Remote Procedure Call (RPC) APIs (V5R2)

Table of Contents

» Remote Procedure Call (RPC) APIs
Header Files for Remote Procedure Call APIs
Authentication APIs
o authnone create() (Create null authentication)
o authsys create() (Create authentication with OS permission)
o auth_destroy() (Destroy authentication information)
o Name-to-Address Tranglation APIs
o netdir_free() (Free netdir structures)
o netdir_getbyaddr() (Translate a netbuf address to a host)
o netdir_getbyname() (Translate a given host-service pair)
o netdir_options() (Access transport-specific capabilities)
o netdir_sperror() (Indicate an error in aName-to-Address Translation API)
o taddr2uaddr() (Translate alocal address)
0 uaddr2taddr() (Tranglate a universal address)
« Network Selection APIs
endnetconfig() (Release the pointer in the netconfig file)
o freenetconfigent() (Free the netconfig structure)
o getnetconfig() (Return current record from the netconfig file)
o getnetconfigent() (Return a pointer to a netconfig structure)
o setnetconfig() (Initialize the pointer in the netconfig file)
« Transport-Independent Remote Procedure Call (TI-RPC) APIs
o Simplified APIs
= rpc_cal() (Cal aremote procedure on the specified system)
= rpc reg() (Register a procedure with RPC service package)
o Top-level APIs
= cInt_call() (Call aremote procedure associated with the client)
= cInt_control() (Change information about a client object)
= cInt_create() (Create ageneric client handle)
= cInt _destroy() (Destroy the RPC Client's Handle)
= svc create() (Create a server handle)
= svc destroy() (Destroy an RPC service transport handle)

O

o Intermediate-level APIs
= cInt tp create() (Create aclient handle)
= SvC tp create() (Create aserver handle)
0 Expert-level APIs
= cInt_tli_create() (Create aclient handle)
= rpcb getaddr() (Find the universal address of a service)
= rpcb set() (Register the server address with the RPCBind)
= rpcb unset() (Unregister Their Addresses)
= sSvc reg() (Associate program and version with dispatch)
= svc tli_create() (Create a server handle)
= svc_unreg() (Delete an association set by svc_reg())
o Other APIs
= cInt freeres() (Free data alocated by the RPC or XDR system)
= cInt_geterr() (Get the error structure from the client handle)
= svcerr_decode() (Send information to client for decode error)
= sveerr_noproc() (Send information to client for procedure number error)
= svcerr_systemerr() (Send information to client for system error)
= svecerr_weakauth() (Send Authentication Error Indication to a Client)
= svc freeargs() (Free dataalocated by the RPC or XDR system)
= svc getargs() (Decode the arguments of an RPC request)
= Svc getrpecaller() (Get the network address of the caller)
= svc run() (Wait for RPC requeststo arrive)
= svc_sendreply() (Send the results of aprocedure call to aremote client)
« External Data Representation (XDR) APIs
o xdr_array() (Translate between arrays and their XDR)
o xdr_bool() (Trandlate between Booleans and their XDR)
o xdr_bytes() (Trandate between counted byte arrays and their XDR)
o xdr_char() (Trandate between characters and their XDR)
o xdr_double() (Trandlate between double-precision and XDR)
o xdr_double char() (Transate between two-byte characters)
o xdr_enum() (Trandate between enumeration and XDR)
o xdr_float() (Transate between floats and their XDR)
o xdr_free() (Generic freeing function)
o xdr_int() (Translate between integers and their XDR)
o xdr_long() (Translate between long integers and their XDR)
o xdr_netobj() (Trandate between netobj structures and their XDR)

xdr_opaque() (Trand ate between fixed-size data and its XDR)
xdr_pointer() (Provide pointer chasing within structures)
xdr_reference() (Provide pointer chasing within structures)
xdr_short() (Translate between short integers and their XDR)
xdr_string() (Translate between strings and their XDR)
xdr_union() (Trang ate between unions and their XDR)

xdr_u char() (Translate between unsigned characters and their XDR)
xdr_u_int() (Translate between an unsigned integer and its XDR)
xdr_u_long() (Trandate between an unsigned long and its XDR)
xdr_u_short() (Translate between an unsigned short and its XDR)
xdr_vector() (Translate between arrays and their XDR)
xdr_void() (Supply an XDR function to the RPC system)
xdr_wrapstring() (Call the xdr_string() function)

Remote Procedure Call (RPC) APIs

The Remote Procedure Call (RPC) APIsinclude:
» Authentication APIs

« Name-to-Address Trandation APIs

o Network Selection APIs

« Transport-Independent Remote Procedure Call (TI-RPC) APIs
o External Data Representation (XDR) APIs

These APIs are intended for programmers who develop distributed applications. They enable distributed
applications to communicate with each other. Open Networking Computers (ONC) RPC was devel oped by
Sun Microsystems and is used to easily separate and distribute a client application from a server by using
the SUN RPC protocol. RPC includes a method of abstracting data, called eXternal Data Representation, or
XDR, to allow communications to be abstracted at the API level.

Transport-Independent RPC (T1-RPC), or ONC+ RPC, isthe latest incantation of RPC. It provides a
method of abstracting the underlying protocol used at the network layer, providing a more seamless
transition from one protocol to another.

Note: These functions use header (include) files from the library QSY SINC, which is optionally installable.
Make sure QSY SINC isinstalled on your system before using any of the functions. See Header Files for

Remote Procedure Call APIsfor the file and member name of each header file.

The following terms relate to the RPC applications:

RPCBind A daemon program that allows client programs to obtain the aress of a servicethat is
registered with the RPCBind daemon.

RPCGen A compiler that accepts a remote-program interface definition written in the RPC language
(RPCL), which is similar to the C programming language. From this definition, RPCGen
produces C-language output for client stub functions, a server skeleton, XDR filter routines,
and a header file.

For more information on RPCBind and RPCGen, see the Control L anguage topic.

For more information about these APIs, see Sun TI-RPC distributed applications in the Information Center.

Top | APIs by category

Header Files for Remote Procedure Call APlIs

Programs using the Remote Procedure Call (RPC) APIs must include <rpc/rpc.h> and one or more
additional header files that contain information needed by the functions, such as:

« Macro definitions
« Datatype definitions
« Structure definitions
« Function prototypes
The header files are provided in the QSY SINC library, which is optionally installable. Make sure

QSY SINC ison your system before compiling programs that use these header files. For information on
installing the QSY SINC library, see Data structures and the QSY SINC Library.

The table below shows the file and member name in the QSY SINC library for each header file used by the
TI-RPC APIsin the Information Center.

’ Name of File
Name of Header File in QSYSINC Name of Member
Inetconfig.h 1 H [NETCONFIG
Inetdir .h 2 H INETDIR
|tirpccom.h H |TIRPCCOM
rpc/auth.h |RPC |AUTH
rpc/auth_sysh |RPC |JAUTH_SYS
|rpc/auth_unix.h |RPC |AUTH_UNIX
rpc/cint.h |RPC |CLNT
Irpc/rpc.h |RPC |RPC
Irpc/rpc_com.h |RPC |RPC_COM
rpc/rpc_msg.h |RPC |RPC_MSG
rpc/rpcb_cint.h |RPC |RPCB_CLNT
Irpc/rpcb_prot.h |RPC |RPCB_PROT
rpc/typesh |RPC ITYPES
Irpc/sve.h |RPC |svC
|rpc/svc_auth.h |RPC |SVC_AUTH
rpc/xdr.h |RPC IXDR
Note:

1. The member netconfig.h in the H file in the QSY SINC library is used by the

Network Selection functions.
2. The member netdir.h in the H filein the QSY SINC library is used by the
Name-to-Address Translation functions.

Y ou can display a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to display the netconfig.h header file using the Source Entry
Utility editor, enter the following command:

STRSEU SRCFI LE(QSYSI NG/ H) SRCVBR(NETCONFI G) OPTI O\(5)

« Using the Display Physical File Member command. For example, to display the rpc/rpc.h header
file, enter the following command:

DSPPFM FI LE(QSYSI NC&/ RPC) MBR(RPC)

Y ou can print a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to print the netdir.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(QSYSI NC/ H) SRCMBR(netdir) OPTI ON(6)

« Using the Copy File command. For example, to print the rpc/rpc.h header file, enter the following
command:

CPYF FROVFI LE(QSYSI NC/ RPC) TOFI LE(* PRI NT) FROWMBR(RPC)

Top | Remote Procedure Call (RPC) APIs| APIs by category

Authentication APIs

The authentication APIs are used to provide authentication to the Transport-1ndependent Remote Procedure
Call (TI-RPC) applications. These APIs enable a client to pass appropriate information as required by a
remote service.

The authentication APIs are:

« authnone create() (Create null authentication) creates and returns a default RPC authentication
handle that passes null authentication information with each remote procedure call.

« authsys create() (Create authentication with OS permission) creates and returns an RPC
authentication handle that contains authentication information.

« auth destroy() (Destroy authentication information) destroys the authentication information
structure that is pointed to by the auth parameter.

Top | Remote Procedure Call (RPC) APIs| APIs by category

authnone_create()--Create Null Authentication

Syntax

#i ncl ude <rpc/rpc. h>

AUTH *aut hnone_create();

Default Public Authority: * USE
Service Program Name: QZNFTRPC

Threadsafe: No

The authnone _create() function creates and returns a default RPC authentication handle that passes null
authentication information with each remote procedure call.

Parameters

None.

Authorities

No authorization is required.

Return Value

auth Upon successful completion, this API returns a pointer to an RPC authentication handle.

NULL authnone_create() was not successful. The errno variable is set to indicate the reason.

Error Conditions

[ENOMEM] Storage alocation failed.
[EUNKNOWN] Unknown System State.

Error Messages

Message I D Error Message Text

CPIA1BO| An authentication problem was encountered by one of the TI-RPC APIs.
CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Related Information

o authsys create()--Create Authentication with OS Permission

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how authnone_create() is used:

#i ncl ude <stdio. h>

#i ncl ude <rpc/rpc. h>

/* Define renpote program nunber and version */
#defi ne RMITPROGNUM (u_l ong) Ox3ffffffflL

#def i ne RMIPROGVER (u_Il ong) Ox1

mai n()

CLI ENT *client; [/* client handle */

/* Create a null authentication */

client->cl _auth = authnone_create();

if (client->cl_auth == (AUTH *) NULL){
fprintf(stderr, "authnone create failed!'!'\n");
exit(1);

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

authsys_create()--Create Authentication with
OS Permission

Syntax

#i ncl ude <rpc/rpc. h>
AUTH *aut hsys_creat e(const char *host,
const uid_ t uid,
const gid t gid,
const int |en,
const gid t *aup_gids);

Default Public Authority: * USE
Service Program Name: QZNFTRPC

Threadsafe: No

The authsys create() function creates and returns an RPC authentication handle that contains
authentication information.

Parameters

host (Input)
A pointer to the name of the machine on which the permission was created.

uid (Input)
The caler's effective user ID (UID).

gid (Input)
The caler's effective group 1D (GID).

len (Input)
The length of the group's array.

aup_gids (Input)
A pointer to the counted array of groups to which the user belongs.

Authorities

No authorization is required.

Return Value

auth Upon successful completion, this API returns an RPC authentication handle.

NULL authsys create() was not successful. The errno variable is set to indicate the reason.

Error Conditions

[EINVAL] Aninvalid len parameter was passed.
[ENOMEM] Storage alocation failed.
[EUNKNOWN] Unknown system state.

Error Messages

Message | D Error Message Text

CPIA1BO| An authentication problem was encountered by one of the TI-RPC APIs.
CPDAL1C1D An authentication problem has occurred.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Related Information

o authnone create()--Create Null Authentication

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how authsys create() is used:

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>

/* Define renpote program nunber and version */
#defi ne RMITPROGNUM (u_l ong) Ox3ffffffflL
#def i ne RMIPROGVER (u_Il ong) Ox1

mai n()

CLI ENT *client; [/* The client handle */
char *host;

uid t uid;

gid t gid, *aup_gids;

int |len;

/* Service request to host RPCSERVER HOST */
client = clnt_create("RPCSERVER_HOST", RMIPROGNUM RMIPROGVER,
"tept);
f (client == (CLIENT *)NULL) {
printf("Could not create client\n");

exit(1);
}
uid = geteuid();
gid = getegid();
| en = getgroups(NGRPS, aup_gids));

/* Initialized the authsys create()'s argunents before use */
client->cl _auth = authsys create(host, uid, gid,
| en, aup_gids);
if (client->cl_auth == (AUTH *) NULL) {
fprintf(stderr, "authsys create failed!!\n");
exit(1);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

auth_destroy()--Destroy Authentication
Information

Syntax

#i ncl ude <rpc/rpc. h>

voi d aut h_destroy(AUTH *aut h);

Default Public Authority: * USE
Service Program Name: QZNFTRPC

Threadsafe: No

The auth_destroy() function destroys the authentication information structure that is pointed to by the auth
parameter.

Parameters

auth
(Input)

A pointer to the authentication information structure to be destroyed. By destroying the auth
structure, you deallocate private data structures.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

None.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Related Information

o authsys create()--Create Authentication with OS Permission
o authnone create()--Create Null Authentication

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how auth_destroy() is used:

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>

/* Define renpte program nunber and version */
#defi ne RMITPROGNUM (u_l ong) Ox3fffffffL
#def i ne RMTPROGVER (u_l ong) Ox1

mai n()
CLI ENT *clnt; /* The client handle */

/*
Create the client handle, and initialize the authentication in
the clnt->cl _auth struct
*/
clnt = clnt_create("RPCSERVER_HOST", RMIPROGNUM RMIPROGVER,
"tcp”);
if (clnt == (CLIENT *)NULL) {
printf("Could not create client\n");
exit(1l);
}

/*
Destroy the authentication informati on associated with
clnt->cl _auth

*/

auth_destroy(cl nt->cl _auth);

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

Name-to-Address Translation APIs

The name-to-address translation APIs allow an application to obtain the address of a service on a specified
host in atransport-independent manner. These APIs are typically used by the applications that use the
expert level TI-RPC APIs.

The name-to-address translation APIs are;

netdir_free() (Free netdir structures) frees structures that are allocated by name-to-address
tranglation APIs.

netdir_getbyaddr() (Translate a netbuf address to a host) maps addresses into host names and
Service names.

netdir_getbyname() (Translate a given host-service pair) maps the host name and service name that

are specified in the service parameter to a set of addresses that are consistent with the transport
identified in the netconfig structure.

netdir_options() (Access transport-specific capabilities) provides interfaces to transport-specific
capabilities such as the broadcast address and reserved port facilities of TCP and UDP.
netdir_sperror() (Indicate an error in an NTA Routine) issues an informational message that states
why one of the name-to-address translation APIs may have failed.

taddr2uaddr() (Trandate alocal address) trandates a transport-specific (local) addressto a
transport-independent (universal) address.

uaddr2taddr() (Translate a universal address) trandates a transport-independent (universal) address
to atransport-specific (local) address (netbuf structure).

Top | Remote Procedure Call (RPC) APIs| APIs by category

netdir_free()--Free Netdir Structures

Syntax

#i ncl ude <netdir. h>

void netdir_free(void *ptr,
int struct _type);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The netdir_free() function frees structures that are allocated by name-to-address tranglation APIs.

Parameters

ptr (Input)
A pointer to a structure that isto be freed.

struct_type (Input)
The integer value that indicates to netdir_free() which type of structure to be freed.
The following combination is supported:
ND_HOSTSERV A pointer to an nd_hostserv structure.
ND_HOSTSERVLIST A pointer to an nd_hostservlist structure.

ND_ADDR A pointer to a netbuf structure.
ND_ADDRLIST A pointer to an nd_addrlist structure.
Authorities

No authorization is required.

Error Conditions

If netdir_free() takes an exception, nd_errnois set to the following error:

[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.

Error Messages

Message I D Error Message Text

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

netdir_free() freesthe structure alocated by the netdir APIs. The type of structure to be freed isindicated
by the struct_type.

Refer to other name-to-address trand ation functions to see how netdir_free() function is used.

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

netdir_getbyaddr()--Translate a Netbuf Address
to a Host

Syntax

#i ncl ude <netdir. h>
i nt netdir_getbyaddr(struct netconfig *nconf,
struct nd_hostservli st

**gervice,
struct netbuf *netaddr);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The netdir_getbyaddr () function maps addresses into host names and service names.

Parameters

nconf (Input)
A pointer to a netconfig structure that is returned by either getnetconfig() or getnetconfigent().

service (Output)
A pointer to alist of service names.

netaddr (Input)
A pointer to the address.

Authorities

No authorization is required.

Return Value

0 netdir_getbyaddr () was successful. A list of host names and service name pairsisreturnedin
service.

-1 netdir_getbyaddr () was not successful. The nd_errno (defined in <netdir.h>) is set to indicate the
error.

Error Conditions

If netdir_getbyaddr () isnot successful, nd_errno usually indicates one of the following errors:

[ND_BADARG] Bad argument passed.

[ND_NO_DATA] The host nameis avalid name but there is no corresponding | P address.
[ND_NOHOST] The host name that the user specified by the host address was not found.
[ND_NOMEM] Not enough memory |eft.

[ND_NO_RECOVERY] An unrecoverable error has occurred.
[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.

[ND_TRY_AGAIN] Thelocal server did not receive aresponse from an authoritative server. An
attempt at a later time may succeed.

Error Messages

Message I D Error Message Text
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

netdir_getbyaddr() is called with an address in the netaddr structure.

The caller isresponsible to free the storage allocated by netdir _getbyaddr () by using the function
netdir_free().

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how netdir _getbyaddr () is used:

#i ncl ude <netdir. h>

voi d findhost (void)

voi d *handl ep;

struct netconfig *nconf;

struct nd_hostservlist *nd_hostserv;
struct net buf nbuf;

char uaddr[16];

/* Initialize the network sel ecti on nechani sm */
if (handlep = setnetconfig()) == (void *)NULL)

exit(1);
}
/* Get the netconfig handle */
if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)

printf("Error getting the netconfig handle\n");
exit(1);

}

menset (uaddr, NULL, 16);

printf("Enter the host | P address appended by | ow and hi gh order
port nunbers:\n");

scanf (" %", uaddr);

/* Convert universal address notation into transport-specific
* address format.

