

@server
iSeries
IBM Developer Kit for Java

Version 6

© Copyright International Business Machines Corporation 1998, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. IBM Developer Kit for Java .
What's new in V5R2 for IBM Developer Kit for Java .
Changes to a specific version Coe
What's new as of 26 September 2002
What’'s new as of 30 August 2002 .
How to see what’s new or changed .
What's new in V5R2 for Java Development K|t (JDK) 1 1 8

What's new in V5R2 for Java 2 Software Development Kit (J2SDK), Standard Edrtron version 1 4

Print this topic .
Getting started with the IBM Developer K|t for Java
Install the IBM Developer Kit for Java
Install a licensed program with the Restore L|censed Program command
Support for multiple Java Development Kits .
Install extensions for the IBM Developer Kit for Java .
Download and install Java packages on an iSeries server .
Run your first Hello World Java program
Map a network drive to your iSeries server
Create a directory on your iSeries server . .
Create a directory using the command entry line .
Create a directory using iSeries Navigator
Create, compile, and run a HelloWorld Java program
Create and edit Java source files.
With iSeries Access for Windows.
On a workstation.
With EDTF .
With Source Entry Ut|l|ty
Work with Java applications using |Ser|es Navrgator
Customize your iSeries server for the IBM Developer Kit for Java
Java classpath
Java system properties
SystemDefault.properties file
Java system properties for Java Development K|t (JDK) 1 1 8 .
0s400.stdio.convert and 0s400.child.stdio.convert system property values.
0s400.stdin, 0s400.stdout, and 0s400.stderr system property values.
0s400.verify.checks.disable numeric values . . e e
Java system properties for Java 2 Software Development K|t (J28DK) Standard Edition .
Create an internationalized Java program . .
Time zone environment variable on your iSeries server
Configure time zone
Java locales
Example: Internatronalrzatlon of dates usrng the Java utll DateFormat class
Example: Internationalization of numeric display using the java.util. NumberFormat class
Example: Internationalization of locale- specmc data using the java.util.ResourceBundle class
Java character encodings .
File.encoding values and iSeries CCSID
Default file.encoding values.
Release-to-release compatibility . .
Database access with the IBM Developer K|t for Java .
Access your iSeries database with the IBM Developer Kit for Java JDBC dr|ver
Get started with JDBC.
Types of JDBC drivers
JDBC requirements.
JDBC tutorial .

© Copyright IBM Corp. 1998, 2001

2 O ONNOCOOUORAPRPWWLWWWWWN =

QOO OO P DEAEAADRMDDDDMONDNDNODMNDMNDNODN = = =2 2 g
WN =2 2 OO0 O0OONPONMNN—LO00CONWLWONNMNOOOOOO PR PDPWWNDN =

iv

Example: JDBC . .
Use JNDI for the examples .

Connections

DriverManager

Example: Use native JDBC and TooIbox JDBC concurrently
Example: Access property .

Example: Invalid user ID and password

Connection properties . .

Example: Create a UDBDataSource and b|nd |t W|th JNDI

Example: Create a UDBDataSourceBind and set DataSource propert|es .

Example: Obtain an initial context before binding UDBDataSource

Example: Create a UDBDataSource, and obtain a user ID and password .

Use DataSources with UDBDataSource .
DataSource properties.
Other DataSource |mplementat|ons

DatabaseMetaData interface for IBM Developer K|t for Java

Create a DatabaseMetaData object .

Retrieve general information

Determine feature support .

Data source limits .

SQL objects and their attnbutes .

Transaction support.

Changes in JDBC 3.0 .

Example: DatabaseMetaData mterface for IBM Developer K|t for Java
Example: Use metadata ResultSets that have more than one column

Exceptions .

SQLException.

Example: SQLExceptlon
SQLWarning
DataTruncation

Silent truncation .

Transactions .

Auto-commit mode
Transaction isolation levels .
Savepoints .

Distributed transactions .

Transactions with JTA.

Use UDBXADataSource support for pool|ng and dlstnbuted transact|ons .

XADataSource properties

ResultSets and transactions

Multiplexing .

Two-phase commit and transactlon Iogglng

Example: Use JTA to handle a transaction . .
Example: Multiple connections that work on a transactlon .
Example: Use a connection with multiple transactions
Example: Suspended ResultSets .

Example: End a transaction .

Example: Suspend and resume a transactlon

Statement types

Statements

Example: Use the Statement object S executeUpdate method
PreparedStatements .

Process PreparedStatements.

Example: Use PreparedStatement to obtaln a ResuItSet
Example: ParameterMetaData

CallableStatements

iSeries: IBM Developer Kit for Java

. 55
. 59
. 59
. 60
. 62
. 64
. 67
. 68
. 75
. 76
.77
.77
. 78
. 80
. 84
. 85
. 85
. 85
. 86
. 86
. 86
. 86
. 86
. 87
. 87
. 89
. 90
.91
. 91
. 92
. 94
. 94
. 95
. 96
.97
. 98
. 98
. 99
. 99
.. 99
. 100
. 100
. 101
. 103
. 105
. 107
. 109
11
. 114
. 115
. 116
. 118
. 119
. 120
. 122
. 123

Process CallableStatements125

Example: CallableStatement interface for IBM Developer K|t for Java e 126
Example: Create a procedure with multiple ResultSets127
Example: Create a procedure with input and output parameters 128
Example: Create a procedure with returnvalues. 129
ResultSets e K
ResultSet characterlstrcs R e KX
Example: Sensitive and msensrtrve ResuItSets P XS
Example: ResultSet sensitivity .135
Cursormovement.o o187
Retrieve ResultSetdata. .138
Change ResultSets Co. 0139
Example: Remove values from a tabIe through another statement scursor. 140
Example: Change values with a statement through another statement’s cursor 142
Create ResultSets. . . . A
Example: ResultSet interface for IBM Developer K|t for Java I 2 ¥2)
Example: ResultSetMetaData interface for IBM Developer Kit forJava 145
JDBC object pooling . . . e Y4
Use DataSource support for object poollng .o e P e
Example: Set up connection pooling with UDBDataSource and
UDBConnectionPoolDataSource. . . . A R
Example: Test the performance of connectron poolrng e ke
ConnectionPoolDataSource properties .149
DataSource-based statement pooling. . . I EoY
Example: Test the performance of two DataSources I EoX
Build your own connection pooling. .1862
Batch updates . . . e Fo 72
Statement batch update e 1515)
PreparedStatement batchupdate . 156
BatchUpdateException .156
Blocked insert support .. .156
Advanced datatypes. .158
Distincttypes .. .158
Large Objects . . . e e e e158
Unsupported SQL3 data types e a1
Write code thatusesBLOBs .. .1589
Example: BLOBo .. 189
Example: Update BLOBs .. .161
Example: Use BLOBs1862
Write code thatusesCLOBs .163
Example:CLOB168
Example: Update CLOBs .. .164
Example:Use CLOBs165
Write code that uses Datalinks .166
Example: Datalink.166
Example: Distincttypes. .168
RowSets e (1]
RowSet charactenstlcs e (61
DB2CachedRowSet170
Use DB2CachedRowSet . . . e VA
Create and populate a DBZCachedRowSet Coe T ¢~
Access DB2CachedRowSet data and cursor manrpulatron .o 175
Change DB2CachedRowSet data and reflect changes back to the data source 179
Other DB2CachedRowSet features .1883
DB2JdbcRowSet .. .188
DB2JdbcRowSetevents .. .19

Contents V

Performance tips for the IBM Developer Kit for Java JDBC driver
Access databases using IBM Developer Kit for Java DB2 SQLJ support.

SQLJtools L. Lo

DB2 SQLJ restrictions .

Structured Query Language for Java profrles

The structured query language for Java (SQLJ) translator (squ)

Precompile SQL statements in a profile using the DB2 SQLJ profile customrzer db2profc

Print the contents of DB2 SQLJ profiles (db2profp and profp) .
SQLJ profile auditor installer (profdb).

Convert a serialized profile instance to Java class format usrng the SQLJ profrle conversion tooI

(profconv) .

Embed SQL statements in your Java appllcatlon
Host variables in Structured Query Language for Java
Example: Embed SQL Statements in your Java application.

Compile and run SQLJ programs . Co

Java SQL routines. Co

Use Java SQL routines .

Java stored procedures.

JAVA parameter style .
DB2GENERAL parameter style .
Restrictions on Java stored procedures .

Java user-defined scalar functions .
Parameter style Java.

Parameter style DBzGENERAL
Restrictions on Java user-defined functions
Java user-defined table functions .

SQLJ procedures that manipulate JAR files
SQLJ.INSTALL_JAR . .
SQLJ.REMOVE_JAR
SQLJ.REPLACE_JAR .

SQLJ.UPDATEJARINFO
SQLJ.RECOVERJAR
Parameter passing conventions for Java stored procedures and UDFs
Java with other programming languages .
Use the Java Native Interface for native methods .
Java Invocation API .
Invocation API functions
Support for multiple Java virtual machmes
Example: Java Invocation API

Java native methods and threads consrderatrons

Native methods and the Java Native Interface

Strings in native methods .

Literal strings in native methods.
Convert dynamic strings to and from EBCDIC Unlcode and UTF 8

Examples: Use the Java Native Interface for native methods .

IBM OS/400 PASE native methods for Java .

Java 0S/400 PASE environment variables .

Examples: Environment variables for the IBM OS/400 PASE example.

Using QIBM_JAVA_PASE_CHILD_STARTUP .
Managing native method libraries
0OS/400 PASE and AIX Java Library Namrng Conventrons .
Java library search order . e e e
Java OS/400 PASE error codes.
Startup Errors
Runtime errors . . .
Example: IBM 0S/400 PASE natrve method for Java

Vi iSeries: IBM Developer Kit for Java

. 192
. 194
. 195
. 195
. 195
. 195
. 195
. 199

. 199

. 200
. 200
. 201
. 201
. 204
. 205
. 206
. 207
. 207
. 209
.21
. 211
.21
. 212
. 215
. 215
. 217
. 217
. 218
. 219
. 219
. 220
. 221
. 221
. 222
. 224
. 225
. 226
. 227
. 232
. 233
. 233
. 234
. 234
. 235
. 239
. 240
. 241
. 241
. 242
. 243
. 243
. 244
. 244
. 245
. 245

Run the OS/400 PASE native method for Java example.
Comparison of Integrated Language Environment and Java
Use java.lang.Runtime.exec() .
Example: Call another Java program W|th java Iang Runtlme exec()
Example: Call a CL program with java.lang.Runtime.exec().
Example: Call a CL command with java.lang.Runtime.exec() .
Interprocess communications. . .
Use sockets for interprocess communlcatlon . .
Example: Use sockets for interprocess communlcatlon
Use input and output streams for interprocess communication

Example: Use input and output streams for interprocess communlcat|on.

Example: Call Java from C
Example: Call Java from RPG
Java platform .
Java applets and appllcatlons
Java virtual machine .
Java runtime environment .
Java interpreter.
Java JAR and class files
Java threads.
Sun Microsystems, Inc. Java Development K|t
Java packages .
Java tools.
Advanced topics
Java classes, packages and dlrectorles
Files in the integrated file system .
Java file authorities in the integrated file system
Run Java in a batch job

Run your Java application on a host that does not have a graph|cal user mterface

IBM Developer Kit for Java Remote Abstract Window Toolkit .
Set up the Remote Abstract Window Toolkit for Java on a remote dlsplay

Make the Remote Abstract Window Toolkit for Java class files accessible to the remote dlsplay

Add RAWTGui.zip or RAWTGui.jar to the CLASSPATH of the remote display .

Start the Remote Abstract Window Toolkit for Java on a remote display .
Run a Java program using Remote Abstract Window Toolkit .

Run a Java program using Remote Abstract Window Toolkit with Netscape

Print with the Remote Abstract Window Toolkit
Remote Abstract Window Toolkit properties
Remote Abstract Window Toolkit SecurityManager restrlct|ons

Example: Set up the Remote Abstract Window Toolkit for Java‘™ on a Windows remote d|splay

Class Broker for Java
Set up the Class Broker for Java on a remote dlsplay
Install Class Broker for Java on an iSeries server .
Install Class Broker for Java on Windows or UNIX .
Package content of cbj_1.1.jar .
Native Abstract Windowing Toolkit .
Installing NAWT . . .
Install OS/400 PASE .
Install NAWT PTFs
Install iSeries Tools for Developers PRPQ
Create a VNC password file .
Configure Java system properties .
Start the VNC server.
Set environment variables .
Verify installation procedure . .
Installing older versions of iSeries TooIs for Developers .

Contents

. 245
. 245
. 246
. 247
. 247
. 248
. 249
. 249
. 249
. 252
. 252
. 254
. 254
. 254
. 255
. 255
. 256
. 257
. 257
. 257
. 258
. 259
. 260
. 260
. 260
. 261
. 261
. 262
. 263
. 263
. 263

264

. 265
. 265
. 266
. 266
. 268
. 268

. 269
269

. 269
. 270
. 270
. 271
. 271
. 273
. 273
. 273
. 274
. 274
. 274
. 274
. 275
. 275
. 275
. 275

Vii

Determine whether you have the enhanced PRPQ.
Install VNC
Tips on using VNC . .
Start a VNC display server from a CL program .
End a VNC display server. e

Chapter 2. Java security .
Java security model .

Java Cryptography Extension

Java Secure Socket Extension .

Using SSL (JSSE, version 1.0.8)
Prepare iSeries server for secure sockets Iayer support
Cryptographic Access Providers.
Change your Java code to use socket factorles .
Examples: Change your Java code to use server socket factorles .
Examples: Change your Java code to use client socket factories
Change your Java code to use secure sockets layer .
Examples: Change your Java server to use secure sockets Iayer
Examples: Change your Java client to use secure sockets Iayer
Select a digital certificate to use
Use the digital certificate when you run your Java applrcatlon
Digital certificates and the -0s400.certificateLabel property .
Digital certificate containers and the -0s400.certificateContainer property
Using Java Secure Socket Extension, version 1.4 .
Configuring your iSeries server to support JSSE
Software requirements .
Changing JSSE providers .
Security managers
JSSE providers. .
Pure Java JSSE provrder .
Native iSeries JSSE provider. . . .
Changing the default JSSE provider .
JSSE security properties .o
JSSE Java system properties .
Properties that work for both prowders .
Properties that work for the iSeries native JSSE prowder onIy
Additional information
Using the native iSeries JSSE provrder
Protocol values for the SSLContext.getinstance method
Native iSeries KeyStore implementation.
Restrictions when using the native iSeries provrder
Examples: IBM Java Secure Sockets Extension.
Example: SSL client using an SSLContext object
Example: SSL server using an SSLContext object .

Chapter 3. Java Authentication and Authorization Service. .
Prepare and configure an iSeries server for Java Authentication and Authorrzatron Servrce .
Java Authentication and Authorization Service samples .

Chapter 4. IBM Java Generic Securlty Service (JGSS)

JGSS concepts.

Principals and credentlals

Context establishment .

Message protection and exchange
Resource cleanup and release .
Security mechanisms

Viii iSeries: 1BM Developer Kit for Java

. 276
. 276
. 276
. 276
. 276

. 279
. 280
. 280
. 281
. 282
. 282
. 282
. 283
. 284
. 286
. 287
. 287
. 289
. 290
. 291
. 291
. 291
. 292
. 292
. 292
. 292
. 293
. 293
. 293
. 293
. 293
. 293
. 295
. 295
. 295
. 296
. 296
. 296
. 296
. 296
. 297
. 298
. 299

. 303
. 303
. 305

. 307
. 308
. 308
. 309
. 309
. 309
. 309

Configuring your iSeries server to use IBM JGSS .

Configuring your iSeries server to use JGSS with J2SDK, version 1 3

Software requirements .

Configuring your server to use JGSS
Changing JGSS providers .

Security managers

Configuring JGSS to use the nat|ve |Ser|es JGSS prowder

Software requirements . .
Specifying the native iSeries JGSS prowder .

Configuring your iSeries server to use JGSS with JZSDK version 1 4

Changing JGSS providers .
Security managers
JGSS providers. . . .
Changing the JGSS prowder
Using a security manager .
JVM permissions . .
JAAS permission checks .
DelegationPermission check .
ServicePermission check .
Running IBM JGSS applications

Obtaining Kerberos credentials and creatmg secret keys

The Kinit and Ktab tools
Using the pure Java JGSS prowder .
Using the native iSeries JGSS provider .

JAAS Kerberos login interface .
JAAS and JVM permissions .

JAAS configuration file options .
Principal name option

Prompting for the principal name and password .

Credential type option.
Configuration and policy files.
Kerberos configuration file .
JAAS configuration file .
JAAS policy file.
Java master security propertles f|Ie
Credentials cache and server key table .
Developing IBM JGSS applications
IBM JGSS application programming steps
JGSS transport tokens .
Sequence of operations in a JGSS appl|cat|on
Creating a GSSManager
Creating a GSSName
Examples: Using GSSName
Creating a GSSCredential .
Creating GSSContext
Requesting optional security services.
Establishing context . .
Using per-message services .
Sending messages
Receiving messages .
Deleting context
Using JAAS with your JGSS apphcatlon
Debugging . . .
JGSS Debug class

Samples: IBM Java Generic Securlty Serwce (JGSS).

Description of the sample programs .

. 310
. 310
. 310
. 310
. 310
. 310
. 31
. 311
. 311
. 312
. 312
. 312
. 312
. 312
. 313
. 313
. 314
. 314
. 314
. 315
. 315
. 315
. 316
. 316
. 316
. 316
. 316
. 317
. 317
. 318
. 318
. 318
. 319
. 319
. 319
. 320
. 320
. 321
. 321
. 321
. 321
. 322
. 322
. 322
. 323
. 323
. 324
. 325
. 325
. 326
. 326
. 327
. 327
. 328
. 328
. 329

Contents

ix

Viewing the IBM JGSS samples

Viewing the sample programs

Viewing the sample configuration and pollcy flles
Sample: IBM JGSS non-JAAS client program.
Sample: IBM JGSS non-JAAS server program
Sample: IBM JGSS JAAS-enabled client program .
Sample: IBM JGSS JAAS-enabled server program.
Sample: Kerberos configuration file .
Sample: JAAS login configuration file.
Sample: JAAS policy file
Sample: Java policy file.
Samples: Downloading and wewrng javadoc |nformat|on for the IBM JGSS samples
Samples: Downloading and running the sample programs .
Samples: Downloading the IBM JGSS samples .

Related information
Samples: Preparing to run the sample programs

Related information
Samples: Running the sample programs

Related information

IBM JGSS javadoc reference |nformat|on

Chapter 5. Tune Java program performance with the IBM Developer Kit for Java.
Java runtime performance considerations .
Cache class loaders .
Select which mode to use when runnrng a Java program
Java interpreter. e
Static compilation .
Java static compilation performance consrderatrons
Just-In-Time compiler
Comparison of Just-In-Time comprler and d|rect processrng
Optimization levels
Java garbage collection.

IBM Developer Kit for Java advanced garbage collectlon
Java garbage collection performance considerations .
Java Native Method Invocation performance considerations
Java method inlining performance considerations .

Java exception performance considerations
Java call trace performance tools .
Java event trace performance tools
Java profiling performance tools
Java Virtual Machine Profiler Interface
Collect Java performance data .
Performance Data Collector tool
Java Performance Data Converter tool .
Run the Java Performance Data Converter
Example: Run the Java Performance Data Converter

Chapter 6. Commands and tools for the IBM Developer Kit for Java.
Java tools that are supported by the IBM Developer Kit for Java.
Java tools.
Java ajar tool .
Java appletviewer tool . .
Run the Java appletviewer tooI wrth Remote Abstract Wlndow T00|klt .
Java extcheck tool
Java idlj tool .
Java jar tool .

X iSeries: IBM Developer Kit for Java

. 329
. 329
. 330
. 330
. 338
. 349
. 351
. 352
. 353
. 354
. 355
. 356
. 357
. 357
. 357
. 358
. 358
. 358
. 359
. 359

. 361
. 361
. 362
. 363
. 365
. 365
. 366
. 366
. 366
. 366
. 367
. 368
. 368
. 368
. 368
. 369
. 369
. 369
. 369
. 369
. 370
. 371
. 371
. 372
. 372

. 373
. 373
. 374
. 374
. 374
. 374
. 375
. 375
. 375

Java jarsigner tool.

Java javac tool .

Java javadoc tool .
Java tools.

Java javah tool .

Java javakey tool .

Java javap tool .

Java keytool .

Java native2ascii tool

Java policytool .

Java rmic tool

Java rmid tool .

Java rmiregistry tool .

Java serialver tool.

Java thameserv tool .
Java command in Qshell

CL commands that are supported by Java

Analyze Java Virtual Machine (ANZJVM) command

Run the ANZJVM command . e

Force a garbage collection cycle
Considerations for ANZJVM command .
Example: ANZJVM command
Spooled output file for ANZJVM command
Example: Change Java Program (CHGJVAPGM) command
Licensed Internal Code option parameter strings
Example: Create Java Program (CRTJVAPGM) command
Example: Delete Java Program (DLTJVAPGM) command .
Example: Dump Java Virtual Machine (DMPJVM) command .
Example: Display Java Program (DSPJVAPGM) command.
JAVA command. -
Example: Use the Run Java (RUNJVA) command
iSeries Navigator commands that are supported by Java

Chapter 7. Optional packages.
Java Naming and Directory Interface .

IBM JNDI LDAP provider programming gwde
Create an initial context. .
LDAP V3 URL .

Server binding and SASL support
Search and obtain attributes .
Add and delete entries in a directory .

Change attributes .

Rename a directory entry .
Referrals and search references
LDAP controls .

Binary attributes

Schema . .

SASL plug-in.

Client-side caching .

Retrieve the IBMJNDI class version

Conformance considerations and additional propertles
JSSL
JavaMail .
Java Print Service.

Chapter 8. Debug programs using the IBM Developer Kit for Java

. 375
. 375
. 376
. 376
. 376
. 377
. 377
. 377
. 378
. 378
. 378
. 378
. 378
. 378
. 378
. 379
. 380
. 380
. 380
. 381
. 381
. 381
. 381
. 386
. 387
. 391
. 391
. 391
. 392
. 393
. 393
. 393

. 395
. 395
. 396
. 397
. 398
. 399
. 401
. 402
. 4083
. 403
. 404
. 405
. 405
. 406
. 408
. 410
. 411
. 411
. 412
. 412
. 413

. 415

Contents

Xi

Debug a Java program .
Debug Java programs by usmg the *DEBUG optlon
Initial debugging displays for Java programs .
Set breakpoints. .
Step through Java programs to debug
Evaluate variables in Java programs .
Debug Java and native method programs .
Debug a Java program from another display . .
QIBM_CHILD_JOB_SNDINQMSG environment varlable
Debug Java classes loaded through a custom class loader.
Debug servlets .
Java Platform Debugger Archltecture
Java Virtual Machine Debug Interface
Java Debug Wire Protocol.
Start JOWP in QShell
Start JDWP from a CL command Ilne
Java Debug Interface
Find memory leaks

Chapter 9. Troubleshooting the IBM Developer Kit for Java .
Limitations e
Find job logs for Java problem anaIyS|s

Collect data for Java problem analysis . .

Get support for the IBM Developer Kit for Java .

Chapter 10. Code examples for the IBM Developer Kit for Java.

Chapter 11. IBM Developer Kit for Java reference .
Code disclaimer information .

Xii iSeries: IBM Developer Kit for Java

. 415
. 416
. 416
. 417
. 418
. 419
. 419
. 420
. 421
. 421
. 421
. 422
. 422
. 422
. 422
. 423
. 423
. 423

. 425
. 425
. 425
. 426
. 427

. 429

. 433
. 433

Chapter 1. IBM Developer Kit for Java

S

JAVA

The IBM(R) Developer Kit for Java™ is optimized for use in an iSeries®™ server environment. It uses
the compatibility of Java programming and user interfaces, so you can develop your own applications for
the iSeries server.

The IBM Developer Kit for Java allows you to create and run Java programs on your iSeries server. The
IBM Developer Kit for Java is a compatible implementation of the Sun Microsystems, Inc. Java
Technology, so we assume that you are familiar with their Java Development Kit (JDK) documentation. To
make it easier for you to work with their information and ours, we provide links to Sun Microsystems, Inc.’s
information.

If for any reason our links to Sun Microsystems, Inc. Java Development Kit documentation do not work,
refer to their HTML reference documentation for the information that you need. You can find this

information on the World Wide Web at|The Source for Java Technology java.sun.com| R4 .

Select any of these topics for more details on how to use the IBM Developer Kit for Java:

. provides details on how to download a printable PDF file or a zipped package of IBM
Developer Kit for Java HTML files.

- [What's new]in V5R2 highlights the latest product and information updates.

gives information about installation, configuration, how to create and run simple Hello

World Java programs, downloading and installing, and release-to-release compatibility.

[Customization] gives instructions on how to customize the configuration of your time zone, system
properties, and classpath on your server.

. ‘Compatibility|provides information about the compatibility of Java class files from release to release.

» |Database access| explains how the IBM Developer Kit for Java allows Java programs to access iSeries
database files.

. |Java with other programming Ianguages| shows you how to call code that was written in languages other
than Java by using Java Native Interface (JNI), java.lang.Runtime.exec(), interprocess communication,
and the Java Invocation API.

Java platform|describes the environment for developing and managing Java applets and applications,
and consists of the Java language, the Java packages, and the Java virtual machine.

|Advanced topics| provides instructions on how to run Java in a batch job and describes the Java file
authorities required in the integrated file system to display, run, or debug a Java program.

+ |Run on a host without a GUI| contains information about how to set up and run Java programs with the
Remote Abstract Window Toolkit (AWT), Class Broker for Java, or Native Abstract Windowing Toolkit
(NAWT).

. provides details on adopted authority and explains how you can use SSL to make socket
streams secure in your Java application.

provides information about how to tune your Java performance.
+ [Commands and tools| provides details on how to use the Java commands and Java tools.

« [Optional packages|lists packages such as JavaMail and Java Naming and Directory Service (JNDI) that
you can optionally use to develop your Java applications.

« [Debugging] explains how to debug Java programs.

© Copyright IBM Corp. 1998, 2001 1

http://www.java.sun.com/

« [Troubleshooting| shows you how to find job logs and collect data for Java program analysis. This topic
also provides information about program temporary fixes (PTFs) and getting support for the IBM
Developer Kit for Java.

* [Code example§| links directly to all of the code examples in this information.
. ‘Referencellinks directly to all of the Javadoc and API reference information.

Note: Read the [Code example disclaimer for important legal information.

What’s new in V5R2 for IBM Developer Kit for Java

This topic highlights changes to the IBM Developer Kit for Java™ in V5R2. We highlight changes specific
to Java Development Kit (JDK) 1.1.8 and Java 2 Software Development Kit (J2SDK), Standard Edition,
version 1.4 separately. Updates after the general release of V5R2 appear at the bottom of the following
list.

Getting started
+ [Multiple JDK support|has information on each JDK that IBM supports.

+ [Map a network drive to your iSeries server and|Create a directory on your iSeries serverl have moved to
Getting Started.

+ [Create, compile, and run a Hello World Java program| contains several changes.

Customization

+ There are new [System properties| including properties for [Cache class loaders.

Database access
« The section has had extensive revision.
+ The [ava stored procedures and PJava user-defined scalar functions|sections have been added.

Run on a host without a GUI
+ See the[Run a Java program using Remote Abstract Window Toolkif topic for updates.

Commands and tools
 The|Analyze Java Virtual Machine (ANZJVM) command| has been added to the CL commands section.

» The|Java idlj tooll has been added.

+ The[iSeries Navigator commands that are supported by Javal was changed to reflect several changes to
iSeries Navigator.

Optional packages
+ The [UNDI LDAP provider programming guide| has been added.

Debugging
+ There is new debug support for Java classes loaded through a custom class loader|

Code examples

+ More were added.

Print this topic

« |Print this topid contains a PDF of the IBM Developer Kit for Java information.

Reference

« The [IBM Developer Kit for Java referencel section has been added and contains Javadoc and API
reference information.

2 iSeries: IBM Developer Kit for Java

Changes to a specific version

Click on the links below for information specific to the version of your choice:
« [Java Development Kit, version 1.1.§|

+ [Java 2 Software Development Kit, Standard Edition, version 1.4]

What’s new as of 26 September 2002

|Support for multiple Java Development Kits|
This technical update clarifies the order of precedence that 0S/400® uses to determine the default
JDK when you have installed more than one JDK.

|Ca||ing control language commands from a Java program|
This technical update adds information about the delimiters required by different JDKs when calling
control language (CL) commands from your Java programs.

What’s new as of 30 August 2002

INative Abstract Windowing Toolkit]

Changes to Native Abstract Windowing Toolkit (NAWT) information include support for the Java
Development Kit version 1.3 and updates to instructions for installing NAWT. The installation
instructions now reflect enhancements made to PRPQ 5799-PTL, which is used by NAWT.

Wava Generic Security Service

Java Generic Security Service (JGSS) is a new topic that provides information about IBM JGSS, a
generic interface for authentication and secure messaging. Under this interface you can plug a
variety of security mechanisms based on secret-key, public-key, or other security technologies.

How to see what’s new or changed
To help you see where technical changes have been made, this information uses:

+ The #* image to mark where new or changed information begins.
+ The % image to mark where new or changed information ends.

To find other information about what's new or changed this release, see the @ .
What’s new in V5R2 for Java Development Kit (JDK) 1.1.8

There were no changes in V5R2 specific to the Java'™ Development Kit (JDK) 1.1.8.

What’s new in V5R2 for Java 2 Software Development Kit (J2SDK),
Standard Edition, version 1.4

This topic highlights changes to the IBM Developer Kit for Java‘™ in V5R2 for the Java 2 Software
Development Kit (J2SDK), Standard Edition, version 1.4.

Note: In this section, we only discuss changes that are unique or interesting in the J2SDK, version 1.4.
The general information on updates from the |What's new for Java Development Kit (JDK) 1.1.8| topic also
apply to J2SDK, version 1.4.

Customization

+ The ftime zone environment variable| shows unique aspects of setting the time zone variable on an
iSeries server. This must be done to use the native getSystemTimeZonelD() that is a part of Java 2
SDK (J2SDK), Standard Edition, version 1.3 and higher.

Chapter 1. IBM Developer Kit for Java 3

+ New [system properties for J2SDK| were added.

Security

+ The [Java Authentication and Authorization Service|(JAAS) is a standard extension to the Java 2
Software Development Kit, v 1.3 (JDK 1.3) and higher. Currently, Java 2 provides access controls that
are based on where the code originated and who signed the code (codesource-based access controls).
It lacks, however, the ability to enforce additional access controls based on who runs the code. JAAS
provides a framework that augments the Java 2 security model with such support.

* The |Java Cryptography Extension (JCE) 1.2| is a standard extension to the Java 2 Software
Development Kit (J2SDK), Standard Edition. The JCE implementation on an iSeries server is compatible
with the implementation of Sun Microsystems, Inc. This documentation covers the unique aspects of the
iSeries implementation. We assume that you are familiar with the general documentation for the JCE
extensions.

Optional packages

+ The [Java Print Service API allows printing on all Java platforms. Java runtime environments and third
parties can provide steam generator plugins for producing various formats for printing, such as PDF,
Postscript, and AFP.

. TheAPI is a set of abstract classes that models an electronic (e-mail) system. The API
provides a platform-independent and protocol-independent framework to build Java-based e-mail and
messaging applications.

Print this topic

To view or download the PDF version, select|IBM Developer Kit for Java(T""’l (about 2159 KB or 450
pages).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click Save Target As...

3. Navigate to the directory in which you would like to save the PDF.
4. Click Save.

Downloading Adobe Acrobat Reader

If you need Adobe Acrobat Reader to view or print these PDFs, you can download a copy from the
(www.adobe.com/products/acrobat/readstep.html) o

Getting started with the IBM Developer Kit for Java

If you have not yet used the IBM Developer Kit for Java™, follow these steps to install it, configure it,
and practice running a simple Hello World Java program.

1. If you are already familiar with the IBM Developer Kit for Java information, see [what's new| for links to
the latest product updates and information.

2. [Installlthe IBM Developer Kit for Java.
3. [Configure]your system.

4. If you are new to this information and have not yet used the IBM Developer Kit for Java, see
|first Hello World Java programl This topic illustrates two methods of running a simple Hello World Java
program with the IBM Developer Kit for Java. It is a convenient way to see if you have correctly
installed the IBM Developer Kit for Java.

4 iSeries: IBM Developer Kit for Java

rzaha.pdf
http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html

5. Now you are ready to create, compile, and run your own Hello World Java program. For how-to steps,
see [Create, compile, and run a Hello World Java program|

6. If you are interested in creating more of your own Java applications, read these topics:

« [Create and edit Java source files| shows three different ways that you can create and edit your Java
source files.

Download and install Java packages on an iSeries served helps you use Java packages more
effectively. It provides details about packages with graphical user interface (GUI), integrated file
system and case sensitivity, as well as ZIP file handling and JAR file handling.

Release-to-release compatibilitylprovides information on compatibility from one release to another.

Install the IBM Developer Kit for Java

Installing the IBM Developer Kit for Java‘™ allows you to create and run Java programs on your iSeries
server.

To install the IBM Developer Kit for Java, perform the following steps:
1. Enter the Go Licensed Program (GO LICPGM) command on the command line.
2. Select option 11 (Install licensed program).

3. Choose option 1 (Install) for licensed program (LP) 5722-JV1 *BASE, and select the option that
matches the Java Development Kit (JDK) that you want to install. If the option that you want to install
is not displayed in the list, you can add it to the list by entering option 1 (Install) in the option field.
Enter 5722JV1 in the licensed program field and your option number in the product option field.

Note: You can install more than one option at once.

Once you have installed the IBM Developer Kit for Java on your iSeries server, you may choose to
your system.

See [Run your first Hello World Java program| for information on getting started with the IBM Developer Kit
for Java.

Install a licensed program with the Restore Licensed Program command
The programs listed in the Install Licensed Programs display are those supported by the LICPGM

installation when your server was new. Occasionally, new programs become available which are not listed
as licensed programs on your server. If this is the case with the program you want to install, you must use
the Restore Licensed Program (RSTLICPGM) command to install it.

To install a licensed program with the Restore Licensed Program (RSTLICPGM) command, follow these
steps:

1. Put the tape or CD-ROM containing the licensed program in the appropriate drive.
2. On the iSeries command line, type:

RSTLICPGM

and press the Enter key.

The Restore Licensed Program (RSTLICPGM) display appears.
3. In the Product field, type the ID number of the licensed program you want to install.
4. In the Device field, specify your install device.

Note: If you are installing from a tape drive, the device ID is usually in the format TAPXX, where XX is
a number, like 01.

5. Keep the default settings for the other parameters in the Restore Licensed Program display. Press the
Enter key.

6. More parameters appear. Keep these default settings also. Press the Enter key. The program begins
installing.

Chapter 1. IBM Developer Kit for Java 5

When the licensed program is finished installing, the Restore Licensed Programs display appears again.

Support for multiple Java Development Kits

Your iSeries server supports multiple Java Development Kits (JDKs) and Java 2 SDK (J2SDK), Standard
Edition. Your iSeries server supports the use of multiple JDKs simultaneously, but only through multiple
Java virtual machines. A single Java virtual machine runs one specified JDK.

Find the JDK that you are using or want to use, and select the coordinating option to install. You can
more than one JDK at one time. The java.version system property determines which JDK to run.
Once a Java virtual machine is up and running, changing the java.version system property has no effect.

Note: In V5R2, Options 1 (JDK 1.1.6) and 2 (JDK 1.1.7) are no longer available. They cannot be installed
or used.

Option JDK java.home java.version
3 1.2 #* /QIBM/ProdData/Java400/jdk12/ 4% 1.2

4 1.1.8 /QIBM/ProdData/Java400/jdk118/ 1.1.8

5 1.3 /QIBM/ProdData/Java400/jdk13/ 1.3

6 1.4 /QIBM/ProdData/Java400/jdk14/ 14

#* Note: Version 1.3 is the same as Java 2 SDK (J2SDK), Standard Edition, version 1.3. 4%

For example, these are the results of which options you install and the command you enter.

Install Enter Result

Option 3 (1.2) java Hello J2SDK, Standard Edition, version 1.2
runs.

Option 4 (1.1.8) java Hello JDK 1.1.8 runs, because only one
JDK is installed and that is your
default.

Option 4 (1.1.8) and Option 3 (1.2) java Hello J2SDK, Standard Edition, version 1.2
runs because it is higher.

2 All four options installed java Hello J28DK, Standard Edition, version 1.3
runs. %%

Option 3 (1.2) and Option 5 (1.3) java Hello J2SDK, Standard Edition, version 1.3

runs because it is higher.

Option 4 (1.1.8) and Option 5 (1.3) java -Djava.version=1.1.8 Hello JDK 1.1.8 runs, because it was
specified.

¥ Option 5 (1.3) and Option 6 (1.4) |Java Hello J2SDK, Standard Edition, version 1.3
runs. Even though 1.4 is higher in

number, 1.3 takes precedence. <

Note: If you install only one JDK, the default JDK is the one you installed. #* If you install more than one
JDK, the following order of precedence determines the default JDK:

1. Option 5 (1.3)
2. Option 3 (1.2)
3. Option 6 (1.4)
4. Option 4 (1.1.8) &

6 iSeries: IBM Developer Kit for Java

Install extensions for the IBM Developer Kit for Java
Extensions are packages of Java'™ classes that you can use to extend the functionality of the core

platform. Extensions are packaged in one or more ZIP files or JAR files, and are loaded into the Java
virtual machine by an extension class loader.

The extension mechanism allows the Java virtual machine to use the extension classes in the same way
that the virtual machine uses the system classes. The extension mechanism also provides a way for you
to retrieve extensions from specified Uniform Resource Locators (URLs) when they are not already
installed in the J2SDK, version 1.2 or higher or Java 2 Runtime Environment, Standard Edition, version 1.2
and higher.

#* Some JAR files for extensions are shipped with the iSeries server. € If you would like to install one of
these extensions, enter this command:

ADDLNK OBJ('/QIBM/ProdData/Java400/ext/extensionToInstall.jar")
NEWLNK('/QIBM/UserData/Java400/ext/extensionToInstall.jar")
LNKTYPE (*SYMBOLIC)

Where extensionTolnstall.jar is the name of the ZIP or JAR file that contains the extension that you
want to install.

Note: JAR files of extensions not provided by IBM may be placed in the /QIBM/UserData/Java400/ext
directory.

When you create a link or add a file to an extension in the /QIBM/UserData/Java400/ext directory, the list
of files that the extension class loader searches changes for every Java virtual machine that is running on
your iSeries server. If you do not want to impact the extension class loaders for other Java virtual
machines on your iSeries server, but you still want to create a link to an extension or install an extension
not shipped by IBM with the iSeries server, follow these steps:

1. Create a directory to install the extensions.
Use either the Make Directory (MKDIR) command from the iSeries command line or the mkdir
command from the Qshell Interpreter.

2. Place the extension JAR file in the directory created.

3. Add the new directory to the java.ext.dirs property.
You can add the new directory to the java.ext.dirs property by using the PROP field of the JAVA
command from the iSeries command line.

A If the name of your new directory is /home/username/ext, the name of your extension file is
extensionTolnstall.jar, and the name of your Java program is Hello, then the commands that you enter
should look like this:

MKDIR DIR('/home/username/ext')

CPY 0BJ('/productA/extensionToInstall.jar') TODIR('/home/username/ext') or
copy the file to /home/username/ext using FTP (file transfer protocol).

JAVA Hello PROP((java.ext.dirs '/home/username/ext'))

Download and install Java gackages on an iSeries server
To download, install, and use Java'™ packages more effectively on an iSeries server, see the following:

+ [Packages with graphical user interfaces|

- [Case sensitivity and integrated file system|
+ [ZIP file handling and JAR file handling

+ ava extensions framework|

Packages with graphical user interfaces

Chapter 1. IBM Developer Kit for Java 7

Java programs used with graphical user interface (GUI) require the use of a presentation device with
graphical display capabilities. For example, you can use a personal computer, technical workstation, or
network computer. The iSeries server provides a Remote Abstract Window Toolkit (AWT) capability. This
capability runs applications on an iSeries server by using a full range of graphical capabilities on the
appropriate Transmission Control Protocol/Internet Protocol (TCP/IP) attached display device. For more
specific installation, setup, and overall use information, see [Set up the Remote Abstract Window Toolkif.

Case sensitivity and integrated file system

Integrated file system provides file systems, which are both case-sensitive and those that are not with
regard to file names. QOpenSys is an example of a case-sensitive file system within the integrated file
system. Root, '/, is an example of a case-insensitive file system. For more information about the
integrated file system, see the File Systems information in the||ntegrated file system| topic.

Even though a JAR or class may be located in a case-insensitive file system, Java is still a
case-sensitive language. While wrkink */home/Hello.class’ and wrklnk */home/hello.class’ produce the

same results, JAVA CLASS (Hel1o) and JAVA CLASS(hello) are calling different classes. 4

ZIP file handling and JAR file handling

ZIP files and JAR files contain a set of Java classes. When you use the|Create Java Program|
(CRTJVAPGM)| command on one of these files, the classes are verified, converted to an internal machine
form, and if specified, transformed to iSeries machine code. You can treat ZIP files and JAR files like any
other individual class file. When an internal machine form is associated with one of these files, it remains
associated with the file. The internal machine form is used on future runs in place of the class file to
improve performance. If you are unsure whether a current Java program is associated with your class file
or JAR file, use the |Disp|ay Java Program (DSPJVAPGM)| command to display information about your
Java program on your iSeries server.

In previous releases of the IBM Developer Kit for Java, you had to recreate a Java program if you
changed the JAR file or ZIP file in any way, because the attached Java program would become unusable.
This is no longer true. In many cases, if you change a JAR file or ZIP file, the Java program is still valid
and you do not have to recreate it. If partial changes are made, such as when a single class file is
updated within a JAR file, you only need to recreate the affected class files that are within the JAR file.

Java programs remain attached to the JAR file after most typical changes to the JAR file. For example,
these Java programs remain attached to the JAR file when:

+ Changing or recreating a JAR file by using the

+ Changing or recreating a JAR file by using the .
* Replacing a JAR file by using the 0S/400 COPY command or the Qshell cp utility.

If you access a JAR file in the integrated file system through iSeries Access for Windows or from a
mapped drive on a personal computer (PC), these Java programs remain attached to the JAR file when:

» Dragging and dropping another JAR file onto the existing integrated file system JAR file.
« Changing or recreating the integrated file system JAR file by using the .
* Replacing the integrated file system JAR file by using the PC copy command.

When a JAR file is changed or replaced, the Java program that is attached to it is no longer current.
There is one exception in which Java programs do not remain attached to the JAR file. The attached Java

programs are destroyed if you use file transfer protocol (FTP) to replace the JAR file. For example, this
occurs if you use the FTP put command to replace the JAR file.

8 iSeries: IBM Developer Kit for Java

See [Java runtime performance|for more detailed information about the performance characteristics of JAR
files.

Java extensions framework

In Java 2 SDK, Standard Edition, version 1.2 and higher, extensions are packages of Java classes that
you can use to extend the functionality of the core platform. An extension or application is packaged in one
or more JAR files. The extension mechanism allows the Java virtual machine to use the extension classes
in the same way that the virtual machine uses the system classes. The extension mechanism also
provides a way for you to retrieve extensions from specified URLs when they are not already installed in
the Java Development Kit (JDK) or Java 2 Runtime Environment, Standard Edition.

See |Insta|| extensions for the IBM Developer Kit for Java| for information on installing extensions.

Run your first Hello World Java program
You can get your Hello World Java™ program up and running in either of these ways:

1. You can simply run the Hello World Java program that was shipped with the IBM Developer Kit for
Java.
To run the program that is included, perform the following steps:
a. Check that the IBM Developer Kit for Java is installed by entering the Go Licensed Program (GO

LICPGM) command. Then, select option 10 (Displayed installed licensed programs). Verify that
licensed program 5722-JV1 *BASE and at least one of the options are listed as installed.

b. Enter java Hello on the iSeries Main Menu command line. Press Enter to run the Hello World
Java program.

c. If the IBM Developer Kit for Java was installed correctly, Hel1o World appears in the Java Shell
Display. Press F3 (Exit) or F12 (Exit) to return to the command entry display.

d. If the Hello World class does not run, check to see that the installation was completed successfully,
or see [Get support for the IBM Developer Kit for Javalfor service information.

2. You can also run your own Hello Java program. For more information about how to create your own
Hello Java program, see [Create, compile, and run a Hello World Java program.

Map a network drive to your iSeries server

A To map a network drive to your iSeries server, make sure that you have iSeries Access for Windows
installed on your server and on your workstation. For more information on how to install and configure
iSeries Access for Windows, see|Installing iSeries Access for Windows|

You must have a connection configured for the iSeries server before you can map a network drive.

To map a network drive, follow these steps:

1. Open Windows® Explorer:
a. Right-click the Start button on your Windows taskbar.
b. Click Explore in the menu.

2. Select Map Network Drive from the Tools menu.

Chapter 1. IBM Developer Kit for Java 9

E‘l Exploring - Windows

Eile Edit Wiew H
E Mindows Eind g lﬁ' | |E| 5 |
Al Falders Map Network, Drive. ..
Deshtop Disconnect Network Drive... _lija
E| ity Compute Go to... [] Media
g 3% Flopper—res - O D Het Hood
Eg Windows25 (C:] |:| Cookies |:| Oecache

l:l backup | Cursors (L Options
D Cdrom (] Deshtop (] Fit
D host-news I:I Favorites |:| Recent
{j l-fumbird ™) Forts (L] sendTo
"D "o (£ Help [ShellNew
History e

l:l Perzonal Col (1t (L] start henu
1 I |] L | I I LI
A

Azzigng a drive letter ta a netwark, drive.

3. Select the drive that you want to use to connect to your iSeries server.
4. Type the path name to your server. For example:

\WYSERVER

where MYSERVER is the name of your iSeries server.

10 iSeries: IBM Developer Kit for Java

E‘l Exploring - Windows
File Edt “iew Toolz Help

| #|ml@| «|

I 'fﬁ Windows

| Al EadAdArn | T ranbmanba ~F UG demans!

Map Network Dnive K Ed |
Diive: | 3@ ~| ok |
Path: [\MYAS400 ~] Cancel |

¥ Feconnect at logon

HElp T Shelfen
lj ObjRExX History D spool
l:l Perzonal Col (1 int [Start henu
1 I |] L | I I LI
4

| 304 objects] | 74 2MB [Disk free space: 96.0MB]

5. Check the Reconnect at logon box if it is blank.
6. Click OK to finish.

Your mapped drive now appears in the All Folders section of Windows Explorer. 4

Create a directory on your iSeries server

You must create a directory on your iSeries server where you can save your Java™ applications.
There are two ways to do this:

Create a directory using iSeries Navigator|

Choose this option if you have iSeries Access for Windows installed. If you plan to use iSeries
Navigator to compile, optimize, and run your Java program, you must select this option to ensure your
program is saved in the correct location to perform these operations.

Create a directory using the command entry Iine|
Choose this option if you do not have iSeries Access for Windows installed.

For information about iSeries Navigator, including installation information, see |Getting Started with iSerieg

«

Create a directory using the command entry line
To create a directory on your iSeries server, follow these steps:

1. Sign on to your iSeries server.
2. On the command line, type:
CRTDIR DIR('/mydir")

where mydir is the name of the directory you are creating.

Chapter 1. IBM Developer Kit for Java 11

Press the Enter key.

A message appears at the bottom of your screen, stating "Directory created.”

Create a directory using iSeries Navigator
#* To create a directory on your iSeries server, follow these steps:

1.
2.

Open iSeries Navigator.

Double-click the name of your server in the My Connections window to sign on.
If your server is not listed in the My Connections window, follow these steps to add it:

a. Click File —> Add Connection....

Type the name of your server in the System field.

Click Next.

If it is not already entered, enter your User ID in the Use default user ID, prompt as needed field.
Click Next.

f. Click Verify Connection. This confirms that you can connect to the server.

g. Click Finish.

Expand the folder under the connection you want to use. Locate a folder named File Systems. If you
do not see this folder, the option to install File Systems during the iSeries Navigator installation was
not selected. You must install the File Systems option of iSeries Navigator by selecting Start —>
Programs —> IBM iSeries Access for Windows —> Selective Setup.

Expand the File Systems folder and locate the Integrated File System folder.

Expand the Integrated File System folder, then expand the Root folder. By expanding the Root
folder, you see the same structure as performing the WRKLNK (’/’) command on the iSeries command
line.

Right-click on the folder where you want to add a subdirectory. Select New Folder and enter the name
of the subdirectory you want to create.

® a0 0o

Create, compile, and run a HelloWorld Java program

Creating the simple, Hello World Java™" program is a great place to start when becoming familiar with
the IBM Developer Kit for Java.

To create, compile, and run your own Hello World Java program, perform the following steps:

1.

2.
3.

12

#|Map a network drive to your iSeries server|

[Create a directory on your iSeries server for your Java applications.€

Create the source file as an American Standard Code for Information Interchange (ASCII) text file in
the integrated file system. #* You can either use an integrated development environment (IDE) product
or a text-based editor such as Windows™ Notepad to code your Java application. 4

a. Name your text file HelloWorld. java. For more information about how you can create and edit your
file, see|Create and edit Java source files],

b. Make sure that your file contains this source code:

class HelloWorld {
public static void main (String args[]) {
System.out.printin("Hello World");
1

}
Compile the source file.
a. Enter the Work with Environment Variable (WRKENVVAR) command to check the CLASSPATH
environment variable. If the CLASSPATH variable does not exist, add it and set it to ’.” (the current

directory). If the CLASSPATH variable does exist, make sure that the ’.” is at the beginning of the
path name list. For details about the CLASSPATH environment variable, see |Java classpath

iSeries: 1BM Developer Kit for Java

Enter the Start Qshell (STRQSH) command to start the Qshell Interpreter.

Use the change directory (cd) command to change the current directory to the integrated file
system directory that contains the HelloWorld. java file.

d. Enter javac followed by the name of the file as you have it saved on your disk. For example, enter

javac HelloWorld.java.

5. # Set thefiile authorities on the class file in the integrated file system|
6. Optimize the Java application.
a. On the QSH Command Entry line, type:
system "CRTJIVAPGM '/mydir/myclass.class' OPTIMIZE(20)"

where mydir is the path name of the directory in which your Java application is saved, and where

myclass is the name of your compiled Java application.

Note: You can specify an optimization level of up to 40. An optimization level of 40 increases the

efficiency of the Java application, but it also limits debug capabilities. In the early stages of

developing a Java application, you may want to set your optimization level at 20 so you can more
easily debug your application. See the [CRTJVAPGM command and the OPTIMIZE parameter for

more information.
b. Press the Enter key.

A message appears, stating that a Java program has been created for your class. <
7. Run the class file.

a. Ensure that your Java classpath| is set up correcily.

b. On the Qshell command line, type java followed by HelloWorld to run your HelloWorld.class with
the Java virtual machine. For example, enter java HelloWorld. You can also use the
[(RUNJVA) command| on your iSeries server to run HelloWorld.class.

c. "Hello World" prints to your screen if everything was entered correctly. £ The shell prompt (by

default, a $) appears, indicating that the Qshell is ready for another command. 4
d. Press F3 (Exit) or F12 (Disconnect) to return to the command entry display.

Z

You can also easily compile, optimize, and run your Java application using iSeries Navigator, a graphical

user interface for performing tasks on your iSeries server. For instructions, see |Work with Java

lapplications using iSeries Navigatoll For more information on iSeries Navigator, including installation
information, see [Getting Started with iSeries Navigator] %%

Create and edit Java source files

You can create and edit Java‘™ source files in a number of ways:
« [With iSeries Access for Windows|

+ [On a workstation|.

e [With EDTF|
+ [With Source Entry Utility|

With iSeries Access for Windows
Java source files are American Standard Code for Information Interchange (ASCII) text files in the
integrated file system on iSeries servers.

You can create and edit a Java source file with iSeries Access for Windows and a workstation-based
editor.

Chapter 1. IBM Developer Kit for Java

13

On a workstation
You can create a Java source file on a workstation. Then, transfer the file to the integrated file system by

using file transfer protocol (FTP).

To create and edit Java source files on a workstation:
1. Create the ASCII file on the workstation by using the editor of your choice.
2. Connect to your iSeries server with FTP.

3. Transfer the source file to your directory in the integrated file system as a binary file, so that the file
remains in ASCII format.

With EDTF

You can edit files from any file system using the EDTF CL command. It is an editor that is similar to the
Source Entry Utility (SEU) for editing stream files or database files. See the |EDTF CL command| for
information.

With Source Entry Utility
You can create a Java source file as a text file by using source entry utility (SEU).

To create a Java source file as a text file by using SEU, perform the following steps:
1. Create a source file member by using SEU.

2. Use the Copy To Stream File (CPYTOSTMF) command to copy the source file member to an
integrated file system stream file, while converting the data to ASCII.

If you need to make changes to the source code, change the database member by using SEU and copy
the file again.

For information on storing files, see [Files in the integrated file system|

Work with Java applications using iSeries Navigator

The iSeries Navigator allows you compile, optimize, and run Java‘™ applications with point-and-click
ease.

Setup requirements

To use iSeries Navigator to work with Java applications, ensure that the following conditions are met:

» iSeries Navigator, which is part of iSeries Access for Windows, must be installed on your workstation. If
iSeries Access for Windows is not yet installed, see|Getting Started with iSeries Navigator for
downloading information.

* You must have your Java application saved to a particular directory on your iSeries server. The correct
path for saving your Java application is as follows:
myserver -> File Systems -> Integrated File System -> Root -> home -> mydir
Where myserver is the name of your iSeries server, and mydir is the name of the directory in which
you save your Java applications. For more detailed information on creating a directory in which to save
your Java application, see |Create a directory using iSeries Navigatod

Compile your Java application using iSeries Navigator

To compile your Java application, follow these steps:
1. Right-click myfile.java, where myfile is the name of your Java application.
2. Select Compile Java File.

3. In the new window, select your JDK version. If you have previously set a classpath according to the
instructions given in this guide, it is not necessary to specify a classpath in this window.

4. Click OK.

14 iSeries: IBM Developer Kit for Java

A window opens with a list of errors if any are found in your program. Otherwise, a message stating 1 of 1
Java files were compiled appears at the bottom of the iSeries Navigator window. A new file called
myfile.class is created.

Optimize and run your Java application using iSeries Navigator

To optimize and run your Java application, follow these steps:
1. Right-click myfile.class.

2. % Select Associated Java Program, then click Run... to run the Java program. &
3. Click Advanced. Select your desired optimization level.

Note: You can specify an optimization level of up to 40. An optimization level of 40 increases the
efficiency of the Java application, but it also limits debug capabilities. In the early stages of developing
a Java application, you may want to set your optimization level at 20 so you can more easily debug
your application. For more information about optimization, see |Optimization Ievelsl. There is also an
option called JIT, which stands for just-in-time compiler. JITs compile code as you need it, making them
more efficient than direct processing. For more information about JITs, see|Select which mode to use]
|when running a Java programl

4. Click OK to close the Advanced Options window.
5. Click OK to run the Java program.

Output from the program is displayed in a new window. When the program is finished running, a message
stating Java program completed appears.

For more information about iSeries Navigator functions, see the Help menu on the iSeries Navigator
display.

Customize your iSeries server for the IBM Developer Kit for Java

Once you have installed the IBM Developer Kit for Java‘™ on your iSeries server, you may choose to
customize your server.

Time zone configuration
If your Java programs are sensitive to time of day, then time zone configuration may be required.

If the Coordinated Universal Time Offset (QUTCOFFSET) system value is set to its default (+00:00), then
Java uses the iSeries 400time as the current time. The default value of the user.timezone Java system
property setting is UTC.

A QUTCOFFSET system value and an updated locale are required for any of these:

» If QUTCOFFSET is not set to its default value, thus sensitive to time zone.

» If your Java code expects the user.timezone system property to default to a value other than UTC.
 If you specify the user.timezone Java system property when running the java command.

The LC_TOD category of the locale contains the tname field, which must be set to the same value that
matches your time zone. For details on how to create a locale and format the thame field, see|0S/400

globalization|

System property configuration

|Java system properties| determine the environment in which the Java programs run. They are similar to
system values or environment variables in OS/400. A number of properties are set when the Java virtual

Chapter 1. IBM Developer Kit for Java 15

machine starts. You can choose to use the system property default values or you can specify your own set
of default property values by doing either of these steps:

1. Provide a file in /QIBM/UserData/Java400, named SystemDefault.properties. The property values that
you specify in this file override the system defaults that IBM provides. This file sets the default system
properties for all Java virtual machines that run on your iSeries server.

2. Or, place a SystemDefault.properties file in your own user.home path. This file and the properties that
it contains override those in /QIBM/UserData/Java400/SystemDefault.properties. This file sets the
default system properties for all Java virtual machines that run for you.

See [Run your first Hello World Java program| for information on getting started with the IBM Developer Kit
for Java.

Java classpath

The Java™ virtual machine uses the Java classpath to find classes during runtime. Java commands and
tools also use the classpath to locate classes. The default system classpath, the CLASSPATH environment
variable, and the classpath command parameter all determine what directories are searched when looking
for a particular class.

Note: In Java 2 Software Development Kit (J2SDK), Standard Edition, version 1.2 and higher, the
java.ext.dirs property determines the classpath for the extensions that are loaded. See |Install extensions|
ffor the IBM Developer Kit for Javalfor more information.

The default system classpath is system-defined and you cannot change it. On your iSeries server, the
default classpath specifies where to find the classes that are part of the IBM Developer Kit, the Remote
Abstract Window Toolkit (AWT), and other system classes.

To find any other classes on the system, you must specify the classpath to search by using the
CLASSPATH environment variable or the classpath parameter. The classpath parameter that is used on a
tool or command overrides the value that is specified in the CLASSPATH environment variable.

You can work with the CLASSPATH environment variable using the Work with Environment Variable
(WRKENVVAR) command. From the WRKENVVAR display, you can add or change the CLASSPATH
environment variable. The Add Environment Variable (ADDENVVAR) command and Change Environment
Variable (CHGENVVAR) command either add or change the CLASSPATH environment variable.

The value of the CLASSPATH environment variable is a list of path names, separated by colons (:), which
are searched to find a particular class. A path name is a sequence of zero or more directory names. These
directory names are followed by the name of the directory, the ZIP file, or the JAR file that is to be
searched in the integrated file system. The components of the path name are separated by the slash (/)
character. Use a period (.) to indicate the current working directory.

You can set the CLASSPATH variable in the Qshell environment by using the export utility that is available
using the Qshell Interpreter.

These commands add the CLASSPATH variable to your Qshell environment and set it to the value ”
.:/myclasses.zip:/Product/classes.”

* This command sets the CLASSPATH variable in the Qshell environment:
export -s CLASSPATH=.:/myclasses.zip:/Product/classes

* This command sets the CLASSPATH variable from the command line:
ADDENVVAR ENVVAR(CLASSPATH) VALUE(".:/myclasses.zip:/Product/classes")

J2SDK searches for classes differently than JDK 1.1.x. JDK 1.1.x searches the system classpath first, then

any user-specified classpaths. J2SDK searches the bootstrap classpath first, then the extension
directories, then the classpath.

16 iSeries: IBM Developer Kit for Java

So, the search order for JDK 1.1.x, using the previous example code, is:

1. The default system classpath,

2. The current working directory,

3. The myclasses.zip file that is located in the "root” (/) file system,

4. The classes directory in the Product directory in the "root” (/) file system.

The search order for J2SDK, using the previous example above, is:

1. The bootstrap classpath, which is in the sun.boot.class.path property,
The extension directories, which is in the java.ext.dirs property,

The current working directory,

The myclasses.zip file that is located in the "root” (/) file system,

The classes directory in the Product directory in the "root” (/) file system.

ok 0N

When entering the Qshell environment, the CLASSPATH variable is set to the environment variable. The
classpath parameter specifies a list of path names. It has the same syntax as the CLASSPATH
environment variable. A classpath parameter is available on these tools and commands:

* java command in Qshell

e javac tool

* Jjavah tool

* Jjavap tool

e javadoc tool

* rmic tool

* Run Java (RUNJVA) command

For more information about these commands, see [Commands and tools for the IBM Developer Kit for
If you use the classpath parameter with any of these command or tools, it ignores the CLASSPATH
environment variable.

You can override the CLASSPATH environment variable by using the java.class.path property. You can
change the java.class.path property, as well as other properties, by using the SystemDefault.properties file.
The values in the SystemDefault.properties files override the CLASSPATH environment variable. For
information on the SystemDefault.properties file, see the [SystemDefault.properties file}

In JDK 1.1.x, the 0s400.class.path.system property also affects what is searched when looking for classes.
This property can contain one of three values: PRE, POST, or NONE. By default, this property is set to
PRE, which causes the default system classpath to be searched before the path. The CLASSPATH
environment variable or the classpath parameter specify this path. If you set the 0s400.class.path.system
property to POST, the default system classpath is searched after any user-specified classpath. If the value
NONE is used, the default classpath is not searched at all and only the user-specified classpath is
searched.

% In J2SDK, the -Xbootclasspath option can be used with the same effect. -Xbootclasspath/a:path
appends path to the default bootstrap classpath, /p:path prepends path to the bootstrap classpath, and

/r:path replaces the bootstrap classpath with path. €

Note: Use caution when specifying NONE or POST because unpredictable results occur if a system class
cannot be found or is incorrectly replaced by a user-defined class. Therefore, you should allow the system
default classpath to be searched before any user-specified classpath.

See [Java system properties|for information about how to determine the environment in which Java
programs run.

Chapter 1. IBM Developer Kit for Java 17

For more information, see the |Program and CL Command APIg or the [Integrated file system|

Java system properties

Java™ system properties determine the environment in which the Java programs run. They are similar to
system values or environment variables in 0S/400®). A number of properties are set when the Java virtual
machine starts.

To view the system properties that this release supports, link to the version of your choice for detailed
information:

Java Development Kit (JDK) 1.1.8|
+ [Java 2 Software Development Kit (J2SDK), Standard Edition|#* for versions 1.2, 1.3, and 1.4.4%

SystemDefault.properties file

The SystemDefault.properties file is a standard Jav) properties file. You can specify default properties
in a SystemDefault.properties file. The SystemDefault.properties file that is in your home directory takes
priority over the SystemDefault.properties file that is in the /QIBM/UserData/Java400 directory. Properties
set in the SystemDefault.properties file that is in your home directory are only used for Java virtual
machines that you started or users who specify the property user.home = /YourUserHome/.

a(TM

You can specify the values of properties in the SystemDefault.properties file just like you do in any Java
properties file.

Example: SystemDefault.properties file

Note: Read the [Code example disclaimer for important legal information.

#Comments start with pound sign
#this means always run with JDK 1.3
java.version=1.3

#set my special property
myown . propname=6

Java system properties for Java Development Kit (JDK) 1.1.8

Java™ system properties determine the environment in which the Java programs run. They are similar to
system values or environment variables in 0S/400®®). A number of properties are set when the Java virtual
machine starts.

The system properties are set to these system default values in JDK 1.1.8.

System properties

System default values

awt.toolkit

com.ibm.rawt.client.CToolkit

file.encoding.pkg

sun.io

file.separator

/ (forward slash)

java.class.version

45.3

java.home See|Support for multiple Java Development Kits (JDKs)
for details.
java.vendor IBM Corporation

java.vendor.url

http://www.ibm.com

line.separator \n
os.arch PowerPC
0s.name 0S/400
0s400.class.path.rawt 0

18 iSeries: IBM Developer Kit for Java

System properties System default values

0s400.class.path.security.check 20

Valid values:

0—No security check

10—equivalent to RUNJVA CHKPATH(*IGNORE)
20—equivalent to RUNJVA CHKPATH(*WARN)
30—equivalent to RUNJVA CHKPATH(*SECURE)

0s400.class.path.tools 0
0s400.create.type direct
Valid values:

interpret—equivalent to RUNJVA
OPTIMIZE(*INTERPRET) and INTERPRET(*OPTIMIZE),
or INTERPRET(*YES)

direct—Otherwise

0s400.defineClass.optLevel 20
0s400.enbpfrcol 0
Valid values:

0—equivalent to CRTJVAPGM ENBPFRCOL(*NONE)
1—equivalent to CRTJVAPGM
ENBPFRCOL(*ENTRYEXIT)

7—equivalent to CRTJVAPGM ENBPFRCOL(*FULL)

0s400.interpret 0
Valid values:

0—equivalent to CRTJVAPGM INTERPRET(*NO)
1—equivalent to CRTJVAPGM INTERPRET(*YES)

0s400.optimization 10

Valid values:

0—equivalent to CRTJVAPGM OPTIMIZE(*INTERPRET)
10—equivalent to CRTJVAPGM OPTIMIZE(10)
20—equivalent to CRTJVAPGM OPTIMIZE(20)
30—equivalent to CRTJVAPGM OPTIMIZE(30)
40—equivalent to CRTJVAPGM OPTIMIZE(40)

0s400.run.mode program_create_type

Valid values:

interpret—equivalent to RUNJVA
OPTIMIZE(*INTERPRET) and INTERPRET(*OPTIMIZE),
or INTERPRET(*YES)

program_create_type—Otherwise

0s400.stdin.allowed 0

0s400.verify.checks.disable 65535

0s400.class. This system property value is a string that
represents the sum of one or more numeric values. For a
list of these values, see [0s400.verify.checks.disable]

numeric value

path.separator : (colon)

Chapter 1. IBM Developer Kit for Java 19

This set of system properties are set based on additional system information.

System properties

Description

file.encoding

Maps the OS/400 job CCSID to the corresponding ISO
ASCII CCSID. Also, sets the file.encoding value to the
Java value that represents the ISO ASCII coded
character set identifier (CCSID). See [file.encoding values|
|and iSeries CCSID|for a table that shows the relationship
between possible file.encoding values and the closest
matching iSeries coded character set identifier (CCSID).

java.class.path

Path used to locate classes. Defaults to the default
system classpath followed by the user-specified
classpath. You can change the java.class.path system
property by using the 0s400.class.path.system system
property.

java.compiler

Specifies whether code is compiled with the Just-In-Time
(JIT) compiler (jitc) or with both the JIT compiler and
direct processing (jitc_de).

java.version

Determines which Java Development Kit (JDK) to run.

If you specify a JDK that is not installed, an error
message results. If you do not specify a JDK, the most
recent JDK is the default. If only one JDK is installed, that
is your default. See [Support for multiple JDKs|for version
details.

os.version

Obtains the OS/400 release level from the Retrieve
Product Information application program interface (API).

0s400.CertificateContainer

Directs Java secure sockets layer (SSL) support to use
the specified certificate container for the Java program
that was started and the property that was specified. If
you specify the 0s400.secureApplication system property,
this system property is ignored. For example, enter
-Dos400.certificateContainer=
/home/username/mykeyfile.kdb or any other keyfile in the
integrated file system.

0s400.CertificateLabel

You can specify this system property in conjunction with
the 0s400.CertificateContainer system property. This
property lets you select which certificate in the specified
container you want secure sockets layer (SSL) to use.
For example, enter-Dos400.certificateLabel=myCert,
where myCert is the label name that you assign to the
certificate through the Digital Certificate Manager (DCM)
when you create or import the certificate.

0s400.child.stdio.convert

Allows control of the data conversion for stdin, stdout,
and stderr in Java. Data conversion occurs by default in
the Java virtual machine to convert ASCII data to or from
EBCDIC. You can turn these conversions on or off with
this property, which affects any child processes that were

started by this process by using the runtime.exec()
method. See [default values

20 iSeries: IBM Developer Kit for Java

System properties

Description

0s400.class.path.system

PRE (this causes the 0s400 default system classpath to
be prepended onto the user-specified portion of the
classpath when constructing the java.class.path system
property). Other values are POST (the system default
class is appended to the user-specified portion of the
classpath) and NONE (only the user-specified classpath
is used). The default is PRE.

The property is not case sensitive. For example, you can
specify NONE, none, noNe. However, the property name
is case sensitive. For example, you cannot specify
0OS400.CLASS.PATH.SYSTEM. To avoid potential
problems, you should not change this system property.

2 0s400.file.create.auth,
0s400.dir.create.auth

These properties specify authorities assigned to files and
directories. Specifying the properties without any values
or with unsupported values results in a public authority of
*NONE.

You can specify 0s400.file.create.auth=RWX or
0s400.dir.create.auth=RWX, where R=read, W=write, and
X=execute. Any combination of these authorities is valid.

&

0s400.file.io.mode

Converts the CCSID of the file if it is different than the
file.encoding value when you specify TEXT, rather than
the default, which is BINARY.

B 0s400.jit.mmi.threshold

Sets the number of times that a method runs before it is
compiled with the JIT Compiler. %

i 0s400.pool.size

Defines how much space (in kilobytes) to make available
for each heap pool in the thread local heap. &

0s400.runtime.exec

» EXEC (default for 1.3 and higher) - Invoke functions
through runtime.exec() using the EXEC interface. This
is most compatible with other platforms.

* QSHELL (default for 1.2 and lower) - Invoke functions
through runtime.exec() using the QSHELL interpreter.
This allows the use of variable substitution and
invocation of built-in functions.

0s400.secureApplication

Associates the Java program that starts when using this
system property (0s400.secureApplication) with the
registered secure application name. You can view
registered secure application names by using the Digital
Certificate Manager (DCM).

0s400.stderr

Allows mapping stderr to a file or socket. See [default

0s400.stdin

Allows mapping stdin to a file or socket. See |default

0s400.stdio.convert

Allows control of the data conversion for stdin, stdout,
and stderr in Java. Data conversion occurs by default in
the Java virtual machine to convert ASCII data to or from
EBCDIC. You can turn these conversions on or off with

this property, which affects the current Java program. See
default values

0s400.stdout

Allows mapping stdout to a file or socket. See

<

Chapter 1. IBM Developer Kit for Java 21

System properties

Description

user.dir

Current working directory using the getcwd API.

user.home

Retrieves the initial working directory by using the Get
API (getpwnam). You can place a
SystemDefault.properties file in your user.home path to
override the default properties in
/QIBM/UserData/Java400/SystemDefault.properties. You
can [customize the iSeries server|to specify your own set
of default property values.

user.language

The Java virtual machine uses this system property to
read the job LANGID value and uses this value to find the
corresponding language.

user.name The Java virtual machine uses this system property to
retrieve the effective user profile name from the Security
section (Security.UserName) of the Trusted Computing
Base (TCB).

user.region The Java virtual machine uses this system property to

read the job CNTRYID value and uses this value to
determine the user region.

user.timezone

The Java virtual machine uses this system property to
obtain the time zone name by using the
QlgRetrieveLocallnformation API. If no time zone
information is available, user.timezone is set to Universal
Time Coordinate (UTC).

0s400.stdio.convert and 0s400.child.stdio.convert system property values
The following table shows the system values for both the 0s400.stdio.convert and 0s400.child.stdio.convert
system properties.

Value

Description

N (default)

No stdio conversion is performed during read or write.

Y

All stdio converts to or from the file.encoding value to job CCSID during read or write.

1

Only stdin data converts from job CCSID to file.encoding during read.

Only stdout data converts from file.encoding to job CCSID during write.

Both stdin and stdout conversions are performed.

Only stderr data converts from file.encoding to job CCSID during write.

Both stdin and stderr conversions are performed.

Both stdout and stderr conversions are performed.

N|ojoa|lh~|jw|ND

All stdio conversions are performed.

0s400.stdin, 0s400.stdout, and 0s400.stderr system property values
The following table shows the system values for 0s400.stdin, 0s400.stdout, and 0s400.stderr system

properties.

Value Example name Description Example

File SomeFileName SomeFileName is an absolute path or a |file:/QIBM/UserData/Java400/
path relative to the current directory. Output.file

Port HostName Port address port:myhost:2000

Port TCPAddress Port address port:1.1.11.111:2000

22 iSeries: IBM Developer Kit for Java

0s400.verify.checks.disable numeric values
The 0s400.verify.checks.disable system property value is a string that represents the sum of one or more
numeric values from this list:

Value Description

1 Bypass access checks for local classes: Indicates that you want the Java™" virtual
machine to bypass access checks on private and protected fields and methods for classes
that are loaded from the local file system. It is helpful when transferring applications, which
contain inner classes that refer to private and protected methods and fields of their
enclosing classes.

2 Suppress NoClassDefFoundError during early load: Indicates that you want the Java
virtual machine to ignore NoClassDefFoundErrors, which occur during early verification
checks for typecasting and field or method access.

4 Allow LocalVariableTable checking to be bypassed: Indicates that if you encounter an
error in the LocalVariableTable of a class, the class operates as if the LocalVariableTable
does not exist. Otherwise errors in the LocaleVariableTable result in a ClassFormatError.

7 Value used at runtime.

You can indicate the value in decimal, hexadecimal, or octal format. It ignores values that are less than
zero. For example, to select the first two values from the list, use this iSeries command syntax:

JAVA CLASS(Hello) PROP((0s400.verify.checks.disable 3))

Java system properties for Java 2 Software Development Kit (J2SDK), Standard
Edition

Java™ system properties determine the environment in which the Java programs run. They are similar to
system values or environment variables in OS/400. A number of properties are set when the Java virtual
machine starts.

#* The system properties are set to these system default values in Java 2 Software Development Kit
(J2SDK), Standard Edition, version 1.4. A number of system properties have different default values if you
go through the JAVA or RUNJVA CL command than if you use the Java Native Interface (JNI) Invocation

API. The following table reflects the use of the API. &

System properties System default values

awt.toolkit For JDK 1.1.x, the default value is
com.ibm.rawt.client.CToolkit.
For J2SDK, the default value is
com.ibm.rawt2.ahost.java.awt. AHToolkit.

file.encoding.pkg sun.io

file.separator / (forward slash)

java.class.version M 48.0 4

java.ext.dirs % /QIBM/ProdData/Java400/jdk14/lib/ext:/QIBM/

UserData/Java400/ext %

java.home See [Support for multiple Java Development Kits (JDKs)
for details.

java.library.path 0OS/400 library list

java.policy #* /QIBM/ProdData/Java400/jdk14/lib/security/java.policy
&

java.specification.name Java Language Specification

java.specification.vendor Sun Microsystems, Inc.

Chapter 1. IBM Developer Kit for Java 23

System properties

System default values

java.specification.version

B4

4 sun.boot.class.path L4

Class_Path_Sys

java.use.policy

true

java.vendor

IBM Corporation

java.vendor.url

http://www.ibm.com

java.vm.name

& Classic VM %%

java.vm.specification.name

Java Virtual Machine Specification

java.vm.specification.vendor

Sun Microsystems, Inc.

java.vm.specification.version M40 <X
java.vm.vendor IBM Corporation
java.vm.version bR o
line.separator \n
os.arch PowerPC
0s.name 0S/400
0s400.class.path.rawt 0
0s8400.class.path.security.check 20

Valid values:

0—No security check

10—equivalent to RUNJVA CHKPATH(*IGNORE)
20—equivalent to RUNJVA CHKPATH(*WARN)
30—equivalent to RUNJVA CHKPATH(*SECURE)

0s400.class.path.tools

0

0s400.create.type

g interpret L4

Valid values:

interpret—equivalent to RUNJVA
OPTIMIZE(*INTERPRET) and INTERPRET(*OPTIMIZE),
or INTERPRET(*YES)

direct—Otherwise

0s400.defineClass.optLevel 20
0s400.enbpfrcol 0
Valid values:

0—equivalent to CRTJVAPGM ENBPFRCOL(*NONE)
1—equivalent to CRTJVAPGM
ENBPFRCOL(*ENTRYEXIT)

7—equivalent to CRTJVAPGM ENBPFRCOL(*FULL)
For a nonzero value, the JIT generates *JVAENTRY,
*JVAEXIT, *JVAPRECALL and *JVAPOSTCALL events.

0s400.interpret

0

Valid values:

0—equivalent to CRTJVAPGM INTERPRET(*NO)
1—equivalent to CRTJVAPGM INTERPRET(*YES)

24 iSeries: IBM Developer Kit for Java

System properties

System default values

0s400.optimization

2o

Valid values:

0—equivalent to CRTJVAPGM OPTIMIZE(*INTERPRET)
10—equivalent to CRTJVAPGM OPTIMIZE(10)
20—equivalent to CRTJVAPGM OPTIMIZE(20)
30—equivalent to CRTJVAPGM OPTIMIZE(30)
40—equivalent to CRTJVAPGM OPTIMIZE(40)

0s400.run.mode

A jitc_de &

Valid values:

interpret—equivalent to RUNJVA
OPTIMIZE(*INTERPRET) and INTERPRET(*OPTIMIZE),
or INTERPRET(*YES)

program_create_type

jitc_de—Otherwise

0s400.stdin.allowed

0

0s400.verify.checks.disable

65535

This system property value is a string that represents the
sum of one or more numeric values. For a list of these
values, see [0s400.verify.checks.disable numeric values]

path.separator

: (colon)

This set of system properties are set based on additional system information.

System properties

Description

file.encoding

Maps the OS/400 job CCSID to the corresponding ISO
ASCII CCSID. Also, sets the file.encoding value to the
Java value that represents the ISO ASCII coded
character set identifier (CCSID). See [file.encoding valued
|and iSeries CCSID|for a table that shows the relationship
between possible file.encoding values and the closest
matching iSeries coded character set identifier (CCSID).

java.class.path

Path used to locate classes. Defaults to the
user-specified classpath.

java.compiler

Specifies whether code is compiled with the Just-In-Time
(JIT) compiler (jitc) or with both the JIT compiler and
direct processing (jitc_de).

java.version

Determines which Java Development Kit (JDK) to run.

If you specify a JDK that is not installed, an error
message results. If you do not specify a JDK, the most
recent JDK is the default. If only one JDK is installed, that
is your default. See [Support for multiple JDKs|for version
details.

os.version

Obtains the OS/400 release level from the Retrieve
Product Information application program interface (API).

0s400.CertificateContainer

Directs Java secure sockets layer (SSL) support to use
the specified certificate container for the Java program
that was started and the property that was specified. If
you specify the 0s400.secureApplication system property,
this system property is ignored. For example, enter
-Dos400.certificateContainer=/home/username/
mykeyfile.kdb or any other keyfile in the integrated file
system.

Chapter 1. IBM Developer Kit for Java 25

System properties

Description

0s400.CertificateLabel

You can specify this system property in conjunction with
the 0s400.CertificateContainer system property. This
property lets you select which certificate in the specified
container you want secure sockets layer (SSL) to use.
For example, enter-Dos400.certificateLabel=myCert,
where myCert is the label name that you assign to the
certificate through the Digital Certificate Manager (DCM)
when you create or import the certificate.

0s400.child.stdio.convert

Allows control of the data conversion for stdin, stdout,
and stderr in Java. Data conversion occurs by default in
the Java virtual machine to convert ASCII data to or from
EBCDIC. You can turn these conversions on or off with
this property, which affects any child processes that were

started by this process by using the runtime.exec()
method. See [default values

0s8400.class.path.system

% This system property is ignored for J2SDK. L4

& 0s400.define.class.cache.file

This property specifies the name of a JAR or ZIP file. The

default is null. See [Cache class loaders] 4

0s400.define.class.cache.hours

This property is a decimal value. The default value is 168
and the maximum decimal value is 9999. See

class Toaders &

£ 0s400.define.class.cache.maxpgms

This property is a decimal value. The default value is
5000 and the maximum decimal value is 40000. See

[Cache class loaders] 4%

0s400.exception.trace

Specifying this property causes the most recent
exceptions to be sent to standard output when the JVM
exits. The value assigned to this property is currently
ignored, but that may change in the future. This property
is used purely for debugging.

& 05400 file.create.auth,
0s400.dir.create.auth

These properties specify authorities assigned to files and
directories. Specifying the properties without any values
or with unsupported values results in a public authority of
*NONE.

You can specify 0s400.file.create.auth=RWX or
0s400.dir.create.auth=RWX, where R=read, W=write, and
X=execute. Any combination of these authorities is valid.

&

0s400.file.io.mode

Converts the CCSID of the file if it is different than the
file.encoding value when you specify TEXT, rather than
the default, which is BINARY.

#* 0s400.jit.mmi.threshold

Sets the number of times that a method runs before it is
compiled with the JIT Compiler. 4%

#* 0s400.pool.size

Defines how much space (in kilobytes) to make available
for each heap pool in the thread local heap. %%

0s400.runtime.exec

» EXEC (default for 1.3 and higher) - Invoke functions
through runtime.exec() using the EXEC interface. This
is most compatible with other platforms.

* QSHELL (default for 1.2 and lower) - Invoke functions
through runtime.exec() using the QSHELL interpreter.
This allows the use of variable substitution and
invocation of built-in functions.

26 iSeries: IBM Developer Kit for Java

System properties

Description

0s400.secureApplication

Associates the Java program that starts when using this
system property (0s400.secureApplication) with the
registered secure application name. You can view
registered secure application names by using the Digital
Certificate Manager (DCM).

#* 0s.400.security.properties

Allows full control over which java.security file you use.
When you specify this property, J2SDK will not use any
other java.security files, including the J2SDK specific

java.security default. LA

0s400.stderr

Allows mapping stderr to a file or socket. See |default

0s400.stdin

Allows mapping stdin to a file or socket. See |default

0s400.stdin.allowed

Specifies whether stdin is allowed (1) or not allowed (0).
If the caller is running a batch job, stdin should not be
allowed. The default 0.

0s400.stdio.convert

Allows control of the data conversion for stdin, stdout,
and stderr in Java. Data conversion occurs by default in
the Java virtual machine to convert ASCII data to or from
EBCDIC. You can turn these conversions on or off with
this property, which affects the current Java program. See

default values

0s400.stdout

Allows mapping stdout to a file or socket. See[defaulf

user.dir

Current working directory using the getcwd API.

user.home

Retrieves the initial working directory by using the Get
API (getpwnam). You can place a
SystemDefault.properties file in your user.home path to
override the default properties in
/QIBM/UserData/Java400/SystemDefault.properties. You
can [customize the iSeries server|to specify your own set
of default property values.

user.language

The Java virtual machine uses this system property to
read the job LANGID value and uses this value to find the
corresponding language.

user.name The Java virtual machine uses this system property to
retrieve the effective user profile name from the Security
section (Security.UserName) of the Trusted Computing
Base (TCB).

user.region The Java virtual machine uses this system property to

read the job CNTRYID value and uses this value to
determine the user region.

user.timezone

The Java virtual machine uses this system property to
obtain the time zone name by using the
QlgRetrieveLocallnformation API. If no time zone
information is available, user.timezone is set to Universal
Time Coordinate (UTC).

Create an internationalized Java program

If you need to customize a Java™ program for a specific region of the world, you can create an
internationalized Java program with .

Chapter 1. IBM Developer Kit for Java 27

To create an internationalized Java program, perform the following steps:

1. Isolate the locale-sensitive code and data. For example, strings, dates, and numbers in your program.
2. Set or get the locale using the Locale class.

3. Format dates and numbers to specify a locale if you do not want to use the default locale.

4. Create resource bundles to handle strings and other locale-sensitive data.

To carry out these tasks in your own Java programs, refer to these examples:

« [Internationalization of dates using the java.util. DateFormat class|

+ |Internationalization of numeric display using the java.util. NumberFormat clasg
Internationalization of locale-specific data using the java.util. ResourceBundle class|

For more information about internationalization, click on any of these links:
0S/400 globalization|
Internationalization by Sun Microsystems, Inc.|

Time zone environment variable on your iSeries server

With Java™ 2 SDK (J2SDK), Standard Edition, version 1.4, you can set your Java Virtual Machine’s time
zone by using the native method getSystemTimeZonelD(). The iSeries server uses the *LOCALE object
that is part of the *ENV object. Set the tname field in the *LOCALE object to the appropriate system value.
That value is then returned as the associated Java string object from getSystemTimeZonelD().

Configure time zone: The JVM requires both the QUTCOFFSET system value and time of day
information in the LOCALE for the current job to be set to determine local time correctly. QUTCOFFSET is
a system value specifying the number of hours difference between the current local time and the universal
time coordinate (UTC). For central standard time (CST), this would be -6:00. For central daylight time
(CDT), the correct value is -5:00. The QUTCOFFSET value allows the JVM to determine the correct value
for UTC.

LOCALE information for a job is set by creating a *LOCALE object containing time of day information and
specifying that *LOCALE for the job using the QLOCALE system value or the LOCALE keyword on the
user profile for the job. Details on creating and using LOCALE can be found in the [0S/400 globalization|
publication.

Setting the *LOCALE information correctly allows the JVM to default the user.timezone property to the
correct time zone. The user.timezone property can be set manually on the command line to override the
default setting provided by the *LOCALE object.

The following is an example of the LC_TOD information that must be included in the *LOCALE object to
configure the correct time zone for Java:

LC_TOD

% TZDIFF is number of minutes difference from GMT

tzdiff -300

% Timezone name (this is the value that you would have passed to
the JVM as the user.timezone property.) See abbreviations Tlater
in this document.

tname "<C><S><T>"

% Name used for daylight savings time.

dstname "<C><D><T>"

% DST Start in this part of the US is the first Sunday in April at 2am
dststart 4,1,1,7200

% DST End in this area of US is Last Sunday in October.

dstend 10,-1,1,7200

% shift in seconds

dstshift 3600

SSERSNS

END LC_TOD

28 iSeries: IBM Developer Kit for Java

javaapi/guide/intl/index.html

The following table indicates the system values and the associated Java string objects.

Note: The system value "Hong Kong” represents China (Hong Kong S.A.R.).

System value

Java string object

Africa/Abidjan Africa/Abidjan
Africa/Accra Africa/Accra
Africa/Addis_Ababa Africa/Addis_Ababa
Africa/Algiers Africa/Algiers
Africa/Asmera Africa/Asmera
Africa/Bamako GMT
Africa/Bangui Africa/Bangui
Africa/Banijul Africa/Banjul
Africa/Bissau Africa/Bissau
Africa/Blantyre Africa/Blantyre
Africa/Brazzaville Africa/Luanda
Africa/Bujumbura Africa/Bujumbura
Africa/Cairo Africa/Cairo
Africa/Casablanca Africa/Casablanca
Africa/Ceuta Europe/Paris
Africa/Conakry Africa/Conakry
Africa/Dakar Africa/Dakar
Africa/Dar_es_Salaam Africa/Dar_es_Salaam
Africa/Djibouti Africa/Djibouti
Africa/Douala Africa/Douala
Africa/El_Aaiun Africa/Casablanca
Africa/Freetown Africa/Freetown
Africa/Gaborone Africa/Gaborone
Africa/Harare Africa/Harare
Africa/Johannesburg Africa/dohannesburg
Africa/Kampala Africa/Kampala
Africa/Khartoum Africa/Khartoum
Africa/Kigali Africa/Kigali
Africa/Kinshasa Africa/Kinshasa
Africa/Lagos Africa/Lagos
Africa/Libreville Africa/Libreville
Africa/Lome Africa/Lome
Africa/Luanda Africa/Luanda
Africa/Lubumbashi Africa/Lubumbashi
Africa/Lusaka Africa/Lusaka
Africa/Malabo Africa/Malabo
Africa/Maputo Africa/Maputo
Africa/Maseru Africa/Maseru

Chapter 1. IBM Developer Kit for Java

29

System value

Java string object

Africa/Mbabane Africa/Mbabane
Africa/Mogadishu Africa/Mogadishu
Africa/Monrovia Africa/Monrovia
Africa/Nairobi Africa/Nairobi
Africa/Ndjamena Africa/Ndjamena
Africa/Niamey Africa/Niamey
Africa/Nouakchott Africa/Nouakchott
Africa/Ouagadougou Africa/Ouagadougou

Africa/Porto-Novo

Africa/Porto-Novo

Africa/Sao_Tome

Africa/Sao_Tome

Africa/Timbuktu Africa/Timbuktu
Africa/Tripoli Africa/Tripoli
Africa/Tunis Africa/Tunis
Africa/Windhoek Africa/Windhoek
America/Adak America/Adak
America/Anchorage America/Anchorage

America/Anguilla

America/Anguilla

America/Antigua America/Antigua
America/Araguaina America/Sao_Paulo
America/Aruba America/Aruba
America/Asuncion America/Asuncion
America/Atka America/Adak
America/Barbados America/Barbados

America/Belize

America/Belize

America/Bogota

America/Bogota

America/Boise

America/Denver

America/Buenos_Aires

America/Buenos_Aires

America/Cancun America/Chicago
America/Caracas America/Caracas
America/Cayenne America/Cayenne
America/Cayman America/Cayman
America/Chicago America/Chicago
America/Chihuahua America/Denver

America/Costa_Rica

America/Costa_Rica

America/Cuiaba America/Cuiaba
America/Curacao America/Curacao
America/Dawson America/Los_Angeles

America/Dawson_Creek

America/Dawson_Creek

America/Denver

America/Denver

America/Detroit

America/New_York

America/Dominica

America/Dominica

30 iSeries: IBM Developer Kit for Java

System value

Java string object

America/Edmonton

America/Edmonton

America/El_Salvador

America/El_Salvador

America/Ensenada

America/Los_Angeles

America/Fort_Wayne

America/Indianapolis

America/Fortaleza

America/Fortaleza

America/Glace_Bay

America/Halifax

America/Godthab

America/Godthab

America/Goose_Bay

America/Thule

America/Grand_Turk

America/Grand_Turk

America/Grenada

America/Grenada

America/Guadeloupe

America/Guadeloupe

America/Guatemala

America/Guatemala

America/Guayaquil

America/Guayaquil

America/Guyana

America/Guyana

America/Halifax

America/Halifax

America/Havana

America/Havana

America/Indiana/Indianapolis

America/Indianapolis

America/Indianapolis

America/Indianapolis

America/Inuvik America/Denver
America/lqaluit America/New_York
America/Jamaica America/Jamaica
America/Juneau America/Anchorage

America/La_Paz

America/La_Paz

America/Lima

America/Lima

America/Los_Angeles

America/Los_Angeles

America/Louisville

America/New_York

America/Managua America/Managua
America/Manaus America/Manaus
America/Martinique America/Martinique
America/Mazatlan America/Mazatlan

America/Menominee

America/Winnipeg

America/Mexico_City

America/Mexico_City

America/Miquelon

America/Miquelon

America/Montevideo America/Montevideo
America/Montreal America/Montreal
America/Montserrat America/Montserrat
America/Nassau America/Nassau

America/New_York

America/New_York

America/Nipigon America/New_York
America/Nome America/Anchorage
America/Noronha America/Noronha

Chapter 1. IBM Developer Kit for Java

31

System value

Java string object

America/Panama

America/Panama

America/Pangnirtung

America/Thule

America/Paramaribo

America/Paramaribo

America/Phoenix

America/Phoenix

America/Port-au-Prince

America/Port-au-Prince

America/Port_of_Spain

America/Port_of_Spain

America/Porto_Acre

America/Porto_Acre

America/Puerto_Rico

America/Puerto_Rico

America/Rainy_River America/Chicago
America/Rankin_Inlet America/Chicago
America/Regina America/Regina

America/Santiago America/Santiago

America/Santo_Domingo

America/Santo_Domingo

America/Sao_Paulo

America/Sao_Paulo

America/Scoresbysund

America/Scoresbysund

America/Shiprock

America/Denver

America/St_Johns

America/St_Johns

America/St_Kitts

America/St_Kitts

America/St_Lucia

America/St_Lucia

America/St_Thomas

America/St_Thomas

America/St_Vincent

America/St_Vincent

America/Tegucigalpa

America/Tegucigalpa

America/Thule

America/Thule

America/Thunder_Bay

America/New_York

America/Tijuana

America/Tijuana

America/Tortola

America/Tortola

America/Vancouver

America/Vancouver

America/Virgin

America/St_Thomas

America/Whitehorse

America/Los_Angeles

America/Winnipeg America/Winnipeg
America/Yakutat America/Anchorage
America/Yellowknife America/Denver
Antarctica/Casey Antarctica/Casey

Antarctica/DumontDUrville

Antarctica/DumontDUrville

Antarctica/Mawson

Antarctica/Mawson

Antarctica/McMurdo

Antarctica/McMurdo

Antarctica/Palmer

Antarctica/Palmer

Antarctica/South_Pole Antarctica/McMurdo
Arctic/Longyearbyen Europe/Oslo
Asia/Aden Asia/Aden
Asia/Almaty Asia/Almaty

32 iSeries: IBM Developer Kit for Java

System value

Java string object

Asia/Amman Asia/Amman
Asia/Anadyr Asia/Anadyr
Asia/Aqtau Asia/Aqtau
Asia/Agtobe Asia/Agtobe
Asia/Ashkhabad Asia/Ashkhabad
Asia/Baghdad Asia/Baghdad
Asia/Bahrain Asia/Bahrain
Asia/Baku Asia/Baku
Asia/Bangkok Asia/Bangkok
Asia/Beirut Asia/Beirut
Asia/Bishkek Asia/Bishkek
Asia/Brunei Asia/Brunei
Asia/Calcutta Asia/Calcutta
Asia/Chungking Asia/Shanghai
Asia/Colombo Asia/Colombo
Asia/Dacca Asia/Dacca
Asia/Damascus Asia/Damascus
Asia/Dubai Asia/Dubai
Asia/Dushanbe Asia/Dushanbe
Asia/Gaza Asia/Amman
Asia/Harbin Asia/Shanghai
Asia/Hong_Kong Asia/Hong_Kong
Asia/lrkutsk Asia/lrkutsk
Asia/lstanbul Europe/lIstanbul
Asia/Jakarta Asia/Jakarta
Asia/Jayapura Asia/Jayapura
Asia/Jerusalem Asia/Jerusalem
Asia/Kabul Asia/Kabul
Asia/Kamchatka Asia/Kamchatka
Asia/Karachi Asia/Karachi
Asia/Kashgar Asia/Shanghai
Asia/Katmandu Asia/Katmandu
Asia/Krasnoyarsk Asia/Krasnoyarsk
Asia/Kuala_Lumpur Asia/Kuala_Lumpur
Asia/Kuwait Asia/Kuwait
Asia/Macao Asia/Macao
Asia/Magadan Asia/Magadan
Asia/Manila Asia/Manila
Asia/Muscat Asia/Muscat
Asia/Nicosia Asia/Nicosia
Asia/Novosibirsk Asia/Novosibirsk

Chapter 1. IBM Developer Kit for Java

33

System value

Java string object

Asia/Omsk Asia/Novosibirsk
Asia/Phnom_Penh Asia/Phnom_Penh
Asia/Pyongyang Asia/Pyongyang
Asia/Qatar Asia/Qatar
Asia/Rangoon Asia/Rangoon
Asia/Riyadh Asia/Riyadh
Asia/Saigon Asia/Saigon
Asia/Seoul Asia/Seoul
Asia/Shanghai Asia/Shanghai
Asia/Singapore Asia/Singapore
Asia/Taipei Asia/Taipei
Asia/Tashkent Asia/Tashkent
Asia/Tbilisi Asia/Thilisi
Asia/Tehran Asia/Tehran
Asia/Tel_Aviv Asia/Jerusalem
Asia/Thimbu Asia/Thimbu
Asia/Tokyo Asia/Tokyo

Asia/Ujung_Pandang

Asia/Ujung_Pandang

Asia/Ulan_Bator

Asia/Ulan_Bator

Asia/Urumaqi Asia/Shanghai
Asia/Vientiane Asia/Vientiane
Asia/Vladivostok Asia/Vladivostok
Asia/Yakutsk Asia/Yakutsk
Asia/Yekaterinburg Asia/Yekaterinburg
Asia/Yerevan Asia/Yerevan
Atlantic/Azores Atlantic/Azores
Atlantic/Bermuda Atlantic/Bermuda
Atlantic/Canary Atlantic/Canary

Atlantic/Cape_Verde

Atlantic/Cape_Verde

Atlantic/Faeroe

Atlantic/Faeroe

Atlantic/Jan_Mayen

Atlantic/Jan_Mayen

Atlantic/Madeira

Europe/London

Atlantic/Reykjavik

Atlantic/Reykjavik

Atlantic/South_Georgia

Atlantic/South_Georgia

Atlantic/St_Helena

Atlantic/St_Helena

Atlantic/Stanley

Atlantic/Stanley

Australia/ACT

Australia/Sydney

Australia/Adelaide

Australia/Adelaide

Australia/Brisbane

Australia/Brisbane

Australia/Broken_Hill

Australia/Broken_Hill

Australia/Canberra

Australia/Sydney

34 iSeries: IBM Developer Kit for Java

System value

Java string object

Australia/Darwin

Australia/Darwin

Australia/Hobart

Australia/Hobart

Australia/LHI

Australia/Lord_Howe

Australia/Lord_Howe

Australia/Lord_Howe

Australia/Melbourne

Australia/Sydney

Australia/NSW

Australia/Sydney

Australia/North

Australia/Darwin

Australia/Perth

Australia/Perth

Australia/Queensland

Australia/Brisbane

Australia/South

Australia/Adelaide

Australia/Sydney

Australia/Sydney

Australia/Tasmania

Australia/Hobart

Australia/Victoria

Australia/Sydney

Australia/West

Australia/Perth

Australia/Yancowinna

Australia/Broken_Hill

Brazil/Acre

America/Porto_Acre

Brazil/DeNoronha

America/Noronha

Brazil/East America/Sao_Paulo
Brazil/West America/Manaus
CET Europe/Paris

CST America/Chicago
CST6eCDT America/Chicago
Canada/Atlantic America/Halifax
Canada/Central America/Winnipeg
Canada/East-Saskatchewan America/Regina
Canada/Eastern America/Montreal
Canada/Mountain America/Edmonton
Canada/Newfoundland America/St_Johns
Canada/Pacific America/Vancouver
Canada/Saskatchewan America/Regina
Canada/Yukon America/Los_Angeles
Chile/Continental America/Santiago
Chile/Easterlsland Pacific/Easter

Cuba America/Havana
EET America/Indianapolis
EST5EDT America/New_York
Egypt Africa/Cairo

Eire Europe/Dublin
Etc/GMT GMT

Etc/GMTO GMT
Etc/Greenwich GMT

Chapter 1. IBM Developer Kit for Java

35

System value

Java string object

Etc/UCT uTC

Etc/UTC uTC

Etc/Universal uTC

Etc/Zulu uTC
Europe/Amsterdam Europe/Amsterdam
Europe/Andorra Europe/Andorra
Europe/Athens Europe/Athens
Europe/Belfast Europe/London
Europe/Belgrade Europe/Belgrade

Europe/Berlin

Europe/Berlin

Europe/Bratislava

Europe/Prague

Europe/Brussels

Europe/Brussels

Europe/Bucharest

Europe/Bucharest

Europe/Budapest

Europe/Budapest

Europe/Chisinau

Europe/Chisinau

Europe/Copenhagen

Europe/Copenhagen

Europe/Dublin

Europe/Dublin

Europe/Gibraltar

Europe/Gibraltar

Europe/Helsinki

Europe/Helsinki

Europe/Istanbul

Europe/Istanbul

Europe/Kaliningrad

Europe/Kaliningrad

Europe/Kiev Europe/Kiev
Europe/Lisbon Europe/Lisbon
Europe/Ljubljana Europe/Belgrade
Europe/London Europe/London
Europe/Luxembourg Europe/Luxembourg
Europe/Madrid Europe/Madrid
Europe/Malta Europe/Malta
Europe/Minsk Europe/Minsk
Europe/Monaco Europe/Monaco
Europe/Moscow Europe/Moscow
Europe/Oslo Europe/Oslo
Europe/Paris Europe/Paris
Europe/Prague Europe/Prague
Europe/Riga Europe/Riga
Europe/Rome Europe/Rome
Europe/Samara Europe/Samara
Europe/San_Marino Europe/Rome
Europe/Sarajevo Europe/Belgrade

Europe/Simferopol

Europe/Simferopol

Europe/Skopje

Europe/Belgrade

36 iSeries: IBM Developer Kit for Java

System value

Java string object

Europe/Sofia Europe/Sofia
Europe/Stockholm Europe/Stockholm
Europe/Tallinn Europe/Tallinn
Europe/Tirane Europe/Tirane
Europe/Vaduz Europe/Vaduz
Europe/Vatican Europe/Rome
Europe/Vienna Europe/Vienna

Europe/Vilnius

Europe/Vilnius

Europe/Warsaw Europe/Warsaw
Europe/Zagreb Europe/Belgrade
Europe/Zurich Europe/Zurich
Factory GMT

GB Europe/London
GB-Eire Europe/London
GMT GMT

GMTO GMT

Greenwich GMT

HST Pacific/Honolulu
Hongkong Asia/Hong_Kong
Iceland Atlantic/Reykjavik

Indian/Antananarivo

Indian/Antananarivo

Indian/Chagos

Indian/Chagos

Indian/Christmas

Indian/Christmas

Indian/Cocos

Indian/Cocos

Indian/Comoro

Indian/Comoro

Indian/Kerguelen

Indian/Kerguelen

Indian/Mahe

Indian/Mahe

Indian/Maldives

Indian/Maldives

Indian/Mauritius

Indian/Mauritius

Indian/Mayotte Indian/Mayotte
Indian/Reunion Indian/Reunion
Iran Asia/Tehran
Israel Asia/Jerusalem
Jamaica America/Jamaica
Japan Asia/Tokyo

Libya Africa/Tripoli
MET Europe/Paris
MST America/Phoenix
MST7MDT America/Denver
Mexico/BajaNorte America/Tijuana
Mexico/BajaSur America/Mazatlan

Chapter 1. IBM Developer Kit for Java

37

System value

Java string object

Mexico/General America/Mexico_City
NZ Pacific/Auckland
NZ-CHAT Pacific/Chatham
Navajo America/Denver

PRC Asia/Shanghai

PST America/Los_Angeles
PST8PDT America/Los_Angeles
Pacific/Apia Pacific/Apia
Pacific/Auckland Pacific/Auckland
Pacific/Chatham Pacific/Chatham
Pacific/Easter Pacific/Easter
Pacific/Efate Pacific/Efate
Pacific/Enderbury Pacific/Enderbury
Pacific/Fakaofo Pacific/Fakaofo
Pacific/Fiji Pacific/Fiji
Pacific/Funafuti Pacific/Funafuti
Pacific/Galapagos Pacific/Galapagos

Pacific/Gambier

Pacific/Gambier

Pacific/Guadalcanal

Pacific/Guadalcanal

Pacific/Guam

Pacific/Guam

Pacific/Honolulu

Pacific/Honolulu

Pacific/Kiritimati

Pacific/Kiritimati

Pacific/Kosrae

Pacific/Kosrae

Pacific/Majuro

Pacific/Majuro

Pacific/Marquesas Pacific/Marquesas
Pacific/Nauru Pacific/Nauru
Pacific/Niue Pacific/Niue
Pacific/Norfolk Pacific/Norfolk
Pacific/Noumea Pacific/Noumea

Pacific/Pago_Pago

Pacific/Pago_Pago

Pacific/Palau

Pacific/Palau

Pacific/Pitcairn

Pacific/Pitcairn

Pacific/Ponape

Pacific/Ponape

Pacific/Port_Moresby

Pacific/Port_Moresby

Pacific/Rarotonga Pacific/Rarotonga
Pacific/Saipan Pacific/Saipan
Pacific/Samoa Pacific/Pago_Pago
Pacific/Tahiti Pacific/Tahiti
Pacific/Tarawa Pacific/Tarawa
Pacific/Tongatapu Pacific/Tongatapu
Pacific/Truk Pacific/Truk

38 iSeries: IBM Developer Kit for Java

System value

Java string object

Pacific/Wake Pacific/Wake
Pacific/Wallis Pacific/Wallis

Poland Europe/Warsaw
Portugal Europe/Lisbon

ROC Asia/Taipei

ROK Asia/Seoul
Singapore Asia/Singapore
SystemV/AST4ADT America/Thule
SystemV/CST6CDT America/Chicago
SystemV/ESTSEDT America/New_York
SystemV/MST7MDT America/Denver
SystemV/PST8PDT America/Los_Angeles
SystemV/YSTOYDT America/Anchorage
Turkey Europe/Istanbul

UCT uTC

US/Alaska America/Anchorage
US/Aleutian America/Adak
US/Arizona America/Phoenix
US/Central America/Chicago
US/East-Indiana America/Indianapolis
US/Eastern America/New_York
US/Hawaii Pacific/Honolulu
US/Michigan America/New_York
US/Mountain America/Denver
US/Pacific America/Los_Angeles
US/Pacific-New America/Los_Angeles
US/Samoa Pacific/Pago_Pago
uTC uTC

Universal uTC

W-SU Europe/Moscow
WET Europe/London

Zulu uTC

Java locales

A locale is a geographic or political region of the world that shares the same language and customs. In

Java'™), the Locale class represents a locale.

Supported Java locales

The IBM Developer Kit for Java supports these locales. The iSeries jobs and CNTRYID determine the

default locale. See [Java system properties| for more details.

Chapter 1. IBM Developer Kit for Java

Locale Name in JDK 1.1.6

ISO Locale Name

Language/Country or region

ar

ar_EG

Arabic/Egypt

be be_BY Belorussian/Belarus
bg bg_BG Bulgarian/Bulgaria
ca ca_ES Catalan/Spain

cs cs_CzZ Czech/Czech Republic
da da_DK Danish/Denmark

de de_DE German/Germany
de_AT de_AT German/Austria
de_CH de_CH German/Switzerland
el el_GR Greek/Greece

en en_US English/USA

en_AU en_AU English/Australia
en_CA en_CA English/Canada
en_GB en_GB English/Great Britain
en_|E en_lE English/Ireland
en_NZ en_NZ English/New Zealand
en_ZA en_ZA English/South Africa
es es_ES Spanish/Spain
es_AR es_AR Spanish/Argentina
es_BO es_BO Spanish/Bolivia
es_CL es_CL Spanish/Chile
es_CR es_CR Spanish/Costa Rica
es_DO es_DO Spanish/Dominican Republic
es_EC es_EC Spanish/Ecuador
es_GT es_GT Spanish/Guatemala
es_HN es_HN Spanish/Honduras
es_MX es_MX Spanish/Mexico
es_NI es_NI Spanish/Nicaragua
es_PA es_PA Spanish/Panama
es_PE es_PE Spanish/Peru
es_PR es_PR Spanish/Puerto Rico
es_PY es_PY Spanish/Paraguay
es_SV es_SV Spanish/El Salvador
es_UY es_UY Spanish/Uruguay
es_VE es_VE Spanish/Venezuela
et et_EE Estonian/Estonia

fi fi_FI Finnish/Finland

fr fr_FR French/France

fr_ BE fr_BE French/Belgium
fr_CA fr_CA French/Canada
fr_CH fr_CH French/Switzerland

40 iSeries: IBM Developer Kit for Java

Locale Name in JDK 1.1.6

ISO Locale Name

Language/Country or region

hr

hr_HR

Croatian/Croatia

hu hu_HU Hungarian/Hungary

is is_IS Icelandic/Iceland

it it IT Italian/Italy

it CH it CH Italian/Switzerland

iw iw_IL Hebrew/Israel

ja ja_JP Japanese/Japan

ko ko_KR Korean/Korea

It It_LT Lithuanian/Lithuania
Iv v_LV Latvian/Latvia

mk mk_MK Macedonian/Macedonia
nl nl_NL Dutch/Netherlands
nl_BE nl_BE Dutch/Belgium

no no_NO_B Norwegian/Norway
no_NO_NY no_NO_NY Norwegian/Norway, NY
pl pl_PL Polish/Poland

pt pt_PT Portuguese/Portugal
ro ro_RO Romanian/Romania
ru ru_RU Russian/Russia

sh sh_SP Serbo-Croatian/Serbia
sk sk_SK Slovak/Slovakia

sl sl_SI Slovene/Slovenian

sq sq_AL Albanian/Albania

sr sr_SP Serbian/Serbia

sv sv_SE Swedish/Sweden

tr tr_TR Turkish/Turkey

uk uk_UA Ukrainian/Ukraine

zh zh_CN Simplified Chinese

zh TW zh_TW Traditional Chinese

Example: Internationalization of dates using the java.util.DateFormat class: This example shows

how you can use locales to format dates.

Example 1: Demonstrates use of java.util.DateFormat class for internationalization of dates

Note: Read the [Code example disclaimer for important legal information.

[] FHFkk ke ok kk o kkk ko kk ok kkkokkk

// File: DateExample.java

[] Fxkrrkrhkr kR r IR R EIIRK AR K
import java.text.x;

import java.util.x;

import java.util.Date;

public class DateExample {

Chapter 1. IBM Developer Kit for Java

41

public static void main(String args[]) {

// Get the Date
Date now = new Date();

// Get date formatters for default, German, and French Tocales

DateFormat theDate = DateFormat.getDateInstance(DateFormat.LONG);

DateFormat germanDate = DateFormat.getDateInstance(DateFormat.LONG, Locale.GERMANY);
DateFormat frenchDate = DateFormat.getDateInstance(DateFormat.LONG, Locale.FRANCE);

// Format and print the dates

System.out.printin("Date in the default locale: " + theDate.format(now));
System.out.printin("Date in the German locale : " + germanDate.format(now));
System.out.printin("Date in the French locale : " + frenchDate.format(now));

}
}

For more information, see [Create an internationalized Java'™ program|

Example: Internationalization of numeric display using the java.util. NumberFormat class: This
example shows how you can use locales to format numbers.

Example 1: Demonstrates use of java.util. NumberFormat class for internationalization of numeric output

Note: Read the [Code example disclaimer for important legal information.

T

// File: NumberExample.java
//**************************

import java.lang.=*;
import java.text.*;
import java.util.=*;

public class NumberExample {
public static void main(String args[]) throws NumberFormatException {

// The number to format
double number = 12345.678;

// Get formatters for default, Spanish, and Japanese locales

NumberFormat defaultFormat = NumberFormat.getInstance();

NumberFormat spanishFormat = NumberFormat.getInstance(new
Locale("es", "ES"));

NumberFormat japaneseFormat = NumberFormat.getInstance(Locale.JAPAN);

// Print out number in the default, Spanish, and Japanese formats

// (Note: NumberFormat is not necessary for the default format)

System.out.printIn("The number formatted for the default locale; " +
defaultFormat.format (number));

System.out.printIn("The number formatted for the Spanish locale; " +
spanishFormat.format (number));

System.out.printIn("The number formatted for the Japanese locale; " +
japaneseFormat.format (number));

}

For more information, see [Create an internationalized Java™ program|

Example: Internationalization of locale-specific data using the java.util. ResourceBundle class: This
example shows how you can use locales with resource bundles to internationalize program strings.

These property files are required for the ResourceBundleExample program to work as intended:

42 iSeries: I1BM Developer Kit for Java

Contents of RBExample.properties
Hello.text=Hello

Contents of RBExample_de.properties
Hello.text=Guten Tag

Contents of RBExample_fr_FR.properties
Hello.text=Bonjour

Example 1: Demonstrates use of java.util. ResourceBundle class for internationalization of locale-specific
data

Note: Read the [Code example disclaimer for important legal information.
//*********************************

// File: ResourceBundleExample.java
//*********************************

import java.util.x;

public class ResourceBundleExample {
public static void main(String args[]) throws MissingResourceException {

String resourceName = "RBExample";
ResourceBundle rb;

// Default locale
rb = ResourceBundle.getBundle(resourceName);
System.out.printin("Default : " + rb.getString("Hello" + ".text"));

// Request a resource bundle with explicitly specified locale
rb = ResourceBundle.getBundle(resourceName, Locale.GERMANY);
System.out.printIn("German : " + rb.getString("Hello" + ".text"));

// No property file for China in this example... use default
rb = ResourceBundle.getBundle(resourceName, Locale.CHINA);
System.out.printin("Chinese : " + rb.getString("Hello" + ".text"));

// Here is another way to do it...
Locale.setDefault(Locale.FRANCE);

rb = ResourceBundle.getBundle(resourceName);
System.out.printin("French : " + rb.getString("Hello" + ".text"));

// No property file for China in this example... use default, which is now fr_FR.
rb = ResourceBundle.getBundle(resourceName, Locale.CHINA);
System.out.printin("Chinese : " + rb.getString("Hello" + ".text"));
1
1

For more information, see |Create an internationalized Java''"’ program|

Java character encodings
Internally, the Java‘™ virtual machine (JVM) always operates with data in Unicode. However, all data

transferred into or out of the JVM is in a format matching the file.encoding property. Data read into the
JVM is converted from file.encoding to Unicode and data sent out of the JVM is converted from Unicode to
file.encoding.

Data files for Java programs are stored in the integrated file system. Files in the integrated file system are
tagged with a coded character set identifier (CCSID) that identifies the character encoding of the data
contained in the file. See the [File.encoding values and iSeries CCSID| table for description of how
file.encoding is correlated to CCSID on the iSeries server.

When data is read by a Java program, it is expected to be in the character encoding matching
file.encoding. When data is written to a file by a Java program, it is written in a character encoding

Chapter 1. IBM Developer Kit for Java 43

matching file.encoding. This also applies to Java source code files (.java files) processed by the javac
command and to data sent and received through Transmission Control Protocol/Internet Protocol (TCP/IP)
sockets using the .net package.

Data read from or written to System.in, System.out, and System.err are handled differently than data read
from or written to other sources when they are assigned to stdin, stdout, and stderr. Since stdin, stdout,
and stderr are normally attached to EBCDIC devices on the iSeries server, a conversion is performed by
the JVM on the data to convert from the normal character encoding of file.encoding to a CCSID matching
the iSeries job CCSID. When System.in, System.out, or System.err are redirected to a file or socket and
are not directed to stdin, stdout, or stderr, this additional data conversion is not performed and the data
remains in a character encoding matching file.encoding.

When data must be read into or written from a Java program in a character encoding other than
file.encoding, the program can use the Java IO classes java.io.InputStreamReader, java.io.FileReader,
java.io.OutputStreamReader, and java.io.FileWriter. These Java classes allow specifying a file.encoding
value that takes precedence over the default file.encoding property currently in use by the JVM.

Data to or from the DB2/400 database, through the JDBC APIs, converts to or from the CCSID of the
iSeries database.

Data that is transferred to or from other programs through Java Native Interface does not get converted.

For more information about internationalization, see [0S/400 globalization|.

You can also see [Internationalization by Sun Microsystems, Inc.|for more information.

File.encoding values and iSeries CCSID: This table shows the relation between possible file.encoding
values and the closest matching iSeries coded character set identifier (CCSID).

file.encoding CCSID Description

Big5 950 8-bit ASCII T-Chinese BIG-5

CNS11643 964 Chinese National Character Set for
traditional Chinese

Cp037 037 IBM EBCDIC US, Canada,
Netherlands,...

