
Security APIs (V5R2)

Validation List APIs

Table of Contents

Validation List APIs

Add Validation List Entry (QSYADVLE)●

Add Validation List Entry (QsyAddValidationLstEntry())●

Change Validation List Entry (QSYCHVLE)●

Change Validation List Entry (QsyChangeValidationLstEntry())●

Find First Validation List Entry (QsyFindFirstValidationLstEntry())●

Find Next Validation List Entry (QsyFindNextValidationLstEntry())●

Find Validation List Entry (QSYFDVLE)●

Find Validation List Entry (QsyFindValidationLstEntry())●

Find Validation List Entry Attributes (QsyFindValidationLstEntryAttrs())●

Open List of Validation List Entries (QSYOLVLE)●

Remove Validation List Entry (QsyRemoveValidationLstEntry())●

Remove Validation List Entry (QSYRMVLE)●

Verify Validation List Entry (QsyVerifyValidationLstEntry())●

Validation List APIs
Validation lists contain entries that consist of an identifier, data that will be encrypted when it is stored, and
free-form data. Entries can be added, changed, removed, found, and validated. You can validate entries by
providing the correct entry identifier and data that is encrypted.

One way to use validation lists is to store the user names of a Web browser. The entry identifier would be
the user name, the data to encrypt would be the user's password, and the free-form data field would contain
any additional data about the user that the browser wanted to store.

The validation list APIs are:

Add Validation List Entry (QSYADVLE) adds an entry to a validation list object.●

Add Validation List Entry (QsyAddValidationLstEntry()) adds an entry to a validation list object.●

Change Validation List Entry (QSYCHVLE) changes an entry in a validation list object.●

Change Validation List Entry (QsyChangeValidationLstEntry()) changes an entry in a validation
list object.

●

Find First Validation List Entry (QsyFindFirstValidationLstEntry()) finds the first entry in a
validation list object and returns information about the validation list entry.

●

Find Next Validation List Entry (QsyFindNextValidationLstEntry()) finds the next entry in a
validation list object after the entry that is passed in the Entry_ID parameter and returns
information about the validation list entry.

●

Find Validation List Entry (QSYFDVLE) finds an entry in a validation list object and returns it.●

Find Validation List Entry (QsyFindValidationLstEntry()) finds an entry in a validation list object
and returns information about the validation list entry.

●

Find Validation List Entry Attributes (QsyFindValidationLstEntryAttrs()) finds an entry in a
validation list object, and the attributes associated with the entry.

●

Open List of Validation List Entries (QSYOLVLE) returns a list of validation list entries in a
validation list object.

●

Remove Validation List Entry (QsyRemoveValidationLstEntry()) removes an entry from a
validation list object.

●

Remove Validation List Entry (QSYRMVLE) removes an entry from a validation list object.●

Verify Validation List Entry (QsyVerifyValidationLstEntry()) verifies an entry in a validation list
object.

●

Top | Security APIs | APIs by category

Add Validation List Entry (QSYADVLE) API

 Required Parameter Group:

1 Qualified validation list name Input Char(20)
2 Entry ID information Input Char(*)
3 Data to encrypt information Input Char(*)
4 Entry data information Input Char(*)
5 Attribute information Input Char(*)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Add Validation List Entry (QSYADVLE) API adds an entry to a validation list object. Entries are
stored in hexadecimal sort sequence. The first entry will always be the one in which the entry ID has the
smallest hexadecimal value.

Conversions are not done on any data when entries are added. The CCSID value for each field is stored as
part of the record but is not used when the entry is added to the validation list.

Authorities and Locks

Validation List Object

*USE and *ADD

Validation List Object Library

*EXECUTE

Required Parameter Group

Qualified validation list name

INPUT; CHAR(20)

The qualified object name of the validation list to add the entry to. The first 10 characters specify
the validation list name, and the second 10 characters specify the library.

You can use these special values for the library name:

*CURLIB The current library is used to locate the validation list. If there is no current library,
QGPL (general purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry ID information

INPUT; CHAR(*)

The format of the entry ID information is as follows. See the Field Descriptions for more
information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of entry ID

>4 4 BINARY(4) CCSID of entry ID

>8 8 CHAR(*) Entry ID

Data to encrypt information

INPUT; CHAR(*)

Data that is associated with the entry ID and is encrypted by the system when it is stored.

The format of the data to encrypt information is as follows. See the Field Descriptions for more
information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of data to encrypt

4 4 BINARY(4) CCSID of data to encrypt

8 8 CHAR(*) Data to encrypt

Entry data information

INPUT; CHAR(*)

Data information that is associated with the entry ID. The format of the entry data information is as
follows. See the Field Descriptions for more information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of data

4 4 BINARY(4) CCSID of data

8 8 CHAR(*) Data

Attribute information

INPUT; CHAR(*)

Attribute information that is associated with the entry. The format of the attribute information is as
follows. See the Field Descriptions for more information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of attributes

4 4 CHAR(*) Attribute structures

The format of the attribute structure is as follows. See the Field Descriptions for more information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of attribute entry

4 4 BINARY(4) Attribute location

8 8 BINARY(4) Attribute type

12 C BINARY(4) Displacement to attribute ID

16 10 BINARY(4) Length of attribute ID

20 14 BINARY(4) Displacement to attribute data

24 18 BINARY(4) Length of attribute data

 CHAR(*) Attribute ID

 CHAR(*) Attribute data

For attributes that are stored in the validation list object, the format of the attribute data is as
follows. See the Field Descriptions for more information.

Offset

Type FieldDec Hex

0 0 BINARY(4) CCSID of attribute

4 4 BINARY(4) Length of attribute

8 8 CHAR(8) Reserved

16 10 CHAR(*) Attribute value

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Field Descriptions

Attribute data. The information that describes the attribute data.

Attribute ID. The ID of the attribute. For system-defined attributes, the allowed values are:

String value Description

QsyEncryptData This is the attribute that is associated with the data to encrypt.

Attribute location. Where the attribute should be stored.

The allowed value is:

0 The attribute is stored in the validation list object.

Attribute structures. Zero or more attribute structures that define the attributes to be associated with the
entry.

Attribute type. The type of attribute.

The allowed value follows:

0 This is a system-defined attribute.

Attribute value. The value of the attribute that is associated with the entry.

For the QsyEncryptData attribute, the allowed values follow:

0 The data to be encrypted can only be used to verify an entry. This is the default.

1 The data to be encrypted can be used to verify an entry and can be returned on a find operation. The
system value QRETSVRSEC (Retain server security data) is used to determine if the data to be
encrypted is stored in the entry or not.

If the system value is set to 0 (Do not retain data), the entry will be added, but the data to be
encrypted will not be stored with the entry. The return value from this function will be -2 to indicate
that the entry was added, but the data to be encrypted was not stored.

If the system value is set to 1 (Retain data), then the data to be encrypted will be stored in encrypted
form when the entry is added.

CCSID of attribute. An integer that represents the CCSID for the attribute. Valid CCSID values are in the
range -1 through 65535.

The special values follow:

-1 No CCSID value is stored with the attribute. If the attribute is QsyEncryptData, this value must be
specified.

0 The default CCSID for the current user is stored.

CCSID of data to encrypt. An integer that represents the CCSID for the data to encrypt. Valid CCSID
values are in the range 1 through 65535.

The special value follows:

0 The default CCSID for the current user is stored.

CCSID of data. An integer that represents the CCSID for the entry data. Valid CCSID values are in the
range 1 through 65535.

The special value follows:

0 The default CCSID for the current user is stored.

CCSID of entry ID. An integer that represents the CCSID for the entry ID. Valid CCSID values are in the
range 1 through 65535.

The special value follows:

0 The default CCSID for the current user is stored.

Data. The data to store in the validation list entry.

Data to encrypt. The data to be encrypted before storing it in the validation list entry.

Displacement to attribute data. The displacement in the attribute entry to the start of the attribute data
information.

Displacement to attribute ID. The displacement in the attribute entry to the start of the attribute ID value.

Entry ID. The data that is used to identify this entry in the validation list.

Length of attribute. The number of bytes of data in the attribute value. The length must be greater than 0.
For the QsyEncryptData attribute, the length must be 1.

Length of attribute data. The number of bytes of data in the attribute data structure. The length must be
greater than 0.

Length of attribute entry. The length (in bytes) of the current entry. This length can be used to access the
next entry, and must be a multiple of 4.

Length of attribute ID. The number of bytes of data in the attribute ID. The length must be greater than 0.

Length of data to encrypt. The number of bytes of data to be encrypted and stored in this validation list
entry. Possible values are 0 through 600. If the length is 0, no encrypted data will be stored in the entry.

Length of data. The number of bytes of data to be stored in this validation list entry. Possible values are 0
through 1000. If the length is 0, no data will be stored in the entry.

Length of entry ID. The number of bytes of data that is provided as the entry ID. Possible values are 1
through 100.

Number of attributes. The number of attributes to be added. This value must be greater than or equal to 0.
If this value is 0, then no attributes will be added to the entry.

Reserved. This is an ignored field.

Error Messages

Message ID Error Message Text

CPFA0AA E Error occurred while attempting to obtain space.

CPF226A E Validation list entry already exists.

CPF226D E Not all information stored.

CPF3CF1 E Error code parameter not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V4R1

Top | Security APIs | APIs by category

QsyAddValidationLstEntry()--Add Validation
List Entry API

 Syntax

 #include <qsyvldl.h>

 int QsyAddValidationLstEntry
 (Qsy_Qual_Name_T *Validation_Lst,
 Qsy_Entry_ID_Info_T *Entry_ID,
 Qsy_Entry_Encr_Data_Info_T *Encrypt_Data,
 Qsy_Entry_Data_Info_T *Entry_Data,
 void *Attribute_Info);

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyAddValidationLstEntry() function adds an entry to a validation list object. Entries are stored in
hexadecimal sort sequence. The first entry will always be the one in which the entry ID has the smallest
hexadecimal value.

Conversions are not done on any data when entries are added. The CCSID value for each field is stored as
part of the record but is not used when the entry is added to the validation list.

