
Remote Procedure Call (RPC) APIs (V5R2)

Table of Contents

Remote Procedure Call (RPC) APIs●

Header Files for Remote Procedure Call APIs●

Authentication APIs

authnone_create() (Create null authentication)❍

authsys_create() (Create authentication with OS permission)❍

auth_destroy() (Destroy authentication information)❍

●

Name-to-Address Translation APIs

netdir_free() (Free netdir structures)❍

netdir_getbyaddr() (Translate a netbuf address to a host)❍

netdir_getbyname() (Translate a given host-service pair)❍

netdir_options() (Access transport-specific capabilities)❍

netdir_sperror() (Indicate an error in a Name-to-Address Translation API)❍

taddr2uaddr() (Translate a local address)❍

uaddr2taddr() (Translate a universal address)❍

●

Network Selection APIs

endnetconfig() (Release the pointer in the netconfig file)❍

freenetconfigent() (Free the netconfig structure)❍

getnetconfig() (Return current record from the netconfig file)❍

getnetconfigent() (Return a pointer to a netconfig structure)❍

setnetconfig() (Initialize the pointer in the netconfig file)❍

●

Transport-Independent Remote Procedure Call (TI-RPC) APIs

Simplified APIs

rpc_call() (Call a remote procedure on the specified system)■

rpc_reg() (Register a procedure with RPC service package)■

❍

Top-level APIs

clnt_call() (Call a remote procedure associated with the client)■

clnt_control() (Change information about a client object)■

clnt_create() (Create a generic client handle)■

clnt_destroy() (Destroy the RPC Client's Handle)■

svc_create() (Create a server handle)■

svc_destroy() (Destroy an RPC service transport handle)■

❍

●

Intermediate-level APIs

clnt_tp_create() (Create a client handle)■

svc_tp_create() (Create a server handle)■

❍

Expert-level APIs

clnt_tli_create() (Create a client handle)■

rpcb_getaddr() (Find the universal address of a service)■

rpcb_set() (Register the server address with the RPCBind)■

rpcb_unset() (Unregister Their Addresses)■

svc_reg() (Associate program and version with dispatch)■

svc_tli_create() (Create a server handle)■

svc_unreg() (Delete an association set by svc_reg())■

❍

Other APIs

clnt_freeres() (Free data allocated by the RPC or XDR system)■

clnt_geterr() (Get the error structure from the client handle)■

svcerr_decode() (Send information to client for decode error)■

svcerr_noproc() (Send information to client for procedure number error)■

svcerr_systemerr() (Send information to client for system error)■

svcerr_weakauth() (Send Authentication Error Indication to a Client)■

svc_freeargs() (Free data allocated by the RPC or XDR system)■

svc_getargs() (Decode the arguments of an RPC request)■

svc_getrpccaller() (Get the network address of the caller)■

svc_run() (Wait for RPC requests to arrive)■

svc_sendreply() (Send the results of a procedure call to a remote client)■

❍

External Data Representation (XDR) APIs

xdr_array() (Translate between arrays and their XDR)❍

xdr_bool() (Translate between Booleans and their XDR)❍

xdr_bytes() (Translate between counted byte arrays and their XDR)❍

xdr_char() (Translate between characters and their XDR)❍

xdr_double() (Translate between double-precision and XDR)❍

xdr_double_char() (Translate between two-byte characters)❍

xdr_enum() (Translate between enumeration and XDR)❍

xdr_float() (Translate between floats and their XDR)❍

xdr_free() (Generic freeing function)❍

xdr_int() (Translate between integers and their XDR)❍

xdr_long() (Translate between long integers and their XDR)❍

xdr_netobj() (Translate between netobj structures and their XDR)❍

●

xdr_opaque() (Translate between fixed-size data and its XDR)❍

xdr_pointer() (Provide pointer chasing within structures)❍

xdr_reference() (Provide pointer chasing within structures)❍

xdr_short() (Translate between short integers and their XDR)❍

xdr_string() (Translate between strings and their XDR)❍

xdr_union() (Translate between unions and their XDR)❍

xdr_u_char() (Translate between unsigned characters and their XDR)❍

xdr_u_int() (Translate between an unsigned integer and its XDR)❍

xdr_u_long() (Translate between an unsigned long and its XDR)❍

xdr_u_short() (Translate between an unsigned short and its XDR)❍

xdr_vector() (Translate between arrays and their XDR)❍

xdr_void() (Supply an XDR function to the RPC system)❍

xdr_wrapstring() (Call the xdr_string() function)❍

Remote Procedure Call (RPC) APIs
The Remote Procedure Call (RPC) APIs include:

Authentication APIs●

Name-to-Address Translation APIs●

Network Selection APIs●

Transport-Independent Remote Procedure Call (TI-RPC) APIs●

External Data Representation (XDR) APIs●

These APIs are intended for programmers who develop distributed applications. They enable distributed
applications to communicate with each other. Open Networking Computers (ONC) RPC was developed by
Sun Microsystems and is used to easily separate and distribute a client application from a server by using
the SUN RPC protocol. RPC includes a method of abstracting data, called eXternal Data Representation, or
XDR, to allow communications to be abstracted at the API level.

Transport-Independent RPC (TI-RPC), or ONC+ RPC, is the latest incantation of RPC. It provides a
method of abstracting the underlying protocol used at the network layer, providing a more seamless
transition from one protocol to another.

Note: These functions use header (include) files from the library QSYSINC, which is optionally installable.
Make sure QSYSINC is installed on your system before using any of the functions. See Header Files for
Remote Procedure Call APIs for the file and member name of each header file.

The following terms relate to the RPC applications:

RPCBind A daemon program that allows client programs to obtain the aress of a service that is
registered with the RPCBind daemon.

RPCGen A compiler that accepts a remote-program interface definition written in the RPC language
(RPCL), which is similar to the C programming language. From this definition, RPCGen
produces C-language output for client stub functions, a server skeleton, XDR filter routines,
and a header file.

For more information on RPCBind and RPCGen, see the Control Language topic.

For more information about these APIs, see Sun TI-RPC distributed applications in the Information Center.

Top | APIs by category

Header Files for Remote Procedure Call APIs
Programs using the Remote Procedure Call (RPC) APIs must include <rpc/rpc.h> and one or more
additional header files that contain information needed by the functions, such as:

Macro definitions●

Data type definitions●

Structure definitions●

Function prototypes●

The header files are provided in the QSYSINC library, which is optionally installable. Make sure
QSYSINC is on your system before compiling programs that use these header files. For information on
installing the QSYSINC library, see Data structures and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by the
TI-RPC APIs in the Information Center.

Name of Header File
Name of File
in QSYSINC Name of Member

netconfig.h 1 H NETCONFIG

netdir.h 2 H NETDIR

tirpccom.h H TIRPCCOM

rpc/auth.h RPC AUTH

rpc/auth_sys.h RPC AUTH_SYS

rpc/auth_unix.h RPC AUTH_UNIX

rpc/clnt.h RPC CLNT

rpc/rpc.h RPC RPC

rpc/rpc_com.h RPC RPC_COM

rpc/rpc_msg.h RPC RPC_MSG

rpc/rpcb_clnt.h RPC RPCB_CLNT

rpc/rpcb_prot.h RPC RPCB_PROT

rpc/types.h RPC TYPES

rpc/svc.h RPC SVC

rpc/svc_auth.h RPC SVC_AUTH

rpc/xdr.h RPC XDR

Note:

The member netconfig.h in the H file in the QSYSINC library is used by the
Network Selection functions.

1.

The member netdir.h in the H file in the QSYSINC library is used by the
Name-to-Address Translation functions.

2.

You can display a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to display the netconfig.h header file using the Source Entry
Utility editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(NETCONFIG) OPTION(5)

●

Using the Display Physical File Member command. For example, to display the rpc/rpc.h header
file, enter the following command:

DSPPFM FILE(QSYSINC/RPC) MBR(RPC)

●

You can print a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to print the netdir.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(netdir) OPTION(6)

●

Using the Copy File command. For example, to print the rpc/rpc.h header file, enter the following
command:

CPYF FROMFILE(QSYSINC/RPC) TOFILE(*PRINT) FROMMBR(RPC)

●

Top | Remote Procedure Call (RPC) APIs | APIs by category

Authentication APIs
The authentication APIs are used to provide authentication to the Transport-Independent Remote Procedure
Call (TI-RPC) applications. These APIs enable a client to pass appropriate information as required by a
remote service.

The authentication APIs are:

authnone_create() (Create null authentication) creates and returns a default RPC authentication
handle that passes null authentication information with each remote procedure call.

●

authsys_create() (Create authentication with OS permission) creates and returns an RPC
authentication handle that contains authentication information.

●

auth_destroy() (Destroy authentication information) destroys the authentication information
structure that is pointed to by the auth parameter.

