ string.

unsigned long libraryNameLength - input
Length of the receive buffer passed in. It should include space for the terminating null character. If the
buffer is too small, the value will be truncated and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_MSGFILE_LIBR.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Invalid handle.

CWBSV_NO_ERROR_MESSAGES
No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET
Attribute not set in current message.

Usage: iSeries messages may be added to the error handle when using the cwbRC_CallPgm() and
cwbRC_RunCmd() API’s. In these cases, you can use this API to retrieve the message file library name for
the iSeries messages contained in the error handle. If there is no message file library name attribute for
the message, return code CWBSV_ATTRIBUTE_NOT_SET will be returned.

448 iSeries: iSeries Access for Windows Programming

cwbSV_GetErrLibNameIndexed

Purpose: Returns the message file library name for the message identified by the index provided. This
message attribute only pertains to messages returned from the iSeries server. The library name is the
name of the iSeries library containing the message file for the message.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetErrLibNameIndexed(
cwbSV_ErrHandle errorHandle,
unsigned long index,
char *libraryName,
unsigned long libraryNameLength,
unsigned long *returnLength);

Parameters:

cwbSV_ErrHandle errorHandle - input
Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.

unsigned long index - input
Index value indicating which message file library name to return if multiple errors are associated with
the error handle. The valid index range is from 1 to the number of messages contained in the error
handle. The number of messages can be obtained by calling the cwbSV_GetErrCount() API.

char * libraryName - input/output
Pointer to a buffer that will receive the message file library name stored in the error identified by the
index. The value returned is an ASCIIZ string.

unsigned long libraryNameLength - input
Length of the receive buffer passed in. It should include space for the terminating null character. If the
buffer is too small, the value will be truncated and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_MSGFILE_LIBR.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Invalid handle.

CWBSV_NO_ERROR_MESSAGES
No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET
Attribute not set in current message.

Usage: iSeries messages may be added to the error handle when using the cwbRC_CallPgm() and
cwbRC_RunCmd() API’s. In these cases, you can use this API to retrieve the message file library name for
the iSeries messages contained in the error handle. If there is no message file library name attribute for
the message, return code CWBSV_ATTRIBUTE_NOT_SET will be returned. An index value of 1 works
with the lowest-level (i.e. oldest) message in the error handle. An index value equal to the count returned

Chapter 4. iSeries Access for Windows® C/C++ APIs 449

by the cwbSV_GetErrCount() API works with the top-level (i.e. most recent) message in the error handle.
Index values less than 1 act as if 1 was passed in. Index values greater than the number of messages
contained in the error handle act as if the returned count value from the cwbSV_GetErrCount() API was
passed in.

450 iSeries: iSeries Access for Windows Programming

cwbSV_GetErrSubstText

Purpose: Returns the message substitution text for the top-level (the most recent) message identified by
the error handle provided. This message attribute only pertains to messages returned from the iSeries
server. The substitution text is the data inserted into the substitution variable fields defined for the
message.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetErrSubstText(
cwbSV_ErrHandle errorHandle,
char *substitutionText,
unsigned long substitutionTextLength,
unsigned long *returnLength);

Parameters:

cwbSV_ErrHandle errorHandle - input
Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.

char * substitutionText - input/output
Pointer to a buffer that will receive the substitution text for the message identified by the handle.
NOTE: The data returned is binary, hence it is NOT returned as an ASCIIZ string. Any character
strings contained in the substitution text are returned as EBCDIC values.

unsigned long substitutionTextLength - input
Length of the receive buffer passed in. If the buffer is too small, the value will be truncated and
CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output data
if the receive buffer is too small. It will also be set to the actual number of bytes of output data
returned upon successful completion.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Invalid handle.

CWBSV_NO_ERROR_MESSAGES
No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET
Attribute not set in current message.

Usage: iSeries server messages may be added to the error handle when using the cwbRC_CallPgm()
and cwbRC_RunCmd() API’s. In these cases, you can use this API to retrieve the substitution text for the
iSeries server messages contained in the error handle. If there is no substitution text for the message,
return code CWBSV_ATTRIBUTE_NOT_SET will be returned. Use the returnLength parameter to
determine the actual number of bytes returned in the substitution text when the return code is CWB_OK.
The substitution text returned on this API could be used on a subsequent host retrieve message API call
(QSYS/QMHRTVM) to retrieve the format of the substitution text or to return secondary help text with the
substitution text added in. Host API’s are called using the cwbRC_CallPgm() API.

Chapter 4. iSeries Access for Windows® C/C++ APIs 451

cwbSV_GetErrSubstTextIndexed

Purpose: Returns the message substitution text for the message identified by the index provided. This
message attribute only pertains to messages returned from the iSeries server. The substitution text is the
data inserted into the substitution variable fields defined for the message.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetErrSubstTextIndexed(
cwbSV_ErrHandle errorHandle,
unsigned long index,
char *substitutionText,
unsigned long substitutionTextLength,
unsigned long *returnLength);

Parameters:

cwbSV_ErrHandle errorHandle - input
Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.

unsigned long index - input
Index value indicating which substitution text to return if multiple errors are associated with the error
handle. The valid index range is from 1 to the number of messages contained in the error handle. The
number of messages can be obtained by calling the cwbSV_GetErrCount() API.

char * substitutionText - input/output
Pointer to a buffer that will receive the substitution text stored in the error identified by the index. Note:
The data returned is binary, hence it is NOT returned as an ASCIIZ string. Any character strings
contained in the substitution text are returned as EBCDIC values.

unsigned long substitutionTextLength - input
Length of the receive buffer passed in. If the buffer is too small, the value will be truncated and
CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output data
if the receive buffer is too small. It will also be set to the actual number of bytes of output data
returned upon successful completion.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Invalid handle.

CWBSV_NO_ERROR_MESSAGES
No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET
Attribute not set in current message.

Usage: iSeries server messages may be added to the error handle when using the cwbRC_CallPgm()
and cwbRC_RunCmd() API’s. In these cases, you can use this API to retrieve the substitution text for the
iSeries server messages contained in the error handle. If there is no substitution text for the message,
return code CWBSV_ATTRIBUTE_NOT_SET will be returned. An index value of 1 works with the

452 iSeries: iSeries Access for Windows Programming

lowest-level (i.e. oldest) message in the error handle. An index value equal to the count returned by the
cwbSV_GetErrCount() API works with the top-level (i.e. most recent) message in the error handle. Index
values less than 1 act as if 1 was passed in. Index values greater than the number of messages contained
in the error handle act as if the returned count value from the cwbSV_GetErrCount() API was passed in.
Use the returnLength parameter to determine the actual number of bytes returned in the substitution text
when the return code is CWB_OK. The substitution text returned on this API could be used on a
subsequent host retrieve message API call (QSYS/QMHRTVM) to retrieve the format of the substitution
text or to return secondary help text with the substitution text added in. Host API’s are called using the
cwbRC_CallPgm() API.

Chapter 4. iSeries Access for Windows® C/C++ APIs 453

cwbSV_GetErrText

Purpose: Returns the message text associated with the top-level (for example, the most recent) error
that is identified by the error handle that is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetErrText(
cwbSV_ErrHandle errorHandle,
char *errorText,
unsigned long errorTextLength,
unsigned long *returnLength);

Parameters:

cwbSV_ErrHandle errorHandle - input
Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.

char * errorText - input/output
Pointer to a buffer that will receive the error message text that is stored in the error that is identified by
the handle.

unsigned long errorTextLength - input
Length of the receive buffer passed in. It should include space for the ending null character. If the
buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength will
be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_NO_ERROR_MESSAGES
No error messages associated with error handle.

Usage: None

454 iSeries: iSeries Access for Windows Programming

cwbSV_GetErrTextIndexed

Purpose: Returns the message text associated with the error index provided. An index value of 1 will
retrieve the lowest-level (for example, the oldest) message that is associated with the error handle. An
index value of ″cwbSV_GetErrCount()’s returned errorCount″ will retrieve the top-level (for example, the
most recent) message associated with the error handle.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetErrTextIndexed(
cwbSV_ErrHandle errorHandle,
unsigned long errorIndex,
char *errorText,
unsigned long errorTextLength,
unsigned long *returnLength);

Parameters:

cwbSV_ErrHandle errorHandle - input
Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.

unsigned long errorIndex - input
Index value that indicates which error text to return if multiple errors are associated with the error
handle.

char * errorText - input/output
Pointer to a buffer that will receive the error message text that is stored in the error that is identified by
the index.

unsigned long errorTextLength - input
Length of the receive buffer passed in. It should include space for the ending null character. If the
buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength will
be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_NO_ERROR_MESSAGES
No error messages associated with error handle.

Usage: Valid index values are from 1 to cwbSV_GetErrCount()’s return value. Index values less than 1
act as if 1 was passed. Index values greater than cwbSV_GetErrCount() act as if errorCount was passed.

Chapter 4. iSeries Access for Windows® C/C++ APIs 455

cwbSV_GetMaxRecordSize

Purpose: Returns the size (in bytes) of the largest record in the service file that is identified by the file
handle that is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetMaxRecordSize(
cwbSV_ServiceFileHandle serviceFile,
unsigned long *maxRecordSize);

Parameters:

cwbSV_ServiceFileHandle serviceFileHandle - input
Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.

unsigned long * recordCount - input/output
Pointer to variable that receives the size of the largest record in the file.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: None

456 iSeries: iSeries Access for Windows Programming

cwbSV_GetMessageText

Purpose: Returns the message text portion of the service record object that is identified by the handle
that is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetMessageText(
cwbSV_ServiceRecHandle serviceRecHandle,
char *messageText,
unsigned long messageTextLength,
unsigned long *returnLength);

Parameters:

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

char * messageText - input/output
Pointer to a buffer that will receive the message text that is stored in the record that is identified by the
handle.

unsigned long messageTextLength - input
Length of the receive buffer passed in. If the buffer is too small, the value will be truncated, and
CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output data
if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_MESSAGE_REC.

Usage: If the record type is not CWBSV_MESSAGE_REC, a return code of
CWBSV_INVALID_RECORD_TYPE will be returned. (note: cwbSV_GetServiceType() returns the current
record type)

Chapter 4. iSeries Access for Windows® C/C++ APIs 457

cwbSV_GetProduct

Purpose: Returns the product ID value for the service record object that is identified by the handle that is
provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetProduct(
cwbSV_ServiceRecHandle serviceRecHandle,
char *productID,
unsigned long productIDLength,
unsigned long *returnLength);

Parameters:

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

char * productID - input/output
Pointer to a buffer that will receive the product ID that is stored in the record that is identified by the
handle.

unsigned long productIDLength - input
Length of the receive buffer passed in. It should include space for the ending null character. If the
buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_PRODUCT_ID.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: The service record handle needs to be filled in by a call to a ″read″ function before calling this
routine, otherwise a NULL string will be returned. This function is valid for all service record types.

458 iSeries: iSeries Access for Windows Programming

cwbSV_GetRecordCount

Purpose: Returns the total numbers of records in the service file that is identified by the file handle that
is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetRecordCount(
cwbSV_ServiceFileHandle serviceFile,
unsigned long *recordCount);

Parameters:

cwbSV_ServiceFileHandle serviceFileHandle - input
Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.

unsigned long * recordCount - input/output
Pointer to variable that receives the total number of records in the file.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 459

cwbSV_GetServiceFileName

Purpose: Returns the fully-qualified path and file name of where the service records are being logged to
for a particular file type.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetServiceFileName(
cwbSV_ServiceFileType serviceFileType,
char *fileName,
unsigned long fileNameLength,
unsigned long *returnLength);

Parameters:

cwbSV_ServiceFileType serviceFileType - input
Value indicating which service file name you want returned. - CWBSV_HISTORY_LOG -
CWBSV_PROBLEM_LOG - CWBSV_DETAIL_TRACE_FILE - CWBSV_ENTRY_EXIT_TRACE_FILE

char * fileName - input/output
Pointer to a buffer that will receive the service file name associated with the one that was requested.

unsigned long fileNameLength - input
Length of the receive buffer passed in. It should include space for the ending null character. If the
buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_FILE_PATH.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWBSV_INVALID_FILE_TYPE
Unusable file type passed-in.

Usage: The filename string returned could be used as input to the cwbSV_OpenServiceFile() routine.

460 iSeries: iSeries Access for Windows Programming

cwbSV_GetServiceType

Purpose: Returns the type of record (trace, message, entry/exit, and so forth) for the service record that
is identified by the handle that is provided. Note: The service record needs to be filled in by a call to a
″read″ function before calling this function.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetServiceType(
cwbSV_ServiceRecHandle serviceRecHandle,
cwbSV_ServiceRecType *serviceType,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

cwbSV_ServiceRecType * serviceType - output
Pointer to a cwbSV_ServiceRecType where the serviceType will be returned. -
CWBSV_MESSAGE_REC - CWBSV_PROBLEM_REC - CWBSV_DATA_TRACE_REC -
CWBSV_API_TRACE_REC - CWBSV_SPI_TRACE_REC

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Unusable record type detected.

Usage: The service record handle needs to be filled in by a call to a ″read″ function before calling this
routine, otherwise CWBSV_INVALID_RECORD_TYPE will be returned.

Chapter 4. iSeries Access for Windows® C/C++ APIs 461

cwbSV_GetTimeStamp

Purpose: Returns the timestamp (in localized format) for the service record that is identified by the
handle that is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetTimeStamp(
cwbSV_ServiceRecHandle serviceRecHandle,
char *timeStamp,
unsigned long timeStampLength,
unsigned long *returnLength);

Parameters:

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

char * timeStamp - input/output
Pointer to a buffer that will receive the timestamp that is stored in the record that is identified by the
handle.

unsigned long timeStampLength - input
Length of the receive buffer passed in. It should include space for the ending null character. If the
buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_TIME_VALUE.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: The service record handle needs to be filled in by a call to a ″read″ function before calling this
routine, otherwise a NULL string will be returned. This function is valid for all service record types.

462 iSeries: iSeries Access for Windows Programming

cwbSV_GetTraceAPIData

Purpose: Returns the API trace data portion of the service record that is identified by the handle that is
provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetTraceAPIData(
cwbSV_ServiceRecHandle serviceRecHandle,
char *apiData,
unsigned long apiDataLength,
unsigned long *returnLength);

Parameters:

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

char * apiData - input/output
Pointer to a buffer that will receive the API trace data that is stored in the record that is identified by
the handle. Note: The data that is returned is binary. Hence, it is NOT returned as an ASCIIZ string.

unsigned long apiDataLength - input
Length of the receive buffer passed in. If the buffer is too small, the value will be truncated, and
CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output data
if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_API_TRACE_REC.

Usage: If the record type is not CWBSV_API_TRACE_REC, a return code of
CWBSV_INVALID_RECORD_TYPE will be returned. (note: cwbSV_GetServiceType() returns the current
record type)

Chapter 4. iSeries Access for Windows® C/C++ APIs 463

cwbSV_GetTraceAPIID

Purpose: Returns the API event ID of the service record object that is identified by the handle that is
provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetTraceAPIID(
cwbSV_ServiceRecHandle serviceRecHandle,
char *apiID);

Parameters:

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

char * apiID - input/output
Pointer to one-byte field that receives the API event ID.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_API_TRACE_REC.

Usage: If the record type is not CWBSV_API_TRACE_REC, a return code of
CWBSV_INVALID_RECORD_TYPE will be returned. (note: cwbSV_GetServiceType() returns the current
record type)

464 iSeries: iSeries Access for Windows Programming

cwbSV_GetTraceAPIType

Purpose: Returns the API event type of the service record object that is identified by the handle that is
provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetTraceAPIType(
cwbSV_ServiceRecHandle serviceRecHandle,
cwbSV_EventType *eventType,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

cwbSV_EventType * eventType - output
Pointer to a cwbSV_EventType where the eventType will be returned. - CWBSV_ENTRY_POINT -
CWBSV_EXIT_POINT

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_API_TRACE_REC.

CWBSV_INVALID_EVENT_TYPE
Unusable event type detected.

Usage: If the record type is not CWBSV_API_TRACE_REC, a return code of
CWBSV_INVALID_RECORD_TYPE will be returned. (note: cwbSV_GetServiceType() returns the current
record type)

Chapter 4. iSeries Access for Windows® C/C++ APIs 465

cwbSV_GetTraceData

Purpose: Returns the trace data portion of the service record object that is identified by the handle that
is provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetTraceData(
cwbSV_ServiceRecHandle serviceRecHandle,
char *traceData,
unsigned long traceDataLength,
unsigned long *returnLength);

Parameters:

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

char * traceData - input/output
Pointer to a buffer that will receive the trace data that is stored in the record that is identified by the
handle. Note: The data that is returned is binary. Hence, it is NOT returned as an ASCIIZ string.

unsigned long traceDataLength - input
Length of the receive buffer passed in. If the buffer is too small, the value will be truncated, and
CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output data
if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_DATA_TRACE_REC.

Usage: If the record type is not CWBSV_TRACE_DATA_REC, a return code of
CWBSV_INVALID_RECORD_TYPE will be returned. (note: cwbSV_GetServiceType() returns the current
record type)

466 iSeries: iSeries Access for Windows Programming

cwbSV_GetTraceSPIData

Purpose: Returns the SPI trace data portion of the service record that is identified by the handle that is
provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetTraceSPIData(
cwbSV_ServiceRecHandle serviceRecHandle,
char *spiData,
unsigned long spiDataLength,
unsigned long *returnLength);

Parameters:

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

char * spiData - input/output
Pointer to a buffer that will receive the SPI trace data that is stored in the record that is identified by
the handle. Note: The data that is returned is binary. Hence, it is NOT returned as an ASCIIZ string.

unsigned long spiDataLength - input
Length of the receive buffer passed in. If the buffer is too small, the value will be truncated, and
CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output data
if the receive buffer is too small.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_SPI_TRACE_REC.

Usage: If the record type is not CWBSV_SPI_TRACE_REC, a return code of
CWBSV_INVALID_RECORD_TYPE will be returned. (note: cwbSV_GetServiceType() returns the current
record type)

Chapter 4. iSeries Access for Windows® C/C++ APIs 467

cwbSV_GetTraceSPIID

Purpose: Returns the SPI event ID of the service record object that is identified by the handle that is
provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetTraceSPIID(
cwbSV_ServiceRecHandle serviceRecHandle,
char *spiID);

Parameters:

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

char * spiID - input/output
Pointer to one-byte field that receives the SPI event ID.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_SPI_TRACE_REC.

Usage: If the record type is not CWBSV_SPI_TRACE_REC, a return code of
CWBSV_INVALID_RECORD_TYPE will be returned. (note: cwbSV_GetServiceType() returns the current
record type)

468 iSeries: iSeries Access for Windows Programming

cwbSV_GetTraceSPIType

Purpose: Returns the SPI event type of the service record object that is identified by the handle that is
provided.

Syntax:

unsigned int CWB_ENTRY cwbSV_GetTraceSPIType(
cwbSV_ServiceRecHandle serviceRecHandle,
cwbSV_EventType *eventType,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

cwbSV_EventType * eventType - output
Pointer to a cwbSV_EventType where the eventType will be returned. - CWBSV_ENTRY_POINT -
CWBSV_EXIT_POINT

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_SPI_TRACE_REC.

CWBSV_INVALID_EVENT_TYPE
Unusable event type detected.

Usage: If the record type is not CWBSV_SPI_TRACE_REC, a return code of
CWBSV_INVALID_RECORD_TYPE will be returned. (note: cwbSV_GetServiceType() returns the current
record type)

Chapter 4. iSeries Access for Windows® C/C++ APIs 469

cwbSV_LogAPIEntry

Purpose: This function will log an API entry point to the currently active entry/exit trace file. The product
and component ID’s set in the entry will be written along with the date and time of the when the data was
logged. The apiID, along with any optional data that is passed on the request, will also be logged.

Syntax:

unsigned int CWB_ENTRY cwbSV_LogAPIEntry(
cwbSV_TraceAPIHandle traceAPIHandle,
unsigned char apiID,
char *apiData,
unsigned long apiDataLength);

Parameters:

cwbSV_TraceAPIHandle traceAPIHandle - input
Handle that was returned by a previous call to cwbSV_CreateTraceAPIHandle().

unsigned char apiID - input
A unique one-character code that will distinguish this API trace point from others that are logged by
your program. Definition of these codes are left up to the caller of this API. The recommended
approach is to use the defined range (0x00 - 0xFF) for each unique component in your product (that
is, start at 0x00 for each component)

char * apiData - input
Points to a buffer that contains additional data (for example, input parameter values from your caller)
that you want to log along with this entry point. Parameter is optional, it is ignored if the address is
NULL or the data length is zero. This buffer can contain binary data because the length parameter is
used in determining the amount to trace.

unsigned long apiDataLength - input
Specifies the number of bytes in the API data buffer to log for this trace entry.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This call should allows be used in conjunction with a corresponding ″cwbSV_LogAPIExit()″. It is
recommended that these calls would be put at the beginning and end of an API routine that you write. The
other method would be to use these log functions around calls to external routines that are not written by
you.

470 iSeries: iSeries Access for Windows Programming

cwbSV_LogAPIExit

Purpose: This function will log an API exit point to the currently active entry/exit trace file. The product
and component ID’s set in the entry will be written along with the date and time of the when the data was
logged. The API ID, along with any optional data that is passed on the request, will also be logged.

Syntax:

unsigned int CWB_ENTRY cwbSV_LogAPIExit(
cwbSV_TraceAPIHandle traceAPIHandle,
unsigned char apiID,
char *apiData,
unsigned long apiDataLength);

Parameters:

cwbSV_TraceAPIHandle traceAPIHandle - input
Handle that was returned by a previous call to cwbSV_CreateTraceAPIHandle().

unsigned char apiID - input
A unique one-character code that will distinguish this API trace point from others that are logged by
your program. Definition of these codes are left up to the caller of this API. The recommended
approach is to use the defined range (0x00 - 0xFF) for each unique component in your product (that
is, start at 0x00 for each component)

char * apiData - input
Points to a buffer that contains additional data (for example, output parameter values passed back to
your caller) that you want to log along with this exit point. Parameter is optional, it is ignored if the
address is NULL or the data length is zero. This buffer can contain binary data because the length
parameter is used in determining the amount to trace.

unsigned long apiDataLength - input
Specifies the number of bytes in the API data buffer to log for this trace entry.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This call should allows be used in conjunction with a corresponding ″cwbSV_LogAPIEntry()″. It is
recommended that these calls would be put at the beginning and end of an API routine that you write. The
other method would be to use these log functions around calls to external routines that are not written by
you.

Chapter 4. iSeries Access for Windows® C/C++ APIs 471

cwbSV_LogMessageText

Purpose: This function will log the supplied message text to the currently active history log. The product
and component ID’s set in the entry will be written along with the date and time of the when the text was
logged.

Syntax:

unsigned int CWB_ENTRY cwbSV_LogMessageText(
cwbSV_MessageTextHandle messageTextHandle,
char *messageText,
unsigned long messageTextLength);

Parameters:

cwbSV_MessageTextHandle messageTextHandle - input
Handle that was returned by a previous call to cwbSV_CreateMessageTextHandle().

char * messageText - input
Points to a buffer that contains the message text you want to log.

unsigned long messageTextLength - input
Specifies the number of bytes in the message text buffer to log for this message entry.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Unusable handle passed in on request.

Usage: None

472 iSeries: iSeries Access for Windows Programming

cwbSV_LogSPIEntry

Purpose: This function will log an SPI entry point to the currently active entry/exit trace file. The product
and component ID’s set in the entry will be written along with the date and time of the when the data was
logged. The spiID, along with any optional data that is passed on the request, will also be logged.

Syntax:

unsigned int CWB_ENTRY cwbSV_LogSPIEntry(
cwbSV_TraceSPIHandle traceSPIHandle,
unsigned char spiID,
char *spiData,
unsigned long spiDataLength);

Parameters:

cwbSV_TraceSPIHandle traceSPIHandle - input
Handle that was returned by a previous call to cwbSV_CreateTraceSPIHandle().

unsigned char spiID - input
A unique one-character code that will distinguish this SPI trace point from others that are logged by
your program. Definition of these codes are left up to the caller of this API. The recommended
approach is to use the defined range (0x00 - 0xFF) for each unique component in your product (that
is, start at 0x00 for each component)

char * spiData - input
Points to a buffer that contains additional data (for example, input parameter values from your caller)
that you want to log along with this entry point. Parameter is optional, it is ignored if the address is
NULL or the data length is zero. This buffer can contain binary data because the length parameter is
used in determining the amount to trace.

unsigned long spiDataLength - input
Specifies the number of bytes in the SPI data buffer to log for this trace entry.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
IHandle is not valid.

Usage: This call should allows be used in conjunction with a corresponding ″cwbSV_LogSPIExit()″. It is
recommended that these calls would be put at the beginning and end of an API routine that you write. The
other method would be to use these log functions around calls to external routines that are not written by
you.

Chapter 4. iSeries Access for Windows® C/C++ APIs 473

cwbSV_LogSPIExit

Purpose: This function will log an SPI exit point to the currently active entry/exit trace file. The product
and component ID’s set in the entry will be written along with the date and time of the when the data was
logged. The spiID, along with any optional data that is passed on the request, will also be logged.

Syntax:

unsigned int CWB_ENTRY cwbSV_LogSPIExit(
cwbSV_TraceSPIHandle traceSPIHandle,
unsigned char spiID,
char *spiData,
unsigned long spiDataLength);

Parameters:

cwbSV_TraceSPIHandle traceSPIHandle - input
Handle that was returned by a previous call to cwbSV_CreateTraceSPIHandle().

unsigned char spiID - input
A unique one-character code that will distinguish this SPI trace point from others that are logged by
your program. Definition of these codes are left up to the caller of this API. The recommended
approach is to use the defined range (0x00 - 0xFF) for each unique component in your product (that
is, start at 0x00 for each component)

char * spiData - input
Points to a buffer that contains additional data (for example, output parameter values passed back to
your caller) that you want to log along with this exit point. Parameter is optional, it is ignored if the
address is NULL or the data length is zero. This buffer can contain binary data because the length
parameter is used in determining the amount to trace.

unsigned long spiDataLength - input
Specifies the number of bytes in the SPI data buffer to log for this trace entry.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This call should allows be used in conjunction with a corresponding ″cwbSV_LogSPIEntry()″. It is
recommended that these calls would be put at the beginning and end of an API routine that you write. The
other method would be to use these log functions around calls to external routines that are not written by
you.

474 iSeries: iSeries Access for Windows Programming

cwbSV_LogTraceData

Purpose: This function will log the supplied trace data to the currently active trace file. The product and
component ID’s set in the entry will be written along with the date and time of the when the data was
logged.

Syntax:

unsigned int CWB_ENTRY cwbSV_LogTraceData(
cwbSV_TraceDataHandle traceDataHandle,
char *traceData,
unsigned long traceDataLength);

Parameters:

cwbSV_TraceDataHandle traceDataHandle - input
Handle that was returned by a previous call to cwbSV_CreateTraceDataHandle().

char * traceData - input
Points to a buffer that contains the trace data you want to log. The buffer can contain binary data
because the length parameter is used in determining the amount to trace.

unsigned long traceDataLength - input
Specifies the number of bytes in the trace data buffer to log for this trace entry.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: None

Chapter 4. iSeries Access for Windows® C/C++ APIs 475

cwbSV_OpenServiceFile

Purpose: Opens the specified service file for READ access (history log, trace file, and so forth) and
returns a handle to it.

Syntax:

unsigned int CWB_ENTRY cwbSV_OpenServiceFile(
char *serviceFileName,
cwbSV_ServiceFileHandle *serviceFileHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

char * serviceFileName - input
Points to a buffer that contains the fully-qualified name (for example, c:\path\filename.ext) of the
service file to open.

cwbSV_ServiceFileHandle * serviceFileHandle - input/output
Pointer to a cwbSV_ServiceFileHandle where the handle will be returned. This handle should be used
in subsequent calls to the service file functions.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed as handle address.

CWB_FILE_IO_ERROR
File could not be opened.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

Usage: None

476 iSeries: iSeries Access for Windows Programming

cwbSV_ReadNewestRecord

Purpose: Reads the newest record in the service file into the record handle that is provided. Subsequent
calls can be made to retrieve the information that is stored in this record (for example, GetProduct(),
GetDateStamp(), and so forth). Note: This record is the one with the newest time and date stamp in the
file.

Syntax:

unsigned int CWB_ENTRY cwbSV_ReadNewestRecord(
cwbSV_ServiceFileHandle serviceFileHandle,
cwbSV_ServiceRecHandle serviceRecHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbSV_ServiceFileHandle serviceFileHandle - input
Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_END_OF_FILE
End of file has been reached.

CWB_FILE_IO_ERROR
Record could not be read.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This read would be used as a ″priming-type″ read before issuing a series of
cwbSV_ReadPrevRecord() calls until the end-of-file indicator is returned.

Chapter 4. iSeries Access for Windows® C/C++ APIs 477

cwbSV_ReadNextRecord

Purpose: Reads the next record in the service file into the record handle that is provided. Subsequent
calls can be made to retrieve the information that is stored in this record (for example, GetProduct(),
GetDateStamp(), and so forth).

Syntax:

unsigned int CWB_ENTRY cwbSV_ReadNextRecord(
cwbSV_ServiceFileHandle serviceFileHandle,
cwbSV_ServiceRecHandle serviceRecHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbSV_ServiceFileHandle serviceFileHandle - input
Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_END_OF_FILE
End of file has been reached.

CWB_FILE_IO_ERROR
Record could not be read.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This read would normally be used once the priming read, ″ReadOldestRecord()″ is performed.

478 iSeries: iSeries Access for Windows Programming

cwbSV_ReadOldestRecord

Purpose: Reads the oldest record in the service file into the record handle that is provided. Subsequent
calls can be made to retrieve the information that is stored in this record (for example, GetProduct(),
GetDateStamp(), and so forth). Note: This record is the one with the oldest time and date stamp in the file.

Syntax:

unsigned int CWB_ENTRY cwbSV_ReadOldestRecord(
cwbSV_ServiceFileHandle serviceFileHandle,
cwbSV_ServiceRecHandle serviceRecHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbSV_ServiceFileHandle serviceFileHandle - input
Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.

cwbSV_ServiceRecHandle serviceRecHandle - input
Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_END_OF_FILE
End of file has been reached.

CWB_FILE_IO_ERROR
Record could not be read.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This read would be used as a ″priming-type″ read before issuing a series of
cwbSV_ReadNextRecord() calls until the end-of-file indicator is returned.

Chapter 4. iSeries Access for Windows® C/C++ APIs 479

cwbSV_ReadPrevRecord

Purpose: Reads the previous record in the service file into the record handle that is provided.
Subsequent calls can be made to retrieve the information that is stored in this record (for example,
GetProduct(), GetDateStamp(), and so forth).

Syntax:

unsigned int CWB_ENTRY cwbSV_ReadPrevRecord(
cwbSV_ServiceFileHandle serviceFileHandle,
cwbSV_ServiceRecHandle serviceRecHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbSV_ServiceFileHandle serviceFileHandle - input
Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.
V_ServiceRecHandle serviceRecHandle -input Handle that was returned by a previous call to the
cwbSV_CreateServiceRecHandle function.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_END_OF_FILE
End of file has been reached.

CWB_FILE_IO_ERROR
Record could not be read.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This read would normally be used once the priming read, ″ReadNewestRecord()″ is performed.

480 iSeries: iSeries Access for Windows Programming

cwbSV_SetMessageClass

Purpose: This function allows setting of the message class (severity) to associate with the message
being written to the history log.

Syntax:
unsigned int CWB_ENTRY cwbSV_SetMessageClass(

cwbSV_MessageTextHandle messageTextHandle,
cwbSV_MessageClass messageClass);

Parameters:

cwbSV_MessageTextHandle messageTextHandle - input
Handle that was returned by a previous call to cwbSV_CreateMessageTextHandle().

cwbSV_MessageClass messageClass - input
One of the following:

CWBSV_CLASS_INFORMATIONAL

CWBSV_CLASS_WARNING

CWBSV_CLASS_ERROR

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Unusable handle passed in on request.

CWBSV_INVALID_MSG_CLASS
Invalid message class passed in.

Usage: This value should be set before calling the corresponding log function,
″cwbSV_LogMessageText()″.

Chapter 4. iSeries Access for Windows® C/C++ APIs 481

cwbSV_SetMessageComponent

Purpose: This function allows setting of a unique component identifier in the message handle that is
provided. Along with setting the product ID (see cwbSV_SetMessageProduct), this call should be used to
distinguish your message entries from other product’s entries in the history log.

Syntax:

unsigned int CWB_ENTRY cwbSV_SetMessageComponent(
cwbSV_MessageTextHandle messageTextHandle,
char *componentID);

Parameters:

cwbSV_MessageTextHandle messageTextHandle - input
Handle that was returned by a previous call to cwbSV_CreateMessageTextHandle().

char * componentID - input
Points to a null-terminated string that contains a component identifier to be used on this message
entry. NOTE: A maximum of CWBSV_MAX_COMP_ID characters will be logged for the component ID.
Larger strings will be truncated.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Unusable handle passed in on request.

Usage: This value should be set before calling the corresponding log function,
″cwbSV_LogMessageData()″. The suggested hierarchy is that you would define a product ID with one or
many components that are defined under it.

482 iSeries: iSeries Access for Windows Programming

cwbSV_SetMessageProduct

Purpose: This function allows setting of a unique product identifier in the message handle that is
provided. Along with setting the component ID (see cwbSV_SetMessageComponent), this call should be
used to distinguish your message entries from other product’s entries in the history log.

Syntax:

unsigned int CWB_ENTRY cwbSV_SetMessageProduct(
cwbSV_MessageTextHandle messageTextHandle,
char *productID);

Parameters:

cwbSV_MessageTextHandle messageTextHandle - input
Handle that was returned by a previous call to cwbSV_CreateMessageTextHandle().

char * productID - input
Points to a null-terminated string that contains a product identifier to be used on this message entry.
NOTE: A maximum of CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID.
Larger strings will be truncated.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Unusable handle passed in on request.

Usage: This value should be set before calling the corresponding log function,
″cwbSV_LogMessageData()″. The suggested hierarchy is that you would define a product ID with one or
many components that are defined under it.

Chapter 4. iSeries Access for Windows® C/C++ APIs 483

cwbSV_SetAPIComponent

Purpose: This function allows setting of a unique component identifier in trace entry that is provided.
Along with setting the product ID (see cwbSV_SetAPIProduct), this call should be used to distinguish your
trace entries from other product’s entries in the trace file.

Syntax:

unsigned int CWB_ENTRY cwbSV_SetAPIComponent(
cwbSV_TraceAPIHandle traceAPIHandle,
char *componentID);

Parameters:

cwbSV_TraceAPIHandle traceAPIHandle - input
Handle that was returned by a previous call to cwbSV_CreateTraceAPIHandle().

char * componentID - input
Points to a null-terminated string that contains a component identifier to be used on this trace entry.
NOTE: A maximum of CWBSV_MAX_COMP_ID characters will be logged for the component ID.
Larger strings will be truncated.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This value should be set before calling the corresponding log functions, ″cwbSV_LogAPIEntry()″
and ″cwbSV_LogAPIExit(). The suggested hierarchy is that you would define a product ID with one or
many components that are defined under it.

484 iSeries: iSeries Access for Windows Programming

cwbSV_SetAPIProduct

Purpose: This function allows setting of a unique product identifier in the trace handle that is provided.
Along with setting the component ID (see cwbSV_SetAPIComponent), this call should be used to
distinguish your trace entries from other product’s entries in the trace file.

Syntax:

unsigned int CWB_ENTRY cwbSV_SetAPIProduct(
cwbSV_TraceAPIHandle traceAPIHandle,
char *productID);

Parameters:

cwbSV_TraceAPIHandle traceAPIHandle - input
Handle that was returned by a previous call to cwbSV_CreateTraceAPIHandle().

char * productID - input
Points to a null-terminated string that contains a product identifier to be used on this trace entry.
NOTE: A maximum of CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID.
Larger strings will be truncated.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This value should be set before calling the corresponding log functions, ″cwbSV_LogAPIEntry()″
and ″cwbSV_LogAPIExit(). The suggested hierarchy is that you would define a product ID with one or
many components that are defined under it.

Chapter 4. iSeries Access for Windows® C/C++ APIs 485

cwbSV_SetSPIComponent

Purpose: This function allows setting of a unique component identifier in trace entry that is provided.
Along with setting the product ID (see cwbSV_SetSPIProduct), this call should be used to distinguish your
trace entries from other product’s entries in the trace file.

Syntax:

unsigned int CWB_ENTRY cwbSV_SetSPIComponent(
cwbSV_TraceSPIHandle traceSPIHandle,
char *componentID);

Parameters:

cwbSV_TraceSPIHandle traceSPIHandle - input
Handle that was returned by a previous call to cwbSV_CreateTraceSPIHandle().

char * componentID - input
Points to a null-terminated string that contains a component identifier to be used on this trace entry.
NOTE: A maximum of CWBSV_MAX_COMP_ID characters will be logged for the component ID.
Larger strings will be truncated.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This value should be set before calling the corresponding log functions, ″cwbSV_LogAPIEntry()″
and ″cwbSV_LogAPIExit(). The suggested hierarchy is that you would define a product ID with one or
many components that are defined under it.

486 iSeries: iSeries Access for Windows Programming

cwbSV_SetSPIProduct

Purpose: This function allows setting of a unique product identifier in the trace handle that is provided.
Along with setting the component ID (see cwbSV_SetSPIComponent), this call should be used to
distinguish your trace entries from other product’s entries in the trace file.

Syntax:

unsigned int CWB_ENTRY cwbSV_SetSPIProduct(
cwbSV_TraceSPIHandle traceSPIHandle,
char *productID);

Parameters:

cwbSV_TraceSPIHandle traceSPIHandle - input
Handle that was returned by a previous call to cwbSV_CreateTraceSPIHandle().

char * productID - input
Points to a null-terminated string that contains a product identifier to be used on this trace entry.
NOTE: A maximum of CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID.
Larger strings will be truncated.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This value should be set before calling the corresponding log functions, ″cwbSV_LogAPIEntry()″
and ″cwbSV_LogAPIExit(). The suggested hierarchy is that you would define a product ID with one or
many components that are defined under it.

Chapter 4. iSeries Access for Windows® C/C++ APIs 487

cwbSV_SetTraceComponent

Purpose: This function allows setting of a unique component identifier in service entry that is provided.
Along with setting the product ID (see cwbSV_SetTraceProduct), this call should be used to distinguish
your trace entries from other product’s entries in the trace file.

Syntax:

unsigned int CWB_ENTRY cwbSV_SetTraceComponent(
cwbSV_TraceDataHandle traceDataHandle,
char *componentID);

Parameters:

cwbSV_TraceDataHandle traceDataHandle - input
Handle that was returned by a previous call to cwbSV_CreateTraceDataHandle().

char * componentID - input
Points to a null-terminated string that contains a component identifier to be used on this trace entry.
NOTE: A maximum of CWBSV_MAX_COMP_ID characters will be logged for the component ID.
Larger strings will be truncated.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This value should be set before calling the corresponding log function, ″cwbSV_LogTraceData()″.
The suggested hierarchy is that you would define a product ID with one or many components that are
defined under it.

488 iSeries: iSeries Access for Windows Programming

cwbSV_SetTraceProduct

Purpose: This function allows setting of a unique product identifier in the trace handle that is provided.
Along with setting the component ID (see cwbSV_SetTraceComponent), this call should be used to
distinguish your trace entries from other product’s entries in the trace file.

Syntax:

unsigned int CWB_ENTRY cwbSV_SetTraceProduct(
cwbSV_TraceDataHandle traceDataHandle,
char *productID);

Parameters:

cwbSV_TraceDataHandle traceDataHandle - input
Handle that was returned by a previous call to cwbSV_CreateTraceDataHandle().

char * productID - input
Points to a null-terminated string that contains a product identifier to be used on this trace entry.
NOTE: A maximum of CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID.
Larger strings will be truncated.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage: This value should be set before calling the corresponding log function, cwbSV_LogTraceData.
The suggested hierarchy is that you would define a product ID with one or many components that are
defined under it.

Chapter 4. iSeries Access for Windows® C/C++ APIs 489

Example: Using iSeries Access for Windows erviceability APIs
The following example uses the iSeries Access for Windows Serviceability APIs to log a message string to
theiSeries Access for Windows History Log:

#include <stdio.h>
#include "CWBSV.H"

unsigned int logMessageText(char *msgtxt)
/* Write a message to the active message log. */
{

cwbSV_MessageTextHandle messageTextHandle;
unsigned int rc;

/* Create a handle to a message text object, so that we may write */
/* message text to the active message log. */
if ((rc = cwbSV_CreateMessageTextHandle("ProductID", "ComponentID",

&messageTextHandle)) != CWB_OK)
return(rc);

/* Log the supplied message text to the active message log. */
rc = cwbSV_LogMessageText(messageTextHandle, msgtxt, strlen(msgtxt));

/* Delete the message text object identified by the handle provided.*/
cwbSV_DeleteMessageTextHandle(messageTextHandle);

return(rc);
}

unsigned int readMessageText(char **bufptr, cwbSV_ErrHandle errorHandle)
/* Read a message from the active message log. */
{

cwbSV_ServiceFileHandle serviceFileHandle;
cwbSV_ServiceRecHandle serviceRecHandle;
static char buffer[BUFSIZ];
unsigned int rc;

/* Retrieve the fully-qualified path and file name of the active */
/* message log. */
if ((rc = cwbSV_GetServiceFileName(CWBSV_HISTORY_LOG, buffer, BUFSIZ,

NULL)) != CWB_OK)
return(rc);

/* Open the active message log for READ access and return a handle */
/* to it. */
if ((rc = cwbSV_OpenServiceFile(buffer, &serviceFileHandle, errorHandle))

!= CWB_OK)
return(rc);

/* Create a service record object and return a handle to it. */
if ((rc = cwbSV_CreateServiceRecHandle(&serviceRecHandle)) != CWB_OK) {

cwbSV_CloseServiceFile(serviceFileHandle, 0);
return(rc);

}

/* Read the newest record in the active message log into the */
/* record handle provided. */
if ((rc = cwbSV_ReadNewestRecord(serviceFileHandle, serviceRecHandle,

errorHandle)) != CWB_OK) {
cwbSV_DeleteServiceRecHandle(serviceRecHandle);
cwbSV_CloseServiceFile(serviceFileHandle, 0);

490 iSeries: iSeries Access for Windows Programming

return(rc);
}

/* Retrieve the message text portion of the service record object */
/* identified by the handle provided. */
if ((rc = cwbSV_GetMessageText(serviceRecHandle, buffer, BUFSIZ, NULL))

== CWB_OK || rc == CWB_BUFFER_OVERFLOW) {
*bufptr = buffer;
rc = CWB_OK;

}

/* Delete the service record object identified by the */
/* handle provided. */
cwbSV_DeleteServiceRecHandle(serviceRecHandle);

/* Close the active message log identified by the handle provided.*/
cwbSV_CloseServiceFile(serviceFileHandle, errorHandle);

return(rc);
}

void main(int argc, char *argv[[)
{

cwbSV_ErrHandle errorHandle;
char *msgtxt = NULL, errbuf[BUFSIZ];
unsigned int rc;

/* Write a message to the active message log. */
if (logMessageText("Sample message text") != CWB_OK)

return;

/* Create an error message object and return a handle to it. */
cwbSV_CreateErrHandle(&errorHandle);

/* Read a message from the active message log. */
if (readMessageText(&msgtxt, errorHandle) != CWB_OK) {

if ((rc = cwbSV_GetErrText(errorHandle, errbuf, BUFSIZ, NULL)) ==
CWB_OK || rc == CWB_BUFFER_OVERFLOW)

fprintf(stdout, "%s\n", errbuf);
}
else if (msgtxt)

fprintf(stdout, "Message text: \"%s\"\n", msgtxt);

/* Delete the error message object identified by the */
/* handle provided. */
cwbSV_DeleteErrHandle(errorHandle);

}

iSeries Access for Windows System Object Access (SOA) APIs
System Object Access enables you to view and manipulate iSeries objects through a graphical user
interface. System Object Access application programming interfaces (APIs) for iSeries Access for Windows
provide direct access to object attributes. For example, to obtain the number of copies for a given spool
file, you can call a series of SOA APIs, and change the value as needed.

System Object Access APIs for iSeries Access for Windows required files:

Interface definition file Import library Dynamic Link Library

cwbsoapi.h cwbapi.lib cwbsoapi.dll

Chapter 4. iSeries Access for Windows® C/C++ APIs 491

Programmer’s Toolkit:
The Programmer’s Toolkit provides System Object Access documentation, access to the
cwbsoapi.h header file, and links to sample programs. To access this information, open the
Programmer’s Toolkit and select iSeries Operations —> C/C++ APIs.

System Object Access APIs for iSeries Access for Windows topics:
v “SOA objects”
v “iSeries object views”
v “Typical use of System Object Access APIs for iSeries Access for Windows”
v System Object Access APIs for iSeries Access for Windows listing
v “System Object Access APIs return codes” on page 30

Related topic:

v “iSeries system name formats for ODBC Connection APIs” on page 12

SOA objects
Use System Object Access to view and to manipulate the following iSeries objects:

You can view and manipulate these objects:
v Jobs
v Printers
v Printed output
v Messages
v Spooled files

You only can manipulate these objects:
v Users and groups
v TCP/IP interfaces
v TCP/IP routes
v Ethernet lines
v Token-ring lines
v Hardware resources
v Software resources
v Libraries in QSYS

iSeries object views
Two types of iSeries object views are provided with iSeries Access for Windows:

List view:
Displays a customizable graphical list view of the selected iSeries objects. The user can perform a
variety of actions on one or more objects.

Properties view:
Displays a detailed graphical view of the attributes of a specific iSeries object. The user can view
all attributes if desired, and make changes to those attributes that are changeable.

Typical use of System Object Access APIs for iSeries Access for
Windows
Links to three summaries for and examples of System Object Access API usage are provided below. Each
example is presented twice; a typical sequence of API calls is shown in summary form, and then an actual
C-language sample program is presented. The summary indicates which APIs are required (R) and which
are optional (O). Normally, additional code would be required to check for and handle errors on each
function call; this has been omitted for illustration purposes.

Typical use of SOA APIs for iSeries Access for Windows summaries and examples:
v “Displaying a customized list of iSeries objects” on page 493
v “Sample program: Displaying a customized list of iSeries objects” on page 493

492 iSeries: iSeries Access for Windows Programming

v “Displaying the Properties view for an iSeries Object” on page 495
v “Sample program: Displaying the Properties view of an object” on page 495
v “Accessing and updating data for iSeries Objects” on page 497
v “Sample program: Accessing and updating data for iSeries objects” on page 498

Displaying a customized list of iSeries objects
A list object for a list of iSeries spool files is created. After setting the desired sort and filter criteria, the list
is displayed to the user, with the user interface customized so that certain user actions are disabled. When
the user is finished viewing the list, the filter criteria are saved in the application profile and the program
exits.

Displaying a customized list of iSeries objects (summary)

(O) cwbRC_StartSys Start a iSeries conversation

(R) CWBSO_CreateListHandle Create a list of iSeries objects

(O) CWBSO_SetListProfile Set name of application

(O) CWBSO_ReadListProfile Load application preferences

(O) CWBSO_SetListFilter Set list filter criteria

(O) CWBSO_SetListSortFields Set list sort criteria

(O) CWBSO_DisallowListFilter Do not allow user to change filter criteria

(O) CWBSO_DisallowListActions Disallow selected list actions

(O) CWBSO_SetListTitle Set title of list

(R) CWBSO_CreateErrorHandle Create an error object

(R) CWBSO_DisplayList Display the customized list

(O) CWBSO_DisplayErrMsg Display error message if error occurred

(O) CWBSO_WriteListProfile Save list filter criteria

(R) CWBSO_DeleteErrorHandle Delete error object

(R) CWBSO_DeleteListHandle Delete list

(O) cwbRC_StopSys End iSeries conversation

To view the example:
“Sample program: Displaying a customized list of iSeries objects”

Sample program: Displaying a customized list of iSeries objects

#ifdef UNICODE
#define _UNICODE

#endif
#include <windows.h> // Windows APIs and datatypes
#include "cwbsoapi.h" // System Object Access APIs
#include "cwbrc.h" // iSereis DPC APIs
#include "cwbun.h" // iSeries Navigator APIs

#define APP_PROFILE "APPPROF" // Application profile name

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow)

{
MSG msg; // Message structure
HWND hWnd; // Window handle
cwbRC_SysHandle hSystem; // System handle
CWBSO_LIST_HANDLE hList = CWBSO_NULL_HANDLE; // List handle
CWBSO_ERR_HANDLE hError = CWBSO_NULL_HANDLE; // Error handle
cwbCO_SysHandle hSystemHandle; // System object handle
unsigned int rc; // System Object Access return codes

Chapter 4. iSeries Access for Windows® C/C++ APIs 493

unsigned short sortIDs[] = { CWBSO_SFL_SORT_UserData,
CWBSO_SFL_SORT_Priority };

// Array of sort IDs
unsigned short actionIDs[] = { CWBSO_ACTN_PROPERTIES };

// Array of action IDs

//**
// Start a conversation with iSeries server SYSNAME. Specify
// application name APPNAME.
//**
cwbUN_GetSystemHandle((char *)"SYSNAME", (char *)"APPNAME", &hSystemHandle);

cwbRC_StartSysEx(hSystemHandle, &hSystem);

//***
// Create a list of spooled files. Set desired sort/filter criteria.

// Create a list of spooled files on system SYSNAME
CWBSO_CreateListHandleEx(hSystemHandle,

CWBSO_LIST_SFL,
&hList);

// Identify the name of the application profile
CWBSO_SetListProfile(hList, APP_PROFILE);

// Create an error handle
CWBSO_CreateErrorHandle(&hError);

// Load previous filter criteria
CWBSO_ReadListProfile(hList, hError);

// Only show spooled files on printer P3812 for user TLK
CWBSO_SetListFilter(hList, CWBSO_SFLF_DeviceFilter, "P3812");
CWBSO_SetListFilter(hList, CWBSO_SFLF_UserFilter, "TLK");

// Sort by ’user specified data’, then by ’output priority’
CWBSO_SetListSortFields(hList, sortIDs, sizeof(sortIDs) / sizeof(short));

//***
// Customize the UI by disabling selected UI functions. Set the list title.
//***

// Do not allow users to change list filter
CWBSO_DisallowListFilter(hList);

// Do not allow the ’properties’ action to be selected
CWBSO_DisallowListActions(hList, actionIDs, sizeof(actionIDs) / sizeof(short));

// Set the string that will appear in the list title bar
CWBSO_SetListTitle(hList, "Application Title");

//***
// Display the list.
//***

// Display the customized list of spooled files
rc = CWBSO_DisplayList(hList, hInstance, nCmdShow, &hWnd, hError);

// If an error occurred, display a message box
if (rc == CWBSO_ERROR_OCCURRED)

CWBSO_DisplayErrMsg(hError);
else
{

// Dispatch messages for the list window
while(GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

// List window has been closed - save filter criteria in application profile
CWBSO_WriteListProfile(hList, hError);

}

//***

494 iSeries: iSeries Access for Windows Programming

// Processing complete - clean up and exit.
//***

// Clean up handles
CWBSO_DeleteErrorHandle(hError);
CWBSO_DeleteListHandle(hList);

// End the conversation started by EHNDP_StartSys
cwbRC_StopSys(hSystem);

//**
// Return from WinMain.
//**

return rc;
}

Displaying the Properties view for an iSeries Object
A list object for a list of iSeries spool files is created. After setting the desired filter criteria, the list is
opened, and a handle to the first object in the list is obtained. A properties view that shows the attributes
for this object is displayed to the user.

Displaying the properties view for an object (Summary)
(O) cwbRC_StartSys Start a conversation with an iSeries server

(R) CWBSO_CreateListHandle Create a list of iSeries objects

(O) CWBSO_SetListFilter Set list filter criteria

(R) CWBSO_CreateErrorHandle Create an error object

(R) CWBSO_OpenList Open the list (builds a list on the iSeries server)

(O) CWBSO_DisplayErrMsg Display error message if error occurred

(O) CWBSO_GetListSize Get number of objects in the list

(R) CWBSO_GetObjHandle Get an object from the list

(R) CWBSO_DisplayObjAttr Display the properties view for the object

(R) CWBSO_DeleteObjHandle Delete the object

(O) CWBSO_CloseList Close the list

(R) CWBSO_DeleteErrorHandle Delete error object

(R) CWBSO_DeleteListHandle Delete list

(O) cwbRC_StopSys End iSeries conversation

To view the example:
“Sample program: Displaying the Properties view of an object”

Sample program: Displaying the Properties view of an object

#ifdef UNICODE
#define _UNICODE

#endif
#include <windows.h> // Windows APIs and datatypes
#include "cwbsoapi.h" // System Object Access APIs
#include "cwbrc.h" // iSeries DPC APIs
#include "cwbun.h" // iSeries Navigator APIs

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow)

{
MSG msg; // Message structure
HWND hWnd; // Window handle

Chapter 4. iSeries Access for Windows® C/C++ APIs 495

cwbRC_SysHandle hSystem; // System handle
CWBSO_LIST_HANDLE hList = CWBSO_NULL_HANDLE; // List handle
CWBSO_ERR_HANDLE hError = CWBSO_NULL_HANDLE; // Error handle
CWBSO_OBJ_HANDLE hObject = CWBSO_NULL_HANDLE; // Object handle
cwbCO_SysHandle hSystemHandle; // System object handle
unsigned long listSize = 0; // List size
unsigned short listStatus = 0; // List status
unsigned int rc; // System Object Access return codes

//***
// Start a conversation with iSeries server SYSNAME. Specify
// application name APPNAME.
//**

cwbUN_GetSystemHandle((char *)"SYSNAME", (char *)"APPNAME", &hSystemHandle);

cwbRC_StartSysEx(hSystemHandle, &hSystem);

//***
// Create a list of spooled files. Set desired filter criteria.
//***

// Create a list of spooled files on system SYSNAME
CWBSO_CreateListHandleEx(hSystemHandle,

CWBSO_LIST_SFL,
&hList);

// Only include spooled files on printer P3812 for user TLK
CWBSO_SetListFilter(hList, CWBSO_SFLF_DeviceFilter, "P3812");
CWBSO_SetListFilter(hList, CWBSO_SFLF_UserFilter, "TLK");

//***
// Open the list.
//***

// Create an error handle
CWBSO_CreateErrorHandle(&hError);

// Open the list of spooled files
rc = CWBSO_OpenList(hList, hError);
// If an error occurred, display a message box
if (rc == CWBSO_ERROR_OCCURRED)

CWBSO_DisplayErrMsg(hError);
else
{

//***
// Display the properties of the first object in the list
//***

// Get the number of objects in the list
CWBSO_GetListSize(hList, &listSize, &listStatus, hError);

if (listSize > 0)
{

// Get the first object in the list
CWBSO_GetObjHandle(hList, 0, &hObject, hError);

// Display the properties window for this object
CWBSO_DisplayObjAttr(hObject, hInstance, nCmdShow, &hWnd, hError);

// Dispatch messages for the properties window
while(GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

// Properties window has been closed - delete object handle
CWBSO_DeleteObjHandle(hObject);

}
}

//***
// Processing complete - clean up and exit.
//***

496 iSeries: iSeries Access for Windows Programming

// Close the list
CWBSO_CloseList(hList, hError);

// Clean up handles
CWBSO_DeleteErrorHandle(hError);
CWBSO_DeleteListHandle(hList);

// End the conversation started by EHNDP_StartSys
cwbRC_StopSys(hSystem);

//**
// Return from WinMain.
//**

return rc;
}

Accessing and updating data for iSeries Objects
In “Sample program: Accessing and updating data for iSeries objects” on page 498, all spooled files for
device P3812 that have 10 or more pages have their output priority changed to 9 so that they will not print
before smaller files.

A list object for a list of iSeries spool files is created. After setting the desired filter criteria, the list is
opened. A parameter object is created which will be used to change the output priority for each spooled
file in the list. After storing the desired output priority value of ″9″ in the parameter object, a loop is
entered. Each object in the list is examined in turn, and if a spooled file is found to have more than 10
pages then its output priority is changed.

Accessing and updating data for iSeries objects (Summary)
(R) CWBSO_CreateListHandle Create a list of iSeries objects

(O) CWBSO_SetListFilter Set list filter criteria

(R) CWBSO_CreateErrorHandle Create an error object

(R) CWBSO_OpenList Open the list (automatically starts
a conversation with the iSeries server)

(O) CWBSO_DisplayErrMsg Display error message if error occurred

(R) CWBSO_CreateParmObjHandle Create a parameter object

(R) CWBSO_SetParameter Set new value for object attribute
or attributes

(R) CWBSO_WaitForObj Wait until first object is available

. . . Loop through all objects

.

. (R) CWBSO_GetObjHandle Get an object from the list

.

. (R) CWBSO_GetObjAttr Read data for a particular attribute

.

. (R) CWBSO_SetObjAttr Update an attribute on the iSeries server

.

. (R) CWBSO_DeleteObjHandle Clean up object handle

.

. (R) CWBSO_WaitForObj Wait for next object in list

.

..............

(R) CWBSO_DeleteParmObjHandle Delete the parameter object

(O) CWBSO_CloseList Close the list

Chapter 4. iSeries Access for Windows® C/C++ APIs 497

(R) CWBSO_DeleteErrorHandle Delete error object

(R) CWBSO_DeleteListHandle Delete list (automatically ends the
iSeries conversation)

To view the example:
“Sample program: Accessing and updating data for iSeries objects”

Sample program: Accessing and updating data for iSeries objects
#include <windows.h> // Windows APIs and datatypes
#include <stdlib.h> // For atoi
#include "cwbsoapi.h" // System Object Access APIs

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow)

{
CWBSO_LIST_HANDLE hList = CWBSO_NULL_HANDLE; // List handle
CWBSO_ERR_HANDLE hError = CWBSO_NULL_HANDLE; // Error handle
CWBSO_PARMOBJ_HANDLE hParmObject = CWBSO_NULL_HANDLE; // Parm object
CWBSO_OBJ_HANDLE hObject = CWBSO_NULL_HANDLE; // Object handle
unsigned int rc, setRC; // System Object Access return codes
unsigned long bytesNeeded = 0; // Bytes needed
unsigned short errorIndex = 0; // Error index (SetObjAttr)
char szString[100]; // Buffer for formatting
int totalPages = 0; // Total pages
int i = 0; // Loop counter
int nNbrChanged = 0; // Count of changed objects

MessageBox(GetFocus(), "Start of Processing", "PRIORITY", MB_OK);

//**
// Create a list of spooled files. Set desired filter criteria.
//**

// Create a list of spooled files on system SYSNAME
CWBSO_CreateListHandle("SYSNAME",

"APPNAME",
CWBSO_LIST_SFL,
&hList);

// Only include spooled files for device P3812
CWBSO_SetListFilter(hList, CWBSO_SFLF_DeviceFilter, "P3812");

//***
// Open the list.
//***

// Create an error handle
CWBSO_CreateErrorHandle(&hError);

// Open the list of spooled files
rc = CWBSO_OpenList(hList, hError);

// If an error occurred, display a message box
if (rc == CWBSO_ERROR_OCCURRED)

CWBSO_DisplayErrMsg(hError);
else
{

//***
// Set up to change output priority for all objects in the list.
//***

// Create a parameter object to hold the attribute changes
CWBSO_CreateParmObjHandle(&hParmObject);

// Set the parameter to change the output priority to ’9’

498 iSeries: iSeries Access for Windows Programming

CWBSO_SetParameter(hParmObject,
CWBSO_SFL_OutputPriority,
"9",
hError);

//**
// Loop through the list, changing the output priority for any
// files that have more than 10 total pages. Loop will
// terminate when CWBSO_WaitForObj
// returns CWBSO_BAD_LIST_POSITION, indicating that there
// are no more objects in the list.
//**

// Wait for first object in the list
rc = CWBSO_WaitForObj(hList, i, hError);

// Loop through entire list
while (rc == CWBSO_NO_ERROR)
{

// Get the list object at index i
CWBSO_GetObjHandle(hList, i, &hObject, hError);

// Get the total pages attribute for this spooled file
CWBSO_GetObjAttr(hObject,

CWBSO_SFL_TotalPages,
szString,
sizeof(szString),
&bytesNeeded,;
hError);

totalPages = atoi(szString);

// Update the output priority if necessary
if (totalPages > 10)
{

// Change the spool file’s output priority to ’9’
setRC = CWBSO_SetObjAttr(hObject, hParmObject, &errorIndex, hError);
if (setRC == CWBSO_NO_ERROR)

nNbrChanged++;
}

// Delete the object handle
CWBSO_DeleteObjHandle(hObject);

// Increment list item counter
i++;

// Wait for next list object
rc = CWBSO_WaitForObj(hList, i, hError);

} /* end while */

// Parameter object no longer needed
CWBSO_DeleteParmObjHandle(hParmObject);

} /* end if */

// Display the number of spooled files that had priority changed
wsprintf (szString, "Number of spool files changed: %d", nNbrChanged);
MessageBox(GetFocus(), szString, "PRIORITY", MB_OK);

//**
// Processing complete - clean up and exit.
//**

Chapter 4. iSeries Access for Windows® C/C++ APIs 499

// Close the list
CWBSO_CloseList(hList,hError);

// Clean up handles
CWBSO_DeleteErrorHandle(hError);
CWBSO_DeleteListHandle(hList);

//**
// Return from WinMain.
//**

return 0;
}

iSeries Access for Windows System Object Access programming
considerations
See the following topics for important SOA programming considerations:
v “About System Object Access errors”
v “System Object Access application profiles”
v “Managing iSeries communications sessions for application programs”

About System Object Access errors
All System Object Access APIs use return codes to report error conditions. Check for errors on each
function call. In addition, certain APIs incorporate a handle to an “error object” in their interface. The error
object is used to provide additional information for errors which occurred during the processing of a
request. Often these errors are encountered while interacting with the iSeries server, in which case the
error object will contain the error message text.

If a function call returns CWBSO_ERROR_OCCURRED then the error object will have been filled in with
information that describe the error. CWBSO_GetErrMsgText may be used to retrieve the error message
text. The message will have been translated into the language that is specified for the user’s execution
environment. Alternatively, the error message may be displayed to the user directly by calling
CWBSO_DisplayErrMsg.

For internal processing errors, error objects automatically log an entry in the System Object Access log file
soa.log, in the iSeries Access for Windows install directory. This file is English only and is intended for use
by IBM personnel for problem analysis.

Related topic:
“System Object Access APIs return codes” on page 30

System Object Access application profiles
By default, user-specified list filter criteria are not saved to disk. System Object Access provides APIs for:

v Requesting the use of an application-specific registry key for loading the filter data from the registry into
a given list object

v Saving the data for a particular list object in the registry

The data is saved by iSeries system name, and within system name by object type. To read or write profile
data, a system name must be specified on the CWBSO_CreateListHandle call for the list object.

Managing iSeries communications sessions for application programs
System Object Access APIs for iSeries Access for Windows communicate with the iSeries server through
the use of one or more client/server conversations. Because it often takes several seconds to establish a
conversation, your application may experience delays when a list first is opened. This topic explains how
to control and manage the initiation of conversations so that the performance impact on application
programs is minimized.