Authorities

Validation List Object

*USE and *ADD

Validation List Object Library

*EXECUTE

Parameters

Validation_Lst

(Input) A pointer to the qualified object name of the validation list to add the entry to. The first 10
characters specify the validation list name, and the second 10 characters specify the library. You
can use these special values for the library name:

*CURLIB The current library is used to locate the validation list. If there is no current library,
QGPL (general purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry_ID

(Input) A pointer to the entry ID information. The format of the Qsy_Entry_ID_Info_T structure is
as follows:

int Entry_ID_Len The number of bytes of data that is provided as the entry
ID. Possible values are from 1 through 100.

unsigned int Entry_ID_CCSID An integer that represents the CCSID for the entry ID.
Valid CCSID values are in the range 1 through 65535. The
special value follows:

0 The default CCSID for the current user is stored.

unsigned char Entry_ID[] The data that is used to identify this entry in the validation
list.

Encrypt_Data

(Input) A pointer to data that is associated with the entry ID and is encrypted by the system when it
is stored. If the pointer is NULL, there is no encrypted data associated with the entry ID. The
format of the Qsy_Entry_Encr_Data_Info_T structure is as follows:

int Encr_Data_Len The number of bytes of data to be encrypted and stored in
this validation list entry. Possible values are from 1
through 600.

unsigned int Encr_Data_CCSID An integer that represents the CCSID for the data to
encrypt. Valid CCSID values are in the range 1 through
65535. The special value follows:

0 The default CCSID for the current user is stored.

unsigned char Encr_Data[] The data to be encrypted before storing it in the validation
list entry.

Entry_Data

(Input) A pointer to the data information that is associated with the entry ID. If the pointer is
NULL, there is no data associated with the entry ID. The format of the Qsy_Entry_Data_Info_T
structure is as follows:

int Entry_Data_Len The number of bytes of data to be stored in this validation
list entry. Possible values are from 1 through 1000.

unsigned int Entry_Data_CCSID An integer that represents the CCSID for the data. Valid
CCSID values are in the range 1 through 65535. The
special value follows:

0 The default CCSID for the current user is stored.

unsigned char Entry_Data[] The data to be stored in the validation list entry.

Attribute_Info

(Input) A pointer to a structure that contains attribute information that is associated with the entry
ID. If the pointer is NULL, there is no attribute information associated with the entry ID. The
format of the Qsy_Attr_Info_T structure is as follows:

int Number_Attrs The number of attributes being added. This value must be
greater than 0.

char Res_Align[12] Reserved for boundary alignment.

Qsy_Attr_Descr_T Attr_Descr[] An array of attribute description structures.

The format of the Qsy_Attr_Descr_T structure is as follows:

int Attr_Location Where the attribute should be stored. The allowed value
follows:

0 QSY_IN_VLDL The attribute is stored in the
validation list object.

int Attr_Type The type of attribute. The allowed value follows:

0 QSY_SYSTEM_ATTR This is a system-defined
attribute.

union Attr_Res Res_1[8] Reserved data. This value must be hexadecimal zero.

char * Attr_ID The ID of the attribute. For system-defined attributes, the
allowed value is:

String value Description

QsyEncryptData This is the attribute that is associated
with the data to encrypt.

union Attr_Other_Descr
Res_1[32]

Reserved data. This value must be hexadecimal zero.

union Attr_Data_Info The information describing the attribute data.

union Attr_Other_Data
Res_1[32]

Reserved data. This value must be hexadecimal zero.

The format of the Attr_Data_Info union is as follows:

Qsy_In_VLDL_T Attr_VLDL The attribute data information for an attribute
that is stored in the validation list object.

union Attr_In_Other Res_1[96] Reserved data. The last 64 bytes must be zero.

The format of the Qsy_In_VLDL_T structure is as follows:

int Attr_CCSID An integer that represents the CCSID for the attribute. Valid
CCSID values are in the range -1 through 65535. The special
values follow:

-1 No CCSID value is stored with the attribute. If the attribute
is QsyEncryptData, this value must be specified.

0 The default CCSID for the current user is stored.

int Attr_Len The number of bytes of data in the attribute value. The length must
be greater than 0. For the QsyEncryptData attribute, the length
must be 1.

union Attr_Res Res_1[8] Reserved data. This value must be hexadecimal zero.

void * Attr_Value A pointer to the value of the attribute associated with the entry.
For the QsyEncryptData attribute, the allowed values follow:

0 QSY_VFY_ONLY The data to be encrypted can only be used
to verify an entry. This is the default.

1 QSY_VFY_FIND The data to be encrypted can be used to
verify an entry and can be returned on a
find operation.

If the QSY_VFY_FIND value is specified for the QsyEncryptData attribute, the system value
QRETSVRSEC (Retain server security data) is used to determine if the data to be encrypted is stored in the
entry or not.

If the system value is set to 0 (Do not retain data), the entry will be added, but the data to be encrypted will
not be stored with the entry. The return value from this function will be -2 to indicate that the entry was
added, but the data to be encrypted was not stored.

If the system value is set to 1 (Retain data), then the data to be encrypted will be stored when the entry is
added.

Return Value

0 QsyAddValidationLstEntry() was successful.

-1 QsyAddValidationLstEntry() was not successful. The errno global variable is set to indicate the
error.

-2 QsyAddValidationLstEntry() was successful, but the data to be encrypted was not stored.

Error Conditions

If QsyAddValidationLstEntry() is not successful, errno indicates one of the following errors:

3401 [EACCES]

The current user does not have *USE and *ADD authorities to the validation list object, or does
not have *EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484 [EDAMAGE]

The validation list object is damaged.

3457 [EEXIST]

Specified entry already exists.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3404 [ENOSPC]

No space available.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

See Code disclaimer information for information pertaining to code examples.

The following example adds an entry for a user named FRED to the validation list object WEBUSRS.
FRED has encrypted data (password), but no other data. The CCSID for the entry ID is set to the current
user's default CCSID. The CCSID for the encryption data is set to 65535.

#include <qsyvldl.h>

main()
{
 #define VLD_LST "WEBUSRS WEBLIB "
 Qsy_Entry_ID_Info_T entry_info;
 Qsy_Entry_Encr_Data_Info_T encrypt_data;

 entry_info.Entry_ID_Len = 4;
 entry_info.Entry_ID_CCSID = 0;
 strncpy(entry_info.Entry_ID,"FRED",entry_info.Entry_ID_Len);
 encrypt_data.Encr_Data_Len = 7;
 strncpy(encrypt_data.Encr_Data,"N1LJDTS",
 encrypt_data.Encr_Data_Len);
 encrypt_data.Encr_Data_CCSID = 65535;

 if (0 != QsyAddValidationLstEntry((Qsy_Qual_Name_T *)&VLD_LST,
 &entry_info,
 &encrypt_data,
 NULL,
 NULL))
 perror("QsyAddValidationLstEntry()");

}

API introduced: V4R1

Top | Security APIs | APIs by category

Change Validation List Entry (QSYCHVLE) API

 Required Parameter Group:

1 Qualified validation list name Input Char(20)
2 Entry ID information Input Char(*)
3 Data to encrypt information Input Char(*)
4 Entry data information Input Char(*)
5 Attribute information Input Char(*)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Change Validation List Entry (QSYCHVLE) API changes an entry in a validation list object. The data
to be encrypted, the entry data values, and some of the entry attributes may be changed.

To identify an entry to be changed, there must be an exact match in the entry for the value that is specified
in the entry ID parameter and the length of the entry ID. For example, an entry ID value of SMITH with a
length of 5 would not allow you to change an entry where the entry ID is SMITH and the length is 7.

Conversions are not done on any data when entries are changed. The CCSID values for the fields are stored
as part of the record but are not used when the entry is changed.

Authorities and Locks

Validation List Object

*USE and *UPD

Validation List Object Library

*EXECUTE

Required Parameter Group

Qualified validation list name

INPUT; CHAR(20)

The qualified object name of the validation list that contains the entry to change. The first 10
characters specify the validation list name, and the second 10 characters specify the library.

You can use these special values for the library name:

*CURLIB The current library is used to locate the validation list. If there is no current library,
QGPL (general purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry ID information

INPUT; CHAR(*)

The format of the entry ID information is as follows. See the Field Descriptions for more
information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of entry ID

4 4 BINARY(4) CCSID of entry ID

8 8 CHAR(*) Entry ID

Data to encrypt information

INPUT; CHAR(*)

The data is encrypted by the system when it is stored. The format of the data to encrypt information
is as follows. See the Field Descriptions for more information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of data to encrypt

4 4 BINARY(4) CCSID of data to encrypt

8 8 CHAR(*) Data to encrypt

Entry data information

INPUT; CHAR(*)

The format of the entry data information is as follows. See the Field Descriptions for more
information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of data to encrypt

0 0 BINARY(4) Length of data

4 4 BINARY(4) CCSID of data

8 8 CHAR(*) Data

Attribute information

INPUT; CHAR(*)

Attribute information that is associated with the entry. The format of the attribute information is as

follows. See the Field Descriptions for more information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of data to encrypt

0 0 BINARY(4) Number of attributes

4 4 CHAR(*) Attribute structures

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of attribute entry

4 4 BINARY(4) Attribute location

8 8 BINARY(4) Attribute type

12 C BINARY(4) Displacement to attribute ID

16 10 BINARY(4) Length of attribute ID

20 14 BINARY(4) Displacement to attribute data

24 18 BINARY(4) Length of attribute data

CHAR(*) Attribute ID

CHAR(*) Attribute data

For attributes that are stored in the validation list object, the format of the attribute data is as
follows. See the Field Descriptions for more information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of data to encrypt

0 0 BINARY(4) CCSID of attribute

4 4 BINARY(4) Length of attribute

8 8 CHAR(8) Reserved

16 10 CHAR(*) Attribute value

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Field Descriptions

Attribute data. The information that describes the attribute data.

Attribute ID. The ID of the attribute.

For system-defined attributes, the allowed value is:

String value Description

QsyEncryptData This is the attribute that is associated with the data to encrypt. This attribute can
only be changed if the length of data to encrypt is not -1.

Attribute location. Where the attribute should be stored.

The allowed value is:

0 The attribute is stored in the validation list object.

Attribute structures. Zero or more attribute structures that define the attributes associated with the entry.

Attribute type. The type of attribute.

The allowed value follows:

0 This is a system-defined attribute.

Attribute value. The value of the attribute that is associated with the entry.

For the QsyEncryptData attribute, the allowed values follow:

0 The data to be encrypted can only be used to verify an entry. This is the default.

1 The data to be encrypted can be used to verify an entry and can be returned on a find operation. The
system value QRETSVRSEC (Retain server security data) is used to determine if the data to be
encrypted is stored in the entry or not.