●

Top | Remote Procedure Call (RPC) APIs | APIs by category

authnone_create()--Create Null Authentication

 Syntax

 #include <rpc/rpc.h>

 AUTH *authnone_create();

 Default Public Authority: *USE

 Service Program Name: QZNFTRPC

 Threadsafe: No

The authnone_create() function creates and returns a default RPC authentication handle that passes null
authentication information with each remote procedure call.

Parameters

None.

Authorities

No authorization is required.

Return Value

auth Upon successful completion, this API returns a pointer to an RPC authentication handle.

NULL authnone_create() was not successful. The errno variable is set to indicate the reason.

Error Conditions

[ENOMEM] Storage allocation failed.

[EUNKNOWN] Unknown System State.

Error Messages

Message ID Error Message Text

CPIA1B0 I An authentication problem was encountered by one of the TI-RPC APIs.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

authsys_create()--Create Authentication with OS Permission●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how authnone_create() is used:

#include <stdio.h>
#include <rpc/rpc.h>
/* Define remote program number and version */
#define RMTPROGNUM (u_long)0x3fffffffL
#define RMTPROGVER (u_long)0x1

main()
{
 CLIENT *client; /* client handle */

 ...

 /* Create a null authentication */
 client->cl_auth = authnone_create();
 if (client->cl_auth == (AUTH *)NULL){
 fprintf(stderr, "authnone_create failed!!\n");
 exit(1);
 }

 ...

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

authsys_create()--Create Authentication with
OS Permission

 Syntax

 #include <rpc/rpc.h>

 AUTH *authsys_create(const char *host,
 const uid_t uid,
 const gid_t gid,
 const int len,
 const gid_t *aup_gids);

 Default Public Authority: *USE

 Service Program Name: QZNFTRPC

 Threadsafe: No

The authsys_create() function creates and returns an RPC authentication handle that contains
authentication information.

Parameters

host (Input)

A pointer to the name of the machine on which the permission was created.

uid (Input)

The caller's effective user ID (UID).

gid (Input)

The caller's effective group ID (GID).

len (Input)

The length of the group's array.

aup_gids (Input)

A pointer to the counted array of groups to which the user belongs.

Authorities

No authorization is required.

Return Value

auth Upon successful completion, this API returns an RPC authentication handle.

NULL authsys_create() was not successful. The errno variable is set to indicate the reason.

Error Conditions

[EINVAL] An invalid len parameter was passed.

[ENOMEM] Storage allocation failed.

[EUNKNOWN] Unknown system state.

Error Messages

Message ID Error Message Text

CPIA1B0 I An authentication problem was encountered by one of the TI-RPC APIs.

CPDA1C1 D An authentication problem has occurred.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

authnone_create()--Create Null Authentication●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how authsys_create() is used:

#include <stdio.h>
#include <rpc/rpc.h>

/* Define remote program number and version */
#define RMTPROGNUM (u_long)0x3fffffffL
#define RMTPROGVER (u_long)0x1

main()
{
 CLIENT *client; /* The client handle */
 char *host;
 uid_t uid;
 gid_t gid, *aup_gids;
 int len;

 /* Service request to host RPCSERVER_HOST */
 client = clnt_create("RPCSERVER_HOST", RMTPROGNUM, RMTPROGVER,
 "tcp");
 if (client == (CLIENT *)NULL) {
 printf("Could not create client\n");
 exit(1);
 }

 ...

 uid = geteuid();
 gid = getegid();
 len = getgroups(NGRPS, aup_gids));
 /* Initialized the authsys_create()'s arguments before use */
 client->cl_auth = authsys_create(host, uid, gid,
 len, aup_gids);
 if (client->cl_auth == (AUTH *)NULL) {
 fprintf(stderr, "authsys_create failed!!\n");
 exit(1);
 }

 ...

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

auth_destroy()--Destroy Authentication
Information

 Syntax

 #include <rpc/rpc.h>

 void auth_destroy(AUTH *auth);

 Default Public Authority: *USE

 Service Program Name: QZNFTRPC

 Threadsafe: No

The auth_destroy() function destroys the authentication information structure that is pointed to by the auth
parameter.

Parameters

auth

 (Input)

A pointer to the authentication information structure to be destroyed. By destroying the auth
structure, you deallocate private data structures.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

authsys_create()--Create Authentication with OS Permission●

authnone_create()--Create Null Authentication●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how auth_destroy() is used:

#include <stdio.h>
#include <rpc/rpc.h>

/* Define remote program number and version */
#define RMTPROGNUM (u_long)0x3fffffffL
#define RMTPROGVER (u_long)0x1

main()
{
 CLIENT *clnt; /* The client handle */

 /*
 Create the client handle, and initialize the authentication in
 the clnt->cl_auth struct
 */
 clnt = clnt_create("RPCSERVER_HOST", RMTPROGNUM, RMTPROGVER,
 "tcp");
 if (clnt == (CLIENT *)NULL) {
 printf("Could not create client\n");
 exit(1);
 }

 ...

 /*
 Destroy the authentication information associated with
 clnt->cl_auth
 */

 auth_destroy(clnt->cl_auth);

 ...

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

Name-to-Address Translation APIs
The name-to-address translation APIs allow an application to obtain the address of a service on a specified
host in a transport-independent manner. These APIs are typically used by the applications that use the
expert level TI-RPC APIs.

The name-to-address translation APIs are:

netdir_free() (Free netdir structures) frees structures that are allocated by name-to-address
translation APIs.

●

netdir_getbyaddr() (Translate a netbuf address to a host) maps addresses into host names and
service names.

●

netdir_getbyname() (Translate a given host-service pair) maps the host name and service name that
are specified in the service parameter to a set of addresses that are consistent with the transport
identified in the netconfig structure.

●

netdir_options() (Access transport-specific capabilities) provides interfaces to transport-specific
capabilities such as the broadcast address and reserved port facilities of TCP and UDP.

●

netdir_sperror() (Indicate an error in an NTA Routine) issues an informational message that states
why one of the name-to-address translation APIs may have failed.

●

taddr2uaddr() (Translate a local address) translates a transport-specific (local) address to a
transport-independent (universal) address.

●

uaddr2taddr() (Translate a universal address) translates a transport-independent (universal) address
to a transport-specific (local) address (netbuf structure).

●

Top | Remote Procedure Call (RPC) APIs | APIs by category

netdir_free()--Free Netdir Structures

 Syntax

 #include <netdir.h>

 void netdir_free(void *ptr,
 int struct_type);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The netdir_free() function frees structures that are allocated by name-to-address translation APIs.

Parameters

ptr (Input)

A pointer to a structure that is to be freed.

struct_type (Input)

The integer value that indicates to netdir_free() which type of structure to be freed.

The following combination is supported:

ND_HOSTSERV A pointer to an nd_hostserv structure.

ND_HOSTSERVLIST A pointer to an nd_hostservlist structure.

ND_ADDR A pointer to a netbuf structure.

ND_ADDRLIST A pointer to an nd_addrlist structure.

Authorities

No authorization is required.

Error Conditions

If netdir_free() takes an exception, nd_errno is set to the following error:

[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.

Error Messages

Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

netdir_free() frees the structure allocated by the netdir APIs. The type of structure to be freed is indicated
by the struct_type.

Refer to other name-to-address translation functions to see how netdir_free() function is used.

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

netdir_getbyaddr()--Translate a Netbuf Address
to a Host

 Syntax

 #include <netdir.h>

 int netdir_getbyaddr(struct netconfig *nconf,
 struct nd_hostservlist
 **service,
 struct netbuf *netaddr);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The netdir_getbyaddr() function maps addresses into host names and service names.

Parameters

nconf (Input)

A pointer to a netconfig structure that is returned by either getnetconfig() or getnetconfigent().

service (Output)

A pointer to a list of service names.

netaddr (Input)

A pointer to the address.

Authorities

No authorization is required.

Return Value

0 netdir_getbyaddr() was successful. A list of host names and service name pairs is returned in
service.

-1 netdir_getbyaddr() was not successful. The nd_errno (defined in <netdir.h>) is set to indicate the
error.

Error Conditions

If netdir_getbyaddr() is not successful, nd_errno usually indicates one of the following errors:

[ND_BADARG] Bad argument passed.

[ND_NO_DATA] The host name is a valid name but there is no corresponding IP address.

[ND_NOHOST] The host name that the user specified by the host address was not found.

[ND_NOMEM] Not enough memory left.

[ND_NO_RECOVERY] An unrecoverable error has occurred.

[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.

[ND_TRY_AGAIN] The local server did not receive a response from an authoritative server. An
attempt at a later time may succeed.

Error Messages

Message ID Error Message Text
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

netdir_getbyaddr() is called with an address in the netaddr structure.

The caller is responsible to free the storage allocated by netdir_getbyaddr() by using the function
netdir_free().