*/

nbuf = uaddr 2t addr (nconf, uaddr);

/* Get the hostnane fromthe address over the transport */

/* provider specified in the netconfig structure */
i f (netdir_getbyaddr(nconf, &nd_hostserv, &nbuf)
= ND_OK)

printf("Cannot determi ne the host\n");
exit(1);

printf("The host nane is: %\n"
nd_host serv->h_host servs->h_host);
printf("The Service is: %\n", nd_hostserv->h_hostservs->h serv);

/* Free the netdir structure allocated by netdir_gethbyname() */
netdir_free(nd_hostserv, ND HOSTSERVLI ST);

/* Rel ease the netconfig handle allocated by set setnetconfig() */
endnet confi g(handl ep) ;

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

netdir_getbyname()--Translate a Given
Host-Service Pair

Syntax

#i ncl ude <netdir. h>
i nt netdir_getbynanme(struct netconfig *nconf,

struct nd_hostserv *service,
struct nd_addrlist **addrs);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The netdir_getbyname() function maps the host name and service name that are specified in the service
parameter to a set of addresses that are consistent with the transport identified in the netconfig structure.

Parameters

nconf (Input)
A pointer to a netconfig structure that is returned by either getnetconfig() or getnetconfigent().

service (Input)
A pointer to a service name.

addrs (Output)
A pointer to the addresses being returned.

Authorities

No authorization is required.

Return Value

0 netdir_getbyname() was successful.

-1 netdir_getbyname() was not successful. The nd_errno (defined in <netdir.h>) is set to indicate the
error.

Error Conditions

If netdir_getbyname() is not successful, nd_errno usually indicates one of the following errors:

[ND_BADARG] Bad argument passed.
[ND_NOHOST] The host that was specified by the host name was not found.
[ND_NOMEM] Not enough memory left.

[ND_NO_RECOVERY] An unrecoverable error has occurred.

[ND_NOSERV] Service name is unknown.
[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.
[ND_TRY_AGAIN] Thelocal server did not receive aresponse from an authoritative server. An

attempt at a later time may succeed.

Error Messages

Message | D Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

Usage Notes

netdir_getbyname() maps the host and service name to a set of addresses consistent with the transport
specified in netconfig.

The caler isresponsible to free the storage allocated by netdir _getbyname() by using the function
netdir_free().

netdir_getbyname() does not support HOST_ANY or HOST_BROADCAST for host names specified in
the nd_hostserv structure.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how netdir _getbyname() is used:

#i ncl ude <netdir. h>

mai n()

{
voi d *handl ep; /* A handle into network sel ection
struct netconfig *nconf; [* transport information
struct nd_hostserv nd_hostserv; /* host and service infornation
struct nd_addrlist *nd_addrli stp; /* addresses for the service

/[* Initialize the network sel ecti on nechani sm */
if (handlep = setnetconfig()) == (void *)NULL)

exit(1);
}
[* Get the netconfig handle */
if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)

printf("Error in getting the netconfig handle.\n");
exit(1);

/* Allocate nenory for host and service nanes */
nd_hostserv. h_host = (char *)mall oc(24);
nd_hostserv.h_serv = (char *)mall oc(24);
if ((nd_hostserv.h_host == (char *)NULL)
|| (nd_hostserv.h_serv == (char *)NULL))
{

printf("No nenory avail able. netdir_getbynane()
failed.\n");
exit(1);

}

printf("Enter the hostnane:\n");
scanf (" %", nd_hostserv. h _host);
printf("Enter the service nane:\n");
scanf ("%", nd_hostserv. h_serv);

/* Get the address for the service on the host on the
* transport provider specified in the netconfig structure

*/

i f (netdir_getbynane(nconf, &nd_hostserv, &nd_addrli stp)
I'= ND_OK)
printf("Cannot determ ne address for service\n");
exit(1);

printf("The address of the <%> service on host
<¥%> was found.\n", nd_hostserv.h_serv,
nd_hostserv. h_host);

*/
*/
*/
*/

/* Free the netdir structure allocated by netdir_gethbyname() */
netdir _free(nd_addrlistp, ND ADDRLI ST);

/* Rel ease the netconfig handle allocated by set setnetconfig() */
endnet confi g(handl ep) ;

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

netdir_options()--Access Transport-Specific
Capabilities

Syntax

#i ncl ude <netdir. h>
int netdir_options(struct netconfig *nconf,
int option,

int fd,
char *point_to_args);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The netdir_options() function provides interfaces to transport-specific capabilities such as the broadcast
address and reserved port facilities of TCP and UDP.

Parameters

nconf (Input)
A pointer to a netconfig structure that specifies a transport.

option (Input)
Specifies the transport-specific action to take. The following values may be used for option:

ND_SET BROADCAST Set the transport for broadcast if supported.

ND_SET RESERVEDPORT Let the application bind to areserved port if allowed by the
transport.

ND_ CHECK_ RESERVEDPORT Verify that an address corresponds to areserved port if the
transport supports reserved ports.

ND_MERGEADDR Transform alocally meaningful address into an address that
the client host can connect to.

fd (Input)

The file descriptor that may or may not be used based on the option. The only value supported for
thisfield isRPC_ANYFD. Thefile descriptor value is used only if the specified option is
ND_SET_BROADCAST or ND_SET_RESERVEDPORT.

point_to_args (Input)

A pointer to the operation-specific data.

Authorities

The caller must have the *|OSY SCFG special authority to bind to areserved port.

Return Value

0 netdir_options() was successful.

-1 netdir_options() was not successful. The nd_errno global variable (defined in <netdir.h>) isset to

indicate the error.

Error Conditions

If netdir_options() is not successful, nd_errno indicates one of the following errors:

[ND_ACCESS
[ND_BADARG]

[ND_FAILCTRL]
[ND_NO_ADDRESS]
[ND_NOCONVERT]

[ND_NOCTRL]

[ND_NO_DATA]
[ND_NOHOST]
[ND_NOMEM]
[ND_NO_RECOVERY]
[ND_OPEN]
[ND_SYSTEM]

The user does not have permission to use the specified address.
Bad argument passed.

A file descriptor that was not valid was passed to the API.
Control operation failed.

Bad address.

Conversion error. One or more characters could not be converted from the
source CCSID to the target CCSID.

The function was used in the wrong sequence.

An incorrect option was specified.

Incorret amount of data.

The host that was specified by the host name was not found.

Not enough memory left.

An unrecoverable error has occurred.

File could not be opened.

A damaged object was encountered. The damaged object cannot be used.

The system detected an address that was not valid.

[ND_TRY_AGAIN] Thelocal server did not receive aresponse from an authoritative server. An
attempt at alater time may succeed.

Error Messages

Message I D Error Message Text

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how netdir _options() is used:

#i ncl ude <netdir. h>
#include <rpc/rpc_comh> /[/* for RPC_ANYFD definition */

mai n()

voi d *handl ep;
struct netconfig *nconf;

/* Initialize the network sel ecti on mechani sm */
if (handlep = setnetconfig()) == (void *)NULL)

exit(1);

/* Get a netconfig structure fromthe netconfig file */

if ((nconf = getnetconfig(handl ep)) == (struct netconf *)NULL)
printf("Unable to obtain a netconfig structure\n");

/* Set the protocol specific negotiation for broadcast */
if (netdir_options(nconf, ND_SET_BROADCAST, RPC_ANYFD, NULL))

{
}

/* Rel ease the netconfig handle allocated by setnetconfig() */
endnet confi g(handl ep) ;

printf("Error setting the broadcasting option\n");

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

netdir_sperror()--Indicate an Error in an NTA
Routine

Syntax

#i ncl ude <netdir. h>

void netdir_sperror();

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The netdir_sperror () function issues an informational message that states why one of the name-to-address
tranglation APIs may have failed.

Parameters

None.

Authorities

No authorization is required.

Return Value

None

netdir_sperror () issues an informational message that indicates the error in one of the name-to-address
trandation APIs.

Error Messages

Message I D Error Message Text

CPIA1B7 The previous name-to-address translation has compl eted.

Usage Notes

The netdir_sperror () function issues CPIA1B7 message that indicates why one of the name-to-address
translation mapping APIsfailed. This function should be used after afailed call to a name-to-address
tranglation function prior to calling another name-to-address translation function.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how netdir_sperror () is used:

#i ncl ude <netdir. h>
#i ncl ude <rpc/rpc_com h>

mai n()

voi d *handl ep;
struct netconfig *nconf;

/* Initialize the network sel ecti on mechani sm */
if (handlep = setnetconfig()) == (void *)NULL)

exit(1);
/* Get a netconfig structure fromthe netconfig file */
if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)

printf("Unable to obtain a netconfig structure\n");

/* Set the protocol specific negotiation for broadcast */
if (netdir_options(nconf, ND_SET_BROADCAST, RPC_ANYSOCK, NULL))

printf("Error setting the broadcasting option\n");
printf("See the job log for error nessage\n");
netdir_sperror();

}

/* Rel ease the netconfig handle allocated by setnetconfig() */
endnet confi g(handl ep);

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

taddr2uaddr()--Translate a Local Address

Syntax

#i ncl ude <netdir. h>

char *taddr2uaddr(struct netconfig *nconf,
struct netbuf *addr);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The taddr2uaddr () function translates a transport-specific (local) address to a transport-independent
(universal) address.

Parameters

nconf (Input)
The transport for which the addressis valid.

addr (Input)
The address to be translated to the universal representation.

Authorities

No authorization is required.

Return Value

universal address A string that contains the universal addressis returned if the function taddr2uaddr ()
was successful.

NULL A NULL pointer isreturned if the function taddr 2uaddr () was not successful. The
nd_errno global variable (defined in <netdir.h>) is set to indicate the error.

Error Conditions

If the function taddr2uaddr () is not successful, nd_errno usually indicates the following error:

[ND_BADARG] Bad argument passed.
[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.

Error Messages

Message I D Error Message Text

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

taddr2uaddr () translates the address pointed to by addr and returns a transport independent character
representation of the address (universal address).

The caler isresponsible to free the returned universal address when done.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how taddr 2uaddr () is used:

#i ncl ude <netconfig. h>
#i ncl ude <netdir. h>

mai n()
voi d *handl ep; /* A handle into network sel ection
struct netconfig *nconf; /* Transport information
struct nd_hostserv nd_hostserv; /* Host and service infornation
struct nd_addrlist *nd_addrli stp; /* Addresses for the service
struct netbuf *netbufp; /* The address of the service
int i; /* The nunber of addresses
char *uaddr; /* Service universal address

/* Initialize the network sel ecti on mechani sm */
if (handlep = setnetconfig()) == (void *)NULL)

exit(1);
}

*/
*/
*/
*/
*/
*/
*/

/* Get the netconfig handle */
if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)

printf("Error in getting the netconfig handle.\n");
exit(1);
}

Get the address for service specified in nd_hostserv.h_serv
on the host specified in nd_hostserv.h _host over the
transport provider specified in the netconfig structure
Not e: nd_hostserv. h_host and nd_hostserv.h_serv need to be
* set up prior to the call to netdir_getbynane().
*/
i f (netdir_getbynanme(nconf, &nd _hostserv, &nd _addrli stp)

= ND_OK)
{

* X X *

printf("Cannot determ ne address for service\n");
/* Rel ease the netconfig handl e allocated by setnetconfig() */
endnet confi g(handl ep) ;
exit(l);
}

/* Convert the transport-specific address into universal address
* notation and print it.

*/

net buf p = nd_addrli stp->n_addrs;

uaddr = taddr2uaddr(nconf, netbufp);

i f (uaddr !'= NULL)

printf("The address of the service % on host % is %\n",
nd_hostserv. h _serv, nd_hostserv.h_host, uaddr);
free(uaddr);

}

/* Free the netdir structure allocated by netdir_gethbyname() */
netdir _free(nd addrlistp, ND HOSTSERVLI ST);

/* Rel ease the netconfig handl e allocated by setnetconfig() */
endnet confi g(handl ep) ;

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

uaddr2taddr()--Translate a Universal Address

Syntax

#i ncl ude <netdir. h>

struct netbuf *uaddr2taddr(struct netconfig *nconf,
char *uaddr);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The uaddr 2taddr () function trandlates a transport-independent (universal) address to a transport-specific
(local) address (netbuf structure).

Parameters

nconf (Input)
The transport for which the addressis valid.

uaddr (Input)
The address to be trand ated to the netbuf structure.

Authorities

No authorization is required.

Return Value

netbuf structure uaddr2taddr() was successful.

NULL uaddr 2taddr () was not successful. The nd_errno (defined in <netdir.h>) is set to
indicate the error.

Error Conditions

If uaddr2taddr () is not successful, nd_errno usually indicates one of the following errors:
[ND_BADARG] Bad argument passed.
[ND_NOMEM] Not enough memory left.
[ND_NO_RECOVERY] An unrecoverable error has occurred.
[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.

Error Messages

Message | D Error Message Text

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

uaddr 2taddr () translates the universal address pointed to by addr and returns a pointer to a netbuf
structure.

It isthe caller's responsibility to free the returned netbuf structure when done using the netdir_free()
function.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how uaddr 2taddr () is used:

#i ncl ude <netconfig. h>
#i ncl ude <netdir. h>

Voi d sanpl e (void)
{

voi d *handl ep;

struct netconfig *nconf;
struct netbuf *netbufp;
char universal _addr[24];
int i;

/* Initialize the network sel ecti on nechani sm */
if (handlep = setnetconfig()) == (void *)NULL)

exit(1);

/* Get the transport infornation */
if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)

printf("Error in getting the transport infornmation\n"E);
exit(1l);
}

menset (uni ver sal _addr, 24, NULL) ;

printf("EEnter the | P address appended by | ow and hi gh order
port nunbers:\n"E);

scanf (%, universal addr);

/* Convert the input universal address to its local representation */
i f ((netbufp = uaddr2taddr(nconf, universal addr)) ==
(struct netbuf *) NULL)

printf("Euaddr2taddr() failed\n"E);
}

/[*Free the nethbuf structure returned from uaddr2taddr() */
netdir_free((char *)netbufp, ND ADDR);

/* Rel ease the netconfig handle allocated by setnetconfig() */
endnet confi g(handl ep) ;

return;

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

Network Selection APIs

The network selection APIs provide the means to choose the transport on which an application should run.
These APIs are typically used by the applications that use the intermediate-level and expert-level TI-RPC

APIs.

The network selection APIs are:

endnetconfig() (Release the pointer in the netconfig file) releases the pointer to the records stored in
the netconfig file.

freenetconfigent() (Free the netconfig structure) frees the netconfig structure that is returned from
the call to the getnetconfigent() function.

getnetconfig() (Return current record from the netconfig file) returns the pointer to the current
record in the netconfig file and increments its pointer to the next record.

getnetconfigent() (Return a pointer to a netconfig structure) returns the pointer to the netconfig
structure that corresponds to the input netid.

setnetconfig() (Initialize the pointer in the netconfig file) initializes the record pointer to the first
entry in the netconfig file.

Top | Remote Procedure Call (RPC) APIs| APIs by category

endnetconfig()--Release the Pointer in the
Netconfig File

Syntax

#i ncl ude <netconfig. h>

int endnetconfig (void *);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The endnetconfig() function releases the pointer to the records stored in the netconfig file.

Parameters

void pointer (Input)
A void pointer that is set by acall to the setnetconfig() function.

Authorities

No authorization is required.

Return Value

0 endnetconfig() was successful. The pointer to the netconfig structure in the netconfig file is released.
Thisfunction is always successful.

Error Conditions

When an exception occurs, endnetconfig() is trying to free the handle to the /etc/netconfig file. If
endnetconfig() is not successful, errno indicates the following error.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job
log and correct any errors that are indicated. Then retry the operation.

Error Messages

Message I D Error Message Text
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

endnetconfig() APl must be used to release the pointer to the netconfig structure obtained by a cal to the
setnetconfig() API.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how endnetconfig() is used:

#i ncl ude <netconfig. h>
mai n()

voi d *handl ep;
struct netconfig *nconf;

/* Initialize the network sel ecti on nechani sm */
if ((handlep = setnetconfig()) == (void *)NULL)

exit(1);

/* Loop through the transport providers */
while ((nconf = getnetconfig(handlep)) !'= (struct netconfig *) NULL)

/* Print out the information associated with the */

/* transport providers described in the */

/* "netconfig" structure. */
printf("Transport provider name: %\n", nconf->nc_netid);
swi tch(nconf->nc_semanti cs)

{

case NC TPI _CLTS:
printf("Transport type nane: TPl _CLTS\n");
br eak;

case NC TPI _COTS:
printf("Transport type nane: TPl _COTS\n");
br eak;

case NC TPI _COTS ORD:
printf("Transport type nane: TPl _COTS ORD\n");
br eak;

def aul t:
br eak;

}

swi tch(nconf->nc_fl ag)
{
case O:
printf("Transport flag nane: Mn");
br eak;
case 1.
printf("Transport flag nane: Wn");
br eak;
defaul t:
br eak;

printf("Transport famly nane: %\n", nconf->nc_protofmy);
printf("Transport protocol nane: %\n", nconf->nc_proto);

/*Rel ease the netconfig handl e all ocated by setnetconfig() */
endnet confi g(handl ep) ;

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

freenetconfigent()--Free the Netconfig
Structure

Syntax

#i ncl ude <netconfig. h>

voi d freenetconfigent(struct netconfig *);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The freenetconfigent() function frees the netconfig structure that is returned from the call to the
getnetconfigent() function.

Parameters

netconfig (Input)
A pointer to a netconfig structure that is set by a call to the setnetconfig() function.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

If an exception accurs, freenetconfigent() fails to free the netconfig structure. If freenetconfigent() is not
successful, errno indicates the following error.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job
log and correct any errors that are indicated. Then retry the operation.