Cp273 273 IBM EBCDIC Germany, Austria

Cp277 277 IBM EBCDIC Denmark, Norway

Cp278 278 IBM EBCDIC Finland, Sweden

Cp280 280 IBM EBCDIC ltaly

Cp284 284 IBM EBCDIC Spanish, Latin America

Cp285 285 IBM EBCDIC UK

Cp297 297 IBM EBCDIC France

Cp420 420 IBM EBCDIC Arabic

Cp424 424 IBM EBCDIC Hebrew

Cp437 437 8-bit ASCII US PC

Cp500 500 IBM EBCDIC International

Cp737 737 8-bit ASCII Greek MS-DOS

Cp775 775 8-bit ASCII Baltic MS-DOS

Cp838 838 IBM EBCDIC Thailand

Cp850 850 8-bit ASCII Latin-1 Multinational

44 iSeries: IBM Developer Kit for Java

javaapi/guide/intl/index.html

file.encoding CCsSID Description

Cp852 852 8-bit ASCII Latin-2

Cp855 855 8-bit ASCII Cyrillic

Cp856 856 8-bit ASCII Hebrew

Cp857 857 8-bit ASCII Latin-5

Cp860 860 8-bit ASCII Portugal

Cp861 861 8-bit ASCII Iceland

Cp862 862 8-bit ASCII Hebrew

Cp863 863 8-bit ASCIl Canada

Cp864 864 8-bit ASCII Arabic

Cp865 865 8-bit ASCII Denmark, Norway

Cp866 866 8-bit ASCII Cyrillic

Cp868 868 8-bit ASCII Urdu

Cp869 869 8-bit ASCII Greek

Cp870 870 IBM EBCDIC Latin-2

Cp871 871 IBM EBCDIC Iceland

Cp874 874 8-bit ASCII Thailand

Cp875 875 IBM EBCDIC Greek

Cp918 918 IBM EBCDIC Urdu

Cp921 921 8-bit ASCII Baltic

Cp922 922 8-bit ASCII Estonia

Cp930 930 IBM EBCDIC Japanese Extended
Katakana

Cp933 933 IBM EBCDIC Korean

Cp935 935 IBM EBCDIC Simplified Chinese

Cp937 937 IBM EBCDIC Traditional Chinese

Cp939 939 IBM EBCDIC Japanese Extended
Latin

Cp942 942 8-bit ASCII Japanese

Cp943 943 Japanese PC data mixed for open
env

Cp943C 943 Japanese PC data mixed for open
env

Cp948 948 8-bit ASCII IBM Traditional Chinese

Cp949 949 8-bit ASCIl Korean KSC5601

Cp950 950 8-bit ASCII T-Chinese BIG-5

Cp964 964 EUC Traditional Chinese

Cp970 970 EUC Korean

Cp1006 1006 ISO 8-bit Urdu

Cp1025 1025 IBM EBCDIC Cyrillic

Cp1026 1026 IBM EBCDIC Turkey

Cp1046 1046 8-bit ASCII Arabic

Cp1097 1097 IBM EBCDIC Farsi

Chapter 1. IBM Developer Kit for Java

45

file.encoding

CcCsIiD

Description

Cp1098 1098 8-bit ASCII Farsi

Cp1112 1112 IBM EBCDIC Baltic
Cpt1122 1122 IBM EBCDIC Estonia
Cp1123 1123 IBM EBCDIC Ukraine
Cpl1124 1124 ISO 8-bit Ukraine

Cp1250 1250 MS-Win Latin-2

Cp1251 1251 MS-Win Cyrillic

Cp1252 1252 MS-Win Latin-1

Cp1253 1253 MS-Win Greek

Cp1254 1254 MS-Win Turkish

Cp1255 1255 MS-Win Hebrew

Cp1256 1256 MS-Win Arabic

Cp1257 1257 MS-Win Baltic

Cp1258 1251 MS-Win Russian

Cp1381 1381 8-bit ASCII S-Chinese GB
Cp1383 1383 EUC Simplified Chinese
Cp33722 33722 EUC Japanese

EUC_CN 1383 EUC for Simplified Chinese
EUC_JP 33722 EUC for Japanese
EUC_KR 970 EUC for Korean

EUC_TW 964 EUC for Traditional Chinese
GB2312 1381 8-bit ASCII S-Chinese GB
GBK 1386 New simplified Chinese 8-bit ASCII 9

ISO2022CN_CNS

None Available

7-bit ASCII for Traditional Chinese

1ISO2022CN_GB

None Available

7-bit ASCII for Simplified Chinese

1ISO2022JP 5054 7-bit ASCII for Japanese

1ISO2022KR 25546 7-bit ASCII for Korean

1ISO8859_1 819 ISO 8859-1 ISO Latin-1

ISO8859_2 912 ISO 8859-2 ISO Latin-2

1ISO8859_3 913 ISO 8859-3 ISO Latin-3

1ISO8859_4 914 ISO 8859-4 ISO Latin-4

1ISO8859_5 915 ISO 8859-5 ISO Latin-5

ISO8859_6 1089 ISO 8859-6 ISO Latin-6 (Arabic)

1SO8859_7 813 ISO 8859-7 ISO Latin-7 (Greek/Latin)

1ISO8859_8 916 ISO 8859-8 ISO Latin-8 (Hebrew)

1ISO8859_9 920 ISO 8859-9 ISO Latin-9 (ECMA-128,
Turkey)

JIS0201 897 Japanese industry standard X0201

J1S0208 952 Japanese industry standard X0208

JIS0212 953 Japanese industry standard X0212

46 iSeries: IBM Developer Kit for Java

file.encoding CCsSID Description

Johab None Available Korean composition Hangul encoding
(fulry

K018_R Cyrillic

KSC5601 949 8-bit ASCII Korean

MS874 874 MS-Win Thailand

SJIS 932 8-bit ASCII Japanese

TIS620 874 Thai industry standard 620

UTF8 1208 UTF-8 (IBM CCSID 1208, which is
not yet available on the iSeries
server)

Unicode 13488 UNICODE, UCS-2

UnicodeBig 13488 Same as Unicode

UnicodeBigUnmarked Unicode with no byte-order mark

UnicodelLittle Unicode with little-endian byte order

UnicodelLittleUnmarked UnicodelLittle with no byte-order mark

For default values, see [Default file.encoding values|

Default file.encoding values: This table shows how the file.encoding value is set based on the iSeries
coded character set identifier (CCSID) when the Java™ virtual machine starts.

iSeries CCSID Default file.encoding Description

37 1ISO8859_1 English for USA, Canada, New
Zealand, and Australia; Portuguese
for Portugal and Brazil; and Dutch for
Netherlands

256 1ISO8859_1 International #1

273 1ISO8859 1 German/Germany, German/Austria

277 1ISO8859_1 Danish/Denmark, Norwegian/Norway,
Norwegian/Norway, NY

278 1ISO8859_1 Finnish/Finland

280 1ISO8859_1 Italian/Italy

284 1ISO8859_1 Catalan/Spain, Spanish/Spain

285 1ISO8859_1 English/Great Britain, English/Ireland

290 Cp943C SBCS portion of Japanese EBCDIC
mixed (CCSID 5026)

297 1ISO8859_1 French/France

420 Cp1046 Arabic/Egypt

423 1ISO8859_7 Greece

424 1ISO8859_8 Hebrew/Israel

500 1ISO8859 1 German/Switzerland, French/Belgium,
French/Canada, French/Switzerland

833 Cp970 SBCS portion of Korean EBCDIC
mixed (CCSID 933)

Chapter 1. IBM Developer Kit for Java 47

iSeries CCSID

Default file.encoding

Description

836

Cp1383

SBCS portion of S-Chinese EBCDIC
mixed (CCSID 935).

838 TIS620 Thai

870 1ISO8859_2 Czech/Czech Republic,
Croatian/Croatia, Hungarian/Hungary,
Polish/Poland

871 1ISO8859_1 Icelandic/Iceland

875 1ISO8859_7 Greek/Greece

880 ISO8859_5 Bulgaria (ISO 8859_5)

905 1ISO8859_9 Turkey extended

918 Cp868 Urdu

930 Cp943C Japanese EBCDIC mixed (similar to
CCSID 5026)

933 Cp970 Korean/Korea

935 Cp1383 Simplified Chinese

937 Cp950 Traditional Chinese

939 Cp943C Japanese EBCDIC Mixed (similar to
CCSID 5035)

1025 1SO8859_5 Belorussian/Belarus,
Bulgarian/Bulgaria,
Macedonian/Macedonia,
Russian/Russia

1026 1ISO8859_9 Turkish/Turkey

1027 Cp943C SBCS portion of Japanese EBCDIC
mixed (CCSID 5035)

1097 Cp1098 Farsi

1112 Cp921 Lithuanian/Lithuania, Latvian/Latvia,
Baltic

1388 GBK Simplified Chinese EBCDIC mixed
(GBK is included)

5026 Cp943C Japanese EBCDIC mixed CCSID
(Extended Katakana)

5035 Cp943C Japanese EBCDIC mixed CCSID
(Extended Latin)

8612 Cp1046 Arabic (base shapes only) (or ASCII
420 and 8859_6)

9030 Cp874 Thai (host extended SBCS)

13124 GBK SBCS portion of Simplified Chinese
EBCDIC mixed (GBK is included)

28709 Cp948 SBCS portion of Traditional Chinese

EBCDIC mixed (CCSID 937)

48 iSeries: IBM Developer Kit for Java

Release-to-release compatibility

Java™ class files are upward compatible (JDK 1.1.x -> 1.2.x -> 1.3.x & -> 1.4.x %) as long as they do
not make use of a few features that Sun has dropped or changed support for (See Sun documentation).
Class files are also downward compatible (& 1.4.x -> 1.3.x -> 1.2.x -> 1.1.x %) as long as the programs
only make use of Java features that are available in the earlier JDK level. This holds true on the iSeries
server as well, since it is a compliant implementation. See [The Source for Java Technology java.sun.com|

R for information on release to release availability.

When Java programs on an iSeries server are optimized using [Create Java Program (CRTJVAPGM)|

a JVAPGM is attached to the class file. The internal structure of these JVAPGMSs changed on
V4R4. This means that JVAPGMs created before V4R4 are not be valid on V4R4 and later releases. They
must to be recreated. If no action is taken, the system automatically creates a JVAPGM at the same
optimization level as before. It is, however, recommended that you manually do a CRTJVAPGM, especially
with JAR or ZIP files. This produces the best optimization with the smallest program size.

For best performance at optimization level 40, it is recommended to do CRTJVAPGM on each OS/400
release or JDK version change. This is especially true if the JDKVER facility is used on CRTJVAPGM, as
this results in methods from the Sun JDK being inlined into your JVAPGM. This can be a great advantage
to performance. If, however, changes are made in the JDK on subsequent releases that invalidate those
inlines, the programs may actually run slower than at lower optimizations. This is because special case
code must be run to get proper operation.

See Java runtime performance|for more detailed performance information.

Database access with the IBM Developer Kit for Java

With the IBM Developer Kit for Java‘™, your Java programs can access your database files in three

ways:

. driver explains how the IBM Developer Kit for Java JDBC driver allows Java programs to access
database files.

+ [SQLJ| support explains how the IBM Developer Kit for Java allows you to use SQL statements that are
embedded in your Java application.

« & Pava SQL routined explains how you can use Java stored procedures and Java user-defined
functions to access Java programs.<%

Access your iSeries database with the IBM Developer Kit for Java
JDBC driver

The IBM Developer Kit for Java™ JDBC driver, also known as the "native” driver, provides programmatic
access to iSeries database files. Using the Java Database Connectivity (JDBC) API, applications written in
the Java language can access JDBC database functions with embedded Structured Query Language
(SQL), run SQL statements, retrieve results, and propagate changes back to the database. #* The JDBC
API can also be used to interact with multiple data sources in a distributed, heterogeneous environment.

The SQL99 Command Language Interface (CLI), on which the JDBC API is based, is the basis for ODBC.
JDBC provides a natural and easy-to-use mapping from the Java programming language to the
abstractions and concepts defined in the SQL standard.

To use the JDBC driver, see the following:

|Get started with JDBC|
You can follow the tutorial of writing a JDBC program and running it on your iSeries server.

Chapter 1. IBM Developer Kit for Java 49

http://www.java.sun.com/

50

Connections

An application program can have multiple connections at one time. You can represent a connection
to a data source in JDBC by using a Connection object. It is through Connection objects that
Statement objects are created for processing SQL statements against the database.

[DatabaseMetaDatal

The DatabaseMetaData interface is used by application servers and tools to determine how to
interact with a given data source. Applications may also use DatabaseMetaData methods to obtain
information about a specific data source.

The Java language uses exceptions to provide error-handling capabilities for its programs. An
exception is an event that occurs when you run your program that disrupts the normal flow of
instructions.

A transaction is a logical unit of work. Transactions are used to provide data integrity, correct
application semantics, and a consistent view of data during concurrent access. All JDBC-compliant
drivers must support transactions.

[Statement types|

The Statement interface and its PreparedStatement and CallableStatement subclasses are used to
process SQL commands against the database. SQL statements cause the generation of ResultSet
objects.

The ResultSet interface provides access to the results generated by running queries. Data of a
ResultSet can be thought of as a table with a specific number of columns and a specific number of
rows. By default, the table rows are retrieved in sequence. Within a row, column values can be
accessed in any order.

WDBC object pooling|

Since many objects used in JDBC are expensive to create such as Connection, Statement, and
ResultSet objects, significant performance benefits can be achieved by using JDBC object pooling.
With object pooling, you can reuse these objects instead of creating them every time you need them.

Batch updates

Batch update support allows many updates to the database to be passed as a single transaction
between the user program and the database. Batch updates can significantly improve performance
when many updates must be performed at once.

[Advanced data types|

There are several new data types called SQL3 data types that are provided in the iSeries database.
The SQLS3 data types give you a tremendous amount of flexibility. They are ideal for storing serialized
Java objects, Extensible Markup Language (XML) documents, and multimedia data such as songs,
product pictures, employee photographs, and movie clips. The SQL3 data types include the following:

» Distinct types

» Large objects such as Binary Large Objects, Character Large Objects, and Double Byte Character
Large Objects

* Datalinks

The RowSet specification is designed to be more of a framework than an actual implementation. The
RowSet interfaces define a set of core functionality that all RowSets have.

iSeries: 1BM Developer Kit for Java

[Distributed transactions|

The Java Transaction API (JTA) has support for complex transactions. It also provides support for
decoupling transactions from Connection objects. JTA and JDBC work together to decouple
transactions from Connection objects and allows you to have a single connection work on multiple
transactions concurrently. Conversely, it allows you to have multiple connections work on a single
transaction.

[Performance tips|
You can obtain the best possible performance from your JDBC applications with these performance
tips.

For more information about JDBC, see the D gocumentation by Sun Microsystems, Inc.

Foor more information about iSeries Native JDBC driver, see IBM Developer Kit for Java JDBC Web Page|
&

Get started with JDBC

A The Java™ Database Connectivity (JDBC) driver shipped with the Developer Kit for Java is called the
Developer Kit for Java JDBC driver. This driver is also commonly known as the native JDBC driver.

To select which JDBC driver suits your needs, consider the following suggestions:

* Programs running directly on a server where the database resides should use the native JDBC driver
for performance. This includes most servlet and JavaServer Pages (JSP) solutions, and applications
written to run locally on an iSeries server.

« Programs that must connect to a remote iSeries server use the [Toolbox JDBC drivet The Toolbox is a
robust implementation of JDBC and is provided as part of the Toolbox for Java. Being pure Java, the
Toolbox JDBC driver is trivial to set up for clients and requires little server setup.

* Programs that run on an iSeries server and need to connect to a remote, non-iSeries database use the
native JDBC driver and set up a Distributed Relational Database Architecture (DRDA) connection to that
remote server.

To get started with JDBC, see the following:

[Types of JDBC drivers|
This topic defines the JDBC driver types. Driver types are defined to categorize the technology used
to connect to the database.

This topic indicates the requirements you need to access the following:
» Core JDBC

« JDBC 2.0 optional package

» Java Transaction APl (JTA)

DBC tutorial

This is an important first step towards writing a JDBC program and having it run on an iSeries server
with the native JDBC driver.

&

Types of JDBC drivers: ** This topic defines the Java'™ Database Connectivity (JDBC) driver types.
Driver types are used to categorize the technology used to connect to the database. A JDBC driver vendor
uses these types to describe how their product operates. Some JDBC driver types are better suited for
some applications than others.

Chapter 1. IBM Developer Kit for Java 51

http://www.java.sun.com/products/jdbc
http://www.ibm.com/eserver/iseries/developer/jdbc/index.html

Type 1: Type 1 drivers are "bridge” drivers. They use another technology such as Open Database
Connectivity (ODBC) to communicate with a database. This is an advantage because ODBC drivers exist
for many Relational Database Management System (RDBMS) platforms. The Java Native Interface (JNI) is
used to call ODBC functions from the JDBC driver.

A Type 1 driver needs to have the bridge driver installed and configured before JDBC can be used with it.
This can be a serious drawback for a production application. Type 1 drivers cannot be used in an applet
since applets cannot load native code.

Type 2: Type 2 drivers use a native APl to communicate with a database system. Java native methods
are used to invoke the API functions that perform database operations. Type 2 drivers are generally faster
than Type 1 drivers.

Type 2 drivers need native binary code installed and configured to work. A Type 2 driver also uses the JNI.
You cannot use a Type 2 driver in an applet since applets cannot load native code. A Type 2 JDBC driver
may require some Database Management System (DBMS) networking software to be installed.

The Developer Kit for Java JDBC driver is a Type 2 JDBC driver.

Type 3: These drivers use a networking protocol and middleware to communicate with a server. The
server then translates the protocol to DBMS function calls specific to DBMS.

Type 3 JDBC drivers are the most flexible JDBC solution because they do not require any native binary
code on the client. A Type 3 driver does not need any client installation.

Type 4: A Type 4 driver uses Java to implement a DBMS vendor networking protocol. Since the protocols
are usually proprietary, DBMS vendors are generally the only companies providing a Type 4 JDBC driver.

Type 4 drivers are all Java drivers. This means that there is no client installation or configuration. However,
a Type 4 driver may not be suitable for some applications if the underlying protocol does not handle issues
such as security and network connectivity well.

The[Toolbox JDBC driver]is a Type 4 JDBC driver, indicating that the API is a pure Java networking
protocol driver.

JDBC requirements: % Before you write and deploy your JDBC applications, you may need to install
the following:

 |Core JDBC
+ [JDBC 2.0 optional packagel

« [Java Transaction AP||

Core JDBC: For core Java™ Database Connectivity (JDBC) access to the local database, there are no
requirements. All support is built in, pre-installed, and configured.

Notes:

* In the past, you needed to add a symbolic link for JDK 1.2 and higher. This requirement has been
removed with V4R5 PTF SF65439 and V5R1 PTF SI00959.

* In the past, you had to ensure that there was at least one entry in the Relation Database Directory to
connect to a system (typically *LOCAL for connecting to the local database). This requirement has also
been lifted. If there is no entry for the local database, the entry is created using the name of the system
when the local system is accessed. Relation Database Directory entries still have to be configured for
any remote systems you want to connect to with the native JDBC driver.

JDBC 2.0 optional package: If you need to use the classes of the JDBC 2.0 optional package, you must
include the jdbc2_0-stdext.jar file in your classpath. This Java ARchive (JAR) file contains all the standard

B2 iSeries: IBM Developer Kit for Java

interfaces that you need to write your application to use the JDBC 2.0 optional package. To add the JAR
file to your extensions classpath, create a symbolic link from the UserData extensions directory to the
location of the JAR file. You only need to perform this once; the JDBC 2.0 optional package JAR file is
always available to your applications at runtime. Use the following command to add the optional package
to the extensions classpath:

ADDLNK OBJ('/QIBM/ProdData/0S400/Javad00/ext/jdbc2_0-stdext.jar')
NEWLNK('/QIBM/UserData/Java400/ext/jdbc2_0-stdext.jar')

Note: This requirement is only for JDKs 1.2 and 1.3. Since JDK 1.4 is the first release with JDBC 3.0
support, all of JDBC (that is, the core JDBC and the optional package) moves into the base JDK runtime
JAR file that you program always finds.

Java Transaction API: If you need to use the Java Transaction API (JTA) in your application, you must
include the jta-spec1_0_1.jar file in your classpath. This JAR file contains all the standard interfaces that
you need to write your application to use JTA. To add the JAR file to you extensions classpath, create a
symbolic link from the UserData extensions directory to the location of the JAR file. This is a one-time
operation and once completed, the JTA JAR file is always available to your application at runtime. Use the
following command to add JTA to the extensions classpath:

ADDLNK OBJ('/QIBM/ProdData/0S400/Java400/ext/jta-specl 0 1.jar')
NEWLNK('/QIBM/UserData/Java400/ext/jta-specl 0 1.jar')

JDBC compliance: The native JDBC driver is compliant with all relevant JDBC specifications. The
compliance level of the JDBC driver is not dependent on the OS/400 release, but on the JDK release you
use. The native JDBC driver's compliance level for the various JDKs is listed as follows:

JDK release JDBC driver’s compliance level

JDK 1.1 This JDK is compliant with JDBC 1.0.

JDK 1.2 This JDK is compliant with JDBC 2.0 and supports JDBC
2.1 optional package.

JDK 1.3 This JDK is compliant with JDBC 2.0 and supports JDBC

2.1 optional package (there were no JDBC-related
changes for JDK 1.3).

JDK 1.4 This JDK is compliant with JDBC 3.0, but the JDBC
optional package no longer exists (support for it is now
part of the core JDK).

&

JDBC tutorial: % The following is a tutorial on writing a Java™ Database Connectivity (JDBC)
program and having it run on the an iSeries server with the native JDBC driver. It is designed to show you
the basic steps required for your program to run JDBC.

The [example program| creates a table and populates it with some data. The program processes a query to
get that data out of the database and to display it on the screen.

Run the example program: To run the example program, perform the following steps:
1. Copy the program to your workstation.
a. Copy the [example program|and paste it into a file on your workstation.

b. Save the file with the same name as the public class provided and with the .java extension. In this
case, you must name the file BasicJDBC.java on your local workstation.

2. Transfer the file from your workstation to your iSeries server. From a command prompt, enter the
following commands:

Chapter 1. IBM Developer Kit for Java 53

ftp <iSeries server name>
<Enter your user ID>
<Enter your password>

cd /home/cujo

put BasicJDBC.java

quit

For these commands to work, you must have a directory in which to put the file. In the example,
/home/cujo is the location, but you can use any location you want.

Note: It is possible that the FTP commands mentioned previously may be different for you based on
how your server is set up, but they should be similar. It does not matter how you transfer the file to
your iSeries server as long as you transfer it into the integrated file system. Tools such as VisualAge
for Java can fully automate this process for you.

3. Make sure you set your classpath to the directory where you put the file in so that your Java
commands find the file when you run them. From a CL command line, you can use WRKENVVAR to
see what environment variables are set for your user profile.

+ If you see an environment variable named CLASSPATH, you must ensure that the location where
you put the .java file in is in the string of directories listed there or add it if the location has not been
specified.

* If there is no CLASSPATH environment variable, you must add one. This can be accomplished with
the following command:

ADDENVVAR ENVVAR (CLASSPATH)
VALUE('/home/cujo:/QIBM/ProdData/Java400/jdk13/1ib/tools.jar")

Note: To compile Java code from the CL command, you must include the tools.jar file. This JAR file
includes the javac command.

4. Compile the Java file into a class file.
Enter the following command from the CL command line:

java class(com.sun.tools.javac.Main) prop(BasicJDBC)
java BasicJDBC

You can also compile the Java file from QSH:

cd /home/cujo
javac BasicJDBC.java

QSH automatically ensures that the tools.jar file can be found. As a result, you do not have to add it to
your classpath. The current directory is also in the classpath. By issuing the change directory (cd)
command, the BasicJDBC.java file is also found.

Note: You can also compile the file on your workstation and use FTP to send the class file to your
iSeries server in binary mode. This is an example of Java’s ability to run on any platform. Run the
program by using the following command from either the CL command line or from QSH:

java BasicJDBC

The output is as follows:

1 | Frank Johnson
2 | Neil Schwartz
3 | Ben Rodman

4 | Dan Gloore

54 iSeries: IBM Developer Kit for Java

There were 4 rows returned.
Output is complete.
Java program completed.

References: For more information on Java and JDBC, consult the following resources:

« [Native JDBC driver external web site] 9

[Toolbox JDBC driver external web site] J

[Sun’s JDBC page J
[Java/JDBC forum for iSeries and iSeries users|
[IBM JDBC e-mail address|

&

Example: JDBC: ¥ This is an example of how to use the BasicJDBC program.

Example: BasicJDBC

Note: Read the [Code example disclaimer for important legal information.
;;//

// BasicJDBC example. This program uses the native JDBC driver for the
// Developer Kit for Java to build a simple table and process a query
// that displays the data in that table.

//

// Command syntax:

// BasicJDBC

//
%//
// This source is an example of the IBM Developer for Java JDBC driver.
// IBM grants you a nonexclusive Ticense to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes

// only. These examples have not been thoroughly tested under all

// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// A1l programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of

// merchantability and fitness for a particular purpose are

// expressly disclaimed.

// 1BM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// A1l rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted
// by GSA ADP Schedule Contract with IBM Corp.

/l
LTI LTI T i 010100110101 10011111017111111111

// Include any Java classes that are to be used. In this application,
// many classes from the java.sql package are used and the

// java.util.Properties class is also used as part of obtaining

// a connection to the database.

import java.sql.=;

import java.util.Properties;

Chapter 1. IBM Developer Kit for Java

55

http://www.ibm.com/eserver/iseries/developer/jdbc/index.html
http://www-1.ibm.com/servers/eserver/iseries/toolbox/
http://java.sun.com/products/jdbc/
mailto:JAVA400-L-SUB@midrange.com
mailto:rchjdbc@us.ibm.com

// Create a public class to encapsulate the program.
public class BasicJDBC {

56

// The connection is a private variable of the object.
private Connection connection = null;

// Any class that is to be an 'entry point' for running
// a program must have a main method. The main method

// is where processing begins when the program is called.
public static void main(java.lang.String[] args) {

// Create an object of type BasicJDBC. This

// is fundamental to object-oriented programming. Once
// an object is created, call various methods on

// that object to accomplish work.

// In this case, calling the constructor for the object
// creates a database connection that the other

// methods use to do work against the database.
BasicJDBC test = new BasicJDBC();

// Call the rebuildTable method. This method ensures that

// the table used in this program exists and looks the

// way it should. The return value is a boolean for

// whether or not rebuilding the table completed

// successfully. If it did no, display a message

// and exit the program.

if (!'test.rebuildTable()) {
System.out.printin("Failure occurred while setting up " +

" for running the test.");

System.out.printin("Test will not continue.");
System.exit(0);

}

// The run query method is called next. This method

// processes an SQL select statement against the table that
// was created in the rebuildTable method. The output of

// that query is output to standard out for you to view.
test.runQuery();

// Finally, the cleanup method is called. This method

// ensures that the database connection that the object has
// been hanging on to is closed.

test.cleanup();

[*%

This is the constructor for the basic JDBC test. It creates a database
connection that is stored in an instance variable to be used in Tater
method calls.

*%/

public BasicJDBC() {

// One way to create a database connection is to pass a URL

// and a java Properties object to the DriverManager. The following
// code constructs a Properties object that has your user ID and

// password. These pieces of information are used for connecting

// to the database.

Properties properties = new Properties ();

properties.put("user", "cujo");

properties.put("user", "newtiger");

// Use a try/catch block to catch all exceptions that can come out of the

// following code.

try {
// The DriverManager must be aware that there is a JDBC driver available
// to handle a user connection request. The following 1line causes the

iSeries: 1BM Developer Kit for Java

// native JDBC driver to be Toaded and registered with the DriverManager.
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

// Create the database Connection object that this program uses in all

// the other method calls that are made. The following code specifies

// that a connection is to be established to the local database and that
// that connection should conform to the properties that were set up

// previously (that is, it should use the user ID and password specified).
connection = DriverManager.getConnection("jdbc:db2:*Tocal", properties);

} catch (Exception e) {
// If any of the lines in the try/catch block fail, control transfers to
// the following line of code. A robust application tries to handle the
// problem or provide more details to you. In this program, the error
// message from the exception is displayed and the application allows
// the program to return.
System.out.printin("Caught exception: " + e.getMessage());

[**
Ensures that the qgpl.basicjdbc table looks you want it to at the start of
the test.

@returns boolean Returns true if the table was rebuild successfully;
returns false if any failure occurred.
*%/
public boolean rebuildTable() {
// Wrap all the functionality in a try/catch block so an attempt is
// made to handle any errors that may happen within this method.
try {

// Statement objects are used to process SQL statements against the
// database. The Connection object is used to create a Statement

// object.

Statement s = connection.createStatement();

try {
// Build the test table from scratch. Process an update statement
// that attempts to delete the table if it currently exists.
s.executeUpdate("drop table qgpl.basicjdbc");

} catch (SQLException e) {
// Do not perform anything if an exception occurred. Assume
// that the problem is that the table that was dropped does not
// exist and that it can be created next.

}

// Use the statement object to create our table.
s.executeUpdate("create table qgpl.basicjdbc(id int, name char(15))");

// Use the statement object to populate our table with some data.

s.executeUpdate("insert into qgpl.basicjdbc values(l, 'Frank Johnson')
s.executeUpdate("insert into qgpl.basicjdbc values(2, 'Neil Schwartz')
s.executeUpdate("insert into qgpl.basicjdbc values(3, 'Ben Rodman')");
s.executeUpdate("insert into qgpl.basicjdbc values(4, 'Dan Gloore')");

')s
")s

// Close the SQL statement to tell the database that it is no Tonger
// needed.
s.close();

// If the entire method processed successfully, return true. At this point,
// the table has been created or refreshed correctly.
return true;

} catch (SQLException sqle) {
// If any of our SQL statements failed (other than the drop of the table

Chapter 1. IBM Developer Kit for Java

57

// that was handled in the inner try/catch block), the error message is

// displayed and false is returned to the caller, indicating that the table
// may not be complete.

System.out.printIn("Error in rebuildTable: " + sqle.getMessage());

return false;

[**
Runs a query against the demonstration table and the results are displayed to
standard out.
*%/
public void runQuery() {
// Wrap all the functionality in a try/catch block so an attempts is
// made to handle any errors that might happen within this
// method.
try {
// Create a Statement object.
Statement s = connection.createStatement();

// Use the statement object to run an SQL query. Queries return
// ResultSet objects that are used to lTook at the data the query
// provides.

ResultSet rs = s.executeQuery("select * from qgpl.basicjdbc");

// Display the top of our 'table' and initialize the counter for the
// number of rows returned.

System.out.printIn("--------mcmmmmmme ")s

int i = 0;

// The ResultSet next method is used to process the rows of a
// ResultSet. The next method must be called once before the

// first data is available for viewing. As Tong as next returns
// true, there is another row of data that can be used.

while (rs.next()) {

// Obtain both columns in the table for each row and write a row to

// our on-screen table with the data. Then, increment the count

// of rows that have been processed.

System.out.printin("| " + rs.getInt(1) + " | " + rs.getString(2) + "|");
i+t

}

// Place a border at the bottom on the table and display the number of rows
// as output.

System.out.printIn("---=cccmmmmmmmmaaam- ")

System.out.printin("There were " + i + " rows returned.");
System.out.printIn("Output is complete.");

} catch (SQLException e) {
// Display more information about any SQL exceptions that are
// generated as output.
System.out.printIn("SQLException exception: ");

System.out.printin("Message:..... " + e.getMessage());
System.out.printIn("SQLState:...." + e.getSQLState());
System.out.printin("Vendor Code:." + e.getErrorCode());

e.printStackTrace();

[x%
The following method ensures that any JDBC resources that are still
allocated are freed.

*%/

58 iSeries: IBM Developer Kit for Java

public void cleanup() {
try {
if (connection != null)
connection.close();
} catch (Exception e) {
System.out.printIn("Caught exception: ");
e.printStackTrace();

}
&

Use JNDI for the examples: % DataSources work hand-in-hand with the Java‘™ Naming and Directory
Interface (JNDI). JNDI is a Java abstraction layer for directory services just as Java Database Connectivity
(JDBC) is an abstraction layer for databases. JNDI is used most often with the Lightweight Directory
Access Protocol (LDAP), but it may also be used with the CORBA Object Services (COS), the Java
Remote Method Invocation (RMI) registry, or the underlying file system. This varied use is accomplished
by means of the various directory service providers that turn common JNDI requests into specific directory
service requests.

The DataSource samples were designed using the JNDI file system service provider. If you want to run the
examples provided, there must be a JNDI service provider in place.

Follow these directions to set up the environment for the file system service provider:

Download the file system JNDI support from Sun Microsystems [JNDI site] 9

Click Continue to download JNDI 1.2.1. A license agreement displays.

Click Accept and then click FS Context to display the download options for JNDI context support.
Download fscontext.zip and unzip the file from your workstation.

Use FTP to transfer fscontext.jar and providerutil.jar to your system and put them in
/QIBM/UserData/Java400/ext. This is the extensions directory and the JAR files that you place here
are found automatically when you run your application (that is, you do not need them in your
classpath).

SUE A

Once you have support for a service provider for JNDI, you must set up the context information for your
applications. This can be accomplished by putting the required information in a SystemDefault.properties
file. There are several places on the system where you can specify default properties, but the best way is
to create a text file called SystemDefault.properties in your home directory (that is, at /home/).

To create a file, use the following lines or add them to your existing file:

Needed env settings for JNDI.
java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory
java.naming.provider.url=file:/DataSources/jdbc

These lines specify that the file system service provider handles JNDI requests and that /DataSources/jdbc
is the root for tasks that use JNDI. You can change this location, but the directory that you specify must

exist. The location that you specify is where the example DataSources are bound and deployed. <%

Connections

#* The Connection object represents a connection to a data source in Java™ Database Connectivity
(JDBCQC). It is through Connection objects that Statement objects are created for processing SQL
statements against the database. An application program can have multiple connections at one time.
These Connection objects can all connect to the same database or connect to different databases.

Obtaining a connection in JDBC can be accomplished in two ways:

Chapter 1. IBM Developer Kit for Java 59

http://java.sun.com/products/jndi

* Through the DriverManager class.
» By using DataSources.

Using DataSources to obtain a connection is preferred because it enhances application portability and
maintainability. It also allows an application to transparently use connection and statement pooling, and
distributed transactions.

For details on obtaining connections, see the following sections:

|DriverManager|

The DriverManager is a static class that manages the set of available JDBC drivers for an application
to use.

[Connection properties|
The table lists valid JDBC driver connection properties, their values, and their descriptions.

[Use DataSources with UDBDataSource)

You can deploy a DataSource with the UDBDataSource class by setting it up to have specific
properties and then binding it into some directory service through the use of the Java Naming and
Directory Interface (JNDI).

[DataSource properties|
The table lists valid DataSource properties, their values, and their descriptions.

[Other DataSource implementations|
There are other implementations of the DataSource interface provided with the native JDBC driver.
They exist only to serve as a bridge until the UDBDataSource and its related functions are adopted.

Once a connection is obtained, it can be used to accomplish the following JDBC tasks:
+ [Create various types of Statement objects| for interacting with the database.

« Control fransactions| against the database.

- [Retrieve metadatalabout the database.

b

DriverManager: ¥* DriverManager is a static class provided by the Java™ Developer Kit (JDK). It is
responsible for managing the set of Java Database Connectivity (JDBC) drivers that are available for an
application to use. Applications can use multiple JDBC drivers concurrently if necessary. How an
application program specifies a JDBC driver is by using a Uniform Resource Locator (URL). By passing a
URL for a specific JDBC driver to the DriverManager, the application informs the DriverManager about
which type of JDBC connection should be returned to the application.

Before this can be done, the DriverManager must be made aware of the available JDBC drivers so it can
hand out connections. By making a call to the Class.forName method, it loads a class into the running
Java virtual machine (JVM) based on its string name that is passed into the method. The following is an
example of the class.forName method being used to load the native JDBC driver:

Example: Load the native JDBC driver

Note: Read the [Code example disclaimer for important legal information.

// Load the native JDBC driver into the DriverManager to make it
// available for getConnection requests.

Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

60 iSeries: IBM Developer Kit for Java

JDBC drivers are designed to tell the DriverManager about themselves automatically when their driver
implementation class loads. Once the line of code previously mentioned has been processed, the native
JDBC driver is available for the DriverManager with which to work. The following line of code requests a
Connection object using the native JDBC URL:

Example: Request a Connection object

Note: Read the |Code example disclaimer for important legal information.

// Get a connection that uses the native JDBC driver.

Connection ¢ = DriverManager.getConnection("jdbc:db2:*Tocal");

The simplest form of JDBC URL is a list of three values that are separated by colons. The first value in the
list represents the protocol which is always jdbc for JODBC URLs. The second value is the subprotocol and
db2 is used to specify the native JDBC driver. The third value is the system name to establish the
connection to a specific system. There are two special values that can be used to connect to the local
database. They are *LOCAL and localhost (both are case insensitive). A specific system name can also be
provided as follows:

Connection ¢ =
DriverManager.getConnection("jdbc:db2:rchasmop");

This creates a connection to the rchasmop system. If the system to which you are trying to connect is a
remote system (for example, through the Distributed Relational Database Architecture), the system name
from the relational database directory must be used.

Note: When not specified, the user ID and password currently used to sign in are also used to establish
the connection to the database.

Properties: The DriverManager.getConnection method takes a single string URL indicated previously and
is only one of the methods on DriverManager to obtain a Connection object. There is also another version
of the DriverManager.getConnection method that takes a user ID and password. The following is an
example of this version:

Example: DriverManager.getConnection method taking a user ID and password

Note: Read the [Code example disclaimer] for important legal information.
// Get a connection that uses the native JDBC driver.

Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal", "cujo", "newtiger");
The line of code attempts to connect to the local database as user cujo with password newtiger no matter
who is running the application. There is also a version of the DriverManager.getConnection method that
takes a java.util.Properties object to allow further customization. The following is an example:

Example: DriverManager.getConnection method taking a java.util.Properties object

Note: Read the [Code example disclaimer for important legal information.

// Get a connection that uses the native JDBC driver.

Properties prop = new java.util.Properties();

prop.put("user", "cujo");

prop.put("password","newtiger");

Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal", prop);

The code is functionally equivalent to the version previously mentioned that passed the user ID and
password as parameters.

Chapter 1. IBM Developer Kit for Java 61

Refer to [Connection properties for a complete list of connection properties for the native JDBC driver.

URL properties: Another way to specify properties is to place them in a list on the URL object itself. Each
property in the list is separated by a semi-colon and the list must be of the form property name=property
value. This is just a shortcut and does not significantly change the way processing is performed as the
following example shows:

Example: Specify URL properties

Note: Read the [Code example disclaimer for important legal information.
// Get a connection that uses the native JDBC driver.

Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal;user=cujo;password=newtiger");
The code is again functionally equivalent to the examples mentioned previously.

If a property value is specified in both a properties object and on the URL object, the URL version takes
precedence over the version in the properties object. The following is an example:

Example: URL properties

Note: Read the [Code example disclaimer for important legal information.

// Get a connection that uses the native JDBC driver.

Properties prop = new java.util.Properties();

prop.put("user", "someone");

prop.put("password","something");

Connection ¢ = DriverManager.getConnection("jdbc:db2:*Tocal;user=cujo;password=newtiger",
prop);

The example uses the user ID and password from the URL string instead of the version in the Properties
object. This ends up being functionally equivalent to the code previously mentioned.

See the following examples for more information:

+ [Use native JDBC and Toolbox JDBC concurrently|
+ [Access property|

« [Invalid user ID and password

&

Example: Use native JDBC and Toolbox JDBC concurrently: #* This is an example of how to use the
native JDBC connection and the Toolbox JDBC connection in a program.

Example: Use native JDBC and Toolbox JDBC concurrently

Note: Read the [Code example disclaimer] for important legal information.
LTI LI i1 i i i1ii11011111111111117
//

// GetConnections example.

//

// This program demonstrates being able to use both JDBC drivers at

// once in a program. Two Connection objects are created in this

// program. One is a native JDBC connection and one is a Toolbox

// JDBC connection.

//

// This technique is convenient because it allows you to use different
// JDBC drivers for different tasks concurrently. For example, the

// Toolbox JDBC driver is ideal for connecting to remote iSeries servers
// and the native JDBC driver is faster for Tocal connections.

62 iSeries: IBM Developer Kit for Java

// You can use the strengths of each driver concurrently in your
// application by writing code similar to this example.

//

[HTLTTTTLLLIE L0 riei i iiierriiieiillriiieirllliieiilllliieiiilliiieiii
//

// This source is an example of the IBM Developer for Java JDBC driver.
// IBM grants you a nonexclusive license to use this as an example
// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes
// only. These examples have not been thoroughly tested under all
// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// A1l programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of
// merchantability and fitness for a particular purpose are

// expressly disclaimed.

//

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// A1l rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

[HTLTTTTILTLE L0 ieiiriiiiierirriiieellriiieirllliieiilllliieiiilliiieisi
import java.sql.*;
import java.util.*;

public class GetConnections {

public static void main(java.lang.String[] args)
{
// Verify input.
if (args.length != 2) {
System.out.printin("Usage (CL command line): java GetConnections PARM(<user> <password>)");
System.out.printin(" where <user> is a valid iSeries user ID");
System.out.printin(" and <password> is the password for that user ID");
System.exit(0);
}

// Register both drivers.

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
Class.forName("com.ibm.as400.access.AS400JDBCDriver");

} catch (ClassNotFoundException cnf) {
System.out.printIn("ERROR: One of the JDBC drivers did not load.");
System.exit(0);

1

try {
// Obtain a connection with each driver.
Connection connl = DriverManager.getConnection("jdbc:db2://Tocalhost", args[0], args[1]);
Connection conn2 = DriverManager.getConnection("jdbc:as400://Tocalhost", args[0], args[1]);

// Verify that they are different.
if (connl instanceof com.ibm.db2.jdbc.app.DB2Connection)
System.out.printin("connl is running under the native JDBC driver.");
else
System.out.printIn("There is something wrong with connl.");

if (conn2 instanceof com.ibm.as400.access.AS400JDBCConnection)
System.out.printin("conn2 is running under the Toolbox JDBC driver.");
else
System.out.printin("There is something wrong with conn2.");

Chapter 1. IBM Developer Kit for Java

63

connl.close();
conn2.close();
} catch (SQLException e) {
System.out.printIn("ERROR: " + e.getMessage());
}

&

Example: Access property: £* This is an example of how to use the Access property.

Example: Access property

Note: Read the [Code example disclaimer for important legal information.

// Note: This program assumes directory cujosql exists.
import java.sql.=*;

import javax.sql.=*;

import javax.naming.=;

public class AccessPropertyTest {
public String url = "jdbc:db2:*Tocal";
public Connection connection = null;

public static void main(java.lang.String[] args)
throws Exception

{

AccessPropertyTest test = new AccessPropertyTest();
test.setup();

test.run();
test.cleanup();

[**
Set up the DataSource used in the testing.
*%/
public void setup()
throws Exception
{
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

connection = DriverManager.getConnection(url);
Statement s = connection.createStatement();
try {
s.executeUpdate("DROP TABLE CUJOSQL.TEMP");
} catch (SQLException e) { // Ignore it - it doesn't exist

try {
String sql = "CREATE PROCEDURE CUJOSQL.TEMP "
+ " LANGUAGE SQL SPECIFIC CUJOSQL.TEMP "
+ " MYPROC: BEGIN"
+ " RETURN 11;"
+ " END MYPROC";
s.executeUpdate(sql);
} catch (SQLException e) {
// Ignore it - it exists.

1

s.executeUpdate("create table cujosql.temp (coll char(10))");
s.executeUpdate("insert into cujosql.temp values ('compare')");
s.close();

64 iSeries: IBM Developer Kit for Java

public void resetConnection(String property)
throws SQLException

if (connection != null)
connection.close();

connection = DriverManager.getConnection(url + ";access=" + property);

public boolean canQuery() {
Statement s = null;
try {
s = connection.createStatement();
ResultSet rs = s.executeQuery("SELECT * FROM cujosql.temp");
if (rs == null)
return false;

rs.next();

if (rs.getString(1).equals("compare "))
return true;

return false;

} catch (SQLException e) {
// System.out.printin("Exception: SQLState(" + e.getSQLState() + ") " + e + " (" + e.getErrorCode() + ")");
return false;
} finally {
if (s !'= null) {
try {
s.close();
} catch (Exception e) {
// Ignore it.
}

public boolean canUpdate() {
Statement s = null;
try
s = connection.createStatement();
int count = s.executeUpdate("INSERT INTO CUJOSQL.TEMP VALUES('x')");
if (count != 1)
return false;

return true;

} catch (SQLException e) {
//System.out.printin("Exception: SQLState(" + e.getSQLState() + ") " + e + " (" + e.getErrorCode() + ")");
return false;
} finally {
if (s != null) {
try {
s.close();
} catch (Exception e) {
// Ignore it.
}

Chapter 1. IBM Developer Kit for Java 65

public boolean canCall() {
CallableStatement s = null;
try {
s = connection.prepareCall("? = CALL CUJOSQL.TEMP()");
s.registerQutParameter(1l, Types.INTEGER);
s.execute();
if (s.getInt(1) !'= 11)
return false;

return true;

} catch (SQLException e) {
//System.out.printIn("Exception: SQLState(" + e.getSQLState() + ") " + e + " (" + e.getErrorCode() + ")");
return false;
} finally {
if (s != null) {
try {
s.close();
} catch (Exception e) {
// Ignore it.

public void run()

throws SQLException

{
System.out.printin("Set the connection access property to read only");
resetConnection("read only");

System.out.printIn("Can run queries -->" + canQuery());
System.out.printin("Can run updates -->" + canUpdate());
System.out.printin("Can run sp calls -->" + canCall());

System.out.printin("Set the connection access property to read call");
resetConnection("read call");

System.out.printIn("Can run queries -->" + canQuery());
System.out.printin("Can run updates -->" + canUpdate());
System.out.printin("Can run sp calls -->" + canCall());

System.out.printin("Set the connection access property to all");
resetConnection("all");

System.out.printIn("Can run queries -->" + canQuery());
System.out.printin("Can run updates -->" + canUpdate());
System.out.printin("Can run sp calls -->" + canCall());

public void cleanup() {

try {
connection.close();

} catch (Exception e) {
// Ignore it.
1

&

66 iSeries: IBM Developer Kit for Java

Example: Invalid user ID and password: #* This is an example of how to use the Connection property

in SQL naming mode.

Example: Invalid user ID and password

Note: Read the |Code example disclaimer for important legal information.
IITTLTTIIEET L0071 11i111e77100171077111010714017111111111111111111111
//

// InvalidConnect example.
//

// This program uses the Connection property in SQL naming mode.
IITTEETIIEE LI LTI i i iiiiiiiiieriielrieiliieiiieiliieiliiiiiieiliieiiii
//

// This source is an example of the IBM Developer for Java JDBC driver.
// IBM grants you a nonexclusive license to use this as an example
// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes
// only. These examples have not been thoroughly tested under all
// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// A1l programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of
// merchantability and fitness for a particular purpose are

// expressly disclaimed.

//

// 1BM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// A1l rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

//

[IHTETIILE LI LT E L i i iiiriiiiieiriiidrieliieilieliieliieiiiiiiiiieeiii
import java.sql.*;

import java.util.*;

public class InvalidConnect {

public static void main(java.lang.String[] args)
{

// Register the driver.

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

} catch (ClassNotFoundException cnf) {
System.out.printIn("ERROR: JDBC driver did not load.");
System.exit(0);

}

// Attempt to obtain a connection without specifying any user or
// password. The attempt works and the connection uses the
// same user profile under which the job is running.
try {
Connection cl = DriverManager.getConnection("jdbc:db2:*Tocal");
cl.close();
} catch (SQLException e) {
System.out.printin("This test should not get into this exception path.");
e.printStackTrace();
System.exit(1);
}

try {

Chapter 1. IBM Developer Kit for Java

67

Connection c2 = DriverManager.getConnection("jdbc:db2:*Tocal", "notvalid", "notvalid");

} catch (SQLException e) {

System.out.printIn("This is an expected error.");

System.out.printin("Message is " + e.getMessage());
System.out.printIn("SQLSTATE is " + e.getSQLState());

}
b

Connection properties: This table contains valid JDBC driver connection properties, their values, and

their descriptions:

Property

Values

Meaning

"access”

"all", "read call”, "read only”

This value can be used to restrict the
type of operations that can be done
with a specific connection. The
default value is "all” and basically
means that the connection has full
access to the JDBC API. The "read
call” value allows the connection to
do only queries and call stored
procedures. An attempt to update the
database through an SQL statement
is stopped. The "read only” value can
be used to restrict a connection to
only queries. Stored procedure calls
and update statements are stopped.

& "patch style”

20", "2.1"

The JDBC 2.1 specification defines a
second method for how exceptions in
a batch update can be handled. The
driver can comply with either of these.
The default is to work as defined in

the JDBC 2.0 specification. %%

68 iSeries: IBM Developer Kit for Java

Property

Values

Meaning

"block size”

NOH, "8”7 ”16”, //32//’ ”64”, ”128”,
”256”, 7751217

This is the number of rows that are
fetched at a time for a result set. For
typical forward only processing of a
result set, a block of this size are
obtained. Then the database is not
accessed as each row is processed
by your application. Only when the
end of the block is reached that the
database requests another block of
data.

This value is only used if the
"blocking enabled” property is set to
true.

Setting the block size property to "0"
has the same effect as setting the
"blocking enabled” property to "false”.

The default is to use blocking with a
block size of "32". Currently, this is a
fairly arbitrary decision and the
default could change in the future.

Currently, blocking is not used on
scrollable result sets.

"blocking enabled”

"true”, "false”

This value is used to determine
whether or not the connection should
use blocking on result set row
retrieval. Blocking can significantly
improve the performance of
processing result sets.

By default, this property is set to true.

& rcursor hold”

"true”, "false”

This value specifies whether or not
result sets should remain open when
a transaction is committed. A value of
true means that an application is able
to access its open result sets after
commit is called. A value of false
means that commit closes any open
cursors under the connection.

By default, this property is set to true.

This value property serves as a
default value for all result sets made
for the connection. With cursor
holdability support added in JDBC
3.0, this default is simply replaced if
an application specifies a different

holdability later. 4%

Chapter 1. IBM Developer Kit for Java 69

Property Values Meaning

"% "data truncation” "true”, "false” This value specifies whether
truncation of character data should
cause warnings and exceptions to be
generated (true) or if the data should
just be silently truncated (false). If the
default is true, data truncation of
character fields should be honored.

%
¥ date format” "julian”, "mdy”, "dmy”, "ymd", "usa”, |This property allows you to change
"iso”, "eur”, "jis” how dates are formatted. 4%
#* "date separator” AP o This property allows you to change

what the date separator is. This is
only valid in combination with some of
the dateFormat values (according to

system rules). &

"o

"decimal separator” R This property allows you to change
what the decimal separator is. %

70 iSeries: IBM Developer Kit for Java

Property

Values

Meaning

"do escape processing”

"true”, "false”

This property sets a flag for whether
or not statements under the
connection must do escape
processing. Using escape processing
is a way to code your SQL
statements so that they are generic
and similar for all platforms, but then
the database reads the escape
clauses and substitutes the proper
system specific version for the user.

This is good, except that it forces
extra work on the system. In the case
where you know you are only using
SQL statements that already contain
valid iSeries SQL syntax, it is
recommended that this value be set
to "false” to increase performance.

The default value for this property is
true, as it must be compliant with the
JDBC specification (that is, escape
processing is active by default).

This value is added due to a
shortcoming of the JDBC
specification. You can only set escape
processing to off in the Statement
class. That works well if you are
dealing with simple statements. You
create your statement, turn off escape
processing, and start processing
statements. However, in the case of
prepared statements and callable
statements, this scheme does not
work. You supply the SQL statement
at the time that the prepared or
callable statement is constructed and
it does not change after that. So the
statement is prepared up front and
changing the escape processing after
that is meaningless. Having this
connection property allows a way to
get around the extra overhead.

E rerrors”

"basic”, "full”

This property allows the full system
second-level error text to be returned
in SQLException object messages.
The default is basic which returns

only the standard message text. Lt

Chapter 1. IBM Developer Kit for Java 71

Property

Values

Meaning

& libraries”

A space-separated list of libraries. (A
list of libraries can also be separated
by colons or commas.)

This property allows a list of libraries
to be placed into the server job’s
library list or a specific default library
to be set.

The "naming” property affects how
this property works. In the default
case, where "naming” is set to "sql”,
JDBC works like ODBC. The library
list has no effect on how the
connection processes. There is a
default library for all unqualified
tables. By default, that library has the
same name as the user profile that is
connected. If the libraries property is
specified, the first library in the list
becomes the default library. If a
default library is specified on the
connection URL (as in
"jdbc:db2:*local/mylibrary”), that
overrides any value in this property.

In the case where "naming” is set
"system”, each of the libraries
specified for this property is added to
the user’s library list and the library
list is searched to resolve unqualified

table references. %%

& "lob threshold”

Any value under 500000

This property tells the driver to place
the actual values into the result set
storage instead of locators for lob
columns if the lob column is smaller
than the threshold size. This property
acts against the column size, not the
lob data size itself. For example, if
the lob column is defined to hold up
to 1 MB for each lob, but all the
column values are under 500 KB,
locators are still used.

Note that the size limit is set as it is
to allow blocks of data to be fetched
without danger of not always growing
data blocks larger than the 16 MB
maximum allocation size. With large
result sets, it is still easy to exceed
this limit, which causes fetches to fail.
Care must be taken in how the block
size property and this property
interact with the size of a data block.

The default is 0. Locators are always
used for lob data. %

72

iSeries: IBM Developer Kit for Java

Property

Values

Meaning

"naming”

quln’ Usystemn

This property allows you to use either
the traditional iSeries naming syntax
or the standard sqgl naming syntax.
"system” naming means that you
should use a "/" character to separate
collection and table values, and "sql”
naming means that you should use a
"." character to separate the values.

The setting of this value has
ramifications for what the default
library is also. See the
for further information on
this.

The default is to use "sqgl” naming.

"password”

anything

This property allows for a password
to be specified for the connection.
This property does not work correctly
without also specifying the "user”
property. These properties allow for
connections to be made to the
database as a user other than the
one that is running the iSeries job.

Specifying the "user” and "password”
properties have the same effect as
using the connection method with the
signature getConnection(String url,
String userld, String password).

A "prefetch”

"true”, "false”

This property specifies whether or not
the driver should fetch the first data
for a result set immediately after
processing or wait until the data is
requested. If the default is true, data
should be prefetched.

For applications using the Native
JDBC driver, this is rarely an issue.
The property exists primarily for
internal use with Java stored
procedures and user-defined
functions where it is important that
the database engine does not fetch
any data from result sets on your

behalf before you request it. &

2 "reuse objects”

"true”, "false”

This property specifies whether or not
the driver should attempt to reuse
some types of objects after you close
them. This is a performance

enhancement. The default is true. %

Chapter 1. IBM Developer Kit for Java 73

Property

Values

Meaning

& "server trace”

A string representation of an integer

This property enables tracing of the
JDBC server job. If server tracing is
enabled, tracing starts when the client
connects to the server, and ends
when the connection is disconnected.

Trace data is collected in spooled
files on the server. Multiple levels of
server tracing can be turned on in
combination by adding the constants
and passing that sum on the set
method.

Note: This property is typically used
by support personnel and its values

are not discussed further. %&

& time format”

thsu, "Usa", "iSO”, ”eur”, Ujisn

This property allows you to change
how time values are formatted. %%

& rtime separator”

manomonon HbH
L

This property allows you to change
what the time separator is. This is
only valid in combination with some of
the timeFormat values (according to

system rules). &

"trace”

"true”, "false”

This property allows for turning on
tracing of the connection. It can be
used as a simple debugging aide.
There are thoughts of enhancing this
feature in the future. See|D2. Th5|

JDBC driver threw an exception |

What do | do?|for more information
on debugging.

The default value is "false”, which
does not use tracing.

"transaction isolation”

"none”, "read committed”, "read
uncommitted”, "repeatable read”,
"serializable”

This property allows you to set the
transaction isolation level for the
connection. There is no difference
between setting this property to a
specific level and specifying a level
on the setTransactionlsolation method
in the Connection interface.

The default value for this property is
"none”, as JDBC defaults to
auto-commit mode.

"translate binary”

"true”, "false”

This property can be used to force
the JDBC driver to treat binary and
varbinary data values as if they were
char and varchar data values.

The default for this property is "false”,
where binary data is not treated the
same as character data.

74 iSeries: IBM Developer Kit for Java

http://www.ibm.com/eserver/iseries/developer/jdbc/Faqs/JDBCFAQ.html#HDRD2
http://www.ibm.com/eserver/iseries/developer/jdbc/Faqs/JDBCFAQ.html#HDRD2
http://www.ibm.com/eserver/iseries/developer/jdbc/Faqs/JDBCFAQ.html#HDRD2

Property

Values

Meaning

& "use block insert”

"true”, "false”

This property allows the native JDBC
driver to go into a block insert mode
for inserting blocks of data into the
database. This is an optimized
version of the batch update. This
optimized mode can only be used in
applications that ensure that they do
not break certain system constraints
or data insert failures and potentially
corrupt data.

Applications that turn on this property
should only connect to the local
system when attempting to perform
batched updates. They should not
use DRDA to establish remote
connections because blocked insert
cannot be managed over DRDA.

Applications must also ensure that
PreparedStatements with an SQL
insert statement and a values clause
make all the insert values
parameters. No constants are
permitted in the values list. This is a
requirement of the blocked insert
engine of the system.

The default is false. %

Uuser//

anything

This property allows for a user ID to
be specified for the connection. This
property does not work correctly
without also specifying the
"password” property. These
properties allow for connections to be
made to the database as a user other
than the one that is running the
iSeries job.

Specifying the "user” and "password”
properties has the same effect as
using the connection method with the
signature getConnection(String url,
String userld, String password).

Example: Create a UDBDataSource and bind it with JNDI: % This is an example of how to create a
UDBDataSource and get it bound with JNDI.

Example: Create a UDBDataSource and bind it with JNDI

Note: Read the [Code example disclaimer for important legal information.

// Import the required packages. At deployment time,
// the JDBC driver-specific class that implements
// DataSource must be imported.

import java.sql.*;

import javax.naming.=;

import com.ibm.db2.jdbc.app.UDBDataSource;

Chapter 1. IBM Developer Kit for Java 75

public class UDBDataSourceBind

{
public static void main(java.lang.String[] args)
throws Exception
{
// Create a new UDBDataSource object and give it
// a description.
UDBDataSource ds = new UDBDataSource();
ds.setDescription("A simple UDBDataSource");
// Retrieve a JNDI context. The context serves
// as the root for where objects are bound or
// found in JNDI.
Context ctx = new InitialContext();
// Bind the newly created UDBDataSource object
// to the JNDI directory service, giving it a name
// that can be used to look up this object again
// at a later time.
ctx.rebind("SimpleDS", ds);
1
1

Example: Create a UDBDataSourceBind and set DataSource properties: ** This is an example of
how to create a UDBDataSource, and set the user ID and password as DataSource properties.

Example: Create a UDBDataSourceBind and set DataSource properties

Note: Read the [Code example disclaimer for important legal information.

// Import the required packages. At deployment time,
// the JDBC driver-specific class that implements

// DataSource must be imported.

import java.sql.=*;

import javax.naming.=*;

import com.ibm.db2.jdbc.app.UDBDataSource;

public class UDBDataSourceBind2
{
public static void main(java.lang.String[] args)
throws Exception
{
// Create a new UDBDataSource object and give it
// a description.
UDBDataSource ds = new UDBDataSource();
ds.setDescription("A simple UDBDataSource " +
"with cujo as the default " +
"profile to connect with.");

// Provide a user ID and password to be used for
// connection requests.

ds.setUser("cujo");

ds.setPassword("newtiger");

// Retrieve a JNDI context. The context serves
// as the root for where objects are bound or
// found in JNDI.

Context ctx = new InitialContext();

// Bind the newly created UDBDataSource object

// to the JNDI directory service, giving it a name
// that can be used to look up this object again
// at a later time.

ctx.rebind("SimpleDS2", ds);

76 iSeries: IBM Developer Kit for Java

Example: Obtain an initial context before binding UDBDataSource: ** The following example obtains

an initial context before binding the UDBDataSource. The lookup method is then used on that context to

return a

Exampl

n object of type DataSource for the application to use.

e: Obtain an initial context before binding UDBDataSource

Note: Read the [Code example disclaimer for important legal information.

// Import the required packages. There is no
// driver-specific code needed in runtime

// appli
import j
import j
import j

cations.
ava.sql.x;
avax.sql.*;
avax.naming.+*;

public class UDBDataSourceUse

{
pub]l

ic static void main(java.lang.String[] args)

throws Exception

{

}

Example: Create a UDBDataSource, and obtain a user ID and password: #* This is an example of

// Retrieve a JNDI context. The context serves
// as the root for where objects are bound or
// found in JNDI.

Context ctx = new InitialContext();

// Retrieve the bound UDBDataSource object using the

// name with which it was previously bound. At runtime,

// only the DataSource interface is used, so there

// is no need to convert the object to the UDBDataSource
// implementation class. (There is no need to know what

// the implementation class is. The Togical JNDI name is
// only required).

DataSource ds = (DataSource) ctx.lookup("SimpleDS");

// Once the DataSource is obtained, it can be used to establish
// a connection. This Connection object is the same type

// of object that is returned if the DriverManager approach

// to establishing connection is used. Thus, so everything from
// this point forward is exactly like any other JDBC

// application.

Connection connection = ds.getConnection();

// The connection can be used to create Statement objects and
// update the database or process queries as follows.
Statement statement = connection.createStatement();
ResultSet rs = statement.executeQuery("select * from gsys2.sysprocs");
while (rs.next()) {
System.out.printin(rs.getString(1) + "." + rs.getString(2));
}

// The connection is closed before the application ends.
connection.close();

how to create a UDBDataSource, and use the getConnection method to obtain a user ID and password at

runtime.

Example: Create a UDBDataSource, and obtain a user ID and password

Note: Read the [Code example disclaimer] for important legal information.

Chapter 1. IBM Developer Kit for Java

77

/// Import the required packages. There is
// no driver-specific code needed in runtime
// applications.

import java.sql.=*;

import javax.sql.=*;

import javax.naming.*;

public class UDBDataSourceUse2

{

public static void main(java.lang.String[] args)
throws Exception

{

}

Use DataSources with UDBDataSource: ¥ DataSource interfaces were designed to allow additional
flexibility in using Java™ Database Connectivity (JDBC) drivers. The use of DataSources can be split into

// Retrieve a JNDI context. The context serves
// as the root for where objects are bound or
// found in JNDI.

Context ctx = new InitialContext();

// Retrieve the bound UDBDataSource object using the

// name with which it was previously bound. At runtime,

// only the DataSource interface is used, so there

// is no need to convert the object to the UDBDataSource
// implementation class. (There is no need to know

// what the implementation class is. The Togical JNDI name
// is only required).

DataSource ds = (DataSource) ctx.lookup("SimpleDS");

// Once the DataSource is obtained, it can be used to establish
// a connection. The user profile cujo and password newtiger

// used to create the connection instead of any default user

// 1D and password for the DataSource.

Connection connection = ds.getConnection("cujo", "newtiger");

// The connection can be used to create Statement objects and
// update the database or process queries as follows.
Statement statement = connection.createStatement();
ResultSet rs = statement.executeQuery("select * from gsys2.sysprocs");
while (rs.next()) {
System.out.printin(rs.getString(1) + "." + rs.getString(2));
!

// The connection is closed before the application ends.
connection.close();

two phases:
* Deployment

Deployment is a setup phase that occurs before a JDBC application actually runs. Deployment usually
involves setting up a DataSource to have specific properties and then binding it into a directory service
through the use of the Java Naming and Directory Interface (JNDI). The directory service is most
commonly the Lightweight Directory Access Protocol (LDAP), but could be a number of others such as
Common Object Request Broker Architecture (CORBA) Object Services, Java Remote Method

Invocation (RMI), or the underlying file system.

* Use
By decoupling the deployment from the runtime use of the DataSource, the DataSource setup can be
reused by many applications. By changing some aspect of the deployment, all the applications that use

that DataSource automatically pick up the changes.

78

iSeries: 1BM Developer Kit for Java

An advantage of DataSources is that they allow JDBC drivers to do work on behalf of the application
without having an impact on the application development process directly. For more information, see
[Connection pooling} [Statement poolingl and [Distributed transactions}

UDBDataSourceBind: The [UDBDataSourceBind program is an example of creating a UDBDataSource
and getting it bound with JNDI. This program accomplishes all the basic tasks requested. Namely, it
instantiates a UDBDataSource object, sets properties on this object, retrieves a JNDI context, and binds
the object to a name within the JNDI context.

The deployment time code is vendor-specific. The application must import the specific DataSource
implementation that it wants to work with. In the import list, the package-qualified UDBDataSource class is
imported. The most unfamiliar part of this application is the work done with [JNDI| (for example, the retrieval

of the Context object and the call to bind). For additional information, see 9 by Sun Microsystems,
Inc.

Once this program has been run and has successfully completed, there is a new entry in a JNDI directory
service called SimpleDS. This entry is at the location specified by the JNDI context. The DataSource
implementation is now deployed. An application program can make use of this DataSource to retrieve
database connections and JDBC-related work.

UDBDataSourceUse: The|UDBDataSourceUse| program is an example of a JDBC application that uses
the previously deployed application.

The JDBC application obtains an initial context as it did before binding the UDBDataSource in the previous
example. The lookup method is then used on that context to return an object of type DataSource for the
application to use.

Note: The runtime application is only interested in the methods of the DataSource interface, so there is no
need for it to be aware of the implementation class. This makes applications portable.

Suppose that UDBDataSourceUse is a complex application that runs a large operation within your
organization. You have a dozen or more similar large applications within your organization. You have to
change the name of one of the systems in your network. By running a deployment tool and changing a
single UDBDataSource property, you would be able to get this new behavior in all your applications
without changing the code for them. One of the benefits of DataSources is that they allow you to
consolidate system setup information. Another major benefit is that they allow drivers to implement
functionality invisible to the application such as connection pooling, statement pooling and support for
distributed transactions.

After analyzing UDBDataSourceBind and UDBDataSourceUse closely, you may have wondered how the
DataSource object knew what to do. There is no code to specify a system, a user ID, or a password in
either of these programs. The UDBDataSource class has defaults values for all properties; by default, it
connects to the local iSeries server with the user profile and password of the running application. If you
wanted to ensure that the connection was made with the user profile cujo instead, you could have
accomplished this in two ways:

- Set the user ID and password as DataSource properties. See [Example: Create a UDBDataSourceBind|
[and set DataSource propertied on how to use this technique.

» Use the DataSource getConnection method that takes a user ID and password at runtime. See
[Example: Create a UDBDataSource, and obtain a user ID and password on how to use this technique.

There are a number of properties that can be specified for the UDBDataSource as there are properties
that can be specified for connections created with the DriverManager. Refer to|DataSource properties| for a
list of supported properties for the native JDBC driver.

Chapter 1. IBM Developer Kit for Java 79

http://java.sun.com/products/jndi

While these lists are similar, it is not certain to be similar in future releases. You are encouraged to start
coding to the DataSource interface.

Note: The native JDBC driver also has two [other DataSource implementations], but direct use of them is
not recommended.

 DB2DataSource
- DB2StdDataSource

&

DataSource properties: #* This table contains valid data source properties, their values, and their
descriptions:

Set method (data type) Values Description
setAccess "all", "read call”, "read only” This property can be used to restrict
(String) the type of operations that can be

done with a specific connection. The
default value is "all” and basically
means that the connection has full
access to the Java™ Database
Connectivity (JDBC) API.

The "read call” value allows the
connection to only perform queries
and call stored procedures. An
attempt to update the database
through an SQL statement causes an
SQLException.

The "read only” value restricts the
connection to only queries. An
attempt to process a stored
procedure call or update statements
causes an SQLException.

setBatchStyle "2.0","2.1" The JDBC 2.1 specification defines a
(String) second method for how exceptions in
a batch update can be handled. The
driver can comply with either of these.
The default is to work as defined in
the JDBC 2.0 specification.

setUseBlocking "true”, "false” This property is used to determine
(boolean) whether or not the connection should
use blocking on result set row
retrieval. Blocking can significantly
improve the performance of
processing result sets.

By default, this property is set to true.

80 iSeries: IBM Developer Kit for Java

Set method (data type)

Values

Description

setBlockSize

(int)

NOH’ ”8”, ”16”, //32//’ ”64”, ”128”,
”256”, 7751217

This property indicates the number of
rows that are fetched at a time for a
result set. For typical forward only
processing of a result set, a block of
this size is obtained if the database
has that many rows that satisfy the
query. Only when the end of the block
is reached in the JDBC driver’s
internal storage, another request for a
block of data is sent to the database.

This value is only used if the

useBlocking property is set to true.
Refer to [setUseBlocking|for more
information.

Setting the block size property to "0"
has the same effect as calling
setUseBlocking(false).

The default is to use blocking with a
block size of "32". This is a fairly
arbitrary decision and the default
could change in future releases.

Currently, blocking is not used on
scrollable result sets.

Using blocking affects the degree of
cursor sensitivity the user application
has. A sensitive cursor sees changes
made by other SQL statements.
However, because of data caching,
changes are only detected when data
needs to be fetched from the
database.

setCursorHold
(boolean)

"true”, "false”

This property specifies whether or not
result sets should remain open when
a transaction is committed. A value of
true means that an application is able
to access its open result sets after
commit is called. A value of false
means that commit closes any open
cursors under the connection.

By default, this property is set to true.

This property serves as a default
value for all result sets made for the
connection. With cursor support
added in JDBC 3.0 (see the
[ResultSet characteristics| section for
details), this default is simply replaced
if an application specifies different
cursor support later.

Chapter 1. IBM Developer Kit for Java 81

(boolean)

Set method (data type) Values Description
setDataTruncation "true”, "false” This property specifies the following:
(boolean) + Whether truncation of character
data should cause warnings and
exceptions to be generated (true)
 If the data should just be silently
truncated (false).
See|DataTruncation| for additional
details.
setDatabaseName Any name This property specifies the database
(String) to which the DataSource attempts to
connect. The default is *LOCAL. The
database name must either exist in
the relational database directory on
the system that runs the application
or be the special value *LOCAL or
localhost to specify the local system.
setDataSourceName Any name This property allows the passing of a
(String) ConnectionPoolDataSource Java
Naming and Directory Interface
(JNDI) name to support connection
pooling.
setDateFormat "julian”, "mdy”, "dmy”, "ymd", "usa”, |This property allows you to change
(String) "is0", "eur”, "jis" how dates are formatted.
setDateSeparator B o This property allows you to change
(String) what the date separator is. This is
only valid in combination with some of
the dateFormat values (according to
system rules).
setDecimalSeparator This property allows you to change
(String) what the decimal separator should
be.
setDescription Any name This property allows the setting of this
(String) DataSource object’s text description.
setDoEscapeProcessing "true”, "false” This property specifies whether SQL
(boolean) statements have escaped processing
done on them.
The default value for this property is
true.
setFullErrors "true”, "false” This property allows second-level

error text of the full system to be
returned in SQLException object
messages. The default is false.

setLibraries

A space-separated list of libraries

This property allows a list of libraries

(int)

(String) to be placed into the server job’s
library list. This property is only used
when setSystemNaming(true) is used.

setLobThreshold Any value under 500000 This property tells the driver to place

the actual values instead of Locator
OBject (LOB) locators if the LOB
column is smaller than the threshold
size.

82 iSeries: IBM Developer Kit for Java

Set method (data type) Values Description

setLoginTimeout Any value This property is currently ignored and

(int) is planned for future use.

setNetworkProtocol Any value This property is currently ignored and

(int) is planned for future use.

setPassword Any string This property allows for a password

(String) to be specified for the connection.
This property is ignored if a user ID is
not set.

setPortNumber Any value This property is currently ignored and

(int) is planned for future use.

setPrefetch "true”, "false” This property specifies whether the

(boolean) driver should fetch the first data for a
result set immediately after
processing or wait until the data is
requested. The default is true.

setReuseObjects "true”, "false” This property specifies whether the

(boolean) driver should attempt to reuse some
types of objects after you close them.
This is a performance enhancement.
The default is true.

setServerName Any name This property is currently ignored and

(String) is planned for future use.

setServerTraceCategories
(int)

A string representation of an integer

This property enables tracing of the
JDBC server job. If server tracing is
enabled, tracing starts when the client
connects to the server, and ends
when the connection is disconnected.

Trace data is collected in spooled
files on the server. Multiple levels of
server tracing can be turned on in
combination by adding the constants
and passing that sum on the set
method.

Note: This property is typically used
by support personnel and its values
are not discussed further.

setSystemNaming
(boolean)

"true”, "false”

This property allows specifying
whether collections and tables should
be separated by a period (SQL
naming) or a slash (system naming).
This property also determines
whether a default library is used (SQL
naming) or the library list is used
(system naming). The default is SQL
naming.

setTimeFormat
(String)

HthH, //usa//, HiSO”, //eur//, //JISH

This property allows you to change
how time values are formatted.

setTimeSeparator
(String)

A AN
b

This property allows you to change
what the time separator is. This is
only valid in combination with some of
the timeFormat values (according to
system rules).

Chapter 1. IBM Developer Kit for Java 83

Set method (data type)

Values

Description

setTrace
(boolean)

"true”, "false”

This property can enable a simple
trace. The default value is false.

setTransactionlsolationLevel
(String)

"none”, "read committed”, "read
uncommitted”, "repeatable read”,
"serializable”

This property allows the specification
of the transaction isolation level. The
default value for this property is
"none”, as JDBC defaults to
auto-commit mode.

setTranslateBinary
(Boolean)

"true”, "false”

This property can be used to force
the JDBC driver to treat binary and
varbinary data values as if they were
char and varchar data values.

The default for this property is false.

setUseBlockinsert
(boolean)

"true”, "false”

This property allows the native JDBC
driver to go into a block insert mode
for inserting blocks of data into the
database. This is an optimized
version of the batch update. This
optimized mode can only be used in
applications that ensure that they do
not break certain system constraints
or data insert failures and potentially
corrupt data.

Applications that turn on this property
should only connect to the local
system when attempting to perform
batched updates. They should not
use DRDA to establish remote
connections because a blocked insert
cannot be managed over DRDA.

Applications must also ensure that
PreparedStatements with an SQL
insert statement and a values clause
make all the insert values
parameters. No constants are
permitted in the values list. This is a
requirement of the blocked insert
engine of the system.

The default is false.

setUser
(String)

anything

This property allows the setting of a
user ID for obtaining connections.
This property requires that you also
set the password property.

&

Other DataSource implementations: % There are two implementations of the DataSource interface
that are included with the native JDBC driver. These DataSource implementations should be considered
deprecated. While you can still use them, they are not enhanced with future improvements; for example,
robust connection and statement pooling are not added to these implementations. These implementations
exist until you adopt the UDBDataSource interface and its related functions.

84 iSeries: IBM Developer Kit for Java

DB2DataSource: The DB2DataSource was an early implementation of the DataSource interface and does
not comply with the complete specification (that is, it predates the specification). DB2DataSource exists
today only to allow WebSphere® users to migrate to current releases and should not be used otherwise.

DB2StdDataSource: The DB2StdDataSource is the revised version of the DB2DataSource
implementation that became specification-compliant once the JDBC optional package specification became
final. The new version was provided to not break code already written on the DB2DataSource version.

If you have written applications that make use of these DataSource implementations, migrating to the
UDBDataSource is a trivial task as all the old properties are supported. It is recommended that you

migrate to UDBDataSource to gain the functionality of the new UDBDataSource classes. %

DatabaseMetaData interface for IBM Developer Kit for Java

The DatabaseMetaData interface is implemented by the IBM Developer Kit for Java‘™ JDBC driver to
provide information about its underlying data sources. It is used primarily by application servers and tools
to determine how to interact with a given data source. Applications may also use DatabaseMetaData
methods to obtain information about a data source, but this is less typical.

The DatabaseMetaData interface includes over 150 methods that can be categorized according to the
following types of information they provide:

General information|about the data source
» Data source [support for a given feature|
 |Data source limits
« [SQL objects and their attributes]

« [Transaction support offered by the data source

The DatabaseMetaData interface also contains over 40 fields that are constants used as return values for
various DatabaseMetaData methods.

See [Changes in JDBC 3.0| for information about changes made to methods in the DatabaseMetaData
interface.

Create a DatabaseMetaData object: A DatabaseMetaData object is created with the Connection method
getMetaData. Once the object is created, it can be used to dynamically find information about the
underlying data source. The following example creates a DatabaseMetaData object and uses it to
determine the maximum number of characters allowed for a table name:

Example: Create a DatabaseMetaData object

Note: Read the [Code example disclaimer] for important legal information.

// con is a Connection object
DatabaseMetaData dbmd = con.getMetadata();
int maxLen = dbmd.getMaxTableNamelLength();

Retrieve general information: Some DatabaseMetaData methods are used to dynamically find general
information about a data source as well as to obtain details about its implementation. Some of these
methods include the following:

* getURL

* getUserName

» getDatabaseProductVersion, getDriverMajorVersion, and getDriverMinorVersion
» getSchemaTerm, getCatalogTerm, and getProcedureTerm

* nullsAreSortedHigh, and nullsAreSortedLow

» useslLocalFiles, and usesLocalFilePerTable

Chapter 1. IBM Developer Kit for Java 85

* getSQLKeywords

Determine feature support: A large group of DatabaseMetaData methods can be used to determine
whether a given feature or set of features is supported by the driver or underlying data source. Beyond
this, there are methods that describe what level of support is provided. Some of the methods that describe
support for individual features include the following:

» supportsAlterTableWithDropColumn
* supportsBatchUpdates

» supportsTableCorrelationNames

» supportsPositionedDelete

» supportsFullOuterJoins

» supportsStoredProcedures

» supportsMixedCaseQuotedldentifiers

Methods to describe a level of feature support include the following:
* supportsANSI92EntryLevelSQL
» supportsCoreSQLGrammar

Data source limits: Another group of methods provide the limits imposed by a given data source. Some
of the methods in this category include the following:

» getMaxRowSize

+ getMaxStatementLength
» getMaxTablesInSelect

» getMaxConnections

» getMaxCharLiteralLength
» getMaxColumnsinTable

Methods in this group return the limit value as an integer. A return value of zero means that there is either
no limit or the limit is unknown.

SQL objects and their attributes: A number of DatabaseMetaData methods provide information about
the SQL objects that populate a given data source. These methods can determine the attributes of SQL
objects. These methods also return ResultSet objects in which each row describes a particular object. For
example, the getUDTs method returns a ResultSet object in which there is a row for each user-defined
table (UDT) that has been defined in the data source. Examples of this category include the following:

» getSchemas and getCatalogs

* getTables

* getPrimaryKeys

» getProcedures and getProcedureColumns
* getUDTs

Transaction support: A small group of methods provide information about the transaction semantics
supported by the data source. Examples of this category include the following:

» supportsMultipleTransactions
» getDefaultTransactionlsolation

See |Examp|e: DatabaseMetaData interface for IBM Developer Kit for Java] for an example of how to use
the DatabaseMetaData interface.

Changes in JDBC 3.0: # There are changes to the return values for some of the methods in JDBC 3.0.
The following methods have been updated in JDBC 3.0 to add fields to the ResultSets that they return.

86 iSeries: IBM Developer Kit for Java

getTables
+ getColumns
* getUDTs
» getSchemas

Note: If an application is being developed using Java Development Kit (JDK) 1.4, you may recognize that
there are a certain number of columns being returned when testing. You write your application and expect
to access all of these columns. However, if the application is being designed to also run on previous
releases of the JDK, the application receives an SQLException when it tries to access these fields that do
not exist in earlier JDK releases. is an example of how an application can be written to work

with JDK 1.4, JDK 1.3, and previous JDK releases.

Example: DatabaseMetaData interface for IBM Developer Kit for Java: This example shows how to
return a list of tables.

Example 1: Return a list of tables

Note: Read the [Code example disclaimer for important legal information.

// Connect to iSeries server.
Connection ¢ = DriverManager.getConnection("jdbc:db2:mySystem");

// Get the database meta data from the connection.
DatabaseMetaData dbMeta = c.getMetaData();

// Get a 1ist of tables matching this criteria.

String catalog = "myCatalog";

String schema = "mySchema";

String table = "myTable%"; // % indicates search pattern
String types[] = {"TABLE", "VIEW", "SYSTEM TABLE"}:

ResultSet rs = dbMeta.getTables(catalog, schema, table, types);

// ... iterate through the ResultSet to get the values.

// Close the connection.
c.close():

For more information, see |DatabaseMetaData interface for IBM Developer Kit for Java(TM)l.

Example: Use metadata ResultSets that have more than one column: % This is an example of how
to use metadata ResultSets that have more than one column.

Example: Use metadata ResultSets that have more than one column

Note: Read the [Code example disclaimer for important legal information.
LTI ETL LT L L L 00 100 errerririirieiieiieiielieliellilliiiiriiiii
//

// SafeGetUDTs example. This program demonstrates one way to deal with
// metadata ResultSets that have more columns in JDK 1.4 than they

// had in previous releases.

//

// Command syntax:

// java SafeGetUDTs

/1l
%//

// This source is an example of the IBM Developer for Java JDBC driver.
// IBM grants you a nonexclusive Ticense to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

/1

Chapter 1. IBM Developer Kit for Java 87

/1l
//
/1l
/1
/1
/1l
//
/1l
/1
/l
/1

//

This sample code is provided by IBM for illustrative purposes
only. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

A11 programs contained herein are provided to you "AS IS"
without any warranties of any kind. The implied warranties of
merchantability and fitness for a particular purpose are
expressly disclaimed.

IBM Developer Kit for Java

(C) Copyright IBM Corp. 2001

A11 rights reserved.

US Government Users Restricted Rights -
Use, duplication, or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

LTI i i i i i i i i iiiiiiiiiiiiiiiitiiitililili

import java.sql.=*;

public class SafeGetUDTs {

88

public static int jdbcLevel;

// Note: Static block runs before main begins.
// Therefore, there is access to jdbcLevel in
// main.
{
try {
Class.forName("java.sql.Blob");

try {
Class.forName("java.sql.ParameterMetaData");
// Found a JDBC 3.0 interface. Must support JDBC 3.0.
jdbcLevel = 3;
} catch (ClassNotFoundException ez) {
// Could not find the JDBC 3.0 ParameterMetaData class.
// Must be running under a JVM with only JDBC 2.0
// support.
jdbcLevel = 2;
}

} catch (ClassNotFoundException ex) {
// Could not find the JDBC 2.0 Blob class. Must be
// running under a JVM with only JDBC 1.0 support.
jdbcLevel = 1;

}

// Program entry point.
public static void main(java.lang.String[] args)

{

Connection ¢ = null;

try {
// Get the driver registered.
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

¢ = DriverManager.getConnection("jdbc:db2:*Tocal");
DatabaseMetaData dmd = c.getMetaData();

if (jdbcLevel == 1) {

System.out.printIn("No support is provided for getUDTs. Just return.");

System.exit(1);

iSeries: 1BM Developer Kit for Java

ResultSet rs = dmd.getUDTs(null, "CUJOSQL", "SSN%", null);
while (rs.next()) {

// Fetch all the columns that have been available since the

// JDBC 2.0 release.

System.out.printIn("TYPE_CAT is " + rs.getString("TYPE_CAT"));
System.out.printIn("TYPE_SCHEM is " + rs.getString("TYPE_SCHEM"));
System.out.printIn("TYPE_NAME is " + rs.getString("TYPE_NAME"));
System.out.printIn("CLASS_NAME is " + rs.getString("CLASS_NAME"));
System.out.printin("DATA_TYPE is " + rs.getString("DATA TYPE"));
System.out.printIn("REMARKS is " + rs.getString("REMARKS"));

// Fetch all the columns that were added in JDBC 3.0.
if (jdbcLevel > 2) {
System.out.printin("BASE_TYPE is " + rs.getString("BASE_TYPE"));
}
}

} catch (Exception e) {
System.out.printIn("Error: " + e.getMessage());
} finally {
if (¢ !'= null) {
try {
c.close();
} catch (SQLException e) {
// Ignoring shutdown exception.
}

b

Exceptions
#* The Java'™ language uses exceptions to provide error-handling capabilities for its programs. An
exception is an event that occurs when you run your program that disrupts the normal flow of instructions.

The Java runtime system and many classes from Java packages throw exceptions in some circumstances
by using the throw statement. You can use the same mechanism to throw exceptions in your Java
programs.

To find out more about exceptions, see the following sections:

SQLEXxception
The SQLException class and its subtypes provide information about errors and warnings that occur
while a data source is being accessed.

SQLWarning
Methods generate an SQLWarning object if the methods cause a database access warning. Methods
in the following interfaces can generate SQLWarnings:

* Connection
» Statement and its subtypes, PreparedStatement, and CallableStatement
* ResultSet

[DataTruncation|
DataTruncation is a subclass of SQLWarning. While SQLWarnings are not thrown, DataTruncation
objects are sometimes thrown and attached like other SQLWarning objects.

Chapter 1. IBM Developer Kit for Java 89

[Silent truncation|

The setMaxFieldSize statement method allows a maximum field size to be specified for any column.
If data truncates because its size has exceeded the maximum field size value, no warning or
exception is reported.

{{

SQLException: # The SQLException class and its subtypes provide information about errors and
warnings that occur while a data source is being accessed.

Unlike most of JDBC, which is defined by interfaces, the exception support is provided in classes. The
base class for exceptions that occur while running JDBC applications is SQLException. Every method of
the JDBC API is declared as being able to throw SQLExceptions. SQLException is an extension of
java.lang.Exception and provides additional information related to failures that happen in a database
context. Specifically, the following information is available from an SQLException:

» Text description

» SQLState

* Error code

» A reference to any other exceptions that also occurred

[ExceptionExample| is a program that properly handles catching an (expected in this case) SQLException
and dumping all the information that it provides.

Note: JDBC provides a mechanism where exceptions can be chained together. This allows the driver or
the database to report multiple errors on a single request. There are currently no instances where the
native JDBC driver would do this. This information is only provided as reference and not a clear indication
that the driver never does this in the future however.

As noted, SQLException objects are thrown when errors occur. This is correct, but is not the complete
picture. In practice, the native JDBC driver rarely throws actual SQLExceptions. It throws instances of its
own SQLException subclasses. This allows you to determine more information about what has actually
failed as is shown below.

DB2Exception.java: DB2Exception objects are not thrown directly either. This base class is used to hold
functionality that is common to all JDBC exceptions. There are two subclasses of this class that are be the
standard exceptions that JDBC throws. These subclasses are DB2DBException.java and
DB2JDBCEXxception.java. DB2DBExceptions are exceptions that are reported to you that have come
directly from the database. DB2JDBCExceptions are thrown when the JDBC driver finds problems on its
own. Splitting the exception class hierarchy in this manner allows you to handle the two types of
exceptions differently.

DB2DBEXxception.java: As stated, DB2DBExceptions are exceptions that come directly from the database.
These are encountered when the JDBC driver make a call to the CLI and gets back an SQLERROR return
code. The CLI function SQLError is called to get the message text, SQLState, and vendor code in these
cases. The replacement text for the SQLMessage is also retrieved and returned to you. The
DatabaseException class causes an error that the database recognizes and reports to the JDBC driver to
build the exception object for.

DB2JDBCException.java: DB2JDBCExceptions are generated for error conditions that come from the
JDBC driver itself. The functionality of this exception class is fundamentally different; the JDBC driver itself
handles message language translation of exception and other issues that the operating system and
database handle for exceptions originating within the database. Wherever possible, the JDBC driver
adheres to the SQLStates of the database. The vendor code for exceptions that the JDBC driver throws is
always -99999. DB2DBExceptions that are recognized and returned by the CLI layer often also have the
-99999 error code. The JDBCException class causes an error that the JDBC driver recognizes and builds

90 iSeries: IBM Developer Kit for Java

the exception for itself. When run during development of the release, the following output was created.
Notice that the top of the stack contains DB2JDBCException. This is an indication that the error is being

reported from the JDBC driver prior to ever making the request to the database. 4%

Example: SQLException: # This is an example of catching an SQLException and dumping all the
information that it provides.

Example: SQLException

Note: Read the [Code example disclaimer] for important legal information.
import java.sql.*;

public class ExceptionExample {
public static Connection connection = null;
public static void main(java.lang.String[] args) {
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

connection = DriverManager.getConnection("jdbc:db2:*1ocal");

Statement s = connection.createStatement();
int count = s.executeUpdate("insert into cujofake.cujofake values(1, 2,3)");

System.out.printIn("Did not expect that table to exist.");

} catch (SQLException e) {
System.out.printIn("SQLException exception: ");

System.out.printin("Message:..... " + e.getMessage());
System.out.printIn("SQLState:...." + e.getSQLState());
System.out.printin("Vendor Code:." + e.getErrorCode());

System.out . printTn (=== mmmmmmm e e ")s

e.printStackTrace();

} catch (Exception ex) {
System.out.printin("An exception other than an SQLException was thrown: ");
ex.printStackTrace();

} finally {

try {
if (connection != null) {
connection.close();
}

} catch (SQLException e) {
System.out.printin("Exception caught attempting to shutdown...");
}

}
{{

SQLWarning: # Methods in the following interfaces generate an SQLWarning object if the methods
cause a database access warning:

» Connection

» Statement and its subtypes, PreparedStatement and CallableStatement

* ResultSet

When a method generates an SQLWarning object, the caller is not informed that a data access warning
has occurred. The getWarnings method must be called on the appropriate object to retrieve the
SQLWarning object. However, the DataTruncation subclass of SQLWarning may be thrown in some

Chapter 1. IBM Developer Kit for Java 91

circumstances. It should be noted that the native JDBC driver opts to ignore some database-generated
warnings for increased efficiency. For example, a warning is generated by the system when you attempt to
retrieve data beyond the end of a ResultSet through the ResultSet.next method. In this case, the next
method is defined to return false instead of true, informing you of the error. It is unnecessary to create an
object to restate this, so the warning is simply ignored.

If multiple data access warnings occur, they are chained to the first one and can be retrieved by calling the
SQLWarning.getNextWarning method. If there are no more warnings in the chain, getNextWarning returns
null.

Subsequent SQLWarning objects continue to be added to the chain until the next statement is processed
or, in the case of a ResultSet object, when the cursor is repositioned. As a result, all SQLWarning objects
in the chain are removed.

Using Connection, Statement, and ResultSet objects can cause SQLWarnings to be generated.
SQLWarnings are informational messages indicating that while a particular operation has completed
successfully, there might be other information of which you should be aware. SQLWarnings are an
extension of the SQLException class, but they are not thrown. They are instead attached to the object that
causes their generation. When an SQLWarning is generated, nothing happens to inform the application
that the warning has been generated. Your application must actively request warning information.

Like SQLExceptions, SQLWarnings can be chained to one another. You can call the clearWarnings method
on a Connection, Statement, or ResultSet object to clear the warnings for that object.

Note: Calling the clearWarnings method does not clear all warnings. It only clears the warnings that are
associated with a particular object.

The JDBC driver clears SQLWarning objects at specific times if you do not clear them manually.
SQLWarning objects are cleared when the following actions are taken:

» For the Connection interface, warnings are cleared on the creation of a new Statement,
PreparedStatement, or CallableStatement object.

» For the Statement interface, warnings are cleared when the next statement is processed (or when the
statement is processed again for PreparedStatements and CallableStatements).

» For the ResultSet interface, warnings are cleared when the cursor is repositioned. <

DataTruncation: ¥* DataTruncation is a subclass of SQLWarning. While SQLWarnings are not thrown,
DataTruncation objects are sometimes thrown and attached like other SQLWarning objects.
DataTruncation objects provide additional information beyond what is returned by an SQLWarning. The
available information includes the following:

* The number of bytes of data that should have been transferred.

* The column or parameter index that was truncated.

* Whether the index is for a parameter or a ResultSet column.

* Whether the truncation happened when reading from the database or writing to it.
* The amount of data that was actually transferred.

In some instances, the information can be deciphered, but situations arise that are not completely intuitive.
For example, if the PreparedStatement’s setFloat method is used to insert a value into a column that holds
integer values, a DataTruncation may result because the float may be larger than the largest value that the
column can hold. In these situations, the byte counts for truncation do not make sense, but it is important
for the driver to provide the truncation information.

Report set() and update() methods: There is a subtle difference between JDBC drivers. Some drivers
such as the native and Toolbox JDBC drivers catch and report data truncation issues at the time of the

92 iSeries: IBM Developer Kit for Java

parameter setting. This is done either on the PreparedStatement set method or the ResultSet update
method. Other drivers report the problem at the time of processing the statement and is accomplished by
the execute, executeQuery, or updateRow methods.

Failing to report the problem at the time that you provide incorrect data instead of at the time that
processing cannot continue any further offers a couple of advantages:

» The failure can be addressed in your application when you have a problem instead of addressing the
problem at processing time.

» By checking when setting the parameters, the JDBC driver can ensure that the values that are handed
to the database at statement processing time are valid. This allows the database to optimize its work
and processing can be completed faster.

ResultSet.update() methods throw DataTruncation exceptions: In some past releases, ResultSet.update()
methods posted warnings when truncation conditions existed. This case occurs when the data value is
going to be inserted into the database. The specification dictates that JDBC drivers should throw
exceptions in these cases. As a result, the JDBC driver works in this manner.

There should be no significant difference between handling a ResultSet update function that receives a
data truncation error and handling a prepared statement parameter set for an update or insert statement
that receives an error. In both cases, the problem is identical; you provided data that does not fit where
you wanted it.

NUMERIC and DECIMAL truncate to the right side of a decimal point silently. This is how both JDBC for
UDB NT works and how interactive SQL on an iSeries server works.

Note: No value is rounded when a data truncation occurs. Any fractional portion of a parameter that does
not fit in a NUMERIC or DECIMAL column is simply lost without warning.

The following are examples, assuming that the value in the values clause is actually a parameter being set
on a prepared statement:

create table cujosql.test (coll numeric(4,2))

a) insert into cujosql.test values(22.22) // works - inserts 22.22

b) insert into cujosql.test values(22.223) // works - inserts 22.22

c) insert into cujosql.test values(22.227) // works - inserts 22.22
d) insert into cujosql.test values(322.22) // fails - Conversion error on assignment to column COLI.

Difference between a data truncation warning and a data truncation exception

The specification states that data truncation on a value to be written to the database should throw an
exception. If data truncation is not performed on the value being written to the database, a warning should
be generated. This means that the point at which a data truncation situation is identified, you must also be
aware of the statement type that the data truncation is processing. Given this as a requirement, the
following lists the behavior of several SQL statement types:

* In a SELECT statement, query parameters never damage database content. Therefore, data truncation
situations are always handled by posting warnings.

* In VALUES INTO and SET statements, the input values are only used to generate output values. As a
result, warnings are issued.

* In a CALL statement, the JDBC driver cannot determine what a stored procedure does with a
parameter. Exceptions are always thrown when a stored procedure parameter truncates.

» All other statement types throw exceptions rather than post warnings.
Data truncation property for Connection and DataSource: There has been a data truncation property

available for many releases. The default for that property is true, meaning that data truncation issues are
checked and warnings are posted or exceptions are thrown. The property is provided for convenience and

Chapter 1. IBM Developer Kit for Java 93

performance in cases where you are not concerned that a value does not fit into the database column.
You want the driver to put as much of the value as it can into the column.

Data truncation property only affects character and binary-based data types: A couple releases ago, the
data truncation property determined whether data truncation exceptions could be thrown. The data
truncation property was put in place to have JDBC applications not worry about a value getting truncated
when the truncation was not important to them. There are few cases where you would want either the
value 00 or 10 stored in the database when applications attempted to insert 100 into a DECIMAL(2,0).
Therefore, the JDBC driver’s data truncation property was changed to only honor situations where the
parameter is for character-based types such as CHAR, VARCHAR, CHAR FOR BIT DATA, and VARCHAR
FOR BIT DATA.

Data truncation property is only applied to parameters: The data truncation property is a setting of the
JDBC driver and not of the database. As a result, it has no effect on statement literals. For example, the
following statements that are processed to insert a value into a CHAR(8) column in the database still fail
with the data truncation flag set to false (assume that connection is a java.sqgl.Connection object allocated
elsewhere).

Statement stmt = connection.createStatement();

Stmt.executeUpdate("create table cujosql.test (coll char(8))");

Stmt.executeUpdate("insert into cujosql.test values('dettinger')");
// Fails as the value does not fit into database column.

Native JDBC driver throws exceptions for insignificant data truncation: The native JDBC driver does not
look at the data that you provide for parameters. Doing so only slows down processing. However, there
can be situations where it does not matter to you that a value truncates, but you have not set the data
truncation connection property to false.

For example, 'dettinger ’, a char(10) that is passed, throws an exception even though everything important
about the value fits. This does happen to be how JDBC for UDB NT works; however, it is not the behavior
you would get if you passed the value as a literal in an SQL statement. In this case, the database engine
would throw out the additional spaces quietly.

The problems with the JDBC driver not throwing an exception are the following:

» Performance overhead is extensive on every set method, whether needed or not. For the majority of
cases where there would be no benefit, there is considerable performance overhead on a function as
common as setString().

» Your workaround is trivial, for example, calling the trim function on the string value passed in.

* There are issues with the database column to take into account. A space in CCSID 37 is not at all a
space in CCSID 65535, or 13488.

Silent truncation: The setMaxFieldSize statement method allows a maximum field size to be specified
for any column. If data truncates because its size has exceeded the maximum field size value, no warning
or exception is reported. This method, like the data truncation property previously mentioned, only affects
character-based types such as CHAR, VARCHAR, CHAR FOR BIT DATA, and VARCHAR FOR BIT DATA.

b

Transactions
#* A transaction is a logical unit of work. To complete a logical unit of work, several actions may have to
be taken against a database. Transactional support allows applications to ensure the following:

» All the steps to complete a logical unit of work are followed.

* When one of the steps to the unit of work files fails, all the work done as part of that logical unit of work
can be undone and the database can return to its previous state before the transaction began.

94 iSeries: IBM Developer Kit for Java

Transactions are used to provide data integrity, correct application semantics, and a consistent view of
data during concurrent access. All Java™ Database Connectivity (JDBC) compliant drivers must support
transactions.

Note: This section only discusses local transactions and the standard JDBC concept of transactions. Java
and the native JDBC driver support the Java Transaction API (JTA), distributed transactions, and the
two-phase commit protocol (2PC).

All transactional work is handled at the Connection object level. When the work for a transaction
completes, it can be finalized by calling the commit method. If the application aborts the transaction, the
rollbback method is called.

All Statement objects under a connection are a part of the transaction. This means is that if an application
creates three Statement objects and uses each object to make changes to the database, when a commit
or rollback call happens, the work for all three statements either becomes permanent or is discarded.

The commit and rollback SQL statements are used to finalize transactions when working purely with SQL.
These SQL statements cannot be dynamically prepared and you should not attempt to use them in your
JDBC applications to complete transactions.

To use transactions in your application, see the following:

|[Auto-commit mode|
JDBC uses an auto-commit mode where every update to the database is immediately made
permanent.

[Transaction isolation levels|
Transaction isolation levels specify what data is visible to statements within a transaction and directly
impact the level of concurrent access.

Savepoints are checkpoints that the application can roll back to without throwing away the entire
transaction. Find the following information about Savepoints:

» Set and roll back to savepoints
* Release a savepoint

&

Auto-commit mode: # By default, JDBC uses an operation mode called auto-commit. This means that
every update to the database is immediately made permanent. Any situation where a logical unit of work
requires more than one update to the database cannot be done safely in auto-commit mode. If something
happens to the application or the system after one update is made and before any other updates are
made, the first change cannot be undone when running in auto-commit mode.

Since changes are instantly made permanent in auto-commit mode, there is no need for the application to
call the commit method or the rollback method. This makes applications easier to write.

Auto-commit mode can be enabled and disabled dynamically during a connection’s existence. Auto-commit
is enabled in the following way, assuming that data source already exists:

Connection connection = dataSource.getConnection();

Connection.setAutoCommit(false); // Disables auto-commit.

Chapter 1. IBM Developer Kit for Java 95

If the auto-commit setting is changed in the middle of a transaction, any pending work is automatically
committed. An SQLException is generated if auto-commit is enabled for a connection that is part of a

distributed transaction. 4

Transaction isolation levels: #* Transaction isolation levels specify what data is visible to statements
within a transaction. These levels directly impact the level of concurrent access by defining what
interaction is possible between transactions against the same target data source.

Database anomalies: Database anomalies are generated results that seem incorrect when looked at from
the scope of a single transaction, but are correct when looked at from the scope of all transactions. The
different types of database anomalies are described as follows:

» Dirty reads occur when:
1. Transaction A inserts a row into a table.
2. Transaction B reads the new row.
3. Transaction A rolls back.

Transaction B may have done work to the system based on the row inserted by transaction A, but that
row never became a permanent part of the database.

* Nonrepeatable reads occur when:
1. Transaction A reads a row.
2. Transaction B changes the row.
3. Transaction A reads the same row a second time and gets the new results.
* Phantom reads occur when:
1. Transaction A reads all rows that satisfy a WHERE clause on an SQL query.
2. Transaction B inserts an additional row that satisfies the WHERE clause.
3. Transaction A re-evaluates the WHERE condition and picks up the additional row.

Note: DB2/400 does not always expose the application to the allowable database anomolies at the
prescribed levels due to its locking strategies.

JDBC transaction isolation levels: There are five levels of transaction isolation in the IBM Developer Kit
for Java JDBC API. Listed from least to most restrictive, they are as follows:

JDBC_TRANSACTION_NONE
This is a special constant indicating that the JDBC driver does not support transactions.

JDBC_TRANSACTION_READ_UNCOMMITTED
This level allows transactions to see uncommitted changes to the data. All database anomalies are
possible at this level.

JDBC_TRANSACTION_READ_COMMITTED
This level means that any changes made inside a transaction are not visible outside it until the
transaction is committed. This prevents dirty reads from being possible.

JDBC_TRANSACTION_REPEATABLE_READ
This level means that rows that are read retain locks so that another transaction cannot change
them when the transaction is not completed. This disallows dirty reads and nonrepeatable reads.
Phantom read are still possible.

JDBC_TRANSACTION_SERIALIZABLE
Tables are locked for the transaction so that WHERE conditions cannot be changed by other
transactions that add values to or remove values from a table. This prevents all types of database
anomalies.

The setTransactionlsolation method can be used to change the transaction isolation level for a connection.

96 iSeries: IBM Developer Kit for Java

Considerations: A common misinterpretation is that the JDBC specification defines the five transactional
levels previously mentioned. It is commonly thought that the TRANSACTION_NONE value represents the
concept of running without commitment control. The JDBC specification does not define
TRANSACTION_NONE in the same manner. TRANSACTION_NONE is defined in the JDBC specification
as a level where the driver does not support transactions and is not a JDBC-compliant driver. The NONE
level is never reported when the getTransactionlsolation method is called.

The issue is marginally complicated by the fact that a JDBC driver’'s default transaction isolation level is
defined by the implementation. The default level of transaction isolation for the native JDBC driver default
transaction isolation level is NONE. This allows the driver to work with files that do not have journals and
you are not required to make any specifications such as files in the QGPL library.

The native JDBC driver allows you to pass JDBC_TRANSACTION_NONE to the setTransactionlsolation
method or specify none as a connection property. However, the getTransactionlsolation method always
reports JDBC_TRANSACTION_READ_UNCOMMITTED when the value is none. It is your application’s
responsibility to keep track of what level you are running if it is a requirement in your application.

In past releases, the JDBC driver would handle your specifying true for auto-commit by changing the
transaction isolation level to none because the system did not have a concept of a true auto-commit mode.
This was a close approximation of the functionality, but did not provide the correct results for all scenarios.
This is not done anymore; the database decouples the concept of auto-commit from the concept of a
transaction isolation level. Therefore, it is completely valid to run at the
JDBC_TRANSACTION_SERIALIZABLE level with auto-commit being enabled. The only scenario that is
not valid is to run at the JDBC_TRANSACTION_NONE level and not be in auto-commit mode. Your
application cannot take control over commit boundaries when the system is not running with a transaction
isolation level.

Transaction isolation levels between the JDBC specification and the iSeries platform: The iSeries platform
has common names for its transaction isolation levels that do not match those names provided by the
JDBC specification. The following table matches the names used by the iSeries platform, but are not
equivalent to those used by the JDBC specification:

JDBC level* iSeries level
JDBC_TRANSACTION_NONE *NONE or *NC
JDBC_TRANSACTION_READ_UNCOMMITTED *CHG or *UR
JDBC_TRANSACTION_READ_COMMITTED *CS
JDBC_TRANSACTION_REPEATABLE_READ *ALL or *RS
JDBC_TRANSACTION_SERIALIZABLE *RR

* In this table, the JDBC_TRANSACTION_NONE value is lined up with the iSeries levels “NONE and *NC
for clarity. This is not a direct specification-to-iSeries level match. %

Savepoints: % Savepoints allow the setting of "staging points” in a transaction. Savepoints are
checkpoints that the application can roll back to without throwing away the entire transaction. Savepoints
are new in JDBC 3.0, meaning that the application must run on Java‘™ Development Kit (JDK) 1.4 to use
them. Moreover, savepoints are new to the Developer Kit for Java, meaning that savepoints are not
supported if JDK 1.4 is not used with previous releases of the Developer Kit for Java.

Note: The system provides SQL statements for working with savepoints. It is advised that JDBC
applications do not use these statements directly in an application. Doing so may work, but the JDBC
driver loses its ability to track the your savepoints when this is done. At a minimum, mixing the two models
(that is, using your own savepoint SQL statements and using the JDBC API) should be avoided.

Chapter 1. IBM Developer Kit for Java 97

Set and roll back to savepoints: Savepoints can be set throughout the work of a transaction. The
application can then roll back to any of these savepoints if something goes wrong and continue processing
from that point. In the following example, the application inserts the value FIRST into a database table.
After that, a savepoint is set and another value, SECOND, is inserted into the database. A rollback to the
savepoint is issued and undoes the work of inserting SECOND, but leaves FIRST as part of the pending
transaction. Finally, the value THIRD is inserted and the transaction is committed. The database table
contains the values FIRST and THIRD.

Example: Set and roll back to savepoints

Note: Read the [Code example disclaimer for important legal information.

Statement s = Connection.createStatement();
s.executeUpdate("insert into tablel values ('FIRST')");
Savepoint ptl = connection.setSavepoint("FIRST SAVEPOINT");
s.executeUpdate("insert into tablel values ('SECOND')";);
connection.rollback(ptl); // Undoes most recent insert.
s.executeUpdate("insert into tablel values ('THIRD')");
connection.commit();

Although it is unlikely to cause problems to set savepoints while in auto-commit mode, they cannot be
rolled back as their lives end at the end of a transaction.

Release a savepoint: Savepoints can be released by the application with the releaseSavepoint method
on the Connection object. Once a savepoint has been released, attempting to roll back to it results in an
exception. When a transaction commits or rolls back, all savepoints automatically release. When a

savepoint is rolled back, other savepoints that follow it are also released. %

Distributed transactions

% Typically, transactions in Java™" Database Connectivity (JDBC) are local. This means that a single
connection performs all the work of the transaction and that the connection can only work on one
transaction at a time. When all the work for that transaction has been completed or has failed, commit or
rollback is called to make the work permanent, and a new transaction can begin.

There is advanced support for transactions available in Java that provides functionality beyond local

transactions. This support is fully specified by the lJava Transaction API (JTA) 1.0.1 specificationl 9 .

The Java Transaction APl (JTA) has support for complex transactions. It also provides support for
decoupling transactions from Connection objects. As JDBC is modeled after the Object Database
Connectivity (ODBC) and the X/Open Call Level Interface (CLI) specifications, JTA is modeled after the
X/Open Extended Architecture (XA) specification. JTA and JDBC work together to decouple transactions
from Connection objects. By decoupling transactions from Connection objects, this allows you to have a
single connection work on multiple transactions concurrently. Conversely, it allows you to have multiple
Connections work on a single transaction.

Note: If you are planning to work with JTA, refer to|Get started with JDBC|for more information about
required Java Archive (JAR) files in your extensions classpath. You want both the JDBC 2.0 optional
package and the JTA JAR files (these files are found automatically by the JDK if you are running JDK 1.4).
These are not found by default.

Transactions with JTA: When JTA and JDBC are used together, there are a series of steps between
them to accomplish transactional work. Support for XA is provided through the XADataSource class. This
class contains support for setting up connection pooling exactly the same way as its
ConnectionPoolDataSource superclass.

98 iSeries: IBM Developer Kit for Java

http://java.sun.com/products/jta/

With an XADataSource instance, you can retrieve an XAConnection object. The XAConnection object
serves as a container for both the JDBC Connection object and an XAResource object. The XAResource
object is designed to handle XA transactional support. XAResource handles transactions through objects
called transaction IDs (XIDs).

The XID is an interface that you must implement. It represents a Java mapping of the XID structure of the
X/Open transaction identifier. This object contains three parts:

» A global transaction’s format 1D
* A global transaction ID
* A branch qualifier

See the JTA specification for complete details on this interface.

|Examp|e: Use JTA to handle a transaction| shows how to use JTA to handle a transaction in an application.

Use UDBXADataSource support for pooling and distributed transactions: The Java Transaction API
support provides direct support for connection pooling. UDBXADataSource is an extension of a
ConnectionPoolDataSource, allowing application access to pooled XAConnection objects. Since
UDBXADataSource is a ConnectionPoolDataSource, the configuration and use of the UDBXADataSource
is the same as that described in [Use DataSource support for object pooling|

XADataSource properties: In addition to the provided by the ConnectionPoolDataSource, the
XADataSource interface provides the following properties:

Set method Values Description

(data type)

setLockTimeout 0 or any positive value Any positive value is a valid lock
(int) timeout (in seconds) at the

transaction level.

A lock timeout of 0 means that there
is no lock timeout value enforced at
the transaction level, although there
may be one enforced at other levels
(the job or the table).

The default value is 0.

setTransactionTimeout 0 or any positive value Any positive value is a valid
(int) transaction timeout (in seconds).

A transaction timeout of 0 means that
there is no transaction timeout value
enforced. If the transaction is active
for longer than the timeout value, it is
marked rollback only, and subsequent
attempts to perform work under it
causes an exception to occur.

The default value is 0.

ResultSets and transactions: Besides demarcating the start and end of a transaction as shown in the
previous example, transactions can be suspended for a time and resumed later. This provides a number of
scenarios for ResultSet resources that are created during a transaction.

Simple transaction end: When you end a transaction, all open ResultSets that were created under that
transaction automatically close. It is recommended that you explicitly close your ResultSets when you are

Chapter 1. IBM Developer Kit for Java 99

finished using them to ensure maximum parallel processing. However, an exception results if any
ResultSets that were opened during a transaction are accessed after the XAResource.end call is made.

See [Example: End a transaction|that shows this behavior.

Suspend and resume: While a transaction is suspended, access to a ResultSet created while the
transaction was active is not allowed and results in an exception. However, once the transaction is
resumed, the ResultSet is available again and remains in the same state it was in before the transaction
was suspended.

See [Example: Suspend and resume a transaction| that shows this behavior.

Effecting suspended ResultSets: While a transaction is suspended, the ResultSet cannot be accessed.
However, Statement objects can be reprocessed under another transaction to perform work. Because
JDBC Statement objects can have only one ResultSet at a time (excluding the JDBC 3.0 support for
multiple concurrent ResultSets from a stored procedure call), the ResultSet for the suspended transaction
must be closed to fulfill the request of the new transaction. This is exactly what happens.

See [Example: Suspended ResultSets|that shows this behavior.

Note: Although JDBC 3.0 allows a Statement to have multiple ResultSets open simultaneously for a stored
procedure call, they are treated as a single unit and all of them close if the Statement is reprocessed
under a new transaction. Currently, it is not possible to have ResultSets from two transactions active
simultaneously for a single statement.

Multiplexing: The JTA API is designed to decouple transactions from JDBC connections. This API allows
you to have either multiple connections work on a single transaction or a single connection work on
multiple transactions concurrently. This is called multiplexing and many complex tasks can be performed
that cannot be accomplished with JDBC alone.

This lexample[shows multiple connections working on a single transaction.
This |example[shows a single connection with multiple transactions taking place at once.

For further information on using JTA, see the JTA specification. The JDBC 3.0 specification also contains
information on how these two technologies work together to support distributed transactions.

Two-phase commit and transaction logging: The JTA APIs externalize the responsibilities of the
distributed two-phase commit protocol completely to the application. As the examples have shown, when
using JTA and JDBC to access a database under a JTA transaction, the application uses the
XAResource.prepare() and XAResource.commit() methods or just the XAResource.commit() method to
commit the changes.

In addition, when accessing multiple distinct databases using a single transaction, it is the application’s
responsibility to ensure that the two-phase commit protocol and any associated logging required for
transaction atomicity across those databases are performed. Typically, the two-phase commit processing
across multiple databases (that is, XAResources) and its logging are performed under the control of an
application server or transaction monitor so that the application itself does not actually concern itself with
these issues.

For example, the application may call some commit() method or return from its processing with no errors.

The underlying application server or transaction monitor would then begin processing for each database
(XAResource) that participated in the single distributed transaction.

100 iSeries: IBM Developer Kit for Java

The application server would use extensive logging during the two-phase commit processing. It would call
the XAResource.prepare() method in turn for each participant database (XAResource), followed by a call
to the XAResource.commit() method for each participant database (XAResource).

If a failure occurs during this processing, the application server’s transaction monitor logs allow the
application server itself to subsequently use the JTA APIs to recover the distributed transaction. This
recovery, under the control of the application server or transaction monitor, allows the application server to
get the transaction to a known state at each participant database (XAResource). This ensures a

well-known state of the entire distributed transaction across all participant databases. 4%

Example: Use JTA to handle a transaction: #* This is an example of how to use the Java‘™
Transaction API (JTA) to handle a transaction in an application.

Example: Use JTA to handle a transaction

Note: Read the [Code example disclaimer| for important legal information.

import java.sql.=*;

import javax.sql.*;

import java.util.*;

import javax.transaction.*;
import javax.transaction.xa.*;
import com.ibm.db2.jdbc.app.*;

public class JTACommit {

public static void main(java.lang.String[] args) {
JTACommit test = new JTACommit();

test.setup();
test.run();

[*%

* Handle the previous cleanup run so that this test can recommence.
*/

public void setup() {

Connection ¢ = null;
Statement s = null;

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver”);

¢ = DriverManager.getConnection(”jdbc:db2:*1ocal”);
s = c.createStatement();
try {

s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");
} catch (SQLException e) {

// Ignore... does not exist
}

s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");
s.close();

} finally {
if (¢ !'= null) {

Chapter 1. IBM Developer Kit for Java 101

c.close();

}
}
}
[x*
* This test uses JTA support to handle transactions.
*/

public void run() {
Connection ¢ = null;

try {
Context ctx = new InitialContext();

// Assume the data source is backed by a UDBXADataSource.
UDBXADataSource ds = (UDBXADataSource) ctx.lookup(”XADataSource”);

// From the DataSource, obtain an XAConnection object that
// contains an XAResource and a Connection object.
XAConnection xaConn = ds.getXAConnection();

XAResource xaRes = xaConn.getXAResource();

Connection c xaConn.getConnection();

// For XA transactions, a transaction identifier is required.

// An implementation of the XID interface is not included with the
// JDBC driver. See [Transactions with JTA for a description of

// this interface to build a class for it.

Xid xid = new XidImp1();

// The connection from the XAResource can be used as any other
// JDBC connection.
Statement stmt = c.createStatement();

// The XA resource must be notified before starting any
// transactional work.
xaRes.start(xid, XAResource.TMNOFLAGS);

// Standard JDBC work is performed.
int count = stmt.executeUpdate(”INSERT INTO CUJOSQL.JTATABLE VALUES(’JTA is pretty fun.’)");

// When the transaction work has completed, the XA resource must
// again be notified.
xaRes.end(xid, XAResource.TMSUCCESS);

// The transaction represented by the transaction ID is prepared
// to be committed.
int rc = xaRes.prepare(xid);

// The transaction is committed through the XAResource.
// The JDBC Connection object is not used to commit

// the transaction when using JTA.

xaRes.commit(xid, false);

} catch (Exception e) {

102 iSeries: IBM Developer Kit for Java

System.out.printin(”"Something has gone wrong.");
e.printStackTrace();

} finally {
try {
if (¢ != null)
c.close();

} catch (SQLException e) {
System.out.printin("Note: Cleaup exception.”);
e.printStackTrace();

{{

Example: Multiple connections that work on a transaction: ** This is an example of how to use

multiple connections working on a single transaction.

Example: Multiple connections that work on a transaction

Note: Read the [Code example disclaimer] for important legal information.

import java.sql.=;
import javax.sql.*;
import java.util.*;
import javax.transaction.x*;
import javax.transaction.xa.*;
import com.ibm.db2.jdbc.app.*;
public class JTAMultiConn {
public static void main(java.lang.String[] args) {
JTAMuTtiConn test = new JTAMultiConn();
test.setup();
test.run();
1
[*%
* Handle the previous cleanup run so that this test can recommence.
*
/
public void setup() {
Connection ¢ = null;
Statement s = null;
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
s = c.createStatement();
try {
s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

}
catch (SQLException e) {
// Ignore... does not exist

}
s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR

(50))");
s.close();

}
finally {

if (¢ !'= null) {

c.close();

}

}

}

[**
* This test uses JTA support to handle transactions.