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how netdir_getbyaddr() is used:

#include <netdir.h>

void findhost(void)

{

 void *handlep;
 struct netconfig *nconf;
 struct nd_hostservlist *nd_hostserv;
 struct netbuf nbuf;
 char uaddr[16];

 /* Initialize the network selection mechanism */
 if (handlep = setnetconfig()) == (void *)NULL)
 {
 exit(1);
 }

 /* Get the netconfig handle */
 if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)
 {
 printf("Error getting the netconfig handle\n");
 exit(1);
 }
 memset(uaddr, NULL, 16);
 printf("Enter the host IP address appended by low and high order
 port numbers:\n");
 scanf("%s", uaddr);

 /* Convert universal address notation into transport-specific
 * address format.
 */
 nbuf = uaddr2taddr(nconf, uaddr);

 /* Get the hostname from the address over the transport */
 /* provider specified in the netconfig structure */
 if (netdir_getbyaddr(nconf, &nd_hostserv, &nbuf)
 != ND_OK)
 {
 printf("Cannot determine the host\n");
 exit(1);
 }
 printf("The host name is: %s\n",
 nd_hostserv->h_hostservs->h_host);
 printf("The Service is: %s\n", nd_hostserv->h_hostservs->h_serv);

 /* Free the netdir structure allocated by netdir_getbyname() */
 netdir_free(nd_hostserv, ND_HOSTSERVLIST);

 /* Release the netconfig handle allocated by set setnetconfig() */
 endnetconfig(handlep);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

netdir_getbyname()--Translate a Given
Host-Service Pair

 Syntax

 #include <netdir.h>

 int netdir_getbyname(struct netconfig *nconf,
 struct nd_hostserv *service,
 struct nd_addrlist **addrs);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The netdir_getbyname() function maps the host name and service name that are specified in the service
parameter to a set of addresses that are consistent with the transport identified in the netconfig structure.

Parameters

nconf (Input)

A pointer to a netconfig structure that is returned by either getnetconfig() or getnetconfigent().

service (Input)

A pointer to a service name.

addrs (Output)

A pointer to the addresses being returned.

Authorities

No authorization is required.

Return Value

0 netdir_getbyname() was successful.

-1 netdir_getbyname() was not successful. The nd_errno (defined in <netdir.h>) is set to indicate the
error.

Error Conditions

If netdir_getbyname() is not successful, nd_errno usually indicates one of the following errors:

[ND_BADARG] Bad argument passed.

[ND_NOHOST] The host that was specified by the host name was not found.

[ND_NOMEM] Not enough memory left.

[ND_NO_RECOVERY] An unrecoverable error has occurred.

[ND_NOSERV] Service name is unknown.

[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.

[ND_TRY_AGAIN] The local server did not receive a response from an authoritative server. An
attempt at a later time may succeed.

Error Messages

Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

netdir_getbyname() maps the host and service name to a set of addresses consistent with the transport
specified in netconfig.

The caller is responsible to free the storage allocated by netdir_getbyname() by using the function
netdir_free().

netdir_getbyname() does not support HOST_ANY or HOST_BROADCAST for host names specified in
the nd_hostserv structure.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how netdir_getbyname() is used:

#include <netdir.h>

main()
{
 void *handlep; /* A handle into network selection */
 struct netconfig *nconf; /* transport information */
 struct nd_hostserv nd_hostserv; /* host and service information */
 struct nd_addrlist *nd_addrlistp; /* addresses for the service */

 /* Initialize the network selection mechanism */
 if (handlep = setnetconfig()) == (void *)NULL)
 {
 exit(1);
 }

 /* Get the netconfig handle */
 if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)
 {
 printf("Error in getting the netconfig handle.\n");
 exit(1);
 }

 /* Allocate memory for host and service names */
 nd_hostserv.h_host = (char *)malloc(24);
 nd_hostserv.h_serv = (char *)malloc(24);
 if ((nd_hostserv.h_host == (char *)NULL)
 || (nd_hostserv.h_serv == (char *)NULL))
 {
 printf("No memory available. netdir_getbyname()
 failed.\n");
 exit(1);
 }

 printf("Enter the hostname:\n");
 scanf("%s", nd_hostserv.h_host);
 printf("Enter the service name:\n");
 scanf("%s", nd_hostserv.h_serv);

 /* Get the address for the service on the host on the
 * transport provider specified in the netconfig structure
 */
 if (netdir_getbyname(nconf, &nd_hostserv, &nd_addrlistp)
 != ND_OK)
 {
 printf("Cannot determine address for service\n");
 exit(1);
 }
 printf("The address of the <%s> service on host
 <%s> was found.\n", nd_hostserv.h_serv,
 nd_hostserv.h_host);

 /* Free the netdir structure allocated by netdir_getbyname() */
 netdir_free(nd_addrlistp, ND_ADDRLIST);

 /* Release the netconfig handle allocated by set setnetconfig() */
 endnetconfig(handlep);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

netdir_options()--Access Transport-Specific
Capabilities

 Syntax

 #include <netdir.h>

 int netdir_options(struct netconfig *nconf,
 int option,
 int fd,
 char *point_to_args);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The netdir_options() function provides interfaces to transport-specific capabilities such as the broadcast
address and reserved port facilities of TCP and UDP.

Parameters

nconf (Input)

A pointer to a netconfig structure that specifies a transport.

option (Input)

Specifies the transport-specific action to take. The following values may be used for option:

ND_SET_BROADCAST Set the transport for broadcast if supported.

ND_SET_RESERVEDPORT Let the application bind to a reserved port if allowed by the
transport.

ND_CHECK_RESERVEDPORT Verify that an address corresponds to a reserved port if the
transport supports reserved ports.

ND_MERGEADDR Transform a locally meaningful address into an address that
the client host can connect to.

fd (Input)

The file descriptor that may or may not be used based on the option. The only value supported for
this field is RPC_ANYFD. The file descriptor value is used only if the specified option is
ND_SET_BROADCAST or ND_SET_RESERVEDPORT.

point_to_args (Input)

A pointer to the operation-specific data.

Authorities

The caller must have the *IOSYSCFG special authority to bind to a reserved port.

Return Value

0 netdir_options() was successful.

-1 netdir_options() was not successful. The nd_errno global variable (defined in <netdir.h>) is set to
indicate the error.

Error Conditions

If netdir_options() is not successful, nd_errno indicates one of the following errors:

[ND_ACCESS] The user does not have permission to use the specified address.

[ND_BADARG] Bad argument passed.

A file descriptor that was not valid was passed to the API.

[ND_FAILCTRL] Control operation failed.

[ND_NO_ADDRESS] Bad address.

[ND_NOCONVERT] Conversion error. One or more characters could not be converted from the
source CCSID to the target CCSID.

[ND_NOCTRL] The function was used in the wrong sequence.

An incorrect option was specified.

[ND_NO_DATA] Incorret amount of data.

[ND_NOHOST] The host that was specified by the host name was not found.

[ND_NOMEM] Not enough memory left.

[ND_NO_RECOVERY] An unrecoverable error has occurred.

[ND_OPEN] File could not be opened.

[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.

The system detected an address that was not valid.

[ND_TRY_AGAIN] The local server did not receive a response from an authoritative server. An
attempt at a later time may succeed.

Error Messages

Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how netdir_options() is used:

#include <netdir.h>
#include <rpc/rpc_com.h> /* for RPC_ANYFD definition */

main()
{
 void *handlep;
 struct netconfig *nconf;

 /* Initialize the network selection mechanism */
 if (handlep = setnetconfig()) == (void *)NULL)
 {
 exit(1);
 }

 /* Get a netconfig structure from the netconfig file */
 if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)
 {
 printf("Unable to obtain a netconfig structure\n");
 }

 /* Set the protocol specific negotiation for broadcast */
 if (netdir_options(nconf, ND_SET_BROADCAST, RPC_ANYFD, NULL))
 {
 printf("Error setting the broadcasting option\n");
 }

 /* Release the netconfig handle allocated by setnetconfig() */
 endnetconfig(handlep);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

netdir_sperror()--Indicate an Error in an NTA
Routine

 Syntax

 #include <netdir.h>

 void netdir_sperror();

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The netdir_sperror() function issues an informational message that states why one of the name-to-address
translation APIs may have failed.

Parameters

None.

Authorities

No authorization is required.

Return Value

None

netdir_sperror() issues an informational message that indicates the error in one of the name-to-address
translation APIs.

Error Messages

Message ID Error Message Text

CPIA1B7 The previous name-to-address translation has completed.