Error Messages

Message | D Error Message Text
CPF3CF2E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how freenetconfigent() is used:

#i ncl ude <netconfig. h>

mai n()

{

struct netconfig *nconf;

/* Assunming UDP is a netid on the system get the netconfig structure *
if ((nconf = getnetconfigent("UDP"')) == (struct netconfig *)NULL)

printf("There is no information about UDP\n");
exit(1l);

/[* Print out the information associated with the transport */
/* identified with the netid of UDP */
printf("Transport provider nane: %\n", nconf->nc_netid);

swi t ch(nconf->nc_senanti cs)

{
case NC TPI _CLTS:
printf("Transport type nane: TPl _CLTS\n");
br eak;
case NC TPI _COTS:
printf("Transport type nane: TPl _COIS\n");
br eak;
case NC TPI _COTS ORD:
printf("Transport type nane: TPl _COTS ORD\n");
br eak;
defaul t:
br eak;
}
swi t ch(nconf->nc_fl ag)
{
case O:

printf("Transport flag name: Nn");

br eak;
case 1:
printf("Transport flag nane: Wn");
br eak;
def aul t:
br eak;

printf("Transport famly nane: %\n", nconf->nc_protofmy);
printf("Transport protocol nane: %\n", nconf->nc_proto);

/* Free the netconfig structure returned by getnetconfigent() */
freenet confi gent (nconf);

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

getnetconfig()--Return Current Record from the
Netconfig File

Syntax

#i ncl ude <netconfig. h>

struct netconfig *getnetconfig(void *);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The getnetconfig() function returns the pointer to the current record in the netconfig file and incrementsiits
pointer to the next record.

Parameters

void pointer (Input)
A void pointer that is set by acall to the setnetconfig() function.

Authorities

No authorization is required.

Return Value
netconfig getnetconfig() was successful. A pointer to the current netconfig structure in the netconfig
fileisreturned.

NULL getnetconfig() was not successful. A NULL pointer isreturned. The errno global variableis
set to indicate the error.

Error Conditions

If getnetconfig() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messagesin thejob
log and correct any errors that are indicated. Then retry the operation.

Error Messages

Message I D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

Example

For more information, see the example for endnetconfig()--Release the Pointer in the Netconfig File.

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

getnetconfigent()--Return a Pointer to a
Netconfig Structure

Syntax

#i ncl ude <netconfig. h>

struct netconfig *getnetconfigent(char *);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The getnetconfigent() function returns the pointer to the netconfig structure that corresponds to the input
netid.

Parameters

netid (Input)
A character pointer to a netid such as "tcp" or "udp".

Authorities

The caler of getnetconfigent() function must have execute (* X) authority to the /etc directory and must
have read (*R) authority to the netconfig file.

Return Value

netconfig getnetconfigent() was successful. A pointer to a netconfig structure is returned.

NULL getnetconfigent() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If getnetconfigent() is not successful, errno usualy indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EACCES

[EAGAIN]
[EBADNAME]

[EBUSY]
[ECONVERT]

[EDAMAGE]

[EIO]

[EMFILE]

[ENFILE]

[ENOENT]

[ENOMEM]

[ENOSPC]

[ENOSYSRSC]

Permission denied.

« An attempt was made to access an object in away forbidden by its object
access permissions.

« Thejob does not have access to the specified file, directory, component, or
path.
Operation would have caused the process to be suspended.
The object name specified is not correct.

Resource busy.

Conversion error.
« One or more characters could not be converted from the source CCSID to the
target CCSID.
A damaged object was encountered.
« A referenced object is damaged. The object cannot be used.

Input/output error.
« A physical 1/0O error occurred. A reference object may be damaged.

Too many open files for this process.

« An attempt was made to open more files than allowed by the value
OPEN_MAX. The value of OPEN_MAX can be retrieved using the sysconf()
function.

Too many open filesin the system.
« A system limit has been reached for the number of files that are allowed to be
concurrently open in the system.
No such path or directory.
» Thedirectory or acomponent of the path name specified does not exist.
« A named file or directory does not exist or is an empty string.

Storage alocation request failed.
« Thefunction needed to allocate storage, but no storage is available.
« Thereisnot enough memory to perform the requested function.

No space available.

« Therequested operations required additional space on the device and thereis
no space left. This could also be caused by exceeding the user profile storage
limit when creating or transferring ownership of an object.

o Insufficient space remains to hold the intended file.

System resources not available to complete the request.

[EPERM] Operation not permitted.

» You must have appropriate privileges or other resources to do the requested
operation.

[EUNKNOWN] Unknown system state.

« The operation failed because of an unknown system state. See any messages
in the job log and correct any errors that are indicated. Then retry the
operation.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4 E File system error occurred.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

CPIAL1COI The file /etc/netconfig cannot be opened by readers because another job hasit open
with write authority.

Usage Notes

getnetconfigent() returns a pointer to a netconfig structure in the netconfig file for the corresponding netid.
The netid is expected in the job CCSID. It returns NULL if it is unsuccessful.

The callers of the getnetconfigent() function do not need to call the setnetconfig() function prior to calling
the getnetconfigent() function but must call the freenetconfigent() function to free the storage allocated by
the getnetconfigent() function.

The getnetconfigent() function will return [ENOENT] if the /etc/netconfig file does not exist. The
getnetconfigent() function will fail with [ECONVERT] if the data conversion required to convert the data
stored in the /etc/netconfig file cannot be converted to the job CCSID.

Example

For more information, see the example for freenetconfigent()--Free the Netconfig Structure.

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

setnetconfig()--Initialize the Pointer in the
Netconfig File

Syntax

#i ncl ude <netconfig. h>

voi d *setnetconfig(void);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The setnetconfig() function initializes the record pointer to the first entry in the netconfig file. The
setnetconfig() function must be used before the first use of getnetconfig() function. The setnetconfig()
function returns a unique handle (a pointer to the records stored in the netconfig file) to be used by the
getnetconfig() function.

Parameters

None.

Authorities
The caller of setnetconfig() function must have execute (* X) authority to the /etc directory and must have

read (*R) authority to the netconfig file.

Return Value

void pointer setnetconfig() was successful. A void pointer to the records stored in the netconfig fileis
returned.

NULL setnetconfig() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If setnetconfig() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EACCES

[EAGAIN]
[EBADNAME]

[EBUSY]
[ECONVERT]

[EDAMAGE]

[EIO]

[EMFILE]

[ENFILE]

[ENOENT]

[ENOMEM]

[ENOSPC]

[ENOSYSRSC]

Permission denied.

« An attempt was made to access an object in away forbidden by its object
access permissions.

« Thejob does not have access to the specified file, directory, component, or
path.
Operation would have caused the process to be suspended.
The object name specified is not correct.

Resource busy.

Conversion error.
« One or more characters could not be converted from the source CCSID to the
target CCSID.
A damaged object was encountered.
« A referenced object is damaged. The object cannot be used.

Input/output error.
« A physical input/output error occurred. A reference object may be damaged.

Too many open files for this process.

« An attempt was made to open more files than allowed by the value
OPEN_MAX. The value of OPEN_MAX can be retrieved by using the
sysconf() function.

Too many open filesin the system.
« A system limit has been reached for the number of files that are allowed to be
concurrently open in the system.
No such path or directory.
» Thedirectory or acomponent of the path name specified does not exist.
« A named file or directory does not exist or is an empty string.

Storage alocation request failed.
« Thefunction needed to allocate storage, but no storage is available.
« Thereisnot enough memory to perform the requested function.

No space available.

« Therequested operations required additional space on the device and thereis
no space left. This could also be caused by exceeding the user profile storage
limit when creating or transferring ownership of an object.

« Insufficient space remains to hold the intended file.

System resources not available to complete the request.

[EPERM] Operation not permitted.

» You must have appropriate privileges or other resources to do the requested
operation.

[EUNKNOWN] Unknown system state.

« The operation failed because of an unknown system state. See any messages
in the job log and correct any errors that are indicated. Then retry the
operation.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4 E File system error occurred.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

CPIAL1COI The file /etc/netconfig cannot be opened by readers because another job hasit open
with write authority.

Usage Notes

The setnetconfig() function is used prior to using the getnetconfig() function to initialize the record pointer
to the data stored in the netconfig file.

The setnetconfig() function will fail with [ENOENT] if the /etc/netconfig file does not exist. The
setnetconfig() function will fail with [ECONV ERT] if the data conversion required to convert the data
stored in the /etc/netconfig file cannot be converted to the job CCSID.

Example

For more information, see the example for endnetconfig()--Release the Pointer in the Netconfig File.

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

Transport-Independent Remote Procedure Call
APls

The Transport-Independent Remote Procedure Call (TI1-RPC) functions allow distributed applications to
communicate with each other in atransport independent fashion. These APIs are provided to perform
Transport-1ndependent Remote Procedure Calls.

The TI-

RPC APIs are divided into five separate sections:
Simplified APIs

Top-level APIs

Intermediate-level APIs

Expert-level APIs

Other APIs (These APIswork with the other four sections.)

Top | Remote Procedure Call (RPC) APIs| APIs by category

Simplified APIs

The simplified interfaces specify the type of transport to use. Applications using thislevel do not have to
explicitly create handles. These APIs combine all the API callsinto one procedure and can be used to
quickly develop an RPC service and corresponding client application.

The simplified APIs are:

« rpc_cal() (Call aremote procedure on the specified system) calls the remote procedure that is
associated with prognum, versnum, and procnum on the machine, host.

« rpc _reg() (Register aprocedure with RPC service package) registers a procedure with the RPC
service package (RPCBind).

Top | Remote Procedure Call (RPC) APIs| APIs by category

rpc_call()--Call a Remote Procedure on the
Specified System

Syntax

#i ncl ude <rpc/rpc. h>

enum cl nt_stat rpc_call (const char *host,
const u_l ong prognum
const u_long versnum
const u_l og procnum
const xdrproc_t inproc,
const char *in,
const xdrproc_t outproc,
char *out,
const char *nettype);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Therpc_call() API calsthe remote procedure that is associated with prognum, versnum, and procnum on
the machine, host. rpc_call() tries all the transports of the nettype class available from the netconfig
database file, and chooses the first successful one. Transports are tried in top-to-bottom order in the
netconfig database file. A default time-out is set and can be modified using cint_control().

Parameters

host (Input)
A pointer to the program name of the remote machine.

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

procnum (Input)
The number of the procedure that is associated with the remote program being called.

inproc (Input)
The name of the XDR procedure that encodes the procedure parameters.

in (Input)
The address of the procedure arguments.

outproc (Input)
The name of the XDR procedure that decodes the procedure results.

out (Output)
The address where results are placed.

nettype (Input)

The following classes of transport protocol are valid and are represented as a string either in
lowercase or in uppercase: NETPATH, VISIBLE, CIRCUIT_V, DATAGRAM_V, CIRCUIT_N,
DATAGRAM_N, TCP, and UDP. When this parameter isNULL, NETPATH is assumed.

Authorities

The caller of therpc_call() APl must have execute (* X) authority to the /etc directory and must have read
(*R) authority to the netconfig file.

Return Value

RPC_SUCCESS(0) Successful

Non-zero value rpc_call() was not successful. Therpc_createerr global structureis set to indicate
the error.

Error Conditions

Upon failure, rpc_call() setsthe global structure rpc_createerr. Therpc_createerr.cf_stat variable hasa
status value that indicates the error reason. Therpc_createerr.cf_error.re_errno variable is meaningful
when some status values are set.

Therpc_createerr.cf_stat variable can be set to one of the following values:

ThisAPI callsclnt_create() and cInt_call() APIsin order to perform itstask. All error conditions from
those APIs are inherited except RPC_FAILED from cint_call().

[RPC_SYSTEMERROR] RPC error returned from system call. The rpc_createerr.cf_error.re_errno
variable can be set to one of the following values:

[ENOMEM] Out of memory.
[RPC_UNKNOWNHOST] Unknown host.

Error Messages

Message | D Error Message Text

CPIA1B11 A problem was encountered in the RPC client.

CPIA1B21 TI-RPC encountered a problem in the transport protocol.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Related Information

o cInt cal()--Call a Remote Procedure Associated with the Client

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how rpc_call() is used:

/* Define renote program nunber and version */

#defi ne RMTPROGNUM (u_Il ong) Ox3fffffffL
#defi ne RMTPROGVER (u_Il ong) Ox1
#defi ne RMIPROCNUM (u_Il ong) Ox1

#i ncl ude <stdi o. h>
#i ncl ude <rpc/rpc. h>

mai n()

i nt inproc=100, outproc;
enum cl nt_stat rstat;

/* Service request to host RPCSERVER _HOST */
if (rstat = rpc_call ("as400. somewhere.i bm coni, RMIPROGNUM
RMIPROGVER, RMIPROCNUM xdr _int, (char *)& nproc,
xdr _int, (char *)&outproc, "VISIBLE")
I = RPC_SUCCESS) {
fprintf(stderr,"rpc_call() failed\n");

exit(l);

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

rpc_reg()--Register a Procedure with RPC
Service Package

Syntax

#i ncl ude <rpc/rpc. h>

bool t rpc_reg(const u_l ong prognum
const u_long versnum
const u_long procnum
char *(*procnane)(char *),
const xdrproc_t inproc,
const xdrproc_t outproc,
const char *nettype);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Therpc_reg() function registers a procedure with the RPC service package (RPCBind). If arequest arrives
that matches the values of the prognum parameter, the ver snum parameter, and the procnum parameter, then
the procname parameter is called with a pointer to its parameters. The procname returns a pointer to its
static results.

The procedure is registered for each transport of the specified type (the nettype parameter). If the nettype
parameter is (char *)NULL, the procedure is registered for all transports that are specified in the
letc/netconfig file with a corresponding flag value visible. After registering the local procedure, the server
program's main procedure calls svc_run(), the RPC library's remote procedure dispatcher.

Parameters

prognum (Input)
The program number of the remote program.

versnum (Input)
The version number of the remote program.

procnum (Input)
The procedure number to be called.

procname (Input)
The procedure name.

inproc (Input)
The eXternal Data Representation (XDR) subroutine that decodes the procedure parameters.

outproc (Input)
The XDR subroutine that encodes the procedure results.

nettype (Input)

The following classes of transport protocol are valid and are represented as a string either in
lowercase or in uppercase: NETPATH, VISIBLE, CIRCUIT_V, DATAGRAM_V, CIRCUIT_N,
DATAGRAM_N, TCP, AND UDP. When this parameter isNULL, NETPATH is assumed.

Authorities

The caler of therpc_reg() APl must have execute (* X) authority to the /etc directory and must have read
(*R) authority to the netconfig file.

Return Value

TRUE (1) rpc_reg() was successful.
FALSE (0) rpc_reg() was not successful. The errno variableis set to indicate the reason.

Error Conditions

This API inherits all error conditions from the setnetconfig() and getnetconfig() APIs. It also inherits al
error conditions from the svc tli_create() and svc reg() APls.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.
CPIA1B21 TI-RPC encountered a problem in the transport protocol.

CPIA1B3I TI-RPC encountered a problem in the server.

CPIA1BS | An incorrect nettype was given.

Related Information

« svc reg()--Associate Program and Version with Dispatch

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how rpc_reg() is used:

/* Define renote program nunber and version */
#defi ne RMITPROGNUM (u_l ong) Ox3fffffffL

#def i ne RMTPROGVER (u_l ong) Ox1

#def i ne RMITPROCNUM (u_l ong) Ox1

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>

int *rntproc(int *param) /* renote procedure */
static int result;

result = *param + *param
return(&esult);

}
mai n()
t
int *rntprog();
/* Register renote programw th RPCBi nd */
if (rpc_reg(RMTPROGNUM RMIPROGVER, RMIPROCNUM rnt prog,
xdr_int, xdr_int, "VISIBLE") == -1) {
fprintf(stderr, "Could not Register\n");
exit(1);
svc_run();
exit(1);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

Top-level APIs

Thetop-level APIs allow more customization to both the client and the service while still maintaining an
ease of development and use.
Thetop-level APIsare:

« cInt_call() (Call aremote procedure associated with the client) calls the remote procedure that is
associated with the client handle pointed to by the cint parameter.

« cInt_control() (Change information about a client object) is used to change or retrieve information
about a client object.

« cInt_create() (Create a generic client handle) creates and returns a generic client handle for program
prognum and version versnum on aremote host where the server is located.

« cInt_destroy() (Destroy the RPC Client's Handle) destroys the RPC client's handle.

» svc create() (Create a server handle) creates server handles for all the transports belonging to the
class nettype.

o svc destroy() (Destroy an RPC service transport handle) destroys an RPC service transport handle.

Top | Remote Procedure Call (RPC) APIs| APIs by category

clnt_call()--Call a Remote Procedure
Associated with the Client

Syntax

#i ncl ude <rpc/rpc. h>

enum cl nt_stat clnt_call (CLIENT *clnt,
const u_long procnum
const xdrproc_t inproc,
const caddr _t in,
const xdrproc_t outproc,
caddr _t out,
const struct tinmeval tout);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Theclnt_call() API callsthe remote procedure that is associated with the client handle pointed to by the
cInt parameter.

The caller of the cInt_call() APl must pass avalid client handle obtained from a successful cal to the
cInt_create() API.

Parameters

cint (Input)

A pointer to the client handle structure that results from calling a client creation function that uses a
Remote Procedure Call (RPC) such asthe cInt_create() API.

procnum (Input)
The procedure on the host machine.

inproc (Input)
The name of the XDR procedure that encodes the procedure parameters.

in (Input)
The address of the procedure arguments.

outproc (Input)
The name of the XDR procedure that decodes the procedure results.

out (Output)
The address where results are placed.

tout (Input)
The time alowed for the server to respond.

Authorities

None

Return Value

RPC_SUCCESS(0) Successful

Non-zero value cInt_call() was not successful.

Error Conditions

Upon failure, cInt_call() setsaprivate field in the client handle. This field has atype 'struct rpc_err', and
can be accessed by the cint_geterr() function.

There_statusfield can be set to one of the following values:

[RPC_AUTHERROR] Authentication error. Server's response did not pass authentication
validation.
[RPC_CANTDECODERESY The outproc XDR function has failed.

[RPC_CANTENCODEARGS Theinproc XDR function has failed.

[RPC_CANTRECV]

[RPC_CANTSEND]

[RPC_FAILED]
[RPC_INTR]

[RPC_TIMEDOUT]

[RPC_PROGVERSMISNATCH]
[RPC_PROGNOTREGISTERED]
[RPC_PROGUNAVAIL]

Failure in receiving result. RPC is unable to receive server's
response. There _errnofield is set to the value returned from the

failed call.