If the system value is set to 0 (Do not retain data), the entry will be added, but the data to be
encrypted will not be stored with the entry. The return value from this function will be -2 to indicate
that the entry was added, but the data to be encrypted was not stored.

If the system value is set to 1 (Retain data), then the data to be encrypted will be stored in encrypted
form when the entry is added.

CCSID of attribute. An integer that represents the CCSID for the attribute. Valid CCSID values are in the
range -1 through 65535.

The special values follow:

-1 No CCSID value is stored with the attribute. If the attribute is QsyEncryptData, this value must be
specified.

0 The default CCSID for the current user is stored.

CCSID of data to encrypt. An integer that represents the CCSID for the data to encrypt. Valid CCSID
values are in the range 1 through 65535.

The special value follows:

0 The default CCSID for the current user is stored.

CCSID of data. An integer that represents the CCSID for the entry data. Valid CCSID values are in the
range 1 through 65535.

The special value follows:

0 The default CCSID for the current user is stored.

CCSID of entry ID. An integer that represents the CCSID for the entry ID. Valid CCSID values are in the
range 0 through 65535. This field is not used to change the entry.

Data. The data to store in the validation list entry.

Data to encrypt. The data to be encrypted before storing it in the validation list entry.

Displacement to attribute data. The displacement in the attribute entry to the start of the attribute data
information.

Displacement to attribute ID. The displacement in the attribute entry to the start of the attribute ID value.

Entry ID. The data that is used to identify this entry in the validation list.

Length of attribute. The number of bytes of data in the attribute value. The length must be greater than or
equal to 0. If a length of 0 is specified, the attribute is removed from the entry. For the QsyEncryptData
attribute, the maximum length is 1.

Length of attribute data. The number of bytes of data in the attribute data structure. The length must be
greater than 0.

Length of attribute entry. The length (in bytes) of the current entry. This length can be used to access the
next entry, and must be a multiple of 4.

Length of attribute ID. The number of bytes of data in the attribute ID. The length must be greater than 0.

Length of data to encrypt. The number of bytes of data to be encrypted and stored in this validation list
entry. Possible values are -1 through 600. If the length is 0, any encrypted data that is associated with the
entry ID will be removed. If the length is -1, the encrypted data that is associated with the entry ID is not
changed.

Length of data. The number of bytes of data to be stored in this validation list entry. Possible values are -1
through 1000. If the length is 0, any data that is associated with the entry ID will be removed. If the length
is -1, the data that is associated with the entry ID is not changed.

Length of entry ID. The number of bytes of data that is provided as the entry ID. Possible values are 1
through 100.

Number of attributes. The number of attributes to be added. This value must be greater than or equal to 0.
If this value is 0, then no attributes will be changed in the entry.

Reserved. This is an ignored field.

Error Messages

Message ID Error Message Text

CPFA0AA E Error occurred while attempting to obtain space.

CPF226B E Validation list entry does not exist.

CPF226D E Not all information stored.

CPF3CF1 E Error code parameter not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V4R2

Top | Security APIs | APIs by category

QsyChangeValidationLstEntry()--Change
Validation List Entry API

 Syntax

#include <qsyvldl.h>

int QsyChangeValidationLstEntry
 (Qsy_Qual_Name_T *Validation_Lst,
 Qsy_Entry_ID_Info_T *Entry_ID,
 Qsy_Entry_Encr_Data_Info_T *Encrypt_Data,
 Qsy_Entry_Data_Info_T *Entry_Data,
 void *Attribute_Info);

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyChangeValidationLstEntry() function changes an entry in a validation list object. The data to be
encrypted, the entry data values, and some of the entry attributes may be changed.

To identify an entry to be changed, there must be an exact match in the entry for the value that is specified
in the Entry_ID parameter and the length of the entry ID. For example, an entry ID value of "SMITH" with
a length of 5 would not allow you to change an entry where the entry ID is "SMITH" and the length is 7.

Conversions are not done on any data when entries are changed. The CCSID values are stored as part of the
record, to be available to the user of the API, but are not used when the entry is changed.

Authorities

Validation List Object

*USE and *UPD

Validation List Object Library

*EXECUTE

Parameters

Validation_Lst

(Input)

A pointer to the qualified object name of the validation list that contains the entry to change. The

first 10 characters specify the validation list name, and the second 10 characters specify the library.
You can use these special values for the library name:

*CURLIB The current library is used to locate the validation list. If there is no current library,
QGPL (general purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry_ID

(Input)

A pointer to the entry ID information. The Qsy_Entry_ID_Info_T structure is as follows:

int Entry_ID_Len The number of bytes of data that is provided as the entry
ID. Possible values are from 1 through 100.

unsigned int Entry_ID_CCSID An integer that represents the CCSID for the entry ID.
Valid CCSID values are in the range 0 through 65535.
This field is not used to change the entry.

unsigned char Entry_ID[] The data that is used to identify this entry in the validation
list.

Encrypt_Data

(Input)

A pointer to the data that is associated with the entry ID. The data is encrypted by the system when
it is stored. If the pointer is NULL, the encrypted data that is associated with the entry ID is not
changed. The format of the Qsy_Entry_Encr_Data_Info_T structure is as follows:

int Encr_Data_Len The number of bytes of data to be encrypted and stored
in this validation list entry. Possible values are from 0
through 600.

unsigned int Encr_Data_CCSID An integer that represents the CCSID for the data to
encrypt. Valid CCSID values are in the range 1 through
65535. The special value follows:

0 The default CCSID for the current user is stored.

unsigned char Encr_Data[] The data to be encrypted before storing it in the
validation list entry.

If Encr_Data_Len is 0, any encrypted data that is associated with the entry ID will be removed.

Entry_Data

(Input)

A pointer to the data information that is associated with the entry ID. If the pointer is NULL, the
data that is associated with the entry ID is not changed. The format of the Qsy_Entry_Data_Info_T

structure is as follows:

int Entry_Data_Len The number of bytes of data to be stored in this
validation list entry. Possible values are from 0 through
1000.

unsigned int Entry_Data_CCSID An integer that represents the CCSID for the data. Valid
CCSID values are in the range 1 through 65535. The
special value follows:

0 The default CCSID for the current user is stored.

unsigned char Entry_Data[] The data to be stored in the validation list entry.

If the Entry_Data_Length is 0, any data that is associated with the entry ID will be removed.

Attribute_Info

(Input)

A pointer to a structure that contains attribute information that is associated with the entry ID. If the
pointer is NULL, the attributes associated with the entry ID are not changed. The format of the
Qsy_Attr_Info_T structure is as follows:

int Number_Attrs The number of attributes being changed. This value
must be greater than 0.

char Res_Align[12] Reserved for boundary alignment.

Qsy_Attr_Descr_T Attr_Descr[] An array of attribute description structures.

The format of the Qsy_Attr_Descr_T structure is as follows:

int Attr_Location Where the attribute should be stored. The allowed value
follows:

0 QSY_IN_VLDL The attribute is stored in the
validation list object.

int Attr_Type The type of attribute. The allowed value follows:

0 QSY_SYSTEM_ATTR This is a system-defined
attribute.

union Attr_Res Res_1[8] Reserved data. This value must be hexadecimal zero.

char * Attr_ID The ID of the attribute. For system-defined attributes, the
allowed value is:

 String value Description

 QsyEncryptData This is the attribute that is associated with the data to
encrypt. This attribute can only be changed if the
Encrypt_Data parameter is not NULL.

union Attr_Other_Descr
Res_1[32]

Reserved data. This value must be hexadecimal zero.

union Attr_Data_Info The information that describes the attribute data.

union Attr_Other_Data
Res_1[32]

Reserved data. This value must be hexadecimal zero.

The format of the Attr_Data_Info_T union is as follows:

Qsy_In_VLDL_T Attr_VLDL The attribute data information for an attribute
that is stored in the validation list object.

union Attr_In_Other Res_1[96] Reserved data. The last 64 bytes must be zero.

The format of the Qsy_In_VLDL_T structure is as follows:

int Attr_CCSID An integer that represents the CCSID for the attribute. Valid
CCSID values are in the range -1 through 65535. The special
values follow:

-1 No CCSID value is stored with the attribute. If the
attribute is QsyEncryptData, this value is assumed.

0 The default CCSID for the current user is stored.

int Attr_Len The number of bytes of data in the attribute value. The length
must be greater than or equal to 0. If a length of 0 is specified,
the attribute is removed from the entry. For the QsyEncryptData
attribute, the maximum length is 1.

union Attr_Res Res_1[8] Reserved data. This value must be hexadecimal zero.

void * Attr_Value Pointer to the value of the attribute associated with the entry. For
the QsyEncryptData attribute, the allowed values follow:

0 QSY_VFY_ONLY The data to be encrypted can only be
used to verify an entry. This is the
default.

1 QSY_VFY_FIND The data to be encrypted can be used to
verify an entry and can be returned on a
find operation.

If the QSY_VFY_FIND value is specified for the QsyEncryptData attribute, the system value

QRETSVRSEC (Retain server security data) is used to determine if the data to be encrypted is
stored in the entry or not. If the system value is set to 0 (Do not retain data), the entry will be
changed, but the data to be encrypted will not be stored with the entry. The return value from this
function will be -2, to indicate that the entry was changed, but the data to be encrypted was not
stored. If the system value is set to 1 (Retain data), then the data to be encrypted will be stored
when the entry is changed.

Return Value

0 QsyChangeValidationLstEntry() was successful.

-1 QsyChangeValidationLstEntry() was not successful. The errno global variable is set to indicate
the error.

-2 QsyChangeValidationLstEntry() was successful, but the data to be encrypted was not stored.

Error Conditions

If QsyChangeValidationLstEntry() is not successful, errno indicates one of the following errors.

3401 [EACCES]

The current user does not have *USE and *UPD authorities to the validation list object,
or does not have *EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484< [EDAMAGE]

The validation list object is damaged.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3026 [ENOREC]

Specified entry does not exist.

3404 [ENOSPC]

No space available.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

The following example changes an entry for a user named FRED in the validation list object WEBUSRS.
FRED's encrypted data (password) and the CCSID for the encrypted data are being changed, but not any
other data.