Usage Notes

The netdir_sperror() function issues CPIA1B7 message that indicates why one of the name-to-address
translation mapping APIs failed. This function should be used after a failed call to a name-to-address
translation function prior to calling another name-to-address translation function.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how netdir_sperror() is used:

#include <netdir.h>
#include <rpc/rpc_com.h>

main()
{
 void *handlep;
 struct netconfig *nconf;

 /* Initialize the network selection mechanism */
 if (handlep = setnetconfig()) == (void *)NULL)
 {
 exit(1);
 }

 /* Get a netconfig structure from the netconfig file */
 if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)
 {
 printf("Unable to obtain a netconfig structure\n");
 }

 /* Set the protocol specific negotiation for broadcast */
 if (netdir_options(nconf, ND_SET_BROADCAST, RPC_ANYSOCK, NULL))
 {
 printf("Error setting the broadcasting option\n");
 printf("See the job log for error message\n");
 netdir_sperror();
 }

 /* Release the netconfig handle allocated by setnetconfig() */
 endnetconfig(handlep);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

taddr2uaddr()--Translate a Local Address

 Syntax

 #include <netdir.h>

 char *taddr2uaddr(struct netconfig *nconf,
 struct netbuf *addr);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The taddr2uaddr() function translates a transport-specific (local) address to a transport-independent
(universal) address.

Parameters

nconf (Input)

The transport for which the address is valid.

addr (Input)

The address to be translated to the universal representation.

Authorities

No authorization is required.

Return Value

universal address A string that contains the universal address is returned if the function taddr2uaddr()
was successful.

NULL A NULL pointer is returned if the function taddr2uaddr() was not successful. The
nd_errno global variable (defined in <netdir.h>) is set to indicate the error.

Error Conditions

If the function taddr2uaddr() is not successful, nd_errno usually indicates the following error:

[ND_BADARG] Bad argument passed.

[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.

Error Messages

Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

taddr2uaddr() translates the address pointed to by addr and returns a transport independent character
representation of the address (universal address).

The caller is responsible to free the returned universal address when done.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how taddr2uaddr() is used:

#include <netconfig.h>
#include <netdir.h>

main()
{
 void *handlep; /* A handle into network selection */
 struct netconfig *nconf; /* Transport information */
 struct nd_hostserv nd_hostserv; /* Host and service information */
 struct nd_addrlist *nd_addrlistp; /* Addresses for the service */
 struct netbuf *netbufp; /* The address of the service */
 int i; /* The number of addresses */
 char *uaddr; /* Service universal address */

 /* Initialize the network selection mechanism */
 if (handlep = setnetconfig()) == (void *)NULL)
 {
 exit(1);
 }

 /* Get the netconfig handle */
 if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)
 {
 printf("Error in getting the netconfig handle.\n");
 exit(1);
 }

 /* Get the address for service specified in nd_hostserv.h_serv
 * on the host specified in nd_hostserv.h_host over the
 * transport provider specified in the netconfig structure
 * Note: nd_hostserv.h_host and nd_hostserv.h_serv need to be
 * set up prior to the call to netdir_getbyname().
 */
 if (netdir_getbyname(nconf, &nd_hostserv, &nd_addrlistp)
 != ND_OK)
 {
 printf("Cannot determine address for service\n");
 /* Release the netconfig handle allocated by setnetconfig() */
 endnetconfig(handlep);
 exit(1);
 }

 /* Convert the transport-specific address into universal address
 * notation and print it.
 */
 netbufp = nd_addrlistp->n_addrs;
 uaddr = taddr2uaddr(nconf, netbufp);
 if (uaddr != NULL)
 {
 printf("The address of the service %s on host %s is %s\n",
 nd_hostserv.h_serv, nd_hostserv.h_host, uaddr);
 free(uaddr);
 }

 /* Free the netdir structure allocated by netdir_getbyname() */
 netdir_free(nd_addrlistp, ND_HOSTSERVLIST);

 /* Release the netconfig handle allocated by setnetconfig() */
 endnetconfig(handlep);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

uaddr2taddr()--Translate a Universal Address

 Syntax

 #include <netdir.h>

 struct netbuf *uaddr2taddr(struct netconfig *nconf,
 char *uaddr);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The uaddr2taddr() function translates a transport-independent (universal) address to a transport-specific
(local) address (netbuf structure).

Parameters

nconf (Input)

The transport for which the address is valid.

uaddr (Input)

The address to be translated to the netbuf structure.

Authorities

No authorization is required.

Return Value

netbuf structure uaddr2taddr() was successful.

NULL uaddr2taddr() was not successful. The nd_errno (defined in <netdir.h>) is set to
indicate the error.

Error Conditions

If uaddr2taddr() is not successful, nd_errno usually indicates one of the following errors:

[ND_BADARG] Bad argument passed.

[ND_NOMEM] Not enough memory left.

[ND_NO_RECOVERY] An unrecoverable error has occurred.

[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.

Error Messages

Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

uaddr2taddr() translates the universal address pointed to by addr and returns a pointer to a netbuf
structure.

It is the caller's responsibility to free the returned netbuf structure when done using the netdir_free()
function.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how uaddr2taddr() is used:

#include <netconfig.h>
#include <netdir.h>

Void sample (void)
{

 void *handlep;
 struct netconfig *nconf;
 struct netbuf *netbufp;
 char universal_addr[24];
 int i;

 /* Initialize the network selection mechanism */
 if (handlep = setnetconfig()) == (void *)NULL)

 {
 exit(1);
 }

 /* Get the transport information */
 if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)
 {
 printf("Error in getting the transport information\n"E);
 exit(1);
 }

 memset(universal_addr,24,NULL);
 printf("EEnter the IP address appended by low and high order
 port numbers:\n"E);
 scanf(%s, universal_addr);

 /* Convert the input universal address to its local representation */
 if ((netbufp = uaddr2taddr(nconf, universal_addr)) ==
 (struct netbuf *) NULL)
 {
 printf("Euaddr2taddr() failed\n"E);
 }

 /*Free the netbuf structure returned from uaddr2taddr() */
 netdir_free((char *)netbufp, ND_ADDR);

 /* Release the netconfig handle allocated by setnetconfig() */
 endnetconfig(handlep);

 return;
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

Network Selection APIs
The network selection APIs provide the means to choose the transport on which an application should run.
These APIs are typically used by the applications that use the intermediate-level and expert-level TI-RPC
APIs.

The network selection APIs are:

endnetconfig() (Release the pointer in the netconfig file) releases the pointer to the records stored in
the netconfig file.

●

freenetconfigent() (Free the netconfig structure) frees the netconfig structure that is returned from
the call to the getnetconfigent() function.

●

getnetconfig() (Return current record from the netconfig file) returns the pointer to the current
record in the netconfig file and increments its pointer to the next record.

●

getnetconfigent() (Return a pointer to a netconfig structure) returns the pointer to the netconfig
structure that corresponds to the input netid.

●

setnetconfig() (Initialize the pointer in the netconfig file) initializes the record pointer to the first
entry in the netconfig file.

●

Top | Remote Procedure Call (RPC) APIs | APIs by category

endnetconfig()--Release the Pointer in the
Netconfig File

 Syntax

 #include <netconfig.h>

 int endnetconfig (void *);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The endnetconfig() function releases the pointer to the records stored in the netconfig file.

Parameters

void pointer (Input)

A void pointer that is set by a call to the setnetconfig() function.

Authorities

No authorization is required.

Return Value

0 endnetconfig() was successful. The pointer to the netconfig structure in the netconfig file is released.
This function is always successful.

Error Conditions

When an exception occurs, endnetconfig() is trying to free the handle to the /etc/netconfig file. If
endnetconfig() is not successful, errno indicates the following error.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the job
log and correct any errors that are indicated. Then retry the operation.

Error Messages

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

endnetconfig() API must be used to release the pointer to the netconfig structure obtained by a call to the
setnetconfig() API.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how endnetconfig() is used:

#include <netconfig.h>

main()
{
 void *handlep;
 struct netconfig *nconf;

 /* Initialize the network selection mechanism */
 if ((handlep = setnetconfig()) == (void *)NULL)
 {
 exit(1);
 }

 /* Loop through the transport providers */
 while ((nconf = getnetconfig(handlep)) != (struct netconfig *) NULL)
 {
 /* Print out the information associated with the */
 /* transport providers described in the */
 /* "netconfig" structure. */
 printf("Transport provider name: %s\n", nconf->nc_netid);
 switch(nconf->nc_semantics)
 {

 case NC_TPI_CLTS:
 printf("Transport type name: TPI_CLTS\n");
 break;
 case NC_TPI_COTS:
 printf("Transport type name: TPI_COTS\n");
 break;
 case NC_TPI_COTS_ORD:
 printf("Transport type name: TPI_COTS_ORD\n");
 break;
 default:
 break;
 }
 switch(nconf->nc_flag)
 {
 case 0:
 printf("Transport flag name: N\n");
 break;
 case 1:
 printf("Transport flag name: V\n");
 break;
 default:
 break;
 }
 printf("Transport family name: %s\n", nconf->nc_protofmly);
 printf("Transport protocol name: %s\n", nconf->nc_proto);
 }

 /*Release the netconfig handle allocated by setnetconfig() */
 endnetconfig(handlep);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

freenetconfigent()--Free the Netconfig
Structure

 Syntax

 #include <netconfig.h>

 void freenetconfigent(struct netconfig *);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The freenetconfigent() function frees the netconfig structure that is returned from the call to the
getnetconfigent() function.