[EBADF]

[EIO]

[ENOMEM]
[EOPNOTSUPP]

[EUNKNOWN]

Bad file descriptor. Thisvalueis set when the
client parameter is not valid or the file
descriptor associated with it is aready closed
or damaged.

Input/output error. Thisvalueisset asa
result of network transport failure. It
indicates that RPC cannot handle an error
that occurred in the lower transport levels.

Out of memory.

Operation is not supported. Thisvalueis set
when client is not valid or the file descriptor
associated with it has alimited capabilities.

Unknown system state.

Failure in sending call. RPC is unable to send arequest. The
re_errno field is set to the value returned from the failed call.

[EBADF]

[EIO]

[ENOMEM]
[EOPNOTSUPP]

[EUNKNOWN]

Bad file descriptor. Thisvalueis set when the
client parameter is not valid or the file
descriptor associated with it is already closed
or damaged.

Input/output error. Thisvalueis set asa
result of network transport failure. It
indicates that RPC cannot handle an error
that occurred in the lower transport levels.

Out of memory.

Operation is not supported. Thisvalueis set
when client is not valid or the file descriptor
associated with it has alimited capabilities.

Unknown system state.

The tout parameter is not set properly.

Interrupted RPC call. An exception has occurred in the RPC API.
There_errno field is set to EUNKNOWN.

RPC call istimed out. The client cannot receive aresponsein the
specified timeout period.

There are no registered versions for the program.

The program is not registered with the server.

The program is not registered with the server.

Error Messages

Message | D Error Message Text

CPIA1B11 A problem was encountered in the RPC client.

CPIA1B21 TI-RPC encountered a problem in the transport protocol.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Related Information

« rpc call()--Call a Remote Procedure on the Specified System

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how cint_call() is used:

#i ncl ude <stdi o. h>
#i ncl ude <rpc/rpc. h>
#i ncl ude <sys/tine. h>

mai n()

u_l ong procnum

CLI ENT *cl nt;

enum cl nt _stat cs;

struct rpc_err client_error;
struct tineval total tineout;
int intsend, intrecv;

/* Call the renpote procedure that is associated with client */
cs = clnt_call(clnt, procnum xdr_int,

(caddr _t) & ntsend, xdr_int,

(caddr _t)& ntrecv, total _tineout);

if (cs !'= RPC_SUCCESS) {
clnt_geterr(client,&lient_error);

exit(l);

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

clnt_control()--Change Information about a
Client Object

Syntax

#i ncl ude <rpc/rpc. h>
bool t clnt_control (CLI ENT *cl nt,

const u_int req,
char *info);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Theclnt_control() function is used to change or retrieve information about a client object. For both
connectionless and connection-oriented transports, the supported values for req, their argument types, and
what they do follow:

Valuesfor thereq Argument | Function
Parameter Type
CLSET_TIMEOUT (struct Set total time out
timeval *)
CLGET_TIMEOUT (struct Get total time out
timeval *)
CLGET_SERVER ADDR (struct Get server's address
netbuf *)
CLGET_SvC ADDR (struct Get server's address
netbuf *)
CLSET_SvVC ADDR (struct Set to new address
netbuf *)
CLGET_FD (int*) Get the associated file descriptor
CLSET_FD_CLOSE (void) Close the file descriptor when the
API destroys the client handle
CLSET_FD _NCLOSE (void) Do not close the file descriptor
when the APl destroys the client
handle

CLGET_VERS (unsigned | Get the RPC program's version

long *) number that is associated with the
client handle

CLSET_VERS (unsigned | Set the RPC program's version

long *) number that is associated with the
client handle

CLGET_PROG (unsigned | Get the program number
long *)

CLSET_PROG (unsigned | Set the program number
long *)

CLGET_XID (unsigned | Get the XID of the previous RPC
long *)

CLSET XID (unsigned | Set the XID of the next RPC
long *)

CLSET_RETRY_TIMEOUT! | (struct Set the retry time-out
timeval *)

CLGET_RETRY_TIMEOUT! | (struct Get the retry time-out
timeval *)

Note:

1 Valid only for connectionless transports.

Parameters

cint (Input)
A pointer to the client handle structure.

reg (Input)
The type of operation.

info (Input/Output)

A pointer to the information for request type. The info parameter is expected to be a pointer to an
appropriate structure. The nature of the structure depends on the req parameter.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

Failureis returned only when a bad format of parametersis detected. For example, the info parameter is
NULL, when a pointer to atimeval structure is expected.

Error Messages

Message I D Error Message Text

CPIA1B11 A prablem was encountered in the RPC client.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following exampl e shows how clnt_control() is used:
#i ncl ude <rpc/rpc. h>
mai n()

CLI ENT *cl nt;
int fd;

/* Get the associated file descriptor */
clnt_control (clnt, CLGET_FD, (int *)&fd);

Notes

1. If thetime-out is set using the cInt_control() AP, the timeout parameter passed to the cint_call()

APl will beignoredin all future calls.

2. Theretry time-out is the time that the connectionless RPC client waits for the server to reply before
retransmitting the request.

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

clnt_create()--Create a Generic Client Handle

Syntax

#i ncl ude <rpc/rpc. h>
CLIENT *cl nt_create(const char *host,
const u_long prognum

const u_long versnum
const char *nettype);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The cint_create() API creates and returns a generic client handle for program prognum and version
versnum on a remote host where the server is located. Thisis done using an available transport of the
nettype class. The cint_create() APl tries all the transports of the nettype class available from the
letc/netconfig file, and chooses the first successful one. Transports are tried in top-to-bottom order in the
netconfig database. A default time-out is set and can be modified using clnt_control().

Parameters

host (Input)
The name of the remote host where the server islocated.

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

nettype (Input)

The following classes of transport protocol are valid and are represented as a string either in
lowercase or in uppercase: NETPATH, VISIBLE, CIRCUIT_V, DATAGRAM_V, CIRCUIT_N,
DATAGRAM_N, TCP, and UDP. When this parameter isNULL, NETPATH is assumed.

Authorities

The caller of the cInt_create() APl must have execute (* X) authority to the /etc directory and must have
read (*R) authority to the netconfig file.

Return Value

cnt Upon successful completion, this API returns a client handle.

NULL cInt_create() was not successful. Therpc_createerr variable is set to indicate the reason.

Error Conditions

Upon failure, cInt_create() setsthe global structure rpc_createerr. The rpc_createerr.cf_stat variable
contains a status value that indicates the error reason. The rpc_createerr.cf_error.re_errno variableis
meaningful when some status values are set.

Therpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC API. The
rpc_createerr.cf_error.re_errno variableis set to EUNKNOWN.

[RPC_N2AXLATEFAILURE] Name-to-address trandation failed. Cannot resolve the hostname given
in host.

[RPC_SYSTEMERROR] An RPC error was returned from the system call. The
rpc_createerr.cf_error.re_errno variableis set to the value returned
from the failed call.

[EACCEY Permission denied.

[EADDRINUSE] Local addressisin use. Thisvaueis set
when host is not valid or the file descriptor
associated with it cannot be bound to any
local address.

[EADDRNOTAVAIL] Address not available. Thisvalueis set when
the address obtained by the rpcb_getaddr ()
isrejected by the transport layer.

[EAGAIN] Operation would have caused the process to
be blocked.
[EBADF] Bad file descriptor. Thisvalueis set when

host is not valid or the file descriptor
associated with it is already closed or
damaged.

[ECONNREFUSED] TI-RPC encountered a problem in the
transport. The client cannot connect to the
server.

[RPC_UNKNOWNHOST]
[RPC_UNKNOWNPROTO]

Error Messages

[EFAULT]

[EIO]

[ENOBUFS]
[ENOMEM]

[EOPNOTSUPP]

[EUNKNOWN]

Unknown host.

The address created by the rpcbh_getaddr ()
was not available.

Input/output error. Thisvalueis set as aresult
of network transport failure. It indicates that
RPC cannot handle an error that occurred in
lower transport levels.

Thereis not enough buffer space available for
the API.

Out of memory.

Operation is not supported. Thisvalueis set
when host is not valid or the file descriptor
associated with it has limited capabilities.

Unknown system state.

Unknown client/server protocol. Therpc_createerr.cf_error.re_errnois

set with the errno value returned by setnetconfig() or getnetconfig()

cal. Thiserror is set when the netconf pointer isNULL.

Message | D Error Message Text

CPIA1B1 | A problem was encountered in the RPC client.
CPIA1B21 TI-RPC encountered a problem in the transport protocol.
CPIA1B5 | An incorrect nettype was given.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Related Information

o cInt tp create()--Create a Client Handle

o clnt tli create()--Create a Client Handle

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how clnt_create() is used:

/* Define renpote program nunber and version */
#defi ne RMITPROGNUM (u_l ong) Ox3ffffffflL
#defi ne RMIPROGVER (u_Il ong) Ox1

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>

mai n()
CLI ENT *client;

/* Service request to host RPCSERVER HOST */

client = clnt_create("as400. somewhere.ibm coni, RMIPROGNUM

RMIPROGVER, " TCP");

if (client == (CLIENT *)NULL) {
fprintf(stderr,"Couldn't create client\n");
exit(1);
}
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

clnt_destroy()--Destroy the RPC Client's Handle

Syntax

#i ncl ude <rpc/rpc. h>

void clnt_destroy(CLIENT *clnt);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The cint_destroy() API destroys the RPC client's handle. This function deallocates private data structures,
including the clnt parameter itself. The use of the cint parameter becomes undefined upon calling the
cint_destroy() API. If the RPC library opened the associated file descriptor, or was set using
cInt_control(), the associated file descriptor will be closed.

The caller should call auth_destroy (before calling cint_destroy) to destroy the associated AUTH
structure.

Parameters

cint (Input)
A pointer to the client handle structure.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

None.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Related Information

svc_destroy()--Destroy an RPC Service Transport Handle

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how clnt_destroy() is used:

#i ncl ude <rpc/rpc. h>
mai n()
CLI ENT *cl nt;

[* Create client handle */
clnt = clnt_create(..);

/* Destroy the client handle */
clnt_destroy(clnt);
exit(0);

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_create()--Create a Server Handle

Syntax

#i ncl ude <rpc/rpc. h>

int svc_create(const void
(*di spatch) (const svc_req *,
const SVCXPRT *),
const u_long prognum
const u_long versnum
const char *nettype);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The svc_create() function creates server handles for al the transports belonging to the class nettype.

svc_create() tries al the transports of the nettype class that are available from the /etc/netconfig filein
top-to-bottom order. svc_create() registers itself with the RPCBind service.

Parameters

dispatch (Input)

The server dispatch function. dispatch is called when there is aremote procedure call for the given
prognum and ver snum.

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program

nettype (Input)

The following classes of transport protocol are valid: NETPATH, VISIBLE, CIRCUIT_V,
DATAGRAM _V, CIRCUIT_N, DATAGRAM N, TCP, and UDP.

Authorities
The caler of the svc_create() API must have execute (* X) authority to the /etc directory and must have

read (*R) authority to the netconfig file.

Return Value

num Upon successful completion, svc_create() returns the number of server handlesit creates.

0 svc_create() was not successful. The errno variable is set to indicate the reason.

Error Conditions

This APl calls setnetconfig() and getnetconfig() APIsin order to perform itstask. The API inherits all
error conditions from those APIs. It aso inherits all error conditions from svc_tp_create() APl except
EINVAL.

Error Messages

Message I D Error Message Text

CPIA1B11 A praoblem was encountered in the RPC client.

CPIA1B21 TI-RPC encountered a problem in the transport protocol.
CPIA1B3 | TI-RPC encountered a problem in the server.

CPIA1B5 | An incorrect nettype was given.

CPIA1B8 | A prablem occurred while trying to contact the RPCBind daemon.

CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Related Information

o svc tp create()--Create a Server Handle
o svc tli create()--Create a Server Handle

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how svc_create() is used:

/* Define renpote program nunber and version */
#defi ne RMITPROGNUM (u_l ong) Ox3ffffffflL
#defi ne RMIPROGVER (u_Il ong) Ox1

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>

static void exmproc();

mai n()

{

int transpnum

transpnum = svc_create(exm proc, RMIPROGNUM RMIPROGVER,
"VI SI BLE") ;
if (transpnum == 0){
fprintf(stderr, "Cannot create a service.\n");
exit(1);

svc_run(); /* No return */

}

/* The server dispatch function */
static void exmproc(struct svc_req *rqgstp, SVCXPRT *transp)

{

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_destroy()--Destroy an RPC Service
Transport Handle

Syntax

#i ncl ude <rpc/rpc. h>

voi d svc_destroy(SVCXPRT *xprt);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The svc_destroy() function destroys an RPC service transport handle. This function deallocates the private
data structures, including the handle itself. After the svc_destroy() API is used, the handle pointed to by the
Xprt parameter is no longer defined.

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

None.

Error Messages

None.

Related Information

o clnt destroy()--Destroy the RPC Client's Handle
o Svc create()--Create a Server Handle

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how svc_destroy() is used:
#i ncl ude <rpc/rpc. h>
mai n()

SVCXRPT *transp;

/* Destroy the service handle */
svc_destroy(transp);

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

Intermediate-level APIs

The intermediate-level APIs are similar to the top-level APIs, but the user applications select the
transport-specific information by using network selection APIs. These APIs allow more customization and
greater control over the transport that is used.

Theintermediate-level APIs are:

o cInt tp create() (Create aclient handle) creates a client handle for the program prognum, the
version versnum, and for the transport specified by netconf.

« svc tp create() (Create a server handle) creates a server handle for the network specified by
netconf, and registers itself with the RPC service package (RPCBind).

Top | Remote Procedure Call (RPC) APIs| APIs by category

clnt_tp_create()--Create a Client Handle

Syntax

#i ncl ude <rpc/rpc. h>
#i ncl ude <netconfig. h>

CLIENT *clnt _tp_create(const char *host,
const u_long prognum
const u_long versnum

const struct netconfig
*net conf);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Theclnt_tp_create() API creates aclient handle for the program prognum, the version versnum, and for
the transport specified by netconf. The remote RPCBind service on the host machine host is consulted for
the address of the remote service.

Parameters

host (Input)
The name of the remote host where the server islocated.

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

netconf (Input)
The transport protocol to use.

Authorities

Thecaler of thecInt_tp_create() APl must have execute (* X) authority to the /etc directory and must have
read (*R) authority to the netconfig file.

Return Value

cint Upon successful completion, this function returns a client handle.

NULL cInt_tp_create() was not successful. The rpc_createerr variable is set to indicate the reason.

Error Conditions

Upon failure, cInt_tp_create() setsthe global structure rpc_createerr. Therpc createerr.cf _stat variable
contains a status value that indicates the error reason. The rpc_createerr.cf_error.re_errno variableis
meaningful when some status values are set.

Therpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR]

[RPC_N2AXLATEFAILURE]

[RPC_PROGNOTREGISTERED]
[RPC_RPCBFAILURE]
[RPC_SYSTEMERROR]

Interrupted RPC call. An exception has occurred in the RPC API.
Therpc_createerr.cf_error.re_errnoisset to EUNKNOWN.

Name-to-address trandation failed. The APl cannot resolve the
hostname given in host.

Remote program is not registered.
A failure occurred in the RPCBind daemon.

RPC error returned from system call. The
rpc_createerr.cf_error.re_errno variable is set to the value returned
from the failed call.

[EACCEY Permission denied.

[EADDRINUSE] Local addressisin use. Thisvalue
is set when the transport endpoint
cannot be bound to any local
address. ThisAPI cals
rpcb_getaddr() APl in order to
perform the API's task. It inherits
all error conditions from
cint_tli_create() and
rpcb_getaddr() APIs, except
RPC_FAILED.

[EADDRNOTAVAIL] Address not available. Thisvalue
is set when the address obtained
by the rpcb_getaddr () isrejected
by transport layer.

[EAGAIN] Operation would have caused the
process to be blocked.

[EBADF] Bad file descriptor. Thisvalueis
set when the transport endpoint
created is not valid.

[EFAULT]

[EIO]

[ENOBUFS]

[ENOMEM]
[EOPNOTSUPP]

[EUNKNOWN]
[RPC_UNKNOWNHOST]
[RPC_UNKNOWNPROTO]

Error Messages

The address created by the
rpcb_getaddr () was not available.

Input/output error. Thisvalueis
set as aresult of network transport
failure. It indicates that RPC
cannot handle an error that
occurred in lower transport levels.

Thereis not enough buffer space
available for the API.

Out of memory.

Operation is not supported. This
valueis set when the transport
endpoint was opened with limited
capabilities.

Unknown system stete.
Unknown host.

Unknown client/server protocol.
The
rpc_createerr.cf_error.re_errno
variable is not applicable. This
error is set when the netconf
pointer isSNULL.

Message | D Error Message Text
CPIA1B1 | A problem was encountered in the RPC client.
CPIA1B21 TI-RPC encountered a problem in the transport protocol.

CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Related Information

o clnt create()--Create a Generic Client Handle
o clnt tli create()--Create a Client Handle

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how clnt_tp_create() is used:

/* Define renote program nunber and version */
#defi ne RMITPROGNUM ((u_l ong) Ox3fffffff)
#def i ne RMITPROGVER ((u_l ong) Ox1)

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

mai n()

CLI ENT
struct

/* Returns a pointer to nconf corresponding to NETCONF */

<stdi o. h>
<rpc/rpc. h>
<net config. h>
<netdir. h>

*client;
net confi g *nconf;

if ((nconf = getnetconfigent("UDP")) ==

(struct netconfig *)NULL) {

fprintf(stderr, "Cannot get netconfig entry for
exit(1l);

client

= clnt_tp_create("as400. sonrewhere.i bm conf,

if (client == (CLIENT *)NULL) {

fprintf(stderr,

"Cannot create an RPC client\n");

exit(l);

}

fprintf(stderr,

clnt_destroy(client);

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

RMIPROGNUM
RMIPROGVER, nconf);

"Successfully created a client handle\n");

svc_tp_create()--Create a Server Handle

Syntax

#i ncl ude <rpc/rpc. h>

SVCXPRT svc_tp_create(const void
(*di spatch) (const svc_req *,
const SVCXPRT *),
const u_long prognum
const u_long versnum
const struct netconfig *netconf);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The svc_tp_create() function creates a server handle for the network specified by netconf, and registers
itself with the RPC service package (RPCBind).