#include <qsyvldl.h>

main()
{
 #define VLD_LST "WEBUSRS WEBLIB "
 Qsy_Entry_ID_Info_T entry_info;
 Qsy_Entry_Encr_Data_Info_T encrypt_data;

 entry_info.Entry_ID_Len = 4;
 strncpy(entry_info.Entry_ID,"FRED",entry_info.Entry_ID_Len);
 encrypt_data.Encr_Data_Len = 7;
 encrypt_data.Encr_Data_CCSID = 37;
 strncpy(encrypt_data.Encr_Data,"MSN1TJG",
 encrypt_data.Encr_Data_Len);

 if (0 != QsyChangeValidationLstEntry(
 (Qsy_Qual_Name_T *)&VLD_LST,
 &entry_info,
 &encrypt_data,
 NULL,
 NULL))
 perror("QsyChangeValidationLstEntry()");

}

API introduced: V4R1

Top | Security APIs | APIs by category

QsyFindFirstValidationLstEntry()--Find First
Validation List Entry API

 Syntax

#include <qsyvldl.h>

int QsyFindFirstValidationLstEntry
 (Qsy_Qual_Name_T *Validation_Lst,
 Qsy_Rtn_Vld_Lst_Ent_T *First_Entry);

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyFindFirstValidationLstEntry() function finds the first entry in a validation list object. The
function then returns the information for the first entry in the buffer that is pointed to by the First_Entry
parameter. The entries are stored in hexadecimal sort sequence, so the first entry will be the one where the
entry ID has the smallest hexadecimal value.

Authorities

Validation List Object

*USE

Validation List Object Library

*EXECUTE

Note: If the QsyEncryptData attribute is set to QSY_VFY_FIND_E (1), then the user must have *USE,
*ADD, and *UPD authority to the validation list to get the data to be encrypted returned in the First_Entry
parameter.

Parameters

Validation_Lst

(Input)

A pointer to the qualified object name of the validation list to find the first entry in. The first 10
characters specify the validation list name, and the second 10 characters specify the library. You
can use these special values for the library name:

*CURLIB The current library is used to locate the validation list. If there is no current library,
QGPL (general purpose library) is used.

*LIBL The library list is used to locate the validation list.

First_Entry

(Output)

A pointer to the buffer where the first entry information is placed. The buffer must be allocated to
the size of the Qsy_Rtn_Vld_Lst_Ent_T structure or the results will be unpredictable.

The format of the Qsy_Rtn_Vld_Lst_Ent_T structure is as follows:

Qsy_Entry_ID_Info_T Entry_ID_Info The entry ID information structure.

Qsy_Entry_Encr_Data_Info_T Encr_Data_Info The data to be encrypted information
structure.

Qsy_Entry_Data_Info_T Entry_Data_Info The entry data information structure.

char Reserved[4] This is an ignored field.

void * Entry_More_Info A pointer to additional information. This
pointer is currently set to NULL.

The format of the Qsy_Entry_ID_Info_T structure is as follows:

int Entry_ID_Len The length of the entry ID.

unsigned int Entry_ID_CCSID The CCSID associated with the entry ID.

unsigned char Entry_ID[100] The entry ID.

The format of the Qsy_Entry_Encr_Data_Info_T structure is as follows:

int Encr_Data_Len The number of bytes of encrypted data that is stored in
this validation list entry. If the QsyEncryptData attribute
is 0 or the QRETSVRSEC system value is '0', the length
will always be 0.

unsigned int Encr_Data_CCSID The CCSID associated with the encrypted data.

unsigned char Encr_Data[600] If the QsyEncryptData attribute is 1 and the
QRETSVRSEC system value is '1', then the encrypted
data that is stored in the entry will be decrypted and
returned in this field. If the QsyEncryptData attribute is
0 or the QRETSVRSEC system value is '0', then the
encrypted data cannot be returned, and the contents of
this field are unpredictable.

The format of the Qsy_Entry_Data_Info_T structure is as follows:

int Entry_Data_Len The length of the entry data.

unsigned int Entry_Data_CCSID The CCSID associated with the entry data.

unsigned char Entry_Data[1000] The entry data.

Return Value

0 QsyFindFirstValidationLstEntry() was successful. The return value points to the entry.

-1 QsyFindFirstValidationLstEntry() was not successful. The errno global variable is set to indicate the
error.

Error Conditions

If QsyFindFirstValidationLstEntry() is not successful, errno indicates one of the following errors:

3401 [EACCES]

The current user does not have *USE authority to the validation list object, or does not have
*EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484 [EDAMAGE]

The validation list object is damaged.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3026 [ENOREC]

There are no entries in the validation list object.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

The following example finds all the entries in the validation list object WEBUSRS.

#include <qsyvldl.h>
#include <errno.h>

main()
{

 #define VLD_LST "WEBUSRS WEBLIB "
 Qsy_Rtn_Vld_Lst_Ent_T entry_1;
 Qsy_Rtn_Vld_Lst_Ent_T entry_2;
 Qsy_Rtn_Vld_Lst_Ent_T *input_info,
 *output_info,
 *temp;
 Qsy_Entry_ID_Info_T *input_entry;
 short int i;
 int rtn_errno;

 /* Initialize pointers to input and output buffers. */
 output_info = addr(entry_1);
 input_info = addr(entry_2);
 /* Get the first entry in the validation list. */
 rtn_errno = QsyFindFirstValidationLstEntry(
 (Qsy_Qual_Name_T *)&VLD_LST,
 output_info))

 while (0 == rtn_errno)
 { /* Process all the entries in the validation list. */
 .
 .
 .
 (process the entry)
 .
 .
 .
 /* Switch the pointers to the buffers so that the output from */
 /* the last find operation is used as input to the 'find-next'
 /* operation. */
 temp = output_info;
 output_info = input_info;
 input_info = temp;

 /* Find the next entry. */
 rtn_errno = QsyFindNextValidationLstEntry(
 (Qsy_Qual_Name_T *)&VLD_LST,
 &input_info->Entry_ID_Info,
 output_info))
 }
 /* Check if an error occurred. */
 if (0 != rtn_errno && ENOREC != errno)
 perror("Find of validation list entry");

}

API introduced: V4R1

Top | Security APIs | APIs by category

QsyFindNextValidationLstEntry()--Find Next
Validation List Entry API

 Syntax

 #include <qsyvldl.h>

 int QsyFindNextValidationLstEntry
 (Qsy_Qual_Name_T *Validation_Lst,
 Qsy_Entry_ID_Info_T *Entry_ID,
 Qsy_Rtn_Vld_Lst_Ent_T *Next_Entry);

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyFindNextValidationLstEntry() function finds the next entry in a validation list object after the
entry that is passed in the Entry_ID parameter. It then returns the information for the next entry in the
buffer that is pointed to by the Next_Entry parameter. The entries are stored in hexadecimal sort sequence;
therefore, the next entry will be the one with an entry ID whose hexadecimal value would follow the
hexadecimal value of the entry passed in the Entry_ID parameter. The entry specified in the Entry_ID
parameter does not need to exist in the validation list, and this function does not have to follow a
QsyFindFirstValidationLstEntry() or QsyFindValidationLstEntry() function call.

Authorities

Validation List Object

*USE

Validation List Object Library

*EXECUTE

Note: If the QsyEncryptData attribute is set to QSY_VFY_FIND_E (1), then the user must have *USE,
*ADD, and *UPD authority to the validation list to get the data to be encrypted returned in the Next_Entry
parameter.

Parameters

Validation_Lst

(Input)

A pointer to the qualified object name of the validation list to find the next entry in. The first 10
characters specify the validation list name, and the second 10 characters specify the library. You
can use these special values for the library name:

*CURLIB The current library is used to locate the validation list. If there is no current library,
QGPL (general purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry_ID

(Input)

A pointer to the entry ID information. The format of the Qsy_Entry_ID_Info_T structure is as
follows:

int Entry_ID_Len The number of bytes of data that is provided as the entry
ID. Possible values are from 1 through 100.

unsigned int Entry_ID_CCSID An integer that represents the CCSID for the entry ID.
Valid CCSID values are in the range 0 through 65535.
This value is not used to find the entry.

unsigned char Entry_ID[100] The data that is used to identify this entry in the validation
list.

Next_Entry

(Output)

A pointer to the buffer where the next entry information is placed. The buffer must be allocated to
the size of the Qsy_Rtn_Vld_Lst_Ent_T structure or the results will be unpredictable. The format of
the Qsy_Rtn_Vld_Lst_Ent_T structure is as follows:

Qsy_Entry_ID_Info_T Entry_ID_Info The entry ID information structure.

Qsy_Entry_Encr_Data_Info_T Encr_Data_Info The data to be encrypted information
structure.

Qsy_Entry_Data_Info_T Entry_Data_Info The entry data information structure.

char Reserved[4] This is an ignored field.

void * Entry_More_Info A pointer to additional information. This
pointer is currently set to NULL.

See the Entry_ID parameter for the format of the Qsy_Entry_ID_Info_T structure.

The format of the Qsy_Entry_Encr_Data_Info_T structure is as follows:

int Encr_Data_Len The number of bytes of encrypted data that is stored in
this validation list entry. If the QsyEncryptData attribute
is 0 or the QRETSVRSEC system value is '0', the length
will always be 0.

unsigned int Encr_Data_CCSID The CCSID associated with the encrypted data.

unsigned char Encr_Data[600] If the QsyEncryptData attribute is 1 and the
QRETSVRSEC system value is '1', then the encrypted
data that is stored in the entry will be decrypted and
returned in this field. If the QsyEncryptData attribute is
0 or the QRETSVRSEC system value is '0', then the
encrypted data cannot be returned, and the contents of
this field are unpredictable.

The format of the Qsy_Entry_Data_Info_T structure is as follows:

int Entry_Data_Len The length of the entry data.

unsigned int Entry_Data_CCSID The CCSID associated with the entry data.

unsigned char Entry_Data[1000] The entry data.

Return Value

0 QsyFindNextValidationLstEntry() was successful. The return value points to the entry.

-1 QsyFindNextValidationLstEntry() was not successful. The errno global variable is set to indicate
the error.

Error Conditions

If QsyFindNextValidationLstEntry() is not successful, errno indicates one of the following errors:

3401 [EACCES]

The current user does not have *USE authority to the validation list object, or does not have
*EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484 [EDAMAGE]

The validation list object is damaged.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3026 [ENOREC]

There are no more entries in the validation list object.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

The following example finds all the entries in the validation list object WEBUSRS.