Parameters

netconfig (Input)

A pointer to a netconfig structure that is set by a call to the setnetconfig() function.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

If an exception occurs, freenetconfigent() fails to free the netconfig structure. If freenetconfigent() is not
successful, errno indicates the following error.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the job
log and correct any errors that are indicated. Then retry the operation.

Error Messages

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how freenetconfigent() is used:

#include <netconfig.h>

main()
{
 struct netconfig *nconf;

 /* Assuming UDP is a netid on the system, get the netconfig structure *
 if ((nconf = getnetconfigent("UDP")) == (struct netconfig *)NULL)
 {
 printf("There is no information about UDP\n");
 exit(1);
 }

 /* Print out the information associated with the transport */
 /* identified with the netid of UDP */
 printf("Transport provider name: %s\n", nconf->nc_netid);
 switch(nconf->nc_semantics)
 {
 case NC_TPI_CLTS:
 printf("Transport type name: TPI_CLTS\n");
 break;
 case NC_TPI_COTS:
 printf("Transport type name: TPI_COTS\n");
 break;
 case NC_TPI_COTS_ORD:
 printf("Transport type name: TPI_COTS_ORD\n");
 break;
 default:
 break;
 }
 switch(nconf->nc_flag)
 {
 case 0:
 printf("Transport flag name: N\n");

 break;
 case 1:
 printf("Transport flag name: V\n");
 break;
 default:
 break;
 }
 printf("Transport family name: %s\n", nconf->nc_protofmly);
 printf("Transport protocol name: %s\n", nconf->nc_proto);

 /* Free the netconfig structure returned by getnetconfigent() */
 freenetconfigent(nconf);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

getnetconfig()--Return Current Record from the
Netconfig File

 Syntax

 #include <netconfig.h>

 struct netconfig *getnetconfig(void *);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The getnetconfig() function returns the pointer to the current record in the netconfig file and increments its
pointer to the next record.

Parameters

void pointer (Input)

A void pointer that is set by a call to the setnetconfig() function.

Authorities

No authorization is required.

Return Value

netconfig getnetconfig() was successful. A pointer to the current netconfig structure in the netconfig
file is returned.

NULL getnetconfig() was not successful. A NULL pointer is returned. The errno global variable is
set to indicate the error.

Error Conditions

If getnetconfig() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the job
log and correct any errors that are indicated. Then retry the operation.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

For more information, see the example for endnetconfig()--Release the Pointer in the Netconfig File.

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

getnetconfigent()--Return a Pointer to a
Netconfig Structure

 Syntax

 #include <netconfig.h>

 struct netconfig *getnetconfigent(char *);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The getnetconfigent() function returns the pointer to the netconfig structure that corresponds to the input
netid.

Parameters

netid (Input)

A character pointer to a netid such as "tcp" or "udp".

Authorities

The caller of getnetconfigent() function must have execute (*X) authority to the /etc directory and must
have read (*R) authority to the netconfig file.

Return Value

netconfig getnetconfigent() was successful. A pointer to a netconfig structure is returned.

NULL getnetconfigent() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getnetconfigent() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EACCES] Permission denied.

An attempt was made to access an object in a way forbidden by its object
access permissions.

●

The job does not have access to the specified file, directory, component, or
path.

●

[EAGAIN] Operation would have caused the process to be suspended.

[EBADNAME] The object name specified is not correct.

[EBUSY] Resource busy.

[ECONVERT] Conversion error.

One or more characters could not be converted from the source CCSID to the
target CCSID.

●

[EDAMAGE] A damaged object was encountered.

A referenced object is damaged. The object cannot be used.●

[EIO] Input/output error.

A physical I/O error occurred. A reference object may be damaged.●

[EMFILE] Too many open files for this process.

An attempt was made to open more files than allowed by the value
OPEN_MAX. The value of OPEN_MAX can be retrieved using the sysconf()
function.

●

[ENFILE] Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be
concurrently open in the system.

●

[ENOENT] No such path or directory.

The directory or a component of the path name specified does not exist.●

A named file or directory does not exist or is an empty string.●

[ENOMEM] Storage allocation request failed.

The function needed to allocate storage, but no storage is available.●

There is not enough memory to perform the requested function.●

[ENOSPC] No space available.

The requested operations required additional space on the device and there is
no space left. This could also be caused by exceeding the user profile storage
limit when creating or transferring ownership of an object.

Insufficient space remains to hold the intended file.❍

●

[ENOSYSRSC] System resources not available to complete the request.

[EPERM] Operation not permitted.

You must have appropriate privileges or other resources to do the requested
operation.

●

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages
in the job log and correct any errors that are indicated. Then retry the
operation.

●

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPIA1C0 I The file /etc/netconfig cannot be opened by readers because another job has it open
with write authority.

Usage Notes

getnetconfigent() returns a pointer to a netconfig structure in the netconfig file for the corresponding netid.
The netid is expected in the job CCSID. It returns NULL if it is unsuccessful.

The callers of the getnetconfigent() function do not need to call the setnetconfig() function prior to calling
the getnetconfigent() function but must call the freenetconfigent() function to free the storage allocated by
the getnetconfigent() function.

The getnetconfigent() function will return [ENOENT] if the /etc/netconfig file does not exist. The
getnetconfigent() function will fail with [ECONVERT] if the data conversion required to convert the data
stored in the /etc/netconfig file cannot be converted to the job CCSID.

Example

For more information, see the example for freenetconfigent()--Free the Netconfig Structure.

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

setnetconfig()--Initialize the Pointer in the
Netconfig File

 Syntax

 #include <netconfig.h>

 void *setnetconfig(void);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The setnetconfig() function initializes the record pointer to the first entry in the netconfig file. The
setnetconfig() function must be used before the first use of getnetconfig() function. The setnetconfig()
function returns a unique handle (a pointer to the records stored in the netconfig file) to be used by the
getnetconfig() function.

Parameters

None.

Authorities

The caller of setnetconfig() function must have execute (*X) authority to the /etc directory and must have
read (*R) authority to the netconfig file.

Return Value

void pointer setnetconfig() was successful. A void pointer to the records stored in the netconfig file is
returned.

NULL setnetconfig() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If setnetconfig() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EACCES] Permission denied.

An attempt was made to access an object in a way forbidden by its object
access permissions.

●

The job does not have access to the specified file, directory, component, or
path.

●

[EAGAIN] Operation would have caused the process to be suspended.

[EBADNAME] The object name specified is not correct.

[EBUSY] Resource busy.

[ECONVERT] Conversion error.

One or more characters could not be converted from the source CCSID to the
target CCSID.

●

[EDAMAGE] A damaged object was encountered.

A referenced object is damaged. The object cannot be used.●

[EIO] Input/output error.

A physical input/output error occurred. A reference object may be damaged.●

[EMFILE] Too many open files for this process.

An attempt was made to open more files than allowed by the value
OPEN_MAX. The value of OPEN_MAX can be retrieved by using the
sysconf() function.

●

[ENFILE] Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be
concurrently open in the system.

●

[ENOENT] No such path or directory.

The directory or a component of the path name specified does not exist.●

A named file or directory does not exist or is an empty string.●

[ENOMEM] Storage allocation request failed.

The function needed to allocate storage, but no storage is available.●

There is not enough memory to perform the requested function.●

[ENOSPC] No space available.

The requested operations required additional space on the device and there is
no space left. This could also be caused by exceeding the user profile storage
limit when creating or transferring ownership of an object.

●

Insufficient space remains to hold the intended file.●

[ENOSYSRSC] System resources not available to complete the request.

[EPERM] Operation not permitted.

You must have appropriate privileges or other resources to do the requested
operation.

●

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages
in the job log and correct any errors that are indicated. Then retry the
operation.

●

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPIA1C0 I The file /etc/netconfig cannot be opened by readers because another job has it open
with write authority.

Usage Notes

The setnetconfig() function is used prior to using the getnetconfig() function to initialize the record pointer
to the data stored in the netconfig file.

The setnetconfig() function will fail with [ENOENT] if the /etc/netconfig file does not exist. The
setnetconfig() function will fail with [ECONVERT] if the data conversion required to convert the data
stored in the /etc/netconfig file cannot be converted to the job CCSID.

Example

For more information, see the example for endnetconfig()--Release the Pointer in the Netconfig File.