Chapter 1. IBM Developer Kit for Java

103

*/
public void run() {

Connection ¢l = null;

Connection ¢2 = null;

Connection ¢3 = null;

try {
Context ctx = new InitialContext();
// Assume the data source is backed by a UDBXADataSource.
UDBXADataSource ds = (UDBXADataSource)

ctx.Tookup("XADataSource");

// From the DataSource, obtain some XAConnection objects that
// contain an XAResource and a Connection object.
XAConnection xaConnl = ds.getXAConnection();
XAConnection xaConn2 = ds.getXAConnection();
XAConnection xaConn3 = ds.getXAConnection();
XAResource xaResl = xaConnl.getXAResource();
XAResource xaRes2 = xaConn2.getXAResource();
XAResource xaRes3 = xaConn3.getXAResource();
cl = xaConnl.getConnection();
c2 = xaConn2.getConnection();
c3 = xaConn3.getConnection();
Statement stmtl = cl.createStatement();
Statement stmt2 = c2.createStatement();
Statement stmt3 = c3.createStatement();
// For XA transactions, a transaction identifier is required.
// Support for creating XIDs is again left to the application
// program.
Xid xid = JDXATest.xidFactory();
// Perform some transactional work under each of the three
// connections that have been created.
xaResl.start(xid, XAResource.TMNOFLAGS);
int countl = stmtl.executeUpdate("INSERT INTO " + tableName + "VALUES('Value 1-A')");
xaResl.end(xid, XAResource.TMNOFLAGS);

xaRes2.start(xid, XAResource.TMJOIN);
int count2 = stmt2.executeUpdate("INSERT INTO " + tableName + "VALUES('Value 1-B')");
xaRes2.end(xid, XAResource.TMNOFLAGS);

xaRes3.start(xid, XAResource.TMJOIN);
int count3 = stmt3.executeUpdate("INSERT INTO " + tableName + "VALUES('Value 1-C')");
xaRes3.end(xid, XAResource.TMSUCCESS);
// When completed, commit the transaction as a single unit.
// A prepare() and commit() or 1 phase commit() is required for
// each separate database (XAResource) that participated in the
// transaction. Since the resources accessed (xaResl, xaRes2, and xaRes3)
// all refer to the same database, only one prepare or commit is required.
int rc = xaRes.prepare(xid);
xaRes.commit(xid, false);
}
catch (Exception e) {
System.out.printin("Something has gone wrong.");
e.printStackTrace();
}
finally {
try {
if (cl !'= null) {
cl.close();
}

}
catch (SQLException e) {
System.out.printin("Note: Cleaup exception " +
e.getMessage());
}

try {

if (c2 !'= null) {
c2.close();
}

104 iSeries: IBM Developer Kit for Java

&

}
catch (SQLException e) {

System.out.printIn("Note: Cleaup exception " +
e.getMessage());
}
try {
if (c3 != null) {
c3.close();
}

}
catch (SQLException e) {
System.out.printin("Note: Cleaup exception " +
e.getMessage());

Example: Use a connection with multiple transactions: % This is an example of how to use a single
connection with multiple transactions.

Example: Use a connection with multiple transactions

Note: Read the [Code example disclaimer| for important legal information.

import
import
import
import
import
import

public

java.sql.*;
Jjavax.sql.=*;
Jjava.util.*;
javax.transaction.*;
javax.transaction.xa.*;
com.ibm.db2.jdbc.app.*;

class JTAMultiTx {

public static void main(java.lang.String[] args) {

[**

*

*/

JTAMUTtiTx test = new JTAMultiTx();

test.setup();
test.run();

Handle the previous cleanup run so that this test can recommence.

public void setup() {

Connection ¢ = null;

Statement s = null;

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
s = c.createStatement();

try {

s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");
} catch (SQLException e) {

// Ignore... does not exist
}

s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");

s.close();
} finally {

Chapter 1. IBM Developer Kit for Java

105

if (¢ !'= null) {

c.close();
}
}
}
[**
* This test uses JTA support to handle transactions.
*/

public void run() {
Connection ¢ = null;

try {
Context ctx = new InitialContext();

// Assume the data source is backed by a UDBXADataSource.
UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

// From the DataSource, obtain an XAConnection object that
// contains an XAResource and a Connection object.
XAConnection xaConn = ds.getXAConnection();

XAResource xaRes = xaConn.getXAResource();

Connection c = xaConn.getConnection();

Statement stmt = c.createStatement();

// For XA transactions, a transaction identifier is required.

// This is not meant to imply that all the XIDs are the same.

// Each XID must be unique to distinguish the various transactions
// that occur.

// Support for creating XIDs is again left to the application

// program.

Xid xidl = JDXATest.xidFactory();

Xid xid2 = JDXATest.xidFactory();

Xid xid3 = JDXATest.xidFactory();

// Do work under three transactions for this connection.

xaRes.start(xidl, XAResource.TMNOFLAGS);

int countl = stmt.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES('Value 1-A')");
xaRes.end(xidl, XAResource.TMNOFLAGS);

xaRes.start(xid2, XAResource.TMNOFLAGS);
int count2 = stmt.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES('Value 1-B')");
xaRes.end(xid2, XAResource.TMNOFLAGS);

xaRes.start(xid3, XAResource.TMNOFLAGS);
int count3 = stmt.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES('Value 1-C')");
xaRes.end(xid3, XAResource.TMNOFLAGS);

// Prepare all the transactions
int rcl = xaRes.prepare(xidl);
int rc2 = xaRes.prepare(xid2);
int rc3 = xaRes.prepare(xid3);

// Two of the transactions commit and one rolls back.

// The attempt to insert the second value into the table is
// not committed.

xaRes.commit(xidl, false);

xaRes.rollback(xid2);

xaRes.commit(xid3, false);

} catch (Exception e) {
System.out.printIn("Something has gone wrong.");
e.printStackTrace();

} finally {
try {

106 iSeries: IBM Developer Kit for Java

b

if (c !'= null)
c.close();
} catch (SQLException e) {
System.out.printin("Note: Cleaup exception.");
e.printStackTrace();

Example: Suspended ResultSets: ¥+ This is an example of the how a Statement object is reprocessed
under another transaction to perform work.

Example: Suspended ResultSets

Note: Read the |Code example disclaimer| for important legal information.

import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.=;
import javax.transaction.xa.*;
import com.ibm.db2.jdbc.app.*;

public class JTATxEffect {

public static void main(java.lang.String[] args) {
JTATxEffect test = new JTATxEffect();

test.setup();
test.run();

[x%

* Handle the previous cleanup run so that this test can recommence.
*/

public void setup() {

Connection ¢ = null;

Statement s = null;

try {
Class.forName(”"com.ibm.db2.jdbc.app.DB2Driver”);
¢ = DriverManager.getConnection(”jdbc:db2:*1ocal”);
s = c.createStatement();

try {

s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");
} catch (SQLException e) {

// Ignore... does not exist

}

s.executeUpdate ("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");
s.executeUpdate ("INSERT INTO CUJOSQL.JTATABLE VALUES(’Fun with JTA’)");
s.executeUpdate ("INSERT INTO CUJOSQL.JTATABLE VALUES(’JTA is fun.)");

Chapter 1. IBM Developer Kit for Java

107

s.close();
} finally {
if (¢ != null) {
c.close();

}
}
}
[**
* This test uses JTA support to handle transactions.
*/

public void run() {
Connection ¢ = null;

try {
Context ctx = new InitialContext();

// Assume the data source is backed by a UDBXADataSource.
UDBXADataSource ds = (UDBXADataSource) ctx.lookup(”XADataSource”);

// From the DataSource, obtain an XAConnection object that
// contains an XAResource and a Connection object.
XAConnection xaConn = ds.getXAConnection();

XAResource xaRes = xaConn.getXAResource();

Connection o xaConn.getConnection();

// For XA transactions, a transaction identifier is required.
// An implementation of the XID interface is not included with
// the JDBC driver. See [Transactions with JTA

// for a description of this interface to build a

// class for it.

Xid xid = new XidImp1();

// The connection from the XAResource can be used as any other
// JDBC connection.
Statement stmt = c.createStatement();

// The XA resource must be notified before starting any
// transactional work.
xaRes.start(xid, XAResource.TMNOFLAGS);

// Create a ResultSet during JDBC processing and fetch a row.
ResultSet rs = stmt.executeUpdate(”"SELECT * FROM CUJOSQL.JTATABLE");
rs.next();

// The end method is called with the suspend option. The

// ResultSets associated with the current transaction are on hold’.
// They are neither gone nor accessible in this state.
xaRes.end(xid, XAResource.TMSUSPEND);

// In the meantime, other work can be done outside the transaction.
// The ResultSets under the transaction can be closed if the
// Statement object used to create them is reused.

108 iSeries: IBM Developer Kit for Java

ResultSet nonXARS = stmt.executeQuery("SELECT * FROM CUJOSQL.JTATABLE");
while (nonXARS.next()) {
// Process here...

}

// Attempt to go back to the suspended transaction. The suspended
// transaction’s ResultSet has disappeared because the statement
// has been processed again.
xaRes.start(newXid, XAResource.TMRESUME);
try {
rs.next();
} catch (SQLException ex) {
System.out.printin("This exception is expected. The ResultSet closed due to another process.’

}

// When the transaction had completed, end it
// and commit any work under it.
xaRes.end(xid, XAResource.TMNOFLAGS);

int rc = xaRes.prepare(xid);
xaRes.commit(xid, false);

} catch (Exception e) {
System.out.printin(”"Something has gone wrong.”);
e.printStackTrace();
} finally {
try {
if (¢ != null)
c.close();
} catch (SQLException e) {
System.out.printin("Note: Cleaup exception.”);
e.printStackTrace();

&

Example: End a transaction: # This is an example of ending a transaction in your application.

Example: End a transaction

Note: Read the [Code example disclaimer] for important legal information.

import java.sql.=*;

import javax.sql.*;

import java.util.x;

import javax.transaction.=;
import javax.transaction.xa.*;
import com.ibm.db2.jdbc.app.*;

public class JTATxEnd {

Chapter 1. IBM Developer Kit for Java 109

public static void main(java.lang.String[] args) {
JTATXEnd test = new JTATXEnd();

test.setup();
test.run();

[**

* Handle the previous cleanup run so that this test can recommence.
*/

public void setup() {

Connection ¢ = null;
Statement s = null;

try {
Class.forName(”com.ibm.db2.jdbc.app.DB2Driver”);

¢ = DriverManager.getConnection(”jdbc:db2:*1ocal”);
s = c.createStatement();
try {

s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");
} catch (SQLException e) {
// Ignore... does not exist

s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");
s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’Fun with JTA’)");
s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES(’JTA is fun.)");

s.close();
} finally {
if (¢ !'= null) {
c.close();
}
}
}
[**
* This test use JTA support to handle transactions.

*/
public void run() {
Connection ¢ = null;

try {
Context ctx = new InitialContext();

// Assume the data source is backed by a UDBXADataSource.
UDBXADataSource ds = (UDBXADataSource) ctx.lookup(”XADataSource”);

// From the DataSource, obtain an XAConnection object that
// contains an XAResource and a Connection object.
XAConnection xaConn = ds.getXAConnection();

XAResource xaRes = xaConn.getXAResource();

Connection C xaConn.getConnection();

110 iSeries: IBM Developer Kit for Java

// For XA transactions, transaction identifier is required.
// An implementation of the XID interface is not included
// with the JDBC driver. See [Transactions with JTA for a
// description of this interface to build a class for it.
Xid xid = new XidImp1();

// The connection from the XAResource can be used as any other
// JDBC connection.
Statement stmt = c.createStatement();

// The XA resource must be notified before starting any
// transactional work.
xaRes.start(xid, XAResource.TMNOFLAGS);

// Create a ResultSet during JDBC processing and fetch a row.
ResultSet rs = stmt.executeUpdate(”SELECT * FROM CUJOSQL.JTATABLE");
rs.next();

// When the end method is called, all ResultSet cursors close.
// Accessing the ResultSet after this point results in an

// exception being thrown.

xaRes.end(xid, XAResource.TMNOFLAGS);

try {

String value = rs.getString(1);

System.out.printin(”"Something failed if you receive this message.”);
} catch (SQLException e) {

System.out.printin("The expected exception was thrown.”);

}

// Commit the transaction to ensure that all locks are
// released.

int rc = xaRes.prepare(xid);

xaRes.commit(xid, false);

} catch (Exception e) {
System.out.printin(”Something has gone wrong.”);
e.printStackTrace();

} finally {
try {
if (¢ !'= null)
c.close();

} catch (SQLException e) {
System.out.printin("Note: Cleaup exception.”);
e.printStackTrace();

b

Example: Suspend and resume a transaction: #* This is an example of a transaction that is
suspended and then is resumed.

Chapter 1. IBM Developer Kit for Java 111

Example: Suspend and resume a transaction

Note: Read the |Code example disclaimer| for important legal information.

import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.x;
import javax.transaction.xa.*;
import com.ibm.db2.jdbc.app.*;

public class JTATxSuspend {

public static void main(java.lang.String[] args) {
JTATxSuspend test = new JTATxSuspend();

test.setup();
test.run();

[*%

* Handle the previous cleanup run so that this test can recommence.
*/

public void setup() {

Connection ¢ = null;
Statement s = null;

try {
Class.forName(”"com.ibm.db2.jdbc.app.DB2Driver”);

c = DriverManager.getConnection(”jdbc:db2:*1ocal”);
s = c.createStatement();
try {

s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");
} catch (SQLException e) {

// Ignore... doesn’t exist
}

s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");
s.executeUpdate ("INSERT INTO CUJOSQL.JTATABLE VALUES(’Fun with JTA’)");
s.executeUpdate ("INSERT INTO CUJOSQL.JTATABLE VALUES(’JTA is fun.)");

s.close();
} finally {
if (¢ !'= null) {
c.close();

}
}
}
[**
* This test uses JTA support to handle transactions.
*/

public void run() {

112 iSeries: IBM Developer Kit for Java

Connection ¢ = null;

try {
Context ctx = new InitialContext();

// Assume the data source is backed by a UDBXADataSource.
UDBXADataSource ds = (UDBXADataSource) ctx.lookup(”XADataSource”);

// From the DataSource, obtain an XAConnection object that
// contains an XAResource and a Connection object.
XAConnection xaConn = ds.getXAConnection();

XAResource xaRes = xaConn.getXAResource();

Connection o xaConn.getConnection();

// For XA transactions, a transaction identifier is required.
// An implementation of the XID interface is not included with
// the JDBC driver. [Transactions with JTA for a

// description of this interface to build a class for it.

Xid xid = new XidImp1();

// The connection from the XAResource can be used as any other
// JDBC connection.
Statement stmt = c.createStatement();

// The XA resource must be notified before starting any
// transactional work.
xaRes.start(xid, XAResource.TMNOFLAGS);

// Create a ResultSet during JDBC processing and fetch a row.
ResultSet rs = stmt.executeUpdate(”"SELECT * FROM CUJOSQL.JTATABLE");
rs.next();

// The end method is called with the suspend option. The

// ResultSets associated with the current transaction are ’on hold’.
// They are neither gone nor accessible in this state.
xaRes.end(xid, XAResource.TMSUSPEND);

// Other work can be performed with the transaction.
// As an example, you can create a statement and process a query.
// This work and any other transactional work that the transaction may
// perform is separate from the work done previously under the XID.
Statement nonXAStmt = conn.createStatement();
ResultSet nonXARS = nonXAStmt.executeQuery("SELECT * FROM CUJOSQL.JTATABLE");
while (nonXARS.next()) {
// Process here...
}
nonXARS.close();
nonXAStmt.close();

// If an attempt is made to use any suspended transactions
// resources, an exception results.
try {
rs.getString(1);
System.out.printin("Value of the first row is ” + rs.getString(1));

Chapter 1. IBM Developer Kit for Java 113

} catch (SQLException e) {
System.out.printin("This was an expected exception - suspended ResultSet was used.”);

}

// Resume the suspended transaction and complete the work on it.

// The ResultSet is exactly as it was before the suspension.
xaRes.start(newXid, XAResource.TMRESUME);

rs.next();

System.out.printin(”"Value of the second row is ” + rs.getString(1));

// When the transaction has completed, end it
// and commit any work under it.
xaRes.end(xid, XAResource.TMNOFLAGS);

int rc = xaRes.prepare(xid);
xaRes.commit(xid, false);

} catch (Exception e) {
System.out.printin(”Something has gone wrong.”);
e.printStackTrace();

} finally {
try {
if (¢ !'= null)
c.close();

} catch (SQLException e) {
System.out.printin("Note: Cleaup exception.”);
e.printStackTrace();

b

Statement types

#* The Statement interface and its PreparedStatement and CallableStatement subclasses are used to
process structured query language (SQL) commands against the database. SQL statements cause the
generation of ResultSet objects.

Subclasses of the Statement interface are created with a number of methods on the Connection interface.
A single Connection object can have many Statement objects created under it simultaneously. In past
releases, it was possible to give exact numbers of Statement objects that could be created. It is impossible
to do so in this release because different types of Statement objects take different numbers of "handles”
within the database engine. Therefore, the types of Statement objects you are using influence the number
of statements that can be active under a connection at a single time.

An application calls the Statement.close method to indicate that the application has finished processing a
statement. All Statement objects are closed when the connection that created them is closed. However,
you should not fully rely on this behavior to close Statement objects. For example, if your application
changes so that a connection pool is used instead of explicitly closing the connections, the application
“leaks” statement handles because the connections never close. Closing Statement objects as soon as
they are no longer required allows external database resources that the statement is using to be released
immediately.

114 iSeries: IBM Developer Kit for Java

The native JDBC driver attempts to detect statement leaks and handles them on you behalf. However,
relying on that support results in poorer performance.

To use statements and its subclasses, see the following:

A Statement object is used for processing a static SQL statement and obtaining the results produced
by it.

[PreparedStatements|
PreparedStatement is a subclass of the Statement interface and provides support for adding
parameters to SQL statements.

[CallableStatements|
CallableStatements extend the PreparedStatement interface and provide support for output and
input/output parameters in addition to the input parameter support provided by PreparedStatement.

Due to the inheritance hierarchy that CallableStatement extends PreparedStatement which extends
Statement, features of each interface are available in the class that extend the interface. For example,
features of the Statement class are also supported in the PreparedStatement and CallableStatement
classes. The main exception is the executeQuery, executeUpdate, and execute methods on the Statement
class. These methods take in an SQL statement to dynamically process and cause exceptions if you

attempt to use them with PreparedStatement or CallableStatement objects. 4

Statements: ** A Statement object is used for processing a static SQL statement and obtaining the
results produced by it. Only one ResultSet for each Statement object can be open at a time. All statement
methods that process an SQL statement implicitly close a statement’s current ResultSet if an open one
exists.

Create statements: Statement objects are created from Connection objects with the createStatement
method. For example, assuming a Connection object named conn already exists, the following line of code
creates a Statement object for passing SQL statements to the database:

Statement stmt = conn.createStatement();
<H7>Specify ResultSet characteristics
The characteristics of ResultSets are associated with the statement that eventually creates them. The
Connection.createStatement method allows you to specify these ResultSet characteristics. The following

are some examples of valid calls to the createStatement method:

Example: The createStatement method

Note: Read the [Code example disclaimer for important legal information.
// The following is new in JDBC 2.0

Statement stmt2 = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATEABLE);

// The following is new in JDBC 3.0

Statement stmt3 = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY, ResultSet.HOLD_CURSOR_OVER_COMMIT);

For more information about these characteristics, see |ResultSets]|.

<H7>Process statements

Chapter 1. IBM Developer Kit for Java 115

Processing SQL statements with a Statement object is accomplished with the executeQuery(),
executeUpdate(), and execute() methods.

Return results from SQL queries: 1If an SQL query statement returning a ResultSet object is to be
processed, the executeQuery() method should be used. You can refer to the program that uses a
Statement object’s executeQuery method to obtain a ResultSet.

Note: If an SQL statement processed with executeQuery does not return a ResultSet, an SQLException is
thrown.

<h7>Return update counts for SQL Statements
If the SQL is known to be a Data Definition Language (DDL) statement or a Data Manipulation Language

(DML) statement returning an update count, the executeUpdate() method should be used. The
|StatementExampIe| program uses a Statement object’s executeUpdate method.

<h7>Process SQL statements where the expected return is unknown

If the SQL statement type is not known, the execute method should be used. Once this method has been
processed, the JDBC driver can tell the application what types of results the SQL statement has generated
through API calls. The execute method returns true if the result is at least one ResultSet and false if the
return value is an update count. Given this information, applications can use the statement method’s
getUpdateCount or getResultSet to retrieve the return value from processing the SQL statement. The
StatementExecute program uses the execute method on a Statement object. This program expects a
parameter to be passed that is an SQL statement. Without looking at the text of the SQL that you provide,
the program processes the statement and determines information about what was processed.

Note: Calling the getUpdateCount method when the result is a ResultSet returns -1. Calling the
getResultSet method when the result is an update count returns null.

The cancel method: The methods of the native JDBC driver are synchronized to prevent two threads
running against the same object from corrupting the object. An exception is the cancel method. The cancel
method can be used by one thread to stop a long running SQL statement on another thread for the same
object. The native JDBC driver cannot force the thread to stop doing work; it can only request that it stop
whatever task it was doing. For this reason, it still takes time for a cancelled statement to stop. The cancel

method can be used to halt runaway SQL queries on the system. %

Example: Use the Statement object’s executeUpdate method: ** This is an example of how to use
the Statement object’s executeUpdate method.

Example: Use the Statement object’'s executeUpdate method

Note: Read the [Code example disclaimer] for important legal information.

import java.sql.*;
import java.util.Properties;

public class StatementExample {

public static void main(java.lang.String[] args)

{

// Suggestion: Load these from a properties object.
String DRIVER = "com.ibm.db2.jdbc.app.DB2Driver";
String URL = "jdbc:db2://*1ocal";

// Register the native JDBC driver. If the driver cannot be

// registered, the test cannot continue.
try {

116 iSeries: IBM Developer Kit for Java

Class.forName (DRIVER);

} catch (Exception e) {
System.out.printIn("Driver failed to register.");
System.out.printin(e.getMessage());
System.exit(1);

}

Connection ¢ = null;
Statement s = null;

try {
// Create the connection properties.

Properties properties = new Properties ();
properties.put ("user", "userid");
properties.put ("password", "password");

// Connect to the local iSeries database.
¢ = DriverManager.getConnection(URL, properties);

// Create a Statement object.
s = c.createStatement();
// Delete the test table if it exists. Note: This
// example assumes that the collection MYLIBRARY
// exists on the system.
try {
s.executeUpdate("DROP TABLE MYLIBRARY.MYTABLE");
} catch (SQLException e) {
// Just continue... the table probably does not exist.
}

// Run an SQL statement that creates a table in the database.
s.executeUpdate ("CREATE TABLE MYLIBRARY.MYTABLE (NAME VARCHAR(20), ID INTEGER)");

// Run some SQL statements that insert records into the table.

s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES ('RICH', 123)");
s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES ('FRED', 456)");
s.executeUpdate ("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES ('MARK', 789)");

// Run an SQL query on the table.
ResultSet rs = s.executeQuery("SELECT %= FROM MYLIBRARY.MYTABLE");

// Display all the data in the table.
while (rs.next()) {

System.out.printIn("Employee " + rs.getString(1l) + " has ID " + rs.getInt(2));
}

} catch (SQLException sqle) {
System.out.printin("Database processing has failed.");
System.out.printin("Reason: " + sqle.getMessage());

} finally {
// Close database resources

try {
if (s !'=null) {
s.close();

} catch (SQLException e) {
System.out.printin("Cleanup failed to close Statement.");
}

}
try {
if (¢ !'= null) {
c.close();
}

} catch (SQLException e) {
System.out.printin("Cleanup failed to close Connection.");

Chapter 1. IBM Developer Kit for Java 117

}

PreparedStatements: ¥ PreparedStatements extend the Statement interface and provide support for
adding parameters to SQL statements.

SQL statements that are passed to the database go through a two-step process in returning results to you.
They are first prepared and then are processed. With Statement objects, these two phases appear to be
one phase to your applications. PreparedStatements allow these two steps to be broken apart. The
preparation step occurs when the object is created and the processing step occurs when the
executeQuery, executeUpdate, or execute method are called on the PreparedStatement object.

Being able to split the SQL processing into separate phases are meaningless without the addition of
parameter markers. Parameter markers are placed in an application so that it can tell the database that it
does not have a specific value at preparation time, but that it provides one before processing time.
Parameter markers are represented in SQL statements by question marks.

Parameter markers make it possible to make general SQL statements that are used for specific requests.
For example, take the following SQL query statement:

SELECT * FROM EMPLOYEE_TABLE WHERE LASTNAME = 'DETTINGER'

This is a specific SQL statement that returns only one value; that is, information about an employee
named Dettinger. By adding a parameter marker, the statement can become more flexible:

SELECT = FROM EMPLOYEE_TABLE WHERE LASTNAME = ?

By simply setting the parameter marker to a value, information can be obtained about any employee in the
table.

PreparedStatements provide significant performance improvements over Statements because the previous
Statement example can go through the preparation phase only once and then be processed repeatedly
with different values for the parameter.

Note: Using PreparedStatements is a requirement to support the native JDBC driver’s statement pooling.

Create PreparedStatements: The prepareStatement method is used to create new PreparedStatement
objects. Unlike the createStatement method, the SQL statement must be supplied when the
PreparedStatement object is created. At that time, the SQL statement is precompiled for use. For example,
assuming a Connection object named conn already exists, the following example creates a
PreparedStatement object and prepares the SQL statement for processing within the database.

PreparedStatement ps = conn.prepareStatement ("SELECT * FROM EMPLOYEE_ TABLE
WHERE LASTNAME = ?");

Specify ResultSet characteristics and auto-generated key support: As with the createStatement method,
the prepareStatement method is overloaded to provide support for specifying ResultSet characteristics.
The prepareStatement method also has variations for working with auto-generated keys. The following are
some examples of valid calls to the prepareStatement method:

Example: The prepareStatement method

Note: Read the |Code example disclaimer| for important legal information.
// New in JDBC 2.0

PreparedStatement ps2 = conn.prepareStatement ("SELECT * FROM
EMPLOYEE_TABLE WHERE LASTNAME = ?",

118 iSeries: IBM Developer Kit for Java

ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATEABLE);

// New in JDBC 3.0

PreparedStatement ps3 = conn.prepareStatement ("SELECT * FROM
EMPLOYEE_TABLE WHERE LASTNAME = ?",
ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATEABLE,
ResultSet.HOLD _CURSOR_OVER_COMMIT);

PreparedStatement ps4 = conn.prepareStatement ("SELECT * FROM
EMPLOYEE_TABLE WHERE LASTNAME = ?", Statement.RETURN_GENERATED_KEYS);

Handle parameters: Before a PreparedStatement object can be processed, each of the parameter
markers must be set to some value. The PreparedStatement object provides a number of methods for
setting parameters. All methods are of the form set<Type>, where <Type> is a Java data type. Some
examples of these methods include setint, setLong, setString, setTimestamp, setNull, and setBlob. Nearly
all of these methods take two parameters:

» The first parameter is the index of the parameter within the statement. Parameter markers are
numbered, starting with 1.

» The second parameter is the value to set the parameter to. There are a couple set<Type> methods that
have additional parameters such as the length parameter on setBinaryStream.

Consult the Javadoc for the package for more information. Given the prepared SQL statement in
the previous examples for the ps object, the following code illustrates how the parameter value is specified
before processing:

ps.setString(1, 'Dettinger');

If an attempt is made to process a PreparedStatement with parameter markers that have not been set, an
SQLException is thrown.

Note: Once set, parameter markers hold the same value between processes unless the following
situations occur:

* The value is changed by another call to a set method.
* The value is removed when the clearParameters method is called.

The clearParameters method flags all parameters as being unset. After the call to clearParameters has
been made, all the parameters must have the set method called again before the next process.

ParameterMetaData support: A new ParameterMetaData interface allows you to retrieve information
about a parameter. This support is the compliment to ResultSetMetaData and is similar. Information such
as the precision, scale, data type, data type name, and whether the parameter allows the null value are all
provided.

See [Example: ParameterMetaDatalon how to use this new support in an application program. 4%

Process PreparedStatements: % Processing SQL statements with a PreparedStatement object is
accomplished with the executeQuery, executeUpdate, and execute methods like Statement objects are
processed. Unlike Statement versions, no parameters are passed on these methods since the SQL
statement was already provided when the object was created. Because PreparedStatement extends
Statement, applications can attempt to call versions of executeQuery, executeUpdate, and execute
methods that take a SQL statement. Doing so results in an SQLException being thrown.

Return results from SQL queries: |If an SQL query statement that returns a ResultSet object is to be
processed, the executeQuery method should be used. The |PreparedStatementExample| program uses a
PreparedStatement object’s executeQuery method to obtain a ResultSet.

Chapter 1. IBM Developer Kit for Java 119

javaapi/api/java/sql/package-summary.html

Note: If an SQL statement processed with the executeQuery method does not return a ResultSet, an
SQLException is thrown.

Return update counts for SQL statements: If the SQL is known to be a Data Definition Language (DDL)
statement or a Data Manipulation Language (DML) statement that returns an update count, the
executeUpdate method should be used. The PreparedStatementExampIel sample program uses a
PreparedStatement object’'s executeUpdate method.

Process SQL statements where the expected return is unknown: If the SQL statement type is not known,
the execute method should be used. Once this method has been processed, the JDBC driver can tell the
application what results types the SQL statement generated through API calls. The execute method returns
true if the result is at least one ResultSet and false if the return value is an update count. Given this
information, applications can use the getUpdateCount or getResultSet statement methods to retrieve the
return value from processing the SQL statement.

Note: Calling the getUpdateCount method when the result is a ResultSet returns -1. Calling the
getResultSet method when the result is an update count returns null. <

Example: Use PreparedStatement to obtain a ResultSet: #* This is an example of using a
PreparedStatement object’s executeQuery method to obtain a ResultSet.

Example: Use PreparedStatement to obtain a ResultSet

Note: Read the [Code example disclaimer for important legal information.

import java.sql.*;
import java.util.Properties;

public class PreparedStatementExample {

public static void main(java.lang.String[] args)

{
// Load the following from a properties object.
String DRIVER = "com.ibm.db2.jdbc.app.DB2Driver";
String URL "jdbc:db2://*1ocal";

// Register the native JDBC driver. If the driver cannot
// be registered, the test cannot continue.
try {
Class.forName (DRIVER);
} catch (Exception e) {
System.out.printIn("Driver failed to register.");
System.out.printin(e.getMessage());
System.exit(1);
}

Connection ¢ = null;
Statement s = null;

// This program creates a table that is

// used by prepared statements Tlater.

try {
// Create the connection properties.
Properties properties = new Properties ();
properties.put ("user", "userid");
properties.put ("password", "password");

// Connect to the Tocal iSeries database.
c = DriverManager.getConnection(URL, properties);

// Create a Statement object.

s = c.createStatement();
// Delete the test table if it exists. Note that

120 iSeries: IBM Developer Kit for Java

// this example assumes throughout that the collection
// MYLIBRARY exists on the system.
try {
s.executeUpdate("DROP TABLE MYLIBRARY.MYTABLE");
} catch (SQLException e) {
// Just continue... the table probably did not exist.
}

// Run an SQL statement that creates a table in the database.
s.executeUpdate("CREATE TABLE MYLIBRARY.MYTABLE (NAME VARCHAR(20), ID INTEGER)");

} catch (SQLException sqle) {
System.out.printin("Database processing has failed.");
System.out.printin("Reason: " + sqle.getMessage());
} finally {
// Close database resources
try {
if (s !'= null) {
s.close();

} catch (SQLException e) {
System.out.printIn("Cleanup failed to close Statement.");
}

// This program then uses a prepared statement to insert many
// rows into the database.
PreparedStatement ps = null;
String[] nameArray = {"Rich", "Fred", "Mark", "Scott", "Jason",
"John", "Jessica", "Blair", "Erica", "Barb"};
try {
// Create a PreparedStatement object that is used to insert data into the

// table.
ps = c.prepareStatement ("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (?, ?)");

for (int i = 0; i < nameArray.length; i++) {
ps.setString(1, nameArray[i]); // Set the Name from our array.
ps.setInt(2, i+l); // Set the ID.
ps.executeUpdate();

}

} catch (SQLException sqle) {
System.out.printin("Database processing has failed.");
System.out.printIn("Reason: " + sqle.getMessage());
} finally {
// Close database resources
try {
if (ps != null) {
ps.close();
}

} catch (SQLException e) {
System.out.printin("Cleanup failed to close Statement.");
}

// Use a prepared statement to query the database
// table that has been created and return data from it. In
// this example, the parameter used is arbitrarily set to
// 5, meaning return all rows where the ID field is Tess than
// or equal to 5.
try {
ps = c.prepareStatement ("SELECT * FROM MYLIBRARY.MYTABLE " +
"WHERE ID <= ?2");

ps.setInt(1, 5);

Chapter 1. IBM Developer Kit for Java

121

// Run an SQL query on the table.
ResultSet rs = ps.executeQuery();
// Display all the data in the table.
while (rs.next()) {
System.out.printIn("Employee " + rs.getString(1) + " has ID " + rs.getInt(2));
}

} catch (SQLException sqle) {
System.out.printIn("Database processing has failed.");
System.out.printin("Reason: " + sqle.getMessage());
} finally {
// Close database resources
try {
if (ps != null) {
ps.close();

}
} catch (SQLException e) {

System.out.printin("Cleanup failed to close Statement.");
}

try {
if (¢ !'= null) {
c.close();

}
} catch (SQLException e) {

System.out.printin("Cleanup failed to close Connection.");
}

}
{{

Example: ParameterMetaData: #* This is an example of using the ParameterMetaData interface to
retrieve information about parameters.

Example: ParameterMetaData

Note: Read the [Code example disclaimer for important legal information.

[HTLTTTTIELL LI E i iiei i iiiieriiriieeillligieirllllieeiillliieiiilliiieiii
//

// ParameterMetaData example. This program demonstrates

// the new support of JDBC 3.0 for learning information

// about parameters to a PreparedStatement.

//

// Command syntax:

// java PMD

/1l
LTI E i i i i i i i i iiiiiiiiiiiiiiiiiiiilililili
//

// This source is an example of the IBM Developer for Java JDBC driver.
// IBM grants you a nonexclusive lTicense to use this as an example
// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes
// only. These examples have not been thoroughly tested under all
// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// A1l programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of
// merchantability and fitness for a particular purpose are

122 iSeries: IBM Developer Kit for Java

// expressly disclaimed.

//

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// A1l rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

//

[IIEIIETTETIETTEET L1 70070070070001001001007110710711710711111111111111111111

import java.sql.*;
public class PMD {

// Program entry point.
public static void main(java.lang.String[] args)
throws Exception

{
// Obtain setup.
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
Connection ¢ = DriverManager.getConnection("jdbc:db2:*Tocal");
PreparedStatement ps = c.prepareStatement ("INSERT INTO CUJOSQL.MYTABLE VALUES(?, ?, ?)");
ParameterMetaData pmd = ps.getParameterMetaData();

for (int i = 1; i < pmd.getParameterCount(); i++) {
System.out.printin("Parameter number " + i);
System.out.printIn(" Class name is " + pmd.getParameterClassName(i));
// Note: Mode relates to input, output or inout
System.out.printin(" Mode is " + pmd.getParameterClassName(i));
System.out.printIn(" Type is " + pmd.getParameterType(i));
System.out.printin(" Type name is " + pmd.getParameterTypeName(i));
System.out.printin(" Precision is " + pmd.getPrecision(i));
System.out.printin(" Scale is " + pmd.getScale(i));
System.out.printIn(" Nullable? is " + pmd.isNullable(i));
System.out.printIn(" Signed? is " + pmd.isSigned(i));

}
{{

CallableStatements: #* The CallableStatement interface extends PreparedStatement and provides
support for output and input/output parameters. The CallableStatement interface also has support for input
parameters that is provided by the PreparedStatement interface.

The CallableStatement interface allows the use of SQL statements to call stored procedures. Stored
procedures are programs that have a database interface. These programs possess the following:

* They can have input and output parameters, or parameters that are both input and output.
* They can have a return value.
* They have the ability to return multiple ResultSets.

Conceptually in JDBC, a stored procedure call is a single call to the database, but the program associated
with the stored procedure may process hundreds of database requests. The stored procedure program
may also perform a number of other programmatic tasks not typically done with SQL statements.

Because CallableStatements follow the PreparedStatement model of decoupling the preparation and
processing phases, they have the potential for optimized reuse (see |PreparedStatement for details). Since
SQL statements of a stored procedure are bound into a program, they are processed as static SQL and
further performance benefits can be gained that way. Encapsulating a lot of database work in a single,

Chapter 1. IBM Developer Kit for Java 123

reusable database call is an example of using stored procedures optimally. Only this call goes over the
network to the other system, but the request can accomplish a lot of work on the remote system.

Create CallableStatements: The prepareCall method is used to create new CallableStatement objects. As
with the prepareStatement method, the SQL statement must be supplied at the time that the
CallableStatement object is created. At that time, the SQL statement is precompiled. For example,
assuming a Connection object named conn already exists, the following creates a CallableStatement
object and completes the preparation phase of getting the SQL statement ready for processing within the
database:

PreparedStatement ps = conn.prepareStatement("? = CALL ADDEMPLOYEE(?, ?, ?");

The ADDEMPLOYEE stored procedure takes input parameters for a new employee name, his social
security number, and his manager’s user ID. From this information, multiple company database tables may
be updated with information about the employee such as his start date, division, department, and so on.
Further, a stored procedure is a program that may generate standard user IDs and e-mail addresses for
that employee. The stored procedure may also send an e-mail to the hiring manager with initial usernames
and passwords; the hiring manager can then provide the information to the employee.

The ADDEMPLOYEE stored procedure is set up to have a return value. The return code may be a
success or failure code that the calling program can use when a failure occurs. The return value may also
be defined as the new employee’s company ID number. Finally, the stored procedure program could have
processed queries internally and have left the ResultSets from those queries open and available for the
calling program. Querying all the new employee’s information and making it available to the caller through
a returned ResultSet is reasonable.

How to accomplish each of these types of tasks is covered in the following sections.

Specify ResultSet characteristics and auto-generated key support: As with createStatement and
prepareStatement, there are multiple versions of prepareCall that provide support for specifying ResultSet
characteristics. Unlike prepareStatement, the prepareCall method does not provide variations for working
with auto-generated keys from CallableStatements (JDBC 3.0 does not support this concept.) The
following are some examples of valid calls to the prepareCall method:

Example: The prepareCall method
// The following is new in JDBC 2.0

CallableStatement cs2 = conn.prepareCall("? = CALL ADDEMPLOYEE(?, ?, ?)",
ResultSet.TYPE_SCROLL_INSENSITIVE, Resu]tSet.CONCUR_UPDATEABLE);

// New in JDBC 3.0

CallableStatement cs3 = conn.prepareCall("? = CALL ADDEMPLOYEE(?, ?, ?)",
ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATEABLE,
ResultSet.HOLD CURSOR_OVER COMMIT);

Handle parameters: As stated, CallableStatement objects may take three types of parameters:

* IN
IN parameters are handled in the same manner as PreparedStatements. The various set methods of
the inherited PreparedStatement class are used to set the parameters.

« OUT
OUT parameters are handled with the registerOutParameter method. The most common form of
registerOutParameter takes an index parameter as the first parameter and an SQL type as the second
parameter. This tells the JDBC driver what to expect for data from the parameter when the statement is
processed. There are two other variations on the registerOutParameter method that can be found in the
m package Javadoc.

« INOUT
INOUT parameters require that the work for both IN parameters and OUT parameters be done. For

124 iSeries: IBM Developer Kit for Java

javaapi/api/java/sql/package-summary.html

each INOUT parameter, you must call a set method and the registerOutParameter method before the
statement can be processed. Failing to set or register any parameter results in an SQLException being
thrown when the statement is processed.

Refer to [Example: Create a procedure with input and output parameters| for more information.

As with PreparedStatements, CallableStatement parameter values remain the same between processes
unless you call a set method again. The clearParameters method does not affect parameters that are
registered for output. After calling clearParameters, all IN parameters must be set to a value again, but all
OUT parameters do not have to be registered again.

Note: The concept of parameters must not be confused with the index of a parameter marker. A stored
procedure call expects a certain number of parameters that are passed to it. A particular SQL statement
has ? characters (parameter markers) in it to represent values that are supplied at runtime. Consider the
following example to see the difference between the two concepts:

CallableStatement cs = con.prepareCall("CALL PROC(?, "SECOND", ?)");
cs.setString(1, "First"); //Parameter marker 1, Stored procedure parm 1

cs.setString(2, "Third"); //Parameter marker 2, Stored procedure parm 3

Access stored procedure parameters by name: Parameters to stored procedures have names associated
with them as the following stored procedure declaration shows:

Example: Stored procedure parameters

Note: Read the [Code example disclaimer for important legal information.

CREATE
PROCEDURE MYLIBRARY.APROC
(IN PARM1 INTEGER)
LANGUAGE SQL SPECIFIC MYLIBRARY.APROC
BODY: BEGIN
<Perform a task here...>
END BODY

There is a single integer parameter with the name PARM1. In JDBC 3.0, there is support for specifying
stored procedure parameters by name as well as by index. The code to set up a CallableStatement for
this procedure is as follows:

CallableStatement cs = con.prepareCall("CALL APROC(?)");

cs.setString("PARM1", 6); //Sets input parameter at index 1 (PARM1) to 6.

For more information, see [Process CallableStatements]| 4

Process CallableStatements: ** Processing SQL stored procedure calls with a CallableStatement
object is accomplished with the same methods that are used with a PreparedStatement object.

Return results for stored procedures: If an SQL query statement is processed within a stored procedure,
the query results can be made available to the program calling the stored procedure. Multiple queries can
also be called within the stored procedure and the calling program can process all the ResultSets that are
available.

See [Example: Create a procedure with multiple ResultSets| for more information.

Note: If a stored procedure is processed with executeQuery and it does not return a ResultSet, an
SQLException is thrown.

Chapter 1. IBM Developer Kit for Java 125

Access ResultSets concurrently: [Return results for stored procedures|deals with ResultSets and stored
procedures and provides an example that works with all Java'™ Development Kit (JDK) releases. In the
example, the ResultSets are processed in order from the first ResultSet that the stored procedure opened
to the last ResultSet opened. One ResultSet is closed before the next is used.

In JDK 1.4, there is support for working with ResultSets from stored procedures concurrently.

Note: This feature was added to the underlying system support through the Command Line Interface (CLI)
in V5R2. As a result, JDK 1.4 running on a system before V5R2 does not have this support available to it.

Return update counts for stored procedures: Returning update counts for stored procedures is a feature
discussed in the JDBC specification, but it is not currently supported on the iSeries platform. There is no
way to return multiple update counts from a stored procedure call. If an update count is needed from a
processed SQL statement within a stored procedure, there are two ways of returning the value:

* Return the value as an output parameter.

» Pass back the value as the return value from the parameter. This is a special case of an output
parameter. See [Process stored procedures that have a return value| for more information.

Process stored procedures where the expected return is unknown: If the results from a stored procedure
call are not known, the execute method should be used. Once this method has been processed, the JDBC
driver can tell the application what types of results the stored procedure generated through API calls. The
execute method returns true if the result is one or more ResultSets. Updating counts do not come from
stored procedure calls.

Process stored procedures that have a return value: The iSeries platform supports stored procedures that
have a return value similar to a function’s return value. The return value from a stored procedure is labeled
like other parameters marks and is labeled such that it is assigned by the stored procedure call. An
example of this is as follows:

? = CALL MYPROC(?, ?, ?)

The return value from a stored procedure call is always an integer type and must be registered like any
other output parameter.

See [Example: Create a procedure with return values| for more information. %

Example: CallableStatement interface for IBM Developer Kit for Java: This is an example of how to
use the CallableStatement interface.

Example: CallableStatement interface

Note: Read the [Code example disclaimer for important legal information.

// Connect to iSeries server.
Connection ¢ = DriverManager.getConnection("jdbc:db2://mySystem");

// Create the CallableStatement object.

// 1t precompiles the specified call to a stored procedure.

// The question marks indicate where input parameters must be set and

// where output parameters can be retrieved.

// The first two parameters are input parameters, and the third parameter is an output parameter.
CallableStatement cs = c.prepareCall("CALL MYLIBRARY.ADD (?, ?, ?)");

// Set input parameters.
cs.setInt (1, 123);
cs.setInt (2, 234);

// Register the type of the output parameter.
cs.registerQutParameter (3, Types.INTEGER);

126 iSeries: IBM Developer Kit for Java

// Run the stored procedure.
cs.execute ();

// Get the value of the output parameter.
int sum = cs.getInt (3);

// Close the CallableStatement and the Connection.
cs.close();
c.close();

For more information, see [CallableStatements|

Example: Create a procedure with multiple ResultSets: ** Note: Read the [Code example disclaimer]
for important legal information. %

import java.sql.=;
import java.util.Properties;

public class CallableStatementExamplel {
public static void main(java.lang.String[] args) {

// Register the Native JDBC driver. If we cannot
// register the driver, the test cannot continue.

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

// Create the connection properties
Properties properties = new Properties ();
properties.put ("user", "userid");
properties.put ("password", "password");

// Connect to the Tocal iSeries database
Connection ¢ = DriverManager.getConnection("jdbc:db2://*1ocal", properties);

Statement s = c.createStatement();

// Create a procedure with multiple ResultSets.
String sql = "CREATE PROCEDURE MYLIBRARY.SQLSPEX1 " +
"RESULT SET 2 LANGUAGE SQL READS SQL DATA SPECIFIC MYLIBRARY.SQLSPEX1 " +
"EX1: BEGIN " +
" DECLARE C1 CURSOR FOR SELECT = FROM QSYS2.SYSPROCS " +
" WHERE SPECIFIC_SCHEMA = 'MYLIBRARY'; " +
" DECLARE C2 CURSOR FOR SELECT = FROM QSYS2.SYSPARMS " +
" WHERE SPECIFIC_SCHEMA = 'MYLIBRARY'; " +

" OPEN C1; " +

" OPEN C2; " +

" SET RESULT SETS CURSOR C1, CURSOR C2; " +
"END EX1 ";

try {
s.executeUpdate(sql);
} catch (SQLException e) {
// NOTE: We are ignoring the error here. We are making

// the assumption that the only reason this fails
// is because the procedure already exists. Other
// reasons that it could fail are because the C compiler
// is not found to compile the procedure or because
// collection MYLIBRARY does not exist on the system.
}
s.close();

// Now use JDBC to run the procedure and get the results back. In

// this case we are going to get information about 'MYLIBRARY's stored
// procedures (which is also where we created this procedure, thereby
// ensuring that there is something to get.

Chapter 1. IBM Developer Kit for Java 127

CallableStatement cs = c.prepareCall("CALL MYLIBRARY.SQLSPEX1");
ResultSet rs = cs.executeQuery();

// We now have the first ResultSet object that the stored procedure
// left open. Use it.

int i =1;
while (rs.next()) {
System.out.printIn("MYLIBRARY stored procedure " + i + " is " + rs.getString(l) + "." +
rs.getString(2));
i+t

}
System.out.printin("");

// Now get the next ResultSet object from the system - the previous

// one is automatically closed.

if (!cs.getMoreResults()) {
System.out.printin("Something went wrong. There should have been another ResultSet, exiting.");
System.exit(0);

}

rs = cs.getResultSet();

// We now have the second ResultSet object that the stored procedure
// left open. Use that one.
i=1;
while (rs.next()) {
System.out.printIn("MYLIBRARY procedure " + rs.getString(l) + "." + rs.getString(2) +
" parameter: " + rs.getInt(3) + " direction: " + rs.getString(4) +
" data type: " + rs.getString(5));
i+t

}

if (i ==1) {
System.out.printin("None of the stored procedures have any parameters.");
}

if (cs.getMoreResults()) {
System.out.printin("Something went wrong, there should not be another ResultSet.");
System.exit(0);

}

cs.close(); // close the CallableStatement object
c.close(); // close the Connection object.

} catch (Exception e) {
System.out.printin("Something failed..");

System.out.printIn("Reason: " + e.getMessage());
e.printStackTrace();

}
Example: Create a procedure with input and output parameters: Note: Read the|Code example]
‘

sclaimer|for important legal information.

import java.sql.=*;
import java.util.Properties;

public class CallableStatementExample2 {
public static void main(java.lang.String[] args) {

// Register the Native JDBC driver. If we cannot

128 iSeries: IBM Developer Kit for Java

// register the driver, the test cannot continue.

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

// Create the connection properties
Properties properties = new Properties ();
properties.put ("user", "userid");
properties.put ("password", "password");

// Connect to the local iSeries database
Connection ¢ = DriverManager.getConnection("jdbc:db2://*1ocal", properties);

Statement s = c.createStatement();

// Create a procedure with in, out, and in/out parameters.

String sql = "CREATE PROCEDURE MYLIBRARY.SQLSPEX2 " +
“(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER) " +
"LLANGUAGE SQL SPECIFIC MYLIBRARY.SQLSPEX2 " +

"EX2: BEGIN " +

" SET P2 =Pl +1; "+
“ SETP3=P3+1; "+
"END EX2 ";

try {
s.executeUpdate(sql);
} catch (SQLException e) {
// NOTE: We are ignoring the error here. We are making

// the assumption that the only reason this fails
// is because the procedure already exists. Other
// reasons that it could fail are because the C compiler
// is not found to compile the procedure or because
// collection MYLIBRARY does not exist on the system.
}
s.close();

// Prepare a callable statement used to run the procedure.
CallableStatement cs = c.prepareCall("CALL MYLIBRARY.SQLSPEX2(?, ?, ?)");

// A11 input parameters must be set and all output parameters must
// be registered. Notice that this means we have two calls to make
// for an input output parameter.

cs.setInt(1, 5);

cs.setInt(3, 10);

cs.registerOutParameter(2, Types.INTEGER);
cs.registerOutParameter(3, Types.INTEGER);

// Run the procedure
cs.executeUpdate();

// Verify the output parameters have the desired values.
System.out.printin("The value of P2 should be P1 (5) + 1 =6. --> " + cs.getInt(2));
System.out.printIn("The value of P3 should be P3 (10) + 1 = 11. --> " + cs.getInt(3));

cs.close(); // close the CallableStatement object
c.close(); // close the Connection object.

} catch (Exception e) {
System.out.printIn("Something failed..");
System.out.printin("Reason: " + e.getMessage());
e.printStackTrace();

}

Example: Create a procedure with return values: Note: Read the [Code example disclaimer|for
important legal information.

Chapter 1. IBM Developer Kit for Java 129

import java.sql.*;
import java.util.Properties;

public class CallableStatementExample3 {

130

public static void main(java.lang.String[] args) {

// Register the native JDBC driver. If the driver cannot
// be registered, the test cannot continue.
try {

Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

// Create the connection properties
Properties properties = new Properties ();
properties.put ("user", "userid");
properties.put ("password", "password");

// Connect to the local iSeries database
Connection ¢ = DriverManager.getConnection("jdbc:db2://*1ocal", properties);

Statement s = c.createStatement();

// Create a procedure with a return value. Note that return value support
// is new in V4R5.
String sql = "CREATE PROCEDURE MYLIBRARY.SQLSPEX3 " +

" LANGUAGE SQL SPECIFIC MYLIBRARY.SQLSPEX3 " +

" EX3: BEGIN " +
" RETURN 19765 " +
" END EX3 ";

try {
s.executeUpdate(sql);
} catch (SQLException e) {
// NOTE: The error is ignored here. The assumptions is

// made that the only reason this fails is

// because the procedure already exists. Other

// reasons that it could fail are because the C compiler

// is not found to compile the procedure or because

// collection MYLIBRARY does not exist on the system.
s.close();

// Prepare a callable statement used to run the procedure.
CallableStatement cs = c.prepareCall("? = CALL MYLIBRARY.SQLSPEX3");

// You still need to register the output parameter.
cs.registerQutParameter(1, Types.INTEGER);

// Run the procedure.
cs.executeUpdate();

// Show that the correct value is returned.
System.out.printIn("The return value should always be 1976 for this example:

cs.close(); // close the CallableStatement object
c.close(); // close the Connection object.

} catch (Exception e) {

System.out.printin("Something failed..");
System.out.printIn("Reason: " + e.getMessage());
e.printStackTrace();

iSeries: IBM Developer Kit for Java

-

"+ cs.getInt(1));

ResultSets

#* The ResultSet interface provides access to the results generated by running queries. Conceptually,
data of a ResultSet can be thought of as a table with a specific number of columns and a specific number
of rows. By default, the table rows are retrieved in sequence. Within a row, column values can be
accessed in any order.

To use the ResultSet object, see the following:

[ResultSet characteristics|
This section discusses ResultSet characteristics such as the following:

* ResultSet types

» Concurrency

+ Ability to close the ResultSet by committing the Connection object.
» Specification of ResultSet characteristics

[Cursor movement|

The iSeries Java''™ Database Connectivity (JDBC) drivers support scrollable ResultSets. With a
scrollable ResultSet, you can process rows of data in any order using a number of cursor-positioning
methods.

[Retrieve ResultSet datal
Find out how a ResultSet object provides methods for obtaining column data for a row.

[Change ResultSets|
With the iSeries JDBC drivers, you can change ResultSets by performing these tasks:

* Update rows

* Delete rows

* Insert rows

* Change positioned updates

[Create ResultSets|

You can create a ResultSet object by using the executeQuery methods provided by the Statement,
PreparedStatement, or CallableStatement interfaces. This section also discusses closing ResultSet
objects when they are no longer needed in your application.

b

ResultSet characteristics: ¥ By default, all created ResultSets have a type of forward only, a
concurrency of read only, and cursors are held over commit boundaries. An exception to this is that
WebSphere currently changes the cursor holdability default so that cursors are implicitly closed when
committed. These characteristics are configurable through methods that are accessible on Statement,
PreparedStatement, and CallableStatement objects.

ResultSet types: The ResultSet type specifies the following about the ResultSet:
* Whether the ResultSet is scrollable.
+ The types of Java™ Database Connectivity (JDBC) ResultSets that are defined by constants on the

ResultSet interface.
Definitions of these ResultSet types are as follows:

TYPE_FORWARD_ONLY
A cursor that can only be used to process from the beginning of a ResultSet to the end of it. This
is the default type.

Chapter 1. IBM Developer Kit for Java 131

TYPE_SCROLL_INSENSITIVE
A cursor that can be used to scroll in various wayg through a ResultSet. This type of cursor is
insensitive to changes made to the database while it is open. It contains rows that satisfy the
query when the query was processed or when data is fetched.

TYPE_SCROLL_SENSITIVE
A cursor that can be used to scroll in various ways through a ResultSet. This type of cursor is
sensitive to changes made to the database while it is open. Changes to the database have a
direct impact on the ResultSet data.

JDBC 1.0 ResultSets are always forward only. Scrollable cursors were added in JDBC 2.0.

Note: The blocking enabled and block size connection properties affect the degree of sensitivity of a
TYPE_SCROLL_SENSITIVE cursor. Blocking enhances performance by caching data in the JDBC driver
layer itself.

See [Example: Sensitive and insensitive ResultSets|that shows the difference between sensitive and
insensitive ResultSets when rows are inserted into a table.

See [Example: ResultSet sensitivity| that shows how a change can affect a where clause of an SQL
statement based on the sensitivity of the ResultSet.

Concurrency: Concurrency determines whether the ResultSet can be updated. The types are again
defined by constants in the ResultSet interface. The available concurrency settings are as follows:

CONCUR_READ_ONLY
A ResultSet that can only be used for reading data out of the database. This is the default setting.

CONCUR_UPDATEABLE
A ResultSet that allows you to make changes to it. These changes can be placed into the
underlying database. See [Change ResultSets|for more information.

JDBC 1.0 ResultSets are always forward only. Updateable ResultSets were added in JDBC 2.0.

Note: According to the JDBC specification, the JDBC driver is allowed to change the ResultSet type of the
ResultSet concurrency setting if the values cannot be used together. In such cases, the JDBC driver
places a warning on the Connection object.

There is one situation where the application specifies a TYPE_SCROLL_INSENSITIVE,
CONCUR_UPDATEABLE ResultSet. Insensitivity is implemented in the database engine by making a copy
of the data. You are then not allowed to make updates through that copy to the underlying database. If you
specify this combination, the driver changes the sensitivity to TYPE_SCROLL_SENSITIVE and create the
warning indicating that your request has been changed.

Holdability: The holdability characteristic determines whether calling commit on the Connection object
closes the ResultSet. The JDBC API for working with the holdability characteristic is new in version 3.0.
However, the native JDBC driver has provided a connection property for several releases that allows you
to specify that default for all ResultSets created under the connection (see |Connection properties| and
|DataSource propertiesl). The API support overrides any setting for the connection property. Values for the
holdability characteristic are defined by ResultSet constants and are as follows:

HOLD_CURSOR_OVER_COMMIT
All open cursors remain open when the commit clause is called. This is the native JDBC default
value.

CLOSE_CURSORS_ON_COMMIT
All open cursors are closed when commit clause is called.

132 iSeries: IBM Developer Kit for Java

Note: Calling rollback on a connection always closes all open cursors. This is a little known fact, but a
common way for databases to handle cursors.

According to the JDBC specification, the default for cursor holdability is implementation-defined. Some
platforms choose to use CLOSE_CURSORS_ON_COMMIT as the default. This does not usually become
an issue for most applications, but you must be aware of what the driver you are working with does if you
are working with cursors across commit boundaries. The Toolbox JDBC driver also uses the
HOLD_CURSORS_ON_COMMIT default, but the JDBC driver for UDB for Windows™ NT has a default of
CLOSE_CURSORS_ON_COMMIT.

Specify ResultSet characteristics: A ResultSet’s characteristics do not change once the ResultSet object
has been created. Therefore, the characteristics have be specified before creating the object. You can
specify these characteristics through overloaded variations of the createStatement, prepareStatement, and
prepareCall methods.

See the following topics to specify ResultSet characteristics:

« [Specify ResultSet characteristics| for Statements

« [Specify ResultSet characteristics and automatically generated key support for PreparedStatement
+ [Specify ResultSet characteristics and auto-generated key support for CallableStatements

Note: There are ResultSet methods to obtain the ResultSet type and the concurrency of the ResultSet, but
there is no method to obtain the holdability of the ResultSet. €

Example: Sensitive and insensitive ResultSets: # The following example shows the difference
between sensitive and insensitive ResultSets when rows are inserted into a table.

Example: Sensitive and insensitive ResultSets

Note: Read the [Code example disclaimer for important legal information.
import java.sql.*;

public class Sensitive {
pubTic Connection connection = null;

public static void main(java.lang.String[] args) {
Sensitive test = new Sensitive();

test.setup();
test.run("sensitive");
test.cleanup();

test.setup();
test.run("insensitive");
test.cleanup();

public void setup() f

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
connection = DriverManager.getConnection("jdbc:db2:*1ocal");

Statement s = connection.createStatement();
try {
s.executeUpdate("drop table cujosql.sensitive");
} catch (SQLException e) {
// Ignored.
}

Chapter 1. IBM Developer Kit for Java 133

.executeUpdate("create table cujosql.sensitive(coll int)");
.executeUpdate("insert into cujosql.sensitive values(1)");

.executeUpdate("insert into cujosql.sensitive values(2)");

.executeUpdate("insert into cujosql.sensitive values(3)");

.executeUpdate("insert into cujosql.sensitive values(4)");

.executeUpdate("insert into cujosql.sensitive values(5)");

.close();

nw unu unu unu n non

} catch (Exception e) {
System.out.printin("Caught exception: " + e.getMessage());
if (e instanceof SQLException) {
SQLException another = ((SQLException) e).getNextException();
System.out.printin("Another: " + another.getMessage());

public void run(String sensitivity) {
try {
Statement s = null;
if (sensitivity.equalsIgnoreCase("insensitive")) {
System.out.printin("creating a TYPE_SCROLL_INSENSITIVE cursor");
s = connection.createStatement (ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
} else {
System.out.printin("creating a TYPE_SCROLL_SENSITIVE cursor");
s = connection.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_READ ONLY);
}

ResultSet rs = s.executeQuery("select * From cujosql.sensitive");

// Fetch the five values that are there.
rs.next();

System.out.printin("value is " + rs.getInt(1));
rs.next();

System.out.printin("value is " + rs.getInt(1));
rs.next();

System.out.printin("value is " + rs.getInt(1));
rs.next();

System.out.printin("value is " + rs.getInt(1));
rs.next();

System.out.printIn("value is " + rs.getInt(1));
System.out.printin("fetched the five rows...");

// Note: If you fetch the Tast row, the ResultSet Tooks
// closed and subsequent new rows that are added
// are not be recognized.

// Allow another statement to insert a new value.

Statement s2 = connection.createStatement();
s2.executeUpdate("insert into cujosql.sensitive values(6)");
s2.close();

// Whether a row is recognized is based on the sensitivity setting.
if (rs.next()) {
System.out.printIn("There is a row now: " + rs.getInt(1));
} else {
System.out.printIn("No more rows.");
}

} catch (SQLException e) {
System.out.printIn("SQLException exception: ");

System.out.printin("Message:..... " + e.getMessage());
System.out.printIn("SQLState:...." + e.getSQLState());
System.out.printin("Vendor Code:." + e.getErrorCode());

134 iSeries: IBM Developer Kit for Java

System.out.printIn (" -----mmmmmmmm oo ")
e.printStackTrace();

}

catch (Exception ex) {
System.out.printIn("An exception other than an SQLException was thrown: ");
ex.printStackTrace();

public void cleanup() {
try {
connection.close();
} catch (Exception e) {
System.out.printin("Caught exception: ");
e.printStackTrace();

&

Example: ResultSet sensitivity: # The following example shows how a change can affect a where
clause of an SQL statement based on the sensitivity of the ResultSet.

Example: ResultSet sensitivity

Note: Read the [Code example disclaimer for important legal information.
import java.sql.=;

public class Sensitive2 {
public Connection connection = null;

public static void main(java.lang.String[] args) {
Sensitive2 test = new Sensitive2();

test.setup();
test.run("sensitive");
test.cleanup();

test.setup();
test.run("insensitive");
test.cleanup();

public void setup() {

try {
System.out.printIn("Native JDBC used");
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
connection = DriverManager.getConnection("jdbc:db2:*Tocal");

Statement s = connection.createStatement();
try {
s.executeUpdate("drop table cujosql.sensitive");
} catch (SQLException e) {
// Ignored.
}

s.executeUpdate("create table cujosql.sensitive(coll int)");
s.executeUpdate("insert into cujosql.sensitive values(1)");
s.executeUpdate("insert into cujosql.sensitive values(2)");

Chapter 1. IBM Developer Kit for Java 135

136

s.executeUpdate("insert into cujosql.sensitive values(3)");
s.executeUpdate("insert into cujosql.sensitive values(4)");
s.executeUpdate("insert into cujosql.sensitive values(5)");

try {

s.executeUpdate("drop table cujosql.sensitive2");
} catch (SQLException e) {

// Ignored.

[—

.executeUpdate("create table cujosql.sensitive2(col2 int)");
.executeUpdate("insert into cujosql.sensitive2 values(1)");
.executeUpdate("insert into cujosql.sensitive2 values(2)");
.executeUpdate("insert into cujosql.sensitive2 values(3)");
.executeUpdate("insert into cujosql.sensitive2 values(4)");
.executeUpdate("insert into cujosql.sensitive2 values(5)");

nw unu unu unu nn

s.close();

} catch (Exception e) {

System.out.printin("Caught exception: " + e.getMessage());

if (e instanceof SQLException) {
SQLException another = ((SQLException) e).getNextException();
System.out.printIn("Another: " + another.getMessage());

public void run(String sensitivity) {
try {

Statement s = null;
if (sensitivity.equalsIgnoreCase("insensitive")) {
System.out.printin("creating a TYPE_SCROLL_INSENSITIVE cursor");
s = connection.createStatement (ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
} else {
System.out.printin("creating a TYPE_SCROLL_SENSITIVE cursor");
s = connection.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_READ ONLY);
}

ResultSet rs = s.executeQuery("select coll, col2 From cujosql.sensitive,
cujosql.sensitive2 where coll = col2");

rs.next();
System.out.printin("value is " + rs.getInt(1));
rs.next();
System.out.printin("value is " + rs.getInt(1));
rs.next();
System.out.printin("value is " + rs.getInt(1));
rs.next();
System.out.printin("value is " + rs.getInt(1));

System.out.printin("fetched the four rows...");

// Another statement creates a value that does not fit the where clause.

Statement s2 = connection.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATEABLE);
ResultSet rs2 = s2.executeQuery("select * from cujosql.sensitive where coll = 5 FOR UPDATE");
rs2.next();

rs2.updateInt(1, -1);

rs2.updateRow();

s2.close();

if (rs.next()) {
System.out.printIn("There is still a row: " + rs.getInt(1));
} else {

iSeries: IBM Developer Kit for Java

System.out.printIn("No more rows.");

}

} catch (SQLException e) {

System.
System.
System.
System.
System.

out.printin("SQLException exception: ");

out.printin("Message:..... " + e.getMessage());
out.printin("SQLState:...." + e.getSQLState());

out.printin("Vendor Code:." + e.getErrorCode());

OUL PPNt TN (M = m e o mmm e o e e e e ");

e.printStackTrace();

}

catch (Exception ex) {
System.out.printIn("An exception other than an SQLException was thrown: ");
ex.printStackTrace();

public void cleanup() {

try {

connection.close();

} catch (Exception e) {
System.out.printIn("Caught exception: ");
e.printStackTrace();

}
&

Cursor movement: #* The ResultSet.next method is used to move through a ResultSet one row at a
time. With Java™ Database Connectivity (JDBC) 2.0, the iSeries JDBC drivers support scrollable
ResultSets. Scrollable ResultSets allow processing the rows of data in any order by using the previous,
absolute, relative, first, and last methods.

By default, JDBC ResultSets are always forward only, meaning that the only valid cursor-positioning
method to call is next(). You have to explicitly request a scrollable ResultSet. See|ResuItSet typesl for more

information.

With a scrollable ResultSet, you can use the following cursor-positioning methods:

Method Description
Next This method moves the cursor forward one row in the ResultSet.
The method returns true if the cursor is positioned on a valid row and false otherwise.
Previous The method moves the cursor backward one row in the ResultSet.
The method returns true if the cursor is positioned on a valid row and false otherwise.
First The method moves the cursor to the first row in the ResultSet.
The method returns true if the cursor is positioned on the first row and false if the ResultSet
is empty.
Last The method moves the cursor to the last row in the ResultSet.
The method returns true if the cursor is positioned on the last row and false if the ResultSet
is empty.

Chapter 1. IBM Developer Kit for Java 137

Method Description

BeforeFirst The method moves the cursor immediately before the first row in the ResultSet.

For an empty ResultSet, this method has no effect. There is no return value from this
method.

AfterLast The method moves the cursor immediately after the last row in the ResultSet.

For an empty ResultSet, this method has no effect. There is no return value from this
method.

Relative (int rows) The method moves the cursor relative to its current position.
* If rows is 0, this method has no effect.

» If rows is positive, the cursor is moved forward that many rows. If there are fewer rows
between the current position and the end of the ResultSet than specified by the input
parameters, this method operates like afterLast.

» If rows is negative, the cursor is moved backward that many rows. If there are fewer rows
between the current position and the end of the ResultSet than specified by the input
parameter, this method operates like beforeFirst.

The method returns true if the cursor in positioned on a valid row and false otherwise.

Absolute (int row) The method moves the cursor to the row specified by row value.

If row value is positive, the cursor is positioned that many rows from the beginning of the
ResultSet. The first row is numbered 1, the second is 2, and so on. If there are fewer rows
in the ResultSet than specified by the row value, this method operates the same way as
afterLast.

If row value is negative, the cursor is positioned that many rows from the end of the
ResultSet. The last row is numbered -1, the second to last is -2, and so on. If there are
fewer rows in the ResultSet than specified by the row value, this method operates the same
way beforeFirst.

If row value is 0, this method operates the same way as beforeFirst.

The method returns true if the cursor is positioned on a valid row and false otherwise.

b

Retrieve ResultSet data: # The ResultSet object provides several methods for obtaining column data
for a row. All are of the form get<Type>, where <Type> is a Java'™ data type. Some examples of these
methods include getint, getLong, getString, getTimestamp, and getBlob. Nearly all of these methods take a
single parameter that is either the column index within the ResultSet or the column name.

ResultSet columns are numbered, starting with 1. If the column name is used and there is more than one
column in the ResultSet with the same name, the first one is returned. There are some get<Type>
methods that have additional parameters, such as the optional Calendar object, which can be passed to
getTime, getDate, and getTimestamp. Refer to the Javadoc for the package for full details.

For get methods that return objects, the return value is null when the column in the ResultSet is null. For
primitive types, null cannot be returned. In these cases, the value is 0 or false. If an application must
distinguish between null, and 0 or false, the wasNull method can be used immediately after the call. This
method can then determine whether the value was an actual O or false value, or if that value was returned
because the ResultSet value was indeed null.

See |Examp|e: ResultSet interface for IBM Developer Kit for Java| for an example on how to use the
ResultSet interface.

138 iSeries: IBM Developer Kit for Java

javaapi/api/java/sql/package-summary.html

ResultSetMetaData support: When the getMetaData method is called on a ResultSet object, the method
returns a ResultSetMetaData object describing the columns of that ResultSet object. When the SQL
statement being processed is unknown until runtime, the ResultSetMetaData can be used to determine
what get methods should be used to retrieve the data. The following code example uses
ResultSetMetaData to determine each column type in the result set:

Example: Use ResultSetMetaData to determine each column type in a result set

Note: Read the [Code example disclaimer for important legal information.

ResultSet rs = stmt.executeQuery(sqlString);

ResultSetMetaData rsmd = rs.getMetaData();

int colType [] = new int[rsmd.getColumnCount()];

for (int idx = 0, int col = 1; idx < colType.length; idx++, col++)
colType[idx] = rsmd.getColumnType(col);

See |Examp|e: ResultSetMetaData interface for IBM Developer Kit for Javal for an example of how to use
the ResultSetMetaData interface. %

Change ResultSets: ¥* The default setting for ResultSets is read only. However, with Java‘™ Database
Connectivity (JDBC) 2.0, the iSeries JDBC drivers provide complete support for updateable ResultSets.

You can refer to ResultSet[concurrency] on how to update ResultSets.

Update rows: Rows may be updated in a database table through the ResultSet interface. The steps
involved in this process are the following:

1. Change the values for a specific row using various update<Type> methods, where <Type> is a Java
data type. These update<Type> methods correspond to the get< Type> methods available for retrieving
values.

2. Apply the rows to the underlying database.

The database itself is not updated until the second step. Updating columns in a ResultSet without calling
the updateRow method does not make any changes to the database.

Planned updates to a row can be thrown away with the cancelUpdates method. Once the updateRow
method is called, changes to the database are final and cannot be undone.

Note: The rowUpdated method always returns false as the database does not have a way to point out
which rows have been updated. Correspondingly, the updatesAreDetected method returns false.

Delete rows: Rows may be deleted in a database table through the ResultSet interface. The deleteRow
method is provided and deletes the current row.

Insert rows: Rows may be inserted into a database table through the ResultSet interface. This process
makes use of an "insert row” which applications specifically move the cursor to and build the values they
want to insert into the database. The steps involved in this process are as follows:

1. Position the cursor on the insert row.

2. Set each of the values for the columns in the new row.

3. Insert the row into the database and optionally move the cursor back to the current row within the
ResultSet.

Note: New rows are not inserted into the table where the cursor is positioned. They are typically added to
the end of the table data space. A relational database is not position-dependent by default. For example,
you should not expect to move the cursor to the third row and insert something that shows up before the
forth row when subsequent users fetch the data.

Chapter 1. IBM Developer Kit for Java 139

Support for positioned updates: Besides the method for updating the database through a ResultSet, SQL
statements can be used to issue positioned updates. This support relies on using named cursors. JDBC
provides the setCursorName method from Statement and the getCursorName method from ResultSet to
provide access to these values.

Two DatabaseMetaData methods, supportsPositionedUpdated and supportsPositionedDelete, both return
true as this feature is supported with the native JDBC driver.

See [Example: Change values with a statement through another statement’s cursor{ for more information.

See [Example: Remove values from a table through another statement’s cursor] for more information. <

Example: Remove values from a table through another statement’s cursor: % This is an example of
how to remove values from a table through another statement’s cursor.

Example: Remove values from a table through another statement’s cursor

Note: Read the |Code example disclaimer| for important legal information.
import java.sql.*;

public class UsingPositionedDelete {
pubTic Connection connection = null;
public static void main(java.lang.String[] args) {
UsingPositionedDelete test = new UsingPositionedDelete();

test.setup();
test.displayTable();

test.run();
test.displayTable();

test.cleanup();

[x%

Handle all the required setup work.
*%/

public void setup() {

try {
// Register the JDBC driver.
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

connection = DriverManager.getConnection("jdbc:db2:*Tocal");
Statement s = connection.createStatement();
try {

s.executeUpdate("DROP TABLE CUJOSQL.WHERECUREX");

} catch (SQLException e) {
// Ignore problems here.
}

s.executeUpdate("CREATE TABLE CUJOSQL.WHERECUREX (" +
"COL_IND INT, COL_VALUE CHAR(20)) ");
for (int i = 1; i <= 10; i++) {
s.executeUpdate ("INSERT INTO CUJOSQL.WHERECUREX VALUES(" + i + ", 'FIRST')");
}

s.close();

} catch (Exception e) {

140 iSeries: IBM Developer Kit for Java

System.out.printin("Caught exception: " + e.getMessage());
e.printStackTrace();

[**

In this section, all the code to perform the testing should
be added. If only one connection to the database is needed,
the global variable 'connection' can be used.

*%/
public void run() {
try {
Statement stmtl = connection.createStatement();
// Update each value using next().
stmtl.setCursorName("CUJO");
ResultSet rs = stmtl.executeQuery ("SELECT * FROM CUJOSQL.WHERECUREX " +
"FOR UPDATE OF COL_VALUE");
System.out.printin("Cursor name is " + rs.getCursorName());
PreparedStatement stmt2 = connection.prepareStatement ("DELETE FROM "
+ " CUJOSQL.WHERECUREX WHERE CURRENT OF "
+ rs.getCursorName ());
// Loop through the ResultSet and update every other entry.
while (rs.next ()) {
if (rs.next())
stmt2.execute ();
}
// Clean up the resources after they have been used.
rs.close ();
stmt2.close ();
} catch (Exception e) {
System.out.printin("Caught exception: ");
e.printStackTrace();
}
}
[**
In this section, put all clean-up work for testing.
*%/
public void cleanup() {
try {
// Close the global connection opened in setup().
connection.close();
} catch (Exception e) {
System.out.printin("Caught exception: ");
e.printStackTrace();
}
1
[x%
Display the contents of the table.
*%/

public void displayTable()

Chapter 1. IBM Developer Kit for Java 141

try {
Statement s = connection.createStatement();

ResultSet rs = s.executeQuery ("SELECT * FROM CUJOSQL.WHERECUREX");

while (rs.next ()) {
System.out.printIn("Index " + rs.getInt(1l) + " value " + rs.getString(2));
}

rs.close ();

s.close();

System.out . printTn (M= -mm e oo e e e ")s
} catch (Exception e) {

System.out.printin("Caught exception: ");

e.printStackTrace();

}

Example: Change values with a statement through another statement’s cursor: #* This is an
example of how to change values with a statement through another statement’s cursor.

Example: Change values with a statement through another statement’s cursor

Note: Read the [Code example disclaimer for important legal information.

import java.sql.=*;

public class UsingPositionedUpdate {
public Connection connection = null;
public static void main(java.lang.String[] args) {

UsingPositionedUpdate test = new UsingPositionedUpdate();

test.setup();
test.displayTable();

test.run();
test.displayTable();

test.cleanup();

[x%
Handle all the required setup work.
*%/

public void setup() f

try {
// Register the JDBC driver.

Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
connection = DriverManager.getConnection("jdbc:db2:*Tocal");
Statement s = connection.createStatement();

try {
s.executeUpdate("DROP TABLE CUJOSQL.WHERECUREX");

} catch (SQLException e) {
// Ignore problems here.

s.executeUpdate ("CREATE TABLE CUJOSQL.WHERECUREX (" +
"COL_IND INT, COL_VALUE CHAR(20)) ");

for (int i = 1; i <= 10; i++) {

142 iSeries: IBM Developer Kit for Java

s.executeUpdate("INSERT INTO CUJOSQL.WHERECUREX VALUES(" + i + ", 'FIRST')");
}

s.close();

} catch (Exception e) {
System.out.printin("Caught exception: " + e.getMessage());
e.printStackTrace();

[**

In this section, all the code to perform the testing should
be added. If only one connection to the database is required,
the global variable 'connection' can be used.

*%/
public void run() {
try {
Statement stmtl = connection.createStatement();
// Update each value using next().
stmtl.setCursorName("CUJO");
ResultSet rs = stmtl.executeQuery ("SELECT % FROM CUJOSQL.WHERECUREX " +
"FOR UPDATE OF COL_VALUE");
System.out.printIn("Cursor name is " + rs.getCursorName());
PreparedStatement stmt2 = connection.prepareStatement ("UPDATE "
+ " CUJOSQL.WHERECUREX
SET COL_VALUE = 'CHANGED'
WHERE CURRENT OF "
+ rs.getCursorName ());
// Loop through the ResultSet and update every other entry.
while (rs.next ()) {
if (rs.next())
stmt2.execute ();
}
// Clean up the resources after they have been used.
rs.close ();
stmt2.close ();
} catch (Exception e) {
System.out.printin("Caught exception: ");
e.printStackTrace();
}
1
[**
In this section, put all clean-up work for testing.
*%/
public void cleanup() {

try {
// Close the global connection opened in setup().
connection.close();

} catch (Exception e) {

System.out.printin("Caught exception: ");
e.printStackTrace();

Chapter 1. IBM Developer Kit for Java

143

[x*

Display the contents of the table.

*%/
public void displayTable()

{
try {
Statement s = connection.createStatement();
ResultSet rs = s.executeQuery ("SELECT * FROM CUJOSQL.WHERECUREX");

while (rs.next ()) {
System.out.printIn("Index " + rs.getInt(l) + " value " + rs.getString(2));
}

rs.close ();

s.close();

System.out.printTn (M e--m-mmm oo e ")
} catch (Exception e) {

System.out.printin("Caught exception: ");

e.printStackTrace();

}

Create ResultSets: ** To create a ResultSet object, you can use executeQuery methods from the
[Statement], |PreparedStatement] or|[CallableStatement|interfaces. There are, however, other available
methods. For example, |[DatabaseMetaData methods|such as getColumns, getTables, getUDTs,
getPrimaryKeys, and so on, return ResultSets. It is also possible to have a single SQL statement return
multiple ResultSets for processing. You can also use the getResultSet method to retrieve a ResultSet
object after calling the execute method provided by the Statement, PreparedStatement, or
CallableStatement interfaces.

See [Example: Create a procedure with multiple ResultSets| for more information.

Close ResultSets: While a ResultSet object is automatically closed when the Statement object with which
it is associated closes, it is recommended that you close ResultSet objects when you are finished using
them. By doing so, you immediately free internal database resources that can increase application
throughput.

It is also important to close ResultSets generated by DatabaseMetaData calls. Because you do not directly
have access to the Statement object that was used to create these ResultSets, you do not call close on
the Statement object directly. These objects are linked together in such a way that the JDBC driver closes
the internal Statement object when you close the external ResultSet object. When these objects are not
closed manually, the system continues to work; however, it uses more resources than is necessary.

Note: The holdability characteristic of ResultSets can also close ResultSets automatically on you behalf.
Calling close multiple times on a ResultSet object is allowed. 4%

Example: ResultSet interface for IBM Developer Kit for Java: This is an example of how to use the
ResultSet interface.

Example 1: ResultSet interface

Note: Read the |Code example disclaimer| for important legal information.
import java.sql.=*;

[**

144 iSeries: IBM Developer Kit for Java

ResultSetExample.java

This program demonstrates using a ResultSetMetaData and

a ResultSet to display all the data in a table even though
the program that gets the data does not know what the table
is going to Took Tike (the user passes in the values for the
table and library).

*%/

public class ResultSetExample {

public static void main(java.lang.String[] args)
{
if (args.length != 2) {
System.out.printin("Usage: Jjava ResultSetExample <library> <table>");
System.out.printIn(" where <library> is the library that contains <table>");
System.exit(0);
}

Connection con = null;
Statement s = null;

ResultSet rs = null;
ResultSetMetaData rsmd = null;

try {
// Get a database connection and prepare a statement.
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
con = DriverManager.getConnection("jdbc:db2:*Tocal");

s = con.createStatement();

rs

= s.executeQuery("SELECT = FROM " + args[0] + "." + args[1]);
rsmd =

rs.getMetaData();

int colCount = rsmd.getColumnCount();
int rowCount = 0;
while (rs.next()) {
rowCount++;
System.out.printin("Data for row " + rowCount);
for (int i = 1; 1 <= colCount; i++)
System.out.printin(" Row " + i + ": " + rs.getString(i));

}

} catch (Exception e) {
// Handle any errors.
System.out.printIn("Oops... we have an error... ");
e.printStackTrace();
} finally {
// Ensure we always clean up. If the connection gets closed, the
// statement under it closes as well.
if (con != null) {
try {
con.close();
} catch (SQLException e) {
System.out.printIn("Critical error - cannot close connection object");
}

}

Example: ResultSetMetaData interface for IBM Developer Kit for Java: Note: Read the
lexample disclaimer| for important legal information.

import java.sql.*;

[x%
ResultSetMetaDataExample.java

Chapter 1. IBM Developer Kit for Java

145

This program demonstrates using a ResultSetMetaData and

a ResultSet to display all the metadata about a ResultSet
created querying a table. The user passes the value for the
table and library in.

*%/

public class ResultSetMetaDataExample {

public static void main(java.lang.String[] args)

146

{

if (args.length != 2) {
System.out.printin("Usage: java ResultSetMetaDataExample <library> <table>");
System.out.printin("where <library> is the library that contains <table>");
System.exit(0);

}

Connection
Statement s

con = null;
= null;

ResultSet rs = null;
ResultSetMetaData rsmd = null;

try {
// Get

a database connection and prepare a statement.

Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
con = DriverManager.getConnection("jdbc:db2:*1ocal");

S = con

rs = s.
rsmd =

int col

int rowCount

.createStatement();

executeQuery ("SELECT = FROM " + args[0] + "." + args[1]);
rs.getMetaData();

Count = rsmd.getColumnCount();
@.

for (int i = 1; i <= colCount; i++) {

System.out.printin("Information about column " + i);

System.out.printIn(" Name..........: " + rsmd.getColumnName(i));

System.out.printin(" Data Type.....: " + rsmd.getColumnType(i) +
" (" + rsmd.getColumnTypeName(i) + ")");

System.out.printIn(" Precision.....: " + rsmd.getPrecision(i));

System.out.printin(" Scale.........: " + rsmd.getScale(i));

System.out.print (" Allows Nulls..: ");

if (rsmd.isNullable(i)==0)

System.out.printin("false");
else

}

System.out.printin("true");

} catch (Exception e) {
// Handle any errors.

System.

out.printin("Oops... we have an error... ");

e.printStackTrace();

} finally {

// Ensure we always clean up. If the connection gets closed, the
// statement under it closes as well.
if (con !'= null) {

try {

con.close();

} catch (SQLException e) {

}

System.out.printin("Critical error - cannot close connection object");

iSeries: IBM Developer Kit for Java

JDBC object pooling

#* Object pooling is the most common topic to come up when discussing Java‘™ Database Connectivity
(JDBC) and performance. Since many objects used in JDBC are expensive to create such as Connection,
Statement, and ResultSet objects, significant performance benefits can be achieved by reusing these
objects instead of creating every time you need them.

Many applications already handle object pooling on your behalf. For example, WebSphere has extensive
support for pooling JDBC objects and allows you to control how the pool is managed. Because of this, you
can get the functionality you want without being concerned about your own pooling mechanisms. However,
when the support is not provided, you must find a solution for all but trivial applications.

To use object pooling in your JDBC programs, see the following:

lUse DataSource support for object pooling|
You can use DataSources to have multiple applications share a common configuration for accessing
a database. This is accomplished by having each application reference the same DataSource name.

[ConnectionPoolDataSource properties|
You can configure the ConnectionPoolDataSource interface by using the set of properties that it
provides.

IDataSource-based statement pooling|

You can use statement pooling within a connection pool. The UDBConnectionPoolDataSource
interface’s maxStatements property allows the DataSource to specify how many statements can be
pooled under a connection.

IBuild your own pooling solution|
You can develop your own connection and statement pooling without requiring support for
DataSources or relying on another product.

&

Use DataSource support for object pooling: % Using DataSources allows you to have multiple
applications share a common configuration for accessing the database. This is accomplished by having
each application reference the same DataSource name.

By using DataSources, many applications can be changed from a central location. For example, if you
change the name of a default library used by all your applications and you have used a single DataSource
to obtain connections for all of them, you can update the name of the collection in that DataSource. All of
your applications then start using the new default library.

When using DataSources to obtain connections for an application, you can use the native JDBC driver’s
built-in support for connection pooling. This support is provided as an implementation of the
ConnectionPoolDataSource interface.

Pooling is accomplished by handing out "logical” Connection objects instead of physical Connection
objects. A logical Connection object is a connection object that is returned by a pooled Connection
object. Each logical connection object acts as a temporary handle to the physical connection represented
by the pooled connection object. To the application, when the Connection object is returned, there is no
noticeable difference between the two. The subtle difference comes when you call the close method on the
Connection object. This call invalidates the logical connection and returns the physical connection to the
pool where another application is able to use the physical connection. This technique lets many logical
connection objects reuse a single physical connection.

Chapter 1. IBM Developer Kit for Java 147

Set up connection pooling: Connection pooling is accomplished by creating a DataSource object that
references a ConnectionPoolDataSource object. ConnectionPoolDataSource objects have properties that
can be set for handling various aspects of pool maintenance.

Refer to the example on how to [set up connection pooling| with UDBDataSource and
UDBConnectionPoolDataSource more details. You can also see the |Java Naming and Directory Interface|
(JNDI)|for details about the role JNDI plays in this example.

From the example, the link that binds the two DataSource objects together is the dataSourceName. The
link tells the DataSource object to defer establishing connections to the ConnectionPoolDataSource object
that manages pooling automatically.

Pooling and non-pooling applications: There is no difference between an application that uses Connection
pooling and one that does not. Therefore, pooling support can be added after the application code is
complete, without making any changes to the application code.

Refer to [Example: Test the performance of connection pooling for more details.

The following is output from running the previous program locally during development.

Start timing the non-pooling DataSource version...
Time spent: 6410

Start timing the pooling version...
Time spent: 282

Java program completed.

By default, a UDBConnectionPoolDataSource pools a single connection. If an application needs a
connection several times and only needs one connection at a time, using UDBConnectionPoolDataSource
is a perfect solution. If you need many simultaneous connections, you must

[ConnectionPoolDataSource| to match your needs and resources. %%

Example: Set up connection pooling with UDBDataSource and UDBConnectionPoolDataSource:

A This is an example of how to use connection pooling with UDBDataSource and
UDBConnectionPoolDataSource.

Example: Set up connection pooling with UDBDataSource and UDBConnectionPoolDataSource

Note: Read the [Code example disclaimer for important legal information.

import java.sql.=*;

import javax.naming.=;

import com.ibm.db2.jdbc.app.UDBDataSource;

import com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource;

public class ConnectionPoolingSetup
{
public static void main(java.lang.String[] args)
throws Exception
{
// Create a ConnectionPoolDataSource implementation
UDBConnectionPoolDataSource cpds = new UDBConnectionPoolDataSource();
cpds.setDescription("Connection Pooling DataSource object");

// Establish a JNDI context and bind the connection pool data source
Context ctx = new InitialContext();

ctx.rebind("ConnectionSupport", cpds);

// Create a standard data source that references it.

148 iSeries: IBM Developer Kit for Java

{{

Example: Test the performance of connection pooling: #* This is an example of how to test the
performance of the pooling example against the performance of the non-pooling example.

UDBDataSource ds = new UDBDataSource();
ds.setDescription("DataSource supporting pooling");
ds.setDataSourceName ("ConnectionSupport");
ctx.rebind("PoolingDataSource", ds);

Example: Test the performance of connection pooling

Note: Read the [Code example disclaimer] for important legal information.

import java.sql.*;
import javax.naming.=;
import java.util.=*;
import javax.sql.*;

public class ConnectionPoolingTest

{

public static void main(java.lang.String[] args)
throws Exception

{

{{

Context ctx = new InitialContext();

// Do the work without a pool:

DataSource ds = (DataSource) ctx.lookup("BaseDataSource");
System.out.printIn("\nStart timing the non-pooling DataSource version...");

long startTime = System.currentTimeMillis();
for (int i = 0; i < 100; i++) {
Connection cl = ds.getConnection();
cl.close();
}
long endTime = System.currentTimeMillis();
System.out.printIn("Time spent: " + (endTime - startTime));

// Do the work with pooling:
ds = (DataSource) ctx.lookup("PoolingDataSource");
System.out.printIn("\nStart timing the pooling version...");

startTime = System.currentTimeMillis();
for (int i = 0; i < 100; i++) {
Connection cl = ds.getConnection();
cl.close();
}
endTime = System.currentTimeMillis();
System.out.printIn("Time spent: " + (endTime - startTime));

ConnectionPoolDataSource properties: ¥ The ConnectionPoolDataSource interface provides a set of

properties for its configuration. Descriptions of these properties are provided in the following table.

Chapter 1. IBM Developer Kit for Java

149

Property Description

initialPoolSize When the pool is first instantiated, this property
determines how many connections are placed into the
pool. If this value is specified outside the range of
minPoolSize and maxPoolSize, either minPoolSize or
maxPoolSize is used as the number of initial connections
to create.

maxPoolSize As the pool is used, more connections may be requested
than the pool has in it. This property specifies the
maximum number of connections allowed to be created in
the pool.

Applications do not "block” and wait for a connection to
be returned to the pool when the pool is at its maximum
size and all connections are in use. Instead, the JDBC
driver constructs a new connection based on the
DataSource properties and returns the connection.

If a maxPoolSize of 0 is specified, the pool is allowed to
grow unbounded as long as the system has resources
available to hand out.

minPoolSize Spikes in using the pool can cause it to increase the
number of connections in it. If the activity level diminishes
to the point where some Connections are never pulled
out of the pool, the resources are being taken up for no
particular reason.

In such cases, the JDBC driver has the ability to release
some of the connections that it has accumulated. This
property allows you to tell the JDBC to release
connections, ensuring that it always has a certain number
of connections available to use.

If a minPoolSize of 0 is specified, it is possible for the
pool to free all of its connections and for the application
to actually pay for the connection time for each
connection request.

maxl|dleTime Connections keep track of how long they have been
sitting around without being used. This property specifies
how long an application allows connections to be unused
before they are released (that is, there are more
connections than are needed).

This property is a time in seconds and does not specify
when the actual close occurs. It specifies when enough
time has passed that the connection should be released.

propertyCycle This property represents the number of seconds that are
allowed to pass between the enforcement of these rules.

Note: Setting either the maxldleTime or the propertyCycle time to 0 means that the JDBC driver does not
check for connections to be removed from the pool on its own. The rules specified for initial, min, and max
size are still enforced.

When maxldleTime and propertyCycle are not 0, a management thread is used to watch over the pool.
The thread wakes up every propertyCycle second and checks all the connections in the pool to see which
ones have been there without being used for more than maxldleTime seconds. Connections fitting this

criterion are removed from the pool until the minPoolSize is reached. %

150 iSeries: IBM Developer Kit for Java

DataSource-based statement pooling: # Another property that is available on the
UDBConnectionPoolDataSource interface is maxStatements. This property allows for statement pooling
within the connection pool. Statement pooling only has an effect on PreparedStatements and
CallableStatements. Statement objects are not pooled.

The implementation of statement pooling is similar to that of connection pooling. When the application calls
Connection.prepareStatement(”select * from tablex”), the pooling module checks if the Statement object
has already been prepared under the connection. If it has, a logical PreparedStatement object is handed
to you instead of the physical object. When you call close, the Connection object is returned to the pool,
the logical Connection object is thrown away, and the Statement object can be reused.

The maxStatements property allows the DataSource to specify how many statements can be pooled under
a connection. A value of 0 indicates that statement pooling should not be used. When the statement pool
is full, a least recently used algorithm is applied to determine which statement is to be thrown out.

[Example: Test the performance of two DataSources|tests one DataSource that uses connection pooling
only and the other DataSource that uses statement and connection pooling.

The following example is output from running this program locally during development.

Deploying statement pooling data source
Start timing the connection pooling only version...
Time spent: 26312

Starting timing the statement pooling version...
Time spent: 2292

Java program completed <

Example: Test the performance of two DataSources: ** This is an example of testing one
DataSource that uses connection pooling only and the other DataSource that uses statement and
connection pooling.

Example: Test the performance of two DataSources

Note: Read the [Code example disclaimer for important legal information.

import java.sql.=;

import javax.naming.=;

import java.util.*;

import javax.sql.*;

import com.ibm.db2.jdbc.app.UDBDataSource;

import com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource;

public class StatementPoolingTest

{

public static void main(java.lang.String[] args)
throws Exception

{

Context ctx = new InitialContext();

System.out.printin("deploying statement pooling data source");
deployStatementPoolDataSource();

// Do the work with connection pooling only.
DataSource ds = (DataSource) ctx.lookup("PoolingDataSource");
System.out.printIn("\nStart timing the connection pooling only version...");

long startTime = System.currentTimeMillis();
for (int i = 0; i < 100; i++) {

Chapter 1. IBM Developer Kit for Java 151

Connection cl = ds.getConnection();

PreparedStatement ps = cl.prepareStatement("select * from gsys2.sysprocs");
ResultSet rs = ps.executeQuery();

cl.close();

1
Tong endTime = System.currentTimeMillis();
System.out.printIn("Time spent: " + (endTime - startTime));

// Do the work with statement pooling added.
ds = (DataSource) ctx.lookup("StatementPoolingDataSource");
System.out.printin("\nStart timing the statement pooling version...");

startTime = System.currentTimeMillis();
for (int i = 0; i < 100; i++) {
Connection c1 = ds.getConnection();
PreparedStatement ps = cl.prepareStatement("select * from gsys2.sysprocs");
ResultSet rs = ps.executeQuery();
cl.close();

endTime = System.currentTimeMillis();
System.out.printIn("Time spent: " + (endTime - startTime));

private static void deployStatementPoolDataSource()
throws Exception

{

// Create a ConnectionPoolDataSource implementation

UDBConnectionPoolDataSource cpds = new UDBConnectionPoolDataSource();
cpds.setDescription("Connection Pooling DataSource object with Statement pooling");
cpds.setMaxStatements(10);

// Establish a JNDI context and bind the connection pool data source
Context ctx = new InitialContext();
ctx.rebind("StatementSupport", cpds);

// Create a standard datasource that references it.
UDBDataSource ds = new UDBDataSource();
ds.setDescription("DataSource supporting statement pooling");
ds.setDataSourceName ("StatementSupport");
ctx.rebind("StatementPoolingDataSource", ds);

}

Build your own connection pooling: #* You can develop your own connection and statement pooling
without requiring support for DataSources or relying on another product.

The pooling techniques are demonstrated on a small Java application, but are equally applicable to
servlets or large n-tiered applications. This example is used to demonstrate the performance issues.

The demonstration application has two functions:
* To insert a new index and name into a database table.
* To read the name for a given index from the table.

The complete code to the application can be downloaded from IBM’s |Developer Kit for Java JDBC Web|
2

The example application does not perform well. Running 100 calls to the getValue method and 100 calls to
the putValue method through this code took an average of 31.86 seconds on a standard workstation.

152 iSeries: IBM Developer Kit for Java

http://www.ibm.com/eserver/iseries/developer/jdbc/index.html
http://www.ibm.com/eserver/iseries/developer/jdbc/index.html

The problem is that there is too much database work for every request. That is, you get a connection, get
a statement, process the statement, close the statement, and close the connection. Instead of discarding
everything after each request, there must be a way to reuse portions of this process. Connection pooling
is replacing the create connection code with code to obtain a connection from the pool, and then replacing
the close connection code with code to return the connection to the pool for use.

The connection pool’s constructor creates the connections and places them in the pool. The pool class
has take and put methods for locating a connection to use and for returning the connection to the pool
when done working with the connection. These methods are synchronized because the pool object is a
shared resource, but you do not want multiple threads to simultaneously try to manipulate the pooled
resources.

There is a change to the calling code for the getValue method. The putValue method is not shown, but the

exact change is made to it and is available from IBM’s|Developer Kit for Java JDBC Web Page| e . The
instantiation of the connection pool object is also not shown. You can call the constructor and pass in the
number of connection objects that you want in the pool. This step should be done when you start up the
application.

Running the previous application (that is, having 100 getValue method and 100 putValue method requests)
with these changes took an average of 13.43 seconds with the connection pooling code in place. The
processing time for the workload is cut by more than half the original processing time without connection
pooling.

Build your own statement pooling: When using connection pooling, time is wasted when creating and
closing a statement when each statement is processed. This is another example of wasting an object that
can be reused.

To reuse an object, you can use the prepared statement class. In most applications, the same SQL
statements are reused with minor changes. For example, one iteration through an application might
generate the following query:

SELECT * from employee where salary > 100000

The next iteration might generate the following query:
SELECT * from employee where salary > 50000

This is the same query, but it uses a different parameter. Both queries can be accomplished with the
following query:

SELECT * from employee where salary > ?

You can then set the parameter marker (denoted by the question mark) to 100000 when processing the
first query and 50000 when processing the second query. This enhances performance for three reasons
beyond what the connection pool can offer:

» Fewer objects are created. A PreparedStatement object is created and reused instead of creating a
Statement object for every request. Therefore, you run fewer constructors.

* The database work to set up the SQL statement (called the prepare) can be reused. Preparing SQL
statements is reasonably expensive as it involves determining what the SQL statement text says and
how the system should accomplish the task requested.

* When removing the additional object creations, there is a benefit that is not often considered. There is
no need to destroy what was not created. This model is easier on the Java garbage collector and also
benefits performance over time with many users.

The demonstration program can be changed to pool PreparedStatement objects instead of Connections.

Changing the program allows you to reuse more object and improve performance. You can begin by
writing the class that contains the objects to be pooled. This class must encapsulate the various resources

Chapter 1. IBM Developer Kit for Java 153

http://www.ibm.com/eserver/iseries/developer/jdbc/index.html

to be used. For the connection pool example, the Connection was the only pooled resource, so there was
no need for an encapsulating class. Each pooled object must contain a Connection and two
PreparedStatements. You can then create a pool class that contains database access objects instead of
connections.

Finally, the application must change to obtain a database access object and specify which resource from
the object it wants to use. Other than specifying the specific resource, the application remains the same.

With this change, the same test run now takes an average of 0.83 seconds. This time is about 38 times
faster than the original version of the program.

Considerations: Performance improves through replication. If an item is not reused, then it is wasting
resources to pool it.

Most applications contain critical sections of code. Typically, an application uses 80 to 90 percent of its
processing time on only 10 to 20 percent of the code. If there are 10,000 SQL statements potentially used
in an application, not all of them are pooled. The objective is to identify and pool the SQL statements that
are used in the application’s critical sections of code.

Creating objects in a Java implementation can carry a heavy cost. The pooling solution can be used with
advantage. Objects used in the process are created at the beginning, before other users attempt to use
the system. These objects are reused as often as required. Performance is excellent and it is possible to
fine-tune the application over time to facilitate its use for greater numbers of users. As a result, more
objects are pooled. Moreover, it permits more efficient multithreading of the application’s database access
to gain greater throughput.

Java (using JDBC) is based on dynamic SQL and tends to be slow. Pooling can minimize this problem. By
preparing the statements at startup, access to the database can be rendered static. There is little
difference in performance between dynamic and static SQL after the statement is prepared.

The performance of database access in Java can be efficient and can be accomplished without sacrificing
object-oriented design or code maintainability. Writing code to build statement and connection pooling is
not difficult. Furthermore, the code can be changed and enhanced to support multiple applications and

application types (Web-based, client/server) and so on. %%

Batch updates

#* A new feature in JDBC 2.0 is batch update support. This feature allows any updates to the database to
be passed as a single transaction between the user program and the database. This procedure can
significantly improve performance when many updates must be performed at once. For example, if a large
company requires its newly hired employees to start work on a Monday, this requirement makes it
necessary to process many updates (in this case, insertions) to the employee database at one time.
Creating a batch of updates and submitting them to the database as one unit can save you processing
time.

There are two types of batch updates:
» Batch updates that use Statement objects.
» Batch updates that use PreparedStatement objects.

To use batch update support, see the following:

[Statement batch update]
Before performing a statement batch update, you must ensure that auto-commit is turned off. When
the auto-commit setting is off, you can create a standard Statement object. You can then add the

154 iSeries: IBM Developer Kit for Java

statements to the batch with the addBatch method. Once you have added all the statements you
want to the batch, you can process all of them with the executeBatch method or empty the batch at
anytime with the clearBatch method.

[PreparedStatement batch update|

A preparedStatement batch is similar to the Statement batch. However, a preparedStatement batch
always works off the same prepared statement, and you only change the parameters to that
statement.

[BatchUpdateException|

When a call to the executeBatch method fails, a BatchUpdateException is thrown. The
BatchUpdateException allows you to call all the same methods you have always called to receive the
message, the SQLState, and vendor code. BatchUpdateException also provides the
getUpdateCounts method that returns an integer array. The integer array contains update counts
from all the statements in the batch that were processed up to the point where the failure occurred.

[Blocked insert support|
You can use a blocked insert is an iSeries operation to insert several rows into a database table at a
time.

&

Statement batch update: ** To perform a Statement batch update, you must turn off auto-commit. In
Java'™ Database Connectivity (JDBC), auto-commit is on by default. Auto-commit means any updates to
the database are committed after each SQL statement is processed. If you want to treat a group of
statements being handed to the database as one functional group, you do not want the database
committing each statement individually. If you do not turn off auto-commit and a statement in the middle of
the batch fails, you cannot roll back the entire batch and try it again because half of the statements have
been made final. Further, the additional work of committing each statement in a batch creates a lot of
overhead. See for more details.

After turning off auto-commit, you can create a standard Statement object. Instead of processing
statements with methods such as executeUpdate, you add them to the batch with the addBatch method.
Once you have added all the statements you want to the batch, you can process all of them with the
executeBatch method. You can empty the batch at anytime with the clearBatch method.

The following example shows how you can use these methods:

Example: Statement batch update

Note: Read the [Code example disclaimer for important legal information.

connection.setAutoCommit(false);

Statement statement = connection.createStatement();
statement.addBatch("INSERT INTO TABLEX VALUES(1, 'Cujo')");
statement.addBatch ("INSERT INTO TABLEX VALUES(2, 'Fred')");
statement.addBatch ("INSERT INTO TABLEX VALUES(3, 'Mark')");
int [] counts = statement.executeBatch();
connection.commit();

In this example, an array of integers is returned from the executeBatch method. This array has one integer
value for each statement that is processed in the batch. If values are being inserted into the database, the
value for each statement is 1 (that is, assuming successful processing). However, some of the statements
may be update statements that affect multiple rows. If you put any statements in the batch other than

INSERT, UPDATE, or DELETE, an exception occurs. <&

Chapter 1. IBM Developer Kit for Java 155

PreparedStatement batch update: # A preparedStatement batch is similar to the Statement batch;
however, a preparedStatement batch always works off the same "prepared” statement, and you only
change the parameters to that statement. The following is an example that uses a preparedStatement
batch.

Example: PreparedStatement batch update

Note: Read the [Code example disclaimer for important legal information.

connection.setAutoCommit(false);
PreparedStatement statement =
connection.prepareStatement ("INSERT INTO TABLEX VALUES(?, ?)");
statement.setInt(1l, 1);
statement.setString(2, "Cujo");
statement.addBatch();
statement.setInt(1, 2);
statement.setString(2, "Fred");
statement.addBatch();
statement.setInt(1l, 3);
statement.setString(2, "Mark");
statement.addBatch();
int [] counts = statement.executeBatch();
connection.commit();

&

BatchUpdateException: # An important consideration of batch updates is what action to take when a
call to the executeBatch method fails. In this case, a new type of exception, called BatchUpdateException,
is thrown. The BatchUpdateException is a subclass of SQLException and it allows you to call all the same
methods you have always called to receive the message, the SQLState, and vendor code.
BatchUpdateException also provides the getUpdateCounts method that returns an integer array. The
integer array contains update counts from all the statements in the batch that were processed up to the
point where the failure occurred. The array length tells you which statement in the batch failed. For
example, if the array returned in the exception has a length of three, the fourth statement in the batch
failed. Therefore, from the single BatchUpdateException object that is returned, you can determine the
update counts for all the statements that were successful, which statement failed, and all the information
about the failure.

Currently, the standard performance of processing batched updates is equivalent to the performance of
processing each statement independently. You can refer to [Blocked insert support| for more information on
optimized support for batch updates. You should still use the new model when coding and take advantage
of future performance optimizations.

Note: In the JDBC 2.1 specification, a different option is provided for how exception conditions for batch
updates are handled. JDBC 2.1 introduces a model where the processing batch continues after a batch
entry fails. A special update count is placed in the array of update count integers that is returned for each
entry that fails. This allows large batches to continue processing even though one of their entries fails. See
the JDBC 2.1 or JDBC 3.0 specification for details on these two modes of operation. By default, the native
JDBC driver uses the JDBC 2.0 definition. The driver provides a|Connection propertyl that is used when
using DriverManager to establish connections. The driver also provides a|DataSource property| that is used
when using DataSources to establish connections. These properties allow applications to choose how they

want batch operations to handle failures. 4

Blocked insert support: ¥ A blocked insert is a special type of operation on an iSeries server that
provides a highly optimized way to insert several rows into a database table at a time. Blocked inserts can
be thought of as a subset of batched updates. Batched updates can be any form of an update request, but
blocked inserts are specific. However, blocked insert types of batched updates are common; the native
JDBC driver has been changed to take advantage of this feature.

156 iSeries: IBM Developer Kit for Java

Because of system restrictions when using blocked insert support, the default setting for the native JDBC
driver is to have blocked insert disabled. It can be enabled through a Connection property or a DataSource
property. Most of the restrictions when using a blocked insert can be checked and handled on your behalf,
but a few restrictions cannot; thus, this is the reason for turning off blocked insert support by default. The
list of restrictions is as follows:

* The SQL statement used must be an INSERT statement with a VALUES clause, meaning that it is not
an INSERT statement with SUBSELECT. The JDBC driver recognizes this restriction and takes the
appropriate course of action.

* A PreparedStatement must be used, meaning that there is no optimized support for Statement objects.
The JDBC driver recognizes this restriction and takes the appropriate course of action.

* The SQL statement must specify parameter markers for all the columns in the table. This means that
you cannot either use constant values for a column or allow the database to insert default values for
any of the columns. The JDBC driver does not have a mechanism to handle testing for specific
parameter markers in your SQL statement. If you set the property to perform optimized blocked
insertions and you do not avoid defaults or constants in your SQL statements, the values that end up in
the database table are not correct.

* The connection must be to the local system. This means that a connection using DRDA to access a
remote system cannot be used because DRDA does not support a blocked insert operation. The JDBC
driver does not have a mechanism to handle testing for a connection to a local system. If you set the
property to perform an optimized blocked insertion and you attempt to connect to a remote system, the
processing of the batch update fails.

This code example shows how to enable support for blocked insert processing. The only difference
between this code and a version that would not use blocked insert support is use block insert=true that
is added to the Connection URL.

Example: Blocked insert processing

Note: Read the |Code example disclaimer for important legal information.

// Create a database connection
Connection ¢ = DriverManager.getConnection("jdbc:db2:*Tocal;use block insert=true");
BigDecimal bd = new BigDecimal("123456");

// Create a PreparedStatement to insert into a table with 4 columns
PreparedStatement ps =
c.prepareStatement ("insert into cujosql.xxx values(?, ?, 2, ?)");

// Start timing...
for (int i = 1; i <= 10000; i++) {
ps.setInt(1l, i); // Set all the parameters for a row
ps.setBigDecimal(2, bd);
ps.setBigDecimal(3, bd);
ps.setBigDecimal (4, bd);
ps.addBatch(); //Add the parameters to the batch
1

// Process the batch
int[] counts = ps.executeBatch();

// End timing...

In similar test cases, a blocked insert is several times faster than performing the same operations when a
blocked insert is not used. For example, the test performed on the previous code was nine time faster
using blocked inserts. Cases that only use primitive types instead of objects can be up to sixteen times
faster. In applications where there is a significant amount of work going on, expectations should be

appropriately changed. 4

Chapter 1. IBM Developer Kit for Java 157

Advanced data types

#* There are several new data types called SQL3 data types that are provided in the iSeries database
with the V4R4 e-PACK. Java‘™ Database Connectivity (JDBC) 2.0 and higher provide support for working
with these data types that are a part of the SQL99 standard.

The SQLS3 data types give you a tremendous amount of flexibility. They are ideal for storing serialized Java
objects, Extensible Markup Language (XML) documents, and multimedia data such as songs, product
pictures, employee photographs, and movie clips.

Distinct types: The distinct type is a user-defined type that is based on a standard database type. For
example, you can define a Social Security Number type, SSN, that is a CHAR(9) internally. The following
SQL statement creates such a DISTINCT type.

CREATE DISTINCT TYPE CUJOSQL.SSN AS CHAR(9)

A distinct type always maps to a built-in data type. For more information on how and when to use distinct
types in the context of SQL, consult the SQL reference manuals.

To use distinct types in JDBC, you access them the same way that you access an underlying type. The
getUDTs method is a new method that allows you to query what distinct types are available on the system.
This program shows the following:

* The creation of a distinct type.

* The creation of a table that uses it.

* The use of a PreparedStatement to set a distinct type parameter.
* The use of a ResultSet to return a distinct type.

* The use of the metadata Application Programming Interface (API) call to getUDTs to learn about a
distinct type.

Large Objects: There are three types of Large Objects (LOBs):
» Binary Large Objects (BLOBS)

* Character Large Objects (CLOBs)

* Double Byte Character Large Objects (DBCLOBSs)

DBCLOBs are similar to CLOBs except for their internal storage representation of the character data.
Because Java and JDBC externalize all character data as Unicode, there is only support in JDBC for
CLOBs. DBCLOBs work interchangeable with the CLOB support from a JDBC perspective.

Binary Large Objects: In many ways, a Binary Large Object (BLOB) column is similar to a CHAR FOR
BIT DATA column that can be made large. You can store anything in these columns that can be
represented as a stream of nontranslated bytes. Often, BLOB columns are used to store serialized Java
objects, pictures, songs, and other binary data.

You can use BLOBs the same way you would use other standard database types. You can pass them to
stored procedures, use them in prepared statements, and update them in result sets. The
PreparedStatement class has a setBlob method for passing BLOBs to the database, and the ResultSet
class adds a getBlob class for retrieving them from the database. A BLOB is represented in a Java
program by a BLOB object that is a JDBC interface.

Refer to [Write code that uses BLOBs|for more information on how to use BLOBs.

Character Large Objects: Character Large Objects (CLOBSs) are the character data complement to
BLOBs. Instead of storing data in the database without translation, the data is stored in the database as
text and is processed the same way as a CHAR column. As with BLOBs, JDBC 2.0 provides functions for
dealing directly with CLOBs. The PreparedStatement interface contains a setClob method and the
ResultSet interface contains a getClob method.

158 iSeries: IBM Developer Kit for Java

Refer to [Write code that uses CLOBs| for more information on how to use CLOBs.

Although BLOB and CLOB columns work like CHAR FOR BIT DATA and CHAR columns, this is
conceptually how they work from an external user’s perspective. Internally, they are different; because of
the potentially enormous size of Large Object (LOB) columns, you typically work indirectly with data. For
example, when a block of rows is fetched from the database, you do not move a block of LOBs to the
ResultSet. You move pointers called LOB locators (that is, four-byte integers) into the ResultSet instead.
However, it is not necessary to know about locators when working with LOBs in JDBC.

Datalinks: Datalinks are encapsulated values that contain a logical reference from the database to a file
stored outside the database. Datalinks are represented and used from a JDBC perspective in two different
ways, depending on whether you are using JDBC 2.0 or earlier, or you are using JDBC 3.0 or later.

Refer to [Write code that uses Datalinks|for more information on how to use Datalinks.

Unsupported SQL3 data types: There are other SQL3 data types that have been defined and for which
the JDBC API provides support. These are ARRAY, REF, and STRUCT. Presently, iSeries servers do not

support these types. Therefore, the JDBC driver does not provide any form of support for them. <

Write code that uses BLOBs: %* There are a number of tasks that can be accomplished with database
Binary Large Object (BLOB) columns through the Java‘™ Database Connectivity (JDBC) Application
Programming Interface (API). The following topics briefly discuss these tasks and include examples on
how to accomplish them.

Read BLOBs from the database and insert BLOBs into the database: With the JDBC API, there are ways
to get BLOBs out of the database and ways to put BLOBs into the database. However, there is no
standardized way to create a Blob object. This is not a problem if your database is already full of BLOBsS,
but it poses a problem if you want to work with BLOBs from scratch through JDBC. Instead of defining a
constructor for the Blob and Clob interfaces of the JDBC API, support is provided for placing BLOBs into
the database and getting them out of the database directly as other types. For example, the
setBinaryStream method can work with a database column of type Blob. This shows some of the
common ways that a BLOB can be put into the database or retrieved from the database.

Work with the Blob object API: BLOBs are defined in JDBC as an interface of which the various drivers
provide implementations. This interface has a series of methods that can be used to interact with the Blob
object. This shows some of the common tasks that can be performed using this API. Consult the
JDBC Javadoc for a complete list of available methods on the Blob object.

Use JDBC 3.0 support to update BLOBs: In JDBC 3.0, there is support for making changes to LOB
objects. These changes can be stored into BLOB columns in the database. This shows some of

the tasks that can be performed with BLOB support in JDBC 3.0. &

Example: BLOB: ¥ This is an example of how a BLOB can be put into the database or retrieved from
the database.

Example: BLOB

Note: Read the [Code example disclaimer for important legal information.

[ITTE00000000000010111111111171711117
// PutGetBlobs is an example application
// that shows how to work with the JDBC

// API to obtain and put BLOBs to and from
// database columns.

//

// The results of running this program

// are that there are two BLOB values

// in a new table. Both are identical

Chapter 1. IBM Developer Kit for Java 159

// and contain 500k of random byte

// data.

[0 000000101111111111111111
import java.sql.=*;

import java.util.Random;

public class PutGetBlobs {
public static void main(String[] args)
throws SQLException

{
// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1); // Setup error.
}
// Establish a Connection and Statement with which to work.
Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement s = c.createStatement();
// Clean up any previous run of this application.
try {
s.executeUpdate("DROP TABLE CUJOSQL.BLOBTABLE");
} catch (SQLException e) {
// Ignore it - assume the table did not exist.
}
// Create a table with a BLOB column. The default BLOB column
// size is 1 MB.
s.executeUpdate("CREATE TABLE CUJOSQL.BLOBTABLE (COL1 BLOB)");
// Create a PreparedStatement object that allows you to put
// a new Blob object into the database.
PreparedStatement ps = c.prepareStatement ("INSERT INTO CUJOSQL.BLOBTABLE VALUES(?)");
// Create a big BLOB value...
Random random = new Random ();
byte [] inByteArray = new byte[500000] ;
random.nextBytes (inByteArray);
// Set the PreparedStatement parameter. Note: This is not
// portable to all JDBC drivers. JDBC drivers do not have
// support when using setBytes for BLOB columns. This is used to
// allow you to generate new BLOBs. It also allows JDBC 1.0
// drivers to work with columns containing BLOB data.
ps.setBytes(1, inByteArray);
// Process the statement, inserting the BLOB into the database.
ps.executeUpdate();
// Process a query and obtain the BLOB that was just inserted out
// of the database as a Blob object.
ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.BLOBTABLE");
rs.next();
Blob blob = rs.getBlob(1);
// Put that Blob back into the database through
// the PreparedStatement.
ps.setBlob(1, blob);
ps.execute();
c.close(); // Connection close also closes stmt and rs.
1

160 iSeries: IBM Developer Kit for Java

&

Example: Update BLOBs: #* This is an example of how to update BLOBs in your applications.