The default behavior of System Object Access may be summarized as follows:

500 iSeries: iSeries Access for Windows Programming

v If no conversation has been established with the iSeries system object that is identified on the
CWBSO_CreateListHandleEx API, a conversation automatically will be started when the list is opened
or displayed. If iSeries Access for Windows has not yet established a connection to the specified
system, a dialog box will appear prompting the user for the appropriate UserID and password.

v If another instance of the application program starts, the above process repeats itself. No conversation
sharing occurs between application programs that run in different processes (that is, with different
instance handles).

v When the application program deletes the last System Object Access list, the conversation with the
iSeries server is automatically ended (Note that CWBSO_CloseList does not end the conversation with
the iSeries server).

A System Object Access conversation may be started using the cwbRC_StartSysEx API. This API
accepts an iSeries system object as a parameter, and returns a system handle. Save this handle for later
use on the cwbRC_StopSys API, when the application is terminating and it is time to end the
conversation with the iSeries server.

When the cwbRC_StartSysEx API is called, the application is blocked until the conversation is
established. Therefore, it is good practice to inform the user that a connection is about to be attempted
immediately before the call. On return, the conversation will have been initiated, and System Object
Access list processing will use this conversation instead of starting a new one.

When cwbRC_StartSysEx is used in this way, the last list to be deleted will not end the conversation. You
must call cwbRC_StopSys explicitly before you exit the application.

System Object Access APIs for iSeries Access for Windows listing
The following System Object Access APIs for iSeries Access for Windows are listed alphabetically:

System Object Access APIs for iSeries Access for Windows

CWBSO_CloseList
CWBSO_CopyObjHandle
CWBSO_CreateErrorHandle
CWBSO_CreateListHandle
CWBSO_CreateListHandleEx
CWBSO_CreateObjHandle
CWBSO_CreateParmObjHandle
CWBSO_DeleteErrorHandle
CWBSO_DeleteListHandle
CWBSO_DeleteObjHandle
CWBSO_DeleteParmObjHandle
CWBSO_DisallowListActions
CWBSO_DisallowListFilter
CWBSO_DisplayErrMsg
CWBSO_DisplayList
CWBSO_DisplayObjAttr

CWBSO_GetErrMsgText
CWBSO_GetListSize
CWBSO_GetObjAttr
CWBSO_GetObjHandle
CWBSO_OpenList
CWBSO_ReadListProfile
CWBSO_RefreshObj
CWBSO_ResetParmObj
CWBSO_SetListFilter
CWBSO_SetListProfile
CWBSO_SetListSortFields
CWBSO_SetListTitle
CWBSO_SetObjAttr
CWBSO_SetParameter
CWBSO_WaitForObj
CWBSO_WriteListProfile

See “SOA attribute special values” on page 541 for related information.

SOA enablers:
System Object Access also includes enablers (APIs), which applications can use to access data in
iSeries objects or to request graphical lists and attribute views of the object data. The APIs for
manipulating lists of objects must be called in the correct order. The basic flow is as follows:
CreateErrorHandle -- Creates a handle to an "error" object

to be passed to other APIs
CreateListHandle -- Instantiates a list object on the client
OpenList -- Builds list on iSeries server associated with client

list
(Manipulate the list and its objects using various generic

Chapter 4. iSeries Access for Windows® C/C++ APIs 501

and subclass APIs)
CloseList -- Closes list and release resource on iSeries server
DeleteListHandle -- Destroys list object on the client

The “CWBSO_CreateListHandle” on page 506 API must be called to create a list before any other
list APIs are called. The CWBSO_CreateListHandle API returns a list handle to the caller. The list
handle must be passed as input to all other list APIs.

After the list is allocated, the “CWBSO_SetListFilter” on page 533 API can be called to change the
filter criteria for the list. CWBSO_SetListFilter is optional; if it is not called, the list will be built with
the default filter criteria. Similarly, the “CWBSO_SetListSortFields” on page 535 API can be called
to define the attributes on which the list will be sorted. If it is not called the list will not be sorted.

The “CWBSO_OpenList” on page 529 API must be called to build the list of objects. This will result
in a request to be sent to the iSeries server. The list will be built on the iSeries server, and some
or all of the objects (records) in the list will be buffered down to the list on the client. Although all
objects in the list are not necessarily cached on the client, the APIs will behave as if they are.
Once the CWBSO_OpenList API is called successfully, the following APIs can be called:

“CWBSO_GetObjHandle” on page 527
Retrieves a handle to a specific object in the list. The object handle can then be used to
manipulate the specific object.

“CWBSO_DeleteObjHandle” on page 514
Releases the handle returned by CWBSO_GetObjHandle.

“CWBSO_DisplayList” on page 519
Displays the spreadsheet view of the list.

“CWBSO_GetListSize” on page 524
Retrieves the number of objects in the list.

“CWBSO_CloseList” on page 503
Closes the list on the iSeries server and destroy all client objects in the list. All object
handles returned by CWBSO_GetListObject no longer are valid after the list is closed.
After the list is closed, the APIs in this list cannot be called until the “CWBSO_OpenList”
on page 529 API is called again. The “CWBSO_DeleteListHandle” on page 513 API
should be called to destroy the list object.

502 iSeries: iSeries Access for Windows Programming

CWBSO_CloseList

Purpose: Closes the list of objects and frees up resources allocated on the iSeries server.

Syntax:

unsigned int CWB_ENTRY CWBSO_CloseList(
CWBSO_LIST_HANDLE listHandle,
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error that was returned by a previous call to CWBSO_CreateErrorHandle. When the
value that is returned by this API is CWBSO_ERROR_OCCURRED, the error handle may be used to
retrieve the error message text or display the error to the user.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_ERROR_OCCURRED
An error occurred. Use the error handle for more information.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned
by CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must be
called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle must be
passed as input to this API. The list must currently be open. The list is opened by calling
CWBSO_OpenList. This API will not end the conversation with the iSeries server. For the conversation to
be ended the list must be deleted using CWBSO_DeleteListHandle.

Chapter 4. iSeries Access for Windows® C/C++ APIs 503

CWBSO_CopyObjHandle

Purpose: Creates a new instance of an object and returns a handle to the new instance. This does not
create a new object on the iSeries server. It merely creates an additional instance of an iSeries object on
the client. Object handles that are returned by CWBSO_GetObjHandle are always destroyed when the list
that contains the object is closed. This API allows the creation of an instance of the object that will persist
after the list is closed. The object instance that was created by this API is kept in sync with the object in
the list. In other words, if one of the objects is changed, the changes will be apparent in the other object.

Syntax:

unsigned int CWB_ENTRY CWBSO_CopyObjHandle(
CWBSO_OBJ_HANDLE objectHandle,
CWBSO_OBJ_HANDLE far* lpNewObjectHandle);

Parameters:

CWBSO_OBJ_HANDLE objectHandle - input
A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or
CWBSO_CopyObjHandle.

CWBSO_OBJ_HANDLE far* lpNewObjectHandle - output
A long pointer to a handle which will be set to a new handle for the same iSeries object. This handle
may be used with any other API that accepts an object handle with the exception that some APIs only
operate on specific types of objects.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_BAD_OBJ_HANDLE
The object handle that is specified is not valid.

Usage: CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The
object handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as
input to this API. When the object is no longer needed, the calling program is responsible for doing the
following:

v Call CWBSO_DeleteObjHandle to free up resources that are allocated on the client.

504 iSeries: iSeries Access for Windows Programming

CWBSO_CreateErrorHandle

Purpose: Creates an error handle. An error handle is used to contain error messages that are returned
from other APIs. The error handle may be used to display the error in a dialog or retrieve the associated
error message text.

Syntax:

unsigned int CWB_ENTRY CWBSO_CreateErrorHandle(
CWBSO_ERR_HANDLE far* lpErrorHandle);

Parameters:

CWBSO_ERR_HANDLE far* lpErrorHandle - output
A long pointer to a handle which will be set to the handle for an error.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

Usage: When the error handle is no longer needed, the calling program is responsible for doing the
following:

v Call CWBSO_DeleteErrorHandle to free up resources that are allocated on the client.

Chapter 4. iSeries Access for Windows® C/C++ APIs 505

CWBSO_CreateListHandle

Purpose: Creates a new list and returns a handle to the list.

Syntax:

unsigned int CWB_ENTRY CWBSO_CreateListHandle(
char far* lpszSystemName,
char far* lpszApplicationName,
CWBSO_LISTTYPE type,
CWBSO_LIST_HANDLE far* lpListHandle);

Parameters:

char far* lpszSystemName - input
The name of the iSeries system on which the list will be built. The name that is specified must be a
configured iSeries server. If the client is not currently connected to the iSeries server, a connection will
be established when the list is opened. If NULL is specified for the system name, the current iSeries
Access default system will be used.

char far* lpszApplicationName - input
A character string that identifies the application that will be interacting with the list. The maximum
length of this string is 10 characters, excluding the NULL terminator.

CWBSO_LISTTYPE type - input
The type of list to be built. Specify one of the following:

CWBSO_LIST_JOB
List of jobs.

CWBSO_LIST_SJOB
List of server jobs.

CWBSO_LIST_SJOB
List of server jobs.

CWBSO_LIST_MSG
List of messages.

CWBSO_LIST_PRT
List of printers.

CWBSO_LIST_SFL
List of spooled files.

CWBSO_LIST_IFC
List interfaces.

CWBSO_LIST_ELN
List Ethernet lines.

CWBSO_LIST_TLN
List token-ring lines.

CWBSO_LIST_HWL
List hardware resources.

CWBSO_LIST_SW
List software products.

CWBSO_LIST_RTE
List TCP/IP route.

CWBSO_LIST_PRF
List user profiles.

506 iSeries: iSeries Access for Windows Programming

CWBSO_LIST_SMP
List libraries in QSYS.

CWBSO_LIST_HANDLE far* lpListHandle - output
A long pointer to a handle that will be set to the handle for the newly created list. This handle may be
used with any other API that accepts a list handle.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LISTTYPE
The value that is specified for type of list is not valid.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_BAD_SYSTEM_NAME
The system name that is specified is not a valid iSeries system name.

Usage: When the list is no longer needed, the calling program is responsible for doing the following:

v Call CWBSO_DeleteListHandle to free up resources that are allocated on the client.

Chapter 4. iSeries Access for Windows® C/C++ APIs 507

CWBSO_CreateListHandleEx

Purpose: Creates a new list and returns a handle to the list.

Syntax:

unsigned int CWB_ENTRY CWBSO_CreateListHandleEx(
cwbCO_SysHandle systemObjectHandle,
CWBSO_LISTTYPE type,
CWBSO_LIST_HANDLE far* lpListHandle);

Parameters:

cwbCO_SysHandle systemObjectHandle - input
A handle to the system object that represents the iSeries system on which the list will be built. The
handle specified must be for a configured iSeries server.

CWBSO_LISTTYPE
The type of list to be built. Specify one of the following:

CWBSO_LIST_JOB
List of jobs.

CWBSO_LIST_SJOB
List of server jobs.

CWBSO_LIST_SJOB
List of server jobs.

CWBSO_LIST_MSG
List of messages.

CWBSO_LIST_PRT
List of printers.

CWBSO_LIST_SFL
List of spooled files.

CWBSO_LIST_IFC
List interfaces.

CWBSO_LIST_ELN
List Ethernet lines.

CWBSO_LIST_TLN
List token-ring lines.

CWBSO_LIST_HWL
List hardware resources.

CWBSO_LIST_SW
List software products.

CWBSO_LIST_RTE
List TCP/IP route.

CWBSO_LIST_PRF
List user profiles.

CWBSO_LIST_SMP
List libraries in QSYS.

CWBSO_LIST_HANDLE far* lpListHandle - output
A long pointer to a handle that will be set to the handle for the newly created list. This handle may be
used with any other API that accepts a list handle.

508 iSeries: iSeries Access for Windows Programming

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LISTTYPE
The value that is specified for type of list is not valid.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_BAD_SYSTEM_NAME
The system name that is specified is not a valid iSeries system name.

Usage: When the list is no longer needed, the calling program is responsible for doing the following:

v Call CWBSO_DeleteListHandle to free up resources that are allocated on the client.

Chapter 4. iSeries Access for Windows® C/C++ APIs 509

CWBSO_CreateObjHandle

Purpose: Creates a new object handle and returns a handle to the object. Use this API to access remote
object that do not conform to the list format.

Syntax:

unsigned int CWB_ENTRY CWBSO_CreateObjHandle(
char far* lpszSystemName,
char far* lpszApplicationName,
CWBSO_OBJTYPE type,
CWBSO_OBJ_HANDLE far* lpObjHandle);

Parameters:

char far* lpszSystemName - input
The name of the iSeries system on which the object will be built. The name that is specified must be a
configured iSeries server. If the client is not currently connected to the iSeries, a connection will be
established when the list is opened. If NULL is specified for the system name, the current iSeries
default system will be used.

char far* lpszApplicationName - input
A character string that identifies the application that will be interacting with the list. The maximum
length of this string is 10 characters, excluding the NULL terminator.

CWBSO_OBJTYPE type - input
The type of object to be built. Specify the following:

v CWBSO_OBJ_TCIPATTR - TCP/IP attributes

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_BAD_SYSTEM_NAME
The system name that is specified is not a valid iSeries system name.

Usage: When the list is no longer needed, the calling program is responsible for doing the following:

v Call CWBSO_DeleteObjHandle to free up resources that are allocated on the client.

510 iSeries: iSeries Access for Windows Programming

CWBSO_CreateParmObjHandle

Purpose: Creates a parameter object and returns a handle to the object. A parameter object contains a
set of parameter IDs and values which may be passed as input to other APIs.

Syntax:

unsigned int CWB_ENTRY CWBSO_CreateParmObjHandle(
CWBSO_PARMOBJ_HANDLE far* lpParmObjHandle);

Parameters:

CWBSO_PARMOBJ_HANDLE far* lpParmObjHandle - output
A long pointer to a handle which will be set to the handle for the new parameter object.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

Usage: When the parameter object is no longer needed, the calling program is responsible for doing the
following:

v Call CWBSO_DeleteParmObjHandle to free up resources that are allocated on the client.

Chapter 4. iSeries Access for Windows® C/C++ APIs 511

CWBSO_DeleteErrorHandle

Purpose: Deletes an error handle and frees up resources allocated on the client.

Syntax:

unsigned int CWB_ENTRY CWBSO_DeleteErrorHandle(
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_ERR_HANDLE errorHandle - input
An error handle that is returned by a previous call to CWBSO_CreateErrorHandle.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

Usage: CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is
returned by CWBSO_CreateErrorHandle must be passed as input to this API.

512 iSeries: iSeries Access for Windows Programming

CWBSO_DeleteListHandle

Purpose: Deletes the list of objects and frees up resources allocated on the client.

Syntax:

unsigned int CWB_ENTRY CWBSO_DeleteListHandle(
CWBSO_LIST_HANDLE listHandle);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that is returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned
by CWBSO_CreateListHandle must be passed as input to this API.

Chapter 4. iSeries Access for Windows® C/C++ APIs 513

CWBSO_DeleteObjHandle

Purpose: Deletes an object handle returned from a previous call to CWBSO_GetObjHandle or
CWBSO_CopyObjHandle.

Syntax:

unsigned int CWB_ENTRY CWBSO_DeleteObjHandle(
CWBSO_OBJ_HANDLE objectHandle);

Parameters:

CWBSO_OBJ_HANDLE objectHandle - input
A handle to an object that is returned by a previous call to CWBSO_GetObjHandle or
CWBSO_CopyObjHandle.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_OBJ_HANDLE
The object handle that is specified is not valid.

Usage: CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The
object handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as
input to this API.

514 iSeries: iSeries Access for Windows Programming

CWBSO_DeleteParmObjHandle

Purpose: Deletes a parameter object handle and frees up resources allocated on the client.

Syntax:

unsigned int CWB_ENTRY CWBSO_DeleteParmObjHandle(
CWBSO_PARMOBJ_HANDLE parmObjHandle);

Parameters:

CWBSO_PARMOBJ_HANDLE parmObjHandle - input
A handle to a parameter object that is returned by a previous call to CWBSO_CreateParmObjHandle.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_PARMOBJ_HANDLE
The parameter object handle that is specified is not valid.

Usage: CWBSO_CreateParmObjHandle must be called prior to calling this API. The parameter object
handle that is returned by CWBSO_CreateParmObjHandle must be passed as input to this API.

Chapter 4. iSeries Access for Windows® C/C++ APIs 515

CWBSO_DisallowListActions

Purpose: Sets actions the user is not allowed to perform on objects in a list. This affects the actions
available when the list is displayed by calling CWBSO_DisplayList. Disallowed actions do not appear in the
menu bar, tool bar, or object pop-up menus. This API can only be called once for a list, and it must be
called prior to displaying the list.

Syntax:

unsigned int CWB_ENTRY CWBSO_DisallowListActions(
CWBSO_LIST_HANDLE listHandle,
unsigned short far* lpusActionIDs,
unsigned short usCount);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that is returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

unsigned short far* lpusActionIDs - input
A long pointer to an array of action identifier values These values identify which actions the user will
not be allowed to perform. The valid values for this parameter depend on the type of objects in the list.
See the appropriate header files for the valid values:

v cwbsojob.h

v cwbsomsg.h

v cwbsoprt.h

v cwbsosfl.h

unsigned short usCount - input
The number of action identifier values specified.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ACTION_ID
An action ID specified is not valid for the type of list.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_NOT_ALLOWED_NOW
The action that was requested is not allowed at this time.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned
by CWBSO_CreateListHandle must be passed as input to this API.

516 iSeries: iSeries Access for Windows Programming

CWBSO_DisallowListFilter

Purpose: Sets the list to disallow the user from changing the filter values for the list. This disables the
INCLUDE choice from the VIEW pull-down menu when the list is displayed. The list is displayed by calling
CWBSO_DisplayList. This API is only meaningful for lists which are displayed by using the
CWBSO_DisplayList API. This API can only be called once for a list, and it must be called prior to
displaying the list.

Syntax:

unsigned int CWB_ENTRY CWBSO_DisallowListFilter(
CWBSO_LIST_HANDLE listHandle);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that is returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned
by CWBSO_CreateListHandle must be passed as input to this API.

Chapter 4. iSeries Access for Windows® C/C++ APIs 517

CWBSO_DisplayErrMsg

Purpose: Displays an error message in a dialog box. This API should only be called when
CWBSO_ERROR_OCCURRED is the return value from a call to another API. In this case, there is an
error message that is associated with the error handle.

Syntax:

unsigned int CWB_ENTRY CWBSO_DisplayErrMsg(
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_NO_ERROR_MESSAGE
The error handle that is specified contains no error message.

CWBSO_DISP_MSG_FAILED
The request to display the message failed.

Usage: CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is
returned by CWBSO_CreateErrorHandle must be passed as input to this API.

518 iSeries: iSeries Access for Windows Programming

CWBSO_DisplayList

Purpose: Displays the list in a window. From this window, the user is allowed to perform actions on the
objects in the list.

Syntax:

unsigned int CWB_ENTRY CWBSO_DisplayList(
CWBSO_LIST_HANDLE listHandle,
HINSTANCE hInstance,
int nCmdShow,
HWND far* lphWnd ,
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

HINSTANCE hInstance - input
The program instance passed to the calling program’s WinMain procedure.

int nCmdShow - input
The show window parameter passed to the calling program’s WinMain procedure. Alternatively, any of
the constants defined for the Windows API ShowWindow() may be used.

HWND far* lphWnd - output
A long pointer to a window handle. This will be set to the handle of the window in which the list is
displayed.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retreive the error message text or display the error to the user.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_DISPLAY_FAILED
The window could not be created.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned
by CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must be
called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle must be
passed as input to this API. It is not necessary to call CWBSO_OpenList or CWBSO_CloseList when using
this API. CWBSO_DisplayList handles both the opening and closing of the list. Your program must have a
message loop to receive the Windows messages that will be sent during the use of the system object list.

Chapter 4. iSeries Access for Windows® C/C++ APIs 519

This API only applies to the following list types: Jobs, Messages, Printers, Printer Output, and Spooled
Files.

520 iSeries: iSeries Access for Windows Programming

CWBSO_DisplayObjAttr

Purpose: Displays the attributes window for an object. From this window, the user is allowed to view the
object attributes and change attributes that are changeable.

Syntax:

unsigned int CWB_ENTRY CWBSO_DisplayObjAttr(
CWBSO_OBJ_HANDLE objectHandle,
HINSTANCE hInstance,
int nCmdShow,
HWND far* lphWnd ,
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_OBJ_HANDLE objectHandle - input
A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or
CWBSO_CopyObjHandle.

HINSTANCE hInstance - input
The program instance passed to the calling program’s WinMain procedure.

int nCmdShow - input
The show window parameter passed to the calling program’s WinMain procedure. Alternatively, any of
the constants defined for the Windows API ShowWindow() may be used.

HWND far* lphWnd - output
A long pointer to a window handle. This will be set to the handle of the window in which the object
attributes are displayed.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retreive the error message and message help.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_OBJ_HANDLE
The object handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_DISPLAY_FAILED
The window could not be created.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage: CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The
object handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as
input to this API. CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that
is returned by CWBSO_CreateErrorHandle must be passed as input to this API. Your program must have
a message loop to receive the Windows messages that will be sent during the use of the system object
attributes window.

Chapter 4. iSeries Access for Windows® C/C++ APIs 521

This API only applies to the following list types: Jobs, Messages, Printers, Printer Output, and Spooled
Files.

522 iSeries: iSeries Access for Windows Programming

CWBSO_GetErrMsgText

Purpose: Retrieves the message text from an error handle. This API should only be called when
CWBSO_ERROR_OCCURRED is the return value from a call to another API. In this case there is an error
message associated with the error handle.

Syntax:

unsigned int CWB_ENTRY CWBSO_GetErrMsgText(
CWBSO_ERR_HANDLE errorHandle ,
char far* lpszMsgBuffer ,
unsigned long ulBufferLength,
unsigned long far* lpulBytesNeeded);

Parameters:

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retreive the error message and message help.

char far* lpszMsgBuffer - output
A long pointer to the output buffer where the message text will be placed. The message text that is
returned by this API will be translated text. The output buffer is not changed when the return code is
not set to CWBSO_NO_ERROR.

unsigned long ulBufferLength - input
The size, in bytes, of the output buffer argument.

unsigned long far* lpulBytesNeeded - output
A long pointer to an unsigned long that will be set to the number of bytes needed to place the entire
message text in the output buffer. When this value is less than or equal to the size of output buffer that
is specified, the entire message text is placed in the output buffer. When this value is greater than the
size of output buffer that is specified, the output buffer contains a null string. The output buffer is not
changed beyond the bytes that are needed for the message text. This value is set to zero when the
return code is not set to CWBSO_NO_ERROR.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_NO_ERROR_MESSAGE
The error handle that is specified contains no error message.

CWBSO_GET_MSG_FAILED
The error message text could not be retrieved.

Usage: CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is
returned by CWBSO_CreateErrorHandle must be passed as input to this API. For errors which occurred
on the iSeries server, the message text will be in the language that is specified for the user’s execution
environment. All other message text will be in the language that is specified in the Windows Control Panel
on the user’s personal computer.

Chapter 4. iSeries Access for Windows® C/C++ APIs 523

CWBSO_GetListSize

Purpose: Retrieves the number of objects in a list.

Syntax:

unsigned int CWB_ENTRY CWBSO_GetListSize(
CWBSO_LIST_HANDLE listHandle,
unsigned long far* lpulSize,
unsigned short far* lpusStatus,
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

unsigned long far* lpulSize - output
A long pointer to an unsigned long that will be set to the number of entries currently in the list. If the
list status indicates that the list is complete, this value represents the total number of objects for the
list. If the list status indicates that the list is not completely built, this value represents the number of
objects currently available from the host and a subsequent call to this API may indicate that more
entries are available.

unsigned short far* lpusStatus - output
A long pointer to an unsigned short that will be set to indicate whether the list is completely built. The
value will be set to 0 if the list is not completely built or it will be set to 1 if the list is completely built.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retreive the error message and message help.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned
by CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must be
called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle must be
passed as input to this API. The list must currently be open. The list is opened by calling
CWBSO_OpenList. If CWBSO_CloseList is called to close a list, CWBSO_OpenList must be called again
before this API can be called.

524 iSeries: iSeries Access for Windows Programming

CWBSO_GetObjAttr

Purpose: Retrieves the value of an attribute from an object.

Syntax:

unsigned int CWB_ENTRY CWBSO_GetObjAttr(
CWBSO_OBJ_HANDLE objectHandle,
unsigned short usAttributeID,
char far* lpszBuffer,
unsigned long ulBufferLength,
unsigned long far* lpulBytesNeeded,
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_OBJ_HANDLE objectHandle - input
A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or
CWBSO_CopyObjHandle.

unsigned short usAttributeID - input
The identifier of the attribute to be retrieved. The valid values for this parameter depend on the type of
object. See the appropriate header files for the valid values:

v cwbsojob.h

v cwbsomsg.h

v cwbsoprt.h

v cwbsosfl.h

char far* lpszBuffer - output
A long pointer to the output buffer where the attribute value will be placed. The value that is returned
by this API is NOT a translated string. For instance, *END would be returned instead of Ending page
for the ending page attribute of a spooled file. See “SOA attribute special values” on page 541 for
information on special values that may be returned for each type of object. The output buffer is not
changed when the return code is not set to CWBSO_NO_ERROR.

unsigned long ulBufferLength - input
The size, in bytes, of the output buffer argument.

unsigned long far* lpulBytesNeeded - output
A long pointer to an unsigned long that will be set to the number of bytes needed to place the entire
attribute value in the output buffer. When this value is less than or equal to the size of output buffer
that is specified, the entire attribute value is placed in the output buffer. When this value is greater
than the size of output buffer that is specified, the output buffer contains a null string. The output buffer
is not changed beyond the bytes that are needed for the attribute value. This value is set to zero when
the return code is not set to CWBSO_NO_ERROR.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retreive the error message and message help.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_OBJ_HANDLE
The object handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

Chapter 4. iSeries Access for Windows® C/C++ APIs 525

CWBSO_BAD_ATTRIBUTE_ID
The attribute key is not valid for this object.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage: CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The
object handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as
input to this API. CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that
is returned by CWBSO_CreateErrorHandle must be passed as input to this API.

526 iSeries: iSeries Access for Windows Programming

CWBSO_GetObjHandle

Purpose: Gets a handle to an object in a list. The object handle that is returned by this API is valid until
the list is closed or until the object handle is deleted. The object handle may be used to call the following
APIs:
v CWBSO_CopyObjHandle
v CWBSO_DeleteObjHandle
v CWBSO_DisplayObjAttr
v CWBSO_GetObjAttr
v CWBSO_RefreshObj
v CWBSO_SetObjAttr
v CWBSO_WaitForObj

Syntax:

unsigned int CWB_ENTRY CWBSO_GetObjHandle(
CWBSO_LIST_HANDLE listHandle,
unsigned long ulPosition,
CWBSO_OBJ_HANDLE far* lpObjectHandle,
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that is returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

unsigned long ulPosition - input
The position of the object within the list for which a handle is needed. NOTE: The first object in a list is
considered position 0.

CWBSO_OBJ_HANDLE far* lpObjectHandle - output
A long pointer to a handle which will be set to the handle for the iSeries object. This handle may be
used with any other API that accepts an object handle with the exception that some APIs only operate
on specific types of objects.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retreive the error message and message help.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_BAD_LIST_POSITION
The position in list that is specified is not valid.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned
by CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must be

Chapter 4. iSeries Access for Windows® C/C++ APIs 527

called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle must be
passed as input to this API. The list must currently be open. The list is opened by calling
CWBSO_OpenList. If CWBSO_CloseList is called to close a list, CWBSO_OpenList must be called again
before this API can be called. You cannot access an object by using this API until that object has been
included in the list. For example, if you issue this API to get the object in position 100 immediately after
calling CWBSO_OpenList, the object may not immediately available. In such instances, use
CWBSO_WaitForObj to wait until an object is available. The object handle that is returned by this API must
be deleted by a subsequent call to CWBSO_DeleteObjHandle.

528 iSeries: iSeries Access for Windows Programming

CWBSO_OpenList

Purpose: Opens the list. A request is sent to the iSeries system to build the list.

Syntax:

unsigned int CWB_ENTRY CWBSO_OpenList(
CWBSO_LIST_HANDLE listHandle,
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error that was returned by a previous call to CWBSO_CreateErrorHandle. When the
value that is returned by this API is CWBSO_ERROR_OCCURRED, the error handle may be used to
retrieve the error message text or display the error to the user.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use the error for more information.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned
by CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must be
called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle must be
passed as input to this API. When the list is no longer needed, the calling program is responsible for doing
the following:

v Call CWBSO_CloseList to close the list and free up resources that are allocated on the iSeries server.

v Call CWBSO_DeleteListHandle to free up resources that are allocated on the client.

Chapter 4. iSeries Access for Windows® C/C++ APIs 529

CWBSO_ReadListProfile

Purpose: Reads the filter information for the list from the Windows Registry. The application name must
have been set using the CWBSO_SetListProfile API. This API should be called prior to opening the list by
using the CWBSO_OpenList or CWBSO_DisplayList APIs.

Syntax:

unsigned int CWB_ENTRY CWBSO_ReadListProfile(
CWBSO_LIST_HANDLE listHandle,
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object that was created by a previous call to CWBSO_CreateErrorHandle. When
the value that is returned by this API is CWBSO_ERROR_OCCURRED, the error handle may be used
to retrieve the error message text or display the error to the user.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_SYSTEM_NAME_DEFAULTED
No system name was specified on the CWBSO_CreateListHandle call for the list.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use the error handle for more information.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned
by CWBSO_CreateListHandle must be passed as input to this API. CWBSO_SetListProfile must be called
prior to calling this API. This API has no effect on a list that has been opened. In order for the filter criteria
in the profile to take effect, the list must be opened after calling this API.

530 iSeries: iSeries Access for Windows Programming

CWBSO_RefreshObj

Purpose: Refreshes an object’s attributes from the iSeries server. Refreshes all open System Object
Access views of the object.

Syntax:

unsigned int CWB_ENTRY CWBSO_RefreshObj(
CWBSO_OBJ_HANDLE objectHandle,
HWND hWnd ,
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_OBJ_HANDLE objectHandle - input
A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or
CWBSO_CopyObjHandle.

HWND hWnd - input
Handle of window to receive the focus after the refresh is complete. This parameter may be NULL. If
this API is being called from an application window procedure, then the current window handle should
be supplied. Otherwise, focus will shift to the most recently opened System Object Access window if
one is open.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retreive the error message and message help.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_OBJ_HANDLE
The object handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage: CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The
object handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as
input to this API. CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that
is returned by CWBSO_CreateErrorHandle must be passed as input to this API.

Chapter 4. iSeries Access for Windows® C/C++ APIs 531

CWBSO_ResetParmObj

Purpose: Resets a parameter object to remove any attribute values from the object.

Syntax:

unsigned int CWB_ENTRY CWBSO_ResetParmObj(
CWBSO_PARMOBJ_HANDLE parmObjHandle);

Parameters:

CWBSO_PARMOBJ_HANDLE parmObjHandle - input
A handle to a parameter object that was returned by a previous call to
CWBSO_CreateParmObjHandle.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_PARMOBJ_HANDLE
The parameter object handle is not valid.

Usage: CWBSO_CreateParmObjHandle must be called prior to calling this API. The parameter object
handle that is returned by CWBSO_CreateParmObjHandle must be passed as input to this API.

532 iSeries: iSeries Access for Windows Programming

CWBSO_SetListFilter

Purpose: Sets a filter value for a list. Depending on the type of list, various filter values may be set. The
filter values control which objects will be included in the list when the list is built by a call to
CWBSO_OpenList.

Syntax:

unsigned int CWB_ENTRY CWBSO_SetListFilter(
CWBSO_LIST_HANDLE listHandle,
unsigned short usFilterID,
char far* lpszValue);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

unsigned short usFilterID - input
The filter identifier specifies which portion of the filter to set. The valid values for this parameter
depend on the type of objects in the list. See the appropriate header files for the valid values:

v cwbsojob.h

v cwbsomsg.h

v cwbsoprt.h

v cwbsosfl.h

char far* lpszValue - input
The value for the filter attribute. If multiple items are specified, they must be separated by commas.
Filter value items that specify iSeries object names must be in uppercase. Qualified object names
must be in the form of library/object. Qualified job names must be in the form of job-number/user/job-
name. Filter value items specifying special values (beginning with asterisk) must be specified in upper
case. See “SOA attribute special values” on page 541 for information on the special values that may
be supplied for each type of object.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_FILTER_ID
The filter ID specified is not valid for the type of list.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned
by CWBSO_CreateListHandle must be passed as input to this API. This API has no effect on a list that
has been opened. In order for the filter criteria to take effect, the list must be opened after calling this API.
Caution should be used when requesting complex filters as list performance may be adversely affected.

Chapter 4. iSeries Access for Windows® C/C++ APIs 533

CWBSO_SetListProfile

Purpose: Sets the profile name by adding the application name into the Windows Registry. Use
CWBSO_ReadListProfile to read the filter information from the Registry prior to displaying a list. Use
CWBSO_WriteListProfile to write the updated filter information to the Registry before deleting the list. If
this API is not called, CWBSO_ReadListProfile and CWBSO_WriteListProfile will have no effect.

Syntax:

unsigned int CWB_ENTRY CWBSO_SetListProfile(
CWBSO_LIST_HANDLE listHandle,
char far* lpszKey);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or to
CWBSO_CreateListHandleEx.

char far* lpszKey - input
A long pointer to a string that will be used as the key in the Windows Registry for the list. This name
could be the name of the application.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_PROFILE_NAME
The profile name that is specified is not valid.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned
by CWBSO_CreateListHandle must be passed as input to this API.

534 iSeries: iSeries Access for Windows Programming

CWBSO_SetListSortFields

Purpose: Sets the sort criteria for a list. The sort criteria determines the order objects will appear in the
list when the list is built by a call to CWBSO_OpenList. This API is only valid for lists of jobs and lists of
spooled files. This API is not allowed for lists of messages and lists of printers.

Syntax:

unsigned int CWB_ENTRY CWBSO_SetListSortFields(
CWBSO_LIST_HANDLE listHandle,
unsigned short far* lpusSortIDs,
unsigned short usCount);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

unsigned short far* lpusSortIDs - input
A long pointer to an array of sort column identifiers. The sort IDs specified will replace the current sort
criteria for the list. The valid values for this parameter depend on the type of objects in the list. See the
appropriate header files for the valid values:

v cwbsojob.h

v cwbsosfl.h

Note: If multiple sort IDs are specified, the order in which they appear in the array defines the order in
which sorting will take place.

unsigned short usCount - input
The number of sort column identifiers specified.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_SORT_ID
A sort ID specified is not valid for the type of list.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_SORT_NOT_ALLOWED
Sorting is not allowed for this type of list.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned
by CWBSO_CreateListHandle must be passed as input to this API. This API has no effect on a list that
has been opened. In order for the sort criteria to take effect, the list must be opened after calling this API.
Caution should be used when requesting complex sorts as list performance may be adversely affected.

Chapter 4. iSeries Access for Windows® C/C++ APIs 535

CWBSO_SetListTitle

Purpose: Sets the title for a list. The title is displayed in the title bar of the window when the list is
displayed by a call to CWBSO_DisplayList.

Syntax:

unsigned int CWB_ENTRY CWBSO_SetListTitle(
CWBSO_LIST_HANDLE listHandle ,
char far* lpszTitle);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

char far* lpszTitle - input
A long pointer to a string to be used for the list title. The length of the string must be less than or equal
to 79.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_TITLE
The title that is specified is not valid.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned
by CWBSO_CreateListHandle must be passed as input to this API.

536 iSeries: iSeries Access for Windows Programming

CWBSO_SetObjAttr

Purpose: Sets the value of one or more attributes of an object.

Syntax:

unsigned int CWB_ENTRY CWBSO_SetObjAttr(
CWBSO_OBJ_HANDLE objectHandle,
CWBSO_PARMOBJ_HANDLE parmObjHandle,
unsigned short far* lpusErrorIndex,
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_OBJ_HANDLE objectHandle - input
A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or
CWBSO_CopyObjHandle.

CWBSO_PARMOBJ_HANDLE parmObjHandle - input
A handle to a parameter object that was returned by a previous call to
CWBSO_CreateParmObjHandle. The parameter object contains the attributes that are to be changed
for the object.

unsigned short far* lpusErrorIndex - output
If an error occurred, this value will be set to the index of the parameter item that caused the error. The
first parameter item is 1. This value will be set to 0 if none of the parameter items were in error.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retreive the error message and message help.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_OBJECT_HANDLE
The object handle that is specified is not valid.

CWBSO_BAD_PARMOBJ_HANDLE
The parameter object handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_CANNOT_CHANGE_ATTRIBUTE
Attribute is not changeable at this time.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage: CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The
object handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as
input to this API. CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that
is returned by CWBSO_CreateErrorHandle must be passed as input to this API.

Chapter 4. iSeries Access for Windows® C/C++ APIs 537

CWBSO_SetParameter

Purpose: Sets the value of an attribute of an object. Multiple calls may be made to this API prior to
calling CWBSO_SetObjAttr. This allows you to change several attributes for a specific object with one call
to CWBSO_SetObjAttr.

Syntax:

unsigned int CWB_ENTRY CWBSO_SetParameter(
CWBSO_PARMOBJ_HANDLE parmObjHandle,
unsigned short usAttributeID,
char far* lpszValue,
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_PARMOBJ_HANDLE parmObjHandle - input
A handle to a parameter object that was returned by a previous call to
CWBSO_CreateParmObjHandle.

unsigned short usAttributeID - input
The attribute ID for the parameter to be set. The valid values for this parameter depend on the type of
object. See the appropriate header files for the valid values:

v cwbsojob.h

v cwbsomsg.h

v cwbsoprt.h

v cwbsosfl.h

char far* lpszValue - input
A long pointer to an attribute value. Note that only ASCIIZ strings are accepted. Binary values must be
converted to strings by using the appropriate library function. See “SOA attribute special values” on
page 541 for information on the special values that may be supplied for each type of object.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retreive the error message and message help.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_PARMOBJ_HANDLE
The parameter object handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage: CWBSO_CreateParmObjHandle must be called prior to calling this API. The parameter object
handle that is returned by CWBSO_CreateParmObjHandle must be passed as input to this API.
CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is returned by
CWBSO_CreateErrorHandle must be passed as input to this API. Calling this API does NOT update an
object’s attributes on the iSeries server. You must call CWBSO_SetObjAttr to actually update the attribute
value or values on the iSeries server for the specified object.

538 iSeries: iSeries Access for Windows Programming

CWBSO_WaitForObj

Purpose: Waits until an object is available in a list that is being built asynchronously.

Syntax:

unsigned int CWB_ENTRY CWBSO_WaitForObj(
CWBSO_LIST_HANDLE listHandle,
unsigned long ulPosition,
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

unsigned long ulPosition - input
The position of the desired object within the list. NOTE: The first object in a list is considered position
0.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retreive the error message and message help.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_BAD_LIST_POSITION
The position in list that is specified does not exist.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned
by CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must be
called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle must be
passed as input to this API.

Chapter 4. iSeries Access for Windows® C/C++ APIs 539

CWBSO_WriteListProfile

Purpose: Writes the filter information for the list to the specified key in the Windows registry. The key
name must previously have been set using the CWBSO_SetListProfile API. This API should be called
before deleting the list. This will save any filter criteria that was changed by the user during the
CWBSO_DisplayList API. Filter information is saved in the registry by iSeries system and by type of list.
For example, if your application accesses objects from two different iSeries systems, and displays all four
types of lists, you would have eight different sections in the registry that specify filter information.

Syntax:

unsigned int CWB_ENTRY CWBSO_WriteListProfile(
CWBSO_LIST_HANDLE listHandle,
CWBSO_ERR_HANDLE errorHandle);

Parameters:

CWBSO_LIST_HANDLE listHandle - input
A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object that was created by a previous call to CWBSO_CreateErrorHandle. When
the value that is returned by this API is CWBSO_ERROR_OCCURRED, the error handle may be used
to retrieve the error message text or display the error to the user.

Return Codes: The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_SYSTEM_NAME_DEFAULTED
No system name was specified on the CWBSO_CreateListHandle call for the list.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use the error for more information.

Usage: CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is
returned by CWBSO_CreateListHandle must be passed as input to this API. CWBSO_SetListProfile
must be called prior to calling this API.

540 iSeries: iSeries Access for Windows Programming

SOA attribute special values
The topics that are listed below provide:

v A description of the special values that may be returned by CWBSO_GetObjAttr, and specified on
CWBSO_SetObjAttr, for each type of object

v Any special values that may be specified on CWBSO_SetListFilter for each type of list object

Special considerations:

v For attributes that are numeric, it is common practice for iSeries APIs to return negative numeric
values to indicate which special value (if any) an object attribute contains. System Object
Access automatically maps these negative numbers to their corresponding special value string.
For example, the Retrieve Spooled File Attributes (QUSRSPLA) API returns ″-1″ for page
rotation if output reduction is performed automatically. CWBSO_GetObjAttr returns “*AUTO”.

v Some list filter criteria accept multiple values. For example, it is possible to filter a list of printers
on multiple printer names. In such cases, commas should separate the supplied values.

Where to find additional information about attribute special values:
See the OS/400 APIs topic in the iSeries Information Center.

SOA attribute special values:

v “Job attributes”

v “Message attributes”

v “Printer attributes” on page 542

v “Printer output attributes” on page 547

v “TCP/IP interfaces attributes” on page 547

v “Ethernet lines attributes” on page 548

v “Token-ring lines attributes” on page 549

v “Hardware resources attributes” on page 549

v “Software products attributes” on page 549

v “TCP/IP routes attributes” on page 549

v “Users and groups attributes” on page 550

v “Libraries in QSYS attributes” on page 553

Job attributes: System Object Access uses the List Job (QUSLJOB) and Retrieve Job Information
(QUSRJOBI) iSeries APIs to retrieve attributes for jobs. The possible special values are the same as those
that are documented in the OS/400 APIs: Work Management APIs topic in the iSeries Information Center.
The following special value mappings are not documented explicitly:

CWBSO_JOB_CpuTimeUsed
If the field is not large enough to hold the actual result, QUSRJOBI returns -1. System Object
Access returns “++++”.

CWBSO_JOB_MaxCpuTimeUsed,

CWBSO_JOB_MaxTemporaryStorage,

CWBSO_JOB_DefaultWaitTime
If the value is *NOMAX, QUSRJOBI returns -1. System Object Access returns “*NOMAX”.

CWBSO_SetListFilter accepts all special values that are supported by the List Job (QUSLJOB) API.

Message attributes: System Object Access uses the List Nonprogram Messages (QMHLSTM) OS/400
API to retrieve attributes for messages. The possible special values are the same as those that are
documented in the OS/400 APIs: Message Handling APIs topic in the iSeries Information Center.

Chapter 4. iSeries Access for Windows® C/C++ APIs 541

../apis/api.htm
../apis/wm1.htm
../apis/mh1.htm

CWBSO_SetListFilter accepts the special values that are supported by the List Nonprogram Messages
(QMHLSTM) API for Severity Criteria. In addition, a 10-character user name may be supplied, by
specifying the CWBSO_MSGF_UserName filter ID. “*CURRENT” may be used to obtain a list of
messages for the current user.

Printer attributes: System Object Access uses undocumented iSeries APIs to retrieve attributes for
printer objects. A printer is a “logical” object that is actually a combination of a device description, a writer,
and an output queue. The attributes and their possible values are as follows.

CWBSO_PRT_AdvancedFunctionPrinting. Whether the printer device supports Advanced Function Printing (AFP).

*NO The printer device does not support Advanced Function Printing.

*YES The printer device supports Advanced Function Printing.

CWBSO_PRT_AllowDirectPrinting. Whether the printer writer allows the printer to be allocated to a job that prints
directly to a printer.

*NO Direct printing is not allowed

*YES Direct printing is allowed.

CWBSO_PRT_BetweenCopiesStatus. Whether the writer is between copies of a multiple copy spooled file. The
possible values are Y (yes) or N (no).

CWBSO_PRT_BetweenFilesStatus. Whether the writer is between spooled files. The possible values are Y (yes) or
N (no).

CWBSO_PRT_ChangesTakeEffect. The time at which the pending changes to the writer take effect. Possible values
are:

*NORDYF
When all the current eligible files are printed.

*FILEEND
When the current spooled file is done printing.

blank No pending changes to the writer.

CWBSO_PRT_CopiesLeftToProduce. The number of copies that are left to be printed. This field is set to 0 when no
file is printing.

CWBSO_PRT_CurrentPage. The page number in the spooled file that the writer is currently processing. The page
number shown may be lower or higher than the actual page number being printed because of buffering done by the
system. This field is set to 0 when no spooled file is printing.

CWBSO_PRT_Description. The text description of the printer device.

CWBSO_PRT_DeviceName. The name of the printer device.

CWBSO_PRT_DeviceStatus. The status of the printer device. Possible values are the same as the device status
that is returned by the Retrieve Configuration Status (QDCRCFGS) API.

CWBSO_PRT_EndAutomatically. When to end the writer if it is to end automatically.

*NORDYF
When no files are ready to print on the output queue from which the writer is selecting files to be printed.

*FILEEND
When the current spooled file has been printed.

*NO The writer will not end, but it will wait for more spooled files.

CWBSO_PRT_EndPendingStatus. Whether an End Writer (ENDWTR) command has been issued for this writer.
Possible values are:

N No ENDWTR command was issued.

542 iSeries: iSeries Access for Windows Programming

I *IMMED: The writer ends as soon as its output buffers are empty.

C *CNTRLD: The writer ends after the current copy of the spooled file has been printed.

P *PAGEEND: The writer ends at the end of the page.

CWBSO_PRT_FileName. The name of the spooled file that the writer is currently processing. This field is blank
when no file is printing.

CWBSO_PRT_FileNumber. The number of the spooled file that the writer is currently processing. This field is set to
0 when no spooled file is printing.

CWBSO_PRT_FormsAlignment. The time at which the forms alignment message will be sent. Possible values are:

*WTR The writer determines when the message is sent.

*FILE Control of the page alignment is specified by each file.

CWBSO_PRT_FormType. The type of form that is being used to print the spooled file. Possible values are:

*ALL The writer is started with the option to print all spooled files of any form type.

*FORMS
The writer is started with the option to print all the spooled files with the same form type before using a
different form type.

*STD The writer is started with the option to print all the spooled files with a form type of *STD.

form type name
The writer is started with the option to print all the spooled files with the form type you specified.

CWBSO_PRT_FormTypeNotification. Message option for sending a message to the message queue when this
form is finished. Possible values are:

*MSG A message is sent to the message queue.

*NOMSG
No message is sent to the message queue.

*INFOMSG
An informational message is sent to the message queue.

*INQMSG
An inquiry message is sent to the message queue.

CWBSO_PRT_HeldStatus. Whether the writer is held. The possible values are Y (yes) or N (no).

CWBSO_PRT_HoldPendingStatus. Whether a Hold Writer (HLDWTR) command has been issued for this writer.
Possible values are:

N No HLDWTR command was issued.

I *IMMED: The writer is held as soon as its output buffers are empty.

C *CNTRLD: The writer is held after the current copy of the file has been printed.

P *PAGEEND: The writer is held at the end of the page.

CWBSO_PRT_JobName. The name of the job that created the spooled file which the writer is currently processing.
This field is blank when no spooled file is printing.

CWBSO_PRT_JobNumber. The number of the job that created the spooled file which the writer currently is
processing. This field is blank when no spooled file is printing.

CWBSO_PRT_MessageKey. The key to the message that the writer is waiting for a reply. This field will be blank
when the writer is not waiting for a reply to an inquiry message.

CWBSO_PRT_MessageQueueLibrary. The name of the library that contains the message queue.

CWBSO_PRT_MessageQueueName. The name of the message queue that this writer uses for operational
messages.

Chapter 4. iSeries Access for Windows® C/C++ APIs 543

CWBSO_PRT_MessageWaitingStatus. Whether the writer is waiting for a reply to an inquiry message. The possible
values are Y (yes) or N (no).

CWBSO_PRT_NextFormType. The name of the next form type to be printed. Possible values are:

*ALL The writer is changed with the option to print all spooled files of any form type.

*FORMS
The writer is changed with the option to print all the spooled files with the same form type before using a
different form type.

*STD The writer is changed with the option to print all the spooled files with a form type of *STD.

form type name
The writer is changed with the option to print all the spooled files with the form type name you specified.

blank No change has been made to this writer.

CWBSO_PRT_NextFormTypeNotification. The message option for sending a message to the message queue
when the next form type is finished. Possible values are:

*MSG A message is sent to the message queue.

*NOMSG
No message is sent to the message queue.

*INFOMSG
An informational message is sent to the message queue.

*INQMSG
An inquiry message is sent to the message queue.

blank No change is pending.

CWBSO_PRT_NextOutputQueueLibrary. The name of the library that contains the next output queue. This field is
blank if no changes have been made to the writer.

CWBSO_PRT_NextOutputQueueName. The name of the next output queue to be processed. This field is blank if
no changes have been made to the writer.

CWBSO_PRT_NextSeparatorDrawer. This value indicates the drawer from which to take the separator pages if
there is a change to the writer. Possible values are:

*FILE Separator pages print from the same drawer that the spooled file prints from. If you specify a drawer different
from the spooled file that contains colored or different type paper, the page separator is more identifiable.

*DEVD Separator pages print from the separator drawer that is specified in the printer device description.

empty string
No pending change to the writer.

1 The first drawer.

2 The second drawer.

3 The third drawer.

CWBSO_PRT_NextSeparators. The next number of separator pages to be printed when the change to the writer
takes place. Possible values are:

*FILE The number of separator pages is specified by each file.

empty string
No pending change to the writer.

number of separators
The number of separator pages to be printed.

CWBSO_PRT_NumberOfSeparators. The number of separator pages to be printed. Possible values are:

*FILE The number of separator pages is specified by each file.

544 iSeries: iSeries Access for Windows Programming

Number of separators
The number of separator pages to be printed.

CWBSO_PRT_OnJobQueueStatus. Whether the writer is on a job queue and, therefore, is not currently running.
The possible values are Y (yes) or N (no).

CWBSO_PRT_OutputQueueLibrary. The name of the library that contains the output queue from which spooled
files are selected for printing.

CWBSO_PRT_OutputQueueName. The name of the output queue from which spooled files are being selected for
printing.

CWBSO_PRT_OutputQueueStatus. The status of the output queue from which spooled files are being selected for
printing. Possible values are:

H The output queue is held.

R The output queue is released.

CWBSO_PRT_PrinterDeviceType. The type of the printer that is being used to print the spooled file. Valid values
are:

*SCS SNA (Systems Network Architecture) character stream

*IPDS Intelligent Printer Data Stream

CWBSO_PRT_SeparatorDrawer. Identifies the drawer from which the job and file separator pages are to be taken.
Possible values are:

*FILE The separator page prints from the same drawer that the file is printed from. If you specify a drawer different
from the file that contains colored or different type paper, the page separator is more identifiable.

*DEVD The separator pages will print from the separator drawer that is specified in the printer device description.

1 The first drawer.

2 The second drawer.

3 The third drawer.

CWBSO_PRT_StartedByUser. The name of the user that started the writer.

CWBSO_PRT_Status. The overall status of the logical printer. This field is derived from the printer device status
(from the Retrieve Configuration Status QDCRCFGS API), the output queue status (from the List Printer and Writer
Status, SPLSTPRT, XPF macro) and writer status (from the Retrieve Writer Information, QSPRWTRI, API). Possible
values are:

1 Unavailable

2 Powered off or not yet available

3 Stopped

4 Message waiting

5 Held

6 Stop (pending)

7 Hold (pending)

8 Waiting for printer

9 Waiting to start

10 Printing

11 Waiting for printer output

12 Connect pending

13 Powered off

Chapter 4. iSeries Access for Windows® C/C++ APIs 545

14 Unusable

15 Being serviced

999 Unknown

CWBSO_PRT_TotalCopies. The total number of copies to be printed.

CWBSO_PRT_TotalPages. The total number of pages in the spooled file. Possible values are:

number
The number of pages in the spooled file.

0 No spooled file is printing.

CWBSO_PRT_User. The name of the user who created the spooled file that the writer is currently processing. This
field is blank when no file is printing.

CWBSO_PRT_UserSpecifiedData. The user-specified data that describe the file that the writer is currently
processing. This field is blank when no file is printing.

CWBSO_PRT_WaitingForDataStatus. Whether the writer has written all the data that is currently in the spooled file
and is waiting for more data. Possible values are:

N The writer is not waiting for more data.

Y The writer has written all the data currently in the spooled file and is waiting for more data. This condition
occurs when the writer is producing an open spooled file with SCHEDULE(*IMMED) that is specified.

CWBSO_PRT_WaitingForDeviceStatus. Whether the writer is waiting to get the device from a job that is printing
directly to the printer.

N The writer is not waiting for the device.

Y The writer is waiting for the device

CWBSO_PRT_WriterJobName. The job name of the printer writer.

CWBSO_PRT_WriterJobNumber. The job number of the printer writer.

CWBSO_PRT_WriterJobUser. The name of the system user.

CWBSO_PRT_WriterStarted. Indication of whether a writer is started for this printer. Possible values are:

0 No writer is started

1 Writer is started

CWBSO_PRT_WriterStatus. The status of the writer for this printer. Possible values are:

X’01’ Started

X’02’ Ended

X’03’ On job queue

X’04’ Held

X’05’ Waiting on message

CWBSO_PRT_WritingStatus. Whether the printer writer is in writing status. The possible values are:

Y The writer is in writing status.

N The writer is not in writing status.

S The writer is writing the file separators.

System Object Access accepts a comma-separated list of printer names. Up to 100 printer names may be
specified. A special value of “*ALL” may be supplied to request a list of all printers on the iSeries server.

546 iSeries: iSeries Access for Windows Programming

Printer output attributes: System Object Access uses the List Spooled Files (QUSLSPL) and Retrieve
Spooled File Attributes (QUSRSPLA) iSeries APIs to retrieve attributes for printer output. The possible
special values are the same as those that are documented in the OS/400 APIs: Spooled File APIs topic in
the iSeries Information Center. The following special value mappings are not explicitly documented:

CWBSO_SFL_StartingPage
If the ending page value is to be used, QUSRSPLA returns -1. System Object Access returns
“*ENDPAGE”.

CWBSO_SFL_EndingPage
If the last page is to be the ending page, QUSRSPLA returns 0 or 2147483647. System Object
Access returns “*END”.

CWBSO_SFL_MaximumRecords
If there is no maximum, QUSRSPLA returns 0. System Object Access returns “*NOMAX”.

CWBSO_SFL_PageRotation
If no rotation is done, QUSRSPLA returns 0. System Object Access returns “*NONE”.

An undocumented API is used to retrieve the printer device name or names for a spooled file. The
attribute and its possible values are described below.

CWBSO_SFL_DeviceNames. The name of the printer device that will print the file. If the printer output is assigned
to more than one printer device, this field contains all of the printer names in the group of printers. Possible values
are:

printer name
The name of the printer to which the printer output is assigned.

list of printer names
The names of the printers in the group to which the printer output is assigned. Commas will separate the
printer names.

empty string
The printer output is not assigned to a printer or group of printers.

CWBSO_SetListFilter accepts all special values that are supported by the List Spooled Files (QUSLSPL)
API.

TCP/IP interfaces attributes: System Object Access uses the iSeries API TCP/IP interface (QTOCIFCU)
to retrieve attributes for TCP/IP interfaces. The possible special values are:

CWBSO_TIF_TCPIPNetworkName

CWBSO_TIF_InternetAddress

CWBSO_TIF_BinaryInternetAddress
*RTVIFCLST only - The list of interfaces returned immediately will follow the I/O Variable header.
The interface structure will repeat for each interface returned.

CWBSO_TIF_SubnetMask

CWBSO_TIF_AssociatedLocalInterface

CWBSO_TIF_BinaryLocalIP
*RTVIFCLST only - The list of interfaces returned immediately will follow the I/O Variable header.
The interface structure will repeat for each interface returned.

CWBSO_TIF_LineDescriptionName

CWBSO_TIF_TypeOfLine

v 1=Ethernet

v 2=Token ring

v 3=Frame relay

Chapter 4. iSeries Access for Windows® C/C++ APIs 547

../apis/print3a.htm

v 4=Asynchronous

v 5=PPP

v 6=Wireless

v 7=X.25

v 8=DDI

v 9=Twinaxial (TDLC)

v 15=None

v 16=Error

v 17=Not found

CWBSO_TIF_MaximumTransmissionUnit

v 0000000 = Determined by Maximum frame size in Line Description.

CWBSO_TIF_TypeOfService

v 1=Normal

v 2=Minimum delay

v 3=Maximum throughput

v 4=Maximum reliability

v 5=Minimum cost

CWBSO_TIF_AutomaticStart

v 1=Yes

v 2=No

CWBSO_TIF_TokenRingBitSequence

v 1=MSB

v 2=LSB

CWBSO_TIF_Status
*RTVIFCLST only - The list of interfaces returned immediately will follow the I/O Variable header.
The interface structure will repeat for each interface returned.

v 0=Inactive

v 1=Active

v 2=Starting

v 3=Ending

v 4=Recovery pending

v 5=Recovery cancel

v 6=Failed

v 7=Failed (TCP)

CWBSO_TIF_InterfaceName

CWBSO_TIF_PPPProfile
*RTVIFCLST only - The list of interfaces returned immediately will follow the I/O Variable header.
The interface structure will repeat for each interface returned.

CWBSO_TIF_PPPRemoteIP
*RTVIFCLST only - The list of interfaces returned immediately will follow the I/O Variable header.
The interface structure will repeat for each interface returned.

CWBSO_TIF_ApplicationDefined

Ethernet lines attributes: See the OS/400 APIs: Configuration APIs topic in the iSeries Information
Center.

548 iSeries: iSeries Access for Windows Programming

../apis/cnfg1.htm

Token-ring lines attributes: See the OS/400 APIs: Configuration APIs topic in the iSeries Information
Center.

Hardware resources attributes: See the OS/400 APIs: Hardware Resource APIs topic in the iSeries
Information Center.

Software products attributes: See the OS/400 APIs: Software Product APIs topic in the iSeries
Information Center.

TCP/IP routes attributes: System Object Access uses the iSeries API TCP/IP route (QTOCRTEU) to
retrieve attributes for TCP/IP routes. The possible special values are:

CWBSO_RTE_TCPIPNetworkName

CWBSO_RTE_InternetAddress

CWBSO_RTE_BinaryInternetAddress
*RTVxxxLST only - The list of routes returned immediately will follow the I/O Variable header. The
interface structure will repeat for each route returned.

CWBSO_RTE_SubnetMask

CWBSO_RTE_BinarySubnetMask
*RTVxxxLST only - The list of routes returned immediately will follow the I/O Variable header. The
interface structure will repeat for each route returned.

CWBSO_RTE_NextHopAddress

CWBSO_RTE_BinaryNextHop
*RTVxxxLST only - The list of routes returned immediately will follow the I/O Variable header. The
interface structure will repeat for each route returned.

CWBSO_RTE_BindingInterface

CWBSO_RTE_BinaryBindingIP
*RTVxxxLST only - The list of routes returned immediately will follow the I/O Variable header. The
interface structure will repeat for each route returned.

CWBSO_RTE_MaximumTransmissionUnit

CWBSO_RTE_TypeOfService

v 1=Normal

v 2=Minmum delay

v 3=Maximum throughput

v 4=Maximum reliability

v 5=Minimum cost

CWBSO_RTE_RoutePrecedence

CWBSO_RTE_RIPMetric

CWBSO_RTE_RIPRedistribution

v 1=Yes

v 2=No

CWBSO_RTE_PPPProfile
Not valid for *xxxRTE

CWBSO_RTE_PPPCallerUserid
Not valid for *xxxRTE

CWBSO_RTE_PPPCallerIP
Not valid for *xxxRTE

Chapter 4. iSeries Access for Windows® C/C++ APIs 549

../apis/cnfg1.htm
../apis/hw1.htm
../apis/sw1.htm

CWBSO_RTE_ApplicationDefined

Users and groups attributes: The possible users and groups special values are valid:

CWBSO_USR_ProfileName

CWBSO_USR_ProfileOrGroupIndicator

CWBSO_USR_GroupHasMembers

CWBSO_USR_TextDescription

CWBSO_USR_PreviousSignonDate

CWBSO_USR_PreviousSignonTime

CWBSO_USR_SignonAttemptsNotValid

CWBSO_USR_Status

CWBSO_USR_PasswordChangeDate

CWBSO_USR_NoPasswordIndicator

CWBSO_USR_PasswordExpirationInterval

CWBSO_USR_DatePasswordExpires

CWBSO_USR_DaysUntilPasswordExpires

CWBSO_USR_SetPasswordToExpire

CWBSO_USR_DisplaySignonInformation

CWBSO_USR_UserClassName

CWBSO_USR_AllObjectAccess

CWBSO_USR_SecurityAdministration

CWBSO_USR_JobControl

CWBSO_USR_SpoolControl

CWBSO_USR_SaveAndRestore

CWBSO_USR_SystemServiceAccess

CWBSO_USR_AuditingControl

CWBSO_USR_SystemConfiguration

CWBSO_USR_GroupProfileName

CWBSO_USR_Owner

CWBSO_USR_GroupAuthority

CWBSO_USR_LimitCapabilities

CWBSO_USR_GroupAuthorityType

CWBSO_USR_SupplementalGroups

CWBSO_USR_AssistanceLevel

CWBSO_USR_CurrentLibraryName

CWBSO_USR_InitialMenuName

CWBSO_USR_InitialMenuLibraryName

CWBSO_USR_InitialProgramName

CWBSO_USR_InitialProgramLibraryName

CWBSO_USR_LimitDeviceSessions

CWBSO_USR_KeyboardBuffering

CWBSO_USR_MaximumAllowedStorage

CWBSO_USR_StorageUsed

CWBSO_USR_HighestSchedulingPriority

CWBSO_USR_JobDescriptionName

550 iSeries: iSeries Access for Windows Programming

CWBSO_USR_JobDescriptionNameLibrary

CWBSO_USR_AccountingCode

CWBSO_USR_MessageQueueName

CWBSO_USR_MessageQueueLibraryName

CWBSO_USR_MessageQueueDeliveryMethod

CWBSO_USR_MessageQueueSeverity

CWBSO_USR_OutputQueue

CWBSO_USR_OutputQueueLibrary

CWBSO_USR_PrintDevice

CWBSO_USR_SpecialEnvironment

CWBSO_USR_AttentionKeyHandlingProgramName

CWBSO_USR_AttentionKeyHandlingProgramLibrary

CWBSO_USR_LanguageID

CWBSO_USR_CountryID

CWBSO_USR_CharacterCodeSetID

CWBSO_USR_ShowParameterKeywords

CWBSO_USR_ShowAllDetails

CWBSO_USR_DisplayHelpOnFullScreen

CWBSO_USR_ShowStatusMessages

CWBSO_USR_DoNotShowStatusMessages

CWBSO_USR_ChangeDirectionOfRollkey

CWBSO_USR_SendMessageToSpoolFileOwner

CWBSO_USR_SortSequenceTableName

CWBSO_USR_SortSequenceTableLibraryName

CWBSO_USR_DigitalCertificateIndicator

CWBSO_USR_CharacterIDControl

CWBSO_USR_ObjectAuditValue

CWBSO_USR_CommandUsage

CWBSO_USR_ObjectCreation

CWBSO_USR_ObjectDeletion

CWBSO_USR_JobTasks

CWBSO_USR_ObjectManagement

CWBSO_USR_OfficeTasks

CWBSO_USR_ProgramAdoption

CWBSO_USR_SaveAndRestoreTasks

CWBSO_USR_SecurityTasks

CWBSO_USR_ServiceTasks

CWBSO_USR_SpoolManagement

CWBSO_USR_SystemManagement

CWBSO_USR_OpticalTasks

CWBSO_USR_UserIDNumber

CWBSO_USR_GroupIDNumber

CWBSO_USR_DoNotSetAnyJobAttributes

CWBSO_USR_UseSystemValue

CWBSO_USR_CodedCharacterSetID

Chapter 4. iSeries Access for Windows® C/C++ APIs 551

CWBSO_USR_DateFormat

CWBSO_USR_DateSeparator

CWBSO_USR_SortSequenceTable

CWBSO_USR_TimeSeparator

CWBSO_USR_DecimalFormat

CWBSO_USR_HomeDirectoryDelimiter

CWBSO_USR_HomeDirectory

CWBSO_USR_Locale

CWBSO_USR_IndirectUser

CWBSO_USR_PrintCoverPage

CWBSO_USR_MailNotification

CWBSO_USR_UserID

CWBSO_USR_LocalDataIndicator

CWBSO_USR_UserAddress

CWBSO_USR_SystemName

CWBSO_USR_SystemGroup

CWBSO_USR_UserDescription

CWBSO_USR_FirstName

CWBSO_USR_PreferredName

CWBSO_USR_MiddleName

CWBSO_USR_LastName

CWBSO_USR_FullName

CWBSO_USR_JobTitle

CWBSO_USR_CompanyName

CWBSO_USR_DepartmentName

CWBSO_USR_NetworkUserID

CWBSO_USR_PrimaryTelephoneNumber

CWBSO_USR_SecondaryTelephoneNumber

CWBSO_USR_FaxNumber

CWBSO_USR_Location

CWBSO_USR_BuildingNumber

CWBSO_USR_OfficeNumber

CWBSO_USR_MailingAddress

CWBSO_USR_MailingAddress2

CWBSO_USR_MailingAddress3

CWBSO_USR_MailingAddress4

CWBSO_USR_CCMailAddress

CWBSO_USR_CCMailComment

CWBSO_USR_MailServerFrameworkServiceLevel

CWBSO_USR_PreferredAddressFieldName

CWBSO_USR_PreferredAddressProductID

CWBSO_USR_PreferredAddressTypeValue

CWBSO_USR_PreferredAddressTypeName

CWBSO_USR_PreferredAddress

CWBSO_USR_ManagerCode

552 iSeries: iSeries Access for Windows Programming

CWBSO_USR_SMTPUserID

CWBSO_USR_SMTPDomain

CWBSO_USR_SMTPRoute

CWBSO_USR_GroupMemberIndicator

Note: In release/version V4R4 and later, the following attributes are meaningful only when Lotus Notes is
installed on the iSeries server:

CWBSO_USR_NotesServerName

CWBSO_USR_NotesCertifierID

CWBSO_USR_MailType

CWBSO_USR_NotesMailFileName

CWBSO_USR_CreateMailFiles

CWBSO_USR_NotesForwardingAddress

CWBSO_USR_SecurityType

CWBSO_USR_LicenseType

CWBSO_USR_MinimumNotesPasswordLength

CWBSO_USR_UpdateExistingNotesUser

CWBSO_USR_NotesMailServer

CWBSO_USR_LocationWhereUserIDIsStored

CWBSO_USR_ReplaceExistingNotesID

CWBSO_USR_NotesComment

CWBSO_USR_NotesUserLocation

CWBSO_USR_UserPassword

CWBSO_USR_NotesUserPassword

CWBSO_USR_NotesCertifierPassword

CWBSO_USR_ShortName

Libraries in QSYS attributes: See the OS/400 APIs: Object APIs topic in the iSeries Information Center.