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

Transport-Independent Remote Procedure Call
APIs
The Transport-Independent Remote Procedure Call (TI-RPC) functions allow distributed applications to
communicate with each other in a transport independent fashion. These APIs are provided to perform
Transport-Independent Remote Procedure Calls.

The TI-RPC APIs are divided into five separate sections:

Simplified APIs●

Top-level APIs●

Intermediate-level APIs●

Expert-level APIs●

Other APIs (These APIs work with the other four sections.)●

Top | Remote Procedure Call (RPC) APIs | APIs by category

Simplified APIs
The simplified interfaces specify the type of transport to use. Applications using this level do not have to
explicitly create handles. These APIs combine all the API calls into one procedure and can be used to
quickly develop an RPC service and corresponding client application.

The simplified APIs are:

rpc_call() (Call a remote procedure on the specified system) calls the remote procedure that is
associated with prognum, versnum, and procnum on the machine, host.

●

rpc_reg() (Register a procedure with RPC service package) registers a procedure with the RPC
service package (RPCBind).

●

Top | Remote Procedure Call (RPC) APIs | APIs by category

rpc_call()--Call a Remote Procedure on the
Specified System

 Syntax

 #include <rpc/rpc.h>

 enum clnt_stat rpc_call(const char *host,
 const u_long prognum,
 const u_long versnum,
 const u_log procnum,
 const xdrproc_t inproc,
 const char *in,
 const xdrproc_t outproc,
 char *out,
 const char *nettype);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The rpc_call() API calls the remote procedure that is associated with prognum, versnum, and procnum on
the machine, host. rpc_call() tries all the transports of the nettype class available from the netconfig
database file, and chooses the first successful one. Transports are tried in top-to-bottom order in the
netconfig database file. A default time-out is set and can be modified using clnt_control().

Parameters

host (Input)

A pointer to the program name of the remote machine.

prognum (Input)

The program number of the remote program.

vernum (Input)

The version number of the remote program.

procnum (Input)

The number of the procedure that is associated with the remote program being called.

inproc (Input)

The name of the XDR procedure that encodes the procedure parameters.

in (Input)

The address of the procedure arguments.

outproc (Input)

The name of the XDR procedure that decodes the procedure results.

out (Output)

The address where results are placed.

nettype (Input)

The following classes of transport protocol are valid and are represented as a string either in
lowercase or in uppercase: NETPATH, VISIBLE, CIRCUIT_V, DATAGRAM_V, CIRCUIT_N,
DATAGRAM_N, TCP, and UDP. When this parameter is NULL, NETPATH is assumed.

Authorities

The caller of the rpc_call() API must have execute (*X) authority to the /etc directory and must have read
(*R) authority to the netconfig file.

Return Value

RPC_SUCCESS (0) Successful

Non-zero value rpc_call() was not successful. The rpc_createerr global structure is set to indicate
the error.

Error Conditions

Upon failure, rpc_call() sets the global structure rpc_createerr. The rpc_createerr.cf_stat variable has a
status value that indicates the error reason. The rpc_createerr.cf_error.re_errno variable is meaningful
when some status values are set.

The rpc_createerr.cf_stat variable can be set to one of the following values:

This API calls clnt_create() and clnt_call() APIs in order to perform its task. All error conditions from
those APIs are inherited except RPC_FAILED from clnt_call().

[RPC_SYSTEMERROR] RPC error returned from system call. The rpc_createerr.cf_error.re_errno
variable can be set to one of the following values:

[ENOMEM] Out of memory.

[RPC_UNKNOWNHOST] Unknown host.

Error Messages

Message ID Error Message Text

CPIA1B1 I A problem was encountered in the RPC client.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

clnt_call()--Call a Remote Procedure Associated with the Client●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how rpc_call() is used:

/* Define remote program number and version */

#define RMTPROGNUM (u_long)0x3fffffffL
#define RMTPROGVER (u_long)0x1
#define RMTPROCNUM (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>

main()
{
 int inproc=100, outproc;
 enum clnt_stat rstat;

 ...

 /* Service request to host RPCSERVER_HOST */
 if (rstat = rpc_call("as400.somewhere.ibm.com", RMTPROGNUM,
 RMTPROGVER, RMTPROCNUM, xdr_int, (char *)&inproc,
 xdr_int, (char *)&outproc, "VISIBLE")
 != RPC_SUCCESS){
 fprintf(stderr,"rpc_call() failed\n");

 exit(1);
 }
 ...
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

rpc_reg()--Register a Procedure with RPC
Service Package

 Syntax

 =
 #include <rpc/rpc.h>

 bool_t rpc_reg(const u_long prognum,
 const u_long versnum,
 const u_long procnum,
 char *(*procname)(char *),
 const xdrproc_t inproc,
 const xdrproc_t outproc,
 const char *nettype);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The rpc_reg() function registers a procedure with the RPC service package (RPCBind). If a request arrives
that matches the values of the prognum parameter, the versnum parameter, and the procnum parameter, then
the procname parameter is called with a pointer to its parameters. The procname returns a pointer to its
static results.

The procedure is registered for each transport of the specified type (the nettype parameter). If the nettype
parameter is (char *)NULL, the procedure is registered for all transports that are specified in the
/etc/netconfig file with a corresponding flag value visible. After registering the local procedure, the server
program's main procedure calls svc_run(), the RPC library's remote procedure dispatcher.

Parameters

prognum (Input)

The program number of the remote program.

versnum (Input)

The version number of the remote program.

procnum (Input)

The procedure number to be called.

procname (Input)

The procedure name.

inproc (Input)

The eXternal Data Representation (XDR) subroutine that decodes the procedure parameters.

outproc (Input)

The XDR subroutine that encodes the procedure results.

nettype (Input)

The following classes of transport protocol are valid and are represented as a string either in
lowercase or in uppercase: NETPATH, VISIBLE, CIRCUIT_V, DATAGRAM_V, CIRCUIT_N,
DATAGRAM_N, TCP, AND UDP. When this parameter is NULL, NETPATH is assumed.

Authorities

The caller of the rpc_reg() API must have execute (*X) authority to the /etc directory and must have read
(*R) authority to the netconfig file.

Return Value

TRUE (1) rpc_reg() was successful.

FALSE (0) rpc_reg() was not successful. The errno variable is set to indicate the reason.

Error Conditions

This API inherits all error conditions from the setnetconfig() and getnetconfig() APIs. It also inherits all
error conditions from the svc_tli_create() and svc_reg() APIs.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPIA1B3 I TI-RPC encountered a problem in the server.

CPIA1B5 I An incorrect nettype was given.

Related Information

svc_reg()--Associate Program and Version with Dispatch●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how rpc_reg() is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)0x3fffffffL
#define RMTPROGVER (u_long)0x1
#define RMTPROCNUM (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>

int *rmtproc(int *param) /* remote procedure */
{
 static int result;
 result = *param + *param;
 return(&result);
}

main()
{
 int *rmtprog();

 /* Register remote program with RPCBind */
 if (rpc_reg(RMTPROGNUM, RMTPROGVER, RMTPROCNUM, rmtprog,
 xdr_int, xdr_int, "VISIBLE") == -1) {
 fprintf(stderr, "Could not Register\n");
 exit(1);
 }
 svc_run();
 exit(1);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

Top-level APIs
The top-level APIs allow more customization to both the client and the service while still maintaining an
ease of development and use.

The top-level APIs are:

clnt_call() (Call a remote procedure associated with the client) calls the remote procedure that is
associated with the client handle pointed to by the clnt parameter.

●

clnt_control() (Change information about a client object) is used to change or retrieve information
about a client object.

●

clnt_create() (Create a generic client handle) creates and returns a generic client handle for program
prognum and version versnum on a remote host where the server is located.

●

clnt_destroy() (Destroy the RPC Client's Handle) destroys the RPC client's handle.●

svc_create() (Create a server handle) creates server handles for all the transports belonging to the
class nettype.

●

svc_destroy() (Destroy an RPC service transport handle) destroys an RPC service transport handle.●

Top | Remote Procedure Call (RPC) APIs | APIs by category

clnt_call()--Call a Remote Procedure
Associated with the Client

 Syntax

 #include <rpc/rpc.h>

 enum clnt_stat clnt_call(CLIENT *clnt,
 const u_long procnum,
 const xdrproc_t inproc,
 const caddr_t in,
 const xdrproc_t outproc,
 caddr_t out,
 const struct timeval tout);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The clnt_call() API calls the remote procedure that is associated with the client handle pointed to by the
clnt parameter.

The caller of the clnt_call() API must pass a valid client handle obtained from a successful call to the
clnt_create() API.

Parameters

clnt (Input)

A pointer to the client handle structure that results from calling a client creation function that uses a
Remote Procedure Call (RPC) such as the clnt_create() API.

procnum (Input)

The procedure on the host machine.

inproc (Input)

The name of the XDR procedure that encodes the procedure parameters.

in (Input)

The address of the procedure arguments.

outproc (Input)

The name of the XDR procedure that decodes the procedure results.

out (Output)

The address where results are placed.

tout (Input)

The time allowed for the server to respond.