Example: Update BLOBs

Note: Read the [Code example disclaimer for important legal information.
[IHTTETIILEIE i rierlieelleiliiell
/

/ UpdateBlobs is an example application
// that shows some of the APIs providing
// support for changing Blob objects
// and reflecting those changes to the
// database.

//

// This program must be run after

// the PutGetBlobs program has completed.
[T ierlieelieeliiell

import java.sql.*;

public class UpdateBlobs {
public static void main(String[] args)
throws SQLException

// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1); // Setup error.
}

Connection ¢ = DriverManager.getConnection("jdbc:db2:*Tocal");
Statement s = c.createStatement();

ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.BLOBTABLE");
rs.next();

Blob blobl = rs.getBlob(1);

rs.next();
Blob blob2 = rs.getBlob(1);

// Truncate a BLOB.

blobl.truncate((long) 150000);

System.out.printin("Blobl's new Tength is " + blobl.length());
// Update part of the BLOB with a new byte array.

// The following code obtains the bytes that are at

// positions 4000-4500 and set them to positions 500-1000.

// Obtain part of the BLOB as a byte array.
byte[] bytes = blobl.getBytes(4000L, 4500);

int bytesWritten = blob2.setBytes(500L, bytes);
System.out.printin("Bytes written is " + bytesWritten);

// The bytes are now found at position 500 in blob2
Tong startInBlob2 = blob2.position(bytes, 1);

System.out.printin("pattern found starting at position " + startInBlob2);

c.close(); // Connection close also closes stmt and rs.

Chapter 1. IBM Developer Kit for Java

161

Example: Use BLOBs: #* This is an example of how to use BLOBs in your applications.

Example: Use BLOBs

Note: Read the [Code example disclaimer for important legal information.
[T ieriieelleeeliieil

// UseBlobs is an example application

// that shows some of the APIs associated
// with Blob objects.

//

// This program must be run after

// the PutGetBlobs program has completed.
[ITTTTTTT00 L0 riieiilieieeiel

import java.sql.=*;

public class UseBlobs {
public static void main(String[] args)
throws SQLException
{
// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1l); // Setup error.
}

Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement s = c.createStatement();

ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.BLOBTABLE");

rs.next();
Blob blobl = rs.getBlob(1);
rs.next();
Blob blob2 = rs.getBlob(1);

// Determine the length of a LOB.
long end = blobl.length();
System.out.printIn("Blobl length is " + blobl.length());

// When working with LOBs, all indexing that is related to them
// is 1l-based, and is not O-based Tike strings and arrays.

long startingPoint = 450;

long endingPoint = 500;

// Obtain part of the BLOB as a byte array.
byte[] outByteArray = blobl.getBytes(startingPoint, (int)endingPoint);

// Find where a sub-BLOB or byte array is first found within a

// BLOB. The setup for this program placed two identical copies of
// a random BLOB into the database. Thus, the start position of the
// byte array extracted from blobl can be found in the starting

// position in blob2. The exception would be if there were 50

// identical random bytes in the LOBs previously.

long startInBlob2 = blob2.position(outByteArray, 1);

System.out.printin("pattern found starting at position " + startInBlob2);

c.close(); // Connection close closes stmt and rs too.

162 iSeries: IBM Developer Kit for Java

Write code that uses CLOBs: #* There are a number of tasks that can be performed with database
CLOB and DBCLOB columns through the Java‘™ Database Connectivity (JDBC) Application
Programming Interface (API). The following topics briefly discuss these tasks and include examples on
how to accomplish them.

Read CLOBs from the database and insert CLOBs into the database: With the JDBC API, there are ways
to get CLOBs out of the database and ways to put CLOBs into the database. However, there is no
standardized way to create a Clob object. This is not a problem if your database is already full of CLOBs,
but it poses a problem if you want to work with CLOBs from scratch through JDBC. Instead of defining a
constructor for the Blob and Clob interfaces of the JDBC API, support is provided for placing CLOBs into
the database and getting them out of the database directly as other types. For example, the
setCharacterStream method can work with a database column of type Clob. This [example] shows some of
the common ways that a CLOB can be put into the database or retrieved from the database.

Work with the Clob object API: CLOBs are defined in JDBC as an interface of which the various drivers
provide implementations. This interface has a series of methods that can be used to interact with the Clob
object. This shows some of the common tasks that can be performed using this API. Consult the
JDBC Javadoc for a complete list of available methods on the Clob object.

Use JDBC 3.0 support to update CLOBs: In JDBC 3.0, there is support for making changes to LOB
objects. These changes can be stored into CLOB columns in the database. This|examp|e shows some of

the tasks that can be performed with CLOB support in JDBC 3.0. 4

Example: CLOB: ¥* This is an example of how a CLOB can be put into the database or retrieved from
the database.

Example: CLOB

Note: Read the [Code example disclaimer for important legal information.
LTI 110111117117

// PutGetClobs is an example application
// that shows how to work with the JDBC
// API to obtain and put CLOBs to and from
// database columns.

//

// The results of running this program

// are that there are two CLOB values

// in a new table. Both are identical

// and contain about 500k of repeating

// text data.

LTI 111111171111111111

import java.sql.=;

public class PutGetClobs {
public static void main(String[] args)
throws SQLException
{
// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1); // Setup error.
1

// Establish a Connection and Statement with which to work.
Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement s = c.createStatement();

// Clean up any previous run of this application.

try {
s.executeUpdate("DROP TABLE CUJOSQL.CLOBTABLE");

Chapter 1. IBM Developer Kit for Java 163

} catch (SQLException e) {
// Ignore it - assume the table did not exist.
}

// Create a table with a CLOB column. The default CLOB column
// size is 1 MB.
s.executeUpdate("CREATE TABLE CUJOSQL.CLOBTABLE (COL1 CLOB)");

// Create a PreparedStatement object that allow you to put
// a new Clob object into the database.
PreparedStatement ps = c.prepareStatement ("INSERT INTO CUJOSQL.CLOBTABLE VALUES(?)");

// Create a big CLOB value...
StringBuffer buffer = new StringBuffer(500000);
while (buffer.length() < 500000) {
buffer.append("A11 work and no play makes Cujo a dull boy.");
}

String clobValue = buffer.toString();

// Set the PreparedStatement parameter. This is not

// portable to all JDBC drivers. JDBC drivers do not have

// to support setBytes for CLOB columns. This is done to

// allow you to generate new CLOBs. It also

// allows JDBC 1.0 drivers a way to work with columns containing
// Clob data.

ps.setString(1, clobValue);

// Process the statement, inserting the clob into the database.
ps.executeUpdate();

// Process a query and get the CLOB that was just inserted out of the
// database as a Clob object.
ResultSet rs = s.executeQuery("SELECT = FROM CUJOSQL.CLOBTABLE");

rs.next();
Clob clob = rs.getClob(1);

// Put that Clob back into the database through
// the PreparedStatement.

ps.setClob(1, clob);

ps.execute();

c.close(); // Connection close also closes stmt and rs.

}
&
Example: Update CLOBs: #* This is an example of how to update CLOBs in your applications.

Example: Update CLOBs

Note: Read the |Code example disclaimer for important legal information.
[T 0110111171111111111

// UpdateClobs is an example application
// that shows some of the APIs providing
// support for changing Clob objects
// and reflecting those changes to the
// database.

// This program must be run after
// the PutGetClobs program has completed.
[ITTEEEIEEIE i rierlieelleeelilieil

import java.sql.=*;

164 iSeries: IBM Developer Kit for Java

public class UpdateClobs {
public static void main(String[] args)
throws SQLException

{

}
}

// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1); // Setup error.
1

Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement s = c.createStatement();

ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.CLOBTABLE");

rs.next();
Clob clobl = rs.getClob(1);
rs.next();
Clob clob2 = rs.getClob(1);

// Truncate a CLOB.
clobl.truncate((long) 150000);
System.out.printIn("Clobl's new length is " + clobl.length());

// Update a portion of the CLOB with a new String value.
String value = "Some new data for once";
int charsWritten = clob2.setString(500L, value);

System.out.printIn("Characters written is " + charsWritten);

// The bytes can be found at position 500 in clob2
Tong startInClob2 = clob2.position(value, 1);

System.out.printin("pattern found starting at position " + startInClob2);

c.close(); // Connection close also closes stmt and rs.

Example: Use CLOBs: #* This is an example of how to use CLOBs in your applications.

Example: Use CLOBs

Note: Read the |Code example disclaimer for important legal information.
HITTLETILETE011011111171111111111
/

/ UpdateClobs is an example application
// that shows some of the APIs providing
// support for changing Clob objects
// and reflecting those changes to the
// database.

/1

// This program must be run after
// the PutGetClobs program has completed.
[T ierlieelleeliieil

import java.sql.=;

public class UseClobs {
public static void main(String[] args)
throws SQLException

// Register the native JDBC driver.

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

Chapter 1. IBM Developer Kit for Java

165

/l

}
}

} catch (Exception e) {
System.exit(1); // Setup error.
}

Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement s = c.createStatement();

ResultSet rs = s.executeQuery("SELECT %= FROM CUJOSQL.CLOBTABLE");

rs.next();
Clob clobl = rs.getClob(1);
rs.next();
Clob clob2 = rs.getClob(1);

// Determine the length of a LOB.
long end = clobl.length();
System.out.printIn("Clobl length is " + clobl.length());

// When working with LOBs, all indexing that is related to them
// is 1l-based, and not 0-based like strings and arrays.

long startingPoint = 450;

long endingPoint = 50;

// Obtain part of the CLOB as a byte array.
String outString = clobl.getSubString(startingPoint, (int)endingPoint);
System.out.printIn("Clob substring is " + outString);

// Find where a sub-CLOB or string is first found within a

// CLOB. The setup for this program placed two identical copies of

// a repeating CLOB into the database. Thus, the start position of the
// string extracted from clobl can be found in the starting

// position in clob2 if the search begins close to the position where
the string starts.

long startInClob2 = clob2.position(outString, 440);

System.out.printin("pattern found starting at position " + startInClob2);

c.close(); // Connection close also closes stmt and rs.

Write code that uses Datalinks: # How you are going to work with Datalinks is dependent on what
release you are working with. In JDBC 3.0, there is support to work directly with Datalink columns using
the getURL and putURL methods. With previous JDBC versions, you had to work with Datalink columns as
if they were String columns. Presently, the database does not support automatic conversions between
Datalink and character data types. As a result, you have to perform some type casting in your SQL
statements.

This shows some of the basic tasks of working with Datalink columns. <

Example: Datalink: #* This is an example of how to use datalinks in your applications.

Example: Datalink

Note: Read the [Code example disclaimer for important legal information.
[ITTLLETEEEii0000iiiii11111111117

// PutGetDatalinks is an example application
// that shows how to use the JDBC

// API to handle datalink database columns.
[ITEE0E01000000010101011111171117117117
import java.sql.*;

import java.net.URL;

166

iSeries: IBM Developer Kit for Java

import java.net.MalformedURLException;

public class PutGetDatalinks {
public static void main(String[] args)
throws SQLException

{

// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1l); // Setup error.
}

// Establish a Connection and Statement with which to work.
Connection ¢ = DriverManager.getConnection("jdbc:db2:*Tocal");
Statement s = c.createStatement();

// Clean up any previous run of this application.
try {

s.executeUpdate("DROP TABLE CUJOSQL.DLTABLE");
} catch (SQLException e) {

// Ignore it - assume the table did not exist.
}

// Create a table with a datalink column.
s.executeUpdate ("CREATE TABLE CUJOSQL.DLTABLE (COL1 DATALINK)");

// Create a PreparedStatement object that allows you to add
// a new datalink into the database. Since conversing
// to a datalink cannot be accomplished directly in the database, you
// can code the SQL statement to perform the explicit conversion.
PreparedStatement ps = c.prepareStatement ("INSERT INTO CUJOSQL.DLTABLE
VALUES (DLVALUE(CAST(? AS VARCHAR(100))))");

// Set the datalink. This URL points you to an article about
// the new features of JDBC 3.0.
ps.setString (1, "http://www-106.1ibm.com/developerworks/java/library/j-jdbcnew/index.htm1");

// Process the statement, inserting the CLOB into the database.
ps.executeUpdate();

// Process a query and obtain the CLOB that was just inserted out of the
// database as a Clob object.

ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.DLTABLE");
rs.next();

String datalink = rs.getString(1);

// Put that datalink value into the database through
// the PreparedStatement. Note: This function requires JDBC 3.0

// support.
/*
try {

URL url = new URL(datalink);
ps.setURL(1, url);
ps.execute();

} catch (MalformedURLException mue) {
// Handle this issue here.

}

rs = s.executeQuery("SELECT * FROM CUJOSQL.DLTABLE");
rs.next();

URL url = rs.getURL(1);

System.out.printIn("URL value is " + url);

*/

Chapter 1. IBM Developer Kit for Java 167

c.close(); // Connection close also closes stmt and rs.

}
L4
Example: Distinct types: % This is an example of how to use distinct types.

Example: Distinct types

Note: Read the [Code example disclaimer for important legal information.
LTI 1710111111111111117

// This example program shows examples of
// various common tasks that can be done
// with distinct types.
///

import java.sql.=*;

public class Distinct {
public static void main(String[] args)
throws SQLException
{
// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1); // Setup error.
1

Connection ¢ = DriverManager.getConnection("jdbc:db2:*Tocal");
Statement s = c.createStatement();

// Clean up any old runs.
try {

s.executeUpdate("DROP TABLE CUJOSQL.SERIALNOS");
} catch (SQLException e) {

// Ignore it and assume the table did not exist.

try {
s.executeUpdate("DROP DISTINCT TYPE CUJOSQL.SSN");

} catch (SQLException e) {
// Ignore it and assume the table did not exist.

// Create the type, create the table, and insert a value.
s.executeUpdate ("CREATE DISTINCT TYPE CUJOSQL.SSN AS CHAR(9)");
s.executeUpdate ("CREATE TABLE CUJOSQL.SERIALNOS (COL1 CUJOSQL.SSN)");

PreparedStatement ps = c.prepareStatement("INSERT INTO CUJOSQL.SERIALNOS VALUES(?)");
ps.setString (1, "399924563");

ps.executeUpdate();

ps.close();

// You can obtain details about the types available with new metadata in
// JDBC 2.0
DatabaseMetaData dmd = c.getMetaData();

int types[] = new int[1];
types[0] = java.sql.Types.DISTINCT;

ResultSet rs = dmd.getUDTs(null, "CUJOSQL", "SSN", types);

rs.next();
System.out.printin("Type name " + rs.getString(3) +

168 iSeries: IBM Developer Kit for Java

" has type " + rs.getString(4));

// Access the data you have inserted.

rs = s.executeQuery("SELECT COL1 FROM CUJOSQL.SERIALNOS");
rs.next();

System.out.printIn("The SSN is " + rs.getString(1));

c.close(); // Connection close also closes stmt and rs.

}
{{

RowSets

#* RowSets were originally added to the Java™ Database Connectivity (JDBC) 2.0 Optional Package.
Unlike some of the better-known interfaces of the JDBC specification, the RowSet specification is designed
to be more of a framework than an actual implementation. The RowSet interfaces define a set of core
functionality that all RowSets have. RowSet implementation providers have considerable freedom to define
the functionality that is needed to fit their needs in a specific problem space.

To implement Rowsets using the native JDBC driver, see the following:

[RowSet characteristics|
You can request certain properties to be satisfied by the RowSets. Common properties include the
set of interfaces to be supported by the resulting rowset.

IDB2JdbcRowSet|
DB2JdbcRowSet is a connected RowSet that serves as a wrapper on a DB2ResultSet and provides
event-handling support.

IDB2CachedRowSef]

DB2CachedRowSet is a disconnected RowSet that allows the DB2ResultSet data to be stored inside
the object. Once the data is within the object, the underlying DB2Connection object can be closed
and the DB2CachedRowSet can continue to be used. Find the following information regarding
DB2CachedRowSet:

+ [Use DB2CachedRowSets|

+ [Create and populate a DB2CachedRowSet]

+ [Access DB2CachedRowSet data and cursor manipulation|

+ [Change DB2CachedRowSet data and reflect changes back to the data source
+ [Other DB2CachedRowSet features|

&

RowSet characteristics: % You can request certain properties to be satisfied by the rowsets. Common
properties include the set of interfaces to be supported by the resulting rowset.

RowSets are ResultSets: The RowSet interface extends the ResultSet interface which means that
RowSets have the ability to perform all the functions that ResultSets can do. For example, RowSets can
be scrollable and updateable.

RowSets can be disconnected from the database: There are two categories of RowSets:

+ Connected
While connected RowSets are populated with data, they always have internal connections to the
underlying database open and serve as wrappers around a ResultSet implementation.

Chapter 1. IBM Developer Kit for Java 169

» Disconnected
Disconnected RowSets are not required to maintain connections to their data source at all times.
Disconnected RowSets can be detached from the database, be used in a variety of ways, and then be
reconnected to the database to mirror any changes made to them.

RowSets are JavaBeans components: RowSets have support for event handling based on the
JavaBeans event-handling model. They also have properties that can be set. These properties can be
used by the RowSet to perform the following:

» Establish a connection to the database.

* Process an SQL statement.

» Determine features of the data that the RowSet represents and handle other internal features of the
RowSet object.

RowSets are serializable: RowSets can be serialized and deserialized to allow them to flow over a
network connection, be written out to a flat file (that is, a text document without any word processing or

other structure characters), and so on. %%

DB2CachedRowSet: % The DB2CachedRowSet object is a disconnected RowSet, meaning that it can
be used without being connected to the database. Its implementation adheres closely to the description of
a CachedRowSet.

The DB2CachedRowSet is a container for rows of data from a ResultSet. The DB2CachedRowSet holds
all its own data so it does not need to maintain a connection to the database other than explicitly while
reading or writing data to the database.

[Use DB2CachedRowSets|

You can use methods provided by DB2CachedRowSet to improve your database’s performance by
allowing several people to use the same data. You can also hand out common ResultSets to clients
by creating a copy of table data that does not change.

[Create and populate a DB2CachedRowSet|
Find out how to create and place data into a DB2CachedRowSet by following these tasks:

* Use the populate method

» Use DB2CachedRowSet properties and DataSources

* Use DB2CachedRowSet properties and JDBC URLs

» Use the setConnection(Connection) method to use an existing database connection
* Use the execute(Connection) method to use an existing database connection

» Use the execute(int) method to group database requests

[Access DB2CachedRowSet data and cursor manipulation|

RowSets depend on ResultSet methods. For many operations such as DB2CachedRowSet data
access and cursor movement, there is no difference at the application level between using a
ResultSet and using a RowSet.

[Change DB2CachedRowSet data and reflect changes back to the data source]|

The DB2CachedRowSet uses the same methods as the standard ResultSet interface for making
changes to the data in the RowSet object. The DB2CachedRowSet provides the acceptChanges
method that is used to reflect changes to the RowSet back to the database where the data came
from.

[Other DB2CachedRowSet features|
The DB2CachedRowSet class has some additional functionality that makes it more flexible to use.
With the methods provided by DB2CachedRowSet, you can perform the following tasks:

170 iSeries: IBM Developer Kit for Java

* Obtain collections from DB2CachedRowSets
» Create copies of RowSets
* Create shares for RowSets

{{

Use DB2CachedRowSet: # Because the DB2CachedRowSet object can be disconnected and
serialized, it is useful in environments where it is not always practical to run a full JDBC driver (for
example, on Personal Digital Assistants (PDAs) and Java‘™-enabled cell phones).

Since the DB2CachedRowSet object is contained in memory and its data is always known, it can serve as
a highly optimized form of a scrollable ResultSet for applications. Whereas DB2ResultSets that are
scrollable typically pay a performance penalty because their random movements interfere with the JDBC
driver’s ability to cache rows of data, RowSets do not have this issue.

Two methods are provided on DB2CachedRowSet that create new RowSets:
* The createCopy method creates a new RowSet that is identical to the copied one.
* The createShared method creates a new RowSet that shares the same underlying data as the original.

You can use the createCopy method to hand out common ResultSets to clients. If the table data is not
changing, creating a copy of a RowSet and passing it to each client is more efficient than running a query
against the database each time.

You can use the createShared method to improve your database’s performance by allowing several people
to use the same data. For example, assume that you have a Web site that shows the top twenty
best-selling products on your home page when a customer connects. You want the information on your
main page to be updated regularly, but running the query to get the most frequently purchased items every
time a customer visits your main page is not practical. Using the createShared method, you can effectively
create "cursors” for each customer without having to either process the query again or store an enormous
amount of information in memory. When appropriate, the query to find the most frequently purchased
products can be run again. The new data can populate the RowSet that is used to create the shared
cursors and the servlets can use them.

DB2CachedRowSets provide a delayed processing feature. This feature allows multiple query requests to

be grouped together and processed against the database as a single request. This is an example of
[DB2CachedRowSets|to eliminate some of the computational stress that the database would otherwise be

under.

Because the RowSet must keep careful track of any changes that happen to it so that they are reflected
back to the database, there is support for functions that undo changes or allow you to see all changes
have been made. For example, there is a showDeleted method that can be used to tell the RowSet to let
you fetch deleted rows. There are also cancelRowlInsert and cancelRowDelete methods to undo row
insertions and deletions, respectfully, after they have been made.

The DB2CachedRowSet object offers better interoperability with other Java APls because of its event
handling support and its toCollection methods that allow a RowSet or a portion of it to be converted into a
Java collection.

The event handling support of DB2CachedRowSet can be used in graphical user interface (GUI)
applications to control displays, for logging information about changes to the RowSet as they are made, or
to find information about changes to sources other than RowSets. See [Example: DB2JdbcRowSet events|
for details.

For specific details on working with DB2CachedRowSets, see the following topics:

Chapter 1. IBM Developer Kit for Java 171

[Create and populate a DB2CachedRowSet]|

+ [Access DB2CachedRowSet data and cursor manipulation|

[Change DB2CachedRowSet data and reflect changes back to the data source]
[Other DB2CachedRowSet features|

For information on the event model and event handling, see [DB2JdbcRowSet as this support works
identically for both types of RowSets. &

Create and populate a DB2CachedRowSet: #* There are several ways to place data into a
DB2CachedRowSet:

« [Use the populate method|

[Use DB2CachedRowSet properties and DataSources|

[Use DB2CachedRowSet properties and JDBC URLS

+ [Use the setConnection(Connection) method to use an existing database connection|
[Use the execute(Connection) method to use an existing database connection|

« [Use the execute(int) method to group database requests|

<H7>Use the populate method

DB2CachedRowSets have a populate method that can be used to put data into the RowSet from a
DB2ResultSet object. The following is an example of this approach.

Example: Use the populate method

Note: Read the [Code example disclaimer for important legal information.

// Establish a connection to the database.
Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");

// Create a statement and use it to perform a query.
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select coll from cujosql.test table");

// Create and populate a DB2CachedRowSet from it.
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);

// Note: Disconnect the ResultSet, Statement,
// and Connection used to create the RowSet.
rs.close();

stmt.close();

conn.close();

// Loop through the data in the RowSet.
while (crs.next()) {

System.out.printin("vl is " + crs.getString(1));
1

crs.close();

<H7>Use DB2CachedRowSet properties and DataSources

DB2CachedRowSets have properties that allow the DB2CachedRowSets to accept an SQL query and a
DataSource name. They then use the SQL query and DataSource name to create data for themselves.
The following is an example of this approach. The reference to the DataSource named BaseDataSource is
assumed to be a valid DataSource that has been previously set up.

Example: Use DB2CachedRowSet properties and DataSources

172 iSeries: IBM Developer Kit for Java

Note: Read the [Code example disclaimer| for important legal information.

// Create a new DB2CachedRowSet
DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the properties that are needed for

// the RowSet to use a DataSource to populate itself.
crs.setDataSourceName ("BaseDataSource");
crs.setCommand("select coll from cujosql.test_table");

// Call the RowSet execute method. This causes

// the RowSet to use the DataSource and SQL query

// specified to populate itself with data. Once

// the RowSet is populated, it disconnects from the database.
crs.execute();

// Loop through the data in the RowSet.
while (crs.next()) {

System.out.printin("vl is " + crs.getString(1));
1

// Eventually, close the RowSet.
crs.close();

<H7>Use DB2CachedRowSet properties and JDBC URLs
DB2CachedRowSets have properties that allow the DB2CachedRowSets to accept an SQL query and a
JDBC URL. They then use the query and JDBC URL to create data for themselves. The following is an

example of this approach.

Example: Use DB2CachedRowSet properties and JDBC URLs

Note: Read the [Code example disclaimer] for important legal information.

// Create a new DB2CachedRowSet
DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the properties that are needed for

// the RowSet to use a JDBC URL to populate itself.
crs.setUrl("jdbc:db2:%1ocal");

crs.setCommand("select coll from cujosql.test table");

// Call the RowSet execute method. This causes

// the RowSet to use the DataSource and SQL query

// specified to populate itself with data. Once

// the RowSet is populated, it disconnects from the database.
crs.execute();

// Loop through the data in the RowSet.
while (crs.next()) {
System.out.printIn("vl is " + crs.getString(1));

}

// Eventually, close the RowSet.
crs.close();

<H7>Use the setConnection(Connection) method to use an existing database connection

To promote the reuse of JDBC Connection objects, the DB2CachedRowSet provides a mechanism for
passing an established Connection object to the DB2CachedRowSet that is used to populate the RowSet.
If a user-supplied Connection object is passed in, the DB2CachedRowSet does not disconnect it after
populating itself.

Example: Use setConnection(Connection) method to use an existing database connection

Chapter 1. IBM Developer Kit for Java 173

Note: Read the [Code example disclaimer| for important legal information.

// Establish a JDBC connection to the database.
Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");

// Create a new DB2CachedRowSet
DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the properties that are needed for the

// RowSet to use an already connected connection

// to populate itself.

crs.setConnection(conn);

crs.setCommand("select coll from cujosql.test table");

// Call the RowSet execute method. This causes

// the RowSet to use the connection that it was provided

// with previously. Once the RowSet is populated, it does not
// close the user-supplied connection.

crs.execute();

// Loop through the data in the RowSet.
while (crs.next()) {

System.out.printin("vl is " + crs.getString(1));
1

// Eventually, close the RowSet.
crs.close();

<H7>Use the execute(Connection) method to use an existing database connection

To promote the reuse of JDBC Connection objects, the DB2CachedRowSet provides a mechanism for
passing an established Connection object to the DB2CachedRowSet when the execute method is called. If
a user-supplied Connection object is passed in, the DB2CachedRowSet does not disconnect it after
populating itself.

Example: Use execute(Connection) method to use an existing database connection

Note: Read the [Code example disclaimer for important legal information.

// Establish a JDBC connection to the database.
Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");

// Create a new DB2CachedRowSet
DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the SQL statement that is to be used to
// populate the RowSet.
crs.setCommand("select coll from cujosql.test_table");

// Call the RowSet execute method, passing in the connection

// that should be used. Once the Rowset is populated, it does not
// close the user-supplied connection.

crs.execute(conn);

// Loop through the data in the RowSet.
while (crs.next()) {

System.out.printin("vl is " + crs.getString(1));
}

// Eventually, close the RowSet.
crs.close();

<H7>Use the execute(int) method to group database requests

174 iSeries: IBM Developer Kit for Java

To reduce the database’s workload, the DB2CachedRowSet provides a mechanism for grouping SQL
statements for several threads into one processing request for the database.

Example: Use execute(int) method to group database requests

Note: Read the [Code example disclaimer for important legal information.

// Create a new DB2CachedRowSet
DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the properties that are needed for
// the RowSet to use a DataSource to populate itself.
crs.setDataSourceName ("BaseDataSource");
crs.setCommand("select coll from cujosql.test table");

// Call the RowSet execute method. This causes

// the RowSet to use the DataSource and SQL query

// specified to populate itself with data. Once

// the RowSet is populated, it disconnects from the database.

// This version of the execute method accepts the number of seconds
// that it is willing to wait for its results. By

// allowing a delay, the RowSet can group the requests

// of several users and only process the request against

// the underlying database once.

crs.execute(b);

// Loop through the data in the RowSet.
while (crs.next()) {

System.out.printin("vl is " + crs.getString(1));
}

// Eventually, close the RowSet.
crs.close();

Access DB2CachedRowSet data and cursor manipulation: # RowSets depend on ResultSet
methods. For many operations such as|DB2CachedRowSet data access| and|cursor movement, there is no
difference at the application level between using a ResultSet and using a RowSet.

Access DB2CachedRowSet data: RowSets and ResultSets access data in the same manner. In the
following example, the program creates a table and populates it with various data types using JDBC. Once
the table is ready, a DB2CachedRowSet is created and populated with the information from the table. The
example also uses various get methods of the RowSet class.

Example: Access DB2CachedRowSet data

Note: Read the |Code example disclaimer| for important legal information.

import java.sql.=;

import javax.sql.=;

import com.ibm.db2.jdbc.app.*;
import java.io.*;

import java.math.=*;

public class TestProgram

{

public static void main(String args[])

{
// Register the driver.

try {

Chapter 1. IBM Developer Kit for Java 175

176

Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

catch (ClassNotFoundException ex) {

System.out.printIn("ClassNotFoundException: " +
ex.getMessage());

// No need to go any further.

System.exit(1);

try {

Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement stmt = conn.createStatement();

// Clean up previous runs
try {
stmt.execute("drop table cujosql.test table");
}
catch (SQLException ex) {
System.out.printin("Caught drop table: " + ex.getMessage());
}

// Create test table

stmt.execute("Create table cujosql.test table (coll smallint, col2 int, " +
"col3 bigint, col4 real, col5 float, col6 double, col7 numeric, " +
"co18 decimal, col9 char(10), col110 varchar(10), colll date, " +
"coll2 time, coll3 timestamp)");

System.out.printin("Table created.");

// Insert some test rows
stmt.execute("insert into cujosql.test table values (1, 1, 1, 1.5, 1.5, 1.5, 1.5, 1.

1.5, 1.5, 'one',
{d '2001-01-01"}, {t '01:01:01'}, {ts '1998-05-26 11:41:12.123456'})");

stmt.execute("insert into cujosql.test_table values (null, null, null, null, null, null, null,

null, null, null, null, null)");
System.out.printIn("Rows inserted");

ResultSet rs = stmt.executeQuery("select * from cujosql.test table");
System.out.printIn("Query executed");

// Create a new rowset and populate it...
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);

System.out.printin("RowSet populated.");

conn.close();
System.out.printin("RowSet is detached...");

System.out.printin("Test with getObject");
int count = 0;
while (crs.next()) {
System.out.printIn("Row " + (++count));
for (int i = 13 i <= 13; i++) {
System.out.printin(" Col " + i + " value " + crs.getObject(i));
1
}

System.out.printIn("Test with getXXX... ");
crs.first();
System.out.printin("Row 1");

System.out.printin(" Col 1 value " + crs.getShort(1));
System.out.printIn(" Col 2 value " + crs.getInt(2));
System.out.printin(" Col 3 value " + crs.getLong(3));
System.out.printin(" Col 4 value " + crs.getFloat(4));
System.out.printIn(" Col 5 value " + crs.getDouble(5));
System.out.printin(" Col 6 value " + crs.getDouble(6));
System.out.printin(" Col 7 value " + crs.getBigDecimal(7));

iSeries: IBM Developer Kit for Java

'one',

null,

System.out.printin(" Col 8 value " + crs.getBigDecimal(8));
System.out.printin(" Col 9 value " + crs.getString(9));
System.out.printin(" Col 10 value crs.getString(10));
System.out.printIn(" Col 11 value " + crs.getDate(11));
System.out.printin(" Col 12 value crs.getTime(12));
System.out.printIn(" Col 13 value " + crs.getTimestamp(13));
crs.next();

System.out.printin("Row 2");
System.out.printin(" Col 1 value "
System.out.printin(" Col 2 value
System.out.printIn(" Col 3 value "
System.out.printin(" Col 4 value
System.out.printIn(" Col 5 value "
System.out.printin(" Col 6 value "
System.out.printin(" Col 7 value "
System.out.printin(" Col 8 value "
System.out.printin(" Col 9 value
System.out.printin(" Col 10 value "
System.out.printIn(" Col 11 value "
System.out.printIn(" Col 12 value "
System.out.printin(" Col 13 value "

+ 4+ + +

crs.getShort(1));
crs.getint(2));
crs.getlong(3));
crs.getFloat(4));
crs.getDouble(5));
crs.getDouble(6));
crs.getBigDecimal(7));
crs.getBigDecimal(8));
crs.getString(9));
crs.getString(10));
crs.getDate(11));
crs.getTime(12));
crs.getTimestamp(13));

+ 4+ + + + + + + +

+ 4+ + +

crs.close();
}
catch (Exception ex) {
System.out.printin("SQLException:
ex.printStackTrace();
}

}
}

+ ex.getMessage());

Cursor manipulation: RowSets are scrollable and act exactly like a scrollable ResultSet. In the following
example, the program creates a table and populates it with data using JDBC. Once the table is ready, a
DB2CachedRowSet object is created and is populated with the information from the table. The example

also uses various cursor manipulation functions.

Example: Cursor manipulation

import java.sql.*;
import javax.sql.*;
import com.ibm.db2.jdbc.app.DB2CachedRowSet;

public class RowSetSamplel
{
public static void main(String args[])
{
// Register the driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

catch (ClassNotFoundException ex) {
System.out.printin("ClassNotFoundException: " +
ex.getMessage());
// No need to go any further.
System.exit(1);
}

try {

Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");

Statement stmt = conn.createStatement();

// Clean up previous runs
try {
stmt.execute("drop table cujosql.test table");

}

Chapter 1. IBM Developer Kit for Java

177

catch (SQLException ex) {
System.out.printin("Caught drop table: " + ex.getMessage());
}

// Create a test table
stmt.execute("Create table cujosql.test_table (coll smallint)");
System.out.printin("Table created.");

// Insert some test rows
for (int i = 0; 1 < 10; i++) {

stmt.execute("insert into cujosql.test_table values (" + i + ")");
}

System.out.printIn("Rows inserted");

ResultSet rs = stmt.executeQuery("select coll from cujosql.test_table");
System.out.printin("Query executed");

// Create a new rowset and populate it...
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);

System.out.printin("RowSet populated.");

conn.close();
System.out.printin("RowSet is detached...");

System.out.printin("Use next()");
while (crs.next()) {

System.out.printin("vl is " + crs.getShort(1));
1

System.out.printin("Use previous()");
while (crs.previous()) {
System.out.printin("value is " + crs.getShort(1));

}

System.out.printin("Use relative()");

crs.next();

crs.relative(9);

System.out.printIn("value is " + crs.getShort(1));

crs.relative(-9);
System.out.printin("value is " + crs.getShort(1));

System.out.printin("Use absolute()");
crs.absolute(10);

System.out.printIn("value is " + crs.getShort(1));
crs.absolute(1);

System.out.printin("value is " + crs.getShort(1));
crs.absolute(-10);

System.out.printin("value is " + crs.getShort(1));
crs.absolute(-1);

System.out.printin("value is " + crs.getShort(1));

System.out.printin("Test beforeFirst()");

crs.beforeFirst();

System.out.printin("isBeforeFirst is " + crs.isBeforeFirst());
crs.next();

System.out.printIn("move one... isFirst is " + crs.isFirst());

System.out.printIn("Test afterLast()");

crs.afterLast();

System.out.printin("isAfterLast is " + crs.isAfterLast());
crs.previous();

System.out.printin("move one... islLast is " + crs.islLast());

System.out.printIn("Test getRow()");
crs.absolute(7);

178 iSeries: IBM Developer Kit for Java

System.out.printin("row should be (7) and is " + crs.getRow() + " value should be (6) and is " + crs.getShort(1));

crs.close();
}
catch (SQLException ex) {
System.out.printIn("SQLException: " + ex.getMessage());
}
}
1

b

Change DB2CachedRowSet data and reflect changes back to the data source: # The
DB2CachedRowSet uses the same methods as the standard ResultSet interface for making changes to
the data in the RowSet object. There is no difference at the application level between [changing the data of|
la_ RowSet|and changing the data of a ResultSet. The DB2CachedRowSet provides the acceptChanges
method that is used toreflect changes to the RowSet back to the databasel where the data came from.

Delete, insert, and update rows in a DB2CachedRowSet: DB2CachedRowSets can be updated. In the
following example, the program creates a table and populates it with data using JDBC. Once the table is
ready, a DB2CachedRowSet is created and is populated with the information from the table. The example
also uses various methods that can be used to update the RowSet and shows how the use of the
showDeleted property that allows the application to fetch rows even after they have been deleted. Further,
the cancelRowlnsert and cancelRowDelete methods are used in the example to allow row insertion or
deletion to be undone.

Example: Delete, insert, and update rows in a DB2CachedRowSet

Note: Read the [Code example disclaimer for important legal information.
import java.sql.*;

import javax.sql.*;

import com.ibm.db2.jdbc.app.DB2CachedRowSet;

public class RowSetSample2
{

public static void main(String args[])

{
// Register the driver.

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

catch (ClassNotFoundException ex) {
System.out.printin("ClassNotFoundException: " +
ex.getMessage());

// No need to go any further.
System.exit(1);
1

try {
Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");

Statement stmt = conn.createStatement();

// Clean up previous runs

try {
stmt.execute("drop table cujosql.test_table");

}

catch (SQLException ex) {
System.out.printIn("Caught drop table: " + ex.getMessage());
}

Chapter 1. IBM Developer Kit for Java 179

180

// Create test table
stmt.execute("Create table cujosql.test table (coll smallint)");
System.out.printin("Table created.");

// Insert some test rows
for (int i = 0; i < 10; i++) {

stmt.execute("insert into cujosql.test_table values (" + i + ")");
}

System.out.printIn("Rows inserted");

ResultSet rs = stmt.executeQuery("select coll from cujosql.test_table");
System.out.printIn("Query executed");

// Create a new rowset and populate it...
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);

System.out.printin("RowSet populated.");

conn.close();
System.out.printin("RowSet is detached...");

System.out.printin("Delete the first three rows");
crs.next();

crs.deleteRow();

crs.next();

crs.deleteRow();

crs.next();

crs.deleteRow();

crs.beforeFirst();

System.out.printIn("Insert the value -10 into the RowSet");
crs.moveToInsertRow();

crs.updateShort(1, (short)-10);

crs.insertRow();

crs.moveToCurrentRow() ;

System.out.printin("Update the rows to be the negative of what they now
crs.beforeFirst();
while (crs.next())

short value = crs.getShort(1);

value = (short)-value;

crs.updateShort(1, value);

crs.updateRow();

}
crs.setShowDeleted(true);
System.out.printin("RowSet is now (value - inserted - updated - deleted)

crs.beforeFirst();
while (crs.next()) {

System.out.printin("value is " + crs.getShort(1) + " " +
crs.rowlnserted() + " " +
crs.rowlpdated() + " " +

crs.rowDeleted());

}
System.out.printin("getShowDeleted is " + crs.getShowDeleted());

System.out.printIn("Now undo the inserts and deletes");
crs.beforeFirst();

crs.next();

crs.cancelRowDelete();

crs.next();

crs.cancelRowDelete();

crs.next();

crs.cancelRowDelete();

iSeries: IBM Developer Kit for Java

are");

")s

while (!crs.isLast()) {
crs.next();

}

crs.cancelRowInsert();

crs.setShowDeleted(false);

System.out.printin("RowSet is now (value - inserted - updated - deleted)");

crs.beforeFirst();
while (crs.next()) {

System.out.printin("value is " + crs.getShort(1) + " " +
crs.rowlnserted() + " " +
crs.rowlpdated() + " " +

crs.rowDeleted());

}

System.out.printin("finally show that calling cancelRowUpdates works");
crs.first();

crs.updateShort(1, (short) 1000);

crs.cancelRowUpdates();

crs.updateRow();

System.out.printIin("value of row is " + crs.getShort(1));
System.out.printin("getShowDeleted is " + crs.getShowDeleted());

crs.close();

}

catch (SQLException ex) {
System.out.printIn("SQLException: " + ex.getMessage());
1
}
1

Reflect changes to a DB2CachedRowSet back to the underlying database: Once changes have been
made to a DB2CachedRowSet, they only exist as long as the RowSet object exists. That is, making
changes to a disconnected RowSet has no effect on the database. To reflect the changes of a RowSet in
the underlying database, the acceptChanges method is used. This method tells the disconnected RowSet
to re-establish a connection to the database and attempt to make the changes that have been made to the
RowSet to the underlying database. If the changes cannot be safely made to the database due to conflicts
with other database changes after the RowSet was created, an exception is thrown and the transaction is
rolled back.

Example: Reflect changes to a DB2CachedRowSet back to the underlying database

Note: Read the [Code example disclaimer] for important legal information.
import java.sql.=;

import javax.sql.=*;

import com.ibm.db2.jdbc.app.DB2CachedRowSet;

public class RowSetSample3
{
public static void main(String args[])
{
// Register the driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
1
catch (ClassNotFoundException ex) {
System.out.printIn("ClassNotFoundException: " +
ex.getMessage());
// No need to go any further.
System.exit(1);

Chapter 1. IBM Developer Kit for Java 181

}

try {
Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");

Statement stmt = conn.createStatement();

// Clean up previous runs

try {
stmt.execute("drop table cujosql.test table");
}
catch (SQLException ex) {
System.out.printIn("Caught drop table: " + ex.getMessage());
}

// Create test table
stmt.execute("Create table cujosql.test table (coll smallint)");
System.out.printin("Table created.");

// Insert some test rows
for (int i =0; i < 10; i++) {

stmt.execute("insert into cujosql.test_table values (" + i + ")");
}

System.out.printIn("Rows inserted");

ResultSet rs = stmt.executeQuery("select coll from cujosql.test table");
System.out.printin("Query executed");

// Create a new rowset and populate it...
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);

System.out.printin("RowSet populated.");

conn.close();
System.out.printin("RowSet is detached...");

System.out.printin("Delete the first three rows");
crs.next();

crs.deleteRow();

crs.next();

crs.deleteRow();

crs.next();

crs.deleteRow();

crs.beforeFirst();

System.out.printIn("Insert the value -10 into the RowSet");
crs.moveToInsertRow();

crs.updateShort(1, (short)-10);

crs.insertRow();

crs.moveToCurrentRow() ;

System.out.printin("Update the rows to be the negative of what they now are");
crs.beforeFirst();
while (crs.next()) {

short value = crs.getShort(1);

value = (short)-value;

crs.updateShort(1, value);

crs.updateRow();

}

System.out.printin("Now accept the changes to the database");

crs.setUrl("jdbc:db2:*1ocal");
crs.setTableName("cujosql.test table");

crs.acceptChanges();
crs.close();

182 iSeries: IBM Developer Kit for Java

System.out.printin("And the database table Tooks like this:");
conn = DriverManager.getConnection("jdbc:db2:1ocalhost");
stmt = conn.createStatement();
rs = stmt.executeQuery("select coll from cujosql.test_table");
while (rs.next()) {

System.out.printin("Value from table is " + rs.getShort(1));

}

conn.close();

catch (SQLException ex) {
System.out.printIn("SQLException: " + ex.getMessage());
1
}
1

&

Other DB2CachedRowSet features: #* In addition to working like a ResultSet as several examples
have shown, the DB2CachedRowSet class has some additional functionality that makes it more flexible to
use. Methods are provided for turning either the entire Java™ Database Connectivity (JDBC) RowSet or
just a portion of it into a Java collection. Moreover, because of their disconnected nature,
DB2CachedRowSets do not have a strict one-to-one relationship with ResultSets.

With the methods provided by DB2CachedRowSet, you can perform the following tasks:
+ |Obtain collections from DB2CachedRowSets|

+ |Create copies of RowSets|

» [Create shares for RowSets|

Obtain collections from DB2CachedRowSets: There are three methods that return some form of a
collection from a DB2CachedRowSet object. They are the following:

+ toCollection returns an ArrayList (that is, one entry for each row) of vectors (that is, one entry for each
column).

» toCollection(int columnindex) returns a vector containing the value for each row from the given
column.

« getColumn(int columnindex) returns an array containing the value for each column for a given
column.

The major difference between toCollection(int columnindex) and getColumn(int columnindex) is that the
getColumn method can return an array of primitive types. Therefore, if columnindex represents a column
that has integer data, an integer array is returned and not an array containing java.lang.Integer objects.

The following example shows how you can use these methods.

Example: Obtain collections from DB2CachedRowSets

Note: Read the |Code example disclaimer for important legal information.

import java.sql.*;
import javax.sql.*;
import com.ibm.db2.jdbc.app.DB2CachedRowSet;
import java.util.=*;

public class RowSetSample4

{

public static void main(String args[])

{

Chapter 1. IBM Developer Kit for Java 183

// Register the driver.

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

catch (ClassNotFoundException ex) {
System.out.printIn("ClassNotFoundException: " +
ex.getMessage());
// No need to go any further.
System.exit(1);
1

try {
Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement stmt = conn.createStatement();

// Clean up previous runs

try {
stmt.execute("drop table cujosql.test_table");

catch (SQLException ex) {
System.out.printin("Caught drop table: " + ex.getMessage());
}

// Create test table
stmt.execute("Create table cujosql.test_table (coll smallint, col2 smallint)");
System.out.printin("Table created.");

// Insert some test rows
for (int i = 0; i < 10; i++) {

stmt.execute("insert into cujosql.test_table values (" + i + ", " + (i +100) + ")");
}

System.out.printIn("Rows inserted");

ResultSet rs = stmt.executeQuery("select * from cujosql.test _table");
System.out.printin("Query executed");

// Create a new rowset and populate it...
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);

System.out.printin("RowSet populated.");

conn.close();
System.out.printIn("RowSet is detached...");

System.out.printin("Test the toCollection() method");
Collection collection = crs.toCollection();
ArraylList map = (ArraylList) collection;

System.out.printin("size is " + map.size());
Iterator iter = map.iterator();
int row = 1;
while (iter.hasNext()) {
System.out.print("row [" + (row++) + "]: \t");

Vector vector = (Vector)iter.next();
Iterator innerlter = vector.iterator();
int i = 1;
while (innerIter.hasNext()) {
System.out.print(" [" + (i++) + "]=" + innerlter.next() + "; \t");
1
System.out.printin();
}
System.out.printin("Test the toCollection(int) method");
collection = crs.toCollection(2);
Vector vector = (Vector) collection;

iter = vector.iterator();

184 iSeries: IBM Developer Kit for Java

while (iter.hasNext()) {
System.out.printIn("Iter: Value is " + iter.next());

}

System.out.printIn("Test the getColumn(int) method");
Object values = crs.getColumn(2);
short[] shorts = (short [])values;

for (int i =0; i < shorts.length; i++) {
System.out.printIn("Array: Value is " + shorts[i]);

}

catch (SQLException ex) {
System.out.printIn("SQLException: " + ex.getMessage());
}
}
}

Create copies of RowSets: The createCopy method creates a copy of the DB2CachedRowSet. All the

data associated with the RowSet is replicated along with all control structures, properties, and status flags.

The following example shows how you can use this method.

Example: Create copies of RowSets

Note: Read the [Code example disclaimer] for important legal information.

import java.sql.=;

import javax.sql.*;

import com.ibm.db2.jdbc.app.*;
import java.io.*;

public class RowSetSampleb

{
public static void main(String args[])
{
// Register the driver.
try {

Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

catch (ClassNotFoundException ex) {
System.out.printIn("ClassNotFoundException: " +
ex.getMessage());
// No need to go any further.
System.exit(1);
1

try {

Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");

Statement stmt = conn.createStatement();

// Clean up previous runs

try {
stmt.execute("drop table cujosql.test_table");

catch (SQLException ex) {
System.out.printin("Caught drop table: " + ex.getMessage());
}

// Create test table

stmt.execute("Create table cujosql.test_table (coll smallint)");

System.out.printin("Table created.");

// Insert some test rows

Chapter 1. IBM Developer Kit for Java

185

for (int i = 0; i <10; i++) {
stmt.execute("insert into cujosql.test_table values (" + i + ")");

}

System.out.printIn("Rows inserted");

ResultSet rs = stmt.executeQuery("select coll from cujosql.test _table");
System.out.printin("Query executed");

// Create a new rowset and populate it...
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);

System.out.printIn("RowSet populated.");

conn.close();
System.out.printIn("RowSet is detached...");

System.out.printIn("Now some new RowSets from one.");
DB2CachedRowSet crs2 = crs.createCopy();
DB2CachedRowSet crs3 = crs.createCopy();

System.out.printin("Change the second one to be negated values");
crs2.beforeFirst();
while (crs2.next()) {
short value = crs2.getShort(1);
value = (short)-value;
crs2.updateShort(1, value);
crs2.updateRow() ;
}

crs.beforeFirst();
crs2.beforeFirst();
crs3.beforeFirst();
System.out.printin("Now look at all three of them again");

while (crs.next()) {
crs2.next();
crs3.next();
System.out.printin("Values: crs: " + crs.getShort(1) + ", crs2: " + crs2.getShort(1) +
", crs3: " + crs3.getShort(1));
}

catch (Exception ex) {
System.out.printIn("SQLException: " + ex.getMessage());
ex.printStackTrace();

}

}

Create shares for RowSets: The createShared method creates a new RowSet object with high-level
status information and allows two RowSet objects to share the same underlying physical data.

The following example shows how you can use this method.

Example: Create shares of RowSets

Note: Read the [Code example disclaimer| for important legal information.

import java.sql.=*;

import javax.sql.*;

import com.ibm.db2.jdbc.app.*;
import java.io.*;

public class RowSetSampleb
{

186 iSeries: IBM Developer Kit for Java

public static void main(String args[])

{

// Register the driver.
try {

Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

catch (ClassNotFoundException ex) {

System.out.printIn("ClassNotFoundException: " +
ex.getMessage());

// No need to go any further.

System.exit(1);

try {

Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement stmt = conn.createStatement();

// Clean up previous runs
try {
stmt.execute("drop table cujosql.test_table");
}
catch (SQLException ex) {
System.out.printin("Caught drop table: " + ex.getMessage());
1

// Create test table
stmt.execute("Create table cujosql.test table (coll smallint)");
System.out.printin("Table created.");

// Insert some test rows
for (int i = 0; i < 10; i++) {
stmt.execute("insert into cujosql.test_table values (" + i + ")");

}

System.out.printin("Rows inserted");

ResultSet rs = stmt.executeQuery("select coll from cujosql.test_table");
System.out.printin("Query executed");

// Create a new rowset and populate it...
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);

System.out.printin("RowSet populated.");

conn.close();
System.out.printIn("RowSet is detached...");

System.out.printin("Test the createShared functionality (create 2 shares)");
DB2CachedRowSet crs2 = crs.createShared();
DB2CachedRowSet crs3 = crs.createShared();

System.out.printin("Use the original to update value 5 of the table");
crs.absolute(5);

crs.updateShort(1, (short)-5);

crs.updateRow();

crs.beforeFirst();
crs2.afterLast();

System.out.printIn("Now move the cursors in opposite directions of the same data.");

while (crs.next()) {
crs2.previous();
crs3.next();
System.out.printin("Values: crs: " + crs.getShort(1) + ", crs2: " + crs2.getShort(1) +
", crs3: " + crs3.getShort(1));

Chapter 1. IBM Developer Kit for Java

187

crs.close();
crs2.close();
crs3.close();

catch (Exception ex) {
System.out.printIn("SQLException: " + ex.getMessage());
ex.printStackTrace();

}
&

DB2JdbcRowSet: # The DB2JdbcRowSet is a connected RowSet, meaning that it can only be used
with the support of an underlying Connection object, PreparedStatement object, or ResultSet object. Its
implementation adheres closely to the description of a JdbcRowSet.

Use DB2JdbcRowSet: Because the DB2JdbcRowSet object supports events described in the Java™
Database Connectivity (JDBC) 3.0 specification for all RowSets, it can serve as an intermediate object
between a local database and other objects that must be notified about changes to the database data.

As an example, assume that you are working in an environment where you have a main database and
several Personal Digital Assistants (PDAs) that use a wireless protocol to connect to it. A DB2JdbcRowSet
object can be used to move to a row and update it by using a master application that is running on the
server. The row update causes an event to be generated by the RowSet component. If there is a service
running that is responsible for sending out updates to the PDAs, it can register itself as a "listener” of the
RowSet. Each time that it receives a RowSet event, it can generate the appropriate update and send it out
to the wireless devices.

Refer to [Example: DB2JdbcRowSet events| for more information.

Create JDBCRowSets: There are several methods provided for creating a DB2JDBCRowSet object. Each
is outlined as follows.

<h7>Use DB2JdbcRowSet properties and DataSources

DB2JdbcRowSets have properties that accept an SQL query and a DataSource name. The
DB2JdbcRowSets are then ready to be used. The following is an example of this approach. The reference
to the DataSource named BaseDataSource is assumed to be a valid DataSource that has been previously
set up.

Example: Use DB2JdbcRowSet properties and DataSources

Note: Read the [Code example disclaimer] for important legal information.

// Create a new DB2JdbcRowSet
DB2JdbcRowSet jrs = new DB2JdbcRowSet();

// Set the properties that are needed for

// the RowSet to be processed.

jrs.setDataSourceName ("BaseDataSource");
jrs.setCommand("select coll from cujosql.test table");

// Call the RowSet execute method. This method causes
// the RowSet to use the DataSource and SQL query

// specified to prepare itself for data processing.
jrs.execute();

// Loop through the data in the RowSet.

while (jrs.next()) {
System.out.printin("vl is " + jrs.getString(1));

188 iSeries: IBM Developer Kit for Java

}

// Eventually, close the RowSet.
jrs.close();

<h7>Use DB2JdbcRowSet properties and JDBC URLs

DB2JdbcRowSets have properties that accept an SQL query and a JDBC URL. The DB2JdbcRowSets are

then ready to be used. The following is an example of this approach:

Example: Use DB2JdbcRowSet properties and JDBC URLs

Note: Read the [Code example disclaimer for important legal information.

// Create a new DB2JdbcRowSet
DB2JdbcRowSet jrs = new DB2JdbcRowSet();

// Set the properties that are needed for

// the RowSet to be processed.
jrs.setUr1("jdbc:db2:xTocal");

jrs.setCommand("select coll from cujosql.test table");

// Call the RowSet execute method. This causes

// the RowSet to use the URL and SQL query specified
// previously to prepare itself for data processing.
jrs.execute();

// Loop through the data in the RowSet.

while (jrs.next()) {
System.out.printin("vl is " + jrs.getString(1));
1

// Eventually, close the RowSet.
jrs.close();

<h7>Use the setConnection(Connection) method to use an existing database connection

To promote the reuse of JDBC Connection objects, the DB2JdbcRowSet allows you to pass an established
connection to the DB2JdbcRowSet. This connection is used by the DB2JdbcRowSet to prepare itself for

usage when the execute method is called.

Example: Use the setConnection method

Note: Read the |Code example disclaimer for important legal information.

// Establish a JDBC Connection to the database.
Connection conn = DriverManager.getConnection("jdbc:db2:x1ocal");

// Create a new DB2JdbcRowSet.
DB2JdbcRowSet jrs = new DB2JdbcRowSet();

// Set the properties that are needed for

// the RowSet to use an established connection.
jrs.setConnection(conn);

jrs.setCommand("select coll from cujosql.test table");

// Call the RowSet execute method. This causes

// the RowSet to use the connection that it was provided
// previously to prepare itself for data processing.
jrs.execute();

// Loop through the data in the RowSet.

while (jrs.next()) {
System.out.printIn("vl is " + jrs.getString(1));

Chapter 1. IBM Developer Kit for Java

189

}

// Eventually, close the RowSet.
jrs.close();

Access data and cursor movement: Manipulation of the cursor position and access to the database data
through a DB2JdbcRowSet are handled by the underlying ResultSet object. Tasks that can be done with a
ResultSet object also apply to the DB2JdbcRowSet object.

Change data and reflecting changes to the underlying database: Support for updating the database
through a DB2JdbcRowSet is handled completely by the underlying ResultSet object. Tasks that can be

done with a ResultSet object also apply to the DB2JdbcRowSet object.

DB2JdbcRowSet events: % All RowSet implementations support event handling for situations that are
of interest to other components. This support allows application components to "talk” to each other when
events happen to them. For example, updating a database row through a RowSet can cause a Graphical
User Interface (GUI) table shown to you to update itself.

In the following example, the main method does the update to the RowSet and is your core application.
The listener is part of your wireless server used by your disconnected clients in the field. It is possible to
tie these two aspects of a business together without getting the code for the two processes intermingled.
While the event support of RowSets was designed primarily for updating GUIs with database data, it works
perfectly for this type of application problem.

Example: DB2JdbcRowSet events

Note: Read the [Code example disclaimer for important legal information.
import java.sql.=;

import javax.sql.=*;

import com.ibm.db2.jdbc.app.DB2JdbcRowSet;

public class RowSetEvents {
public static void main(String args[])
{
// Register the driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (ClassNotFoundException ex) {
System.out.printIn("ClassNotFoundException: " +
ex.getMessage());
// No need to go any further.
System.exit(1);

try {
// Obtain the JDBC Connection and Statement needed to set
// up this example.
Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement stmt = conn.createStatement();

// Clean up any previous runs.
try {
stmt.execute("drop table cujosql.test_table");
} catch (SQLException ex) {
System.out.printin("Caught drop table: " + ex.getMessage());
}

// Create the test table
stmt.execute("Create table cujosql.test_table (coll smallint)");
System.out.printin("Table created.");

190 iSeries: IBM Developer Kit for Java

// Populate the table with data.
for (int i = 03 i < 10; i++) {

stmt.execute("insert into cujosql.test_table values (" + i + ")");
}

System.out.printIn("Rows inserted");

// Remove the setup objects.
stmt.close();
conn.close();

// Create a new rowset and set the properties need to
// process it.

DB2JdbcRowSet jrs = new DB2JdbcRowSet();
jrs.setUrl("jdbc:db2:*Tocal");

jrs.setCommand("select coll from cujosql.test table");
jrs.setConcurrency (ResultSet.CONCUR_UPDATEABLE) ;

// Give the RowSet object a Tistener. This object handles
// special processing when certain actions are done on

// the RowSet.

jrs.addRowSetListener(new MyListener());

// Process the RowSet to provide access to the database data.
jrs.execute();

// Cause a few cursor change events. These events cause the cursorMoved
// method in the listener object to get control.

jrs.next();

jrs.next();

jrs.next();

// Cause a row change event to occur. This event causes the rowChanged method
// in the Tistener object to get control.

jrs.updateShort (1, (short)6);

jrs.updateRow();

// Finally, cause a RowSet change event to occur. This causes the
// rowSetChanged method in the listener object to get control.
jrs.execute();

// When completed, close the RowSet.
jrs.close();

} catch (SQLException ex) {
ex.printStackTrace();

}

[**
* This is an example of a listener. This example prints messages that show
* how control flow moves through the application and offers some
* suggestions about what might be done if the application were fully implemented.
*
/
class MyListener
implements RowSetListener {
public void cursorMoved(RowSetEvent rse) {
System.out.printIn("Event to do: Cursor position changed.");
System.out.printIn(" For the remote system, do nothing ");
System.out.printIn(" when this event happened. The remote view of the data");
System.out.printIn(" could be controlled separately from the Tocal view.");
try {
DB2JdbcRowSet rs = (DB2JdbcRowSet) rse.getSource();
System.out.printIn("row is " + rs.getRow() + ". \n\n");
} catch (SQLException e) {
System.out.printIn("To do: Properly handle possible problems.");
}

Chapter 1. IBM Developer Kit for Java

191

}

public void rowChanged(RowSetEvent rse) {
System.out.printin("Event to do: Row changed.");
System.out.printIn(" Tell the remote system that a row has changed. Then,");
System.out.printIn(" pass all the values only for that row to the ");
System.out.printIn(" remote system.");

try {
DB2JdbcRowSet rs = (DB2JdbcRowSet) rse.getSource();
System.out.printIn("new values are " + rs.getShort(1) + ". \n\n");
} catch (SQLException e) {
System.out.printin("To do: Properly handle possible problems.");
}

}

public void rowSetChanged(RowSetEvent rse) {
System.out.printIn("Event to do: RowSet changed.");
System.out.printin(" If there is a remote RowSet already established, ");
System.out.printin(" tell the remote system that the values it ");
System.out.printIn(" has should be thrown out. Then, pass all ");
System.out.printIn(" the current values to it.\n\n");

}
b

Performance tips for the IBM Developer Kit for Java JDBC driver

The IBM Developer Kit for Java™ JDBC driver is designed to be a high performance Java interface for
working with the database. However, getting the best possible performance requires that you build your
applications in a way that takes advantage of the strengths the JDBC driver has to offer. The following tips
are considered good JDBC programming practice. Most are not specific to the native JDBC driver.
Therefore, applications written according to these guidelines also perform well if used with JDBC drivers
other than the native JDBC driver.

+ |Avoid SELECT * SQL queries|

+ [Use getXXX(int) instead of getXXX(String)|

+ |Avoid getObject calls for Java primitive types|

+ |Use PreparedStatement over Statement|

+ [Avoid expensive DatabaseMetaData calls|

+ |Use the correct commit level for your application|
+ [Consider storing data in Unicode]

+ [Use stored procedures|

+ [Use Bigint instead of Numeric/Decimall

+ [Close your JDBC resources explicitly when done with them|
« |Use connection pooling|

+ [Consider using PreparedStatement pooling|

« |Use efficient SQU

Avoid SELECT * SQL queries

SELECT * FROM... is a common way to state a query in SQL. Often, however, you do not need to query
all the fields. For each column that is to be returned, the JDBC driver must do the additional work of
binding and returning the row. Even if your application never uses a particular column, the JDBC driver
has to be made aware of it and has to reserve space for its use. If your tables have few columns that are
not used, this is not significant overhead. For a large number of unused columns, however, the overhead
can be significant. A better solution is to list the columns that your application is interested in individually,
like this:

192 iSeries: IBM Developer Kit for Java

SELECT COL1, COL2, COL3 FROM...
Use getXXX(int) instead of getXXX(String)

Use the ResultSet getXXX methods that take numeric values instead of the versions that take column
names. While the freedom to use your column names instead of numeric constants seems like an
advantage, the database itself only knows how to deal with column indexes. Therefore, each getXXX
method with a column name you call must be resolved by the JDBC driver before it can be passed to the
database. Because getXXX methods are typically called inside loops that could be run millions of times,
this little bit of overhead can rapidly accumulate.

Avoid getObject calls for Java primitive types

When getting values from the database of primitive types (ints, longs, floats, and so on), it is faster to use
the get method specific to the primitive type (getint, getLong, getFloat) than to use getObject. The
getObject call does the work of the get for the primitive type, and then creates an object to return to you.
This is typically done in loops, potentially creating millions of objects with short lifespans. Using getObject
for primitive commands has the added drawback of frequently activating the garbage collector, further
degrading performance.

Use PreparedStatement over Statement

If you are writing an SQL statement that is used more than once, it performs better as a
PreparedStatement than as a Statement object. Every time you run a statement, you go through a two
step process: the statement is prepared, and then the statement is processed. When you use a prepared
statement, the statement is prepared only at the time that it is constructed, not each time it is run. Though
it is recognized that a PreparedStatement performs faster than a Statement, this advantage is often
neglected by programmers. Due to the performance boost that PreparedStatements provide, it is wise to
use them in the design of your applications wherever possible (see |PreparedStatement pooling).

Avoid DatabaselMetaData calls

Be aware that some of the DatabaseMetaData calls can be expensive. In particular, the
getBestRowldentifier, getCrossReference, getExportedKeys, and getimportedKeys methods can be costly.
Some DataBaseMetaData calls involve complex join conditions over system-level tables. Use them only if
you need their information, not just for convenience.

Use the correct commit level for your application

JDBC provides several commit levels which determine how multiple transactions against the system affect
each other (see[Transactiong| for more details). The default is to use the lowest commit level. This means
that transactions can see some of each other's work through commit boundaries. This introduces the
possibility of certain database anomalies. Some programmers increase the commit level so that they do
not have to worry about these anomalies occurring. Be aware that higher commit levels involve the
database hanging onto more course-grained locks. This limits the amount of concurrency that the system
can have, severely slowing the performance of some applications. Often, the anomaly conditions cannot
occur because of the design of the application in the first place. Take time to understand what you are
trying to accomplish and limit your transaction isolation level to the lowest level you can safely use.

Consider storing data in Unicode

Java requires all character data that it works with (Strings) to be in Unicode. Therefore, any table that
does not have Unicode data requires the JDBC driver to translate the data back and forth as it is put into
the database and retrieved out of the database. If the table is already in Unicode, the JDBC driver does
not need to translate the data and can therefore place the data from the database faster. Take care to
understand that data in Unicode may not work with non-Java applications, which do not know how to deal

Chapter 1. IBM Developer Kit for Java 193

with Unicode. Also keep in mind that non-character data does not perform any faster, as there is never a
translation of this data. Another consideration is that data stored in Unicode takes up twice as much space
as single byte data does. If you have many character columns that are read many times, however, the
performance gained by storing your data in Unicode can be significant.

Use stored procedures

The use of stored procedures is supported in Java. Stored procedures can perform faster by allowing the
JDBC driver to run static SQL instead of dynamic SQL. Do not create stored procedures for each
individual SQL statement you run in your program. Where possible, however, create a stored procedure
that runs a group of SQL statements.

Use Bigint instead of Numeric or Decimal

Instead of using Numeric or Decimal fields that have a scale of 0, use the Bigint data type. Bigint
translates directly into the Java primitive type Long whereas Numeric or Decimal data types translate into
String or BigDecimal objects. As noted in[Avoid getObject calls for Java primitive types|, using primitive
data types is preferable to using types that require object creation.

Explicitly close your JDBC resources when done with them

ResultSets, Statements, and Connections should be explicitly closed by the application when they are no
longer needed. This allows the resources to be cleaned up in the most efficient way possible and can
increase performance. Further, database resources that are not explicitly closed can cause resource leaks
and database locks to be held longer than necessary. This can lead to application failures or reduced
concurrency in applications.

Use connection pooling

Connection pooling is a strategy by which JDBC Connection objects get reused for multiple users instead
of each user request creating its own Connection object. Connection objects are expensive to create.
Instead of having each user create a new one, a pool of them should be shared in applications where
performance is critical. Many products (such as WebSphere) provide Connection pooling support that can
be used with little additional effort on the user’s part. If you do not want to use a product with connection
pooling support, or prefer to build your own for better control over how the pool works and performs, it is
reasonably easy to do so.

Consider using PreparedStatement pooling

Statement pooling works similarly to Connection pooling. Instead of just putting Connections into a pool,
put an object that contains the Connection and the PreparedStatements a pool. Then, retrieve that object
and access the specific statement you want to use. This can dramatically increase performance.

Use efficient SQL

Because JDBC is built on top of SQL, just about anything that makes for efficient SQL also makes for
efficient JDBC. Hence, JDBC benefits from optimized queries, wisely chosen indices, and other aspects of
good SQL design.

Access databases using IBM Developer Kit for Java DB2 SQLJ support

DB2 Structured Query Language for Java‘™ (SQLJ) support is based on the SQLJ ANSI standard. The
DB2 SQLJ support is contained in the IBM Developer Kit for Java. DB2 SQLJ support allows you to
create, build, and run embedded SQL for Java applications.

194 iSeries: IBM Developer Kit for Java

The SQLJ support provided by the IBM Developer Kit for Java includes the SQLJ run-time classes, and is
available in /QIBM/ProdData/Java400/ext/runtime.zip. For more information on the SQLJ run-time classes,

refer to the Runtime API documentation supplied in the Implementation from 9 .

SQLJ tools
The following tools are also included in the SQLJ support provided by the IBM Developer Kit for Java:

« [The SQLJ translator, sqlj}, replaces embedded SQL statements in the SQLJ program with Java source
statements and generates a serialized that contains information about the SQLJ operations that
are found in the SQLJ program.

[The DB2 SQLJ Profile Customizer, db2profd, precompiles the SQL statements stored in the generated
profile and generates a package in the DB2 database.

[The DB2 SQLJ Profile Printer, db2profp|, prints the contents of a DB2 customized profile in plain text.

[The SQLJ profile auditor installer, profdb), installs and uninstalls debugging class-auditors into an
existing set of binary profiles.

|The SQLJ profile conversion tool, profconvl, converts a serialized profile instance to Java class format.

Note: These tools must be run in the Qshell Interpreter.

DB2 SQLJ restrictions

When you create DB2 applications with SQLJ, you should be aware of the following restrictions:

+ DB2 SQLJ support adheres to standard DB2 Universal Database restrictions on issuing SQL
statements.

» The DB2 SQLJ profile customizer should only be run on profiles associated with connections to the
local database.

+ The SQLJ Reference Implementation requires JDK 1.1, or higher. See [Support for multiple Javal

[Development Kits (JDKs)| for more information on running multiple versions of the Java Development
Kit.

For information on using SQL in your Java applications, see [Embed SQL Statements in your Javal
lapplication|and [Compile and run SQLJ programs|

Structured Query Language for Java profiles

Profiles are generated by the SQLJ Translator, sqlj, when you translate the SQLJ source file. Profiles are
serialized binary files. That is why these files have a .ser extension. These files contain the SQL
statements from the associated SQLJ source file.

To generate profiles from your SQLJ source code, run the |[SQLJ translator, sqlj| on your .sqlj file.

For more information, see [Compile and run SQLJ programs}|

The structured query language for Java (SQLJ) translator (sqlj)
The SQLJ translator, sqlj, generates a serialized |profile] containing information about the SQL operations
found in the SQLJ program. The SQLJ translator uses the /QIBM/ProdData/Java400/ext/translator.zip file.

For more information on sqlj command line options, refer to the SQLJ User’'s Guide and Reference

supplied in the Implementation from 9
Precompile SQL statements in a profile using the DB2 SQLJ profile customizer,
db2profc

You can use the DB2 SQLJ Profile Customizer, db2profc, to make your Java™ application work more
efficiently with your database.

The DB2 SQLJ Profile Customizer does the following:

Chapter 1. IBM Developer Kit for Java 195

http://www.sqlj.org
http://www.sqlj.org

* Precompiles the SQL statements that are stored in a profile and generates a package in the DB2
database.

« Customizes the SQLJ profile by replacing the SQL statements with references to the associated
statement in the package that was created.

To precompile the SQL statements in a profile, type in the following at the Qshell command prompt:
db2profc MyClass_SJProfile0.ser

Where MyClass_SJProfile0.ser is the name of the profile you want to precompile.
DB2 SQLJ Profile Customizer usage and syntax
db2profc[options] <SQLJ_profile_name>

Where SQLJ_profile_name is the name of the profile to be printed and options is the list of options you
want.

The options available for db2profp are the following:
e -URL=<JDBC_URL>

* -user=<username>

* -password=<password>

» -package=<library name/package_name>

e -commitctrl=<commitment control>

* -datefmt=<date format>

* -datesep=<date_separator>

e -timefmt=<time_format>

* -timesep=<time_separator>

* -decimalpt=<decimal_point>

e -stmtCCSID=<CCSID>

e -sorttbl=<library_name/sort_sequence_table_name>
* -langID=<language_identifier>

The following are the descriptions of these options:

-URL=<JDBC_URL>
Where JDBC_URL is the URL of the JDBC connection. The syntax for the URL is:

"jdbc:db2:systemName"

For more information, see|Access your iSeries database with the IBM Developer Kit for Javal

-user=<uysername>
Where username is your username. The default value is the user ID of the current user that is
signed on for local connection.

-password=<password>
Where password is your password. The default value is the password of the current user that is
signed on for local connection.

-package=<library name/package name>
Where library name is the library where the package is placed, and package name is the name of
the package to be generated. The default library name is QUSRSYS. The default package name
is generated from the name of the profile. The maximum length for the package name is 10
characters. Because the SQLJ profile name is always longer than 10 characters, the default

196 iSeries: IBM Developer Kit for Java

package name that is constructed is different from the profile name. The default package name is
constructed by concatenating the first letters of the profile name with the profile key number. If the
profile key number is greater than 10 characters long, then the last 10 characters of the profile key
number is used for the default package name. For example, the following chart shows some
profile names and their default package names:

Profile name Default package name
App_SJProfile0 App_SJPro0
App_SJProfile01234 App_S01234
App_SJProfile012345678 A012345678
App_SJProfile01234567891 1234567891

-commitctrl=<commitment_control>

Where commitment_control is the level of commitment control you want. Commitment control can
have any one of the following character values:

Value Definition

C *CHG. Dirty reads, nonrepeatable reads and phantom
reads are possible.

S *CS. Dirty reads are not possible, but non-repeatable
reads and phantom reads are possible.

A *ALL. Dirty reads and nonrepeatable reads are not
possible, but phantom reads are possible.

N *NONE. Dirty reads, nonrepeatable reads, and phantom

reads are not possible. This is the default.

-datefmt=<date format>

Where date_format is the type of date formatting you want. Date format can have any one of the

following values:

Value Definition

USA IBM USA standard (mm.dd.yyyy,hh:mm a.m., hh:mm
p.m.)

ISO International Standards Organization (yyyy-mm-dd,
hh.mm.ss) This is the default.

EUR IBM European Standard (dd.mm.yyyy, hh.mm.ss)

JIS Japanese Industrial Standard Christian Era (yyyy-mm-dd,
hh:mm:ss)

MDY Month/Day/Year (mm/d/yy)

DMY Day/Month/Year (dd/mm/yy)

YMD Year/Month/Day (yy/mm/dd)

JUL Julian (yy/ddd)

Date format is used when accessing date result columns. All output date fields are returned in the
specified format. For input date strings, the specified value is used to determine whether the date
is specified Inc valid format. The default value is 1SO.

-datesep=<date_separator>

Where date_separator is the type of separator you want to use. Date separator is used when
accessing date result columns. Date separator can be any of the following values:

Chapter 1. IBM Developer Kit for Java 197

Value Definition

/ A slash is used.

A period is used.

, A comma is used.

- A dash is used. This is the default.

blank A space is used.

-timefmt=<time_format>
Where time_format is the format you want to use to display time fields. Time format is used when
accessing time result columns. For input time strings, the specified value is used to determine
whether the time is specified in a valid format. Time format can be any one of the following values:

Value Definition

USA IBM USA standard (mm.dd.yyyy,hh:mm a.m., hh:mm
p.m.)

ISO International Standards Organization (yyyy-mm-dd,
hh.mm.ss) This is the default.

EUR IBM European Standard (dd.mm.yyyy, hh.mm.ss)

JIS Japanese Industrial Standard Christian Era (yyyy-mm-dd,
hh:mm:ss)

HMS Hour/Minute/Second (hh:mm:ss)

-timesep=<time_separator>
Where time_separator is the character you want to use to access your time result columns. Time
separator can be any one of the following values:

Value Definition

A colon is used.

A period is used. This is the default.

, A comma is used.

blank A space is used.

-decimalpt=<decimal point>
Where decimal_point is the decimal point you want to use. The decimal point is used for numeric
constants in SQL statements. Decimal point can be any one of the following values:

Value Definition

A period is used. This is the default.

, A comma is used.

-stmtCCSID=<CCSID>
Where CCSID is the coded character set identifier for the SQL statements that are prepared into
the package. The value of the job during customization time is the default value.

-sorttbl=<library name/sort_sequence_table name>
Where library_name/sort_sequence_table_name is the location and table name of the sort
sequence table you want to use. The sort sequence table is used for string comparisons in SQL
statements. The library name and sort sequence table name each have limits of 10 characters.
The default value is taken from the job during customization time.

198 iSeries: IBM Developer Kit for Java

-langID=<language_identifier>
Where language identifier is the language identifier you want to use. The default value for the
language identifier is taken from the current job during customization time. The language identifier
is used in conjunction with the sort sequence table.

For a more detailed information on any of these fields, see [DB2 for iSeries SQL Programming Concepts)

SERETI N

Print the contents of DB2 SQLJ profiles (db2profp and profp)
The DB2 SQLJ Profile Printer, db2profp, prints the contents of a DB2 customized profile in plain text. The
Profile Printer, profp, prints the contents of profiles generated by the SQLJ translator in plain text.

To print the content of the profiles generated by the SQLJ translator in plain text, use the profp utility as
follows:

profp MyClass_SJProfile0.ser
Where MyClass_SJProfile0.ser is the name of the profile you want to print.

To print the content of the DB2 customized version of the profile in plain text, use the db2profp utility as
follows:

db2profp MyClass_SJProfile0.ser
Where MyClass_SJProfile0.ser is the name of the profile you want to print.

Note: If you run db2profp on an uncustomized profile, it tells you that the profile has not been customized.
If you run profp on a customized profile, it displays the contents of the profile without the customizations.

DB2 SQLJ Profile Printer usage and syntax:
db2profp [options] <SQLJ profile _name>

Where SQLJ_profile_name is the name of the profile to be printed and options is the list of options you
want.

The options available for db2profp are the following:

-URL=<JDBC_URL>
Where JDBC_URL is the URL you want to connect to. For more information, see
[Series database with the IBM Developer Kit for Java JDBC driver]

-user=<uysername>
Where username is the user name is your user profile.

-password=<password>
Where password is the password of your user profile.

SQLJ profile auditor installer (profdb)

The SQLJ profile auditor installer (profdb) installs and uninstalls debugging class-auditors. The debugging
class-auditors are installed into an existing set of binary profiles. Once the debugging class-auditors are
installed, all RTStatement and RTResultSet calls made during application run time are logged. They can
be logged to a file or standard output. The logs can then be inspected to verify the behavior and trace
errors of the application. Note that only the calls made to the underlying RTStatement and RTResultSetcall
interface at run time are audited.

To install debugging class-auditors, enter the following at the Qshell command prompt:
profdb MyClass_SJProfile0.ser

Where MyClass_SJProfile0.ser is the name of the profile that was generated by the SQLJ Translator.

Chapter 1. IBM Developer Kit for Java 199

To uninstall debugging class-auditors, enter the following at the Qshell command prompt:
profdb -Cuninstall MyClass_SJProfile.ser

Where MyClass_SJProfile0.ser is the name of the profile that was generated by the SQLJ Translator.

For more information on profdo command line options, see 9’ select the Implementation
category and go to the sqlj.runtime.profile.util. Auditorinstaller class that is in the Runtime API
documentation.

Convert a serialized profile instance to Java class format using the SQLJ profile
conversion tool (profconv)

The SQLJ profile conversion tool (profconv) converts a serialized profile instance to Java‘™ class format.
The profconv tool is needed because some browsers do not support loading a serialized object from a
resource file that is associated with an applet. Run the profconv utility to perform the conversion.

To run the profconv utility, type the following on the Qshell command line:
profconv MyApp_SJdProfile0.ser

where MyApp_SJProfile0.ser is the name of profile instance you want to convert.

The profconv tool invokes sqlj -ser2class. See for command line options.

Embed SQL statements in your Java application
Static SQL statements in SQLJ are in SQLJ clauses. SQLJ clauses begin with #sq1 and end with a
semicolon (;) character.

Before you create any SQLJ clauses in your Java‘™ application, import the following packages:
* import java.sql.*;

* import sqlj.runtime.*;

* import sqlj.runtime.ref.”;

The simplest SQLJ clauses are clauses that can be processed and consist of the token #sq1 followed by
an SQL statement enclosed in braces. For example, the following SQLJ clause may appear wherever a
Java statement may legally appear:

#sq1 { DELETE FROM TAB };

The previous example deletes all the rows in the table named TAB.

Note: For information on compiling and running SQLJ applications, see|Compile and run SQLJ programs.

In an SQLJ process clause, the tokens that appear inside the braces are either SQL tokens or

All host variables are distinguished by the colon (:) character. SQL tokens never occur outside
the braces of an SQLJ process clause. For example, the following Java method inserts its arguments into
an SQL table:

public void insertIntoTABl (int x, String y, float z) throws SQLException
{

}

#sql { INSERT INTO TAB1 VALUES (:x, :y, :2) }:

The method body consists of an SQLJ process clause containing the host variables x, y, and z. For more
information on host variables, see [Host variables in SQLJ|

In general, SQL tokens are case insensitive (except for identifiers delimited by double quotation marks),
and can be written in upper, lower, or mixed case. Java tokens, however, are case sensitive. For clarity in

200 iSeries: IBM Developer Kit for Java

http://www.sqlj.org

examples, case insensitive SQL tokens are uppercase, and Java tokens are lowercase or mixed case.
Throughout this topic, the lowercase null is used to represent the Java "null” value, and the uppercase
NULL is used to represent the SQL "null” value.

The following types of SQL constructs may appear in SQLJ programs:

* Queries
For example, SELECT statements and expressions.
+ SQL Data Change statements (DML)
For example, INSERT, UPDATE, DELETE.
» Data statements
For example, FETCH, SELECT..INTO.
» Transaction Control statements
For example, COMMIT, ROLLBACK, etc.
» Data Definition Language (DDL, also known as Schema Manipulation Language) statements
For example, CREATE, DROP, ALTER.
» Calls to stored procedures
For example, CALL MYPROC(:x, 1y, :2)
* Invocations of stored functions
For example, VALUES(MYFUN(:x))

For an example of embedded SQLJ, see [Example: Embed SQL Statements in your Java applicatior|.

Host variables in Structured Query Language for Java: Arguments to embedded SQL statements are
passed through host variables. Host variables are variables of the host language, and they can appear in
SQL statements. Host variables have up to three parts:

* Acolon (:) prefix.
+ A Java™ host variable that is a Java identifier for a parameter, variable, or field.
» An optional parameter mode identifier.

This mode identifier can be one of the following:
IN, OUT, or INOUT.

The evaluation of a Java identifier does not have side effects in a Java program, so it may appear multiple
times in the Java code generated to replace an SQLJ clause.

The following query contains the host variable, :x. This host variable is the Java variable, field, or
parameter x that is visible in the scope containing the query.

SELECT COL1, COL2 FROM TABLE1 WHERE :x > COL3
Example: Embed SQL Statements in your Java application: The following example SQLJ application,
App.sqlj, uses static SQL to retrieve and update data from the EMPLOYEE table of the DB2 sample
database.

Example: Embed SQL Statements in your Java‘™ application:

Note: Read the [Code example disclaimer for important legal information.

import java.sql.=*;
import sqlj.runtime.*;
import sqlj.runtime.ref.*;

#sql iterator App_Cursorl (String empno, String firstnme) ; //
#sql iterator App_Cursor2 (String) ;

Chapter 1. IBM Developer Kit for Java 201

class App
{

/**********************

% Register Driver ==
**********************/

static
{
try
{
Class.forName("com.ibm.db2.jdbc.app.DB2Driver”).newInstance();
1
catch (Exception e)
{
e.printStackTrace();
}
}

/********************

- Main -
********************/

public static void main(String argv[])
{
try
{
App_Cursorl cursorl;
App_Cursor2 cursor2;

String strl = null;
String str2 = null;
long countl;

// URL is jdbc:db2:dbname
String url = "jdbc:db2:sample”;

DefaultContext ctx = DefaultContext.getDefaultContext();
if (ctx == null)
{
try
{
// connect with default id/password
Connection con = DriverManager.getConnection(url);
con.setAutoCommit(false);
ctx = new DefaultContext(con);
}
catch (SQLException e)
{
System.out.printin("Error: could not get a default context”);
System.err.printin(e) ;
System.exit(1);
}
DefaultContext.setDefaultContext(ctx);
}

202 iSeries: IBM Developer Kit for Java

}

// retrieve data from the database
System.out.printin("Retrieve some data from the database.”);
#sql cursorl = {SELECT empno, firstnme FROM employee}; //

// display the result set

// cursorl.next() returns false when there are no more rows

System.out.printin("Received results:”);

while (cursorl.next()) //

{
strl
str2

cursorl.empno(); // EI
cursorl.firstnme();

System.out.print (” empno= " + strl);
System.out.print (” firstname= " + str2);
System.out.printin("");

}
cursorl.close(); // [

// retrieve number of employee from the database
#sql { SELECT count(*) into :countl FROM employee }; //
if (1 == countl)
System.out.printin ("There is 1 row in employee table”);
else
System.out.printin ("There are " + countl
+ " rows in employee table”);

// update the database
System.out.printin("Update the database.”);

#sql { UPDATE employee SET firstnme = *SHILI’ WHERE empno = 000010 };

// retrieve the updated data from the database

System.out.printin("Retrieve the updated data from the database.”);

strl = "000010";
#sql cursor2 = {SELECT firstnme FROM employee WHERE empno =

// display the result set
// cursor2.next() returns false when there are no more rows
System.out.printin(”"Received results:”);
while (true)
{
#sql { FETCH :cursor2 INTO :str2 }; //
if (cursor2.endFetch()) break; // [g

System.out.print (” empno= " + strl);
System.out.print (” firstname= " + str2);
System.out.printin("");

}
cursor2.close(); // P

// rollback the update
System.out.printin("Rollback the update.”);
#sql { ROLLBACK work };
System.out.printin(”"Rol1back done.”);

catch(Exception e)

{

Chapter 1. IBM Developer Kit for Java

:strl}; // El

203

e.printStackTrace();
}
}
}

1. Declare iterators. This section declares two types of iterators:

App_Cursori
Declares column data types and names, and returns the values of the columns according to
column name (Named binding to columns).

App_Cursor2
Declares column data types, and returns the values of the columns by column position
(Positional binding to columns).

2. Initialize the iterator. The iterator object cursor1 is initialized using the result of a query. The query
stores the result in cursor1.

3. Advance the iterator to the next row. The cursor1.next() method returns a Boolean false if there are
no more rows to retrieve.

4. Move the data. The named accessor method empno() returns the value of the column named empno
on the current row. The named accessor method firstnme() returns the value of the column named
firstnme on the current row.

5. SELECT data into a host variable. The SELECT statement passes the number of rows in the table
into the host variable count1.

6. Initialize the iterator. The iterator object cursor2 is initialized using the result of a query. The query
stores the result in cursor2.

7. Retrieve the data. The FETCH statement returns the current value of the first column declared in the
ByPos cursor from the result table into the host variable str2.

8. Check the success of a FETCH..INTO statement. The endFetch() method returns a Boolean true if
the iterator is not positioned on a row, that is, if the last attempt to fetch a row failed. The endFetch()
method returns false if the last attempt to fetch a row was successful. DB2 attempts to fetch a row
when the next() method is called. A FETCH...INTO statement implicitly calls the next() method.

9. Close the iterators. The close() method releases any resources held by the iterators. You should
explicitly close iterators to ensure that system resources are released in a timely fashion.

For background information on this example, see Embed SQL Statements in your Java application|

Compile and run SQLJ programs
If your Java‘™ program has[embedded SQLJ| statements, you need to follow a special procedure to

compile and run it.

Note: Before you begin, set up your |CLASSPATH|to contain the following:
* /QIBM/ProdData/Os400/Java400/ext/sqlj_classes.jar

» /QIBM/ProdData/Os400/Java400/ext/translator.zip
* /QIBM/ProdData/Os400/Java400/ext/runtime.zip

To compile and run your structured query language for Java (SQLJ) program, follow these steps:

1. Use the |SQLJ translator, sql1jl on your Java source code with embedded SQL to generate Java
source code and associated Erofilesl There is one profile generated for each connection.

For example, type in the following command:
sqlj MyClass.sqlj

where MyClass.sqlj is the name of your SQLJ file.

204 iSeries: IBM Developer Kit for Java

In this example, the SQLJ translator generates a MyClass.java source code file and any associated
profiles. The associated profiles are named MyClass_SJProfile0.ser, MyClass_SJProfile1.ser,
MyClass_SJProfile2.ser, and so on.

Note: The SQLJ translator automatically compiles the translated Java source code into a class file
unless you explicitly turn off the compile option with the -compile=false clause.

2. Use fhe SQLJ Profile Customizer tool, db2profd, to install DB2 SQLJ Customizers on generated
profiles and create the DB2 packages on the local system.

For example, type in the command:
db2profc MyClass_SJProfile0.ser

where MyClass_SJProfile0.ser is the name of the profile on which the DB2 SQLJ Customizer is run.

Note: This step is optional but is recommended to increase runtime performance.
3. Run the Java class file just like any other Java class file.
For example, type in the command:
java MyClass

where MyClass is the name of your Java class file.

Java SQL routines

% Your iSeries server provides the ability to access Java™ programs from SQL statements and
programs. This can be done using Java stored procedures and Java user-defined functions (UDFs). The
iSeries server supports both the DB2 and SQLJ conventions for calling Java stored procedures and Java
UDFs. Both Java stored procedures and Java UDFs can use Java classes that are stored in JAR files.
The iSeries server uses stored procedures defined by the SQLJ Part 1 standard to register JAR files with
the database.

a(TM

To access your Java applications from SQL statements and programs, see the following:

[Use Java SQL routines|
Take the following steps to use Java SQL routines:

* Write the Java methods for the routines.

» Compile the Java classes.

» Make the compiled classes accessible to the Java virtual machine used by the database.
* Register the routine with the database.

* Use the Java SQL procedure.

Wava stored procedures|
When using Java to write stored procedures, you can use the following possible parameter passing
styles:

* JAVA parameter style
+ DB2GENERAL parameter style

Nava user-defined scalar functions|
A Java scalar function returns one value from a Java program to the database. Like Java stored
procedures, Java scalar functions use one of two parameter styles, JAVA and DB2GENERAL.

Wava user-defined table functions|
DB2 provides the ability for a function to return a table. This is useful for exposing information from
outside the database to the database in table form.

Chapter 1. IBM Developer Kit for Java 205

&

[SQLJ procedures that manipulate JAR files|
Both Java stored procedures and Java UDFs can use Java classes that are stored in Java JAR files.
Find the following information about SQLJ procedures that manipulate JAR files:

¢ SQLJ.INSTALL_JAR

* SQLJ.REMOVE_JAR

* SQLJ.REPLACE_JAR

+ SQLJ.UPDATEJARINFO
+ SQLJ.RECOVERJAR

IParameter passing conventions for Java stored procedures and UDFs|
This section describes how SQL data types are represented in Java stored procedures and UDFs.

Use Java SQL routines
% You can access Java™ programs from SQL statements and programs. This can be done using Java
stored procedures and Java user-defined functions (UDFs).

To use Java SQL routines, the following steps must be taken:

1.

Write the Java methods for the routines.

A Java SQL routine processes a Java method from SQL. This method must be written using either the
DB2"™ or SQLJ parameter passing conventions. See [Java stored procedures, [Java user-defined
functions|, and [Java user-defined table functiong for more information about coding a method used by a
Java SQL routine.

Compile the Java classes.

Java SQL routines written using the Java parameter style may be compiled without any addition setup.
However, Java SQL routines using the DB2GENERAL parameter style must extend either the
com.ibm.db2.app.UDF class or com.ibm.db2.app.StoredProc class. These classes are contained in the
JAR file, /QIBM/ProdData/Java400/ext/db2routines_classes.jar. When using javac to compile these
routines, this JAR file must exist in the CLASSPATH. For example, the following command compiles a
Java source file containing a routine which uses the DB2GENERAL parameter style:

javac -DCLASSPATH=/QIBM/ProdData/Java400/ext/db2routines_classes.jar
source.java

Make the compiled classes accessible to the JVM used by the database.

The user-defined classes used by the database Java virtual machine (JVM) can either reside in the
/QIBM/UserData/OS400/SQLLib/Function directory or in a JAR file registered to the database.

The /QIBM/UserData/OS400/SQLLib/Function is the iSeries equivalent of /sqllib/function, the directory
where DB2 UDB stores Java stored procedures and Java UDFs on other platforms. If the class is part
of a Java package, it must reside in the appropriate subdirectory. For example, if the runit class is
created as part of the foo.bar package, the file runnit.class should be in the integrated file system
directory, /QIBM/ProdData/OS400/SQLLib/Function/foo/bar.

The class file may also be placed in a JAR file that is registered to the database. The JAR file is
registered using the SQLJ.INSTALL_JAR stored procedure. This stored procedure is used to assign a
JAR ID to a JAR file. This JAR ID is used to identify the JAR file in which the class file resides. See
[SQLJ procedures that manipulate JAR files|for more information on SQLJ.INSTALL_JAR as well as
other stored procedures to manipulate JAR files.

Register the routine with the database.

Java SQL routines is registered with the database using the CREATE PROCEDURE and CREATE
FUNCTION SQL statements. These statements contain the following elements:

CREATE keywords
The SQL statements to create a Java SQL routine begin with either CREATE PROCEDURE or
CREATE STATEMENT.

206 iSeries: IBM Developer Kit for Java

Name of routine
The SQL statement then identifies the name of the routine that is known to the database. This
is the name that is used to access the Java routine from SQL.

Parameters and return value
The SQL statement then identifies the parameters and return values, if applicable, for the Java
routine.

LANGUAGE JAVA
The SQL statement uses the keywords LANGUAGE JAVA to indicate that the routine was
written in Java.

PARAMETER STYLE KEYWORDS
The SQL statement then identifies the parameter style using the keywords PARAMETER
STYLE JAVA or PARAMETER STYLE DB2GENERAL.

External name
The SQL statement then identifies the Java method to be processed as Java SQL routines.
The external name has one of two formats:

« |If the method is in a class file that is located under the
/QIBM/UserData/OS400/SQLLib/Function directory, then the method is identified using the
format classname.methodname, where classname is the fully qualified name of the class
and methodname is the name of the method.

» If the method is in a JAR file registered to the database, then the method is identified using
the format jarid:classname.methodname, where jarid is the JAR ID of the registered JAR
file, classname is the name of the class, and methodname is the name of the method.

The iSeries Navigator may be used to create a stored procedure or user-defined function that uses the
Java parameter style.

5. Use the Java procedure.

A Java stored procedure is called using the SQL CALL statement. A Java UDF is a function that is
called as part of another SQL statement.

&

Java stored procedures

When using Java‘™ to write stored procedures, you can use two possible parameter passing styles.
The recommended style is the JAVA parameter style, which matches the parameter style specified in the
SQLj: SQL routines standard. The second style, DB2GENERAL, is a parameter style defined by DB2®
UDB. The parameter style also determines the conventions that you must use when coding a Java stored
procedure.

Additionally, you should also be aware of some that are placed on Java stored procedures. 4

JAVA parameter style: % When you code a Java™ stored procedure that uses the JAVA parameter
style, you must use the following conventions:

* The Java method must be a public void static (not instance) method.

* The parameters of the Java method must be SQL-compatible types.

» A Java method may test for an SQL NULL value when the parameter is a null-capable type (like String).
» Output parameters are returned by using single element arrays.

» The Java method may access the current database using the getConnection method.

Java stored procedures using the JAVA parameter style are public static methods. Within the classes, the
stored procedures are identified by their method name and signature. When you call a stored procedure,
its signature is generated dynamically, based on the variable types defined by the CREATE PROCEDURE
statement.

Chapter 1. IBM Developer Kit for Java 207

If a parameter is passed in a Java type that permits the null value, a Java method can compare the
parameter to null to determine if an input parameter is an SQL NULL.

The following Java types do not support the null value:
* short

e int

* long

+ float

* double

If a null value is passed to a Java type that does not support the null value, an SQL Exception with an
error code of -20205 will be returned.

Output parameters are passed as arrays that contain one element. The Java stored procedure can set the
first element of the array to set the output parameter.

A connection to the embedding application context is accessed using the following Java Database
Connectivity (JDBC) call:

connection=DriverManager.getConnection("jdbc:default:connection");
This connection then runs SQL statements with JDBC APls.

The following is a small stored procedure with one input and two outputs. It runs the given SQL query, and
returns both the number of rows in the result and the SQLSTATE.

Example: Stored procedure with one input and two outputs

Note: Read the [Code example disclaimer for important legal information.
package mystuff;

import java.sql.=*;
public class sample2 {
public static void donut(String query, int[] rowCount,
String[] sqlstate) throws Exception {
try {
Connection c=DriverManager.getConnection("jdbc:default:connection");
Statement s=c.createStatement();
ResultSet r=s.executeQuery(query);
int counter=0;
while(r.next()){
counter++;

r.close(); s.close();
rowCount[0] = counter;
}catch(SQLException x) {
sqlstate[0]= x.getSQLState();
}

}

1

In the SQLj standard, to return a result set in routines that use the JAVA parameter style, the result set
must be set explicitly. When a procedure is created that returns result sets, additional result set
parameters are added to the end of the parameter list. For example, the statement

CREATE PROCEDURE RETURNTWO()

DYNAMIC RESULT SETS 2

LANGUAGE JAVA

PARAMETER STYLE JAVA

EXTERNAL NAME 'javaClass!returnTwoResultSets'

208 iSeries: IBM Developer Kit for Java

would call a Java method with the signature public static void returnTwoResultSets(ResultSet[] rsl,
ResultSet[] rs2).

The output parameters of the result sets must be explicitly set as illustrated in the following example. As in
the DB2GENERAL style, the result sets and corresponding statements should not be closed.

Example: Stored procedure that returns two result sets

Note: Read the [Code example disclaimer for important legal information.

import java.sql.=;
public class javaClass {

Java stored procedure, with JAVA style parameters,
that processes two predefined sentences
and returns two result sets

@param ResultSet[] rsl first ResultSet
@param ResultSet[] rs2 second ResultSet
*/
public static void returnTwoResultSets (ResultSet[] rsl, ResultSet[] rs2) throws Exception
{

//get caller's connection to the database; inherited from StoredProc
Connection con = DriverManager.getConnection("jdbc:default:connection");

//define and process the first select statement
Statement stmtl = con.createStatement();

String sqll = "select value from table0l where index=1";
rs1[0] = stmtl.executeQuery(sqll);

//define and process the second select statement
Statement stmt2 = con.createStatement();
Stringsql2 = "select value from table0l where index=2";
rs2[0] = stmt2.executeQuery(sql2);
}

1

On the server, the additional result set parameters are not examined to determine the ordering of the
results sets. The results sets on the server are returned in the order in which they were opened. To ensure
compatibility with the SQLj standard, the result should be assigned in the order that they are opened, as

previously shown. 4

DB2GENERAL parameter style: # When coding a Java‘™ stored procedure that uses the
DB2GENERAL parameter style, you must use the following conventions:

» The class that defines a Java stored procedure must extend, or be a subclass of, the Java
com.ibm.db2.app.StoredProc class.

* The Java method must be a public void instance method.

* The parameters of the Java method must be SQL-compatible types.

» A Java method may test for a SQL NULL value using the isNull method.

* The Java method must explicitly set the return parameters using the set method.

* The Java method may access the current database using the getConnection method.

A class that includes a Java stored procedure must extend the class, com.ibm.db2.app.StoredProc. Java
stored procedures are public instance methods. Within the classes, the stored procedures are identified by
their method name and signature. When you call a stored procedure, its signature is generated
dynamically, based on the variable types defined by the CREATE PROCEDURE statement.

The com.ibm.db2.app.StoredProc class provides the isNull method, which permits a Java method to
determine if an input parameter is an SQL NULL. The com.ibm.db2.app.StoredProc class also provides

Chapter 1. IBM Developer Kit for Java 209

set...() methods that set output parameters. You must use these methods to set output parameters. If you
do not set an output parameter, then the output parameter returns the SQL NULL value.

The com.ibm.db2.app.StoredProc class provides the following routine to fetch a JDBC connection to the

embedding application context. A connection to the embedding application context is accessed using the
following JDBC call:

public Java.sql.Connection getConnection()
This connection then runs SQL statements with JDBC APlIs.

The following is a small stored procedure with one input and two outputs. It processes the given SQL
query, and returns both the number of rows in the result and the SQLSTATE.

Example: Stored procedure with one input and two outputs

Note: Read the [Code example disclaimer for important legal information.
package mystuff;

import com.ibm.db2.app.*;
import java.sql.=;
public class sample2 extends StoredProc {
public void donut(String query, int rowCount,
String sqlstate) throws Exception {
try {
Statement s=getConnection().createStatement();
ResultSet r=s.executeQuery(query);
int counter=0;
while(r.next()){
counter++;
}
r.close(); s.close();
set(2, counter);
}catch(SQLException x) {
set (3, x.getSQLState());
}
}
1

To return a result set in procedures that use the DB2GENERAL parameter style, the result set and the
responding statement must be left open at the end of the procedure. The result set that is returned must
be closed by the client application. If multiple results sets are returned, they are returned in the order in
which they were opened. For example, the following stored procedure returns two results sets.

Example: Stored procedure that returns two results sets

Note: Read the [Code example disclaimer] for important legal information.
public void returnTwoResultSets() throws Exception

{
// get caller's connection to the database; inherited from StoredProc
Connection con = getConnection ();
Statement stmtl = con.createStatement ();
String sqll = "select value from table0l where index=1";
ResultSet rsl = stmtl.executeQuery(sqll);
Statement stmt2 = con.createStatement();
String sql2 = "select value from table0l where index=2";
ResultSet rs2 = stmt2.executeQuery(sql2);

&

210 iSeries: IBM Developer Kit for Java

Restrictions on Java stored procedures: #* The following restrictions apply to Java™ stored
procedures:

» A Java stored procedure should not create additional threads. An additional thread may be created in a
job only if the job is multithread capable. Because there is no guarantee that a job that calls an SQL
stored procedure is multithread capable, a Java stored procedure should not create additional threads.

* You cannot use adopted authority to access Java class files.

» A Java stored procedure always uses the latest version of the Java Development Kit that is installed on
the system.

» Since Blob and Clob classes reside in both the java.sql and com.ibm.db2.app packages, the
programmer must use the entire name of these classes if both classes are used in the same program.
The program must ensure that the Blob and Clob classes from the com.ibm.db2.app are used as the
parameters passed to the stored procedure.

* When a Java stored procedure is created, the system generates a service program in the library. This
service program is used to store the procedure definition. The service program has a name that is
generated by the system. This name can be obtained by examining the job log of the job that created
the stored procedure. If the service program object is saved and then restored, then the procedure
definition is restored. If a Java stored procedure is to be moved from one system to another, you are
responsible for moving the program that contains the procedure definition as well as the integrated file
system file, which contains the Java class.

» A Java stored procedure cannot set the properties (for example, system naming) of the JDBC
connection that is used to connect to the database. The default JDBC connection properties are always
used, except when prefetching is disabled. 4

Java user-defined scalar functions

& A Java™ scalar function returns one value from a Java program to the database. For example, a
scalar function could be created that returns the sum of two numbers. Like Java stored procedures, Java
scalar functions use one of two parameter styles, |Javal and [DB2GENERAL} When coding a Java
user-defined function (UDF), you must be aware of restrictions placed on creating Java scalar functions.

Parameter style Java: The Java parameter style is the style specified by the SQLJ Part 1: SQL
Routines standard. When coding a Java UDF, use the following conventions.

* The Java method must be a public static method.

» The Java method must return an SQL compatible type. The return value is the result of the method.
* The parameters of the Java method must be SQL compatible types.

* The Java method may test for a SQL NULL for Java types that permit the null value.

For example, given a UDF called sample!test3 that returns INTEGER and takes arguments of type
CHAR(5), BLOB(10K), and DATE, DB2 expects the Java implementation of the UDF to have the following
signature:

import com.ibm.db2.app.*;
public class sample {

public static int test3(String argl, Blob arg2, Date arg3) { ... }
1

The parameters of a Java method must be SQL compatible types. For example, if a UDF is declared as
taking arguments of SQL types t1, t2, and t3, and returning type t4, it is called as a Java method with the
expected Java signature:

public static T4 name (T1 a, T2 b, T3 ¢) { }

where:

* name is the method name

* T1 through T4 are the Java types that correspond to SQL types t1 through t4.
* a, b, and c are arbitrary variable names for the input arguments.

Chapter 1. IBM Developer Kit for Java 211

The correlation between SQL types and Java types is found in [Parameter passing conventions for stored|
[orocedures and UDFs}

SQL NULL values are represented by Java variables that are not initialized. These variables have a Java
null value if they are object types. If an SQL NULL is passed to a Java scalar data type, such as int, then
an exception condition is raised.

To return a result from a Java UDF when using the JAVA parameter style, simply return the result from the
method.

{
}

return value;

Like C modules used in UDFs and stored procedures, you cannot use the Java standard I/O streams
(System.in, System.out, and System.err) in Java UDFs.

Parameter style DB2GENERAL: Parameter style DB2GENERAL is used by Java UDFs. In this
parameter style, the return value is passed as the last parameter of the function and must be set using a
set method of the com.ibm.db2.app.UDF class.

When coding a Java UDF, the following conventions must be followed:

* The class, which includes the Java UDF, must extend, or be a subclass of, the Java
com.ibm.db2.app.UDF class.

* For the DB2GENERAL parameter style, the Java method must be a public void instance method.
* The parameters of the Java method must be SQL-compatible types.
» The Java method may test for an SQL NULL value using the isNull method.

» For the DB2GENERAL parameter style, the Java method must explicitly set the return parameter using
the set() method.

A class that includes a Java UDF must extend the Java class, com.ibom.db2.app.UDF. A Java UDF that
uses the DB2GENERAL parameter style must be a void instance method of the Java class. For example,
for a UDF called sampleltest3 that returns INTEGER and takes arguments of type CHAR(5), BLOB(10K),
and DATE, DB2 expects the Java implementation of the UDF to have the following signature:

import com.ibm.db2.app.*;
public class sample extends UDF {

public void test3(String argl, Blob arg2, String arg3, int result) { ... }
1

The parameters of a Java method must be SQL types. For example, if a UDF is declared as taking
arguments of SQL types t1, t2, and t3, returning type t4, it is called as a Java method with the expected
Java signature:

public void name (T1 a, T2 b, T3 ¢, T4 d) { }

where:

* name is the method name

* T1 through T4 are the Java types that correspond to SQL types t1 through t4.
* a, b, and c are arbitrary variable names for the input arguments.

* dis an arbitrary variable name that represents the UDF result being computed.

The correlation between SQL types and Java types is given in the section,|Parameter passing conventions|
ffor stored procedures and UDFs|

212 iSeries: IBM Developer Kit for Java

SQL NULL values are represented by Java variables that are not initialized. These variables have a value
of zero if they are primitive types, and Java null if they are object types, in accordance with Java rules. To
tell an SQL NULL apart from an ordinary zero, the isNull method can be called for any input argument:

1:1.‘.&1'5Nu11(1)) { /* argument #1 was a SQL NULL */ }
else { /* not NULL */ }
}

In the previous example, the argument numbers start at one. The isNull() function, like the other functions
that follow, are inherited from the com.ibm.db2.app.UDF class. To return a result from a Java UDF when
using the DB2GENERAL parameter style, use the set() method in the UDF, as follows:

se’.ciZ, value);

Where 2 is the index of an output argument, and value is a literal or variable of a compatible type. The
argument number is the index in the argument list of the selected output. In the first example in this
section, the int result variable has an index of 4. An output argument that is not set before the UDF returns
has a NULL value.

Like C modules used in UDFs and stored procedures, you cannot use the Java standard I/O streams
(System.in, System.out, and System.err) in Java UDFs.

Typically, DB2 calls a UDF many times, once for each row of an input or result set in a query. If
SCRATCHPAD is specified in the CREATE FUNCTION statement of the UDF, DB2 recognizes that some
"continuity” is needed between successive invocations of the UDF, and therefore, for DB2GENERAL
parameter style functions, the implementing Java class is not instantiated for each call, but generally
speaking once per UDF reference per statement. If, however, NO SCRATCHPAD is specified for a UDF,
then a clean instance is instantiated for each call to the UDF, by means of a call to the class constructor.

A scratchpad may be useful for saving information across calls to a UDF. Java UDFs can either use
instance variables or set the scratchpad to achieve continuity between calls. Java UDFs access the
scratchpad with the getScratchPad and setScratchPad methods available in com.ibm.db2.app.UDF. At the
end of a query, if you specify the FINAL CALL option on the CREATE FUNCTION statement, the object’s
public void close() method is called (for DB2GENERAL parameter style functions). If you do not define this
method, a stub function takes over and the event is ignored. The com.ibm.db2.app.UDF class contains
useful variables and methods that you can use within a DB2GENERAL parameter style UDF. These
variables and methods are explained in the following table.

Variables and Methods Description

public static final int SQLUDF_FIRST_CALL = -1;
public static final int SQLUDF_NORMAL_CALL = 0;
E public static final int SQLUDF_TF_FIRST = -2;
public static final int SQLUDF_TF_OPEN = -1;
public static final int SQLUDF_TF_FETCH = 0;
public static final int SQLUDF_TF_CLOSE = 1;

public static final int SQLUDF_TF_FINAL = 2; %%

For scalar UDFs, these are constants to determine if the
call is a first call or a normal call. For table UDFs, these
are constants to determine if the call is a first call, open
call, fetch call, close call, or final call.

public Connection getConnection();

The method obtains the JDBC connection handle for this
stored procedure call and returns a JDBC object that
represents the calling application’s connection to the
database. It is analogous to the result of a null
SQLConnect() call in a C stored procedure.

Chapter 1. IBM Developer Kit for Java 213

Variables and Methods

Description

public void close();

This method is called by the database at the end of a
UDF evaluation, if the UDF was created with the FINAL
CALL option. It is analogous to the final call for a C UDF.
If a Java UDF class does not implement this method, this
event is ignored.

public boolean isNull(int i)

This method tests whether an input argument with the
given index is an SQL NULL.

public void set(int i, short s);
public void set(int i, int j);
public void set(int i, long j);
public void set(int i, double d);
public void set(int i, float f);

public void set(int i, String string);
public void set(int i, Blob blob);
public void set(int i, Clob clob);
public boolean needToSet(int i);

public void set(int i, BigDecimal bigDecimal);

These methods set an output argument to the given
value. An exception is thrown if anything goes wrong,
including the following:

* UDF call is not in progress

* Index does not refer to valid output argument
» Data type does not match

» Data length does not match

» Code page conversion error occurs

public void setSQLstate(String string);

This method may be called from a UDF to set the
SQLSTATE to be returned from this call. If the string is
not acceptable as an SQLSTATE, an exception is thrown.
The user may set the SQLSTATE in the external program
to return an error or warning from the function. In this
case, the SQLSTATE must contain one of the following:

* ’00000’ to indicate success

* ’01Hxx’, where xx is any two digits or uppercase
letters, to indicate a warning
» ’38yxx’, where y is an uppercase letter between I’ and

’Z’ and xx is any two digits or uppercase letters, to
indicate an error

public void setSQLmessage(String string);

This method is similar to the setSQLstate method. It sets
the SQL message result. If the string is not acceptable
(for example, longer than 70 characters), an exception is
thrown.

public String getFunctionName();

This method returns the name of the processing UDF.

public String getSpecificName();

This method returns the specific name of the processing
UDF.

public byte[] getDBinfo();

This method returns a raw, unprocessed DBINFO
structure for the processing UDF, as a byte array. The
UDF must have been registered (using CREATE
FUNCTION) with the DBINFO option.

public String getDBname();
public String getDBauthid();
public String getDBver_rel();
public String getDBplatform();
public String getDBapplid();
public String getDBapplid();
public String getDBtbschema();
public String getDBtbname();
public String getDBcolname();

These methods return the value of the appropriate field
from the DBINFO structure of the processing UDF. The
UDF must have been registered (using CREATE
FUNCTION) with the DBINFO option. The
getDBtbschema(), getDBtbname(), and getDBcolname()
methods only return meaningful information if a
user-defined function is specified on the right side of a
SET clause in an UPDATE statement.

public int getCCSID();

This method returns the CCSID of the job.

public byte[] getScratchpad();

This method returns a copy of the scratchpad of the
currently processing UDF. You must first declare the UDF
with the SCRATCHPAD option.

214 iSeries: IBM Developer Kit for Java

Variables and Methods Description

public void setScratchpad(byte abl[]); This method overwrites the scratchpad of the currently
processing UDF with the contents of the given byte array.
You must first declare the UDF with the SCRATCHPAD
option. The byte array must have the same size as
getScratchpad() returns.

public int getCallType(); This method returns the type of call that is currently being
made. These values correspond to the C values defined
in sqludf.h. Possible return values include the following:

* SQLUDF_FIRST_CALL
* SQLUDF_NORMAL_CALL

« A SQLUDF_TF_FIRST
+ SQLUDF_TF_OPEN

+ SQLUDF_TF_FETCH
+ SQLUDF_TF_CLOSE

« SQLUDF_TF_FINAL 4%

&

Restrictions on Java user-defined functions: ** The following restrictions apply to Java™
user-defined functions (UDFs):

* A Java UDF should not create additional threads. An additional thread may be created in a job only if
the job is multithread capable. Since it cannot be guaranteed that a job that calls an SQL stored
procedure is multithread capable, a Java stored procedure should not create additional threads.

* The complete name of the Java stored procedure defined to the database is limited to 279 characters.
This limit is a consequence of the EXTERNAL_NAME column, which has a maximum width of 279
characters.

» Adopted authority cannot be used to access Java class files.
» A Java UDF always uses the latest version of the JDK that is installed on the system.

» Since Blob and Clob classes reside in both the java.sql and com.ibm.db2.app packages, the
programmer must use the entire name of these classes if both classes are used in the same program.
The program must ensure that the Blob and Clob classes from the com.ibm.db2.app are used as the
parameters passed to the stored procedure.

» Like sourced functions, when a Java UDF is created, a service program in the library is used to store
the function definition. The name of the service program is generated by the system and can be found
in the job log of the job that created the function. If this object is saved and then restored to another
system, then the function definition is restored. If a Java UDF is to be moved from one system to
another, you are responsible for moving the service program that contains the function definition as well
as the integrated file system file that contains the Java class.

» A Java UDF cannot set the properties (for example, system naming) of the JDBC connection that is
used to connect to the database. The default JDBC connection properties are always used, except
when prefetching is disabled. %

Java user-defined table functions: #* DB2 provides the ability for a function to return a table. This is
useful for exposing information from outside the database to the database in table form. For example, a
table can be created that exposes the properties set in the Java‘™ virtual machine (JVM) used for Java
stored procedures and Java UDFs (both table and scalar).

The SQLJ Part 1: SQL Routines standard does support table functions. Consequently, table functions are
only available using parameter style DB2GENERAL.

Chapter 1. IBM Developer Kit for Java 215

Five different types of calls are made to a table function. The following table explains these calls. These
assume that scratchpad has been specified on the create function SQL statement.

Point in scan time

NO FINAL CALL LANGUAGE JAVA
SCRATCHPAD

FINAL CALL LANGUAGE JAVA
SCRATCHPAD

Before the first OPEN of the table
function

No calls

Class constructor is called (means
new scratchpad). UDF method is
called with FIRST call.

At each OPEN of the table function.

Class constructor is called (means
new scratchpad). UDF method is
called with OPEN call.

UDF method is called with OPEN
call.

At each FETCH for a new row of
table function data.

UDF method is called with FETCH
call.

UDF method is called with FETCH
call.

At each CLOSE of the table function

UDF method is called with CLOSE
call. The close() method, if it exists, is
also called.

UDF method is called with CLOSE
call.

After the last CLOSE of the table
function.

No calls

UDF method is called with FINAL call.
The close() method, if it exists, is also
called.

Example: Java table function: The following is an example of a Java table function that determines the
properties set in the JVM used to run the Java user-defined table function.