Chapter 4. iSeries Access for Windows® C/C++ APIs 553

../apis/obj1.htm

554 iSeries: iSeries Access for Windows Programming

Chapter 5. iSeries Access for Windows Database
Programming

iSeries Access for Windows provides multiple programming interfaces for accessing database files on the
iSeries server. Some of these interfaces are common interfaces, allowing you to write a single application
that accesses both the iSeries database and non-iSeries databases. iSeries Access for Windows also
supports a proprietary C API to expose the unique strengths of DB2® for iSeries.

iSeries Access for Windows provides both Structured Query Language (SQL) and record-level access
interfaces. The SQL interfaces provide access to DB2 Universal Database (UDB) for iSeries database files
and stored procedures. The record-level access interface provides the fastest access to single records
within a file. The IBM DB2 UDB for iSeries SQL Programming book contains detailed information.

How to access the book:
Follow these steps to view a hypertext markup language (HTML) online version of the DB2 UDB
for iSeries SQL Programming book, and to print a PDF version:

1. Link to the DB2 Universal Database™ for iSeries books online topic in the iSeries Information
Center

2. Select SQL Programming Concepts

The following iSeries Access for Windows database interfaces expose C/C++ interfaces, however, knowing
C/C++ is not a requirement:

“iSeries Access for Windows OLE DB Provider”
Supports record-level access and SQL access to iSeries database files. Use the ActiveX Data
Objects (ADO) and the OLE DB interfaces to take advantage of this support.

“iSeries Access for Windows ODBC” on page 556
A common database interface that uses SQL as its database access language. iSeries Access for
Windows provides an ODBC driver to support this interface.

“iSeries Access for Windows database APIs” on page 646
The iSeries Access for Windows proprietary C/C++ Database APIs provide support for iSeries
database and catalog functions, in addition to SQL access to iSeries database files.

Note: Read the Chapter 1, “Code disclaimer information” on page 3 for important legal information.

iSeries Access for Windows OLE DB Provider
The iSeries Access for Windows OLE DB Provider, along with the Programmer’s Toolkit, makes iSeries
client/server application development quick and easy from the Windows client PC. The iSeries Access for
Windows OLE DB Provider gives iSeries programmers record-level access interfaces to iSeries logical and
physical DB2 Universal Database (UDB) for iSeries database files. In addition, it provides support for SQL,
data queues, programs, and commands. If you use Visual Basic, the Visual Basic Wizards make it simple
and easy to develop customized, working applications.

ADO and OLE DB standards provide programmers with consistent interfaces to iSeries server data and
services. The IBMDA400 Provider handles all iSeries server-to-PC and data type-to-data type conversions.

To install OLE DB Provider:
When you install iSeries Access for Windows(or when you run Selective Setup if iSeries Access
for Windows is installed), select the Data Access component. Make sure that the OLE DB
Provider subcomponent also is selected.

© Copyright IBM Corp. 1999, 2002 555

|
|

|
|
|

|
|
|

|
|
|

|

../rzahf/rzahfli0.htm

Note: The OLE DB Provider will not be installed if the computer does not have MDAC 2.5 or later
installed, before installing iSeries Access for Windows. MDAC can be downloaded from
Microsoft: http://www.microsoft.com/data/doc.htm.

To access OLE DB Technical Reference:
The iSeries Access for Windows OLE DB Technical Reference, which is shipped with iSeries
Access for Windows, provides complete documentation of OLE DB Provider support. To access it
from the Programmer’s Toolkit, select Overview —> Common Interfaces —> ADO/OLE DB.

To install Programmer’s Toolkit and the iSeries ADO Wizards for Visual Basic:
When you install iSeries Access for Windows(or when you run Selective Setup if iSeries Access
for Windows is installed), select the Programmer’s Toolkit component. See “Installing the
Programmer’s Toolkit” on page 12 for more information.

Other OLE DB information resources:

v IBM iSeries Access for Windows OLE DB Support Web site.

v IBM Redbook Fast Path to iSeries Client/Server Using iSeries OLE DB Support: SG24-5183

iSeries Access for Windows ODBC
What is ODBC?

ODBC stands for open database connectivity. It consists of:

v A well-defined set of functions (application programming interfaces)

v Standards for SQL syntax (that are recommended but not imposed)

v Error codes

v Data types

The application programming interfaces provide a rich set of functions to connect to a database
management system, run SQL statements and to retrieve data. Also included are functions to interrogate
the SQL catalog of the database and the capabilities of the driver.

ODBC drivers return standard error codes and translate data types to a common (ODBC) standard. ODBC
allows the application developer to obtain integrated database error information, and to avoid some of the
most complex problems that are involved with making applications portable.

What you can do with ODBC:
Use ODBC to:
v Send SQL requests to the database management system (DBMS).
v Use the same program to access different database management system (DBMS) products

without re-compiling.
v Create an application that is independent of the data communications protocol.
v Handle data in a format convenient to the application.

The flexibility of ODBC APIs allows you to use them in transaction-based, line-of-business applications
(where the SQL is predefined). They also can use them in query tools such as Lotus® Approach® or
Microsoft Query (where the select statement is created at run time).

Structured Query Language (SQL):
ODBC supports dynamic SQL, which sometimes is associated with poor performance. However,
careful use of parameter markers enables repeated statements to achieve static SQL-like
performance. Also, extended dynamic SQL–a special capability of the iSeries Access for Windows
ODBC driver–enables previously prepared SQL statements to achieve performance that rivals
static SQL.

556 iSeries: iSeries Access for Windows Programming

|
|
|

http://www.ibm.com/eserver/iseries/access/oledb
../../redbooks/sg245183.pdf

Where to find information on SQL:
For more information on SQL, see the IBM SQL Reference book. View an HTML online
version of the book, or print a PDF version, from the DB2 Universal Database for iSeries
books online iSeries Information Center topic.

iSeries Access for Windows ODBC topics:

Note: The information linked to from this page applies to the iSeries Access for Windows 32-bit
ODBC driver, the iSeries Access for Windows 64-bit ODBC driver, and the iSeries Access
for Linux ODBC driver. For additional information regarding setup for the iSeries Access for
Linux ODBC driver see iSeries ODBC Driver for Linux.

v “Implementation issues of ODBC APIs” on page 586
v “ODBC API restrictions and unsupported functions” on page 597
v “ODBC APIs”
v ODBC 3.x APIs
v “iSeries Access for Windows ODBC performance” on page 602
v “ODBC programming examples” on page 640

Where to find documentation on the ODBC standard:

See the Microsoft ODBC Web site

ODBC APIs
ODBC APIs required files:

Header files Import library Dynamic Link Library

sql.h

sqlext.h

sqltypes.h

sqlucode.h

odbc32.lib odbc32.dll

Programmer’s Toolkit:
The Programmer’s Toolkit provides ODBC documentation, and links to sample programs and
related information. To access this information, open the Programmer’s Toolkit and select
Database —> ODBC.

ODBC APIs topics:

v iSeries Access for Windows ODBC APIs listing

v “Implementation issues of ODBC APIs” on page 586

ODBC APIs: General concepts
The following general concepts apply to ODBC APIs:

Environments:
The environment in which Windows makes available some memory for ODBC to monitor its
run-time information.

Connections:
Within the environment there can be multiple connections, each to a data source. The connections
may be to different physical servers, to the same server, or any combination of both.

Statements:
Multiple statements can be run within each connection.

Chapter 5. iSeries Access for Windows Database Programming 557

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

../rzahf/rzahfli0.htm
../rzahf/rzahfli0.htm
http://www.ibm.com/servers/eserver/iseries/linux/odbc
http://www.microsoft.com/data/odbc/

Handles:
Handles are identifiers for storage areas that are allocated by the Driver Manager or individual
drivers. The three types of handles are:

Environment handle:
Global information, that includes other handles. One handle is allowed per application.

Connection handle:
Information about connection to a data source. Multiple connection handles are allowed
per environment.

Statement handle:
Information about a particular SQL statement. Multiple statement handles are allowed per
connection. Statement handles can be reused for other SQL staements and long as the
statement state is valid.

Descriptor handle:
Information about explicit descriptors that are associated with the connection handle. The
application creates these, and asks the driver to use them instead of the implicit
descriptors associated with a statement handle.

Essentially, a handle can be considered as an identifier for a resource that is recognized by
ODBC (an environment, connection or statement). ODBC provides an identifier (the handle) for
this resource that you can use in your program. Exactly what ODBC stores in the handle (which is
held as a long integer) is not relevant. Be careful not to change the value, and to assign unique
names to the variables that hold the various handles.

Some APIs set the handle (for example, SQLAllocEnv or SQLAllocHandle with
SQL_HANDLE_ENV handle type), and you must pass in a reference, or pointer to the variable.
Some APIs refer to a handle that previously was set (for example, SQLExecute), and you must
pass in the variable by value.

ODBC 3.x APIs
The following table lists ODBC 3.x APIs by their associated task and identifies considerations for each API.
For some global API considerations, see “ODBC API restrictions and unsupported functions” on page 597.
For other implementation issues and related topics see “Implementation issues of ODBC APIs” on
page 586.

Note: The iSeries Access for Windows ODBC Driver is a Unicode driver; however, ANSI applications will
still continue to work with it. The ODBC Driver Manager will handle converting an ANSI ODBC API
call to the wide version before calling the iSeries Access for Windows ODBC Driver. To write a
Unicode application, you must call the wide version for some of these APIs. When writing an
application to the wide ODBC interface, you need to know whether the length for each API is
defined as character, in bytes, or if the length is not applicable. Refer to the ’Type’ column in the
following table for this information.

Attribute Type API Description Other considerations

Connecting
to a data
source

N/A SQLAllocHandle Obtains an environment
and connection handle.
One environment handle
is used for one or more
connections. May also
allocate a statement or a
descriptor handle.

558 iSeries: iSeries Access for Windows Programming

|
|
|
|
|

|
|
|
|
|
|
|

||||||

|
|
|

|||
|
|
|
|
|
|

|

Char SQLConnect Connects to a specific
data source name with a
specific user ID and
password.

There is an option to control whether this API
prompts a signon dialog when the user ID
and password are not specified. This option
can be set from the Connection options
dialog on the General tab of the DSN. See
“Signon dialog behavior” on page 597 for
more information.

Char SQLDriverConnect Connects to a specific
driver by connection
string or requests that
the Driver Manager and
driver display connection
dialogs for the user.

Uses all keywords. Only DSN is required.
Other values are optional. Refer to
“Connection String keywords” on page 586
and the iSeries Access for Windows Users’
Guide for more information.

Only 25 libraries are supported in a library list
on a connection to a pre-V5R1 server. 75
entries are supported on a V5R1 and later
servers. Entries over 75 are ignored.

For information on how this API prompts
signon dialogs see “Signon dialog behavior”
on page 597.

Char SQLBrowseConnect Returns successive
levels of connection
attributes and valid
attribute values. When a
value has been specified
for each connection
attribute, connects to the
data source.

To make a connection attempt the SYSTEM
keyword and either the DSN or DRIVER
keywords must be specified. All the other
keywords are optional. Note, the PWD
keyword is not returned in the output string
for security purposes. Refer to “Signon dialog
behavior” on page 597 and “Connection
String keywords” on page 586 for more
implementation issues.

Chapter 5. iSeries Access for Windows Database Programming 559

||||
|
|
|

|
|
|
|
|
|
|

||||
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

||||
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

Get
information
regarding a
driver or
data source

Byte SQLGetInfo Returns information
about a specific driver
and data source.

Special attributes returned differently based
on attributes and keywords.The information
that is returned by SQLGetInfo can vary
depending on which keywords and attributes
are in use. The InfoType options that are
affected are:

v SQL_CATALOG_NAME_SEPARATOR –
By default a period is returned. If the
connection string keyword NAM is set to 1,
a comma is returned.

v SQL_CURSOR_COMMIT_BEHAVIOR,
SQL_CURSOR_ROLLBACK_BEHAVIOR –
By default SQL_CB_PRESERVE is
returned. If the connection attribute, 1204,
is set SQL_CB_DELETE is returned.

v SQL_DATA_SOURCE_READ_ONLY – By
default N is returned. If the connection
string keyword CONNTYPE is set to 0
then Y is returned.

v SQL_IDENTIFIER_QUOTE_CHAR – By
default a double-quote mark is returned. If
the application in use is MS QUERY
(MSQRY32) then a single blank is
returned.

v SQL_IDENTIFIER_CASE – By default
SQL_IC_UPPER is returned. If the
connection string keyword DEBUG has the
option 2 set then SQL_IC_MIXED is
rteurned.

v SQL_MAX_QUALIFIER_NAME_LEN – By
default 18 is returned. If the connection
string keyword DEBUG has the 8 bit set
then 0 is returned.

560 iSeries: iSeries Access for Windows Programming

|
|
|
|
|

|||
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

N/A SQLGetTypeInfo Returns information
about supported data
types.

Different result sets can be seen when
running to different iSeries server versions.
For example, the BIGINT data type is only in
the result set when running to V4R5 or later
servers.

The ″LONG VARCHAR″ data type is not
returned in the result set. This is due to
problems that were seen with some
applications expecting to specify a length
with this type. ″LONG VARCHAR FOR BIT
DATA″ and ″LONG VARGRAPHIC″ are also
not returned for similar reasons.

In the TYPE_NAME column, when a data
type requires a value to be in parentheses,
the parentheses are included in the data type
name. However the parentheses are omitted
when the parentheses would end up at the
end of the data type string. In the following
string example, the ″CHAR″ data type is
followed by parenthesis while the ″DATA″
data type is not followed by parentheses:
″CHAR() FOR BIT DATA″.

The setting for the connection string keyword
GRAPHIC affects whether the driver returns
graphic (DBCS) data types as supported
types or not.See “ODBC data types and how
they correspond to DB2 UDB database
types” on page 598 for more information.

Set and
retrieve
driver
attributes

Byte SQLSetConnectAttr Sets a connection option.

Byte SQLGetConnectAttr Returns the value of a
connection option.

N/A SQLSetEnvAttr Sets an environment
option.

N/A SQLGetEnvAttr Returns the value of an
environment option.

Chapter 5. iSeries Access for Windows Database Programming 561

||||
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

||||

||||
|
|

||||
|
|

||||
|
|

Byte SQLSetStmtAttr Sets a statement option. The SQL_ATTR_PARAMSET_SIZE,
SQL_ATTR_ROW_ARRAY_SIZE,
SQL_DESC_ARRAY_SIZE, and
SQL_ROWSET_SIZE attributes support up to
32767 rows.

SELECT statements that contain the FOR
FETCH ONLY or FOR UPDATE clause
override the current setting of
SQL_ATTR_CONCURRENCY attribute. An
error is not returned during the SQLExecute
or SQLExecDirect if the
SQL_ATTR_CONCURRENCY setting
conflicts with the clause in the SQL
statement.

The following are not supported:

v SQL_ATTR_ASYNC_ENABLE

v SQL_ATTR_RETRIEVE_DATA

v SQL_ATTR_SIMULATE_CURSOR

v SQL_ATTR_USE_BOOKMARKS

v SQL_ATTR_FETCH_BOOKMARK_PTR

Setting SQL_ATTR_MAX_ROWS is
supported, but only helps performance with
static cursors. The full result set is still built
with the other cursor types even if this option
is set.

Byte SQLGetStmtAttr Returns the value of a
statement option.

The following are not supported:

v SQL_ATTR_ASYNC_ENABLE

v SQL_ATTR_RETRIEVE_DATA

v SQL_ATTR_SIMULATE_CURSOR

v SQL_ATTR_USE_BOOKMARKS

v SQL_ATTR_FETCH_BOOKMARK_PTR

Set and
retrieve
descriptor
fields

Byte SQLGetDescField Returns a piece of
information from a
descriptor.

Char SQLGetDescRec Returns several pieces of
information from a
descriptor.

Byte SQLSetDescField Sets a descriptor field. Can not set descriptor fields for an IRD other
than SQL_DESC_ARRAY_STATUS_PTR and
SQL_DESC_ROWS_PROCESSED_PTR.

Does not support named parameters.

Char SQLSetDescRec Sets several options for a
descriptor.

N/A SQLCopyDesc Copies information from
one descriptor to another
descriptor.

SQLCopyDesc does not support named
parameters.

562 iSeries: iSeries Access for Windows Programming

|||||
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|
|
|
|
|

||||
|
|

|

|

|

|

|

|
|
|
|

|||
|
|

|

||||
|
|

|

|||||
|
|

|

||||
|
|

||||
|
|

|
|

Prepare
SQL
requests

Char SQLPrepare Prepares an SQL
statement for later
processing.

Packages are created the first time a SQL
statement is prepared for that Connection.
This results in the first prepare taking slightly
longer to complete than it would normally
take. If there are any problems with a
pre-existing package the first prepare may
return an error depending on the setting for
the package as specified in the DSN setup
GUI. On the Package tab of the DSN setup
GUI are default package settings. These
settings are used when package settings
have not already been customized for that
application. Note, these are not global
settings

By default, the driver sends SQL statement
text to the host in the EBCDIC CCSID
associated with your job. To enable the driver
to send SQL statement text to the host in
Unicode you need to set the UNICODESQL
keyword to 1. Note that when sending
Unicode SQL statements the driver will
generate a different package name to avoid
collisions with existing packages that contain
EBCDIC SQL statements. Setting the
connection string keyword UNICODESQL
allows an application to specify Unicode data
for literals in the SQL statement.

For information on which escape sequences
and scalar functions the driver supports see
“SQLPrepare / SQLNativeSQL escape
sequences and scalar functions:” on
page 600.

Byte SQLBindParameter Assigns storage for a
parameter in an SQL
statement. See
“Parameter markers” on
page 567 for additional
information.

Data conversions are made directly from the
C type that is specified to the actual host
parameter (column) data type.

The SQL data type and column size that are
specified are ignored.

Conversions that involve character data
convert directly from the client codepage to
the column CCSID.

The driver returns an error during the
execution of the SQL statement if
SQL_DEFAULT_PARAM is specified for the
Strlen_or_IndPtr parameter.

Default parameters are not supported by the
DB2 UDB database. The driver handles the
binding of a parameter with the
SQL_DEFAULT_PARAM option by returning
an error with an SQL State of 07S01 during
the execution of the CALL statement.

Char SQLGetCursorName Returns the cursor name
associated with a
statement handle.

The driver will upper case all cursor names
without double-quotes around the name.

Chapter 5. iSeries Access for Windows Database Programming 563

|
|
|

|||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

||||
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

||||
|
|

|
|

Char SQLSetCursorName Specifies a cursor name. The cursor name is converted to capital
letters if it is not entered in quotes. Cursor
names that are entered in quotes are not
converted. For example, myCursorName
becomes MYCURSORNAME while
″myCursorName″ is treated as
myCursorName, with a length of 14 since
the quotes are included in the length.

The driver supports only these characters in
cursor names: ″″,a-z, A-Z, 0-9, or _. No error
will be returned by SQLSetCursorName if an
invalid name is entered, however, an error
will be returned later when trying to use an
invalid name.

The cursor name can only be 18 characters
long, including the leading and trailing double
quotes if they exist, and must be in
characters that can be translated from
UNICODE to ANSI.

If an application wishes to use a DRDA
connection through ODBC then they will have
the following restrictions:

v Cursor name changes are not allowed
during the DRDA connection.

v Cursor names will be changed by the
driver and should be checked via
SQLGetCursorName after the cursor is
open. (after SQLExecute or
SQLExecDirect).

Submit
requests

N/A SQLExecute Runs a prepared
statement.

SQLExecute is affected by the settings of
several of the connection string keywords
such as PREFETCH, CONNTYPE, CMT, and
LAZYCLOSE. Refer to “Connection String
keywords” on page 586 for descriptions of
these keywords.

Char SQLExecDirect Runs a statement. See SQLPrepare and SQLExecute.

Char SQLNativeSQL Returns the text of an
SQL statement as
translated by the driver.

Char SQLDescribeParam Returns the description
for a specific parameter
in a statement.

N/A SQLNumParams Returns the number of
parameters in a
statement.

N/A SQLParamData Returns the storage
value assigned to a
parameter for which data
will be sent at run time
(useful for long data
values).

564 iSeries: iSeries Access for Windows Programming

|||||
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|||
|
|
|
|
|
|
|

|||||

||||
|
|

|

||||
|
|

|

||||
|
|

|

||||
|
|
|
|
|

|

Byte SQLPutData Send part or all of a data
value for a parameter
(useful for long data
values).

Retrieve
results and
related
information

N/A SQLRowCount Returns the number of
rows that are affected by
an insert, update, or
delete request.

This API has been extended to also contain
the cursor row count for a result set using a
static cursor to V5R1 or later server versions.

N/A SQLNumResultCols Returns the number of
columns in the result set.

Char SQLDescribeCol Describes a column in
the result set.

Byte SQLColAttribute Describes attributes of a
column in the result set.

Byte SQLBindCol Assigns storage for a
result column and
specifies the data type.

N/A SQLExtendedFetch Returns rows in the
result set. This is a
supported 2.x ODBC API.
However, new
applications should use
SQLFetchScroll API
instead.

Uses the value of the statement attribute
SQL_ROWSET_SIZE instead of
SQL_ATTR_ROW_ARRAY_SIZE for the
rowset size.

You can only use SQLExtendedFetch in
combination with SQLSetPos and
SQLGetData if the row size is 1.

SQL_FETCH_BOOKMARK is not supported.

The result set for catalog APIs (such as
SQLTables and SQLColumns) is forward only
and read only. When SQLExtendedFetch is
used with result sets generated by catalog
APIs, no scrolling is allowed.

N/A SQLFetch Returns rows in the
result set. Can only be
used with
SQL_FETCH_FIRST and
SQL_FETCH_NEXT
since the cursor is
forward only.

N/A SQLFetchScroll Returns rows in the
result set. Can be used
with scrollable cursor,
which means all fetch
orientation are allowed
(except
SQL_FETCH_BOOKMARK).

Does not support the fetch orientation of
SQL_FETCH_BOOKMARK because the
driver does not support bookmarks.

Byte SQLGetData Returns part or all of one
column of one row of a
result set (useful for long
data values). See
“SQLFetch and
SQLGetData” on
page 568 for additional
information.

SQLGetData can only be used with single
row fetches. Errors are reported by
SQLGetData if the row array size is larger
than one.

Chapter 5. iSeries Access for Windows Database Programming 565

||||
|
|
|

|

|
|
|
|

|||
|
|
|

|
|
|

||||
|
|

||||
|
|

||||
|
|

||||
|
|

|

||||
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|

||||
|
|
|
|
|
|

|

||||
|
|
|
|
|
|

|
|
|

||||
|
|
|
|
|
|
|

|
|
|
|

N/A SQLSetPos Positions a cursor within
a fetched block of data.

SQL_UPDATE, SQL_DELETE, SQL_ADD
are unsupported options for Operations
parameter.

SQL_LOCK_EXCLUSIVE,
SQL_LOCK_UNLOCK are unsupported
options for the LockType parameter.

N/A SQLBulkOperations Performs bulk insertions
and bulk bookmark
operations, including
update, delete, and fetch
by bookmark.

The driver does not support
SQLBulkOperations.

N/A SQLMoreResults Determines whether
there are more result
sets available and if so,
initializes processing for
the next result set.

Byte SQLGetDiagField Returns a piece of
diagnostic information.

The SQL_DIAG_CURSOR_ROW_COUNT
option is only accurate for static cursors
when running to V5R1 or later server
versions.

Char SQLGetDiagRec Returns additional error
or status information.

Get data
source
system
table
information

Char SQLColumnPrivilegesReturns a list of columns
and associated privileges
for one or more tables.

Returns an empty result set when:

v V5R1 or earlier servers or

v V5R2 servers, when option 2 of the
CATALOGOPTIONS connection string
keyword is not set

By default, when accessing V5R2 servers,
column privilege information will be returned.

Char SQLColumns Returns a list of
information on columns
in one or more tables.

Char SQLForeignKeys Returns a list of column
names that comprise
foreign keys, if they exist
for a specified table.

Char SQLProcedureColumnsReturns the list of input
and output parameters,
as well as the columns
that make up the result
set for the specified
procedures.

The driver does not return information about
columns that make up result sets generated
by procedures. The driver only returns
information about the parameters to the
procedures.

Char SQLProcedures Returns the list of
procedure names stored
in a specific data source.

566 iSeries: iSeries Access for Windows Programming

||||
|
|
|
|

|
|
|

||||
|
|
|
|

|
|

||||
|
|
|
|

|

||||
|
|
|
|
|

||||
|
|

|
|
|
|
|

|||
|
|

|

|

|
|
|

|
|

||||
|
|

|

||||
|
|
|

|

||||
|
|
|
|
|

|
|
|
|
|

||||
|
|

|

Char SQLSpecialColumns Retrieves information
about the optimal set of
columns that uniquely
identifies a row in a
specified table. It also
retrieves information
about the columns that
are automatically
updated when any value
in the row is updated by
a transaction. If called
with the
SQL_BEST_ROWID
option, returns all
indexed columns of that
table.

Char SQLStatistics Retrieves statistics about
a single table and the list
of indexes that are
associated with the table.

Char SQLTables Returns a list of
schemas, tables, or table
types in the data source.

See “SQLTables Description” on page 602

Char SQLTablePrivileges Returns a list of tables
and the privileges that
are associated with each
table.

Returns an empty result set when:

v V5R1 or earlier servers or

v V5R2 servers, when option 2 of the
CATALOGOPTIONS connection string
keyword is not set

By default, when accessing V5R2 servers,
tables privilege information will be returned.

Char SQLPrimaryKeys Returns the list of column
name or names that
comprise the primary key
for a table.

Clean up a
statement

N/A SQLFreeStmt Ends statement
processing and closes
the associated cursor,
and discards pending
results.

N/A SQLCloseCursor Closes a cursor that is
open on the statement
handle.

N/A SQLCancel Cancels an SQL
statement.

Not all queries can be cancelled. This is
recommended only for long running queries.

N/A SQLEndTran Commits or rolls back a
transaction.

Terminate a
connection

N/A SQLDisconnect Closes the connection.

N/A SQLFreeHandle Releases resources
associated with handles.

Parameter markers: Parameter markers act as place holders for values that are supplied by the
program when you instruct the data source to run the SQL statement. When you use SQLPrepare, the
statement that contains the parameter markers is passed to the data source to be prepared by the SQL

Chapter 5. iSeries Access for Windows Database Programming 567

||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||||
|
|
|

|

||||
|
|

|

||||
|
|
|

|

|

|
|
|

|
|

||||
|
|
|

|

|
|
|||
|
|
|
|

|

||||
|
|

|

||||
|
|
|

||||
|
|

|
|
||||

||||
|
|

|

|
|
|

“Optimizer” on page 613. The Optimizer builds a plan of the statement and holds it for later reference.
Each parameter marker must be associated with a program variable (strictly, a pointer to a program
variable), and SQLBindParameter is used for this purpose.

SQLBindParameter is a complex function. Careful study of the relevant section in the Microsoft ODBC
Software Development Kit and Programmer’s Reference ISBN 1-57231-516-4 is strongly recommended.
For most SQL statements, using SQLBindParameter provides input information to the function, but with
stored procedures it also can receive data back.

After you have prepared the statement and bound the parameters, use SQLExecute to set to the data
source the current values of the associated variables.

SQLFetch and SQLGetData: SQLGetData provides an alternative to SQLBindCol to retrieve data from
the columns of a retrieved row. It can only be called after calling fetch APIs and when the array size is 1.

As a general rule, SQLBindCol is preferable to SQLGetData. There is less performance overhead; you
need to run SQLBindCol only once rather than after every fetch. However, there are special
considerations for using SQLBindCol in Visual Basic.

Visual Basic moves character strings to different locations to conserve memory. If a string variable is
bound to a column, the memory that is referenced by a subsequent SQLFetch may not place the data in
the desired variable. It is likely that a General Protection Fault will result. A similar problem can occur
with SQLBindParameter.

Using strings in Visual Basic is not recommended. One way to avoid this problem is to use byte arrays.
Byte arrays are of a fixed size and are not subject to movement in memory.

Another circumvention is to employ Windows memory allocation API functions that are documented in the
Microsoft Development Library Knowledge Base. However, this method involves some difficult
programming that is not totally transportable between Windows 3.1 and later releases.

Using SQLGetData rather than SQLBindCol and SQLParamData and SQLPutData in conjunction with
SQLBindParameter produce software that is more in keeping with Visual Basic. However, this method
involves some difficult programming.

Coding directly to ODBC APIs
Many PC applications make ODBC calls that allow the user to seamlessly access data on different
platforms. Before you begin developing your own application with ODBC APIs, you should understand how
an ODBC application connects to and exchanges information with a database server.

There are supported ODBC APIs that:

v Set up the ODBC environment

v Establish and end connections to data sources

v Execute SQL statements

v Clean up the ODBC environment

Coding directly to ODBC APIs topics:

v “Calling stored procedures” on page 578

v “Using large objects (LOBs) and DataLinks with iSeries Access for Windows ODBC” on
page 569

v “Examples: Stored procedures” on page 633

v “Block insert and block fetch C example” on page 579

v “Example: Block inserts using Visual Basic” on page 580

v “Visual Basic: The compromise between Jet and ODBC APIs” on page 584

568 iSeries: iSeries Access for Windows Programming

|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

http://msdn.microsoft.com/library/default.asp

Using large objects (LOBs) and DataLinks with iSeries Access for Windows ODBC:

Large objects (LOBs):
Large object (LOB) data types allow applications to store large data objects as strings. Use LOBs
with iSeries Access for Windows ODBC to store and access large text documents and multimedia
data types. LOBs are available when connecting with a V4R4 or later iSeries server. V5R1 and
pre-V5R1 iSeries Access ODBC drivers can retrieve LOBs of 15 MBs or less. V5R2 iSeries
Access ODBC drivers can retrieve LOBs of 2 GBs or less.

LOB data types:

BLOB Binary large data objects

CLOB Single-byte large character data objects

DBCLOB
Double-byte character large data objects

To view an example that uses the BLOB data type:
See “Example: Using the BLOB data type”

For more information on LOBs:
See the Using Large Objects topic under the Using the Object-Relational Capabilities
heading in the SQL Programming Concepts Information Center topic.

DataLinks:
DataLink data types allow you to store many types of data in a database. Data is stored as a
uniform resource locator (URL). The URL points to an object, which might be an image file, sound
file, text file, and so forth.

For more information on DataLinks:
See the Using DataLinks topic under the Using the Object-Relational Capabilities
heading in the SQL Programming Concepts Information Center topic.

Example: Using the BLOB data type: The following is a partial C program that uses the BLOB data type:
BOOL params = TRUE; // TRUE if you want to use parameter markers
SQLINTEGER char_len = 10, blob_len = 400;
SQLCHAR szCol1[21], szCol2[400], szRecCol1[21], szRecCol2[400];
SQLINTEGER cbCol1, cbCol2;
SQLCHAR stmt[2048];

// Create a table with a CHAR field and a BLOB field
rc = SQLExecDirect(hstmt, "CREATE TABLE TABBLOB(COL1 CHAR(10), COL2 BLOB(400))", SQL_NTS);

strcpy(szCol1, "1234567890");
if (!params) // no parameter markers
{

strcpy(szCol2, "414243444546"); // 0x41 = ’A’, 0x42 = ’B’, 0x43 = ’C’, ...
wsprintf(stmt, "INSERT INTO TABBLOB VALUES(’%s’, BLOB(x’%s’))", szCol1, szCol2);

}
else
{

strcpy(szCol2, "ABCDEF"); // ’A’ = 0x41, ’B’ = 0x42, ’C’ = 0x43, ...
strcpy(stmt, "INSERT INTO TABBLOB VALUES(?,?)");

}

// Prepare the ’Insert’ statement
rc = SQLPrepare(hstmt, stmt, SQL_NTS);

// Bind the parameter markers
if (params) // using parameter markers
{

cbCol1 = char_len;
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

char_len, 0, szCol1, char_len + 1, &cbCol1);

Chapter 5. iSeries Access for Windows Database Programming 569

../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

cbCol2 = 6;
rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_LONGVARBINARY,

blob_len, 0, szCol2, blob_len, &cbCol2);
}

// Execute the ’Insert’ statement to put a row of data into the table
rc = SQLExecute(hstmt);

// Prepare and Execute a ’Select’ statement
rc = SQLExecDirect(hstmt, "SELECT * FROM TABBLOB", SQL_NTS);

// Bind the columns
rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, szRecCol1, char_len + 1, &cbCol1);
rc = SQLBindCol(hstmt, 2, SQL_C_BINARY, szRecCol2, blob_len, &cbCol2);

// Fetch the first row
rc = SQLFetch(hstmt);
szRecCol2[cbCol2] = ’\0’;

// At this point szRecCol1 should contain the data "1234567890"
// szRecCol2 should contain the data 0x414243444546 or "ABCDEF"

Accessing a database server with an ODBC application: An ODBC application needs to follow a
basic set of steps in order to access a database server:

1. Connect to the data source.

2. Place the SQL statement string to be executed in a buffer. This is a text string.

3. Submit the statement in order that it can be prepared or immediately run.

v Retrieve and process the results.

v If there are errors, retrieve the error information from the driver.

4. End each transaction with a commit or rollback operation (if necessary).

5. Terminate the connection.

Establishing ODBC connections:

SQLAllocHandle with SQL_HANDLE_ENV as the handle type

v Allocates memory for an environment handle.

– Identifies storage for global information:

- Valid connection handles

- Current active connection handles

- Variable type HENV

v Must be called by application prior to calling any other ODBC function.

v Variable type HENV is defined by ODBC in the SQL.H header file provided by the C
programming language compiler or by the ODBC Software Development Kit (SDK).

The header file contains a type definition for a far pointer:
typedef void far * HENV

v In C programming language this statement is coded:
SQLRETURN rc;
HENV henv;

rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

v In Visual Basic, this statement is coded:
Dim henv As long
SQLAllocEnv(henv)

SQLAllocHandle with SQL_HANDLE_DBC as the handle type

570 iSeries: iSeries Access for Windows Programming

v Allocates memory for an connection handle within the environment.

– Identifies storage for information about a particular connection.

- Variable type HDBC

- Application can have multiple connection handles.

v Application must request a connection handle prior to connecting to the data source.

v In C, this statement is coded:
HDBC hdbc;

rc = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

v In Visual Basic, this statement is coded:
Dim hdbc As long
SQLAllocConnect(henv,hdbc)

SQLSetEnvAttr

v Allows an application to set attributes of an environment.

v To be considered an ODBC 3.x application, you must set the SQL_ATTR_ODBC_VERSION to
SQL_OV_ODBC3 prior to allocating a connection handle.

v In C, this statement is coded:
rc = SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);

SQLConnect

v Loads driver and establishes a connection.

v Connection handle references information about the connection.

v Data source is coded into application.

In C, this statement is coded:

SQLCHAR source[] = "myDSN";
SQLCHAR uid[] = "myUID";
SQLCHAR pwd[] = "myPWD";

rc = SQLConnect(hdbc, source, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

Note: SQL_NTS indicates that the parameter string is a null-terminated string.

SQLDriverConnect

v Alternative to SQLConnect

v Allows appliction to override data source settings.

v Displays dialog boxes (optional).

Executing ODBC functions:

SQLAllocHandle with SQL_HANDLE_STMT as the handle type

v Allocates memory for information about an SQL statement.

– Application must request a statement handle prior to submitting SQL statements.

– Variable type HSTMT.

In C, this statement is coded:
HSTMT hstmt;

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

SQLExecDirect

v Executes a preparable statement.

v Fastest way to submit an SQL string for one time execution.

Chapter 5. iSeries Access for Windows Database Programming 571

|
|

v If rc is not equal to SQL_SUCCESS, the SQLGetDiagRec API can be used to find the cause of
the error condition.

In C, this statement is coded:
SQLCHAR stmt[] = "CREATE TABLE NAMEID (ID INTEGER, NAME VARCHAR(50))";

rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

v Return code

– SQL_SUCCESS

– SQL_SUCCESS_WITH_INFO

– SQL_ERROR

– SQL_INVALID_HANDLE

SQLGetDiagRec
To retrieve error information for an error on a statement:

In C, this statement is coded:
SQLSMALLINT i = 1, cbErrorMsg ;
SQLCHAR szSQLState[6], szErrorMsg[SQL_MAX_MESSAGE_LENGTH];
SQLINTEGER nativeError;

rc = SQLGetDiagRec(SQL_HANDLE_STMT, hstmt, i, szSQLState, &nativeError, szErrorMsg,
SQL_MAX_MESSAGE_LENGTH, &cbErrorMsg);

v szSQLState

– 5 character string

– 00000 = success

– 01004 = data truncated

– 07001 = wrong number of parameters

Note: The previous items are only several of many possible SQL states.

v fNativeError - specific to data source

v szErrorMsg - Error Message text

Executing prepared statements: If an SQL statement is used more than once, it is best to have the
statement prepared and then executed. When a statement is prepared, variable information can be passed
as parameter markers, which are denoted by question marks (?). When the statement is executed, the
parameter markers are replaced with the real variable information.

Preparing the statement is performed at the server. The SQL statements are compiled and the access
plans are built. This allows the statements to be executed much more efficiently. When compared to using
dynamic SQL to execute the statements, the result is much closer to static SQL. Extened Dynamic
preserves prepared statements accross job sessions. This allows prepared statements with parameter
markers to be executed multiple times within the job session even without Extended Dynamic ON. When
the database server prepares the statements, it saves some of them in a special iSeries object called a
package (*SQLPKG). This approach is called Extended Dynamic SQL. Packages are created
automatically by the driver; an option is provided to turn off Package Support. This is covered in “The
performance architecture of the iSeries Access for Windows ODBC driver” on page 604.

SQLPrepare
Prepares an SQL statement for execution:

In C, this statement is coded:

SQLCHAR szSQLstr[] = "INSERT INTO NAMEID VALUES (?,?)";

rc = SQLPrepare(hstmt, szSQLstr, SQL_NTS);

572 iSeries: iSeries Access for Windows Programming

Note: SQL_NTS indicates that the string is null-terminated.

SQLBindParameter
Allows application to specify storage, data type, and length associated with a parameter marker in
an SQL statement.

In the example, parameter 1 is found in a signed double word field called id. Parameter 2 is found
in an unsigned character array called name. Since the last parameter is null, the driver expects
that name is null-terminated as it will calculate the string’s length.

In C, this statement is coded:

SQLCHAR szName[51];
SQLINTEGER id, parmLength = 50, lenParm1 = sizeof(SQLINTEGER) , lenParm2 = SQL_NTS ;

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,
sizeof(SQLINTEGER), 0, &id, sizeof(SQLINTEGER), &lenParm1);

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,
parmLength, 0, szName, sizeof(szName), &lenParm2);

SQLExecute
Executes a prepared statement, using current values of parameter markers:

In C, this statement is coded:

id=500;
strcpy(szName, "TEST");
rc = SQLExecute(hstmt); // Insert a record with id = 500, name = "TEST"
id=600;
strcpy(szName, "ABCD");
rc = SQLExecute(hstmt); // Insert a record with id = 600, name = "ABCD"

SQLParamData / SQLPutData
Visual Basic does not directly support pointers or fixed-location ANSI character null-terminated
strings. For this reason, it is best to use another method to bind Character and Binary parameters.
One method is to convert Visual Basic String data types to/from an array of Byte data types and
bind the array of Byte. This method is demonstrated in “Converting strings and arrays of byte” on
page 575.

Another method, that should only be used for input parameters, is to supply the parameters at
processing time. This is done using SQLParamData and SQLPutData APIs:

v They work together to supply parameters.

v SQLParamData moves the pointer to the next parameter.

v SQLPutData then supplies the data for that parameter.
’s_parm is a character buffer to hold the parameters

’s_parm(1) contains the first parameter
Static s_parm(2) As String

s_parm(1) = "Rear Bumper"
s_parm(2) = "ABC Auto Part Store"

Dim rc As Integer
Dim cbValue As Long
Dim s_insert As String
Dim hStmt As Long
Dim lPartID As Long

rc = SQLAllocHandle(SQL_HANDLE_STMT, ghDbc, hStmt)
If rc <> SQL_SUCCESS Then _

Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLAllocStmt failed.")

s_insert = "INSERT INTO ODBCSAMPLE VALUES(?, ?, ?)"

rc = SQLBindParameter(hStmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, _
4, 0, lPartID, 4, ByVal 0)

If rc <> SQL_SUCCESS Then _

Chapter 5. iSeries Access for Windows Database Programming 573

Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLBindParameter failed.")

’#define SQL_LEN_DATA_AT_EXEC_OFFSET (-100) the parms will be supplied at run time
cbValue = -100

’ Caller set 8th parameter to "ByVal 2" so driver will return
’ 2 in the token when caller calls SQLParamData

rc = SQLBindParameter(hStmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, _
4, 0, ByVal 2, 0, cbValue)

If rc <> SQL_SUCCESS Then _
Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLBindParameter failed.")

’ Caller set 8th parameter to "ByVal 3" so driver will return
’ 3 in the token when caller calls SQLParamData the second time.

rc = SQLBindParameter(hStmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, _
4, 0, ByVal 3, 0, cbValue)

If rc <> SQL_SUCCESS Then _
Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLBindParameter failed.")

’ Prepare the insert statement once.
rc = SQLPrepare(hStmt, s_insert, SQL_NTS)

lPartID = 1
rc = SQLExecute(hStmt) ’ Execute multiple times if needed.

’ Since parameters 2 and 3 are bound with cbValue set to -100,
’ SQLExecute returns SQL_NEED_DATA

If rc = SQL_NEED_DATA Then
’ See comment at SQLBindParameter: token receives 2.

rc = SQLParamData(hStmt, token)

If rc <> SQL_NEED_DATA Or token <> 2 Then _
Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLParamData failed.")

’ Provide data for parameter 2.
rc = SQLPutData(hStmt, ByVal s_parm(1), Len(s_parm(1)))
If rc <> SQL_SUCCESS Then _

Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLPutData failed.")

’ See comment at SQLBindParameter: token receives 3.
rc = SQLParamData(hStmt, token)
If rc <> SQL_NEED_DATA Or token <> 3 Then _

Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLParamData failed.")

’ Provide data for parameter 2.
rc = SQLPutData(hStmt, ByVal s_parm(2), Len(s_parm(2)))
If rc <> SQL_SUCCESS Then _

Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLPutData failed.")

’ Call SQLParamData one more time.
’ Since all data are provided, driver will execute the request.

rc = SQLParamData(hStmt, token)
If rc <> SQL_SUCCESS Then _

Call DspSQLDiagRec(SQL_HANDLE_DBC, ghDbc, "SQLParamData failed.")
Else

Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "SQLExecute failed.")
End If

Notes:

1. These two statements operate together to supply unbound parameter values when the
statement is executed.

2. Each call to SQLParamData moves the internal pointer to the next parameter for
SQLPutData to supply data to. After the last parameter is filled, SQLParamData must be
called again for the statement to be executed.

574 iSeries: iSeries Access for Windows Programming

3. If SQLPutData supplies data for parameter markers, the parameter must be bound. Use the
cbValue parameter set to a variable whose value is SQL_DATA_AT_EXEC when the
statement is executed.

Converting strings and arrays of byte: The following Visual Basic functions can assist in converting
strings and arrays of byte:
Public Sub Byte2String(InByte() As Byte, OutString As String)

’Convert array of byte to string
OutString = StrConv(InByte(), vbUnicode)

End Sub

Public Function String2Byte(InString As String, OutByte() As Byte) As Boolean
’vb byte-array / string coercion assumes Unicode string
’so must convert String to Byte one character at a time

’or by direct memory access

Dim I As Integer
Dim SizeOutByte As Integer
Dim SizeInString As Integer

SizeOutByte = UBound(OutByte)
SizeInString = Len(InString)
’Verify sizes if desired

’Convert the string
For I = 0 To SizeInString - 1

OutByte(I) = AscB(Mid(InString, I + 1, 1))
Next I
’If size byte array > len of string pad with Nulls for szString
If SizeOutByte > SizeInString Then ’Pad with Nulls

For I = SizeInString To SizeOutByte - 1
OutByte(I) = 0

Next I
End If

String2Byte = True
End Function

Public Sub ViewByteArray(Data() As Byte, Title As String)
’Display message box showing hex values of byte array

Dim S As String
Dim I As Integer
On Error GoTo VBANext

S = "Length: " & Str(UBound(Data)) & " Data (in hex):"
For I = 0 To UBound(Data) - 1

If (I Mod 8) = 0 Then
S = S & " " ’add extra space every 8th byte

End If
S = S & Hex(Data(I)) & " "

VBANext:
Next I
MsgBox S, , Title

End Sub

Retrieving results: Running some SQL statements returns results to the application program. Running
an SQL SELECT statement returns the selected rows in a result set. The SQLFetch API then sequentially
retrieves the selected rows from the result set into the application program’s internal storage. In order to
work with all of the rows in a result set, call the SQLFetch API until no more rows are returned.

Chapter 5. iSeries Access for Windows Database Programming 575

You also may issue a Select statement where you do not specify what columns you want returned. For
example, SELECT * FROM RWM.DBFIL selects all columns. You may not know what columns or how many
columns will be returned.

SQLNumResultCols
Returns the number of columns in a result set.

v A storage buffer that receives the information is passed as a parameter.
SQLSMALLINT nResultCols;

rc = SQLNumResultCols(hstmt, &nResultCols);

SQLDescribeCol
Returns the result descriptor for one column in a result set.

v Column name

v Column type

v Column size

This is used with SQLNumResultCols to retrieve information about the columns returned.
Using this approach, as opposed to hard coding the information in the program, makes for more
flexible programs.

The programmer first uses SQLNumResultCols to find out how many columns were returned in
the result set by a select statement. Then a loop is set up to use SQLDescribeCol to retrieve
information about each column.

In C, this statement is coded:

SQLCHAR szColName[51];
SQLSMALLINT lenColName, colSQLtype, scale, nullable;
SQLUSMALLINT colNum = 1;
SQLUINTEGER cbColDef;

rc = SQLDescribeCol(hstmt, colNum, szColName, sizeof(szColName),
&lenColName, &colSQLtype, &cbColDef, &scale, &nullable);

SQLBindCol
Assigns the storage and data type for a column in a result set:

v Storage buffer that receives the information.

v Length of storage buffer.

v Data type conversion.

In C, this statement is coded:

SQLUSMALLINT colNum = 1;
SQLUINTEGER cbColDef;
SQLINTEGER idNum, indPtr, strlen_or_indPtr;
SQLCHAR szIDName[51];

colNum = 1;
rc = SQLBindCol(hstmt, colNum, SQL_C_LONG, &idNum, sizeof(SQLINTEGER), &indPtr);
colNum = 2;
rc = SQLBindCol(hstmt, colNum, SQL_C_CHAR, szIDName, sizeof(szIDName), &strlen_or_indPtr);

Note: If you use this with Visual Basic, it is recommended that you use an array of Byte data type
in place of String data types.

SQLFetch
Each time SQLFetch is called, the driver fetches the next row. Bound columns are stored in the
locations specified. Data for unbound columns may be retrieved using SQLGetData.

In C, this statement is coded:

576 iSeries: iSeries Access for Windows Programming

rc = SQLFetch(hstmt);

Visual Basic does not directly support pointers or fixed memory location ANSI character
null-terminated strings. For this reason, it is best to use another method to bind Character and
Binary parameters. One method is to convert Visual Basic String data types to/from an array of
Byte data types and bind the array of Byte. Another method is to use the SQLGetData function
instead of SQLBindCol.

SQLGetData
Retrieves data for unbound columns after a fetch. In this example, three columns are returned and
SQLGetData is used to move them to the correct storage location.

In C, this statement is coded:
SQLCHAR szTheName[16], szCredit[2];
float iDiscount, iTax;

rc = SQLFetch(hstmt);
rc = SQLGetData(hstmt, 1, SQL_C_CHAR, szTheName, 16, &strlen_or_indPtr);
rc = SQLGetData(hstmt, 2, SQL_C_FLOAT, &iDiscount, sizeof(float), &indPtr);
rc = SQLGetData(hstmt, 3, SQL_C_CHAR, szCredit, 2, &strlen_or_indPtr);
rc = SQLGetData(hstmt, 4, SQL_C_FLOAT, &iTax, sizeof(float), &indPtr);

In Visual Basic, this statement is coded:

rc = SQLFetch(hStmt)
If rc = SQL_NO_DATA_FOUND Then

Call DisplayWarning("No record found!")
rc = SQLCloseCursor(hStmt)
If rc <> SQL_SUCCESS Then

Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Close cursor failed.")
End If

Else
’ Reset lcbBuffer for the call to SQLGetData
lcbBuffer = 0
’Get part ID from the fetched record
rc = SQLGetData(hStmt, 1, SQL_C_LONG, _

lPartIDReceived, Len(lPartIDReceived), lcbBuffer)
If rc <> SQL_SUCCESS And rc <> SQL_SUCCESS_WITH_INFO Then _

Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, _
"Problem getting data for PartID column")

’Get part description from the fetched record
rc = SQLGetData(hStmt, 2, SQL_C_CHAR, _

szDescription(0), 257, lcbBuffer)
If rc <> SQL_SUCCESS And rc <> SQL_SUCCESS_WITH_INFO Then _

Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, _
"Problem getting data for PartDescription column")

’Get part provider from the fetched record
rc = SQLGetData(hStmt, 3, SQL_C_CHAR, _

szProvider(0), 257, lcbBuffer)
If rc <> SQL_SUCCESS And rc <> SQL_SUCCESS_WITH_INFO Then _

Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, _
"Problem getting data for PartProvider column")

Call DisplayMessage("Record found!")
rc = SQLCloseCursor(hStmt)
If rc <> SQL_SUCCESS Then _

Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Close cursor failed.")
End If

Chapter 5. iSeries Access for Windows Database Programming 577

Calling stored procedures: Use stored procedures to improve the performance and function of an
ODBC application. Any iSeries program can act as a stored procedure. iSeries stored procedures support
input, input/output and output parameters. They also support returning result sets, both single and multiple.
The stored procedure program can return a result set by specifying a cursor to return (from an embedded
SQL statement) or by specifying an array of values. See “Stored procedures” on page 632 for more
information.

To call a stored procedure, complete the following steps:

1. Verify that the stored procedure has been declared by using the OS/400 SQL statement CREATE
PROCEDURE.

Detail: CREATE PROCEDURE should be executed only once for the life of the stored procedure.
DROP PROCEDURE can be used to delete the procedure without deleting the procedure’s
program. DECLARE PROCEDURE also can be used, but this method has several
disadvantages. The Database Programming book contains additional information about
DECLARE PROCEDURE. View an HTML online version of the book, or print a PDF version,
from the DB2 Universal Database for iSeries books online topic in the iSeries Information
Center.

2. Prepare the call of the stored procedure by using SQLPrepare.

3. Bind the parameters for input and output parameters.

4. Execute the call to the stored procedure.

5. Retrieve the result set (if one is returned)

In this C example, a COBOL program named NEWORD which resided in the default iSeries library, is
called. A value in a field named szCustId is passed, and it returns a value to a field named szName.
SQLRETURN rc;
HSTMT hstmt;
SQLCHAR Query[320];
SQLCHAR szCustId[10];
SQLCHAR szName[30];
SQLINTEGER strlen_or_indPtr = SQL_NTS, strlen_or_indPtr2 = SQL_NTS;

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

// Create the stored procedure definition.
// The create procedure could be moved to the application’s
// install program so that it is only executed once.
strcpy(Query,"CREATE PROCEDURE NEWORD (:CID IN CHAR(10), :NAME OUT CHAR(30))");
strcat(Query," (EXTERNAL NAME NEWORD LANGUAGE COBOL GENERAL WITH NULLS)");

// Create the stored procedure
rc = SQLExecDirect(hstmt, (unsigned char *)Query, SQL_NTS);

strcpy(Query, "CALL NEWORD(?,?)");

// Prepare the stored procedure call
rc = SQLPrepare(hstmt, (unsigned char *)Query, SQL_NTS);

// Bind the parameters
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

10, 0, szCustId, 11, &strlen_or_intPtr);

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_VARCHAR,
30, 0, szName, 31, &strlen_or_indPtr2);

strcpy (szCustId,"0000012345");
// Execute the stored procedure
rc = SQLExecute(hstmt);

578 iSeries: iSeries Access for Windows Programming

../rzahf/rzahfli0.htm

Block insert and block fetch C example: Block inserts and block fetches can be used to enhance the
performance of an ODBC application. They allow you to insert or retrieve rows in blocks, rather than
individually. This reduces the data flows and line turnaround between the client and the server. Block
fetches can be accomplished using either the SQLFetch (forward only) or SQLExtendedFetch or
SQLFetchScroll API.

A block fetch:

v Returns a block of data (one row set) in the form of an array for each bound column.

v Scrolls through the result set according to the setting of a scroll type argument; forward, backward, or
by row number.

v Uses the row set size specified with the SQLSetStmtAttr API.

The C example below does a block insert of 6 rows of data followed by two block fetches of two rows.

#define NUM_ROWS_INSERTED 6
#define NAME_LEN 10

HSTMT hstmt;
SQLINTEGER rowcnt = NUM_ROWS_INSERTED;
SQLCHAR itemNames[NUM_ROWS_INSERTED][NAME_LEN+1] = { "puzzle ", "candy bar ",
"gum ","kite ", "toy car ", "crayons " };
SQLINTEGER itemPrices[NUM_ROWS_INSERTED] = { 5, 2, 1, 10, 3, 4 };
SQLCHAR queryItemNames[NUM_ROWS_INSERTED][NAME_LEN+1]; // Name return array
SQLINTEGER queryItemPrices[NUM_ROWS_INSERTED]; // price return array
SQLINTEGER cbqueryItemNames[NUM_ROWS_INSERTED], cbqueryItemPrices[NUM_ROWS_INSERTED];

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

rc = SQLExecDirect(hstmt, "CREATE TABLE ITEMS (NAME VARCHAR(10), PRICE INT)", SQL_NTS);

// set the paramset size to 6 as we are block inserting 6 rows of data
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_PARAMSET_SIZE, (SQLPOINTER)rowcnt, SQL_IS_INTEGER);

// bind the arrays to the parameters
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

NAME_LEN, 0, itemNames[0], NAME_LEN + 1, NULL);
rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,

NUM_ROWS_INSERTED, 0, &itemPrices[0],
sizeof(long), NULL);

// do the block insert
rc = SQLExecDirect(hstmt, "INSERT INTO ITEMS ? ROWS VALUES(?,?)", SQL_NTS);

// set up things for the block fetch

// We set the concurrency below to SQL_CONCUR_READ_ONLY, but since SQL_CONCUR_READ_ONLY
// is the default this API call is not necessary. If update was required then you would use
// SQL_CONCUR_LOCK value as the last parameter.
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_CONCURRENCY, (SQLPOINTER)SQL_CONCUR_READ_ONLY,

SQL_IS_INTEGER);

// We set the cursor type to SQL_CURSOR_FORWARD_ONLY, but since SQL_CURSOR_FORWARD_ONLY
// is the default this API call is not necessary.
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_CURSOR_TYPE,

(SQLPOINTER)SQL_CURSOR_FORWARD_ONLY, SQL_IS_INTEGER);

// We want to block fetch 2 rows at a time so we need to set SQL_ATTR_ROW_ARRAY_SIZE to 2.
// If we were going to use SQLExtendedFetch instead of SQLFetchScroll we would instead need
// to set the statement attribute SQL_ROWSET_SIZE to 2.

Chapter 5. iSeries Access for Windows Database Programming 579

rc = SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE, (SQLPOINTER)2, SQL_IS_INTEGER);

rc = SQLExecDirect(hstmt, "SELECT NAME, PRICE FROM ITEMS WHERE PRICE < 5", SQL_NTS);

// bind arrays to hold the data for each column in the result set
rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, queryItemNames, NAME_LEN + 1, cbqueryItemNames);
rc = SQLBindCol(hstmt, 2, SQL_C_LONG, queryItemPrices, sizeof(long), cbqueryItemPrices);

// We know that there are 4 rows that fit the criteria for the SELECT statement so we call
// two fetches to get all the data
rc = SQLFetchScroll(hstmt, SQL_FETCH_FIRST, 0);
// at this point 2 rows worth of data will have been fetched and put into the buffers
// that were bound by SQLBindCol

rc = SQLFetchScroll(hstmt, SQL_FETCH_NEXT, 0);
// at this point 2 rows worth of data will have been fetched and put into the buffers
// that were bound by SQLBindCol. Note that this second fetch overwrites the data in
// those buffers with the new data
// ...
// Application processes the data in bound columns...
// ...

Example: Block inserts using Visual Basic: Block inserts allow you to:

v Insert blocks of records with one SQL call.

v Reduces the flows between the client and server.

See “Block insert and block fetch C example” on page 579 for additional information.