Authorities

None

Return Value

RPC_SUCCESS (0) Successful

Non-zero value clnt_call() was not successful.

Error Conditions

Upon failure, clnt_call() sets a private field in the client handle. This field has a type 'struct rpc_err', and
can be accessed by the clnt_geterr() function.

The re_status field can be set to one of the following values:

[RPC_AUTHERROR] Authentication error. Server's response did not pass authentication
validation.

[RPC_CANTDECODERES] The outproc XDR function has failed.

[RPC_CANTENCODEARGS] The inproc XDR function has failed.

[RPC_CANTRECV] Failure in receiving result. RPC is unable to receive server's
response. The re_errno field is set to the value returned from the
failed call.

[EBADF] Bad file descriptor. This value is set when the
client parameter is not valid or the file
descriptor associated with it is already closed
or damaged.

[EIO] Input/output error. This value is set as a
result of network transport failure. It
indicates that RPC cannot handle an error
that occurred in the lower transport levels.

[ENOMEM] Out of memory.

[EOPNOTSUPP] Operation is not supported. This value is set
when client is not valid or the file descriptor
associated with it has a limited capabilities.

[EUNKNOWN] Unknown system state.

[RPC_CANTSEND] Failure in sending call. RPC is unable to send a request. The
re_errno field is set to the value returned from the failed call.

[EBADF] Bad file descriptor. This value is set when the
client parameter is not valid or the file
descriptor associated with it is already closed
or damaged.

[EIO] Input/output error. This value is set as a
result of network transport failure. It
indicates that RPC cannot handle an error
that occurred in the lower transport levels.

[ENOMEM] Out of memory.

[EOPNOTSUPP] Operation is not supported. This value is set
when client is not valid or the file descriptor
associated with it has a limited capabilities.

[EUNKNOWN] Unknown system state.

[RPC_FAILED] The tout parameter is not set properly.

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC API.
The re_errno field is set to EUNKNOWN.

[RPC_TIMEDOUT] RPC call is timed out. The client cannot receive a response in the
specified timeout period.

[RPC_PROGVERSMISNATCH] There are no registered versions for the program.

[RPC_PROGNOTREGISTERED] The program is not registered with the server.

[RPC_PROGUNAVAIL] The program is not registered with the server.

Error Messages

Message ID Error Message Text

CPIA1B1 I A problem was encountered in the RPC client.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

rpc_call()--Call a Remote Procedure on the Specified System●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how clnt_call() is used:

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/time.h>

main()
{
 u_long procnum;
 CLIENT *clnt;
 enum clnt_stat cs;
 struct rpc_err client_error;
 struct timeval total_timeout;
 int intsend, intrecv;

 ...

 /* Call the remote procedure that is associated with client */
 cs = clnt_call(clnt, procnum, xdr_int,
 (caddr_t)&intsend, xdr_int,
 (caddr_t)&intrecv, total_timeout);

 if (cs != RPC_SUCCESS){
 clnt_geterr(client,&client_error);
 ...

 exit(1);
 }
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

clnt_control()--Change Information about a
Client Object

 Syntax

 #include <rpc/rpc.h>

 bool_t clnt_control(CLIENT *clnt,
 const u_int req,
 char *info);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The clnt_control() function is used to change or retrieve information about a client object. For both
connectionless and connection-oriented transports, the supported values for req, their argument types, and
what they do follow:

Values for the req
Parameter

Argument
Type

Function

CLSET_TIMEOUT (struct
timeval *)

Set total time out

CLGET_TIMEOUT (struct
timeval *)

Get total time out

CLGET_SERVER_ADDR (struct
netbuf *)

Get server's address

CLGET_SVC_ADDR (struct
netbuf *)

Get server's address

CLSET_SVC_ADDR (struct
netbuf *)

Set to new address

CLGET_FD (int *) Get the associated file descriptor

CLSET_FD_CLOSE (void) Close the file descriptor when the
API destroys the client handle

CLSET_FD_NCLOSE (void) Do not close the file descriptor
when the API destroys the client
handle

CLGET_VERS (unsigned
long *)

Get the RPC program's version
number that is associated with the
client handle

CLSET_VERS (unsigned
long *)

Set the RPC program's version
number that is associated with the
client handle

CLGET_PROG (unsigned
long *)

Get the program number

CLSET_PROG (unsigned
long *)

Set the program number

CLGET_XID (unsigned
long *)

Get the XID of the previous RPC

CLSET_XID (unsigned
long *)

Set the XID of the next RPC

CLSET_RETRY_TIMEOUT1 (struct
timeval *)

Set the retry time-out

CLGET_RETRY_TIMEOUT1 (struct
timeval *)

Get the retry time-out

Note:
1 Valid only for connectionless transports.

Parameters

clnt (Input)

A pointer to the client handle structure.

req (Input)

The type of operation.

info (Input/Output)

A pointer to the information for request type. The info parameter is expected to be a pointer to an
appropriate structure. The nature of the structure depends on the req parameter.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

Failure is returned only when a bad format of parameters is detected. For example, the info parameter is
NULL, when a pointer to a timeval structure is expected.

Error Messages

Message ID Error Message Text
CPIA1B1 I A problem was encountered in the RPC client.
CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how clnt_control() is used:

#include <rpc/rpc.h>

main()
{
 CLIENT *clnt;
 int fd;

 ...

 /* Get the associated file descriptor */
 clnt_control(clnt, CLGET_FD, (int *)&fd);
 ...

}

Notes

If the time-out is set using the clnt_control() API, the timeout parameter passed to the clnt_call()1.

API will be ignored in all future calls.

The retry time-out is the time that the connectionless RPC client waits for the server to reply before
retransmitting the request.

2.

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

clnt_create()--Create a Generic Client Handle

 Syntax

 #include <rpc/rpc.h>

 CLIENT *clnt_create(const char *host,
 const u_long prognum,
 const u_long versnum,
 const char *nettype);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The clnt_create() API creates and returns a generic client handle for program prognum and version
versnum on a remote host where the server is located. This is done using an available transport of the
nettype class. The clnt_create() API tries all the transports of the nettype class available from the
/etc/netconfig file, and chooses the first successful one. Transports are tried in top-to-bottom order in the
netconfig database. A default time-out is set and can be modified using clnt_control().

Parameters

host (Input)

The name of the remote host where the server is located.

prognum (Input)

The program number of the remote program.

vernum (Input)

The version number of the remote program.

nettype (Input)

The following classes of transport protocol are valid and are represented as a string either in
lowercase or in uppercase: NETPATH, VISIBLE, CIRCUIT_V, DATAGRAM_V, CIRCUIT_N,
DATAGRAM_N, TCP, and UDP. When this parameter is NULL, NETPATH is assumed.

Authorities

The caller of the clnt_create() API must have execute (*X) authority to the /etc directory and must have
read (*R) authority to the netconfig file.

Return Value

clnt Upon successful completion, this API returns a client handle.

NULL clnt_create() was not successful. The rpc_createerr variable is set to indicate the reason.

Error Conditions

Upon failure, clnt_create() sets the global structure rpc_createerr. The rpc_createerr.cf_stat variable
contains a status value that indicates the error reason. The rpc_createerr.cf_error.re_errno variable is
meaningful when some status values are set.

The rpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC API. The
rpc_createerr.cf_error.re_errno variable is set to EUNKNOWN.

[RPC_N2AXLATEFAILURE] Name-to-address translation failed. Cannot resolve the hostname given
in host.

[RPC_SYSTEMERROR] An RPC error was returned from the system call. The
rpc_createerr.cf_error.re_errno variable is set to the value returned
from the failed call.

[EACCES] Permission denied.

[EADDRINUSE] Local address is in use. This value is set
when host is not valid or the file descriptor
associated with it cannot be bound to any
local address.

[EADDRNOTAVAIL] Address not available. This value is set when
the address obtained by the rpcb_getaddr()
is rejected by the transport layer.

[EAGAIN] Operation would have caused the process to
be blocked.

[EBADF] Bad file descriptor. This value is set when
host is not valid or the file descriptor
associated with it is already closed or
damaged.

[ECONNREFUSED] TI-RPC encountered a problem in the
transport. The client cannot connect to the
server.

[EFAULT] The address created by the rpcb_getaddr()
was not available.

[EIO] Input/output error. This value is set as a result
of network transport failure. It indicates that
RPC cannot handle an error that occurred in
lower transport levels.

[ENOBUFS] There is not enough buffer space available for
the API.

[ENOMEM] Out of memory.

[EOPNOTSUPP] Operation is not supported. This value is set
when host is not valid or the file descriptor
associated with it has limited capabilities.