#include <qsyvldl.h>
#include <errno.h>

main()
{
 #define VLD_LST "WEBUSRS WEBLIB "
 Qsy_Rtn_Vld_Lst_Ent_T entry_1;
 Qsy_Rtn_Vld_Lst_Ent_T entry_2;
 Qsy_Rtn_Vld_Lst_Ent_T *input_info,
 *output_info,
 *temp;
 Qsy_Entry_ID_Info_T *input_entry;
 short int i;
 int rtn_errno;

 /* Initialize pointers to input and output buffers. */
 output_info = addr(entry_1);
 input_info = addr(entry_2);
 /* Get the first entry in the validation list. */
 rtn_errno = QsyFindFirstValidationLstEntry(
 (Qsy_Qual_Name_T *)&VLD_LST,
 output_info))

 while (0 == rtn_errno)
 { /* Process all the entries in the validation list. */
 .
 .
 .
 (process the entry)
 .
 .
 .
 /* Switch the pointers to the buffers so that the output from */

 /* the last find operation is used as input to the 'find-next'
 /* operation. */
 temp = output_info;
 output_info = input_info;
 input_info = temp;

 /* Find the next entry. */
 rtn_errno = QsyFindNextValidationLstEntry(
 (Qsy_Qual_Name_T *)&VLD_LST,
 &(input_info->Entry_ID_Info),
 output_info))
 }
 /* Check if an error occurred. */
 if (0 != rtn_errno && ENOREC != errno)
 perror("Find of validation list entry");

}

API introduced: V4R1

Top | Security APIs | APIs by category

Find Validation List Entry (QSYFDVLE) API

 Required Parameter Group:

1 Qualified validation list name Input Char(20)
2 Entry ID information Input Char(*)
3 Attribute information Input Char(*)
4 Return entry Output Char(1724)
5 Return attributes Output Char(*)
6 Error Code I/O Char(*)

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The Find Validation List Entry (QSYFDVLE) API finds an entry in a validation list object and returns it.
Also, any attributes associated with the entry can be returned. To find an entry, there must be an exact
match in the entry for the value that is specified in the entry ID parameter and the length of the entry ID.
For example, an entry ID value of SMITH with a length of 5 would not find an entry where the entry ID is
SMITH and the length is 7.

Authorities and Locks

Validation List Object

*USE

Validation List Object Library

*EXECUTE

Note: If the QsyEncryptData attribute is set to 1, then the user must have *USE, *ADD, and *UPD
authorities to the validation list to get the data to be encrypted returned in the encrypted data field.

Required Parameter Group

Qualified validation list name

INPUT; CHAR(20)

The qualified object name of the validation list in which to find the entry. The first 10 characters
specify the validation list name, and the second 10 characters specify the library.

You can use these special values for the library name:

*CURLIB The current library is used to locate the validation list. If there is no current library,
QGPL (general purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry ID information

INPUT; CHAR(*)

The format of the entry ID information is as follows. See Field Descriptions for more information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of entry ID

4 4 BINARY(4) CCSID of entry ID

8 8 CHAR(*) Entry ID

Attribute information

INPUT; CHAR(*)

The format of the attribute information is as follows. See Field Descriptions for more information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of attributes

4 4 CHAR(*) Attribute structures

The format of the attribute structure is as follows. See Field Descriptions for more information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of attribute entry

4 4 BINARY(4) Attribute location

8 8 BINARY(4) Attribute type

12 C BINARY(4) Displacement to attribute ID

16 10 BINARY(4) Length of attribute ID

20 14 BINARY(4) Bytes provided for attribute

 CHAR(*) Attribute ID

Return entry

OUTPUT; CHAR(1724)

The format of the return entry information is as follows. See Field Descriptions for more
information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of entry ID

4 4 BINARY(4) CCSID of entry ID

8 8 CHAR(100) Entry ID

108 6C BINARY(4) Length of encrypted data

112 70 BINARY(4) CCSID of encrypted data

116 74 CHAR(600) Encrypted data

716 2CC BINARY(4) Length of data

720 2D0 BINARY(4) CCSID of data

724 2D4 CHAR(1000) Data

1724 6BC CHAR(20) Reserved

Return attributes

OUTPUT; CHAR(*)

The format of the return attributes information is as follows. See Field Descriptions for more
information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of attribute entry

4 4 BINARY(4) Bytes returned

8 8 BINARY(4) Bytes available

12 C BINARY(4) Length of attribute

16 10 BINARY(4) CCSID of attribute

20 14 CHAR(*) Attribute value

The size of this buffer must be 24 bytes multiplied by the number of attributes, plus the bytes
provided in the buffer for each attribute. For example, if you are requesting 2 attributes and
providing 8 bytes for one attribute and 5 bytes for the other attribute, you would need a 61-byte
buffer. If the buffer is not large enough, the results are unpredictable.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Field Descriptions

Attribute ID. The ID of the attribute. For system-defined attributes, the allowed values are:

String value Description

QsyEncryptData This is the attribute that is associated with the data to encrypt.

QsyEntryUsage This is the entry usage information attribute.

QsyX509Cert This is the X.509 certificate attribute for the entry.

Attribute location. Where the attribute is stored. The allowed value is:

0 The attribute is stored in the validation list object.

Attribute structures. Zero or more attribute structures that define the attributes that are associated with the
entry.

Attribute type. The type of attribute. The allowed value follows:

0 This is a system-defined attribute.

Attribute value. The value of the returned attribute. If the attribute ID is QsyEncryptData or QsyX509Cert,
the data will be in the form of variable length character array. If the attribute ID is QsyEntryUsage, the data
will be in the form of Qsy_Rtn_Entry_Usage_Attr_T.

The format of the Qsy_Rtn_Entry_Usage_Attr_T structure is as follows. See Field Descriptions for more
information.

Offset

Type FieldDec Hex

0 0 CHAR(8) Create date

8 8 CHAR(8) Last used date

16 10 CHAR(8) Encrypted data change date

24 18 BINARY(4) Not valid verify count

Bytes available. The number of bytes of data that is available to be returned to the user for the current
attribute. If all data is returned, bytes available is the same as the number of bytes returned. If the bytes
available is 16, then the specified attribute is not defined for this entry.

Bytes provided for attribute. The number of bytes provided in the return attributes buffer for the attribute
value. The minimum length is 0. If 0 is specified, the bytes available will indicate if the attribute exists and
how many bytes of data are needed to return the attribute.

Bytes returned. The number of bytes of data that is returned to the user for the current attribute. This is the
lesser of the number of bytes available to be returned and bytes provided for attribute plus 20.

CCSID of attribute. An integer that represents the CCSID for the attribute. Valid CCSID values are in the
range 0 through 65535. This value is the CCSID value that was specified when the attribute was added or
changed. If the value is 0, then no CCSID value was stored with the attribute.

CCSID of encrypted data. An integer that represents the CCSID for the encrypted data.

CCSID of data. An integer that represents the CCSID for the data.

CCSID of entry ID. An integer that represents the CCSID for the entry ID. Valid CCSID values are in the
range 0 through 65535. This field is not used to find the entry. The value is returned in the return entry.

Create date. The date the entry was added to the validation list, in *DTS (date-time stamp) format.

Data. The data that is stored in the validation list entry.

Displacement to attribute ID. The displacement in the attribute entry to the start of the attribute ID.

Encrypted data. If the QsyEncryptData attribute for this entry is 1 and the QRETSVRSEC system value
is '1', then the encrypted data that is stored in the entry will be decrypted and returned in this field. If the
QsyEncryptData attribute is 0 or the QRETSVRSEC system value is '0', then the encrypted data cannot be
returned and the contents of this field are unpredictable.

Encrypted data change date. The date the encrypted data was last changed, in *DTS (date-time stamp)
format.

Entry ID. The data that is used to find the entry in the validation list.

Last used date. The date of the last successful verify, in *DTS (date-time stamp) format.

Length of attribute. The length (in bytes) of the returned attribute value. This value will be less than or
equal to the bytes provided for attribute.

Length of attribute entry. The length (in bytes) of the current entry. This length can be used to access the
next entry, and must be a multiple of 4.

Length of attribute ID. The number of bytes of data in the attribute ID. The length must be greater than 0.

Length of data. The number of bytes of data that is stored in this validation list entry. Possible values are 0
to 1000.

Length of encrypted data. The number of bytes of encrypted data that is stored in this validation list
entry. Possible values are 0 to 600. If the QsyEncryptData attribute is 0 or the QRETSVRSEC system value
is '0', then the length will always be 0.

Length of entry ID. The number of bytes of data that is provided as the entry ID. Possible values are 1
through 100.

Not valid verify count. The number of times that incorrect encrypted data has been specified on a verify
since the last successful verify.

Number of attributes. The number of attributes to be returned. This value must be greater than or equal to
0. If the value is 0, then no attributes will be returned.

Reserved. This is an ignored field.

Error Messages

Message ID Error Message Text

CPFA0AA E Error occurred while attempting to obtain space.

CPF226B E Validation list entry does not exist.

CPF3CF1 E Error code parameter not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R2

Top | Security APIs | APIs by category

QsyFindValidationLstEntry()--Find Validation
List Entry API

 Syntax

 #include <qsyvldl.h>

 int QsyFindValidationLstEntry
 (Qsy_Qual_Name_T *Validation_Lst,
 Qsy_Entry_ID_Info_T *Entry_ID,
 Qsy_Rtn_Vld_Lst_Ent_T *Rtn_Entry);

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyFindValidationLstEntry() function finds an entry in a validation list object. The function then
returns the information for the entry in the buffer that is pointed to by the Rtn_Entry parameter. To find an
entry, there must be an exact match in the entry for the value that is specified in the Entry_ID parameter
and the length of the entry ID. For example, an entry ID value of "SMITH" with a length of 5 would not
find an entry where the entry ID is "SMITH " and the length is 7.

Authorities

Validation List Object

*USE

Validation List Object Library

*EXECUTE

Note: If the QsyEncryptData attribute is set to QSY_VFY_FIND_E (1), then the user must have *USE,
*ADD, and *UPD authority to the validation list to get the data to be encrypted returned in the Rtn_Entry
parameter.

Parameters

Validation_Lst

(Input)

A pointer to the qualified object name of the validation list in which to find the entry. The first 10
characters specify the validation list name, and the second 10 characters specify the library. You
can use these special values for the library name:

*CURLIB The current library is used to locate the validation list. If there is no current library,
QGPL (general purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry_ID

(Input)

A pointer to the entry ID information. The format of the Qsy_Entry_ID_Info_T structure is as
follows:

int Entry_ID_Len The number of bytes of data that is provided as the entry
ID. Possible values are from 1 through 100.

unsigned int Entry_ID_CCSID An integer that represents the CCSID for the entry ID.
Valid CCSID values are in the range 0 through 65535.
This value is not used to find the entry.

unsigned char Entry_ID[100] The data that is used to identify this entry in the validation
list.