The next example is a Visual Basic block insert that is significantly faster than a ″parameterized″ insert.
Dim cbNTS(BLOCKSIZE - 1) As Long ’NTS array

Dim lCustnum(BLOCKSIZE - 1) As Long ’Customer number array

’2nd parm passed by actual length for demo purposes
Dim szLstNam(7, BLOCKSIZE - 1) As Byte ’NOT USING NULL ON THIS PARM
Dim cbLenLstNam(BLOCKSIZE - 1) As Long ’Actual length of string to pass
Dim cbMaxLenLstNam As Long ’Size of one array element

’These will be passed as sz string so size must include room for null
Dim szInit(3, BLOCKSIZE - 1) As Byte ’Size for field length + null
Dim szStreet(13, BLOCKSIZE - 1) As Byte ’Size for field length + null
Dim szCity(6, BLOCKSIZE - 1) As Byte ’Size for field length + null
Dim szState(2, BLOCKSIZE - 1) As Byte ’Size for field length + null
Dim szZipCod(5, BLOCKSIZE - 1) As Byte ’Size for field length + null

Dim fCdtLmt(BLOCKSIZE - 1) As Single
Dim fChgCod(BLOCKSIZE - 1) As Single
Dim fBalDue(BLOCKSIZE - 1) As Single
Dim fCdtDue(BLOCKSIZE - 1) As Single

Dim irow As Long ’ row counter for block errors
Dim lTotalRows As Long ’ ************ Total rows to send *************
Dim lNumRows As Long ’ Rows to send in one block
Dim lRowsLeft As Long ’ Number of rows left to send

Dim I As Long
Dim J As Long
Dim S As String
Dim hStmt As Long

’ This program needs QCUSTCDT table in your own collection.
’ At the iSeries server command line type:
’===> CRTLIB SAMPCOLL

580 iSeries: iSeries Access for Windows Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

’===> CRTDUPOBJ OBJ(QCUSTCDT) FROMLIB(QIWS)
’ OBJTYPE(*FILE) TOLIB(SAMPCOLL) NEWOBJ(*SAME)
’===> CHGPF FILE(SAMPCOLL/QCUSTCDT) SIZE(*NOMAX)
’===> CLRPFM FILE(SAMPCOLL/QCUSTCDT)

’************** Start ***
S = "Number of records to insert into QCUSTCDT. "
S = S & "Use menu option Table Mgmt, Create QCUSTCDT to "
S = S & "create the table. Use Misc, iSeries Cmd and CLRPFM "
S = S & "command if you wish to clear it"
S = InputBox(S, gAppName, "500")
If Len(S) = 0 Then Exit Sub

lTotalRows = Val(S) ’Total number to insert

rc = SQLAllocHandle(SQL_HANDLE_STMT, ghDbc, hStmt)
If (Not (rc = SQL_SUCCESS Or rc = SQL_SUCCESS_WITH_INFO)) Then GoTo errBlockInsert

rc = SQLPrepare(hStmt, _
"INSERT INTO QCUSTCDT ? ROWS VALUES (?,?,?,?,?,?,?,?,?,?,?)", _
SQL_NTS)

If (Not (rc = SQL_SUCCESS Or rc = SQL_SUCCESS_WITH_INFO)) Then GoTo errBlockInsert

rc = SQLBindParameter(hStmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, _
10, 0, lCustnum(0), 0, ByVal 0)

If (rc = SQL_ERROR) Then _
Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

’Pass first parm w/o using a null
cbMaxLenLstNam = UBound(szLstNam, 1) - LBound(szLstNam, 1) + 1
rc = SQLBindParameter(hStmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, _

8, _
0, _
szLstNam(0, 0), _
cbMaxLenLstNam, _
cbLenLstNam(0))

If (rc = SQL_ERROR) Then _
Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

rc = SQLBindParameter(hStmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, _
3, 0, szInit(0, 0), _
UBound(szInit, 1) - LBound(szInit, 1) + 1, _
cbNTS(0))

If (rc = SQL_ERROR) Then _
Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

rc = SQLBindParameter(hStmt, 4, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, _
13, 0, szStreet(0, 0), _
UBound(szStreet, 1) - LBound(szStreet, 1) + 1, _
cbNTS(0))

If (rc = SQL_ERROR) Then _
Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

rc = SQLBindParameter(hStmt, 5, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, _
6, 0, szCity(0, 0), _
UBound(szCity, 1) - LBound(szCity, 1) + 1, _
cbNTS(0))

If (rc = SQL_ERROR) Then _
Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

rc = SQLBindParameter(hStmt, 6, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, _
2, 0, szState(0, 0), _
UBound(szState, 1) - LBound(szState, 1) + 1, _
cbNTS(0))

If (rc = SQL_ERROR) Then _
Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

Chapter 5. iSeries Access for Windows Database Programming 581

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

rc = SQLBindParameter(hStmt, 7, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_NUMERIC, _
5, 0, szZipCod(0, 0), _
UBound(szZipCod, 1) - LBound(szZipCod, 1) + 1, _
cbNTS(0))

If (rc = SQL_ERROR) Then _
Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

rc = SQLBindParameter(hStmt, 8, SQL_PARAM_INPUT, SQL_C_FLOAT, SQL_NUMERIC, _
4, 0, fCdtLmt(0), 0, ByVal 0)

If (rc = SQL_ERROR) Then _
Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

rc = SQLBindParameter(hStmt, 9, SQL_PARAM_INPUT, SQL_C_FLOAT, SQL_NUMERIC, _
1, 0, fChgCod(0), 0, ByVal 0)

If (rc = SQL_ERROR) Then _
Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

rc = SQLBindParameter(hStmt, 10, SQL_PARAM_INPUT, SQL_C_FLOAT, SQL_NUMERIC, _
6, 2, fBalDue(0), 0, ByVal 0)

If (rc = SQL_ERROR) Then _
Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

rc = SQLBindParameter(hStmt, 11, SQL_PARAM_INPUT, SQL_C_FLOAT, SQL_NUMERIC, _
6, 2, fCdtDue(0), 0, ByVal 0)

If (rc = SQL_ERROR) Then _
Call DspSQLDiagRec(SQL_HANDLE_STMT, hStmt, "Problem: Bind Parameter")

lRowsLeft = lTotalRows ’Initialize row counter
For J = 0 To ((lTotalRows - 1) \ BLOCKSIZE)

For I = 0 To BLOCKSIZE - 1
cbNTS(I) = SQL_NTS ’ init array to NTS
lCustnum(I) = I + (J * BLOCKSIZE) ’Customer number = row number
S = "Nam" & Str(lCustnum(I)) ’Last Name
cbLenLstNam(I) = Len(S)
rc = String2Byte2D(S, szLstNam(), I)
’Debug info: Watch address to see layout
addr = VarPtr(szLstNam(0, 0))
’addr = CharNext(szLstNam(0, I)) ’address of 1,I
’addr = CharPrev(szLstNam(0, I), szLstNam(1, I)) ’address of 0, I)
’addr = CharNext(szLstNam(1, I))
’addr = CharNext(szLstNam(6, I)) ’should point to null (if used)
’addr = CharNext(szLstNam(7, I)) ’should also point to next row

rc = String2Byte2D("DXD", szInit, I)
’Vary the length of the street
S = Mid("1234567890123", 1, ((I Mod 13) + 1))
rc = String2Byte2D(S, szStreet, I)

rc = String2Byte2D("Roches", szCity, I)
rc = String2Byte2D("MN", szState, I)
rc = String2Byte2D("55902", szZipCod, I)
fCdtLmt(I) = I
fChgCod(I) = 1
fBalDue(I) = 2 * I
fCdtDue(I) = I / 2

Next I

lNumRows = lTotalRows Mod BLOCKSIZE ’ Number of rows to send in this block
If (lRowsLeft >= BLOCKSIZE) Then _

lNumRows = BLOCKSIZE ’ send remainder or full block
irow = 0
lRowsLeft = lRowsLeft - lNumRows

rc = SQLSetStmtAttr(hStmt, SQL_ATTR_PARAMSET_SIZE, lNumRows, 0)
If (rc = SQL_ERROR) Then GoTo errBlockInsert

rc = SQLSetStmtAttr(hStmt, SQL_ATTR_PARAMS_PROCESSED_PTR, irow, 0)

582 iSeries: iSeries Access for Windows Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

If (rc = SQL_ERROR) Then GoTo errBlockInsert

rc = SQLExecute(hStmt)
If (rc = SQL_ERROR) Then

S = "Error on Row: " & Str(irow) & Chr(13) & Chr(10)
MsgBox S, , gAppName
GoTo errBlockInsert

End If
Next J
rc = SQLEndTran(SQL_HANDLE_DBC, ghDbc, SQL_COMMIT)
If (Not (rc = SQL_SUCCESS Or rc = SQL_SUCCESS_WITH_INFO)) Then GoTo errBlockInsert
rc = SQLFreeHandle(SQL_HANDLE_STMT, hStmt)
Exit Sub

errBlockInsert:
rc = SQLEndTran(SQL_HANDLE_DBC, ghDbc, SQL_ROLLBACK)
rc = SQLFreeHandle(SQL_HANDLE_STMT, hStmt)

Public Function String2Byte2D(InString As String, OutByte() As Byte, RowIdx As Long)
As Boolean

’VB byte arrays are layed out in memory opposite of C. The string would
’be by column instead of by row so must flip flop the string.
’ASSUMPTIONS:
’ Byte array is sized before being passed
’ Byte array is padded with nulls if > size of string

Dim I As Integer
Dim SizeOutByte As Integer
Dim SizeInString As Integer

SizeInString = Len(InString)
SizeOutByte = UBound(OutByte, 1)

’Convert the string
For I = 0 To SizeInString - 1

OutByte(I, RowIdx) = AscB(Mid(InString, I + 1, 1))
Next I
’If byte array > len of string pad
If SizeOutByte > SizeInString Then ’Pad with Nulls

For I = SizeInString To SizeOutByte - 1
OutByte(I, RowIdx) = 0

Next I
End If
’ViewByteArray OutByte, "String2Byte"
String2Byte2D = True

End Function

Ending ODBC functions: The last procedure that must be completed before ending an ODBC
application is to free the resources and memory allocated by the application. This must be done so that
they are available when the application is run the next time.

SQLFreeStmt
Stops processing associated with a specific statement handle.
rc = SQLFreeStmt(hstmt, option); // option can be SQL_CLOSE, SQL_RESET_PARAMS. or SQL_UNBIND

SQL_CLOSE
Closes the cursor associated with the statement handle, and discards all pending results.
Alternately, you can use SQLCloseCursor.

SQL_RESET_PARAMS
Releases all common buffers that are bound by SQLBindParameter.

SQL_UNBIND
Releases all common buffers that are bound by SQLBindCol.

Chapter 5. iSeries Access for Windows Database Programming 583

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SQLFreeHandle with SQL_HANDLE_STMT as the handle type
Frees all resources for this statement.

rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);

SQLDisconnect
Closes the connection associated with a specific connection handle.
rc = SQLDisconnect(hdbc);

SQLFreeHandle with SQL_HANDLE_DBC as the handle type
Releases connection handle and frees all memory associated with a connection handle.
rc = SQLFreeHandle(SQL_HANDLE_DBC, hdbc);

SQLFreeHandle with SQL_HANDLE_ENV as the handle type
Frees environment handle and releases all memory associated with the environment handle.
rc = SQLFreeHandle(SQL_HANDLE_ENV, henv);

Visual Basic: The compromise between Jet and ODBC APIs: While the database objects are easy to
code, they sometimes can adversely affect performance. Coding to the APIs and to stored procedures can
be a frustrating endeavor.

Fortunately, if you are using Visual Basic Enterprise Edition in the Windows 95 environment, there are
additional options. These options are a good compromise between the usability of database objects and
the high performance of APIs: Remote Data Objects (RDO) and Remote Data Control (RDC).

RDO is a thin layer over the ODBC APIs. It provides a simple interface to advanced ODBC functionality
without requiring programming to the API level. It does not have all of the overhead of the Jet Engine
controlled Data Access Object (DAO) or its SQL optimizer. Yet it maintains a nearly identical programming
interface as the DAOs. If you understand programming to the DAO, then switching over to the RDO is
relatively simple compared to trying to switch over to API calls.

The following are differences between DAO and RDO:

v The DAO model is used for ISAM, Access and ODBC databases. The RDO model is designed for
ODBC databases only, and it has been optimized for Microsoft SQL Server 6.0 and Oracle.

v The RDO model can have better performance, with the processing being done by the server and not
the local machine. Some processing is done locally with the DAO model, so performance may not be as
good.

v The DAO model uses the Jet Engine. The RDO model does not use Jet Engine, it uses the ODBC
backend engine.

v The RDO model has the capability to perform synchronous or asynchronous queries. The DAO model
has limitations in performing these type of queries.

v The RDO model can perform complex cursors, which are limited in the DAO model.

The RDC is a data control similar to the standard data control. This means that where ever you might
have used a data control, and the Jet engine, you now can use the RDC. You can drag a ″data aware″
control on your form. It can be bound to an RDC, as it could be bound to a regular data control.

Some of the advanced ODBC functionality the RDO allows is prepared SQL statements, multiple result
sets, and stored procedures. When Jet executes a SQL statement dynamically it is a two-step process on
the iSeries server. In the first step, the iSeries server looks at the statement and determines the best plan
to retrieve the data requested based on the current database schema. In the second step, that plan is
used to actually retrieve the data. Creating that plan can be expensive in terms of time because the
iSeries server has to evaluate many alternatives and determine the best way to access the data. There is
an alternative to forcing the iSeries server to re-create the access plan every time a SQL statement is run.
The CreatePreparedStatement method of the rdoConnection object allows you to compile a data access
plan on the iSeries server for an SQL statement without executing it. You can even include parameters in
prepared statements, so you can pass new selection criteria every time you run the select statement.

584 iSeries: iSeries Access for Windows Programming

The following sample Visual Basic code will show how to prepare a SQL statement with a parameter
marker and run it multiple times with different values.

Visual Basic 4.0 RDO sample code

Label A shows where the SQL statement is defined. Notice that the statement does not include a specific
for the CUSTNUM, but has a question mark for the value. The question mark signifies that this value is a
parameter of the prepared statement. Before you can create a result set with the prepared statement, you
must set the value of any parameters in the statement.

Label B shows where the value for the parameter is defined. Notice that the first parameter is defined as 0
not as 1. Once the value for the parameter is set you can run the OpenResultSet method of the
rdoPreapredStatement to return the requested data.

Before you can requery a prepared statement on the iSeries server, you have to make sure that the cursor
has been completely processed and closed. Label C shows the MoreResults method of the rdoResultSet
being used to do this. The MoreResults method queries the database. It determines if there is any more
data in the result set to be processed, or if the result set has been processed completely. Once the cursor
has been fully processed you can reset the parameter value and run the ReQuery method of the
rdoResultSet to open a new result set.

ODBC API return codes
Every ODBC API function returns a value of type SQLRETURN (a short integer). There are seven possible
return codes, and associated with each is a manifest constant. The following list provides an explanation
of each particular code. Some return codes can be interpreted as an error on the function call. Others
indicate success. Still others indicate that more information is needed or pending.

Chapter 5. iSeries Access for Windows Database Programming 585

A particular function may not return all possible codes. See the Microsoft ODBC 3.0 Software
Development Kit and Programmer’s Reference, Version 3.0 ISBN 1-57231-516-4. for possible values, and
for the precise interpretation for that function.

Pay close attention to return codes in your program, particularly those that are associated with the
processing of SQL statements processing and with data source data access. In many instances the return
code is the only reliable way of determining the success of a function.

SQL_SUCCESS
Function has completed successfully; no additional information available.

SQL_SUCCESS_WITH_INFO
Function completed successfully; possibly with a nonfatal error. The application can call
SQLGetDiagRec to retrieve additional information.

SQL_NO_DATA_FOUND
All rows from the result set have been fetched.

SQL_ERROR
Function failed. The application can call SQLGetDiagRec to retrieve error information.

SQL_INVALID_HANDLE
Function failed due to an unusable environment, connection, or statement handle. Programming
error.

SQL_NEED_DATA
The driver is asking the application to send parameter data values.

Implementation issues of ODBC APIs
See “ODBC 3.x APIs” on page 558 for a table of individual APIs and their associated considerations. For
some global API considerations, see “ODBC API restrictions and unsupported functions” on page 597.

Related topic:

v “Connection String keywords”

v “Version and release changes in the ODBC driver behavior” on page 596

v “Signon dialog behavior” on page 597

v “ODBC data types and how they correspond to DB2 UDB database types” on page 598

v “Special connection and statement attributes” on page 599

v “SQLPrepare / SQLNativeSQL escape sequences and scalar functions:” on page 600

v “Cursor and Rowset size” on page 601

v “iSeries system name formats for ODBC Connection APIs” on page 12

Connection String keywords
The iSeries Access ODBC driver has many connection string keywords that can be used to change the
behavior of the ODBC connection. These same keywords and their values are also stored when an ODBC
data source is setup. When an ODBC application makes a connection, any keywords specified in the
connection string override the values specified in the ODBC data source.

The following table lists connection string keywords that are recognized by the iSeries Access ODBC
driver:

Table 2. iSeries Access ODBC connection string keywords

Keyword Description Choices Default

General properties

586 iSeries: iSeries Access for Windows Programming

||

||||

|

Table 2. iSeries Access ODBC connection string keywords (continued)

DSN Specifies the name of the ODBC data
source that you want to use for the
connection.

Data source (DSN) name none

DRIVER Specifies the name of the ODBC driver
that you want to use.
Note: This should not be used if the
DSN property has been specified.

″iSeries Access ODBC Driver″ none

PWD or
Password

Specifies the password for connecting to
the iSeries server.

iSeries password none

SIGNON Specifies what default user ID to use if
the connection cannot be completed
with the current user ID and password
information.

0 = Use Windows user name

1 = Use default user ID

2 = None

3 = Use iSeries Navigator default

4 = Use Kerberos principal

3

SSL Specifies whether a Secure Sockets
Layer (SSL) connection is used to
communicate with the server. SSL
connections are only available when
connecting to servers at V4R4 or later.

0 = Encrypt only the password

1 = Encrypt all clients/server
communication

0

SYSTEM Specifies the name of the iSeries server
that you want to connect to.

iSeries server name none

UID or UserID Specifies the user ID for connecting to
the iSeries server.

iSeries user ID none

Server properties

CMT or
CommitMode

Specifies the default transaction
isolation level.

0 = Commit immediate (*NONE)

1 = Read committed (*CS)

2 = Read uncommitted (*CHG)

3 = Repeatable read (*ALL)

4 = Serializable (*RR)

2

CONNTYPE or
ConnectionType

Specifies the level of database access
for the connection.

0 = Read/Write (all SQL statements
allowed)

1 = Read/Call (SELECT and CALL
statements allowed)

2 = Read-only (SELECT statements
only)

0

Chapter 5. iSeries Access for Windows Database Programming 587

|

||
|
|

||

||
|
|
|

||

|
|
|
|
||

||
|
|
|

|

|

|

|

|

|

||
|
|
|
|

|

|
|

|

||
|
||

||
|
||

|

|
|
|
|
|

|

|

|

|

|

|
|
|
|
|
|

|
|

|
|

|

Table 2. iSeries Access ODBC connection string keywords (continued)

DATABASE Specifies the iSeries relational database
(RDB) name to connect. Note, this
option is only valid to V5R2 iSeries
servers. This option will be ignored
when connecting to earlier pre-V5R2
servers.

Special values for this option include
specifying an empty-string or *SYSBAS.
An empty-string indicates to use the
user-profile’s default setting for
database. Specifying *SYSBAS will
connect a user to the SYSBAS
database (RDB name).

iSeries relational database name empty-string

DBQ or
DefaultLibraries

Specifies the iSeries libraries to add to
the server job’s library list. The libraries
are delimited by commas or spaces,
and ″*USRLIBL″ may be used as a
place holder for the server job’s current
library list. The library list is used for
resolving unqualified stored procedure
calls and finding libraries in catalog API
calls. IF ″*USRLIBL″ is not specified, the
specified libraries will replace the server
job’s current library list.
Note: The first library listed in this
property will also be the default library,
which is used to resolve unqualified
names in SQL statements. To specify no
default library, a comma should be
entered before any libraries.

iSeries libraries ″QGPL″

NAM or Naming Specifies the naming convention used
when referring to tables.

0 = ″sql″ (as in schema.table

1 = ″system″ (as in schema/table

0

UNICODESQL Specifies whether or not to send
Unicode SQL statements to the server.
IF set to 0, the driver will send EBCDIC
SQL statements to the server. This
option is only available when connecting
to servers at V5R1 or later.

0 = Send EBCDIC SQL statements to
the server

1 = Send Unicode SQL statements to
the server

0

Format properties

DFT or
DateFormat

Specifies the date format used in date
literals within SQL statements.

0 = yy/dd (*JUL)

1 = mm/dd/yy (*MDY)

2 = dd/mm/yy (*DMY)

3 = yy/mm/dd (*YMD)

4 = mm/dd/yyyy (*USA)

5 = yyyy-mm-dd (*ISO)

6 = dd.mm.yyyy (*EUR)

7 = yyyy-mm-dd (*JIS)

5

588 iSeries: iSeries Access for Windows Programming

|

||
|
|
|
|
|

|
|
|
|
|
|
|

||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

||
|
|

|

|

||
|
|
|
|
|

|
|

|
|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|

Table 2. iSeries Access ODBC connection string keywords (continued)

DSP or
DateSeperator

Specifies the date separator used in
date literals within SQL statements. This
property has no effect unless the
DateFormat property is set to 0 (*JUL),
1 (*MDY), 2 (*DMY), or 3 (*YMD).

0 = ″/″ (forward slash)

1 = ″-″ (dash)

2 = ″.″ (period)

3 = ″,″ (comma)

4 = ″ ″ (blank)

1

DEC or Decimal Specifies the decimal separator used in
numeric literals within SQL statements.

0 = ″.″ (period)

1 = ″,″ (comma)

0

TFT or
TimeFormat

Specifies the time format used in time
literals within SQL statements.

0 = hh:mm:ss (*HMS)

1 = hh:mm AM/PM (*USA)

2 = hh.mm.ss (*ISO)

3 = hh.mm.ss (*EUR)

4 = hh:mm:ss (*JIS)

0

TSP or
TimeSeparator

Specifies the time separator used in
time literals within SQL statements. This
property has no effect unless the ″time
format″ property is set to ″hms″.

v 0 = ″:″ (colon)

v 1 = ″.″ (period)

v 2 = ″,″ (comma)

v 3 = ″ ″ (blank)

0

Package properties

DFTPKGLIB or
DefaultPkgLibrary

Specifies the library for the SQL
package. This property has no effect
unless the XDYNAMIC property is set to
1.

Library for SQL package ″QGPL″

PKG or
DefaultPackage

Specifies how the extended dynamic
(package) support will behave. The
string for this property must be in the
following format:
″A/DEFAULT(IBM),x,0,y,z,0″

The x, y, and z are special attributes
that need to be replaced with how the
package is to be used.

v x = Specifies whether or not to add
statements to an existing SQL
package.

v y = Specifies the action to take when
SQL package errors occur. When a
SQL package error occurs, the driver
will return a return code based on the
value of this property.

v z = Specifies whether or not to cache
SQL packages in memory. Caching
SQL packages locally reduces the
amount of communication to the
server in some cases.

Note: This property has no effect
unless the XDYNAMIC property is set to
1.

″A/DEFAULT(IBM),x,0,y,z,0″

Values for x option:

v 1 = Use (Use the package, but do
not put any more SQL statements
into the package)

v 2 = Use/Add (Use the package and
add new SQL statements into the
package)

″A/DEFAULT(IBM),2,0,1,0″

Chapter 5. iSeries Access for Windows Database Programming 589

|

|
|
|
|
|
|
|

|

|

|

|

|

|

||
|
|

|

|

|
|
|
|
|

|

|

|

|

|

|
|
|
|
|
|

|

|

|

|

|

|

|
|
|
|
|
|

||

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|

|

|
|
|

|
|
|

|

Table 2. iSeries Access ODBC connection string keywords (continued)

XDYDAMIC
orExtendedDynamic

Specifies whether to use extended
dynamic (package) support.

Extended dynamic support provides a
mechanism for caching dynamic SQL
statements on the server. The first time
a particular SQL statement is run, it is
stored in a SQL package on the server.
On subsequent runs of the same SQL
statement, the server can skip a
significant part of the processing by
using information stored in the SQL
package.

Note: For more information see “Using
Extended Dynamic SQL” on page 605.

0 = Disable extended dynamic
support

1 = Enable extended dynamic support

1

Performance properties

BLOCKFETCH Specifies whether or not internal
blocking will be done on fetches of 1
row. When set, the driver will try to
optimize the fetching of records when
one record is requested by the
application. Multiple records will be
retrieved and stored by the driver for
later retrieval by the application. When
an application requests another row, the
driver will not need to send another flow
to the host database to get it. If not set,
blocking will be used according to the
application’s ODBC settings for that
particular statement.
Note: For more information on setting
this option see Fine-tuning record
blocking.

0 = Use ODBC settings for blocking

1 = Use blocking with a fetch of 1 row

1

BLOCKSIZE or
BlockSizeKB

Specifies the block size (in kilobytes) to
retrieve from the iSeries server and
cache on the client. This property has
no effect unless the BLOCKFETCH
property is 1. Larger block sizes reduce
the frequency of communication to the
server, and therefore may increase
performance.

1

2

4

8

16

32

64

128

256

512

32

COMPRESSION
or
AllowDataCompression

Specifies whether to compress data
sent to and from the server. In most
cases, data compression improves
performance due to less data being
transmitted between the driver and the
server.

0 = Disable compression

1 = Enable compression

1

590 iSeries: iSeries Access for Windows Programming

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|
|
|

|

|

|

Table 2. iSeries Access ODBC connection string keywords (continued)

CONCURRENCY Specifies whether to override the ODBC
concurrency setting by opening all
cursors as updateable.
Note: In the following two cases,
setting this option has no effect:

1. When building a SELECT SQL
statement the FOR FETCH ONLY or
FOR UPDATE clause can be added.
If either of these clauses are present
in a SQL statement the ODBC driver
will honor the concurrency that is
associated with the clause.

2. Catalog result sets are always
read-only.

0 = Use ODBC concurrency settings

1 = Open all cursors as updateable

0

EXTCOLINFO or
ExtendedColInfo

The extended column information affects
what the SQLGetDescField and
SQLColAttribute APIs return as
Implementation Row Descriptor (IRD)
information. The extended column
information is available after the
SQLPrepare API has been called. The
information that is returned is:

v SQL_DESC_AUTO_UNIQUE_VALUE

v SQL_DESC_BASE_COLUMN_NAME

v SQL_DESC_BASE_TABLE_NAME
and SQL_DESC_TABLE_NAME

v SQL_DESC_LABEL

v SQL_DESC_SCHEMA_NAME

v SQL_DESC_SEARCHABLE

v SQL_DESC_UPDATABLE

Note: the driver sets the
SQL_DESC_AUTO_UNIQUE_VALUE
flag only if a column is an identity
column with the ALWAYS option over a
numeric data type (such as integer).
Refer to the DB2 UDB SQL Reference
for details on identity columns.

0 = Do not retrieve extended column
information

1 = Retrieve extended column
information

0

LAZYCLOSE Specifies whether to delay closing
cursors until subsequent requests. This
will increase overall performance by
reducing the total number of requests.
Note: This option can cause problems
due to the cursors still holding locks on
the result set rows after the close
request.

0 = Do not retrieve extended column
information

1 = Retrieve extended column
information

0

Chapter 5. iSeries Access for Windows Database Programming 591

|

||
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|

|

|
|
|
|
|
|
|

|
|

|
|

|

||
|
|
|
|
|
|
|

|
|

|
|

|

Table 2. iSeries Access ODBC connection string keywords (continued)

MAXFIELDLEN
or
MaxFieldLength

Specifies the maximum LOB (large
object) size (in kilobytes) that can be
retrieved as part of a result set. LOBs
that are larger than this threshold will be
retrieved in pieces using extra
communication to the server. Larger
LOB thresholds will reduce the
frequency of communication to the
server, but will download more LOB
data, even if it is not used. Smaller LOB
thresholds may increase frequency of
communication to the server, but they
will only download LOB data as it is
needed.
Note: Setting this property to 0 will
force locators to always be used.

0 — 2097152 15360

PREFETCH Specifies whether to prefetch data upon
executing a SELECT statement. This
will increase performance when
accessing the initial rows in the
ResultSet.

0 = Do not prefetch data

1 = Prefetch data

0

QUERYTIMEOUT Specifies whether the driver will disable
support for the query timeout attribute,
SQL_ATTR_QUERY_TIMEOUT. If
disabled, SQL queries will run until they
finish.

0 = Disable support for the query
timeout attribute

1 = Allow the query timeout attribute
to be set

1

Sort properties

LANGUAGEID Specifies a 3-character language id to
use for selection of a sort sequence.
This property has no effect unless the
SORTTYPE property is set to 2.

″AFR″, ″ARA″, ″BEL″, ″BGR″, ″CAT″,
″CHS″, ″CHT″, ″CSY″, ″DAN″, ″DES″,
″DEU″, ″ELL″, ″ENA″, ″ENB″, ″ENG″,
″ENP″, ″ENU″, ″ESP″, ″EST″, ″FAR″,
″FIN″, ″FRA″, ″FRB″, ″FRC″, ″FRS″,
″GAE″, ″HEB″, ″HRV″, ″HUN″, ″ISL″,
″ITA″, ″ITS″, ″JPN″, ″KOR″, ″LAO″,
″LVA″, ″LTU″, ″MKD″, ″NLB″, ″NLD″,
″NON″, ″NOR″, ″PLK″, ″PTB″, ″PTG″,
″RMS″, ″ROM″, ″RUS″, ″SKY″,
″SLO″, ″SQI″, ″SRB″, ″SRL″, ″SVE″,
″THA″, ″TRK″, ″UKR″, ″URD″, ″VIE″

″ENU″

SORTTABLE Specifies the library and file name of a
sort sequence table stored on the
iSeries server. This property has no
effect unless the SORTTYPE property is
set to 3.

Qualified sort table name none

SORTTYPE or
SortSequence

Specifies how the server sorts records
before sending them to the client.

0 = Sort based on hexadecimal
values

1 = Sort based on the setting for the
server job

2 = Sort based on the language set in
LANGUAGEID property

3 = Sort based on the sort sequence
table set in the SORTTABLE property

0

592 iSeries: iSeries Access for Windows Programming

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

||
|
|
|
|

|

|

|

||
|
|
|
|

|
|

|
|

|

|

||
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

||
|
|
|
|

||

|
|
|
|
|
|

|
|

|
|

|
|

|

Table 2. iSeries Access ODBC connection string keywords (continued)

SORTWEIGHT Specifies how the server treats case
while sorting records. This property has
no effect unless the SORTTYPE
property is set to 2.

0 = Shared-Weight (uppercase and
lowercase characters sort as the
same character)

1 = Unique-Weight (uppercase and
lowercase characters sort as different
characters)

0

Catalog properties

CATALOGOPTIONSSpecifies one or more options to affect
how catalog APIs return information. To
specify multiple catalog options, add the
values associated with the options that
you want.

To determine the value for this
keyword, add the values below that
are associated with each option that
you want.

1 = Return information about aliases
in the SQLColumns result set.

2 = Return result set information for
SQLTablePrivileges and
SQLColumnPrivileges. Note, this will
only work with V5R2 hosts. On older
hosts the driver will return an empty
result set.

3

LIBVIEW or
LibraryView

Specifies the set of libraries to be
searched when returning information
when using wildcards with catalog APIs.
In most cases, use the default library list
or default library option as searching all
the libraries on the server will take a
long time.

0 = Use default library list

1 = All libraries on the server

2 = Use default library only

0

REMARKS or
ODBCRemarks

Specifies the source of the text for
REMARKS columns in catalog API
result sets.

0 = OS/400 object description

1 = SQL object comment

0

SEARCHPATTERNSpecifies whether the driver will
interprets string search patterns and
underscores in the library and table
names as wildcards (search patterns).
By default, % is treated as an ’any
number of characters’ wildcard, and _ is
treated as a ’single character’ wildcard.

0 = Do not treat search patterns as
wildcards

1 = Treat search patterns as wildcards

1

Translation properties

ALLOWUNSCHAR
or
AllowUnsupportedChar

Specifies whether or not to suppress
error messages which occur when
characters that can not be translated
(because they are unsupported) are
detected.

0 = Report error messages when
characters can not be translated

1 = Suppress error messages when
characters can not be translated

0

CCSID Specifies a codepage to override the
default client codepage setting with.

Client codepage setting or 0 (use
default client codepage setting)

0

Chapter 5. iSeries Access for Windows Database Programming 593

|

||
|
|
|

|
|
|

|
|
|

|

|

||
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|

|

|

|

||
|
|
|
|
|
|

|
|

|

|

|

|
|
|

|
|
|
|
|

|
|

|
|

|

||
|
|
|
|

Table 2. iSeries Access ODBC connection string keywords (continued)

GRAPHIC This property affects the handling of the
graphic (DBCS) data types of
GRAPHIC, VARGRAPHIC, LONG
VARGRAPHIC, and DBCLOB that have
a CCSID other than Unicode (13488).
This property affects two different
behaviors:

1. Whether graphic fields have their
lengths reported as a character
count or byte count through the
SQLDescribeCol API and
SQLColAttribute API with the
SQL_COLUMN_LENGTH option.

2. Whether graphic fields are reported
as a supported type in the
SQLGetTypeInfo result set

0 = Report character count, report as
not supported

1 = Report character count, report as
supported

2 = Report byte count, report as not
supported

3 = Report byte count, report as
supported

0

TRANSLATE or
ForceTranslation

Specifies whether or not to convert
binary data (CCSID 65535) is converted
to text. Setting this property to 1 makes
binary fields look like character fields.

0 = Do not convert binary data to text

1 = Convert binary data to text

0

XLATEDLL or
TranslationDLL

Specifies the full path name of the DLL
to be used by the ODBC driver to
translate the data that is passed
between the ODBC driver and the
server. The DLL is loaded when a
connection is established.

Full path name of the translation DLL none

XLATEOPT or
TranslationOption

Specifies a 32-bit integer translation
option that is passed to the translation
DLL. This parameter is optional. The
meaning of this option depends on the
translation DLL that is being used. Refer
to the documentation provided with the
translation DLL for more information.
This option is not used unless the
XLATEDLL property is set.

32-bit integer translation option 0

Diagnostic properties

MAXTRACESIZE Specifies the maximum trace size (in
MB) of the internal driver trace.
Specifying a value of 0 means no limit.
This property has no effect unless the
TRACE property has option 1 set.

0 (no limit) - 1000 0

MULTTRACEFILES
or
MultipleTraceFiles

Specifies whether or not trace data from
the internal driver trace will be put into
multiple files. A new file will be created
for each thread that the application is
using. This property has no effect unless
the TRACE property has option 1 set.

0 = Trace data into a single file

1 = Trace data into multiple files

1

594 iSeries: iSeries Access for Windows Programming

|

||
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

|

|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|

||

|
|
|
|
|
|
|
|
|
|
|

||

|

||
|
|
|
|

||

|
|
|

|
|
|
|
|
|

|

|

|

Table 2. iSeries Access ODBC connection string keywords (continued)

QAQQINILIB or
QAQQINILibrary

Specifies a query options file library.
When a query options file library is
specified the driver will issue the
command CHGQRYA passing the library
name for the QRYOPTLIB parameter.
The command is issued immediately
after the connection is established. This
option should only be used when
debugging problems or when
recommended by support as enabling it
will adversely affect performance.

Query options file library none

SQDIAGCODE Specifies DB2 UDB SQL diagnostic
options to be set. Use only as directed
by your technical support provider.

DB2 UDB SQL diagnostic options none

TRACE Specifies one or more trace options. To
specify multiple trace options add
together the values for the options that
you want. For example, if you want the
Database Monitor and Start Debug
command to be activated on the server
then the value you would want to
specify is 6. These options should only
be used when debugging problems or
when recommended by support as they
will adversely affect performance.

To determine the value for this
keyword, add the values below that
are associated with each option that
you want.

0 = No tracing 1 = Enable internal
driver tracing

2 = Enable Database Monitor

4 = Enable the Start Debug
(STRDBG) command

8 = Print job log at disconnect

16 = Enable job trace

0

TRACEFILENAME Specifies the full path name to either the
file or the directory in which to put the
internal driver trace data into. A path
name to the file should be specified if
MULTTRACEFILES is set to 0. A path
name to a directory should be specified
if MULTTRACEFILES is set to 1. This
property has no effect unless the
TRACE property has option 1 set.

Full path name to file or directory none

Other properties

ALLOWPROCCALLSSpecifies whether stored procedures
can be called when the connection
attribute, SQL_ATTR_ACCESS_MODE,
is set to SQL_MODE_READ_ONLY.

0 = Do not allow stored procedures to
be called

1 = Allow stored procedures to be
called

0

DB2SQLSTATES Specifies whether or not to return
ODBC-defined SQL States or DB2 SQL
States. Refer to the DB2 UDB SQL
Reference for more details on the DB2
SQL States. This option should be used
only if you have the ability to change the
ODBC application’s source code. If not,
you should leave this option set to 0 as
most applications are coded only to
handle the ODBC-defined SQL States.

0 = Return ODBC-defined SQLStates

1 = Return DB2 SQL States

0

Chapter 5. iSeries Access for Windows Database Programming 595

|

|
|
|
|
|
|
|
|
|
|
|
|
|

||

||
|
|

||

||
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|

|
|

|

|

|

||
|
|
|
|
|
|
|
|

||

|

||
|
|
|

|
|

|
|

|

||
|
|
|
|
|
|
|
|
|

|

|

|

Table 2. iSeries Access ODBC connection string keywords (continued)

DEBUG Specifies one or more debug options. To
specify multiple debug options add
together the values for the options that
you want. In most cases you will not
need to set this option.

To determine the value for this
keyword, add the values below that
are associated with each option that
you want.

2 = Return SQL_IC_MIXED for the
SQL_IDENTIFIER_CASE option of
SQLGetInfo

4 = Store all SELECT statements in
the package

8 = Return zero for the
SQL_MAX_QUALIFIER_NAME_LEN
option of option of SQLGetInfo

16 = Add positoned UPDATEs /
DELETEs into packages

32 = Convert static cursors to
dynamic cursors

64 = Send the entire column size
worth of data for variable length fields
(VARCHAR, VARGRAPHIC, BLOB,
etc.) Note, set this option with caution
as this can have an adverse impact
on performance.

0

TRUEAUTOCOMMITSpecifies whether or not to enable a
true autocommit. True autocommit
means that autocommit is on and is
running under a isolation level other
than *NONE. By default, the driver
handles autocommit by running under
the server isolation level of *NONE.

0 = Do not use true autocommit

1 = Use true autocommit

0

Version and release changes in the ODBC driver behavior
The following list describes some of the important changes for V5R2:

v
There are several new features available when using the ODBC driver to access data on a V5R2
iSeries server. These features include:

– Ability to send Structured Query Language (SQL) statements that are 64K bytes long to the DB2
UDB database (the previous limit was 32K bytes)

– Ability to make use of the DB2 UDB database type of ROWID

– Ability to get back additional descriptor information, such as the base table name for a result set
column

– Ability to access multiple databases on the same iSeries server

– Ability to retrieve meaningful information from the SQLTablePrivileges and SQLColumnPrivileges
APIs

– Ability to use Kerberos support for authenticating a user to an iSeries server

– Ability to retrieve, regardless of the iSeries server version, more information in the result sets for the
catalog APIs. The driver now queries the iSeries catalog tables directly to provide the result set for
the catalog APIs.

The following list describes some of the important changes for V5R1:

596 iSeries: iSeries Access for Windows Programming

|

||
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|

|

||
|
|
|
|
|
|

|

|

|

|

|
|

|

|
|

|
|

|

|
|

|

|
|

|

|
|
|

|

v Character data for parameter markers is converted from the iSeries Access(PC) codepage directly to
the column CCSID. If a new iSeries Access codepage setting was specified on the Advanced
Translation Options dialog of the DSN setup GUI, it will be the iSeries Access(PC) codepage. The V4R5
driver first converted character data from the iSeries Access(PC) codepage to the job CCSID before it
was converted to the column CCSID.

v Character column data is converted directly from the column CCSID to the iSeries Access(PC)
codepage. If the C type specified is SQL_C_WCHAR, then the data is converted to Unicode.

v If the value type specified in SQLBindParameter is SQL_C_WCHAR, then the driver converts the
parameter marker data from Unicode to the column CCSID.

v When calling SQLBindParameter for a SQL_C_CHAR to INTEGER conversion, if BufferLength is 0 and
the buffer contains an empty string then an error is returned. The V4R5 driver would accept the empty
string and insert the value of 0 into the table.

v The lazy close option default is 0 (OFF), and in V4R5 its default was 1 (ON).

v The prefetch option default is 0 (OFF), and in V4R5 its default was 1 (ON).

v Unicode SQL statements can be sent to V5R1 or later iSeries servers. The package names are
generated differently than in V4R5 when sending Unicode SQL statements.

v Managed DSNs (created through V4R5 or earlier iSeries Navigator) are not supported. They are instead
treated like a User DSN, meaning that the DSN information is not updated from the server copy.

v BIGINT data type is supported to V4R5 (or later) hosts.

v Static cursor supported to V5R1 or later hosts. In earlier hosts, and in previous iSeries Access for
Windows ODBC drivers, static cursor type is mapped to dynamic.

ODBC API restrictions and unsupported functions
The way in which some functions are implemented in the iSeries Access for Windows ODBC Driver does
not meet the specifications in the Microsoft ODBC Software Development Kit Programmer’s Reference.
The table below describes some global restrictions and unsupported functions. See “ODBC 3.x APIs” on
page 558 for a list of individual APIs and their associated considerations.

Table 3. Limitations of ODBC API functions

Function Description

Global considerations No asynchronous processes are supported. However, SQLCancel can be called, from
a different thread (in a multi-threaded application), to cancel a long running query.
Translation DLLs are only called when converting data from buffers.

SQLSetScrollOptions (2x API) SQL_CONCUR_ROWVER, SQL_CONCUR_VALUES are unsupported options for
Concurrency parameter.

The SQL_SCROLL_KEYSET_DRIVEN is mapped to SQL_SCROLL_DYNAMIC by the
driver.

Signon dialog behavior
The signon dialog behavior has been simplified from the behavior seen in previous iSeries Access for
Windows ODBC drivers. The signon dialog behavior is based on how your data source is set up and
which ODBC API (SQLConnect, SQLDriverConnect, SQLBrowseConnect) your application uses to
connect.

When configuring an ODBC data source there are two options which can influence the signon dialog
behavior. These are both located on the dialog you get after clicking the Connection Options button on
the General tab of the DSN Setup GUI.

Note: On the DSN setup GUI there is an option which controls whether or not a dialog prompting for
signon information is allowed or not. An application that calls SQLConnect in a 3-tier environment
should always choose ’Never prompt for SQLConnect’. This 3-tier application also needs to make
sure it specifies the userid and password when calling SQLConnect.

Chapter 5. iSeries Access for Windows Database Programming 597

|
|
|
|
|

|
|

|
|

|
|
|

|

|

|
|

|
|

|

|
|

||

||

||
|
|

||
|

|
|
|

v In the Default user ID section you can specify which default user ID to use:

– Use Windows user name

– Use the user ID specified below

– None

– Use iSeries Navigator default

– Use Kerberos principal

v In the Signon dialog prompting section you can specify if the signon dialog should be prompted if
your application uses the SQLConnect ODBC API.

When coding your application you have total control over how the userid, password, and signon dialog
prompting will behave. The userid and password that is used is figured out in the following order:

1. Userid / Password arguments specified by the application.

v The SQLConnect API accepts userid and password arguments.

v The SQLDriverConnect and SQLBrowseConnect APIs accept the UID, PWD, and SIGNON
connection string keywords.

2. GUI setting for Default user ID

The signon dialog prompting depends on which ODBC API is used by the application to connect.
SQLConnect prompts the signon dialog if needed unless the GUI setting for Signon dialog prompting says
to never prompt. SQLDriverConnect prompts the signon dialog according to the value of the
DriverCompletion. A setting of SQL_DRIVER_NOPROMPT will prevent any signon dialogs from being
prompted. A setting of SQL_DRIVER_PROMPT, SQL_DRIVER_COMPLETE or
SQL_DRIVER_COMPLETE_REQUIRED will prompt the signon dialog if needed. SQLBrowseConnect
prompts the signon dialog if needed.

ODBC data types and how they correspond to DB2 UDB database types
The iSeries Access for Windows ODBC Driver maps data types between ODBC types and DB2 UDB
types. The following table shows how data types are mapped between the DB2 UDB database type and
ODBC SQL type.

Table 4.

3.x ODBC Data Type DB2 UDB Database Type

SQL_BIGINT BIGINT

SQL_BINARY CHAR FOR BIT DATA

SQL_CHAR CHAR or GRAPHIC

SQL_DECIMAL DECIMAL

SQL_DOUBLE DOUBLE

SQL_FLOAT FLOAT

SQL_INTEGER INTEGER

SQL_LONGVARBINARY BLOB

SQL_LONGVARCHAR CLOB or DBCLOB

SQL_NUMERIC NUMERIC

SQL_REAL REAL

SQL_SMALLINT SMALLINT

SQL_TYPE_DATE DATE

SQL_TYPE_TIME TIME

SQL_TYPE_TIMESTAMP TIMESTAMP

598 iSeries: iSeries Access for Windows Programming

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 4. (continued)

SQL_VARBINARY VARCHAR FOR BIT DATA or

LONG VARCHAR FOR BIT DATA or

ROWID

SQL_VARCHAR VARCHAR or

VARGRAPHIC or

LONG VARCHAR or

LONG VARGRAPHIC or DATALINK

SQL_WCHAR GRAPHIC CCSID 13488

SQL_WLONGVARCHAR DBCLOB CCSID 13488

SQL_WVARCHAR VARGRAPHIC CCSID 13488 or

LONG VARGRAPHIC CCSID 13488

Implentation notes:

v All conversions in the Microsoft ODBC Software Development Kit Programmer’s Reference Version 3.5
are supported for these ODBC SQL data types.

v Call the ODBC API SQLGetTypeInfo to learn more about each of these data types.

v The database type of VARCHAR will be changed to LONG VARCHAR by the database if the column
size that is specified is larger than 255.

v The ODBC driver does not support any of the interval SQL data types.

v 2.x ODBC applications use the SQL_DATE, SQL_TIME, and SQL_TIMESTAMP defines in place of the
SQL_TYPE_DATE, SQL_TYPE_TIME, and SQL_TYPE_TIMESTAMP defines.

v LOBs (BLOB, CLOB, and DBCLOB) up to 2 GB in size are supported by V5R2 DB2 UDB databases
only. Earlier releases support up to 15 MB. For more information on LOBs and datalinks see “Using
large objects (LOBs) and DataLinks with iSeries Access for Windows ODBC” on page 569.

Special connection and statement attributes
The following two tables describe special connection and statement attributes supported by the iSeries
Access ODBC driver. The tables include the information needed to call the SQLGetConnectAttr,
SQLSetConnectAttr, SQLGetStmtAttr, and SQLSetStmtAttr APIs. Note that some of the attributes can not
be both set and retrieved as indicated in the Get/Set column.

Table 5. Special connection attributes

Attribute Get/Set Description

1204 both An unsigned value that controls the cursor commit behavior and cursor rollback
behavior. Possible values:

0 - SQL_CB_DELETE is returned for SQLGetInfo’s
SQL_CURSOR_COMMIT_BEHAVIOR and SQL_CURSOR_ROLLBACK_BEHAVIOR
options.

1 - (default) SQL_CB_PRESERVE is returned for SQLGetInfo’s
SQL _CURSOR_COMMIT_BEHAVIOR and

SQL_CURSOR_ROLLBACK_BEHAVIOR options.

2100 both Can be used as an alternative to using the PKG connection string keyword. This is a
character string that specifies the default package library to be used. This should be
set prior to preparing a statement on this connection.

Chapter 5. iSeries Access for Windows Database Programming 599

|

||

|

|

||

|

|

|

||

||

||

|
|

Table 5. Special connection attributes (continued)

2101 both Can be used as an alternative to using the PKG connection string keyword. This is a
character string that specifies the package name to be used. This should be set prior
to preparing a statement on this connection.

2103 get Returns an unsigned integer value which is the server CCSID value (job CCSID) that
the ODBC connection is dealing with. By default, SQL statements will be sent to the
host in this CCSID

2104 both Can be used as an alternative to the Divide by zero option of the DEBUG connection
string keyword. This is an unsigned value indicating whether or not dividing a value by
zero should return an error for data in a particular cell in the result set. Possible
values:

0 - (default) A cell in a result set that contains a value calculated by dividing by zero
will be returned as an error.

1 - A cell in a result set that contains a value calculated by dividing by zero will be
returned as a NULL value. No error will be returned.

2106 both An alternative to using the COMPRESSION connection string keyword. This is an
unsigned integer value. Possible values:

0 = compression off,

1 = compression on

2109 set An unsigned value specifying whether or not to trim trailing spaces from data returned
from CHAR fields. This will make CHAR fields appear like VARCHAR fields as
VARCHAR fields are always trimmed of trailing spaces. Possible values:

0 - (default) - don’t trim CHAR fields

1 - trim CHAR fields

2110 get Returns a character string containing information about the prestart job that the ODBC
connection is using. The information is returned as a string with the following format:

10 character job name,

10 character user,

6 character job

Table 6. Special statement attributes

Attribute Get/Set Description

1014 get Returns an unsigned integer value indicating how many result sets are available to be
fetched. This is useful when a stored procedure has been called and an application
wants to know how many result sets the stored procedure generated.

2106 both Allows compression to be turned on an off at the statement level. possible values:

0 = compression off,

1 = compression on

SQLPrepare / SQLNativeSQL escape sequences and scalar functions:
ODBC has escape sequences that can be used to avoiding having to code directly to the syntax of a
particular DBMS’s version of SQL. See Microsoft’s ODBC specification on how to use escape sequences.
The following ODBC escape sequences are supported by the iSeries Access for Windows ODBC driver.
Note, DB2 UDB supports other escape sequences than those listed below that can be used in SQL
statements. Refer to the SQL programming guide for information on that.

600 iSeries: iSeries Access for Windows Programming

||

|||

|||
|
|

|||

|

|
|

Escape sequences:

v d

v t

v ts

v escape

v oj

v call

v ?=call – This escape sequence should be used when trying to take advantage of the DB2 UDB for
iSeries support for return values from a stored procedure. The parameter marker will need to be bound
as an output parameter using the SQLBindParameter API. Note, at this time stored procedures can only
return values of type integer.

v fn – This escape sequence is used when using the scalar functions below. The syntax is { fn
scalar_function }.

Scalar functions mapped by the ODBC driver to the DB2 UDB for iSeries SQL syntax:

v database

v hour

v insert

v length

v log

v minute

v month

v pi

v right

v second

v year

Note: To see how the driver maps the escape sequences and scalar functions to the DB2 UDB for iSeries
SQL syntax the SQLNativeSQL API can be called. SQLNativeSQL allows an application to pass in
an SQL statement to the ODBC driver. The ODBC driver returns an output string that is converted
to the DBMS’s SQL syntax.

Cursor and Rowset size
Cursor types can be set via SQLSetStmtAttr with the SQL_ATTR_CURSOR_TYPE option.

Cursor types:

v SQL_CURSOR_FORWARD_ONLY - All catalog and stored procedure result sets use this type of cursor.
When a catalog or stored procedure result set has been generated the cursor type will be automatically
changed to this.

v SQL_CURSOR_KEYSET_DRIVEN - mapped to SQL_CURSOR_STATIC if the host supports it,
otherwise it is mapped to SQL_CURSOR_DYNAMIC

v SQL_CURSOR_DYNAMIC - supported.

v SQL_CURSOR_STATIC - A static cursor is supported to V5R1 and later iSeries servers. This cursor
type is mapped to SQL_CURSOR_DYNAMIC for earlier iSeries versions.

The following factors can affect the concurrency of the cursor:

v If the SQL statement contains the ″FOR UPDATE″ clause the value for SQL_ATTR_CONCURRENCY
will be set to SQL_CONCUR_LOCK.

v If the CONCURRENCY keyword / DSN setting is set to 1 (checked) then if the SQL statement does not
have ″FOR FETCH ONLY″ clause in it the ODBC driver will lock records from the result set.

Chapter 5. iSeries Access for Windows Database Programming 601

Rowset size:

The ODBC driver uses the value of SQL_ROWSET_SIZE when dealing with SQLExtendedFetch. The
driver uses the value of SQL_ATTR_ROW_ARRAY_SIZE when dealing with SQLFetch and
SQLFetchScroll.

When there are LOBs in a result set there is a chance that locators may be used by the driver. Locators
are internal handles to LOB fields. Locators are used when the setting for the MAXFIELDLEN connection
option has a smaller value than the size of a LOB column in the result set. Locators can improve
performance in some cases as the driver only gets the data the application asks for. The downside of
locators is that there is some extra communication needed with the server. When locators are not used the
driver will download more LOB data even if it is not used. It is strongly encouraged that the
COMPRESSION connection option be enabled if locators are not being used. It is recommended that
locators be used only when your application retrieves part of a LOB column. In this case, using locators
will avoid the retrieval of all of the LOB data. See Connection String keywords descriptions for more details
on the MAXFIELDLEN keyword

SQLGetData can only be used for accessing data from single row fetches. Calling SQLGetData with
multiple-row fetches is not supported.

Restrictions when using the 64–bit iSeries Access for Windows ODBC Driver
v MTS is not supported. For more information on MTS see Using Microsoft Transaction Server (MTS) .

v There is no SSL support. For more information on SSL see Secure Sockets Layer administration .

SQLTables Description
v The CatalogName parameter is ignored, with or without wildcards, since the catalog name is always the

relational database name. The only time the catalog name value matters is when it must be an empty
string to generate a list of libraries for the server. You must specify table names for the TableName
parameter exactly as you would when creating a SQL statement. In other words, you must capitalize the
table name unless you created the table name with double quotes around the table name. If you
created the table with double quotes around the table name, you need to specify the TableName
parameter as it appears in quotes, matching the case of the letters.

v The ″OS400 library view″ option on the Catalog tab of the DSN setup GUI only affects this API when
you choose the combination that attempts to retrieve the list of libraries for that server. It does not allow
you to generate a result set based on a search through multiple libraries for specific tables.

v The ″Object description type″ option on the Catalog tab of the DSN setup GUI affects the output you
get in the ″RESULTS″ column of the result set when getting a list of tables.

v If you have a string with mixed ’_’ and ’_’ then if SQL_ATTR_METADATA_ID is SQL_FALSE then we’ll
treat the first ’_’ as an actual ’_’, but the ’_’ will be treated as the wildcard. If
SQL_ATTR_METADATA_ID is SQL_TRUE then the first ’_’ will be treated like an actual ’_’ and the ’_’
will also be treated like an actual ’_’. The driver will internally convert the second ’_’ to a ’_’.

v In order to use the wildcard character underscore (_) as a literal precede it with a backlash (\). For
example, to search for only MY_TABLE (not MYATABLE, MYBTABLE, etc...) you need to specify the
search string as MY_TABLE. Specifiying ’\%’ in a name is invalid, as the iSeries server doesn’t allow
an actual ’%’ in a library or table name. When queried for the list of libraries, the driver returns the
TABLE_CAT and REMARKS fields as meaningful data. The ODBC specification says to return
everything, except the TABLE_SCHEM as nulls.

iSeries Access for Windows ODBC performance
See any of the following ODBC performance topics:
v “Performance-tuning iSeries Access for Windows ODBC” on page 603
v “Choosing an interface to access the ODBC driver” on page 639
v “Performance considerations of common end-user tools” on page 606
v “SQL performance” on page 608

602 iSeries: iSeries Access for Windows Programming

../rzaii/rzaiimts.htm
../rzaii/rzaiissladm.htm

v “Coding directly to ODBC APIs” on page 568
v “Visual Basic: The compromise between Jet and ODBC APIs” on page 584
v “ODBC blocked insert statement” on page 615
v “Catalog functions” on page 616
v “Exit programs” on page 617
v “Stored procedures” on page 632
v “Example: Calling CL command stored procedures” on page 638

Performance-tuning iSeries Access for Windows ODBC
A key consideration for ODBC application developers is achieving maximum performance from
client/server applications. The following topics explore client/server performance issues in general, and
address the performance implications of ODBC with popular query tools and development environments:
v “Introduction to server performance”
v “Introduction to client/server performance”
v “The performance architecture of the iSeries Access for Windows ODBC driver” on page 604

Introduction to server performance: The performance characteristics of any computing environment
may be described in the following terms:

Response time
The amount of time that is required for a request to be processed

Utilization
The percentage of resources that are used when processing requests

Throughput
The volume of requests (per unit of time) that are being processed

Capacity
The maximum amount of throughput that is possible

Typically, response time is the critical performance issue for users of a server. Utilization frequently is
important to the administrators of a server. Maximum throughput is indicative of the performance
bottleneck, and may not be a concern. While all of these characteristics are interrelated, the following
summarizes server performance:
v Every computing server has a bottleneck that governs performance: throughput.
v When server utilization increases, response time degrades.

In many servers, capacity is considerable, and is not an issue with users. In others, it is the primary
performance concern. Response time is critical. One of the most important questions for administrators is:
How much can the server be degraded (by adding users, increasing utilization) before users begin
objecting?

Introduction to client/server performance: The performance characteristics of a client/server
environment are different than those of centralized environments. This is because client/server applications
are split between the client and the server. The client and server communicate by sending and receiving
requests and messages. This model is far different than that for a centralized environment. In that
environment, a program calls the CPU, and the memory and disk drives are fully dedicated.

Instead, when a client requests processing time and data from the server, it transmits the request on the
network. The request travels to the server and waits in a queue until the server is able to process it. The
performance characteristics of this type of architecture degrade exponentially as the number of requests
increase. In other words, response times increase gradually as more requests are made, but then increase
dramatically at some point, which is known as the ″knee of the curve.″ This concept is illustrated by the

Chapter 5. iSeries Access for Windows Database Programming 603

following graph:

It is important to determine this point at which performance begins to degrade significantly. The point can
vary with every client/server installation.

The following is a suggested guideline for client/server operations: Communicate with the server only when
necessary, and in as few data transmissions as possible. Opening a file and reading one record at a time
often results in problems for client-server projects and tools.

The performance architecture of the iSeries Access for Windows ODBC driver: For the iSeries
Access for Windows ODBC driver, all of the internal data flows between the client and the server are
chained together, and transmit only when needed. This reduces server utilization because
communications-layer resources are allocated only once. Response times improve correspondingly.

These types of enhancements are transparent to the user. However, there are some enhancements which
are exposed on the iSeries Access for Windows ODBC Setup dialog. Look at the online help on the
Peformance tab of the setup GUI or refer to the Performance options on the Connection String keywords
descriptions for more information. A few of these performance options are also discussed in more detail at
the following links:
v “Selecting a stringent level of commitment control”
v “Fine-tuning record blocking” on page 605
v “Using Extended Dynamic SQL” on page 605

ODBC registry settings: When you edit the configuration parameters in the ODBC registry, the iSeries
Access for Windows ODBC driver also is configured. This registry file is in the directory where Windows is
installed on your server. Do not edit the registry directly. Instead, tune iSeries Access for Windows ODBC
performance through the iSeries Access for Windows ODBC Setup dialog.

ODBC registry settings topics:
v “Selecting a stringent level of commitment control”
v “Fine-tuning record blocking” on page 605
v “Using Extended Dynamic SQL” on page 605

Selecting a stringent level of commitment control: Do not use commitment control unnecessarily. The
overhead that is associated with locking not only increases utilization, but also reduces concurrency.
However, if your application is not read-only, commitment control may be required. A common alternative is

604 iSeries: iSeries Access for Windows Programming

to use optimistic locking. Optimistic locking involves issuing explicit UPDATEs by using a WHERE clause
that uniquely determines a particular record. Optimistic locking ensures that the record does not change
after it is retrieved.

Many third-party tools use this approach, which is why they often require a unique index to be defined for
updatable tables. This allows the record update to be made by fully qualifying the entire record contents.
Consider the following example:

UPDATE table SET C1=new_val1, C2=new_val2, C2=new_val3
WHERE C1=old_val1 AND C2=old_val2 AND C3=old_val3

This statement would guarantee that the desired row is accurately updated, but only if the table contained
only three columns, and each row was unique. A better-performing alternative would be:

UPDATE table SET C1=new_val1, C2=new_val2, C3=CURRENT_TIMESTAMP
WHERE C3=old_timestamp

This only works, however, if the table has a timestamp column that holds information on when the record
was last updated. Set the new value for this column to CURRENT_TIMESTAMP to guarantee row
uniqueness.

Note: This technique does not work with any object model that uses automation data types (for example,
Visual Basic, Delphi, scripting languages). The variant DATE data type has a timestamp precision of
approximately one millisecond. The iSeries server timestamp is either truncated or rounded off, and
the WHERE clause fails.

If commitment control is required, use the lowest level of record locking possible. For example, use *CHG:
over *CS when possible, and never use *ALL when *CS provides what you require.

For more information on commitment control:
See the DB2 Universal Database for iSeries and DB2 Universal Database for iSeries books online
topics under the Database and File Systems heading in the iSeries Information Center.

Fine-tuning record blocking: Record blocking is a technique that significantly reduces the number of
network flows. It does this by returning a block of rows from the server on the first FETCH request for a
cursor. Subsequent FETCH requests are retrieved from the local block of rows, rather then going to the
server each time. This technique dramatically increases performance when it is properly used. The default
settings should be sufficient for most situations.

A change to one of the record-blocking parameters can make a significant difference when the
performance of your environment is approaching the exponential threshold that is illustrated in
“Introduction to client/server performance” on page 603. For example, assume that an environment has n
decision-support clients doing some amount of work with large queries, typically returning 1 MB of data.

At the opposite extreme is a scenario where users consistently ask for large amounts of data, but typically
never examine more than a few rows. The overhead of returning 32KB of rows when only a few are
needed could degrade performance. Setting the BLOCKSIZE or BlockSizeKB connection string keyword to
a lower value, setting the BLOCKFETCH connection string keyword to 0 (Use ODBC blocking) or disabling
record blocking altogether, might actually increase performance.

It is important to note that, as always in client/server, performance results may vary. You might make
changes to these parameters and not realize any difference. This may indicate that your performance
bottleneck is not the client request queue at the server. This parameter gives you one more tool to use
when your users start objecting.

Using Extended Dynamic SQL: Traditional SQL interfaces used an embedded SQL approach. SQL
statements were placed directly in an application’s source code, along with high-level language statements
written in C, COBOL, RPG, and other programming languages. The source code then was precompiled,
which translated the SQL statements into code that the subsequent compile step could process. This

Chapter 5. iSeries Access for Windows Database Programming 605

../rzahf/rzahfms1.htm
../rzahf/rzahfli0.htm

method sometimes was referred to as static SQL. One performance advantage to this approach is that
SQL statements were optimized in advance, rather than at runtime while the user was waiting.

ODBC, however, is a call level interface (CLI) that uses a different approach. Using a CLI, SQL
statements are passed to the database management system (DBMS) within a parameter of a runtime API.
Because the text of the SQL statement is never known until runtime, the optimization step must be
performed each time an SQL statement is run. This approach commonly is referred to as dynamic SQL.

The use of this feature (which is enabled by default) not only can improve response times, but can
improve dramatically server utilization. This is because optimizing SQL queries can be costly, and
performing this step only once always is advantageous. This works well with a unique feature of DB2 UDB
for iSeries .Unlike other DBMSs, it ensures that statements which are stored in packages are kept
up-to-date in terms of optimization, without administrator intervention. Even if a statement was prepared for
the first time weeks or months ago, DB2 UDB for iSeries automatically regenerates the access plan when
it determines that sufficient database changes require reoptimization.

Performance considerations of common end-user tools
Having an ODBC driver that is optimally tuned is only part of the performance equation. The other part is
the tools that are used; whether they are used simply to query the data, or to build complex programs.

Some of the more common tools include:
v Crystal Services Crystal Reports Professional
v Cognos Impromptu
v Gupta SQL Windows
v IBM Visualizer for Windows
v Lotus Approach
v Lotus Notes®

v Notes Pump
v Microsoft Access
v Microsoft Internet Information Server
v Microsoft SQL Server
v Microsoft Visual Basic
v Powersoft PowerBuilder

There are many more tools available than are on this list, and every tool in the marketplace has its own
strengths, weaknesses, and performance characteristics. But most have one thing in common: support for
ODBC database servers. However, because ODBC serves as a common denominator for various
database management systems, and because there are subtle differences from one ODBC driver to the
next, many tool providers write to the more common ODBC and SQL interfaces. By doing this, they avoid
taking advantage of a unique characteristic of a particular database server. This may ease programming
efforts, but it often degrades overall performance.

Examples of ODBC performance-degrading tools:
“Examples: Common tool behaviors that degrade ODBC performance”

Examples: Common tool behaviors that degrade ODBC performance: The following examples
demonstrate performance problems that are associated with writing SQL and ODBC calls that do NOT
take advantage of a unique feature of a particular ODBC driver or the server database management
system.

To view the examples:
v “Example: Query tool A”
v “Example: Query tool B” on page 607
v “Example: Query tool C” on page 608

Example: Query tool A: Query Tool A makes the following ODBC calls to process SELECT statements:

606 iSeries: iSeries Access for Windows Programming

SQLExecDirect("SELECT * FROM table_name")

WHILE there_are_rows_to_fetch DO

SQLFetch()
FOR every_column DO

SQLGetData(COLn)
END FOR
...process the data

END WHILE

This tool does not make use of ODBC bound columns, which can help performance. A faster way to
process this is as follows:

SQLExecDirect("SELECT * FROM table_name")
FOR every_column DO

SQLBindColumn(COLn)
END FOR

WHILE there_are_rows_to_fetch DO
SQLFetch()
...process the data

END WHILE

If a table contained one column, there would be little difference between the two approaches. But for a
table with a 100 columns, you end up with 100 times as many ODBC calls in the first example, for every
row fetched. You also can optimize the second scenario because the target data types specified by the
tool will not change from one FETCH to the next, like they could change with each SQLGetData call.