Parameters
digpatch() (Input)
The server dispatch function. dispatch() is called when there is aremote procedure call for the

given prognum and versnum. The call to dispatch requires calling svc_run() on the server side.

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

netconf (Input)
The transport protocol to use.

Authorities

No authorization is needed.

Return Value

Xprt Upon successful completion, this function returns the service handle.

NULL svc_tp_create() was not successful. The errno variableis set to indicate the reason.

Error Conditions

This API callssvc tli_create() and svc_reg() functionsin order to perform its task. It inherits al error
conditions from those functions, except setnetconfig() and getnetconfig() errors and
RPC_UNKNOWNADDR from svc_reg().

Error Messages

Message | D Error Message Text

CPIA1B11 A prablem was encountered in the RPC client.

CPIA1B21 TI-RPC encountered a problem in the transport protocol.
CPIA1B31 TI-RPC encountered a problem in the server.

CPIA1BS8 | A prablem occurred while trying to contact the RPCBind daemon.

CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

Related Information

o svc create()--Create a Server Handle
o svc tli create()--Create a Server Handle

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how svc_tp_create() is used:

/* Define renmote program nunber and version */
#define RMITPROGNUM (u_Il ong) Ox3ffffffflL

#defi ne RMTPROGVER (u_Il ong) Ox1

#i ncl ude <stdi o. h>
#i ncl ude <rpc/rpc. h>
#i ncl ude <netconfig. h>

static void exmproc();
/* Dispatcher routine, defined later in program?*/

mai n()

SVCXPRT *transp;
struct netconfig *nconf;

/* Returns a pointer to nconf corresponding to UDP */
if ((nconf = getnetconfigent("UDP")) ==
(struct netconfig *)NULL) {
fprintf(stderr, "Cannot get netconfig entry for UDP\n");
exit(l);

transp = svc_tp_create(exmproc, RMIPROGNUM RMIPROGVER,
nconf);
if (transp == (SVCXPRT *)NULL) {
fprintf(stderr, "Cannot create service.\n");
exit(1l);

.s;/.c_run();
}
/* The server dispatch function */

static void exmproc(struct svc_req *rgstp, SVCXPRT *transp)

{

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

Expert-level APIs

The expert-level APIs are the lowest layer of TI-RPC APIs available on the server. The application directly
chooses the transport to use, and has an increased level of control over the details of the client-side and the
server-side transport handles. These APIs are similar to the intermediate-level APIswith an additional
control provided by using the name-to-address translation APIs.

The expert-level APIsare:

cnt_tli_create() (Create aclient handle) creates an RPC client handle for the remote program
prognum and version versnum.

rpcb _getaddr() (Find the universal address of a service) is an interface to the RPC service package
(RPCBInd).

rpcb_set() (Register the server address with the RPCBInd) is an interface to the RPC service
package (RPCBind) daemon.

rpcb_unset() (Unregister Their Addresses) is an interface to the RPC service package (RPCBind),

which destroys the mapping between the triple (prognum, versnum, netconf->nc_netid) and the
address on the host machine's RPCBind service.

svc reg() (Associate program and version with dispatch) associates prognum and versnum with the
service dispatch procedure dispatch.
svc tli_create() (Create a server handle) creates an RPC server handle.

svc_unreg() (Delete an assaciation set by svc_reg()) removes mappings between dispatch functions
and the service procedure that is identified by the prognum and versnum parameters.

Top | Remote Procedure Call (RPC) APIs| APIs by category

cint_tli_create()--Create a Client Handle

Syntax

#i ncl ude <rpc/rpc. h>
#i ncl ude <netconfig. h>

CLIENT *clnt _tli_create(const int fildes,
const struct netconfig
*net conf,
const struct netbuf *svcaddr,
const u_long prognum
const u_long versnum
const u_int sendsz,
const u_int recvsz);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Theclint_tli_create() API creates an RPC client handle for the remote program prognum and version
versnum. The remote program is located at address svcaddr. The client uses the transport that is specified
by netconf. Depending upon the type of the transport (connection-oriented or connectionless),
cint_tli_create() calls the appropriate client-creation functions.

Parameters

fildes (Input)

A file descriptor. The only permitted value isRPC_ANY FD. The API opens an internal file
descriptor which is not accessible by the user applications.

netconf (Input)
The transport protocol.

svcaddr (Input)
A pointer to the address where the remote program is located.

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

sendsz (Input)

The size of the send buffer. When avalue of zero is specified, a suitable default will be chosen by
the system.

recvsz (Input)

The size of the receive buffer. When avalue of zero is specified, a suitable default will be chosen
by the system.

Authorities

No authorization is required.

Return Value

cnt Upon successful completion, this function returns a client handle.

NULL cInt_tli_create() was not successful. Therpc_createerr variable is set to indicate the reason.

Error Conditions

Upon failure, cInt_tli_create() setsthe global structure rpc_createerr. The rpc_createerr.cf_stat variable
contains a status value that indicates the error reason. The rpc_createerr.cf_error.re_errno variableis
meaningful when some status values are set.

Therpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC API. The
rpc_createerr.cf_error.re_errnoisset to EUNKNOWN.

[RPC_SYSTEMERROR] RPC error returned from system call. Therpc_createerr.cf_error.re_errno
variable is set to the value returned from the failed call.

[EACCEY Permission denied.

[EADDRINUSE] Local addressisin use. Thisvalueis set when
fildes cannot be bound to any local address.

[EADDRNOTAVAIL] Address not available. Thisvalueis set when
svcaddr isrejected by the transport layer.

[EAGAIN] Operation would have caused the process to be
blocked.
[EBADF] Bad file descriptor. Thisvalueis set when the

fildes parameter is not valid or cannot be used
as atransport endpoint.

[ECONNREFUSED] TI-RPC encountered a problem in the
transport. The client cannot connect to the

server.

[EFAULT] The address used for an svcaddr was not
available.

[EIO] Input/output error. Thisvalueis set as aresult

of network transport failure. It indicates that
RPC cannot handle an error that occurred in
lower transport levels.

[ENOBUFY There is not enough buffer space available for
the API.

[ENOMEM] Out of memory.

[EOPNOTSUPP] Operation is not supported. Thisvalueis set

when fildes represents a transport endpoint
with limited capabilities.

[EUNKNOWN] Unknown system state.

[RPC_UNKNOWNADDR] Unknown remote address. The rpc_createerr.cf_error.re_errno variable
is not applicable. This error is set when the svcaddr pointer isNULL.

[RPC_UNKNOWNPROTO] Unknown client/server protocol. Therpc_createerr.cf_error.re_errno
variableis not applicable. This error is set when the netconf pointer is
NULL.

Error Messages

Message | D Error Message Text
CPIA1B11 A prablem was encountered in the RPC client.
CPIA1B21 TI-RPC encountered a problem in the transport protocol.

CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Related Information

o cInt create()--Create a Generic Client Handle
o clnt tp create()--Create aClient Handle

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how clnt_tli_create() is used:

/

* Define renpote program nunber and version */

#defi ne RMITPROGNUM ((u_l ong) Ox3fffffff)
#defi ne RMIPROGVER ((u_l ong) Ox1)

#i ncl ude <stdio. h>

#i ncl ude <rpc/rpc. h>
#i ncl ude <netconfig. h>
#i ncl ude <netdir. h>

mai n()

{

CLI ENT *client;

struct netconfig *nconf;

struct netbuf *service_address;
struct nd_addrlist *nas;

struct nd_hostserv hs;

/* Returns a pointer to nconf corresponding to NETCONF */
if ((nconf = getnetconfigent("UDP")) ==
(struct netconfig *)NULL) {
fprintf(stderr, "Cannot get netconfig entry for UDP\n");
exit(1);
}

hs. h_host = "as400. sonewhere. i bm cont;
hs. h_serv = "RPCBI N';
i f (netdir_getbynanme(nconf, &s, &as) < 0
|| nas->n_cnt == 0) {

fprintf(stderr, "Cannot translate host name or service nane\n");
servi ce_address = nas->n_addrs;

client = clnt_tli_create(RPC_ANYFD, nconf, service_address,
RMITPROGNUM RMIPROGVER, 0, 0);
if (client == (CLIENT *)NULL) {
fprintf(stderr, "Cannot create an RPC client\n");
exit(1);
}

fprintf(stderr, "Successfully created a client handle\n");

clnt_destroy(client);

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

rocb_getaddr()--Find the Universal Address of
a Service

Syntax

#i ncl ude <rpc/rpc. h>
#i ncl ude <netconfig. h>

bool t rpcb_getaddr(const u_l ong proghum
const u_long versnum
const struct netconfig *netconf,

struct netbuf *svcaddr,
const char *host);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Therpcb_getaddr () function is an interface to the RPC service package (RPCBind). The function finds the
address of the service on the host that is registered with program number prognum and version versnum,
and uses the transport protocol that is associated with netconf.

Parameters

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

netconf (Input)
The transport protocol.

svcaddr (Output)
A pointer to the address of the requested service on the remote host machine.

host (Input)
The name of the remote host where the server is|located.

Authorities

The caller of therpcb_getaddr () APl must have execute (* X) authority to the /etc directory and must have
read (*R) authority to the netconfig file.

Return Value

TRUE (1) rpcb_getaddr() was successful. The address of the remote service in the svcaddr parameter
was returned.

FALSE (0) rpcb_getaddr() was unsuccessful.

Error Conditions

Upon failure, rpch_getaddr () setsthe global structure rpc_createerr. The rpc_createerr.cf_stat variable
contains a status value, which indicates the error reason. Therpc_createerr.cf_error.re_errno variableis
meaningful when some status values are set.

Therpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_FAILED] The buffer referenced by the svcaddr parameter does not have
enough space. re_errno field is set to ENOBUFS.

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC API.
Therpc_createerr.cf_error.re_errnoisset to EUNKNOWN.

[RPC_N2AXLATEFAILURE] Name-to-address trangl ation failed.
[RPC_PROGNOTREGISTERED] Remote program is not registered.

[RPC_RPCBFAILURE] Unable to contact the RPCBind daemon.

[RPC_UNKNOWNADDR] Unknown address. The svcaddr isinvalid.

[RPC_UNKNOWNHOST] Unknown host. Therpc_createerr.cf_error.re_errno variableis not
applicable.

[RPC_UNKNOWNPROTOQ] Unknown client/server protocol. The

rpc_createerr.cf_error.re_errnois set with errno value returned
from the setnetconfig() or getnetconfig() cal.

ThisAPI callsclnt_tli_create() and clnt_call() APIs. It inherits RPC_SY STEMERROR from
cInt_tli_create() API and it inherits all error conditions from cint_call() APl except RPC_TIMEDOUT,
RPC_PROGNOTREGISTERED, RPC_PROGVERSMISMATCH, and RPC_FAILED.

Error Messages

Message I D Error Message Text

CPIA1B1 | A problem was encountered in the RPC client.

CPIA1B21 TI-RPC encountered a problem in the transport protocol.
CPIA1B8 | A praoblem occurred while trying to contact the RPCBind daemon.

CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how rpcb_getaddr is used:

/* Define renpte program nunber and version */
#def i ne RMITPROGNUM (u_l ong) Ox3fffffffL

#def i ne RMTPROGVER (u_l ong) Ox1

#defi ne ADDBUFSI ZE 100

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>
#i ncl ude <netconfig. h>

mai n()

struct netconfig *nconf;
struct netbuf *svcaddr;
char addr buf [ADDRBUFSI ZE] ;

svcaddr.len = O;
svcaddr . max|l en = ADDRBUFSI| ZE;
svcaddr. buf = addrbuf;

/* Returns a pointer to nconf corresponding to NETCONF */
if ((nconf = getnetconfigent("UDP')) ==
(struct netconfig *)NULL) {
fprintf(stderr, "Cannot get netconfig entry for UDP\n");
exit(1l);

if (!rpcb_getaddr (RMTPROGNUM RMIPROGVER, nconf,

svcaddr, "as400.sonewhere.ibm cont')){
fprintf(stderr, "rpcb _getaddr failed!!'\n");
exit(l);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

rpcb_set()--Register the Server Address with
the RPCBInd

Syntax

#i ncl ude <rpc/rpc. h>
#i ncl ude <netconfig. h>

bool t rpcb_set(const u_long proghum
const u_long versnum

const struct netconfig *netconf,
const struct netbuf *svcaddr);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Therpcb_set() function is an interface to the RPC service package (RPCBind) daemon. The function
establishes a mapping between the triple (prognum, versnum, netconf->nc_netid) and svcaddr on the
machine's RPCBind service. The value of netconf->nc_netid must correspond to a network identifier that is
defined by the netconfig database.

Parameters

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

netconf (Input)
The transport protocol.

svcaddr (Input)
A pointer to the local address of the service.

Authorities

No authorization is required.

Return Value

TRUE (1) rpcb_set was successful.
FALSE (0) rpcb_set was unsuccessful.

Error Conditions

Upon failure, rpch_set() setsthe global structure rpc_createerr. Therpc_createerr.cf_stat variable contains
a status value, which indicates the error reason. The rpc_createerr.cf_error.re_errno variable is meaningful
when some status values are set.

Therpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC API. The
rpc_createerr.cf_error.re_errnoisset to EUNKNOWN.

[RPC_N2AXLATEFAILURE] Nameto address trandation failed.
[RPC_RPCBFAILURE] Unable to contact the RPCBind daemon.
[RPC_UNKNOWNADDR] Unknown address. The svcaddr isinvalid.

[RPC_UNKNOWNADDR] Unknown remote address. Therpc_createerr.cf_error.re_errno variable
is not applicable.

[RPC_UNKNOWNPROTO] Unknown client/server protocol. The rpc_createerr.cf_error.re_errno
variableis not applicable.

ThisAPI callscint_tli_create() and cInt_call() APIsin order to perform its task. It inherits
RPC_SYSTEMERROR from cint_tli_create() APl and it inherits all error conditions from clnt_call() AP
except RPC_TIMEDOUT and RPC_FAILED.

Error Messages

Message I D Error Message Text

CPIA1B1 | A problem was encountered in the RPC client.

CPIA1B21 TI-RPC encountered a problem in the transport protocol.
CPIA1B8 | A praoblem occurred while trying to contact the RPCBind daemon.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Related Information

o rpcb unset()--Unregister Their Addresses

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how rpcb_set() is used:

/* Define renmote program nunmber and version */
#define RMITPROGNUM (u_Il ong) Ox3ffffffflL
#defi ne RMTPROGVER (u_Il ong) Ox1

#i ncl ude <stdi o. h>
#i ncl ude <rpc/rpc. h>
#i ncl ude <netconfig. h>

mai n()

{ .
struct netconfig *nconf;
struct netbuf *svcaddr;

/* Returns a pointer to nconf corresponding to NETCONF */
if ((nconf = getnetconfigent("UDP")) ==
(struct netconfig *)NULL) {
fprintf(stderr, "Cannot get netconfig entry for UDP\n");
exit(1);

/* Register to the RPCBind */

if (!rpcb_set (RMTPROGNUM RMIPROGVER, nconf, svcaddr)){
fprintf(stderr, "rpcb_set failed!!'\n");
exit(1);

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

rpcb_unset()--Unregister Their Addresses

Syntax

#i ncl ude <rpc/rpc. h>
#i ncl ude <netconfig. h>

bool t rpcb_unset(const u_long prognhum

const u_long versnum
const struct netconfig *netconf);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Therpcb_unset() function is an interface to the RPC service package (RPCBIind), which destroys the
mapping between the triple (prognum, versnum, netconf->nc_netid) and the address on the host machine's
RPCBInd service. If netconf isNULL, rpcb_unset() destroys al mapping between the above triple and the
addresses on the machine's RPCBind service.

Parameters

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

netconf (Input)
The transport protocol.

Authorities

The caler of therpch_unset() APl must have execute (* X) authority to the /etc directory and must have
read (*R) authority to the netconfig file.

Return Value

TRUE (1) rpcb_unset was successful.
FALSE (0) rpch_unset was unsuccessful.

Error Conditions

Upon failure, rpcb_unset() setsthe global structurerpc createerr. The rpc_createerr.cf_stat variable
contains a status value, which indicates the error reason. The rpc_createerr.cf_error.re_errno variableis
meaningful when some status values are set.

Therpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC API. The
rpc_createerr.cf_error.re_errnoisset to EUNKNOWN.

[RPC_RPCBFAILURE] Unable to contact the RPCBind daemon.

ThisAPI callsclnt_tli_create() and clnt_call() APIsin order to perform itstask. It inherits
RPC_SYSTEMERROR from cInt_tli_create() APl and it inherits all error conditions from clnt_call() API
except RPC_TIMEDOUT and RPC_FAILED.

Error Messages

Message I D Error Message Text

CPIA1B1 | A problem was encountered in the RPC client.

CPIA1B21 TI-RPC encountered a problem in the transport protocol.
CPIA1B8 | A prablem occurred while trying to contact the RPCBind daemon.

CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Related Information

o rpcbh set()--Register the Server Address with the RPCBind

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how rpcb_unset() is used:

/* Define renpote program nunber and version */
#defi ne RMITPROGNUM (u_l ong) Ox3ffffffflL
#defi ne RMIPROGVER (u_Il ong) Ox1

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>
#i ncl ude <netconfig. h>

mai n()

{

struct netconfig *nconf;

/* Returns a pointer to nconf corresponding to NETCONF */
if ((nconf = getnetconfigent("UDP")) ==
(struct netconfig *)NULL) {
fprintf(stderr, "Cannot get netconfig entry for UDP\n");
exit(1);
}

/* Destroy the connect with the RPCBi nd daenon */

if (!rpcb_unset (RMTPROGNUM RMIPROGVER, nconf)){
fprintf(stderr, "rpcb _unset failed!!\n");
exit(1);

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_reg()--Associate Program and Version with
Dispatch

Syntax

#i ncl ude <rpc/rpc. h>
#i ncl ude <netconfig. h>

bool t svc_reg(const SVCXPRT *xprt,
const u_long prognum
const u_long versnum
const void (*dispatch)(const svc_req *,
const SVCXPRT *),
const struct netconfig *netconf);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The svc_reg() APl associates prognum and versnum with the service dispatch procedure dispatch. If
netconf is NULL, the serviceis not registered with the RPC service package (RPCBind). If netconf is
non-null, then a mapping of the triple (prognum, versnum, netconf->nc_netid) to xprt->xp_Itaddr is
established with the local RPCBind service.