Note: Read the [Code example disclaimer for important legal information.

import com.ibm.db2.app.*;
import java.util.=*;

public class JVMProperties extends UDF {

Enumeration propertyNames;
Properties properties ;

public void dump (String property, String value) throws Exception

{
int callType =
switch(callType) {
case SQLUDF_TF_FIRST:
break;
case SQLUDF_TF_OPEN:
properties =
propertyNames =
break;
case SQLUDF_TF_FETCH:

getCallType();

System.getProperties();
properties.propertyNames();

if (propertyNames.hasMoreETements()) {
property = (String) propertyNames.nextElement();

value =
set(1, property);
set(2, value);

} else {

}

break;

case SQLUDF_TF_CLOSE:
break;

case SQLUDF_TF_FINAL:
break;

default:

setSQLstate("02000");

properties.getProperty(property);

throw new Exception("UNEXPECT call type of "+callType);

216

iSeries: IBM Developer Kit for Java

After the table function is compiled, and its class file copied to /QIBM/UserData/OS400/SQLLib/Function,
the function can be registered to the database by using the following SQL statement.

create function properties()

returns table (property varchar(500), value varchar(500))
external name 'JVMProperties.dump' language java
parameter style db2general fenced no sql

disallow parallel scratchpad

After the function has been registered, it can be used as part of an SQL statement. For example, the
following SELECT statement returns the table generated by the table function.

SELECT * FROM TABLE(PROPERTIES())

&

SQLJ procedures that manipulate JAR files

Both Java™ stored procedures and Java UDFs can use Java classes that are stored in Java JAR
files. To use a JAR file, a jar-id must be associated with the JAR file. The system provides stored
procedures in the SQLJ schema that allow jar-ids and JAR files to be manipulated. These procedures
allow JAR files to be installed, replaced, and removed. They also provide the ability to use and update the
SQL catalogs associated with JAR files.

For more information, see the following topics:
 [SQLJ.INSTALL_JAR|

- [SQLJ.REMOVE_JAR]
- [SQLJ.REPLACE_JAR|

[SQLJ.UPDATEJARINFO|
[SQLJ.RECOVERJARK

SQLJ.INSTALL_JAR: * The SQLJ.INSTALL_JAR stored procedure installs a JAR file into the database
system. This JAR file can be used in subsequent CREATE FUNCTION and CREATE PROCEDURE
statements.

Authorization: The privilege held by the authorization ID of the CALL statement must include at least one
of the following for the SYSJAROBJECTS and SYSJARCONTENTS catalog tables:

* The following system authorities:
— The INSERT and SELECT privileges on the table
— The system authority *EXECUTE on library QSYS2
* Administrative authority

The privilege held by the authorization ID of the CALL statement must also have the following authorities:
* Read (*R) access to the JAR file specified in the jar-url parameter being installed.

* Write, Execute, and Read (*RWX) access to the directory where the JAR file is installed. This directory
is /QIBM/UserData/OS400/SQLLib/Function/jar/schema, where schema is the schema of the jar-id.

Adopted authority cannot be used for these authorities.

SQL syntax:
>>-CALL--SQLJ.INSTALL_JAR-- (--'jar-url'--,--'jar-id'--,--deploy--)-->
D e e e ><
Description:

Chapter 1. IBM Developer Kit for Java 217

jar-url The URL containing the JAR file to be installed or replaced. The only URL scheme supported is
file:’.

jar-id The JAR identifier in the database to be associated with the file specified by the jar-url. The jar-id
uses SQL naming and the JAR file is installed in the schema or library specified by the implicit or
explicit qualifier.

deploy
Value used to describe the install_action of the deployment descriptor file. If this integer is a
nonzero value, then the install_actions of a deployment descriptor file should be run at the end of

the install_jar procedure. The current version of DB2 UDB for iSeries only supports a value of
zero.

Usage notes: When a JAR file is installed, DB2 UDB for iSeries registers the JAR file in the
SYSJAROBJECTS system catalog. It also extracts the names of the Java™ class files from the JAR file
and registers each class in the SYSJARCONTENTS system catalog. DB2 UDB for iSeries copies the JAR
file to a jar/schema subdirectory of the /QIBM/UserData/OS400/SQLLib/Function directory. DB2 UDB for
iSeries gives the new copy of the JAR file the name given in the jar-id clause. A JAR file that has been
installed by DB2 UDB for iSeries into a subdirectory of /QIBM/UserData/OS400/SQLLib/Function/jar should
not be changed. Instead, the CALL SQLJ.REMOVE_JAR and CALL SQLJ.REPLACE_JAR SQL
commands should be used to remove or replace an installed JAR file.

Example: The following command is issued from an SQL interactive session.
CALL SQLJ.INSTALL_JAR('file:/home/db2inst/classes/Proc.jar' , 'myproc_jar', 0)

The Proc.jar file located in the file:lhome/db2inst/classes/ directory is installed into DB2 UDB for iSeries
with the name myproc_jar. Subsequent SQL commands that use the Procedure.jar file refer to it with the

name myproc_jar. ‘&

SQLJ.REMOVE_JAR: # The SQLJ.REMOVE_JAR stored procedure removes a JAR file from the
database system.

Authorization: The privilege held by the authorization ID of the CALL statement must include at least one
of the following for the SYSJARCONTENTS and SYSJAROBJECTS catalog tables:

* The following system authorities:
— The SELECT and DELETE privileges on the table
— The system authority *EXECUTE on library QSYS2
* Administrative authority

The privilege held by the authorization ID of the CALL statement must also have the following authority.

* *OBJMGT authority to the JAR file being removed. The JAR file is named
/QIBM/UserData/OS400/SQLLib/Function/jar/schema/jarfile.

Adopted authority cannot be used for this authority.

Syntax:

>>-CALL--SQLJ.REMOVE_JAR--(--'jar-id'--,--undeploy--)---------- ><
Description:
jar-id The JAR identifier of the JAR file that is to be removed from the database.

undeploy
The value used to describe the remove_action of the deployment descriptor file. If this integer is a

218 iSeries: IBM Developer Kit for Java

non-zero value, then the remove_actions of a deployment descriptor file should be run at the end
of the install_jar procedure. The current version of DB2 UDB for iSeries only supports a value of
zero.

Example: The following command is issued from an SQL interactive session:
CALL SQLJ.REMOVE_JAR('myProc_jar', 0)

The JAR file myProc_jar is removed from the database. %

SQLJ.REPLACE_JAR: # The SQLJ.REPLACE_JAR stored procedure replaces a JAR file into the
database system.

Authorization: The privilege held by the authorization ID of the CALL statement must include at least one
of the following for the SYSJAROBJECTS and SYSJARCONTENTS catalog tables:

* The following system authorities:
— The SELECT, INSERT, and DELETE privileges on the table
— The system authority *EXECUTE on library QSYS2

» Administrative authority

The privilege held by the authorization ID of the CALL statement must also have the following authorities:
* Read (*R) access to the JAR file specified by the jar-url parameter being installed.

* *OBJMGT authority to the JAR file being removed. The JAR file is named
/QIBM/UserData/OS400/SQLLib/Function/jar/schema/jarfile.

Adopted authority cannot be used for these authorities.

Syntax:
>>-CALL--SQLJ.REPLACE_JAR--(--"jar-url'--,--"jar-id'-=)-====n-- ><

Description:
jar-url The URL containing the JAR file to be replaced. The only URL scheme supported is ‘file:’.

jar-id The JAR identifier in the database to be associated with the file specified by the jar-url. The jar-id
uses SQL naming and the JAR file is installed in the schema or library specified by the implicit or
explicit qualifier.

Usage notes: The SQLJ.REPLACE_JAR stored procedure replaces a JAR file that was previously
installed in the database using SQLJ.INSTALL_JAR.

Example: The following command is issued from an SQL interactive session:
CALL SQLJ.REPLACE JAR('file:/home/db2inst/classes/Proc.jar' , 'myproc_jar')

The current JAR file referred to by the jar-id myproc_jar is replaced with the Proc.jar file located in the
file:/home/db2inst/classes/ directory. &

SQLJ.UPDATEJARINFO: 2 The SQLJ.UPDATEJARINFO updates the CLASS_SOURCE column of the
SYSJARCONTENTS catalog table. This procedure is not part of the SQLJ standard but is used by the
DB2 UDB for iSeries stored procedure builder.

Authorization: The privilege held by the authorization ID of the CALL statement must include at least one
of the following for the SYSJARCONTENTS catalog table:

* The following system authorities:
— The SELECT and UPDATEINSERT privileges on the table

Chapter 1. IBM Developer Kit for Java 219

— The system authority *"EXECUTE on library QSYS2
* Administrative authority

The user running the CALL statement must also have the following authorities:

* Read (*R) access to the JAR file specified in the jar-url parameter. Read (*R) access to the JAR file
being installed.

» Write, Execute, and Read (*RWX) access to the directory where the JAR file is installed. This directory
is /QIBM/UserData/OS400/SQLLib/Function/jar/schema, where schema is the schema of the jar-id.

Adopted authority cannot be used for these authorities.

Syntax:
>>-CALL--SQLJ.UPDATEJARINFO--(--"jar-id'--,--"'class-id'--,--"'jar-url'--)-->
D e ><
Description:

jar-id The JAR identifier in the database that is to be updated.

class-id
The package qualified class name of the class to be updated.

jar-url The URL containing the classfile to update the JAR file with. The only URL scheme supported is
filer.
Example: The following command is issued from an SQL interactive session:

CALL SQLJ.UPDATEJARINFO('myproc_jar', 'mypackage.myclass',
'file:/home/user/mypackage/myclass.class")

The JAR file associated with the jar-id myproc_jar, is updated with a new version of the
mypackage.myclass class. The new version of the class is obtained from the file

/home/user/mypackage/myclass.class.

SQLJ.RECOVERJAR: # The SQLJ.RECOVERJAR procedure takes the JAR file that is stored in the
SYSJAROBJECTS catalog and restores it to the
/QIBM/UserData/OS400/SQLLib/Function/jar/jarschemaljar_id.jar file.

Authorization: The privilege held by the authorization ID of the CALL statement must include at least one
of the following for the SYSJAROBJECTS catalog table:

* The following system authorities:
— The SELECT and UPDATEINSERT privileges on the table
— The system authority *EXECUTE on library QSYS2

* Administrative authority

The user running the CALL statement must also have the following authorities:

» Write, Execute, and Read (*RWX) access to the directory where the JAR file is installed. This directory
is /QIBM/UserData/OS400/SQLLib/Function/jar/schema, where schema is the schema of the jar-id.

* *OBJMGT authority to the JAR file being removed. The JAR file is named
/QIBM/UserData/OS400/SQLLib/Function/jar/schema/jarfile.

Syntax:
>>-CALL--SQLJ.RECOVERJAR-= (== "j@r-id'-=)=====mmmmmmemmmmemeeeeo ><

Description:

220 iSeries: IBM Developer Kit for Java

jar-id The JAR identifier in the database that is to be recovered.

Example: The following command is issued from a SQL interactive session:
CALL SQLJ.UPDATEJARINFO('myproc_jar')

The JAR file associated with the myproc_jar is updated with the contents from SYSJARCONTENT table.
The file is copied to /QIBM/UserData/OS400/SQLLib/Function/jar/jar_schema myproc_jar.jar. %

Parameter passing conventions for Java stored procedures and UDFs
% The following table lists how SQL data types are represented in Java‘™ stored procedures and UDFs.

SQL data type Java parameter style JAVA |Java parameter style DB2GENERAL
SMALLINT short short

INTEGER int int

BIGINT long long

DECIMAL(p,s) BigDecimal BigDecimal
NUMERIC(p,s) BigDecimal BigDecimal

REAL or FLOAT(p) float float

DOUBLE PRECISION or FLOAT or double double

FLOAT(p)

CHARACTER(n) String String

VARCHAR(n) String String

VARCHAR(n) FOR BIT DATA byte[] com.ibm.db2.app.Blob
GRAPHIC(n) String String
VARGRAPHIC(n) String String

DATE Date String

TIME Time String

TIMESTAMP Timestamp String

Indicator Variable - -

CLOB - com.ibm.db2.app.Clob
BLOB - com.ibm.db2.app.Blob
DBCLOB - com.ibm.db2.app.Clob
DataLink - -

&

Java with other programming languages

With Java™, you have multiple ways to call code that was written in languages other than Java.
Java Native Interface

One of the ways you can call code written in another language is to implement selected Java methods as
‘native methods.” Native methods are procedures, written in another language, that provide the actual
implementation of a Java method. Native methods can access the Java virtual machine using the Java
Native Interface (JNI). These native methods run under the Java thread, which is a kernel thread, so they
must be thread safe. A function is thread safe if you can start it simultaneously in multiple threads within
the same process. A function is thread safe if and only if all the functions it calls are also thread safe.

Chapter 1. IBM Developer Kit for Java 221

Native methods are a "bridge” to access system functions that are not directly supported in Java, or to
interface to existing user code. Use caution when using native methods, because the code that is being

called may not be thread safe. #* See[Use the Java Native Interface for native methods| for more
information about JNI and ILE native methods. %

#* 0S/400 PASE native methods

The iSeries Java virtual machine (JVM) now supports the use of native methods running in the 0S/400®
PASE environment. [0S/400 PASE native methods for Javal enables you to easily port your Java
applications that run in AIX®™ to your iSeries server. You can copy the class files and AIX native method
libraries to the integrated file system on the iSeries and run them from any of the control language (CL),

Qshell or 0S/400 PASE terminal session command prompts. 4%

java.lang.Runtime.exec()

You can use [java.lang.Runtime.exec()| to call programs or commands from within a Java program. The
exec() method starts another process in which any iSeries program or command can run. In this model,
you can use standard in, standard out, and standard err of the child process for interprocess
communication.

Interprocess communication

One option is to usefor interprocess communication between the parent and child processes.

You can also use [stream files| for communication between programs. Or see |interprocess communication|
examples|for an overview of your options when communicating with programs that are running in another
process.

#* To call Java from other languages, see [Example: Call Java from C] or [Example: Call Java from RPJ for
more information. %

You can also use the IBM Toolbox for Java to call existing programs and commands on the iSeries server.
Data queues and iSeries messages are usually used for interprocess communication with the IBM Toolbox
for Java.

Note: By using Runtime.exec(), IBM Toolbox for Java, or JNI, you may compromise the portability of the
Java program. You should avoid using these methods in a "pure” Java environment.

Java Invocation API

Using the [Java Invocation API| which is also a part of the Java Native Interface (JNI) specification, allows
a non-Java application to use the Java virtual machine. It also allows the use of Java code as an
extension of the application.

Use the Java Native Interface for native methods

You should only use native methods in cases where pure Java™ cannot meet your programming needs.
Limit the use of native methods by only using them under these circumstances:

* To access system functions that are not available using pure Java.

» To implement extremely performance-sensitive methods that can benefit significantly from a native
implementation.

» To interface to existing application program interfaces (API) that allow Java to call other APIs.

To use the Java Native Interface (JNI) for native methods, do these steps:

222 iSeries: IBM Developer Kit for Java

10.

Design the class by specifying which methods are native methods with the standard Java language
syntax.

Decide on a library and program name for the service program (*SRVPGM) that contains native
method implementations. When coding the System.loadLibrary() method call in the static initializer for
the class, specify the name of the service program.

Use the javac tool to compile the Java source into a class file.

Use the javah tool to create the header file (.h). This header file contains the exact prototypes for
creating the native method implementations. The -d option specifies the directory where you should
create the header file.

Copy the header file from the integrated file system into a member in a source file by using the Copy
From Stream File (CPYFRMSTMF) command. You must copy the header file into a source file
member for the C compiler to use it. Use the new stream file support for the Create Bound ILE C/400
Program (CRTCMOD) command to leave your C source and C header files in the integrated file
system. For more information on the CRTCMOD command and the use of stream files, see the

[WebSphere Development Studio: ILE C/C++ Programmer’s Guide, SC09-2712|@ .

Write the native method code. See [Java native methods and threads considerations|for details about
the languages and functions that are used for native methods.

a. Include the header file that was created in the previous steps.
b. Match the prototypes in the header file exactly.

c. Convertto American Standard Code for Information Interchange (ASCII) if the strings are
to pass to the Java virtual machine. For more information, see [Java character encodings}

If your native method must interact with the Java virtual machine, use the functions that are provided
with JNL.

Compile your C source code, using the CRTCMOD, into a module (*MOD) object.

Bind one or more module objects into a service program (*SRVPGM) by using the Create Service
Program (CRTSRVPGM) command. The name of this service program must match the name that you
supplied in your Java code that is in the System.load() or System.loadLibrary() function calls.

If you used the System.loadLibrary() call in your Java code, do one of the following.

If you are using a version that is older than J2SDK:

Add the iSeries library that contains your new service program to the iSeries library list. To add the
library, use the Add Library List Entry (ADDLIBLE) command. This allows the Java program to find
the service program when it processes the System.loadLibrary() function.

If you are using J2SDK, version 1.2 or higher:
You do not need to change your library list. Instead, you can either:

* Include the list of the libraries that you need in the LIBPATH environment variable. You can change
the LIBPATH environment variable in QShell and from the iSeries command line.

— From the Qshell command prompt, type in:
export LIBPATH=/QSYS.LIB/MYLIB.LIB

o java -Djava.version=1.4 myclass{{

— Or, from the command line:
ADDENVVAR LIBPATH */QSYS.LIB/MYLIB.LIB’

2 JAVA PROP((java.version 1.4)) myclass%

* Or, supply the list in the java.library.path property. You can change the java.library.path property in
QShell and from the iSeries command line.

— From the Qshell command prompt, type in:
java -Djava.library.path=/QSYS.LIB/MYLIB.LIB -Djava.version=1.4 myclass®
— Or, from the iSeries command line, type in:
JAVA PROP((java.library.path */QSYS.LIB/MYLIB.LIB’) (java.version '1.4’)) myclass®

Chapter 1. IBM Developer Kit for Java 223

Where /QSYS.LIB/MYLIB.LIB is the library that you want to load using the System.loadLibrary() call,
and myclass is the name of your Java application.

11. The patches syntax for System.load(String patches) can be any of these:

» "path” (integrated file system filename that specifies the library that the service program provides),
which is a symbolic link to a *SRVPGM, such as "/gsys.lib/mylib.lib/myNMsp.srvpgm”

* /gsys.lib/sysNMsp.srvpgm

* /gsys.lib/mylib.lib/myNMsp.srvpgm

« If you have a version older than J2SDK: /gsys.lib/%libl%.lib/myNMsp.srvpgm
Note: This is equivalent to using the System.loadLibrary("myNMsp”) method.

Note: If the pathname is used as a string literal, then you must enclose it in quotation marks. For
example, System.load("/gsys.lib/mylib.lib/myNMsp.srvpgm”).

12. The "libya” syntax for System.loadLibrary(String libya) is mysp. The system finds mysp by using
*LIBL. For example, loadLibrary("myNMsp”) is equivalent to
System.load("/gsys.lib/%libl%.lib/myNMsp.srvpgm”). If the "pathname” is used as a string literal, then
you must enclose the libname in quotation marks.

Note: The %1ib1% syntax is not supported for J2SDK.

For a complete description of the JNI, refer to the Java Native Interface by Sun Microsystems, Inc., and

[The Source for Java Technology java.sun.com| ol

See [Examples: Use the Java Native Interface for native methods| for an example of how to use the JNI for
native methods.

Java Invocation API
The Invocation API, which is part of the Java™ Native Interface (JNI), allows non-Java code to create a

Java virtual machine, and load and use Java classes. This function lets a multithreaded program make
use of Java classes that are running in a single Java virtual machine in multiple threads.

The application controls the Java virtual machine. The application can create the Java virtual machine, call
Java methods (similar to the way in which an application calls subroutines), and destroy the Java virtual
machine. Once you create the Java virtual machine, it remains ready to run within the process until the
application explicitly destroys it. While being destroyed, the Java virtual machine performs clean-up, such
as running finalizers, ending Java virtual machine threads, and releasing Java virtual machine resources.

With a Java virtual machine that is ready to run, an application written in C can call into the Java virtual
machine to perform any function. It also can return from the Java virtual machine to the C application, call
into the Java virtual machine again, and so on. The Java virtual machine is created once and does not
have to be re-created before calling into the Java virtual machine to run a little or a lot of Java code.

When using the Invocation API to run Java programs, the destination for STDOUT and STDERR is
controlled by the use of an environment variable called QIBM_USE_DESCRIPTOR_STDIO. If this
environment variable is set to Y or | (for example, QIBM_USE_DESCRIPTOR_STDIO=Y), the Java virtual
machine uses file descriptors for STDIN (fd 0), STDOUT (fd 1), and STDERR (fd 2). In this case, the
program must set these file descriptors to valid values by opening them as the first three files or pipes in
this job. The first file opened in the job is given fd of 0, the second fd of 1, and third is fd of 2. For jobs
initiated with the spawn API, these descriptors can be preassigned using a file descriptor map (see
documentation on Spawn API). If the environment variable QIBM_USE_DESCRIPTOR_STDIO is not set
or is set to any other value, file descriptors are not used for STDIN, STDOUT, or STDERR. Instead,
STDOUT and STDERR are routed to a spooled file that is owned by the current job, and use of STDIN
results in an 10 exception.

224 iSeries: IBM Developer Kit for Java

http://www.java.sun.com/

For an example that uses the Invocation API, see [Example: Java Invocation AP||. See [Invocation API
functions] for details about the Invocation API functions that are supported by the IBM Developer Kit for
Java.

Invocation API functions: The IBM Developer Kit for Java'™ supports these Invocation API functions.

Note: Before using this API, you must ensure that you are in a multithread-capable job. See [Multithreaded

applicationg for more information about multithread-capable jobs.

* JNI_GetDefaultJavaVMinitArgs
Note: This function is only supported for Java Development Kit (JDK) 1.1.x.

Returns a JDK 1.1 structure that contains default values for arguments that need to be passed to
JNI_CreateJavaVM when you create a Java virtual machine.

Signature:
jint JINI_GetDefaultJavaVMInitArgs(void xargs_);
* JNI_GetCreatedJavaVMs
Returns information about all Java virtual machines that were created.
Signature:

jint JINI_GetCreatedJavaVMs(JavaVM *xvmBuf,
jsize buflLen,
jsize *nVMs);

vmBuf is an output area whose size is determined by bufLen, which is the number of pointers. Each
Java virtual machine has an associated JavaVM structure that is defined in java.h. This API stores a
pointer to the JavaVM structure that is associated with each created Java virtual machine into vmBuUf,
unless vmBuf is full. Pointers to JavaVM structures are stored in the order of the corresponding Java
virtual machines that are created. nVMs returns the number of virtual machines that are currently
created. Your iSeries server supports the creation of more than one Java virtual machine, so you may
expect a value higher than one. This information, along with the size of the vmBuf, determines whether
pointers to JavaVM structures for each created Java virtual machine are returned.

* JNI_CreateJavaVM
Allows you to create a Java virtual machine and subsequently use it in an application.
Signature for Java Development Kit 1.1.x:

jint JINI_CreateJavaVM(JavaVM *%p_vm,
JNIEnv **p_env,
void *vm_args);

Signature for Java 2 Software Development Kit (J2SDK):

jint JINI_CreatedavaVM(JavaVM **p_vm,
void **p_env,
void *vm_args);

p_vm is the address of a JavaVM pointer for the newly created Java virtual machine. Several other JNI
Invocation APIs use p_vm to identify the Java virtual machine. p_env is the address of a JNI
Environment pointer for the newly created Java virtual machine. It points to a table of JNI functions that
start those functions. vm_args is a structure that contains Java virtual machine initialization parameters.
When using JDK 1.1.x, you can obtain a structure that contains default values by calling
JNI_GetDefaultJavaVMinitArgs. For details on how to do this with J2SDK, see [Java Native Interface]

d

If you start a Run Java (RUNJVA) command or JAVA command and specify a property that has an
equivalent command parameter, then the command parameter takes precedence. The property is
ignored. For example, the 0s400.optimization parameter is ignored in this command:

JAVA CLASS(Hello) PROP((0s400.optimization 0))

Chapter 1. IBM Developer Kit for Java 225

http://www.java.sun.com/products/jdk/1.2/docs/guide/jni/index.html

For a list of 0S/400 unique properties that are supported by the JNI_CreateJavaVM API, see [Javal
[system properties|

Note:With multiple Java virtual machines within one process, all Java virtual machines share the same
process static storage that is allocated for any native methods. Java virtual machine internal
implementation already partitions data on a per-dava virtual machine basis, but you must consider that
with native method applications, Java virtual machines share process static storage. For other
considerations, see |Support for multiple Java virtual machines|.

* DestroydavaVM
Destroys the Java virtual machine.
Signature:
jint DestroyJavaVM(JavaVM *vm)

When the Java virtual machine is created, vm is the JavaVM pointer that is returned.

» AttachCurrentThread
Attaches a thread to a Java virtual machine, so it can use Java virtual machine services.
Signature for Java Development Kit (JDK) 1.1.x:

jint AttachCurrentThread(JavaVM *vm,
JNIEnv *xp_env,
void *thr_args);

Signature for Java 2 Software Development Kit (J2SDK):

jint AttachCurrentThread(JavaVM *vm,
void **p_env,
void *thr_args);

The JavaVM pointer, vm, identifies the Java virtual machine to which the thread is being attached.
p_env is the pointer to the location where the JNI Interface pointer of the current thread is placed.
thr_args contains VM specific thread attachment arguments.

* DetachCurrentThread
Signature:
jint DetachCurrentThread(JavaVM *vm);

vm identifies the Java virtual machine from which the thread is being detached.

For a complete description of the Invocation API functions, refer to the|Java Native Interface Specification|

loy Sun Microsystems, Inc} or[The Source for Java Technology java.sun.com| R

Support for multiple Java virtual machines: Java'™ on the iSeries server, unlike the Sun
Microsystems, Inc. reference implementation, supports the creation of multiple Java virtual machines within
a single job or process. This means that you can successfully call JNI_CreateJavaVM() more than once in
a job, and JNI_GetCreatedJavaVMs() can return more than one Java virtual machine in its list of results.

« % Prior to V5R2, it would be possible for the JNI_GetCreatedJavaVMs function to return more than
one JVM in its list of JVMs. In V5R2, the JNI_GetCreatedJavaVMs will return, at most, one JVM.

» Prior to V5R2, the JNI_CreateJavaVM function could be called repeatedly within a single process, and
with each successful invocation, a separate and distinct JVM was created. In V5R2, the

JNI_CreateJavaVM function returns an error code. (JNI_ERR -1 error defined in jni.h) &

If you want to create multiple Java virtual machines for use within a single job or process, you should
carefully consider the following:

Native method static storage scoping

226 iSeries: IBM Developer Kit for Java

javaapi/guide/jni/index.html
javaapi/guide/jni/index.html
http://www.java.sun.com/

» Service programs that contain native method implementations are only activated once per job,
regardless of the number of Java virtual machines that you create. This implies that native method static
storage is scoped to the job and not to any specific Java virtual machine.

» Values that a native method places in static storage are independent of the Java virtual machine that
called the native method. These values are visible to any Java virtual machine in the job.

 If you intentionally use native method static storage in a multiple Java virtual machine scenario, you
should carefully consider the possible requirements for synchronization, above and beyond the use of
synchronized methods and monitors, which are Java virtual machine specific. The qualification of a
native method as synchronized only prevents simultaneous runs within a single Java virtual machine
and not simultaneous runs from multiple Java virtual machines.

Java virtual machine stoppage

 If a Java virtual machine is abnormally stopped, either due to a user calling java.lang.System.exit() or
an internal Java virtual machine failure, the failing Java virtual machine and all of its attached threads
are stopped.

 If the process initial thread is among the threads that were attached to the failed Java virtual machine,
an exception is thrown to the initial thread. If the initial thread handles this exception, the other Java
virtual machines can continue to run.

 If the process initial thread is stopped, either by an unhandled exception or any other reason, all of the
Java virtual machines in the process are stopped as well.

Abnormal stoppage from C

If you use the ILE/C exit() or abort() routines in any thread of a multithreaded job, you immediately
bring down the entire job, including all Java virtual machines.

Example: Java Invocation API: This example follows the standard Invocation APl paradigm. For
example, it does the following:

+ Creates a Java'™ virtual machine by using JNI_CreateJavaVM.

» Uses the Java virtual machine to find the class file that you want to run.
* Finds the methodID for the main method of the class.

+ Calls the main method of the class.

* Reports errors if an exception occurs.

To compile this program, you must bind it with a service program that exports the functions to start a new
Java virtual machine. These are the entry points that you need:

* JNI_GetDefaultdJavaVMInitArgs, which initializes the parameters to create.
* JNI_CreateJavaVM, which creates the Java virtual machine.

When you compile the program, you do not need to do anything explicit with the compile command. The
service program that exports these entry points is in the system binding directory. The name of the service
program is QJVAJNI.

To run this program, use SBMJOB CMD(CALL PGM(YOURLIB/PGMNAME)) ALWMLTTHD(*YES). Any job that creates
a Java virtual machine must be multithread-capable. The only job on an iSeries server that is
multithread-capable is a batch immediate (BCI) job. The output from the main program, as well as any
output from the program, ends up in QPRINT spooled files. These spooled files are visible if you use the
Work with Submitted Jobs (WRKSBMJOB) command and view the job that you started with Submit Job
(SBMJOB).

Note: The C runtime exit() routine used below is not recommended unless you know that your program
is the only thread in the process. When called from a process that is capable of supporting multiple
threads, exit() immediately ends all threads in a process.

Chapter 1. IBM Developer Kit for Java 227

Example: Use the Java Invocation API with JDK 1.1.x.

Note: Read the |Code example disclaimer| for important legal information.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <jni.h>

int main (int argc, char =*argv[])
{
JDK1 1InitArgs initArgs; /* Virtual Machine (VM) initialization structure.
* This is the structure that is passed by reference to JNI_CreatedavaVM().
*See jni.h for details.

*/
JavaVM* myJVM; /* The JavaVM and JNIEnv pointers that you get back. */
JNIEnv* myEnv; /* ...from the JNI CreatedavaVM() call. =/
char* myClasspath; /* You need to change the classpath, so you have your own. */
jclass myClass; /* The class you are going to find, called 'NativeHello'. */
jmethodID mainlD; /* The method ID of the class' "main" routine. =/
jclass stringClass; /* Required to create a string array argument for 'main'. */
jobjectArray args; /* Because main expects an array of strings, you must pass one. */

/* Set the version field of the initialization arguments. =/
initArgs.version = 0x00010001;

/* Get the default initialization arguments. */
JNI_GetDefaultJavaVMInitArgs(&initArgs);

~
*

Now, you want to add the directory onto the end of the classpath,

* so that the findClass finds it correctly. To do this, you have two options:
* You can append your classpath entries to the default classpath that is returned
* by the call to JNI GetDefaultJavaVMInitArgs, or
* you can use 0S/400 specific functions for the same result. This is a
* three-step solution:
* 1. Set the CLASSPATH environment variable to its requirements with 'putenv()'
* 2. Clear the initialization arguments classpath to NULL, which forces
* JNI CreatedavaVM to look at the CLASSPATH value
* 3. Set the "o0s400.class.path.system=PRE" property, to force JNI_CreatedavaVM
* to prepend the system default classpath to the effective classpath.
*
* The first option is used in this example, because it is more platform independent
*
* Note: You must specify the directory name in UTF-8 format! So, you wrap
* bTlocks of code in #pragma convert statements.
*
/

#pragma convert(819)
myClasspath = malloc(strlen(initArgs.classpath) + strlen(":/CrtJvmExample") + 1);
strcpy(myClasspath, initArgs.classpath);
strcat(myClasspath, ":/CrtJvmExample");
initArgs.classpath = myClasspath;

#pragma convert(0)
/* Create the JVM. x/
if (INI_CreateJdavaVM(&myJVM, &myEnv, &initArgs)) {

fprintf(stderr, "Failed to create the JVM\n");
exit(1l);

228 iSeries: IBM Developer Kit for Java

/* Use the newly created JVM to find the example class.
* Note: Again, you are dealing with UTF-8 here, so you
* have to wrap the calls in #pragma convert.

*/

#pragma convert(819)
if (! (myClass = (*myEnv)->FindClass(myEnv, "NativeHello"))) {

#pragma convert(0)
/* Cannot find the class, so write an error message
* to C stderr and exit the program.

%/

fprintf(stderr, "Failed to find the class 'NativeHello'\n");
exit(1); /% Exit stops the entire process on an iSeries server. */

/* Now, get the method identifier for the 'main' entry point
of the class. Note: The signature of 'main' is always
the same for every class, "main" and "([Ljava/lang/String;)V"
* Again, you are dealing with UTF-8.
*
/

* o

#pragma convert(819)
if (! (mainID = (*myEnv)->GetStaticMethodID(myEnv, myClass,
"ma1' n" s
"([Ljava/Tang/String;)V"))) {
/* The 'main' methodID is not found for some reason. */
if ((*myEnv)->ExceptionOccurred(myEnv)) {
/* a java exception occurred, so print it out */
(*myEnv)->ExceptionDescribe (myEnv);
/* The JVM ends. =/
(*myEnv)->FatalError(myEnv, "Failed to find jmethodID of 'main()'");

}

#pragma convert(0)
/* Cannot find the 'main' methodID, so write an error message
* to C stderr and exit the program.
*/

fprintf(stderr, "Failed to find the 'main()' method\n");
exit(1); /* Exit stops the entire process on an iSeries server. */

}

#pragma convert(819)
if (! (stringClass = (*myEnv)->FindClass(myEnv,"java/lang/String"))) {

#pragma convert(0)
/* Did not find java/lang/String, so write an error message
* to C stderr and exit the program.
*/

fprintf(stderr, "Failed to find the java/lang/String");
exit(1); /* exit stops the entire process on an iSeries server.*/

}

/* Now, you need to create an empty array of strings,
because ([Ljava/lang/String) is a required part of the signature of
* every Java main routine.
*/
if (! (args = (*myEnv)->NewObjectArray(myEnv,0,stringClass,0))) {
/* Empty array was not created, so write an error message

* to C stderr and exit the program.
*/

Chapter 1. IBM Developer Kit for Java

229

=

fprintf(stderr, "Failed to create empty array of strings");
exit(l); /* Exit stops the entire process on an iSeries server. */

}

/* Now, you have the methodID of main, and the class, so you can call the main method.

(*myEnv)->Call1StaticVoidMethod (myEnv,myClass,mainID,args);
/* Check for errors. */
if ((*myEnv)->ExceptionOccurred(myEnv)) {
fprintf(stderr,"An exception occurred while running 'main'");
exit(1l);
/* Finally, destroy the JavaVM that you created. */
if ((*myJdVM)->DestroyJavaVM(myJVM)) {
fprintf(stderr, "Failed to destroy the JVM\n");
exit(1l);
/* A11 done. */

return 0;

Example: Use the Java Invocation API with J2SDK.

No

#de
#in
#in
#in
#in
#in
/*

*
*

*/

#pr

~
EE T U R N

*
~

voi

te: Read the |Code example disclaimer for important legal information.

fine 0S400_JVM_12
clude <stdlib.h>
clude <stdio.h>
clude <fcntl.h>
clude <string.h>
clude <jni.h>

Specify the pragma that causes all literal strings in the
source code to be stored in ASCII (which, for the strings
used, is equivalent to UTF-8)

agma convert(819)

Procedure: QOops

Description: Helper routine that is called when a JNI function
returns a zero value, indicating a serious error.
This routine reports the exception to stderr and

ends the JVM abruptly with a call to FatalError.

Parameters: env -- JNIEnv* to use for JNI calls
msg -- char* pointing to error description in UTF-8

Note: Control does not return after the call to FatalError

and it does not return from this procedure.

d Oops (JNIEnv* env, char *msg) {
if ((xenv)->ExceptionOccurred(env)) {
(*env)->ExceptionDescribe(env);

(*env)->FatalError(env, msg);

230 iSeries: IBM Developer Kit for Java

*/

/* This is the program's "main" routine. */
int main (int argc, char =*argv[])

{

JavaVMInitArgs initArgs; /* Virtual Machine (VM) initialization structure, passed by
* reference to JNI_CreateJavaVM(). See jni.h for details

*

/

JavaVM* myJVM; /* JavaVM pointer set by call to JNI_CreatedavaVM =/
JNIEnv* myEnv; /* JINIEnv pointer set by call to JNI CreatedavaVM =/
char+ myClasspath; /* Changeable classpath 'string' =/

jclass myClass; /* The class to call, 'NativeHello'. */

jmethodID mainID; /* The method ID of its 'main' routine. */

jclass stringClass; /* Needed to create the String[] arg for main =*/
jobjectArray args; /* The String[] itself */

JavaVMOption options[1]; /* Options array -- use options to set classpath */
int fdo, fdl, fd2; /+ file descriptors for I0 */

/* Open the file descriptors so that I0 works. =/

fd0 = open("/dev/nul11", O_CREAT|O_TRUNC|O_RDWR, S _IRUSR|S_IROTH);
fdl = open("/dev/nul12", O_CREAT|O_TRUNC|O WRONLY, S_IWUSR|S_IWOTH);
fd2 = open("/dev/nu113", O_CREAT|0_TRUNC|O_WRONLY, S_IWUSR|S_IWOTH);

/* Set the version field of the initialization arguments for J2SDK. */
initArgs.version = 0x00010002;

/* Now, you want to specify the directory for the class to run in the classpath.
* with Java2, classpath is passed in as an option.

* Note: You must specify the directory name in UTF-8 format. So, you wrap

* bTocks of code in #pragma convert statements.

*/

options[0].optionString="-Djava.class.path=/CrtJvmExample";

initArgs.options=options; /* Pass in the classpath that has been set up. */
initArgs.nOptions = 1; /* Only passing the one classpath option */

/* Create the JVM -- a nonzero return code indicates there was

* an error. Drop back into EBCDIC and write a message to stderr
* before exiting the program.

*/

if (INI_CreatedavaVM("myJVM, (void #x)"myEnv, (void *)"initArgs)) {

#pragma convert(0)

fprintf(stderr, "Failed to create the JVM\n");

#pragma convert(819)

exit(1l);
1

/* Use the newly created JVM to find the example class,
* called 'NativeHello'.
*/
myClass = (*myEnv)->FindClass(myEnv, "NativeHello");
if (! myClass) {
Oops (myEnv, "Failed to find class 'NativeHello'");
1

/* Now, get the method identifier for the 'main' entry point
* of the class.
* Note: The signature of 'main' is always the same for any

* class called by the following java command:
* "main" , "([Ljava/Tang/String;)V"
*/

mainID = (*myEnv)->GetStaticMethodID(myEnv,myClass,"main",
"([Ljava/Tang/String;)V");
if (! mainID) {
Oops (myEnv, "Failed to find jmethodID of 'main'");

Chapter 1. IBM Developer Kit for Java

231

/* Get the jclass for String to create the array
* of String to pass to 'main'.
*/
stringClass = (*myEnv)->FindClass(myEnv, "java/lang/String");
if (! stringClass) {
Oops(myEnv, "Failed to find java/lang/String");

/* Now, you need to create an empty array of strings,
* since main requires such an array as a parameter.

*/
args = (*myEnv)->NewObjectArray(myEnv,0,stringClass,0);
if (! args) {

Oops(myEnv, "Failed to create args array");

/* Now, you have the methodID of main and the class, so you can
* call the main method.

*/

(*myEnv)->CallStaticVoidMethod(myEnv,myClass,mainID,args);

/* Check for errors. */

if ((*myEnv)->ExceptionOccurred(myEnv)) {
(*myEnv) ->ExceptionDescribe(myEnv) ;

1

/* Finally, destroy the JavaVM that you created. */
(*myJVM) ->DestroyJavaVM(myJVM) ;

/* A11 done. =/
return 0;

For more information, see |Java Invocation API|

Java native methods and threads considerations
You can use native methods to access functions that are not available in Java™.

To better use Java with native methods, you need to understand these concepts:
» A Java thread, whether created by Java or an attached native thread, has all floating point exceptions

disabled. If the thread runs a native method that reenables floating point exceptions, Java does not turn
them off a second time. If the user application does not disable them before returning to run Java code,
then the Java code may not behave correctly if a floating point exception occurs. When a native thread
detaches from the Java virtual machine, its floating point exception mask is restored to the value that
was in effect when it was attached.

When a native thread attaches to the Java virtual machine, the Java virtual machine changes the
threads priority, if necessary, to conform to the one to ten priority schemes that Java defines. When the
thread detaches, the priority is restored. After attaching, the thread can change the thread priority by
using a native method interface (for example, a POSIX API). Java does not change the thread priority
on transitions back to the Java virtual machine.

The Invocation APl component of the Java Native Interface (JNI) permits a user to embed a Java virtual
machine within their application. If an application creates a Java virtual machine and the Java virtual
machine ends abnormally, the MCH74A5 "Java Virtual Machine Terminated” iSeries exception is
signalled to the initial thread of the process if that thread was attached to the Java virtual machine when
the Java virtual machine ended. The Java virtual machine could end abnormally for any of these
reasons:

— The user calls the java.lang.System.exit() method.
— A thread that the Java virtual machine requires ends.

232 iSeries: IBM Developer Kit for Java

— An internal error occurs in the Java virtual machine.

This behavior differs from most other Java platforms. On most other platforms, the process that
automatically creates the Java virtual machine ends abruptly as soon as the Java virtual machine ends.
If the application monitors and handles a signalled MCH74A5 exception, it may continue to run.
Otherwise, the process ends when the exception goes unhandled. By adding the code that deals with
the iSeries server-specific MCH74A5 exception, you can make the application less portable to other
platforms.

Because native methods always run in a multithreaded process, the code that they contain must be thread

safe. This places these restrictions on the languages and functions that are used for native methods:

* You should not use ILE CL for native methods, because this language is not thread safe. To run thread
safe CL commands, you can use the C language system() function or the java.lang.Runtime.exec()
method.

— Use the C language system() function to run thread safe CL commands from within a C or C++
native method.

— Use the java.lang.Runtime.exec() method to run thread safe CL commands directly from Java.

* You can use ILE C, ILE C++, ILE COBOL, and ILE RPG to write a native method, but all of the
functions that are called from within the native method must be thread safe.

Note: Compile-time support for writing native methods is currently only supplied for the C and C++
languages. While possible, writing native methods in other languages may be much more complicated.
Caution:

Not all standard C, C++, COBOL, or RPG functions are thread safe.

* The C and C++ exit() and abort() functions should never be used within a native method. These
functions cause the entire process that runs the Java virtual machine to stop. This includes all of the
threads in the process, regardless of if they were originated by Java or not.

Note: The exit() function referred to is the C and C++ function, and is not the same as the
java.lang.Runtime.exit() method.

For more information about threads on the iSeries server, see Multithreaded applications|

Native methods and the Java Native Interface
Native methods are Java‘™ methods that start in a language other than Java. Native methods can
access system-specific functions and APIs that are not available directly in Java.

The use of native methods limits the portability of an application, because it involves system-specific code.
Native methods can either be new native code statements or native code statements that call existing
native code.

Once you decide that a native method is required, it may have to interoperate with the Java virtual
machine where it runs. The Java Native Interface (JNI) facilitates this interoperability in a platform-neutral
way.

The JNI is a set of interfaces that permit a native method to interoperate with the Java virtual machine in
numerous ways. For example, the JNI includes interfaces that create new objects and call methods, get
fields and set fields, process exceptions, and manipulate strings and arrays.

For a complete description of the JNI, refer to the [Java Native Interface by Sun Microsystems, Inc.} or[The]

[Source for Java Technology java.sun.com 9 .

Strings in native methods

Many Java™ Native Interface (JNI) functions accept C language-style strings as parameters. For
example, the FindClass() JNI function accepts a string parameter that specifies the fully-qualified name of
a classfile. If the classfile is found, it is loaded by FindClass, and a reference to it is returned to the caller
of FindClass.

Chapter 1. IBM Developer Kit for Java 233

javaapi/guide/jni/index.html
http://www.java.sun.com/
http://www.java.sun.com/

All NI functions expect their string parameters to be encoded in UTF-8. For details on UTF-8, you can
refer to the JNI Specification, but in most cases it is enough to observe that 7-bit American Standard Code
for Information Interchange (ASCII) characters are equivalent to their UTF-8 representation. 7-bit ASCII
characters are actually 8-bit characters but their first bit is always 0. So, most ASCII C strings are actually
already in UTF-8.

The C compiler on the iSeries server operates in extended binary-coded decimal interchange code
(EBCDIC) by default, so you can provide strings to the JNI functions in UTF-8. There are two ways to do
this. You can use literal strings, or you can use dynamic strings. |Litera| strings| are strings whose value is
known when the source code is compiled. [Dynamic strings|are strings whose value is not known at
compile time, but is actually computed at run time.

Literal strings in native methods: |t is easier to encode literal strings in UTF-8 if the string is composed
of characters with a 7-bit American Standard Code for Information Interchange (ASCII) representation. If
the string can be represented in ASCII, as most are, then the string can be bracketed by 'pragma’
statements that change the current codepage of the compiler. Then, the compiler stores the string
internally in the UTF-8 form that is required by the JNI. If the string cannot be represented in ASCII, it is
easier to treat the original extended binary-coded decimal interchange code (EBCDIC) string as a dynamic
string, and process it using iconv() before passing it to the JNI. For more information on dynamic strings,
see |[dynamic strings}

For example, to find the class named java/lang/String, the code looks like this:

#pragma convert(819)
myClass = (*env)->FindClass(env,"java/lang/String");
#pragma convert(0)

The first pragma, with the number 819, informs the compiler to store all subsequent double-quoted strings
(literal strings) in ASCII. The second pragma, with the number 0, tells the compiler to revert to the default
code page of the compiler for double-quoted strings, which is usually the EBCDIC code page 37. So, by
bracketing this call with these pragmas, we satisfy the JNI requirement that string parameters are encoded
in UTF-8.

Caution: Be careful with text substitutions. For example, if your code looks like this:

#pragma convert(819)

#define MyString "java/lang/String"
#pragma convert(0)

myClass = (xenv)->FindClass(env,MyString);

Then, the resulting string is EBCDIC, because the value of MyString is substituted into the FindClass call
during compilation. At the time of this substitution, the pragma, number 819, is not in effect. Thus, literal
strings are not stored in ASCII.

Convert dynamic strings to and from EBCDIC, Unicode, and UTF-8: To manipulate string variables
that are computed at run time, it may be necessary to convert strings to and from extended binary-coded
decimal interchange (EBCDIC), Unicode, and UTF-8.

The system API that provides for code page conversion function is iconv(). To use iconv(), follow these
steps:

1. Create a conversion descriptor with QtgIconvOpen().
2. Call iconv() to use the descriptor to convert to a string.
3. Close the descriptor by using iconv_close.

In Example 3 of the using the Java™ Native Interface for native methods examples| the routine creates,
uses, and then destroys the iconv conversion descriptor within the routine. This scheme avoids the

234 iSeries: IBM Developer Kit for Java

problems with multithreaded use of an iconv_t descriptor, but for performance sensitive code it is better to

create a conversion descriptor in static storage, and moderate multiple access to it using a mutual

exclusion (mutex) or other synchronization facility.

Examples: Use the Java Native Interface for native methods

This example program is a simple Java‘™ Native Interface (JNI) example in which a C native method is

used to display "Hello, World.” Use the javah tool with the NativeHello class file to generate the

NativeHello.h file. This example assumes that the NativeHello C implementation is part of a service

program that is called NATHELLO.

Note: The library where the NATHELLO service program is located must be in the library list for this

example to run.

Example 1: NativeHello class

Note: Read the [Code example disclaimer| for important legal information.
public class NativeHello {

// Declare a field of type 'String' in the NativeHello object.
// This is an 'instance' field, so every NativeHello object

// contains one.

public String theString; // instance variable

// Declare the native method itself. This native method

// creates a new string object, and places a reference to it

// into 'theString'

public native void setTheString(); // native method to set string

// This 'static initializer' code is called before the class is
// first used.
static {

// Attempt to Toad the native method Tibrary. If you do not
// find it, write a message to 'out', and try a hardcoded path.
// If that fails, then exit.

try {

// System.loadLibrary uses the iSeries library list in JDK 1.1,
// and uses the java.library.path property or the LIBPATH environment
// variable in JDK1.2
System.loadLibrary ("NATHELLO");
}

catch (UnsatisfiedLinkError el) {

// Did not find the service program.
System.out.printin

("I did not find NATHELLO *SRVPGM.");
System.out.printin ("(I will try a hardcoded path)");

try {

// System.load takes the full integrated file system form path.
System.load ("/qsys.lib/jniexample.lib/nathello.srvpgm");
}

catch (UnsatisfiedLinkError e2) {

// If you get to this point, then you are done! Write the message
// and exit.
System.out.printin

("<sigh> I did not find NATHELLO *SRVPGM anywhere. Goodbye");
System.exit(1);
}

Chapter 1. IBM Developer Kit for Java

235

}

// Here is the 'main' code of this class. This is what runs when you
// enter 'java NativeHello' on the command line.
public static void main(String argv[]){

// Allocate a new NativeHello object now.
NativeHello nh = new NativeHello();

// Echo location.

System.out.printIn("(Java) Instantiated NativeHello object");
System.out.printin("(Java) string field is '" + nh.theString + "'");
System.out.printin("(Java) Calling native method to set the string");

// Here is the call to the native method.
nh.setTheString();

// Now, print the value after the call to double check.
System.out.printin("(Java) Returned from the native method");

System.out.printin("(Java) string field is '" + nh.theString + "'");
System.out.printin("(Java) A1l done...");

}

Example 2: Generated NativeHello.h header file

Note: Read the [Code example disclaimer for important legal information.

/% DO NOT EDIT THIS FILE - it is machine generated =/
#include <jni.h>
/* Header for class NativeHello */

#ifndef _Included NativeHello

#define _Included_NativeHello

#ifdef __cplusplus

extern "C" {

#endif

/*

* Class: NativeHello

* Method: setTheString

% Signature: ()V

*/

JNIEXPORT void JNICALL Java_NativeHello _setTheString
(INIEnv *, jobject);

#ifdef __cplusplus
}

#endif

#endif

This NativeHello.c example shows the implementation of the native method in C. This example shows how
to link Java to native methods. However, it points out complications that arise from the fact that the iSeries
server is internally an extended binary-coded decimal interchange code (EBCDIC) machine. It also shows

complications from the current lack of true internationalization elements in the JNI.

These reasons, although they are not new with the JNI, cause some unique iSeries server-specific
differences in the C code that you write. You must remember that if you are writing to stdout or stderr or

reading from stdin, your data is probably encoded in EBCDIC form.

In C code, you can easily convert most (literal strings} those that contain 7-bit characters only, into the
UTF-8 form that is required by the JNI. To do this, bracket the literal strings with code-page conversion
pragmas. However, because you may write information directly to stdout or stderr from your C code, you

might allow some literals to remain in EBCDIC.

236 iSeries: IBM Developer Kit for Java

Note: The #pragma convert(0) statements convert character data to EBCDIC. The #pragma convert(819)
statements convert character data to American Standard Code for Information Interchange (ASCII). These

statements convert character data in the C program at compile time.

Example 3: NativeHello.c native method implementation of the NativeHello Java class

Note: Read the [Code example disclaimer for important legal information.

#include <stdlib.h> /* malloc, free, and so forth */
#include <stdio.h> /* fprintf(), and so forth */
#include <qtqgiconv.H> /% iconv() interface */

#include <string.h> /* memset(), and so forth =*/

#include "NativeHello.h" /% generated by 'javah-jni' =/

/* A1l literal strings are IS0-8859-1 Latin 1 code page (and with 7-bit
characters, they are also automatically UTF-8). =*/
#pragma convert(819) /* handle all literal strings as ASCII =*/

/* Report and clear a JNI exception. */
static void HandleError(JNIEnv*);

/* Print an UTF-8 string to stderr in the coded character */
set identifier (CCSID) of the current job. =/
static void JobPrint (JIJNIEnv*, charx);

/* Constants describing which direction to covert: =*/
#define CONV_UTF2J0B 1
#define CONV_JOB2UTF 2

/* Convert a string from the CCSID of the job to UTF-8, or vice-versa. =/
int StringConvert(int direction, char *sourceStr, char *targetStr);

/* Native method implementation of 'setTheString()'. =/

JNIEXPORT void JNICALL Java_NativeHello_setTheString
(JNIEnv *env, jobject javaThis)

{
jclass thisClass; /* class for 'this' object x/
jstring stringObject; /* new string, to be put in field in 'this' %/
jfieldID fid; /* field ID required to update field in 'this' =/

jthrowable exception; /* exception, retrieved using ExceptionOccurred */

/* Write status to console. =/
JobPrint(env, "(C) In the native method\n");

/* Build the new string object. =/
if (! (stringObject = (*env)->NewStringUTF(env, "Hello, native world!")))

/* For nearly every function in the JNI, a null return value indicates
that there was an error, and that an exception had been placed where it
could be retrieved by 'ExceptionOccurred()'. In this case, the error
would typically be fatal, but for purposes of this example, go ahead
and catch the error, and continue. =*/

HandleError(env);

return;

}

/* get the class of the 'this' object, required to get the fieldID =*/
if (! (thisClass = (*env)->GetObjectClass(env,javaThis)))

/* A null class returned from GetObjectClass indicates that there
was a problem. Instead of handling this problem, simply return and
know that the return to Java automatically 'throws' the stored Java
exception. =*/

return;

Chapter 1. IBM Developer Kit for Java

237

/* Get the fieldID to update. =/

if (! (fid = (*env)->GetFieldID(env,
thisClass,
"theString",
"Ljava/lang/String;")))

/* A null fieldID returned from GetFieldID indicates that there
was a problem. Report the problem from here and clear it.

Leave the string unchanged. =*/

HandleError(env);

return;

1
JobPrint(env, "(C) Setting the field\n");

/* Make the actual update.

Note: SetObjectField is an example of an interface that does
not return a return value that can be tested. In this case, it
is necessary to call ExceptionOccurred() to see if there

was a problem with storing the value =*/
(*env)->SetObjectField(env, javaThis, fid, stringObject);

/* Check to see if the update was successful. If not, report the error.
if ((*env)->ExceptionOccurred(env)) {

/* A non-null exception object came back from ExceptionOccurred,
so there is a problem and you must report the error. */
HandleError(env);

1
JobPrint(env, "(C) Returning from the native method\n");
return;
}
static void HandleError(JNIEnv *env)
{
/* A simple routine to report and handle an exception. =*/
JobPrint(env, "(C) Error occurred on JNI call: ");
(*env)->ExceptionDescribe(env); /* write exception data to the console */
(*env)->ExceptionClear(env); /* clear the exception that was pending */
}
static void JobPrint (JNIEnv *env, char *str)
{
char *jobStr;
char buf[512];
size_t Tlen;
Ten = strlen(str);
/* 0Only print non-empty string. =/
if (len) {
jobStr = (len >= 512) ? malloc(Ten+l) : &buf;
if (! StringConvert(CONV_UTF2J0B, str, jobStr))
(*env)->FatalError
(env,"ERROR in JobPrint: Unable to convert UTF2JOB");
fprintf(stderr, jobStr);
if (len >= 512) free(jobStr);
1
1

int StringConvert(int direction, char *sourceStr, char xtargetStr)

{
QtgCode_T source, target; /* parameters to instantiate iconv */
size t sStrLen, tStrLen; /x local copies of string lengths */

238 iSeries: IBM Developer Kit for Java

}

iconv_t ourConverter; /* the actual conversion descriptor */
int iconvRC; /* return code from the conversion =/
size_t originallLen; /% original length of the sourceStr */

/* Make local copies of the input and output sizes that are initialized
to the size of the input string. The iconv() requires the

Tength parameters to be passed by address (that is as intx). */
originallLen = sStrLen = tStrLen = strlen(sourceStr);

/* Initialize the parameters to the QtqIconvOpen() to zero. =/
memset (&source,0x00,sizeof (source));
memset (&target,0x00,sizeof (target));

/* Depending on direction parameter, set either SOURCE
or TARGET CCSID to ISO 8859-1 Latin. =*/
if (CONV_UTF2J0B == direction) {
source.CCSID = 819;
}

else {
target.CCSID
1

819;

/* Create the iconv_t converter object. =/
ourConverter = QtqlconvOpen(&target,&source);

/* Make sure that you have a valid converter, otherwise return 0. =/
if (-1 == ourConverter.return_value) return 0;

/* Perform the conversion. =/

iconvRC = iconv(ourConverter,
(char*x) &sourceStr,
&sStrLen,
&targetStr,
&tStrLen);

/* If the conversion failed, return a zero. =*/
if (0 != iconvRC) return 0;

/* Close the conversion descriptor. =/
iconv_close(ourConverter);

/* The targetStr returns pointing to the character just
past the last converted character, so set the null

there now. =/

*targetStr = '\0';

/* Return the number of characters that were processed. */
return originallen-tStrlLen;

#pragma convert(0)

See [Use the Java Native Interface for native methods] for background information. 2

IBM OS/400 PASE native methods for Java

The iSeries Java'™ virtual machine (JVM) now supports the use of native methods running in the
0S/400® PASE environment. Prior to V5R2, the native iSeries JVM used only ILE native methods.
Support for 0S/400 PASE native methods includes:

» Full use of the native iSeries Java Native Interface (JNI) from OS/400 PASE native methods
» The ability to call OS/400 PASE native methods from the native iSeries JVM

Chapter 1. IBM Developer Kit for Java

239

This new support enables you to easily port your Java applications that run in AIX® to your iSeries server.
You can copy the class files and AIX native method libraries to the integrated file system on the iSeries

and run them from any of the control language (CL), Qshell or OS/400 PASE terminal session command
prompts.

For more information about using IBM OS/400 PASE native methods for Java, see the following topics:

ava 0S/400 PASE environment variables|
Learn about the environment variables that you must define before using OS/400 PASE native
methods. These environment variables manage the OS/400 PASE and JVM runtime environments.

Wava 0S/400 PASE error codes|
To help you troubleshoot OS/400 PASE native methods, find out about error conditions that are
indicated by OS/400 job log messages and Java runtime exceptions.

[Managing native method libraries|
Find out about the Java library naming conventions and the library search algorithm. This information
is important for managing multiple versions of a native method library on your iSeries server.

[Example: IBM 0S/400 PASE native methods for Java|
See how to run a simple Java program that prints out the contents of a Java String. Rather than

accessing the string directly from Java code, the example calls a native method that then calls back
into Java through JNI to get the string value.

This information assumes you are already familiar with OS/400 PASE. For more information, see the
following topic:

0S/400 PASE
« B
Java 0S/400 PASE environment variables
The Java virtual machine (JVM) uses the following variables to start OS/400 PASE environments. You

need to set the QIBM_JAVA_PASE_STARTUP variable in order to run the IBM OS/400 PASE native
method for Java example.

For information about setting environment variables for the example, see the following topic:

[Environment variables for the IBM OS/400 PASE example}
QIBM_JAVA_PASE_STARTUP

You need to set this environment variable when both of the following conditions occur:

* You are using OS/400 PASE native methods

* You are starting Java from an iSeries command prompt or Qshell command prompt

The JVM uses this environment variable to start a PASE environment. The value of the variable

identifies an OS/400 PASE startup program. Your iSeries server includes two OS/400 PASE
startup programs:

» /usr/lib/start32: Starts a 32-bit 0S/400 PASE environment
» Jusr/lib/start64: Starts a 64-bit OS/400 PASE environment

The bit format of all shared library objects used by an OS/400 PASE environment must match the
bit format of the OS/400 PASE environment.

240 iSeries: IBM Developer Kit for Java

You can not use this variable when starting Java from an OS/400 PASE terminal session. An
0OS/400 PASE terminal session always uses a 32-bit 0S/400 PASE environment. Any JVMs
started from an OS/400 PASE terminal session use the same type of PASE environment as the
terminal session.

QIBM_JAVA_PASE_CHILD_STARTUP
Set this optional environment variable when the OS/400 PASE environment for a secondary JVM
must be different than the OS/400 PASE environment the primary JVM. A call to Runtime.exec() in
Java starts a secondary (or child) JVM.

For more information, see [Using QIBM_JAVA PASE_CHILD_STARTUP|

b

Examples: Environment variables for the IBM OS/400 PASE example: To use the IBM OS/400 PASE
native methods for Java example, you need to set the following environment variables.

PASE_LIBPATH
Your iSeries server uses this OS/400 PASE environment variable to identify the location of OS/400
PASE native method libraries. You can set the path to a single directory or to multiple directories.
For multiple directories, use a colon (:) to separate entries. Your server can also use the LIBPATH
environment variable.

For more information about using Java, native method libraries, and PASE_LIBPATH with this
example, see the following topic:

[Using Java, OS/400 PASE, and native method libraries]

PASE_THREAD_ATTACH
Setting this OS/400 PASE environment variable to Y causes an ILE thread that was not started by
0S/400 PASE to be attached automatically to OS/400 PASE when it calls an OS/400 PASE
procedure.

For more information about OS/400 PASE environment variables, see the appropriate entries in
the following topic:

Work with OS/400 PASE environment variables|

QIBM_JAVA_PASE_STARTUP
The JVM uses this environment variable to start an OS/400 PASE environment. The value of the
variable identifies an OS/400 PASE startup program.

For more information, see the following topic:

Hava OS/400 PASE variableg|

=

Using QIBM_JAVA_PASE_CHILD_STARTUP: The QIBM_JAVA_PASE_CHILD_STARTUP environment
variable indicates the OS/400 PASE startup program for any secondary JVMs. Use
QIBM_JAVA_PASE_CHILD_STARTUP when all of the following conditions are true:

» The Java application that you want to run creates Java virtual machines (JVMs) through Java calls to to
Runtime.exec()

» Both the primary and secondary JVMs use OS/400 PASE native methods

* The OS/400 PASE environment of the secondary JVMs must be different than the OS/400 PASE
environment of the primary JVM

Chapter 1. IBM Developer Kit for Java 241

When all of the previously listed conditions are true, perform the following actions:
» Set the QIBM_JAVA_PASE_CHILD_STARTUP environment variable to the OS/400 PASE startup
program of the secondary JVMs

* When starting the primary JVM from an iSeries command prompt or Qshell command prompt, set the
QIBM_JAVA_PASE_STARTUP environment variable to the OS/400 PASE startup program of the

primary JVM.

Note: When starting the primary JVM from an OS/400 PASE terminal session, do not set
QIBM_JAVA_PASE_STARTUP.

The process of the secondary JVM inherits the QIBM_JAVA_PASE_CHILD_STARTUP environment
variable. In addition, OS/400 sets the QIBM_JAVA_PASE_STARTUP environment variable of the
secondary JVM process to the value of the QIBM_JAVA_PASE_CHILD_STARTUP environment variable
from the parent process.

The following table identifies the resulting OS/400 PASE environments (if any) for the various conbinations
of command environments and definitions of QIBM_JAVA_PASE_STARTUP and

QIBM_JAVA_PASE_CHILD_STARTUP:

Starting Environment

Resulting Behavior

terminal session

terminal session
environment

Command QIBM_JAVA QIBM_JAVA_PASE |Primary JVM 0S/400 | Secondary JVM
environment _PASE_STARTUP _CHILD_STARTUP PASE Startup 0S/400 PASE
Startup
CL or QSH Defined startX Defined startY Use startX Use startY
CL or QSH Defined startX Not defined Use startX Use startX
CL or QSH Not defined Defined startY No OS/400 PASE Use startY
environment
CL or QSH Not defined Not defined No OS/400 PASE No OS/400 PASE
environment environment
0S/400 PASE Defined startX Defined startY Not Allowed* Not Allowed*
terminal session
0S/400 PASE Defined startX Not defined Not Allowed* Not Allowed*
terminal session
0S/400 PASE Not defined Defined startY Use OS/400 PASE Use startY
terminal session terminal session
environment
0S/400 PASE Not defined Not defined Use OS/400 PASE No OS/400 PASE

environment

* The rows marked 'Not allowed’ indicate situations where the QIBM_JAVA_PASE_STARTUP environment
variable could conflict with the OS/400 PASE terminal session. Because of the potential conflict, using

QIBM_JAVA_PASE_STARTUP is not allowed from an OS/400 PASE terminal session. &

Managing native method libraries

To use native method libraries, especially when you want to manage multiple versions of a native method
library on your iSeries server, you need to understand both the Java library naming conventions and the
library search algorithm.

0S/400 uses the first native method library that matches the name of the library that the Java virtual
machine (JVM) loads. In order to ensure that OS/400 finds the correct native methods, you must avoid

library name clashes and confusion about which native method library the JVM uses.

242

iSeries: IBM Developer Kit for Java

0S/400 PASE and AIX Java Library Naming Conventions: If the Java code loads a library named
Sample, the corresponding executable file must be named either libSample.a or libSample.so.

Java library search order: When you enable OS/400 PASE native methods for the JVM, your server
uses three different lists (in the following order) to create a single native method library search path:

1. OS/400 library list

2. LIBPATH environment variable

3. PASE_LIBPATH environment variable

In order to perform the search, OS/400 converts the library list to the integrated file system format. QSYS
file system objects have equivalent names in the integrated file system, but some integrated file system
objects do not have equivalent QSYS file system names. Because the library loader looks for objects in
both the QSYS file system and in the integrated file system, OS/400 uses the integrated file system format
to search for native method libraries.

The following table shows how OS/400 converts entries in the library list to the integrated file system
format:

Library list entry Integrated file system format
QSYS /gsys.lib

QSYS2 /gsys.lib/gsys2.lib

QGPL /gsys.lib/qgpl.lib

QTEMP /gsys.lib/gtemp.lib

Example: Searching for the Sample2 library

In the following example, LIBPATH is set to /home/user1/1ib32:/samples/lib32 and PASE_LIBPATH is set to
/QOpenSys/samples/lib.

The following table, when read from top to bottom, indicates the full search path:

Source Integrated file system directories

Library list /gsys.lib
/gsys.lib/gsys2.lib
/gsys.lib/qgpl.lib
/gsys.lib/gtemp.lib

LIBPATH /home/user1/1ib32
/samples/ib32
PASE_LIBPATH /QOpenSys/samples/lib

Note: Uppercase and lowercase characters are significant only in the /QOpenSys path.

In order to search for library Sample2, the Java library loader searches for file candidates in the following
order:

/qsys.lib/sample2.srvpgm
/gsys.lib/libSample2.a
/gsys.lib/libSample2.so
/qgsys.lib/gsys2.lib/sample2.srvpgm
/gsys.lib/gsys2.lib/libSample2.a
/qsys.lib/gsys2.lib/libSample2.so

w N N~

Chapter 1. IBM Developer Kit for Java 243

/gsys.lib/ggpl.lib/sample2.srvpgm
/gsys.lib/qgpl.lib/libSample2.a
/gsys.lib/qgpl.lib/libSample2.so
/gsys.lib/gtemp.lib/sample2.srvpgm
/gsys.lib/gtemp.lib/libSample2.a
/qsys.lib/gtemp.lib/libSample2.so
/home/user1/lib32/sample2.srvpgm
/home/user1/lib32/libSample2.a
/home/user1/lib32/libSample2.so
/samples/lib32/sample2.srvpgm
/samples/lib32/libSample2.a
/samples/lib32/libSample2.so
/QOpenSys/samples/lib/SAMPLE2.srvpgm
/QOpenSys/samples/lib/libSample2.a
/QOpenSys/samples/lib/libSample2.so

el i i e o A < A

OS/400 loads the first candidate in the list that actually exists into the JVM as a native method library.
Even though candidates like ’/gsys.lib/libSample2.a’ and /gsys.lib/libSample2.so’ occur in the search, it is
not possible to create integrated file system files or symbolic links in the /gsys.lib directories. Therefore,
even though OS/400 checks for these candidate files, it will never find them in integrated file system
directories that begin with /gsys.lib.

However, you can create arbitrary symbolic links from other integrated file system directories to OS/400
objects in the QSYS file system. As a result, valid 2

Java 0S/400 PASE error codes
The following lists describe errors that you may encounter at start up or at run time when using OS/400
PASE native methods for Java.

Startup Errors: There are 3 new error codes for the JVAB55C “Unable to create Java virtual machine”
message:

* 19 - Error starting OS/400 PASE environment. Indicates a user application or operating system problem.
Error code 19 also includes English-only text. You may see the following error text:

— Java 0S/400 PASE error. 0S/400 PASE is already active and the QIBM_JAVA PASE_STARTUP
environment variable is defined.

Either remove the QIBM_JAVA_PASE_STARTUP environment variable definition or end the active
0S/400 PASE terminal session.

— Java 0S/400 PASE error. Unable to run 0S/400 PASE startup program &programName.

Either the OS/400 PASE program identified by the QIBM_JAVA_PASE_STARTUP environment
variable does not exist, or you can not run the program in the OS/400 PASE environment.

— Java 0S/400 PASE internal error number &errorCode.
You may see any of the following internal error numbers:
- 106 - OS/400 PASE or the specified OS/400 PASE format is not supported for the indicated JDK
version.

Either OS/400 PASE is not supported for the specified JDK, or else the OS/400 PASE startup
program bit format is not supported for the specified JDK. For V5R2 the supported combinations
are:

244 iSeries: IBM Developer Kit for Java

« JDK 1.2 and OS/400 PASE 32-bit format
 JDK 1.3 and OS/400 PASE 32-bit format
 JDK 1.3 and OS/400 PASE 64-bit format

Report the following error codes to a service representative:
- 101 - No startup program identified.
- 102 - Unable to retrieve OS/400 PASE JavaVM pointer
- 1083 - Unable to locate Qp2CallPase
- 104 - OS/400 PASE pointer size error.
- 105 - Cannot locate OS/400 PASE libjvm.a.
» 20 - OS/400 PASE operand not valid. Report to a service representative.
» 21 - Unable to attach job to OS/400 PASE. Report to a service representative.

Runtime errors: In addition to startup errors, PaselnternalError or PaseExit Java exceptions may appear
in the Qshell output of the JVM:

» PaselnternalError - indicates internal system error. Check for Licensed Internal Code Log entries.

For more information, see .

+ PaseExit - either the OS/400 PASE application called the exit() function or the OS/400 PASE
environment ended abnormally. Check the Job Log and Licensed Internal Code Log for additional

information. <&

b

Example: IBM OS/400 PASE native method for Java
The IBM OS/400 PASE native method for Java example calls an instance of a native C method that then
uses Java Native Interface (JNI) to call back into Java code.

To see HTML versions of the example source files, use the following links:
+ |[PaseExample1.javal
+ |[PaseExamplel.d

Before you can run the OS/400 PASE native method example, you must complete the following tasks:
1. [Download the example source code to your AIX workstation|

2. |Prepare the example source code|

3. |Prepare your iSeries server|

Run the OS/400 PASE native method for Java example: After you complete the previous tasks, you
can run the example. Use either of the following commands to run the example program:

* From an iSeries server command prompt:
JAVA CLASS(PaseExamplel) CLASSPATH('/home/example')
* From a Qshell command prompt or OS/400 PASE terminal session:

cd /home/example
java PaseExamplel

Comparison of Integrated Language Environment and Java

The Java™ environment on an iSeries server is separate from the integrated language environment
(ILE). Java is not an ILE language, and it cannot bind to ILE object modules to create programs or service
programs on an iSeries server.

Chapter 1. IBM Developer Kit for Java 245

rzahapasejava.htm
rzahapasec.htm
rzahapaseexmplsdownload.htm
rzahapaseexmplscompile.htm
rzahapaseexmplsserver.htm

ILE

Java

Members that are part of the library or file structure on an
iSeries server store source codes.

Stream files in the integrated file system contain source
code.

Source entry utility (SEU) edits extended binary-coded
decimal interchange code (EBCDIC) source files.

American Standard Code for Information Interchange
(ASCII) source files are usually edited using a workstation
editor.

Source files compile into object code modules, which are
stored in libraries on an iSeries server.

Source code compiles into class files, which the
integrated file system stores.

Object modules are statically bound together in programs
or service programs.

Classes are dynamically loaded, as needed, at runtime.

You can directly call to functions that are written in other
ILE programming languages.

Java Native Interface must be used to call other
languages from Java.

ILE languages are always compiled and run as machine
instructions.

Java programs can be interpreted or compiled.

Use java.lang.Runtime.exec()

The java.lang.Runtime.exec() method calls programs or commands from within a Java‘™ program. The
actual processing that occurs depends on exactly what information is passed to the exec() method. In all
cases, the Runtime.exec() method creates another thread-enabled batch immediate (BCI) job. The BCI job
processes the command string that is passed in on the Runtime.exec() method.

To use the java.lang.Runtime.exec() method, you must install the Qshell Interpreter on your iSeries server
if you are using JDK 1.2 or lower. For more information about the Qshell Interpreter, see |Qshell Interpreter

Note: The java.lang.Runtime.exec() method runs programs in a separate process. This differs from the C
system function, which runs a program in the same process.

Interactive Job BCI Job 1 ‘ BCI Job 2 o BCl Job 3
Qshell
JAVA H Qshell Qshell
CLASS('Exec’) Java Virtual Machine he >

Application Code
(Exec class)

(thread-enabled) |

(thread-enabled) .~

Thread x

Garbage Collector
Thread y

RV4N309-3

If the command being processed is a Qshell utility, it runs in the second BCI job, and the third BCI job is
not created. If the command being processed is a CL command, the second BCI job is started to run the
Qshell, and the third BCI job is started to run the CL command. A Qshell utility is a built-in utility that QSH

can run directly. An example of a Qshell utility is the

javac command, which compiles Java programs. The

processing in the second (or third) BCI job runs concurrently with the Java virtual machine. Any exit or
shutdown processing in those jobs does not affect the original Java virtual machine.

When calling an iSeries command or program, you must ensure that any parameters being passed to the
called program are in the code page that is expected by that program.

246

iSeries: IBM Developer Kit for Java

See [call another Java program| [call a CL program} or|call a CL command|for java.lang.Runtime.exec()
examples.

Example: Call another Java program with java.lang.Runtime.exec()

This example shows how to call another Java™" program with java.lang.Runtime.exec(). This class calls
the Hello program that is shipped as part of the IBM Developer Kit for Java. When the Hello class writes to
System.out, this program gets a handle to the stream and can read from it.

Note: You use the Qshell Interpreter to call the program.

Example 1: CallHelloPgm class

Note: Read the |Code example disclaimer for important legal information.

import java.io.*;

public class CallHelloPgm
{

public static void main(String args[])

{
Process theProcess = null;
BufferedReader inStream = null;

System.out.printin("CallHelloPgm.main() invoked");

// call the Hello class
try
{

}
catch(IOException e)

{

theProcess = Runtime.getRuntime().exec("java com.ibm.as400.system.Hello");

System.err.printIn("Error on exec() method");
e.printStackTrace();

}

// read from the called program's standard output stream
try
{
inStream = new BufferedReader(
new InputStreamReader(theProcess.getInputStream()));
System.out.printIn(inStream.readLine());

catch(IOException e)
{

System.err.printIn("Error on inStream.readLine()");
e.printStackTrace();

}
} // end method

} // end class

For background information, see|Use java.lang.Runtime.exec()l

Example: Call a CL program with java.lang.Runtime.exec()
This example shows how to run CL programs from within a Java‘™ program. See|call a CL command| for
an example of how to call a CL command from within a Java program. In this example, the Java class
CallCLPgm runs a CL program. The CL program uses the Display Java Program (DSPJVAPGM) command
to display the program that is associated with the Hello class file. This example assumes that the CL
program has been compiled and exists in a library that is called JAVSAMPLIB. The output from the CL
program is in the QSYSPRT spooled file.

Chapter 1. IBM Developer Kit for Java 247

Note: The JAVSAMPLIB is not created as part of the IBM Developer Kit licensed program (LP) number
5722-JV1 installation process. You must explicitly create the library.

Example 1: CallCLPgm class

Note: Read the [Code example disclaimer for important legal information.

import java.io.*;

public class CallCLPgm
{
public static void main(String[] args)
{
try
{

Process theProcess =
Runtime.getRuntime().exec("/QSYS.LIB/JAVSAMPLIB.LIB/DSPJVA.PGM");

catch(IOException e)
{
System.err.printIn("Error on exec() method");
e.printStackTrace();
}
} // end main() method
} // end class

Example 2: Display Java CL program

PGM

DSPJVAPGM CLSF('/QIBM/ProdData/Java400/com/ibm/as400/system/Hello.class') +
OUTPUT (*PRINT)

ENDPGM

For background information, see|Use java.lang.Runtime.exec()|

Example: Call a CL command with java.lang.Runtime.exec()

This example shows how to run a control language (CL) command from within a Java program. In this
example, the Java class runs a CL command. The CL command uses the Display Java Program
(DSPJVAPGM) command to display the program that is associated with the Hello class file. The output
from the CL command is in the QSYSPRT spooled file.

% 1f you are using JDK 1.1.8 or JDK 1.2, ¥ every command that is passed into the
Runtime.getRuntime().exec() function must be in quotation marks and in Qshell format. In addition, to run
a CL command from Qshell, it is necessary to pass in the string:

"system \"CL COMMAND\""

Where CL COMMAND is the CL command you want to run. So the line to call the command MYCLCOM
should be this:
Runtime.getRuntime()Exec("system \"MYCLCOM\"");

% Note: When you are using JDK 1.3 or JDK 1.4, omit the slash and quote delimiters (\"). For example,
when using JDK version 1.3 or higher, the call to command MYCLCOM looks like this:

Runtime.getRuntime()Exec("system MYCLCOM");

For more information, see the 0s400.runtime.exec system property in|[Java system properties for Java 2|
[Software Development Kit, Standard Edition] %%

Example 1: CallCLCom class

248 iSeries: IBM Developer Kit for Java

#* The following example uses the Qshell delimiters necessary when you are using JDK 1.1.8 or JDK 1.2.
If you are using JDK version 1.3 or higher, omit the delimiters. 4%

Note: Read the [Code example disclaimer for important legal information.
import java.io.*;

public class CallCLCom
{
public static void main(String[] args)
{
try
{
Process theProcess = Runtime.getRuntime().exec("system \"DSPJVAPGM
CLSF('/com/ibm/as400/system/Hello.class') OUTPUT(*PRINT)\"");

}

catch(IOException e)

{
System.err.printIn("Error on exec() method");
e.printStackTrace();

}
} // end main() method
} // end class

For background information, see [Use java.lang.Runtime.exec()}

Interprocess communications
When communicating with programs that are running in another process, there are a number of options.

One option is to usefor interprocess communication. One program can act as the server program
that listens on a socket connection for input from the client program. The client program connects to the
server with a socket. Once the socket connection is established, either program can send or receive
information.

Another option is to use for communication between programs. To do this, use the System.in,
System.out, and System.err classes.

A third option is to use the [IBM Toolbox for Java™|which provides data queues and iSeries message
objects.

% You can also call Java from other languages. See [Example: Call Java from C| and|[Example: Call Javal

for more information. 4

Use sockets for interprocess communication
Sockets streams communicate between programs that are running in separate processes. The programs

can either start separately or start by using the [iava.lang.Runtime.exec() method from within the main
Java™ program. If a program is written in a language other than Java, you must ensure that any
American Standard Code for Information Interchange (ASCII) or extended binary-coded decimal
interchange code (EBCDIC) conversion takes place. See [Java character encodings| for more details.

For an example that uses sockets, see |Example: Use sockets for interprocess communicationl

Example: Use sockets for interprocess communication: This example uses sockets to communicate
between a Java™ program and a C program. You should start the C program first, which listens on a
socket. Once the Java program connects to the socket, the C program sends it a string by using that
socket connection. The string that is sent from the C program is an American Standard Code for
Information Interchange (ASCII) string in codepage 819.

Chapter 1. IBM Developer Kit for Java 249

The Java program should be started using this command, java TalkToC xxxxx nnnn on the Qshell
Interpreter command line or on another Java platform. Or, enter JAVA TALKTOC PARM(xxxxx nnnn) on the
iSeries command line to start the Java program. xxxxx is the domain name or Internet Protocol (IP)
address of the system on which the C program is running. nnnn is the port number of the socket that the C
program is using. You should also use this port number as the first parameter on the call to the C
program.

Example 1: TalkToC client class

Note: Read the [Code example disclaimer for important legal information.

import java.net.=*;
import java.io.*;

class TalkToC
{
private String host = null;
private int port = -999;
private Socket socket = null;
private BufferedReader inStream = null;

public static void main(String[] args)
{
TalkToC caller = new TalkToC();
caller.host = args[0];
caller.port = new Integer(args[1]).intValue();
caller.setUp();
caller.converse();
caller.cleanUp();

} // end main() method

public void setUp()

{
System.out.printIn("TalkToC.setUp() invoked");

try
{
socket = new Socket(host, port);
inStream = new BufferedReader(new InputStreamReader (
socket.getInputStream()));
}

catch(UnknownHostException e)

{
System.err.printin("Cannot find host called: " + host);
e.printStackTrace();
System.exit(-1);

catch(IOException e)
{

System.err.printin("Could not establish connection for " + host);
e.printStackTrace();
System.exit(-1);

}
} // end setUp() method

public void converse()

{

System.out.printIn("TalkToC.converse() invoked");

if (socket != null && inStream != null)

{
try

{

System.out.printIn(inStream.readLine());

250 iSeries: IBM Developer Kit for Java

}
catch(IOException e)

{
System.err.printin("Conversation error with host " + host);
e.printStackTrace();
}
} // end if

} // end converse() method

public void cleanUp()

{
try

{

if(inStream != null)

{

inStream.close();

if(socket != null)
{

}
} // end try
catch(IOException e)
{

socket.close();

System.err.printin("Error in cleanup");
e.printStackTrace();
System.exit(-1);

}
} // end cleanUp() method

} // end TalkToC class

SockServ.C starts by passing in a parameter for the port number. For example, CALL SockServ *2001°.

Example 2: SockServ.C server program

Note: Read the |Code example disclaimer| for important legal information.

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <unistd.h>
#include <sys/time.h>

void main(int argc, char* argv[])

{

int portNum = atoi(argv[1]);

int server;

int client;

int address_len;

int sendrc;

int bndrc;

char* greeting;

struct sockaddr_in Tocal_Address;
address_len = sizeof(local Address);

memset (&local_Address,0x00,sizeof(local_Address));
Tocal_Address.sin_family = AF_INET;
Tocal_Address.sin_port = htons(portNum);
Tocal_Address.sin_addr.s_addr = htonl(INADDR_ANY);

Chapter 1. IBM Developer Kit for Java

251

#pragma convert (819)
greeting = "This is a message from the C socket server.";
#pragma convert (0)

/* allocate socket */
if((server = socket(AF_INET, SOCK_STREAM, 0))<0)

printf("failure on socket allocation\n");
perror(NULL) ;
exit(-1);

/* do bind */
if((bndrc=bind(server, (struct sockaddr*)&local Address, address_len))<0)
{
printf("Bind failed\n");
perror(NULL) ;
exit(-1);
1

/* invoke listen %/
listen(server, 1);

/* wait for client request */
if((client = accept(server,(struct sockaddrx)NULL, 0))<0)

printf("accept failed\n");
perror(NULL) ;
exit(-1);

}

/* send greeting to client */
if((sendrc = send(client, greeting, strlen(greeting),0))<0)

printf("Send failed\n");
perror(NULL) ;
exit(-1);

}

close(client);
close(server);

}

For more information, see [Use sockets for interprocess communication}

Use input and output streams for interprocess communication
Input and output streams communicate between programs that are running in separate processes. The

Ijava.lang.Runtime.exec()| method runs a program. The parent program can get handles to the child
process input and output streams and can write to or read from those streams. If the child program is
written in a language other than Java™, you must ensure that any American Standard Code for
Information Interchange (ASCII) or extended binary-coded decimal interchange code (EBCDIC) conversion
takes place. See [Java character encodings| for more details.

For an example that uses input and output streams, see |Examp|e: Use input and output streams for|
linterprocess communication|

Example: Use input and output streams for interprocess communication: This example shows how
to call a C program from Java‘™ and use input and output streams for interprocess communication. In
this example, the C program writes a string to its standard output stream, and the Java program reads this
string and displays it. This example assumes that a library, which is named JAVSAMPLIB, has been
created and that the CSAMP1 program has been created in it.

252 iSeries: IBM Developer Kit for Java

Note: The JAVSAMPLIB is not created as part of the IBM Developer Kit licensed program (LP) number

5722-JV1 installation process. You must explicitly create it.

Example 1: CallPgm class

Note: Read the [Code example disclaimer for important legal information.

import java.io.*;

public class CallPgm
{

public static void main(String args[])

{

Process theProcess = null;
BufferedReader inStream = null;

System.out.printin("CallPgm.main() invoked");

// call the CSAMP1 program
try
{
theProcess = Runtime.getRuntime().exec(
"/QSYS.LIB/JAVSAMPLIB.LIB/CSAMP1.PGM");
}
catch(IOException e)
{
System.err.printIn("Error on exec() method");
e.printStackTrace();

}

// read from the called program's standard output stream
try
{
inStream = new BufferedReader(new InputStreamReader
(theProcess.getInputStream()));
System.out.printIn(inStream.readLine());

}
catch(IOException e)

{
System.err.printIn("Error on inStream.readLine()");
e.printStackTrace();

}
} // end method

} // end class

Example 2: CSAMP1 C Program

Note: Read the [Code example disclaimer for important legal information.

#include <stdio.h>
#include <stdlib.h>

void main(int argc, char* args[])

{

/* Convert the string to ASCII at compile time =*/
#pragma convert(819)

printf("Program JAVSAMPLIB/CSAMP1 was invoked\n");
#pragma convert(0)

/* Stdout may be buffered, so flush the buffer */

fflush(stdout);

Chapter 1. IBM Developer Kit for Java

253

For more information, see |Use input and output streams for interprocess communication|.

Example: Call Java from C
This is an example of a C program that uses the system() function to call the Java Hello program.

Example: Call Java from C

Note: Read the [Code example disclaimer for important legal information.
#include <stdlib.h>

int main(void)

{

int result;

/* The system function passes the given string to the CL command processor
for processing. */

result = system("JAVA CLASS('com.ibm.as400.system.Hello')");
1

Example: Call Java from RPG
This is an example of an RPG program that uses the QCMDEXC AP!I to call the Java™ Hello program.

Example 1: Call Java from RPG

Note: Read the [Code example disclaimer] for important legal information.

D* DEFINE THE PARAMETERS FOR THE QCMDEXC API

D=

DCMDSTRING S 25 INZ ('JAVA CLASS(''com.ibm.as400.system.Hello'")")
DCMDLENGTH S 15P 5 INZ(25)

D* NOW THE CALL TO QCMDEXC WITH THE 'JAVA' CL COMMAND

C CALL 'QCMDEXC'

C PARM CMDSTRING

C PARM CMDLENGTH

C* This next line displays 'DID IT' after you exit the

C* Java Shell via F3 or F12.

C 'DID IT! DSPLY

C* Set On LR to exit the RPG program

C SETON LR
C

Java platform

The Java™ platform is the environment for developing and managing|Java applets and applications]
It consists of three primary components: the Java language, the Java packages, and the|Java virtual|

The Java language and packages are similar to C++ and its class libraries. The Java packages

contain classes, which are available in any compliant Java implementation. The application programming

interface (API) should be the same on any system that supports Java.

Java differs from a traditional language, like C++, in the way it compiles and runs. In a traditional
programming environment, you write and compile source code of a program into object code for a specific
hardware and operating system. The object code binds to other object code modules to create a running
program. The code is specific for a particular set of computer hardware and does not run on other systems
without being changed. This figure illustrates the traditional language deployment environment.

To effectively use the Java platform, see the following:

|Java applets and applications|
You can write your Java applet and include it in an HTML page, much in the same way an image is
included. When you use a Java-enabled browser to view an HTML page that contains an applet, the

254 iSeries: IBM Developer Kit for Java

applet’s code is transferred to your system and is run by the browser’s Java virtual machine. You can
also write a Java application that does not require the use of a Web browser.

Wava virtual machine]

You can embed the Java virtual machine within a Web browser or in an operating system such as
IBM® Operating System/400® (0S/400(). The Java virtual machine consists of the Java
interpreter and the Java runtime environment. The interpreter performs the task of interpreting the
class file and running the Java instructions on a particular hardware platform. The Java virtual
machine is what allows Java code to be written and compiled once, and run on any platform.

Mava JAR and class files|

The Java environment differs from other programming environments in that the Java compiler does
not generate machine code for a hardware-specific instruction set. Instead, the Java compiler
converts Java source code into Java virtual machine instructions, which Java class files store. You
can use JAR files to store class files. The class file does not target a specific hardware platform, but
instead targets the Java virtual machine architecture.

Java is a multithreaded programming language; thus, more than one thread may be running within
the Java virtual machine at one time. Java threads provide a way for a Java program to perform
multiple tasks at the same time.

Wava Development Kit|

The Java Development Kit (JDK) is software that is distributed by Sun Microsystems, Inc. for Java
developers. It includes the Java interpreter, Java classes, and Java development tools. Find the
following information about JDKs:

» Java packages

« Java tools %%

Java applets and applications

An applet is a Java'™ program designed to be included in an HTML Web document. The HTML
document contains tags, which specify the name of the Java applet and its Uniform Resource Locator
(URL). The URL is the location at which the applet bytecodes reside on the Internet. When an HTML
document containing a Java applet tag is displayed, a Java-enabled Web browser downloads the Java
bytecodes from the Internet and uses the Java virtual machine to process the code from within the Web
document. These Java applets are what enable Web pages to contain animated graphics or interactive
content.

For more information, see |Writing Applets 9 , Sun Microsystems’ tutorial for Java applets. It includes an
overview of applets, directions for writing applets, and some common applet problems.

Applications are stand-alone programs that do not require the use of a browser. Java applications run by
starting the Java interpreter from the command line and by specifying the file that contains the compiled
application. Applications usually reside on the system on which they are deployed. Applications access
resources on the system, and are restricted by the |Java security model|

Java virtual machine

The Java‘™ virtual machine is a runtime environment that you can add into a web browser or any
operating system, such as IBM Operating System/400 (OS/400). The Java virtual machine runs
instructions that a Java compiler generates. It consists of a bytecode interpreter and runtime that allow

to run on any platform, regardless of the platform on which they were originally developed.

The class loader and security manager, which is part of the Java runtime, insulate code that comes from
another platform. They also can restrict which system resources each class that is loaded accesses.

Chapter 1. IBM Developer Kit for Java 255

http://java.sun.com/docs/books/tutorial/applet/index.html

Note: Java applications are not restricted; only applets are restricted. Applications can freely access
system resources and use native methods. Most IBM Developer Kit for Java programs are applications.

You can use the Create Java Program (CRTJVAPGM) command to ensure that the code meets the safety
requirements that the Java runtime imposes to verify the bytecodes. This includes enforcing type
restrictions, checking data conversions, ensuring that parameter stack overflows or underflows do not
occur, and checking for access violations. However, you do not need to explicitly verify the bytecodes. If
you do not use the CRTJVAPGM command in advance, then the checks occur during the first use of a
class. Once the bytecodes are verified, the interpreter decodes the bytecodes and runs the machine
instructions that are needed to carry out the desired operations.

Note: The [Java interpreter]is only used if you specify OPTIMIZE(*INTERPRET) or INTERPRET(*YES).

In addition to loading and running the bytecodes, the Java virtual machine includes a garbage collector
that manages memory. |Garbage coIIection| runs at the same time as the loading and interpretation of the
bytecodes.

Java runtime environment

The Java runtime environment starts whenever you enter the Run Java (RUNJVA) command or JAVA
command on the iSeries command line. Because the Java environment is multithreaded, it is necessary to
run the Java virtual machine in a job that supports threads, such as a batch immediate (BCI) job. Once the
Java virtual machine starts, additional threads may start in which the garbage collector runs. The typical
Java environment looks like this:

Interactive Job Batch 'mme,qi?t,? Job 7777777777
JAVA Java Virtual Machine
CLASS('Hello') | T| Application Code
. {|(Hello class)
{ | Thread x

Garbage Collector
Thread y ‘

RV4N307-3

It is also possible to start the Java runtime environment by using the java command in Qshell from the
Qshell Interpreter. In this environment, the Qshell Interpreter is running in a BCI job that is associated with
an interactive job. The Java runtime environment starts in the job that is running the Qshell Interpreter.

256 iSeries: IBM Developer Kit for Java

Interactive Job Batch Immediate Job

| Qshell
STRQSH ?4» Java Virtual Machine
java Hello Application Code
‘ (Hello class)
Thread x

Garbage Collector
Thread y

RV4N311-2

When the Java runtime environment starts from an interactive job, the Java Shell Display is shown. This
display provides an input line for entering data into the System.in stream, as well as displaying data that is
written to the System.out stream and System.err stream.

Java interpreter

The Java interpreter is the part of the Java virtual machine that interprets Java class files for a particular
hardware platform. The Java interpreter decodes each bytecode and runs a series of machine instructions
for that bytecode.

Java JAR and class files

A Java™ ARchive (JAR) file is a file format that combines many files into one. You can use JAR as a
general archiving tool and also to distribute Java programs of all types, including applets. Java applets
download into a browser in a single Hypertext Transfer Protocol (HTTP) transaction rather than by opening
a new connection for each piece. This method of downloading improves the speed at which an applet
loads on a Web page and begins functioning.

JAR is the only archive format that is cross-platform. JAR is also the only format that handles audio files
and image files, as well as class files. JAR is an open standard, fully extendable format that is written in
Java.

The JAR format also supports compression, which reduces the size of the file and decreases download
time. Additionally, an applet author may digitally sign individual entries in a JAR file to authenticate their
origin.

To update classes in JAR files, see the [Java jar tool &

Java class files are stream files that are produced when a source file is compiled by the Java compiler.
The class file contains tables that describe each field and method of the class. The file also contains the
bytecodes for each method, static data, and descriptions that are used to represent Java objects.

Java threads

A thread is a single independent stream that runs within a program. Java™ is a multithreaded
programming language, so more than one thread may be running within the Java virtual machine at one
time. Java threads provide a way for a Java program to perform multiple tasks at the same time. A thread
is essentially a flow of control in a program.

Chapter 1. IBM Developer Kit for Java 257

javaapi/tooldocs/win32/jar.html

Threads are a modern programming construct that are used to support concurrent programs and to
improve the performance and scalability of applications. Most programming languages support threads
through the use of add-in programming libraries. Java supports threads as built-in application program
interfaces (APIs).

Note: The use of threads provides the support to increase the interactivity, meaning a shorter wait at the
keyboard because more tasks are running in parallel. But, the program is not necessarily more interactive
just because it has threads.

Threads are the mechanism for waiting on long running interactions, while still allowing the program to

handle other work. Threads have the ability to support multiple flows through the same code stream. They
are sometimes called lightweight processes. The Java language includes direct support for threads. But,
by design, it does not support asynchronous non-blocking input and output with interrupts or multiple wait.

Threads allow the development of parallel programs that scale well in an environment where a machine
has multiple processors. If properly constructed, they also provide a model for handling multiple
transactions and users.

You can use threads in a Java program for a number of situations. Some programs must be able to
engage in multiple activities and still be able to respond to additional input from the user. For example, a
Web browser should be able to respond to user input while playing a sound.

Threads can also use asynchronous methods. When you call a second method, you do not have to wait
for the first method to complete before the second method continues with its own activity.

There are also many reasons not to use threads. If a program uses inherently sequential logic, one thread
can accomplish the entire sequence. Using multiple threads in such a case results in a complex program
with no benefits. There is considerable work in creating and starting a thread. If an operation involves only
a few statements, it is faster to handle it in a single thread. This can be true even when the operation is
conceptually asynchronous. When multiple threads share objects, the objects must synchronize to
coordinate thread access and maintain consistency. Synchronization adds complexity to a program, is
difficult to tune for optimal performance, and can be a source of programming errors.

For more threads information, see |[Developing multithreaded applications|

Sun Microsystems, Inc. Java Development Kit

The Java‘™ Development Kit (JDK) is software that is distributed by Sun Microsystems, Inc. for Java
developers. It includes the Java interpreter, Java classes, and Java development tools: compiler,
debugger, disassembler, appletviewer, stub file generator, and documentation generator.

The JDK enables you to write applications that are developed once and run anywhere on any Java virtual
machine. Java applications that are developed with the JDK on one system can be used on another
system without changing or recompiling the code. The Java class files are portable to any standard Java
virtual machine.

To find more information about the current JDK, check the version of the IBM Developer Kit for Java on
your iSeries server.

You can check the version of the default IBM Developer Kit for Java Java virtual machine on your iSeries
server by entering either of the following commands:

* java -version on the Qshell command prompt.
* RUNJVA CLASS(*VERSION) on the CL command line.

258 iSeries: IBM Developer Kit for Java

Then, look for the same version of Sun Microsystems, Inc. JDK at[The Source for Java Technology|

d for specific documentation. The IBM Developer Kit for Java is a compatible
implementation of the Sun Microsystems, Inc. Java Technology, so you should be familiar with their JDK

documentation.

See the following topics for more information:

« [Support for multiple Java Development Kits (JDKs)| provides information about using different Java

virtual machines.

+ [Native methods and the Java Native Interface|defines what a native method is and what they do. This

topic also briefly explains the Java Native Interface.

Java packages

A Java package is a way of grouping related classes and interfaces in Java. Java packages are similar to

class libraries that are available in other languages.

The Java packages, which provide the Java APls, are available as part of Sun Microsystems, Inc. Java

Development Kit (JDK).

Package Contents
java.applet Applet classes
java.awt Graphics, window, and graphical user interface (GUI) classes

java.awt.datatransfer

Data transfer classes

java.awt.event

Event processing classes and interfaces

java.awt.image

Image processing classes

java.awt.peer

GUI interfaces for platform independence

java.beans JavaBeans component model API
java.io Input and output classes
java.lang Core language classes

java.lang.reflect

Reflection API classes

java.math Arbitrary precision arithmetic
java.net Networking classes

java.rmi Remote Method Invocation classes
java.rmi.dgc RMi-related classes

java.rmi.registry

RMI-related classes

java.rmi.server

RMI-related classes

java.security

Security classes

java.security.acl

Security-related classes

java.security.interfaces

Security-related classes

java.sql JDBC SQL API for database classes
java.text Internationalization classes

java.util Data types

java.util.zip Compression and decompression classes

For more information about the Java APIs by Sun Microsystems, Inc., see the|Sun Microsystems, Inc. API|

Chapter 1. IBM Developer Kit for Java 259

http://www.java.sun.com/
http://www.java.sun.com/
javaapi/api/API_users_guide.html
javaapi/api/API_users_guide.html

Java tools

For a complete list of tools that Sun Microsystems, Inc. Java Development Kit supplies, see
[Reference by Sun Microsystems, Inc] For more information about each individual tool that the IBM
Developer Kit for Java supports, see [Java tools that are supported by the IBM Developer Kit for Javal

Advanced topics

% The following are advanced topics for the IBM Developer Kit for Java™:

[Classes, packages, and directories|
Each Java class is part of a package. The package name relates to the directory structure in which
the class resides.

[Files in the integrated file system|
The integrated file system stores Java-related class, source, ZIP, and JAR files in a hierarchical file
structure.

IFile authorities|
To run or debug a Java program, your class, ZIP, or JAR files require read authority. Find more
information about file authorities that several CL commands require.

Batch job

Java programs can run in a batch job by using the Submit Job (SBMJOB) command. Find out more
about the SBMJOB command and how you can verify that your batch job is capable of running more
than one job.

&

Java classes, packages, and directories

Each Java™ class is part of a package. The first statement in a Java source file indicates which class is
in what package. If the source file does not contain a package statement, the class is part of an unnamed
default package.

The package name relates to the directory structure in which the class resides. The integrated file system
supports Java classes in a hierarchical file structure that is similar to what you find on most PC and UNIX
systems. You must store a Java class in a directory with a relative directory path that matches the
package name for that class. For example, consider the following Java class:

package classes.geometry;
import java.awt.Dimension;

public class Shape {
Dimension metrics;
// The implementation for the Shape class would be coded here ...

}

The package statement in the previous code indicates that the Shape class is part of the classes.geometry
package. For the Java runtime to find the Shape class, store the Shape class in the relative directory
structure classes/geometry.

Note: The package name corresponds to the relative directory name in which the class is stored. The
Java virtual machine class loader finds the class by appending the relative path name to each directory
that is specified in the classpath. The Java virtual machine class loader can also find the class by
searching the ZIP files or JAR files that are specified in the classpath.

260 iSeries: IBM Developer Kit for Java

javaapi/tooldocs/tools.html
javaapi/tooldocs/tools.html

For example, if the Shape class was stored in the /Product/classes/geometry directory in the "root” (/) file
system, /Product would need to be specified in the classpath.

froot)

Bata Product
[' |

myclasses classes dos

geometry
classes doc
Shape .class

geometry

Shaps class

Rwidbd212-1

Note: Multiple versions of the Shape class can exist in the directory structure. To use the "beta” version of
the Shape class, place /Beta/myclasses in the CLASSPATH before any other directories or ZIP files that
contain the Shape class.

The Java compiler uses the |Java classpath} package name, and directory structure to find packages and
classes when compiling Java source code.

Files in the integrated file system

The integrated file system stores Java-related class files, source files, ZIP files, and JAR files in a
hierarchical file structure. You can also store source files in the integrated file system. You may store the
files in these integrated file systems:

* "Root” (/) file system

* Open systems file system (QOpenSys)

» User-defined file system

» Library file system (QSYS.LIB)

« OS/2 Warp Server for iSeries file system (QLANSrv)
+ Optical file system (QOPT)

Note: Other integrated file systems are not supported because they are not threadsafe.

Java file authorities in the integrated file system

To run or debug a Java‘™ program, the class file, JAR file, or ZIP file needs to have read authority (*R).
Any directories need read and execute authorities (*RX).

Chapter 1. IBM Developer Kit for Java 261

To use the Create Java Program (CRTJVAPGM) command to optimize a program, the class file, JAR file,
or ZIP file must have read authority (*R), and the directory must have execute authority (*X). If you use a
pattern in the class file name, the directory must have read and execute authority (*RX).

To delete a Java program by using the Delete Java Program (DLTJVAPGM) command, you must have
read and write authority (*RW) to the class file, and the directory must have execute authority (*X). If you
use a pattern in the class file name, the directory must have read and execute authority (*RX).

To display a Java program by using the Display Java Program (DSPJVAPGM) command, you must have
read authority (*R) to the class file, and the directory must have execute authority (*X).

Note: Files and directories that do not have execute authority (*X) always appear to have execute
authority (*X) to a user with QSECOFR authority. Different users can get different results in certain
situations, even though both users appear to have the same access to the same files. This is important to
know when running shell scripts using the Qshell Interpreter or java.Runtime.exec().

For example, one user writes a Java program that uses java.Runtime.exec() to call a shell script, then
tests it using a user ID with QSECOFR authority. If the file mode of the shell script has read and write
authority (*RW), the integrated file system allows the user ID with QSECOFR authority to run it. However,
a non-QSECOFR authority user could try to run the same Java program, and the integrated file system
would tell the java.Runtime.exec() code that the shell script cannot be run, because *X is missing. In this
case, java.Runtime.exec() throws an input and output exception.

#* You can also assign authorities to new files created by Java programs in an integrated file system. By
using the 0s400.file.create.auth [system property| for files and 0s400.dir.create.auth for directories, any

combination of read, write, and execute authorities may be used. 4

For more information, see the |Program and CL Command APIg| or the [Integrated file system]

Run Java in a batch job

Java™) programs run in a batch job by using the Submit Job (SBMJOB) command. In this mode, the
Java Qshell Command Entry display is not available to handle the System.in, System.out, nor System.err
streams.

You may redirect these streams to other files. Default handling sends the System.out and System.err
streams to a spooled file. The batch job, which results in an input and output exception for read requests
from System.in, owns the spooled file. You can redirect System.in, System.out, and System.err within your
Java program. You can also use the 0s400.stdin, 0s400.stdout, and 0s400.stderr system properties to
redirect System.in, System.out, and System.err.

Note: SBMJOB sets the Current Working Directory (CWD) to the HOME directory that is specified in the
user profile.

Example: Running Java in a Batch Job
SBMJOB CMD(JAVA Hello OPTION(*VERBOSE)) CPYENVVAR(*YES)

Running the JAVA command in the previous example spawns a second job. Therefore, the subsystem that
the batch job runs in must be capable of running more than one job.

You can verify that your batch job is capable of running more than one job by following these steps:

1. On the CL command line, enter DSPSBSD (MYSBSD), where MYSBSD is the subsystem description of your
batch job.

2. Choose option 6, Job queue entries.

262 iSeries: IBM Developer Kit for Java

3. Look at the Max Active field for your job queue.

If the Max Active field is less than or equal to 1, and it is not *“NOMAX, enter the following on the
CL command line:

CHGJOBQE SBSD(MYSBSD) JOBQ(MYJOBQ) MAXACT (*NOMAX)

Where:
» MYSBSD is your subsystem description, and
* MYJOBQ is your job queue.

Run your Java application on a host that does not have a graphical
user interface

If you want to run your Jav) application on a host that does not have a graphical user interface (GUI),
such as an iSeries server, you can use the Remote Abstract Window Toolkit (AWT), the Class Broker for
Java (CBJ) or the Native Abstract Windowing Toolkit (NAWT).

a(TM

You use Remote AWT with install and administration interfaces of server applications. These interfaces
typically have a minimum of complex graphics and highly-interactive content. Remote AWT distributes
AWT processing between the iSeries server and a workstation. So, responsiveness of graphic-intensive
and highly-interactive operations are not as fast as AWT implementations on platforms with
locally-attached graphic terminals. To use Remote AWT, see |set up Remote AWT]

You can use the CBJ for high performance GUI services. Since Remote AWT is not recommended for
complex graphics or highly-interactive operations, you can use the CBJ instead, which was designed for
these environments. To use CBJ, see [set up CBJ

You canfor Java graphical computation entirely on an iSeries server using the X Window
System. The X Window System is a graphics system that provides a client/server base for displaying
graphics. The X Window graphics server is highly portable, allowing support for a variety of languages and
operating systems. NAWT provides Java applications and servlets with the capability to use the Java

Development Kit's (JDK) AWT graphics functionality. 4%

IBM Developer Kit for Java Remote Abstract Window Toolkit

The Remote Abstract Window Toolkit is an implementation of the Abstract Window Toolkit (AWT). It allows
Java'™) applications to run, without any changes, on a host that does not have a graphical user interface
(GUI). An iSeries server does not support locally-attached graphic terminals; therefore, Remote AWT is
necessary to allow graphical Java applications to run on the iSeries server.

You use Remote AWT with installation and administration interfaces of server applications. These
interfaces typically have a minimum of complex graphics and highly-interactive content. Remote AWT
distributes AWT processing between an iSeries server and a workstation. Responsiveness of
graphic-intensive and highly-interactive operations may not be as fast as AWT implementations on
platforms with locally-attached graphic terminals.

Since IBM Developer Kit for Java Remote AWT is not recommended for complex graphics or
highly-interactive operations, you can use the [Class Broker for Javal instead, which was designed for these
environments.

For information on how to set up Remote AWT, see[Set up the Remote Abstract Window Toolkit for Javal
fon a remote display|

Set up the Remote Abstract Window Toolkit for Java on a remote display
With the Remote Abstract Window Toolkit (AWT), you can run Java™ AWT graphics programs without
making any program source changes and display the graphics remotely. To use |Remote AWi|you must

Chapter 1. IBM Developer Kit for Java 263

have Transmission Control Protocol/Internet Protocol (TCP/IP) set up, and Sun Microsystems, Inc., Java
Development Kit (JDK) 1.1.8 or Java 2 SDK (J2SDK), Standard Edition, installed on your iSeries server
and remote display.

You can use any graphics-capable hardware, including IBM Network Station, as a remote display for
Remote AWT if it meets these requirements:

+ Graphics-capable hardware that runs Windows® 95, Windows NT 4.0, IBM Operating System/2
(0S/2™), Sun Solaris, or AIX®P

» Configured hardware to access your iSeries server with TCP/IP
+ Java Development Kit 1.1.8 or J2SDK

(R)

To set up Remote AWT, complete these tasks:

1. |Make the Remote AWT class files accessible to the remote display| by copying the files to the remote
display or mapping the path to a network drive on the remote display.

2. |Add RAWTGui.zip or RAWTGui.jar to the CLASSPATH of the remote display} For JDK 1.1.8, add the
RAWTGui.zip file to the CLASSPATH of the remote display by setting the CLASSPATH environment
variable or by using the -classpath parameter of the java command. For J2SDK, the RAWTGui . jar file
is automatically added to the CLASSPATH when using -jar parameter of the java command.

3. [Start Remote AWT on the remote display|

For details and hints for using Remote AWT, see these topics:

+ [Run a Java program using Remote Abstract Window Toolkiff provides instructions on how to run a Java
program with an iSeries server using multiple JDKs and Netscape.

+ [Print with the Remote Abstract Window Toolkit| explains how to print, which is the same as standard
Java AWT printing. It also shows you how to print to your iSeries server.

+ [Remote Abstract Window Toolkit properties| shows you how to run a Remote AWT application using the
0s8400.class.path.rawt property.
+ [Remote Abstract Window Toolkit SecurityManager restrictions| provides information about the restrictions

that apply when you are running Java applications using Remote AWT under the control of a
SecurityManager.

For more information about setting up TCP/IP, see "How do | set up TCP/IP” in the [TCP/IP Configuration|

land Reference, SC41-5420| book. @

See [Example: Set up the Remote Abstract Window Toolkit for Java on a Windows remote display} for an
example of how to set up Remote AWT.

For more information about AWT, see the|Abstract Window Toolkit by Sun Microsystems, Inc.|

Make the Remote Abstract Window Toolkit for Java class files accessible to the

remote display

To make the Remote Abstract Window Toolkit (AWT) class files accessible to the remote display, follow
these steps for either Java‘™ Development Kit (JDK) 1.1. x or Java 2 SDK (J2SDK), Standard Edition,
version 1.2. It is important to note, however, that in order for the Remote AWT to function correctly, the

version of the RAWTGui.jar file you use on the graphics-capable remote display must match the JDK or
J2SDK version you use on the host.

If you are using JDK 1.1.8, you can either:

» Copy the Remote AWT class files to the remote display.
The Remote AWT files are installed with the IBM Developer Kit for Java in two ZIP files:
— /QIBM/ProdData/Java400/jdk118/RAWTApplHost.zip
— /QIBM/ProdData/Java400/jdk118/RAWTGui.zip

264 iSeries: IBM Developer Kit for Java

javaapi/guide/awt/index.html

The RAWTApplHost.zip file contains the Remote AWT classes for the iSeries server. The RAWTGui.zip
file contains the Remote AWT classes for your remote display.

Copy RAWTGui.zip from /QIBM/ProdData/Java400/jdk118 to your remote display.

* Map the path, /QIBM/ProdData/Java400/jdk118/RAWTGui.zip, to a network drive on your remote
display.

If you are using J2SDK, version 1.2 or higher, you can either:

» Copy the Remote AWT class files to the remote display.
The Remote AWT files are installed with the IBM Developer Kit for Java in two JAR files:
— /QIBM/ProdData/Java400/jdk12/RAWTAHost.jar
— /QIBM/ProdData/Java400/jdk12/RAWTGui.jar

If you are using a version of the J2SDK other than 1.2, substitute that version number into all path
instances in this section.

The RAWTAHost.jar file contains the Remote AWT classes for the iSeries server. The RAWTGui.jar file
contains the Remote AWT classes for your remote display.

Copy RAWTGui.jar from /QIBM/ProdData/Java400/jdk12 to a network drive on your remote display.
* Map the path, /QIBM/ProdData/Java400/jdk12/RAWTGui.jar, to a network drive on your remote display.

Add RAWTGui.zip or RAWTGui.jar to the CLASSPATH of the remote display

Setting the CLASSPATH allows the Remote Abstract Window Toolkit (AWT) classes to be found by the
Java™ virtual machine on the remote display. This step is only necessary for JDK 1.1.x. This step is not
necessary with Java 2 SDK (J2SDK). To add the RAWTGui.zip file to the CLASSPATH of the remote
display, do either of these steps:

» Set the CLASSPATH environment variable. See the Java Development Kit (JDK) information for your
remote display for details.

Add the path where the RAWTGui.zip file is located to the CLASSPATH environment variable.
* Use the -classpath parameter of the java command.

When you use the java command to start Remote AWT, you can use the -classpath parameter to
specify a CLASSPATH. The CLASSPATH includes the path where the RAWTGui.zip file is located.

For example, in Windows®, the CLASSPATH parameter may look like this:
-classpath c:\jdkl.1.7\1ib\classes.zip;c:\rawt\RANTGui.zip

J2SDK, version 1.2 and higher JAR support sets the CLASSPATH, so you do not need to explicitly set
the CLASSPATH parameter. To set the classpath and start Remote AWT on a remote display, enter this
command:

java -jar <PATH>RAWTGui.jar

where <PATH> is the fully qualified drive and directory where the RAWTGui.jar file is located. For
example, java -jar c:\rawt2\RAWTGui.jar.

Start the Remote Abstract Window Toolkit for Java on a remote display
You need to start the server daemon on your remote display once and it stays active until you end it.
Java'™) programs that exit on an iSeries server do not end the server daemon.

Note: The Welcome dialog stays active when you start the server daemon. When the Welcome dialog

display closes, the server daemon ends. You can minimize the Welcome dialog display while the server
daemon is active and use the display to end the server daemon.

Chapter 1. IBM Developer Kit for Java 265

To start the Remote Abstract Window Toolkit (AWT) server daemon for JDK 1.1.x, enter this on the
command line:

java -classpath <PATH>RAWTGui.zip;C:\jdk1.1.8\1ib\classes.zip
com.ibm.rawt.server.RANTPCServer

where <PATH> is the fully qualified drive and directory where the RAWTGui.jar file is located. For
example, java -jar c:\rawt2\RAWTGui.jar.

To start the Remote AWT server daemon for J2SDK, version 1.3, enter this on the command line:
java -jar <PATH>RAWTGui.jar

where <PATH> is the fully qualified drive and directory where the RAWTGui.jar file is located. For
example, java -jar c:\rawt2\RAWTGui.jar.

The server daemon selects the first free port above 2000 when the Java application connects using
Remote AWT. The Java application uses this port until the application ends. Additional Java applications
are connected to subsequent free ports above 2000. The available range of ports goes up to 9999.

For more information about setting up TCP/IP, see "How do | set up TCP/IP” in the [TCP/IP Configuration|

land Reference, SC41-5420| book. @

Run a Java program using Remote Abstract Window Toolkit
To run Java™ using the Remote Abstract Window Toolkit (AWT), perform the following steps:

1. [Start Remote AWT on the remote display]|
2. Start the Java program on the iSeries server.

a. Enter the Run Java (RUNJVA) command on the command line.

Note: You must define the _ to the Java program.

Press F4 (Prompt).
Enter the Java program class name on the class parameter line.
Press F10 (Additional parameters).
Press the Page Down key.

Enter RmtAwtServer on the next property name parameter line.

Enter the Transmission Control Protocol/Internet Protocol (TCP/IP) address (for example,
1.1.11.11) of the remote display on the next property value parameter line.

h. Enter 0os400.class.path.rawt on the property name parameter line.
i. Enter 1 on the property value parameter line.

j- Enter + for more properties.

k. Enter java.version on the property name parameter line.

I. Enter 1.3 on the property value parameter line. This version must match the version of the
RAWTGui.jar daemon code running on the remote display.

The command line should have the following pattern, all on one line:

java class (classname) prop(('RmtAwtServer' '1.1.11.11')
('os400.class.path.rawt' '1')('java.version' '1.3'))

m. Press Enter.

@ *ooo0C

You can also run a Java program using [Remote AWT with Netscape.

Run a Java program using Remote Abstract Window Toolkit with Netscape: When running Java™
applications with Netscape, you can run them one of two ways.

266 iSeries: IBM Developer Kit for Java

One option is to start the Remote Abstract Window Toolkit (AWT) server within the Netscape Java virtual
machine by opening an HTML file that contains com.ibm.rawt.server.StartRAWT.class. For example, see
the RAWT.html file below. Once started, you can then start a Java application on your iSeries server.

Or, you can start the Remote AWT server within the Netscape Java virtual machine by opening an HTML
file that contains com.ibm.rawt.server.StartRAWT400.class and the IBM Toolbox for Java classes. For
example, see the RAWT400.html file shown below. Once started, you can sign on to your iSeries server
where the Java application resides and start the application.

Running within the Remote AWT server within the Netscape Java virtual machine

To run the Remote AWT server within the Netscape Java virtual machine, follow these steps:

1. Edit this example .html file for your specific installation information for RAWTGui.zip. This file,
RAWT.html, starts Remote AWT within the Netscape Java virtual machine.