Example: Query tool B: Query tool B allows you to update a spreadsheet of rows and then send the
updates to the database. It makes the following ODBC calls:

FOR every_row_updated DO

SQLAllocHandle(SQL_HANDLE_STMT)
SQLExecDirect("UPDATE...SET COLn=’literal’...WHERE COLn=’oldval’...")
SQLFreeHandle(SQL_HANDLE_STMT)

END LOOP

The first thing to note is that the tool performs a statement allocation-and-drop for every row. Only one
allocate statement is needed, and the free-statement call could be changed to SQLFreeStmt(SQL_CLOSE)
after each SQLExecDirect. This change would save the overhead of creating and destroying a statement
handle for every operation. Another performance concern is the use of SQL with literals instead of with
parameter markers. The SQLExecDirect() call causes an SQLPrepare and SQLExecute every time. A
faster way to perform this operation would be as follows:

SQLAllocHandle(SQL_HANDLE_STMT)
SQLPrepare("UPDATE...SET COL1=?...WHERE COL1=?...")
SQLBindParameter(new_column_buffers)
SQLBindParameter(old_column_buffers)
FOR every_row_updated DO

...move each rows data into the SQLBindParameter buffers
SQLExecute()
SQLFreeHandle(SQL_HANDLE_STMT)

END LOOP

These sets of ODBC calls will outperform the original set by a large factor when you are using the iSeries
Access for Windows ODBC driver. The server CPU utilization will decrease to 10 percent of what it was,
which pushes the scaling threshold out a lot farther.

Chapter 5. iSeries Access for Windows Database Programming 607

Example: Query tool C: Worst-case scenario

Query tool C allows complex decision support-type queries to be made by defining complex query criteria
with a point-and-click interface. You might end up with SQL that looks like this for a query:

SELECT A.COL1, B.COL2, C.COL3 , etc...
FROM A, B, C, etc...

WHERE many complex inner and outer joins are specified

That you did not have to write this complex query is advantageous, but beware that your tool may not
actually process this statement. For example, one tool might pass this statement directly to the ODBC
driver, while another splits up the query into many individual queries, and processes the results at the
client, like this:

SQLExecDirect("SELECT * FROM A")
SQLFetch() all rows from A
SQLExecDirect("SELECT * FROM B")
SQLFetch() all rows from B

Process the first join at the client

SQLExecDirect("SELECT * FROM C")
SQLFetch() all rows from C

Process the next join at the client
.
.
.
And so on...

This approach can lead to excessive amounts of data being passed to the client, which will adversely
affect performance. In one real-world example, a programmer thought that a 10-way inner/outer join was
being passed to ODBC, with four rows being returned. What actually was passed, however, was 10 simple
SELECT statements and all the FETCHes associated with them. The net result of four rows was achieved
only after 81,000 ODBC calls were made by the tool. The programmer initially thought that ODBC was
responsible for the slow performance, until the ODBC trace was revealed.

SQL performance
Good application design includes the efficient use of machine resources. To run in a manner that is
acceptable to the end user, an application program must be efficient in operation, and must run with
adequate response time.

“SQL performance general considerations”
Shows you when to consider performance, what resources to optimize, and how to design for
performance.

“Database design” on page 609
Describes general iSeries database design and how it affects SQL performance.

“Optimizer” on page 613
Optimizer is the facility that decides how to gather data that should be returned to the program.
This topic covers some of the techniques and rules that are used by Optimizer.

SQL performance general considerations: Performance of SQL in application programs is important to
ALL server users, because inefficient usage of SQL can waste server resources.

The primary goal in using SQL is to obtain the correct results for your database request, and in a timely
manner.

Before you start designing for performance, review the following considerations:

When to consider performance:

608 iSeries: iSeries Access for Windows Programming

v Database with over 10,000 rows - Performance impact: noticeable

v Database with over 100,000 rows - Performance impact: concern

v When repetitively using complex queries

v When using multiple work stations with high transaction rates

What resource to optimize:

v I/O usage

v CPU usage

v Effective usage of indexes

v OPEN/CLOSE performance

v Concurrency (COMMIT)

How to design for performance:

Database design:

– Table structure

– Indexes

– Table data management

– Journal management

Application design:

– Structure of programs involved

Program design:

– Coding practices

– Performance monitoring

The SQL Reference book contains additional information. You can view an HTML online version of the
book, or print a PDF version, from the DB2 Universal Database for iSeries books online iSeries
Information Center topic.

Database design: The following topics help you to:

v Determine what tables you require in your database

v Understand the relationship between those tables

Database design topics:
v “Normalization”
v “Table size” on page 612
v “Using indexes” on page 612
v “Matching attributes of join fields” on page 613

Normalization: Several available design methods allow you to design technically correct databases, and
effective relational database structure. Some of these methods are based on a design approach called
normalization. Normalization refers to the reduction or elimination of storing redundant data. The primary
objective of normalization is to avoid problems that are associated with updating redundant data.

However, this design approach of normalization (for example, 3NF–3rd Normal Form), may result in large
numbers of tables. If there are numerous table join operations, SQL performance may be reduced.
Consider overall SQL performance when you design databases. Balance the amount of redundant data
with the number of tables that are not fully normalized.

The following graphic illustrates that the proportion of redundant data to the number of tables affects
performance:

Chapter 5. iSeries Access for Windows Database Programming 609

../rzahf/rzahfli0.htm

Minimize the use of code tables when little is gained from their use. For example, an employee table
contains a JOBCODE column, with data values 054, 057, and so forth. This table must be joined with
another table to translate the codes to Programmer, Engineer, and so on. The cost of this join could be
quite high compared to the savings in storage and potential update errors resulting from redundant data.

For example:

610 iSeries: iSeries Access for Windows Programming

Normalized data form:

Chapter 5. iSeries Access for Windows Database Programming 611

Redundant data form:

The set level (or mass operation) nature of SQL significantly lessens the danger of a certain redundant
data form. For example, the ability to update a set of rows with a single SQL statement greatly reduces
this risk. In the following example, the job title Engineer must be changed to Technician for all rows that
match this condition.

Example: Use SQL to update JOBTITLE:
UPDATE EMPLOYEE

SET JOBTITLE = "Technician"
WHERE JOBTITLE = "Engineer"

Table size: The size of the tables that your application program accesses has a significant impact on the
performance of the application program. Consider the following:

Large row length:
For sequenially accessed tables that have a large row length because of many columns (100 or
more), you may improve performance by dividing the tables into several smaller ones, or by
creating a view. This assumes that your application is not accessing all of the columns. The main
reason for the better performance is that I/O may be reduced because you will get more rows per
page. Splitting the table will affect applications that access all of the columns because they will
incur the overhead of joining the table back together again. You must decide where to split the
table based on the nature of the application and frequency of access to various columns.

Large number of rows:
If a table has a large number of rows, construct your SQL statements so that the “Optimizer” on
page 613 uses an index to access the table. The use of indexes is very important for achieving the
best possible performance.

Using indexes: The use of indexes can improve significantly the performance of your applications. This is
because the “Optimizer” on page 613 uses them for performance optimization. Indexes are created in five
different ways:

v CREATE INDEX (in SQL)

v CRTPF, with key

v CRTLF, with key

612 iSeries: iSeries Access for Windows Programming

v CRTLF, as join logical file

v CRTLF, with select/omit specifications, without a key, and without dynamic selection (DYNSLT).

Indexes are used to enable row selection by means of index-versus-table scanning, which is usually
slower. Table scanning sequentially processes all rows in a table. If a permanent index is available,
building a temporary index can be avoided. Indexes are required for:

v Join tables

v ORDER BY

v GROUP BY

Indexes will be created, if no permanent index exists.

Manage the number of indexes to minimize the extra server cost of maintaining the indexes during update
operations. Below are general rules for particular types of tables:

Primarily read-only tables:
Create indexes over columns as needed. Consider creating an index only if a table is greater than
approximately 1,000 rows or is going to be used with ORDER BY, GROUP BY, or join processing.
Index maintenance could be costlier than occasionally scanning the entire table.

Primarily read-only table, with low update rate:
Create indexes over columns as needed. Avoid building indexes over columns that are updated
frequently. INSERT, UPDATE, and DELETE will cause maintenance to all indexes related to the
table.

High update-rate tables:
Avoid creating many indexes. An example of a table that has a high update rate is a logging or a
history table.

Matching attributes of join fields: Columns in tables that are joined should have identical attributes: the
same column length, same data type (character, numeric), and so forth. Nonidentical attributes result in
temporary indexes being built, even though indexes over corresponding columns may exist.

In the following example, join will build a temporary index and ignore an existing one:
SELECT EMPNO, LASTNAME, DEPTNAME

FROM TEMPL, TDEPT
WHERE TEMPL.DEPTNO = TDEPT.DEPTNO

Optimizer: Optimizer is an important module of the OS/400 Query component because it makes the key
decisions for good database performance. Its main objective is to find the most efficient access path to the
data.

Query optimization is a trade-off between the time spent to select a query implementation and the time
spent to run it. Query optimization must handle the following distinct user needs:

v Quick interactive response

Chapter 5. iSeries Access for Windows Database Programming 613

v Efficient use of total-machine resources

In deciding how to access data, Optimizer does the following:

v Determines possible implementations

v Picks the optimal implementation for the OS/400 Query component to execute

Optimizer topics:
v “Cost estimation”
v “Optimizer decision-making rules” on page 615

Cost estimation: At runtime, the Optimizer chooses an optimal access method for the query by calculating
an implementation cost based on the current state of the database. The Optimizer models the access cost
of each of the following:

v Reading rows directly from the table (dataspace scan processing)

v Reading rows through an access path (using either key selection or key positioning)

v Creating an access path directly from the dataspace

v Creating an access path from an existing access path (index-from-index)

v Using the query sort routine (if conditions are satisfied)

The cost of a particular method is the sum of:

v The start-up cost

v The cost associated with the given optimization mode. The OPTIMIZE FOR n ROWS clause indicates
to the query Optimizer the optimization goal to be achieved. The Optimizer can optimize SQL queries
with one of two goals:

1. Minimize the time required to retrieve the first buffer of rows from the table. This goal biases the
optimization towards not creating an index.

Note: This is the default if you do not use OPTIMIZE FOR n ROWS.

Either a data scan or an existing index is preferred. This mode can be specified by:

The OPTIMIZE FOR n ROWS allowing the users to specify the number of rows they expect to
retrieve from the query.

The Optimizer using this value to determine the percentage of rows that will be returned and
optimizes accordingly. A small value instructs the Optimizer to minimize the time required to
retrieve the first n rows.

2. Minimize the time to process the whole query assuming that all selected rows are returned to the
application. This does not bias the Optimizer to any particular access method. Specify this mode by
using OPTIMIZE FOR n ROWS, which allows the users to specify the number of rows they expect
to retrieve from the query.

The Optimizer uses this value to determine the percentage of rows that will be returned and
optimizes accordingly. A value greater than or equal to the expected number of resulting rows
instructs the Optimizer to minimize the time required to run the entire query.

v The cost of any access path creations.

v The cost of the expected number of page faults to read the rows and the cost of processing the
expected number of rows.

Page faults and number of rows processed may be predicted by statistics the Optimizer obtains from
the database objects, including:

– Table size

– Row size

– Index size

– Key size

614 iSeries: iSeries Access for Windows Programming

A weighted measure of the expected number of rows to process. This is based on what the relational
operators in the row selection predicates (default filter factors) are likely to retrieve:

– 10% for equal

– 33% for less-than, greater-than, less-than-equal-to, or greater-than-equal-to

– 90% for not equal

– 25% for BETWEEN range

– 10% for each IN list value

Key range estimate is a method that the Optimizer uses to gain more accurate estimates of the
number of expected rows that are selected from one or more selection predicates. The Optimizer
estimates by applying the selection predicates against the left-most keys of an existing index. The
default filter factors then can be further refined by the estimate based on the key range. If the
left-most keys in an index match columns that are used in row-selection predicates, use that index to
estimate the number of keys that match the selection criteria. The estimate of the number of keys is
based on the number of pages and key density of the machine index. It is performed without actually
accessing the keys. Full indexes over columns that are used in selection predicates can significantly
help optimization.

Optimizer decision-making rules: In performing its function, Optimizer uses a general set of guidelines to
choose the best method for accessing data. Optimizer does the following:

v Determines the default filter factor for each predicate in the selection clause.

v Extracts attributes of the table from internally stored information.

v Performs an estimate key range to determine the true filter factor of the predicates when the selection
predicates match the left-most keys of an index.

v Determines the cost of creating an index over a table if an index is required.

v Determines the cost of using a sort routine if selection conditions apply and an index is required.

v Determines the cost of dataspace scan processing if an index is not required.

v For each index available, in the order of most recently created to oldest, Optimizer does the following
until its time limit is exceeded:

– Extracts attributes of the index from internally stored statistics.

– Determines if the index meets the selection criteria.

– Determines the cost of using the index using the estimated page faults and the predicate filter factors
to help determine the cost.

– Compares the cost of using this index with the previous cost (current best).

– Selects the cheapest one.

– Continues to search for best index until time out or no more indexes.

The time limit factor controls how much time is spent choosing an implementation. It is based on how
much time has been spent and the current best implementation cost found. Dynamic SQL queries are
subject to Optimizer time restrictions. Static SQL queries optimization time is not limited.

For small tables, the query Optimizer spends little time in query optimization. For large tables, the query
Optimizer considers more indexes. Generally, Optimizer considers five or six indexes (for each table of a
join) before running out of optimization time.

ODBC blocked insert statement
The blocked INSERT statement provides a means to insert multiple rows with a single SQLExecute
request. For performance, it provides the one of the best ways to populate a table, at times providing a
tenfold performance improvement over the next best method.

The three forms of INSERT statements that can be executed from ODBC are:

v INSERT with VALUES using constants

Chapter 5. iSeries Access for Windows Database Programming 615

v INSERT with VALUES using parameter markers

v blocked INSERT

The INSERT with VALUES using constants statement is the least efficient method of performing inserts.
For each request, a single INSERT statement is sent to the server where it is prepared, the underlying
table is opened, and the record is written.

Example:

INSERT INTO TEST.TABLE1 VALUES(’ENGINEERING’,10,’JONES’,’BOB’)

The INSERT with VALUES using parameter markers statement performs better than the statement that
uses constants. This form of the INSERT statement allows for the statement to be prepared only once and
then reused on subsequent executions of the statement. It also allows the table on the server to remain
open, thus removing the overhead of opening and closing the file for each insert.

Example:

INSERT INTO TEST.TABLE1 VALUES (?, ?, ?, ?)

The blocked INSERT statement most efficiently performs inserts into a table when multiple records can be
cached on the client and sent at once. The advantages with blocked INSERT are:

v The data for multiple rows is sent in one communication request rather than one request per row.

v The server has an optimized path built into the database support for blocked INSERT statements.

Example:
INSERT INTO TEST.TABLE1 ? ROWS VALUES (?, ?, ?, ?)

The INSERT statement has additional syntax that identifies it as a blocked INSERT. The ″? ROWS″ clause
indicates that an additional parameter will be specified for this INSERT statement. It also indicates that the
parameter will contain a row count that determines how many rows will be sent for that execution of the
statement. The number of rows must be specified by means of the SQLSetStmtAttr API.

Note: With the V5R1 driver, you do not need to specify the ″? ROWS″ clause to iSeries servers. V4R5
iSeries servers added this support via PTFs SF64146 and SF64149.

To view examples of blocked insert calls from C:
See “Block insert and block fetch C example” on page 579

Catalog functions
Catalog functions return information about a data source’s catalog.

To process ODBC SQLTables requests, logical files are built over the server cross reference file
QADBXREF in library QSYS. QADBXREF is a database file for database-maintained cross-reference
information that is part of the dictionary function for the server.

The following are the actions for SQLTables when TableType is set to the following:

NULL Selects all LOGICAL and PHYSICAL files and SQL TABLES and VIEWS.

TABLE
Selects all PHYSICAL files, and SQL TABLES that are not server files (cross reference or data
dictionary).

VIEW Selects all LOGICAL files and SQL VIEWS that are not server files (cross reference or data
dictionary).

616 iSeries: iSeries Access for Windows Programming

SYSTEM TABLE
Selects all PHYSICAL and LOGICAL files and SQL VIEWS that are either server files or data
dictionary files.

TABLE, VIEW
Selects all LOGICAL and PHYSICAL files and all SQL TABLES and VIEWS that are not server
files or data dictionary files.

Non-relational files (files with more than one format) are not selected. Also not selected are indexes, flat
files and IDDU-defined files.

The result sets returned by the catalog functions are ordered by table type. In addition to the TABLE and
VIEW types, the iSeries server has the data source-specific type identifiers of PHYSICAL and LOGICAL
files. The PHYSICAL type is handled as a TABLE, and the LOGICAL type is handled as a VIEW.

To process ODBC SQLColumns requests, a logical file is built over the server cross-reference file
QADBIFLD in the QSYS library. This logical file selects all relational database files except for indexes.
QADBIFLD is a database file for database-maintained cross-reference information that is part of the
dictionary function for the server. Specifically, this includes database file column and field information.

For additional information:
Appendix G of the SQL Reference book contains additional information. View an HTML online
version of the book, or print a PDF version, from the DB2 Universal Database for iSeries books
online iSeries Information Center topic.

Exit programs
When you specify an exit program, the servers pass the following two parameters to the exit program
before running your request:

v A 1-byte return code value.

v A structure containing information about your request. This structure is different for each of the exit
points.

These two parameters allow the exit program to determine whether your request is allowed. If the exit
program sets the return code to X'F0', the server rejects the request. If the return code is set to anything
else, the server allows the request.

The same program can be used for multiple exit points. The program can determine what function is being
called by looking at the data in the second parameter structure.

Use the Work with Registration Information (WRKREGINF) command to add your exit programs to the
database exit points.

The database server has four different exit points defined:

QIBM_QZDA_INIT
called at server initiation

QIBM_QZDA_NDB1
called for native database requests

QIBM_QZDA_SQL1
called for SQL requests

QIBM_QZDA_ROI1
called for retrieving object information requests and SQL catalog functions

Note: This exit point is called less often than in V5R1 and earlier Client Access ODBC drivers. If
you have an exit program that uses this exit point, verify that it still works as intended.

Chapter 5. iSeries Access for Windows Database Programming 617

../rzahf/rzahfli0.htm
../rzahf/rzahfli0.htm

Exit programs-related topics:
v “Examples: User exit programs”
v “Exit program parameter formats” on page 624

Examples: User exit programs: The following examples do not show all of the programming
considerations or techniques. Review the examples before you begin application design and coding.

v “Example: ILE C/400® user exit program for exit point QIBM_QZDA_INIT”

v “Example: CL user exit program for exit point QIBM_QZDA_INIT” on page 619

v “Example: ILE C/400 Program for exit point QIBM_QZDA_SQL1” on page 619

v “Example: ILE C/400 program for exit point QIBM_QZDA_ROI1” on page 621

Example: ILE C/400® user exit program for exit point QIBM_QZDA_INIT:
/*--
* OS/400 Servers - Sample Exit Program
*
* Exit Point Name : QIBM_QZDA_INIT
*
* Description : The following ILE C/400 program handles
* ODBC security by rejecting requests from
* certain users.
* It can be used as a shell for developing
* exit programs tailored for your
* operating environment.
*
* Input : A 1-byte return code value
* X’F0’ server rejects the request
* anything else server allows the request
* Structure containing information about the
* request. The format used by this program
* is ZDAI0100.
--/

/*--
* Includes
--/

#include <string.h> /* string functions */
/*--
* User Types
--/

typedef struct { /* Exit Point QIBM_QZDA_INIT format ZDAI0100 */
char User_profile_name[10]; /* Name of user profile calling server*/
char Server_identifier[10]; /* database server value (*SQL) */
char Exit_format_name[8]; /* User exit format name (ZDAI0100) */
long Requested_function; /* function being preformed (0) */

} ZDAI0100_fmt_t;

/*--
--*/

/*==
* Start of mainline executable code
==/

int main (int argc, char *argv[])
{

ZDAI0100_fmt_t input; /* input format record */

/* copy input parm into structure */
memcpy(&input, (ZDAI0100_fmt_t *)argv[2], 32);

if /* if user name is GUEST */
(memcmp(input.User_profile_name, "GUEST ", 10)==0)

{
/* set return code to reject the request. */
memcpy(argv[1], "0", 1);

618 iSeries: iSeries Access for Windows Programming

|

|

|

|

}
else /* else user is someone else */
{

/* set return code to allow the request. */
memcpy(argv[1], "1", 1);

}
} /* End of mainline executable code */

Example: CL user exit program for exit point QIBM_QZDA_INIT:
/* */
/* OS/400 Servers - Sample Exit Program */
/* */
/* Exit Point Name : QIBM_QZDA_INIT */
/* */
/* Description : The following Control Language program */
/* handles ODBC security by rejecting */
/* requests from certain users. */
/* It can be used as a shell for developing */
/* exit programs tailored for your */
/* operating environment. */
/* */
PGM PARM(&STATUS &REQUEST)

/* */
/* Program call parameter declarations */
/* */

DCL VAR(&STATUS) TYPE(*CHAR) LEN(1) /* Accept/Reject indicator */
DCL VAR(&REQUEST) TYPE(*CHAR) LEN(34) /* Parameter structure */

/* */
/* Parameter declares */
/* */

DCL VAR(&USER) TYPE(*CHAR) LEN(10) /* User profile name calling server*/
DCL VAR(&SRVID) TYPE(*CHAR) LEN(10) /* database server value (*SQL) */
DCL VAR(&FORMAT) TYPE(*CHAR) LEN(8) /* Format name (ZDAI0100) */
DCL VAR(&FUNC) TYPE(*CHAR) LEN(4) /* function being preformed (0) */

/* */
/* Extract the various parameters from the structure */
/* */

CHGVAR VAR(&USER) VALUE(%SST(&REQUEST 1 10))
CHGVAR VAR(&SRVID) VALUE(%SST(&REQUEST 11 10))
CHGVAR VAR(&FORMAT) VALUE(%SST(&REQUEST 21 8))
CHGVAR VAR(&FUNC) VALUE(%SST(&REQUEST 28 4))

/*--
--*/

/* */
/* Begin main program */
/* */

/* set return code to allow the request. */
CHGVAR VAR(&STATUS) VALUE(’1’)

/* if user name is GUEST set return code to reject the request. */
IF (&USER *EQ ’GUEST’) THEN(+

CHGVAR VAR(&STATUS) VALUE(’0’))

EXIT:
ENDPGM

Example: ILE C/400 Program for exit point QIBM_QZDA_SQL1:
/*--
* OS/400 Servers - Sample Exit Program
*

Chapter 5. iSeries Access for Windows Database Programming 619

* Exit Point Name : QIBM_QZDA_SQL1
*
* Description : The following ILE C/400 program will
* reject any UPDATE request for user GUEST.
* It can be used as a shell for developing
* exit programs tailored for your
* operating environment.
*
* Input : A 1-byte return code value
* X’F0’ server rejects the request
* anything else server allows the request
* Structure containing information about the
* request. The format used by this program
* is ZDAQ0100.
--/

/*--
* Includes
--/

#include <string.h> /* string functions */
#include <stdio.h> /* standard IO functions */
#include <ctype.h> /* type conversion functions */
/*==
* Start of mainline executable code
==/

main(int argc, char *argv[])
{

long i;
_Packed struct zdaq0100 {

char name[10];
char servid[10];
char fmtid[8];
long funcid;
char stmtname[18];
char cursname[18];
char prepopt[2];
char opnattr[2];
char pkgname[10];
char pkglib[10];
short drdaind;
char commitf;
char stmttxt[512];

} *sptr, stx;

/*--
--*/
/* initialize return variable to indicate ok status */
strncpy(argv[1],"1",1);

/**/
/* Address parameter structure for SQL exit program and move local */
/* parameters into local variables. */
/* (note : this is not necessary to evaluate the arguments passed in). */
/**/
sptr = (_Packed struct zdaq0100 *) argv[2];

strncpy(stx.name, sptr->name, 10);
strncpy(stx.servid, sptr->servid, 10);
strncpy(stx.fmtid, sptr->fmtid, 8);
stx.funcid = sptr->funcid;
strncpy(stx.stmtname, sptr->stmtname, 18);
strncpy(stx.cursname, sptr->cursname, 18);
strncpy(stx.opnattr, sptr->opnattr, 2);
strncpy(stx.prepopt, sptr->prepopt, 2);
strncpy(stx.pkglib, sptr->pkglib, 10);
strncpy(stx.pkgname, sptr->pkgname, 10);
stx.drdaind = sptr->drdaind;
stx.commitf = sptr->commitf;

620 iSeries: iSeries Access for Windows Programming

strncpy(stx.stmttxt, sptr->stmttxt, 512);

/**/
/* check for user GUEST and an UPDATE statement */
/* if found return an error */
/**/
if (! (strncmp(stx.name, "GUEST ", 10)))
{

for (i=0; i<6; i++)
stx.stmttxt[i] = toupper(stx.stmttxt[i]);

if (! strncmp(stx.stmttxt, "UPDATE", 6))
/* Force error out of SQL user exit pgm */
strncpy(argv[1], "0", 1);

else;
}
return;

} /* End of mainline executable code */

/*--
--*/

/* initialize return variable to indicate ok status */
strncpy(argv[1],"1",1);

/**/
/* Address parameter structure for SQL exit program and move local */
/* parameters into local variables. */
/* (note : this is not necessary to evaluate the arguments passed in). */
/**/
sptr = (_Packed struct zdaq0100 *) argv[2];

strncpy(stx.name, sptr->name, 10);
strncpy(stx.servid, sptr->servid, 10);
strncpy(stx.fmtid, sptr->fmtid, 8);
stx.funcid = sptr->funcid;
strncpy(stx.stmtname, sptr->stmtname, 18);
strncpy(stx.cursname, sptr->cursname, 18);
strncpy(stx.opnattr, sptr->opnattr, 2);
strncpy(stx.prepopt, sptr->prepopt, 2);
strncpy(stx.pkglib, sptr->pkglib, 10);
strncpy(stx.pkgname, sptr->pkgname, 10);
stx.drdaind = sptr->drdaind;
stx.commitf = sptr->commitf;
strncpy(stx.stmttxt, sptr->stmttxt, 512);

/**/
/* check for user GUEST and an UPDATE statement */
/* if found return an error */
/**/
if (! (strncmp(stx.name, "GUEST ", 10)))
{

for (i=0; i<6; i++)
stx.stmttxt[i] = toupper(stx.stmttxt[i]);

if (! strncmp(stx.stmttxt, "UPDATE", 6))
/* Force error out of SQL user exit pgm */
strncpy(argv[1], "0", 1);

else;
}
return;

} /* End of mainline executable code */

Example: ILE C/400 program for exit point QIBM_QZDA_ROI1:

Chapter 5. iSeries Access for Windows Database Programming 621

/*--
* OS/400 Servers - Sample Exit Program
*
* Exit Point Name : QIBM_QZDA_ROI1
*
* Description : The following ILE C/400 program logs all
* requests for catalog functions to the
* ZDALOG file in QGPL.
* It can be used as a shell for developing
* exit programs tailored for your
* operating environment.
*
* Input : A 1-byte return code value
* X’F0’ server rejects the request
* anything else server allows the request
* Structure containing information about the
* request. The format used by this program
* is ZDAR0100.
*
* Dependencies : The log file must be created using the
* following command:
* CRTPF FILE(QGPL/ZDALOG) RCDLEN(132)
--/

/*--
* Includes
--/

#include <recio.h> /* record IO functions */
#include <string.h> /* string functions */
/*--
* User Types
--/

typedef struct { /* Exit Point QIBM_QZDA_ROI1 format ZDAR0100 */
char User_profile_name[10]; /* Name of user profile calling server*/
char Server_identifier[10]; /* database server value (*RTVOBJINF) */
char Exit_format_name[8]; /* User exit format name (ZDAR0100) */
long Requested_function; /* function being preformed */
char Library_name[20]; /* Name of library */
char Database_name[36]; /* Name of relational database */
char Package_name[20]; /* Name of package */
char File_name[256]; /* Name of file */
char Member_name[20]; /* Name of member */
char Format_name[20]; /* Name of format */

} ZDAR0100_fmt_t;

/*--
--*/

/*==
* Start of mainline executable code
==/

int main (int argc, char *argv[])
{

_RFILE *file_ptr; /* pointer to log file */
char output_record[132]; /* output log file record */
ZDAR0100_fmt_t input; /* input format record */
/* set return code to allow the request. */
memcpy(argv[1], "1", 1);

/* open the log file for writing to the end of the file */
if ((file_ptr = _Ropen("QGPL/ZDALOG", "ar")) == NULL)
{

/* open failed */
return;

}

/* copy input parm into structure */
memcpy(&input, (ZDAR0100_fmt_t *)argv[2], 404);

622 iSeries: iSeries Access for Windows Programming

switch /* Create the output record based on requested function */
(input.Requested_function)

{
case 0X1800: /* Retrieve library information */

sprintf(output_record,
"%10.10s retrieved library %20.20s",
input.User_profile_name, input.Library_name);

break;
case 0X1801: /* Retrieve relational database information */

sprintf(output_record,
"%10.10s retrieved database %36.36s",
input.User_profile_name, input.Database_name);

break;
case 0X1802: /* Retrieve SQL package information */

sprintf(output_record,
"%10.10s retrieved library %20.20s package %20.20s",
input.User_profile_name, input.Library_name,
input.Package_name);

break;
case 0X1803: /* Retrieve SQL package statement information */

sprintf(output_record,
"%10.10s retrieved library %20.20s package %20.20s statement info",

input.User_profile_name, input.Library_name,
input.Package_name);

break;
/*--

--*/

case 0X1804: /* Retrieve file information */
sprintf(output_record,

"%10.10s retrieved library %20.20s file %40.40s",
input.User_profile_name, input.Library_name, input.File_name);

break;
case 0X1805: /* Retrieve file member information */

sprintf(output_record,
"%10.10s retrieved library %20.20s member %20.20s file %40.40s",

input.User_profile_name, input.Library_name,
input.Member_name, input.File_name);

break;
case 0X1806: /* Retrieve record format information */

sprintf(output_record,
"%10.10s retrieved library %20.20s format %20.20s file %40.40s",

input.User_profile_name, input.Library_name,
input.Format_name, input.File_name);

break;
case 0X1807: /* Retrieve field information */

sprintf(output_record,
"%10.10s retrieved field info library %20.20s file %40.40s",
input.User_profile_name, input.Library_name, input.File_name);

break;
case 0X1808: /* Retrieve index information */

sprintf(output_record,
"%10.10s retrieved index info library %20.20s file %40.40s",
input.User_profile_name, input.Library_name, input.File_name);

break;
case 0X180B: /* Retrieve special column information */

sprintf(output_record,
"%10.10s retrieved column info library %20.20s file %40.40s",
input.User_profile_name, input.Library_name, input.File_name);

break;
default : /* Unknown requested function */

sprintf(output_record, "Unknown requested function");
break;

} /* end switch statement */

/* write the output record to the file */

Chapter 5. iSeries Access for Windows Database Programming 623

_Rwrite(file_ptr, &output_record, 132);

/* close the log file */
_Rclose (file_ptr);

} /* End of mainline executable code */

Exit program parameter formats: The exit points for native database and retrieving object information
have two formats that are defined: QIBM_QZDA_SQL1 and QIBM_QZDA_SQL2. Depending on the type
of function that is requested, one of the formats is used.

The QIBM_QZDA_SQL2 exit point is defined to run an exit point for certain SQL requests that are
received for the database server. This exit point takes precedence over the QIBM_QZDA_SQL1 exit point.
If a program is registered for the QIBM_QZDA_SQL2 exit point, it will be called, and a program for the
QIBM_QZDA_SQL1 exit point will not be called.

Functions that cause the exit program to be called
v Prepare
v Open
v Execute
v Connect
v Create package
v Clear package
v Delete package
v Stream fetch
v Execute immediate
v Prepare and describe
v Prepare and execute or prepare and open
v Open and fetch
v Execute or open

Parameter fields and their descriptions for exit programs with different exit points and formats:

v “Parameter fields for exit point QIBM_QZDA_SQL2 format ZDAQ0200”

v “Parameter fields for exit point QIBM_QZDA_INIT format ZDAI0100” on page 626

v “Parameter fields for exit point QIBM_QZDA_NDB1 format ZDAD0100” on page 626

v “Parameter fields for exit point QIBM_QZDA_NDB1 format ZDAD0200” on page 627

v “Parameter fields for exit point QIBM_QZDA_SQL1 format ZDAQ0100” on page 628

v “Parameter fields for exit point QIBM_QZDA_ROI1 format ZDAR0100” on page 630

v “Parameter fields for exit point QIBM_QZDA_ROI1 format ZDAR0200” on page 631

Parameter fields for exit point QIBM_QZDA_SQL2 format ZDAQ0200: The following table shows
parameter fields and their descriptions for the exit program called at exit point QIBM_QZDA_SQL2 with the
ZDAQ0200 format:

Table 7. Exit point QIBM_QZDA_SQL2 format ZDAQ0200

Offset

Type Field DescriptionDec Hex

0 0 CHAR(10) User profile name The name of the user profile that is calling
the server.

10 A CHAR(10) Server identifier The value is *SQLSRV for this exit point.

20 14 CHAR(8) Format name The user exit format name being used. For
QIBM_QZDA_SQL1, the format name is
ZDAQ0100.

624 iSeries: iSeries Access for Windows Programming

Table 7. Exit point QIBM_QZDA_SQL2 format ZDAQ0200 (continued)

Offset

Type Field DescriptionDec Hex

28 1C BINARY(4) Requested function The function being performed.

This field contains one of the following:

X’1800’ - Prepare

X’1803’ - Prepare and describe

X’1804’ - Open/describe

X’1805’ - Execute

X’1806’ - Execute immediate

X’1809’ - Connect

X’180C’ - Stream fetch

X’180D’ - Prepare and execute

X’180E’ - Open and fetch

X’180F’ - Create package

X’1810’ - Clear package

X’1811’ - Delete package

X’1812’ - Execute or open

32 20 CHAR(18) Statement name Name of the statement used for the prepare
or execute functions.

50 32 CHAR(18) Cursor name Name of the cursor used for the open
function.

68 44 CHAR(2) Prepare option Option used for the prepare function.

70 46 CHAR(2) Open attributes Option used for the open function.

72 48 CHAR(10) Extended dynamic
package name

Name of the extended dynamic package.

82 52 CHAR(10) Package library name Name of the library for extended dyanmic
SQL package.

92 5C BINARY(2) DRDA® indicator 0 - Connected to local RDB

1 - Connected to remote RDB

94 5E CHAR(1) Commitment control
level

’A’ - Commit *ALL

’C’ - Commit *CHANGE

’N’ - Commit *NONE

’S’ - Commit *CS (cursor stability)

95 5F CHAR(10) Default SQL collection Name of the default SQL collection used by
the iSeries Database Server.

105 69 CHAR(129) Reserved Reserved for future parameters.

234 EA BINARY(4) SQL statement text
length

Length of SQL statement text in the field
that follows. The length can be a maximum
of 32K.

238 EE CHAR(*) SQL statement text Entire SQL statement.

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and
QCBLLESRC in library QSYSINC.

The QIBM_QZDA_INIT exit point is defined to run an exit program at server initiation. If a program is
defined for this exit point, it is called each time the database server is initiated.

Chapter 5. iSeries Access for Windows Database Programming 625

Parameter fields for exit point QIBM_QZDA_INIT format ZDAI0100: The following table shows parameter
fields and their descriptions for the exit program called at exit point QIBM_QZDA_INIT using the ZDAI0100
format:

Table 8. Exit point QIBM_QZDA_INIT format ZDAI0100

Offset

Type Field DescriptionDec Hex

0 0 CHAR(10) User profile name The name of the user profile that is calling
the server.

10 A CHAR(10) Server identifier The value is *SQL for this exit point.

20 14 CHAR(8) Format name The user exit format name being used. For
QIBM_QZDA_INIT the format name is
ZDAI0100.

28 1C BINARY(4) Requested function The function being performed.

The only valid value for this exit point is 0.

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and
QCBLLESRC in library QSYSINC.

The QIBM_QZDA_NDB1 exit point is defined to run an exit program for native database requests for the
database server. Two formats are defined for this exit point.

Functions that use format ZDAD0100:
v Create source physical file
v Create database file, based on existing file
v Add, clear, delete database file member
v Override database file
v Delete database file override
v Delete file

Note: Format ZDAD0200 is used when a request is received to add libraries to the library list.

Parameter fields for exit point QIBM_QZDA_NDB1 format ZDAD0100: The following table shows
parameter fields and their descriptions for the exit program called at exit point QIBM_QZDA_NDB1 using
the ZDAD0100 format:

Table 9. Exit point QIBM_QZDA_NDB1 format ZDAD0100

Offset

Type Field DescriptionDec Hex

0 0 CHAR(10) User profile name The name of the user profile that is calling
the server.

10 A CHAR(10) Server identifier For this exit point the value is *NDB.

20 14 CHAR(8) Format name The user exit format name being used.

For the following functions, the format name
is ZDAD0100.

626 iSeries: iSeries Access for Windows Programming

Table 9. Exit point QIBM_QZDA_NDB1 format ZDAD0100 (continued)

Offset

Type Field DescriptionDec Hex

28 1C BINARY(4) Requested
function

The function being performed.

This field contains one of the following:

X’1800’ - Create source physical file

X’1801’ - Create database file, based on
existing file

X’1802’ - Add database file member

X’1803’ - Clear database file member

X’1804’ - Delete database file member

X’1805’ - Override database file

X’1806’ - Delete database file override

X’1807’ - Create save file

X’1808’ - Clear save file

X’1809’ - Delete file

32 20 CHAR(128) File name Name of the file used for the requested
function.

160 A0 CHAR(10) Library name Name of the library that contains the file.

170 AA CHAR(10) Member name Name of the member to be added, cleared,
or deleted.

180 B4 CHAR(10) Authority Authority to the created file

190 BE CHAR(128) Based on file name Name of the file to use when creating a file
based on an existing file.

318 13E CHAR(10) Based on library
name

Name of the library containing the based on
file

328 148 CHAR(10) Override file name Name of the file to be overridden

338 152 CHAR(10) Override library name Name of the library that contains the file to
be overridden

348 15C CHAR(10) Override member
name

Name of the member to be overridden

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and
QCBLLESRC in library QSYSINC.

Parameter fields for exit point QIBM_QZDA_NDB1 format ZDAD0200: The following table shows
parameter fields and their descriptions for the exit program called at exit point QIBM_QZDA_NDB1 by
using the ZDAD0200 format:

Table 10. Exit point QIBM_QZDA_NDB1 format ZDAD0200

Offset

Type Field DescriptionDec Hex

0 0 CHAR(10) User profile name The name of the user profile that is calling
the server.

10 A CHAR(10) Server identifier For this exit point the value is *NDB.

20 14 CHAR(8) Format name The user exit format name being used. For
the add to library list function the format
name is ZDAD0200.

Chapter 5. iSeries Access for Windows Database Programming 627

Table 10. Exit point QIBM_QZDA_NDB1 format ZDAD0200 (continued)

Offset

Type Field DescriptionDec Hex

28 1C BINARY(4) Requested function The function being performed.

X’180C’ - Add library list

32 20 BINARY(4) Number of libraries The number of libraries (the next field)

36 24 CHAR(10) Library name The library names for each library

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and
QCBLLESRC in library QSYSINC.

The QIBM_QZDA_SQL1 exit point is defined to run an exit point for certain SQL requests that are
received for the database server. Only one format is defined for this exit point.

Functions that use format ZDAD0200:
v Prepare
v Open
v Execute
v Connect
v Create package
v Clear package
v Delete package
v Execute immediate
v Prepare and describe
v Prepare and execute or prepare and open
v Open and fetch
v Execute or open

Parameter fields for exit point QIBM_QZDA_SQL1 format ZDAQ0100: The following table shows
parameter fields and their descriptions for the exit program called at exit point QIBM_QZDA_SQL1 using
the ZDAQ0100 format.

Table 11. Exit point QIBM_QZDA_SQL1 format ZDAQ0100

Offset

Type Field DescriptionDec Hex

0 0 CHAR(10) User profile name The name of the user profile that is calling
the server.

10 A CHAR(10) Server identifier For this exit point the value is *SQLSRV.

20 14 CHAR(8) Format name The user exit format name being used. For
QIBM_QZDA_SQL1 the format name is
ZDAQ0100.

628 iSeries: iSeries Access for Windows Programming

Table 11. Exit point QIBM_QZDA_SQL1 format ZDAQ0100 (continued)

Offset

Type Field DescriptionDec Hex

28 1C BINARY(4) Requested
function

The function being performed.

This field contains one of the following:

X’1800’ - Prepare

X’1803’ - Prepare and describe

X’1804’ - Open/Describe

X’1805’ - Execute

X’1806’ - Execute immediate

X’1809’ - Connect

X’180D’ - Prepare and execute or
prepare and open

X’180E’ - Open and fetch

X’180F’ - Create package

X’1810’ - Clear package

X’1811’ - Delete package

X’1812’ - Execute or open

32 20 CHAR(18) Statement name Name of the statement used for the prepare
or execute functions.

50 32 CHAR(18) Cursor name Name of the cursor used for the open
function.

68 44 CHAR(2) Prepare option Option used for the prepare function.

70 46 CHAR(2) Open attributes Option used for the open function.

72 48 CHAR(10) Extended dynamic
package name

Name of the extended dynamic SQL
package.

82 52 CHAR(10) Package library name Name of the library for extended dynamic
SQL package.

92 5C BINARY(2) DRDA indicator 0 - Connected to local RDB

1 - Connected to remote RDB

94 5E CHAR(1) Commitment control
level

’A’ - Commit *ALL

’C’ - Commit *CHANGE

’N’ - Commit *NONE

’S’ - Commit *CS (cursor stability)

95 5F CHAR(512) First 512 bytes of the
SQL statement text

First 512 bytes of the SQL statement

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and
QCBLLESRC in library QSYSINC.

The QIBM_QZDA_ROI1 exit point is defined to run an exit program for the requests that retrieve
information about certain objects for the database server. It is also used for SQL catalog functions.

This exit point has two formats defined.

Objects for which format ZDAR0100 is used to retrieve information:

v Field (or column)

v File (or table)

Chapter 5. iSeries Access for Windows Database Programming 629

v File member

v Index

v Library (or collection)

v Record format

v Relational database (or RDB)

v Special columns

v SQL package

v SQL package statement

Objects for which format ZDAR0200 is used to retrieve information:

v Foreign keys

v Primary keys

Parameter fields for exit point QIBM_QZDA_ROI1 format ZDAR0100: The following table shows
parameter fields and their descriptions for the exit program called at exit point QIBM_QZDA_ROI1 using
the ZDAR0100 format.

Table 12. Exit point QIBM_QZDA_ROI1 format ZDAR0100

Offset

Type Field DescriptionDec Hex

0 0 CHAR(10) User profile name The name of the user profile that is calling
the server.

10 A CHAR(10) Server identifier For the database server the value is
*RTVOBJINF.

20 14 CHAR(8) Format name The user exit format name being used. For
the following functions, the format name is
ZDAR0100.

28 1C BINARY(4) Requested
function

The function being performed.

This field contains one of the following:

X’1800’ - Retrieve library information

X’1801’ - Retrieve relational database
information

X’1802’ - Retrieve SQL package
information

X’1803’ - Retrieve SQL package
statement information

X’1804’ - Retrieve file information

X’1805’ - Retrieve file member
information

X’1806’ - Retrieve record format
information

X’1807’ - Retrieve field information

X’1808’ - Retrieve index information

X’180B’ - Retrieve special column
information

32 20 CHAR(20) Library name The library or search pattern used when
retrieving information about libraries,
packages, package statements, files,
members, record formats, fields, indexes,
and special columns.

630 iSeries: iSeries Access for Windows Programming

Table 12. Exit point QIBM_QZDA_ROI1 format ZDAR0100 (continued)

Offset

Type Field DescriptionDec Hex

52 34 CHAR(36) Relational database
name

The relational database name or search
pattern used to retrieve RDB information.

88 58 CHAR(20) Package name The package name or search pattern used
to retrieve package or package statement
information.

108 6C CHAR(256) File name (SQL alias
name)

The file name or search pattern used to
retrieve file, member, record format, field,
index, or special column information.

364 16C CHAR(20) Member name The member name or search pattern used
to retrieve file member information.

384 180 CHAR(20) Format name The format name or search pattern used to
retrieve record format information.

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and
QCBLLESRC in library QSYSINC.

Parameter fields for exit point QIBM_QZDA_ROI1 format ZDAR0200: The following table shows
parameter fields and their descriptions for the exit program called at exit point QIBM_QZDA_ROI1 using
the ZDAR0200 format.

Table 13. Exit point QIBM_QZDA_ROI1 format ZDAR0200

Offset

Type Field DescriptionDec Hex

0 0 CHAR(10) User profile name The name of the user profile that is calling
the server.

10 A CHAR(10) Server identifier For the database server the value is
*RTVOBJINF.

20 14 CHAR(8) Format name The user exit format name being used. For
the following functions, the format name is
ZDAR0200.

28 1C BINARY(4) Requested function The function being performed.

This field contains one of the following:

X’1809’ - Retrieve foreign key
information

X’180A’ - Retrieve primary key
information

32 20 CHAR(10) Primary key table
library name

The name of the library that contains the
primary key table used when retrieving
primary and foreign key information.

42 2A CHAR(128) Primary key table
name (alias name)

The name of the table that contains the
primary key used when retrieving primary or
foreign key information.

170 AA CHAR(10) Foreign key table
library name

The name of the library that contains the
foreign key table used when retrieving
foreign key information.

180 64 CHAR(128) Foreign key table
name (alias name)

The name of the table that contains the
foreign key used when retrieving foreign key
information.

Chapter 5. iSeries Access for Windows Database Programming 631

Table 13. Exit point QIBM_QZDA_ROI1 format ZDAR0200 (continued)

Offset

Type Field DescriptionDec Hex

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and
QCBLLESRC in library QSYSINC.

Stored procedures
Stored procedures commonly are used in client/server applications, especially in the area of online
transaction processing (OLTP), since they can provide performance, transaction-integrity and security
benefits.

For information regarding specific SQL commands that are used in the examples of stored procedures,
see the SQL Reference book. View an HTML online version of the book, or print a PDF version, from the
DB2 Universal Database for iSeries books online iSeries Information Center topic.

The illustration below shows an application where one transaction consists of four separate I/O operations,
each that requires an SQL statement to be processed. In the client/server environment, this requires a
minimum of eight messages between the server and the client, as shown. This can represent significant
overhead, especially where the communication speed is slow (for example over a dial-up line), or where
the turnaround speed for the connection is slow (for example over a satellite link).

The following illustration shows the same transaction by a stored procedure on the server. As illustrated,
the communications traffic has been reduced to a single message pair. There are additional benefits. For
example, the procedure can arrange to send back only the data that is absolutely required (for example,
just a few characters from a long column). A DB2 for OS/400® stored procedure can be any iSeries
program, and does not have to use SQL for data access.

632 iSeries: iSeries Access for Windows Programming

../rzahf/rzahfli0.htm

View examples of stored procedures:
v “Examples: Stored procedures”
v “Example: Visual C++ - Accessing and returning data by calling a stored procedure” on

page 641
v “Example: Visual Basic - Accessing and returning data by calling a stored procedure” on

page 642
v “Examples: RPG - Host code for ODBC stored procedures” on page 644
v “Tips: Running and calling iSeries stored procedures” on page 637

Examples: Stored procedures: View examples of stored procedures using the following:

v “Example: Running CL commands using SQL stored procedures and ODBC”

v “Example: Stored procedure calls from Visual Basic with return values” on page 634

v “Examples: Calling an iSeries stored procedure by using Visual Basic” on page 636

Example: Running CL commands using SQL stored procedures and ODBC: Stored procedure support
provides a means to run iSeries server Control Language (CL) commands by using the SQL CALL
statement.

Use CL commands when:

v Performing an override for files

v Initiating debug

v Using other commands that can affect the performance of subsequent SQL statements

The following examples show cases where a CL command is run on the iSeries server by using the CALL
statement, which calls the program that processes CL commands. That program (QCMDEXC in library
QSYS) expects two parameters:

1. A string that contains the command text to execute

2. A decimal (15,5) field that contains the length of the command text

The parameters must include these attributes for the command to be interpreted properly. The second
parameter on the CALL statement must have characters explicitly specified for all places of the decimal
(15,5) field.

Chapter 5. iSeries Access for Windows Database Programming 633

In the following example, a C program on the PC is going to run an OVRDBF command that is 65
characters long (including embedded blanks). The text of the OVRDBF command is as follows:
OVRDBF FILE(TESTER) TOFILE(JMBLIB/TESTER) MBR(NO2) OVRSCOPE(*JOB)

The code for performing this command by using ODBC APIs is as follows:
HSTMT hstmt;

SQLCHAR stmt[301];

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
strcpy(stmt,"CALL QSYS.QCMDEXC(’OVRDBF FILE(TESTER) TOFILE(MYLIB/");
strcat(stmt,"TESTER) MBR(NO2) OVRSCOPE(*JOB)’,0000000064.00000)");
rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

Statements now run against file MYLIB/TESTER will reference member number 2 rather than the first
member.

Another CL command that is useful to run against a database server job is the STRDBG command. You
do not have to call a stored procedure to run this command, though. There is an option on the Diagnostic
tab of the DSN setup GUI on the Diagnostic tab that will automatically run the STRDBG command during
the connection attempt.

Example: Stored procedure calls from Visual Basic with return values: Visual Basic is able to call external
functions that are found in a DLL. Since all ODBC drivers are DLLs, Visual Basic can be used to code
directly to the ODBC APIs. By coding directly to the ODBC APIs a Visual Basic application can call an
iSeries server stored procedure and return result values. See “Coding directly to ODBC APIs” on page 568
for more information.

The following example of Visual Basic source code shows how to call an iSeries server stored procedure
and then retrieve the returned values into Visual Basic variables.
’***
’* *
’* Because of the way Visual Basic stores and manages the String data *
’* type, it is recommended that you use an array of Byte data type *
’* instead of a String variable on the SQLBindParameter API. *
’* *
’***

Dim sTemp As String
Custnum As Integer
Dim abCustname(34) As Byte
Dim abAddress(34) As Byte
Dim abCity(24) As Byte
Dim abState(1) As Byte
Dim abPhone(14) As Byte
Dim abStatus As Byte
Dim RC As Integer
Dim nullx As Long ’Used to pass null pointer, not pointer to null
Dim lpSQL_NTS As Long ’Used to pass far pointer to SQL_NTS
Static link(7) As Long ’Used as an array of long pointers to the size

’each parameter which will be bound

’***
’* *
’* Initialize the variables needed on the API calls *
’* *
’***

link(1) = 6
link(2) = Ubound(abCustname) +1
link(3) = Ubound(abAddress) +1

634 iSeries: iSeries Access for Windows Programming

link(4) = Ubound(abCity) +1
link(5) = Ubound(abState) +1
link(6) = Ubound(abPhone) +1
link(7) = 1

RC = 0
nullx = 0
lpSQL_NTS = SQL_NTS ’ -3 means passed as sz string

’***
’* *
’* Create the procedure on the iSeries. This will define the *
’* procedure’s name, parameters, and how each parameter is passed. *
’* Note: This information is stored in the server catalog tables and *
’* and only needs to be executed one time for the life of the stored *
’* procedure. It normally would not be run in the client application. *
’* *
’***

sTemp = "Create Procedure Storedp2 (:Custnum in integer, "
sTemp = sTemp & ":Custname out char(35), :Address out char(35),"
sTemp = sTemp & ":City out char(25), :State out char(2),"
sTemp = sTemp & ":Phone out char(15), :Status out char(1))
sTemp = sTemp & "(External name rastest.storedp2 language cobol General)"

RC = SQLExecDirect(Connection.hstmt, sTemp, Len(sTemp))

’Ignore error assuming that any error would be from procedure already
’created.

’***
’* *
’* Prepare the call of the procedure to the iSeries. *
’* For best performance, prepare the statement only one time and
’* execute many times.
’* *
’***

sTemp = "Call storedp2(?, ?, ?, ?, ?, ?, ?)"
RC = SQLPrepare(Connection.hstmt, sTemp, Len(sTemp))

If (RC <> SQL_SUCCESS) Then
DescribeError Connection.hdbc, Connection.hstmt
frmMain.Status.Caption = "Error on SQL_Prepare " & RTrim$(Tag)

End If

’***
’* *
’* Bind all of the columns passed to the stored procedure. This will *
’* set up the variable’s data type, input/output characteristics, *
’* length, and initial value. *
’* The SQLDescribeParam API can optionally be used to retrieve the
’* parameter types.
’* *
’* To properly pass an array of byte to a stored procedure and receive *
’* an output value back, you must pass the first byte ByRef. *
’* *
’***

RC = SQLBindParameter(Connection.hstmt, 1, SQL_PARAM_INPUT, SQL_C_SHORT, _
SQL_NUMERIC, 6, 0, Custnum, 6, link(1))

RC = SQLBindParameter(Connection.hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_CHAR, _
SQL_CHAR, 35, 0, abCustname(0), UBound(abCustname)+1, link(2))
RC = SQLBindParameter(Connection.hstmt, 3, SQL_PARAM_OUTPUT, SQL_C_CHAR, _

Chapter 5. iSeries Access for Windows Database Programming 635

SQL_CHAR, 35, 0, abAddress(0), UBound(abAddress)+1, link(3))
RC = SQLBindParameter(Connection.hstmt, 4, SQL_PARAM_OUTPUT, SQL_C_CHAR, _
SQL_CHAR, 25, 0, abCity(0), UBound(abCity)+1, link(4))
RC = SQLBindParameter(Connection.hstmt, 5, SQL_PARAM_OUTPUT, SQL_C_CHAR, _
SQL_CHAR, 2, 0, abState(0), UBound(abState)+1, link(5))
RC = SQLBindParameter(Connection.hstmt, 6, SQL_PARAM_OUTPUT, SQL_C_CHAR, _
SQL_CHAR, 15, 0, abPhone(0), UBound(abPhone)+1, link(6))
RC = SQLBindParameter(Connection.hstmt, 7, SQL_PARAM_OUTPUT, SQL_C_CHAR, _
SQL_CHAR, 1, 0, abStatus, 1, link(7))

’***
’* *
’* The Prepare and Bind only needs to be execute once. The Stored
’* procedure can now be called multiple times by just changing the data
’* *
’***
Do While

’***
’* Read in a customer number *
’* *
’***

Custnum = Val(input.text)

’***
’* *
’* Execute the call of the procedure to the iSeries. *
’* *
’***

RC = SQLExecute(Connection.hstmt)
frmMain.Status.Caption = "Ran Stored Proc" & RTrim$(Tag)

If (RC <> SQL_SUCCESS) Then
DescribeError Connection.hdbc, Connection.hstmt
frmMain.Status.Caption = "Error on Stored Proc Execute " & RTrim$(Tag

End If

’***
’* *
’* Set text labels to display the output data *
’* You must convert the array of Byte back to a String
’* *
’***

lblCustname = StrConv(abCustname(), vbUnicode)
lblAddress = StrConv(abAddress(), vbUnicode)
lblCity = StrConv(abCity(), vbUnicode)
lblState = StrConv(abState(), vbUnicode)
lblPhone = StrConv(abPhone(), vbUnicode)
lblStatus = StrConv(abStatus(), vbUnicode)

Loop

Examples: Calling an iSeries stored procedure by using Visual Basic: The Visual Basic programming
examples listed below show a stored procedure call being prepared. Two statements are shown:

1. A statement for the creation of the stored procedure

2. A statement to prepare the call

Create the stored procedure only once. The definition that it provides is available to ODBC applications, as
well as to integrated OS/400 applications.

636 iSeries: iSeries Access for Windows Programming

Tips: Running and calling iSeries stored procedures:

Running a stored procedure on the iSeries server:
ODBC provides a standard interface for calling stored procedures. The implementation of stored
procedures differs significantly across various databases. This simple example follows the
recommended approach for running a stored procedure on the iSeries server:

1. Set up a create procedure statement for the stored procedure and create it. The creation of
the stored procedure only needs to be done once it does not have to done through ODBC.
The definition that it provides is available to all ODBC as well as integrated OS/400
applications. This step can also help performance, as the Optimizer knows in advance the data
type, the direction of the parameters, and the language of the procedure.

2. Prepare the stored procedure call.

3. Bind the parameters of the procedure, indicating whether each parameter is to be used for
input to the procedure, output from the procedure, or input/output.

4. Call the stored procedure.

Calling iSeries stored procedures using Visual Basic:
Use care in coding the SQLBindParameter functions. Never use Visual Basic strings as a buffer
when binding either columns (SQLBindCol) or parameters (SQLBindParameter). Instead, use
byte arrays, which–unlike strings–will not be moved around in memory. See “Example: Using
arrays of byte” for more information.

Pay careful attention to the data types that are involved. There may be subtle differences with
those that you use with, for instance, a select statement. Also, ensure that you have an adequately
sized buffer for output and input/output parameters. The way that you code the stored procedure
on the iSeries server can affect performance significantly. Whenever possible, avoid closing the
program with exit() in C language and with SETON LR in RPG language. Preferably, use RETRN
or return, but you may need to re-initialize variables on each call, and by-pass file opens.

Example: Using arrays of byte: Because of the way Visual Basic stores and manages the String data
type, using an array of Byte data type instead of a String variable is recommended for the following
parameter types:
v Input/output parameters
v Output parameters
v Any parameter that contains binary data (rather then standard ANSI characters)
v Any input parameter that has a variable address which is set once, but refered to many times

The last case would be true for the if the application made multiple calls to SQLExecute, while modifying
Parm1 between each call. The following Visual Basic functions assist in converting strings and arrays of
byte:

Public Sub Byte2String(InByte() As Byte, OutString As String)
’Convert array of byte to string
OutString = StrConv(InByte(), vbUnicode)

End Sub

Public Function String2Byte(InString As String, OutByte() As Byte) As Boolean
’vb byte-array / string coercion assumes Unicode string
’so must convert String to Byte one character at a time
’or by direct memory access
’This function assumes Lower Bound of array is 0

Dim I As Integer
Dim SizeOutByte As Integer
Dim SizeInString As Integer

SizeOutByte = UBound(OutByte) + 1
SizeInString = Len(InString)

Chapter 5. iSeries Access for Windows Database Programming 637

’Verify sizes if desired

’Convert the string
For I = 0 To SizeInString - 1
OutByte(I) = AscB(Mid(InString, I + 1, 1))

Next I
’If size byte array > len of string pad with Nulls for szString
If SizeOutByte > SizeInString Then ’Pad with Nulls

For I = SizeInString To UBound(OutByte)
OutByte(I) = 0

Next I
End If

String2Byte = True
End Function

Public Sub ViewByteArray(Data() As Byte, Title As String)
’Display message box showing hex values of byte array

Dim S As String
Dim I As Integer
On Error GoTo VBANext

S = "Length: " & Str(UBound(Data) - LBound(Data) + 1) & " Data (in hex):"
For I = LBound(Data) To UBound(Data)

If (I Mod 8) = 0 Then
S = S & " " ’add extra space every 8th byte

End If
S = S & Hex(Data(I)) & " "

VBANext:
Next I
MsgBox S, , Title

End Sub

Example: Calling CL command stored procedures
It is possible to run iSeries server commands by using stored procedures. Simply call Execute Command
(QCMDEXC) to run the command. The process is relatively simple, but ensure that you include all of the
zeros in the length parameter. Use the Remote Command API as an alternative.

The two examples that are provided here apply to ODBC programs. The first example enables the
powerful SQL tracing facility that writes data into the joblog for the job running the SQL (in this case, the
OS/400 server job).

The second example overcomes a restriction in SQL: its limited ability to work with multi-member files. You
cannot create a multi-member file through CREATE TABLE. However, the following example shows you
how to access with ODBC anything but the first member of a file that is created through DDS:

Dim hStmt As Long

rc = SQLAllocHandle(SQL_HANDLE_STMT, ghDbc, hStmt)
If rc <> SQL_SUCCESS Then
Call DspSQLError(SQL_HANDLE_DBC, ghDbc, "Problem: Allocating Debug Statement Handle")
End If

’ Note that the string within single quotes ’STRDBG UPDPROD(*YES)’ is exactly 20 bytes
cmd = "call qsys.qcmdexc(’STRDBG UPDPROD(*YES)’,0000000020.00000)"

’ Put the iSeries job in debug mode
rc = SQLExecDirect(hStmt, cmd, SQL_NTS)

638 iSeries: iSeries Access for Windows Programming

|
|
|
|
|
|
|
|
|
|
|
|

If rc <> SQL_SUCCESS Then
Call DspSQLError(SQL_HANDLE_STMT, hStmt, "Problem: Start Debug")
End If

rc = SQLAllocHandle(SQL_HANDLE_STMT, ghDbc, ovrhstmt)
If rc <> SQL_SUCCESS Then
Call DspSQLError(SQL_HANDLE_DBC, ghDbc, "Problem: Allocating Override Statement Handle")
End If

’ Note that the string within single quotes ’OVRDBF FILE(BRANCH)... OVRSCOPE(*JOB)’
is exactly 68 bytes
cmd = "call qsys.qcmdexc(’OVRDBF FILE(BRANCH) TOFILE(HOALIB/BRANCH) MBR(FRANCE)

OVRSCOPE(*JOB)’,0000000068.00000)"

’ Override the iSeries file to point to the ’france’ member
rc = SQLExecDirect(hStmt, cmd, SQL_NTS)
If rc <> SQL_SUCCESS Then
Call DspSQLError(SQL_HANDLE_STMT, hStmt, "File Override")
End If

Choosing an interface to access the ODBC driver
There are different programming interfaces that can be used with the iSeries Access for Windows ODBC
Driver. Each interface has its strengths and weaknesses. Three of the more common programming
interfaces are ActiveX Data Objects (ADO), Rapid Application Development (RAD) tools, and ODBC APIs.
The supported languages, reasons for using, and sources of more information for these three interfaces,
are provided below.

ActiveX Data Objects (ADO)
ADO refers to ActiveX Data Objects and is Microsoft’s high level object model for data access.

v Supported programming languages:

– Visual Basic

– Active Server Pages (ASP)

– Delphi

– Visual Basic Script

– any other language or script that supports ActiveX or COM

v Reasons to use this method:

– Eliminates the coding of ODBC APIs

– Supports switching providers, when needed

v Where to go for more information:

– More on how to use ADO, see the ADO documentation that comes in MDAC:
http://www.microsoft.com/data/doc.htm

– More on using the iSeries Access OLE-DB Provider through ADO refer to:“iSeries Access for
Windows OLE DB Provider” on page 555

v Special notes:

– To use ODBC through ADO an application needs to specify the MSDASQL provider in a
connection string. MSDASQL converts ADO calls into ODBC API calls which communicate
with the ODBC driver.

– An example using an ADO connection string follows:

ConnectionString = ″Provider=MSDASQL;Data Source=MYODBCDS;″

v

Chapter 5. iSeries Access for Windows Database Programming 639

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|

|
|
|

|

|

|

Rapid Application Development (RAD) tools
Rapid Application Development tools are tools that help in creating applications quickly. The tools
make it so that the application writer does not have to know much about the ODBC specification.

v Supported programming languages:

– Depends on which RAD tool is used.