Rtn_Entry

(Output)

A pointer to the buffer where the entry information is placed. The buffer must be allocated to the
size of the Qsy_Rtn_Vld_Lst_Ent_T structure or the results will be unpredictable. The format of the
Qsy_Rtn_Vld_Lst_Ent_T structure is as follows:

Qsy_Entry_ID_Info_T Entry_ID_Info The entry ID information structure.

Qsy_Entry_Encr_Data_Info_T Encr_Data_Info The data to be encrypted information
structure.

Qsy_Entry_Data_Info_T Entry_Data_Info The entry data information structure.

char Reserved[4] This is an ignored field.

void * Entry_More_Info A pointer to additional information. This
pointer is currently set to NULL.

See the Entry_ID parameter for the format of the Qsy_Entry_ID_Info_T structure.

The format of the Qsy_Entry_Encr_Data_Info_T structure is as follows:

int Encr_Data_Len The number of bytes of encrypted data that is stored in
this validation list entry. If the QsyEncryptData attribute
is 0 or the QRETSVRSEC system value is '0', the length
will always be 0.

unsigned int Encr_Data_CCSID The CCSID associated with the encrypted data.

unsigned char Encr_Data[600] If the QsyEncryptData attribute is 1 and the
QRETSVRSEC system value is '1', then the encrypted
data that is stored in the entry will be decrypted and
returned in this field. If the QsyEncryptData attribute is
0 or the QRETSVRSEC system value is '0', then the
encrypted data cannot be returned, and the contents of
this field are unpredictable.

The format of the Qsy_Entry_Data_Info_T structure is as follows:

int Entry_Data_Len The length of the entry data.

unsigned int Entry_Data_CCSID The CCSID associated with the entry data.

unsigned char Entry_Data[1000] The entry data.

Return Value

0 QsyFindValidationLstEntry() was successful. The return value points to the entry.

-1 QsyFindValidationLstEntry() was not successful. The errno global variable is set to indicate the
error.

Error Conditions

If QsyFindValidationLstEntry() is not successful, errno indicates one of the following errors:

3401 [EACCES]

The current user does not have *USE authority to the validation list object, or does not have
*EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484 [EDAMAGE]

The validation list object is damaged.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3026 [ENOREC]

Specified entry does not exist.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

The following example finds all the entries in the validation list object WEBUSRS where the entry ID starts
with 'abc'.

#include <qsyvldl.h>
#include <errno.h>

main()
{
 #define VLD_LST "WEBUSRS WEBLIB "
 Qsy_Rtn_Vld_Lst_Ent_T entry_1;
 Qsy_Rtn_Vld_Lst_Ent_T entry_2;
 Qsy_Rtn_Vld_Lst_Ent_T *input_info,
 *output_info,
 *temp;
 Qsy_Entry_ID_Info_T *input_entry;
 short int i;
 int rtn_errno;

 /* Set up entry ID to find. */
 strncpy(entry_1.Entry_ID_Info.Entry_ID,"abc",3);
 entry_1.Entry_ID_Info.Entry_ID_Len = 3;

 /* Initialize pointers to input and output buffers. */
 input_info = addr(entry_1);
 output_info = addr(entry_2);

 /* Try to find an entry for 'abc'. */
 rtn_errno = QsyFindValidationLstEntry(
 (Qsy_Qual_Name_T *)&VLD_LST,
 &entry_1.Entry_ID_Info,
 output_info))
 /* If an 'abc' entry does not exist. */
 if (0 != rtn_errno && ENOREC == errno)
 /* Find the next entry after 'abc'. */
 rtn_errno = QsyFindNextValidationLstEntry(
 (Qsy_Qual_Name_T *)&VLD_LST,
 &entry_1.Entry_ID_Info,
 output_info))

 while (0 == rtn_errno &&
 3 <= output_info->Entry_ID_Info.Entry_ID_Len &&
 0 == strncmp(output_info->Entry_ID_Info.Entry_ID,"abc",3))
 { /* Process all the entries in the validation list that */

 /* begin with 'abc'. */
 .
 .
 .
 (process the entry)
 .
 .
 .
 /* Switch the pointers to the buffers so that the output from */
 /* the last find operation is used as input to the 'find-next' */
 /* operation. */
 temp = output_info;
 output_info = input_info;
 input_info = temp;

 /* Find the next entry. */
 rtn_errno = QsyFindNextValidationLstEntry(
 (Qsy_Qual_Name_T *)&VLD_LST,
 &(input_info->Entry_ID_Info),
 output_info))
 }
 /* Check if an error occurred. */
 if (0 != rtn_errno && ENOREC != errno)
 perror("Find of validation list entry");

}

API introduced: V4R1

Top | Security APIs | APIs by category

QsyFindValidationLstEntryAttrs()--Find
Validation List Entry Attributes API

 Syntax

 #include <qsyvldl.h>

 int QsyFindValidationLstEntryAttrs
 (Qsy_Qual_Name_T *Validation_Lst,
 Qsy_Entry_ID_Info_T *Entry_ID,
 Qsy_Rtn_Vld_Lst_Ent_T *Rtn_Entry,
 Qsy_Attr_Info_T *Rtn_Attributes);

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyFindValidationLstEntryAttrs() function finds an entry in a validation list object, and the
attributes associated with the entry. The function then returns the information for the entry in the buffer that
is pointed to by the Rtn_Entry parameter, and the information for the attributes in the buffer that is pointed
to by the Rtn_Attributes parameter. To find an entry, there must be an exact match in the entry for the value
that is specified in the Entry_ID parameter and the length of the entry ID. For example, an entry ID value of
"SMITH" with a length of 5 would not find an entry where the entry ID is "SMITH " and the length is 7.

Authorities

Validation List Object

*USE

Validation List Object Library

*EXECUTE

Note: If the QsyEncryptData attribute is set to QSY_VFY_FIND (1), then the user must have *USE,
*ADD, and *UPD authority to the validation list to get the data to be encrypted returned in the Rtn_Entry
parameter.

Parameters

Validation_Lst

(Input)

A pointer to the qualified object name of the validation list in which to find the entry. The first 10
characters specify the validation list name, and the second 10 characters specify the library. You

can use these special values for the library name:

*CURLIB The current library is used to locate the validation list. If there is no current library,
QGPL (general purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry_ID

(Input)

A pointer to the entry ID information. The format of the Qsy_Entry_ID_Info_T structure is as
follows:

int Entry_ID_Len The number of bytes of data that is provided as the entry
ID. Possible values are from 1 through 100.

unsigned int Entry_ID_CCSID An integer that represents the CCSID for the entry ID.
Valid CCSID values are in the range 1 through 65535.
This value is not used to find the entry.

unsigned char Entry_ID[] The data that is used to identify this entry in the validation
list.

Rtn_Entry

(Output)

A pointer to the buffer where the entry information is placed. The buffer must be allocated to the
size of the Qsy_Rtn_Vld_Lst_Ent_T structure or the results will be unpredictable. The format of the
Qsy_Rtn_Vld_Lst_Ent_T structure is as follows:

Qsy_Entry_ID_Info_T Entry_ID_Info The entry ID information structure.

Qsy_Entry_Encr_Data_Info_T Encr_Data_Info The data to be encrypted information
structure.

Qsy_Entry_Data_Info_T Entry_Data_Info The entry data information structure

char Reserved[4] This is an ignored field.

void * Entry_More_Info A pointer to additional information. This
pointer is currently set to NULL.

See the Entry_ID parameter for the format of the Qsy_Entry_ID_Info_T structure.

The format of the Qsy_Entry_Encr_Data_Info_T structure is as follows:

int Encr_Data_Len The number of bytes of encrypted data that is stored in
this validation list entry. If the QsyEncryptData attribute
is 0 or the QRETSVRSEC system value is '0', the length
will always be 0.

unsigned int Encr_Data_CCSID The CCSID associated with the encrypted data.

unsigned char Encr_Data[600] If the QsyEncryptData attribute is 1 and the
QRETSVRSEC system value is '1', then the encrypted
data that is stored in the entry will be decrypted and
returned in this field. If the QsyEncryptData attribute is
0 or the QRETSVRSEC system value is '0', then the
encrypted data cannot be returned, and the contents of
this field are unpredictable.

The format of the Qsy_Entry_Data_Info_T structure is as follows:

int Entry_Data_Len The length of the entry data.

unsigned int Entry_Data_CCSID The CCSID associated with the entry data.

unsigned char Entry_Data[1000] The entry data.

Rtn_Attributes

(Input) A pointer to a structure that indicates the attributes to return. The format of the
Qsy_Attr_Info_T structure is as follows:

int Number_Attrs The number of attributes to be returned. This value
must be greater than 0.

char Res_Align[12] Reserved for boundary alignment.

Qsy_Attr_Descr_T Attr_Descr[] An array of attribute description structures.

The format of the Qsy_Attr_Descr_T structure is as follows:

int Attr_Location Where the attribute is stored. The allowed value follows:

0 QSY_IN_VLDL The attribute is stored in the validation list
object.

int Attr_Type The type of attribute. The allowed value follows:

0 QSY_SYSTEM_ATTR This is a system-defined attribute.

union Attr_Res
 Res_1[8]

Reserved data. This value must be hexadecimal zero.

char * Attr_ID The ID of the attribute. For system-defined attributes, the allowed
values are:

 String value Description

 QsyEncryptData This is the attribute that is associated with the data to encrypt.

 QsyX509Cert This is the X.509 certificate attribute for the entry.

 QsyEntryUsage This is the entry usage information attribute.

union Attr_Other_Descr
 Res_1[32]

Reserved data. This value must be hexadecimal zero.

union Attr_Data_Info The information that describes the attribute data.

union Attr_Other_Data
 Res_1[32]

Reserved data. This value must be hexadecimal zero.

The format of the Attr_Data_Info union is as follows:

Qsy_In_VLDL_T Attr_VLDL The attribute data information for an attribute that is
stored in the validation list object.

union Attr_In_Other
 Res_1[96]

Reserved data. The last 64 bytes must be hexadecimal
zero.

The format of the Qsy_In_VLDL_T structure is as follows:

int Attr_CCSID An integer that represents the CCSID for the attribute. Valid CCSID
values are in the range -1 through 65535. This value is not used.

int Attr_Len The number of bytes of data in the buffer to return the attribute value.
The minimum length is 12.

union Attr_Res
 Res_1[8]

Reserved data. This value must be hexadecimal zero.

void * Attr_Value A pointer to a Qsy_Rtn_VLDL_Attr_T structure in which to return the
attribute.