Example: Start Remote AWT within the Netscape Java virtual machine
Note: Read the [Code example disclaimer for important legal information.

<HTML>

<BODY TEXT="#000000" LINK="#0QOOEE" VLINK="#551A8B" ALINK="#FF0000">
<CENTER>

<APPLET CODE="com.ibm.rawt.server.StartRAWT.class"
codebase="file://C|remote_awt\jdk1.1.7\1ib\RAWTGui.zip"

WIDTH=600 HEIGHT=50>

</APPLET>

</CENTER>

</BODY>

</HTML>

2. Browse the RAWT.html page with Netscape 4.05 or higher. After granting all of the requested
privileges, Netscape starts the Remote AWT server and runs it within its Java virtual machine.

3. Start a Java application on your iSeries server using Remote AWT.

4. After you exit the application, click on the Reload button while pushing the Shift key to start the
Remote AWT server again.

Running the Remote AWT server within the Netscape Java virtual machine and signing on to your
iSeries server

To run the Remote AWT server within the Netscape Java virtual machine and sign on to your iSeries
server, follow these steps:

1. Edit this example .html file for your specific installation information for jt400.zip and RAWTGui.zip. This
file, RAWT400.html, starts Remote AWT and uses the IBM Toolbox for Java to sign on to the iSeries
server.

Example: Start Remote AWT and use the Toolbox for Java to sign onto an iSeries server
Note: Read the [Code example disclaimer|for important legal information.

<HTML>

<BODY TEXT="#000000" LINK="#0O0OEE" VLINK="#551A8B" ALINK="#FFO000">
<CENTER>

<APPLET ARCHIVE="file://C\jt400\1ib\jt400.zip"
code="com.ibm.rawt.server.StartRANT400.class"
codebase="file://C|remote_awt\jdk1.1.1\1ib\RAWTGui.zip"
WIDTH=600 HEIGHT=50>

</APPLET>

</CENTER>

</BODY>

</HTML>

2. Browse this RAWT400.html page with Netscape 4.05. After granting all of the requested privileges,
Netscape starts the Remote AWT applet that displays a panel where you can do any of these options:

Chapter 1. IBM Developer Kit for Java 267

» Sign on to your iSeries server with Remote AWT using IBM Toolbox for Java to access the iSeries
server.

* Enter the Java application name and arguments with Remote AWT properties.
« Push the Start Application button to start the specified Java application with Remote AWT.

Print with the Remote Abstract Window Toolkit
Printing with the Remote Abstract Window Toolkit (AWT) is the same as standard Java‘™ AWT printing.

The Remote AWT remote display processes print output and directs the output to any printer that is known
to the remote display operating system. This can be a printer that is directly attached to the remote
display, or a network printer that is known to the remote display operating system.

You can select to print on the remote display or to an iSeries server. A new print dialog displays when an
application issues a print request. The print request allows you to select either a Remote Display printer or
OS/400 printer. If you select OS/400 printer, a sign on dialog display appears. Once you have signed on,
the Print Dialog display appears. You can specify the OS/400 print queue, print file, file and banner page
title. You can also select paper size, orientation, and number of copies.

To use remote printing, you must install the IBM Toolbox for Java (5763-JC1) and add this to your
classpath on the iSeries server:

QIBM/ProdData/HTTP/Public/jt400/1ib/jt400.zip

You can update the classpath by adding the classpath environment variable or by using the classpath
parameter.

Note: If this message appears while printing to the iSeries server, either the IBM Toolbox for Java is not
installed or the IBM Toolbox for Java classes are not in the classpath.

Failed to Toad class file: com/ibm/as400/access/PrintObjectList.class
Exception occurred during event dispatching:
java.lang.NoClassDefFoundError: com/ibm/as400/access/PrintObjectList

Remote Abstract Window Toolkit properties

When running a Java®™ Remote AWT application on the iSeries server, the 0s400.class.path.rawt
property must be used with a value of 1. There are a number of default properties that are required when
you use Remote AWT. These default properties along with the proper version of Remote AWT and the
CLASSPATH are set when you use the 0s400.class.path.rawt property. The version of Remote AWT is set
according to the JDK version, which is either the default version, if not specified, or the version that you
specify with the java.version property.

Here are the default properties that are required for Remote AWT.

For JDK 1.1.x:
¢ awt.toolkit=com.ibm.rawt.CToolkit

For J2SDK:

» awt.toolkit=com.ibm.rawt2.ahost.java.awt. AHToolkit

* java.awt.graphicsenv=com.ibm.rawt2.ahost.java.awt.AHGraphicsEnvironment
 java.awt.printerjob=com.ibm.rawt2.ahost.java.awt.print. AHPrinterjob

Remote AWT properties for remote display

If the server daemon or Java application abnormally ends with this message, check the Java version on
your remote display.

The JDK version in the Application-host/User-station is incompatible
with the Remote-AWT version...

268 iSeries: IBM Developer Kit for Java

To check the version level, enter java -version on the command line. You can use this new property on a
remote display if you have a problem with the JDK version. This property is not applicable for the iSeries
server. If the version is not at level 1.1.x, then you must install the proper level. If it is at level 1.1.x, you
can run the Remote AWT server or the Java application with this property that indicates the Java version:

-DJdkVersion=1.1.x

Remote Abstract Window Toolkit SecurityManager restrictions
Java™ SecurityManager is not commonly used. If a SecurityManager is installed, however, it must allow
the listed calls to succeed for RAWT to operate.

» SecurityManager.checkAccess(..)

» SecurityManager.checkMemberAccess(..)
» SecurityManager.checkExit(..)

» SecurityManager.checkRead(String file)

» SecurityManager.checkConnecit(...)

» SecurityManager.checkListen(...)

» SecurityManager.checkAccept(...)

» SecurityManager.checkPropertiesAccess(..)

Example: Set up the Remote Abstract Window Toolkit for Java™ on a Windows

remote display
This example shows one way that you can set up Remote AWT on a Windows® remote display. There

are many other ways you can do this, depending on your preference. You can use a similar process on
other remote display operating systems. The setup and starting processes are automated with a Windows
.bat file or other programming facility that the remote display operating system provides.

To set up the Remote Abstract Window Toolkit (AWT) for Java™ on a Windows remote display, do these
tasks:

* Make the Remote AWT class files accessible to the remote display.
Copy the Remote AWT class files to the remote display. Perform one of the following tasks:
— Copy /QIBM/ProdData/Java400/jdk118/RAWTGui.zip to c:\rawt\RAWTGui.zip.

— Copy /QIBM/ProdData/Java400/jdk1x’RAWTGui.jar, where x is your Java 2 Software Development
Kit (J2SDK), Standard Edition version (either 2, 3, or 4), to c:\rawt2\RAWTGui.jar.

» Start the Remote AWT on the remote display by entering this on the command line:

java -classpath c:\jdk1.1.8\1ib\classes.zip;c:\rawt\RAWTGui.zip
java com.ibm.rawt.server.RAWTPCServer

or
java -jar c:\rawt2\RAWTGui.jar

For more information, see [Set up the Remote Abstract Window Toolkit for Java on a remote display|

Class Broker for Java

Class Broker for Java™ (CBJ) is a general-purpose framework for writing client/server applications in
Java. Typically, a client/server application consists of both a client object and a server object. The server
and client are responsible for all communication between the two objects. This communication is often
accomplished by Remote Method Invocation (RMI) or by a socket connection. RMI is not easy or flexible
to use and there is a considerable learning curve when trying to use sockets effectively.

CBJ is easy to use, flexible, and hides the complexity of socket connections. Except for a few calls to the
CBJ classes to initialize the application, a brokered client/server application appears to be a local
application. CBJ handles all communication and resource loading between the client and server. The fact
that some of the objects of the program are running on the client and some are running on the server is

Chapter 1. IBM Developer Kit for Java 269

almost transparent. CBJ creates client and server proxies using the CBJ runtime. Once the broker creates
the proxy objects, the client communicates with the remote server by calling methods on the proxy of the
server. Likewise, the server object communicates with the client by calling methods on the proxy of the
client. Thus, both the client and server sides of the application appear as if they are calling methods of
local objects.

For information about using Class Broker for Java, see [Set up Class Broker for Java,

Set up the Class Broker for Java on a remote display
With the [Class Broker for Java™ (CBJ)| you can run Class Broker for Java-enabled Java graphical

programs on the iSeries server and display the graphics remotely.

You can either install CBJ yourself or have the system administrator install it for you. If the system
administrator installs the product, all programmers can share the same Java code.

You can either install CBJ on Windows® 95/98/NT, UNIX®, or iSeries server. In most circumstances, you
must install CBJ on your client machine and server machine.

Note: If your client machine is running a client applet that is accessed through a web server on the server
machine, then you do not need to install CBJ on the client machine.

To install CBJ on the iSeries server, see [Install Class Broker for Java on an iSeries server]

To install CBJ on your workstation, see [Install Class Broker for Java on Windows or UNIX|

Install Class Broker for Java on an iSeries server
To install Class Broker for Java‘™ (CBJ) on an iSeries server, follow these steps:

1. Make sure that the IBM Developer Kit for Java is properly installed. See [Install the IBM Developer Kit|

for Javalto test installation.

2. Select a directory in the integrated file system to store the CBJ package named cbj 1.1.jar. For
example, /usr/local.

3. Start the Qshell Interpreter by entering the QSH command and go to the directory that you selected in
the integrated file system. For example, /usr/Tocal. When you install the IBM Developer Kit for Java,
the cbj _1.1.jar package is installed in QIBM/ProdData/Java400/ext.

4. Enter this command in Qshell:
jar xvf "PATH"cbj 1.1.jar

"PATH" is the directory path where the cbj_1.1.jar package is located. For example,
QIBM/ProdData/Java400/ext.

The CBJ files are extracted into the subdirectory, named /usr/local/JCBroker. See|Package content
of cbj_.1.1.jar for more information.

5. Create an Java program on your iSeries server for jcb.jar, by entering this command:
CRTJVAPGM CLSF('/usr/local/JCBroker/1ib/jcb.jar")

6. If you want to use the CBJ classes (not in debug mode), you have to add JCBroker\1ib and
JCBroker\1ib\jcb.jar to the classpath option in the Java command line. It is not recommended that

you add JCBroker\1ib and JCBroker\1ib\jch.jar to the CLASSPATH environment variable, because it
might conflict with class loading when you run applets that set applet_jcb.jar in the ARCHIVE tag.

7. If you want to run CBJ in debug mode, replace jcb.jar with jcbd.jar in the classpath or override the
classpath value on the Java command line. You can also use this command:
CRTJVAPGM CLSF('/usr/Tocal/JCBroker/1ib/jcbd.jar")

8. For more information on CBJ APIs, running demos, editing properties, designing and writing CBJ
applications, and other topics, refer to the JCBroker/index.html file in the cpj_1.1.jar package.

270 iSeries: IBM Developer Kit for Java

Install Class Broker for Java on Windows or UNIX
To install Class Broker for Java‘™ (CBJ) on Windows®, follow these steps:

1.
2.
3.

Make sure that either JDK/JRE1.1 or JDK/JRE1.2 is properly installed.
Select a directory in to store the CBJ package, named cbhj 1.1.jar. For example, C:\.
Change to your directory (C:\) and enter this command:

C:\ > jar xvf cbhj_1.1.jar

The CBJ files are extracted and are copied into the directory. See [Package content of cbj_.1.1 jar|for
more information.

If you want to use the CBJ classes (not in debug mode), add C:\JCBroker\1ib and
C:\JCBroker\1ib\jcb.jar to the classpath option on the Java command line.

Note: It is not recommended that you add it to the system CLASSPATH environment variable, because
it might conflict with class loading when running applets that set applet_jcb.jar in the ARCHIVE tag.

To run CBJ in debug mode, replace jcb.jar with jcbd.jar in the classpath.

To install CBJ on UNIX®, follow the same step for Windows, except for the following system
dependent changes:

* Replace the Windows file separator "\" with the UNIX file separator "/".
* Replace the Windows classpath separator ”;” with the UNIX classpath separator ":".

* Replace the Windows system environment variables "%XXX%" with the UNIX system environment
variables "$XXX".

For more information on CBJ APlIs, running demos, editing properties, designing and writing CBJ
applications, and other topics, refer to the JCBroker/index.htm1 file in the cpj_1.1.jar package.

Package content of cbj_1.1.jar
Here is the Class Broker for Java™ (CBJ) package (cbj_1.1.jar). The bold items denote main directories
of subdirectories. The non-bold items denote files.

JCBroker

__ demo
bin
binx
html
images

1ib
___ discovery
distreetable
ftp
hellojch
jcbcalc
jcbchat
Thellojch
remotethread
stylepad
websmdemo

_____Tlog
src

o
o
(2]

api

guide

FAQ.htm1
quickStart.html

—
-
o

com
| ibm
| jcb
_____resources
JCB.properties

jcb.jar

Chapter 1. IBM Developer Kit for Java 271

jchd.jar
applet_jcb.jar
applet_jchd.jar
Editor.class

com (for designated users only)

| ibm
jcb
____proxies
___ resources
__util
jcbimpl
| transport

version.log
index.html (open it)

The next level of directories under the JCBroker directory consists of the following data:
demo

This directory contains these subdirectories: bin, binx, html, images, lib, log, and src. These directories
contain the Windows™ .exe files, UNIX® .exe, HTML pages, GIF files, class files, and source code (for
some examples) of several demo applications. You can run these demo examples by following the demo
instructions. The log directory is a placeholder for debug log files.

doc

This directory contains these two subdirectories: api and guide. The CBJ API guide and a user guide
about CBJ are stored here. The APl documentation was generated with the J2SDK, javadoc tool. To
browse the APl document or the user guide, open the index.html file in the corresponding directory. The
user guide is an introductory level document, whereas the QuickStart guide is a fast track entry document.

This directory also contains a FAQ.html file and the quickStart.html file that explains how to install and use
CBJ, and shows you how to run the demo examples.

lib

This directory contains the CBJ classes and resources that are needed for you to develop, run, and deploy
new CBJ-based applications. The classes are packaged in the jcb.jar file, For debug mode, the classes
are packaged in the jcbd.jar file. The classes that are included in the ARCHIVE tag of an applet are
packaged in the applet_jcb.jar file. For debug mode, the classes are packaged in the applet_ jcbd.jar file.
The Java Class Broker (JCB) properties file, named JCB.properties, is in the com/ibm/jcb/resources
subdirectory. It is read by the CBJ runtime when started. You can change this file to reflect your
preferences. The properties are explained in the installation and setting up section. The properties that
only apply to applets are contained in the applet_JCB.properties file, which is part of the applet_ jcb.jar
and applet_ jcbd.jar. You can also change this file to reflect your preferences when running in applet
mode. To change this file, run the Editor Java application that resides in this directory.

Src

This directory contains the CBJ source code and the internal version log file, called version.log. The
directory is empty except for selected packages.

index.html

This is the starting page that references you to the rest of the documentation.

272 iSeries: IBM Developer Kit for Java

Native Abstract Windowing Toolkit

Native Abstract Windowing Toolkit (NAWT) provides Java® applications and servlets with the capability to
use the Java Development Kit's (JDK) Abstract Windowing Toolkit (AWT) graphics function.

You can use NAWT (pronounced "naw-TEE") in Java graphics applications that do not require direct user
interaction. An example of such an application would be code that generates an image such as a JPEG or
GlIF-encoded file or output stream. For this release, NAWT supports JDK versions 1.2 and 1.3.

You can also use NAWT as an alternative to Remote Abstract Windowing Toolkit (RAWT) for
noninteractive applications. In RAWT, graphics computation is performed by an attached PC server. RAWT
can be used for a more general class of graphics-based applications, but requires the remote PC, and
usually incurs some performance overhead due to network latency between the iSeries server and PC GUI
server.

NAWT uses the X Window System as the underlying graphics engine, performing the graphics
computation entirely on an iSeries server. The X Window System is a graphics system that provides a
client/server base for displaying graphics.

For more information about installing NAWT and using it in your applications, see the following topics:

Read about installing NAWT on your iSeries server, including information about the recommended X
Window graphics server, OS/400 PASE, required software fixes (PTFs), the iSeries Tools for
Developers PRPQ, and more.

[Tips on using VNC|
Find out how to start and VNC display server from a CL program and how to end a VNC display
server.

For more information about the VNC server that NAWT uses, refer to the|AT&T Research Virtual Network|
?

Installing NAWT

NAWT relies upon the X Window System for its graphics engine. The recommended X Window graphics
server for this release is Virtual Network Computing (VNC), which runs under OS/400 Portable Application
Solutions Environment (PASE).

PASE is a UNIX-like environment capable of running most binary executables compiled for IBM’s AIX
operating system. VNC is a product of AT&T Research Labs, and provides a virtual X Window server; that
is, an X server that does not require you to directly attach a graphics-capable display device.

To install and run Native Abstract Windowing Toolkit (NAWT), perform the following tasks:
. [Install 0S/400 PASE]

[Install NAWT PTFs

. |Install iSeries Tools for Developers PRPQ)

. |Create a VNC password file|

. |Configure Java system properties|

. [Start the VNC server]

. |Set environment variables|

. |Verify installation procedure]

Install 0S/400 PASE: Order and install OS/400 Portable Application Solutions Environment (PASE),
5722581, option 33. For more information, see |[0S/400 PASE|

Chapter 1. IBM Developer Kit for Java 273

0N O N =

http://www.uk.research.att.com/vnc/
http://www.uk.research.att.com/vnc/

Install NAWT PTFs: Before installing any software fixes (PTFs), ensure that you have the licensed
program 5722JV1 option corresponding to the JDK version you want to use by performing these steps:

1. Enter the Go Licensed Program (GO LICPGM) command on the command line.

2. Select option 10 (Displayed installed licensed program) and verify that the licensed program 5722JV1
option corresponding to the version of the JDK you intend to use is installed.

The options are:

JDK Version Option
JDK 1.2 57SSJV1 option 3
JDK 1.3 57SSJV1 option 5

& Apply the latest Java group software fix to pick up any recent NAWT fixes. For more information about
software fixes, see [Use software fixes|

Install iSeries Tools for Developers PRPQ: Install the iSeries Tools for Developers PRPQ (5799PTL). If
you do not have the PRPQ, you must order it.

Newer versions of the PRPQ include a pre-compiled OS/400 PASE-enabled version of Virtual Network
Computing (VNC). Older versions do not include VNC. How you install the PRPQ depends on which
version you have:

* For versions of the PRPQ ordered on or after 14 June 2002: Complete this task by using the installation

instructions available at the|AppIication Factory - iSeries Tools for Developmenll R4 Web site.

Note: To install the VNC support available in the PRPQ, follow only the installation instructions at the
Application Factory Web site. You do not need to follow the setup instructions.

« For versions of the PRPQ ordered before 14 June 2002, refer to [Installing older versions of iSeries|
[Tools for Developers PRPQ|to complete this task.

Create a VNC password file: By default, VNC requires a password file that protects the VNC display

against unauthorized user access. How you create create an encrypted password depends in which

version of the PRPQ you are using:

» For versions of the PRPQ ordered on or after 14 June 2002, use the following commands at the iSeries
command prompt:

MKDIR DIR("'/home/your_profile_name/.vnc')
QAPTL/VNCPASSWD USEHOME (*NO) PWDFILE('/home/your profile name/.vnc/passwd"')

» For versions of the PRPQ ordered before 14 June 2002, use the following commands at the iSeries
command prompt:

MKDIR DIR('/home/your_profile_name/.vnc')
VNCSAVF/VNCPASSWD USEHOME (*NO) PWDFILE('/home/your profile name/.vnc/passwd')

Only the user that starts the VNC server needs to have a password file. 4

Configure Java system properties
Set the Java system properties. The first line configures Java for the desired JDK version (1.2 or 1.3) and
the second line enables NAWT:

java.version=version
0s400.class.path.rawt=2

Where version is either 1.2 or 1.3, depending on which version of the JDK you wish to use.

For help on how to set Java system properties, see [Customize your iSeries server for the IBM Developer|
Kit for Java

274 iSeries: IBM Developer Kit for Java

http://www.ibm.com/iseries/developer/factory/tools/install.html

Start the VNC server
To start the VNC server, perform the following steps:

1. Start a PASE shell:
CALL QP2TERM

2. From the PASE shell, start the NAWT-configured version of the VNC server:
/Q0penSys/QIBM/ProdData/DeveloperTools/vnc/vncserver java

When the server starts, you will see a message similar to, "New ’X’desktop is systemname:1.”
Remember this desktop name for the next step.

Note: The display number (that is, the number to the right of the colon) may be different if you start
another VNC server. Each concurrently running VNC server requires a unique display number. When
you do not specify the display number on the call to vncserver_java, the vncserver_java program finds
an available display. Request a specific display by using the following command to start the
vncserver_java program:

/QOpenSys/QIBM/ProdData/DeveloperTools/vnc/vncserver_java :n

where n is the display number you want to use.

Set environment variables
In any session where you run Java with NAWT, you must tell Java where to find the X server and where to
find X authority files. You give Java this information by setting environment variables.

In the session where you want to run Java programs, set the DISPLAY environment variable to your
system name and display number (that is, the value printed when you ran vncserver_java).

Also, set the XAUTHORITY environment variable to /home/your_profile_name/.Xauthority.

For example, at the iSeries command prompt, type the following commands:

ADDENVVAR ENVVAR(DISPLAY) VALUE('systemname:1")
ADDENVVAR ENVVAR(XAUTHORITY) VALUE('/home/your profile_name/.Xauthority')

Notes:

* The .Xauthority file is created or modified when the VNC server is started. X server authorization
enforces a security protocol on your X server connection, preventing the applications of other users
from intercepting your X server requests.

* Only the user who actually starts the JVM needs to set these environment variables. For instance, in a
servlet environment, only the user starting the servlet engine needs to set them.

Verify installation procedure
Verify that the steps above completed successfully by using the following command to run a NAWT test
Java application:

JAVA CLASS(NAWTtest) CLASSPATH('/QIBM/ProdData/Java400/')

The test application creates a JPEG-encoded image called /tmp/NAWTtest.jpg in the integrated file
system. Verify that the application created the file and produced no Java exceptions. If you want to display
the image, you can use binary mode to upload the image file to a graphics-capable system.

Installing older versions of iSeries Tools for Developers
#* Versions of iSeries Tools for Developers PRPQ (5799PTL) ordered before 14 June 2002, PRPQ do not
include a pre-compiled OS/400 PASE-enabled version of Virtual Network Computing (VNC).

Use the following instructions to determine if you have the enhanced PRPQ and to install VNC if you have
an older version of the PRPQ.

Chapter 1. IBM Developer Kit for Java 275

Determine whether you have the enhanced PRPQ: If you own PRPQ 5799-PTL but are not sure
whether you have the enhanced version that contains VNC, check for the existence of the following file:

/Q0penSys/QIBM/ProdData/DeveloperTools/vnc/vncserver java

The enhanced version of the PRPQ includes the vncserver_java file, but older versions do not. If
vncserver_java is not present on your iSeries server, you can either order and install the latest version of
the PRPQ or use the following instructions to complete the VNC installation.

Install VNC: To install VNC on an older version of iSeries Tools for Developers PRPQ, complete the
following steps.

1. Create the save files on your iSeries server by running the following commands:

crtlib vncsavf

crtsavf vncsavf/vncpasswd
crtsavf vncsavf/vnc
crtsavf vncsavf/fonts
crtsavf vncsavf/icewm

2. Click the links in the following list to download the save files to your workstation from the
Factory - iSeries Tools for Development] 9 Web site:

e [vnc.savf
+ |[vncpasswd.savi|
* [fonts.savf

. ‘icewm.savﬂ

3. Use FTP to transfer the save files from your workstation to the iSeries server by running the following
commands on your workstation:

ftp youriseriesserver
bin
cd /gsys.lib/vncsavf.lib
put vnc.savf
put vncpasswd.savf
put fonts.savf
put icewm.savf
quit
4. Restore the save files by running the following commands on your iSeries server:

RSTOBJ OBJ(*ALL) SAVLIB(VNCSAVF) DEV(*SAVF) SAVF(VNCSAVF/VNCPASSWD)

RST DEV('/Qsys.Tib/vncsavf.lib/vnc.file') OBJ(('/QOpenSys/QIBM/ProdData/DeveloperTools/vncx"'))

RST DEV('/Qsys.lib/vncsavf.lib/fonts.file') OBJ(('/QOpenSys/QIBM/ProdData/DeveloperTools/fontsx"'))
RST DEV('/Qsys.lib/vncsavf.lib/icewm.file') OBJ(('/QOpenSys/QIBM/ProdData/DeveloperTools/icewm*"'))

5. [Continue installing NAWT by creating a VNC password file] <%

Tips on using VNC
% This page discusses additional tips on using Virtual Network Computing (VNC).

Start a VNC display server from a CL program

The following example is one way to set the DISPLAY environment variable and start VNC automatically
from a CL program. It is assumed that display :n is not already running. It is also assumed that you have
already created the password file required by VNC by running the VNCPASSWD command.

ADDENVVAR ENVVAR(DISPLAY) VALUE('systemname:n")
call gp2shell parm('/QOpenSys/QIBM/ProdData/DeveloperTools/vnc/vncserver_java' ':n')

where n is the numeric value representing the display number that you want to start.

End a VNC display server
To end a VNC server that you started:

call gp2shell parm('/QOpenSys/QIBM/ProdData/DeveloperTools/vnc/vncserver java' '-kill' ':n')

276 iSeries: IBM Developer Kit for Java

http://www.ibm.com/iseries/developer/factory/tools/index.html
http://www.ibm.com/iseries/developer/factory/tools/index.html
http://www.ibm.com/eserver/iseries/developer/factory/tools/vnc.savf
http://www.ibm.com/eserver/iseries/developer/factory/tools/vncpasswd.savf
http://www.ibm.com/eserver/iseries/developer/factory/tools/fonts.savf
http://www.ibm.com/eserver/iseries/developer/factory/tools/icewm.savf

where n is the numeric value representing the display number that you want to end. 4%

Chapter 1. IBM Developer Kit for Java 277

278 iSeries: IBM Developer Kit for Java

Chapter 2. Java security

The majority of the Java™ programs that run on an iSeries server are applications, not applets, so the

"sandbox” security model does not restrict them. From a security point of view, Java applications are

subject to the same security restrictions as any other program on an iSeries server. To run a Java program

on an iSeries server, you must have authority to the class file in the integrated file system. Once the
program starts, it runs under the user’s authority.

You can use adopted authority to access objects with the authority of the user that is running the program,
and the program owner’s authority. Adopted authority temporarily gives a user authority to objects that they
would not have originally had authority to access. See the [Create Java Program (CRTJVAPGM) command

information for details on the two new adopted authority parameters, which are USRPRF and
USEADPAUT.

#* The IBM Developer Kit for Java provides the following security features for your Java applications:

Wava security model|

The byte code loader and verifier, within the Java virtual machine, also provide a measure of Java
security using the Java security model. Just as with applets, the byte code loader and verifier check
that the byte codes are valid and data types are used properly. They also check that registers and

memory are accessed correctly, and that the stack does not overflow or underflow. These checks

ensure that the Java virtual machine can safely run the class without compromising the integrity of

the system.

Wava Cryptography Extension|

The Java Cryptography Extension (JCE) implementation on the iSeries server is compatible with the

implementation of Sun Microsystems, Inc. This documentation covers the unique aspects of the

iSeries implementation. It is assumed that you are familiar with the general documentation for the

JCE.

Wava Secure Socket Extension|

The Java Secure Socket Extension (JSSE) is the Java implementation of the Secure Sockets Layer

(SSL) protocol. JSSE uses SSL and the Transport Layer Security (TLS) protocol to enable clients

and servers to conduct secure communications over TCP/IP. This documentation covers the unique
aspects of the iSeries implementation of JSSE. It is assumed that you are familiar with the general

documentation for JSSE.

Wava Authentication and Authorization Service]
Java Authentication and Authorization Service (JAAS) is another item of security that the IBM

Developer Kit for Java supports. Currently, the Java 2 Software Development Kit (J2SDK), Standard
Edition provides access controls that are based on where the code originated and who signed the

code (code source-based access controls). It lacks, however, the ability to enforce additional access
controls based on who runs the code. JAAS provides a framework that adds this support to the Java

2 security model.

Wava Generic Security Service

Java Generic Security Service (JGSS) is another item of security that the IBM Developer Kit for Java

supports. JGSS provides a generic interface for secure messaging between applications. JGSS
supports a variety of security mechanisms based on secret-key, public-key, or other security
technologies.

Note: For J2SDK, version 1.4, JAAS, JCE, JGSS, and JSSE are part of the base JDK and are not
considered to be extensions. For previous JDK versions, these security items are extensions. 4%

© Copyright IBM Corp. 1998, 2001

279

Java security model

You can download Java‘™ applets from any system; thus, security mechanisms exist within the Java
virtual machine to protect against malicious applets. The Java runtime system verifies the bytecodes as
the Java virtual machine loads them. This ensures that they are valid bytecodes and that the code does
not violate any of the restrictions that the Java virtual machine places on Java applets. Java applets are
restricted in what operations they can perform, how they access memory, and how they use the Java
virtual machine. The restrictions are in place to prevent a Java applet from gaining access to underlying
operating system or data on the system. This is the "sandbox” security model, because the Java applet
can only "play” in its own sandbox.

The "sandbox” security model is a combination of the class loader, class file verifier, and the
java.lang.SecurityManager class.

For more information about security, see the Security by Sun Microsystems, Inc. documentation and
[Secure applications with SSL}

Java Cryptography Extension

The Java™ Cryptography Extension (JCE) 1.2 is a standard extension to the Java 2 Software
Development Kit (J2SDK), Standard Edition. The JCE implementation on an iSeries server is compatible
with the implementation of Sun Microsystems, Inc. This documentation covers the unique aspects of the
iSeries implementation. We assume that you are familiar with the general documentation for the JCE
extensions. To make it easier for you to work with that and our iSeries information, we provide a link to

[Sun JCE documentation| o

On the iSeries server, the level of encryption is controlled by the Cryptographic Access Provider Product.
This is available in two versions, 5722-AC2 and 5722-AC3. The 5722-AC3 product allows all of the
encryption algorithms. The 5722-AC2 product does not allow Triple-DES, and limits symmetric algorithms
to 56 bits and asymmetric algorithms to 1024 bits.

With the exception of the restrictions on 5722-AC2 already mentioned, the IBM JCE Provider supports the
following algorithms:

 DES

» Triple-DES
+ RC2

- RC4

» Blowfish
* RSA

» Diffie-Hellman
« DSA

* Mars

« MD2

+ MD5

* SHA-1

* Seal

In addition, it also provides a random number generator.

If you want to use IBM JCE with Java 1.2, edit the

/QIBM/ProdData/Java400/jdk12/lib/security/java.security file. % The section of the file that needs to be
changed is shown as follows.

280 iSeries: IBM Developer Kit for Java

http://java.sun.com/products/jce/index-12.html
http://java.sun.com/products/jce/index-12.html

To use the IBMJCE security provider, you need to:
1) Install an IBM Cryptographic Access Provider Product
2) uncomment the second provider entry that follows.

List of providers and their preference orders:

S S H I I H

security.provider.l=sun.security.provider.Sun
#security.provider.2=com.ibm.crypto.provider.IBMJCE

% If you want to use IBM JCE with Java 1.3, edit the

/QIBM/ProdData/OS400/Java400/jdk/lib/security/java.security file. ¥ The section of the file that needs to
be changed is shown as follows.

#

To use the IBMJCE security provider, you need to:

1) Install an IBM Cryptographic Access Provider Product
2) Uncomment the third provider entry that follows.
#
#

List of providers and their preference orders:
#
security.provider.l=sun.security.provider.Sun
security.provider.2=com.sun.rsajca.Provider
#security.provider.3=com.ibm.crypto.provider.IBMJCE

In both cases, it is just a matter of deleting one character.

Java Secure Socket Extension

The Java™ Secure Socket Extension (JSSE) is the Java implementation of the Secure Sockets Layer
(SSL) protocol. JSSE uses SSL and the Transport Layer Security (TLS) protocol to enable clients and
servers to conduct secure communications over TCP/IP.

JSSE provides the following functions:
* Encrypts data

» Authenticates remote user IDs

* Authenticates remote system names
* Performs client/server authentication
* Ensures message integrity

Integrated into the Java 2 Software Development Kit, Standard Edition (J2SDK), version 1.4, JSSE
provides more functionality than does SSL alone. For more information, see the following topics:

lUsing SSL (JSSE, version 1.0.8)|

SSL provides a means of authenticating a server and a client to provide privacy and data integrity. All
SSL communications begin with a "handshake” between the server and the client. During the
handshake, SSL negotiates the cipher suite that the client and server use to communicate with each
other. This cipher suite is a combination of the various security features available through SSL. You
can use SSL with any supported version of the JDK prior to J2SDK, version 1.4.

|Using JSSE, version 1.4|

JSSE is like a framework that abstracts the underlying mechanisms of both SSL and TLS. By
abstracting the complexity and peculiarities of the underlying protocols, JSSE enables programmers
to use secure, encrypted communications while at the same time minimizing possible security
vulnerabilities. This information applies only to using JSSE on iSeries servers that run J2SDK,
version 1.4.

Chapter 2. Java security 281

Note: This information concerns the version of JSSE that now comes bundled in the J2SDK, version 1.4.
For previous versions of JSSE, see |Java Secure Socket Extension|on the Sun Java Web site d K

Using SSL (JSSE, version 1.0.8)

You can use the Java Secure Socket Extension (JSSE, version 1.0.8), which is the Java implementation of
secure sockets layer (SSL), to make your Java™ application more secure. SSL does the following to
improve the security of your application:

» Protects communication data through encryption.

» Authenticates remote user IDs.

» Authenticates remote system names.

Note: SSL uses a digital certificate to encrypt the socket communication of your Java application. Digital
certificates are an Internet standard for identifying secure systems, users, and applications. You can
control digital certificates using the IBM Digital Certificate Manager. For more information, see
[Certificate Manager,

To make your Java application more secure by using SSL:
Prepare the iSeries servedto support SSL.
» Design your Java application to use SSL by:
— |Changing your Java socket code to use socket factories| if you do not use socket factories already.
- ‘Changing your Java code to use SSL|
» Use a digital certificate to make your Java application more secure by:
1. [Selecting a type of digital certificate to use]
2. |Using the digital certificate when you run your application|

You can also register your Java application as a secure application by using the
QsyRegisterAppForCertUse API. For more information, see |QsyRegisterAppForCertUse|

#¥ For more information on the Java version of SSL, see [Java Secure Socket Extension| 9 by sun
Microsystems, Inc. %

Prepare iSeries server for secure sockets layer support
To prepare your system to use secure sockets layer (SSL), you need to install the Digital Certificate

Manager LP:
« % 5722-SS1 0S/400 - Digital Certificate Manageré%

You also need to install one of these |Cryptographic Access Provider| LPs:

% 5722-AC1 Cryptographic Access Provider 40-Bit
» 5722-AC2 Cryptographic Access Provider 56-Bit

+ 5722-AC3 Cryptographic Access Provider 128-Bit 4

You also need to make sure you can access or create a digital certificate on your system. For more
information on iSeries digital certificate management and the Internet, see [Getting started with IBM Digital
[Certificate Managei

Cryptographic Access Providers
The Cryptographic Access Providers offer many cipher suites for your system to use. A cipher suite is a

combination of different security features. This list shows which cipher suite each Cryptographic Access
Provider offers:

282 iSeries: IBM Developer Kit for Java

http://java.sun.com/products/jsse
http://java.sun.com/products/jsse

#» 5722-AC1 Cryptographic Access Provider 40-Bit &
SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

#» 5722-AC2 Cryptographic Access Provider 56-Bit %
SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_DES_CBC_MD5
SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

#* 5722-AC3 Cryptographic Access Provider 128-Bit <%
SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_SDES_EDE_CBC_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC2_CBC_128_MD5
SSL_RSA_WITH_DES_CBC_MD5
SSL_RSA_WITH_3DES_EDE_CBC_MD5

You may be limited on the Cryptographic Access Provider that you can choose from, depending on which
country or region you are in. Once you load a Cryptographic Access Provider, you can use any of the
cipher suites that that Access Provider offers.

Change your Java code to use socket factories
To use secure sockets layer (SSL) with your existing code, you must first change your code to use socket
factories.

To change your code to use socket factories, perform the following steps:

1. Add this line to your program to import the SocketFactory class:
import javax.net.x;

2. Add a line that declares an instance of a SocketFactory object. For example:
SocketFactory socketFactory

3. Initialize the SocketFactory instance by setting it equal to the method SocketFactory.getDefault(). For
example:

socketFactory = SocketFactory.getDefault();

The whole declaration of the SocketFactory should look like this:
SocketFactory socketFactory = SocketFactory.getDefault();

4. |Initialize your existing sockets. Call the SocketFactory method createSocket(host,port) on your socket
factory for each socket you declare.

Your socket declarations should now look like this:

Socket s = socketFactory.createSocket (host,port);

Where:
* sis the socket that is being created.
* socketFactory is the SocketFactory that was created in step 2.

Chapter 2. Java security 283

* host is a string variable that represents the name of a host server.
e portis an integer variable that represents the port number of the socket connection.

When you have completed all of these steps, your code uses socket factories. You do not need to make
any other changes to your code. All of the methods that you call and all the syntax with your sockets still
work.

See |Examp|es: Change your Java'™ code to use server socket factories| for an example of a client
program being converted to use socket factories.

See |Examp|e: Change your Java code to use client socket factories| for an example of a client program
being converted to use socket factories.

Examples: Change your Java code to use server socket factories

These examples show you how to change a simple socket class, named simpleSocketServer, so that it
uses socket factories to create all of the sockets. The first example shows you the simpleSocketServer
class without socket factories. The second example shows you the simpleSocketServer class with socket
factories. In the second example, simpleSocketServer is renamed to factorySocketServer.

Example 1: Socket server program without socket factories

Note: Read the [Code example disclaimer] for important legal information.
/* File simpleSocketServer.java*/

import java.net.=;
import java.io.*;

public class simpleSocketServer {
public static void main (String args[]) throws IOException {

int serverPort = 3000;

if (args.length < 1) {
System.out.printin("java simpleSocketServer serverPort");
System.out.printin("Defaulting to port 3000 since serverPort not specified.");

1
else

serverPort = new Integer(args[0]).intValue();
System.out.printIn("Establishing server socket at port " + serverPort);

ServerSocket serverSocket =
new ServerSocket(serverPort);

// a real server would handle more than just one client Tike this...
Socket s = serverSocket.accept();
BufferedInputStream is = new BufferedInputStream(s.getInputStream());
BufferedOutputStream os = new BufferedOutputStream(s.getOutputStream());
// This server just echoes back what you send it...
byte buffer[] = new byte[4096];
int bytesRead;
// read until "eof" returned
while ((bytesRead = is.read(buffer)) > 0) {

os.write(buffer, 0, bytesRead); // write it back

os.flush(); // flush the output buffer
}

284 iSeries: IBM Developer Kit for Java

s.close();
serverSocket.close();
} // end main()

} // end class definition

Example 2: Simple socket server program with socket factories

Note: Read the [Code example disclaimer for important legal information.
/* File factorySocketServer.java */

// need to import javax.net to pick up the ServerSocketFactory class
import javax.net.x;

import java.net.=;

import java.io.*;

public class factorySocketServer {
public static void main (String args[]) throws IOException {

int serverPort = 3000;

if (args.length < 1) {
System.out.printin("java simpleSocketServer serverPort");
System.out.printin("Defaulting to port 3000 since serverPort not specified.");
1
else
serverPort = new Integer(args[0]).intValue();

System.out.printin("Establishing server socket at port " + serverPort);

// Change the original simpleSocketServer to use a

// ServerSocketFactory to create server sockets.

ServerSocketFactory serverSocketFactory =
ServerSocketFactory.getDefault();

// Now have the factory create the server socket. This is the last

// change from the original program.

ServerSocket serverSocket =
serverSocketFactory.createServerSocket (serverPort);

// a real server would handle more than just one client like this...
Socket s = serverSocket.accept();
BufferedInputStream is = new BufferedInputStream(s.getInputStream());
BufferedOutputStream os = new BufferedOutputStream(s.getOutputStream());
// This server just echoes back what you send it...
byte buffer[] = new byte[4096];
int bytesRead;
while ((bytesRead = is.read(buffer)) > 0) {

os.write(buffer, 0, bytesRead);

os.flush();
1

s.close();
serverSocket.close();

}

For background information, see [Change your Java™ code to use socket factories|

Chapter 2. Java security

285

Examples: Change your Java code to use client socket factories

These examples show you how to change a simple socket class, named simpleSocketClient, so that it
uses socket factories to create all of the sockets. The first example shows you the simpleSocketClient
class without socket factories. The second example shows you the simpleSocketClient class with socket
factories. In the second example, simpleSocketClient is renamed to factorySocketClient.

Example 1: Socket client program without socket factories

Note: Read the [Code example disclaimer for important legal information.
/* Simple Socket Client Program x/

import java.net.=*;
import java.io.*;

public class simpleSocketClient {
public static void main (String args[]) throws IOException {

int serverPort = 3000;

if (args.length < 1) {
System.out.printin("java simpleSocketClient serverHost serverPort");
System.out.printin("serverPort defaults to 3000 if not specified.");

return;

if (args.length == 2)
serverPort = new Integer(args[1]).intValue();

System.out.printIn("Connecting to host " + args[0] + " at port " +
serverPort);

// Create the socket and connect to the server.
Socket s = new Socket(args[0], serverPort);

// The rest of the program continues on from here.

Example 2: Simple socket client program with socket factories

Note: Read the [Code example disclaimer for important legal information.
/* Simple Socket Factory Client Program =*/

// Notice that javax.net.* is imported to pick up the SocketFactory class.
import javax.net.x;

import java.net.=*;

import java.io.*;

public class factorySocketClient {
public static void main (String args[]) throws IOException {

int serverPort = 3000;

if (args.length < 1) {
System.out.printin("java factorySocketClient serverHost serverPort");
System.out.printin("serverPort defaults to 3000 if not specified.");
return;

1
if (args.length == 2)
serverPort = new Integer(args[1]).intValue();

System.out.printin("Connecting to host " + args[0] + " at port " +
serverPort);

286 iSeries: IBM Developer Kit for Java

// Change the original simpleSocketClient program to create a
// SocketFactory and then use the socket factory to create sockets.

SocketFactory socketFactory = SocketFactory.getDefault();

// Now the factory creates the socket. This is the last change
// to the original simpleSocketClient program.

Socket s = socketFactory.createSocket(args[0], serverPort);

// The rest of the program continues on from here.

For background information, see [Change your Java™ code to use socket factories,.

Change your Java code to use secure sockets layer
If your code already uses socket factories to create its sockets, then you can add secure socket layer
(SSL) support to your program. If your code does not already use socket factories, see

Wava'™ code to use socket factories|

To change your code to use SSL, perform the following steps:

1. Import javax.net.ssl.” to add SSL support:
import javax.net.ssl.*;

2. Declare a SocketFactory by using SSLSocketFactory to initialize it:
SocketFactory newSF = SSLSocketFactory.getDefault();

3. Use your new SocketFactory to initialize your sockets the same way that you used your old
SocketFactory:

Socket s = newSF.createSocket(args[0], serverPort);

Your code now uses SSL support. You do not need to make any other changes to your code.

See [Examples: Change your Java client to use secure sockets layer|and [Examples: Change your Javal
lserver to use secure sockets layer for example code.

Examples: Change your Java server to use secure sockets layer
These examples show you how to change one class, named factorySocketServer, to use secure sockets
layer (SSL).

The first example shows you the factorySocketServer class not using SSL. The second example shows
you the same class, renamed factorySSLSocketServer, using SSL.

Example 1: Simple factorySocketServer class without SSL support

Note: Read the [Code example disclaimer for important legal information.

/* File factorySocketServer.java =*/

// need to import javax.net to pick up the ServerSocketFactory class
import javax.net.x;

import java.net.=;

import java.io.*;

public class factorySocketServer {
public static void main (String args[]) throws IOException {

int serverPort = 3000;
if (args.length < 1) {

System.out.printin("java simpleSocketServer serverPort");

Chapter 2. Java security 287

System.out.printin("Defaulting to port 3000 since serverPort not specified.");
1
else
serverPort = new Integer(args[0]).intValue();

System.out.printIn("Establishing server socket at port " + serverPort);

// Change the original simpleSocketServer to use a

// ServerSocketFactory to create server sockets.

ServerSocketFactory serverSocketFactory =
ServerSocketFactory.getDefault();

// Now have the factory create the server socket. This is the last

// change from the original program.

ServerSocket serverSocket =
serverSocketFactory.createServerSocket (serverPort);

// a real server would handle more than just one client like this...
Socket s = serverSocket.accept();
BufferedInputStream is = new BufferedInputStream(s.getInputStream());
BufferedOutputStream os = new BufferedOutputStream(s.getOutputStream());
// This server just echoes back what you send it.
byte buffer[] = new byte[4096];
int bytesRead;
while ((bytesRead = is.read(buffer)) > 0) {

os.write(buffer, 0, bytesRead);

os.flush();
1

s.close();
serverSocket.close();
}
1

Example 2: Simple factorySocketServer class with SSL support

Note: Read the [Code example disclaimer| for important legal information.
/* File factorySocketServer.java */

// need to import javax.net to pick up the ServerSocketFactory class
import javax.net.x;

import java.net.=*;

import java.io.*;

public class factorySocketServer {
public static void main (String args[]) throws IOException {

int serverPort = 3000;

if (args.length < 1) {
System.out.printin("java simpleSocketServer serverPort");
System.out.printin("Defaulting to port 3000 since serverPort not specified.");
1
else
serverPort = new Integer(args[0]).intValue();

System.out.printIn("Establishing server socket at port " + serverPort);
// Change the original simpleSocketServer to use a
// ServerSocketFactory to create server sockets.

ServerSocketFactory serverSocketFactory =
ServerSocketFactory.getDefault();

288 iSeries: IBM Developer Kit for Java

}

// Now have the factory create the server socket. This is the last

// change from the original program.

ServerSocket serverSocket =
serverSocketFactory.createServerSocket (serverPort);

// a real server would handle more than just one client like this...

Socket s = serverSocket.accept();
BufferedInputStream is = new BufferedInputStream(s.getInputStream());

BufferedOutputStream os = new BufferedOutputStream(s.getOutputStream());

// This server just echoes back what you send it.
byte buffer[] = new byte[4096];
int bytesRead;

while ((bytesRead = is.read(buffer)) > 0) {
os.write(buffer, 0, bytesRead);
os.flush();

}

s.close();
serverSocket.close();

}

For background information, see [Change your Java™ code to use secure sockets layer|

Examples: Change your Java client to use secure sockets layer
These examples show you how to change one class, named factorySocketClient, to use secure sockets
layer (SSL).

The first example shows you the factorySocketClient class not using SSL. The second example shows you
the same class, renamed factorySSLSocketClient, using SSL.

Example 1: Simple factorySocketClient class without SSL support

Note: Read the [Code example disclaimer] for important legal information.
/* Simple Socket Factory Client Program x/

import javax.net.=;
import java.net.=;
import java.io.*;

public class factorySocketClient {

public static void main (String args[]) throws IOException {
int serverPort = 3000;
if (args.length < 1) {
System.out.printin("java factorySocketClient serverHost serverPort");
System.out.printin("serverPort defaults to 3000 if not specified.");
return;

if (args.length == 2)
serverPort = new Integer(args[1]).intValue();

System.out.printin("Connecting to host " + args[0] + " at port " +
serverPort);

SocketFactory socketFactory = SocketFactory.getDefault();

Socket s = socketFactory.createSocket(args[0], serverPort);

Chapter 2. Java security

289

// The rest of the program continues on from here.

Example 2: Simple factorySocketClient class with SSL support

Note: Read the [Code example disclaimer for important legal information.

// Notice that we import javax.net.ssl.x to pick up SSL support
import javax.net.ssl.*;

import javax.net.x;

import java.net.=*;

import java.io.*;

public class factorySSLSocketClient {
public static void main (String args[]) throws IOException {

int serverPort = 3000;

if (args.length < 1) {
System.out.printin("java factorySSLSocketClient serverHost serverPort");
System.out.printin("serverPort defaults to 3000 if not specified.");
return;

1
if (args.length == 2)
serverPort = new Integer(args[1]).intValue();

System.out.printin("Connecting to host " + args[0] + " at port " +
serverPort);

// Change this to create an SSLSocketFactory instead of a SocketFactory.
SocketFactory socketFactory = SSLSocketFactory.getDefault();

// We do not need to change anything else.

// That's the beauty of using factories!
Socket s = socketFactory.createSocket(args[0], serverPort);

// The rest of the program continues on from here.

For background information, see [Change your Java'"™ code to use secure sockets layer|

Select a digital certificate to use
You should consider several factors when deciding which digital certificate to use. You can use your

system’s default certificate or you can specify another certificate to use.

You want to use your system’s default certificate if:

+ You do not have any specific security requirements for your Java™ application.

* You do not know what kind of security you need for your Java application.

* Your system’s default certificate meets the security requirements for your Java application.

Note: If you decide that you want to use your system’s default certificate, check with your system
administrator to make sure that a default system certificate has been created. For more information on
digital certificate management, see |Getting started with IBM Digital Certificate Manageri

If you do not want to use your system’s default certificate, you need to choose a different certificate to use.
You can choose from two types of certificates:

» User certificate that identifies the user of the application.

290 iSeries: IBM Developer Kit for Java

» System certificate that identifies the system on which the application is running.

#* You should use a user certificate if:
= your application runs as a client application.
» you want the certificate to identify the user who is working with the application.

You should use a system certificate if:
» your application runs as a server application.

+ you want the certificate to identify on which system the application is running. %

Once you know what kind of certificate you need, you can choose from any of the digital certificates in any
of the certificate containers that you are able to access.

Use the digital certificate when you run your Java application
To use secure sockets layer (SSL), you must run your Java application using a digital certificate.

To specify which digital certificate to use, use the following properties:
* 0s400.certificateContainer
» 0s400.certificateLabel

For example, if you want run the Java application MyClass.class using the digital certificate
MYCERTIFICATE, and MYCERTIFICATE was in the digital certificate container YOURDCC, then the java
command would look like this:

java -Dos400.certificateContainer=YOURDCC
-Dos400.certificateLabel=MYCERTIFICATE MyClass

If you have not already decided which digital certificate to use, see [Select a digital certificate to use| You
may also decide to use your system’s default certificate, which is stored in the system’s default certificate
container.

To use your system’s default digital certificate, you do not need to specify a certificate or a certificate
container anywhere. Your Java application uses your system’s default digital certificate automatically.

For more information on iSeries digital certificate management and the Internet, see [Getting started with
[IBM Digital Certificate Managen

Digital certificates and the -0s400.certificateLabel property: Digital certificates are an Internet
standard for identifying secure systems, users, and applications. Digital certificates are stored in digital
certificate containers. If you want to use a digital certificate container’s default certificate, you do not need
to specify a certificate label. If you want to use a specific digital certificate, you must specify that
certificate’s label in the java command using this property:

0s400.certificatelLabel=

For example, if the name of the certificate you want to use is MYCERTIFICATE, then the java command
you enter would look like this:

java -Dos400.certificateLabel=MYCERTIFICATE MyClass

In this example, the Java application MyClass would use the certificate MYCERTIFICATE.
MYCERTIFICATE would need to be in the system’s default certificate container to be used by MyClass.

Digital certificate containers and the -0s400.certificateContainer property: Digital certificate
containers store digital certificates. If you want to use the iSeries system default certificate container, you
do not need to specify a certificate container. To use a specific digital certificate container, you need to
specify that digital certificate container in the java command using this property:

Chapter 2. Java security 291

0s400.certificateContainer=

For example, if the name of the certificate container that contains the digital certificate you want to use is
named MYDCC, then the java command you enter would look like this:

java -Dos400.certificateContainer=MYDCC MyClass

In this example, the Java application, named MyClass.class, would run on the system by using the default
digital certificate that is in the digital certificate container named MYDCC. Any sockets that you create in
the application use the default certificate that is in MYDCC to identify themselves and make all of their
communications secure.

If you wanted to use the digital certificate MYCERTIFICATE in the digital certificate container, then the
java command that you would enter would look like this:

java -Dos400.certificateContainer=MYDCC
-Dos400.certificateLabel=MYCERTIFICATE MyClass

=

Using Java Secure Socket Extension, version 1.4

Java Secure Socket Extension (JSSE) uses both the Secure Sockets Layer (SSL) protocol. and the
Transport Layer Security (TLS) protocol to provide secure, encrypted communications between your clients
and servers.

The IBM implementation of JSSE is called IBM JSSE. IBM JSSE includes a native iSeries JSSE provider
and a pure Java JSSE provider.

For more information about configuring your iSeries server to support JSSE, use the following links:

[Configuring your server to support JSSE|

Find out how to configure your iSeries server to use IBM JSSE. Information includes software
requirements, how to change JSSE providers, and the necessary security properties and system
properties.

[Using the native iSeries JSSE provider|
Read about using the native iSeries implementations of the JSSE KeyStore class and the
SSLConfiguration class.

WSSE examples|
Use the example programs to discover how you can use JSSE in your applications. The example
Java source code shows how clients and servers can use SSLContext objects on both clients and

servers to create a secure communication environment. %%

2

Configuring your iSeries server to support JSSE
When you use the Java 2 Software Development Kit (J2SDK), version 1.4 on your iSeries server, JSSE is
already configured. The default configuration uses the native iSeries JSSE provider.

Software requirements: To use JSSE with J2SDK, version 1.4, you must have installed IBM
Cryptographic Access Provider 128-bit (5722-AC3) on your iSeries server. For more information, see
[Cryptographic Access Providers|

Changing JSSE providers: You can configure JSSE to use the pure Java JSSE provider instead of the
native iSeries JSSE provider. By changing some specific JSSE security properties and Java system
properties, you can switch between the two providers. For more information, see the following topics:

292 iSeries: IBM Developer Kit for Java

« [JSSE providers|
« [JSSE security properties|
- [Java system properties]

Security managers: If you are running your JSSE application with a Java security manager enabled, you
may need to set the available network permissions. For more information, see SSLPermission in

[Permissions in the Java 2 SDK| D g

JSSE providers
IBM JSSE includes a native iSeries JSSE provider and a pure Java JSSE provider. The provider that you
choose to use depends on the needs of your application.

Both JSSE providers adhere to the JSSE interface specification. The two providers can communicate with
each other and with any other SSL or TLS implementation (even non-Java implementations).

Pure Java JSSE provider: The pure Java JSSE provider offers the following features:

* Works with any type of KeyStore object to control and configure digital certificates (for example, JKS,
PKCS12, and so on)

» Allows you to use any combination of JSSE components from multiple implementations together (for
example, you can use an X509TrustManager from the native iSeries JSSE provider to initialize an
SSLContext from this pure Java JSSE provider).

IBMJSSE is the provider name for the pure Java implementation. You need to pass this provider name,
using the proper case, to the java.security.Security.getProvider() method or the various getinstance()
methods for several of the JSSE classes.

Native iSeries JSSE provider: The native iSeries JSSE provider offers the following features:
» Uses the native iSeries SSL support

» Uses Digital Certificate Manager to configure and control digital certificates

» Offers best performance

Note: The native iSeries JSSE provider requires a unique iSeries type of KeyStore. The JSSE native
iSeries JSSE provider also does not allow components from any other implementation to be plugged in to
its implementation.

IbmISeriesSslIProvider is the name for the native iSeries implementation. You need to pass this provider
name, using the proper case, to the java.security.Security.getProvider() method or the various
getinstance() methods for several of the JSSE classes.

Changing the default JSSE provider: You can change the default JSSE provider by making the
appropriate changes to your security properties. For more information, see the following topic:

+ [JSSE security properties|

After changing the JSSE provider, ensure that your system properties specify the proper configuration for
digital certificate information (keystore) required by the new provider. For more information, see the
following topic:

+ [Java system properties| &

b

JSSE security properties

A Java virtual machine (JVM) uses many important security properties that you set by editing the Java
master security properties file. This file, named java.security, usually resides in the
/QIBM/ProdData/Java400/jdk14/lib/security directory on your iSeries server.

Chapter 2. Java security 293

http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html#HDRSSLPERMISSION

The following list describes several relevant security properties for using JSSE. Use the descriptions as a
guide for editing the java.security file.

security.provider.<integer>

The JSSE provider that you want to use. Also statically registers cryptographic provider classes.

Specify the different JSSE providers exactly like the following example:
security.provider.5=com.ibm.as400.ibmonly.net.ss1.Provider
security.provider.6=com.ibm.jsse.IBMISSEProvider

ssl.KeyManagerFactory.algorithm

Specifies the default KeyManagerFactory algorithm. For the native iSeries JSSE provider, use the
following:

ss1.KeyManagerFactory.algorithm=IbmISeriesX509

For the pure Java JSSE provider, use the following:
ss1.KeyManagerFactory.algorithm=IbmX509

For more information, see the javadoc for javax.net.ssl.KeyManagerFactory.

ssl.TrustManagerFactory.algorithm

Specifies the default TrustManagerFactory algorithm. For the native iSeries JSSE provider, use the
following:

ss1.TrustManagerFactory.algorithm=IbmISeriesX509

For the pure Java JSSE provider, use the following:
ss1.TrustManagerFactory.algorithm=IbmX509

For more information, see the javadoc for javax.net.ssl.TrustManagerFactory.
ssl.SocketFactory.provider

Specifies the default SSL socket factory. For the native iSeries JSSE provider, use the following:
ss1.SocketFactory.provider=com.ibm.as400.ibmonly.net.ss1.SSLSocketFactoryImpl

For the pure Java JSSE provider, use the following:
ss1.SocketFactory.provider=com.ibm.jsse.JSSESocketFactory

For more information, see the javadoc for javax.net.ssl.SSLSocketFactory.

ssl.ServerSocketFactory.provider

Specifies the default SSL server socket factory. For the native iSeries JSSE provider, use the
following:

ss1.ServerSocketFactory.provider=com.ibm.as400.ibmonly.net.ss1.SSLServerSocketFactoryImpl

For the pure Java JSSE provider, use the following:

ss1.ServerSocketFactory.provider=com.ibm.jsse.JSSEServerSocketFactory
For more information, see the javadoc for javax.net.ssl.SSLServerSocketFactory.

b

294 iSeries: IBM Developer Kit for Java

JSSE Java system properties

To use JSSE in your applications, you need to specify several system properties that the default
SSLContext objects needs in order to provide confirmation of the configuration. Some of the properties
apply to both providers, while others apply to only the native iSeries provider.

When using the native iSeries JSSE provider, when you specify none of the properties, the
0s400.certificateContainer defaults to *SYSTEM, which means that JSSE uses the default entry in the
system certificate store.

Properties that work for both providers: The following properties apply to both JSSE providers. Each
description includes the default property, if applicable.

javax.net.ssl.trustStore

The name of the file that contains the KeyStore object that you want the default TrustManager to
use. The default value is jssecacerts, or cacerts (if jssecacerets does not exist).

javax.net.ssl.trustStoreType

The type of KeyStore object that you want the default TrustManager to use. The default value is the
value returned by the KeyStore.getDefaultType method.

javax.net.ssl.trustStorePassword

The password for the KeyStore object that you want the default TrustManager to use.
javax.net.ssl.keyStore

The name of the file that contains the KeyStore object that you want the default KeyManager to use.
javax.net.ssl.keyStoreType

The type of KeyStore object that you want the default KeyManager to use. The default value is the
value returned by the KeyStore.getDefaultType method.

javax.net.ssl.keyStorePassword
The password for the KeyStore object that you want the default KeyManager to use.

Properties that work for the iSeries native JSSE provider only: The following properties apply to the
native iSeries JSSE provider only.

0s400.secureApplication

The application identifier. JSSE uses this property only when you do not specify any of the following
properties:

* javax.net.ssl.keyStore
* javax.net.ssl.keyStoreType
* and javax.net.ssl.keyStorePassword

0s400.certificateContainer

The name of the keyring that you want to use. JSSE uses this property only when you do not specify
any of the following properties:

* javax.net.ssl.keyStore

Chapter 2. Java security 295

» javax.net.ssl.keyStoreType
* javax.net.ssl.keyStorePassword
» 0s400.secureApplication

o0s400.certificateLabel

The keyring label that you want to use. JSSE uses this property only when you set and use the
0s400.certificateContainer property.

Additional information: For more information about system properties, see the following topics:
Java system properties for J2SDK, version 1.4, on iSeries serversl

d

+ [System Properties|on the Sun Java Web site
=

Using the native iSeries JSSE provider
The native iSeries JSSE provider offers the full suite of JSSE classes and interfaces. To use the native

iSeries provider effectively, please refer to the following information:
« [Protocol values for the SSLContext.getinstance method|

+ [The native KeyStore implementation|

« [Restrictions when using the native iSeries provider

« [Javadoc information for SSLConfiguration|

Protocol values for the SSLContext.getinstance method: The following table identifies and describes
the protocol values for the SSLContext.getinstance method of the native iSeries JSSE provider.

Protocol value Supported SSL protocols

SSL SSL version 2, SSL version 3, and TLS version 1
SSLv2 SSL version 2

SSLv3 SSL version 3

TLS SSL version 2, SSL version 3, and TLS version 1
TLSv1 TLS version 1

SSL_TLS SSL version 2, SSL version 3, and TLS version 1

Native iSeries KeyStore implementation: The native iSeries provider offers an implementation of the
KeyStore class of type IbmlSeriesKeyStore. This keystore implementation provides a wrapper around the
Digital Certificate Manager support. The contents of the keystore are based on a particular application
identifier or keyring file, password, and label. JSSE loads the keystore entries from the Digital Certificate
Manager. To load the entries, JSSE uses the appropriate application identifier or keyring information when
your application makes the first attempt to access keystore entries or keystore information. You can not
modify the keystore, and you must make all configuration changes by using must be made by using the
Digital Certificate Manager.

For more information about using the Digital Certificate Manager, see the following topic:

[Digital Certificate Manager|

Restrictions when using the native iSeries provider: For the native iSeries JSSE provider to work,
your JSSE application must use only components from the native implementation. For example, your
native iSeries JSSE-enabled application can not use an X509KeyManager object created by using the
pure Java JSSE provider to successfully initialize an SSLContext object created by using the native iSeries
JSSE provider.

296 iSeries: IBM Developer Kit for Java

http://java.sun.com/docs/books/tutorial/essential/system/properties.html
sslconfiguration.html

Additionally, you have to initialize the implementations of X509KeyManager and X509TrustManager in the
native iSeries provider by using either a an IbmlSeriesKeyStore object or a
com.ibm.as400.SSLConfiguration object.

Note: The previously mentioned restrictions mentioned may change in future releases, so that the native
iSeries JSSE provider could allow you to plug in non-native components (for example, JKS KeyStore or
IbmX509 TrustManagerFactory).

2

Examples: IBM Java Secure Sockets Extension

The JSSE examples show how a client and a server can use the native iSeries JSSE provider to create a
context that enables secure communications.

Note: Both examples use the native iSeries JSSE provider, regardless of the properties specified by the
java.security file.

[Example: SSL Client Using an SSLContext Object|

This example client program utilizes an SSLContext object, which it initializes to use the
"MY_CLIENT_APP" application ID. This program will use the native iSeries implementation regardless of
what is specified in the java.security file.

[Example: SSL Server Using an SSLContext Object

The following server program utilizes an SSLContext object that it initializes with a previously created
keystore file. The keystore file has a name of /home/keystore.file and a keystore password of password.

The example program needs the keystore file in order to create an IbmiSeriesKeyStore object. The
KeyStore object must specify MY_SERVER_APP as the application identifier.

To create the keystore file, you can use the either of the following commands:
* From a Qshell command prompt:

java com.ibm.as400.SSLConfiguration -create -keystore /home/keystore.file
-storepass password -appid MY_SERVER_APP

For more information about using Java commands with Qshell, see the following topic:

Qshell
* From an iSeries command prompt:
RUNJVA CLASS(com.ibm.as400.SSLConfiguration) PARM('-create' '-keystore'

'/home/keystore.file' '-storepass' 'password' '-appid' 'MY_SERVER APP')
The following disclaimer applies to all of the IBM JSSE examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which
you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Chapter 2. Java security 297

All programs contained herein are provided to you "AS IS” without any warranties of any kind. The
implied warranties of non-infringement, merchantability and fitness for a particular purpose are
expressly disclaimed.

b

Example: SSL client using an SSLContext object
Note: Read the [Code example disclaimer for important legal information.

[IIITETTETTEEI LT LI LI i i i i i riiriiiiieiieiielielieilieliiiiiiiiiieil
//

// This example client program utilizes an SSLContext object, which it initializes
// to use the "MY_CLIENT_APP" application ID.

//

// The example uses the native iSeries JSSE provider, regardless of the

// properties specified by the java.security file.

//

// Command syntax:

// java -Djava.version=1.4 Ss1Client
//

// Note that "-Djava.version=1.4" is unnecessary when you have configured

// J2SDK version 1.to be used by default.

//

[IIETIETLETTEETEET LI LD L0 i i i rririiriiiiieiieiielielielliriiiiiiiiiiiiil

import java.io.*;
import javax.net.ssl.*;

[**

* SSL Client Program.
*/

public class SsiClient {

[**
* Ss1Client main method.
*

* @param args the command line arguments (not used)

*/
public static void main(String args[]) {
/*
* Set up to catch any exceptions thrown.
*/
try {
/*

* Initialize an SSLConfiguration object to specify an application
* ID. "MY_CLIENT_APP" must be registered and configured

% correctly with the Digital Certificate Manager (DCM).

*/

SSLConfiguration config = new SSLConfiguration();
config.setApplicationId("MY_CLIENT_APP"

/*

* Get a KeyStore object from the SSLConfiguration object.

*/
Char[] password = "password".toCharArray();

KeyStore ks = config.getKeyStore(password);

/*

* Allocate and initialize a KeyManagerFactory.

*/

KeyManagerFactory kmf =

KeyManagerFactory.getInstance("IbmISeriesX509");

Kmf.init(ks, password);
/*

* Allocate and initialize a TrustManagerFactory.

*/

TrustManagerFactory tmf =

298 iSeries: IBM Developer Kit for Java

TrustManagerFactory.getInstance("IbmISeriesXx509");

tmf.init(ks);
/*
* Allocate and initialize an SSLContext.

*

/
SSLContext ¢ =

SSLContext.getInstance("SSL", "quot;);

C.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);

/*

* Get the an SSLSocketFactory from the SSLContext.
*/

SSLSocketFactory sf = c.getSocketFactory();

/*

* Create an SSLSocket.

*
* Change the hard-coded IP address to the IP address or host name
* of the server.

*/
SSLSocket s = (SSLSocket) sf.createSocket("1.1.1.1", 13333);
/*

* Send a message to the server using the secure session.

*/

String sent = "Test of java SSL write";
OutputStream os = s.getOutputStream();
os.write(sent.getBytes());

/*

* Write results to screen.

*/
System.out.printIn("Wrote " + sent.length() + " bytes...");
System.out.printin(sent);

/*

* Receive a message from the server using the secure session.
*/

InputStream is = s.getInputStream();

byte[] buffer = new byte[1024];

int bytesRead = is.read(buffer);

if (bytesRead == -1)

throw new IOException("Unexpected End-of-file Received");

String received = new String(buffer, 0, bytesRead);

/*

* Write results to screen.
*/

System.out.printin("Read " + received.length() + " bytes...");
System.out.printin(received);
{
(

} catch (Exception e)

System.out.printin "oy

"Unexpected exception caught:
e.getMessage());

e.printStackTrace();

}
=

Example: SSL server using an SSLContext object
Note: Read the [Code example disclaimer] for important legal information.

LIHTLETIILE LT E L i i i i iiiiirieiriiilrieelliellieliieiliieilieilieeili
//

// The following server program utilizes an SSLContext object that it

// initializes with a previously created keystore file.

//

// The keystore file has the following name and keystore password:

// File name: /home/keystore.file

// Password: password

Chapter 2. Java security

299

// The example program needs the keystore file in order to create an

// IbmISeriesKeyStore object. The KeyStore object must specify MY _SERVER APP as
// the application identifier.

// To create the keystore file, you can use the following Qshell command:

// java com.ibm.as400.SSLConfiguration -create -keystore /home/keystore.file

// -storepass password -appid MY_SERVER_APP
//

// Command syntax:

// java -Djava.version=1.4 JavaSsl1Server

//

// Note that "-Djava.version=1.4" is unnecessary when you have configured
// J2SDK version 1.to be used by default.

LTI i r i i iiiiiiiiliiillilelili

import java.io.*;
import javax.net.ssl.*;

[**

* Java SSL Server Program using Application ID.
*/

public class JavaSsiServer {

[**
* JavaSs1Server main method.
*
% @param args the command line arguments (not used)
*/
public static void main(String args[]) {
/*
* Set up to catch any exceptions thrown.
*/
try {
/*
* Allocate and initialize a KeyStore object.
*/
Char[] password = "password".toCharArray();
KeyStore ks = KeyStore.getInstance("IbmISeriesKeyStore");
FileInputStream fis = new FileInputStream("/home/keystore.file"
Ks.load(fis, password);
/*
* Allocate and initialize a KeyManagerFactory.
*/
KeyManagerFactory kmf =
KeyManagerFactory.getInstance("IbmISeriesX509");
Kmf.init(ks, password);
/*
* Allocate and initialize a TrustManagerFactory.
*/
TrustManagerFactory tmf =
TrustManagerFactory.getInstance("IbmISeriesX509");
tmf.init(ks);
/*
* Allocate and initialize an SSLContext.
*/
SSLContext c =
SSLContext.getInstance("SSL", "IbmISeriesSs1Provider");
C.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);

/*
* Get the an SSLServerSocketFactory from the SSLContext.
*/
SSLServerSocketFactory sf = c.getSSLServerSocketFactory();
/*

* Create an SSLServerSocket.

300 iSeries: IBM Developer Kit for Java

*/
SSLServerSocket ss =

(SSLServerSocket) sf.createServerSocket(13333);
/*
% Perform an accept() to create an SSLSocket.
*/
SSLSocket s = (SSLSocket) ss.accept();
/*
* Receive a message from the client using the secure session.
*/
InputStream is = s.getInputStream();
byte[] buffer = new byte[1024];
int bytesRead = is.read(buffer);
if (bytesRead == -1)

throw new IOException("Unexpected End-of-file Received");
String received = new String(buffer, 0, bytesRead);
/*
* Write results to screen.
*/
System.out.printin("Read " + received.length() + " bytes...");
System.out.printin(received);
/*
* Echo the message back to the client using the secure session.
*/
OutputStream os = s.getOutputStream();
os.write(received.getBytes());
/*
* Write results to screen.
*/
System.out.printin("Wrote " + received.length() + " bytes...");
System.out.printin(received);

} catch (Exception e) {
System.out.printin("Unexpected exception caught: " +
e.getMessage());

e.printStackTrace();

Chapter 2. Java security 301

302 iSeries: IBM Developer Kit for Java

Chapter 3. Java Authentication and Authorization Service

The Java™ Authentication and Authorization Service (JAAS) is a standard extension to the Java 2
Software Development Kit (J2SDK), Standard Edition. Currently, J2SDK provides access controls that are
based on where the code originated and who signed the code (code source-based access controls). It
lacks, however, the ability to enforce additional access controls based on who runs the code. JAAS
provides a framework that adds this support to the Java 2 security model.

The JAAS APl is used by IBM and Sun Microsystems, Inc. as an extension to the J2SDK, £ versions 1.2

and 1.3. € IBM and Sun are introducing this extension to allow the association of a specific user or
identity to the current Java thread. This is done by using javax.security.auth.Subject methods and,
optionally, with the underlying operating system thread using com.ibm.security.auth.ThreadSubject
methods.

#* Note: For J2SDK, version 1.4, JAAS is no longer an extension, but is part of the base SDK. &

The JAAS implementation on the iSeries server is compatible with the implementation of Sun
Microsystems, Inc. This documentation covers the unique aspects of the iSeries implementation. We
assume that you are familiar with the general documentation for the JAAS extensions. To make it easier
for you to work with that and our iSeries information, we provide the following links.

+ |The API Developers Guide| provides information on using the JAAS API in software development.
+ [Login/Authentication Module Developers Guide|focuses on the authentication aspects of JAAS.
+ [JAAS API Specification| contains the Javadoc information on JAAS.

Select any of these topics for more details about how to use JAAS:
+ [Prepare and configure the iSeries server for JAAS

* [JAAS samples|

» [iSeries-server specific JAAS Javadod

Prepare and configure an iSeries server for Java Authentication and
Authorization Service

You must meet software requirements and configure your iSeries server to use Java™ Authentication and
Authorization Service (JAAS).

Software requirements to run JAAS 1.0 on an iSeries server

Install the following licensed programs:
+ Java 2 SDK, version 1.4 (J2SDK)

* The IBM Toolbox for Java (mod 4) Licensed Program (5722-JC1) is required to change the OS thread
identity. It contains the ProfileTokenCredential classes needed to support the changing of iSeries OS
thread identity and the native implementation classes.

Configure the system

To configure the system to use JAAS, follow these steps:

1. For JDKs 1.2 and 1.3, add a symbolic link to the extension directory for the jaas13.jar file. The
extension class loader should load the JAR file. Run this command (all one line) on the iSeries
command line to add the link:

ADDLNK OBJ('/QIBM/ProdData/0S400/Java400/ext/jaas13.jar")
NEWLNK('/QIBM/ProdData/Java400/jdk13/1ib/ext/jaas13.jar")

© Copyright IBM Corp. 1998, 2001 303

api.htm
login.htm
apidocs/index.html
ptfdocs/index.html

2 Note: For JDK 1.4, you do not need to add a symbolic link to the extension directory. JAAS is part
of the base SDK for this version. <&

2. A default login.config file is provided in ${java.nome}/lib/security which invokes
com.ibm.as400.security.auth.login.BasicAuthenticationLoginModule. This login.config file attaches a
single use ProfileTokenCredential to the authenticated subject. If you want to use your own login.config
file with different options, you may include the following system property when invoking your
application:

-Djava.security.auth.login.config=your login.config file

3. Add a symbolic link to the extension directory for the jt400Native.jar file. This allows the extension
class loader to load this file. The jaas13.jar file requires this JAR file for the credential implementation
classes that are part of the IBM Toolbox for Java. The application class loader can also load this file by
including it in the CLASSPATH. If this file is loaded from the class path directory, do not add the
symbolic link to the extension directory.

2 Symbolically linking the jt400Native.jar file to the /QIBM/ProdData/Java400/jdk14/lib/ext directory

forces all JDK 1.4 users on the server to run with this version of jt400Native.jar. % This may not be
desirable if various users require different versions of the IBM Toolbox for Java classes. Other options
include putting jt400Native.jar in the application CLASSPATH as described previously. Another option is
to add the symbolic link to your own directory and then include that directory in the extension directory
classpath by specifying the java.ext.dirs system property when invoking the application.

To link the jt400Native.jar file to the /QIBM/ProdData/Java400/jdk13/lib/ext directory, run this command
on the iSeries command line to add the link:

ADDLNK OBJ('/QIBM/ProdData/0S400/jt400/1ib/jt400Native.jar"')
NEWLNK('/QIBM/ProdData/Java400/jdk13/1ib/ext/jt400Native.jar")

Z* To link the jt400Native.jar file to the /QIBM/ProdData/Java400/jdk14/lib/ext directory, run this
command on the iSeries command line to add the link:

ADDLNK OBJ('/QIBM/ProdData/0S400/jt400/1ib/jt400Native.jar")
NEWLNK('/QIBM/ProdData/Javad00/jdk14/1ib/ext/jt400Native.jar")

&

To link the jt400Native.jar file to your own directory, do the following:
a. Run this command on the iSeries command line to add the link:

ADDLNK OBJ('/QIBM/ProdData/0S400/jt400/1ib/jt400Native.jar")
NEWLNK('your extension directory/jt400Native.jar')

b. When calling your java program, use the following pattern:

java -Djava.ext.dirs=your extension directory:default
extension directories

Note: See the [|BM Toolbox for Java| for information on the iSeries credential classes. Click on
Security classes. Click on Authentication Services. Click on ProfileTokenCredential class.
Click on Package.

4. Update the Java 2 policy files to grant the appropriate permissions to the actual locations of the IBM
Toolbox for Java JAR files. Even though these files may be symbolically linked to the extension
directories and those directories are granted java.security.AllPermission in the
${java.home}/lib/security/java.policy file, authorization is based on the actual location of the JAR files.
To successfully use the credential classes in the IBM Toolbox for Java, add the following to the Java 2
policy file of your application:

grant codeBase "file:/QIBM/ProdData/0S400/jt400/1ib/jt400Native.jar"
{

permission javax.security.auth.AuthPermission "modifyThreadldentity";

304 iSeries: IBM Developer Kit for Java

permission java.lang.RuntimePermission "loadLibrary.*";
permission java.lang.RuntimePermission "writeFileDescriptor";
permission java.lang.RuntimePermission "readFileDescriptor";

}

You also need to add these permissions for the codeBase of your application since the operations
performed by the IBM Toolbox for Java JAR files do not run in privileged mode.

See thelAPI Developers Guide| for information on the Java 2 policy files.

5. Make sure the iSeries Host Servers are started and running. The ProfileTokenCredential classes that
reside in the Toolbox, for example, jt400Native.jar, are used as the credentials that are attached to the
authenticated subject. The credential classes require access to the Host Servers. You can verify that
the servers are started and running by typing the following on the iSeries command prompt:

» StrHostSVR *all

e StrTcpSvr *DDM

If the servers have already been started, these steps do nothing. If the servers are not started, they
are started.

Java Authentication and Authorization Service samples

In this information, we provide a link to some samples of Java(™ Authentication and Authorization Service
(JAAS) on an iSeries server. There are two JAAS samples included with the documentation, HelloWorld
and SampleThreadSubjectLogin. Click on these links for instructions and source code:

» |[HelloWorld
+ [SampleThreadSubjectLogin|

b

Chapter 3. Java Authentication and Authorization Service 305

api.htm
jaashllo.htm
jaasthrd.htm

306 iSeries: IBM Developer Kit for Java

Chapter 4. IBM Java Generic Security Service (JGSS)

The Java Generic Security Service (JGSS) provides a generic interface for authentication and secure
messaging. Under this interface you can plug a variety of security mechanisms based on secret-key,
public-key, or other security technologies.

By abstracting the complexity and peculiarities of the underlying security mechanisms to a standardized
interface, JGSS provides the following benefits to the development of secure networking applications:

* You can develop the application to a single abstract interface
* You can use the application with different security mechanisms without any changes

JGSS defines the Java bindings for the Generic Security Service Application Programming Interface
(GSS-API), which is a cryptographic API that has been standardized by the Internet Engineering Task
Force (IETF) and adopted by the X/Open Group.

The IBM implementation of JGSS is called IBM JGSS. IBM JGSS is an implementation of the GSS-API
framework that uses Kerberos V5 as the default underlying security system. It also features a Java™
Authentication and Authorization Service (JAAS) login module for creating and using Kerberos credentials.
In addition, you can have JGSS perform JAAS authorization checks when you use those credentials.

IBM JGSS includes a native iSeries JGSS provider, a Java JGSS provider, and Java versions of the
Kerberos credential managerment tools (kinit, ktab, and klist).

Note: The native iSeries JGSS provider uses the native iSeries Network Authentication Services (NAS)
library. When you use the native provider, you must use the native iSeries Kerberos utilities. For more
information, see JGSS providers|.

For more information about using JGSS, see the following topics:

NGSS concepts|
Introduces JGSS concepts, including a high-level description of GSS-API operations and a brief
discussion of security mechanisms.

[Configuring your server to use JGSS|

Find out how to configure your iSeries server to use IBM JGSS with the Java™ 2 Software
Development Kit, Standard Edition (J2SDK). Information includes identifying and setting the
permissions necessary to use JGSS with a security manager.

[Running JGSS applications|
Learn about running JGSS applications on your iSeries servers. Documentation includes an
explanation of operational concepts and instructions for using JAAS.

[Developing JGSS applications|
See how to use JGSS to develop secure applications. Learn about generating transport tokens,
creating JGSS objects, establishing context, and more.

WGSS javadoc reference information|
Review the javadoc information for classes and methods in the org.ietf.jgss api package and for the
Java versions of Kerberos credential management tools (kinit, ktab, and klist).

WGSS samples|

Use the sample programs to discover how you can use JGSS in your applications. The sample
documentation includes Java source code, instructions for running the samples, configuration and
policy files, and more.

© Copyright IBM Corp. 1998, 2001 307

To read more about Java security and the generic security service, see the following documentation:

+ J2SDK Security enhancement] 3 from Sun Microsystems, Inc. that contains links to more Java
GSS-API information

« Internet Engineering Task Force (IETF) RFC 2743 [Generic Security Services Application Programming
[Interface Version 2, Update 1| 3

« |ETF RFC 2853|Generic Security Service AP| Version 2: Java Bindings| R4
+ The X/Open Group [GSS-API Extensions for DCE] d

Note: Read the [Code example disclaimer for important legal information. <€ 2

JGSS concepts

JGSS operations consist of four distinct stages, as standardized by the Generic Security Service
Application Programming Interface (GSS-API):

1. Gathering of credentials for principals

2. Creating and establishing a security context between the communicating peer principals

3. Exchanging secure messages between the peers

4. Cleaning up and releasing resources

Additionally, JGSS leverages the Java Cryptographic Architecture to offer seamless pluggability of different
security mechanisms.

Use the following links to read high-level descriptions of these important JGSS concepts.
+ [Principals and credentials|

+ [Context establishment|

+ [Message protection and exchange|

+ [Resource cleanup and release|

* [Security mechanismsf&

b

Principals and credentials

The identity under which an application engages in JGSS secure communication with a peer is called a
principal. A principal may be a real user or an unattended service. A principal acquires security
mechanism-specific credentials as proof of identity under that mechanism. For example, when using the
Kerberos mechanism, a principal’s credential is in the form of a ticket-granting ticket (TGT) issued by a
Kerberos key distribution center (KDC). In a multi-mechanism environment, a GSS-API credential can
contain multiple credential elements, each element representing an underlying mechanism credential.

The GSS-API standard does not prescribe how a principal acquires credentials, and GSS-API
implementations typically do not provide a means for credential acquisition. A principal obtains credentials
before using GSS-API; GSS-API merely queries the security mechanism for credentials on behalf of the
principal.

IBM JGSS includes Java versions of Kerberos credential management tools |kinit} [ktabl and |klist]
Additionally, IBM JGSS enhances the standard GSS-API by providing an optional Kerberos login interface
that uses JAAS. The pure Java JGSS provider supports the optional login interface; the native iSeries
provider does not. For more information, see the following topics:

+ [Obtaining Kerberos credentials|
+ [JGSS providersf&

308 iSeries: IBM Developer Kit for Java

http://java.sun.com/j2se/1.4/docs/guide/security/
http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc2853.txt
http://www.opengroup.org/tech/rfc/rfc5.2.html
rzahajgssknit.htm
rzahajgssktab.htm
rzahajgssklst.htm

=

Context establishment

Having acquired security credentials, the two communicating peers establish a security context using their
credentials. Although the peers establish a single joint context, each peer maintains its own local copy of
the context. Context establishment involves the initiating peer authenticating itself to the accepting peer.
The initiator optionally may request mutual authentication, in which case the acceptor authenticates itself
to the initiator.

When context establishment is complete, the established context embodies state information (such as
shared cryptographic keys) that enable subsequent secure message exchange between the two peers. 4

=

Message protection and exchange

Following context establishment, the two peers are ready to engage in secure message exchanges. The
originator of the message calls on its local GSS-API implementation to encode the message, which
ensures message integrity and, optionally, message confidentiality. The application then transports the
resulting token to the peer.

The local GSS-API implementation of the peer uses information from the established context in the
following ways:

» Verifies the integrity of the message

+ Deciphers the message, if the message was encrypted <

b

Resource cleanup and release

In order to free up resources, a JGSS application deletes a context that is no longer needed. Although a
JGSS application can access a deleted context, any attempt to use it for message exchange results in an

exception. & 3

Security mechanisms

The GSS-API consists of an abstract framework over one or more underlying security mechanisms. How
the framework interacts with the underlying security mechanisms is implementation specific. Such
implementations exist in two general categories:

» At one extreme, a monolithic implementation tightly binds the framework to a single mechanism. This
kind of implementation precludes the use of other mechanisms or even different implementations of the
same mechanism.

» At the other end of the spectrum, a highly modular implementation offers ease of use and flexibility. This
kind of implemenetation offers the ability to seamlessly and easily plug different security mechanisms
and their implementations into the framework.

IBM JGSS falls into the latter category. As a modular implementation, IBM JGSS leverages the provider
framework defined by the Java Cryptographic Architecture (JCA) and treats any underlying mechanism as
a (JCA) provider. A JGSS provider supplies a concrete implementation of a JGSS security mechanism. An
application can instantiate and use multiple mechanisms.

It is possible for a provider to support multiple mechanisms, and JGSS makes it easy to use different

security mechanisms. However, the GSS-API does not provide a means for two communicating peers to
choose a mechanism when multiple mechanisms are available. One way to choose a mechanism is to

Chapter 4. IBM Java Generic Security Service (JGSS) 309

start with the Simple And Protected GSS-API Negotiating Mechanism (SPNEGO), a pseudo-mechanism
that negotiates an actual mechanism between the two peers. IBM JGSS does not include a SPNEGO
mechanism.

For more information about SPNEGO, see Internet Engineering Task Force (IETF) RFC 2478[The Simplej
and Protected GSS-API Negotiation Mechanism] 2 . & &

Configuring your iSeries server to use IBM JGSS

How you configure your iSeries server to use JGSS depends on which version of the Java 2 Software
Development Kit (J2SDK) that you run on your server. For more information about configuring your iSeries
server to use JGSS, use the following links:

+ [Using JGSS with J2SDK, version 1.3
Using JGSS with J2SDK, version 1.4

+ [Configuring JGSS to use the native iSeries JGSS provider&
g

Configuring your iSeries server to use JGSS with J2SDK, version 1.3

When you use the Java 2 Software Development Kit (J2SDK), version 1.3 on your iSeries server, you
need to prepare and configure your server to use JGSS. The default configuration uses the pure Java
JGSS provider.

Software requirements
To use JGSS with J2SDK, version 1.3, your server must have Java Authentication and Authorization
Service (JAAS) 1.3 installed.

Configuring your server to use JGSS

To configure your server to use JGSS with J2SDK, version 1.3, add a symbolic link to the extension
directory for the ibmjgssprovider.jar file. The ibmjgssprovider.jar file contains the JGSS classes and the
pure Java JGSS provider. Adding the symbolic link enables the extension class loader to load the
ibmjgssprovider.jar file.

Adding the symbolic link

To add the symbolic link, on an iSeries command line, type the following command (on a single line) and
press ENTER:

ADDLNK OBJ('/QIBM/ProdData/0S400/Java400/ext/ibmjgssprovider.jar')
NEWLNK('/QIBM/ProdData/Java400/jdk13/1ib/ext/ibmjgssprovider.jar')

Note: The default Java 1.3 policy on the iSeries server grants the appropriate permissions to JGSS. If you
plan to create your own java.policy file, see |JVM permissions| for a list of permissions to grant
ibmjgssprovider.jar.

Changing JGSS providers

After configuring your server to use JGSS, which uses the pure Java provider as the default, you can
configure JGSS to use the native iSeries JGSS provider. Then, after you configure JGSS to use the native
provider, you can easily switch between the two providers. For more information, see the following topics:

+ [JGSS providers|
+ [Configuring JGSS to use the native iSeries JGSS provider]

Security managers
If you are running your IBM JGSS application with a Java security manager enabled, see|Using a security|

[manager &

310 iSeries: IBM Developer Kit for Java

http://www.ietf.org/rfc/rfc2478.txt
http://www.ietf.org/rfc/rfc2478.txt

Configuring JGSS to use the native iSeries JGSS provider

IBM JGSS uses the pure Java provider by default. You have the option to use the native iSeries JGSS
provider. For more information about the different providers, see JGSS providers|

Software requirements
The native iSeries JGSS provider must be able to access classes in IBM Toolbox for Java. For instructions

about how to access Toolbox for Java, see [Enabling the native iSeries JGSS provider to access IBM|
[Toolbox for Javal

Make sure that you have configured the network authentication service. For more information, see
lauthentication service}

Specifying the native iSeries JGSS provider

Before you can use the native iSeries JGSS provider with J2SDK, version 1.3, ensure that you have
configured your server to use JGSS. For more information, see |[Configuring your iSeries server to use
IJGSS with J2SDK, version 1.3 If you are using J2SDK, version 1.4, JGSS is already configured.

Note: In the following instructions, ${java.home} denotes the path to the location of the version of Java
that you are using on your server. For example, if you are using J2SDK, version 1.4, ${java.home} is
/QIBM/ProdData/Java400/jdk14. Remember to replace ${java.home}in the commands with the actual path
to the Java home directory.

To configure JGSS to use the native iSeries JGSS provider, complete the following tasks:
+ [Add a symbolic link to the extension directory for the native iSeries provider JAR file|
+ |Add the native iSeries JGSS provider to the security provider list in the java.security file]

Adding a symbolic link

To add a symbolic link to the extension directory for the ibmjgssiseriesprovider.jar file, on an iSeries
command line, type the following command (on a single line) and press ENTER:

ADDLNK OBJ('/QIBM/ProdData/0S400/Java400/ext/ibmjgssiseriesprovider.jar')
NEWLNK('${java.home}/Tib/ext/ibmjgssiseriesprovider.jar')

After you add a symbolic link to the extension directory for the ibmjgssiseriesprovider.jar file, the extension
class loader will load the JAR file.

Adding the provider to the security provider list

Add the native provider to the the security provider list in the java.security file.
1. Open ${java.home}/lib/security/java.security for editing.

2. Find the security provider list. It should be near the top of the java.security file and should look
something like:
security.provider.l=sun.security.provider.Sun
security.provider.2=com.sun.rsajca.Provider
security.provider.3=com.ibm.crypto.provider.IBMJICE
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
3. Add the native iSeries JGSS provider to the security provider list before the original Java provider. In
other words, add com.ibm.iseries.security.jgss.IBMJGSSiSeriesProvider to the list with a lower number
than com.ibm.jgss.IBMJGSSProvider, then update the position of IBMJGSSProvider. For example:
security.provider.l=sun.security.provider.Sun
security.provider.2=com.sun.rsajca.Provider
security.provider.3=com.ibm.crypto.provider.IBMJCE
security.provider.4=com.ibm.iseries.security.jgss.IBMJGSSiSeriesProvider
security.provider.5=com.ibm.security.jgss.IBMJGSSProvider

Chapter 4. IBM Java Generic Security Service (JGSS) 311

rzahajgsscfglinkjava.htm
rzahajgsscfglinkjava.htm

Notice that the IBMJGSSiSeriesProvider became the fourth entry in the list and IBMJGSSProvider
became the fifth entry. Also, check that entry numbers in the security provider list are sequential and
that each entry increments the entry number by only one.

4. Save and close the java.security file. €%

Z

Configuring your iSeries server to use JGSS with J2SDK, version 1.4

When you use the Java 2 Software Development Kit (J2SDK), version 1.4 on your iSeries server, JGSS is
already configured. The default configuration uses the pure Java JGSS provider.

Changing JGSS providers

You can configure JGSS to use the native iSeries JGSS provider instead of the pure Java JGSS provider.
Then, after you configure JGSS to use the native provider, you can easily switch between the two
providers. For more information, see the following topics:

+ [JGSS providers|
« [Configuring JGSS to use the native iSeries JGSS provider]

Security managers
If you are running your JGSS application with a Java security manager enabled, see[Using a security|

[managet & >

JGSS providers

IBM JGSS includes a native iSeries JGSS provider and a pure Java JGSS provider. The provider that you
choose to use depends on the needs of your application.

The pure Java JGSS provider offers the following features:

* Ensures the greatest level of portability for your application

* Works with the optional JAAS Kerberos login interface

» Compatible with the Java Kerberos credential management tools

The native iSeries JGSS provider offers the following features:

» Uses the native iSeries Kerberos libraries

« Compatible with Qshell Kerberos credential management tools
» JGSS applications run faster

Note: Both JGSS providers adhere to the GSS-API specification and so are compatible with each other. In
other words, an application that uses the pure Java JGSS provider can interoperate with an application
that uses the native iSeries JGSS provider.

Changing the JGSS provider

Note: If your server is running J2SDK, version 1.3, before changing to the native iSeries JGSS provider,
make sure that you have configured your server to use JGSS. For more information, see the following
topics:

+ [Configuring your iSeries server to use JGSS with J2SDK, version 1.3

+ [Configuring JGSS to use the Native JGSS Provider|

You can easily change the JGSS provider by using one of the following options:
« Edit the security provider list in ${java.home}/1ib/security/java.security

Note: ${java.nome} denotes the path to the location of the version of Java that you are using on your
server. For example, if you are using J2SDK, version 1.3, ${java.home} is
/QIBM/ProdData/Java400/jdk13.

312 iSeries: IBM Developer Kit for Java

» Specify the provider name in your JGSS application by using either GSSManager.addProviderAtFront()
or GSSManager.addProviderAtEnd(). For more information, see the[GSSManager javadod. %

2

Using a security manager

If you are running your JGSS application with a Java security manager enabled, you need to ensure that
your application and JGSS have the necessary permissions. For more information about the permissions

you need to use JGSS, see the following topics:
+ [JVM permissions|
+ [JAAS permission checksé

b

JVM permissions

In addition to the access control checks performed by JGSS, the Java virtual machine (JVM) performs
authorization checks when accessing a variety of resources, including files, Java properties, packages,

and sockets.

For more information about using JVM permissions, see [Permissions in the Java 2 SDK] ad

The following list identifies the permissions required when you use the JAAS features of JGSS or use

JGSS with a security manager:

* javax.security.auth.AuthPermission "modifyPrincipals”

 javax.security.auth.AuthPermission "modifyPrivateCredentials”

 javax.security.auth.AuthPermission "getSubject”
 javax.security.auth.PrivateCredentialPermission

"javax.security.auth.kerberos.KerberosKey javax.security.auth.kerberos.KerberosPrincipal \"*\"”,

"read”
+ javax.security.auth.PrivateCredentialPermission

"javax.security.auth.kerberos.KerberosTicket javax.security.auth.kerberos.KerberosPrincipal \"*\"”,

"read”

 java.util.PropertyPermission "com.ibm.security.jgss.debug”, "read”

* java.util.PropertyPermission "DEBUG", "read”
* java.util.PropertyPermission "java.home”, "read”

* java.util.PropertyPermission "java.security.krb5.conf”, "read”
 java.util.PropertyPermission "java.security.krb5.kdc"”, "read”
 java.util.PropertyPermission "java.security.krb5.realm”, "read”

* java.util.PropertyPermission "javax.security.auth.useSubjectCredsOnly”, "read”

 java.util.PropertyPermission "user.dir”, "read”
 java.util.PropertyPermission "user.home”, "read”

n.on

* java.lang.RuntimePermission "accessClassinPackage.sun.security.action”

« java.security.SecurityPermission "putProviderProperty.IBMJGSSProvider”

2

Chapter 4. IBM Java Generic Security Service (JGSS)

313

jgssapi/org/ietf/jgss/GSSManager.html
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

JAAS permission checks

IBM JGSS performs runtime permission checks at the time the JAAS-enabled program uses credentials
and accesses services. You can disable this optional JAAS feature by setting the Java property
javax.security.auth.useSubjectCredsOnly to false. Moreover, JGSS performs permission checks only when
the application runs with a security manager.

JGSS performs permission checks against the Java policy that is in effect for the current access control
context. JGSS performs the following specific permission checks:

» javax.security.auth.kerberos.DelegationPermission
* javax.security.auth.kerberos.ServicePermission

DelegationPermission check

The DelegationPermission allows the security policy to control the use of the ticket forwarding and
proxying features of Kerberos. Using these features, a client can allow a service to act on behalf of the
client.

DelegationPermission takes two arguments, in the following order:

1. The subordinate principal, which is the name of the service principal that acts on behalf of, and under
the authority of, the client

2. The name of the service that the client wants to allow the subordinate principal to use
Example: Using the DelegationPermission check

In the following example, superSecureServer is the subordinate principal and
krbtgt/REALM.IBM.COM@REALM.IBM.COM is the service that we want to allow superSecureServer to
use on behalf of the client. In this case, the service is the ticket-granting ticket for the client, which means
that superSecureServer can get a ticket for any service on behalf of the client.

permission javax.security.auth.kerberos.DelegationPermission

"\"superSecureServer/host.ibm.com@REALM. IBM.COM\"
\"krbtgt/REALM.IBM.COMGREALM.IBM.COM\"";

In the previous example, DelegationPermission grants the client permission to get a new ticket-granting
ticket from the Key Distribution Center (KDC) that only superSecureServer can use. After the client has
sent the new ticket-granting ticket to superSecureServer, superSecureServer has the ability to act on
behalf of the client.

The following example enables the client to get a new ticket that allows superSecureServer to access only
the ftp service on behalf of the client:

permission javax.security.auth.kerberos.DelegationPermission
"\"superSecureServer/host.ibm.com@REALM. IBM.COM\"
\"ftp/ftp.ibm.com@REALM.IBM.COM\"";

For more information, see the javax.security.auth.kerberos.DelegationPermission class in the |[J2SDK

“D 5n the Sun Web site.

ServicePermission check
ServicePermission checks restrict the use of credentials for context initiation and acceptance. A context

initiator must have permission to initiate a context. Likewise, a context acceptor must have permission to
accept a context.

Example: Using the ServicePermission check

The following example allows the client side to initiate a context with the ftp service by granting permission
to the client:

314 iSeries: IBM Developer Kit for Java

http://java.sun.com/j2se/1.4/docs/index.html
http://java.sun.com/j2se/1.4/docs/index.html

permission javax.security.auth.kerberos.ServicePermission
"ftp/host.ibm.com@REALM.IBM.COM", "initiate";

The following example allows the server side to access and use the secret key for the ftp service by
granting permission to the server:

permission javax.security.auth.kerberos.ServicePermission
"ftp/host.ibm.com@REALM.IBM.COM", "accept";

For more information, see the javax.security.auth.kerberos.ServicePermission class in the J2SDK

“D 4n the Sun Web site. & 3

Running IBM JGSS applications

The IBM Java Generic Security Service (JGSS) API 1.0 shields secure applications from the complexities
and peculiarities of the different underlying security mechanisms. JGSS uses features provided by Java
Authentication and Authorization Service (JAAS) and IBM Java Cryptography Extension (JCE).

JGSS features include:

 Identity authentication

* Message integrity and confidentiality

* Optional JAAS Kerberos login interface and authorization checks

For more information about running JGSS applications, see the following topics:

[Obtaining Kerberos credentials|

Find out how to obtain Kerberos credentials and create secret keys. Learn about using JAAS to
perform Kerberos logins and authorization checks and review a list of JAAS permissions required by
the Java virtual machine (JVM).

[Configuration and policy files|
Learn about the different kinds of supporting files you need to run JGSS, including configuration files,
policy files, the Java master security properties file, and the credentials cache.

Read about using JGSS debugging to categorize and display helpful debugging messages.

WGSS samples|
Use the sample programs to test and verify your JGSS setup. The sample documentation includes

Java source code, instructions for running the samples, configuration and policy files, and more. &

=

Obtaining Kerberos credentials and creating secret keys

The GSS-API does not define a way to get credentials. For this reason, the IBM JGSS Kerberos
mechanism requires that the user obtain Kerberos credentials by using one of the following methods:

+ [Kinit and Ktab tools]
Optional JAAS Kerberos login interfacef®

2

The Kinit and Ktab tools

Your choice of a JGSS provider determines which tools that you use to obtain Kerberos credentials and
secret keys.

Chapter 4. IBM Java Generic Security Service (JGSS) 315

http://java.sun.com/j2se/1.4/docs/index.html
http://java.sun.com/j2se/1.4/docs/index.html

Using the pure Java JGSS provider
If you are using the pure Java JGSS provider, use the IBM JGSS Kinit and Ktab tools to obtain credentials

and secret keys. The Kinit and Ktab tools use command-line interfaces and provide options similar to

those offered by other versions.

* You can obtain Kerberos credentials by using the Kinit tool. This tool contacts the Kerberos Distribution
Center (KDC) and obtains a ticket-granting ticket (TGT). The TGT allows you to access other
Kerberos-enabled services, including those that use the GSS-API.

» A server can obtain a secret key by using the Ktab tool. JGSS stores the secret key in the key table file
on the server. See the Ktab Java documentation for more information.

Alternatively, your application can use the JAAS Login interface to obtain TGTs and secret keys. For more

information, see the following:

¢ [Kinit javadoc|
. :Ktab javadoc|

JAAS login interface|

Using the native iSeries JGSS provider
If you are using the native iSeries JGSS provider, use the Qshell kinit and klist utilities. For more

information, see |Utilities for Kerberos credentials and key tables| € #*

JAAS Kerberos login interface

IBM JGSS features a Java Authentication and Authorizaiton Service (JAAS) Kerberos login interface. You
can disable this feature by setting the Java property javax.security.auth.useSubjectCredsOnly to false.

Note: Although the pure Java JGSS provider can use the login inteface, the native iSeries JGSS provider

can not.

For more information about JAAS, see Java Authentication and Authorization Service]

JAAS and JVM permissions

If you are using a security manager, you need to ensure that your application and JGSS have the
necessary JVM and JAAS permissions. For more information, see |Using a security managet

JAAS configuration file options

The login interface requires a JAAS configuration file that specifies
com.ibm.security.auth.module.Krb5LoginModule as the login module to be used. The following table lists
the options that Krb5LoginModule supports. Note that the options are not case-sensitive.

Option Name Value Default Explanation
principal <string> None; prompted for. Kerberos principal name
credsType initiatorlacceptorlboth | initiator The JGSS credential type
forwardable truelfalse false Whether to acquire a forwardable
ticket-granting ticket (TGT)
proxiable truelfalse false Whether to acquire a proxiable TGT
useCcache <URL> Don’t use ccache Retrieve TGT from the specified credential
cache
useKeytab <URL> Don’t use key table Retrieve secret key from the specified key
table
useDefaultCcache |truelfalse Don’t use default Retrieve TGT from default credential cache
ccache
useDefaultKeytab | truelfalse Don’t use default key Retrieve secret key from the specified key
table table

316

iSeries: IBM Developer Kit for Java

rzahajgssknit.htm
rzahajgssktab.htm

For a simple example of using Krb5LoginModule, see the [sample JAAS login configuration file]

Option incompatabilities

Some Krb5LoginModule options, excluding principal name, are incompatible with each other, meaning that
you can not specify them together. The following table represents compatible and incompatible login
module options.

Indicators in the table describe the relationship between the two associated options:
* X = Incompatible

* N/A = Inapplicable combination

» Blank = Compatible

Krb5LoginModule credsTypécredsType credsType| forward | proxy | use use useDefauli useDefault
option initiator |acceptor |both Ccache |Keytab |Ccache |Keytab
credsType=initiator N/A N/A X X
credsType=acceptor N/A N/A X X X X
credsType=both N/A N/A

forwardable X X X X X
proxiable X X X X X
useCcache X X X X X X
useKeytab X X X X X X
useDefaultCcache X X X X X X
useDefaultKeytab X X X X X X

Principal name option
You can specify a principal name in combination with any other option. When you do not specify a

principal name, the Krb5LoginModule may prompt the user for a principal name. Whether or not
Krb5LoginModule prompts the user depends on the other options that you specify. For more information,
see |Prompting for the principal name and password|

Service principal name format

You must use one of the following formats to specify a service principal name:
» <service_name> (for example, superSecureServer)
* <service_name>@<host> (for example, superSecureServer@myhost)

In the latter format, <host> is the hostname of the machine on which the service resides. You can (but do
not have to) use a fully qualified hostname.

Note: JAAS recognizes certain characters as delimiters. When you use any of the following characters in
a JAAS string (such as a principal name), enclose the character in quotes:

(underscore)

(colon)

/ (forward slash)
\ (back slash)

Prompting for the principal name and password
The options that you specify in the JAAS configuration file determine whether the Krb5LoginModule login

is noninteractive or interactive.
* A noninteractive login does not prompt for any information whatsoever

Chapter 4. IBM Java Generic Security Service (JGSS) 317

* An interactive login prompts for principal name, password, or both
Noninteractive logins

The login proceeds noninteractively when you specify the credential type as initiator
(credsType=initiator) and you perform one of the following actions:

» Specify the useCcache option
» Set the useDefaultCcache option to true

The login also proceeds noninteractively when you specify the credential type as acceptor or both
(credsType=acceptor or credsType=both) and you perform one of the following actions:

» Specify the useKeytab option
» Set the useDefaultKeytab option to true

Interactive logins

Other configurations result in the login module prompting for a principal name and password so that it may
obtain a TGT from a Kerberos KDC. The login module prompts for only a password when you specify the
principal option.

Interactive logins require that the application specify com.ibm.security.auth.callback.Krb5CallbackHandler
as the callback handler when creating the login context. The callback handler is responsible for prompting
for input.

Credential type option

When you require the credential type to be both initiator and acceptor (credsType=both), Krb5LoginModule
obtains both a TGT and a secret key. The login module uses the TGT to initiate contexts and the secret
key to accept contexts. The JAAS configuration file must contain sufficient information to enable the login
module to acquire the two types of credentials.

For credential types acceptor and both, the login module assumes a service principal. % 2

Configuration and policy files

JGSS and JAAS depend on several configuration and policy files. You need to edit these files to conform
to your environment and application. If you do not use JAAS with JGSS, you can safely ignore the JAAS
configuration and policy files.

+ [Kerberos configuration filel

[JAAS configuration file]

[JAAS authorization policy file]

« [Java master security properties file|
[Credentials cache and server key table]

Note: In the following instructions, ${java.home} denotes the path to the location of the version of Java
that you are using on your server. For example, if you are using J2SDK, version 1.4, ${java.home} is
/QIBM/ProdData/Java400/jdk14. Remember to replace ${java.homelin the property settings with the actual
path to the Java home directory.

Kerberos configuration file

IBM JGSS requires a Kerberos configuration file. The default name and location of the Kerberos
configuration file depends on the operating system being used. JGSS uses the following order to search
for the default configuration file:

1. The file referenced by the Java property java.security.krb5.conf
2. ${java.home}/lib/security/krb5.conf

318 iSeries: IBM Developer Kit for Java

3. c:\winnt\krb5.ini on Microsoft Windows® platforms
4. /etc/krb5/krb5.conf on Solaris‘™ platforms
5. /etc/krb5.conf on other Unix® platforms

JAAS configuration file
The use of the JAAS login feature requires a JAAS configuration file. You can specify the JAAS

configuration file by setting one of the following properties:
* The Java system property java.security.auth.login.config
» The security property login.config.url.<integer> in the ${java.home}/lib/security/java.security file

For more information, see the [Sun Java Authentication and Authorization Service (JAAS)| Web site 9 .

JAAS policy file
When using the default policy implementation, JGSS grants JAAS permissions to entities by recording the
permissions in a policy file. You can specify the JAAS policy file by setting one of the following properties:

* The Java system property java.security.policy
» The security property policy.url.<integer> in the ${java.home}/lib/security/java.security file

If you are using J2SDK, version 1.4, specifying a separate policy file for JAAS is optional. The default
policy provider in J2SDK, version 1.4 supports the policy file entries that JAAS requires.

For more information, see the [Sun Java Authentication and Authorization Service (JAAS)| Web site 9 .

Java master security properties file

A Java virtual machine (JVM) uses many important security properties that you set by editing the Java
master security properties file. This file, named java.security, usually resides in the
${java.home}/lib/security directory on your iSeries server.

The following list describes several relevant security properties for using JGSS. Use the descriptions as a
guide for editing the java.security file.

Note: When applicable, the descriptions include appropriate values required to run the JGSS samples.

security.provider.<integer>: The JGSS provider that you want to use. Also statically registers
cryptographic provider classes. IBM JGSS uses cryptographic and other security services provided by the
IBM JCE Provider. Specify the sun.security.provider.Sun and com.ibm.crypto.provider.BMJCE packages
exactly like the following example:

security.provider.l=sun.security.provider.Sun
security.provider.2=com.ibm.crypto.provider.IBMJCE

policy.provider: System policy handler class. For example:
policy.provider=sun.security.provider.PolicyFile

policy.url.<integer>: URLs of policy files. To use the sample policy file, include an entry such as:
policy.url.1=file:/home/user/jgss/config/java.policy

login.configuration.provider: JAAS login configuration handler class, for example:
login.configuration.provider=com.ibm.security.auth.login.ConfigFile

auth.policy.provider: JAAS principal-based access control policy handler class, for example:
auth.policy.provider=com.ibm.security.auth.PolicyFile

login.config.url.<integer>: URLs for JAAS login configuration files. To use the sample configuration file,
include an entry similar to:

Chapter 4. IBM Java Generic Security Service (JGSS) 319

http://java.sun.com/products/jaas/index-14.html
http://java.sun.com/products/jaas/index-14.html

login.config.url.1=file:/home/user/jgss/config/jaas.conf

auth.policy.url.<integer>: URLs for JAAS policy files. You can include both principal-based and
CodeSource-based constructs in the JAAS policy file. To use the sample policy file, include an entry such

as:

auth.policy.url.1=file:/home/user/jgss/config/jaas.policy

Credentials cache and server key table
A user principal keeps its Kerberos credentials in a credentials cache. A service principal keeps its secret
key in a key table. At runtime, IBM JGSS locates these caches in the following ways:

User credentials cache

JGSS uses the following order to locate the user credentials cache:
1. The file referenced by the Java‘™ property KRBSCCNAME

A

The file referenced by the environment variable KRB5SCCNAME
/tmp/krb5cc_<uid> on Unix systems
${user.home}/krb5cc_${user.name}

${user.nome}/krb5cc (if ${user.name} cannot be obtained)

Server key table

JGSS uses the following order to locate the server key table file:
1. The value of the Java™ property KRB5_KTNAME

2.

default_keytab_name entry in the libdefaults stanza of the Kerberos configuration file

3. ${user.home}/krb5_keytab &

=

Developing IBM JGSS applications

For more information about developing IBM JGSS applications, see the following topics:

320

IProgramming steps|

Learn about the steps required to develop a JGSS application, including using transport tokens,
creating the necessary JGSS objects, establishing and deleting context, and using per-message
services.

lUsing JAAS with your JGSS application|
Read about enabling the JAAS Kerberos login feature of JGSS. Information includes requirements for
using the login feature and a snippet of example code.

Read about using JGSS debugging to categorize and display helpful debugging messages.

NGSS javadoc reference information|
Review the javadoc information for classes and methods in the org.ietf.jgss api package and for the
Java versions of Kerberos credential management tools (kinit, ktab, and klist).

WGSS samples|

Use the sample programs to discover how you can use JGSS in your applications. The sample
documentation includes Java source code, instructions for running the samples, configuration and
policy files, and more.

iSeries: IBM Developer Kit for Java

To develop JGSS applications, you need to be familiar with the high-level GSS-API specification and the
Java bindings specification. IBM JGSS 1.0 is primarily based on and conforms to these specifications. See
the following links for more information.

+ |RFC 2743: Generic Security Service Application Programming Interface Version 2, Update 1| 9
+ |RFC 2853: Generic Security Service API Version 2: Java Bindings| D

=

IBM JGSS application programming steps

Operations in a JGSS application follow the Generic Security Service Application Programming Interface
GSS-API) operational model. For information about concepts important to JGSS operations, see

JGSS transport tokens

Some of the important JGSS operations generate tokens in the form of Java byte arrays. It is the
responsibility of the application to forward the tokens from one JGSS peer to the other. JGSS does not
constrain in any way the protocol that the application uses for transporting tokens. Applications may
transport JGSS tokens together with other application (that is, non-JGSS) data. However, JGSS operations
accept and use only JGSS-specific tokens.

Sequence of operations in a JGSS application
JGSS operations require certain programming constructs that you must use in the order listed below. Each
of the steps applies to both the initiator and the acceptor.

Note: The information includes snippets of example code that illustrate using the high-level JGSS APIs
and assume that your application imports the org.ietf.jgss package. Although many of the high-level APls
are overloaded, the snippets show only the most commonly used forms of those methods. Of course, use
the APl mehods that best suit your needs.
1. |Creating a GSSManager|
An instance of GSSManager acts as a factory for creating other JGSS object instances.
2. [Creating a GSSName|
A GSSName represents the identity of a JGSS principal. Some JGSS operations can locate and use a
default principal when you specify a null GSSName.

3. [Creating a GSSCredential|
A GSSCredential embodies the mechanism-specific credentials of the principal.

4. [Creating a GSSContext]
A GSSContext is used for context establishment and subsequent per-message services.

5. |Selecting optional services on the context|
Your application must explicitly request optional services, such as mutual authentication.

6. |Establishing context
The initiator authenticates itself to the acceptor. However, when requesting mutual authentication, the
acceptor in turn authenticates itself to the initiator.

7. |Using per-message services
The initiator and the acceptor exchange secure messages over the established context.

8. |Deleting context]
The application deletes a context that is no longer needed. %

=

Creating a GSSManager
The GSSManager abstract class serves as a factory for creating the following JGSS objects:
+ GSSName

Chapter 4. IBM Java Generic Security Service (JGSS) 321

http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc2853.txt

e (GSSCredential
* GSSContext

GSSManager also has methods for determining the supported security mechanisms and name types and
for specifying JGSS providers. Use the GSSManager getinstance static method to create an instance of
the default GSSManager:

GSSManager manager = GSSManager.getInstance();

2
Creating a GSSName

GSSName represents the identity of a GSS-API principal. A GSSName may contain many representations
of the principal, one for each supported underlying mechanism. A GSSName that contains only one name
representation is called a Mechanism Name (MN).

GSSManager has several overloaded methods for creating a GSSName from a string or a contiguous
array of bytes. The methods interpret the string or byte array according to a specified name type. Typically,
you use the GSSName byte-array methods to reconstitute an exported name. The exported name is
usually a mechanism name of type GSSName.NT_EXPORT_NAME. Some of these methods allow you to
specify a security mechanism with which to create the name.

Examples: Using GSSName
The following basic code snippet shows how to use GSSName.

Note: Specify Kerberos service name strings as either <service> or <service @host> where <service> is
the name of the service and <host> is the hostname of the machine on which the service runs. You can
(but do not have to) use a fully qualified hostname. When you omit the @ <host> portion of the string,
GSSName uses the local hostname.

// Create GSSName for user foo.
GSSName fooName = manager.createName("foo", GSSName.NT_USER_NAME);

// Create a Kerberos V5 mechanism name for user foo.
0id krb5Mech = new 0id("1.2.840.113554.1.2.2");
GSSName fooName = manager.createName("foo", GSSName.NT_USER_NAME, krb5Mech);

// Create a mechanism name from a non-mechanism name by using the GSSName
// canonicalize method.

GSSName fooName = manager.createName("foo", GSSName.NT_USER_NAME);
GSSName fooKrb5Name = fooName.canonicalize(krb5Mech);

b
Creating a GSSCredential

A GSSCredential contains all the cryptographic information necessary to create a context on behalf of a
principal and can contain credential information for multiple mechanisms.

GSSManager has three credential creation methods. Two of the methods take for parameters a
GSSName, the lifetime of the credential, one or more mechanisms from which to get credentials, and the
credential usage type. The third method takes only a usage type and uses the default values for other
parameters. Specifying a null mechanism also uses the default mechanism. Specifying a null array of
mechanisms causes the method to return credentials for the default set of mechanisms.

Note: Because IBM JGSS supports only the Kerberos V5 mechanism, that is the default mechanism.

Your application can create only one of the three credentials types (initiate, accept, or initiate and accepi)
at a time.

322 iSeries: IBM Developer Kit for Java

* A context initiator creates initiate credentials
* An acceptor creates accept credentials
» An acceptor that also behaves as an initiator creates initiate and accept credentials.