– Some of the more commonly used tools include Powerbuilder, Delphi, and Seagate Crystal
Reports.

v Reasons to use this method:

– Eliminates the coding of ODBC APIs

– Works with multiple ODBC drivers using one program, with few or no changes

v Where to go for more information:

– Refer to the documentation included with the RAD tool.

Direct ODBC API calls
Direct ODBC API calls are when an application is written directly to the ODBC specification.

v Supported programming language:

– C/C++

v Reasons to use this method:

– Allows direct control over which ODBC APIs are called so can be faster than using ADO
objects or RAD tools

– Designed to take advantage of driver-specific features

v Where to go for more information:

– For information on the ODBC specification and some samples see the ODBC documentation
that comes in MDAC: http://www.microsoft.com/data/doc.htm.

– For more information about driver-specific features see “Implementation issues of ODBC
APIs” on page 586

ODBC programming examples
For some examples on how to write ODBC applications see the links below under ODBC partial
programming examples. For complete discussions and programming samples, refer to the following
locations:

v To access ODBC programming samples (Visual Basic, C++, and Lotus Script programming

environments), link to the IBM ftp site on the Web. Select index.txt to see what programming
examples are available and to download to your PC).

v For information on Stored Procedures and examples on how to call them see “Stored procedures” on
page 632.

v Search for ODBC samples in Microsoft’s MSDN library or ODBC webpage. Examples can be found for
Visual Basic, ADO, and C/C++.

v The C programming example in the Programmer’s Toolkit

ODBC partial programming examples:

The following ODBC programming examples demonstrate simple queries, and accessing and
returning data by calling stored procedures. C/C++, Visual Basic and RPG programming language
versions are provided. Note that many of the C/C++ samples are not complete programs.
v “Example: Visual C++ - Accessing and returning data by calling a stored procedure” on

page 641
v “Example: Visual Basic - Accessing and returning data by calling a stored procedure” on

page 642
v “Examples: RPG - Host code for ODBC stored procedures” on page 644
v “Using large objects (LOBs) and DataLinks with iSeries Access for Windows ODBC” on

page 569

640 iSeries: iSeries Access for Windows Programming

|
|
|

|

|

|
|

|

|

|

|

|

|
|

|

|

|

|
|

|

|

|
|

|
|

ftp://testcase.software.ibm.com/as400/fromibm/ApiSamples/

Example: Visual C++ - Accessing and returning data by calling a stored procedure
Only the code relevant to the stored procedure call has been included here. This code assumes the
connection has already been established. See “Examples: RPG - Host code for ODBC stored procedures”
on page 644 for the source code for the stored procedure.

Creating the stored procedure

//* Drop the old Procedure
strcpy(szDropProc,"drop procedure apilib.partqry2");

rc = SQLExecDirect(m_hstmt, (unsigned char *)szDropProc, SQL_NTS);

// This statement is used to create a stored procedure
// Unless the
// procedure is destroyed, this statement need never be re-created
strcpy(szCreateProc,"CREATE PROCEDURE APILIB.PARTQRY2 (INOUT P1 INTEGER,");
strcat(szCreateProc,"INOUT P2 INTEGER)");
strcat(szCreateProc,"EXTERNAL NAME APILIB.SPROC2 LANGUAGE RPG GENERAL")

//’ Create the new Procedure
rc = SQLExecDirect(m_hstmt, (unsigned char *)szCreateProc, SQL_NTS);
if (rc != SQL_SUCCESS &&; rc != SQL_SUCCESS_WITH_INFO) {
DspSQLError(m_henv, m_hdbc, SQL_NULL_HSTMT);
return APIS_INIT_ERROR;
}
if(rc != SQL_SUCCESS) {
DspSQLError(m_henv, m_hdbc, SQL_NULL_HSTMT);

return APIS_INIT_ERROR;
}

Preparing the statements

// Prepare the procedure call
strcpy(szStoredProc, "call partqry2(?, ?)");
// Prepare the stored procedure statement

rc = SQLPrepare(m_hstmt, (unsigned char *) szStoredProc, strlen(szStoredProc));
if(rc != SQL_SUCCESS &&; rc != SQL_SUCCESS_WITH_INFO) {

DspSQLError(m_henv, m_hdbc, m_hstmt);
return APIS_INIT_ERROR;

}

Binding the parameters

// Bind the parameters for the stored procedure

rc = SQLBindParameter(m_hstmt, 1, SQL_PARAM_INPUT_OUTPUT, SQL_C_LONG,
SQL_INTEGER, sizeof(m_lOption), 0, &m_lOption, sizeof(m_lOption), &lcbon),
&lcbOption);

rc |= SQLBindParameter(m_hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_LONG,
SQL_INTEGER, sizeof(m_lPartNo), 0, &m_lPartNo, sizeof(m_lPartNo), &lcbon),
&lcbOption);

// Bind the Columns
rc = SQLBindCol(m_hstmt, 1, SQL_C_SLONG, &m_lSPartNo,
sizeof(m_lSPartNo), &lcbBuffer);

rc |= SQLBindCol(m_hstmt, 2, SQL_C_CHAR, &m_szSPartDesc,
26, &lcbBuffer);

rc |= SQLBindCol(m_hstmt, 3, SQL_C_SLONG, &m_lSPartQty,
sizeof(m_lSPartQty), &lcbBuffer);

Chapter 5. iSeries Access for Windows Database Programming 641

rc |= SQLBindCol(m_hstmt, 4, SQL_C_DOUBLE, &m_dSPartPrice,
sizeof(m_dSPartPrice), &lcbBuffer);

rc |= SQLBindCol(m_hstmt, 5, SQL_C_DATE, &m_dsSPartDate,
10, &lcbBuffer);

Calling the stored procedure

// Request a single record
m_lOption = ONE_RECORD;
m_lPartNo = PartNo;

// Run the stored procedure
rc = SQLExecute(m_hstmt);

if (rc != SQL_SUCCESS) {
DspSQLError(m_henv, m_hdbc, m_hstmt);
return APIS_SEND_ERROR;

}

// (Try to) fetch a record
rc = SQLFetch(m_hstmt);
if (rc == SQL_NO_DATA_FOUND) {
// Close the cursor for repeated processing

rc = SQLCloseCursor(m_hstmt);
return APIS_PART_NOT_FOUND;

}
else if (rc != SQL_SUCCESS) {

DspSQLError(m_henv, m_hdbc, m_hstmt);
return APIS_RECEIVE_ERROR;

}

// If we are still here we have some data, so map it back
// Format and display the data

.

.

.

Example: Visual Basic - Accessing and returning data by calling a stored
procedure
Visual Basic is able to call external functions that are found in DLLs. Since all ODBC drivers are DLLs,
Visual Basic can be used to code directly to the ODBC APIs. By coding directly to the ODBC APIs a
Visual Basic application can call an iSeries server stored procedure and return result values. See “Coding
directly to ODBC APIs” on page 568 for more information. See “Examples: RPG - Host code for ODBC
stored procedures” on page 644 for the source code for the stored procedure.

Creating the stored procedure

’ This statement will drop an existing stored procedure
szDropProc = "drop procedure apilib.partqry2"

’* This statement is used to create a stored procedure
’* Unless the
’* procedure is destroyed, this statement need never be re-created

szCreateProc = "CREATE PROCEDURE APILIB.PARTQRY2 (INOUT P1 INTEGER,"
szCreateProc = szCreateProc & "INOUT P2 INTEGER)"
szCreateProc = szCreateProc & "EXTERNAL NAME APILIB.SPROC2 LANGUAGE RPG GENERAL"

’* Allocate statement handle
rc = SQLAllocHandle(SQL_HANDLE_STMT, ghDbc, hStmt)
If rc <> SQL_SUCCESS Then

642 iSeries: iSeries Access for Windows Programming

Call DisplayError(rc, "SQLAllocStmt failed.")
Call DspSQLError(henv, SQL_NULL_HDBC, SQL_NULL_HSTMT)

End If
’* Drop the old Procedure

rc = SQLExecDirect(hstmt, szDropProc, SQL_NTS)

’ Create the new Procedure
rc = SQLExecDirect(hstmt, szCreateProc, SQL_NTS)
If rc <> SQL_SUCCESS And rc <> SQL_SUCCESS_WITH_INFO Then

Call DisplayError(rc, "SQLCreate failed.")
Call DspSQLError(henv, hdbc, hstmt)

End If

Preparing the statements

’* This statement will be used to call the stored procedure
szStoredProc = "call partqry2(?, ?)"
’* Prepare the stored procedure call statement

rc = SQLPrepare(hstmt, szStoredProc, Len(szStoredProc))
If rc <> SQL_SUCCESS And rc <> SQL_SUCCESS_WITH_INFO Then

Call DisplayError(rc, "SQLPrepare failed.")
Call DspSQLError(henv, hdbc, hstmt)

End If

Binding the parameters

’Bind the parameters for the stored procedure
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, _

SQL_INTEGER, lLen1, 0, sFlag, lLen1, lCbValue)

If rc <> SQL_SUCCESS Then
Call DisplayError(rc, "Problem binding parameter ")

End If

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG, _
SQL_INTEGER, 4, 0, lPartNumber, lLen2, lCbValue)

If rc <> SQL_SUCCESS Then
Call DisplayError(rc, "Problem binding parameter ")

End If

Calling the stored procedure

rc = SQLExecute(hstmt)
If lRc <> SQL_SUCCESS Then

’ Free the statement handle for repeated processing
rc = SQLFreeHandle(

Call DspSQLError(henv, hdbc, hstmt)
End If
rc = SQLFetch(hstmt)
If rc = SQL_NO_DATA_FOUND Then

mnuClear_Click ’Clear screen
txtPartNumber = lPartNumber ’Show the part number not found
Call DisplayMessage("RECORD NOT FOUND")
.
.

Else
’Get Description

rc = SQLGetData(hstmt, 2, SQL_C_CHAR, sSDescription, _
25, lcbBuffer)

Chapter 5. iSeries Access for Windows Database Programming 643

’Get Quantity. SQLGetLongData uses alias SQLGetData
rc = SQLGetLongData(hstmt, 3, SQL_C_SLONG, lSQuantity, _

Len(lSQuantity), lcbBuffer)
’Get Price. SQLGetDoubleData uses alias SQLGetData
rc = SQLGetDoubleData(hstmt, 4, SQL_C_DOUBLE, dSPrice, _

Len(dSPrice), lcbBuffer)
’Get Received date
rc = SQLGetData(hstmt, 5, SQL_C_CHAR, sSReceivedDate, _

10, lcbBuffer)
txtDescription = sSDescription ’Show description
txtQuantity = lSQuantity ’Show quantity
txtPrice = Format(dSPrice, "currency") ’Convert dSPrice to
txtReceivedDate = CDate(sSReceivedDate) ’Convert string to d
Call DisplayMessage("Record found")

End If

Examples: RPG - Host code for ODBC stored procedures
This program, SPROC2, is called from the client as a stored procedure via ODBC. It returns data to the
client from the PARTS database file.

RPG/400® (non-ILE) example:

* THIS EXAMPLE IS WRITTEN IN RPG/400 (NON-ILE)
*
* DEFINES PART AS AN INTEGER (BINARY 4.0)
*
I#OPTDS DS
I B 1 40#OPT
I#PRTDS DS
I B 1 40#PART
C *ENTRY PLIST
C PARM #OPTDS
C PARM #PRTDS
* COPY PART NUMBER TO RPG NATIVE VARIABLE WITH SAME
* ATTRIBUTES OF FIELD IN PARTS MASTER FILE (PACKED DECIMAL 5,0)
C Z-ADD#PART PART 50
C #OPT CASEQ1 ONEREC
C #OPT CASEQ2 ALLREC
C ENDCS
C SETON LR
C RETRN
*

C ONEREC BEGSR

* PROCESS REQUEST FOR A SINGLE RECORD.
C/EXEC SQL DECLARE C1 CURSOR FOR
C+ SELECT
C+ PARTNO,
C+ PARTDS,
C+ PARTQY,
C+ PARTPR,
C+ PARTDT
C+
C+ FROM PARTS -- FROM PART MASTER FILE
C+
C+ WHERE PARTNO = :PART
C+
C+
C+ FOR FETCH ONLY -- READ ONLY CURSOR
C/END-EXEC

644 iSeries: iSeries Access for Windows Programming

C*
C/EXEC SQL
C+ OPEN C1
C/END-EXEC
C*
C/EXEC SQL
C+ SET RESULT SETS CURSOR C1
C/END-EXEC
C ENDSR

C ALLREC BEGSR

* PROCESS REQUEST TO RETURN ALL RECORDS
C/EXEC SQL DECLARE C2 CURSOR FOR
C+ SELECT
C+ PARTNO,
C+ PARTDS,
C+ PARTQY,
C+ PARTPR,
C+ PARTDT
C+
C+ FROM PARTS -- FROM PART MASTER FILE
C+
C+
C+ ORDER BY PARTNO -- SORT BY PARTNO
C+
C+ FOR FETCH ONLY -- READ ONLY CURSOR
C/END-EXEC
C*
C/EXEC SQL
C+ OPEN C2
C/END-EXEC
C*
C/EXEC SQL
C+ SET RESULT SETS CURSOR C2
C/END-EXEC
C ENDSR

ILE-RPG example:
* This example is written in ILE-RPG
*
* Define option and part as integer
D#opt s 10i 0
D#part s 10i 0
* Define part as packed 5/0
Dpart s 5p 0

C *entry plist
C parm #opt
C part parm #part

C #opt caseq 1 onerec
C #opt caseq 2 allrec
C endcs

C eval *inlr = *on
C return
*

C onerec begsr

* Process request for a single record.

Chapter 5. iSeries Access for Windows Database Programming 645

C/EXEC SQL DECLARE C1 CURSOR FOR
C+ SELECT
C+ PARTNO,
C+ PARTDS,
C+ PARTQY,
C+ PARTPR,
C+ PARTDT
C+
C+ FROM PARTS -- FROM PART MASTER FILE
C+
C+ WHERE PARTNO = :PART
C+
C+
C+ FOR FETCH ONLY -- READ ONLY CURSOR
C/END-EXEC
C*
C/EXEC SQL
C+ OPEN C1
C/END-EXEC
C*
C/EXEC SQL
C+ SET RESULT SETS CURSOR C1
C/END-EXEC
C endsr

C allrec begsr

* Process request to return all records
C/EXEC SQL DECLARE C2 CURSOR FOR
C+ SELECT
C+ PARTNO,
C+ PARTDS,
C+ PARTQY,
C+ PARTPR,
C+ PARTDT
C+
C+ FROM PARTS -- FROM PART MASTER FILE
C+
C+
C+ ORDER BY PARTNO -- SORT BY PARTNO
C+
C+ FOR FETCH ONLY -- READ ONLY CURSOR
C/END-EXEC
C*
C/EXEC SQL
C+ OPEN C2
C/END-EXEC
C*
C/EXEC SQL
C+ SET RESULT SETS CURSOR C2
C/END-EXEC
C endsr

iSeries Access for Windows database APIs
iSeries Access for Windows database APIs provide a superset of the function that is provided in the ODBC
interface. All of the ODBC function is provided, along with extensions that allow an application developer to
take advantage of unique iSeries server functions. The iSeries Access for Windows database APIs provide
access to iSeries database files through a call-level interface.

iSeries Access for Windows database APIs required files:

Header file Import library Dynamic Link Library

cwbdb.h cwbapi.lib cwbdb.dll

646 iSeries: iSeries Access for Windows Programming

Programmer’s Toolkit:
The Programmer’s Toolkit provides Database documentation, access to the cwbdb.h header file,
and links to sample programs. To access this information, open the Programmer’s Toolkit and
select Database —> C/C++ APIs.

iSeries Access for Windows database APIs topics:
“iSeries Access for Windows database APIs overview”
“Typical use of iSeries Access for Windows database APIs” on page 649
“Objects that process data on the PC or iSeries server” on page 650
“Code page support in Windows” on page 651
Database APIs listing
“Example: Using SQL to access database functions” on page 845
“Database APIs return codes” on page 22

Related topics:

v “iSeries system name formats for ODBC Connection APIs” on page 12

v “OEM, ANSI, and Unicode considerations” on page 12

iSeries Access for Windows database APIs overview
Use iSeries Access for Windows database SQL APIs to access database functions on the iSeries server.
These functions can be grouped into three categories:
v Catalog information
v SQL functions
v Native database (NDB) functions

The iSeries Access for Windows Database APIs are built on an object-oriented base. Handles are used to
provide an application access to the following classes of objects:
v “Connection object”
v “Catalog request object”
v “Native database (NDB) request object” on page 648
v “SQL request” on page 648
v “Data format object” on page 648
v “Parameter marker format object” on page 648
v “Data object” on page 649

Connection object
This class of object represents an iSeries database server module. The connection class is used to control
the processing of the iSeries database server. This class gives the application control over such server
attributes as naming convention and sort sequence. Connection objects are independent of each other.
This means that it is possible to have connections to multiple iSeries servers or multiple connections to the
same iSeries server. Each connection could have a unique set of server attributes.

All functional requests must be processed by a server. Therefore, an object of this class must be created
before an application can created objects of other classes. When objects of other classes are created, the
handle that represents a connection object is used to identify which connection (database server) will be
used to service any functional requests for that object. This means that the server must be started (using
the cwbDB_StartServer call) before the function can be performed.

Catalog request object
This class of object is used to retrieve information about database and other SQL objects (SQL packages)
from the iSeries server. Information that pertains to the following is available through the catalog request:

Fields

Files

Foreign keys

Indices

Chapter 5. iSeries Access for Windows Database Programming 647

Libraries

Members

Primary keys

Relational databases (RDBs)

Record formats

SQL packages

Statements that are stored in SQL packages

Special columns

By using the catalog request, an application can control both the type of information that is to be returned
and the objects for which the information is to be returned. For example, you can use a catalog request to
return the name and description of all files whose names start with the letter Q in the QIWS library.

See “Catalog request APIs” on page 649 for more information.

Native database (NDB) request object
This class of object is used to manipulate database file objects on the iSeries server. This includes
member manipulation (add, clear, remove) as well as creating and duplicating database files. In addition,
by using NDB requests in association with SQL requests, an application can access data in members
other than the first member of a file using SQL as the access method.

See “Native Database (NDB) request APIs” on page 650 for more information.

SQL request
This class of object is used to request SQL operations to be performed on the iSeries server.

The SQL request object allows an application to set various parameters that control the processing of
SQL statements on the iSeries server. Among these parameters are the library and SQL package name
that allows the application to use ″extended dynamic″ SQL. When extended dynamic SQL is used, SQL
statements only need to be prepared once. The prepared statement is stored in the specified package and
can be reused at a later time.

See “SQL request APIs” on page 650 for more information.

Data format object
This class of object describes data that is contained in a result set (for example, the result of a select
statement or the result of a catalog request).

The data format contains a description for each item in the result set. That description includes: data type,
data length, precision, scale, CCSID, and column name.

Since NDB requests do not return data, this class is not used in conjunction with NDB requests.

See “Objects that process data on the PC or iSeries server” on page 650 for more information.

Parameter marker format object
This class of objects describes data that corresponds to parameter markers that are contained in SQL
statements.

The parameter marker format contains a description for each parameter marker in a prepared SQL
statement. That description includes: data type, data length, precision, scale, and CCSID.

See “Objects that process data on the PC or iSeries server” on page 650 for more information.

648 iSeries: iSeries Access for Windows Programming

Data object
This class is used to return result data to the calling application. Using a data object removes the
responsibility from the calling application to create buffers large enough to contain result data. The data
object itself manages how much storage is needed to contain the data.

See “Objects that process data on the PC or iSeries server” on page 650 for more information.

Typical use of iSeries Access for Windows database APIs
A connection object is required in order to perform any functional requests with iSeries Access for
Windows database APIs. You first must create a connection handle. Once this is done, that handle can be
used to override the default set of attributes of the server job such as naming convention (LIB/FILE vs.
USER.TABLE), or to override the default sort sequence (by using the cwbDB_SetNLSS API). The server
job then can be started by using the cwbDB_StartServer API.

Once the connection is created and the server is started, requests and other related objects can be
created and processed. The iSeries server will not return any data until it is requested (by using one of the
cwbDB_Return* APIs—see “cwbDB_ReturnData” on page 765). This, along with the ability to store
parameters for a request on the iSeries server, allows an application to perform processing in an
asynchronous manner.

When an application stores parameters for a request on the iSeries server, storage is allocated to contain
result information for any operations that are performed on that request. This result information is saved
until another operation is performed for that request. As a result, an application can create any number of
requests and store the parameters for those requests. Operations that take longer to complete (like
creating SQL collections) can be requested, and the application can continue its work on the PC, while the
iSeries server is processing the request. When the application is ready to check the results of the
operations, it then can request whatever information is appropriate for the request (SQLCA, host error
information, data, and so on). Link to the following topics for descriptions of the three types of requests
and a list of their corresponding APIs:
v “Catalog request APIs”
v “Native Database (NDB) request APIs” on page 650
v “SQL request APIs” on page 650

Catalog request APIs
The catalog request APIs consist of a group of APIs that allow an application to specify what object for
which information is being requested. For example, if the application needs information that pertains to
members of a database file, the following APIs likely would be called:

cwbDB_SetLibraryName
This qualifies the library for which the information will be retrieved. This may contain wildcard values
(QIWS*) or special values such as *LIBL, *USRLIBL, and so on.

cwbDB_SetFileName
This qualifies the file for which the member information will be retrieved. This may contain wildcard
characters.

cwbDB_SetMemberName*
This is optional and may contain wild-card characters.

cwbDB_ReturnData
This is required for data to be sent to the PC from the iSeries server. If this API is not used, the data
will be kept on the iSeries server until it is requested, or until the next operation is performed.

cwbDB_RetrieveMemberInformation
One of the parameters on this API is a bitmap that indicates what information is to be returned. The
following information can be returned for members:
v Library name
v File name

Chapter 5. iSeries Access for Windows Database Programming 649

v Member name
v Member description

Once the information has been retrieved, the application will use the data format and the data object to
process the data that has been retrieved. See “Objects that process data on the PC or iSeries server” for
more information.

Native Database (NDB) request APIs
Native database (NDB) requests are used to manipulate database objects on the iSeries server. For
example, the override database function can be used in conjuction with an SQL request to allow SQL to
access members other than the first member in a file. The following NDB APIs would be used to
accomplish this:

cwbDB_SetFileName
This is the file (table) that will be used in the SQL statement.

cwbDB_SetOverrideInformation*
This will indicate the file and member to be accessed.

cwbDB_ReturnHostErrorInfo
Since no data is available to be returned, this will provide status as to the result of the override
request.

cwbDB_OverrideFile
This actually does the override request.

SQL request APIs
SQL requests are used to perform SQL operations on the iSeries server. There are some operations for
which a combined function API is provided. For example, an application could call APIs to perform the
following functions: prepare a statement, describe the result set, open a cursor by using the prepared
statement, and fetch data from that cursor. Using the combined function API, the application would make
one API call to perform all four of those functions (cwbDB_PrepareDescribeOpenFetch). The following
APIs would be used to open a cursor and retrieve some data:

cwbDB_SetCursorName
This is the name of the cursor that will be used when fetching the data.

cwbDB_SetStatementName
This is the name that is used when referring to prepared SQL statements.

cwbDB_SetStatementText
This is the actual SQL statement that is to be prepared.

cwbDB_ReturnData
No data is returned unless it is requested by the application. For this example, we will request the
data.

cwbDB_PrepareDescribeOpenFetch
This will process the statement and return data to the PC.

Objects that process data on the PC or iSeries server
There are three classes that are used by the application for processing data that is returned to the PC or
for providing data to be processed by the iSeries server. These classes are:

Data format
The data format is used to describe data that is to be returned to the PC. It contains a description
of each of the columns of data in the result set. This description includes the column name, length,
and type. If the type of data is character data, the Coded Character Set Identifier (CCSID) is
included. For numeric data, the description includes precision and scale. This information is used
by the application to parse the data that is returned to the PC.

650 iSeries: iSeries Access for Windows Programming

Parameter marker format
Parameter marker formats are similar to the data formats in that they describe data that is
contained in a buffer. The difference is that the parameter marker format is used to describe data
that the application is using as input to an SQL request. The information in the parameter marker
format is used by Database APIs to parse through a buffer that contains data that is to be used to
provide data values to an SQL statement.

Data object
The data object is a very simple object. It provides a pointer and length to data that is returned to
the PC. As mentioned previously, using the data object provides a mechanism for the application
to receive data without having to allocate storage of sufficient size to contain the data. That
storage management is contained within the data object.

Code page support in Windows
In Windows, data can be manipulated in ASCII (OEM) or ANSI code pages. The default behavior of these
iSeries Access for Windows database APIs is to use the ASCII code page. If you want your program to
use the ANSI code page instead, use the cwbNL_GetANSICodePage API to retrieve the ANSI code page,
convert the code page to a CCSID with “cwbNL_CodePageToCCSID” on page 239, and then
usecwbDB_SetClientDataCCSID and cwbDB_SetClientHostErrorCCSID to change the behavior of these
APIs.

Note: Unicode is not supported by these APIs.

Chapter 5. iSeries Access for Windows Database Programming 651

iSeries Access for Windows database APIs listing
The following iSeries Access for Windows database APIs are listed alphabetically, by function:

Function iSeries Access for Windows database APIs

Database server
attributes

cwbDB_ApplyAttributes
cwbDB_CreateConnectionHandle
cwbDB_CreateConnectionHandleEx
cwbDB_DeleteConnectionHandle
cwbDB_GetCommitmentControl
cwbDB_GetDateFormat
cwbDB_GetDateSeparator
cwbDB_GetDecimalSeparator
cwbDB_GetIgnoreDecimalDataError
cwbDB_GetNamingConvention
cwbDB_GetRelationalDBName
cwbDB_GetServerFunctionalLevel
cwbDB_GetTimeFormat
cwbDB_GetTimeSeparator
cwbDB_SetAllowAddStatementToPackage
cwbDB_SetAmbiguousSelectOption
cwbDB_SetAutoCommit
cwbDB_SetCommitmentControl
cwbDB_SetDateFormat
cwbDB_SetDateSeparator
cwbDB_SetDecimalSeparator
cwbDB_SetDefaultSQLLibraryName
cwbDB_SetIgnoreDecimalDataError
cwbDB_SetLOBFieldThreshold
cwbDB_SetNLSS
cwbDB_SetNamingConvention
cwbDB_SetRelationalDBName
cwbDB_SetTimeFormat
cwbDB_SetTimeSeparator
cwbDB_StartServer
cwbDB_StartServerDetailed
cwbDB_StopServer

652 iSeries: iSeries Access for Windows Programming

Function iSeries Access for Windows database APIs

Catalog request cwbDB_CreateCatalogRequestHandle
cwbDB_DeleteCatalogRequestHandle
cwbDB_RetrieveFieldInformation
cwbDB_RetrieveFileInformation
cwbDB_RetrieveForeignKeyInformation
cwbDB_RetrieveIndexInformation
cwbDB_RetrieveLibraryInformation
cwbDB_RetrieveMemberInformation
cwbDB_RetrievePackageStatementInformation
cwbDB_RetrievePrimaryKeyInformation
cwbDB_RetrieveRDBInformation
cwbDB_RetrieveRecordFormatInformation
cwbDB_RetrieveSpecialColumnInformation
cwbDB_RetrieveSQLPackageInformation
cwbDB_SetFieldName
cwbDB_SetFileAttributes
cwbDB_SetFileInfoOrdering
cwbDB_SetFileType
cwbDB_SetForeignKeyFileName
cwbDB_SetForeignKeyLibName
cwbDB_SetFormatName
cwbDB_SetIndexType
cwbDB_SetLongFileName
cwbDB_SetMemberName
cwbDB_SetNullable
cwbDB_SetPackageName
cwbDB_SetPrimaryKeyFileName
cwbDB_SetPrimaryKeyLibName
cwbDB_SetRDBName
cwbDB_SetStatementType

Native database (NDB)
request

cwbDB_AddLibraryToList
cwbDB_AddMember
cwbDB_ClearMember
cwbDB_CreateDuplicateFile
cwbDB_CreateNDBRequestHandle
cwbDB_CreateSourcePhysicalFile
cwbDB_DeleteFile
cwbDB_DeleteNDBRequestHandle
cwbDB_OverrideFile
cwbDB_RemoveMember
cwbDB_RemoveOverride
cwbDB_SetAddLibraryName
cwbDB_SetAddLibraryPosition
cwbDB_SetAuthority
cwbDB_SetBaseFile
cwbDB_SetFileText
cwbDB_SetMaximumMembers
cwbDB_SetMemberText
cwbDB_SetOverrideInformation
cwbDB_SetRecordLength

Chapter 5. iSeries Access for Windows Database Programming 653

Function iSeries Access for Windows database APIs

SQL request cwbDB_GetBaseColumnName
cwbDB_GetBaseSchemaName
cwbDB_GetBaseTableName
cwbDB_ClearPackage
cwbDB_Close
cwbDB_Commit
cwbDB_Connect
cwbDB_CreatePackage
cwbDB_CreateSQLRequestHandle
cwbDB_DeletePackage
cwbDB_DeleteSQLRequestHandle
cwbDB_Describe
cwbDB_DescribeParameterMarkers
cwbDB_DynamicStreamFetch
cwbDB_EndStreamFetch
cwbDB_Execute
cwbDB_ExecuteImmediate
cwbDB_ExtendedDynamicStreamFetch
cwbDB_Fetch
cwbDB_GetExtendedColumnInfo
cwbDB_MoreStreamData
cwbDB_Open
cwbDB_OpenDescribeFetch
cwbDB_Prepare
cwbDB_PrepareDescribe
cwbDB_PrepareDescribeOpenFetch
cwbDB_RetrieveLOBData
cwbDB_ReturnExtendedDataFormat
cwbDB_ReturnParameterMarkerFormat
cwbDB_ReturnSQLCA
cwbDB_Rollback
cwbDB_SetBlockCount
cwbDB_SetCursorName
cwbDB_SetCursorReuse
cwbDB_SetDescribeOption
cwbDB_SetExtendedDataFormat
cwbDB_SetFetchScrollOptions
cwbDB_SetHoldIndicator
cwbDB_SetParameterMarkerBlock
cwbDB_SetParameterMarkers
cwbDB_SetPrepareOption
cwbDB_SetScrollableCursor
cwbDB_SetStatementName
cwbDB_SetStatementText
cwbDB_SetStreamFetchSyncCount

Multiple requests types cwbDB_GetData - Catalog, NDB, SQL
cwbDB_ReturnData - Catalog, NDB, SQL
cwbDB_ReturnDataFormat - Catalog, SQL
cwbDB_ReturnHostErrorInfo - Catalog, NDB, SQL
cwbDB_SetClientDataCCSID - Catalog, NDB, SQL
cwbDB_SetClientHostErrorCCSID - Catalog, NDB, SQL
cwbDB_SetClientInputCCSID - Catalog, NDB, SQL
cwbDB_SetCursorReuse
cwbDB_SetFileName - Catalog, NDB
cwbDB_SetLibraryName - Catalog, NDB, SQL
cwbDB_SetQueryTimeoutValue
cwbDB_StoreRequestParameters - Catalog, NDB, SQLcwbDB_SetStaticCursorResultSetThreshold
cwbDB_WriteLOBData

654 iSeries: iSeries Access for Windows Programming

Function iSeries Access for Windows database APIs

Data-description
manipulation

cwbDB_CreateDataFormatHandle
cwbDB_CreateDataHandle
cwbDB_CreateParameterMarkerFormatHandle
cwbDB_DeleteDataFormatHandle
cwbDB_DeleteDataHandle
cwbDB_DeleteParameterMarkerFormatHandle
cwbDB_GetColumnCCSID
cwbDB_GetColumnCount
cwbDB_GetColumnLength
cwbDB_GetColumnName
cwbDB_GetColumnPrecision
cwbDB_GetColumnScale
cwbDB_GetColumnType
cwbDB_GetConversionIndicator
cwbDB_GetDataLength
cwbDB_GetDataPointer
cwbDB_GetLOBLocator
cwbDB_GetLOBMaxSize
cwbDB_GetParameterCCSID
cwbDB_GetParameterCount
cwbDB_GetParameterDirection
cwbDB_GetParameterLength
cwbDB_GetParameterName
cwbDB_GetParameterPrecision
cwbDB_GetParameterScale
cwbDB_GetParameterType
cwbDB_GetRowSize
cwbDB_GetSizeOfParameters
cwbDB_GetSizeOfInputParameters
cwbDB_GetSizeOfOutputParameters
cwbDB_IsParameterInput
cwbDB_IsParameterInputOutput
cwbDB_SetClientColumnToNumeric
cwbDB_SetClientColumnToString
cwbDB_SetClientParameterToNumeric
cwbDB_SetClientParameterToString
cwbDB_SetConversionIndicator
cwbDB_SetConvert65535

Chapter 5. iSeries Access for Windows Database Programming 655

cwbDB_AddLibraryToList

Purpose: Add a library to the iSeries server library list.

Syntax:

unsigned int CWB_ENTRY cwbDB_AddLibraryToList(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for List or SQL requests. The cwbDB_AddLibraryToList API may be called
after setting the position in the library list at which the library is to be added using the
cwbDB_SetAddLibraryPosition API. The cwbDB_AddLibraryToList API should be called after setting
the library name in the request via the cwbDB_SetAddLibraryName API. This API will result in a request
datastream flowing to the iSeries server and, if requested, a response to the request flowing back to the
client. A call to cwbDB_ReturnHostErrorInfo is needed in order determine the success of the operation
for this API. Calling cwbDB_ReturnHostErrorInfo prior to calling this API will result in a synchronous
operation (the application will not get control back until the result is returned to the PC from the iSeries
server).

656 iSeries: iSeries Access for Windows Programming

cwbDB_AddMember

Purpose: Add a member to a file on the iSeries server.

Syntax:

unsigned int CWB_ENTRY cwbDB_AddMember(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for List or SQL requests. The cwbDB_AddMember API should be called
after setting the desired values in the request. This API will result in a request datastream flowing to the
iSeries server and if requested, a response to the request flowing back to the client.

A call to cwbDB_ReturnHostErrorInfo is needed in order determine the success of the operation for this
API. Calling cwbDB_ReturnHostErrorInfo prior to calling this API will result in a synchronous operation
(the application will not get control back until the result is returned to the PC from the iSeries server).

Chapter 5. iSeries Access for Windows Database Programming 657

cwbDB_ApplyAttributes

Purpose: Activates the changes that were made to server attributes by previous calls - (naming
convention, commitment control, etc.) Use this to change server attributes after the server has been
started.

Syntax:

unsigned int CWB_ENTRY cwbDB_ApplyAttributes(
cwbDB_ConnectionHandle connection,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: This API is only needed if the server attributes are changed after the server has been started
(cwbDB_StartServer).

658 iSeries: iSeries Access for Windows Programming

cwbDB_GetBaseColumnName

Purpose: Returns the base column name, if it exists, for a column of data.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetBaseColumnName(
cwbDB_FormatHandle format,
unsigned long columnPosition
cwbDB_DataHandle columnHandle
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long columnPosition - input
Specifies the relative position of the column.

cwbDB_DataHandle columnHandle - input
Handle to a data object which will contain the base column name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage:

Chapter 5. iSeries Access for Windows Database Programming 659

|

|

|

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|
|

|

|
|

|
|

|

cwbDB_ClearMember

Purpose: Clear data from a member in an iSeries server file.

Syntax:

unsigned int CWB_ENTRY cwbDB_ClearMember(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for List or SQL requests. The cwbDB_ClearMember API should be called
after setting the desired values in the request. This API will result in a request datastream flowing to the
iSeries server and if requested, a response to the request flowing back to the client.

A call to cwbDB_ReturnHostErrorInfo is needed in order determine the success of the operation for this
API. Calling cwbDB_ReturnHostErrorInfo prior to calling this API will result in a synchronous operation
(the application will not get control back until the result is returned to the PC from the iSeries server).

660 iSeries: iSeries Access for Windows Programming

cwbDB_GetBaseSchemaName

Purpose: Returns the base schema name, if it exists, for a column of data.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetBaseSchemaName(
cwbDB_FormatHandle format,
unsigned long columnPosition
cwbDB_DataHandle schemaHandle
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long columnPosition - input
Specifies the relative position of the column.

cwbDB_DataHandle schemaHandle - input
Handle to a data object which will contain the extended schema name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage:

Chapter 5. iSeries Access for Windows Database Programming 661

cwbDB_GetBaseTableName

Purpose: Returns the base table name, if it exists, for a column of data.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetBaseTableName(
cwbDB_FormatHandle format,
unsigned long columnPosition
cwbDB_DataHandle tableHandle
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long columnPosition - input
Specifies the relative position of the column.

cwbDB_DataHandle tableHandle - input
Handle to a data object which will contain the base table name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage:

662 iSeries: iSeries Access for Windows Programming

|

|

|

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|
|

|

|
|

|
|

|

cwbDB_ClearPackage

Purpose: Clear all statements from an SQL package.

Syntax:

unsigned int CWB_ENTRY cwbDB_ClearPackage(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests. The cwbDB_ClearPackage API should be
called after setting the desired values in the request. This API will result in a request datastream flowing to
the iSeries server and if requested, a response to the request flowing back to the client.

A call to cwbDB_ReturnHostErrorInfo is needed in order determine the success of the operation for this
API. Calling cwbDB_ReturnHostErrorInfo prior to calling this API will result in a synchronous operation
(the application will not get control back until the result is returned to the PC from the iSeries server).

Chapter 5. iSeries Access for Windows Database Programming 663

cwbDB_Close

Purpose: Close an open cursor.

Syntax:

unsigned int CWB_ENTRY cwbDB_Close(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests. The cwbDB_Close API should be called after
setting the desired values in the request. This API will result in a request datastream flowing to the iSeries
server and if requested, a response to the request flowing back to the client.

664 iSeries: iSeries Access for Windows Programming

cwbDB_Commit

Purpose: Perform a commit operation to commit a unit of work.

Syntax:

unsigned int CWB_ENTRY cwbDB_Commit(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests. The cwbDB_Commit API should be called
after setting the desired values in the request. This API will result in a request datastream flowing to the
iSeries server and if requested, a response to the request flowing back to the client.

Chapter 5. iSeries Access for Windows Database Programming 665

cwbDB_Connect

Purpose: Perform a Distributed Relational Database Architecture™ (DRDA) connection management
function. This API is used to establish and switch between connections to other Relational Databases.

Syntax:

unsigned int CWB_ENTRY cwbDB_Connect(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests. The cwbDB_Connect API should be called
after setting the desired values in the request. This API will result in a request datastream flowing to the
iSeries server and if requested, a response to the request flowing back to the client.

A call to either cwbDB_ReturnHostErrorInfo or cwbDB_ReturnSQLCA prior to this call will allow an
application to determine the success of the API operation.

666 iSeries: iSeries Access for Windows Programming

cwbDB_CreateCatalogRequestHandle

Purpose: Allocate a handle to a database request. This handle will be used on subsequent API calls that
request object information.

Syntax:

unsigned int CWB_ENTRY cwbDB_CreateCatalogRequestHandle(
cwbDB_ConnectionHandle connection,
cwbDB_RequestHandle *request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to the connection which will be used when servicing the request.

cwbDB_RequestHandle *request - output
Pointer to a cwbDB_RequestHandle where the handle of the Request will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: None

Chapter 5. iSeries Access for Windows Database Programming 667

cwbDB_CreateConnectionHandle

Purpose: Allocate a handle to an iSeries database access server.

Syntax:

unsigned int CWB_ENTRY cwbDB_CreateConnectionHandle(
char *systemName,
cwbDB_ConnectionHandle *connection,
cwbSV_ErrHandle errorHandle);

Parameters:

char *systemName - input
Pointer to an ASCIIZ string that contains the name of the server from which database requests will be
serviced.

cwbDB_ConnectionHandle *connection - output
Pointer to a cwbDB_ConnectionHandle where the handle of the connection will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage: None

668 iSeries: iSeries Access for Windows Programming

cwbDB_CreateConnectionHandleEx

Purpose: Allocate a handle to an iSeries database access server.

Syntax:

unsigned int CWB_ENTRY cwbDB_CreateConnectionHandleEx(
cwbCO_SysHandle sysHandle,
cwbDB_ConnectionHandle* connection,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbCO_SysHandle sysHandle - input
Handle to a server object.

cwbDB_ConnectionHandle *connection - output
Pointer to a cwbDB_ConnectionHandle where the handle of the connection will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful Completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage: This function requires that you previously have issued cwbCO_CreateSystem.

Chapter 5. iSeries Access for Windows Database Programming 669

cwbDB_CreateDataFormatHandle

Purpose: Allocate a handle to a description of SQL data.

Syntax:

unsigned int CWB_ENTRY cwbDB_CreateDataFormatHandle(
cwbDB_ConnectionHandle connection,
cwbDB_FormatHandle *format,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server

cwbDB_FormatHandle *format - output
Pointer to a cwbDB_FormatHandle where the handle of the data format will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

670 iSeries: iSeries Access for Windows Programming

cwbDB_CreateDataHandle

Purpose: Allocate a handle to a data object.

Syntax:

unsigned int CWB_ENTRY cwbDB_CreateDataHandle(
cwbDB_DataHandle *dataHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_DataHandle *dataHandle - output
Pointer to a cwbDB_DataHandle where the handle of a data object will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage: The cwbDB_CreateDataHandle is used prior to requesting various pieces of information to be
returned to an application. In general, if the information being requested has a varying length, the
information will be returned using a data handle. This mechanism moves the responsibility of allocating the
memory that is to contain the data from the calling application to the API. When finished with the data
handle, the cwbDB_DeleteDataHandle API should be called to free any resources that are associated
with the data handle.

Chapter 5. iSeries Access for Windows Database Programming 671

cwbDB_CreateDuplicateFile

Purpose: Create a file based on existing file.

Syntax:

unsigned int CWB_ENTRY cwbDB_CreateDuplicateFile(
cwbDB_RequestHandle request,
cwb_Boolean copyDataIndicator,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwb_Boolean copyDataIndicator - input
Boolean value that indicates whether the data from the base file is to be copied into the duplicate file.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: Use one of the defined values for the copyDataIndicator:

CWBDB_DO_NOT_COPY_DATA

CWBDB_COPY_DATA

This API is not valid for List or SQL requests. The cwbDB_CreateDuplicateFile API should be called after
setting the desired values in the request. This API will result in a request datastream flowing to the iSeries
server and if requested, a response to the request flowing back to the client.

A call to cwbDB_ReturnHostErrorInfo is needed in order determine the success of the operation for this
API. Calling cwbDB_ReturnHostErrorInfo prior to calling this API will result in a synchronous operation
(the application will not get control back until the result is returned to the PC from the iSeries server).

672 iSeries: iSeries Access for Windows Programming

cwbDB_CreateNDBRequestHandle

Purpose: Allocate a handle to a database request. This handle will be used on subsequent API calls that
request operations to be performed with iSeries file objects.

Syntax:

unsigned int CWB_ENTRY cwbDB_CreateNDBRequestHandle(
cwbDB_ConnectionHandle connection,
cwbDB_RequestHandle *request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to the connection which will be used when servicing the request.

cwbDB_RequestHandle *request - output
Pointer to a cwbDB_RequestHandle where the handle of the Request will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: None

Chapter 5. iSeries Access for Windows Database Programming 673

cwbDB_CreatePackage

Purpose: Create an SQL package for preparing statements.

Syntax:

unsigned int CWB_ENTRY cwbDB_CreatePackage(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests. The cwbDB_CreatePackage API should be
called after setting the desired values in the request. This API will result in a request datastream flowing to
the iSeries server and if requested, a response to the request flowing back to the client.

674 iSeries: iSeries Access for Windows Programming

cwbDB_CreateParameterMarkerFormatHandle

Purpose: Allocate a handle to a description of SQL parameter marker data.

Syntax:

unsigned int CWB_ENTRY cwbDB_CreateParameterMarkerFormatHandle(
cwbDB_ConnectionHandle connection,
cwbDB_FormatHandle *format,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server

cwbDB_FormatHandle *format - output
Pointer to a cwbDB_FormatHandle where the handle of the parameter marker format will be
returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

Chapter 5. iSeries Access for Windows Database Programming 675

cwbDB_CreateSourcePhysicalFile

Purpose: Create a source file on the iSeries server.

Syntax:

unsigned int CWB_ENTRY cwbDB_CreateSourcePhysicalFile(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for List or SQL requests. The cwbDB_CreateSourcePhysicalFile API
should be called after setting the desired values in the request. This API will result in a request datastream
flowing to the iSeries server and if requested, a response to the request flowing back to the client.

A call to cwbDB_ReturnHostErrorInfo is needed in order determine the success of the operation for this
API. Calling cwbDB_ReturnHostErrorInfo prior to calling this API will result in a synchronous operation
(the application will not get control back until the result is returned to the PC from the iSeries server).

676 iSeries: iSeries Access for Windows Programming

cwbDB_CreateSQLRequestHandle

Purpose: Allocate a handle to a database request. This handle will be used on subsequent API calls that
request SQL services.

Syntax:

unsigned int CWB_ENTRY cwbDB_CreateSQLRequestHandle(
cwbDB_ConnectionHandle connection,
cwbDB_RequestHandle *request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to the connection which will be used when servicing the request.

cwbDB_RequestHandle *request - output
Pointer to a cwbDB_RequestHandle where the handle of the Request will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: None

Chapter 5. iSeries Access for Windows Database Programming 677

cwbDB_DeleteCatalogRequestHandle

Purpose: Deallocates a request handle.

Syntax:

unsigned int CWB_ENTRY cwbDB_DeleteCatalogRequestHandle(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

678 iSeries: iSeries Access for Windows Programming

cwbDB_DeleteConnectionHandle

Purpose: Deallocates the handle to the iSeries server.

Syntax:

unsigned int CWB_ENTRY cwbDB_DeleteConnectionHandle(
cwbDB_ConnectionHandle connection,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: None

Chapter 5. iSeries Access for Windows Database Programming 679

cwbDB_DeleteDataFormatHandle

Purpose: Deallocates a format handle.

Syntax:

unsigned int CWB_ENTRY cwbDB_DeleteDataFormatHandle(
cwbDB_FormatHandle format,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

680 iSeries: iSeries Access for Windows Programming

cwbDB_DeleteDataHandle

Purpose: Deallocates a data handle.

Syntax:

unsigned int CWB_ENTRY cwbDB_DeleteDataHandle(
cwbDB_DataHandle dataHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_DataHandle dataHandle - input
Handle to a data object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

Chapter 5. iSeries Access for Windows Database Programming 681

cwbDB_DeleteFile

Purpose: Delete a file from an iSeries server.

Syntax:

unsigned int CWB_ENTRY cwbDB_DeleteFile(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for List or SQL requests. The cwbDB_DeleteFile API should be called after
setting the desired values in the request. This API will result in a request datastream flowing to the iSeries
server and if requested, a response to the request flowing back to the client.

A call to cwbDB_ReturnHostErrorInfo is needed in order determine the success of the operation for this
API. Calling cwbDB_ReturnHostErrorInfo prior to calling this API will result in a synchronous operation
(the application will not get control back until the result is returned to the PC from the iSeries server).

682 iSeries: iSeries Access for Windows Programming

cwbDB_DeleteNDBRequestHandle

Purpose: Deallocates a request handle.

Syntax:

unsigned int CWB_ENTRY cwbDB_DeleteNDBRequestHandle(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

Chapter 5. iSeries Access for Windows Database Programming 683

cwbDB_DeletePackage

Purpose: Delete an SQL package.

Syntax:

unsigned int CWB_ENTRY cwbDB_DeletePackage(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests. The cwbDB_DeletePackage API should be
called after setting the desired values in the request. This API will result in a request datastream flowing to
the iSeries server and if requested, a response to the request flowing back to the client.

A call to cwbDB_ReturnHostErrorInfo is needed in order determine the success of the operation for this
API. Calling cwbDB_ReturnHostErrorInfo prior to calling this API will result in a synchronous operation
(the application will not get control back until the result is returned to the PC from the iSeries server).

684 iSeries: iSeries Access for Windows Programming

cwbDB_DeleteParameterMarkerFormatHandle

Purpose: Deallocates a format handle.

Syntax:

unsigned int CWB_ENTRY cwbDB_DeleteParameterMarkerFormatHandle(
cwbDB_FormatHandle format,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a parameter marker format object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

Chapter 5. iSeries Access for Windows Database Programming 685

cwbDB_DeleteSQLRequestHandle

Purpose: Deallocates a request handle.

Syntax:

unsigned int CWB_ENTRY cwbDB_DeleteSQLRequestHandle(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

686 iSeries: iSeries Access for Windows Programming

cwbDB_Describe

Purpose: Describes a prepared statement. If there is no result set, no column descriptions will be
returned.

Syntax:

unsigned int CWB_ENTRY cwbDB_Describe(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests. The cwbDB_Describe API should be called
after setting the desired values in the request. This API will result in a request datastream flowing to the
iSeries server and if requested, a response to the request flowing back to the client.

A call to cwbDB_ReturnDataFormat is needed in order get the description of the data. Calling
cwbDB_ReturnDataFormat prior to calling this API will result in a synchronous operation (the application
will not get control back until the result is returned to the PC from the iSeries server).

Chapter 5. iSeries Access for Windows Database Programming 687

cwbDB_DescribeParameterMarkers

Purpose: Describes the parameter markers for a prepared statement. If the statement is an ″UPDATE
WHERE CURRENT OF CURSOR″, the cursor must be open before the describe parameter markers can
be performed.

Syntax:

unsigned int CWB_ENTRY cwbDB_DescribeParameterMarkers(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests. The cwbDB_Describe API should be called
after setting the desired values in the request. This API will result in a request datastream flowing to the
iSeries server and if requested, a response to the request flowing back to the client.

A call to cwbDB_ReturnParameterMarkerFormat is needed in order get the description of the parameter
markers. Calling cwbDB_ReturnParameterMarkerFormat prior to calling this API will result in a
synchronous operation (the application will not get control back until the result is returned to the PC from
the iSeries server).

688 iSeries: iSeries Access for Windows Programming

cwbDB_DynamicStreamFetch

Purpose: This API will prepare a select statement, open a cursor and fetch all resulting data. The row
data will be returned to the application in blocks, the size of which will be optimized for the communication
mechanism. To get additional blocks, use the cwbDB_MoreStreamData API.

Syntax:

unsigned int CWB_ENTRY cwbDB_DynamicStreamFetch(
cwbDB_RequestHandle request,
char *statementText,
cwbDB_DataHandle data,
cwbDB_DataHandle indicators,
cwbDB_FormatHandle formatHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *statementText - input
Pointer to an ASCIIZ string containing select text.

cwbDB_DataHandle data - input
Handle to a data object into which the returned data will be placed.

cwbDB_DataHandle indicators - input
Handle to a data object into which the returned data indicators will be placed. There is one indicator
value for each column value of each row of data that is returned from the iSeries server. The indicator
will be a negative number if the value for the column is NULL. If an error occurs while converting the
data, a character ’E’ will be placed in that column’s indicator field.

cwbDB_FormatHandle formatHandle - input
Handle to a data format that contains a description of the returned data.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests.

Chapter 5. iSeries Access for Windows Database Programming 689

cwbDB_EndStreamFetch

Purpose: Cancel the stream fetch operation before all the data has been returned.

Syntax:

unsigned int CWB_ENTRY cwbDB_EndStreamFetch(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests.

690 iSeries: iSeries Access for Windows Programming

cwbDB_Execute

Purpose: Execute a prepared SQL statement.

Syntax:

unsigned int CWB_ENTRY cwbDB_Execute(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests. The cwbDB_Execute API should be called
after setting the desired values in the request. This API will result in a request datastream flowing to the
iSeries server and if requested, a response to the request flowing back to the client.

Chapter 5. iSeries Access for Windows Database Programming 691

cwbDB_ExecuteImmediate

Purpose: Prepare and execute an SQL statement.

Syntax:

unsigned int CWB_ENTRY cwbDB_ExecuteImmediate(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests. The cwbDB_ExecuteImmediate API should
be called after setting the desired values in the request. This API will result in a request datastream
flowing to the iSeries server and if requested, a response to the request flowing back to the client.

692 iSeries: iSeries Access for Windows Programming

cwbDB_ExtendedDynamicStreamFetch

Purpose: This API will perform a stream fetch (see previous API) for a statement that is already prepared
in an SQL package.

Syntax:

unsigned int CWB_ENTRY cwbDB_ExtendedDynamicStreamFetch(
cwbDB_RequestHandle request,
char *libraryName,
char *packageName,
char *statementName,
cwbDB_DataHandle data,
cwbDB_DataHandle indicators,
cwbDB_FormatHandle formatHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *libraryName - input
Pointer to an ASCIIZ string containing library name.

char *packageName - input
Pointer to an ASCIIZ string containing package name.

char *statementName - input
Pointer to an ASCIIZ string containing statement name.

cwbDB_DataHandle data - input
Handle to a data object into which the returned data will be placed.

cwbDB_DataHandle indicators - input
Handle to a data object into which the returned data indicators will be placed. There is one indicator
value for each column value of each row of data that is returned from the iSeries server. The indicator
will be a negative number if the value for the column is NULL. If an error occurs while converting the
data, a character ’E’ will be placed in that column’s indicator field.

cwbDB_FormatHandle formatHandle - input
Handle to a data format that contains a description of the returned data.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests.

Chapter 5. iSeries Access for Windows Database Programming 693

cwbDB_Fetch

Purpose: Fetch a row or block of rows (this is controlled by the cwbDB_SetBlockCount API) from an
open cursor.

Syntax:

unsigned int CWB_ENTRY cwbDB_Fetch(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests. The cwbDB_Fetch API should be called after
setting the desired values in the request. This API will result in a request datastream flowing to the iSeries
server and if requested, a response to the request flowing back to the client. Please note that fetched data
will not be returned unless the data is requested (using the cwbDB_ReturnData API).

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and
subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API
call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

694 iSeries: iSeries Access for Windows Programming

cwbDB_GetColumnCCSID

Purpose: Returns the Coded Character Set Identifier (CCSID) for a specified column of data.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetColumnCCSID(
cwbDB_FormatHandle format,
unsigned long location,
unsigned long columnPosition,
unsigned short *dataCCSID,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long location - input
Indicates whether the server or local information is to be returned.

unsigned long columnPosition - input
Specifies the relative position of the column.

unsigned short *dataCCSID - output
Pointer to a short integer to contain the CCSID for the specified column.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the location parameter, use one of the defined values:

CWBDB_SYSTEM

CWBDB_LOCAL

Chapter 5. iSeries Access for Windows Database Programming 695

cwbDB_GetColumnCount

Purpose: Returns the number of columns of data that are described by the data format.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetColumnCount(
cwbDB_FormatHandle format,
unsigned long *columnCount,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long *columnCount - output
Pointer to an unsined long integer which will contain the column count.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

696 iSeries: iSeries Access for Windows Programming

cwbDB_GetColumnLength

Purpose: Returns the length (in bytes) of the data for a specified column.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetColumnLength(
cwbDB_FormatHandle format,
unsigned long location,
unsigned long columnPosition,
unsigned long *dataLength,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long location - input
Indicates whether the server or local information is to be returned.

unsigned long columnPosition - input
Specifies the relative position of the column.

unsigned long *dataLength - output
Pointer to short integer to contain the data length.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the location parameter, use one of the defined values:

CWBDB_SYSTEM

CWBDB_LOCAL

Chapter 5. iSeries Access for Windows Database Programming 697

cwbDB_GetColumnName

Purpose: Returns the column name (if it exists) for a column of data.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetColumnName(
cwbDB_FormatHandle format,
unsigned long columnPosition,
cwbDB_DataHandle columnHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long columnPosition - input
Specifies the relative position of the column.

cwbDB_DataHandle columnHandle - input
handle to a data object which will contain the column name

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

698 iSeries: iSeries Access for Windows Programming

cwbDB_GetColumnPrecision

Purpose: Returns the precision for a specified column of data.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetColumnPrecision(
cwbDB_FormatHandle format,
unsigned long location,
unsigned long columnPosition,
unsigned short *dataPrecision,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long location - input
Indicates whether the server or local information is to be returned.

unsigned long columnPosition - input
Specifies the relative position of the column.

unsigned short *dataPrecision - output
Pointer to short integer to contain the data precision.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the location parameter, use one of the defined values:

CWBDB_SYSTEM

CWBDB_LOCAL

Chapter 5. iSeries Access for Windows Database Programming 699

cwbDB_GetColumnScale

Purpose: Returns the scale for a specified column of data.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetColumnScale(
cwbDB_FormatHandle format,
unsigned long location,
unsigned long columnPosition,
unsigned short *dataScale,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long location - input
Indicates whether the server or local information is to be returned.

unsigned long columnPosition - input
Specifies the relative position of the column.

unsigned short *dataScale - output
Pointer to short integer to contain the data scale.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the location parameter, use one of the defined values:

CWBDB_SYSTEM

CWBDB_LOCAL

700 iSeries: iSeries Access for Windows Programming

cwbDB_GetColumnType

Purpose: Returns the data type for a specified column of data.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetColumnType(
cwbDB_FormatHandle format,
unsigned long location,
unsigned long columnPosition,
signed short *dataType,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long location - input
Indicates whether the server or local information is to be returned.

unsigned long columnPosition - input
Specifies the relative position of the column.

signed short *dataType - output
Short integer which will contain the data type.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the location parameter, use one of the defined values:

CWBDB_SYSTEM

CWBDB_LOCAL

If the server information is requested, the type returned is the SQL type. If the local information is
requested, see the defined values:

CWBDB_PCNOCONVERSION

CWBDB_PCSTRING

CWBDB_PCLONG

CWBDB_PCSHORT

CWBDB_PCFLOAT

CWBDB_PCDOUBLE

CWBDB_PCPACKED

CWBDB_PCZONED

CWBDB_PCINVALIDTYPE

CWBDB_PCVARSTRING

CWBDB_PCGRAPHIC

Chapter 5. iSeries Access for Windows Database Programming 701

CWBDB_PCVARGRAPHIC

702 iSeries: iSeries Access for Windows Programming

cwbDB_GetCommitmentControl

Purpose: Get the current commitment control level.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetCommitmentControl(
cwbDB_ConnectionHandle connection,
unsigned short *commitmentLevel,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server

unsigned short *commitmentLevel - output
Pointer to an unsigned short where the current value will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: The cwbDB_StartServer API must be called before this API can return valid data. The value that
is returned will be one of the following:

CWBDB_NONE

CWBDB_CURSOR_STABILITY

CWBDB_CHANGE

CWBDB_ALL

Chapter 5. iSeries Access for Windows Database Programming 703

cwbDB_GetConversionIndicator

Purpose: Gets the indicator that says whether data is to be converted between the client and host
format.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetConversionIndicator(
cwbDB_FormatHandle format,
cwb_Boolean *conversionIndicator,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

cwb_Boolean *conversionIndicator - output
CWB_FALSE indicates that no conversion CWB_TRUE indicates conversion

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

704 iSeries: iSeries Access for Windows Programming

cwbDB_GetData

Purpose: Get the requested data from the host. This data can include the selected data, data format,
host return code, and SQLCA.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetData(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: The cwbDB_GetData API should be called after requesting the desired data (using the
cwbDB_Return* APIs). This API will result in a request datastream flowing to the iSeries server and if
requested, a response to the request flowing back to the client.

Chapter 5. iSeries Access for Windows Database Programming 705

cwbDB_GetDataLength

Purpose: Returns the length of the data contained in a data object.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetDataLength(
cwbDB_DataHandle dataHandle,
unsigned long *dataLength,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_DataHandle dataHandle - input
Handle to a data object.

unsigned long *dataLength - output
Unsigned long integer to contain the length of the data.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

706 iSeries: iSeries Access for Windows Programming

cwbDB_GetDataPointer

Purpose: Returns the address of the data in a data object.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetDataPointer(
cwbDB_DataHandle dataHandle,
char **data,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_DataHandle dataHandle - input
Handle to a data object.

char **data - output
Pointer to pointer to the data buffer.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

Chapter 5. iSeries Access for Windows Database Programming 707

cwbDB_GetDateFormat

Purpose: Get the current date format. See cwbDB_SetDateFormat for additional information about date
formats.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetDateFormat(
cwbDB_ConnectionHandle connection,
unsigned short *dateFormat,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

unsigned short *dateFormat - output
Pointer to an unsigned short where the current date format value will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

CWBDB_INVALID_ARG_API
Value specified is not in range.

Usage: The cwbDB_StartServer API must be called before this API can return valid data. The value that
is returned will be one of the following:
Format name Date format constant Value

--------------- --------------------- ------
Julian CWBDB_DATE_FMT_JUL 0
month day year CWBDB_DATE_FMT_MDY 1
day month year CWBDB_DATE_FMT_DMY 2
year month day CWBDB_DATE_FMT_YMD 3
USA CWBDB_DATE_FMT_USA 4
ISO CWBDB_DATE_FMT_ISO 5
IBM Japan CWBDB_DATE_FMT_JIS 6
IBM Europe CWBDB_DATE_FMT_EUR 7

708 iSeries: iSeries Access for Windows Programming

cwbDB_GetDateSeparator

Purpose: Get the current date separator. See cwbDB_SetDateSeparator for additional information
about date separators.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetDateSeparator(
cwbDB_ConnectionHandle connection,
unsigned short *dateSeparator,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server

unsigned short *dateSeparator - output
Pointer to an unsigned short where the current date data separator value will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: The cwbDB_StartServer API must be called before this API can return valid data. The value that
is returned will be one of the following:
Date separator Date separator constant
--------------- ------------------------
Slash CWBDB_DATE_SEP_SLASH
Dash CWBDB_DATE_SEP_DASH
Period CWBDB_DATE_SEP_PERIOD
Comma CWBDB_DATE_SEP_COMMA
Blank CWBDB_DATE_SEP_BLANK

Chapter 5. iSeries Access for Windows Database Programming 709

cwbDB_GetDecimalSeparator

Purpose: Get the current decimal separator. See cwbDB_SetDecimalSeparator for additional
information about decimal separators.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetDecimalSeparator(
cwbDB_ConnectionHandle connection,
unsigned short *decimalSeparator,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server

unsigned short *decimalSeparator - output
Pointer to an unsigned short where the current decimal separator value will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: The cwbDB_StartServer API must be called before this API can return valid data. The value that
is returned will be one of the following:
Time separator Time separator constant

--------------- ------------------------
Period CWBDB_DECIMAL_SEP_PERIOD
Comma CWBDB_DECIMAL_SEP_COMMA

710 iSeries: iSeries Access for Windows Programming

cwbDB_GetExtendedColumnInfo

Purpose: Returns the fixed-length portion of the extended column information.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetExtendedColumnInfo(
cwbDB_FormatHandle format ,
unsigned long columnPosition
unsigned long *columnInfo
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long columnPosition - input
Specifies the relative position of the column.

unsigned long *columnInfo - output
Pointer to 4-byte integer to contain the extended column information.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage:

Chapter 5. iSeries Access for Windows Database Programming 711

|

|

|

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|
|

|

|
|

|
|

|

cwbDB_GetIgnoreDecimalDataError

Purpose: Get the current setting for the decimal data error indicator.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetIgnoreDecimalDataError(
cwbDB_ConnectionHandle connection,
unsigned short *ignoreDecimalError,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server

unsigned short *ignoreDecimalError - output
Pointer to an unsigned short where the current value will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: The cwbDB_StartServer API must be called before this API can return valid data. The value
returned will be one of the following:

CWBDB_IGNORE_ERROR

CWBDB_CORRECT_ERROR

712 iSeries: iSeries Access for Windows Programming

cwbDB_GetLabelName

Purpose: Returns the label name (if it exists) for a column of data.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetLabelName(
cwbDB_FormatHandle format,
unsigned long columnPosition
cwbDB_DataHandle labelHandle
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to an extended format object.

unsigned long columnPosition - input
Specifies the relative position of the column.

cwbDB_DataHandle labelHandle - input
Handle to a data object which will contain the label name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage:

Chapter 5. iSeries Access for Windows Database Programming 713

cwbDB_GetLOBLocator

Purpose: Returns the LOB Locator for a specified parameter.