Parameters

xprt (1/0)
A pointer to a Remote Procedure Call (RPC) service transport handle.

prognum (Input)
The program number of the remote program.

versnum (Input)
The version number of the remote program.

dispatch (Input)
The server dispatch function.

netconf (Input)
The transport protocol.

Authorities

The caler of the svc_reg() APl must have execute (* X) authority to the /etc directory and must have read
(*R) authority to the netconfig file.

Return Value

TRUE (1) svc_reg() was successful.

FALSE (0) svc_reg() was not successful. The errno variable is set to indicate the reason.

Error Conditions

This API callsthe setnetconfig() and getnetconfig() functions in order to perform its task. The APl inherits
al error conditions from those functions. It also callsrpch_set() for registering in RPCBind inheriting al
error conditions from the API, except RPC_UNKNOWNPROTO.

[EINVAL] Attempt to register a dispatcher with prognum and versnum, which are already used by
another dispatcher.

[EALREADY] Attempting to register a service which is already registered.

Error Messages

Message I D Error Message Text

CPIA1B11 A praoblem was encountered in the RPC client.

CPIA1B21 TI-RPC encountered a problem in the transport protocol.
CPIA1BS | A problem occurred while trying to contact the RPCBind daemon.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.
CPIA1B21 TI-RPC encountered a problem with the transport protocol.

CPIA1B8 | A prablem occurred while trying to contact the RPCBind daemon.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how svc reg() is used:

/* Define renpote program nunber and version */
#defi ne RMITPROGNUM (u_l ong) Ox3ffffffflL
#defi ne RMIPROGVER (u_Il ong) Ox1

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>
#i ncl ude <netconfig. h>

static void exmproc();
mai n()

SVCXPRT *xprt;
struct netconfig *nconf;
int result;

/* Returns a pointer to nconf corresponding to NETCONF */
if ((nconf = getnetconfigent("UDP")) ==
(struct netconfig *)NULL) {
fprintf(stderr, "Cannot get netconfig entry for UDP\n");
exit(1);
}

result = svc_reg(xprt, RMIPROGNUM RMIPROGVER,
exm proc, nconf);
if ('result){
fprintf(stderr, "svc_reqg failed!'!\n");
exit(1);
}

}

/* The server dispatch function */
static void exmproc(struct svc_req *rqgstp, SVCXPRT *transp)

{

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_tli_create()--Create a Server Handle

Syntax

#i ncl ude <rpc/rpc. h>
#i ncl ude <netconfig. h>

SVCXPRT svc_tli _create(const int fildes,
const struct netconfig
*net conf ,
const struct t_bind
*pi ndaddr,
const u_int sendsz,
const u_int recvsz);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The svc_tli_create() function creates an RPC server handle.

Parameters

fildes (Input)

The file descriptor on which the service is listening. The only permitted value for a user application
isSRPC_ANYFD. If the file descriptor fildesisRPC_ANY FD, it opens afile descriptor on the
transport specified by netconf.

netconf (Input)
The transport protocol.

bindaddr (Input)
The address where fildes is bound if it is unbound.

sendsz (Input)

The size of the send buffer. When avalue of zero is specified, a suitable default value will be
chosen by the system.

recvsz (Input)

The size of the receive buffer. When a value of zero is specified, a suitable default value will be
chosen by the system.

Authorities

No authorization is required.

Return Value

xXprt Upon successful completion, this function returns a pointer to the created RPC server handle.

NULL svc tli_create() was not successful. The errno variableis set to indicate the reason.

Error Conditions

[ENOMEM]
[EUNKNOWN]
[EADDRNOTAVAIL]

[EIO]

[EACCES
[EBADF]

[EFAULT]
[ENOBUFS
[EINVAL]
[EADDRINUSE]

Error Messages

Out of memory.
Unknown system state.

Address not available. Thisvalueis set when bindaddr is rejected by the
transport layer.

Input/output error. Thisvalueis set as aresult of network transport failure. It
indicates that RPC cannot handle an error that occurred in lower transport levels.

Permission denied.

Bad file descriptor. Thisvalueis set when the fildes parameter is not valid or
cannot be used as a transport endpoint.

The address used for a bindaddr was not available.
There is not enough buffer space available for the API.
Aninvalid value was supplied for the input parameter nconf.

Local addressisin use. Thisvalueis set when fildes cannot be bound to any
local address.

Message I D Error Message Text
CPIA1B21 TI-RPC encountered a problem in the transport protocol.
CPIA1B3 | TI-RPC encountered a problem in the server.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Related Information

o svc create()--Create a Server Handle
o Svc tp create()--Create a Server Handle

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how svc tli_createis used:

/* Define renpote program nunber and version */
#defi ne RMITPROGNUM (u_l ong) Ox3ffffffflL
#def i ne RMIPROGVER (u_Il ong) Ox1

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>
#i ncl ude <netconfig. h>

mai n()

{
SVCXPRT *svc;
struct netconfig *nconf;
int fd;

/* Returns a pointer to nconf corresponding to UDP */
if ((nconf = getnetconfigent("UDP")) ==
(struct netconfig *)NULL) {
fprintf(stderr, "Cannot get netconfig entry for UDP\n");
exit(1);

svc = svc_tli _creat e(RPC_ANYFD, nconf,
(struct t_bind *)NULL,
0, 0);
if (svc == (SVCXPRT *)NULL){
fprintf(stderr, "svc_tli _create failed!!'\n");
exit(1);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_unreg()--Delete an Association Set by
svc_reg()

Syntax

#i ncl ude <rpc/rpc. h>

voi d svc_unreg(const u_long proghum
const u_long versnum;

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The svc_unreg() function removes mappings between dispatch functions and the service procedure that is
identified by the prognum and versnum parameters. It also removes the mapping between the port number
and the service procedure, which isidentified by the prognum and versnum parameters.

Parameters

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPIA1B11 A problem was encountered in the RPC client.
CPIA1B21 TI-RPC encountered a problem in the transport protocol.
CPIA1BS8 | A prablem occurred while trying to contact the RPCBind daemon.

CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

Related Information

o svc reg()--Associate Program and Version with Dispatch

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how svc_unreg is used:

/* Define renmote program nunber and version */
#define RMITPROGNUM (u_Il ong) Ox3ffffffflL

#defi ne RMTPROGVER (u_Il ong) Ox1

#i ncl ude <stdi o. h>

#i ncl ude <rpc/rpc. h>

#i ncl ude <netconfig. h>

static void exmproc();

mai n()

SVCXPRT *xprt;
struct netconfig *nconf;

result = svc_reg(xprt, RMIPROGNUM RMIPROGVER,

exm proc, nconf);
if ('result){
fprintf(stderr, "svc_reg failed!'!\n");
exit(1);

/* Renmpbves nappi ng between procedures and objects */
svc_unr eg(RMTPROGNUM RMIPROGVER) ;

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

Other APIs

These APIs are used primarily in conjunction with all the layers except the simplified-level APIs. These
APIs provide methods for sending back errors from the service to the client, for freeing space allocated to
the clients and services, and for enhancing error detection and reporting.

The system functions that work with applications from the previous four categories are:

cInt_freeres() (Free data allocated by the RPC or XDR system) frees any data allocated by the RPC
or XDR system when it decoded the results of an RPC call.

cint_geterr() (Get the error structure from the client handle) copies the error structure out of the
client handle to the structure at address errp.

svcerr_decode() (Send information to client for decode error) sends information to the remote client
that the service dispatch routine could not decode the remote parameters.

sveerr_noproc() (Send information to client for procedure number error) sends information to the

client that the service dispatch routine did not implement the procedure number that the caller
reguested.

sveerr_systemerr() (Send information to client for system error) sends information to the remote
client that the service dispatch routine detected a system error not covered by any particular
protocol.

svcerr_weakauth() (Send Authentication Error Indication to a Client) sends information to aremote
client that the server dispatch function detected an authentication error.

svc freeargs() (Free data alocated by the RPC or XDR system) frees any data allocated by the
RPC or XDR functions when those functions decode the arguments to a service procedure by using
svc_getargs().

svc_getargs() (Decode the arguments of an RPC request) decodes the arguments of an RPC request
associated with the RPC service transport handle xprt.

svc_getrpecaler() (Get the network address of the caller) retrieves the network address of the
remote client who is calling the procedure that is associated with the RPC service transport handle.
svc_run() (Wait for RPC requests to arrive) waits for RPC requests to arrive and calls the
appropriate service procedure.

svc_sendreply() (Send the results of a procedure call to aremote client) sends the results of a
procedure call to aremote client.

Top | Remote Procedure Call (RPC) APIs| APIs by category

clnt_freeres()--Free Data Allocated by the RPC
or XDR System

Syntax

#i ncl ude <rpc/rpc. h>
bool t clnt _freeres(CLI ENT *cl nt,

const xdrproc_t inproc,
caddr _t in);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

ThecInt_freeres() function frees any data allocated by the RPC or XDR system when it decoded the results
of an RPC call.

Parameters

cint (Input)
A pointer to the client handle.

inproc (Input)
XDR routine describing the results.

in (Input)
(Input) The address of the results.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

This function returns FAL SE when the in parameter isNULL or an exception has occurred. In case of an
exception, cint_freeres() triesto set RPC_INTR in the client handle. This status can be retrieved by a call
to cint_geterr().

Error Messages

Message I D Error Message Text

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how cint_freeres() is used:

#i ncl ude <stdi o. h>
#i ncl ude <rpc/rpc. h>

u_l ong procnum

CLI ENT *cl nt;

enum cl nt_stat stat;

struct rpc_err client_error;
struct tineval tineout;

struct array_args{
unsi gned int size;
char *dat a;

b

struct array_args args; /* Arg with buffer to send */
struct array_args result; /* Arg with buffer to receive */

/* Call the renpote procedure that is associated with client */

stat = clnt_call(clnt, procnum (xdrproc_t)xdr_array,
(char *)&args, (xdrproc_t)xdr_array,
(char *)&result, timeout);

if (stat != RPC_SUCCESS){
/* Failure on call */
if (result.data !'= (char *) NULL){
if('clnt _freeres(clnt, (xdrproc_t)xdr_array,
(char *)&result))
/* clnt _freeres() failed */

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

clnt_geterr()--Get the Error Structure from the
Client Handle

Syntax

#i ncl ude <rpc/rpc. h>

void clnt_geterr(const CLIENT *clnt,
struct rpc_err *errp);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Theclnt_geterr () function copies the error structure out of the client handle to the structure at address errp.

Parameters

cint (Input)
A pointer to the client handle.

errp (Output)
A pointer to the error structure.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

When an exception occurs, clnt_geterr () triesto set RPC_INTR in the client handle. This status can be
retrieved by another valid cint_geterr() call. If the attempt was unsuccessful, no error indication is given.

Error Messages

Message I D Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how cint_geterr() is used:

#i ncl ude <stdi o. h>
#i ncl ude <rpc/rpc. h>
#i ncl ude <sys/tine. h>

mai n()

{
u_l ong procnum
CLI ENT *cl nt;
enum cl nt _stat cs;
struct rpc_err client_error;
struct tineval total tineout;
int intsend, intrecv;

/* Call the renpote procedure that is associated with client */
cs = clnt_call(clnt, procnum xdr_int,

(caddr _t) & ntsend, xdr_int,

(caddr _t)& ntrecv, total _tineout);

if (cs !'= RPC_SUCCESS) {
clnt_geterr(clnt,&lient_error);

exit(1);

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

svcerr_decode()--Send Information to Client for
Decode Error

Syntax

#i ncl ude <rpc/rpc. h>

voi d svcerr_decode(const SVCXPRT *xprt);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The svcerr_decode() function sends information to the remote client that the service dispatch routine could
not decode the remote parameters.

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

In case of an exception, the errno global variableis set to EUNKNOWN.

Error Messages

Message I D Error Message Text
CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

Refer to the example for svcerr_systemerr()--Send Information to Client for System Error

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

svcerr_noproc()--Send Information to Client for
Procedure Number Error

Syntax

#i ncl ude <rpc/rpc. h>

voi d svcerr_noproc(const SVCXPRT *xprt);
Service Program Name: QZNFTRPC

Default Public Authority: * USE

Threadsafe: No

The svcerr_noproc() function sends information to the client that the service dispatch routine did not
implement the procedure number that the caller requested.

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

In case of an exception, the errno global variableis set to EUNKNOWN.

Error Messages

Message I D Error Message Text
CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

Refer to the example for svcerr_systemerr()--Send Information to Client for System Error

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

svcerr_systemerr()--Send Information to Client
for System Error

Syntax

#i ncl ude <rpc/rpc. h>
voi d svcerr_systenerr(const SVCXPRT *xprt);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The svcerr_systemerr () function sends information to the remote client that the service dispatch routine
detected a system error not covered by any particular protocol.

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

In case of an exception, the errno global variableis set to EUNKNOWN.

Error Messages

Message I D Error Message Text
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how svcerr_systemerr() is used:

#i ncl ude <stdio. h>
#include <stdlib.h> /* getenv, exit */
#i ncl ude <rpc/rpc. h>

#defi ne MESSAGEPROG ((unsi gned | ong) (0x20000001))
#defi ne PRI NTMESSAGEVERS ((unsigned |ong) (1))
#define PRI NTMESSAGE ((unsigned |ong) (1))

/* This procedure is called by dispatcher routine */
int *printnessage | (char **nsg, struct svc_req *req)
{

static int result;

char stffl30";

int fd;

/* Do sonething with *nsg contents */

result = 1;
return(&esult);

}

/* This is the server dispatcher routine.
It is called when a request arrives fromclient
and it applies to MESSAGEPROG program nunber and PRI NTMESSAGEVERS
version nunber */

static void
nmessageprog_| (struct svc_req *rqstp, SVCXPRT *transp)
{
uni on u_argunent{
char *printmessage | arg;
}argunent ;
char *result;
bool t (* _xdr_argunent) (), (*_xdr _result)();
char *(*l ocal)(union u_argunent *, struct svc_req *);

_rpcsvcecount ++;

swi tch(rgstp->rq_proc)

/* rqstp->rqg_proc contains the procedure nunber
of procedure that should be called */

case NULLPROC. /* enpty procedure, do nothing, just send the ack */
svc_sendreply(transp, (xdrproc_t)xdr _void, (char *)NULL);
return;
case PRI NTMESSACE: /* printnmessage | () */
if (rgstp->rq_cred.oa flavor != AUTH SYS) {
/* AUTH SYS is required by this procedure */
svcerr_weakaut h(transp);
return;
}
_xdr_argunent = (bool _t(*)())xdr_wrapstring;
_xdr _result = (bool _t(*)())xdr_int;
| ocal = (char *(*)(u_argunment *, struct svc_req *))
print nessage_| ;
br eak;
default: /* no other procedures available */
svcerr_noproc(transp);
return;

menset ((char *)&argunment, 0, sizeof(argunent));

/* decode argunents for the procedure */
if (!svc_getargs(transp, (xdrproc_t) xdr_argunent,
(char *) &argunent)){
svcerr_decode(transp);
return;

}

/* I nvoke the procedure */
result = (*local)(&rgunent, rgstp);

/* Send reply to the client containing results of the invocation */
if (result '= NULL && !svc_sendrepl y(transp
(xdrproc_t) xdr _result, result)){
svcerr_systenerr(transp);

}

if (!svc_freeargs(transp, (xdrproc_t)_ xdr_argunent,
(char *) &argunent)){
printf("unable to free argunents");
exit(1);
}

return;

}
mai n()

pid t pid;
int i;

printf("Start..");

printf("Try to create..");

/* Create a new RPC server instance which will use nessageprog_| ()

as a dispatcher function associ ated with MESSAGEPROG program
number and PRI NTMESSAGEVERS ver si on number.
Since "VISIBLE" nettype is selected, a number of server instances
will be actually created: one for each "VISIBLE" entry in
/etc/netconfig */

i f(!svc_create(nmessageprog |, MESSAGEPROG PRI NTMESSAGEVERS,

“VI SI BLE")) {
printf("Unable to create service.");
return 1;

}

/* Enter the nain | oop of RPC */
svc_run();

return O;

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

svcerr_weakauth()--Send Authentication Error
Indication to a Client

Syntax

#i ncl ude <rpc/rpc. h>

voi d svcerr_weakaut h(const SVCXPRT *xprt);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The svcerr_weakauth() function sends information to a remote client that the server dispatch function
detected an authentication error.

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

In case of an exception, the errno global variableis set to EUNKNOWN.

Error Messages

Message I D Error Message Text
CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

Refer to the example for svcerr_systemerr()--Send Information to Client for System Error

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

svc_freeargs()--Free Data Allocated by the RPC
or XDR System

Syntax

#i ncl ude <rpc/rpc. h>
bool t svc_freeargs(const SVCXPRT *xprt,

const xdrproc_t inproc,
caddr _t in);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The svc_freeargs() function frees any data allocated by the RPC or XDR functions when those functions
decode the arguments to a service procedure by using svc_getar gs().
Parameters

xprt (Input)
A pointer to the RPC service transport handle.

inproc (Input)
The XDR routine to free the arguments.

in (Input)
The address of the arguments.

Authorities

No authorization is required.

Return Value

TRUE (1) svc_freeargswas successful.

FALSE (0) svc_freeargswas unsuccessful.

Error Conditions

svc_freeargs() returns FAL SE only when the in parameter is NULL or an exception has occurred. In case
of the exception, the errno global variableis set to EUNKNOWN.

Error Messages

Message I D Error Message Text
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library amp;2 ended. Reason code & 3.

Example

Refer to the example for svcerr_systemerr()--Send Information to Client for System Error.

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

svc_getargs()--Decode the Arguments of an
RPC Request

Syntax

#i ncl ude <rpc/rpc. h>
bool t svc_getargs(const SVCXPRT *xprt,

const xdrproc_t inproc,
caddr _t in);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The svc_getargs() function decodes the arguments of an RPC request associated with the RPC service
transport handle xprt.
Parameters

xprt (Input)
A pointer to the RPC service transport handle.

inproc (Input)
The XDR routine to decode the arguments.

in (Input)
The address of the arguments.