Examples: Obtaining credentials

The following example obtains the default credentials for an initiator:
GSSCredentials fooCreds = manager.createCredentials(GSSCredential.INITIATE)

The following example obtains Kerberos V5 credentials for the initiator foo that have the default validity
period:

GSSCredential fooCreds = manager.createCredential(fooName, GSSCredential.DEFAULT LIFETIME,
krb5Mech,GSSCredential.INITIATE);

The following example obtains an all-default acceptor credential:

GSSCredential serverCreds = manager.createCredential(null, GSSCredential.DEFAULT LIFETIME,
(0id)null, GSSCredential.ACCEPT);

Z

Creating GSSContext

IBM JGSS supports two methods provided by GSSManager for creating a context:
* A method used by the context initiator

* A method used by the acceptor

Note: GSSManager provides a third method for creating a context that involves recreating previously
exported contexts. However, because IBM JGSS Kerberos V5 mechanism does not support the use of
exported contexts, IBM JGSS does not support this method.

Your application can not use an initiator context for context acceptance, nor can it use an acceptor context
for context initiation. Both supported methods for creating a context require a credential as input. When the
value of the credential is null, JGSS uses the default credential.

Examples: Using GSSContext

The following example creates a context with which the principal (foo) can initiate a context with the peer
(superSecureServer) on the host (securityCentral). The example specifies the peer as
superSecureServer @ securityCentral. The created context is valid for the default period:

GSSName serverName = manager.createName("superSecureServer@securityCentral",
GSSName .NT_HOSTBASED_SERVICE, krb5Mech);
GSSContext fooContext = manager.createContext(serverName, krb5Mech, fooCreds,
GSSCredentia].DEFAULT_LIFETIME);

The following example creates a context for superSecureServer in order to accept contexts initiated by any
peer:

GSSContext serverAcceptorContext = manager.createContext(serverCreds);
Note that your application can create and simultaneously use both types of contexts. & 2

Requesting optional security services

Your application can request any of several optional security services. IBM JGSS supports the following
optional services:

* Delegation

Chapter 4. IBM Java Generic Security Service (JGSS) 323

* Mutual authentication

* Replay detection

» Qut-of-sequence detection

» Available per-message confidentiality
* Available per-message integrity

To request an optional service, your application must explicitly request it by using the appropriate request
method on the context. Only an initiator can request these optional services. The initiator must make the
request before context establishment begins.

For more information about optional services, see Optional Service Support in Internet Engineering Task
Force (IETF) RFC 2743 |Generic Security Services Application Programming Interface Version 2, Update 1|
S

Example: Requesting optional services

In the following example, a context (fooContext) makes requests to enable mutual authentication and
delegation services:

fooContext.requestMutualAuth(true);
fooContext.requestCredDeleg(true);

Z

Establishing context

The two communicating peers must establish a security context over which they can use per-message
services. The initiator calls initSecContext() on its context, which returns a token to the initiator application.
The initiator application transports the context token to the acceptor application. The acceptor calls
acceptSecContext() on its context, specifying the context token received from the initiator. Depending on
the underlying mechanism and the optional services that the initiator selected, acceptSecContext() might
produce a token that the acceptor application has to forward to the initiator application. The initiator
application then uses the received token to call initSecContext() one more time.

An application can make multiple calls to GSSContext.initSecContext() and
GSSContext.acceptSecContext(). An application can also exchange multiple tokens with a peer during
context establishment. Hence, the typical method of establishing context uses a loop to call
GSSContext.initSecContext() or GSSContext.acceptSecContext() until the applications establish context.

Example: Establishing context

The following example illustrates the initiator (foo) side of context establishment:

byte array[] inToken = null; // The input token is null for the first call
int inTokenLen = 0;

do {
byte[] outToken = fooContext.initSecContext(inToken, 0, inTokenLen);

if (outToken != null) {

send(outToken); // transport token to acceptor
}

if(!fooContext.isEstablished()) {
inToken = receive(); // receive token from acceptor
inTokenLen = inToken.length;

}
} while (!fooContext.isEstablished());

324 iSeries: IBM Developer Kit for Java

http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc2743.txt

The following example illustrates the acceptor side of context establishment:

// The acceptor code for establishing context may be the following:
do {
byte[] inToken = receive(); // receive token from initiator
byte[] outToken =
serverAcceptorContext.acceptSecContext(inToken, 0, inToken.length);

if (outToken != null) {
send(outToken); // transport token to initiator

} while (!serverAcceptorContext.isEstablished());

2

Using per-message services

After establishing a security context, two communicating peers can exchange secure messages over the
established context. Either peer can originate a secure message, regardless of whether it served as
initiator or acceptor when establishing context. To make the message secure, IBM JGSS computes a
cryptographic message integrity code (MIC) over the message. Optionally, IBM JGSS can have the
Kerberos V5 mechanism encrypt the message to help ensure privacy.

Sending messages
IBM JGSS provides two sets of methods for securing messages: wrap() and getMIC().

Using wrap()

The wrap method performs the following actions:
* Computes an MIC

* Encrypts the message (optional)

* Returns a token

The calling application uses the MessageProp class in conjunction with GSSContext to specify whether to
apply encryption to the message.

The returned token contains both the MIC and text of the message. The text of the message is either
ciphertext (for an encrypted message) or the original plaintext (for messages that are not encrypted).

Using getMIC()

The getMIC method performs the following actions but can not encrypt the message:
» Computes an MIC
* Returns a token

The returned token contains only the computed MIC and does not include the original message. So, in
addition to transporting the MIC token to the peer, the peer must somehow be made aware of the original
message so that it can verify the MIC.

Example: Using per-message services to send a message

The following example shows how one peer (foo) can wrap a message for delivery to another peer
(superSecureServer):
byte[] message = "Ready to roll!".getBytes();
MessageProp mprop = new MessageProp(true); // foo wants the message encrypted
byte[] wrappedMessage =
fooContext.wrap(message, 0, message.length, mprop);

Chapter 4. IBM Java Generic Security Service (JGSS) 325

send(wrappedMessage); // transfer the wrapped message to superSecureServer

// This is how superSecureServer may obtain a MIC for delivery to foo:
byte[] message = "You bet!".getBytes();
MessageProp mprop = null; // superSecureServer is content with

// the default quality of protection

byte[] mic =

serverAcceptorContext.getMIC(message, 0, message.length, mprop);
send(mic);
// send the MIC to foo. foo also needs the original message to verify the MIC

Receiving messages

The receiver of a wrapped message uses unwrap() to decode the message. The unwrap method performs
the following actions:

» Verifies the cryptographic MIC embedded in the message
* Returns the original message over which the sender computed the MIC

If the sender encrypted the message, unwrap() decrypts the message before verifying the MIC and then
returns the original plaintext message. The receiver of an MIC token uses verifyMIC() to verify the MIC
over a given a message.

The peer applications use their own protocol to deliver JGSS context and message tokens to each other.
Peer applications also need to define a protocol for determining whether the token is an MIC or a wrapped
message. For example, part of such a protocol may be as simple (and rigid) as that used by Simple
Authentication and Security Layer (SASL) applications. The SASL protocol specifies that the context
acceptor is always the first peer to send a per-message (wrapped) token following context establishment.

For more information, see |Simple Authentication and Security Layer (SASL)| R4 .

Example: Using per-message services to receive a message

The following examples shows how a peer (superSecureServer) unwraps the wrapped token that it
received from another peer (foo):

MessageProp mprop = new MessageProp(false);

byte[] plaintextFromFoo =
serverAcceptorContext.unwrap (wrappedTokenFromFoo, 0,
wrappedTokenFromFoo.length, mprop);

// superSecureServer can now examine mprop to determine the message properties
// (such as whether the message was encrypted) applied by foo.

// foo verifies the MIC received from superSecureServer:

MessageProp mprop = new MessageProp(false);

fooContext.verifyMIC(micFromFoo, 0, micFromFoo.length, messageFromFoo, 0,
messageFromFoo.length, mprop);

// foo can now examine mprop to determine the message properties applied by

// superSecureServer. In particular, it can assert that the message was not
// encrypted since getMIC should never encrypt a message.

b
Deleting context

A peer deletes a context when the context is no longer needed. In JGSS operations, each peer unilaterally
decides when to delete a context and does not need to inform its peer.

326 iSeries: IBM Developer Kit for Java

http://www.ietf.org/rfc/rfc2222.txt

JGSS does not define a delete context token. To delete a context, the peer calls the dispose method of
the GSSContext object to free up any resources used by the context. A disposed GSSContext object may
still be accessible, unless the application sets the object to null. However, any attempt to use a disposed

(but still accessible) context throws an exception. & 2

Using JAAS with your JGSS application

The IBM JGSS includes an optional JAAS login facility that allows the application to use JAAS to obtain
credentials. After the JAAS login facility saves principal credentials and secret keys in the subject object of
a JAAS login context, JGSS can retrieve the credentials from that subject.

The default behavior of JGSS is to retrieve credentials and secret keys from the subject. You can disable
this feature by setting the Java property javax.security.auth.useSubjectCredsOnly to false.

Note: Although the pure Java JGSS provider can use the login inteface, the native iSeries JGSS provider
can not.

For more information about JAAS features, see [Obtaining Kerberos credentials and secret keys]

To use the JAAS login facility, your application must follow the JAAS programming model in the following
ways:

* Create a JAAS login context
» Operate within the confines of a JAAS Subject.doAs construct

The following code snippet illustrates the concept of operating within the confines of a JAAS Subject.doAs
construction:

static class JGSSOperations implements PrivilegedExceptionAction {
public JGSSOperations() {}
public Object run () throws GSSException {
// JGSS application code goes/runs here
}

}

public static void main(String args[]) throws Exception {
// Create a Togin context that will use the Kerberos
// callback handler
// com.ibm.security.auth.callback.Krb5CallbackHandler

// There must be a JAAS configuration for "JGSSClient"
LoginContext loginContext =
new LoginContext("JGSSClient", new Krb5CallabackHandler());
ToginContext.login();

// Run the entire JGSS application in JAAS privileged mode

Subject.doAsPrivileged(loginContext.getSubject(),
new JGSSOperations(), null);

2

Debugging

When you are trying to identify JGSS problems, use the JGSS debugging capability to produce helpful
categorized messages. You can turn on one or more categories by setting the appropriate values for the
Java property com.ibm.security.jgss.debug. Activate multiple categories by using a comma to separate the
category names.

Chapter 4. IBM Java Generic Security Service (JGSS) 327

Debugging categories include the following:

Category Description

help List debug catgories

all Turn on debugging for all categories
off Turn off debugging completely

app Application debugging (default)

ctx Context operations debugging

cred Credentials (including name) operations
marsh Marshaling of tokens

mic MIC operations

prov Provider operations

qgop QOP operations

unmarsh Unmarshaling of tokens

unwrap Unwrap operations

wrap Wrap operations

JGSS Debug class

To debug your JGSS application programmatically, use the debug class in the IBM JGSS framework. Your
application can use the debug class to turn on and off debug categories and display debugging information
for the active categories.

The default debugging constructor reads the Java property com.ibm.security.jgss.debug to determine
which categories to activate (turn on).

Example: Debugging for the application category

The following example shows how to request debug information for the application category:
import com.ibm.security.jgss.debug;
Debug debug = new Debug(); // Gets categories from Java property

// Lots of work required to set up someBuffer. Test that the
// category is on before setting up for debugging.

if (debug.on(Debug.OPTS_CAT_APPLICATION)) {
// Fill someBuffer with data.

debug.out (Debug.0PTS_CAT_APPLICATION, someBuffer);
// someBuffer may be a byte array or a String.

2

Samples: IBM Java Generic Security Service (JGSS)

The IBM Java Generic Security Service (JGSS) sample files include client and server programs,
configuration files, policy files, and javadoc reference information.

You can view HTML versions of the samples or download the javadoc information and source code for the
sample programs. Downloading the samples enables you to view the javadoc reference information,
examine the code, edit the configuration and policy files, and compile and run the sample programs:

View HTML versions of the samples|

328 iSeries: IBM Developer Kit for Java

+ [Download and view the sample javadoc information|
+ [Download and run the sample programs|

Description of the sample programs
The JGSS samples include four programs:

* non-JAAS server

* non-JAAS client

* JAAS-enabled server

* JAAS-enabled client

The JAAS-enabled versions are fully interoperable with their non-JAAS counterparts. So, you can run a
JAAS-enabled client against a non-JAAS server and you can run a non-JAAS client against a
JAAS-enabled server.

Note: When you run a sample, you can specify one or more optional Java properties, including the names
of the configuration and policy files, JGSS debug options, and the security manager. You can also turn on
and turn off the JAAS features.

You can run the samples in either a one-server or a two-server configuration. The one server configuration
consists of a client communicating with a primary server. The two-server configuration consists of a
primary and a secondary server, where the primary server acts as an initiator, or client, to the secondary
server.

When using a two-server configuration, the client first initates a context and exchanges secure messages
with the primary server. Next, the client delegates its credentials to the primary server. Then, on behalf of
the client, the primary server uses these credentials to initiate a context and exchange secure messages
with the secondary server. You can also use a two-server configuration in which the primary server acts as
a client on its own behalf. In this case, the primary server uses its own credentials to initiate a context and
exchange messages with the secondary server.

You can simultaneously run any number of clients against the primary server. Although you can run a
client directly against the secondary server, the secondary server can not use delegated credentials or run

as an initiator using its own credentials. € %

Viewing the IBM JGSS samples

The IBM Java Generic Security Service (JGSS) sample files include client and server programs,
configuration files, policy files, and javadoc reference information. Use the following links to view HTML
versions of the JGSS samples.

For additional information, see the following topics:
« [Description of the sample programs|
+ [Downloading and running the sample programs|

Viewing the sample programs
View the HTML versions of the JGSS sample programs by using the following links:

+ [Sample non-JAAS client program|

+ [Sample non-JAAS server program|

+ [Sample JAAS-enabled client program|
+ |Sample JAAS-enabled server program|

Chapter 4. IBM Java Generic Security Service (JGSS) 329

Viewing the sample configuration and policy files
View the HTML versions of the JGSS configuration and policy files by using the following links:

« [Kerberos configuration filel
« [JAAS configuration file]
JAAS policy file]

+ [Java policy filek

b

Sample: IBM JGSS non-JAAS client program

For more information about using the sample client program, see [Downloading and running the sample]

Note: Read the [Code example disclaimer| for important legal information.
// IBM JGSS 1.0 Sample Client Program

package com.ibm.security.jgss.test;
import org.ietf.jgss.*;
import com.ibm.security.jgss.Debug;

import java.io.*;
import java.net.=*;
import java.util.=*;

~
*
*

A JGSS sample client;

to be used in conjunction with the JGSS sample server.

The client first establishes a context with the server

and then sends wrapped message followed by a MIC to the server.
The MIC is calculated over the plain text that was wrapped.

The client requires to server to authenticate itself

(mutual authentication) during context establishment.

It also delegates its credentials to the server.

It sets the JAVA variable
javax.security.auth.useSubjectCredsOnly to false
so that JGSS will not acquire credentials through JAAS.

The client takes input parameters, and complements it

with information from the jgss.ini file; any required input not
supplied on the command line is taking from the jgss.ini file.
Usage: Client [options]

The -? option produces a help message including supported options.
This sample client does not use JAAS.

The client can be run against the JAAS sample client and server.
See {@1ink JAASClient JAASClient} for a sample client that uses JAAS.

L R I R R R N I R S R R

*/

class Client

{
private Util testUtil = null;
private String myName = null;
private GSSName gssName = null;

private String serverName = null;
private int servicePort = 0;
private GSSManager mgr GSSManager.getInstance();

private GSSName service = null;
private GSSContext context = null;
private String program = "Client";

330 iSeries: IBM Developer Kit for Java

private String debugPrefix = "Client: ";

private TCPComms tcp = null;
private String data = null;
private byte[] dataBytes = null;

private String serviceHostname= null;
private GSSCredential gssCred = null;

private static Debug debug = new Debug();

private static final String usageString =
"\t[-?] [-d | -n name] [-s serverName]"
"\n\t[-h serverHost [:port]] [-p port] [-m msg]"
Il\nll
"\n -?\t\t\thelp; produces this message"
"\n -n name\t\tthe client's principal name (without realm)"
"\n -s serverName\t\tthe server's principal name (without realm)"
"\n -h serverHost[:port]\tthe server's hostname"
" (and optional port number)"
"\n -p port\t\tthe port on which the server will be listening"
"\n -m msg\t\tmessage to send to the server";

+ 4+ 4+ + + + + 4+

// Caller must call initialize (may need to call processArgs first).
public Client (String programName) throws Exception

{
testUtil = new Util();
if (programName != null)

program = programName;
debugPrefix = programName + ": ";

}

// Caller must call initialize (may need to call processArgs first).
Client (String programName, boolean useSubjectCredsOnly) throws Exception
{

this(programName) ;

setUseSubjectCredsOnly (useSubjectCredsOnly);
1

public Client(GSSCredential myCred,
String serverNameWithoutRealm,
String serverHostname,
int serverPort,
String message)
throws Exception

testUtil = new Util();
if (myCred != null)
{

gssCred = myCred;
}

else

{
throw new GSSException(GSSException.NO_CRED, 0,
"Null input credential");

}

init(serverNameWithoutRealm, serverHostname, serverPort, message);

}

void setUseSubjectCredsOnly(boolean useSubjectCredsOnly)

{
final String subjectOnly = useSubjectCredsOnly ? "true" : "false";
final String property = "javax.security.auth.useSubjectCredsOnly";

Chapter 4. IBM Java Generic Security Service (JGSS)

331

String temp = (String)java.security.AccessController.doPrivileged(
new sun.security.action.GetPropertyAction(property));

if (temp == null)
{

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "setting useSubjectCredsOnly property to "
+ useSubjectCredsOnly);

// Property not set. Set it to the specified value.

java.security.AccessController.doPrivileged(
new java.security.PrivilegedAction() {
pubTic Object run() {
System.setProperty(property, subjectOnly);
return null;

}

1)
1
else
{
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix

+ "useSubjectCredsOnly property already set "

+ "in JUM to " + temp);
}

}

private void init(String myNameWithoutRealm,
String serverNameWithoutRealm,
String serverHostname,
int serverPort,
String message) throws Exception

myName = myNameWithoutRealm;
init(serverNameWithoutRealm, serverHostname, serverPort, message);

}

private void init(String serverNameWithoutRealm,
String serverHostname,
int serverPort,
String message) throws Exception

// peer's name
if (serverNameWithoutRealm != null)

{
}

else

{

1

// peer's host

if (serverHostname != null)
{

}

else

{
}

this.serverName = serverNameWithoutRealm;

this.serverName = testUtil.getDefaultServicePrincipalWithoutRealm();

this.serviceHostname = serverHostname;

this.serviceHostname = testUtil.getDefaultServiceHostname();

// peer's port
if (serverPort > 0)

{
}

this.servicePort = serverPort;

332 iSeries: IBM Developer Kit for Java

else

{
}

// message for peer
if (message !'= null)

this.servicePort = testUtil.getDefaultServicePort();

this.data = message;
}
else

{
}

this.dataBytes = this.data.getBytes();

this.data = "The quick brown fox jumps over the lazy dog";

tcp = new TCPComms (serviceHostname, servicePort);

void initialize() throws Exception
0id krb5Mechanism0id = new 0id("1.2.840.113554.1.2.2");
if (gssCred == null)
if (myName != null)

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "creating GSSName USER_NAME for "
+ myName) ;

gssName = mgr.createName (
myName,
GSSName .NT_USER_NAME,
krb5Mechanism0id) ;

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "Canonicalized GSSName=" + gssName);
}
else
gssName = null; // for default credentials

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix + "creating"
+ ((gssName == null)? " default " : " ")
+ "credential");

gssCred = mgr.createCredential(
gssName,
GSSCredential .DEFAULT_LIFETIME,
(0id)nul1,
GSSCredential.INITIATE_ONLY);
if (gssName == null)

gssName = gssCred.getName();
myName = gssName.toString();

debug.out (Debug.0PTS_CAT_APPLICATION,
debugPrefix + "default credential principal=" + myName);

}
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix + gssCred);

Chapter 4. IBM Java Generic Security Service (JGSS)

333

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "creating canonicalized GSSName for serverName " + serverName);

service = mgr.createName(serverName,
GSSName .NT_HOSTBASED_SERVICE,
krb5Mechanism0id) ;

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "Canonicalized server name = " + service);

debug.out(Debug.OPTS_CAT_APPLICATION,
debugPrefix + "Raw data=" + data);

void establishContext(BitSet flags) throws Exception

{
try {

debug.out (Debug.0PTS_CAT_APPLICATION,
debugPrefix + "creating GSScontext");

0id defaultMech = null;
context = mgr.createContext(service, defaultMech, gssCred,
GSSContext.INDEFINITE_LIFETIME);
if (flags !'= null)
{
if (flags.get(Util.CONTEXT_OPTS_MUTUAL))
{

debug.out (Debug.OPTS_CAT APPLICATION, debugPrefix
+ "requesting mutualAuthn");

context.requestMutualAuth(true);

}
if (flags.get(Uti1.CONTEXT_OPTS_INTEG))
{

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "requesting integrity");

context.requestInteg(true);

}

if (flags.get(Uti1.CONTEXT_OPTS_CONF))
{

context.requestConf(true);
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "requesting confidentiality");

}

if (flags.get(Uti1.CONTEXT_OPTS DELEG))
{

context.requestCredDeleg(true);
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "requesting delegation");

}

if (flags.get(Uti1.CONTEXT_OPTS_REPLAY))
{
context.requestReplayDet (true);
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "requesting replay detection");

}

if (flags.get(Uti1.CONTEXT_OPTS_SEQ))
{

334 iSeries: IBM Developer Kit for Java

context.requestSequenceDet (true);
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "requesting out-of-sequence detection");

1
// Add more later!
1

byte[] response = null;
byte[] request = null;
int Ten = 0;
boolean done = false;
do {
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "Calling initSecContext");

request = context.initSecContext(response, 0, len);

if (request != null)
{
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "Sending initial context token");

tcp.send(request);

}

done = context.isEstablished();

if (!'done)
{
debug.out (Debug.OPTS_CAT_APPLICATION,
debugPrefix + "Receiving response token");

byte[] temp = tcp.receive();
response = temp;
len = response.length;

}
} while(!done);

debug.out (Debug.OPTS_CAT APPLICATION,
debugPrefix + "context established with acceptor");

} catch (Exception exc) {
exc.printStackTrace();
throw exc;

}

void doMIC() throws Exception

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix + "generating MIC");
byte[] mic = context.getMIC(dataBytes, 0, dataBytes.length, null);

if (mic != null)

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix + "sending MIC");
tcp.send(mic);
}

else
debug.out (Debug.0PTS_CAT_APPLICATION,
debugPrefix + "getMIC Failed");
1

void doWrap() throws Exception

MessageProp mp = new MessageProp(true);
mp.setPrivacy(context.getConfState());

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix + "wrapping message");

Chapter 4. IBM Java Generic Security Service (JGSS) 335

byte[] wrapped = context.wrap(dataBytes, 0, dataBytes.length, mp);
if (wrapped != null)
{

debug.out (Debug.0PTS_CAT_APPLICATION,
debugPrefix + "sending wrapped message");

tcp.send(wrapped) ;

else
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix + "wrap Failed");
1

void printUsage()
{

System.out.printin(program + usageString);

1
void processArgs(String[] args) throws Exception
{

String port = null;

String myName = null;

int servicePort = 0;

String serviceHostname = null;

String sHost = null;
String msg = null;

GetOptions options = new GetOptions(args, "?h:p:m:n:s:");
int ch = -1;
while ((ch = options.getopt()) != options.optEOF)
{
switch(ch)
{
case '?':
printUsage();
System.exit(1);

case 'h':
if (sHost == null)
{
sHost = options.optArgGet();
int p = sHost.indexOf(':');
if (p != -1)
{

String templ = sHost.substring(0, p);
if (port == null)
port = sHost.substring(p+1, sHost.length()).trim();
sHost = templ;
1
1
continue;

case 'p':
if (port == null)
port = options.optArgGet();
continue;

case 'm':
if (msg == null)
msg = options.optArgGet();
continue;
case 'n':
if (myName == null)
myName = options.optArgGet();

336 iSeries: IBM Developer Kit for Java

continue;
case 's':
if (serverName == null)
serverName = options.optArgGet();
continue;

}
if ((port !'= null) && (port.length() > 0))
{

int p = -1;
try {
p = Integer.parselnt(port);
} catch (Exception exc) {
System.out.printin("Bad port input: "+port);
}

if (p = -1)
servicePort = p;

}

if ((sHost != null) && (sHost.length() > 0)) {
serviceHostname = sHost;
}

init(myName, serverName, serviceHostname, servicePort, msg);

}

void interactWithAcceptor(BitSet flags) throws Exception
{

establishContext(flags);

doWrap();

doMIC();
}

void interactWithAcceptor() throws Exception

{
BitSet flags = new BitSet();
flags.set (Uti1.CONTEXT_OPTS_MUTUAL);
flags.set(Uti1.CONTEXT_OPTS_CONF);
flags.set(Util.CONTEXT_OPTS_INTEG);
flags.set(Uti1.CONTEXT_OPTS DELEG);
interactWithAcceptor(flags);

}

void dispose() throws Exception
if (tcp != null)
{
tcp.close();

}

public static void main(String args[]) throws Exception
{
System.out.printin(debug.toString()); // XXXXXXX
String programName = "Client";
Client client = null;
try {
client = new Client(programName,
false); // don't use Subject creds.
client.processArgs(args);
client.initialize();
client.interactWithAcceptor();
} catch (Exception exc) {
debug.out (Debug.0PTS_CAT_APPLICATION,

Chapter 4. IBM Java Generic Security Service (JGSS) 337

programName + " Exception: " + exc.toString());
exc.printStackTrace();
throw exc;
} finally {

try {

if (client != null)

client.dispose();

} catch (Exception exc) {}

}

debug.out (Debug.OPTS_CAT_APPLICATION, programName + ": done");

=

Sample: IBM JGSS non-JAAS server program

For more information about using the sample server program, see |Down|oading and running the IBM|

GSS samples|

Note: Read the [Code example disclaimer for important legal information.
// IBM JGSS 1.0 Sample Server Program

package com.ibm.security.jgss.test;

import org.ietf.jgss.*;

import com.ibm.security.jgss.Debug;
import java.io.*;

import java.net.=*;

import java.util.=*;

~
*
*

A JGSS sample server; to be used in conjunction with a JGSS sample client.

It continuously listens for client connections,

spawning a thread to service an incoming connection.

It is capable of running multiple threads concurrently.

In other words, it can service multiple clients concurrently.

Each thread first establishes a context with the client

and then waits for a wrapped message followed by a MIC.

It assumes that the client calculated the MIC over the plain
text wrapped by the client.

If the client delegates its credential to the server, the delegated
credential is used to communicate with a secondary server.

Also, the server can be started to act as a client as well as

a server (using the -b option). In this case, the first

thread spawned by the server uses the server principal's own credential
to communicate with the secondary server.

The secondary server must have been started prior to the (primary) server
initiating contact with it (the scondary server).

In communicating with the secondary server, the primary server acts as

a JGSS initiator (i.e., client), establishing a context and engaging in
wrap and MIC per-message exchanges with the secondary server.

The server takes input parameters, and complements it

with information from the jgss.ini file; any required input not

supplied on the command Tine is taking from the jgss.ini file.

Built-in defaults are used if there is no jgss.ini file or if a particular
variable is not specified in the ini file.

L T R R R T S R R

338 iSeries: IBM Developer Kit for Java

Usage: Server [options]
The -? option produces a help message including supported options.

This sample server does not use JAAS.

It sets the JAVA variable

javax.security.auth.useSubjectCredsOnly to false

so that JGSS will not acquire credentials through JAAS.

The server can be run against the JAAS sample clients and servers.
See {@1ink JAASServer JAASServer} for a sample server that uses JAAS.

*
*
*
*
*
*
*
*
*
*

*/

class Server implements Runnable
{ L
NOTES:
This class, Server, is expected to be run in concurrent
multiple threads. The static variables consist of variables
set from command-line arguments and variables (such as
the server's own credentials, gssCred) that are set once during
during initialization. These variables do not change
once set and are shared between all running threads.

*

*

*

*

*

*

*

*

* The only static variable that is changed after being set initially

* is the variable 'beenlInitiator' which is set 'true'

* by the first thread to run the server as initiator using

* the server's own creds. This ensures the server is run as an initiator
* once only. Querying and modifying 'beenInitiator' is synchronized

* between the threads.

*
*
*
*

The variable 'tcp' is non-static and is set per thread
to represent the socket on which the client being serviced
by the thread connected.

*/

private static Util testUtil = null;
private static int myPort = 0;
private static Debug debug = new Debug();
private static String myName = null;
private static GSSCredential gssCred = null;
private static String serviceNameNoRealm = null;
private static String serviceHost = null;
private static int servicePort = 0;
private static String serviceMsg = null;
private static GSSManager mgr = null;
private static GSSName gssName = null;
private static String program = "Server";
private static boolean clientServer = false;
private static boolean primaryServer = true;
private static boolean beenlnitiator = false;

private static final String usageString =
"\t[-?] [-# number] [-d | -n name] [-p port]"
"\n\t[-s serverName] [-h serverHost [:port]] [-P serverPort] [- msg]"
Il\nll
"\n -?\t\t\thelp; produces this message"
"\n -# number\t\tWhether primary or secondary server"
" \n\t\t\t(1 = primary, 2 = secondary; default = first)"
"\n -n name\t\tthe server's principal name (without realm)"
"\n -p port\t\tthe port on which the server will be listening"
"\n -s serverName\t\tsecondary server's principal name"
" (without realm)"
"\n -h serverHost[:port]\tsecondary server's hostname"
" (and optional port number)"
"\n -P port\t\tsecondary server's port number"
"\n -m msg\t\tmessage to send to secondary server"

+ 4+ + 4+ + + ++ +++++

Chapter 4. IBM Java Generic Security Service (JGSS)

339

+ "\n -b \t\trun as both client and server"
+ " using the server's owns credentials";

// Non-static variables are thread-specific
// since each thread runs a separate instance of this class.

private String debugPrefix = null;
private TCPComms tcp = null;
static {

try {

testUtil = new Util();
} catch (Exception exc) {

exc.printStackTrace();

System.exit(1);

}

Server (Socket socket) throws Exception
{

debugPrefix = program + ": ";

tcp = new TCPComms (socket);

}

Server (String program) throws Exception
{
debugPrefix = program + ": ";
this.program = program;

}

Server (String program, boolean useSubjectCredsOnly) throws Exception
{

this(program);

setUseSubjectCredsOnly (useSubjectCredsOnly);
1

void setUseSubjectCredsOnly(boolean useSubjectCredsOnly)

{
final String subjectOnly = useSubjectCredsOnly ? "true" : "false";
final String property = "javax.security.auth.useSubjectCredsOnly";

String temp = (String)java.security.AccessController.doPrivileged(
new sun.security.action.GetPropertyAction(property));

if (temp == null)
{
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "setting useSubjectCredsOnly property to "
+ (useSubjectCredsOnly ? "true" : "false"));

// Property not set. Set it to the specified value.

java.security.AccessController.doPrivileged(
new java.security.PrivilegedAction() {
pubTic Object run() {
System.setProperty(property, subjectOnly);
return null;
}
s

}
else
{
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "useSubjectCredsOnly property already set "
+ "in JUIM to " + temp);
1

340 iSeries: IBM Developer Kit for Java

private void init(boolean primary,
String myNameWithoutRealm,
int port,
String serverNameWithoutRealm,
String serverHostname,
int serverPort,
String message,
boolean clientServer)

throws Exception

primaryServer = primary;
this.clientServer = clientServer;

myName = myNameWithoutRealm;

// my port
if (port > 0)
{

myPort = port;
}

else if (primary)
myPort = testUtil.getDefaultServicePort();
l]se
{
}

if (primary)
{

myPort = testUtil.getDefaultService2Port();

///// peer's name
if (serverNameWithoutRealm != null)

{
serviceNameNoRealm = serverNameWithoutRealm;
}
else
{
serviceNameNoRealm =
testUtil.getDefaultService2PrincipalWithoutRealm();
}

// peer's host
if (serverHostname != null)

if (serverHostname.equalsIgnoreCase("localHost"))

{
}

serverHostname = InetAddress.getlLocalHost().getHostName();

serviceHost = serverHostname;

}

else

{

}

// peer's port

if (serverPort > 0)
{

}

else

{
}

serviceHost = testUtil.getDefaultService2Hostname();

servicePort = serverPort;

servicePort = testUtil.getDefaultService2Port();

Chapter 4. IBM Java Generic Security Service (JGSS)

341

// message for peer
if (message !'= null)

{
}

else

{

serviceMsg = message;

serviceMsg = "Hi there! I am a server."
+ "But I can be a client, too";

1

String temp = debugPrefix + "details"
"\n\tPrimary:\t" + primary
"\n\tName:\t\t" + myName
"\n\tPort:\t\t" + myPort
"\n\tClient+server:\t" + clientServer;

+ 4+ + +

if (primary)
{

temp += "\n\tOther Server:"
+ "\n\t\tName:\t" + serviceNameNoRealm
+ "\n\t\tHost:\t" + serviceHost
+ "\n\t\tPort:\t" + servicePort
+ "\n\t\tMsg:\t" + serviceMsg;
}

debug.out (Debug.OPTS_CAT_APPLICATION, temp);

void initialize() throws GSSException

{
debug.out (Debug.OPTS_CAT_APPLICATION,
debugPrefix + "creating GSSManager");

mgr = GSSManager.getInstance();

int usage = clientServer ? GSSCredential.INITIATE_AND_ACCEPT
: GSSCredential .ACCEPT_ONLY;

if (myName != null)
{

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "creating GSSName for " + myName);

gssName = mgr.createName (myName,
GSSName .NT_HOSTBASED_SERVICE);

0id krb5Mechanism0id = new 0id("1.2.840.113554.1.2.2");
gssName.canonicalize(krb5MechanismOid);

debug.out (Debug.0PTS_CAT_APPLICATION,
debugPrefix + "Canonicalized GSSName=" + gssName);
1
else
gssName = null;

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix + "creating"
+ ((gssName == null)? " default " : " ")
+ "credential");

gssCred = mgr.createCredential(
gssName, GSSCredential.DEFAULT LIFETIME,
(0id)null1, usage);

if (gssName == null)

{

342 iSeries: IBM Developer Kit for Java

gssName = gssCred.getName();
myName = gssName.toString();

debug.out (Debug.0PTS_CAT_APPLICATION,
debugPrefix + "default credential principal=" + myName);

void processArgs(String[] args) throws Exception

{

String port = null;

String name = null;

int iport = 0;

String sport = null;

int isport = 0;

String sname = null;

String shost = null;

String smessage = null;

boolean primary = true;
String status = null;

boolean defaultPrinc = false;

boolean clientServer

false;

GetOptions options = new GetOptions(args, "?#:p:n:P:s:h:m:b");
int ch = -1;
while ((ch = options.getopt()) != options.optEQF)

{

switch(ch)

{

case '?':
printUsage();
System.exit(1);

case '#':
if (status == null)
status = options.optArgGet();
continue;

case 'p':
if (port == null)
port = options.optArgGet();
continue;

case 'n':
if (name == null)
name = options.optArgGet();
continue;

case 'b':
clientServer = true;
continue;

////// The other server

case 'P':
if (sport == null)
sport = options.optArgGet();
continue;

case 'm':
if (smessage == null)
smessage = options.optArgGet();

Chapter 4. IBM Java Generic Security Service (JGSS)

343

344

}

continue;

s':
if (sname == null)

sname = options.optArgGet();
continue;

case

case 'h':
if (shost == null)
{
shost = options.optArgGet();
int p = shost.index0f(':');
if (p !'= -1)
{

String templ = shost.substring(0, p);

if (sport == null)
sport = shost.substring

(p+1, shost.length()).trim();

shost = templ;
1
}

continue;

if (defaultPrinc &% (name != null))

{

}

System.out.printin(

"ERROR: '-d' and '-n ' options are mutually exclusive");

printUsage();
System.exit(1);

if (status != null)

{

}

int p = -1;
try {

p = Integer.parselnt(status);
} catch (Exception exc) {

System.out.printin("Bad status input: "+status);

}

if (p 1= -1)
{

}

primary = (p == 1);

if (port != null)

{

}

int p = -1;
try {

p = Integer.parselnt(port);
} catch (Exception exc) {

System.out.printin("Bad port input: "+port);

}
if (p = -1)
iport = p;

if (sport != null)

{

int p = -1;
try {

p = Integer.parselnt(sport);
} catch (Exception exc) {

System.out.printin("Bad server port input:

iSeries: IBM Developer Kit for Java

"+port);

}
if (p !'= -1)
isport = p;

}

init(primary, // first or second server

name, // my name

iport, // my port

sname, // other server's name
shost, // other server's hostname

isport, // other server's port
smessage, // msg for other server
clientServer); // whether to run as initiator with own creds

}

void processRequests() throws Exception
{

ServerSocket ssocket = null;

Server server = null;

try {
ssocket = new ServerSocket(myPort);
do {
debug.out (Debug.0PTS_CAT_APPLICATION,
debugPrefix + "listening on port " + myPort + " ...");

Socket csocket = ssocket.accept();

debug.out (Debug.0PTS_CAT_APPLICATION,
debugPrefix + "incoming connection on " + csocket);

server = new Server(csocket); // set client socket per thread
Thread thread = new Thread(server);
thread.start();
if (!thread.isAlive())
server.dispose(); // close the client socket
} while(true);
} catch (Exception exc) {
debug.out (Debug.OPTS_CAT_APPLICATION,
debugPrefix + "+** ERROR processing requests #xx");
exc.printStackTrace();
} finally {
try {
if (ssocket != null)
ssocket.close(); // close the server socket
if (server != null)
server.dispose(); // close the client socket
} catch (Exception exc) {}

}

void dispose()

try {
if (tcp != null)

tcp.close();
tcp = null;
}

} catch (Exception exc) {}
}

boolean establishContext(GSSContext context) throws Exception

byte[] response = null;
byte[] request = null;

debug.out (Debug.OPTS_CAT_APPLICATION,
debugPrefix + "establishing context");

Chapter 4. IBM Java Generic Security Service (JGSS) 345

do {
request = tcp.receive();
if (request == null || request.length == 0)
{
debug.out (Debug.0PTS_CAT_APPLICATION, debugPrefix
+ "Received no data; perhaps client disconnected");

return false;

}

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix + "accepting");
if ((response = context.acceptSecContext

(request, 0, request.length)) != null)
{

debug.out(Debug.OPTS_CAT_APPLICATION,
debugPrefix + "sending response");
tcp.send(response);

} while(!context.isEstablished());

debug.out (Debug.OPTS_CAT_APPLICATION,
debugPrefix + "context established - " + context);

return true;

}

byte[] unwrap(GSSContext context, byte[] msg) throws Exception
{
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix + "unwrapping");

MessageProp mp = new MessageProp(true);
byte[] unwrappedMsg = context.unwrap(msg, 0, msg.length, mp);

debug.out (Debug.OPTS_CAT_APPLICATION,
debugPrefix + "unwrapped msg is:");
debug.out (Debug.OPTS_CAT_APPLICATION, unwrappedMsg);

return unwrappedMsg;

}

void verifyMIC (GSSContext context, byte[] mic, byte[] raw) throws Exception

{
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix + "verifying MIC");

MessageProp mp = new MessageProp(true);
context.verifyMIC(mic, 0, mic.length, raw, 0, raw.length, mp);

debug.out (Debug.OPTS_CAT_APPLICATION,
debugPrefix + "successfully verified MIC");

}

void useDelegatedCred(GSSContext context) throws Exception

{
GSSCredential delCred = context.getDelegCred();
if (delCred != null)
{

if (primaryServer)

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix +
"Primary server received delegated cred; using it");
runAsInitiator(delCred); // using delegated creds

}

else

{
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix +
"Non-primary server received delegated cred; "

346 iSeries: IBM Developer Kit for Java

}

+ "ignoring it");

else

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix +
"ERROR: null delegated cred");

public void run()

{

byte[] response = null,
byte[] request = null;
boolean unwrapped = false;
GSSContext context = null;

try {

Thread currentThread = Thread.currentThread();
String threadName currentThread.getName();

debugPrefix = program + " " + threadName + ": ";

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "servicing client ...");

debug.out (Debug.0PTS_CAT_APPLICATION,
debugPrefix + "creating GSSContext");

context = mgr.createContext(gssCred);

// First establish context with the initiator.
if (lestablishContext(context))
return;

// Then process messages from the initiator.

// We expect to receive a wrapped message followed by a MIC.
// The MIC should have been calculated over the plain

// text that we received wrapped.

// Use delegated creds if any.

// Then run as initiator using own creds if necessary; only
// the first thread does this.

do {
debug.out (Debug.0PTS_CAT_APPLICATION,
debugPrefix + "receiving per-message request");

request = tcp.receive();
if (request == null || request.length == 0)
{
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix

+ "Received no data; perhaps client disconnected");

return;

}

// Expect wrapped message first.

if (lunwrapped)

{
response = unwrap(context, request);
unwrapped = true;
continue; // get next request

}

// Followed by a MIC.
verifyMIC(context, request, response);

Chapter 4. IBM Java Generic Security Service (JGSS)

347

348

// Impersonate the initiator if it delegated its creds to us.

if (context.getCredDelegState())
useDelegatedCred(context);

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "clientServer=" + clientServer
+ ", beenlnitiator=" + beenInitiator);

// 1f necessary, run as initiator using our own creds.

if (clientServer)
runAsInitiatorOnce(currentThread);

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix + "done");

return;
} while(true);

} catch (Exception exc) {

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix + "ERROR");

exc.printStackTrace();

// Squelch per-thread exceptions so we don't bring
// the server down because of exceptions in
// individual threads.
return;
} finally {

if (context != null)
{

try {

context.dispose();
} catch (Exception exc) {}

}

synchronized void runAsInitiatorOnce(Thread thread)
throws InterruptedException
{

if (!beenInitiator)

{
// set flag true early to prevent subsequent threads
// from attempting to runAsInitiator.
beenInitiator = true;

debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix +

"About to run as initiator with own creds ...");

//thread.sleep(30+1000, 0);
runAsInitiator();

void runAsInitiator(GSSCredential cred)
{
Client client = null;
try {
client = new Client(cred,
serviceNameNoRealm,
serviceHost,
servicePort,
serviceMsg);

client.initialize();

BitSet flags = new BitSet();

iSeries: IBM Developer Kit for Java

flags.set(Uti1.CONTEXT_OPTS_MUTUAL);
flags.set(Util.CONTEXT_OPTS_CONF);
flags.set(Uti1.CONTEXT_OPTS_INTEG);

client.interactWithAcceptor(flags);

} catch (Exception exc) {
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "Exception running as initiator");

exc.printStackTrace();
} finally {

try {
client.dispose();
} catch (Exception exc) {}

}
void runAsInitiator()

if (clientServer)

{
debug.out (Debug.OPTS_CAT_APPLICATION,
debugPrefix + "running as initiator with own creds");

runAsInitiator(gssCred); // use own creds;

}

else

{
debug.out (Debug.OPTS_CAT_APPLICATION, debugPrefix
+ "Cannot run as initiator with own creds "
+ "\nbecause not running as both initiator and acceptor.");

}

void printUsage()
{

}

public static void main(String[] args) throws Exception

{

System.out.printin(program + usageString);

System.out.printin(debug.toString()); // XXXXXXX
String programName = "Server";
try {
Server server = new Server(programName,
false); // don't use creds from Subject
server.processArgs(args);
server.initialize();
server.processRequests();
} catch (Exception exc) {
debug.out (Debug.OPTS_CAT_APPLICATION, programName + ": EXCEPTION");
exc.printStackTrace();
throw exc;

}
b

Sample: IBM JGSS JAAS-enabled client program

For more information about using the sample client program, see |Down|oading and running the IBM JGSSl
[samples]

Note: Read the [Code example disclaimer for important legal information.

Chapter 4. IBM Java Generic Security Service (JGSS) 349

// IBM Java GSS 1.0 sample JAAS-enabled client program

package com.ibm.security.jgss.test;

import com.ibm.security.jgss.Debug;

import com.ibm.security.auth.callback.Krb5CallbackHandler;
import javax.security.auth.Subject;

import javax.security.auth.login.LoginContext;

import java.security.PrivilegedExceptionAction;

[**
A Java GSS sample client that uses JAAS.

It does a JAAS login and operates within the JAAS login context so created.

*

*

*

*

* It does not set the JAVA variable

* javax.security.auth.useSubjectCredsOnly, leaving

* the variable to default to true

* so that Java GSS acquires credentials from the JAAS Subject
% associated with login context (created by the client).

*
*
*
*

The JAASClient is equivalent to its superclass {@link Client Client}
in all other respects, and it
can be run against the non-JAAS sample clients and servers.

*/

class JAASCTient extends Client

{
JAASClient(String programName) throws Exception

{
// Do not set useSubjectCredsOnly. Set only the program name.
// useSubjectCredsOnly default to "true" if not set.
super(programName) ;

}
static class JAASClientAction implements PrivilegedExceptionAction
{

private JAASClient client;

public JAASClientAction(JAASClient client)
{

}

public Object run () throws Exception

{

this.client = client;

client.initialize();
client.interactWithAcceptor();
return null;

}

public static void main(String args[]) throws Exception

{
String programName = "JAASClient";

JAASCTient client = null;
Debug dbg = new Debug();
System.out.printin(dbg.toString()); // XXXXXXX

try {
client = new JAASClient(programName);//use Subject creds
client.processArgs(args);

LoginContext ToginCtxt = new LoginContext("JAASClient",
new Krb5CallbackHandler());

ToginCtxt.login();

350 iSeries: IBM Developer Kit for Java

dbg.out (Debug.0PTS_CAT_APPLICATION,
programName + ": Kerberos login 0K");

Subject subject = loginCtxt.getSubject();

PrivilegedExceptionAction jaasClientAction
= new JAASClientAction(client);

Subject.doAsPrivileged(subject, jaasClientAction, null);

} catch (Exception exc) {

dbg.out (Debug.0PTS_CAT_APPLICATION,

programName + " Exception: " + exc.toString());

exc.printStackTrace();

throw exc;
} finally {

try {

if (client != null)
client.dispose();
} catch (Exception exc) {}

}

dbg.out (Debug.0OPTS_CAT_APPLICATION,
programName + ": Done ...");

b

Sample: IBM JGSS JAAS-enabled server program

For more information about using the sample server program, see [Downloading and running the IBM|

GSS samples|

Note: Read the [Code example disclaimer for important legal information.
// IBM Java GSS 1.0 sample JAAS-enabled server program

package com.ibm.security.jgss.test;

import com.ibm.security.jgss.Debug;

import com.ibm.security.auth.callback.Krb5CallbackHandler;
import javax.security.auth.Subject;

import javax.security.auth.login.LoginContext;

import java.security.PrivilegedExceptionAction;

[**

A Java GSS sample server that uses JAAS.
It does a JAAS login and operates within the JAAS Togin context so created.

*

*

*

*

* It does not set the JAVA variable

* javax.security.auth.useSubjectCredsOnly, leaving

* the variable to default to true

* so that Java GSS acquires credentials from the JAAS Subject
% associated with login context (created by the server).

*
*
*
*

The JAASServer is equivalent to its superclass {@1ink Server Server}
in all other respects, and it
can be run against the non-JAAS sample clients and servers.

*/

class JAASServer extends Server

JAASServer(String programName) throws Exception

{

Chapter 4. IBM Java Generic Security Service (JGSS) 351

super(programName) ;

static class JAASServerAction implements PrivilegedExceptionAction

{

private JAASServer server = null;

JAASServerAction(JAASServer server)

{
}

public Object run() throws Exception

{

this.server = server;

server.initialize();
server.processRequests();

return null;

1
1
public static void main(String[] args) throws Exception
{

String programName = "JAASServer";

Debug dbg = new Debug();

System.out.printin(dbg.toString()); // XXXXXXX

try {
// Do not set useSubjectCredsOnly.
// useSubjectCredsOnly defaults to "true" if not set.
JAASServer server = new JAASServer(programName) ;

server.processArgs(args);

LoginContext loginCtxt = new LoginContext(programName,
new Krb5CallbackHandler());

dbg.out (Debug.OPTS_CAT_APPLICATION, programName + ": Login in ...");
ToginCtxt.login();

dbg.out (Debug.OPTS_CAT_APPLICATION, programName +

: Login successful");
Subject subject = loginCtxt.getSubject();
JAASServerAction serverAction = new JAASServerAction(server);

Subject.doAsPrivileged(subject, serverAction, null);
} catch (Exception exc) {
dbg.out (Debug.OPTS_CAT_APPLICATION, programName + " EXCEPTION");
exc.printStackTrace();
throw exc;

=

Sample: Kerberos configuration file
For more information about using the sample configuration file, see |Down|oading and running the IBM|

GSS samples,

352 iSeries: IBM Developer Kit for Java

Note: Read the [Code example disclaimer| for important legal information.

Kerberos configuration file for running the JGSS sample applications.
Modify the entries to suit your environment.

[Tibdefaults]
default_keytab_name
default_realm
default_tkt_enctypes
default_tgs_enctypes
default_checksum
kdc_timesync
kdc_default options
clockskew
check_delegate
ccache_type
kdc_timeout

[realms]
REALM. IBM.COM

kdc =
}

[domain_realm]

{

kdc.ibm.

= /QIBM/UserData/0S400/NetworkAuthentication/keytab/krb5.keytab
= REALM.IBM.COM
= des-cbc-crc

= des-chc-crc

= rsa-md5

=0

= 0x40000010

= 300

=1

=3

= 60000

com:88

.ibm.com = REALM.IBM.COM

X

Sample: JAAS login configuration file
For more information about using the sample configuration file, see [Downloading and running the IBM|

GSS samples|

Note: Read the [Code example disclaimer for important legal information.

[**

*
[
=
>
[
—
(=}

Q@
.
=
I
=}
=
=l
-

=)
c
=
QO
o
o
)
=
-
o
S
+
=
™
(e
I
%)
%)
w
QL
3

°
=
@™
w

*

specific needs.

Supported options:

LR R R N S I S A R

Code example disclaimer
IBM grants you a nonexclusive copyright license to use all programming code
examples from which you can generate similar function tailored to your own

A1l sample code is provided by IBM for illustrative purposes only.

These examples have not been thoroughly tested under all conditions.

IBM, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs.

A11 programs contained herein are provided to you "AS IS" without any
warranties of any kind.

The implied warranties of non-infringement, merchantability and fitness
for a particular purpose are expressly disclaimed.

principal=<string>

credsType=1nitiator|acceptor|both (default=initiator)
forwardable=true|false (default=false)
proxiable=true|false (default=false)
useCcache=<URL_string>

useKeytab=<URL_string>

useDefaultCcache=true|false (default=false)
useDefaultKeytab=true|false (default=false)
noAddress=true|false (default=false)

Chapter 4. IBM Java Generic Security Service (JGSS) 353

*

% Default realm (which is obtained from the Kerberos config file) is
* used if the principal specified does not include a realm component.

*/

JAASCTient {
com.ibm.security.auth.module.Krb5LoginModule required
useDefaultCcache=true;

1

JAASServer {
com.ibm.security.auth.module.Krb5LoginModule required
credsType=acceptor useDefaultKeytab=true
principal=gss_service/myhost.ibm.com@REALM. IBM.COM;

b

Sample: JAAS policy file
For more information about using the sample policy file, see |Down|oading and running the IBM JGSS|

Note: Read the [Code example disclaimer| for important legal information.

/] = e e
// JAAS policy file for running the JGSS sample applications.

// Modify these permissions to suit your environment.

// Not recommended for use for any purpose other than that stated above.

// In particular, do not use this policy file or its

// contents to protect resources in a production environment.

// Code example disclaimer

// IBM grants you a nonexclusive copyright license to use all programming code
// examples from which you can generate similar function tailored to your own
// specific needs.

// A11 sample code is provided by IBM for illustrative purposes only.

// These examples have not been thoroughly tested under all conditions.

// IBM, therefore, cannot guarantee or imply reliability, serviceability, or
// function of these programs.

// A1l programs contained herein are provided to you "AS IS" without any

// warranties of any kind.

// The implied warranties of non-infringement, merchantability and fitness

// for a particular purpose are expressly disclaimed.

//

F A e e L LT e

—

// Permissions for client only

grant CodeBase "file:ibmjgsssample.jar",
Principal javax.security.auth.kerberos.KerberosPrincipal
"bob@REALM. IBM.COM"

// foo needs to be able to initiate a context with the server
permission javax.security.auth.kerberos.ServicePermission

"gss_service/myhost.ibm.com@REALM.IBM.COM", "initiate";
// So that foo can delegate his creds to the server

permission javax.security.auth.kerberos.DelegationPermission
"\"gss_service/myhost.ibm.com@REALM.IBM.COM\" \"krbtgt/REALM.IBM.COMGREALM.IBM.COM\"";

// Permissions for the server only

354 iSeries: IBM Developer Kit for Java

grant CodeBase "file:ibmjgsssample.jar",
Principal javax.security.auth.kerberos.KerberosPrincipal
"gss_service/myhost.ibm.com@REALM. IBM.COM"

// Permission for the server to accept network connections on its host
permission java.net.SocketPermission "myhost.ibm.com", "accept";

// Permission for the server to accept JGSS contexts
permission javax.security.auth.kerberos.ServicePermission
"gss_service/myhost.ibm.com@REALM.IBM.COM", "accept";

// The server acts as a client when communicating with the secondary (backup) server

// This permission allows the server to initiate a context with the secondary server

permission javax.security.auth.kerberos.ServicePermission
"gss_service2/myhost.ibm.com@REALM.IBM.COM", "initiate";

grant CodeBase "file:ibmjgsssample.jar",
Principal javax.security.auth.kerberos.KerberosPrincipal
"gss_service2/myhost.ibm.com@REALM. IBM.COM"

// Permission for the secondary server to accept network connections on its host
permission java.net.SocketPermission "myhost.ibm.com", "accept";

// Permission for the server to accept JGSS contexts

permission javax.security.auth.kerberos.ServicePermission
"gss_service2/myhost.ibm.com@REALM.IBM.COM", "accept";

}s
b

Sample: Java policy file
For more information about using the sample policy file, see |[Downloading and running the IBM JGSS|

Note: Read the [Code example disclaimer for important legal information.

// Java policy file for running the JGSS sample applications on

// the iSeries server.

// Modify these permissions to suit your environment.

// Not recommended for use for any purpose other than that stated above.
// In particular, do not use this policy file or its

// contents to protect resources in a production environment.

// Code example disclaimer

// IBM grants you a nonexclusive copyright license to use all programming code
// examples from which you can generate similar function tailored to your own
// specific needs.

// A11 sample code is provided by IBM for illustrative purposes only.

// These examples have not been thoroughly tested under all conditions.

// 1BM, therefore, cannot guarantee or imply reliability, serviceability, or
// function of these programs.

// A1l programs contained herein are provided to you "AS IS" without any

// warranties of any kind.

// The implied warranties of non-infringement, merchantability and fitness

// for a particular purpose are expressly disclaimed.

/1

Chapter 4. IBM Java Generic Security Service (JGSS) 355

grant CodeBase "file:ibmjgsssample.jar" {
// For Java 1.3
permission javax.security.auth.AuthPermission "createLoginContext";

// For Java 1.4
permission javax.security.auth.AuthPermission "createlLoginContext.JAASClient";
permission javax.security.auth.AuthPermission "createlLoginContext.JAASServer";

permission javax.security.auth.AuthPermission "doAsPrivileged";

// Permission to request a ticket from the KDC
permission javax.security.auth.kerberos.ServicePermission
"krbtgt/REALM. IBM.COM@REALM. IBM.COM", "initiate";

// Permission to access sun.security.action classes
permission java.lang.RuntimePermission "accessClassInPackage.sun.security.action";

// A whole bunch of Java properties are accessed

permission java.util.PropertyPermission "java.net.preferIPv4Stack", "read";
permission java.util.PropertyPermission "java.version", "read";

permission java.util.PropertyPermission "java.home", "read";

permission java.util.PropertyPermission "user.home", "read";

permission java.util.PropertyPermission "DEBUG", "read";

permission java.util.PropertyPermission "com.ibm.security.jgss.debug", "read";
permission java.util.PropertyPermission "java.security.krb5.kdc", "read";
permission java.util.PropertyPermission "java.security.krb5.realm", "read";
permission java.util.PropertyPermission "java.security.krb5.conf", "read";
permission java.util.PropertyPermission "javax.security.auth.useSubjectCredsOnly","read,write";

// Permission to communicate with the Kerberos KDC host
permission java.net.SocketPermission "kdc.ibm.com", "connect,accept,resolve";

// 1 run the samples from my Tocalhost
permission java.net.SocketPermission "myhost.ibm.com", "accept,connect,resolve";
permission java.net.SocketPermission "localhost", "listen,accept,connect,resolve";

// Access to some possible Kerberos config Tocations

// Modify the file paths as applicable to your environment

permission java.io.FilePermission "${user.home}/krb5.ini", "read";

permission java.io.FilePermission "${java.home}/Tib/security/krb5.conf", "read";

// Access to the Kerberos key table so we can get our server key.
permission java.io.FilePermission "/QIBM/UserData/0S400/NetworkAuthentication/keytab/krb5.keytab", "read";

// Access to the user's Kerberos credentials cache.
permission java.io.FilePermission "${user.home}/krb5cc_${user.name}", "read";

}s
b

Samples: Downloading and viewing javadoc information for the IBM
JGSS samples

To download and view the documentation for the IBM JGSS sample programs, complete the following
steps:

1. Choose an existing directory (or create a new one) where you want to store the javadoc information.
2. |Download the javadoc information (jgsssampledoc.zip)|into the directory.

3. Extract the files from jgsssampledoc.zip into the directory.

4. Use your browser to access the index.htm file.

Code example disclaimer

356 iSeries: IBM Developer Kit for Java

jgsssampledoc.zip

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs.

All programs contained herein are provided to you "AS 1S” without any warranties of any kind. The implied
warranties of non-infringement, merchantability and fitness for a particular purpose are expressly

disclaimed. 4 2

Samples: Downloading and running the sample programs
Before modifying or running the samples, read the |[description of the sample programs|

To run the sample programs, perform the following tasks:
1. |Download the sample files to your iSeries server|

2. |Prepare to run the sample files|

3. |[Run the sample programs|

For more information about how to run a sample, see |Example: Running the non-JAAS samplel

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs.

All programs contained herein are provided to you "AS 1S” without any warranties of any kind. The implied
warranties of non-infringement, merchantability and fitness for a particular purpose are expressly

disclaimed. %

Samples: Downloading the IBM JGSS samples

Before modifying or running the samples, read the [description of the sample programs|.

To download the sample files and store them on your iSeries server, complete the following steps:

1. On your iSeries server, choose an existing directory (or create a new one) where you want to store the
sample programs, configuration files, and policy files.

2. |Download the sample programs (ibmjgsssample.zip))
3. Extract the files from ibmjgsssample.zip into the directory on the server.

Extracting the contents of ibmjgsssample.jar performs the following actions:

* Places ibmgjsssample.jar, which contains the sample .class files, into the selected directory
» Creates a subdirectory (named config) that contains the configuration and policy files

» Creates a subdirectory (named src) that contains the sample .java source files

Related information
You may want to read about related tasks or look at an example:

+ [Prepare to run the sample files|
+ [Run the sample programs|

Chapter 4. IBM Java Generic Security Service (JGSS) 357

rzahajgssdownloadsourceexmp.htm
ibmjgsssample.zip

+ [Example: Running the non-JAAS samplelé®
g

Samples: Preparing to run the sample programs
Before modifying or running the samples, read the [description of the sample programs|

After you download the source code, you need to perform the following tasks before you can run the
sample programs:

» Edit the configuration and policy files to suit your environment. For more information, refer to the
comments in each configuration and policy file.

» Ensure that the java.security file contains the correct settings for your iSeries server. For more
information, see |[Java master security properties file|

» Place the modified Kerberos configuration file (krb5.conf) into the directory on your iSeries server that is
appropriate for the version of the J2SDK that you are using:

— For Version 1.3 of the J2SDK: /QIBM/ProdData/Java400/jdk13/lib/security
— For Version 1.4 of the J2SDK: /QIBM/ProdData/Java400/jdk14/lib/security

Related information
You may want to read about related tasks or look at an example::

« [Download the sample files to your iSeries server|
+ [Run the sample programs|

+ [Example: Running the non-JAAS samplelé
b

Samples: Running the sample programs
Before modifying or running the samples, read the [description of the sample programs|

After you download and modify the source code, you can run one of the samples.

To run a sample, you must start the server program first. The server program must be running and ready
to receive connections before you start the client program. The server is ready to receive connections
when you see listening on port <server port>. Make sure to remember or write down the <server_port
>, which is the port number that you need to specify when you start the client.

Use the following command to start a sample program:
java [-Dpropertyl=valuel ... -DpropertyN=valueN] com.ibm.security.jgss.test.<program> [options]

where

» [-DpropertyN=valueN] is one or more optional Java properties, including the names of the configuration
and policy files, JGSS debug options, and the security manager. For more information, see the following
example and|Running JGSS applications]

* <program> is a required parameter that specifies the sample program that you want to run (either
Client, Server, JAASClient, or JAASServer).

» [options] is an optional parameter for the sample program that you want to run. To display a list of
supported options, use the following command:

java com.ibm.security.jgss.test.<program> -?

Note: Turn off the JAAS features in a JGSS-enabled sample by setting the Java property
javax.security.auth.useSubjectCredsOnly to false. Of course, the default value of the JAAS-enabled

358 iSeries: IBM Developer Kit for Java

rzahajgssdownloadsourceexmp.htm
rzahajgssdownloadsourceexmp.htm

samples is to turn on JAAS, meaning that the property value is true. The non-JAAS client and server
programs set the property to false, unless you have explicitly set the property value.

Related information
You may want to read about related tasks or look at an example:

Download the sample files to your iSeries server|
Prepare to run the sample files|

+ [Example: Running the non-JAAS sample&
>

IBM JGSS javadoc reference information

The javadoc reference information for IBM JGSS includes classes and methods in the org.ietf.jgss api

package and the Java versions of some Kerberos credential management tools.

Although JGSS includes several publicly accessible packages (for example, com.ibm.security.jgss and

com.ibm.security.jgss.spi), you should use only APIs from the standardized org.ietf.jgss package. Using

only this package ensures that your application conforms to the GSS-API specifications and ensures

optimum interoperability and portability.
* lorg.ietf.jgss

ini
ta

o |Klistf¥

=

=1

Chapter 4. IBM Java Generic Security Service (JGSS)

359

rzahajgssdownloadsourceexmp.htm
jgssapi/index.html
rzahajgssknit.htm
rzahajgssktab.htm
rzahajgssklst.htm

360 iSeries: IBM Developer Kit for Java

Chapter 5. Tune Java program performance with the IBM
Developer Kit for Java

You should take several aspects of Java‘™ application performance into consideration when building a
Java application for your iSeries server. Here are some links to details and hints on how you can get
better performance:

» Use the Create Java Program (CRTJVAPGM) command before running Java class files, JAR files, or
ZIP files to improve the [runtime performance] of your Java code.

« Change your optimization levels to achieve the best|static compilation performance}
- Carefully set your values for optimal [garbage collection performance]

* Only use |native methods|to start system functions that are relatively long running and are not available
directly in Java.

* Use the javac -0 option at compilation time to perform [method inliningl and significantly improve your
method call performance.

« Use [Java exceptions|in cases that are not the normal flow through your application.

Use these tools with the Performance Explorer (PEX) to locate performance problems in your Java
programs:

» You can collect Java trace events|using the iSeries Java virtual machine.
» To determine the time that is spent in each Java method, use Java call traces]

« [Java profiling|locates the relative amount of CPU time that is spent in each Java method and all system
functions that are in use by your Java program.

+ Use the Java Performance Data Collector|to provide profile information about the programs that run on
the iSeries server.

Any job session can start and end PEX. Normally, the data that is collected is system wide and pertains to
all jobs on the system, including your Java programs. At times, it may be necessary to start and stop the
performance collection from inside a Java application. This reduces the collection time and may reduce the
large volume of data that is usually produced by a call or return trace. PEX cannot run from within a Java
thread. To start and stop a collection, you need to write a native method that communicates to an
independent job though a queue or shared memory. Then, the second job starts and stops the collection
at the appropriate time.

In addition to application-level performance data, you can use existing iSeries system level performance
tools. These tools report statistics on a Java thread basis.

For examples of PEX reports, see the [Performance Tools for iSeries, SC41-5340| book. @

Java runtime performance considerations

To greatly improve the runtime performance of your Java‘™ code, use the [Create Java Program|
command before running Java class files, JAR files, or ZIP files. The CRTJVAPGM
command uses the bytecodes to create a Java program, which contains optimized native instructions for
the iSeries server, and associates the Java program object with the class file, JAR file, or ZIP file.

If the CRTJVAPGM command is not used before running a Java class file, JAR file, or ZIP file, then the
Java code runs more slowly the first time, because an optimized Java program at optimization level 10 is
created. Subsequent runs are much faster because the Java program is saved and remains associated
with the class file or JAR file. Running the bytecodes interpretively may provide acceptable performance
during application development, but you may want to use the CRTJVAPGM command before running the
Java code in a production environment.

© Copyright IBM Corp. 1998, 2001 361

AlJust-In-Time compiler improves performance by compiling code, which is optimized to a particular Java
virtual machine runtime environment. You should compare the benefits of not having to do CRTJVAPGM
with slightly slower program startup and runtime processing that comes with the use of a JIT to decide
which optimization technique fits your needs.

If your program is running slowly, enter the |Disp|ay Java Program (DSPJVAPGM)| command to view the
attributes of a Java program. %*

Cache class loaders

You can improve the performance of user class loaders by allowing the JVAPGMs created by user class
loaders to be cached for reuse. This option is not enabled unless you specify an enabling Java property in
one of the following:

* /QIBM/UserData/Java400/SystemDefault.properties
* /home//SystemDefault.properties

* On the RUNJVA CL command

* On the JAVA QSH command

The following property is used to enable this function:

0s400.define.class.cache.file
The value of the property should be the name (with the full path) of a valid Java ARchive (JAR)
file. The JAR file must contain a valid JAR directory (as built by the jar QSH command), but need
to have no other contents other than the single member required to make the jar command
function. This JAR file should not be included in any Java classpath.

For example, add the following line to /QIBM/UserData/Java400/SystemDefault.properties:
0s400.define.class.cache.file=/QIBM/ProdData/Java400/QDefineClassCache.jar

The Developer Kit for Java installs a suitable JAR file as /QIBM/ProdData/Java400/QDefineClassCache.jar
and installs an example properties file as
/QIBM/ProdData/Java400/SystemDefaultCacheExample.properties. You may enable the caching function
globally by copying the SystemDefaultCacheExample.properties file to /QIBM/UserData/Java400/ and
renaming it to SystemDefault.properties.

Note: Ensure that there is no existing SystemDefault.properties file in that directory before making this
change. Alternatively, to affect only a single user’'s environment, the file may be copied to /home// and
similarly renamed.

DSPJVAPGM can be used on the JAR file specified for caching to determine how many JVAPGMs are
cached. The Java programs field of the DSPJVAPGM display indicates how many JVAPGMs are cached,
and the Java program size field indicates how much storage is consumed by cached JVAPGMs. Other
fields of the display are meaningless when DSPJVAPGM is applied to a JAR file used for caching.

In addition to the 0s400.define.class.cache.file Java property that enables caching, two other properties
can be specified to control the caching characteristics.

0s400.define.class.cache.hours
This property can be used to specify how long (in hours) a JVAPGM should persist in the cache.

0s400.define.class.cache.maxpgms
This property can be used to specify the maximum number of JVAPGMs that may be cached, with
the oldest JVAPGMs being deleted first when this limit is exceeded. The time value used to
determine the age of a cached JVAPGM is updated whenever the JVAPGM is referenced.

Examples:

362 iSeries: IBM Developer Kit for Java

0s400.define.class.cache.hours=48
0s400.define.class.cache.maxpgms=10000

The default value for 0s400.define.class.cache.hours is 168 hours (one week), and the maximum value is
9999. The default value for 0s400.define.class.cache.maxpgms is 5000, and the maximum value is 40000.
If a value of zero is specified for one of these properties or if the value cannot be parsed as a valid
decimal number, then the default value is used.

See [Systems properties| for more information on the properties previously mentioned for caching. 4

Select which mode to use when running a Java program

When you run a Java‘™ program, you can select which mode you would like to use. All modes verify the
code and create a Java program object to hold the preverified form of the program. You can use any of
the following modes:

* Interpreted

* Direct processing

* Just-In-Time (JIT) compile

» Just-In-Time (JIT) compile and direct processing

Selection mode Details

Interpreted Each bytecode is interpreted at runtime.

For information on running your Java program in the

interpreted mode, see the |Run Java (RUNJVA)|

Direct Processing Machine instructions for a method are generated during
the first call to that method, and saved for use the next
time that the program runs. One copy is also shared for
the entire system.

For information on running your Java program using
direct processing, see the |Run Java (RUNJVA)

Chapter 5. Tune Java program performance with the IBM Developer Kit for Java 363

Selection mode

Details

Just-In-Time (JIT) compile

Machine instructions for a method are generated during
the first call to that method, and saved for the duration of
the Java virtual machine run.

To use the Just-In-Time compiler} you need to set the
compiler value to jitc. You can set the value by adding
an environment variable or setting the java.compiler
system property. Select one method from the list below to
set the compiler value:

* From a command line prompt on your iSeries server,
add the environment variable by using the Add
Environment Variable (ADDENVVAR) command. Then,
run your Java program using the Run Java (RUNJVA)
command or JAVA command. For example, use:
ADDENVVAR ENVVAR (JAVA COMPILER) VALUE(jitc)

JAVA CLASS(Test)

» Set the java.compiler system property on the iSeries
command line. For example, enter JAVA CLASS (Test)
PROP((java.compiler jitc))

» Set the java.compiler system property on the Qshell
Interpreter command line. For example, enter java
-Djava.compiler=jitc Test

Once you set this value, the JIT compiler optimizes all of
the Java code before running it.

Just-In-Time (JIT) compile and Direct Processing

The most common way to use the Just-In-Time (JIT)
compiler is with the jit_de option. When running with this
option, programs that have already been optimized with
direct processing run in direct processing mode.
Programs that have not been optimized for direct
optimization run in JIT mode.

To use JIT and direct processing together, you need to
set the compiler value to jitc_de. You can set the value
by adding an environment variable or setting the
java.compiler system property. Select one method from
the following list to set the compiler value:

» Add the environment variable by entering the Add
Environment Variable (ADDENVVAR) command on the
iSeries command line. Then, run your Java program
using the Run Java (RUNJVA) command or JAVA
command. For example, enter

ADDENVVAR ENVVAR (JAVA_COMPILER) VALUE(jitc_de)
JAVA CLASS(Test)

» Set the java.compiler system property on the iSeries
command line. For example, enter JAVA CLASS (Test)
PROP((java.compiler jitc_de))

» Set the java.compiler system property on the Qshell
Interpreter command line. For example, enter java
-Djava.compiler=jitc_de Test

Once this value is set, the Java program for the class file
that was created as direct processing is used. If the Java
program was not created as direct processing, the class
file is optimized by the JIT prior to running. For more
information, see |Comparison of Just-In-Time compiler and|

|direct processing]

364 iSeries: IBM Developer Kit for Java

There are three ways that you can run a Java program (CL, QSH, and JNI). Each has a unique way to
specify the mode. This table shows how that is done.

Mode CL Command QShell Command JNI Invocation API

Interpret INTERPRET(*YES) -Djava.compiler=NONE 0s400.run.mode="interpret”
-interpret

DE INTERPRET(*NO) -Djava.compiler=NONE « 0s400.run.mode=

"program_created=pc”
* 0s400.create.type=

"direct”
JIT INTERPRET(*JIT) -Djava.compiler="jitc" 0s400.run.mode="jitc"
JIT_DE(default) INTERPRET(*OPTIMIZE) -Djava.compiler="jitc_de" 0s400.run.mode="jitc_de"

OPTIMIZE(*JIT)

Java interpreter

The Java‘™ interpreter is the part of the [Java virtual maching| that interprets Java class files for a
particular hardware platform. The Java interpreter decodes each bytecode and runs a series of machine
instructions for that bytecode.

Static compilation

The Java‘™ transformer is an IBM Operating System/400 (OS/400) component that preprocesses class
files to prepare them to run using the iSeries Java virtual machine. The Java transformer creates an
optimized program object that is persistent and is associated with the class file. In the default case, the
program object contains a compiled, 64-bit RISC machine instruction version of the class. The Java
interpreter does not interpret the optimized program object at runtime. Instead, it directly runs when the
class file is loaded.

Java programs are optimized using the JIT by default. To use the Java transformer, you either do
CRTJVAPGM, or specify the use of the transformer on the RUNJVA or JAVA command.

You can use the |Create Java Program (CRTJVAPGM) command]to explicitly start the Java transformer.
The CRTJVAPGM command optimizes the class file or JAR file while the command runs, so nothing
needs to be done while the program is running. This improves the speed of the program the first time that
it runs. Using the CRTJVAPGM command, instead of relying on default optimization, ensures the best
optimization possible and also improves the use of space for the Java programs that are associated with
the class file or JAR file.

Using the CRTJVAPGM command on a class file, JAR file, or ZIP file causes all the classes in the file to
be optimized, and the resulting Java program object are persistent. This results in better runtime
performance. You can also change the optimization level or select an optimization level other than the
default of 10 by using the CRTJVAPGM command or the [Change Java Program (CHGJVAPGM)|
command. At optimization level 40, interclass binding is performed between the classes within a JAR file,
and in some cases, the classes are inlined. Interclass binding improves the call speed. Inlining removes
the overhead of a method call entirely. In some cases, you can inline methods between classes within the
JAR file or ZIP file. Specifying OPTIMIZE (*INTERPRET) on the CRTJVAPGM command causes any classes
that are specified on the command to be verified and prepared to run in interpreted mode.

The |Run Java (RUNJVA) command can also specify OPTIMIZE(*INTERPRET). This parameter specifies
that any classes running under the Java virtual machine are interpreted, regardless of the optimization
level of the associated program object. This is useful when debugging a class that was transformed with
an optimization level of 40. To force interpretation, use INTERPRET(*YES).

% See |Cache class Ioadersl for information on reusing your Java programs created by class loaders. 4

Chapter 5. Tune Java program performance with the IBM Developer Kit for Java 365

Java static compilation performance considerations

You can determine the speed of transformation by the optimization level that you set. Optimization level 10
transforms the fastest, but the resulting program is generally slower than one set at a higher optimization
level. Optimization level 40 takes longer to transform, but is likely to run faster.

A small number of Java™ programs may not optimize to level 40. Thus, a few programs that do not run
at level 40, may run at level 30 instead. You can run programs that do not run at optimization level 40 by

using licensed internal code optimization|LICOPT parameter stringsl However, performance at level 30

may be sufficient for your program.

If you are having problems running Java code that seemed to work on another Java virtual machine, try
using optimization level 30 instead of level 40. If this works, and your performance is acceptable, you do
not need to do anything else. If you need better performance, see |LICOPT parameter strings| for
information on how to enable and disable various forms of optimization. For example, you could first try
creating the program using OPTIMIZE(40) LICOPT(NoPreresolveExtRef). If your application contains dead
calls to classes that are not available, this LICOPT value allows your program to run without problems.

To determine what level of optimization your Java programs were created at, you can use the
Program (DSPJVAPGM)| command. To change the optimization level of your Java program, use the [Create

Java Program (CRTJVAPGM)| command.

Just-In-Time compiler

|Dis§|a¥ Java:

A Just-In-Time (JIT) compiler is a platform-specific compiler that generates machine instructions for each
method upon the first call to that method. To improve performance over interpretation, the JIT compiler

compiles code as you need it.

To understand the difference between the JIT compiler and direct processing, see [Comparison of the JIT]|

[compiler and direct processing}

Refer to|[Java''"" system properties| for information on the java.compiler property. Select the version you

are running.

Comparison of Just-In-Time compiler and direct processing

If you are trying to decide whether to use the

ust-In-Time compiler or direct processing mode]|to run your

Java™ program, this table provides additional information to help you make the best choice for your

situation.

Just-In-Time compiler

Direct processing

Provides an automatic compilation of any method when
needed. This method is much faster than direct
processing.

You compile an entire class or JAR file using the Create
Java Program (CRTJVAPGM) command or the files are
compiled automatically at runtime.

Used during program development to cut optimization
costs while the code is changing. Also used in
deployment of small or relatively low usage applications.
It can also be used with highly dynamic applications
where code is generated or discovered at runtime.

Used for relatively large applications. Direct processing
code, at optimization level 40, is typically faster than JIT.
Most ready-to-deploy server applications use direct
processing at optimization level 40, because they are
likely to be in use by multiple users at any given time,
and the cost of using JIT over and over is too much
overhead.

Optimizations are limited to those that can be performed
rapidly at runtime.

More complex optimizations are possible, since
optimization is not performed at runtime.

Optimization levels

By entering a value in the Optimization level field, you specify the optimization level of the Java™)
program that attaches to the class file object or JAR file object. You can control the size and performance

366

iSeries: IBM Developer Kit for Java

of the Java program by using this option. For the optimization levels listed, the internal form includes
iSeries machine instructions. These machine instructions are optimized based on the specified optimization
level. The iSeries server directly runs the machine instructions when the program runs.

This list shows how the optimization levels differ and what they do:
10

The Java program contains a transformed version of the class file bytecodes, but has only minimal
additional compiler optimization. You can display and change variables while debugging. For V5R1 and
higher, an optimization level of 10 may unnecessarily lengthen the time it takes to compile your program.
Instead, use an optimization level of at least 20.

20

The Java program contains a compiled version of the class file bytecodes and performs additional
compiler optimization. You can display, but not change variables while debugging.

30

The Java program contains a compiled version of the class file bytecodes and performs more compiler
optimization than optimization level 20. Debugging at higher optimization levels is more difficult, because
optimization reduces the ability to stop at precise points in the code and display program variables. You
can display, but not change variables while debugging. The values that are presented may not be the
current value of the variable.

40

The Java program contains a compiled version of the class file bytecodes and performs more compiler
optimization than optimization level 30. Optimization level 40 includes cross-class optimizations. In a small
number of cases, the order in which static initializers are run for unrelated classes (not related by
inheritance nor containment) may be different than outlined in the static initialization specification. In
addition, it includes optimization that disables call and instruction tracing.

Note: If your Java program fails to optimize or throws an exception at optimization level 40, use
optimization level 30.

Java garbage collection

Garbage collection is the process of freeing storage that is used by objects that are no longer referred to
by a program. With garbage collection, programmers no longer have to write error prone code to explicitly
"free” or "delete” their objects. This code frequently results in "memory leak” program errors. The garbage
collector automatically detects an object or group of objects that the user program can no longer reach. It
does this because there are no references to that object in any program structure. Once the object has
been collected, you can allocate the space for other uses.

The|Java(T'V') runtime environmentl includes a garbage collector that frees memory that is no longer in use.
The garbage collector runs automatically, as needed.

The garbage collector can also be started explicitly under the control of the Java program using the
java.lang.Runtime.gc() method.

See |IBM Developer Kit for Java advanced garbage collection| for IBM Developer Kit for Java specifics.

Chapter 5. Tune Java program performance with the IBM Developer Kit for Java 367

IBM Developer Kit for Java advanced garbage collection

The IBM Developer Kit for Java™ implements an advanced garbage collector algorithm. This algorithm
allows the discovery and collection of unreachable objects without significant pauses in the operation of
the Java program. A concurrent collector cooperatively discovers the references to objects under the
running threads, instead of a single thread.

Many garbage collectors are "stop-the-world”. This means that at the point where a collection cycle
occurs, all threads, except the thread that does garbage collection, stop while the garbage collector does
its work. When this happens, Java programs experience a pause, and any multiple processor capability of
the platform is wasted relative to Java, while the collector does its work. The iSeries algorithm does not
stop all program threads simultaneously. It allows those threads to continue operation while the garbage
collector completes its task. This prevents the pauses, and allows all processors to be used during
garbage collection.

Garbage collection occurs automatically based on parameters that you specify when you start the Java
virtual machine. Garbage collection can also be started explicitly under the control of the Java program by
using the java.lang.Runtime.gc() method.

For a basic definition, see |[Java garbage collection|

Java garbage collection performance considerations

Garbage collection on the iSeries Java™ virtual machine operates in a continuous asynchronous mode.
The garbage collection-initial size (GCHINL) parameter on the Run Java (RUNJVA) command may affect
application performance. This parameter specifies the amount of new object space that is allowed between
garbage collections. A small value may cause too much garbage collection overhead. A large value may
limit garbage collection and cause out of memory errors. However, for most applications, the default values
should be correct.

Garbage collection determines that an object is no longer needed by evaluating whether there are any
valid references to that object.

Java Native Method Invocation performance considerations

Native method invocation on an iSeries server may not perform as well as native method invocation on
other platforms. Java™ on the iSeries server has been optimized by moving the Java virtual machine
below the machine interface (MI). Native method invocation requires a call to above MI code and may
require expensive Java Native Interface (JNI) calls back into the Java virtual machine. Native methods
should not carry out small routines, which you can easily write in Java. Only use native methods to start
system functions that are relatively long running and are not available directly in Java.

Java method inlining performance considerations

Method inlining can significantly improve method call performance. Any method that is final is a potential
candidate for inlining. The inline feature is available on the iSeries server through the javac -o option at
compilation time. The size of your class files and transformed Java™ program increases if you use the
Jjavac -o option. You should consider both the space and performance characteristics of your application
when using the -o option.

The|Java transformer|enables inlining for optimization level 30 and optimization level 40. Optimization level
30 enables some inlining of final methods within a single class. Optimization level 40 enables inlining of
final methods within a ZIP file or JAR file. You can control method inlining with the AllowInlining and
NoAIIowInIining|LICOPT parameter stringsl The iSeries interpreter does not perform method inlining.

368 iSeries: IBM Developer Kit for Java

Java exception performance considerations

The iSeries exception architecture allows versatile interrupt and retry capabilities. It allows mixed language
interaction. Throwing Java‘™ exceptions on an iSeries server may be more expensive than on other
platforms. This should not affect overall application performance unless Java exceptions are routinely used
in the normal application path.

Java call trace performance tools

Java™ method call traces provide significant performance information about the time that is spent in
each Java method. On other Java virtual machines, you may have used the -prof (profiling) option on the
java command. To enable method call tracing on an iSeries server, you must specify the Enable
Performance Collection (ENBPFRCOL) command on the Create Java Program (CRTJVAPGM) command
line. After creating your Java program with this keyword, you can start the collection of method call traces
by using a Performance Explorer (PEX) definition that includes the call/return trace type.

Call/return trace output produced with the Print Performance Explorer Report (PRTPEXRPT) command
shows the central processing unit (CPU) time for each call for every Java method that is traced. In some
cases, you may not be able to enable all of the class files for call return tracing. Or, you may be calling
native methods and system functions that are not enabled for tracing. In this situation, all of the CPU time
that is spent in these methods or system functions accumulates. Then, it is reported to the last Java
method that is called and has been enabled.

Java event trace performance tools

The iSeries Java‘™ virtual machine enables the trace of certain Java events. These events can be
collected without any instrumentation in the Java code. These events include activities, such as garbage
collection, thread creation, class loading, and locking. The Run Java (RUNJVA) command does not specify
these events. Instead, you create a Performance Explorer (PEX) definition and use the Start Performance
Explorer (STRPEX) command to collect the events. Each event contains useful performance information,
such as time stamp and central processing unit (CPU) cycles. You can trace both Java events and other
system activities, such as disk input and output, with the same trace definition.

For a complete description of the Java events, see the |Performance Tools for iSeries, SC41-5340 book.

®

Java profiling performance tools

System wide central processing unit (CPU) profiling calculates the relative amount of CPU time that is
spent in each Java™ method and all system functions in use by your Java program. Use a Performance
Explorer (PEX) definition that traces performance monitor counter overflow (*PMCO) run cycle events.
Samples are typically specified in intervals of one millisecond. To collect a valid trace profile, you should
run your Java application until it accumulates two to three minutes of CPU time. This should produce over
100,000 samples. The Print Performance Explorer Report (PRTPEXRPT) command produces a histogram
of CPU time that is spent across the entire application. This includes every Java method and all
system-level activity. The |Performance Data Collector (PDC) tool also provides profile information about
the programs that run on the iSeries server.

Note: CPU profiling does not show relative CPU usage for Java programs that are interpreted.

Java Virtual Machine Profiler Interface

% The Java'™ Virtual Machine Profiler Interface (JVMPI) is an experimental interface for profiling the
Java virtual machine (JVM), which was first disclosed and implemented in Sun’s Java 2 SDK, Standard
Edition (J2SDK), version 1.2.

Chapter 5. Tune Java program performance with the IBM Developer Kit for Java 369

JVMPI support places hooks in the JVM and the Just-in-time (JIT) compiler, which when activated, provide
event information to a profiling agent. The profiling agent is implemented as a dynamic link library (DLL).
The profiler sends control information to the JVM for enabling and disabling JVMPI events. For example,
the profiler may not be interested in method Entry or Exit hooks and could tell the JVM that it does not
want to receive these event notifications. The JVM and JIT have JVMPI event hooks embedded that send
event notifications to the profiling agent if the event is enabled. The profiler tells the JVM which events are
of interest and the JVM sends notifications of the events to the profiler when they occur.

For more information, see |[JVMPI 9 by Sun Microsystems, Inc. &

Collect Java performance data

To collect Java'™ performance data on an iSeries server, follow these steps:

1.

Create a Performance Explorer (PEX) definition that specifies:

* A user-defined name

* Type of data collection

* Job name

» Series of system events that you would like to collect system information about

Note: A PEX definition of *STATS is preferable to a *TRACE definition if the output that you want is the
java_g -prof type, and you know the specific job name of the Java program.

Here is an example of a *STATS definition:

ADDPEXDFN DFN(YOURDFN) JOB(*ALL/YOURID/QJVACMDSRV) DTAORG(*HIER)
TEXT('your stats definition')

This *STATS definition does not get all Java events running. Only the Java events that are in your own
Java session are profiled. This mode of operation may increase the time that it takes to run the Java
program.

Here is an example of a *TRACE definition:

ADDPEXDFN DFN(YOURDFN) TYPE (*TRACE) JOB(*ALL) TRCTYPE (*SLTEVT)
SLTEVT (*YES) PGMEVT (*JVAENTRY *JVAEXIT)

This *TRACE definition collects any Java entry event and exit event from any Java program in the
system that you create with ENBPFRCOL(*ENTRYEXIT). This causes the analysis of this type of
collection to be slower than a *STATS trace, depending on how many Java program events you have
and the duration of the PEX data collection.

Enable the *JVAENTRY and *JVAEXIT, under the program events category on the PEX definition, so
that PEX recognizes the Java entry and exits.

Note: If you are running the Java code using the Just-in-time (JIT) compiler, you do not enable entry
and exit as you would if you were using the CRTJVAPGM command for direct processing. Instead, JIT
generates code with entry and exit hooks when you use the 0s400.enbprfcol [system property}

Prepare the Java program to report program events to the iSeries Performance Data Collector. You
can do this by using the [Create Java Program (CRTJVAPGM)|command on any Java program that
you want to report performance data on. You must create the Java program by using the
ENBPFRCOL(*ENTRYEXIT) parameter.

Note: You must repeat this step for every Java program that you want to collect performance data on.
If you do not perform this step, no performance data is collected by the PEX and no output is
produced by running the [Java Performance Data Converter (JPDC) tool.

Start the PEX data collection by using the Start Performance Explorer (STRPEX) command.

Run the program that you would like to analyze. This program should not be in a production
environment. It generates a large amount of data in a small amount of time. You should limit the

370 iSeries: IBM Developer Kit for Java

http://java.sun.com/j2se/1.3/docs/guide/jvmpi/jvmpi.html

collection time to five minutes. A Java program that runs for this amount of time generates a lot of PEX
system data. If too much data is collected, an unreasonable amount of time is required to process it.

6. End the PEX data collection by using the End Performance Explorer (ENDPEX) command.

Note: If this is not the first time that you have ended PEX data collection, you must specify a replace
file of *YES or it does not save your data.

7. Run the JPDC tool.

8. Connect the integrated file system directory to the system with the viewer of your choice: java_g -prof
viewer or Jinsight viewer. You can copy this file from you iSeries server and use it as input to any
suitable profiling tool.

Performance Data Collector tool

The Performance Data Collector (PDC) tool provides profile information about the programs that run on
the iSeries server.

The industry-standard profile option on many Java‘™ virtual machines depends on the implementation of
the java_g feature. This is a special debug version of the Java virtual machine, which offers the -prof
option. You specify this option on a call to a Java program. When you specify this option, the Java virtual
machine produces a record file that contains information about which parts of the Java program were
operating during the duration of the program. The Java virtual machine generates this information in real
time.

On the iSeries server, the Performance Explorer (PEX) feature analyzes programs and record-specific
system events. A DB2(® database stores this information and retrieves it using SQL functions. PEX
information is the repository for specific program information that produces Java profile data. This profile
data is compatible with java_g -prof program profile information. The [Java Performance Data Converter|
(JPDC) tool provides java_g -prof program output and program profile information for a specific IBM tool,
which is known as Jinsight.

For information on how collect Java performance data, see [Collect Java performance datal

Java Performance Data Converter tool

The Java™ Performance Data Converter (JDPC) tool provides a way for you to create Java performance
data about the Java programs that are running on your iSeries server. This performance data is
compatible with the performance data output of Sun Microsystems, Inc.’s Java virtual machine java g
-prof option and IBM Jinsight output.

Note: The JDPC tool does not produce readable output. Use a Java profiling tool that accepts java g
-prof or Jinsight data to analyze your data.

The JDPC tool accesses the iSeries Performance Explorer (PEX) data that DB2/400 (using JDBC) stores.
It converts the data to either Jinsight or general performance types. Then, JDPC stores the output file in
the integrated file system at a user-specified location.

Note: You must follow appropriate iSeries PEX data collection procedures to collect PEX data while
running your specified Java application on an iSeries server. You must set a PEX definition with defines
the entrance and exit of a program or a collect and store procedure. For details on how collect PEX data

and set a PEX definition, see the |Performance Tools for iSeries, SC41-5340| book. @

For information on how to run JPDC, see [Run the Java Performance Data Converter

You can start the JPDC program by using either the Qshell command line interface or |Run Java (RUNJVA)|
[command]

Chapter 5. Tune Java program performance with the IBM Developer Kit for Java 371

Run the Java Performance Data Converter

To run the Java'™ Performance Data Converter (JPDC) for performance data collection, follow these
steps.

1. Enter the first input argument, which is either general for the java_g -prof or jinsight for Jinsight
output.

2. Enter the second input argument, which is the name of the Performance Explorer (PEX) definition that
was used to collect the data.

Note: You should restrict this name to four or five characters, because of the internal use of
connections of this name.

3. Enter the third input argument, which is the name of the file that the JPDC tool generates. This
generated file writes to your current integrated file system directory. Use the cd (PF4) command to
specify an integrated file system current directory.

4. Enter the fourth input argument, which is the name of the iSeries host relational database directory
entry. Use the Work with Relational Database Directory Entry (WRKRDBDIRE) command to see what
the name is. It is the only relational database where the *LOCAL is indicated.

To operate this code the /QIBM/ProdData/Java400/ext/JPDC.jar file must be in the Java classpath on the
iSeries server. When the program is done running, a text output file can be found in the current directory.

You can run JPDC by using the iSeries command line or Qshell environment. See [Example: Run the Javal
[Performance Data Converteq for details.

Example: Run the Java Performance Data Converter
You can either use the iSeries command line or the Qshell environment to run the Java™ Performance
Data Converter (JPDC).

Using the iSeries command line:

1. Enter the Run Java (RUNJVA) command or JAVA command on the iSeries command line.
2. Enter com.ibm.as400.jpdc.JPDC on the class parameter line.

3. Enter general pexdfn mydir/myfile myrdbdire on the parameter line.

4. Enter ’/QIBM/ProdData/Java400/ext/JPDC.jar’ on the classpath parameter line.

Note: You can omit the classpath if the */QIBM/ProdData/Java400/ext/JPDC. jar’ string is in the
CLASSPATH environment variable. You can use either the Add Environment Variable (ADDENVVAR)
command, Change Environment Variable (CHGENVVAR) command, or Work with Environment
Variable (WRKENVVAR) command to add this string to the CLASSPATH environment variable.

Using the Qshell environment:
1. Enter the Start Qshell (STRQSH) command to start the Qshell Interpreter.
2. Enter this on the command line:

java -classpath /QIBM/ProdData/Java400/ext/JPDC.jar com.ibm.as400/jpdc/JPDC
Jinsight pexdfn mydir/myfile myrdbdire

Note: You can omit the classpath if the */QIBM/ProdData/Java400/ext/JPDC. jar’ string is added to
your current environment. You can use either the ADDENVVAR command, CHGENVVAR, or
WRKENVVAR command to add this string to your current environment.

For background information, see |Run the Java Performance Data Converter]

372 iSeries: IBM Developer Kit for Java

Chapter 6. Commands and tools for the IBM Developer Kit for
Java

When using the IBM Developer Kit for Java™, you can either use Java tools with the Qshell Interpreter
or CL commands.

If you have prior Java programming experience, you may be more comfortable using the Qshell Interpreter
Java tools, because they are similar to the tools that you would use with Sun Microsystems, Inc. Java
Development Kit. See [Qshell Interpreter for information about using the Qshell environment.

If you are an iSeries programmer, you may want to use the CL commands for Java that are typical to the
iSeries server environment. Read on for more information about using CL commands and iSeries
Navigator commands.

You can use any of these commands and tools with the IBM Developer Kit for Java:

* The Qshell environment includes the |Java development toolsl that are typically required for program
development.

* The CL environment contains the for optimizing and managing Java programs.
* The |iSeries Navigator commands| also create and run optimized Java programs.

Java tools that are supported by the IBM Developer Kit for Java

The IBM Developer Kit for Java‘™ supports these tools:
.

« [Java appletviewer tool|

[Java extcheck tool|

2 [ava idlj toolk

» |Java jar tool
« |Java jarsigner tool
- [Java javac tool]
- [Java javadoc tool|
» |Java javah tool
« [Java javakey tool|
» |Java javap tool
» |Java keytool
« [Java native2ascii tool
» |Java policytoo

ava rmic tool
» |Java rmid tool
+ [Java rmiregistry tool|
[Java serialver tool|
[Java tnameserv tool|

.
I

With a few exceptions, the Java tools, except the ajar tool, support the syntax and options that are
documented by Sun Microsystems, Inc. They must all run by using the Qshell Interpreter.

You can start the Qshell Interpreter by using the Start Qshell (STRQSH or QSH) command. When the
Qshell Interpreter is running, a QSH Command Entry display appears. All output and messages from Java

© Copyright IBM Corp. 1998, 2001 373

tools and programs that run under Qshell appear in this display. Any input to a Java program is also read
from this display. See|Java command in Qshell for more details.

Note: Functions of iSeries command entry are not available directly from within the Qshell. To get a
command entry, press F21 (CL command entry).

Java tools

. [Java ajar tool|

- |Java appletviewer tool|

— [Run the Java appletviewer tool with Remote Abstract Window Toolkit]
 |Java extcheck tool
* |Java idlj tool

» |[Java jar tool
« [Java jarsigner tool|
* |Java javac tool

+ [Java javadoc tool|

Java ajar tool
The ajar tool is an alternative interface to the jar tool that you use to create and manipulate Java™)
ARchive (JAR) files. You can use the ajar tool to manipulate both JAR files and ZIP files.

If you need a ZIP interface or UNZIP interface, use the ajar tool instead of the jar tool.
The ajar tool lists the contents of JAR files, extracts from JAR files, creates new JAR files, and supports

many of the ZIP formats just as the jar tool does. Additionally, the ajar tool supports adding and deleting
files in existing JAR files.

The ajar tool is available using the Qshell Interpreter. For more details, see|ajar - Alternative Java archivel.

Java appletviewer tool
The appletviewer tool allows you to run applets without a web browser. It is compatible with the
appletviewer tool that is supplied by Sun Microsystems, Inc.

The appletviewer tool is available using the Qshell Interpreter. You need to use |Remote Abstract Window
to run the appletviewer tool. See |Run the Java appletviewer tool with Remote AWT]for information
about how to set up Remote AWT to use the appletviewer tool.

For more information about the appletviewer tool, see the |appletviewer tool by Sun Microsystems, Inc|

Run the Java appletviewer tool with Remote Abstract Window Toolkit: To use the Java appletviewer
tool, you must|set up the Remote Abstract Window Toolkit for Java on a Windows'™ remote display| and
use either the sun.applet.AppletViewer class or run the appletviewer tool in the Qshell Interpreter with
[Remote AWT properties]

For example, if you use the sun.applet.AppletViewer class and run example1.html out of the TicTacToe
directory, the command line should look like this:

JAVA CLASS(sun.applet.AppletViewer) PARM('examplel.html') CLASSPATH('/TicTacToe')
PROP((RmtAwtServer '1.1.11.11') (o0s400.class.path.rawt 1) (java version 1.3))

If you use the appletviewer tool in the Qshell Interpreter and run example1.html out of the TicTacToe
directory, the commands should look like this:

gsh "enter"
cd TicTacToe "enter"
Appletviewer -J-DRmtAwtServer=1.1.11.11 -J-Dos400.class.path.rawt=1 -J-Djava.version=1.3 examplel.html

374 iSeries: IBM Developer Kit for Java

javaapi/tooldocs/win32/appletviewer.html

Note: -J are runtime flags for Appletviewer. -D are properties.

Java extcheck tool
In Java 2 SDK (J2SDK), Standard Edition, version 1.2 and higher, the extcheck tool detects version

conflicts between a target JAR file and currently installed extension JAR files. It is compatible with the
keytool that is supplied by Sun Microsystems, Inc.

The extcheck tool is available using the Qshell Interpreter.

For more information about the extcheck tool, see the [extcheck tool by Sun Microsystems, Inc)

Java idlj tool

#* The id1j tool generates Java bindings from a given Interface Definition Language (IDL) file. The id1j
tool is also known as the IDL-to-Java compiler. It is compatible with the id1j tool that is supplied by Sun
Microsystems, Inc. This tool only works for Java Development Kits 1.3 and 1.4.

For more information about the id1j tool, see the|idlj tool by Sun Microsystems, Inc]

Java jar tool

The jar tool combines multiple files into a single Java ARchive (JAR) file. It is compatible with the jar tool
that is supplied by Sun Microsystems, Inc.

The jar tool is available using the Qshell Interpreter.

For an alternative interface to the jar tool, see the for creating and manipulating JAR files.

For more information about iSeries file systems, see the [Integrated file system| or [Files in the integrated file|
feystem|

For more information about the jar tool, see the |jar tool by Sun Microsystems, Inc.|

Java jarsigner tool

In Java 2 SDK (J2SDK), Standard Edition, version 1.2 and higher, the jarsigner tool signs JAR files and
verifies signatures on signed JAR files. The jarsigner tool accesses the keystore, which the keytool
creates and manages, when it needs to find the private key for signing a JAR file. In J2SDK, the
jarsigner and keytool tools replace the javakey tool. It is compatible with the jarsigner tool that is
supplied by Sun Microsystems, Inc.

The jarsigner tool is available using the Qshell Interpreter.

For more information about the jarsigner tool, see the|jarsigner tool by Sun Microsystems, Inc|

Java javac tool
The javac tool compiles Java programs. It is compatible with the javac tool that is supplied by Sun
Microsystems, Inc. with one exception.

-classpath
Does not override the default classpath. Instead, it is appended to the system default classpath.
The -classpath option does override the CLASSPATH environment variable.

The javac tool is available using the Qshell Interpreter.

If you have JDK 1.1.x installed on your iSeries server as your default, but you need to run the java
command from version 1.2 or higher, enter this command:

javac -djava.version=1.2 <my_dir> MyProgram.java

For more information about the javac tool, see the [javac tool by Sun Microsystems, Inc)

Chapter 6. Commands and tools for the IBM Developer Kit for Java 375

javaapi/tooldocs/win32/extcheck.html
javaapi/guide/rmi-iiop/toJavaPortableUG.html
javaapi/tooldocs/win32/jar.html
javaapi/tooldocs/win32/jarsigner.html
javaapi/tooldocs/win32/javac.html

Java javadoc tool
The javadoc tool generates APl documentation. It is compatible with the javadoc tool that is supplied by

Sun Microsystems, Inc.

The javadoc tool is available using the Qshell Interpreter.

For more information about the javadoc tool, see the|javadoc tool by Sun Microsystems, Incl

Java tools

. [ava javah tool

« |Java javakey tool|
+ |Java javap tool|
» |Java keytoo
+ |Java native2ascii tool

« |Java policytool|

» |Java rmic tool

.

+ [Java rmiregistry tooll
+ [Java serialver tool

+ [Java thameserv tool|

Java javah tool
The javah tool facilitates the implementation of Java™ native methods. It is compatible with the javah
tool that is supplied by Sun Microsystems, Inc. with a few exceptions.

Note: Writing native methods means that your application is not 100% pure Java. It also means that your
application is not directly portable across platforms. Native methods are, by nature, platform or
system-specific. Using native methods may increase your development and maintenance costs for your
applications.

The javah tool is available using the Qshell Interpreter. It reads a Java class file and creates a C-language
header file in the current working directory. The header file that is written is an iSeries Stream File (STMF).
It must be copied to a file member before it can be included in a C program on the iSeries server.

The javah tool is compatible with the tool that is provided by Sun Microsystems, Inc. If these options are
specified, however, the iSeries server ignores them.
-td The javah tool on the iSeries server does not require a temporary directory.

-stubs Java on the iSeries server only supports the Java Native Interface (JNI) form of native methods.
Stubs were only required for the pre-JNI form of native methods.

-trace
Relates to the .c stub file output, which Java on the iSeries server does not support.

-V Not supported.

Note: The -jni option must always be specified. The iSeries server does not support native method
implementations prior to JNI.

For more information about the javah tool, see the javah tool by Sun Microsystems, Inc|

376 iSeries: IBM Developer Kit for Java

javaapi/tooldocs/win32/javadoc.html
javaapi/tooldocs/win32/javah.html

Java javakey tool

Use the javakey tool for encryption key, and certificate generation and management, including generation
of digital signatures for applets. It is compatible with the javakey tool that is supplied by Sun
Microsystems, Inc. in Java Development Kit (JDK) versions 1.1.x.

In Java 2 Software Development Kit (J2SDK), Standard Edition, version 1.2 or higher, the javakey tool is
obsolete. Due to bugs in JDK versions 1.1.x, code that is signed using the 1.1.x javakey tool is recognized
as unsigned in the J2SDK, version 1.2 or higher. If you sign code using J2SDK, version 1.2 or higher, it is
recognized as unsigned on JDK 1.1.x versions.

Note: The iSeries secure sockets layer (SSL) support cannot access keys created by this tool. Instead,
you must use the certificate and key containers that are integrated into the iSeries server and created or
imported with the Digital Certificate Manager. See [Make a Java application secure with the secure sockets|
i

ayell for more information.

Applet packaging and applet signing is dependent on your browser. Check your browser documentation to
ensure that your browser is compatible with the Java JAR file format and javakey applet signing.

Note: The files that are created by the javakey tool contain sensitive information. Appropriate integrated
file system security measures protect the public and private key files.

The javakey tool is available using the Qshell Interpreter.

For more information about iSeries file systems, see the [Integrated file system| or [Files in the integrated file|

ystem]

For more information about the javakey tool, see the [javakey tool by Sun Microsystems, Inc.| 3

Java javap tool

The javap tool disassembles compiled Java files and prints out a representation of the Java program. This
may be helpful when the original source code is no longer available on a system.

It is compatible with the javap tool that is supplied by Sun Microsystems, Inc. with a few exceptions.

-b This option is ignored. Backward compatibility is not required, because Java on the iSeries server
only supports Java Development Kit (JDK) 1.1.4 and later.

-p On the iSeries server, -p is not a valid option. You must spell out -private.

-verify This option is ignored. The javap tool does not do verification on the iSeries server.
The javap tool is available using the Qshell Interpreter.

Note: The use of the javap tool to disassemble classes may violate the license agreement for those
classes. Consult the license agreement for the classes before using the javap tool.

For more information about the javap tool, see the [javap tool by Sun Microsystems, Inc.

Java keytool

In Java 2 SDK (J2SDK), Standard Edition, version 1.2 or higher, the keytool creates public and private
key pairs, self-signed certificates, and manage keystores. In J2SDK, the jarsigner and keytool tools
replace the javakey tool. It is compatible with the keytool that is supplied by Sun Microsystems, Inc.

The keytool is available using the Qshell Interpreter.

For more information about the keytool, see the |keytoo| by Sun Microsystems, Inc.|

Chapter 6. Commands and tools for the IBM Developer Kit for Java 377

http://java.sun.com/products/jdk/1.1/docs/tooldocs/win32/javakey.html
javaapi/tooldocs/win32/javap.html
javaapi/tooldocs/win32/keytool.html

Java native2ascii tool
The native2ascii tool converts a file with native-encoded characters (characters which are non-Latin 1

and non-Unicode) to one with Unicode-encoded characters. It is compatible with the native2ascii tool that
is supplied by Sun Microsystems, Inc.

The native2ascii tool is available using the Qshell Interpreter.

For more information about the native2ascii tool, see the |native2ascii tool by Sun Microsystems, Inc.|

Java policytool

In Java 2 SDK, Standard Edition, the policytool creates and changes the external policy configuration
files that define the Java security policy of your installation. It is compatible with the policytool that is
supplied by Sun Microsystems, Inc.

The policytool is a graphical user interface (GUI) tool available using the Qshell Interpreter and the
Remote Abstract Window Toolkit. See [IBM Developer Kit for Java Remote Abstract Window Toolkit for
more information.

For more information about the policytool, see the [policytool by Sun Microsystems, Inc.|

Java rmic tool
The rmic tool generates stub files and class files for Java objects. It is compatible with the rmic tool that is
supplied by Sun Microsystems, Inc.

The rmic tool is available using the Qshell Interpreter.

For more information about the rmic tool, see the [rmic tool by Sun Microsystems, Inc.|

Java rmid tool

In Java 2 SDK (J2SDK), Standard Edition, the rmid tool starts the activation system daemon, so objects
can be registered and activated in a Java virtual machine. It is compatible with the rmid tool that is
supplied by Sun Microsystems, Inc.

The rmid tool is available using the Qshell Interpreter.

For more information about the rmid tool, see the [rmid tool by Sun Microsystems, Inc.|

Java rmiregistry tool
The rmiregistry tool starts a remote object registry on a specified port. It is compatible with the
rmiregistry tool that is supplied by Sun Microsystems, Inc.

The rmiregistry tool is available using the Qshell Interpreter.

For more information about the rmiregistry tool, see the [rmiregistry tool by Sun Microsystems, Inc.|

Java serialver tool
The serialver tool returns the version number or serialization-unique identifier for one or more classes. It
is compatible with the serialver tool that is supplied by Sun Microsystems, Inc.

The serialver tool is available using the Qshell Interpreter.

For more information about the serialver tool, see the [serialver tool by Sun Microsystems, Inc |

Java tnameserv tool

In Java 2 SDK (J2SDK), Standard Edition, version 1.3 & or higher % , the tnameserv (Transient Naming
Service) tool provides access to the naming service. It is compatible with the tnameserv tool that is
supplied by Sun Microsystems, Inc.

378 iSeries: IBM Developer Kit for Java

javaapi/tooldocs/win32/native2ascii.html
javaapi/tooldocs/win32/policytool.html
javaapi/tooldocs/win32/rmic.html
javaapi/tooldocs/win32/rmid.html
javaapi/tooldocs/win32/rmiregistry.html
javaapi/tooldocs/win32/serialver.html

The tnameserv tool is available using the Qshell Interpreter.

Java command in Qshell

The java command in Qshell runs Java‘™ programs. It is compatible with the java tool that is supplied by
Sun Microsystems, Inc. with a few exceptions.

The IBM Developer Kit for Java ignores these options of the java command in Qshell.

Option Description

-CS This option is not supported.

-checksource This option is not supported.

-debug This option is supported by the iSeries internal debugger.

-noasyncgc Garbage collection is always running with the IBM Developer Kit for Java.
-noclassgc Garbage collection is always running with the IBM Developer Kit for Java.
-prof The iSeries server has its own performance tools.

-SS This option is not applicable on the iSeries server.

-0SS This option is not applicable on the iSeries server.

-t The iSeries server uses its own trace function.

-verify Always verify on the iSeries server.

-verifyremote Always verify on the iSeries server.

-noverify Always verify on the iSeries server.

On the iSeries server, the -classpath option does not override the default classpath. Instead, it is
appended to the system default classpath. The -classpath option does override the CLASSPATH
environment variable.

The java command in Qshell supports new options for the iSeries server. These are the new options that
are supported.

Option Description

2 -chkpath <4 This option checks for public write access to directories in
the CLASSPATH.

-opt This option specifies the optimization level.

¥+ _showversion This option specifies the JDK version. This option exists
for JOK 1.3 and 1.4. %

& -verbosel[:classlgcljni] % A message is displayed for each garbage collection
sweep.

& Xrun[:] A message is displayed, indicating that a service program
and an optional parameter string for the JVM_OnLoad
function during JVM startup. L4

The Run Java (RUNJVA) command in the CL command reference information describes these new
options in detail. The CL command reference information for the Create Java Program (CRTJVAPGM)
command, Delete Java Program (DLTJVAPGM) command, and Display Java Program (DSPJVAPGM)
command contains information about managing Java programs.

The java command in Qshell is available using the Qshell Interpreter.

Chapter 6. Commands and tools for the IBM Developer Kit for Java 379

For more information about the java command in Qshell, see the fjava tool by Sun Microsystems, Inc.|

CL commands that are supported by Java

The IBM Developer Kit for Java™ supports the these CL commands.

+ #[Analyze Java Virtual Machine (ANZJVM) command] retrieves and sets information into a Java virtual
machine (JVM). This command helps you debug Java programs by returning information about active

classes. 4%
[Change Java Program (CHGJVAPGM) command| changes the attributes of a Java program.

+ [Create Java Program (CRTJVAPGM) command| creates a Java program on an iSeries server from a
Java class file, ZIP file, or JAR file.

[Delete Java Program (DLTJVAPGM) command| deletes an iSeries Java program that is associated with
a Java class file, ZIP file, or JAR file.

« [Display Java Program (DSPJVAPGM) command| displays information about a Java program on iSeries.

+ [Dump Java Virtual Machine (DMPJVM) command| dumps information about the Java virtual machine for
a specified job to a spooled printer file.

[JAVA command|and [Run Java (RUNJVA) command| run iSeries Java programs.

For more information, see the |Program and CL Command APIs|

Analyze Java Virtual Machine (ANZJVM) command

#* The Analyze Java‘™ Virtual Machine (ANZJVM) command retrieves and sets information into a Java
virtual machine (JVM). The intention is to help you debug Java programs by returning information about
active classes.

When you frun the ANZJVM command), there is a parameter to specify if a [garbage collection cycle should|
|be forced|, and if so, an attempt is made to force a garbage collection cycle before each pass. If no
garbage collection cycles for the JVM being analyzed have been run, the cycles cannot be forced. There
are also parameters on how the information should be stored and how long the interval between passes
should be.

After the ANZJVM command completes, a spooled output file is produced. Refer to the |Example: ANZJVM|
and the output file for more information.

Refer to the ANZJVM command| and]ANZJVM syntax diagram| for more information.

Refer to [Considerations for ANZJVM command for more information. 4%

Run the ANZJVM command

#* You can run the Analyze Java™ Virtual Machine (ANZJVM) command to collect information about the
Java virtual machine (JVM) for a specified job. By taking a copy of the JVM and comparing the data with
another copy taken at a later time, the data can be analyzed to help find object leaks. An interval
parameter is used to specify the time between heap passes. When the interval is set to zero, there are
two passes of the heap, with the second pass starting just after the first pass finishes. Information for both
passes is then returned.

The following information is returned for each class in the heap:
1. Class name
2. Garbage collection heap information
a. Pass one
b. Pass two
c. Change in the number of objects in the garbage collection heap

380 iSeries: IBM Developer Kit for Java

javaapi/tooldocs/win32/java.html

3. Object space used
a. Pass one
b. Pass two
c. Change in object size

4. Global registry information, which is the same information for the global registry as what is listed for
the object table.

5. Loader name

Force a garbage collection cycle: To obtain a cleaner view of the heap, it is desirable to look at it as
soon as possible after a garbage collection cycle. ANZJVM has a FRCGC parameter to specify if garbage
collection should be forced. The possible options are the following:
* *YES

Garbage collection is forced before each ANZJVM sweep of the heap.
* *NO

Garbage collection is not forced by ANZJVM.4%

Considerations for ANZJVM command

% Due to the length of time ANZJVM can run, it is highly possible that a JVM ends before ANZJVM is
able to finish. In the event that the JVM ends, ANZJVM returns the JVAB606 message (that is, JVM ended
while processing ANZJVM) along with the data that it was able to obtain.

There is also no upper limit on the number of classes a JVM can handle. If there are more classes than
can be handled, ANZJVM should return the data that can be handled along with a message letting you
know there was additional information not reported. When the data requires truncating, ANZJVM returns as
much information as possible.

The internal parameter is restricted to 3600 seconds (one hour) in length. The number of classes that
ANZJVM can return information about is limited by the amount of storage on your system. %

Example: ANZJVM command

#* The following ANZJVM command example collects two copies of the JVM 60 seconds apart for a job
named QJVACMDSRC for user name JOHN and the job number 099112. The data from the copies is
placed in a QSYSPRT printer device file.

ANZJVM JOB(099112/JOHN/QJVACMDSRV)
An example of the spooled output file follows.