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long parameterPosition - input
Specifies the relative position of the parameter.

unsigned long *dataLocator - output
Pointer to a long integer to contain the locator for the specified parameter.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object.It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

714 iSeries: iSeries Access for Windows Programming

cwbDB_GetLOBMaxSize

Purpose: Returns the LOB Maximum size for a specified parameter.

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long columnPosition - input
Specifies the relative position of the column

unsigned long *maxSize - output
Pointer to a long integer to contain the LOB maximum size for the specified parameter.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object.It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Chapter 5. iSeries Access for Windows Database Programming 715

cwbDB_GetNamingConvention

Purpose: Get the naming convention (SQL or native iSeries server) that is in effect for the specified
connection.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetNamingConvention(
cwbDB_ConnectionHandle connection,
unsigned short *namingConvention,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

unsigned short *namingConvention - output
Pointer to an unsigned short where the current naming convention will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: The cwbDB_StartServer API must be called before this API can return valid data. The value that
is returned will be one of the following:

CWBDB_PERIOD_NAME_CONV

CWBDB_SLASH_NAME_CONV

716 iSeries: iSeries Access for Windows Programming

cwbDB_GetParameterCCSID

Purpose: Returns the Coded Character Set Identifier (CCSID) for a specified parameter.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetParameterCCSID(
cwbDB_FormatHandle format,
unsigned long location,
unsigned long parameterPosition,
unsigned short *dataCCSID,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long location - input
Indicates whether the server or local information is to be returned.

unsigned long parameterPosition - input
Specifies the relative position of the parameter.

unsigned short *dataCCSID - output
Pointer to a short integer to contain the CCSID for the specified parameter.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the location parameter, use one of the defined values:

CWBDB_SYSTEM

CWBDB_LOCAL

Chapter 5. iSeries Access for Windows Database Programming 717

cwbDB_GetParameterCount

Purpose: Returns the number of parameters that are described by the data format.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetParameterCount(
cwbDB_FormatHandle format,
unsigned long *parameterCount,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long *parameterCount - output
Pointer to an unsined long integer which will contain the parameter count.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

718 iSeries: iSeries Access for Windows Programming

cwbDB_GetParameterDirection

Purpose: Returns the parameter direction.

Parameters:

cwbDB_FormatHandle format - input
Handle to a parameter marker format object.

unsigned long parameterPosition - input
Specifies the relative position of the parameter.

unsigned short* columnDirection
Receives the column direction, which will be one of the following: CWBDB_PM_INPUT_ONLY,
CWBDB_PM_INPUT_OUTPUT, or CWBDB_PM_OUTPUT_ONLY.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object.It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Chapter 5. iSeries Access for Windows Database Programming 719

cwbDB_GetParameterLength

Purpose: Returns the length (in bytes) of the data for a specified parameter.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetParameterLength(
cwbDB_FormatHandle format,
unsigned long location,
unsigned long parameterPosition,
unsigned long *dataLength,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long location - input
Indicates whether the server or local information is to be returned.

unsigned long parameterPosition - input
Specifies the relative position of the parameter.

unsigned long *dataLength - output
Pointer to short integer to contain the data length.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the location parameter, use one of the defined values:

CWBDB_SYSTEM

CWBDB_LOCAL

720 iSeries: iSeries Access for Windows Programming

cwbDB_GetParameterName

Purpose: Returns the parameter name (if it exists) for a column of data.

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long parameterPosition - input
Specifies the relative position of the parameter

cwbDB_DataHandle parameterHandle - input
Handle to a data object which will contain the parameter name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object.It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Chapter 5. iSeries Access for Windows Database Programming 721

cwbDB_GetParameterPrecision

Purpose: Returns the precision for a specified parameter.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetParameterPrecision(
cwbDB_FormatHandle format,
unsigned long location,
unsigned long parameterPosition,
unsigned short *dataPrecision,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long location - input
Indicates whether the server or local information is to be returned.

unsigned long parameterPosition - input
Specifies the relative position of the parameter.

unsigned short *dataPrecision - output
Pointer to short integer to contain the data precision.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the location parameter, use one of the defined values:

CWBDB_SYSTEM

CWBDB_LOCAL

722 iSeries: iSeries Access for Windows Programming

cwbDB_GetParameterScale

Purpose: Returns the scale for a specified parameter.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetParameterScale(
cwbDB_FormatHandle format,
unsigned long location,
unsigned long parameterPosition,
unsigned short *dataScale,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long location - input
Indicates whether the server or local information is to be returned.

unsigned long parameterPosition - input
Specifies the relative position of the parameter.

unsigned short *dataScale - output
Pointer to short integer to contain the data scale.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the location parameter, use one of the defined values:

CWBDB_SYSTEM

CWBDB_LOCAL

Chapter 5. iSeries Access for Windows Database Programming 723

cwbDB_GetParameterType

Purpose: Returns the data type for a specified parameter.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetParameterType(
cwbDB_FormatHandle format,
unsigned long location,
unsigned long parameterPosition,
signed short *dataType,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long location - input
Indicates whether the server or local information is to be returned.

unsigned long parameterPosition - input
Specifies the relative position of the parameter.

signed short *dataType - output
Short integer which will contain the data type.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the location parameter, use one of the defined values:

CWBDB_SYSTEM

CWBDB_LOCAL

If the server information is requested, the type returned is the SQL type. If the local information is
requested, see the defined values:

CWBDB_PCNOCONVERSION

CWBDB_PCSTRING

CWBDB_PCLONG

CWBDB_PCSHORT

CWBDB_PCFLOAT

CWBDB_PCDOUBLE

CWBDB_PCPACKED

CWBDB_PCZONED

CWBDB_PCINVALIDTYPE

CWBDB_PCVARSTRING

CWBDB_PCGRAPHIC

724 iSeries: iSeries Access for Windows Programming

CWBDB_PCVARGRAPHIC

Chapter 5. iSeries Access for Windows Database Programming 725

cwbDB_GetRelationalDBName

Purpose: Get the current relational database name (usually system or server name).

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

char * relationalDBName - output
Pointer to buffer 18 characters long to receive the database name (Not null terminated).

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: The cwbDB_ApplyAttributes API must be called after cwbDB_SetAllowAddStatementToPackage
in order for the new value to take affect.

726 iSeries: iSeries Access for Windows Programming

cwbDB_SetRelationalDBName

Purpose: Set the current relational database name.

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to a request object.

char * relationalDBName - input
Pointer to an 18 character string containing the relational database name. A special value of *SYSBAS
indicates that a conneciton should be made to *SYSBAS RDB. This value should be used if a
connection to the server ASP (SYSBAS) RDB is desired. Note: This name should be blank padded to
18 characters.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

CWBDB_FUNCTION_NOT_VALID_AFTER_CONNECT
Cannot change independent disk pool (independent ASP) after connected.

CWB_API_ERROR
General API failure.

Usage: If a call to cwbDB_SetRelationalDBName has not been made then the default database is used.
The RDB can only be set before connecting to the server. This call is used to switch to a specific
independent disk pool (independent ASP) while connecting the server.

Chapter 5. iSeries Access for Windows Database Programming 727

|

|

|

|
|

|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|
|

cwbDB_GetRowSize

Purpose: Returns the size (in bytes) of the data described by the data format.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetRowSize(
cwbDB_FormatHandle format,
unsigned long location,
unsigned long *rowSize,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long location - input
Indicates whether the server or local information is to be returned.

unsigned long *rowSize - output
Pointer to an unsigned long integer which will contain the row size.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: The cwbDB_StartServer API must be called before this API can return valid data.

728 iSeries: iSeries Access for Windows Programming

cwbDB_GetServerFunctionalLevel

Purpose: Get the current server functional level.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetServerFunctionalLevel(
cwbDB_ConnectionHandle connection,
char *serverFunctionalLevel,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

char * serverFunctionalLevel - output
Pointer to buffer 11 characters long to receive the server’s functional level.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: The cwbDB_StartServer API must be called before this API can return valid data.

Chapter 5. iSeries Access for Windows Database Programming 729

cwbDB_GetSizeOfParameters

Purpose: Returns the size (in bytes) of the all data described by parameter marker format.

Parameters:

cwbDB_FormatHandle format - input
Handle to a parameter marker format object.

unsigned long *bufferSize - output
Pointer to an unsigned long integer which will contain the parameter buffer size.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object.It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

730 iSeries: iSeries Access for Windows Programming

cwbDB_GetSizeOfInputParameters

Purpose: Returns the size (in bytes) of the input data described by parameter marker format.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetSizeOfInputParameters(
cwbDB_FormatHandle format,
unsigned long location,
unsigned long *inputSize,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a parameter marker format object.

unsigned long location - input
Indicates whether the server or local information is to be returned.

unsigned long *inputSize - output
Pointer to an unsigned long integer which will contain the row size.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the location parameter, use one of the defined values:

CWBDB_SYSTEM

CWBDB_LOCAL

Chapter 5. iSeries Access for Windows Database Programming 731

cwbDB_GetSizeOfOutputParameters

Purpose: Returns the size (in bytes) of the output data described by parameter marker format.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetSizeOfOutputParameters(
cwbDB_FormatHandle format,
unsigned long location,
unsigned long *inputSize,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a parameter marker format object.

unsigned long location - input
Indicates whether the server or local information is to be returned.

unsigned long *outputSize - output
Pointer to an unsigned long integer which will contain the row size.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the location parameter, use one of the defined values:

CWBDB_SYSTEM

CWBDB_LOCAL

732 iSeries: iSeries Access for Windows Programming

cwbDB_GetTimeFormat

Purpose: Get the current time format. See cwbDB_SetTimeFormat for additional information about time
formats.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetTimeFormat(
cwbDB_ConnectionHandle connection,
unsigned short *timeFormat,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server

unsigned short *timeFormat - output
Pointer to an unsigned short where the current time format value will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: The cwbDB_StartServer API must be called before this API can return valid data. The value that
is returned will be one of the following:
Format name Time format constant
--------------- -----------------------
Hours minutes seconds CWBDB_TIME_FMT_HMS
USA CWBDB_TIME_FMT_USA
ISO CWBDB_TIME_FMT_ISO
IBM Europe CWBDB_TIME_FMT_EUR
IBM Japan CWBDB_TIME_FMT_JIS

Chapter 5. iSeries Access for Windows Database Programming 733

cwbDB_GetTimeSeparator

Purpose: Get the current time separator. See cwbDB_SetTimeSeparator for additional information
about time separators.

Syntax:

unsigned int CWB_ENTRY cwbDB_GetTimeSeparator(
cwbDB_ConnectionHandle connection,
unsigned short *timeSeparator,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server

unsigned short *timeSeparator - output
Pointer to an unsigned short where the current time separator value will be returned.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: The cwbDB_StartServer API must be called before this API can return valid data. The value that
is returned will be one of the following:
Time separator Time separator constant

--------------- ------------------------
Colon CWBDB_TIME_SEP_COLON
Period CWBDB_TIME_SEP_PERIOD
Comma CWBDB_TIME_SEP_COMMA
Blank CWBDB_TIME_SEP_BLANK

734 iSeries: iSeries Access for Windows Programming

cwbDB_IsParameterInput

Purpose: Returns a Boolean value indicating whether the parameter is input only.

Syntax:

unsigned int CWB_ENTRY cwbDB_IsParameterInput(
cwbDB_FormatHandle format,
unsigned long parameterPosition,
cwb_Boolean *parameterIsInput,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a parameter marker format object.

unsigned long parameterPosition - input
Specifies the relative position of the parameter.

cwb_Boolean *parameterIsInput - output
Pointer to a Boolean indicating if the parameter is input only.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

Chapter 5. iSeries Access for Windows Database Programming 735

cwbDB_IsParameterInputOutput

Purpose: Returns a Boolean value indicating whether the parameter is input and output.

Syntax:

unsigned int CWB_ENTRY cwbDB_IsParameterInputOutput(
cwbDB_FormatHandle format,
unsigned long parameterPosition,
cwb_Boolean *parameterIsInputOutput,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a parameter marker format object.

unsigned long parameterPosition - input
Specifies the relative position of the parameter.

cwb_Boolean *parameterIsInputOutput - output
Pointer to a Boolean indicating if the parameter is input and output.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

736 iSeries: iSeries Access for Windows Programming

cwbDB_MoreStreamData

Purpose: This API will get the next block of stream fetch data.

Syntax:

unsigned int CWB_ENTRY cwbDB_MoreStreamData(
cwbDB_RequestHandle request,
cwbDB_DataHandle data,
cwbDB_DataHandle indicators,
cwbDB_FormatHandle formatHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbDB_DataHandle data - input
Handle to a data object into which the returned data will be placed.

cwbDB_DataHandle indicators - input
Handle to a data object into which the returned data indicators will be placed. There is one indicator
value for each column value of each row of data that is returned from the iSeries server. The indicator
will be a negative number if the value for the column is NULL. If an error occurs while converting the
data, a character ’E’ will be placed in that column’s indicator field.

cwbDB_FormatHandle formatHandle - input
Handle to a data format that contains a description of the returned data.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests.

Chapter 5. iSeries Access for Windows Database Programming 737

cwbDB_Open

Purpose: Open a cursor.

Syntax:

unsigned int CWB_ENTRY cwbDB_Open(
cwbDB_RequestHandle request,
unsigned char openOptions,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned char openOptions - input
Input value for open options indicator.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the openOptions, use the defined values

CWBDB_READ

CWBDB_WRITE

CWBDB_UPDATE

CWBDB_DELETE

CWBDB_OPEN_ALL - Provided for convenience

This API is not valid for NDB or catalog requests. The cwbDB_Open API should be called after setting the
desired values in the request. This API will result in a request datastream flowing to the iSeries server and
if requested, a response to the request flowing back to the client.

738 iSeries: iSeries Access for Windows Programming

cwbDB_OpenDescribeFetch

Purpose: This API combines the open, describe and fetch operations. This combined function is valuable
when the statement is already prepared (extended dynamic SQL).

Syntax:

unsigned int CWB_ENTRY cwbDB_OpenDescribeFetch(
cwbDB_RequestHandle request,
unsigned char openOptions,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned char openOptions - input
Input value for open options indicator.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the openOptions, use the defined values:

CWBDB_READ

CWBDB_WRITE

CWBDB_UPDATE

CWBDB_DELETE

CWBDB_OPEN_ALL - Provided for convenience

This API is not valid for NDB or catalog requests. The cwbDB_OpenDescribeFetch API should be called
after setting the desired values in the request. This API will result in a request datastream flowing to the
iSeries server and if requested, a response to the request flowing back to the client. Please note that
fetched data will not be returned unless the data is requested (using the cwbDB_ReturnData API).

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and
subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API
call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

Chapter 5. iSeries Access for Windows Database Programming 739

cwbDB_OverrideFile

Purpose: Override database file reference to another file/member.

Syntax:

unsigned int CWB_ENTRY cwbDB_OverrideFile(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for List or SQL requests. The cwbDB_OverRideFile API should be called
after setting the desired values in the request. This API will result in a request datastream flowing to the
iSeries server and if requested, a response to the request flowing back to the client.

740 iSeries: iSeries Access for Windows Programming

cwbDB_Prepare

Purpose: Prepares an SQL statement. If an SQL package has been set, this API will prepare a
statement into the package.

Syntax:

unsigned int CWB_ENTRY cwbDB_Prepare(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests. The cwbDB_Prepare API should be called
after setting the desired values in the request. This API will result in a request datastream flowing to the
iSeries server and if requested, a response to the request flowing back to the client.

Chapter 5. iSeries Access for Windows Database Programming 741

cwbDB_PrepareDescribe

Purpose: This API combines the prepare and describe operations. The advantage of using this API is
that the SQL component is called only once.

Syntax:

unsigned int CWB_ENTRY cwbDB_PrepareDescribe(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests. The cwbDB_PrepareDescribe API should be
called after setting the desired values in the request. This API will result in a request datastream flowing to
the iSeries server and if requested, a response to the request flowing back to the client.

A call to cwbDB_ReturnDataFormat is needed in order get the description of the data. Calling
cwbDB_ReturnDataFormat prior to calling this API will result in a synchronous operation (the application
will not get control back until the result is returned to the PC from the iSeries server).

742 iSeries: iSeries Access for Windows Programming

cwbDB_PrepareDescribeOpenFetch

Purpose: This API combines the prepare, describe, open, and fetch operations. By combining these
operations, performance will improve because only one call is made to the SQL component on the host.

Syntax:

unsigned int CWB_ENTRY cwbDB_PrepareDescribeOpenFetch(
cwbDB_RequestHandle request,
unsigned char openOptions,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned char openOptions - input
Input value for open options indicator.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the openOptions, use the defined values

CWBDB_READ

CWBDB_WRITE

CWBDB_UPDATE

CWBDB_DELETE

CWBDB_OPEN_ALL - Provided for convenience

This API is not valid for NDB or catalog requests. The cwbDB_PrepareDescribeOpenFetch API should
be called after setting the desired values in the request. This API will result in a request datastream
flowing to the iSeries server and if requested, a response to the request flowing back to the client. Please
note that fetched data will not be returned unless the data is requested (using the cwbDB_ReturnData
API).

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and
subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API
call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

Chapter 5. iSeries Access for Windows Database Programming 743

cwbDB_RemoveMember

Purpose: Remove a member from an iSeries file.

Syntax:

unsigned int CWB_ENTRY cwbDB_RemoveMember(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for List or SQL requests. The cwbDB_RemoveMember API should be called
after setting the desired values in the request. This API will result in a request datastream flowing to the
iSeries server and if requested, a response to the request flowing back to the client.

A call to cwbDB_ReturnHostErrorInfo is needed in order determine the success of the operation for this
API. Calling cwbDB_ReturnHostErrorInfo prior to calling this API will result in a synchronous operation
(the application will not get control back until the result is returned to the PC from the iSeries server).

744 iSeries: iSeries Access for Windows Programming

cwbDB_RemoveOverride

Purpose: Remove an override from a file reference.

Syntax:

unsigned int CWB_ENTRY cwbDB_RemoveOverride(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for List or SQL requests. The cwbDB_RemoveOverRide API should be
called after setting the desired values in the request. This API will result in a request datastream flowing to
the iSeries server and if requested, a response to the request flowing back to the client.

A call to cwbDB_ReturnHostErrorInfo is needed in order determine the success of the operation for this
API. Calling cwbDB_ReturnHostErrorInfo prior to calling this API will result in a synchronous operation
(the application will not get control back until the result is returned to the PC from the iSeries server).

Chapter 5. iSeries Access for Windows Database Programming 745

cwbDB_RetrieveFieldInformation

Purpose: Get information about the fields in an iSeries file.

Syntax:

unsigned int CWB_ENTRY cwbDB_RetrieveFieldInformation(
cwbDB_RequestHandle request,
unsigned long retrieveInformation,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long retrieveInformation - input
Bitmap that indicates what information is to be retrieved for the fields.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: Use the defined values

CWBDB_GET_FLD_LIB

CWBDB_GET_FLD_REMARKS

CWBDB_GET_FLD_FILE

CWBDB_GET_FLD_NAME

CWBDB_GET_FLD_DESC

CWBDB_GET_FLD_DATA_TYPE

CWBDB_GET_FLD_LEN

CWBDB_GET_FLD_NULL

CWBDB_GET_FLD_RADIX

CWBDB_GET_FLD_PREC

CWBDB_GET_FLD_SCALE

rc = cwbDB_RetrieveFieldInformation(requestHandle,

CWBDB_GET_FLD_FILE |

CWBDB_GET_FLD_NAME |

CWBDB_GET_FLD_DATA_TYPE |

CWBDB_GET_FLD_PREC |

CWBDB_GET_FLD_SCALE,

746 iSeries: iSeries Access for Windows Programming

errorHandle);

This API is not valid for NDB or SQL requests. The cwbDB_RetrieveFieldInformation API should be
called after setting the desired values in the request. This API will result in a request datastream flowing to
the iSeries server and if requested, a response to the request flowing back to the client.

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and
subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API
call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

Chapter 5. iSeries Access for Windows Database Programming 747

cwbDB_RetrieveFileInformation

Purpose: Get information about files on the iSeries server.

Syntax:

unsigned int CWB_ENTRY cwbDB_RetrieveFileInformation(
cwbDB_RequestHandle request,
unsigned long retrieveInformation,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long retrieveInformation - input
Bitmap that indicates what information is to be retrieved for the files.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: Use the defined values:

CWBDB_GET_FILE_LIB

CWBDB_GET_FILE_REMARKS

CWBDB_GET_FILE_NAME

CWBDB_GET_FILE_ATTRIB

CWBDB_GET_FILE_DESC

CWBDB_GET_FILE_COL_CNT

CWBDB_GET_FILE_AUTH

rc = cwbDB_RetrieveFileInformation(requestHandle,

CWBDB_GET_FILE_NAME |

CWBDB_GET_FILE_ATTRIB |

CWBDB_GET_FILE_DESC |

CWBDB_GET_FILE_COL_CNT |

CWBDB_GET_FILE_AUTH,

errorHandle);

This API is not valid for NDB or SQL requests. The cwbDB_RetrieveFileInformation API should be called
after setting the desired values in the request. This API will result in a request datastream flowing to the
iSeries server and if requested, a response to the request flowing back to the client.

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and
subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API

748 iSeries: iSeries Access for Windows Programming

call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

Chapter 5. iSeries Access for Windows Database Programming 749

cwbDB_RetrieveForeignKeyInformation

Purpose: Get information about foreign keys for an iSeries file.

Syntax:

unsigned int CWB_ENTRY cwbDB_RetrieveForeignKeyInformation(
cwbDB_RequestHandle request,
unsigned long retrieveInformation,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long retrieveInformation - input
Bitmap that indicates what information is to be retrieved for foreign keys.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: Use the defined values:

Foreign Key Primary Key Information constants

CWBDB_GET_FG_PRKEY_LIB

CWBDB_GET_FG_PRKEY_FILE

CWBDB_GET_FG_PRKEY_COL_ID

Foreign Key Information constants

CWBDB_GET_FG_KEY_LIB

CWBDB_GET_FG_KEY_FILE

CWBDB_GET_FG_KEY_COL_ID

CWBDB_GET_FG_KEY_SEQ

CWBDB_GET_FG_KEY_UPDATE

CWBDB_GET_FG_KEY_DELETE

rc = cwbDB_RetrievePrimaryKeyInformation(requestHandle,

CWBDB_GET_FG_PRKEY_LIB |

CWBDB_GET_FG_PRKEY_FILE |

CWBDB_GET_FG_PRKEY_COL_ID |

CWBDB_GET_FG_KEY_LIB |

CWBDB_GET_FG_KEY_FILE |

CWBDB_GET_FG_KEY_COL_ID |

CWBDB_GET_FG_KEY_SEQ |

750 iSeries: iSeries Access for Windows Programming

CWBDB_GET_FG_KEY_UPDATE |

CWBDB_GET_FG_KEY_DELETE, errorHandle);

This API is not valid for NDB or SQL requests. The cwbDB_RetrieveForeignKeyInformation API should
be called after setting the desired values in the request. This API will result in a request datastream
flowing to the iSeries server and if requested, a response to the request flowing back to the client.

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and
subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API
call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

Chapter 5. iSeries Access for Windows Database Programming 751

cwbDB_RetrieveIndexInformation

Purpose: Get information about the indices for an iSeries file.

Syntax:

unsigned int CWB_ENTRY cwbDB_RetrieveIndexInformation(
cwbDB_RequestHandle request,
unsigned long retrieveInformation,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long retrieveInformation - input
Bitmap that indicates what information is to be retrieved for the indices.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: Use the defined values:

CWBDB_GET_IDX_LIB

CWBDB_GET_IDX_TBL_NAME

CWBDB_GET_IDX_UNIQUE

CWBDB_GET_IDX_IDX_LIB

CWBDB_GET_IDX_IDX_NAME

CWBDB_GET_IDX_COL_CNT

CWBDB_GET_IDX_COL_NAME

CWBDB_GET_IDX_COL_SEQ

CWBDB_GET_IDX_COLLAT

rc = cwbDB_RetrieveIndexInformation(requestHandle,

CWBDB_GET_IDX_TBL_NAME |

CWBDB_GET_IDX_UNIQUE |

CWBDB_GET_IDX_IDX_LIB |

CWBDB_GET_IDX_IDX_NAME |

CWBDB_GET_IDX_COL_CNT, errorHandle);

This API is not valid for NDB or SQL requests. The cwbDB_RetrieveIndexInformation API should be
called after setting the desired values in the request. This API will result in a request datastream flowing to
the iSeries server and if requested, a response to the request flowing back to the client.

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and

752 iSeries: iSeries Access for Windows Programming

subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API
call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

Chapter 5. iSeries Access for Windows Database Programming 753

cwbDB_RetrieveLibraryInformation

Purpose: Get information about a library or list of libraries.

Syntax:

unsigned int CWB_ENTRY cwbDB_RetrieveLibraryInformation(
cwbDB_RequestHandle request,
unsigned long retrieveInformation,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long retrieveInformation - input
Bitmap that indicates what information is to be retrieved for the libraries.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: Use the defined values:

CWBDB_GET_LIBRARY_NAME

CWBDB_GET_LIBRARY_DESC

rc = cwbDB_RetrieveLibraryInformation(requestHandle,

CWBDB_GET_LIBRARY_NAME |

CWBDB_GET_LIBRARY_DESC, errorHandle);

This API is not valid for NDB or SQL requests. The cwbDB_RetrieveLibraryInformation API should be
called after setting the desired values in the request. This API will result in a request datastream flowing to
the iSeries server and if requested, a response to the request flowing back to the client.

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and
subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API
call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

754 iSeries: iSeries Access for Windows Programming

cwbDB_RetrieveLOBData

Purpose: Retrieve LOB Data.

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbDB_DataHandle data - input

unsigned long locator - input

unsigned long size - input

unsigned long start - input

unsigned long columnIndex - input
Column Index one based column number. This is an optional parameter used to retrieve lob data for
more than one row. Must be zero if not used.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Chapter 5. iSeries Access for Windows Database Programming 755

cwbDB_RetrieveMemberInformation

Purpose: Get information about members of an iSeries file.

Syntax:

unsigned int CWB_ENTRY cwbDB_RetrieveMemberInformation(
cwbDB_RequestHandle request,
unsigned long retrieveInformation,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long retrieveInformation - input
Bitmap that indicates what information is to be retrieved for the members.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: Use the defined values:

CWBDB_GET_MBR_LIB

CWBDB_GET_MBR_FILE

CWBDB_GET_MBR_NAME

CWBDB_GET_MBR_DESC

rc = cwbDB_RetrieveMemberInformation(requestHandle,

CWBDB_GET_MBR_LIB |

CWBDB_GET_MBR_FILE |

CWBDB_GET_MBR_NAME |

CWBDB_GET_MBR_DESC, errorHandle);

This API is not valid for NDB or SQL requests. The cwbDB_RetrieveMemberInformation API should be
called after setting the desired values in the request. This API will result in a request datastream flowing to
the iSeries server and if requested, a response to the request flowing back to the client.

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and
subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API
call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

756 iSeries: iSeries Access for Windows Programming

cwbDB_RetrievePackageStatementInformation

Purpose: Get information about statements stored in an SQL package on the iSeries server.

Syntax:

unsigned int CWB_ENTRY cwbDB_RetrievePackageStatementInformation(
cwbDB_RequestHandle request,
unsigned long retrieveInformation,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long retrieveInformation - input
Bitmap that indicates what information is to be retrieved for the SQL statements.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: Use the defined values:

CWBDB_GET_SQLSTMT_LIB

CWBDB_GET_SQLSTMT_PKG

CWBDB_GET_SQLSTMT_NAME

CWBDB_GET_SQLSTMT_TYPE

CWBDB_GET_SQLSTMT_TEXT

CWBDB_GET_SQLSTMT_PM_CNT

rc = cwbDB_RetrievePackageStatementInformation(requestHandle,

CWBDB_GET_SQLSTMT_NAME |

CWBDB_GET_SQLSTMT_TYPE |

CWBDB_GET_SQLSTMT_TEXT, errorHandle);

This API is not valid for NDB or SQL requests. The cwbDB_RetrievePackageStatementInformation API
should be called after setting the desired values in the request. This API will result in a request datastream
flowing to the iSeries server and if requested, a response to the request flowing back to the client.

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and
subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API
call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

Chapter 5. iSeries Access for Windows Database Programming 757

cwbDB_RetrievePrimaryKeyInformation

Purpose: Get information about primary keys for an iSeries file.

Syntax:

unsigned int CWB_ENTRY cwbDB_RetrievePrimaryKeyInformation(
cwbDB_RequestHandle request,
unsigned long retrieveInformation,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long retrieveInformation - input
Bitmap that indicates what information is to be retrieved for primary keys.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: Use the defined values:

CWBDB_GET_PR_KEY_LIB

CWBDB_GET_PR_KEY_FILE

CWBDB_GET_PR_KEY_COL_ID

CWBDB_GET_PR_KEY_COL_SEQ

rc = cwbDB_RetrievePrimaryKeyInformation(requestHandle,

CWBDB_GET_PR_KEY_LIB |

CWBDB_GET_PR_KEY_FILE |

CWBDB_GET_PR_KEY_COL_ID |

CWBDB_GET_PR_KEY_COL_SEQ, errorHandle);

This API is not valid for NDB or SQL requests. The cwbDB_RetrievePrimaryKeyInformation API should
be called after setting the desired values in the request. This API will result in a request datastream
flowing to the iSeries server and if requested, a response to the request flowing back to the client.

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and
subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API
call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

758 iSeries: iSeries Access for Windows Programming

cwbDB_RetrieveRDBInformation

Purpose: Get information about a relational database on the iSeries server.

Syntax:

unsigned int CWB_ENTRY cwbDB_RetrieveRDBInformation(
cwbDB_RequestHandle request,
unsigned long retrieveInformation,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long retrieveInformation - input
Bitmap that indicates what information is to be retrieved for the relational database.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: Use the defined values:

CWBDB_GET_RDB_NAME

CWBDB_GET_RDB_DEVICE

CWBDB_GET_RDB_MODE

CWBDB_GET_RDB_RMTLOC

CWBDB_GET_RDB_LOCLOC

CWBDB_GET_RDB_RMTNET

CWBDB_GET_RDB_TPNAME

CWBDB_GET_RDB_DESC

CWBDB_GET_RDB_TPNDISP

CWBDB_GET_RDB_PGM

CWBDB_GET_RDB_PGMLIB

CWBDB_GET_RDB_PGMLEVEL

rc = cwbDB_RetrieveRDBInformation(requestHandle,

CWBDB_GET_RDB_NAME |

CWBDB_GET_RDB_RMTLOC |

CWBDB_GET_RDB_RMTNET |

CWBDB_GET_RDB_TPNAME |

CWBDB_GET_RDB_DESC, errorHandle);

Chapter 5. iSeries Access for Windows Database Programming 759

This API is not valid for NDB or SQL requests. The cwbDB_RetrieveRDBInformation API should be
called after setting the desired values in the request. This API will result in a request datastream flowing to
the iSeries server and if requested, a response to the request flowing back to the client.

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and
subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API
call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

760 iSeries: iSeries Access for Windows Programming

cwbDB_RetrieveRecordFormatInformation

Purpose: Get information about the record formats for an iSeries file.

Syntax:

unsigned int CWB_ENTRY cwbDB_RetrieveRecordFormatInformation(
cwbDB_RequestHandle request,
unsigned long retrieveInformation,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long retrieveInformation - input
Bitmap that indicates what information is to be retrieved for the record formats.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: Use the defined values:

CWBDB_GET_FMT_LIB

CWBDB_GET_FMT_FILE

CWBDB_GET_FMT_NAME

CWBDB_GET_FMT_REC_LEN

CWBDB_GET_FMT_DESC

rc = cwbDB_RetrieveRecordFormatInformation(requestHandle,

CWBDB_GET_FMT_LIB |

CWBDB_GET_FMT_FILE |

CWBDB_GET_FMT_NAME |

CWBDB_GET_FMT_REC_LEN |

CWBDB_GET_FMT_DESC, errorHandle);

This API is not valid for NDB or SQL requests. The cwbDB_RetrieveRecordFormatInformation API
should be called after setting the desired values in the request. This API will result in a request datastream
flowing to the iSeries server and if requested, a response to the request flowing back to the client.

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and
subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API
call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

Chapter 5. iSeries Access for Windows Database Programming 761

cwbDB_RetrieveSpecialColumnInformation

Purpose: Get information about special columns for an iSeries file.

Syntax:

unsigned int CWB_ENTRY cwbDB_RetrieveSpecialColumnInformation(
cwbDB_RequestHandle request,
unsigned long retrieveInformation,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long retrieveInformation - input
Bitmap that indicates what information is to be retrieved for the columns.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: Use the defined values:

CWBDB_GET_SP_COL_LIB

CWBDB_GET_SP_COL_TABLE

CWBDB_GET_SP_COL_COL_NAME

CWBDB_GET_SP_COL_DATA_TYPE

CWBDB_GET_SP_COL_PRECISION

CWBDB_GET_SP_COL_LENGTH

CWBDB_GET_SP_COL_SCALE

rc = cwbDB_RetrieveSpecialColumnInformation(requestHandle,

CWBDB_GET_SP_COL_LIB |

CWBDB_GET_SP_COL_TABLE |

CWBDB_GET_SP_COL_COL_NAME |

CWBDB_GET_SP_COL_DATA_TYPE |

CWBDB_GET_SP_COL_PRECISION |

CWBDB_GET_SP_COL_LENGTH |

CWBDB_GET_SP_COL_SCALE, errorHandle);

This API is not valid for NDB or SQL requests. The cwbDB_RetrieveSpecialColumnInformation API
should be called after setting the desired values in the request. This API will result in a request datastream
flowing to the iSeries server and if requested, a response to the request flowing back to the client.

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and

762 iSeries: iSeries Access for Windows Programming

subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API
call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

Chapter 5. iSeries Access for Windows Database Programming 763

cwbDB_RetrieveSQLPackageInformation

Purpose: Get information about an SQL package on the iSeries server.

Syntax:

unsigned int CWB_ENTRY cwbDB_RetrieveSQLPackageInformation(
cwbDB_RequestHandle request,
unsigned long retrieveInformation,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long retrieveInformation - input
Bitmap that indicates what information is to be retrieved for the SQL packages.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: Use the defined values:

CWBDB_GET_SQLPKG_LIB

CWBDB_GET_SQLPKG_NAME

CWBDB_GET_SQLPKG_DESC

rc = cwbDB_RetrieveSQLPackageInformation(requestHandle,

CWBDB_GET_SQLPKG_LIB |

CWBDB_GET_SQLPKG_NAME |

CWBDB_GET_SQLPKG_DESC, errorHandle);

This API is not valid for NDB or SQL requests. The cwbDB_RetrieveSQLPackageInformation API should
be called after setting the desired values in the request. This API will result in a request datastream
flowing to the iSeries server and if requested, a response to the request flowing back to the client.

A call to the cwbDB_ReturnData API is needed prior to calling this API if the application is to process the
data immediately. If the application is to operate asynchronously, then the call to cwbDB_ReturnData and
subsequently cwbDB_GetData are needed after this API in order to get the data that result from this API
call. Once the data is returned, information in the data format handle is used to determine how to parse
the data.

764 iSeries: iSeries Access for Windows Programming

cwbDB_ReturnData

Purpose: Instructs the API to return the data that is in the result set for the operation.

Syntax:

unsigned int CWB_ENTRY cwbDB_ReturnData(
cwbDB_RequestHandle request,
cwbDB_DataHandle data,
cwbDB_DataHandle indicators,
cwbDB_FormatHandle formatHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbDB_DataHandle data - input
Handle for the data being returned. This address is returned when the data is received from the
iSeries server on completion of a function request.

cwbDB_DataHandle indicators - input
Handle which will be used to return the address of the null value/error indicators being returned. There
is one indicator value for each column value that is to be returned (for each column of each row) The
indicator will be a negative number if the value for the column is NULL. If an error occurs while
converting the data, a character ’E’ will be placed in that columns indicator field. This address is
returned when the data is received from the iSeries server on completion of a function request.

cwbDB_FormatHandle formatHandle - input
Handle to a data format that contains a description of the returned data.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: The cwbDB_ReturnData API is used to instruct the iSeries server to return the data which
results from an operation (either an SQL fetch operation or a catalog retrieval operation). After calling this
API, the next API call for the request that results in a datastream to flow to the server will result in the
requested data being returned to the application.

Chapter 5. iSeries Access for Windows Database Programming 765

cwbDB_ReturnDataFormat

Purpose: Instructs the API to return the format of the data to be returned.

Syntax:

unsigned int CWB_ENTRY cwbDB_ReturnDataFormat(
cwbDB_RequestHandle request,
cwbDB_FormatHandle formatHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbDB_FormatHandle formatHandle - input
Handle to a data format that contains a description of the returned data.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: The cwbDB_ReturnDataFormat API is used to instruct the iSeries server to return the data
format which describes a set of selected data. After calling this API, the next API call for the request that
results in a datastream to flow to the server will result in the requested data being returned to the
application.

766 iSeries: iSeries Access for Windows Programming

cwbDB_ReturnExtendedDataFormat

Purpose: Instructs the API to return the Extended version format of the data to be returned.

Syntax:

unsigned int CWB_ENTRY cwbDB_ReturnExtendedDataFormat(
cwbDB_RequestHandle request,
cwbDB_FormatHandle formatHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbDB_FormatHandle formatHandle - input
Handle to a data format that contains a description of the returned data, including the extended data.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

CWBDB_SERVER_FUNCTION_NOT_AVAILABLE
The host server is not at the required level to support this feature.

Usage: The cwbDB_ReturnExtendedDataFormat API is used to instruct the iSeries server to retrieve
the extended data format information, in addition to the base data format information.

This API is used instead of the cwbDB_ReturnDataFormat() API when the extended data format
information is required in addition to the base data format information.

The extended format data includes the information retrieved using the following APIs:

v cwbDB_GetExtendedColumnInfo

v cwbDB_GetBaseColumnName

v cwbDB_GetBaseSchemaName

v cwbDB_GetBaseTableName

v cwbDB_GetLabelName

After calling this API, the next API call for the request that results in a datastream to flow to the server will
result in the requested data being returned to the application.

If the host server is not at the required level to support this feature, then the non-extended version of the
data format will be returned, and subsequent calls to get extended data will return default values.

Chapter 5. iSeries Access for Windows Database Programming 767

|

|

|

|
|
|
|
|

|

|
|

|
|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|

|

|

|

|

|

|
|

|
|

cwbDB_ReturnHostErrorInfo

Purpose: Instructs the API to return host error information when a function is performed on the host
server.

Syntax:

unsigned int CWB_ENTRY cwbDB_ReturnHostErrorInfo(
cwbDB_RequestHandle request,
unsigned short *hostErrorClass,
signed long *hostErrorCode,
cwbDB_DataHandle hostMsgID,
cwbDB_DataHandle firstLevelMessageText,
cwbDB_DataHandle secondLevelMessageText,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short *hostErrorClass - input
Pointer to location where the error class will be returned. This class indicates which database server
module encountered an error.
v 0 - no error
v 1 - SQL functional error
v 2 - SQL parameter error
v 3 - List functional error
v 4 - List parameter error
v 5 - NDB functional error
v 6 - NDB parameter error
v 7 - General server error
v 8 - User exit error

signed long *hostErrorCode - input
Pointer to location where the return code from the server module will be placed.

cwbDB_DataHandle hostMsgID - input
Handle to a data object that will contain the host message identifier. If this parameter is set to 0, the
host message identifier will not be retrieved.

cwbDB_DataHandle firstLevelMessageText - input
Handle to a data object that will contain the host first level message text. If this parameter is set to 0,
the first level message text will not be retrieved.

cwbDB_DataHandle secondLevelMessageText - input
Handle to a data object that will contain the host second level message text. If this parameter is set to
0, the second level message text will not be retrieved.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

768 iSeries: iSeries Access for Windows Programming

Usage: The cwbDB_ReturnHostErrorInfo API is used to instruct the iSeries server to return the error or
diagnostic information pertaining to a functional request. After calling this API, the next API call for the
request that results in a datastream to flow to the server will result in the requested data being returned to
the application.

Chapter 5. iSeries Access for Windows Database Programming 769

cwbDB_ReturnParameterMarkerFormat

Purpose: Instructs the API to return the format of the parameter marker data for an SQL statement.

Syntax:

unsigned int CWB_ENTRY cwbDB_ReturnParameterMarkerFormat(
cwbDB_RequestHandle request,
cwbDB_FormatHandle formatHandle,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbDB_FormatHandle formatHandle - input
Handle to a parameter marker format that will contain the description of parameter data.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: The cwbDB_ReturnParameterMarkerFormat API is used to instruct the iSeries server to return
the format which describes a set parameter markers for a prepared statement. After calling this API, the
next API call for the request that results in a datastream to flow to the server will result in the requested
data being returned to the application.

770 iSeries: iSeries Access for Windows Programming

cwbDB_ReturnSQLCA

Purpose: Instructs the API to return the SQL Communication Area (SQLCA).

Syntax:

unsigned int CWB_ENTRY cwbDB_ReturnSQLCA(
cwbDB_RequestHandle request,
cwbDB_SQLCA *SQLca,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

struct cwbDB_SQLCA *SQLca - input
Pointer to a structure that will contain SQLCA returned from the host.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: The cwbDB_ReturnSQLCA API is used to instruct the iSeries server to return the SQL
Communication Area (SQLCA). After calling this API, the next API call for the request that results in a
datastream to flow to the server will result in the requested data being returned to the application.

Chapter 5. iSeries Access for Windows Database Programming 771

cwbDB_Rollback

Purpose: Perform a rollback operation.

Syntax:

unsigned int CWB_ENTRY cwbDB_Rollback(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests. The cwbDB_Rollback API should be called
after setting the desired values in the request. This API results in a request datastream flowing to the
iSeries server, and if requested, a response to the request flowing back to the client.

772 iSeries: iSeries Access for Windows Programming

cwbDB_SetAddLibraryName

Purpose: Add a library to the iSeries library list.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetAddLibraryName(
cwbDB_RequestHandle request,
const char *addLibraryName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

const char *addLibraryName - input
The name of the library to be added to the library list.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: The cwbDB_AddLibrary API should be called after calling this API. The
cwbDB_SetAddLibraryPosition API may be called before or after this API is called, but before
cwbDB_AddLibrary is called. This API is not valid for List or SQL requests.

Chapter 5. iSeries Access for Windows Database Programming 773

cwbDB_SetAddLibraryPosition

Purpose: Sets the position at which to add a library to the library list via the cwbDB_AddLibraryToList
API.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetAddLibraryPosition(
cwbDB_RequestHandle request,
const unsigned short position,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

const unsigned short position - input
The position in the library list to add the library name set via cwbDB_SetAddLibraryName. Use one
of the following defined constants:

DB_ADD_LIBRARY_TO_FRONT - Add library to front of list

DB_ADD_LIBRARY_TO_END - Add library to end of list

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for List or SQL requests. The cwbDB_AddLibrary API should be called
after calling this API.

774 iSeries: iSeries Access for Windows Programming

cwbDB_SetAllowAddStatementToPackage

Purpose: Sets server attribute for the connection to indicate if statements can be added to the package.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetAllowAddStatementToPackage(
cwbDB_ConnectionHandle connection,
cwb_Boolean allowAdd,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server..

cwb_Boolean allowAdd - input
Indicates whether SQL statements should be added to the package, if one is in use. CWB_FALSE
indicates don’t allow statements to be added. CWB_TRUE indicates add statement allowed. Default is
allow add.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: The cwbDB_ApplyAttributes API must be called after cwbDB_SetAllowAddStatementToPackage
in order for the new value to take affect.

Chapter 5. iSeries Access for Windows Database Programming 775

cwbDB_SetAmbiguousSelectOption

Purpose: Sets server attribute for the connection to indicate the explicit updateability.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetAmbiguousSelectOption(
cwbDB_ConnectionHandle connection,
unsigned short updateability,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server..

unsigned short updateability - input
Indicates if SQL SELECT statements which do not have explicit FOR FETCH ONLY or FOR UPDATE
OF clauses specified should be updateable or read-only. The default is updateable.

Use one of these two predefined values:

CWBDB_UPDATEABLE

CWBDB_READONLY

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: The cwbDB_ApplyAttributes API must be called after cwbDB_SetAllowAddStatementToPackage
in order for the new value to take affect.

776 iSeries: iSeries Access for Windows Programming

cwbDB_SetAuthority

Purpose: Set the public authority for a file that will be created through the API.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetAuthority(
cwbDB_RequestHandle request,
unsigned short authority,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short authority - input
Long integer that indicates the public authority for a newly created file.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

CWBDB_INVALID_ARG_API
Invalid authority value

Usage: Use one of the defined values:

CWBDB_SET_LIBRARY_CREATE_AUTHORITY

CWBDB_SET_ALL_AUTHORITY

CWBDB_SET_CHANGE_AUTHORITY

CWBDB_SET_EXCLUDE_AUTHORITY

CWBDB_SET_USE_AUTHORITY

CWBDB_SET_SAME_AUTHOR

This API is not valid for List or SQL requests.

Chapter 5. iSeries Access for Windows Database Programming 777

cwbDB_SetAutoCommit

Purpose: Set an indicator that indicates if implicit commits will be done on the server.

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server..

unsigned short autoCommit - input
Indicates if auto commit will be done.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: Use one of the defined values:

CWBDB_AUTO_COMMIT

CWBDB_NO_AUTO_COMMIT

The default if not set is iplicit commits will be done.

The cwbDB_ApplyAttributes API must be called after cwbDB_SetAutoCommit in order for the new value to
take affect.

778 iSeries: iSeries Access for Windows Programming

cwbDB_SetBaseFile

Purpose: Set the name of a base file for creating a new file with the same format through the API.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetBaseFile(
cwbDB_RequestHandle request,
char *baseLibraryName,
char *baseFileName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *baseLibraryName - input
Pointer to an ASCIIZ string that contains the base library name to be used when creating a new file.

char *baseFileName - input
Pointer to an ASCIIZ string that contains the base file name to be used when creating a new file.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is used in preparation for cwbDB_CreateDuplicateFile. This API is not valid for List or
SQL requests.

Chapter 5. iSeries Access for Windows Database Programming 779

cwbDB_SetBlockCount

Purpose: Set the number of rows to be blocked together when fetching data.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetBlockCount(
cwbDB_RequestHandle request,
unsigned long blockCount,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long blockCount - input
Input value for block count.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests.

780 iSeries: iSeries Access for Windows Programming

cwbDB_SetClientColumnToNumeric

Purpose: Sets the information for a column description for string data.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetClientColumnToNumeric(
cwbDB_FormatHandle format,
unsigned long columnPosition,
signed short columnType,
unsigned long columnLength,
unsigned short columnPrecision,
unsigned short columnScale,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long columnPosition - input
Specifies the relative position of the column.

signed short columnType - input
Specifies the numeric type to be used.

unsigned long columnLength - input
Only used if the type is zoned or packed decimal

unsigned short columnPrecision - input
Only used if the type is zoned or packed decimal

unsigned short columnScale - input
Only used if the type is zoned or packed decimal

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the columnType parameter, use one of the defined values:

CWBDB_PCLONG

CWBDB_PCSHORT

CWBDB_PCFLOAT

CWBDB_PCDOUBLE

CWBDB_PCPACKED

CWBDB_PCZONED

Chapter 5. iSeries Access for Windows Database Programming 781

cwbDB_SetClientColumnToString

Purpose: Sets the information for a column description for string data.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetClientColumnToString(
cwbDB_FormatHandle format,
unsigned long columnPosition,
signed short columnType,
unsigned long columnLength,
unsigned short columnCCSID,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long columnPosition - input
Specifies the relative position of the column.

signed short columnType - input
Specifies the string type to be used.

unsigned long columnLength - input
Specifies the column length to be used.

unsigned short columnCCSID - input
Specifies the column CCSID (Coded Character Set Identifier) to be used.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the columnType parameter, use one of the defined values:

CWBDB_PCSTRING

CWBDB_PCVARSTRING

CWBDB_PCGRAPHIC

CWBDB_PCVARGRAPHIC

782 iSeries: iSeries Access for Windows Programming

cwbDB_SetClientDataCCSID

Purpose: Sets the CCSID (Coded Character Set ID) for the client. The new CCSID value will be used
when converting EBCDIC data from the iSeries server. Use cwbDB_SetClientHostErrorCCSID to set the
CCSID used when converting host error information.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetClientDataCCSID(
cwbDB_ConnectionHandle connection,
unsigned short clientDataCCSID,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

unsigned short clientCCSID - input
Specifies the CCSID (Coded Character Set Identifier to be used.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be called any time after a connection handle has been created.

Chapter 5. iSeries Access for Windows Database Programming 783

cwbDB_SetClientInputCCSID

Purpose: Sets the CCSID (Coded Character Set Identifier) for data being input such as file names, SQL
statement text, and so on. The new CCSID value will be used when converting EBCDIC data from the
iSeries server. Use cwbDB_SetClientHostErrorCCSID to set the CCSID used when converting host error
information.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetClientInputCCSID(
cwbDB_ConnectionHandle connection,
unsigned short inputCCSID,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

unsigned short inputCCSID - input
Specifies the CCSID to be used.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be called any time after a connection handle has been created.

784 iSeries: iSeries Access for Windows Programming

cwbDB_SetClientHostErrorCCSID

Purpose: Sets the CCSID (Coded Character Set ID) for the client. The new CCSID value will be used
when converting EBCDIC server messages. Use cwbDB_SetClientDataCCSID to change the CCSID
used for converting data.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetClientHostErrorCCSID(
cwbDB_ConnectionHandle connection,
unsigned short clientHostErrorCCSID,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

unsigned short clientHostErrorCCSID - input
Specifies the CCSID (Coded Character Set Identifier to be used.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be called any time after a connection handle has been created.

Chapter 5. iSeries Access for Windows Database Programming 785

cwbDB_SetClientParameterToNumeric

Purpose: Sets the information for a parameter description for string data.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetClientParameterToNumeric(
cwbDB_FormatHandle format,
unsigned long parameterPosition,
signed short parameterType,
unsigned long parameterLength,
unsigned short parameterPrecision,
unsigned short parameterScale,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long parameterPosition - input
Specifies the relative position of the parameter.

signed short parameterType - input
Specifies the numeric type to be used.

unsigned long parameterLength - input
Only used if the type is zoned or packed decimal

unsigned short parameterPrecision - input
Only used if the type is zoned or packed decimal

unsigned short parameterScale - input
Only used if the type is zoned or packed decimal

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the parameterType parameter, use one of the defined values:

CWBDB_PCLONG

CWBDB_PCSHORT

CWBDB_PCFLOAT

CWBDB_PCDOUBLE

CWBDB_PCPACKED

CWBDB_PCZONED

786 iSeries: iSeries Access for Windows Programming

cwbDB_SetClientParameterToString

Purpose: Sets the information for a parameter description for string data.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetClientParameterToString(
cwbDB_FormatHandle format,
unsigned long parameterPosition,
signed short parameterType,
unsigned long parameterLength,
unsigned short parameterCCSID,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

unsigned long parameterPosition - input
Specifies the relative position of the parameter.

signed short parameterType - input
Specifies the string type to be used.

unsigned long parameterLength - input
Specifies the parameter length to be used.

unsigned short parameterCCSID - input
Specifies the parameter CCSID (Coded Character Set Identifier) to be used.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For the parameterType parameter, use one of the defined values:

CWBDB_PCSTRING

CWBDB_PCVARSTRING

CWBDB_PCGRAPHIC

CWBDB_PCVARGRAPHIC

Chapter 5. iSeries Access for Windows Database Programming 787

cwbDB_SetCommitmentControl

Purpose: Set the commitment level for the database server to use when accessing data.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetCommitmentControl(
cwbDB_ConnectionHandle connection,
unsigned short commitmentLevel,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

unsigned short commitmentLevel - input
Indicates the commitment level for server operations.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: Use one of the defined values:

CWBDB_NONE

CWBDB_CURSOR_STABILITY

CWBDB_CHANGE

CWBDB_ALL

The cwbDB_ApplyAttributes API must be called after cwbDB_SetCommitmentControl in order for the
new commitment level to take affect.

788 iSeries: iSeries Access for Windows Programming

cwbDB_SetConversionIndicator

Purpose: Sets the indicator that says whether data is to be converted between the client and host
format.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetConversionIndicator(
cwbDB_FormatHandle format,
cwb_Boolean conversionIndicator,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_FormatHandle format - input
Handle to a data format object.

cwb_Boolean conversionIndicator - input
CWB_FALSE indicates no conversion. CWB_TRUE indicates conversion.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: The cwbDB_ApplyAttributes API must be called after cwbDB_SetConversionIndicator in
order for the new value to take affect.

Chapter 5. iSeries Access for Windows Database Programming 789

cwbDB_SetConvert65535

Purpose: Sets the indicator that says whether data marked with CCSID 65535 is to be converted
between ASCII and EBCDIC. Data tagged with CCSID 65535 are binary data. Selecting to convert this this
data may cause conversion errors and possible data integrity problems. USE THIS API AT YOUR OWN
RISK. Having stated that, it is important to note that some older data may have text data tagged with
CCSID 65535. Also, some iSeries server tools still write data to files using CCSID 65535. Therefore, there
may be appropriate times to use this API.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetConvert65535(
cwbDB_ConnectionHandle connection,
cwb_Boolean convert65535indicator,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to a connection object.

ccwb_Boolean convert65535indicator - input
CWB_FALSE indicates no conversion of binary data. CWB_TRUE indicates conversion of data will
take place.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: None

790 iSeries: iSeries Access for Windows Programming

cwbDB_SetCursorName

Purpose: Set the statement name to be used for this request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetCursorName(
cwbDB_RequestHandle request,
char *cursorName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *cursorName - input
Pointer to an ASCIIZ string containing the cursor name being used for an SQL request.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests.

Chapter 5. iSeries Access for Windows Database Programming 791

cwbDB_SetCursorReuse

Purpose: This API inicates to SQL what our future plans are for cusors when we close them. This is
valid when there are multiple result sets.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetCursorReuse(
cwbDB_RequestHandle request,
unsigned short reuseIndicator,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short reuseIndicator - input
Input value for reuse indicator. This parameter should be one of the following values:
CWBDB_CLOSE_ALL_CURSORS - Close the cursor for all result sets.
CWBDB_CLOSE_CURRENT_CURSOR - Close the cursor for current resutlt set only.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

CWBDB_INVALID_ARG_API
Invalid reuseIndicator value.

Usage: When a cursor is opened against a stored procedure which has multiple result sets all result sets
are opened and handled with the same cursor. When the cursor is opened it points to the first result set.
When it is closed with the CWBDB_CLOSE_CURRENT_CURSOR option it closes the cursor and current
result set. When it is opened again it points to the next result set until the last result set is closed.

When it is closed with the CWBDB_CLOSE_ALL_CURSORS option it closes the cursor and all result sets,
so it cannot be opened again.

This API is not valid for NDB or catalog requests.

792 iSeries: iSeries Access for Windows Programming

cwbDB_SetDateFormat

Purpose: Set the format for date data returned from the iSeries server. Date data on the iSeries server
are stored encoded and are returned to the client as character strings. These character strings can be
formatted in eight different ways:
Format name Format Example
--------------- ---------- ---------------
Julian yy/ddd 87/253
month day year mm/dd/yy 10/12/87
day month year dd/mm/yy 12/10/87
year month day yy/mm/dd 87/10/12
USA mm/dd/yyyy 10/12/1987
ISO yyyy-mm-dd 1987-10-12
IBM Japan yyyy-mm-dd 1987-10-12
IBM Europe dd.mm.yyyy 12.10.1987

Syntax:

unsigned int CWB_ENTRY cwbDB_SetDateFormat(
cwbDB_ConnectionHandle connection,
unsigned short dateFormat,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

unsigned short dateFormat - input
Indicates the format of date data.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

CWBDB_INVALID_ARG_API
Value specified is not in range.

Usage: It is not valid to call this API after calling the cwbDB_StartServer API. Use one of the defined
values:
Format name Date format constant Value
--------------- -------------------- ------
Julian CWBDB_DATE_FMT_JUL 0
month day year CWBDB_DATE_FMT_MDY 1
day month year CWBDB_DATE_FMT_DMY 2
year month day CWBDB_DATE_FMT_YMD 3
USA CWBDB_DATE_FMT_USA 4
ISO CWBDB_DATE_FMT_ISO 5
IBM Japan CWBDB_DATE_FMT_JIS 6
IBM Europe CWBDB_DATE_FMT_EUR 7

Chapter 5. iSeries Access for Windows Database Programming 793

cwbDB_SetDateSeparator

Purpose: Set the character which separates the elements of date data returned from the iSeries server.
Date data on the iSeries server are stored encoded and are returned to the client as character strings.
These character strings can have one of five different date separator characters:
Date separator Character Example

--------------- ---------- ---------------
Slash / 03/17/94
Dash - 03-17-94
Period . 03.17.94
Comma , 03,17,94
Blank 03 17 94

Syntax:

unsigned int CWB_ENTRY cwbDB_SetDateSeparator(
cwbDB_ConnectionHandle connection,
unsigned short dateSeparator,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

unsigned short dateSeparator - input
Indicates the separator character for date fields.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

CWBDB_INVALID_ARG_API
Value specified is not in range.

Usage: It is not valid to call this API after calling the cwbDB_StartServer API. Use one of the defined
values:
Date separator Date separator constant

--------------- -----------------------
Slash CWBDB_DATE_SEP_SLASH
Dash CWBDB_DATE_SEP_DASH
Period CWBDB_DATE_SEP_PERIOD
Comma CWBDB_DATE_SEP_COMMA
Blank CWBDB_DATE_SEP_BLANK

794 iSeries: iSeries Access for Windows Programming

cwbDB_SetDecimalSeparator

Purpose: Set the character which separates the elements of decimal data returned from the iSeries
server.
Decimal separator Character Example
----------------- ---------- ---------------
Period . 123.45
Comma , 123,45

Syntax:

unsigned int CWB_ENTRY cwbDB_SetDecimalSeparator(
cwbDB_ConnectionHandle connection,
unsigned short decimalSeparator,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

unsigned short decimalSeparator - input
Indicates the desired decimal separator character.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

CWBDB_INVALID_ARG_API
Value specified is not in range.

Usage: It is not valid to call this API after calling the cwbDB_StartServer API. Use one of the defined
values:
Time separator Time separator constant
--------------- --------------------------
Period CWBDB_DECIMAL_SEP_PERIOD
Comma CWBDB_DECIMAL_SEP_COMMA

Chapter 5. iSeries Access for Windows Database Programming 795

cwbDB_SetDescribeOption

Purpose: Set the describe option to determine what data is to be returned as a result of a describe.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetDescribeOption(
cwbDB_RequestHandle request,
unsigned short describeOption,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short describeOption - input
Long integer specifying the type of data to be returned on a describe operation.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

CWBDB_INVALID_ARG_API
Invalid describeOption value.

Usage: Use one of the defined values:

CWBDB_DESC_ALIAS_NAMES

CWBDB_DESC_NAMES_ONLY

CWBDB_DESC_LABELS

This API is not valid for NDB or catalog requests.

796 iSeries: iSeries Access for Windows Programming

cwbDB_SetDefaultSQLLibraryName

Purpose: Sets server attribute for the connection to indicate the default library name.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetDefaultSQLLibraryName(
cwbDB_ConnectionHandle connection,
char* libraryName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to a connection object..

char* libraryName, - input
Pointer to a character string up to 10 characters long that specifies the qualified library name to use
on the SQL statement text when no library name is specified in the statement text. The default is 10
space characters

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

CWBDB_INVALID_ARG_API
libaryName = NULL

CWBDB_STRING_ARG_TOO_LONG
libraryName > 10

Usage: This API may be called any time after the connection handle has been created, but if it is called
after the server is started for that connection handle then the cwbDB_ApplyAttributes API must be called in
order for the setting to take affect.

Chapter 5. iSeries Access for Windows Database Programming 797

cwbDB_SetExtendedDataFormat

Purpose: This API inicates to SQL if it should build extended data format information.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetExtendedDataFormat(
cwbDB_RequestHandle request,
unsigned short extendedFormatIndicator,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short extendedFormatIndicator - input
Input value for extended format indicator. This parameter should be one of the following values:

v CWBDB_USE_EXTENDED_FORMAT — Indicates that extended data fromat will be used.

v CWBDB_USE_NORMAL_FORMAT — Indicates that base data format will be used.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

CWBDB_INVALID_ARG_API
Invalid extendedFormat indicator value.

CWBDB_SERVER_FUNCTION_NOT_AVAILABLE
The host server is not at the required level to support this feature.

Usage: This tells the host if it should build extended data format information. It can be included with any
of the following flows or stored in the RPB:

v cwbDB_ExecuteImmediate

v cwbDB_Prepare

v cwbDB_PrepareDescribe

v cwbDB_PrepareDescribeOpenFetch

Note that the host must know at prepare time to build the extended information. Also this call only tells the
host to build the information. A call to cwbDB_ReturnExtendedDataFormat must be made before
retrieving the information in order to actually get the extended info.

The default value is to not build extended information.

If the host server is not at the required level to support this feature, then this call will do nothing, the
extended version of the data format will not be build, and a warning will be returned. Subsequent calls to
get extended data will return default values.

798 iSeries: iSeries Access for Windows Programming

|

|

|

|
|
|
|
|

|

|
|

|
|

|

|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|

|

|

|

|
|
|

|

|
|
|

cwbDB_SetFetchScrollOptions

Purpose: After using the cwbDB_SetScrollableCursor, this API is used to indicate how to scroll through
the data.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetFetchScrollOptions(
cwbDB_RequestHandle request,
unsigned short scrollType,
unsigned long relativeDistance,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short scrollType - input
Indicates type of scrolling to be performed.

unsigned long relativeDistance - input
If the scrollType indicates scrolling relative to the current cursor position, this parameter indicates the
relative distance. For other scrollType values, this parameter is ignored.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

CWBDB_INVALID_ARG_API
Invalid scrollType value.

Usage: Use one of the defined values:

CWBDB_SCROLL_DIRECT

CWBDB_SCROLL_NEXT

CWBDB_SCROLL_PREVIOUS

CWBDB_SCROLL_FIRST

CWBDB_SCROLL_LAST

CWBDB_SCROLL_BEFORE_FIRST

CWBDB_SCROLL_AFTER_LAST

CWBDB_SCROLL_CURRENT

CWBDB_SCROLL_RELATIVE

This API is not valid for NDB or catalog requests.

Chapter 5. iSeries Access for Windows Database Programming 799

cwbDB_SetFieldName

Purpose: Set the field name to be used in a catalog request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetFieldName(
cwbDB_RequestHandle request,
char *fieldName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *fieldName - input
Pointer to an ASCIIZ string containing the field name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to a cwbDB_Retrieve* API call for a catalog request. This API is not
valid for NDB or SQL requests.