The format of the Qsy_Rtn_VLDL_Attr_T structure is as follows:

int Bytes_Returned The number of bytes of data that is returned to the user in
the attribute buffer. This is the lesser of the number of
bytes available to be returned and Attr_Len in
Qsy_In_VLDL_T.

int Bytes_Available The number of bytes of data that is available to be returned
to the user in the attribute buffer. If all data is returned,
bytes available is the same as the number of bytes returned.
If the bytes available is 12, then the specified attribute is
not defined for this entry.

int Attr_Len The length (in bytes) of the returned attribute.

unsigned int Attr_CCSID An integer that represents the CCSID for the attribute.
Valid CCSID values are in the range 0 through 65535. This
value is the CCSID value that was specified when the
attribute was added or changed. If the value is 0, then no
CCSID value was stored with the attribute.

unsigned char Attr_Data[] The value of the returned attribute.

The format of the Qsy_Rtn_Entry_Usage_Attr_T structure is as follows:

char Create_Date[8] The date the entry was added to the validation list.

char Last_Used_Date[8] The date of the last successful verify.

char Encr_Data_Chg_Date[8] The date the encrypted data was last changed.

int Not_Valid_Verify_Count The number of times that incorrect encrypted data has been
specified on a verify since the last successful verify.

Return Value

0 QsyFindValidationLstEntryAttrs() was successful. The return value points to the entry. The
return attribute points to the attribute list.

-1 QsyFindValidationLstEntryAttrs() was not successful. The errno global variable is set to indicate
the error.

Error Conditions

If QsyFindValidationLstEntryAttrs() is not successful, errno indicates one of the following errors:

3401 [EACCES]

The current user does not have *USE authority to the validation list object, or does not have
*EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484 [EDAMAGE]

The validation list object is damaged.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3026 [ENOREC]

Specified entry does not exist.

3404 [ENOSPC]

No space available.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

The following example finds an entry for a user named FRED in the validation list object WEBUSRS, and
returns the attribute that is associated with the encrypted data field.

#include <stdlib.h>
#include <qsyvldl.h>
#include <errno.h>

main()
{
 #define VLD_LST "WEBUSRS WEBLIB "
 Qsy_Rtn_Vld_Lst_Ent_T rtn_ent;
 struct {
 Qsy_Attr_Info_T attr_info;
 Qsy_Attr_Desc_T attr_desc;
 } rtn_attr;

 struct {
 Qsy_Rtn_VLDL_Attr_T encr_info;
 char encr_val;
 } encr_attr;
 Qsy_Entry_ID_Info_T *input_entry;

 /* Set up entry ID to find. */
 strncpy(rtn_ent.Entry_ID_Info.Entry_ID,"FRED",4);
 rtn_ent.Entry_ID_Info.Entry_ID_Len = 4;

 /* Set up the attribute information. */
 /* Initialize reserved fields. */
 memset(rtn_attr.attr_desc.Attr_Res.Res_1,
 0,
 sizeof(rtn_attr.attr_desc.Attr_Res.Res_1));
 memset(rtn_attr.attr_desc.Attr_Other_Descr.Res_1,
 0,
 sizeof(rtn_attr.attr_desc.Attr_Other_Descr.Res_1));
 memset(rtn_attr.attr_desc.Attr_Data_Info.Attr_In_Other.Res_1,
 0,
 sizeof(rtn_attr.attr_desc.Attr_Data_Info.Attr_In_Other.Res_1));
 memset(rtn_attr.attr_desc.Attr_Other_Data.Res_1,
 0,
 sizeof(rtn_attr.attr_desc.Attr_Other_Data.Res_1));

 /* Set number of attrs. */
 rtn_attr.attr_info.Numbers_Attrs = 1;
 /* Set location of attribute. */
 rtn_attr.attr_desc.Attr_Location = QSY_IN_VLDL;
 /* Set attribute type. */
 rtn_attr.attr_desc.Attr_Type = QSY_SYSTEM_ATTR;
 /* Set attribute type. */
 rtn_attr.attr_desc.Attr_ID = (char *)QSY_ENCRYPT_DATA;
 /* Set length to retrieve. */
 rtn_attr.attr_desc.Attr_Data_Info.Attr_VLDL.Attr_Len =
 sizeof(encr_attr);
 /* Set CCSID value. */
 rtn_attr.attr_desc.Attr_Data_Info.Attr_VLDL.Attr_CCSID = -1;
 /* Set pointer to return buffer */
 rtn_attr.attr_desc.Attr_Data_Info.Attr_VLDL.Attr_Value =
 (void *)&encr_attr;

 /* Try to find an entry for 'FRED'. */
 if (0 == QsyFindValidationLstEntryAttrs(
 (Qsy_Qual_Name_T *)&VLD_LST,
 &rtn_ent.Entry_ID_Info,
 &rtn_ent,
 (Qsy_Attr_Info_T *)&rtn_attr))
 { /* Entry was found */
 .
 .
 .
 (process the entry)
 .
 .
 .
 }

 else /* Error on find of entry. */
 perror("Find of validation list entry");

}

API introduced: V4R2

Top | Security APIs | APIs by category

Open List of Validation List Entries
(QSYOLVLE) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 List information Output Char(80)
4 Number of records to return Input Binary(4)
5 Format name Input Char(8)
6 Qualified validation list name Input Char(20)
7 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Open List of Validation List Entries (QSYOLVLE) API returns a list of validation list entries in a
validation list object. Upon successful completion of this API, a handle is returned in the list information
parameter. You may use this handle on subsequent calls to the following APIs:

Get List Entries (QGYGTLE)●

Find List Entry (QGYFNDE)●

Close List (QGYCLST)●

Authorities and Locks

Authority to Validation List

*USE

Authority to Validation List Library

*EXECUTE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As a
result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. If the length is larger than the size of the receiver variable, the
results are not predictable.

List Information

OUTPUT; CHAR(80)

Information about the list that is created by this program. See Format of List information for a
description of the layout of this parameter.

Number of records to return

INPUT; BINARY(4)

The number of records in the list to put into the receiver variable. Possible values follow:

-1 The entire list is built synchronously.

0 The entire list is built asynchronously in a server job.

Positive number of records At least that many records will be built synchronously and the
remainder will be built asynchronously in a server job.

Format name

INPUT; CHAR(8)

The name of the format that is used to return information about the validation list entries.

You can specify these formats:

VLDE0100 The order and format of the data that is returned in the receiver variable for each
validation list entry in the list.

Qualified validation list name

INPUT; CHAR(20)

The qualified object name of the validation list that contains the entries to return. The first 10
characters specify the validation list name, and the second 10 characters specify the library. You
can use these special values for the library name:

*CURLIB The current library is used to locate the validation list. If there is no current library,
QGPL (general purpose library) is used.

*LIBL The library list is used to locate the validation list.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of List information

For detailed descriptions of the fields in the tables, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Total records

4 4 BINARY(4) Records returned

8 8 CHAR(4) Request handle

12 C BINARY(4) Record length

16 10 CHAR(1) Information complete indicator

17 11 CHAR(13) Date and time created

30 1E CHAR(1) List status indicator

31 1F CHAR(1) Reserved

32 20 BINARY(4) Length of information returned

36 24 BINARY(4) First record in buffer

40 28 CHAR(40) Reserved

Field Descriptions

Date and time created. The date and time when the list was created. The 13 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 The date, in YYMMDD (year, month, and day) format.

8-13 The time of day, in HHMMSS (hours, minutes, and seconds) format.

First record in buffer. The number of the first record in the receiver variable.

Information complete indicator. Whether all information that was requested has been supplied.

I Incomplete information. An interruption causes the list to contain incomplete information about a
buffer or buffers.

P Partial and accurate information. Partial information is returned when the maximum space was used
and not all of the buffers requested were read.

C Complete and accurate information. All the buffers requested are read and returned.

Length of information returned. The size in bytes of the information returned in the receiver variable.

List status indicator. The status of building the list. Possible values follow:

0 The list building is pending.

1 The list is in the process of being built.

2 The list has been completely built.

3 An error occurred when building the list. An error will be signalled to the caller of the QGYGTLE
API.

4 The list is primed and ready to be built.

Record length. The length of each record of information returned. This value will be set to 0 because the
record lengths are variable. You can obtain the length of individual records from the records themselves.

Records returned. The number of records returned in the receiver variable.

This is the smallest of the following three values:

The number of records that fit into the receiver variable.●

The number of records in the list.●

The number of records that are requested.●

Request handle. The handle of the request that can be used for subsequent requests of information from the
list. The handle is valid until the Close List (QGYCLST) API is called to close the list, or until the job ends.

Note: This field should be treated as a hexadecimal field. It should not be converted from one CCSID to
another, for example, EBCDIC to ASCII, because doing so could result in an unusable value.

Reserved. An ignored field.

Total records. The total number of records available in the list.

VLDE0100 Format

The following table describes the order and format of the data that is returned in the receiver variable for
each validation list entry in the list. For detailed descriptions of the fields in the table, see Field
Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of entry

4 4 BINARY(4) Displacement to entry ID

8 8 BINARY(4) Length of entry ID

12 C BINARY(4) CCSID of entry ID

16 10 BINARY(4) Displacement to encrypted data

20 14 BINARY(4) Length of encrypted data

24 18 BINARY(4) CCSID of encrypted data

28 1C BINARY(4) Displacement to entry data

32 20 BINARY(4) Length of entry data

36 24 BINARY(4) CCSID of entry data

 CHAR(*) Entry ID

 CHAR(*) Encrypted data

 CHAR(*) Entry data

Field Descriptions

CCSID of encrypted data. The CCSID of the encrypted data that was specified when the validation list
entry was added or changed.

CCSID of entry data. The CCSID of the entry data that was specified when the validation list entry was
added or changed.

CCSID of entry ID. The CCSID of the entry ID that was specified when the validation list entry was
added.

Displacement to encrypted data. The displacement in the entry to the start of the encrypted data.

Displacement to entry data. The displacement in the entry to the start of the entry data.

Displacement to entry ID. The displacement in the entry to the start of the entry ID.

Encrypted data. The encrypted data associated with the validation list entry. This data is only returned if
the entry specifies that the encrypted data is two way encrypted, the QRETSVRSEC system value is '1', and
the user has *USE, *ADD, and *UPD authority to the validation list. If the data is to be returned, it is
decrypted and returned in this field.