Spooled output file for ANZJVM command: The following is an example of the data contained in a
spooled output file after the ANZJVM command is run:

Mon Feb 26 15:39:12 CST 2002

Job: 099112/J0HN/QJVACMDSRY

Interval: 10 seconds

Total garbage collection cycles prior to running: 29
Total garbage collection cycles after running: 31

GC forced: NO

Loader
| Number of pass one objects in the GC heap
Number of pass two objects in the GC heap
| Change in the number of objects in the GC heap
Pass one object size (K)

Chapter 6. Commands and tools for the IBM Developer Kit for Java 381

491363

8

13

404

423

128

IBM Developer Kit for Java

Pass two object size (K)
Change in object size (K)
In global registry

|
21619 2640 NO
0 0 NO
0 0 NO
0 0 NO
0 0 NO
0 0 NO
0 0 NO
0 0 NO
0 0 NO
0 0 NO
24 0 NO
15 0 NO
0 0 NO
0 0 NO
0 0 NO
0 0 NO
0 0 NO
6 0 NO
0 0 NO
0 0 NO
0 0 NO
0 0 NO

Class name
java/lang/
String
sun/misc/
URLCTass
Path$
JarLoader
java/lang/
Object
java/util/
zip/
Inflater
java/lang/
Thread
[Ljava/lang/
Class;
java/io/
File
Descriptor
java/io/
Buffered
Writer
[Ljava/Tang/
String;
[Ljava/io/
ObjectStream
Class$
ObjectStream
ClassEntry;
[Ljava/util/
HashMap$
Entry;
java/util/
jar/
Attributes$
Name
java/io/
Buffered
InputStream
java/io/
Buffered
Qutput
Stream
java/security/
Protection
Domain
sun/security/
provider/Sun
java/io/
File
Permission
java/util/
Hashtable$
Entry
java/net/
URLCTass
Loader$
ClassFinder
java/lang/
Runtime
java/util/
BitSet
java/util/
jar/

[N

(<}

[oNo)

[oN o]

[N

800

[N

(<}

[oNo)

[oN o]

[N

125

117

10

[=Nee)

125

117

10

[=Nee)

0 NO
0 NO
0 YES
0 YES
0 NO
0 YES
0 NO
0 YES
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 YES
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO

JarVerifier

java/lang/
ThreadGroup

java/util/
Locale

java/io/
RandomAccess
File

[B

sun/misc/
Launcher

[C

sun/misc/
Launcher$
Factory

java/lang/
Class

java/util/
Collections$
EmptyList

java/util/
Collections$
EmptyMap

java/lang/
String$
Case
Insensitive
Comparator

[1

java/lang/
OQutof
Memory
Error

[J

java/util/
HashMap$
Entry

java/util/
Random

java/security/
Access
Control
Context

Jjava/lang/
ref/
Reference$
Reference
Handler

[S

[Ljava/Tang/
ref/Soft
Reference;

java/io/
Object
Stream
Class$
Compare
Member
ByName

java/util/
jar/
JarFile$
JarFileEntry

java/util/
Collections$
EmptySet

[Ljava/

Chapter 6. Commands and tools for the IBM Developer Kit for Java

383

[N
[cNo)

IBM Developer Kit for Java

NO

NO

YES

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

security/
cert/
Certificate;
java/lang/
ref/
Reference
Queue
java/util/
Hashtable$
Empty
Enumerator
sun/misc/
Launcher$
AppClass
Loader
java/lang/
Shutdown$
Lock
java/util/
Vector
java/util/
Stack
java/net/URL
java/lang/
ref/
Finalizer
java/io/
0s400
FileSystem
java/lang/
Runtime
Permission
[Ljava/io/
File;
sun/io/
CharToByte
1508859 1
sun/misc/
Launcher$
ExtClass
Loader
java/lang/
ref/
Soft
Reference
sun/security/
provider/
PolicyFile
java/io/
Object
Stream
Class$
Compare
Class
ByName
sun/net/www/
protocol/
file/
Handler
java/util/
jar/
JarFile
java/util/
Hashtable
java/lang/
ref/
Reference$

4
391

11

31

404

4
391

11

31

404

5246

35

5246

35

0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 NO
0 YES
0 NO
0 NO
0 NO
0 NO

Lock
java/io/
PrintStream
java/util/
Hashtable$
Empty
Iterator
java/io/File
java/util/
jar/
Attributes
sun/misc/
URLCTassPath
java/io/
FilelInput
Stream
java/io/
Qutput
Stream
Writer
java/util/
ArraylList
java/net/
Unknown
Content
Handler
java/lang/
ref/
Reference
Queue$Lock
java/io/
FileOutput
Stream
sun/misc/
URLC1ass
Path$
FileLoader
[Ljava/Tang/
Object;
java/lang/
Class
Loader$
Native
Library
[Ljava/Tang/
Thread;
java/util/
HashMap
java/lang/
Boolean
java/lang/ref/
Finalizer$
Finalizer
Thread
sun/security/
provider/
Policy
Permissions
java/util/jar/
Manifest
sun/net/www/
protocol/
jar/
Handler
com/sun/
rsajca/
Provider

Chapter 6. Commands and tools for the IBM Developer Kit for Java

385

0 1 1 0 0 0 0 NO java/util/
Collections
$Reverse
Comparator

0 2 2 0 0 0 0 NO [Ljava/io/
ObjectStream
Field;

0 1 1 0 0 0 0 NO java/security/
CodeSource

0 34 34 0 5 5 0 NO [Ljava/util/

Hashtable$
Entry;

0 2 2 0 0 0 0 NO java/lang/ref/
Reference
Queue$Null

0 2 2 0 0 0 0 NO Jjava/util/
Properties

0 2 2 0 0 0 0 NO java/util/
HashSet

0 1 1 0 0 0 0 NO [Ljava/lang/
ThreadGroup;

0 1 1 0 0 0 0 NO java/util/
HashMap$
EmptyHash
Iterator

0 7 7 0 0 0 0 NO java/io/
ByteArray
QutputStream

Loader
Number of pass one objects in the GC heap
Number of pass two objects in the GC heap
Change in the number of objects in the GC heap
Pass one object size (K)
Pass two object size (K)
Change in object size (K)

|
0 0 0 0 java/io/

o
[0 o Y —
[0 o Y —

| | | Class name

RandomAccessFile

0 8 8 0 64 64 0 [B

0 10 10 0 1 1 0 [C

0 439 439 0 10 10 0 java/lang/Class

0 1 1 0 0 0 0 java/lang/ref/
Reference$
ReferenceHandler

0 1 1 0 0 0 0 sun/misc/
Launcher$
AppClassLoader

0 1 1 0 0 0 0 java/lang/ref/
Finalizer$
FinalizerThread

L4

Example: Change Java Program (CHGJVAPGM) command

To change a Java™ program that is associated with the class file, myJavaClassFileName, use the
Change Java Program (CHGJVAPGM) command. The Java program class file bytecodes are interpreted.
To start the program, use the Run Java (RUNJVA) command. The Java program is recreated only if the
attributes that are specified are different than those of the current program.

Example 1: Change an interpreted Java program

386 iSeries: IBM Developer Kit for Java

Note: Read the [Code example disclaimer| for important legal information.

CHGJVAPGM CLSF('/projectA/team2/myJavaClassFileName.class"')

OPTIMIZE (*INTERPRET)

The following example is the same as Example 1, except that the program is optimized. It is changed with
OPTIMIZE(10), so the program contains compiled machine instructions that run when the Java program

starts.

Example 2: Change an optimized Java program in a JAR file

Note: Read the [Code example disclaimer for important legal information.

CHGJVAPGM CLSF('/projectB/myJavaappfile.jar')

OPTIMIZE(10)

See the [Change Java Program (CHGJVAPGM) command for syntax diagram and parameter details.

Licensed Internal Code option parameter strings

This table shows the strings that are recognized by the Licensed Internal Code option (LICOPT)
parameter. These strings are not case sensitive, but they are shown as mixed case for readability.

LICOPT parameter strings

String

Description

AllFieldsVolatile

If set, treats all fields as volatile.

NoAllFieldsVolatile

If set, no fields are treated as volatile.

AllowBindingToLoadedClasses

Indicates that temporary class representations that were
created as a result of defineClass calls within a running
Java™ virtual machine may be tightly bound to other
class representations within the same Java virtual
machine.

NoAllowBindingToLoadedClasses

Indicates that temporary class representations that were
created as a result of defineClass calls within a running
Java virtual machine may not be tightly bound to other
class representations within the same Java virtual
machine.

AllowClassCloning

When multiple Java programs are generated for a JAR
file, allows copies of classes from one program to be
included in the generated code for another program.
Facilitates aggressive inlining.

NoAllowClassCloning

Does not allow copies of classes from one program to be
included in the generated code for another program.

AllowInterdarBinding

Allows tight binding to classes outside the class or JAR
file being compiled. Facilitates aggressive optimizations.

NoAllowInterJarBinding

Does not allow tight binding to classes outside the class
or JAR file being compiled. This overrides the presence
of the CLASSPATH and JDKVER parameters on
CRTJVAPGM.

& AllowMultiThreadedCreate

Indicates that CRTJVAPGM performs as usual, using only
one thread. %%

& NoAllowMultiThreadedCreate

CRTJVAPGM uses multiple threads, if they are available,
during creation. L4

Chapter 6. Commands and tools for the IBM Developer Kit for Java 387

String

Description

AnalyzeObijectLifetimes

Performs analysis using visible classes to determine
which objects are short-lived. A short-lived object does
not outlive the method in which it is allocated, and may
be subject to more aggressive optimizations.

NoAnalyzeObijectLifetimes

Does not perform analysis of short-lived objects.

AllowBindingWithindar

Indicates that class representations within a ZIP file or
JAR file may be tightly bound to other class
representations within the same ZIP file or JAR file.

NoAllowBindingWithinJar

Indicates that class representations within a ZIP file or
JAR file may not be tightly bound to other class
representations within the same ZIP file or JAR file.

AllowlInlining

Tells the translator that it is permitted to inline local
methods. This is the default for optimization levels 30
and 40.

NoAllowlInlining

Does not tell the translator that it is permitted to inline
local methods.

AssumeUnknownFieldsNonvolatile

When the attributes of a field in an external class cannot
be determined, this parameter generates code by
assuming that the field is non-volatile.

NoAssumeUnknownFieldsNonvolatile

When the attributes of a field in an external class cannot
be determined, this parameter generates code by
assuming that the field is volatile.

BindErrorHandling

Specifies what action should be taken if, as a result of
honoring the AssumeUnknownFieldsNonvolatile,
PreresolveExtRef, or PreLoadExtRef Licensed Internal
Code option, the Java virtual machine class loader
detects that a class representation contains method
representations, which cannot be used in the current
context.

BindlInit Uses bound call to local init methods.

NoBindlInit Does not use bound call to local init methods.
BindSpecial Uses bound call to local special methods.
NoBindSpecial Does not use bound call to local special methods.
BindStatic Uses bound call to local static methods.

NoBindStatic Does not use bound call to local static methods.
BindTrivialFields Binds trivial field references during program creation.
NoBindTrivialFields Resolves field references at first touch.

BindVirtual Uses bound call to local final virtual methods.
NoBindVirtual Does not use bound call to local final virtual methods.

DeferResolveOnClass

Takes a string parameter that is presumed to be the
name of a class (for example, java.lang.Integer). When
you set PreresolveExtRef to optimization level 40, classes
that are specified with DeferResolveOnClass are not in
the preresolve operation. This is useful if some classes in
unused paths in the code are not in the CLASSPATH. It
allows you to use optimization level 40 regardless of this
by specifying a
"DeferResolveOnClass="somepath.someclass’” for each
missing class. Multiple DeferResolveOnClass entries are
allowed.

388 iSeries: IBM Developer Kit for Java

String

Description

DevirtualizeFinalJDK

Allows CRTJVAPGM to use knowledge of the standard
JDK to devirtualize calls to those JDK methods that are
known to be final methods or members of final classes. It
is the default at optimization levels 30 and 40.

NoDevirtualizeFinalJDK

Does not allow CRTJVAPGM to use knowledge of the
standard JDK to devirtualize calls to those JDK methods
that are known to be final methods or members of final
classes.

DevirtualizeRecursive

Causes special code to be generated in the case of some
recursive methods and eliminates much of the overhead
of the recursive method calls. However, additional
checking logic is generated on initial entry to the
recursive method, so performance may not improve in
cases of shallow recursion.

NoDevirtualizeRecursive

Does not cause special code to be generated in the case
of some recursive methods.

DisablelntCse

Causes certain common subexpression optimizations to
be disabled when generating code for certain types of
integer expressions. This may improve overall
optimization by exposing other optimization opportunities
to the Optimizing Translator.

NoDisablelntCse

Causes certain common subexpression optimizations to
not be disabled when generating code for certain types of
integer expressions. This generally results in better
performing code at lower optimization levels.

DoExtBlockCSE Performs extended basic block common subexpression
elimination.

NoDoExtBlockCSE Does not perform extended basic block common
subexpression elimination.

DolLocalCSE Performs local common subexpression elimination.

NoDoLocalCSE Does not perform local common subexpression
elimination.

EnableCseForCastCheck If set, generates code for castcheck that can be DAGed

to an earlier instance.

NoEnableCseForCastCheck

Is not set; does not generate code for castcheck that can
be DAGed to an earlier instance.

ErrorReporting

Runtime error reporting field**: Provides the option to fail
the compile when encountering verification or class
format errors. 0=Report all errors immediately; 0=Report
all errors immediately; 1=Defer reporting of bytecode
verification errors; 2=Defer reporting of bytecode
verification errors and class format errors to runtime.

£ HidelnternalMethods

Causes methods in cloned classes to be made internal,
allowing the methods to be omitted if there are no
references to them or if all references are inlined. The
default is HidelnternalMethods for optimization 40 and
NoHidelnternalMethods for optimization between 0 and

30. ¥

InlineArrayCopy

Causes the inlining of the System.arraycopy method in
some cases of scalar arrays.

NolnlineArrayCopy

Prevents the inlining of the System.arraycopy method.

Chapter 6. Commands and tools for the IBM Developer Kit for Java 389

String

Description

Inlinelnit

Inlines init methods for java.lang classes.

Nolnlinelnit

Does not inline init methods.

InlineMiscFloat

Inlines miscellaneous float/double methods from
java.lang.Math.

NolnlineMiscFloat

Does not inline miscellaneous float/double methods.

InlineMisclInt

Inlines miscellaneous int/long methods from
java.lang.Math.

NolnlineMisclInt

Does not inline miscellaneous int/long methods.

InlineStringMethods

Permits inlining of certain methods from java/lang/String.

NolnlineStringMethods

Inhibits inlining of certain methods from java/lang/String.

InlineTransFloat

Inlines transcendental float/double methods from
java.lang.Math.

NolnlineTransFloat

Does not inline transcendental float/double methods.

Optimizedsr Generates better code for "jsr" bytecodes that have a
single target.

NoOptimizeJsr Suppresses generation of better code for "jsr” bytecodes
that have a single target.

PreloadExtRef Indicates that referenced classes may be preloaded
(without class initialization) upon method entry.

NoPreloadExtRef Indicates that referenced classes may not be preloaded
upon method entry. However, the PreresolveExtRef
parameter overrides this setting and causes referenced
classes to be preloaded and initialized.

PreresolveExtRef Preresolves referenced methods at method entry.

NoPreresolveExtRef Resolves method references at first touch. Use to resolve

"class not found” exceptions on programs that run on
other machines.

ProgramSizeFactor

When a JAR file may be large enough to require multiple
Java programs, this numeric value (default 100) is used
to determine how large each program can grow.

ShortCktAthrow If set, attempt to short-circuit athrows.

NoShortCktAthrow Is not set, does not attempt to short-circuit athrows.

ShortCktExSubclasses If set, recognizes some subclasses of Exception and
short-circuit them directly.

NoShortCktExSubclasses If not set, does not recognize some subclasses of
Exception and short-circuit them directly.

StrictFloat Inhibits floating-point optimizations that are not strictly
compliant with the Java specification.

NoStrictFloat Permits floating-point optimizations that are not strictly

compliant with the Java specification.

The double asterisk (**) signifies that these strings require a numerical value for input in the syntax of

stringname=number (with no spaces in between).

390 iSeries: IBM Developer Kit for Java

Example: Create Java Program (CRTJVAPGM) command

To create a Java'™ program and associate it with the class file, myJavaClassFileName, use the Create
Java Program (CRTJVAPGM) command. When created with OPTIMIZE(*INTERPRET), the Java program
class file bytecodes are interpreted. To start the program, use the Run Java (RUNJVA) command.

Example 1: Create an interpreted Java program

Note: Read the [Code example disclaimer for important legal information.

CRTJVAPGM CLSF('/projectA/team2/myJavaClassFileName.class")
OPTIMIZE (*INTERPRET)

This example is the same as Example 1, except that the program is optimized. It is created with
OPTIMIZE(40), so the program contains compiled machine instructions that run when the Java program
starts.

Example 2: Create an optimized Java program

Note: Read the [Code example disclaimer for important legal information.

CRTJVAPGM CLSF('/projectB/team2/myJavaclassfile.class')
OPTIMIZE (40)

See the [Create Java Program (CRTJVAPGM) command|for syntax diagram and parameter details.

Example: Delete Java Program (DLTJVAPGM) command

The Delete Java™ Program (DLTJVAPGM) command deletes the Java program that is associated with
the specified class file that is named myJavaClassFileName.

Note: The DLTJVAPGM command does not delete the class file or ZIP file.

Example 1: Delete a Java program

Note: Read the [Code example disclaimer] for important legal information.

DLTJVAPGM CLSF(’/projectA/team2/myJavaClassFileName.class’)

See the [Delete Java Program (DLTJVAPGM) command for syntax diagram and parameter details.

Example: Dump Java Virtual Machine (DMPJVM) command

The Dump Java™ Virtual Machine (DMPJVM) command dumps information about the Java virtual
machine for a specified job.

Example 1: Dump a Java Virtual Machine

Note: Read the [Code example disclaimer for important legal information.
DMPJVM JOB(099246/FRED/QJVACMDSRV)

The DMPJVM command dumps the information for the Java virtual machine that is running in the job that
is named 099246/FRED/QJVACMDSRYV.

Example output:
JAVA VIRTUAL MACHINE INFORMATION: 099246/FRED/QJVACMDSRV

/QIBM/ProdData/Java400/jdk117/1ib/jdkptf117.zip:/QIBM/ProdData/Java400/jdkl

Chapter 6. Commands and tools for the IBM Developer Kit for Java 391

17/1ib/classes.zip:/QIBM/ProdData/Java400/ext/IBMmisc.jar:/QIBM/ProdData/Ja
va400/ext/db2_classes.jar:/QIBM/ProdData/Javad00/ext/jss1.jar:/QIBM/ProdDat
a/Javad00/ext/ibmjss1.jar:/QIBM/ProdData/Java400/:/home/fred

Garbage collector parameters
Initial size: 2048 K
Max size: *NOMAX

Current values
Heap size: 9476 K
Garbage collections: 0

Information for 3 thread(s) of 3 thread(s) processed
Thread: 00000001 Thread-0
TDE: B000200002941000
Thread priority: 5
Thread status: Destroy wait
Thread group: main
Runnable: java/lang/Thread
Stack:
None
Locks:
None
Thread: 00000003 t2
TDE: BO00100005B37000
Thread priority: 5
Thread status: Timed wait
Thread group: main
Runnable: dbgtest?2
Stack:
java/io/BufferedInputStream.read()I+11 (BufferedInputStream.java:154)
pressEnter.theFirstMethod(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;
Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;
Ljava/lang/String;Ljava/lang/String;Ljava/Tang/String;Ljava/lang/String;
Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)V+1
0 (dbgtest2.java:15)
dbgtest2.run()V+69 (dbgtest2.java:44)
java/lang/Thread.run()V+11 (Thread.java:466)
Locks:
None
Thread: 00000002 t1
TDE: BO00100005B33000
Thread priority: 5
Thread status: Java wait
Thread group: main
Runnable: dbgtest?2
Stack:
pressEnter.theFirstMethod(Ljava/Tang/String;Ljava/lang/String;
Ljava/lang/String;Ljava/lang/String;Ljava/Tang/String;Ljava/lang/String;
Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;
Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;
Ljava/lang/String;)V+0 (dbgtest2.java:14)
dbgtest2.run()V+69 (dbgtest2.java:44)
java/lang/Thread.run()V+11 (Thread.java:466)
Locks:
None

Example: Display Java Program (DSPJVAPGM) command

The DSPJVAPGM (Display Java Program) command displays the Java program that is associated with the
specified class file named myJavaClassFileName.

392 iSeries: IBM Developer Kit for Java

Example 1: Display a Java Program

Note: Read the |Code example disclaimer| for important legal information.
DSPJVAPGM CLSF('/projectA/team2/myJavaClassFileName.class') OUTPUT(*)

See the [Display Java Program (DSPJVAPGM) command| for syntax diagram and parameter details.

JAVA command

The JAVA command functions exactly the same as the Run Java™ (RUNJVA) command. You can use
them interchangeably. See [Run Java (RUNJVA) command| for information and parameters that you can
use with the JAVA command.

Example: Use the Run Java (RUNJVA) command

The Run Java'™ (RUNJVA) command runs the iSeries Java program that is associated with the class.

Example 1: Run a Java program

Note: Read the [Code example disclaimer for important legal information.

RUNJVA CLASS (’/projectA/myJavaclassname’)

See the [Run Java (RUNJVA) command| for syntax diagram and parameter details.

iSeries Navigator commands that are supported by Java

The iSeries Navigator is a graphical interface for your Windows™ desktop. It is part of iSeries Access for
Windows and covers many iSeries functions that administrators or users need to accomplish their daily
work.

iSeries Navigator supports Java™ as a plugin contained in the File Systems option of iSeries Access for
Windows. To use the iSeries Navigator Java plugin, you need to the IBM Developer Kit for Java on
your iSeries server. Then, to install the Java plugin on your personal computer, select File Systems
through Selective Setup in the Client Access folder.

Class, JAR, ZIP, and Java files reside in the integrated file system. iSeries Navigator allows you to see
these files in the right pane. Right-click the class, JAR, ZIP, or java file that you want to use. This brings
up a context menu.

#» Selecting Associated Java Program —> New... from the context menu starts the Java transformer,

which creates iSeries Java programs that are associated with your class, JAR, or ZIP file. % A dialog box
allows you to specify details on how to create the program. You can create the programs for either Java
transformation or Java interpretation.

Note: If you select transformation, the bytecodes in your class file transform into RISC instructions that
result in better performance than if you used interpretation.

#* Selecting Associated Java Program —> Edit... from the context menu changes attributes of Java
programs that are attached to Java class files, ZIP files, or JAR files. %

#* Selecting Associated Java Program —> Run... from the context menu runs your class file on your
iSeries server. % You may also select a JAR or ZIP file and run a class file located within that JAR or ZIP

file. A dialog appears to allow you to specify details on how to run the program. & If you have already
selected Associated Java Program —> New..., the iSeries Java program that is associated with your

Chapter 6. Commands and tools for the IBM Developer Kit for Java 393

class file is used when running the program. €& If an iSeries Java program is not already associated with
your class file, then the iSeries Java program is created before the program runs.

% Selecting Associated Java Program —> Delete... from the context menu deletes the iSeries Java
programs that are associated with your class, JAR, or ZIP file. &

Selecting Properties from the context menu displays a properties dialog box which contains the Java
Programs and Java Options tabs. These tabs allow you to see the details on how the associated iSeries
Java programs were created for your class, JAR, or ZIP file.

Note: These panels are the Display Java Program information.

Selecting Compile Java file from the context menu converts any java files that you have selected into
their class file bytecodes.

#* See the help information, included with iSeries Navigator, for the parameters and options of the New

Java Program, Edit Java Program, Run Java Program, Java Programs, Java Options, Compile Java
file, and Delete Java Program iSeries Navigator dialogs. 4

394 iSeries: IBM Developer Kit for Java

Chapter 7. Optional packages

% Optional packages define Application Programming Interfaces (APIs) that extend the core Java platform
API. The following are optional packages that you can use with the IBM Developer Kit for Java‘™:

&

Nava Authentication and Authorization Service]
The Java Authentication and Authorization Service (JAAS) allows the association of a specific user or
identity to the current Java thread.

Wava Cryptography Extension|

The Java Cryptography Extension (JCE) provides a framework and implementations for encryption,
key generation and key agreement, and Message Authentication Code (MAC) algorithms. JCE also
supports secure streams and sealed objects.

Wava Naming and Directory Interface]

The Java Naming and Directory Interface (JNDI) is part of JavaSoft’s platform application program
interfaces (API). With JNDI, you can connect to multiple naming and directory services. You can build
powerful and portable directory-enabled Java applications by using this interface.

Wava Secure Socket Layer|

The Java Secure Socket Layer (JSSL) is a set of Java packages that enable secure Internet
communications. It implements a Java version of SSL and Transport Layer Security (TLS) protocols
and includes functionality for data encryption, server authentication, message integrity, and optional
client authentication.

The JavaMail API provides a set of abstract classes that models an electronic (e-mail) system. The
API provides a platform-independent and protocol-independent framework to build Java-based e-mail
and messaging applications.

MavaPrintService|

The Java Print Service API allows printing on all Java platforms. Java 1.4 provides a framework in
which Java runtime environments and third parties can provide steam generator plugins for producing
variOL(JTsMiormats for printing, such as PDF, Postscript, and Advanced Function Presentation™
(AFP*Y).

Java Naming and Directory Interface

The Java™ Naming and Directory Interface (JNDI) is part of JavaSoft's platform application program
interfaces (API). With JNDI, you can connect seamlessly to multiple naming and directory services. You
can build powerful and portable directory-enabled Java applications by using this interface.

JavaSoft developed the JNDI specification with leading industry partners, including IBM, SunSoft, Novell,
Netscape, and Hewlett-Packard Co.

For more information about JNDI, see [Java Naming and Directory interface by Sun Microsystems, Inc.| R4
For IBM-specific information, see the |T3M JNDI LDAP provider programming guide.

© Copyright IBM Corp. 1998, 2001 395

http://java.sun.com/products/jndi/

IBM JNDI LDAP provider programming guide

#* This programming guide assumes that you are familiar with the Java®™ Naming and Directory Interface
(JNDI) and how Lightweight Directory Access Protocol (LDAP) operates. For more information, see the

UNDI documentation| “D from Sun Microsystems.

IBM provides a LDAP service provider for JNDI that can be used with SDK or Java Runtime Environment
(JRE) 1.2.2. Using the IBM JNDI LDAP provider with SDK or JRE 1.3 or later is not supported; instead,
JNDI and the Sun Microsystems, Inc. JNDI LDAP provider should be used and are part of the SDK and
JRE 1.3. The Sun Microsystems, Inc. JNDI LDAP provider can also be used with SDK and JRE 1.2.2, but

you must download these components from the [Sun Microsystems, Inc. JNDI| 9 Web site, and support is
provided by Sun. This programming guide describes using the IBM JNDI LDAP provider with SDK or JRE
1.2.2.

To compile or run code using the IBM JNDI LDAP provider, add the following to your classpath:
/QIBM/ProdData/Java400/ext/ibmjndi.jar:/QIBM/ProdData/Java400/ext/jndi.jar

This programming guide discusses the following topics:

[Create an initial context|
This topic describes how to create an initial context to connect with an LDAP server. JNDI supports
two ways for a client to work with a Lightweight Directory Access Protocol (LDAP) server:

* The client identifies the server at context creation.
* A URL string is directly passed to the context’s methods.

LDAP V3 URL|
This topic defines the LDAP URL syntax.

[Server binding and SASL supporf

A server must authenticate a client before certain operations are allowed. LDAP refers to this as
binding to the server. The LDAP protocol extended its authentication to also support Simple
Authentication and Security Layer (SASL) mechanisms. These mechanisms allow more sophisticated
ways of identifying a client to the server without unnecessarily compromising the security of the user
by sending his ID and password in clear text.

[Search and obtain attributes|
JNDI provides flexibility in searching Lightweight Directory Access Protocol (LDAP) directories.

IAdd and delete entries in a directory|
JNDI allows you to add and delete entries in a directory. This topic includes examples on how to
perform these tasks.

[Change attributes|
JNDI makes it possible to change, create, or remove attributes from a directory entry.

[Rename a directory entry|
JNDI allows you to rename a directory entry anywhere relative to the base context. This topic
identifies a property that affects the rename method used to rename a directory entry.

[Referrals and search references|

LDAP servers may return either referrals or search references. A referral can be returned on any
operation and indicates that the server does not hold the target entry of the request. A search
reference is only returned on a search operation.

396 iSeries: IBM Developer Kit for Java

http://www.javasoft.com/products/jndi/docs.html
http://java.sun.com/products/jndi/

LDAP controls

The LDAP v3 specification added controls to send and receive extension information. Controls sent
to a server are referred to as request controls. Controls received from a server are referred to as
response controls.

[Binary attributes|

The LDAP protocol does not provide any distinction between retrieved binary and textual attributes.
Instead, it expects the client application to know how to handle the data. This topic describes three
different methods for handling what happens to retrieved attributes and whether or not they are
converted to strings.

You can retrieve, view, and update an LDAP server’'s schema structure. Only servers that provide
schema information defined by the Lightweight Directory Access Protocol specification are supported.

SASL plug-in
You can write your own Simple Authentication and Security Layer (SASL) plug-in. This topic provides
code examples to help you get started with creating the plug-in.

[Client-side caching

Caching provides a means to store recently requested information locally. This improves performance
by retrieving repeated queries locally instead of going back to a remote server for information already
obtained.

[Retrieve the IBMJNDI class version|
This topic indicates what static method you can uses to retrieve the IBMJNDI class version of LDAP.

[Conformance considerations and additional properties|

See this topic to know what considerations must be taken when using the IBM LDAP provider and
Sun’s JNDI Implementor Guidelines for LDAP Service Providers. Properties that are supported and
have been deprecated are also indicated.

{{

Create an initial context

% The Java'™ Naming and Directory Interface (JNDI) supports two different ways for a client to work
with a Lightweight Directory Access Protocol (LDAP) server. The first and most common way is for the
client to identify the server at context creation. Operations are then performed on this open connection by
passing DN-based names to the context’s methods. The following two properties support this type of
operation:

java.naming.factory.initial (Context.INITIAL_CONTEXT_FACTORY)
This property must be set to com.ibm.jndi.LDAPCtxFactory.

java.naming.provider.url (Context.PROVIDER_URL)
This property identifies the name and port of the LDAP server in the form of a URL string. If the
LDAP server's name and port cannot be identified, the IBM JNDI LDAP provider defaults to
Idap://localhost:389.

The following code creates a connection to host Tdapserver and retrieves an entry:

Example 1: Create a connection to host Idapserver

Note: Read the [Code example disclaimer] for important legal information.

Chapter 7. Optional packages 397

Properties env = new Properties();
env.put("java.naming.factory.initial", "com.ibm.jndi.LDAPCtxFactory");
env.put("java.naming.provider.url", "ldap://1dapserver");

DirContext ctx = new InitialDirContext(env);

Attributes entry = ctx.getAttributes("cn=example,o0=1BM,c=US");

The second way to work with an LDAP server using JNDI is to pass a URL string directly to the context’s
methods. This process, however, has the overhead of creating a new connection for each operation and
should be avoided if all operations are bound for a single server. The following property supports this type
of operation:

java.naming.factory.url.pkgs (Context.URL_PKG_PREFIXES)
This property must be set to com.ibm.jndi if passing URL strings as name input to a context’s
method and connecting to an LDAP server is not required at context creation time.

The following code duplicates the previous example, but delays connecting to the server until the
getAttributes method is called:

Example 2: Create a connection to host Idapserver and delay connecting to the server

Note: Read the [Code example disclaimer for important legal information.

Properties env = new Properties();

env.put("java.naming.factory.url.pkgs", "com.ibm.jndi");

DirContext ctx = new InitialDirContext(env);

Attributes entry = ctx.getAttributes("1dap://1dapserver/cn=example,o=1BM,c=US");

The provider also supports mixing the two previous methods. That is, it is possible to establish a
connection to an LDAP server using java.naming.factory.initial and then pass a URL string as a name input
to a method. This works whether java.naming.factory.url.pkgs is defined or not.

Note: Any connection to the LDAP server opened by InitialDirContext must be closed by calling the close
method. &

LDAP V3 URL
% The IBM Java‘™ Naming and Directory Interface (JNDI) Lightweight Directory Access Protocol (LDAP)

provider fully supports the LDAP Uniform Resource Locator (URL) format defined in |RFC 2255 9 .An
LDAP URL is defined by the following syntax:

scheme "://" [host [":" port 11 ["/"
[dn ["?" [attributes] ["?" [scope]
["?" [filter] ["?" extensions]]]]]]

Where:

* scheme indicates the URL scheme. This class library supports either the traditional Tdap for normal
LDAP connections or 1daps for Secure Socket Layer (SSL) connections.

» host is the name of the LDAP server. If the LDAP server name is not specified, the default is localhost.

» port represents the LDAP server’'s port number. If the port number is not specified, the default is 389 for
non-SSL and 636 for SSL.

* dn identifies the base object for the operation.

» attributes represents a comma-separated list of attributes to be returned. If a list of attributes is not
specified, the default is to return all attributes.

» scope represents the scope of a search. Valid values for these files are the following:

— base
This value represents the base object.

- sub
This value represents the suborder of a file hierarchy.

398 iSeries: IBM Developer Kit for Java

http://www.ietf.org/rfc/rfc2255.txt

— one
This value represents one level of the file hierarchy.

If the scope is not specified, the default is base.
* filter represents the search filter. If the search filter not specified, the default is (objectclass=").

» extension provides the LDAP URL with an extensibility mechanism, allowing the capabilities of the URL
to be extended. The only extension supported by the IBM JNDI LDAP provider is bindname.

Server binding and SASL support
#* In many cases, a server must authenticate a client before certain operations are allowed. The
Lightweight Directory Access Protocol (LDAP) refers to this as binding to the server.

When binding to the server, the client specifies which LDAP protocol it wants to use. There are two
versions of the LDAP protocol defined, V2 and V3. If the server only supports V2, a protocol error is
returned when a client attempts to bind as a V3 client. The IBM Java™ Naming and Directory Interface
(JNDI) LDAP provider supports binding as either a V2 or V3 client.

You can use the following properties when binding to a server:

java.naming.ldap.version
This property specifies the LDAP protocol version. Valid values are 2 or 3. If this property is not
set, the provider attempts to bind as a V3 client and then automatically steps down to V2 if a
protocol error is returned. The provider does not attempt to step down if this property is set.

Besides setting a protocol version, a bind also identifies a user to the server for authentication.

java.naming.security.principal (Context. SECURITY_PRINCIPAL)
This property specifies the client’s ID. In almost all cases, it is in the form of a distinguished name.

java.naming.security.credentials (Context.SECURITY_CREDENTIALS)
This property specifies the client’s credentials (that is, the client’'s password).

LDAP also supports different types of authentication mechanisms. The V2 LDAP protocol only supported
one type of bind that is referred to as a simple bind. With this mechanism, the clear text ID and credentials
are sent to the server. The V3 protocol extended authentication to also support Simple Authentication and
Security Layer (SASL) mechanisms. These mechanisms allow more sophisticated ways of identifying a
client to the server without unnecessarily compromising the security of the user by sending his ID and
password in clear text.

The provider supports two different ways of specifying the authentication mechanism. One way requires
the name of the authentication class. This way allows the provider to be extended by specifying
authentication classes outside the provider. Thus, you can write your own The following
properties support this way of specifying the authentication mechanism.

java.naming.security.sasl
This property specifies the name of the authentication class to use. The following classes are
shipped as part of the provider.

com.ibm.ldap.LDAPSimpleBind
This property specifies the clear text ID and credentials that are sent to the server for
authentication. This mechanism is supported by both V2 and V3 servers. Note that the use of
clear text passwords is not recommended over open networks when there is no authentication or
encryption being performed by a lower layer.

com.ibm.ldap.LDAPSasIExternal
The external SASL method attempts to bind using the underlying security protocol already
negotiated such as SSL. In most cases, the security principal and credentials should be left
uninitialized.

Chapter 7. Optional packages 399

com.ibm.ldap.LDAPSasICRAM_MD5
The CRAM-MD5 SASL sends the security principal and credentials to the server for authentication
using a challenge-response protocol.

com.ibm.ldap.LDAPSasIGSSAPI
The GSSAPI SASL method attempts to bind using Kerberos authentication after obtaining
credentials through a separate means such as kinit or integrated login. In most cases, the security
principal and credentials bind arguments should be left uninitialized.

java.naming.sasl.mode
This property specifies a mode setting that is passed to the loaded SASL plug-in. This setting is
ignored by all predefined SASL plug-ins in the provider.

The second supported way to specify the authentication mechanism is compatible with Sun’s
LDAP toolkit. Instead of indicating the authentication class to load, the name of the authentication
mechanism is specified instead. The IBM JNDI LDAP provider uses this method for specifying the
authentication mechanism if the java.naming.security.sasl property is not set.

java.naming.security.authentication (Context.SECURITY_AUTHENTICATION)
This property specifies the name of the authentication mechanism to use. The following values are
supported by this property.
* none
Do not perform authentication (anonymous bind).
* simple
Use simple authentication.
+ EXTERNAL
Use external SASL mechanism.

« CRAM-MD5
Use CRAM-MD5 SASL mechanism.

* GSSAPI
Use GSS or Kerberos SASL mechanism.

The following property is set by this class library after the client has been successfully authenticated:

java.naming.authorization.identity
This property is set to the authorization identity of the client. Normally, this is the same as the
specified client ID. However, the SASL mechanism may map the initial bind DN to another value.
An example of this is the external SASL where the authorization identity is stored in the client’s
certificate.

The following example demonstrates setting properties to indicate that the version protocol to 3 and
authenticating as Larry Meade using the CRAM-MD5 mechanism:

Example: Set properties

Note: Read the [Code example disclaimer for important legal information.
Properties env = new Properties();

env.put("java.naming.factory.initial", "com.ibm.jndi.LDAPCtxFactory");
env.put("java.naming.ldap.version", "3");
env.put("java.naming.provider.url", "ldap://1dapserver");

env.put (Context.SECURITY_PRINCIPAL, "cn=Larry Meade, o=IBM, c=US");
env.put(Context.SECURITY_CREDENTIALS, "secret");

env.put (Context.SECURITY_AUTHENTICATION, "CRAM-MD5");

DirContext ctx = new InitialDirContext(env);

The previous example can be changed to explicitly indicate the SASL class name. The

SECURITY_AUTHENTICATION line in the previous example would need to be replaced with the following
line:

400 iSeries: IBM Developer Kit for Java

env.put("java.naming.security.sas1", "com.ibm.ldap.LDAPSas1CRAM _MD5");

Search and obtain attributes

% The Java'™ Naming and Directory Interface (JNDI) provides great flexibility in searching Lightweight
Directory Access Protocol (LDAP) directories. The two most frequently used methods in the IBM JNDI
LDAP provider are search and getAttributes. However, the following methods also retrieve data from an
LDAP server:

* lookup

* lookupLink

 list

* listBindings

» getSchema

» getSchemaClassDefinition

The following properties affect search operations:

java.naming.ldap.derefAliases
This property defines how alias objects (as defined in X.501) are to be handled. This property
accepts the following values:

* always
This value dereferences aliases when searching and locating the base object of the search.
This is the default.

* never
This value does not dereference aliases when searching or in locating the base object of the
search. To increase performance, this is the recommended setting.

+ finding
This value dereferences aliases when locating the base object of the search, but not when
searching subordinates of the base object.

» searching
This value dereferences aliases in subordinates of the base object in searching, but not in
locating the base object of the search.

java.naming.batchsize (Context.BATCHSIZE)
This value sets the recommended size limit for the number of search results held by a returned
NamingEnumeration. If the value is not specified, then the default batchsize is 1. This helps to
ensure the smallest memory footprint possible by the class library. A value of 0 disables batchsize
and indicates that a search is blocked until all results are collected.

java.naming.ldap.typesOnly
This property is relevant to the getAttributes and search methods, the latter only when the
returning object flag is false. This property accepts the following values:

e true
This value returns only attribute identifiers, but not the values.

* false
This value returns both the attribute identifiers and values. This is the default.

The result of a search call is a NamingEnumeration. To obtain the results, the enumeration must be
walked using either the traditional hasMoreElements and nextElement methods or the
NamingEnumeration-specific hasMore and next methods. The latter two methods allow exceptions to be
caught if you want to chase or view a ReferralException.

Notes:

Chapter 7. Optional packages 401

» To avoid unexpectedly keeping resources allocated and connections open, a NamingEnumeration
should either be walked to the end (that is, until the hasMore and hasMoreElements methods return
false) or the enumeration’s close method should be called.

* The IBM JNDI LDAP provider automatically replaces invalid UTF-8 character encodings in distinguished
names and attribute type names with a * character. This is done to prevent a single invalid value from
causing an entire and possibly lengthy search to fail.

The following example performs a search for all entries where the surname is smith and indicates return of
only the cn attribute:

Example: Search and obtain the cn attribute

Note: Read the [Code example disclaimer for important legal information.

SearchControls constraints = new SearchControls();
constraints.setSearchScope(SearchControls.SUBTREE_SCOPE);
String attrList[] = {"cn"};
constraints.setReturningAttributes(attrList);
NamingEnumeration results =
ctx.search("o=IBM,c=US", "(sn=smith)", constraints);
while (results.hasMore()) {
SearchResult si =(SearchResult)results.next();
System.out.printin(si.getName());
Attributes attrs = si.getAttributes();
if (attrs == null) {
System.out.printIn(" No attributes");
continue;

}
NamingEnumeration ae = attrs.getA11();
while (ae.hasMoreElements()) {
Attribute attr =(Attribute)ae.next();
String id = attr.getID();
Enumeration vals = attr.getA11();
while (vals.hasMoreElements())
System.out.printin(" "+id + ": " + vals.nextElement());

}
The following example uses the list method to display the names under a base distinguished name (DN):

Example: Display names under a base DN

Note: Read the [Code example disclaimer for important legal information.

String url="1dap://1dapserver:389/0=1BM,c=US";
NamingEnumeration listResults=ctx.list(url);
while (listResults.hasMore()) {
NameClassPair ncp = (NameClassPair) listResults.next();
System.out.printIn(ncp.getName());

b

Add and delete entries in a directory
#* The Java‘™ Naming and Directory Interface (JNDI) allows you to add and delete entries in a directory.
The following example adds a new entry with objectclass, roomnumber, and telephonenumber attributes:

Example: Add an entry in a directory

Note: Read the [Code example disclaimer] for important legal information.

402 iSeries: IBM Developer Kit for Java

BasicAttribute objClasses = new BasicAttribute("objectclass");
objClasses.add("person");
objClasses.add("organizationalPerson");
objClasses.add("inetOrgPerson");

BasicAttributes attrs = new BasicAttributes();
attrs.put(objClasses);

attrs.put("roomnumber", "2000");
attrs.put("telephonenumber", "1-800-use-LDAP");

ctx.createSubcontext(name, attrs);
The following example removes an entry:

Example: Delete an entry in a directory

Note: Read the [Code example disclaimer| for important legal information.

ctx.destroySubcontext (name) ;

Change attributes: JNDI makes it possible to change, create, or remove attributes from a directory
entry. The following example replaces the roomnumber attribute of an entry:

Example: Change an attribute

Note: Read the [Code example disclaimer for important legal information.

ctx.modifyAttributes(name,
DirContext.REPLACE_ATTRIBUTE,
new BasicAttributes("roomnumber", "5000"));

The following example adds a new telephonenumber attribute value to an entry and removes the
roomnumber attribute:

Example: Change an entry from a directory

Note: Read the |Code example disclaimer for important legal information.

ModificationItem[] mods=new ModificationItem[2];

mods[0] = new ModificationItem(DirContext.ADD_ATTRIBUTE,
new BasicAttribute("telephonenumber", "456-7777"));

mods[1] = new ModificationItem(DirContext.REMOVE ATTRIBUTE,
new BasicAttribute("roomnumber));

ctx.modifyAttributes(name, mods);

Rename a directory entry: You can use the rename method to rename a directory entry anywhere
relative to the base context.

The following property affects the rename method:

java.naming.ldap.deleteRDN
This property removes the old RDN when the entry is renamed. The default setting is true.

If this property is set to false, the old RDN is retained as an attribute value of the entry.
The following is an example of calling the rename method:

Example: Rename a directory entry

Note: Read the [Code example disclaimer for important legal information.

String oldname="cn=bill smith";
String newname="cn=bill smith, ou=programmer";
ctx.rename(oldname, newname);

Chapter 7. Optional packages 403

&

Referrals and search references

% Lightweight Directory Access Protocol (LDAP) servers may return either referrals or search references.
A referral can be returned on any operation and indicates that the server does not hold the target entry of
the request. A search reference is only returned on a search operation. The search reference indicates
that the server was able to locate the entry referred to by the baseObiject, but was unable to search all the
entries in the scope at and under the baseObject. A server may return one or more search references.

A context may be configured to handle referrals and search references in one of three ways:

1. It can be set to automatically follow the reference and perform the operation at the referred to server.
The IBM Java™ Naming and Directory Interface (JNDI) LDAP provider automatically recognizes and
avoids referral loops; that is, situations where a referral points back to one already chased earlier in
the chain.

2. It can be set to throw a ReferralException when either a referral or search reference is received. This
is useful if the automated handling is somehow deficient; for example, each server requires a different
binding.

3. It can be set to ignore the reference and continue as if nothing happened. In the case of a search
reference, this would mean that only entries found at the originating server are returned.

The following environment properties are defined by the IBM JNDI LDAP provider to handle referrals and
search references:

java.naming.referral (Context. REFERRAL)
This property is set to either follow, throw, or ignore. If the property is not set, the default is set to
automatically follow referrals.

java.naming.ldap.referral.limit
This property defines the number of referral hops the class library makes when chasing referrals. If
the property value is not specified, the default is 10.

java.naming.ldap.referral.bind
If this property is set to true, the classes, when automatically following referrals, bind to any
referred to server using the same SASL mechanism and credentials as with the originating
context. If set to false, the classes do not bind (that is, anonymous access). The default behavior
is to bind.

The following rules apply when chasing referrals or search references:
« If the reference contains a port, then it is used. Otherwise, the port from the primary connection is used.

* The type of security connection from the primary connection is maintained. That is, if the primary
connection was over SSL, then all chased referrals are also over SSL.

Note: A context may still throw a ReferralException even when set to follow. This can occur if the referral
hop limit is exceeded or if the context cannot connect or bind to any of the referred to servers.

The following example catches and displays a referral and search references on a search request. For

more information on handling referral exceptions, see [ReferralException| 9 by Sun Microsystems, Inc.

Example: Catch and display a referral and search references

Note: Read the [Code example disclaimer for important legal information.

ctx.addToEnvironment (ctx.REFERRAL, "throw");

try {
NamingEnumeration results = ctx.search(url);
while (true) {
try {

404 iSeries: IBM Developer Kit for Java

http://java.sun.com/products/jndi/1.2/javadoc/javax/naming/ReferralException.html

if (!results.hasMore())
break;
SearchResult si =(SearchResult) results.next();
System.out.printin(si.getName());
} catch (ReferralException re)
System.out.printIn("Reference caught");
do {
System.out.printin(re.getReferralInfo());
} while (re.skipReferral());
}

} catch (ReferralException re) {
System.out.printin("Referral caught");
do {
System.out.printin(re.getReferralInfo());
} while (re.skipReferral());
}

LDAP controls

% The Lightweight Directory Access Protocol (LDAP) v3 specification added controls to send and receive
extension information. Controls sent to a server are referred to as request controls, an example of which
would be one which tells the server to sort the results of a search by a specified attribute. What request
controls are supported is completely dependent on the server (that is, a control may work on one type of
server, but fail on another). Controls received from a server are referred to as response controls.

The Java™ Naming and Directory Interface (JNDI) 1.2 specification separates request controls into two
distinct categories, those used when connecting to a server and those used on any other operation. For
more information about request controls, refer to LdapContext in Sun’s JNDI documentation.

The IBM JNDI LDAP provider comes with one predefined control called This control forces
the server to treat search references as normal LDAP entries, allowing them to be viewed and changed
instead of the data to which they refer. The following example demonstrates how to enable this control:

Example: Enable the ManageDsalT control

Note: Read the [Code example disclaimer] for important legal information.

import com.ibm.jndi.ldap.control.ManageDsalT;

Control[] cntl = new Control[1];
cnt1[0] = new ManageDsalT();
ctx.setRequestControls(cntl);

Connect controls are only active when the client is binding to a server.

The following is an example of how to enable connect controls:
LdapContext ctx = new InitiallLdapContext(env, cntl);

The following API is used to retrieve the last received response controls:

Control[] cntl = ctx.getResponseControls();

Refer to Sun’s documentation for details on enabling control factories capable of mapping raw control data
to specific control classes. &

Binary attributes

#* The Lightweight Directory Access Protocol (LDAP) protocol does not provide any distinction between
retrieved binary and textual attributes. Instead, it expects the client application to know how to handle the
data. The IBM JNDI LDAP provider is helpful in that it converts textual attributes and returns them as Java
strings. However, the provider needs to know which attributes are binary and which attributes represent

Chapter 7. Optional packages 405

ldap/manageDsaIT.html

character data. The provider supports three different methods for handling what happens to retrieved
attributes and whether or not they are converted to strings.

When an attribute is retrieved, the provider checks a list of known binary attribute names. The provider is
programmed to recognize the following set of common LDAP binary attributes:

» userPassword

» userCertificate

» cACertificate

» authorityRevocationList
» certificateRevocationList
» deltaRevocationList

» crossCeritificatePair

* x500Uniqueldentifier

* photo

» personalSignature

* audio

* jpegPhoto

» javaSerializedObject

* thumbnailPhoto

* thumbnailLogo

» supportedAlgorithms

» protocollnformation

You may specify their own list of binary attribute names using the following property:

java.naming.ldap.attributes.binary (LDAPCtx.ATTRIBUTES_BINARY)
A space-separated list of user-defined binary attribute names in addition to the default set defined
by the provider.

The following example identifies two additional user-defined binary attributes:

Example: Specify a list of binary attribute names

Note: Read the [Code example disclaimer for important legal information.

ctx.addToEnvironment (LDAPCtx.ATTRIBUTES_BINARY,
"gifPhoto fingerPrint");

The second method for handling binary attributes is recognition of the binary description option supported
by some V3 servers. When ";binary” is appended to the attribute name such as "jpegPhoto;binary”, it is
designated a binary value. The provider recognizes a binary attribute description option when bound as a
V3 user.

Finally, the provider attempts to convert any attribute which is not defined as binary and does not contain
the binary attribute description option. If the conversion fails, the data is returned as binary instead.
However, you should not rely on this working because it is possible to have non UTF-8 data incorrectly

converted. %

Schema

% You can retrieve, view, and update a Lightweight Directory Access Protocol (LDAP) server's schema
structure. Only servers that provide schema information defined by the [Lightweight Directory Access|

Protocol (v3 9 document are supported.

406 iSeries: IBM Developer Kit for Java

http://www.ietf.org/rfc/rfc2251.txt
http://www.ietf.org/rfc/rfc2251.txt

To retrieve a server's schema, use the getSchema method. The returned schema is represented as a
hierarchy, where each subordinate level is a different component of the schema. The IBM Java‘™ Naming
and Directory Interface (JNDI) LDAP provider is capable of parsing the following schema components:

» AttributeTypes, stored under the AttributeDefinition suborder

* Object Classes, stored under the ClassDefinition suborder

» Syntax Descriptions, stored under the SyntaxDefinition suborder

* Matching Rules, stored under the MatchingRule suborder

* |IBM Attribute Types, stored under the IBMAttributeDefinition suborder

The content of the entries, excluding IBMAttributeDefinition, has a one-to-one correspondence with the
schema defined in [Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions| 9 .

IBMAttributeDefinition extends an attribute schema to hold IBM-specific information. It is defined with the
following Backus-Naur form (BNF):

IBMAttributeTypesDescription = "(" whsp
numericoid whsp

["DBNAME" gdescrs] ; at most 2 names (table, column)
["ACCESS-CLASS" whsp IBMAccessClass whsp]
["LENGTH" wlen whsp] ; maximum Tength of attribute

["EQUALITY" [IBMwlen] whsp] ; create index for matching rule
["ORDERING" [IBMwlen] whsp] ; create index for matching rule
["APPROX" [IBMwlen] whsp] ; create index for matching rule
["SUBSTR" [IBMwlen] whsp] ; create index for matching rule
["REVERSE" [IBMwlen] whsp] ; reverse index for substring
thp II) n

IBMAccessClass =
"NORMAL"
"SENSITIVE"

/ 3 this is the default

/
"CRITICAL" /

/

/

"RESTRICTED"
"SYSTEM"
"OBJECT"

IBMwlen = whsp 1Ten
Schema definitions that are returned by the server but are unsupported by this class library are saved and
are not parsed. These entries contain exactly two attributes, one with an objectclass equal to the schema
type name (for example, objectclass=adddef) and another with the list of values. Unsupported schema
definitions may be viewed but not updated.
The following example retrieves the entire schema hierarchy:

Example: Retrieve a schema hierarchy

Note: Read the |Code example disclaimer| for important legal information.

DirContext schemaCtx = ctx.getSchema("");
SearchControls cons = new SearchControls();
cons.setSearchScope(SearchControls.SUBTREE_SCOPE) ;
NamingEnumeration ne = schemaCtx.search("",

"(| (NUMERICOID=*) (objectclass=*))", cons);

The following example retrieves the schema for the cn attribute:

Example: Retrieve the schema for the cn attribute

Note: Read the [Code example disclaimer for important legal information.

Chapter 7. Optional packages 407

http://www.ietf.org/rfc/rfc2252.txt

DirContext schemaCtx = ctx.getSchema("");
Attributes attrs = schemaCtx.getAttributes("AttributeDefinition/cn");

The following example attempts to add a schema definition for a new object class:

Example: Add a schema definition

Note: Read the [Code example disclaimer for important legal information.

DirContext schemaCtx = ctx.getSchema("");
BasicAttributes attrs = new BasicAttributes();
attrs.put("NAME", "javaObject");
attrs.put("NUMERICOID", "1.3.6.1.4.1.42.2.27.4.2.2");
Attribute may = new BasicAttribute("MAY");
may.add("javaClassName");
may.add("javaSerializedObject");

attrs.put(may);

attrs.put("DESC", "Serialized Java object");
attrs.put ("AUXILIARY", "true");

attrs.put("SUP", "top");
schemaCtx.createSubcontext("ClassDefinition/javaObject", attrs);

The com.ibm.jndi.LDAPSchemaCix class has been specially extended to work with schema definitions
from a file. Two public constructors support reading schema information from a disk. One constructor takes
as an argument a single filename and the other an array of filenames. The dumpSchema method saves
the schema definition to a file. The following demonstrates this support:

Example: The dumpSchema method

Note: Read the [Code example disclaimer for important legal information.

LDAPSchemaCtx ctx = new LDAPSchemaCtx("schema.file");
ctx.dumpSchema("schema.sav");

SASL plug-in

#* You can write your own Simple Authentication and Security Layer (SASL) plug-in. The SASL plug-in
must be derived from the abstract base class You must implement the bind method which
then calls the SendBindRequest method to communicate with the server. The following is an example of a
simple bind plug-in:

Example: Bind plug-in

Note: Read the [Code example disclaimer for important legal information.

import java.io.IOException;
import com.ibm.asnl.ASN1Exception;
import com.ibm.ldap.x*;

public class SimpleBind extends LDAPSas1Bind

{
public boolean bind(String dn, String credentials)
throws IOException, ASN1Exception, LDAPException
{

}

return SendBindRequest("SIMPLE", dn, credentials);

}
If the SASL protocol includes server challenges, the SendBindRequest method must be called multiple
times, possibly making use of the getServerCredentials method to retrieve server challenge information.
The following is an example of the CRAM-MD5 SASL plug-in:
Example: CRAM-MD5 SASL plug-in

408 iSeries: IBM Developer Kit for Java

ldap/LDAPSaslBind.html

Note: Read the [Code example disclaimer| for important legal information.

import
import
import
import
import
import

/*

java.net.x*;

java.io.=*;

java.security.*;
com.ibm.util.*;
com.ibm.asnl.ASN1Exception;
com.ibm.ldap.*;

Challenge-Response Authentication Mechanism / MD5 hash.
See RFC 2195 ("IMAP/POP AUTHorize Extension for Simple
Challenge/Response") and draft-ietf-1dapext-authmeth-02
("Authentication Methods for LDAP") for details.

*/
public
{

class CramMD5 extends LDAPSasl1Bind

public boolean bind(String dn, String credentials)

{

/*

*/

throws IOException, ASNlException, LDAPException
String clientCreds;

// Send initial bind request
if (SendBindRequest("CRAM-MD5", dn, null) == true)
return false;

// Generate md5 hash from client's secret and server's
// challenge and send to server
try {
clientCreds = "dn: " + new String(stringUTF(dn)) + " " +
HMAC_MD5(credentials, getServerCredentials());
} catch (NoSuchAlgorithmException nsae) {
throw new IOException(nsae.toString());
}

putCredentials(clientCreds);
return SendBindRequest();

Hashed Message Authentication Code. See RFC 2104
("HMAC: Keyed-Hashing for Message Authentication")
for details.

public static String HMAC _MD5(String secret, String text)

{

throws NoSuchAlgorithmException

MessageDigest md5;
byte[] ipad, opad, key;
int i;

// Initialize

md5 = MessageDigest.getInstance("MD5");
ipad = new byte[64];

opad = new byte[64];

key = secret.getBytes();

// 1f key is larger than block size then hash key
if (key.length > 64)
key = md5.digest (key);

// Perform XOR of ipad and opad with key (padded to 64 bytes).
for (i = 0; i < key.length; ++i) {

ipad[i] = (byte) (0x36 ~ key[i]);

opad[i] = (byte) (0x5c ~ key[i]);

Chapter 7. Optional packages

409

}

while (i < 64) {
ipad[i] = 0x36;
opad[i++] = 0x5c;

}

// Hash ipad XOR result and text
md5.update(ipad);
key = md5.digest(text.getBytes());

// Hash opad XOR result and previous hash
md5.update (opad) ;
key = md5.digest (key);

// Return hex representation of hash (32 bytes)
return Hex.toString(key, false);

{{

Client-side caching

#* Caching provides a way to store recently requested information locally. This improves performance by
retrieving repeated queries locally instead of going back to a remote server for information already
obtained. The down side is that there is no way to determine whether a value in cache has been changed
since its retrieval. The internet draft, |A Simple Caching Scheme for Lightweight Directory Access Protocol
[(LDAP) and X.500 Directories} addresses this issue by defining a "time-to-live” attribute that indicates the
amount of time an entry can reasonably remain in cache before growing stale. The implementation of
client-side caching is this class library fully supports this draft.

The algorithm for caching used in this class library is completely based on a search request. Data is not
replicated locally; thus, it is not possible to query an entry two different ways from cache. For example, a
search for "cn=Joe™” followed by a query for "cn=Joe Smith” does not retrieve the value from cache,
although the results may reside locally as part of the "cn=Joe*" result set. Replication of LDAP data has
many subtleties and is beyond the scope of this caching scheme, especially in Java‘™. It may take more
time in Java to search complicated queries locally than it would to retrieve the results from an optimized
server.

Caching should not be used for data which is likely to change quickly, or when critical information is being
retrieved. Caching is disabled by default in this class library, and when enabled, provides a way to bypass
cache and retrieve results directly from the server. However, LDAP data is typically static and often
information-based, so caching with accurate time-to-live values is a reasonable model for many
applications.

When enabled, caching is used on operations that retrieve data from the server and includes the following
methods:

* getAttributes

* search

* lookup

* lookupLink

o list

* listBindings

» getSchema

» getSchemaClassDefinition

Cache is created when an object of type|LDAPCache] is instantiated. Multiple contexts may share a single
cache, meaning that a value placed in cache by one context may be retrieved from cache by another.

410 iSeries: IBM Developer Kit for Java

ldap/draft-ietf-asid-ldap-cache-01.txt
ldap/draft-ietf-asid-ldap-cache-01.txt
ldap/LDAPCache.html

Caching in the IBM JNDI LDAP provider is also thread-safe. Another feature of LDAPCache is that it can
be serialized to disk and later restored. The size of cache, based on the number of entries retrieved, may
be changed.

A context does not use LDAPCache directly, but it relies on|LDAPCacheContro| to manage cache.
LDAPCacheControl provides an individualized view into a shared cache. LDAPCacheControl makes it
possible to adjust settings on a per request basis such as the time-to-live value, and whether to bypass
cache and retrieve results directly from the server. Although LDAPCacheControl may be used on a per
context basis, it can also be shared among multiple contexts. Any LDAPCacheControl reference in a
context is forwarded to child contexts created by the lookup, lookupLink, and listBindings methods.

The java.naming.control.cache property is defined by the provider as a way to associate a cache control
with a context. This can done be either at context creation or later through the addToEnvironment method.

To enable caching, an object of type LDAPCacheControl must be instantiated and associated with a
context. The LDAPCacheControl constructor requires an LDAPCache object as a argument. The following
is an example of creating a context with caching enabled:

Example: Create a context with caching enabled

Note: Read the [Code example disclaimer for important legal information.

import com.ibm.jndi.LDAPCtx;
import com.ibm.ldap.LDAPCache;
import com.ibm.ldap.LDAPCacheControl;

LDAPCache cache = new LDAPCache();

LDAPCacheControl cacheControl = new LDAPCacheControl(cache);
env.put("java.naming.control.cache", cacheControl);
DirContext ctx = new InitialDirContext(env);

It is possible to adjust settings on a request basis. The settings remain in effect until they are cleared. The
following forces a time-to-live value of 60 seconds:

cacheControl.putTTL(60);
cacheControl.putHonorServerTTL(false);
ctx.search(...);

The following bypasses any values stored in cache and retrieves the results directly from the server:

cacheControl.putReadFlag(false);
ctx.search(...);

Note: Because of the java.naming.batchsize property, items are added to cache until the results are
completely enumerated.

Retrieve the IBMJNDI class version
#* The version of the Lightweight Directory Access Protocol (LDAP) classes can be obtained using the
following static method:

String version = com.ibm.jndi.LDAPCtx.getVersion();

Conformance considerations and additional properties
The following known differences exist between the IBM Java™ Naming and Directory Interface (JNDI)

LDAP provider and Sun’s JNDI Implementor Guidelines for LDAP Service Providers (Draft 0.2)| 3 .
1. Naming federation is not supported.

2. The use of the Secure Socket Layer (SSL) protocol is not supported by the IBM JNDI LDAP provider
on iSeries servers.

3. The IBM LDAP provider should not be used to store serialized Java objects in an LDAP directory.

Chapter 7. Optional packages 411

ldap/LDAPCacheControl.html
http://www.javasoft.com/products/jndi/jndi-ldap-gl.html

4. Passing URL components beyond what is needed does not result in either a ConfigurationException or
an InvalidNameException.

5. The IBM JNDI LDAP provider has its own Simple Authentication and Security Layer (SASL) plug-in
support. It does not support the Java SASL Application Programming Interface (API) because the API
currently exists as a preview only package.

6. The provider supports unsolicited notification events, but not namespace or object change events.

7. The default value for java.naming.referral is follow and not ignore. When this property is set to ignore,
the provider neither automatically adds the ManageDSAIt control to requests, nor does it throw a
PartialResultException when a referral is received.

The following property is also supported:

com.ibm.jndi.ldap.so_timeout
This property defines the number of milliseconds a context block waits for data from a server. The
default timeout is 5 minutes. A timeout of zero is interpreted as an infinite timeout.

The following properties have been deprecated:
* java.naming.ldap.noBind
* java.naming.control.server

b

JSSL

The Java Secure Socket Layer (JSSL) is a set of Java packages that enable secure Internet
communications. It implements a Java version of SSL and Transport Layer Security (TLS) protocols and
includes functionality for data encryption, server authentication, message integrity, and optional client
authentication. Using JSSL, you can develop applications that provide for the secure passage of data
between a client and a server running any application protocol (such as HTTP, Telnet, NNTP, and FTP)
over TCP/IP.

For more information about JSSL, see the [Java Secure Socket Extension (JSSE) 9 by Sun
Microsystems, Inc. %

JavaMail

A The JavaMail'™ API provides a set of abstract classes that models an electronic (e-mail) system. The
API provides general mail functions for reading and sending mail, and requires service providers to
implement the protocols.

Service providers implement specific protocols. For example, Simple Mail Transfer Protocol (SMTP) is a
transport protocol for sending e-mail. Post Office Protocol 3 (POP3) is the standard protocol for receiving
e-mail. Internet Message Access Protocol (IMAP) is an alternative protocol to POPS3.

In addition to service providers, JavaMail requires the JavaBeans Activation Framework (JAF) to handle
mail content that is not plain text. This includes Multipurpose Internet Mail Extensions (MIME), Uniform
Resource Locator (URL) pages, and file attachments.

All the JavaMail components are shipped as part of the IBM Developer Kit for Java. These components
include the following:
* mail.jar
This JAR file contains JavaMail APls, the SMTP service provider, the POP3 service provider, and the
IMAP service provider.

412 iSeries: IBM Developer Kit for Java

http://java.sun.com/products/jsse/

» activation.jar
This JAR file contains the JavaBeans Activation Framework.

Refer to Sun Microsystems, Inc. documentation for more information. @ <&

Java Print Service

#* The Java'™ Print Service API allows printing on all Java platforms. Java 1.4 provides a framework in
which Java runtime environments and third parties can provide stream generator plugins for producing
various formats for printing, such as PDF, Postscript, and Advanced Function Presentation (AFP). These
plugins generate the output formats from bi-dimensional (2D) graphic calls.

Refer to Sun Microsystems PJava Print Service| documentation for more information D g

Chapter 7. Optional packages 413

http://java.sun.com/products/javamail/FAQ.html
http://java.sun.com/j2se/1.4/docs/guide/jps

414 iSeries: IBM Developer Kit for Java

Chapter 8. Debug programs using the IBM Developer Kit for
Java

If you need to debug your Java™ programs, select one of these options:
« [Debug a Java program|

+ [Debug Java and native method programs|

+ [Debug a Java program from another display|

Zr|Debug Java classes loaded through a custom class loadeft®

* |Debug servlets

When you debug a Java program, your Java program is actually running in the Java virtual machine in a
batch immediate (BCI) job. Your source code displays in the interactive display, but the Java program is
not running there. It is running in the other job, which is a serviced job. When your Java program ends, the
serviced job ends, and a message displays, stating that Job being serviced ended.

It is not possible to debug Java programs running with the Just-In-Time (JIT) compiler. If a file does not
have an associated Java program, the default is to run the JIT. This can be disabled in several ways to
allow debugging:

» Specify the property java.compiler=NONE when starting the Java virtual machine.
» Specify OPTION(*DEBUG) on the Run Java (RUNJVA) command.
» Specify INTERPRET(*YES) on the Run Java (RUNJVA) command.

* Use CRTJVAPGM OPTIMIZATION(10) to create an associated Java program before the Java virtual
machine is started.

Note: None of these solutions affect a running Java virtual machine. If a Java virtual machine was not
started with one of these alternatives, it must be stopped and restarted to be debugged.

The interface between the two jobs is established when you specify the *DEBUG option on the Run Java
(RUNJVA) command.

For more information about the system debugger, see the|WebSphere Development Studio: ILE C/C++|

[Programmer’s Guide, SC09-2712| book @‘ and online help information.

Debug a Java program

There are many different ways to debug a Java™ program. You can use the *DEBUG option to view the
source code before running the program. Then, you can set breakpoints, or step over or into a program to
analyze errors while the program is running.

To debug Java programs, follow these steps:

1. Compile the Java program by using the DEBUG option, which is the -g option on the javac tool. See
[Debug Java programs by using the *DEBUG option| for more details.

2. Insert the class file (.class) and source file (.java) in the same directory on your iSeries server.

3. Run the Java program by using the Run Java (RUNJVA) command on the iSeries command line.
Specify OPTION(*DEBUG) on the Run Java (RUNJVA) command.

Note: Only a class may be debugged. If a JAR file name is entered for the CLASS keyword,
OPTION(*DEBUG) is not supported.

4. The Java program source displays.

© Copyright IBM Corp. 1998, 2001 415

5. Press F6 (Add/Clear breakpoint) to set breakpoints, or press F10 (Step) to step through the program.
For more information about setting breakpoints, see [Set breakpoints. For details on stepping, see
through Java programs to debug|

Tips:
1. While using breakpoints and steps, check the logical flow of the Java program, then view and change
variables, as necessary.

2. Using OPTION(*DEBUG) on the RUNJVA command disables the Just-In-Time (JIT) compiler. Files that
do not have an associated Java program run in interpreted mode.

Debug Java programs by using the *DEBUG option

Use the *DEBUG option to view the source code before running the program. The *DEBUG option allows
you to set breakpoints within the code.

To use the *DEBUG option, enter the Run Java™ (RUNJVA) command that is followed by the name of
your classfile and OPTION(*DEBUG) on the command line. For example, the iSeries command line should
look like this:

RUNJVA CLASS(classname) OPTION(*DEBUG)

Note: If you are not authorized to use the Start Service Job (STRSRVJOB) command, OPTION(*DEBUG)
is ignored.

To view the debugging displays, see [Initial debugging displays for Java programs|

Initial debugging displays for Java programs
As you debug your Java'™ programs, follow these example displays for your programs. These displays
show an example program, named Hellod.

* Enter ADDENVVAR ENVVAR(CLASSPATH) VALUE (°/MYDIR’).

» Enter this command: RUNJVA CLASS (HELLOD) OPTION(*DEBUG). Insert the name of your Java program in
place of HELLOD.

» Wait for the Display Module Source display to appear. This is the source for the HELLOD Java program.

DispTay Module Source

Class file name: HELLOD
import java.lang.x;

1

2

3 public class Hellod extends Object
4 |

5 int k;

6 int 1;

7 int m;

8 int n;

9 int o;

10 int p;

11 String myString;

12 Hellod myHellod;

13 int myArray[];

14
15

public Hellod()

More...
Debug . . .
F3=End program F6=Add/Clear breakpoint F10=Step Fl1l=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
F e e ————— +

* Press F14 (Work with Module List).

416 iSeries: IBM Developer Kit for Java

* The Work with Module List display is shown. You can add other classes and programs to debug by
entering option 1 (Add program). Display their source with option 5 (Display module source).

Work with Module List
System: AS400
Type options, press enter.
1=Add program 4=Remove program 5=Display module source
8=Work with module breakpoints
Opt Program/module Library Type
*LIBL *SRVPGM
HELLOD *CLASS Selected
Bottom
Command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve Fl12=Cancel
F22=Display class file name
F e e ————— +

* When adding a class to debug, you may need to enter a package-qualified class name that is longer
than the Program/module input field. To enter a longer name, follow these steps:

Enter Option 1 (Add program).

Leave the Program/module field blank.
Leave the library field as *LIBL.

Enter *CLASS for Type.

Press Enter.

A pop up window is displayed where you have more room to enter the package-qualified class file
name.

ook wN =

Set breakpoints

The running of a program can be controlled with breakpoints. Breakpoints stop a running program at a
specific statement.

To set breakpoints, perform the following steps:

1. Place the cursor on the line of code where you would like to set a breakpoint.
2. Press F6 (Add/Clear breakpoint) to set the breakpoint.

3. Press F12 (Resume) to run the program.

Note: Just before the line of code runs, where the breakpoint is set, the program source is displayed
indicating that the breakpoint was hit.

Display Module Source

Current thread: 00000019 Stopped thread: 00000019
Class file name: Hellod
35 public static void main(String[] args)

36 {
37 int 1,3,h,B[1,D[1[];
38 Hellod A=new Hellod();

Chapter 8. Debug programs using the IBM Developer Kit for Java 417

39 A.myHellod = A;

40 Hellod C[];

41 C = new Hellod[5];

42 for (int counter=0; counter<2; counter++) {

43 C[counter] = new Hellod();

44 C[counter] .myHellod = C[counter];

45 }

46 C[2] = A;

47 C[0] .myString = null;

48 C[0] .myHellod = null;

49 A.methodl();

Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More key
Breakpoint added to line 41.

When you hit a breakpoint, if you want to set breakpoints that are only hit within the current thread, use
the TBREAK command.

For more information about system debugger commands, see the [WebSphere Development Studio: ILE|

[C/C++ Programmer’s Guide, SC09-2712| book @‘ and online help information.

For information about evaluating variables when a program stops running at a breakpoint, see
\variables in Java'™ programg

Step through Java programs to debug

You can step through your program while debugging. You can either step over or step into other functions.
Java™ programs and native methods can use the step function.

When the program source first displays, you can start stepping. The program stops before running the first
statement. Press F10 (Step). Continue to press F10 (Step) to step through the program. Press F22 (Step
into) to step into any function that your program calls. You can also start stepping anytime a breakpoint is
hit. For information about setting breakpoints, see[Set breakpoints]

Display Module Source
Current thread: 00000019 Stopped thread: 00000019
Class file name: Hellod
35 public static void main(String[] args)
36 {
37 int i,3,h,B[1,D[1[];
38 Hellod A=new Hellod();
39 A.myHellod = A;
40 Hellod C[];
41 C = new Hellod[5];
42 for (int counter=0; counter<2; counter++) {
43 C[counter] = new Hellod();
44 C[counter] .myHellod = C[counter];
45 }
46 C[2] = A;
47 C[O0] .myString = null;
48 C[0] .myHellod = null;
49 A.methodl();
Debug . . .
F3=End program F6=Add/Clear breakpoint F10=Step Fll=Display variable

418 iSeries: IBM Developer Kit for Java

|F12=Resume F17=Watch variable F18=Work with watch F24=More key |
|Step completed at line 42 in thread 00000019 |

To stop stepping and continue running the program, press F12 (Resume).

For more information about stepping, see the |WebSphere Development Studio: ILE C/C++ Programmer’s|

[Guide, SC09-2712| book @‘ and online help information.

For information about evaluating variables when a program stops running at a step, see [Evaluate variableg|
in Java programg.

Evaluate variables in Java programs
There are two ways to evaluate a variable when a program stops running at a breakpoint or step:

* Enter EVAL VariableName on the debug command line.
» Put the cursor on the variable name in the displayed source code and press F11 (Display variable).

Use the EVAL command for evaluating variables in a Java‘™ program.

Note: You can also change the contents of a variable by using the EVAL command. For more information
about the variations of the EVAL command, see the [WebSphere Development Studio: ILE C/C++]

[Programmer’s Guide, SC09-2712| book @‘ and online help information.

When looking at variables in a Java program, note the following:

* If you evaluate a variable that is an instance of a Java class, the first line of the display shows what
kind of object it is. It also shows an identifier for the object. Following the first display line, the contents
of each field in the object displays. If the variable is null, the first line of the display indicates that it is
null. Asterisks show the contents of each field (of a null object).

» If you evaluate a variable that is a Java string object, the contents of that string displays. If the string is
null, then null displays.

* You cannot change a variable that is a string.

* If you evaluate a variable that is an array, ’ARR’ displays followed by an identifier for that array. You can
evaluate elements of the array by using a subscript of the variable name. If the array is null, then null
displays.

* You cannot change a variable that is an array. You can change an element of an array if it is not an
array of strings or objects.

» For variables that are arrays, you can specify arrayname.length to see how many elements are in the
array.

» If you want to see the contents of a variable that is a field of a class, you can specify
classvariable.fieldname.

» If you try to evaluate a variable before it has been initialized, one of two things can happen. Either a
Variable not available to display message is shown, or the uninitialized contents of the variable are
shown, which could be a strange value.

Debug Java and native method programs

You can debug Java™ programs and native method programs at the same time. While you are
debugging your source on the interactive display, you can debug a native method that is programmed in

C, which is within a service program (*SRVPGM). £ The *SRVPGM must be compiled and created with
debug data. &

To debug Java programs and native method programs at once:

Chapter 8. Debug programs using the IBM Developer Kit for Java 419

5.

Press F14 (Work with module list) when your Java program source displays to show the Work with
Module List (WRKMODLST) display.

Select option 1 (Add program) to add your service program.

Select option 5 (Display module source) to display the “MODULE that you want to debug and the
source.

Press F6 (Add/Clear breakpoint) to set breakpoints in the service program. For more information about
setting breakpoints, see [Set breakpoints]

Press F12 (Resume) to run the program.

Note: When the breakpoint is hit in your service program, the program stops running, and the source for
the service program displays.

Debug a Java program from another display

While debugging a Java‘™ program, the program source displays whenever it encounters a breakpoint.
This may interfere with the display output of the Java program. To avoid this, debug the Java program
from another display. The output from the Java program displays where the Java command is running and
the program source shows on the other display.

It is also possible to debug an already running Java program in this manner as long as it is not using the

Wust-In-Time (JIT) compiler]

To debug Java from another display, do the following:

1.

The Java program must be held, while you start setting up to debug. You can hold the Java program

by making the program:

* Wait for input from the keyboard.

* Wait for a time interval.

» Loop to test a variable, which requires that you set a value to eventually get the Java program out

of the loop.

Once the Java program is held, go to another display to perform these steps:

a. Enter the Work with Active Jobs (WRKACTJOB) command on the command line.

b. Find the batch immediate (BCI) job where your Java program is running. Look under the
Subsystem/Job listing for QJVACMDSRYV. Look under the User listing for your User ID. Look under
Type for BCI.

c. Enter option 5 to work with that job.

d. At the top of the Work with Job display, the Number, User, and Job are displayed. Enter STRSRVJOB
Number/User/Job.

e. Enter STRDBG CLASS(classname). Classname is the name of the Java class that you want to debug.

It can either be the class name that you specified on the Java command, or it can be another
class.

The source for that class appears in the Display Module Source display.

g. Set breakpoints, by pressing F6 (Add/Clear breakpoint), whenever you would like to stop in that
Java class. Press F14 to add other classes, programs, or service programs to debug. For more
information about setting breakpoints, see [Set breakpoints}

h. Press F12 (Resume) to continue running the program.

Stop holding your original Java program. When the breakpoints are hit, the Display Module Source

display appears on the display where the Start Service Job (STRSRVJOB) command and the Start

Debug (STRDBG) command were entered. When the Java program ends, a Job being serviced

ended message appears.

Enter the End Debug (ENDDBG) command.

Enter the End Service Job (ENDSRVJOB) command.

—

420 iSeries: IBM Developer Kit for Java

Note: Ensure that you disable the Just-In-Time (JIT) when starting the Java virtual machine in the original
job. This can be done with the java.compiler=NONE property. If the JIT runs while debugging, unexpected
results may occur.

See |QIBM_CHILD_JOB_SNDINQMSG environment variable| for more information about this variable that
controls whether the BCI job waits before calling the Java virtual machine.

QIBM_CHILD _JOB_SNDINQMSG environment variable

The QIBM_CHILD_JOB_SNDINQMSG environment variable is the variable that controls whether the batch
immediate (BCI) job, where the Java™ virtual machine runs, waits before starting the Java virtual
machine.

If you set the environment variable to 1 when the Run Java (RUNJVA) command runs, a message is sent
to the user's message queue. The message is sent before the Java virtual machine starts in the BCI job.
The message looks like this:

Spawned (child) process 023173/J0B/QJVACMDSRV is stopped (G C)
To view this message, enter SYSREQ and select option 4.
The BCI job waits until you enter a reply to this message. A reply of (G) starts the Java virtual machine.
You can set breakpoints in a *SRVPGM or *PGM, which the BCI job calls, before replying to the message.

Note: You cannot set breakpoints in a Java class, because at this point, the Java virtual machine has not
been started.

Debug Java classes loaded through a custom class loader

#* To debug a class loaded through a custom class loader, perform the following steps.

1. Set the DEBUGSOURCEPATH environment variable to the directory containing the source code, or in
the case of a package-qualified class, the starting directory of the package names.

For example, if the custom class loader loads classes located under the directory /MYDIR, perform the
following:

ADDENVVAR ENVVAR (DEBUGSOURCEPATH) VALUE('/MYDIR')
2. Add the class to the debug view from the Display Module Source screen.

If the class has already been loaded into the Java™" virtual machine (JVM), just add the *CLASS as
usual and display the source code to debug.

For example, to view the source for pkg1/testi4.class, enter the following:

Opt Program/module Library Type
1 pkgl.testl4 *LIBL *CLASS

If the class has not been loaded into the JVM, perform the same steps to add the *CLASS as
previously indicated. The Java class file not available message then displays. At this point, you may
resume program processing. The JVM automatically stops when any method of the class matching the

given name is entered. The source code for the class is displayed and can be debugged.®%

Debug servlets

% Debugging servlets is a special case of debugging classes loaded through a custom class loader.
Servlets run in the Java™ runtime of the IBM HTTP Server. One way to debug servlets is by following
the instructions for [classes loaded through a custom class loader|

Another way to debug a servlet is the following:

Chapter 8. Debug programs using the IBM Developer Kit for Java 421

1. Use the javac -gcommand in the Qshell Interpreter to compile your servlet.
2. Copy the source code (.java file) and compiled code (.class file) to /QIBM/ProdData/Java400.

3. Run the Create Java Program (CRTJVAPGM) command against the .class file using optimization level
10, OPTIMIZE(10).

4. Start the server.
5. Run the Start Service Job (STRSRVJOB) command on the job where the servlet runs.

6. Enter STRDBG CLASS(myServlet), where myServlet is the name of your servlet. The source should
be displayed.

7. Set a breakpoint in the servlet and press F12.
8. Run your servlet. When the servlet hits the breakpoint, you can continue debugging.

Java Platform Debugger Architecture

% The Java™ Platform Debugger Architecture (JPDA) consists of three parts:
« |[Java Virtual Machine Debug Interface (JVMDI)|

+ |Java Debug Wire Protocol (JDWP)|

Java Debug Interface (JDI)|

All three parts of the JPDA enable any front end of a debugger that uses the JDWP to perform debugging
operations. The debugger front end can either run remotely or run as an iSeries application.

Java Virtual Machine Debug Interface

In Java™ 2 SDK (J2SDK), Standard Edition, version 1.2 or higher, the Java Virtual Machine Debug
Interface (JVMDI) is part of Sun Microsystems, Inc. platform application program interfaces (APIs). JVMDI
allows anyone to write a Java debugger for an iSeries server in iSeries C code. The debugger does not
need to know the internal structure of the Java virtual machine since it uses JVMDI interfaces. JVMDI is
the lowest-level interface in JPDA that is closest to the Java virtual machine.

The debugger runs in the same multi-thread capable job as the Java virtual machine. The debugger uses
Java Native Interface (JNI) Invocation APlIs to create a Java virtual machine. It then places a hook at the
beginning of a user class main method and calls the main method. When the main method begins, the
hook is hit and debugging begins. Typical debug facilities are available, such as setting breakpoints,
stepping, displaying variables, and changing variables.

The debugger handles communication between the job where the Java virtual machine is running and a
job handling the user interface. This user interface is either on your iSeries server or another system.

A service program, called QJVAJVMDI that resides in the QSYS library, supports the JVMDI functions.

Java Debug Wire Protocol

The Java Debug Wire Protocol (JDWP) is a defined communication protocol between a debugger process
and the JVMDI. JDWP can be used from either a remote system or over a local socket. It is one layer
removed from the JVMDI, but is a more complex interface.

Start JDWP in QShell
To start JDWP and run the Java class SomeClass, enter the following command in QShell:

java -interpret -Xrunjdwp:transport=dt_socket,
address=8000,server=y,suspend=n SomeClass

In this example, JDWP listens for connections from remote debuggers on TCP/IP port 8000, but you can

use any port number you want; dt_socket is the name of the SRVPGM that handles the JDWP transport
and does not change.

422 iSeries: IBM Developer Kit for Java

For additional options that you can use with -Xrunjdwp, see|Sun VM Invocation Options| 9 by Sun
Microsystems, Inc.

Start JDWP from a CL command line
To use the -Xrun option with the CL command, the 0s400.xrun.option property can be defined to be the

same string that you would have used on the QShell command line. To start JDWP and run the Java class
SomeClass, enter the following command:
JAVA CLASS(SomeClass) INTERPRET(*YES)

PROP((0s400.xrun.option 'jdwp:transport=dt_socket,address=8000,
server=y,suspend=n"'))

Many JVMDI functions do not work at optimization levels 10 and 20. Therefore, is recommended that your
applications run with the interpreter since all functions work with it.

Java Debug Interface

Java Debug Interface (JDI) is a high-level Java language interface provided for tool development. JDI
hides the complexity of JVMDI and JDWP behind some Java class definitions. JDI is included in the rt.jar
file, so the front end of the debugger exists on any platform that has Java installed.

If you want to write debuggers for Java, you should use JDI because it is the simplest interface and your
code is platform-independent.

For more information on JDPA, see|Java Platform Debugger Architecture Overview| 9 by Sun
Microsystems, Inc. 4%

Find memory leaks

% ANZJVM finds object leaks by taking two copies of the garbage collection heap that are separated by a
specified time interval. To find object leaks, you would look at the number of instances of each class in the
heap. Classes that have an unusually high number of instances should be noted as possibly leaking.

You should also note the change in number of instances of each class between the two copies of the
garbage collection heap. If the number of instances of a class continually increases, that class should be
noted as possibly leaking. The longer the time interval between the two copies, the more certainty you
have that objects are actually leaking. By running ANZJVM a series of times with a larger time interval,

you should be able to diagnose with a high degree of certainty what is leaking. %

Chapter 8. Debug programs using the IBM Developer Kit for Java 423

http://java.sun.com/products/jpda/doc/conninv.html#HDRINVOCATION
http://java.sun.com/j2se/1.3/docs/guide/jpda/architecture.html

424 iSeries: IBM Developer Kit for Java

Chapter 9. Troubleshooting the IBM Developer Kit for Java

If you encounter problems while using the IBM Developer Kit for Java'™, take any of these steps to

determine the source of the problem.

+ % You many notice some when using the IBM Developer Kit for Java. This topic identifies
any known limitations, restrictions, or unique behaviors.%

[Find the job log| from the job that ran the Java command. Also, look for the job log from the batch
immediate (BCI) job where the Java program ran to analyze the cause of failure.

[Collect useful data for an authorized program analysis report (APAR),.
* Apply program-temporary fixes (PTFs).
* Know how to if you detect a potential defect in the IBM Developer Kit for Java.

Limitations
When using the IBM Developer Kit for Java‘™, you may notice that there are some limitations in how it is
used. This list identifies any known limitations, restrictions, or unique behaviors.

* When a class is loaded and its superclasses are not found, the error indicates that the original class
was not found. For example, if class B extends class A, and class A is not found when loading class B,
the error indicates that class B was not found, even though it is actually class A that was not found.
When you see an error that indicates that a class was not found, check to make sure that the class and
all of its superclasses are in the CLASSPATH. This also applies to interfaces that are implemented by
the class being loaded.

+ # The garbage collection heap is limited to 132 GB.

+ The number of constructed objects is limited to 132 million. €%

* The java.net backlog parameter on an iSeries server may behave differently than on other platforms.
For example:

— Listen backlogs 0, 1
- Listen(0) means to allow one pending connection; it does not disable a socket.
- Listen(1) means to allow one pending comment, and means the same as Listen(0).
— Listen backlogs > 1
- This allows many pending requests to remain on the listen queue. If a new connection request
arrives and the queue is at the limit, then it deletes one of the pending requests.
« # You can only use the Java virtual machine, regardless of the JDK version you are using, in
multi-thread capable (that is, thread-safe) environments. The iSeries server is thread-safe, but some file
systems are not. The integrated file system topic has a list of nonthread-safe file systems.

Find job logs for Java problem analysis

Use the job log from the job that ran the Java‘™ command, and the batch immediate (BCI) job log where
the Java program ran, to analyze causes of a Java failure. They both may contain important error
information.

There are two ways to find the job log for the BCI job. You can find the name of the BCI job that is logged
in the job log of the job that ran the Java command. Then, use that job name to find the job log for the
BCI job.

You can also find the job log for the BCI job by following these steps:
1. Enter the Work with Submitted Jobs (WRKSBMJOB) command on the iSeries command line.
2. Go to the bottom of the list.

© Copyright IBM Corp. 1998, 2001 425

N O s~

Look for the last job in the list, called QJVACMDSRV.

Enter option 8 (Work with Spooled Files) for that job.

A file called QPJOBLOG displays.

Press F11 to see view 2 of the spooled files.

Verify that the date and time match the date and time when the failure occurred.

Note: If the date and time do not match the date and time when you signed off, continue looking
through the list of submitted jobs. Try to find a QJVACMDSRY job log with a date and time that
matches when you signed off.

If you are unable to find a job log for the BCI job, one may not have been produced. This happens if you
set the ENDSEP value for the QDFTJOBD job description too high or the LOG value for the QDFTJOBD
job description specifies *“NOLIST. Check these values, and change them so that a job log is produced for
the BCI job.

To produce a job log for the job that ran the Run Java (RUNJVA) command, perform the following steps:

N O~ ~

Enter SIGNOFF *LIST.

Then, sign back on.

Enter the Work with Spooled Files (WRKSPLF) command on the iSeries command line.

Go to the bottom of the list.

Find a file named QPJOBLOG.

Press F11.

Verify that the date and time match the date and time when you entered the signoff command.

Note: If the date and time do not match the date and time when you signed off, continue looking
through the list of submitted jobs. Try to find a QJVACMDSRY job log with a date and time that
matches when you signed off.

Collect data for Java problem analysis

To collect data for an authorized program analysis report (APAR), follow these steps:

1.
2.
3.

Include a complete description of the problem.
Save the Java™ class file that caused the problem while running.

You can use the SAV command to save objects from the integrated file system. You may need to save
other class files that this program must run. You may also want to save and send in an entire directory
for IBM to use when trying to reproduce the problem, if necessary. This is an example of how to save
an entire directory.
Example: Save a directory
Note: Read the [Code example disclaimer| for important legal information.

SAV DEV('/QSYS.LIB/TAPO1.DEVD') OBJ(('/mydir'))

If possible, save the source files for any Java classes that are involved in the problem. This is helpful
to IBM when reproducing and analyzing the problem.

Save any service programs that contain native methods that are required to run the program.
Save any data files that are required to run the Java program.

Add a complete description of how to reproduce the problem. This should include:

* The value of the CLASSPATH environment variable.

* A description of the Java command that was run.

* A description of how to respond to any input that is required by the program.

Include any vertical licensed internal code (VLIC) logs that have occurred near the time of failure.

426 iSeries: IBM Developer Kit for Java

8. Add the job log from both the interactive job and the BCI job where the Java virtual machine was
running.

Get support for the IBM Developer Kit for Java

Support services for the IBM Developer Kit for Java‘™ are provided under the usual terms and conditions
for iSeries software products. Support services include program services, voice support, and consulting

services. Use the online information that is provided at |[BM iSeries Home Page] 9 under the topic
"Support” for more information. Use IBM Support Services for 5722-JV1 (IBM Developer Kit for Java). Or,
contact your local IBM representative.

You may, at IBM direction, be required to obtain a more current level of the IBM Developer Kit for Java to
receive Continued Program Services. For more information, see [Support for multiple Java Development|

Kits (JDKs)|

Resolving defects of the IBM Developer Kit for Java program are supported under program services or
voice support. Resolving application programming or debugging issues are supported under consulting
services.

The IBM Developer Kit for Java application program interface (API) calls are supported under consulting
services, unless:

1. ltis clearly a Java API defect as demonstrated by re-creation in a relatively simple program.
2. ltis a question that asks for documentation clarification,
3. ltis a question about the location of samples or documentation.

All programming assistance is supported under consulting services. This includes the program samples
that are provided in the IBM Developer Kit for Java licensed program (LP) product. Additional samples

may be available on the Internet at{IBM iSeries Home Page] 9 on an unsupported basis.

The IBM Developer Kit for Java LP provides information about solving problems. If you believe that there
is a potential defect in the IBM Developer Kit for Java API, a simple program that demonstrates the error is
required.

Chapter 9. Troubleshooting the IBM Developer Kit for Java 427

http://www.ibm.com/eserver/iseries/
http://www.ibm.com/eserver/iseries/

428 iSeries: IBM Developer Kit for Java

Chapter 10. Code examples for the IBM Developer Kit for Java

The following is a list of code examples for the IBM Developer Kit for Java™.

Note: Read the [Code example disclaimer| for important legal information.

CL commands

» PANZIVMK

CHGJVAPGM
RTJVAPGM

LTJVAPGM

MPJVM
DSPJVAPGM
UNJVA

Y}

Internationalization
» |DateFormat

* |[INumberFormat

+ [ResourceBundle]

i

JDBC
« #[Access property|
%

[CallableStatement interface]

#|Change values with a statement through another statement’s cursor|
+ |Clob

[Create a UDBDataSource and bind it with JNDI|

+ [Create a UDBDataSource, and obtain a user ID and password

+ [Create a UDBDataSourceBind and set DataSource propertieg@
[DatabaseMetaData interfacel

#¥(Create a UDBDataSource and bind it with JNDI|

» |Datalin

Distinct typeg

[Embed SQL Statements|

#[End a transaction|

[Invalid user ID and password|

JDBC

[Multiple connections that work on a transaction|

» [Obtain an initial context before binding UDBDataSource]
« [ParameterMetaData|

I[

+ [Remove values from a table through another statement’s cursofé
[ResultSet interface]

#|ResultSet sensitivity|
+ [Sensitive and insensitive ResultSets]

© Copyright IBM Corp. 1998, 2001 429

« [Set up connection pooling with UDBDataSource and UDBConnectionPoolDataSourcel

. X

#*|Suspend and resume a transaction|

+ [Suspended ResultSetd

[Test the performance of connection pooling|

[Test the performance of two DataSources|

Update BLOBs

Update CLOBs

« [Use a connection with multiple transactions

» [Use CLOBs

[Use DB2CachedRowSet properties and DataSources|

[Use DB2CachedRowSet properties and JDBC URLS

[Use JTA to handle a transaction|

[Use metadata ResultSets that have more than one column|

+ [Use native JDBC and Toolbox JDBC concurrently|

[Use PreparedStatement to obtain a ResultSet|

« [Use the execute(Connection) method to use an existing database connection|
« [Use the execute(int) method to batch database requests together|

* |Use the populate method
» |Use the setConnection(Connection) method to use an existing database connection|

[Use the Statement object’s executeUpdate method

Java Authentication and Authorization Service
- [JAAS HelloWorld example]
 [JAAS SampleThreadSubjectLogin example|

#» Java Generic Security Service

+ [Sample non-JAAS client program|

+ [Sample non-JAAS server program|

« [Sample JAAS-enabled client program|

+ [Sample JAAS-enabled server program| <%

#* Java Naming and Directory Interface
+ |Add an entry in a directory|

+ [Delete an entry in a directory|

+ [Add an entry in a directory|

+ [Rename a directory entry|

 [Specify a list of binary attribute namesf&

#* Java Secure Sockets Extension

+ [SSL client and server using an SSLContext object}&

#» Java with other programming languages
« [Call a CL program|

430 iSeries: IBM Developer Kit for Java

jaaswrld.htm
sampthrd.htm
rzahhjsseexmpls.htm

[Call a CL command

[Call another Java program|
[Call Java from CJ

+ [Call Java from RPG|

« |Input and output streams|

* |Invocation API

[0S/400 PASE native method for Javal 4%
* [Sockets

% Optional packages
- [JCER

Performance tools
+ [Java Performance Data Converter|

#* Run a host without a GUI
* [Set up Remote AWTX

sQLJ
Embed SQL Statements in your Java application|

Secure sockets layer

+ [Socket factories|

« [Server socket factories|

+ [Secure sockets layer

+ [Secure sockets layer server

Chapter 10. Code examples for the IBM Developer Kit for Java

431

432 iSeries: IBM Developer Kit for Java

Chapter 11. IBM Developer Kit for Java reference

% The following are references for the Developer Kit for Java™:
Javadoc

« [iSeries-specific JAAS Javadod

+ [JAAS API Specification|

Java 2 Platform, Standard Edition, version 1.3.1

+ [Java 2 Platform, Standard Edition, v1.3.2 API Specification|
« [Abstract Window Toolkit (AWT)|

.

[Input Method Framework

[Internationalization|

[JNI - Java Native Interface]

« [Java Remote Method Invocation (RMI)

[RMI - Remote Method Invocation|

.
[Java 2 SDK Tools}¥

Code disclaimer information

This document contains programming examples.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs.

All programs contained herein are provided to you "AS IS” without any warranties of any kind. The implied

warranties of non-infringement, merchantability and fitness for a particular purpose are expressly
disclaimed.

© Copyright IBM Corp. 1998, 2001 433

ptfdocs/index.html
apidocs/index.html
javaapi/api/index.html
javaapi/guide/awt/index.html
javaapi/guide/idl/index.html
javaapi/guide/intl/index.html
javaapi/guide/intl/index.html
javaapi/guide/jdbc/index.html
javaapi/guide/jni/index.html
javaapi/guide/rmi/index.html
javaapi/guide/rmi/index.html
javaapi/guide/security/index.html
javaapi/tooldocs/tools.html

434 iSeries: IBM Developer Kit for Java

Printed in U.S.A.

	Contents
	Chapter 1. IBM Developer Kit for Java
	What's new in V5R2 for IBM Developer Kit for Java
	Changes to a specific version
	What's new as of 26 September 2002
	What's new as of 30 August 2002
	How to see what's new or changed
	What's new in V5R2 for Java Development Kit (JDK) 1.1.8
	What's new in V5R2 for Java 2 Software Development Kit (J2SDK), Standard Edition, version 1.4

	Print this topic
	Getting started with the IBM Developer Kit for Java
	Install the IBM Developer Kit for Java
	Install a licensed program with the Restore Licensed Program command
	Support for multiple Java Development Kits
	Install extensions for the IBM Developer Kit for Java
	Download and install Java packages on an iSeries server

	Run your first Hello World Java program
	Map a network drive to your iSeries server
	Create a directory on your iSeries server
	Create a directory using the command entry line
	Create a directory using iSeries Navigator

	Create, compile, and run a HelloWorld Java program
	Create and edit Java source files
	With iSeries Access for Windows
	On a workstation
	With EDTF
	With Source Entry Utility

	Work with Java applications using iSeries Navigator

	Customize your iSeries server for the IBM Developer Kit for Java
	Java classpath
	Java system properties
	SystemDefault.properties file
	Java system properties for Java Development Kit (JDK) 1.1.8
	os400.stdio.convert and os400.child.stdio.convert system property values
	os400.stdin, os400.stdout, and os400.stderr system property values
	os400.verify.checks.disable numeric values
	Java system properties for Java 2 Software Development Kit (J2SDK), Standard Edition

	Create an internationalized Java program
	Time zone environment variable on your iSeries server
	Configure time zone

	Java locales
	Example: Internationalization of dates using the java.util.DateFormat class
	Example: Internationalization of numeric display using the java.util.NumberFormat class
	Example: Internationalization of locale-specific data using the java.util.ResourceBundle class

	Java character encodings
	File.encoding values and iSeries CCSID
	Default file.encoding values

	Release-to-release compatibility
	Database access with the IBM Developer Kit for Java
	Access your iSeries database with the IBM Developer Kit for Java JDBC driver
	Get started with JDBC
	Types of JDBC drivers
	Type 1
	Type 2
	Type 3
	Type 4

	JDBC requirements
	Core JDBC
	JDBC 2.0 optional package
	Java Transaction API
	JDBC compliance

	JDBC tutorial
	Run the example program
	References

	Example: JDBC
	Use JNDI for the examples

	Connections
	DriverManager
	Properties
	URL properties

	Example: Use native JDBC and Toolbox JDBC concurrently
	Example: Access property
	Example: Invalid user ID and password
	Connection properties
	Example: Create a UDBDataSource and bind it with JNDI
	Example: Create a UDBDataSourceBind and set DataSource properties
	Example: Obtain an initial context before binding UDBDataSource
	Example: Create a UDBDataSource, and obtain a user ID and password
	Use DataSources with UDBDataSource
	UDBDataSourceBind
	UDBDataSourceUse

	DataSource properties
	Other DataSource implementations
	DB2DataSource
	DB2StdDataSource

	DatabaseMetaData interface for IBM Developer Kit for Java
	Create a DatabaseMetaData object
	Retrieve general information
	Determine feature support
	Data source limits
	SQL objects and their attributes
	Transaction support
	Changes in JDBC 3.0
	Example: DatabaseMetaData interface for IBM Developer Kit for Java
	Example: Use metadata ResultSets that have more than one column

	Exceptions
	SQLException
	DB2Exception.java
	DB2DBException.java
	DB2JDBCException.java

	Example: SQLException
	SQLWarning
	DataTruncation
	Report set() and update() methods
	ResultSet.update() methods throw DataTruncation exceptions
	Data truncation property for Connection and DataSource
	Data truncation property only affects character and binary-based data types
	Data truncation property is only applied to parameters
	Native JDBC driver throws exceptions for insignificant data truncation

	Silent truncation

	Transactions
	Auto-commit mode
	Transaction isolation levels
	Database anomalies
	JDBC transaction isolation levels
	Considerations
	Transaction isolation levels between the JDBC specification and the iSeries platform

	Savepoints
	Set and roll back to savepoints
	Release a savepoint

	Distributed transactions
	Transactions with JTA
	Use UDBXADataSource support for pooling and distributed transactions
	XADataSource properties
	ResultSets and transactions
	Simple transaction end
	Suspend and resume
	Effecting suspended ResultSets

	Multiplexing
	Two-phase commit and transaction logging
	Example: Use JTA to handle a transaction
	Example: Multiple connections that work on a transaction
	Example: Use a connection with multiple transactions
	Example: Suspended ResultSets
	Example: End a transaction
	Example: Suspend and resume a transaction

	Statement types
	Statements
	Create statements
	Return results from SQL queries
	The cancel method

	Example: Use the Statement object's executeUpdate method
	PreparedStatements
	Create PreparedStatements
	Specify ResultSet characteristics and auto-generated key support
	Handle parameters
	ParameterMetaData support

	Process PreparedStatements
	Return results from SQL queries
	Return update counts for SQL statements
	Process SQL statements where the expected return is unknown

	Example: Use PreparedStatement to obtain a ResultSet
	Example: ParameterMetaData
	CallableStatements
	Create CallableStatements
	Specify ResultSet characteristics and auto-generated key support
	Handle parameters
	Access stored procedure parameters by name

	Process CallableStatements
	Return results for stored procedures
	Access ResultSets concurrently
	Return update counts for stored procedures
	Process stored procedures where the expected return is unknown
	Process stored procedures that have a return value

	Example: CallableStatement interface for IBM Developer Kit for Java
	Example: Create a procedure with multiple ResultSets
	Example: Create a procedure with input and output parameters
	Example: Create a procedure with return values

	ResultSets
	ResultSet characteristics
	ResultSet types
	Concurrency
	Holdability
	Specify ResultSet characteristics

	Example: Sensitive and insensitive ResultSets
	Example: ResultSet sensitivity
	Cursor movement
	Retrieve ResultSet data
	ResultSetMetaData support

	Change ResultSets
	Update rows
	Delete rows
	Insert rows
	Support for positioned updates

	Example: Remove values from a table through another statement's cursor
	Example: Change values with a statement through another statement's cursor
	Create ResultSets
	Close ResultSets

	Example: ResultSet interface for IBM Developer Kit for Java
	Example: ResultSetMetaData interface for IBM Developer Kit for Java

	JDBC object pooling
	Use DataSource support for object pooling
	Set up connection pooling
	Pooling and non-pooling applications

	Example: Set up connection pooling with UDBDataSource and UDBConnectionPoolDataSource
	Example: Test the performance of connection pooling
	ConnectionPoolDataSource properties
	DataSource-based statement pooling
	Example: Test the performance of two DataSources
	Build your own connection pooling
	Build your own statement pooling
	Considerations

	Batch updates
	Statement batch update
	PreparedStatement batch update
	BatchUpdateException
	Blocked insert support

	Advanced data types
	Distinct types
	Large Objects
	Binary Large Objects
	Character Large Objects
	Datalinks

	Unsupported SQL3 data types
	Write code that uses BLOBs
	Read BLOBs from the database and insert BLOBs into the database
	Work with the Blob object API
	Use JDBC 3.0 support to update BLOBs

	Example: BLOB
	Example: Update BLOBs
	Example: Use BLOBs
	Write code that uses CLOBs
	Read CLOBs from the database and insert CLOBs into the database
	Work with the Clob object API
	Use JDBC 3.0 support to update CLOBs

	Example: CLOB
	Example: Update CLOBs
	Example: Use CLOBs
	Write code that uses Datalinks
	Example: Datalink
	Example: Distinct types

	RowSets
	RowSet characteristics
	RowSets are ResultSets
	RowSets can be disconnected from the database
	RowSets are JavaBeans components
	RowSets are serializable

	DB2CachedRowSet
	Use DB2CachedRowSet
	Create and populate a DB2CachedRowSet
	Access DB2CachedRowSet data and cursor manipulation
	Access DB2CachedRowSet data
	Cursor manipulation

	Change DB2CachedRowSet data and reflect changes back to the data source
	Delete, insert, and update rows in a DB2CachedRowSet
	Reflect changes to a DB2CachedRowSet back to the underlying database

	Other DB2CachedRowSet features
	Obtain collections from DB2CachedRowSets
	Create copies of RowSets
	Create shares for RowSets

	DB2JdbcRowSet
	Use DB2JdbcRowSet
	Create JDBCRowSets
	Access data and cursor movement
	Change data and reflecting changes to the underlying database

	DB2JdbcRowSet events

	Performance tips for the IBM Developer Kit for Java JDBC driver

	Access databases using IBM Developer Kit for Java DB2 SQLJ support
	SQLJ tools
	DB2 SQLJ restrictions
	Structured Query Language for Java profiles
	The structured query language for Java (SQLJ) translator (sqlj)
	Precompile SQL statements in a profile using the DB2 SQLJ profile customizer, db2profc
	Print the contents of DB2 SQLJ profiles (db2profp and profp)
	SQLJ profile auditor installer (profdb)
	Convert a serialized profile instance to Java class format using the SQLJ profile conversion tool (profconv)
	Embed SQL statements in your Java application
	Host variables in Structured Query Language for Java
	Example: Embed SQL Statements in your Java application

	Compile and run SQLJ programs

	Java SQL routines
	Use Java SQL routines
	Java stored procedures
	JAVA parameter style
	DB2GENERAL parameter style
	Restrictions on Java stored procedures

	Java user-defined scalar functions
	Parameter style Java
	Parameter style DB2GENERAL
	Restrictions on Java user-defined functions
	Java user-defined table functions
	Example: Java table function

	SQLJ procedures that manipulate JAR files
	SQLJ.INSTALL_JAR
	Authorization
	SQL syntax
	Description
	Usage notes
	Example

	SQLJ.REMOVE_JAR
	Authorization
	Syntax
	Description
	Example

	SQLJ.REPLACE_JAR
	Authorization
	Syntax
	Description
	Usage notes
	Example

	SQLJ.UPDATEJARINFO
	Authorization
	Syntax
	Description
	Example

	SQLJ.RECOVERJAR
	Authorization
	Syntax
	Description
	Example

	Parameter passing conventions for Java stored procedures and UDFs

	Java with other programming languages
	Use the Java Native Interface for native methods
	Java Invocation API
	Invocation API functions
	Support for multiple Java virtual machines
	Example: Java Invocation API

	Java native methods and threads considerations
	Native methods and the Java Native Interface
	Strings in native methods
	Literal strings in native methods
	Convert dynamic strings to and from EBCDIC, Unicode, and UTF-8

	Examples: Use the Java Native Interface for native methods

	IBM OS/400 PASE native methods for Java
	Java OS/400 PASE environment variables
	Examples: Environment variables for the IBM OS/400 PASE example
	Using QIBM_JAVA_PASE_CHILD_STARTUP

	Managing native method libraries
	OS/400 PASE and AIX Java Library Naming Conventions
	Java library search order

	Java OS/400 PASE error codes
	Startup Errors
	Runtime errors

	Example: IBM OS/400 PASE native method for Java
	Run the OS/400 PASE native method for Java example

	Comparison of Integrated Language Environment and Java
	Use java.lang.Runtime.exec()
	Example: Call another Java program with java.lang.Runtime.exec()
	Example: Call a CL program with java.lang.Runtime.exec()
	Example: Call a CL command with java.lang.Runtime.exec()

	Interprocess communications
	Use sockets for interprocess communication
	Example: Use sockets for interprocess communication

	Use input and output streams for interprocess communication
	Example: Use input and output streams for interprocess communication

	Example: Call Java from C
	Example: Call Java from RPG

	Java platform
	Java applets and applications
	Java virtual machine
	Java runtime environment
	Java interpreter

	Java JAR and class files
	Java threads
	Sun Microsystems, Inc. Java Development Kit
	Java packages
	Java tools

	Advanced topics
	Java classes, packages, and directories
	Files in the integrated file system
	Java file authorities in the integrated file system
	Run Java in a batch job

	Run your Java application on a host that does not have a graphical user interface
	IBM Developer Kit for Java Remote Abstract Window Toolkit
	Set up the Remote Abstract Window Toolkit for Java on a remote display
	Make the Remote Abstract Window Toolkit for Java class files accessible to the remote display
	Add RAWTGui.zip or RAWTGui.jar to the CLASSPATH of the remote display
	Start the Remote Abstract Window Toolkit for Java on a remote display
	Run a Java program using Remote Abstract Window Toolkit
	Run a Java program using Remote Abstract Window Toolkit with Netscape

	Print with the Remote Abstract Window Toolkit
	Remote Abstract Window Toolkit properties
	Remote Abstract Window Toolkit SecurityManager restrictions
	Example: Set up the Remote Abstract Window Toolkit for Java(TM) on a Windows remote display

	Class Broker for Java
	Set up the Class Broker for Java on a remote display
	Install Class Broker for Java on an iSeries server
	Install Class Broker for Java on Windows or UNIX
	Package content of cbj_1.1.jar

	Native Abstract Windowing Toolkit
	Installing NAWT
	Install OS/400 PASE
	Install NAWT PTFs
	Install iSeries Tools for Developers PRPQ
	Create a VNC password file

	Configure Java system properties
	Start the VNC server
	Set environment variables
	Verify installation procedure
	Installing older versions of iSeries Tools for Developers
	Determine whether you have the enhanced PRPQ
	Install VNC

	Tips on using VNC
	Start a VNC display server from a CL program
	End a VNC display server

	Chapter 2. Java security
	Java security model
	Java Cryptography Extension
	Java Secure Socket Extension
	Using SSL (JSSE, version 1.0.8)
	Prepare iSeries server for secure sockets layer support
	Cryptographic Access Providers
	Change your Java code to use socket factories
	Examples: Change your Java code to use server socket factories
	Examples: Change your Java code to use client socket factories
	Change your Java code to use secure sockets layer
	Examples: Change your Java server to use secure sockets layer
	Examples: Change your Java client to use secure sockets layer
	Select a digital certificate to use
	Use the digital certificate when you run your Java application
	Digital certificates and the -os400.certificateLabel property
	Digital certificate containers and the -os400.certificateContainer property

	Using Java Secure Socket Extension, version 1.4
	Configuring your iSeries server to support JSSE
	Software requirements
	Changing JSSE providers
	Security managers

	JSSE providers
	Pure Java JSSE provider
	Native iSeries JSSE provider
	Changing the default JSSE provider

	JSSE security properties
	JSSE Java system properties
	Properties that work for both providers
	Properties that work for the iSeries native JSSE provider only
	Additional information

	Using the native iSeries JSSE provider
	Protocol values for the SSLContext.getInstance method
	Native iSeries KeyStore implementation
	Restrictions when using the native iSeries provider

	Examples: IBM Java Secure Sockets Extension
	Example: SSL client using an SSLContext object
	Example: SSL server using an SSLContext object

	Chapter 3. Java Authentication and Authorization Service
	Prepare and configure an iSeries server for Java Authentication and Authorization Service
	Java Authentication and Authorization Service samples

	Chapter 4. IBM Java Generic Security Service (JGSS)
	JGSS concepts
	Principals and credentials
	Context establishment
	Message protection and exchange
	Resource cleanup and release
	Security mechanisms

	Configuring your iSeries server to use IBM JGSS
	Configuring your iSeries server to use JGSS with J2SDK, version 1.3
	Software requirements
	Configuring your server to use JGSS
	Changing JGSS providers
	Security managers

	Configuring JGSS to use the native iSeries JGSS provider
	Software requirements
	Specifying the native iSeries JGSS provider

	Configuring your iSeries server to use JGSS with J2SDK, version 1.4
	Changing JGSS providers
	Security managers

	JGSS providers
	Changing the JGSS provider

	Using a security manager
	JVM permissions
	JAAS permission checks
	DelegationPermission check
	ServicePermission check

	Running IBM JGSS applications
	Obtaining Kerberos credentials and creating secret keys
	The Kinit and Ktab tools
	Using the pure Java JGSS provider
	Using the native iSeries JGSS provider

	JAAS Kerberos login interface
	JAAS and JVM permissions
	JAAS configuration file options
	Principal name option
	Prompting for the principal name and password
	Credential type option

	Configuration and policy files
	Kerberos configuration file
	JAAS configuration file
	JAAS policy file
	Java master security properties file
	Credentials cache and server key table

	Developing IBM JGSS applications
	IBM JGSS application programming steps
	JGSS transport tokens
	Sequence of operations in a JGSS application

	Creating a GSSManager
	Creating a GSSName
	Examples: Using GSSName

	Creating a GSSCredential
	Creating GSSContext
	Requesting optional security services
	Establishing context
	Using per-message services
	Sending messages
	Receiving messages
	Deleting context
	Using JAAS with your JGSS application

	Debugging
	JGSS Debug class

	Samples: IBM Java Generic Security Service (JGSS)
	Description of the sample programs
	Viewing the IBM JGSS samples
	Viewing the sample programs
	Viewing the sample configuration and policy files

	Sample: IBM JGSS non-JAAS client program
	Sample: IBM JGSS non-JAAS server program
	Sample: IBM JGSS JAAS-enabled client program
	Sample: IBM JGSS JAAS-enabled server program
	Sample: Kerberos configuration file
	Sample: JAAS login configuration file
	Sample: JAAS policy file
	Sample: Java policy file
	Samples: Downloading and viewing javadoc information for the IBM JGSS samples
	Samples: Downloading and running the sample programs
	Samples: Downloading the IBM JGSS samples
	Related information

	Samples: Preparing to run the sample programs
	Related information

	Samples: Running the sample programs
	Related information

	IBM JGSS javadoc reference information

	Chapter 5. Tune Java program performance with the IBM Developer Kit for Java
	Java runtime performance considerations
	Cache class loaders
	Select which mode to use when running a Java program
	Java interpreter
	Static compilation
	Java static compilation performance considerations

	Just-In-Time compiler
	Comparison of Just-In-Time compiler and direct processing

	Optimization levels

	Java garbage collection
	IBM Developer Kit for Java advanced garbage collection
	Java garbage collection performance considerations

	Java Native Method Invocation performance considerations
	Java method inlining performance considerations
	Java exception performance considerations
	Java call trace performance tools
	Java event trace performance tools
	Java profiling performance tools
	Java Virtual Machine Profiler Interface

	Collect Java performance data
	Performance Data Collector tool
	Java Performance Data Converter tool
	Run the Java Performance Data Converter
	Example: Run the Java Performance Data Converter

	Chapter 6. Commands and tools for the IBM Developer Kit for Java
	Java tools that are supported by the IBM Developer Kit for Java
	Java tools
	Java ajar tool
	Java appletviewer tool
	Run the Java appletviewer tool with Remote Abstract Window Toolkit

	Java extcheck tool
	Java idlj tool
	Java jar tool
	Java jarsigner tool
	Java javac tool
	Java javadoc tool

	Java tools
	Java javah tool
	Java javakey tool
	Java javap tool
	Java keytool
	Java native2ascii tool
	Java policytool
	Java rmic tool
	Java rmid tool
	Java rmiregistry tool
	Java serialver tool
	Java tnameserv tool

	Java command in Qshell

	CL commands that are supported by Java
	Analyze Java Virtual Machine (ANZJVM) command
	Run the ANZJVM command
	Force a garbage collection cycle

	Considerations for ANZJVM command
	Example: ANZJVM command
	Spooled output file for ANZJVM command

	Example: Change Java Program (CHGJVAPGM) command
	Licensed Internal Code option parameter strings
	Example: Create Java Program (CRTJVAPGM) command
	Example: Delete Java Program (DLTJVAPGM) command
	Example: Dump Java Virtual Machine (DMPJVM) command
	Example: Display Java Program (DSPJVAPGM) command
	JAVA command
	Example: Use the Run Java (RUNJVA) command

	iSeries Navigator commands that are supported by Java

	Chapter 7. Optional packages
	Java Naming and Directory Interface
	IBM JNDI LDAP provider programming guide
	Create an initial context
	LDAP V3 URL
	Server binding and SASL support
	Search and obtain attributes
	Add and delete entries in a directory
	Change attributes
	Rename a directory entry

	Referrals and search references
	LDAP controls
	Binary attributes
	Schema
	SASL plug-in
	Client-side caching
	Retrieve the IBMJNDI class version
	Conformance considerations and additional properties

	JSSL
	JavaMail
	Java Print Service

	Chapter 8. Debug programs using the IBM Developer Kit for Java
	Debug a Java program
	Debug Java programs by using the *DEBUG option
	Initial debugging displays for Java programs

	Set breakpoints
	Step through Java programs to debug
	Evaluate variables in Java programs

	Debug Java and native method programs
	Debug a Java program from another display
	QIBM_CHILD_JOB_SNDINQMSG environment variable

	Debug Java classes loaded through a custom class loader
	Debug servlets
	Java Platform Debugger Architecture
	Java Virtual Machine Debug Interface
	Java Debug Wire Protocol
	Start JDWP in QShell
	Start JDWP from a CL command line

	Java Debug Interface

	Find memory leaks

	Chapter 9. Troubleshooting the IBM Developer Kit for Java
	Limitations
	Find job logs for Java problem analysis
	Collect data for Java problem analysis
	Get support for the IBM Developer Kit for Java

	Chapter 10. Code examples for the IBM Developer Kit for Java
	Chapter 11. IBM Developer Kit for Java reference
	Code disclaimer information