800 iSeries: iSeries Access for Windows Programming

cwbDB_SetFileAttributes

Purpose: Set the file attributes to be used as a qualifier for a list request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetFileAttributes(
cwbDB_RequestHandle request,
unsigned short fileAttributes,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short fileAttributes - input
Long integer that indicates attributes of files to be retrieved for a catalog request.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to a cwbDB_Retrieve* API call. Use one of the defined values:

CWBDB_ALL_FILES_ATTRIBUTES

CWBDB_PHYSICAL_FILES_ATTRIBUTES

CWBDB_LOGICAL_FILES_ATTRIBUTES

CWBDB_ODBC_TABLES_ATTRIBUTES

CWBDB_ODBC_VIEWS_ATTRIBUTES

This API is not valid for NDB or SQL requests.

Chapter 5. iSeries Access for Windows Database Programming 801

cwbDB_SetFileInfoOrdering

Purpose: Changes the ordering of the data returned by catalog requests.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetFileInfoOrdering(
cwbDB_RequestHandle request,

unsigned short fileInfoOrder,
cwbSV_ErrHandle errorHandle

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long infoOrdering - input
Long integer that indicates how the returned information is to be ordered.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to a cwbDB_Retrieve* API call. Use one of the defined values:

CWBDB_DEFAULT_CATALOG_ORDERING

CWBDB_ODBC_TABLE_ORDERING

CWBDB_ODBC_TABLE_PRIVILEGE_ORDER

This API is not valid for NDB or SQL requests.

802 iSeries: iSeries Access for Windows Programming

cwbDB_SetFileName

Purpose: Set the file name to be used as a qualifier for a list request. This is the short file name (system
or server name).

Syntax:

unsigned int CWB_ENTRY cwbDB_SetFileName(
cwbDB_RequestHandle request,
char *fileName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *fileName - input
Pointer to an ASCIIZ string containing the file name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to a cwbDB_Retrieve* API call. This API is not valid for SQL
requests.

Chapter 5. iSeries Access for Windows Database Programming 803

cwbDB_SetFileText

Purpose: Set the text description for a file that will be created through the API.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetFileText(
cwbDB_RequestHandle request,
char *fileText,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *fileText - input
Pointer to an ASCIIZ string that contains the text description to be used when creating a file.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for List or SQL requests.

804 iSeries: iSeries Access for Windows Programming

cwbDB_SetFileType

Purpose: Set the file type to be used as a qualifier for a list request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetFileType(
cwbDB_RequestHandle request,
unsigned short fileType,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short fileAttribute - input
Long integer that indicates type of files to be retrieved for a catalog request.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to a cwbDB_Retrieve* API call. Use one of the defined values:

CWBDB_ALL_FILES

CWBDB_SOURCE_FILES

CWBDB_DATA_FILES

This API is not valid for NDB or SQL requests.

Chapter 5. iSeries Access for Windows Database Programming 805

cwbDB_SetForeignKeyFileName

Purpose: Set the foreign key file name to be used in a request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetForeignKeyFileName(
cwbDB_RequestHandle request,
char *fileName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *fileName - input
Pointer to an ASCIIZ string containing the foreign key file name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to a cwbDB_Retrieve* API call for a catalog request. This API is not
valid for NDB or SQL requests.

806 iSeries: iSeries Access for Windows Programming

cwbDB_SetForeignKeyLibName

Purpose: Set the foreign key library name to be used in a request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetForeignKeyLibName(
cwbDB_RequestHandle request,
char *libName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *libName - input
Pointer to an ASCIIZ string containing the foreign key library name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to a cwbDB_Retrieve* API call for a catalog request. This API is not
valid for NDB or SQL requests.

Chapter 5. iSeries Access for Windows Database Programming 807

cwbDB_SetFormatName

Purpose: Set the record format name to be used in a request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetFormatName(
cwbDB_RequestHandle request,
char *formatName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *formatName - input
Pointer to an ASCIIZ string containing the record format name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to a cwbDB_Retrieve* API call for a catalog request. This API is not
valid for NDB or SQL requests.

808 iSeries: iSeries Access for Windows Programming

cwbDB_SetHoldIndicator

Purpose: This API instructs SQL how to treat active statements (open cursors and prepared dynamic
SQL statements) when a commit or rollback operation is performed. CWBDB_HOLD indicates that open
cursors and prepared dynamic SQL statements will be preserved. CWBDB_WORK will cause open
cursors to be closed and prepared dynamic SQL statement to be destroyed.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetHoldIndicator(
cwbDB_RequestHandle request,
unsigned short holdIndicator,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short holdIndicator - input
Input value for hold indicator.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

CWBDB_INVALID_ARG_API
Invalid holdIndicator value.

Usage: Use one of the defined values:

CWBDB_WORK

CWBDB_HOLD

This API is not valid for NDB or catalog requests.

Chapter 5. iSeries Access for Windows Database Programming 809

cwbDB_SetIgnoreDecimalDataError

Purpose: Set an indicator that says whether to ignore or correct zoned decimal data errors.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetIgnoreDecimalDataError(
cwbDB_ConnectionHandle connection,
unsigned short ignoreDecimalError,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server

unsigned short ignoreDecimalError - input
Indicates how decimal data errors will be treated.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: Use one of the defined values:

CWBDB_IGNORE_ERROR

CWBDB_CORRECT_ERROR

The cwbDB_ApplyAttributes API must be called after cwbDB_SetIgnoreDecimalDataError in order for
the new value to take affect.

810 iSeries: iSeries Access for Windows Programming

cwbDB_SetIndexType

Purpose: Set the type of index criteria to be used in a catalog request

Syntax:

unsigned int CWB_ENTRY cwbDB_SetIndexType(
cwbDB_RequestHandle request,
unsigned short indexType,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short indexType - input
Long integer that indicates index rule to be retrieved for a catalog request.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to a cwbDB_Retrieve* API call for a catalog request. Use one of the
defined values:

CWBDB_UNIQUE_INDEX

CWBDB_DUPLICATE_INDEX

CWBDB_DUP_NULL_INDEX

This API is not valid for NDB or SQL requests.

Chapter 5. iSeries Access for Windows Database Programming 811

cwbDB_SetLibraryName

Purpose: Set the library name to be used for the current database request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetLibraryName(
cwbDB_RequestHandle request,
char *libraryName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *libraryName - input
Pointer to an ASCIIZ string containing the library name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For SQL requests, this is the library that is used when locating an SQL package to be used for
stored statements. For List and Native Database requests, this is the library containing objects on which to
be operated.

812 iSeries: iSeries Access for Windows Programming

cwbDB_SetLOBFieldThreshold

Purpose: Sets server attribute for the connection to indicate the threshold length for LOB fields.

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server

unsigned long thresholdSize - input
Threshold where all FETCH result sets which contain a LOB field with a length which is less than or
equal to the threshold length will be have the LOB data for the field returned in-line as part of the row
data. If a LOB field in a result set has a length which is greater than the threshold, a LOB handle will
be returned to the client on the FETCH request. Default is zero.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be called any time after the connection handle has been created and must be
called before the server is started. This attribute cannot be changed after the server is started. The default
value is zero.

Chapter 5. iSeries Access for Windows Database Programming 813

cwbDB_SetLongFileName

Purpose: Set the long file name to be used as a qualifier for a list request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetLongFileName(
cwbDB_RequestHandle request,
char *longFileName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *longFileName - input
Pointer to an ASCIIZ string containing the long file name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to a cwbDB_Retrieve* API call. This API is not valid for NDB or SQL
requests.

814 iSeries: iSeries Access for Windows Programming

cwbDB_SetMaximumMembers

Purpose: Set the maximum number of members for creating a file through the API.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetMaximumMembers(
cwbDB_RequestHandle request,
signed short maxMembers,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

signed short maxMembers - input
Input value for maximum number of members. A value of -1 for this parameter indicates no maximum.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for List or SQL requests.

Chapter 5. iSeries Access for Windows Database Programming 815

cwbDB_SetMemberName

Purpose: Set the member name to be used in a request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetMemberName(
cwbDB_RequestHandle request,
char *memberName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *memberName - input
Pointer to an ASCIIZ string containing the member name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to a cwbDB_Retrieve* API call for a catalog request. This API is
also used for NDB requests when operating on a database file member. This API is not valid for SQL
requests.

816 iSeries: iSeries Access for Windows Programming

cwbDB_SetMemberText

Purpose: Set the text description for a member at will be added through the API.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetMemberText(
cwbDB_RequestHandle request,
char *memberText,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *memberText - input
Pointer to an ASCIIZ string that contains the text description to be used when adding a member.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for List or SQL requests.

Chapter 5. iSeries Access for Windows Database Programming 817

cwbDB_SetNamingConvention

Purpose: Set the naming convention (SQL or iSeries server) to be used by the database access server.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetNamingConvention(
cwbDB_ConnectionHandle connection,
unsigned short newNamingConvention,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server

unsigned short newNamingConvention - input
Indicates the type of naming convention to use. SQL naming convention (library.table) or iSeries native
naming convention (library/table).

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

CWBDB_INVALID_ARG_API
Invalid naming convention value.

Usage: Use one of the defined values:

CWBDB_PERIOD_NAME_CONV

CWBDB_SLASH_NAME_CONV

The cwbDB_ApplyAttributes API must be called after cwbDB_SetNamingConvention in order for the
new naming convention to take affect.

818 iSeries: iSeries Access for Windows Programming

cwbDB_SetNLSS

Purpose: Sets the National Language Sort Sequence (NLSS) attribute of the Data Access server.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetNLSS(
cwbDB_ConnectionHandle connection,
unsigned short NLSSTypeID,
char *tableOrLangID,
char *library,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle - input
Connection through which the attribute is to be set

unsigned short NLSSTypeID - input
The type of NLSS attribute. Possible values:

CWBDB_NLSS_SORT_HEX

CWBDB_NLSS_SORT_SHARED

CWBDB_NLSS_SORT_UNIQUE

CWBDB_NLSS_SORT_USER

char *tableOrLangID - input
Depends on value of the NLSSType parameter (above).

CWBDB_NLSS_SORT_HEX
This parameter is not used

CWBDB_NLSS_SORT_SHARED or CWBDB_NLSS_SORT_UNIQUE
This parameter represents the language feature code attribute ID for the server. It is a
required parameter.

CWBDB_NLSS_SORT_USER
This parameter represents the NLSS table name attribute. It is a required parameter.

char *library - input
Depends on value of the NLSSType parameter (above).

CWBDB_NLSS_SORT_HEX
This parameter is not used.

CWBDB_NLSS_SORT_SHARED or CWBDB_NLSS_SORT_UNIQUE
This parameter is not used

CWBDB_NLSS_SORT_USER
This parameter represents the NLSS library name attribute. It is an optional parameter.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid connection handle.

Chapter 5. iSeries Access for Windows Database Programming 819

CWBDB_INVALID_ARG_API
Invalid type, language ID, or table.

Usage: The cwbDB_ApplyAttributes API must be called after cwbDB_SetNLSS in order for the new
sort sequence to take affect.

820 iSeries: iSeries Access for Windows Programming

cwbDB_SetNullable

Purpose: Set the nullable indicator for a special column.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetNullable(
cwbDB_RequestHandle request,
unsigned short nullableInd,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short nullableInd - input
Integer that indicates whether special column is null capable.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to a cwbDB_Retrieve* API call. Use one of the defined values:

CWBDB_NOT_NULLABLE

CWBDB_NULLABLE

This API is not valid for NDB or SQL requests.

Chapter 5. iSeries Access for Windows Database Programming 821

cwbDB_SetOverrideInformation

Purpose: Set the overriding library, file, and member for an override database operation.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetOverrideInformation(
cwbDB_RequestHandle request,
char *overrideLibraryName,
char *overrideFileName,
char *overrideMemberName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *overrideLibraryName - input
Pointer to an ASCIIZ string that contains the overriding library name.

char *baseFileName - input
Pointer to an ASCIIZ string that contains the overriding file name.

char *overrideMemberName - input
Pointer to an ASCIIZ string that contains the overriding member name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is used in preparation for cwbDB_OverrideFile. This API is not valid for List or SQL
requests.

822 iSeries: iSeries Access for Windows Programming

cwbDB_SetPackageName

Purpose: Set the SQL package name for a database request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetPackageName(
cwbDB_RequestHandle request,
char *packageName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *packageName - input
Pointer to an ASCIIZ string containing the SQL package name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: For catalog requests, this API is used prior to cwbDB_RetrievePackageInformation or
cwbDB_RetrievePackageStatementInformation. For SQL requests, this API is used to set the name of
the SQL package to be used for preparing or executing SQL statements. This is optional for SQL requests.
This API is not valid for NDB requests.

Chapter 5. iSeries Access for Windows Database Programming 823

cwbDB_SetParameterMarkerBlock

Purpose: Provides the data to be used for the parameter markers contained in a prepared statement for
a block of rows.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetParameterMarkerBlock(
cwbDB_RequestHandle request,
unsigned long numberOfRows,
cwbDB_FormatHandle format,
void *dataPointer,
signed short *indicators,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long numberOfRows - input
Number of sets of parameter marker data that is in the dataBuffer.

cwbDB_FormatHandle format - input
Handle to the format of the data being provided.

void *dataBuffer - input
Pointer to a buffer containing the data to be used for the parameter markers.

signed short *indicators - input
Pointer to a buffer containing the null indicators. If the value of the indicator is less than zero, the
value for the corresponding parameter marker is null.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests.

824 iSeries: iSeries Access for Windows Programming

cwbDB_SetParameterMarkers

Purpose: Provides the data to be used for the parameter markers contained in a prepared statement.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetParameterMarkers(
cwbDB_RequestHandle request,
cwbDB_FormatHandle format,
void *dataBuffer,
signed short *indicators,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbDB_FormatHandle *format - input
Handle to the format of the data being provided.

void *dataBuffer - input
Pointer to a buffer containing the data to be used for the parameter markers.

signed short *indicators - input
Pointer to a buffer containing the null indicators. If the value of the indicator is less than zero, the
value for the corresponding parameter marker is null.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests.

Chapter 5. iSeries Access for Windows Database Programming 825

cwbDB_SetPrepareOption

Purpose: Set the option for doing a normal or enhanced prepare. Doing an enhanced prepare will search
the specified SQL package for the given statement. If it is found, the statement will be used. If not, the
statement will be prepared.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetPrepareOption(
cwbDB_RequestHandle request,
unsigned short prepareOption,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short prepareOption - input
Long integer specifying the type of prepare to be performed.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

CWBDB_INVALID_ARG_API
Invalid prepareOption value.

Usage: Use one of the defined values:

CWBDB_NORMAL_PREPARE

CWBDB_ENHANCED_PREPARE

This API is not valid for NDB or catalog requests.

826 iSeries: iSeries Access for Windows Programming

cwbDB_SetPrimaryKeyFileName

Purpose: Set the primary key file name to be used in a request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetPrimaryKeyFileName(
cwbDB_RequestHandle request,
char *fileName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *fileName - input
Pointer to an ASCIIZ string containing the primary key file name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to a cwbDB_Retrieve* API call for a catalog request. This API is not
valid for NDB or SQL requests.

Chapter 5. iSeries Access for Windows Database Programming 827

cwbDB_SetPrimaryKeyLibName

Purpose: Set the primary key library name to be used in a request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetPrimaryKeyLibName(
cwbDB_RequestHandle request,
char *libName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *libName - input
Pointer to an ASCIIZ string containing the primary key library name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to a cwbDB_Retrieve* API call for a catalog request. This API is not
valid for NDB or SQL requests.

828 iSeries: iSeries Access for Windows Programming

cwbDB_SetQueryTimeoutValue

Purpose: Sets the query timeout value contained in the RPB.

Syntax:
unsigned int CWB_ENTRY cwbDB_SetQueryTimeoutValue(

cwbDB_RequestHandle request,
long timeout,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object. This api is only valid for an SQL request.

long timeout - input
The timeout value greater than zero. The special value -1indicates a value of *NOMAX.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. If the parameter is set to zero, no messages will
be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

CWBDB_PARAMETER_ERROR
Timeout not greater than zero or -1.

Usage: The cwbDB_StoreRequestParameters API must be called in order for the setting to take affect.

Chapter 5. iSeries Access for Windows Database Programming 829

cwbDB_SetRDBName

Purpose: Set the Relational Database (RDB) name for a catalog request. This is the RDB for which
information is being requested.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetRDBName(
cwbDB_RequestHandle request,
char *RDBName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *RDBName - input
Pointer to an ASCIIZ string containing the RDB name.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is used prior to cwbDB_RetrieveDBInformation. This API is not valid for SQL or NDB
requests.

830 iSeries: iSeries Access for Windows Programming

cwbDB_SetRecordLength

Purpose: Set the record length in preparation for creating a file through the API.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetRecordLength(
cwbDB_RequestHandle request,
unsigned long recordLength,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned long recordLength - input
Length of records to be contained in the file to be created.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for List or SQL requests.

Chapter 5. iSeries Access for Windows Database Programming 831

cwbDB_SetScrollableCursor

Purpose: Indicate whether the cursor used by this request is scrollable.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetScrollableCursor(
cwbDB_RequestHandle request,
unsigned short scrollIndicator,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short scrollIndicator - input
Input value for scroll indicator.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

CWBDB_INVALID_ARG_API
Invalid scrollIndicator value.

Usage: Use one of the defined values:

CWBDB_CURSOR_STATIC_SCROLLABLE

CWBDB_CURSOR_NOT_SCROLLABLE

CWBDB_CURSOR_SCROLLABLE

This API is not valid for NDB or catalog requests.

832 iSeries: iSeries Access for Windows Programming

cwbDB_SetStatementName

Purpose: Set the statement name to be used for this request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetStatementName(
cwbDB_RequestHandle request,
char *statementName,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *statementName - input
Pointer to an ASCIIZ string containing the statement name being used for an SQL request.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests.

Chapter 5. iSeries Access for Windows Database Programming 833

cwbDB_SetStatementText

Purpose: Set the statement text to be used for this request.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetStatementText(
cwbDB_RequestHandle request,
char *statementText,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

char *statementText - input
Pointer to an ASCIIZ string containing the statement text being used for an SQL request.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API is not valid for NDB or catalog requests.

834 iSeries: iSeries Access for Windows Programming

cwbDB_SetStatementType

Purpose: Set the type of SQL statement for which information is being requested.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetStatementType(
cwbDB_RequestHandle request,
unsigned short statementType,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short statementType - input
Long integer that indicates type of SQL statement being used for a catalog request.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

Usage: This API may be used prior to making a cwbDB_RetrieveSQLPackageStatement API call. Use
one of the defined values:

CWBDB_ALL_STATEMENTS

CWBDB_DECLARE_STATEMENTS

CWBDB_SELECT_STATEMENTS

CWBDB_EXEC_STATEMENTS

This API is not valid for NDB or SQL requests.

Chapter 5. iSeries Access for Windows Database Programming 835

cwbDB_SetStaticCursorResultSetThreshold

Purpose: Sets threshold for static cursor result set size.

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object. This api is only valid for an SQL request.

unsigned long thresholdSize - input
Threshold that limits the number of records in a temporary record set of a static cursor. Valid range is
1 - 2147483647 (2GB- 1)). Default value is 2147483647.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

CWBDB_INVALID_ARG_API
Invalid reuseIndicator value.

Usage: This API is not valid for NDB or catalog requests.

836 iSeries: iSeries Access for Windows Programming

cwbDB_SetStreamFetchSyncCount

Purpose: Set the number of 32Kb blocks sent from the server to the client during a stream fetch before
a synchronizing handshake is required.

Syntax:

unsigned int CWB_ENTRY cwbDB_SetStreamFetchSyncCount(
cwbDB_RequestHandle request,
unsigned short syncCount,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

unsigned short syncCount - input
Unsigned short integer that indicates how many 32Kb flows from the server will happen before a
synchronizing handshake will happen.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

CWBDB_STREAM_FETCH_NOT_COMPLETE
Stream fetch in process.

Usage: This API is not valid for NDB or Catalog requests. This API must be called before the
cwbDB_DynamicStreamFetch or the cwbDB_ExtendedDynamicStreamFetch API is called.

Chapter 5. iSeries Access for Windows Database Programming 837

cwbDB_SetTimeFormat

Purpose: Set the format for time data returned from the iSeries server. Time data on the iSeries server
are stored encoded and are returned to the client as character strings. These character strings can be
formatted in five different ways:
Format name Format Example

--------------- ---------- ---------------
Hours minutes seconds hh:mm:ss 13:30:05
USA hh:mm AM or PM 1:30 PM
ISO hh.mm.ss 13:30:05
IBM Europe hh.mm.ss 13:30:05
IBM Japan hh:mm:ss 13:30:05

Syntax:

unsigned int CWB_ENTRY cwbDB_SetTimeFormat(
cwbDB_ConnectionHandle connection,
unsigned short timeFormat,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

unsigned short timeFormat - input
Indicates the format of time data.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

CWBDB_INVALID_ARG_API
Value specified is not in range.

Usage: It is not valid to call this API after calling the cwbDB_StartServer API. Use one of the defined
values:
Format name Time format constant

--------------- -----------------------
Hours minutes seconds CWBDB_TIME_FMT_HMS
USA CWBDB_TIME_FMT_USA
ISO CWBDB_TIME_FMT_ISO
IBM Europe CWBDB_TIME_FMT_EUR
IBM Japan CWBDB_TIME_FMT_JIS

838 iSeries: iSeries Access for Windows Programming

cwbDB_SetTimeSeparator

Purpose: Set the character which separates the elements of time data returned from the iSeries server.
Time data on the iSeries server are stored encoded and are returned to the client as character strings.
These character strings can have one of four different time separator characters:
Date separator Character Example
--------------- ---------- ---------------
Colon : 11:10:03
Period . 11.10.03
Comma , 11,10,03
Blank 11 10 03

Syntax:

unsigned int CWB_ENTRY cwbDB_SetTimeSeparator(
cwbDB_ConnectionHandle connection,
unsigned short timeSeparator,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

unsigned short timeSeparator - input
Indicates the time data separator character.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

CWBDB_INVALID_ARG_API
Value specified is not in range.

Usage: It is not valid to call this API after calling the cwbDB_StartServer API. Use one of the defined
values:
Time separator Time separator constant
--------------- -----------------------
Colon CWBDB_TIME_SEP_COLON
Period CWBDB_TIME_SEP_PERIOD
Comma CWBDB_TIME_SEP_COMMA
Blank CWBDB_TIME_SEP_BLANK

Chapter 5. iSeries Access for Windows Database Programming 839

cwbDB_StartServer

Purpose: Starts the communication between the client and the iSeries server.

Syntax:

unsigned int CWB_ENTRY cwbDB_StartServer(
cwbDB_ConnectionHandle connection,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: None

840 iSeries: iSeries Access for Windows Programming

cwbDB_StartServerDetailed

Purpose: Starts the communication between the client and the iSeries server. Returns a more detailed
return code than cwbDB_StartServer, but otherwise the same.

Syntax:

unsigned int CWB_ENTRY cwbDB_StartServerDetailed(
cwbDB_ConnectionHandle connection,
unsigned long *returnCode,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

unsigned long *returnCode - output
Pointer to an unsigned long to receive the detailed return code.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: None.

Chapter 5. iSeries Access for Windows Database Programming 841

cwbDB_StopServer

Purpose: Ends the communication between the client and the iSeries server.

Syntax:

unsigned int CWB_ENTRY cwbDB_StopServer(
cwbDB_ConnectionHandle connection,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_ConnectionHandle connection - input
Handle to connection to iSeries database access server.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: None

842 iSeries: iSeries Access for Windows Programming

cwbDB_StoreRequestParameters

Purpose: Sends the current parameters to the iSeries server to the stored by the database access
server. Those parameters can then be used by the request on subsequent function calls.

Syntax:

unsigned int CWB_ENTRY cwbDB_StoreRequestParameters(
cwbDB_RequestHandle request,
cwbSV_ErrHandle errorHandle);

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Incorrect connection handle.

Usage: This API is used to store a set of parameters in a buffer on the iSeries server. This is useful if
there is a set of common parameters that are to be used for multiple functions. The API allows the
application to reduce the amount of data that needs to flow in order to perform all of the requests.

Chapter 5. iSeries Access for Windows Database Programming 843

cwbDB_WriteLOBData

Purpose: Write LOB Data.

Parameters:

cwbDB_RequestHandle request - input
Handle to a request object.

void* dataPointer

unsigned long locator - input

unsigned short ccsid - input

unsigned long size - input

unsigned long start - input

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrievable.

Return Codes: The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid request handle.

844 iSeries: iSeries Access for Windows Programming

Example: Using SQL to access database functions
///
//
// PRFTST.CPP
// CLIENT ACCESS DATA ACCESS SAMPLE PROGRAM - Block Fetch a whole table
// Usage: prftst systemname blocksize limit
// systemname - name of the iSeries to run against
// blocksize - number of rows to bring down in each fetch call
// default: 1 row
// limit - total number of rows to bring down
// default: INT_MAX
// Input file: prftst.qry: Put the text of your input query in
// an ASCII file of this name. Limit: 500 characters,
// unless you change it. (See MAXSIZE constant.)
// Example: SELECT * FROM QIWS.QCUSTCDT
// Usage notes: If the blocksize exceeds the number of rows in the
// table, the entire table is fetched.
//
// Link with CWBAPI.LIB
//
///

#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <limits.h>

#include "CWBDB.H" // Header for Database access API’s
#include "CWBSV.H" // Header for Serviceability API’s

void scene18(char*, int, int);

void main(int argc, char *argv[])
{
char sys[15] = "SYSTEMXX";
int block = 1;
int limit = INT_MAX;

if (argc > 1)
{

for(unsigned int i = 0; i<=strlen(argv[1]); i++)
sys[i] = (char) toupper(argv[1][i]);

}

if (argc > 2)
{

block = atoi(argv[2]);
}

if (argc > 3)
{

limit = atoi(argv[3]);
}
scene18(sys, block, limit);
return;

}

void scene18(char *systemName, int blockSize, int fetchLimit)
{

FILE *infile, *outfile;
outfile = fopen("prftst.out","w");
char *cursorName = "CURSOR1";
char *statementName ="BTDB018";
const int MAXSIZE = 500;
char statementText[MAXSIZE] = "";
unsigned int rc;
int rowCount = 0;
unsigned long dataLength = 0;
char ch;

Chapter 5. iSeries Access for Windows Database Programming 845

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

cwbDB_FormatHandle myFmt;
cwbDB_ConnectionHandle Conn;
cwbSV_ErrHandle errorHandle;
cwbDB_RequestHandle SQLReq;

cwbDB_DataHandle myData, ind, msgid, first, sec;
unsigned short hClass;
signed long hCode;

// Read the input file

int count = 0;
if ((infile = fopen("prftst.qry","r")) != NULL) {

while ((ch = getc(infile)) != EOF &&; ch != ’\n’ &&; count < MAXSIZE) {
statementText[count] = ch;
count++;

}
count++;
statementText[count] = ’\n’;

} else {
cout << "Need input query parameter in prftst.qry." << endl;
return;

}

cout << "Block Fetch with data conversion" << endl << endl;

// Create a necessary handles

cwbDB_CreateDataHandle(&myData,; errorHandle);

cwbDB_CreateDataHandle(&ind,; errorHandle);

cwbDB_CreateDataHandle(&msgid,; errorHandle);

cwbDB_CreateDataHandle(&first,; errorHandle);

cwbDB_CreateDataHandle(&sec,; errorHandle);

cwbSV_CreateErrHandle(&errorHandle);;

cwbDB_CreateConnectionHandle(systemName, &Conn,; errorHandle);

cwbDB_CreateSQLRequestHandle(Conn, &SQLReq,; errorHandle);

cwbDB_CreateDataFormatHandle(Conn, &myFmt,; errorHandle);

cout << "Starting data access server on system: " << systemName << endl;

// Start the database access server

if ((rc = cwbDB_StartServer(Conn, errorHandle)) != 0)
{

cout << "Bad return code from the startServer call: " << rc << endl;
return;

}

// ************* Setup - prepare statement *************

if ((rc = cwbDB_SetStatementName(SQLReq, statementName, errorHandle)) != 0)
{

cout << "FAIL - set statement name failed with return code: " << rc
<< endl << endl;

return;
}

if ((rc = cwbDB_SetCursorName(SQLReq, cursorName, errorHandle)) != 0)
{

cout << "FAIL - set cursor name failed with return code: "
<< rc << endl << endl;
return;

}

if ((rc = cwbDB_StoreRequestParameters(SQLReq, errorHandle)) != 0)
{

cout << "FAIL - store parameters failed with return code: " << rc
<< endl << endl;

846 iSeries: iSeries Access for Windows Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

return;
}

if ((rc = cwbDB_SetStatementText(SQLReq, statementText, errorHandle)) != 0)
{

cout << "FAIL - set statement text failed with return code: " << rc
<< endl << endl;

return;
}

if ((rc = cwbDB_Prepare(SQLReq, errorHandle)) != 0)
{

cout << "FAIL - prepare request failed: " << rc
<< endl << endl;

return;
}

// ************* Open cursor *************

if ((rc = cwbDB_Open(SQLReq, CWBDB_READ, errorHandle)) != 0)
{

cout << "FAIL - open request failed: " << rc
<< endl << endl;

return;
}

// ************* Fetch data *************

if ((rc = cwbDB_SetCursorName(SQLReq, cursorName, errorHandle)) != 0)
{

cout << "FAIL - set cursor name failed with return code: "
<< rc << endl << endl;
return;

}

cwbDB_SetConversionIndicator(myFmt, 1, errorHandle);

// Loop through the block fetch until the limit is reached.
// If the limit is bigger than the total number of rows in the table,
// the fetch will eventually fail.

while (rowCount < fetchLimit) {

if ((cwbDB_ReturnData(SQLReq, myData, ind, myFmt, errorHandle)) != 0)
{

cout << "FAIL - request for data to be returned failed: " << rc
<< endl << endl;

return;
}

if ((rc = cwbDB_ReturnHostErrorInfo(SQLReq, &hClass,; &hCode,; msgid, first, sec,
errorHandle)) != 0)

{
cout << "FAIL - request for return host error info failed: " << rc

<< endl << endl;
}

if ((rc = cwbDB_SetBlockCount(SQLReq, blockSize, errorHandle)) != 0)
{

cout << "FAIL - set block size failed with return code: " << rc
<< endl << endl;

return;
}

cout << "Fetching a block of " << dec << blockSize << "." << endl;

if ((rc = cwbDB_Fetch(SQLReq, errorHandle)) != 0)
{

char* firsttxt;
char* sectxt;
char** pfirsttxt = &firsttxt;
char** psectxt = §xt;
cwbDB_GetDataPointer(first, pfirsttxt, errorHandle);
cwbDB_GetDataPointer(sec, psectxt, errorHandle);

Chapter 5. iSeries Access for Windows Database Programming 847

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

cout << endl << "Host message class: " << hClass << endl;
cout << endl << "Host message code: " << hCode << endl;
cout << "FIRST LEVEL TEXT: " << endl;
cout << firsttxt << endl << endl;
cout << "SECOND LEVEL TEXT: " << endl;
cout << sectxt << endl << endl;

break;
}
else
{

cout << "Fetch call ENDED." << endl;

rowCount+=blockSize;

cout << "Total rows fetched so far: "<< dec << rowCount << "." << endl << endl;

if (blockSize <= 10) {
char *theData = NULL;
char **pmyData = &theData;
unsigned long len;
cwbDB_GetDataPointer(myData, pmyData, errorHandle);
cwbDB_GetDataLength(myData, &len,; errorHandle);
cout << "Fetched data: " << endl;
cout.write(theData, len);
cout << endl;

}
}

} // end while

// Stop the database access server
cwbDB_StopServer(Conn, errorHandle);

// Delete all the handles

cwbDB_DeleteDataHandle(myData, errorHandle);

cwbDB_DeleteDataHandle(ind, errorHandle);

cwbDB_DeleteDataHandle(msgid, errorHandle);

cwbDB_DeleteDataHandle(first, errorHandle);

cwbDB_DeleteDataHandle(sec, errorHandle);

cwbDB_DeleteDataFormatHandle(myFmt, errorHandle);

cwbDB_DeleteConnectionHandle(Conn, errorHandle);

cwbDB_DeleteSQLRequestHandle(SQLReq, errorHandle);

cwbSV_DeleteErrHandle(errorHandle);
}

848 iSeries: iSeries Access for Windows Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Chapter 6. Java programming

The Java programming language, which was defined by Sun, enables the development of portable
Web-based applications.

See the IBM Toolbox for Java
The IBM Toolbox for Java, which is shipped with iSeries Access for Windows, provides Java
classes for accessing iSeries resources. IBM Toolbox for Java uses the iSeries Access for
Windows Host Servers as access points to the system. However, you do not need iSeries Access
for Windows to use IBM Toolbox for Java. Use the Toolbox to write applications that run
independent of iSeries Access for Windows.

Note: IBM Toolbox for Java interface behaviors such as security and tracing may differ from those
of other iSeries Access for Windows interfaces.

© Copyright IBM Corp. 1999, 2002 849

../rzahh/page1.htm

850 iSeries: iSeries Access for Windows Programming

Chapter 7. ActiveX programming

ActiveX automation is a programming technology that is defined by Microsoft.

iSeries Access for Windows provides the following methods for accessing iSeries resources by using
ActiveX automation:

Automation objects:
These objects provide support for:
v Accessing iSeries data queues
v Calling iSeries system application programming interfaces and user programs
v Managing iSeries connections and validating security
v Running CL commands on the iSeries server
v Performing data-type and code-page conversions
v Performing database transfers
v Interfacing with host emulation sessions

“iSeries Access for Windows OLE DB Provider” on page 555:
Call the iSeries Access for Windows OLE DB Provider, by using Microsoft’s ActiveX Data Objects
(ADO), to access the following iSeries server resources:
v The iSeries database, through record-level access
v The iSeries database, through SQL
v SQL stored procedures
v Data queues
v Programs
v CL commands

Custom controls:
ActiveX custom controls are provided for:
v iSeries data queues
v iSeries CL commands
v iSeries system names for previously connected systems
v iSeries Navigator

Programmer’s Toolkit:
For detailed information on ActiveX support for iSeries Access for Windows, see the ActiveX topic
in the Programmer’s Toolkit component of iSeries Access for Windows. It includes complete
documentation of ADO and ActiveX automation objects, and links to ActiveX information resources.

How to access the ActiveX topic:

1. Ensure that the Programmer’s Toolkit is installed (see “Installing the Programmer’s
Toolkit” on page 12).

2. Launch the Programmer’s Toolkit (see “Launching the Programmer’s Toolkit” on
page 12).

3. Select the Overview topic.

4. Select Programming Technologies.

5. Select ActiveX.

© Copyright IBM Corp. 1999, 2002 851

852 iSeries: iSeries Access for Windows Programming

����

Printed in U.S.A.

	Contents
	Part 1. iSeries Access for Windows programming
	Chapter 1. Code disclaimer information
	Chapter 2. What's new for V5R2
	Chapter 3. Print this topic
	Chapter 4. iSeries Access for Windows® C/C++ APIs
	iSeries Access for Windows C/C++ APIs overview
	API groups, header files, import libraries, and DLLs
	Who should read iSeries Access for Windows programming
	Programmer's Toolkit

	iSeries system name formats for ODBC Connection APIs
	OEM, ANSI, and Unicode considerations
	Using a single iSeries Access for Windows API type
	Using mixed iSeries Access for Windows API types
	Writing a generic iSeries Access for Windows application

	Obsolete iSeries Access for Windows APIs
	Obsolete Communications APIs
	Obsolete Data Queues APIs
	Obsolete Remote Command/Distributed Program Call APIs
	Obsolete Security APIs
	Obsolete Serviceability APIs
	Obsolete System Object Access (SOA) API

	Return codes and error messages
	iSeries Access for Windows return codes that correspond to operating system errors
	iSeries Access return codes
	iSeries Access for Windows component-specific return codes

	iSeries Access for Windows Administration APIs
	Administration APIs listing
	cwbAD_GetClientVersion
	cwbAD_GetProductFixLevel
	cwbAD_IsComponentInstalled
	cwbAD_IsOpNavPluginInstalled

	Example: Administration APIs

	iSeries Access for Windows Communications and Security APIs
	System object attributes
	System object attributes listing

	iSeries Access for Windows Communications and Security system object APIs listing
	cwbCO_CanModifyDefaultUserMode
	cwbCO_CanModifyIPAddress
	cwbCO_CanModifyIPAddressLookupMode
	cwbCO_CanModifyPersistenceMode
	cwbCO_CanModifyPortLookupMode
	cwbCO_CanModifyUseSecureSockets
	cwbCO_ChangePassword
	cwbCO_Connect
	cwbCO_CreateSystem
	cwbCO_CreateSystemLike
	cwbCO_DeleteSystem
	cwbCO_Disconnect
	cwbCO_GetConnectTimeout
	cwbCO_GetDefaultUserMode
	cwbCO_GetDescription
	cwbCO_GetFailedSignons
	cwbCO_GetHostCCSID
	cwbCO_GetHostVersionEx
	cwbCO_GetIPAddress
	cwbCO_GetIPAddressLookupMode
	cwbCO_GetPasswordExpireDate
	cwbCO_GetPersistenceMode
	cwbCO_GetPortLookupMode
	cwbCO_GetPrevSignonDate
	cwbCO_GetPromptMode
	cwbCO_GetSignonDate
	cwbCO_GetSystemName
	cwbCO_GetUserIDEx
	cwbCO_GetValidateMode
	cwbCO_GetWindowHandle
	cwbCO_HasSignedOn
	cwbCO_IsConnected
	cwbCO_IsSecureSockets
	cwbCO_SetConnectTimeout
	cwbCO_SetDefaultUserMode
	cwbCO_SetIPAddress
	cwbCO_SetIPAddressLookupMode
	cwbCO_SetPassword
	cwbCO_SetPersistenceMode
	cwbCO_SetPortLookupMode
	cwbCO_SetPromptMode
	cwbCO_SetUserIDEx
	cwbCO_SetValidateMode
	cwbCO_SetWindowHandle
	cwbCO_Signon
	cwbCO_UseSecureSockets
	cwbCO_Verify
	cwbCO_VerifyUserIDPassword
	Defines for cwbCO_Service
	Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword
	Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword

	iSeries Access for Windows Communications system list APIs listing
	cwbCO_CanConnectNewSystem
	cwbCO_CanModifyEnvironmentList
	cwbCO_CanModifySystemList
	cwbCO_CanModifySystemListEnv
	cwbCO_CanSetActiveEnvironment
	cwbCO_CreateSysListHandle
	cwbCO_CreateSysListHandleEnv
	cwbCO_DeleteSysListHandle
	cwbCO_GetActiveConversations
	cwbCO_GetActiveEnvironment
	cwbCO_GetConnectedSysName
	cwbCO_GetDefaultSysName
	cwbCO_GetEnvironmentName
	cwbCO_GetHostVersion
	cwbCO_GetNextSysName
	cwbCO_GetNumberOfEnvironments
	cwbCO_GetSysListSize
	cwbCO_GetUserID
	cwbCO_IsSystemConfigured
	cwbCO_IsSystemConfiguredEnv
	cwbCO_IsSystemConnected

	Example: Using iSeries Access for Windows communications APIs

	iSeries Access for Windows Data Queues APIs
	Data queues
	Ordering data queue messages
	Working with data queues
	Typical use of data queues
	iSeries Access for Windows Data Queues APIs listing
	cwbDQ_AsyncRead
	cwbDQ_Cancel
	cwbDQ_CheckData
	cwbDQ_Clear
	cwbDQ_Close
	cwbDQ_Create
	cwbDQ_CreateEx
	cwbDQ_CreateAttr
	cwbDQ_CreateData
	cwbDQ_Delete
	cwbDQ_DeleteEx
	cwbDQ_DeleteAttr
	cwbDQ_DeleteData
	cwbDQ_GetAuthority
	cwbDQ_GetConvert
	cwbDQ_GetData
	cwbDQ_GetDataAddr
	cwbDQ_GetDataLen
	cwbDQ_GetDesc
	cwbDQ_GetForceToStorage
	cwbDQ_GetKey
	cwbDQ_GetKeyLen
	cwbDQ_GetKeySize
	cwbDQ_GetLibName
	cwbDQ_GetMaxRecLen
	cwbDQ_GetOrder
	cwbDQ_GetQueueAttr
	cwbDQ_GetQueueName
	cwbDQ_GetRetDataLen
	cwbDQ_GetRetKey
	cwbDQ_GetRetKeyLen
	cwbDQ_GetSearchOrder
	cwbDQ_GetSenderID
	cwbDQ_GetSenderInfo
	cwbDQ_GetSysName
	cwbDQ_Open
	cwbDQ_OpenEx
	cwbDQ_Peek
	cwbDQ_Read
	cwbDQ_SetAuthority
	cwbDQ_SetConvert
	cwbDQ_SetData
	cwbDQ_SetDataAddr
	cwbDQ_SetDesc
	cwbDQ_SetForceToStorage
	cwbDQ_SetKey
	cwbDQ_SetKeySize
	cwbDQ_SetMaxRecLen
	cwbDQ_SetOrder
	cwbDQ_SetSearchOrder
	cwbDQ_SetSenderID
	cwbDQ_Write

	Example: Using Data Queues APIs

	iSeries Access for Windows Data Transformation and National LanguageSupport (NLS) APIs
	iSeries Access for Windows data transformation APIs
	iSeries Access for Windows data transformation API listing
	Example: Using data transformation APIs

	iSeries Access for Windows national language support (NLS) APIs
	Coded character sets
	iSeries Access for Windows NLS APIs listing
	Example: iSeries Access for Windows NLS APIs

	iSeries Access for Windows Directory Update APIs
	Typical use of iSeries Access for Windows Directory Update APIs
	Requirements for Directory Update entries
	Options for Directory Update entries
	Directory Update package files syntax and format
	Directory Update sample program
	iSeries Access for Windows Directory Update API listing
	cwbUP_AddPackageFile
	cwbUP_CreateUpdateEntry
	cwbUP_DeleteEntry
	cwbUP_FindEntry
	cwbUP_FreeEntryHandle
	cwbUP_FreeLock
	cwbUP_GetCallbackDLL
	cwbUP_GetDescription
	cwbUP_GetEntryAttributes
	cwbUP_GetEntryHandle
	cwbUP_GetLockHolderName
	cwbUP_GetSourcePath
	cwbUP_GetTargetPath
	cwbUP_RemovePackageFile
	cwbUP_SetCallbackDLL
	cwbUP_SetDescription
	cwbUP_SetEntryAttributes
	cwbUP_SetSourcePath
	cwbUP_SetTargetPath

	iSeries Access for Windows PC5250 emulation APIs
	IBM Lightweight Directory Access Protocol (LDAP) APIs
	iSeries Access for Windows Multimedia APIs
	Ultimedia System Facilities API capabilities overview
	Ultimedia System Facilities API types overview

	iSeries Objects APIs for iSeries Access for Windows
	iSeries objects attributes
	Advanced Function Printing
	Align Page
	Allow Direct Print
	Authority
	Authority to Check
	Automatically End Writer
	Back Margin Offset Across
	Back Margin Offset Down
	Backside Overlay Library Name
	Backside Overlay Name
	Back Overlay offset across
	Back Overlay Offset Down
	Characters per Inch
	Code Page
	Coded Font Name
	Coded Font Library Name
	Copies
	Copies left to Produce
	Current Page
	Data Format
	Data Queue Library Name
	Data Queue Name
	Date File Opened
	User Specified DBCS Data
	DBCS Extension Characters
	DBCS Character Rotation
	DBCS Characters per Inch
	DBCS SO/SI Spacing
	Defer Write
	Degree of Page Rotation
	Delete File After Sending
	Destination Option
	Destination Type
	Device Class
	Device Model
	Device Type
	Display any File
	Drawer for Separators
	Ending Page
	File Separators
	Fold Records
	Font Identifier
	Form Feed
	Form Type
	Form Type Message Option
	Front Margin Offset Across
	Front Margin Offset Down
	Front Overlay Library Name
	Front Overlay Name
	Front Overlay Offset Across
	Front Overlay Offset Down
	Graphic Character Set
	Hardware Justification
	Hold Spool File
	Initialize the writer
	Internet Address
	Job Name
	Job Number
	Job Separators
	Job User
	Last Page Printed
	Length of Page
	Library Name
	Lines Per Inch
	Manufacturer Type and Model
	Maximum Spooled Output Records
	Measurement Method
	Message Help
	Message ID
	Message Queue Library Name
	Message Queue
	Message Reply
	Message Text
	Message Type
	Message Severity
	Number of Bytes to Read/Write
	Number of Files
	Number of Writers Started to Queue
	Object Extended Attribute
	Open time commands
	Operator Controlled
	Order of Files On Queue
	Output Priority
	Output Queue Library Name
	Output Queue Name
	Output Queue Status
	Overflow Line Number
	Pages Per Side
	Pel Density
	Point Size
	Print Fidelity
	Print on Both Sides
	Print Quality
	Print Sequence
	Print Text
	Printer
	Printer Device Type
	Printer File Library Name
	Printer File Name
	Printer Queue
	Record Length
	Remote System
	Replace Unprintable Characters
	Replacement Character
	Resource library name
	Resource name
	Resource object type
	Restart Printing
	Save Spooled File
	Seek Offset
	Seek Origin
	Send Priority
	Separator page
	Source Drawer
	Spool SCS
	Spool the Data
	Spooled File Name
	Spooled File Number
	Spooled File Status
	Spooled Output Schedule
	Starting Page
	Text Description
	Time File Opened
	Total Pages
	Transform SCS to ASCII
	Unit of Measure
	User Comment
	User Data
	User defined data
	User defined object library
	User defined object name
	User defined object type
	User defined option(s)
	User driver program
	User driver program library
	User driver program name
	User ID
	User ID Address
	User transform program library
	User transform program name
	VM/MVS Class
	When to Automatically End Writer
	When to End Writer
	When to Hold File
	Width of Page
	Workstation Customizing Object Name
	Workstation Customizing Object Library
	Writer Job Name
	Writer Job Number
	Writer Job Status
	Writer Job User Name
	Writer Starting Page
	Network Print Server Object Attributes

	iSeries Objects API for iSeries Access for Windows listing
	cwbOBJ_AnalyzeSplFData
	cwbOBJ_AnswerSplFMsg
	cwbOBJ_CallExitPgmForSplF
	cwbOBJ_CloseNewSplF
	cwbOBJ_CloseNewSplFAndGetHandle
	cwbOBJ_CloseList
	cwbOBJ_CloseResource
	cwbOBJ_CloseSplF
	cwbOBJ_CopyObjHandle
	cwbOBJ_CopyParmObjHandle
	cwbOBJ_CreateListHandle
	cwbOBJ_CreateNewSplF
	cwbOBJ_CreateParmObjHandle
	cwbOBJ_CreateResourceHandle
	cwbOBJ_CreateSplFHandle
	cwbOBJ_CreateSplFHandleEx
	cwbOBJ_DeleteListHandle
	cwbOBJ_DeleteObjHandle
	cwbOBJ_DeleteParmObjHandle
	cwbOBJ_DeleteSplF
	cwbOBJ_DisplayResource
	cwbOBJ_DisplaySplF
	cwbOBJ_DropConnections
	cwbOBJ_EndWriter
	cwbOBJ_GetListSize
	cwbOBJ_GetNPServerAttr
	cwbOBJ_GetObjAttr
	cwbOBJ_GetObjAttrs
	cwbOBJ_GetObjHandle
	cwbOBJ_GetObjHandleFromID
	cwbOBJ_GetObjID
	cwbOBJ_GetParameter
	cwbOBJ_GetSplFHandleFromNewSplF
	cwbOBJ_GetSplFMsgAttr
	cwbOBJ_HoldOutputQueue
	cwbOBJ_HoldSplF
	cwbOBJ_IsViewerAvailable
	cwbOBJ_MoveSplF
	cwbOBJ_OpenList
	cwbOBJ_OpenResource
	cwbOBJ_OpenResourceForSplF
	cwbOBJ_OpenSplF
	cwbOBJ_PurgeOutputQueue
	cwbOBJ_ReadResource
	cwbOBJ_ReadSplF
	cwbOBJ_RefreshObj
	cwbOBJ_ReleaseOutputQueue
	cwbOBJ_ReleaseSplF
	cwbOBJ_ResetListAttrsToRetrieve
	cwbOBJ_ResetListFilter
	cwbOBJ_SeekResource
	cwbOBJ_SeekSplF
	cwbOBJ_SendNetSplF
	cwbOBJ_SendTCPSplF
	cwbOBJ_SetConnectionsToKeep
	cwbOBJ_SetListAttrsToRetrieve
	cwbOBJ_SetListFilter
	cwbOBJ_SetListFilterWithSplF
	cwbOBJ_SetObjAttrs
	cwbOBJ_SetParameter
	cwbOBJ_StartWriter
	cwbOBJ_WriteNewSplF

	Example: Using iSeries Objects APIs for iSeries Access for Windows

	iSeries Access for Windows Remote Command/Distributed Program Call APIs
	Typical use of iSeries Access for Windows Remote Command/Distributed Program Call APIs
	iSeries Access for Windows Remote Command/Distributed Program Call APIs listing
	cwbRC_AddParm
	cwbRC_CallPgm
	cwbRC_CreatePgm
	cwbRC_DeletePgm
	cwbRC_GetClientCCSID
	cwbRC_GetHostCCSID
	cwbRC_GetLibName
	cwbRC_GetParm
	cwbRC_GetParmCount
	cwbRC_GetPgmName
	cwbRC_RunCmd
	cwbRC_SetLibName
	cwbRC_SetParm
	cwbRC_SetPgmName
	cwbRC_StartSysEx
	cwbRC_StopSys

	Example: Using Remote iSeries Access for Windows Command/Distributed Program Call APIs

	iSeries Access for Windows Serviceability APIs
	History log and trace files
	Error handles
	Typical use of Serviceability APIs
	iSeries Access for Windows Serviceability APIs listing
	cwbSV_ClearServiceFile
	cwbSV_CloseServiceFile
	cwbSV_CreateErrHandle
	cwbSV_CreateMessageTextHandle
	cwbSV_CreateServiceRecHandle
	cwbSV_CreateTraceAPIHandle
	cwbSV_CreateTraceDataHandle
	cwbSV_CreateTraceSPIHandle
	cwbSV_DeleteErrHandle
	cwbSV_DeleteMessageTextHandle
	cwbSV_DeleteServiceRecHandle
	cwbSV_DeleteTraceAPIHandle
	cwbSV_DeleteTraceDataHandle
	cwbSV_DeleteTraceSPIHandle
	cwbSV_GetComponent
	cwbSV_GetDateStamp
	cwbSV_GetErrClass
	cwbSV_GetErrClassIndexed
	cwbSV_GetErrCount
	cwbSV_GetErrFileName
	cwbSV_GetErrFileNameIndexed
	cwbSV_GetErrLibName
	cwbSV_GetErrLibNameIndexed
	cwbSV_GetErrSubstText
	cwbSV_GetErrSubstTextIndexed
	cwbSV_GetErrText
	cwbSV_GetErrTextIndexed
	cwbSV_GetMaxRecordSize
	cwbSV_GetMessageText
	cwbSV_GetProduct
	cwbSV_GetRecordCount
	cwbSV_GetServiceFileName
	cwbSV_GetServiceType
	cwbSV_GetTimeStamp
	cwbSV_GetTraceAPIData
	cwbSV_GetTraceAPIID
	cwbSV_GetTraceAPIType
	cwbSV_GetTraceData
	cwbSV_GetTraceSPIData
	cwbSV_GetTraceSPIID
	cwbSV_GetTraceSPIType
	cwbSV_LogAPIEntry
	cwbSV_LogAPIExit
	cwbSV_LogMessageText
	cwbSV_LogSPIEntry
	cwbSV_LogSPIExit
	cwbSV_LogTraceData
	cwbSV_OpenServiceFile
	cwbSV_ReadNewestRecord
	cwbSV_ReadNextRecord
	cwbSV_ReadOldestRecord
	cwbSV_ReadPrevRecord
	cwbSV_SetMessageClass
	cwbSV_SetMessageComponent
	cwbSV_SetMessageProduct
	cwbSV_SetAPIComponent
	cwbSV_SetAPIProduct
	cwbSV_SetSPIComponent
	cwbSV_SetSPIProduct
	cwbSV_SetTraceComponent
	cwbSV_SetTraceProduct

	Example: Using iSeries Access for Windows erviceability APIs

	iSeries Access for Windows System Object Access (SOA) APIs
	SOA objects
	iSeries object views
	Typical use of System Object Access APIs for iSeries Access for Windows
	Displaying a customized list of iSeries objects
	Sample program: Displaying a customized list of iSeries objects
	Displaying the Properties view for an iSeries Object
	Sample program: Displaying the Properties view of an object
	Accessing and updating data for iSeries Objects
	Sample program: Accessing and updating data for iSeries objects

	iSeries Access for Windows System Object Access programming considerations
	About System Object Access errors
	System Object Access application profiles
	Managing iSeries communications sessions for application programs

	System Object Access APIs for iSeries Access for Windows listing
	CWBSO_CloseList
	CWBSO_CopyObjHandle
	CWBSO_CreateErrorHandle
	CWBSO_CreateListHandle
	CWBSO_CreateListHandleEx
	CWBSO_CreateObjHandle
	CWBSO_CreateParmObjHandle
	CWBSO_DeleteErrorHandle
	CWBSO_DeleteListHandle
	CWBSO_DeleteObjHandle
	CWBSO_DeleteParmObjHandle
	CWBSO_DisallowListActions
	CWBSO_DisallowListFilter
	CWBSO_DisplayErrMsg
	CWBSO_DisplayList
	CWBSO_DisplayObjAttr
	CWBSO_GetErrMsgText
	CWBSO_GetListSize
	CWBSO_GetObjAttr
	CWBSO_GetObjHandle
	CWBSO_OpenList
	CWBSO_ReadListProfile
	CWBSO_RefreshObj
	CWBSO_ResetParmObj
	CWBSO_SetListFilter
	CWBSO_SetListProfile
	CWBSO_SetListSortFields
	CWBSO_SetListTitle
	CWBSO_SetObjAttr
	CWBSO_SetParameter
	CWBSO_WaitForObj
	CWBSO_WriteListProfile
	SOA attribute special values

	Chapter 5. iSeries Access for Windows Database Programming
	iSeries Access for Windows OLE DB Provider
	iSeries Access for Windows ODBC
	ODBC APIs
	ODBC APIs: General concepts
	ODBC 3.x APIs
	Coding directly to ODBC APIs
	ODBC API return codes

	Implementation issues of ODBC APIs
	Connection String keywords
	Version and release changes in the ODBC driver behavior
	ODBC API restrictions and unsupported functions
	Signon dialog behavior
	ODBC data types and how they correspond to DB2 UDB database types
	Special connection and statement attributes
	SQLPrepare / SQLNativeSQL escape sequences and scalar functions:
	Cursor and Rowset size
	Restrictions when using the 64–bit iSeries Access for Windows ODBC Driver
	SQLTables Description

	iSeries Access for Windows ODBC performance
	Performance-tuning iSeries Access for Windows ODBC
	Performance considerations of common end-user tools
	SQL performance
	ODBC blocked insert statement
	Catalog functions
	Exit programs
	Stored procedures
	Example: Calling CL command stored procedures

	Choosing an interface to access the ODBC driver
	ODBC programming examples
	Example: Visual C++ - Accessing and returning data by calling a stored procedure
	Example: Visual Basic - Accessing and returning data by calling a stored procedure
	Examples: RPG - Host code for ODBC stored procedures

	iSeries Access for Windows database APIs
	iSeries Access for Windows database APIs overview
	Connection object
	Catalog request object
	Native database (NDB) request object
	SQL request
	Data format object
	Parameter marker format object
	Data object

	Typical use of iSeries Access for Windows database APIs
	Catalog request APIs
	Native Database (NDB) request APIs
	SQL request APIs

	Objects that process data on the PC or iSeries server
	Code page support in Windows
	iSeries Access for Windows database APIs listing
	cwbDB_AddLibraryToList
	cwbDB_AddMember
	cwbDB_ApplyAttributes
	cwbDB_GetBaseColumnName
	cwbDB_ClearMember
	cwbDB_GetBaseSchemaName
	cwbDB_GetBaseTableName
	cwbDB_ClearPackage
	cwbDB_Close
	cwbDB_Commit
	cwbDB_Connect
	cwbDB_CreateCatalogRequestHandle
	cwbDB_CreateConnectionHandle
	cwbDB_CreateConnectionHandleEx
	cwbDB_CreateDataFormatHandle
	cwbDB_CreateDataHandle
	cwbDB_CreateDuplicateFile
	cwbDB_CreateNDBRequestHandle
	cwbDB_CreatePackage
	cwbDB_CreateParameterMarkerFormatHandle
	cwbDB_CreateSourcePhysicalFile
	cwbDB_CreateSQLRequestHandle
	cwbDB_DeleteCatalogRequestHandle
	cwbDB_DeleteConnectionHandle
	cwbDB_DeleteDataFormatHandle
	cwbDB_DeleteDataHandle
	cwbDB_DeleteFile
	cwbDB_DeleteNDBRequestHandle
	cwbDB_DeletePackage
	cwbDB_DeleteParameterMarkerFormatHandle
	cwbDB_DeleteSQLRequestHandle
	cwbDB_Describe
	cwbDB_DescribeParameterMarkers
	cwbDB_DynamicStreamFetch
	cwbDB_EndStreamFetch
	cwbDB_Execute
	cwbDB_ExecuteImmediate
	cwbDB_ExtendedDynamicStreamFetch
	cwbDB_Fetch
	cwbDB_GetColumnCCSID
	cwbDB_GetColumnCount
	cwbDB_GetColumnLength
	cwbDB_GetColumnName
	cwbDB_GetColumnPrecision
	cwbDB_GetColumnScale
	cwbDB_GetColumnType
	cwbDB_GetCommitmentControl
	cwbDB_GetConversionIndicator
	cwbDB_GetData
	cwbDB_GetDataLength
	cwbDB_GetDataPointer
	cwbDB_GetDateFormat
	cwbDB_GetDateSeparator
	cwbDB_GetDecimalSeparator
	cwbDB_GetExtendedColumnInfo
	cwbDB_GetIgnoreDecimalDataError
	cwbDB_GetLabelName
	cwbDB_GetLOBLocator
	cwbDB_GetLOBMaxSize
	cwbDB_GetNamingConvention
	cwbDB_GetParameterCCSID
	cwbDB_GetParameterCount
	cwbDB_GetParameterDirection
	cwbDB_GetParameterLength
	cwbDB_GetParameterName
	cwbDB_GetParameterPrecision
	cwbDB_GetParameterScale
	cwbDB_GetParameterType
	cwbDB_GetRelationalDBName
	cwbDB_SetRelationalDBName
	cwbDB_GetRowSize
	cwbDB_GetServerFunctionalLevel
	cwbDB_GetSizeOfParameters
	cwbDB_GetSizeOfInputParameters
	cwbDB_GetSizeOfOutputParameters
	cwbDB_GetTimeFormat
	cwbDB_GetTimeSeparator
	cwbDB_IsParameterInput
	cwbDB_IsParameterInputOutput
	cwbDB_MoreStreamData
	cwbDB_Open
	cwbDB_OpenDescribeFetch
	cwbDB_OverrideFile
	cwbDB_Prepare
	cwbDB_PrepareDescribe
	cwbDB_PrepareDescribeOpenFetch
	cwbDB_RemoveMember
	cwbDB_RemoveOverride
	cwbDB_RetrieveFieldInformation
	cwbDB_RetrieveFileInformation
	cwbDB_RetrieveForeignKeyInformation
	cwbDB_RetrieveIndexInformation
	cwbDB_RetrieveLibraryInformation
	cwbDB_RetrieveLOBData
	cwbDB_RetrieveMemberInformation
	cwbDB_RetrievePackageStatementInformation
	cwbDB_RetrievePrimaryKeyInformation
	cwbDB_RetrieveRDBInformation
	cwbDB_RetrieveRecordFormatInformation
	cwbDB_RetrieveSpecialColumnInformation
	cwbDB_RetrieveSQLPackageInformation
	cwbDB_ReturnData
	cwbDB_ReturnDataFormat
	cwbDB_ReturnExtendedDataFormat
	cwbDB_ReturnHostErrorInfo
	cwbDB_ReturnParameterMarkerFormat
	cwbDB_ReturnSQLCA
	cwbDB_Rollback
	cwbDB_SetAddLibraryName
	cwbDB_SetAddLibraryPosition
	cwbDB_SetAllowAddStatementToPackage
	cwbDB_SetAmbiguousSelectOption
	cwbDB_SetAuthority
	cwbDB_SetAutoCommit
	cwbDB_SetBaseFile
	cwbDB_SetBlockCount
	cwbDB_SetClientColumnToNumeric
	cwbDB_SetClientColumnToString
	cwbDB_SetClientDataCCSID
	cwbDB_SetClientInputCCSID
	cwbDB_SetClientHostErrorCCSID
	cwbDB_SetClientParameterToNumeric
	cwbDB_SetClientParameterToString
	cwbDB_SetCommitmentControl
	cwbDB_SetConversionIndicator
	cwbDB_SetConvert65535
	cwbDB_SetCursorName
	cwbDB_SetCursorReuse
	cwbDB_SetDateFormat
	cwbDB_SetDateSeparator
	cwbDB_SetDecimalSeparator
	cwbDB_SetDescribeOption
	cwbDB_SetDefaultSQLLibraryName
	cwbDB_SetExtendedDataFormat
	cwbDB_SetFetchScrollOptions
	cwbDB_SetFieldName
	cwbDB_SetFileAttributes
	cwbDB_SetFileInfoOrdering
	cwbDB_SetFileName
	cwbDB_SetFileText
	cwbDB_SetFileType
	cwbDB_SetForeignKeyFileName
	cwbDB_SetForeignKeyLibName
	cwbDB_SetFormatName
	cwbDB_SetHoldIndicator
	cwbDB_SetIgnoreDecimalDataError
	cwbDB_SetIndexType
	cwbDB_SetLibraryName
	cwbDB_SetLOBFieldThreshold
	cwbDB_SetLongFileName
	cwbDB_SetMaximumMembers
	cwbDB_SetMemberName
	cwbDB_SetMemberText
	cwbDB_SetNamingConvention
	cwbDB_SetNLSS
	cwbDB_SetNullable
	cwbDB_SetOverrideInformation
	cwbDB_SetPackageName
	cwbDB_SetParameterMarkerBlock
	cwbDB_SetParameterMarkers
	cwbDB_SetPrepareOption
	cwbDB_SetPrimaryKeyFileName
	cwbDB_SetPrimaryKeyLibName
	cwbDB_SetQueryTimeoutValue
	cwbDB_SetRDBName
	cwbDB_SetRecordLength
	cwbDB_SetScrollableCursor
	cwbDB_SetStatementName
	cwbDB_SetStatementText
	cwbDB_SetStatementType
	cwbDB_SetStaticCursorResultSetThreshold
	cwbDB_SetStreamFetchSyncCount
	cwbDB_SetTimeFormat
	cwbDB_SetTimeSeparator
	cwbDB_StartServer
	cwbDB_StartServerDetailed
	cwbDB_StopServer
	cwbDB_StoreRequestParameters
	cwbDB_WriteLOBData

	Example: Using SQL to access database functions

	Chapter 6. Java programming
	Chapter 7. ActiveX programming