Authorities

No authorization is required.

Return Value

TRUE (1) svc_getargswas successful.
FALSE (0) svc_getargs was unsuccessful.

Error Conditions

svc_getargs() returns FAL SE only when thein parameter is NULL or an exception has occurred. In case of
the exception, the errno global variable is set to EUNKNOWN.

Error Messages

Message I D Error Message Text

CPIA1B31 TI-RPC encountered a problem in the server.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

Refer to the example for svcerr_systemerr()--Send Information to Client for System Error

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

svc_getrpccaller()--Get the Network Address of
the Caller

Syntax

#i ncl ude <rpc/rpc. h>

struct netbuf *svc_getrpccal |l er (SVCXPRT *xprt);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The svc_getrpccaller () function macro retrieves the network address of the remote client who is calling the
procedure that is associated with the RPC service transport handle.

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

netbuf Returns a pointer to a netbuf structure containing the address of the caller of a procedure that is
associated with the RPC service xprt.

Error Conditions

None.

Error Messages

None.

Example

The following example shows how svc_getrpccaller () isused :

#i ncl ude <rpc/rpc. h>
mai n()
SVCXPRT *svc;

struct netbuf *net_buf;

};‘.Get the caller address */
net _buf = svc_getrpccall er(svc);

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

svc_run()--Wait for RPC Requests to Arrive

Syntax

#i ncl ude <rpc/rpc. h>

void svc_run(void);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The svc_run() function waits for RPC requests to arrive and calls the appropriate service procedure.

Parameters

None.

Authorities

No authorization is required.

Return Value

None.

Error Conditions
The svc_run() function rarely exits. It exits only when an exception has occurred. In this case the errno

global variableis set to EUNKNOWN.

Error Messages

Message | D Error Message Text
CPIA1B21 TI-RPC encountered a problem in the transport protocol.
CPIA1B3| TI-RPC encountered a problem in the server.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

Refer to the example for svcerr_systemerr()--Send Information to Client for System Error.

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

svc_sendreply()--Send the Results of a
Procedure Call to a Remote Client

Syntax

#i ncl ude <rpc/rpc. h>
bool t svc_sendrepl y(const SVCXPRT *xprt,

const xdrproc_t inproc,
const caddr_t in);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The svc_sendreply() function sends the results of a procedure call to aremote client.

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

inproc (Input)
XDR routine to encode the results.

in (Input)
The address of the results.

Authorities

No authorization is required.

Return Value

TRUE (1) svc_sendreply() was successful.
FALSE (0) svc_sendreply() was unsuccessful.

Error Conditions

The svc_sendreply() function returns FAL SE when some transport error or some exception has occurred.
The errno global variable can be set to the following values:

[EBADF] Bad file descriptor.

[EINVAL] General 1/O error.

[EOPNOTSUPP] Operation is not supported.

[EUNKNOWN] Unknown system state or exception has occurred.

Error Messages

Message I D Error Message Text

CPIA1B31 TI-RPC encountered a problem in the server.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

Refer to the example for svcerr_systemerr()--Send Information to Client for System Error

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

External Data Representation APIs

The eXternal Data Representation (XDR) functions define a uniform way to represent data types and define
alanguage that can describe data structures of arbitrary complexity in a standard way.

All XDR APIs can trand ate datain two directions:

Serializing Trandation from alocal machine data representation to canonical XDR form.

Deserializing Trandation from canonical XDR form to alocal machine representation.

The eXternal Data Representation APIs are:

xdr_array() (Translate between arrays and their XDR) is afilter primitive that trand ates between
variable-length arrays and their corresponding external representations.

xdr_bool() (Translate between Booleans and their XDR) is afilter primitive that trand ates between
Booleans (C integers) and their external representations.

xdr_bytes() (Trans ate between counted byte arrays and their XDR) is afilter primitive that
translates between counted byte arrays and their external representations.

xdr_char() (Trandate between characters and their XDR) is afilter primitive that trand ates between
C-language characters and their external representation.

xdr_double() (Trandate between double-precision and XDR) is afilter primitive that trand ates
between C-language double-precision numbers and their external representations.

xdr_double char() (Translate between two-byte characters) is afilter primitive that translates
between C-language 2-byte characters and their external representation.

xdr_enum() (Translate between enumeration and XDR) is afilter primitive that transl ates between
C-language enumeration (enum) and its external representation.

xdr_float() (Trandate between floats and their XDR) is afilter primitive that trand ates between

C-language floating-point numbers (normalized single floating-point numbers) and their external
representations.

xdr_freg() (Generic freeing function) recursively frees the object pointed to by the pointer passed
in.

xdr_int() (Translate between integers and their XDR) is afilter primitive that transl ates between
C-language integers and their external representation.

xdr_long() (Translate between long integers and their XDR) is afilter primitive that translates
between C-language long integers and their external representations.

xdr_netobj() (Transate between netobj structures and their XDR) is afilter primitive that translates
between variable-length opague data and its external representation.

xdr_opague() (Translate between fixed-size data and its XDR) is afilter primitive that translates
between fixed-size opagque data and its external representation.

xdr_pointer() (Provide pointer chasing within structures) provides pointer chasing within structures
and serializes null pointers.

xdr_reference() (Provide pointer chasing within structures) is afilter primitive that provides pointer
chasing within structures.

xdr_short() (Trandate between short integers and their XDR) is afilter primitive that translates
between C-language short integers and their external representation.

xdr_string() (Trandate between strings and their XDR) is afilter primitive that trand ates between
C-language strings and their corresponding external representations.

xdr_union() (Trandate between unions and their XDR) is afilter primitive that trand ates between
discriminated C unions and their corresponding external representations.

xdr_u_char() (Translate between unsigned characters and their XDR) is afilter primitive that
tranglates between unsigned C-language characters and their external representations.

xdr_u_int() (Translate between an unsigned integer and its XDR) is afilter primitive that translates
between C-language unsigned integers and their external representations.

xdr_u_long() (Translate between an unsigned long and its XDR) is afilter primitive that translates
between C-language unsigned long integers and their external representations.

xdr_u_short() (Trandate between an unsigned short and its XDR) is afilter primitive that trandates
between C-language unsigned short integers and their external representations.

xdr_vector() (Trandate between arrays and their XDR) is afilter primitive that translates between
fixed-length arrays and their corresponding external representations.

xdr_void() (Supply an XDR function to the RPC system) has no parameters.

xdr_wrapstring() (Call the xdr_string() function) is a primitive that calls the xdr_string(xdr, sp,
maxuint) API, where maxuint is the maximum value of an unsigned integer.

Top | Remote Procedure Call (RPC) APIs| APIs by category

xdr_array()--Translate between Arrays and
Their XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_array(XDR *xdrs,
caddr _t *arrp,
u_int *sizep,
const u_int naxsize,
const u_int elsize,
const xdrproc_t el proc);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Thexdr_array() functionis afilter primitive that trand ates between variable-length arrays and their
corresponding external representations. This function is called to encode or decode each element of the

array.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

arrp (1/0)

The address of the pointer to the array. If *arrp==NULL and the array is being deserialized, XDR
alocates an array of the appropriate size and sets this parameter to point to that array.

sizep (1/0)
The address of the element count of the array. The element count cannot exceed the value for the

maxsize parameter.

maxsize (Input)
The maximum number of array elements.

elsize (Input)
The byte size of each of the array elements.

elproc (Input)

Trand ates between the C form of the array elements and their external representations. This
parameter isan XDR filter.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_array() is used:

#i ncl ude <stdi o. h>
#i ncl ude <val ues. h>
#i ncl ude <xdr. h>

#def i ne ARRAY_SI ZE 256
typedef struct xarray

{

int size;

int *p_array;
} xarray ;

bool t xdr_xarray(XDR *xdrs, xarray *p_xarray)

{
/*
* Force XDR to allocate nenory whil e decodi ng
*/
i f((xdrs->x_op==XDR_DECODE) &&
(p_xarray->p_array! =NULL))
free(p_xarray->p_array);
p_xarray->p_array=NULL;
}
/*
* This code has a dual job
* A While decoding, it allocated nmenory, stores the decoded
* xarray in it, and updates size field in xarray
* struct.
* B) Wiile decoding it stores xarray's size and the data
* itself in XDR
*/
return xdr_array(
xdr s,
(char**) (& p_xarray->p_array)),
& p_xarray->si ze),
MAX_| NT,
si zeof (int),
(xdrproc_t)xdr_int))
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

xdr_bool()--Translate between Booleans and
Their XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_bool (XDR *xdrs,
bool t *bp);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_bool() function is afilter primitive that trandates between Booleans (C integers) and their external
representations. When encoding data, this filter produces values of either 1 or O.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

bp (1/0)
The address of the Boolean data.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_bool() is used:

#i ncl ude <stdi o. h>
#i ncl ude <types. h>
#i ncl ude <xdr. h>

typedef struct node

{

bool _t connect ed;
bool t visited;
} node ;

bool xdr_node(XDR *xdrs, node *p_node)
i f(!xdr_bool (xdrs, & p_node->connected)))

return FALSE;
return xdr_bool (xdrs, & p_node->visited));

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_bytes()--Translate between Counted Byte
Arrays and Their XDR

Syntax

#i ncl ude <rpc/ xdr. h>
bool t xdr_bytes(XDR *xdrs,
char **sp,

u_int *sizep,
const u_int naxsize);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_bytes() function is afilter primitive that trand ates between counted byte arrays and their external
representations. This function treats a subset of generic arraysin which the size of array elementsis known
to be 1 and the external description of each element is built-in. The length of the byte sequence is explicitly
located in an unsigned integer. The byte sequence is not ended by a null character. The external
representation of the bytes is the same as their internal representation.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

sp (1/0)

The address of the pointer to the byte array. If *sp==NULL and the stream is being decoded, then
XDR alocates the needed amount of memory.

sizep (1/0)

A pointer to the length of the byte area. The value of this parameter cannot exceed the value of the
maxsize parameter.

maxsize (Input)
The maximum number of bytes allowed when XDR encodes or decodes messages.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_bytes() is used:

#i ncl ude <stdio. h>
#i ncl ude <val ues. h>
#i ncl ude <xdr. h>
#defi ne ARRAY_SI ZE 256
typedef struct xarray
int size;
char *p_array;
} xarray ;

bool t xdr_xarray(XDR *xdrs, xarray *p_xarray)

/*
* Force XDR to allocate nenory whil e decodi ng
*/
i f((xdrs->x_op==XDR_DECODE) &&
(p_xarray->p_array!=NULL))

free(p_xarray->p_array);
p_xarray->p_array=NULL;

}
/*
* This code has a dual job
* A While decoding, it allocated nmenory, stores the decoded
* xarray in it, and updates size field in xarray
* struct.
* B) Wiile decoding it stores xarray's size and the data
* itself in XDR
*/
return xdr_bytes(
xdr s,

(& p_xarray->p_array)),
& p_xarray->si ze),
MAX | NT) ;

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

xdr_char()--Translate between Characters and
Their XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_char (XDR *xdrs,
char *cp);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_char () function isafilter primitive that trand ates between C-language characters and their
external representation.

Note: Encoded characters are not packed and occupy 4 bytes each. For strings of characters, consider using
the xdr_string function.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

cp (1/0)
A pointer to the character.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_char () is used:

#i ncl ude <stdi o. h>
#i ncl ude <xdr. h>

typedef struct grades

{
char math; /* Each grade is "A'..'D */
char literature;
char geography;
char conmputers;
} grades ;

bool xdr_grades(XDR *xdrs, grades *p_grades)

{
i f(!xdr_char(xdrs, & p_grades->math)))
return FALSE;
i f(!'xdr_char(xdrs, & p_grades->literature)))
return FALSE;
i f(!xdr_char(xdrs, & p_grades->geography)))
return FALSE;
return xdr_char(xdrs, & p_grades->conputers));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_double()--Translate between
Double-Precision and XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_doubl e(XDR *xdrs,
doubl e *dp);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_double() function is afilter primitive that translates between C-language double-precision
numbers and their external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

dp (1/0)
The address of the double-precision number.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_double&() is used:

#i ncl ude <stdi o. h>
#i ncl ude <xdr. h>

typedef struct vector

{
doubl e x,v, z;
} vector ;

bool xdr_vector(XDR *xdrs, vector *p_vector)

{
i f(!xdr_doubl e(xdrs, & p_vector->x)))
return FALSE;
i f(!xdr_doubl e(xdrs, & p_vector->y)))
return FALSE;
return xdr_doubl e(xdrs, & p_vector->z));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_double_char()--Translate between
Two-Byte Characters

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_doubl e_char (XDR *xdrs,
char _double t *cp);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_double_char () function is afilter primitive that transates between C-language 2-byte characters
and their external representation.

Note: Encoded characters are not packed and occupy 2 bytes each. For strings of characters, consider using
the xdr_string() API.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

cp (1/0)
A pointer to the character.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_double_char() is used:

#i ncl ude <stdi o. h>
#i ncl ude <xdr. h>

typedef struct grades

{
char _double t math; /* Each grade is "A'..'D */
char _double t literature;
char _doubl e_t geography;
char _double_t conputers;
} grades ;

bool xdr_grades(XDR *xdrs, grades *p_grades)

{
i f(!xdr_doubl e _char(xdrs, & p_grades->math)))
return FALSE;
i f(!xdr_doubl e_char (xdrs,
&(p_grades->literature)))
return FALSE;
i f(!xdr_doubl e _char(xdrs, & p_gr ades- >geogr aphy)))
return FALSE;
return xdr_doubl e_char (xdrs,
&(p_grades->conputers));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

xdr_enum()--Translate between Enumeration
and XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_enun(XDR *xdrs,
enumt *ep);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_enum function is afilter primitive that transates between C-language enumeration (enum) and its
external representation.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

ep (1/0)
The address of the enumeration data.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_enum() is used:

#i ncl ude <stdi o. h>
#i ncl ude <xdr. h>

typedef enumfruit_state { green, ripe } fruit_state;
typedef enumfruit_weight { small, sufficient } fruit_weight;

typedef struct fruit

{

fruit _state state;

fruit_weight weight;
} fruit;
bool xdr fruit(XDR *xdrs, fruit *p fruit)
{

i f(!'xdr_enum(xdrs, (enumt *)& p fruit->state)))

return FALSE;
return xdr_enum(xdrs,
(enumt *)&(p_fruit->weight));

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_float()--Translate between Floats and Their
XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr _fl oat(XDR *xdrs,
float *fp);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Thexdr_float() function isafilter primitive that trand ates between C-language floating-point numbers
(normalized single floating-point numbers) and their external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

fp (1/0)
The address of the floating-point number.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_float() is used:

#i ncl ude <stdi o. h>
#i ncl ude <xdr. h>

typedef struct vector

{
float x,vy, z;
} vector ;

bool xdr_vector(XDR *xdrs, vector *p_vector)

{
i f(!'xdr _float(xdrs, & p_vector->x)))
return FALSE;
i f(!xdr _float(xdrs, & p_vector->y)))
return FALSE;
return xdr_float(xdrs, & p_vector->z));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_free()--Generic Freeing Function

Syntax

#i ncl ude <rpc/rpc. h>

void xdr _free(xdrproc_t proc,
char *objp);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_free() function recursively frees the object pointed to by the pointer passed in.

Parameters

proc (Input)
XDR routine for the object being freed.

objp (Input)

A pointer to the object to be freed.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

In case of an exception, the errno global variableis set to EUNKNOWN.

Error Messages

Message I D Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 API.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_free() is used:

#i ncl ude <rpc/rpc. h>
mai n()
CLI ENT *cl ;
char *out param
i nt i nparam
cI= clnt_create(...);
out param = NULL,;
clnt_call(cl, MYPROC, xdr_int, & nparam
xdr _wrapstring, &outparam timeout);

;<d.r_free(xdr_vvr apstring, &outparan;

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

xdr_int()--Translate between Integers and Their
XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_int(XDR *xdrs,
int *ip);

Service Program Name: QZNFTRPC

Default Public Authority: * USE

Threadsafe: No

Thexdr_int() function is afilter primitive that translates between C-language integers and their external
representation.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

ip (1/0)
The address of the integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_int() is used:

#i ncl ude <stdi o. h>
#i ncl ude <xdr. h>

typedef struct vector

{ .
int x,vy, z;
} vector ;

bool xdr_vector(XDR *xdrs, vector *p_vector)

{
i f(!'xdr_int(xdrs, & p_vector->x)))
return FALSE;
i f(!xdr_int(xdrs, & p_vector->y)))
return FALSE;
return xdr_int(xdrs, & p_vector->z));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_long()--Translate between Long Integers
and Their XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_Il ong(XDR *xdrs,
long *Ip);

Service Program Name: QZNFTRPC

Default Public Authority: * USE

Threadsafe: No

Thexdr_long() function is afilter primitive that trand ates between C-language long integers and their
external representations.

Parameters

xdrs (Input)
A pointer to the XDR stream handle.

Ip (1/0)
The address of the number.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_long() is used:

#i ncl ude <stdi o. h>
#i ncl ude <xdr. h>

typedef struct vector

{
long x,vy, z;
} vector ;

bool xdr_vector(XDR *xdrs, vector *p_vector)

{
i f(!xdr_|ong(xdrs, & p_vector->x)))
return FALSE;
i f(!xdr_|ong(xdrs, & p_vector->y)))
return FALSE;
return xdr_|ong(xdrs, & p_vector->z));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_netobj()--Translate between Netobj
Structures and Their XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_netobj (XDR *xdrs,
struct netobj *np);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_netabj() function is afilter primitive that translates between variable-length opague data and its
external representation.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

np (1/0)

A pointer to the address of the netobj structure that contains both a length and a pointer to the
opaque data.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_netobj() is used:

#i ncl ude <stdi o. h>
#i ncl ude <xdr. h>

/-k
* Handl e of an external client -
* pid - process ID of the server process on our host
* oid - object ID of the server assigned to that client
* Typical case when the other side needs a handl e, w thout
* actually knowing what is it. W can use xdr_netobj() to send
* the val ue
* or xdr_opaque() to send a pointer
*/
typedef struct handl e
{
int pid;
int oid;
} handl e ;
bool t xdr_handl e(XDR *xdrs, handle *p_handl e)
{
struct netobj obj;
obj . n_| en=si zeof (handl e) ;
obj . n_bytes=(char *)p_handl e;
return xdr_netobj (xdrs, &bj);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_opaque()--Translate between Fixed-Size
Data and Its XDR

Syntax

#i ncl ude <rpc/ xdr. h>
bool t xdr_opaque(XDR *xdrs,

caddr _t cp,
const u_int cnt);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_opaque() function is afilter primitive that trand ates between fixed-size opaque data and its
external representation.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.
cp (I/O)

The address of the opague object.

cnt (Input)

The size, in bytes, of the abject. By definition, the actual datathat is contained in the opague object
will not be portable to another system.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_opaque() is used:

#i ncl ude <stdio. h>
#i ncl ude <xdr. h>

/
Handl e of an external client -

pid - process ID of the server process on our host

oid - object ID of the server assigned to that client
Typi cal case when the other side needs a handle, without
actually knowi ng what it is. W can use xdr_netobj ()

* or xdr_opaque().