Entry data. The data associated with the validation list entry.

Entry ID. The entry ID for the validation list entry.

Length of encrypted data. The length (in bytes) of the encrypted data. If the data is one-way encrypted,
the QRETSVRSEC system value is '0', or the user is not authorized to have the encrypted data returned, this
value will be 0.

Length of entry. The length (in bytes) of the current entry. This length can be used to access the next entry.

Length of entry data. The length (in bytes) of the entry data.

Length of entry ID. The length (in bytes) of the entry ID.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF226B E Validation list entry does not exist.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9821 E Not authorized to program &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0027 E &1 is not valid for number of records to return.

API introduced: V4R2

Top | Security APIs | APIs by category

QsyRemoveValidationLstEntry()--Remove
Validation List Entry API

 Syntax

 #include <qsyvldl.h>

 int QsyRemoveValidationLstEntry
 (Qsy_Qual_Name_T *Validation_Lst,
 Qsy_Entry_ID_Info_T *Entry_ID);

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyRemoveValidationLstEntry() function removes an entry from a validation list object. To identify
an entry to be removed, there must be an exact match in the entry for the value that is specified in the
Entry_ID parameter and the length of the entry ID. For example, an entry ID value of "SMITH" with a
length of 5 would not remove an entry where the entry ID is "SMITH " and the length is 7.

Authorities

Validation List Object

*USE and *DLT

Validation List Object Library

*EXECUTE

Parameters

dt>Validation_Lst

(Input)

A pointer to the qualified object name of the validation list that contains the entry to remove. The
first 10 characters specify the validation list name, and the second 10 characters specify the library.
You can use these special values for the library name:

*CURLIB The current library is used to locate the validation list. If there is no current library,
QGPL (general purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry_ID

(Input)

A pointer to the entry ID information. Qsy_Entry_ID_Info_T structure is as follows:

int Entry_ID_Len The number of bytes of data that is provided as the entry
ID. Possible values are from 1 through 100.

unsigned int Entry_ID_CCSID An integer that represents the CCSID for the entry ID.
Valid CCSID values are in the range 0 through 65535.
This value is not used to remove the entry.

unsigned char Entry_ID[100] The data that is used to identify this entry in the validation
list.

Return Value

0 QsyRemoveValidationLstEntry() was successful.

-1 QsyRemoveValidationLstEntry() was not successful.

The errno global variable is set to indicate the error.

Error Conditions

If QsyRemoveValidationLstEntry() is not successful, errno indicates one of the following errors:

3401 [EACCES]

The current user does not have *USE and *DLT authorities to the validation list object, or does
not have *EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484 [EDAMAGE]

The validation list object is damaged.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3026 [ENOREC]

Specified entry does not exist.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

The following example removes an entry for a user named FRED in the validation list object WEBUSRS.

See Code disclaimer information for information pertaining to code examples.

#include <qsyvldl.h>

main()
{
 #define VLD_LST "WEBUSRS WEBLIB "
 Qsy_Entry_ID_Info_T entry_info;

 entry_info.Entry_ID_Len = 4;
 strncpy(entry_info.Entry_ID,"FRED",entry_info.Entry_ID_Len);

 if (0 != QsyRemoveValidationLstEntry(
 (Qsy_Qual_Name_T *)&VLD_LST,
 &entry_info))
 perror("QsyRemoveValidationLstEntry()");

}

API introduced: V4R1

Top | Security APIs | APIs by category

Remove Validation List Entry (QSYRMVLE) API

 Required Parameter Group:

1 Qualified validation list name Input Char(20)
2 Entry ID information Input Char(*)
3 Error code I/O Char(*)

 Threadsafe: Yes

The Remove Validation List Entry (QSYRMVLE) API removes an entry from a validation list object. To
identify an entry to be removed, there must be an exact match in the entry for the value that is specified in
the entry ID parameter and the length of the entry ID. For example, an entry ID value of "SMITH" with a
length of 5 would not remove an entry where the entry ID is "SMITH " and the length is 7.

Authorities and Locks

Validation List Object

*USE and *DLT

Validation List Object Library

*EXECUTE

Required Parameter Group

Qualified validation list name

INPUT; CHAR(20)

The qualified object name of the validation list that contains the entry to remove. The first 10
characters specify the validation list name, and the second 10 characters specify the library. You
can use these special values for the library name:

*CURLIB The current library is used to locate the validation list. If there is no current library,
QGPL (general purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry ID information

INPUT; CHAR(*)

The format of the entry ID information is as follows. See the Field Descriptions for more
information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of entry ID

4 4 BINARY(4) CCSID of entry ID

8 8 CHAR(*) Entry ID

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Field Descriptions

CCSID of entry ID. An integer that represents the CCSID for the entry ID. Valid CCSID values are in the
range 0 through 65535. This field is not used to remove the entry.

Entry ID. The data that is used to identify the entry to be removed from the validation list.

Length of entry ID. The number of bytes of data that is provided as the entry ID. Possible values are 1
through 100.

Error Messages

Message ID Error Message Text

CPF226B E Validation list entry does not exist.

CPF3CF1 E Error code parameter not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R2

Top | Security APIs | APIs by category

QsyVerifyValidationLstEntry()--Verify
Validation List Entry API

 Syntax

 #include <qsyvldl.h>

 int QsyVerifyValidationLstEntry
 (Qsy_Qual_Name_T *Validation_Lst,
 Qsy_Entry_ID_Info_T *Entry_ID,
 Qsy_Entry_Encr_Data_Info_T *Encrypt_Data);

 Service Program Name: Name QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyVerifyValidationLstEntry() function verifies an entry in a validation list object. It verifies the
entry by finding the validation list object, then finding the entry that is specified in the Entry_ID parameter.
To find an entry, there must be an exact match in the entry for the value that is specified in the Entry_ID
parameter and the length of the entry ID. For example, an entry ID value of "SMITH" with a length of 5
would not find an entry where the entry ID is "SMITH " and the length is 7.

If the entry is found, the data specified in the Encrypt_Data parameter is encrypted by the system and
compared to the encrypted data that is stored for the entry. If the encrypted data fields do not match, then -2
is returned by the function.

The verification of an entry should be done within the same process as the work that is being done on
behalf of this entry ID so that there is accountability for the actions that are taken. Also, an entry ID should
be verified just before the work is done on behalf of that entry ID, instead of verifying a set of entry IDs
and then doing work on behalf of the different entry IDs.

Authorities

Validation List Object

*USE

Validation List Object Library

*EXECUTE

Parameters

Validation_Lst

(Input) A pointer to the qualified object name of the validation list that contains the entry to verify.
The first 10 characters specify the validation list name, and the second 10 characters specify the
library. You can use these special values for the library name:

*CURLIB The current library is used to locate the validation list. If there is no current library,
QGPL (general purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry_ID

(Input)

A pointer to the entry ID information. The format of the Qsy_Entry_ID_Info_T structure is as
follows:

int Entry_ID_Len The number of bytes of data that is provided as the entry
ID. Possible values are from 1 through 100.

unsigned int Entry_ID_CCSID An integer that represents the CCSID for the entry ID.
Valid CCSID values are in the range 1 through 65535.
This field is not used to verify the entry.

unsigned char Entry_ID[100] The data that is used to identify this entry in the validation
list.

Encrypt_Data

(Input)

A pointer to the encrypted data information that is associated with the entry ID. The format of the
Qsy_Entry_Encr_Data_Info_T structure is as follows:

int Encr_Data_Len The number of bytes of data to be encrypted and
compared to the encrypted data in the validation list
entry. Possible values are 1 through 600.

unsigned int Encr_Data_CCSID An integer that represents the CCSID for the data to
encrypt. Valid CCSID values are in the range 0 through
65535. This value is not used to verify the entry.

unsigned char Encr_Data[600] The data to be encrypted and compared to the encrypted
data that is found for the specified entry ID in the
validation list.

Return Value

0 QsyVerifyValidationLstEntry() was successful.

-1 QsyVerifyValidationLstEntry() was not successful.

The errno global variable is set to indicate the error.

-2 QsyVerifyValidationLstEntry() was not successful because the encrypted data was incorrect.

Error Conditions

If QsyVerifyValidationLstEntry() is not successful, errno indicates one of the following errors:

3401 [EACCES]

The current user does not have *USE authority to the validation list object, or does not have
*EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484 [EDAMAGE]

The validation list object is damaged.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3026 [ENOREC]

Specified entry does not exist.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

The following example validates the entry for a user named FRED in the validation list object WEBUSRS.

See Code disclaimer information for information pertaining to code examples.

#include <qsyvldl.h>

main()
{
 #define VLD_LST "WEBUSRS WEBLIB "
 Qsy_Entry_ID_Info_T entry_info;
 Qsy_Entry_Encr_Data_Info_T encrypt_data;

 entry_info.Entry_ID_Len = 4;
 strncpy(entry_info.Entry_ID,"FRED",entry_info.Entry_ID_Len);

 encrypt_data.Encr_Data_Len = 7;
 strncpy(encrypt_data.Encr_Data,"MSN1TJG",
 encrypt_data.Encr_Data_Len);

 if (0 != QsyVerifyValidationLstEntry((Qsy_Qual_Name_T *)&VLD_LST,
 &entry_info,
 &encrypt_data))
 perror("QsyVerifyValidationLstEntry()");

}

API introduced: V4R1

Top | Security APIs | APIs by category

	Validation List APIs (V5R2)
	Table of Contents
	Validation List APIs
	Add Validation List Entry (QSYADVLE) API
	QsyAddValidationLstEntry()--Add Validation List Entry API
	Change Validation List Entry (QSYCHVLE) API
	QsyChangeValidationLstEntry()--Change Validation List Entry API
	QsyFindFirstValidationLstEntry()--Find First Validation List Entry API
	QsyFindNextValidationLstEntry()--Find Next Validation List Entry API
	Find Validation List Entry (QSYFDVLE) API
	QsyFindValidationLstEntry()--Find Validation List Entry API
	QsyFindValidationLstEntryAttrs()--Find Validation List Entry Attributes API
	Open List of Validation List Entries (QSYOLVLE) API
	QsyRemoveValidationLstEntry()--Remove Validation List Entry API
	Remove Validation List Entry (QSYRMVLE) API
	QsyVerifyValidationLstEntry()--Verify Validation List Entry API