E R T N T

*/
typedef struct handl e
{
int pid;
int oid;
} handle ;

bool _t xdr_handl e(XDR *xdrs, handl e *p_handl e)
{

}

return xdr_opaque(xdrs, (caddr_t) p_handl e, si zeof (handl e)) ;

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

xdr_pointer()--Provide Pointer Chasing within
Structures

Syntax

#i ncl ude <rpc/ xdr. h>
bool t xdr_pointer(XDR *xdrs,
char **obj pp,

u_int objsize,
const xdrproc_t xdrobj);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_pointer () function provides pointer chasing within structures and serializes null pointers. This
function can represent recursive data structures, such as binary trees or linked lists.

Pointer chasing is the substitution of the pointer itself with the actual structure it pointsto.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

objpp (1/0)
A pointer to the character pointer of the data structure. If decoding and * objpp==NULL, then the
memory is allocated by XDR.

objsize (Input)
The size of the structure.

xdrobj (Input)
The XDR filter for the object.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_pointer () is used:

#i ncl ude <xdr. h>

typedef struct node
i nt val ue;
struct node *p;

} node ;

bool _t xdr_list(XDR *xdrs, node **p_node)

{
return xdr_pointer(xdrs, (caddr *)p_node,
si zeof (node), (xdr proc_t) xdr_node)

}

bool _t xdr_node(XDR *xdrs, node *p_node)

{

xdr _i nt (xdrs, & p_node->val ue));
return xdr_list(xdrs, & p_node->p));

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_reference()--Provide Pointer Chasing
within Structures

Syntax

#i ncl ude <rpc/ xdr. h>
bool t xdr_reference(XDR *xdrs,
caddr _t *pp,

u_int size,
const xdrproc_t proc);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_reference() function isafilter primitive that provides pointer chasing within structures. This
primitive allows the serializing, deserializing, and freeing of any pointers within one structure that are
referenced by ancther structure.

The xdr_reference() function does not attach special meaning to a null pointer during serialization, and
passing the address of anull pointer may cause a memory error. Therefore, the programmer must describe
data with atwo-sided discriminated union. One side is used when the pointer is valid; the other side, when
the pointer is null.

Pointer chasing is the substitution of the pointer itself with the actual structureit pointsto.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

pp (1/0)
The address of the structure. When you decode data, XDR allocates storage if the pointer isNULL.

size (Input)
The byte size of the structure pointed to by the pp parameter.

proc (Input)

A trandation of the structure between its C form and its external representation. This parameter is
the XDR procedure that describes the structure.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message I D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_reference() is used:

#i ncl ude <xdr. h>

t ypedef struct node

i nt val ue;
struct node *p;
} node ;
/*
* Do not call it with p_node==NULL, because it will fail.
*/

bool t xdr_list(XDR *xdrs, node **p_node)
{

return xdr_reference(xdrs, (caddr _t)p_node,
si zeof (node), (xdr proc_t) xdr _node)

}

bool t xdr_node(XDR *xdrs, node *p_node)
{

xdr _int(xdrs, & p_node->val ue));
return xdr_list(xdrs, & p_node->p));

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

xdr_short()--Translate between Short Integers
and Their XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_short (XDR *xdrs,
short *sp);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_short() function is afilter primitive that trand ates between C-language short integers and their
external representation.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

sp (1/0)
The address of the short integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_short() is used:

#i ncl ude <stdi o. h>
#i ncl ude <xdr. h>

typedef struct vector

{
short x,y, z;
} vector ;

bool t xdr_vector(XDR *xdrs, vector *p_vector)
{
i f(!xdr_short(xdrs, & p_vector->x)))
return FALSE;
i f(!xdr_short(xdrs, & p_vector->y)))
return FALSE;
return xdr_short(xdrs, & p_vector->z));

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_string()--Translate between Strings and
Their XDR

Syntax

#i ncl ude <rpc/ xdr. h>
bool t xdr_string(XDR *xdrs,

char **sp,
u_int naxsize);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Thexdr_string() function is afilter primitive that transl ates between C-language strings and their
corresponding external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

sp (1/0)

The address of the pointer to the string. If decoding and * sp==NULL, XDR alocated the storage
needed for the decoded string.

maxsize (Input)
The maximum length of the string in bytes allowed during encoding or decoding.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_string() is used:

#i ncl ude <stdio. h>
#i ncl ude <xdr. h>

#def i ne MAX LENGTH 100
typedef struct adress

char street[MAX_LENGTH] ;
i nt nunber ;
i nt apartnent;

} address ;

bool _t xdr_address(XDR *xdrs, address *p_address)
{
i fl(xdr_string(xdrs, & p_address->street),
MAX_LENGTH))
return FALSE;
i f(!xdr_int(xdrs, & p_address->nunber)))
return FALSE;
return xdr_int(xdrs, & p_address->apartnent));

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

xdr_union()--Translate between Unions and
Their XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_uni on(XDR *xdr s,
enumt *dscnp,
char *unp,

const struct xdr_discrim *choices,
const xdrproc_t (*defaultarn));

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_union() function is afilter primitive that trand ates between discriminated C unions and their
corresponding external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

dscmp (Input)
The address of the union's discriminant. The discriminant is an enumeration (enum_t) value.

unp (1/0)
The address of the union.

choices (Input)
A pointer to an array of xdr_discrim structures.

defaultarm (Input)
A structure provided in case no discriminants are found. This parameter can have anull value.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

Usage Notes

The size of any enum data types passed to the xdr_union() must be defined as 4 bytes.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_union() is used:

#i ncl ude <stdi o. h>
#i ncl ude <xdr. h>

#pragma enum si ze(4) /* Set enumsize to 4 bytes */

typedef enumtine_type {END=0, DC, CT} tine_type ;

#pragma enum si ze() /* Reset enum size */

typedef union tinme_val ue
{
i nt di screte_tine;
float continuous_tine;
} time_val ue ;

typedef struct tinme

{
time_type type;
ti me_val ue val ue;
} otine;

bool t xdr _time(XDR *xdrs, tinme *p_tine)

{

struct xdr _discrimhandlers[] =

{
{DT, (xdrproc_t)xdr _int},
{CT, (xdrproc_t)xdr _float},
{ END, NULL}

1

return

xdr_union(xdrs, (enumt *)(& p_tine->type)),
(caddr _t)&(p_tinme->val ue), handl ers, NULL) ;

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

xdr_u_char()--Translate between Unsigned
Characters and Their XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_u_char (XDR *xdrs,
char *ucp);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Thexdr_u_char() function is afilter primitive that translates between unsigned C-language characters and
their external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

ucp (I/0)
A pointer to an unsigned character.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_u_char () is used:

#i ncl ude <stdio. h>
#i ncl ude <xdr. h>
typedef struct grades

u char nmath; /* Each grade is "A..'D */
u char Iliterature;
u_char geography;
u_char computers;
} grades ;

bool _t xdr_grades(XDR *xdrs, grades *p_grades)
{
i f(!'xdr_u_char(xdrs, & p_grades->math)))
return FALSE;
i f(!'xdr_u char(xdrs, & p_grades->literature)))
return FALSE;
i f(!xdr_u_char(xdrs, & p_gr ades- >geogr aphy)))
return FALSE;
return xdr_u char(xdrs, & p_grades->conputers));

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_u_int()--Translate between an Unsigned
Integer and Its XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_u_int(XDR *xdrs,
u_int *ulp);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Thexdr_u_int() function isafilter primitive that trand ates between C-language unsigned integers and their
external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

ulp (1/0)
The address of the unsigned integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_u_int() is used:

#i ncl ude <stdi o. h>
#i ncl ude <xdr. h>

typedef struct vector

{
uint x,y,z;
} vector ;

bool t xdr_vector(XDR *xdrs, vector *p_vector)
{
i f(!'xdr_u_ int(xdrs, & p_vector->x)))
return FALSE;
i f(!'xdr_u_int(xdrs, & p_vector->y)))
return FALSE;
return xdr_u_int(xdrs, & p_vector->z));

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_u_long()--Translate between an Unsigned
Long and Its XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_u_l ong(XDR *xdrs,
u_long *ulp);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Thexdr_u_long() function is afilter primitive that translates between C-language unsigned long integers
and their external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

ulp (1/0)
The address of the unsigned long integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_u_long() is used:

#i ncl ude <stdi o. h>
#i ncl ude <xdr. h>

typedef struct vector

{
u_long x,v, z;
} vector ;

bool t xdr_vector(XDR *xdrs, vector *p_vector)
{
i f(!'xdr_u_long&((xdrs, p_vector->x)))
return FALSE;
i f(!'xdr_u_long(xdrs, & p_vector->y)))
return FALSE;
return xdr_u | ong(xdrs, & p_vector->z));

API introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_u_short()--Translate between an Unsigned
Short and Its XDR

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_u_short (XDR *xdrs,
u_short *usp);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

Thexdr_u_short() function is afilter primitive that translates between C-language unsigned short integers
and their external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

usp (1/0)
The address of the unsigned short integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_u_short() is used:

#i ncl ude <stdi o. h>
#i ncl ude <xdr. h>

typedef struct vector

{
u_short x,y, z;
} vector ;

bool t xdr_vector(XDR *xdrs, vector *p_vector)
{
i f(!'xdr_u_short(xdrs, & p_vector->x)))
return FALSE;
i f(!'xdr_u_short(xdrs, & p_vector->y)))
return FALSE;
return xdr_u short(xdrs, & p_vector->z));

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_vector()--Translate between Arrays and
Their XDR

Syntax

#i ncl ude <rpc/ xdr. h>
bool t xdr_vector(XDR *xdrs,
char *arrp,
const u_int size,

const u_int elsize,
const xdrproc_t elproc);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_vector () function is afilter primitive that trand ates between fixed-length arrays and their
corresponding external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

arrp (1/0)
The pointer to the array.

size (Input)
The element count of the array.

elsize (Input)
The byte size of each of the array elements.

elproc (Input)

Trand ates between the C form of the array elements and their external representations. This
parameter isan XDR filter.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message I D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_vector () is used:

#i ncl ude <stdio. h>
#i ncl ude <xdr. h>

#def i ne MAX_VERTECI ES 10
#def i ne MAX_EDGES ((MAX_VERTECI ES* (MAX_VERTECI ES- 1))/ 2)

t ypedef struct graph

bool t adj acent[MAX VERTI Cl ES, MAX VERTI Cl ES] ;
} graph ;

bool t xdr_graph(XDR *xdrs, graph *p_graph)
{

int i;
for(i=0;i <MAX VERTECI ES; i ++)
i f(!xdr_vector(xdrs,
p_graph->adj acent[i]
AX_VERTECI ES, si zeof (bool _t), xdr _bool))
return FALSE;
return TRUE;

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

xdr_void()--Supply an XDR Function to the RPC
System

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_void();

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_void() function has no parameters. It is passed to other RPC functions that require a parameter,
but does not transmit data.

Parameters

None

Authorities

No authorization is required.

Return Value

This function aways returns avalue of TRUE.

Error Conditions

None.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_void() is used:

#i ncl ude <stdio. h>

#def i ne RMITPROGNUM (u_l ong) Ox3fffffffL
#def i ne RMTPROGVER (u_l ong) Ox1

#def i ne RMITPROCNUM (u_Il ong) Ox1

mai n()

i nt inproc=100;
enumclnt_stat, rstat;

/* Service request to host RPCSERVER HOST */
if ((rstat = rpc_call ("RPCSERVER HOST", RMIPROGNUM RMIPROGVER,
RMIPROCNUM xdr _i nt, (char *)&i nproc,
xdr_void, (char *)0, "visible")) I=
RPC_SUCCESS) {
printf("Error in the rpc_call().\n");
exit(1);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs| APIs by category

xdr_wrapstring()--Call the xdr_string() Function

Syntax

#i ncl ude <rpc/ xdr. h>

bool t xdr_wapstring(XDR *xdrs,
char **sp);

Service Program Name: QZNFTRPC
Default Public Authority: * USE

Threadsafe: No

The xdr_wrapstring() function is a primitive that calls the xdr_string(xdr, sp, maxuint) API, where
maxuint is the maximum value of an unsigned integer. The xdr_wrapstring() is useful where atrandation
of xdrproc _tisrequired. xdrproc_t has only two parameters while the xdr_string() function requires three.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

sp (1/0)

The address of the pointer to the string. If decoding and * sp==NULL, XDR allocated memory for
the decoded string.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_wrapstring() is used:

#i ncl ude <stdi o. h>
#i ncl ude <xdr. h>

#def i ne MAX_LENGTH 100
typedef struct address

{
char street[MAX LENGTH] ;
i nt nunber ;
i nt apart nment;

} address ;

bool _t xdr_address(XDR *xdrs, address *p_address)
{
i f!(xdr_wrapstring(xdrs, & p_address->street)))
return FALSE;
i f(!xdr_int(xdrs, & p_address->nunber)))
return FALSE;
return xdr _int(xdrs, & p_address->apartnent));

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

	Remote Procedure Call APIs
	Table of Contents
	Remote Procedure Call (RPC) APIs
	Header Files for Remote Procedure Call APIs
	Authentication APIs
	authnone_create()--Create Null Authentication
	authsys_create()--Create Authentication with OS Permission
	auth_destroy()--Destroy Authentication Information

	Name-to-Address Translation APIs
	netdir_free()--Free Netdir Structures
	netdir_getbyaddr()--Translate a Netbuf Address to a Host
	netdir_getbyname()--Translate a Given Host-Service Pair
	netdir_options()--Access Transport-Specific Capabilities
	netdir_sperror()--Indicate an Error in an NTA Routine
	taddr2uaddr()--Translate a Local Address
	uaddr2taddr()--Translate a Universal Address

	Network Selection APIs
	endnetconfig()--Release the Pointer in the Netconfig File
	freenetconfigent()--Free the Netconfig Structure
	getnetconfig()--Return Current Record from the Netconfig File
	getnetconfigent()--Return a Pointer to a Netconfig Structure
	setnetconfig()--Initialize the Pointer in the Netconfig File

	Transport-Independent Remote Procedure Call APIs
	Simplified APIs
	rpc_call()--Call a Remote Procedure on the Specified System
	rpc_reg()--Register a Procedure with RPC Service Package

	Top-level APIs
	clnt_call()--Call a Remote Procedure Associated with the Client
	clnt_control()--Change Information about a Client Object
	clnt_create()--Create a Generic Client Handle
	clnt_destroy()--Destroy the RPC Client's Handle
	svc_create()--Create a Server Handle
	svc_destroy()--Destroy an RPC Service Transport Handle

	Intermediate-level APIs
	clnt_tp_create()--Create a Client Handle
	svc_tp_create()--Create a Server Handle

	Expert-level APIs
	clnt_tli_create()--Create a Client Handle
	rpcb_getaddr()--Find the Universal Address of a Service
	rpcb_set()--Register the Server Address with the RPCBind
	rpcb_unset()--Unregister Their Addresses
	svc_reg()--Associate Program and Version with Dispatch
	svc_tli_create()--Create a Server Handle
	svc_unreg()--Delete an Association Set by svc_reg()

	Other APIs
	clnt_freeres()--Free Data Allocated by the RPC or XDR System
	clnt_geterr()--Get the Error Structure from the Client Handle
	svcerr_decode()--Send Information to Client for Decode Error
	svcerr_noproc()--Send Information to Client for Procedure Number Error
	svcerr_systemerr()--Send Information to Client for System Error
	svcerr_weakauth()--Send Authentication Error Indication to a Client
	svc_freeargs()--Free Data Allocated by the RPC or XDR System
	svc_getargs()--Decode the Arguments of an RPC Request
	svc_getrpccaller()--Get the Network Address of the Caller
	svc_run()--Wait for RPC Requests to Arrive
	svc_sendreply()--Send the Results of a Procedure Call to a Remote Client

	External Data Representation APIs
	xdr_array()--Translate between Arrays and Their XDR
	xdr_bool()--Translate between Booleans and Their XDR
	xdr_bytes()--Translate between Counted Byte Arrays and Their XDR
	xdr_char()--Translate between Characters and Their XDR
	xdr_double()--Translate between Double-Precision and XDR
	xdr_double_char()--Translate between Two-Byte Characters
	xdr_enum()--Translate between Enumeration and XDR
	xdr_float()--Translate between Floats and Their XDR
	xdr_free()--Generic Freeing Function
	xdr_int()--Translate between Integers and Their XDR
	xdr_long()--Translate between Long Integers and Their XDR
	xdr_netobj()--Translate between Netobj Structures and Their XDR
	xdr_opaque()--Translate between Fixed-Size Data and Its XDR
	xdr_pointer()--Provide Pointer Chasing within Structures
	xdr_reference()--Provide Pointer Chasing within Structures
	xdr_short()--Translate between Short Integers and Their XDR
	xdr_string()--Translate between Strings and Their XDR
	xdr_union()--Translate between Unions and Their XDR
	xdr_u_char()--Translate between Unsigned Characters and Their XDR
	xdr_u_int()--Translate between an Unsigned Integer and Its XDR
	xdr_u_long()--Translate between an Unsigned Long and Its XDR
	xdr_u_short()--Translate between an Unsigned Short and Its XDR
	xdr_vector()--Translate between Arrays and Their XDR
	xdr_void()--Supply an XDR Function to the RPC System
	xdr_wrapstring()--Call the xdr_string() Function