[EUNKNOWN] Unknown system state.

[RPC_UNKNOWNHOST] Unknown host.

[RPC_UNKNOWNPROTO] Unknown client/server protocol. The rpc_createerr.cf_error.re_errno is
set with the errno value returned by setnetconfig() or getnetconfig()
call. This error is set when the netconf pointer is NULL.

Error Messages

Message ID Error Message Text

CPIA1B1 I A problem was encountered in the RPC client.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPIA1B5 I An incorrect nettype was given.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

clnt_tp_create()--Create a Client Handle●

clnt_tli_create()--Create a Client Handle●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how clnt_create() is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)0x3fffffffL
#define RMTPROGVER (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>

main()
{
 CLIENT *client;

 /* Service request to host RPCSERVER_HOST */
 client = clnt_create("as400.somewhere.ibm.com", RMTPROGNUM,
 RMTPROGVER, "TCP");

 if (client == (CLIENT *)NULL) {
 fprintf(stderr,"Couldn't create client\n");
 exit(1);
 }
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

clnt_destroy()--Destroy the RPC Client's Handle

 Syntax

 #include <rpc/rpc.h>

 void clnt_destroy(CLIENT *clnt);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The clnt_destroy() API destroys the RPC client's handle. This function deallocates private data structures,
including the clnt parameter itself. The use of the clnt parameter becomes undefined upon calling the
clnt_destroy() API. If the RPC library opened the associated file descriptor, or was set using
clnt_control(), the associated file descriptor will be closed.

The caller should call auth_destroy (before calling clnt_destroy) to destroy the associated AUTH
structure.

Parameters

clnt (Input)

A pointer to the client handle structure.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

svc_destroy()--Destroy an RPC Service Transport Handle

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how clnt_destroy() is used:

#include <rpc/rpc.h>

main()
{
 CLIENT *clnt;

 /* Create client handle */
 clnt = clnt_create(..);

 ...

 /* Destroy the client handle */
 clnt_destroy(clnt);
 exit(0);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_create()--Create a Server Handle

 Syntax

 #include <rpc/rpc.h>

 int svc_create(const void
 (*dispatch)(const svc_req *,
 const SVCXPRT *),
 const u_long prognum,
 const u_long versnum,
 const char *nettype);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svc_create() function creates server handles for all the transports belonging to the class nettype.

svc_create() tries all the transports of the nettype class that are available from the /etc/netconfig file in
top-to-bottom order. svc_create() registers itself with the RPCBind service.

Parameters

dispatch (Input)

The server dispatch function. dispatch is called when there is a remote procedure call for the given
prognum and versnum.

prognum (Input)

The program number of the remote program.

vernum (Input)

The version number of the remote program

nettype (Input)

The following classes of transport protocol are valid: NETPATH, VISIBLE, CIRCUIT_V,
DATAGRAM_V, CIRCUIT_N, DATAGRAM_N, TCP, and UDP.

Authorities

The caller of the svc_create() API must have execute (*X) authority to the /etc directory and must have
read (*R) authority to the netconfig file.

Return Value

num Upon successful completion, svc_create() returns the number of server handles it creates.

0 svc_create() was not successful. The errno variable is set to indicate the reason.

Error Conditions

This API calls setnetconfig() and getnetconfig() APIs in order to perform its task. The API inherits all
error conditions from those APIs. It also inherits all error conditions from svc_tp_create() API except
EINVAL.

Error Messages

Message ID Error Message Text

CPIA1B1 I A problem was encountered in the RPC client.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPIA1B3 I TI-RPC encountered a problem in the server.

CPIA1B5 I An incorrect nettype was given.

CPIA1B8 I A problem occurred while trying to contact the RPCBind daemon.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

svc_tp_create()--Create a Server Handle●

svc_tli_create()--Create a Server Handle●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how svc_create() is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)0x3fffffffL
#define RMTPROGVER (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>

static void exm_proc();

main()
{
 int transpnum;

 ...
 transpnum = svc_create(exm_proc, RMTPROGNUM, RMTPROGVER,
 "VISIBLE");
 if (transpnum == 0){
 fprintf(stderr, "Cannot create a service.\n");
 exit(1);
 }
 svc_run(); /* No return */
}

/* The server dispatch function */
static void exm_proc(struct svc_req *rqstp, SVCXPRT *transp)
{

 ...

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_destroy()--Destroy an RPC Service
Transport Handle

 Syntax

 #include <rpc/rpc.h>

 void svc_destroy(SVCXPRT *xprt);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svc_destroy() function destroys an RPC service transport handle. This function deallocates the private
data structures, including the handle itself. After the svc_destroy() API is used, the handle pointed to by the
xprt parameter is no longer defined.

Parameters

xprt (Input)

A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

None.

Error Messages

None.

Related Information

clnt_destroy()--Destroy the RPC Client's Handle●

svc_create()--Create a Server Handle●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how svc_destroy() is used:

#include <rpc/rpc.h>

main()
{
 SVCXRPT *transp;

 ...

 /* Destroy the service handle */
 svc_destroy(transp);
 ...
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

Intermediate-level APIs
The intermediate-level APIs are similar to the top-level APIs, but the user applications select the
transport-specific information by using network selection APIs. These APIs allow more customization and
greater control over the transport that is used.

The intermediate-level APIs are:

clnt_tp_create() (Create a client handle) creates a client handle for the program prognum, the
version versnum, and for the transport specified by netconf.

●

svc_tp_create() (Create a server handle) creates a server handle for the network specified by
netconf, and registers itself with the RPC service package (RPCBind).

●

Top | Remote Procedure Call (RPC) APIs | APIs by category

clnt_tp_create()--Create a Client Handle

 Syntax

 #include <rpc/rpc.h>
 #include <netconfig.h>

 CLIENT *clnt_tp_create(const char *host,
 const u_long prognum,
 const u_long versnum,
 const struct netconfig
 *netconf);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The clnt_tp_create() API creates a client handle for the program prognum, the version versnum, and for
the transport specified by netconf. The remote RPCBind service on the host machine host is consulted for
the address of the remote service.

Parameters

host (Input)

The name of the remote host where the server is located.

prognum (Input)

The program number of the remote program.

vernum (Input)

The version number of the remote program.

netconf (Input)

The transport protocol to use.

Authorities

The caller of the clnt_tp_create() API must have execute (*X) authority to the /etc directory and must have
read (*R) authority to the netconfig file.

Return Value

clnt Upon successful completion, this function returns a client handle.

NULL clnt_tp_create() was not successful. The rpc_createerr variable is set to indicate the reason.

Error Conditions

Upon failure, clnt_tp_create() sets the global structure rpc_createerr. The rpc_createerr.cf_stat variable
contains a status value that indicates the error reason. The rpc_createerr.cf_error.re_errno variable is
meaningful when some status values are set.

The rpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC API.
The rpc_createerr.cf_error.re_errno is set to EUNKNOWN.

[RPC_N2AXLATEFAILURE] Name-to-address translation failed. The API cannot resolve the
hostname given in host.

[RPC_PROGNOTREGISTERED] Remote program is not registered.

[RPC_RPCBFAILURE] A failure occurred in the RPCBind daemon.

[RPC_SYSTEMERROR] RPC error returned from system call. The
rpc_createerr.cf_error.re_errno variable is set to the value returned
from the failed call.

[EACCES] Permission denied.

[EADDRINUSE] Local address is in use. This value
is set when the transport endpoint
cannot be bound to any local
address. This API calls
rpcb_getaddr() API in order to
perform the API's task. It inherits
all error conditions from
clnt_tli_create() and
rpcb_getaddr() APIs, except
RPC_FAILED.

[EADDRNOTAVAIL] Address not available. This value
is set when the address obtained
by the rpcb_getaddr() is rejected
by transport layer.

[EAGAIN] Operation would have caused the
process to be blocked.

[EBADF] Bad file descriptor. This value is
set when the transport endpoint
created is not valid.

[EFAULT] The address created by the
rpcb_getaddr() was not available.

[EIO] Input/output error. This value is
set as a result of network transport
failure. It indicates that RPC
cannot handle an error that
occurred in lower transport levels.

[ENOBUFS] There is not enough buffer space
available for the API.

[ENOMEM] Out of memory.

[EOPNOTSUPP] Operation is not supported. This
value is set when the transport
endpoint was opened with limited
capabilities.

[EUNKNOWN] Unknown system state.

[RPC_UNKNOWNHOST] Unknown host.

[RPC_UNKNOWNPROTO] Unknown client/server protocol.
The
rpc_createerr.cf_error.re_errno
variable is not applicable. This
error is set when the netconf
pointer is NULL.

Error Messages

Message ID Error Message Text

CPIA1B1 I A problem was encountered in the RPC client.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

clnt_create()--Create a Generic Client Handle●

clnt_tli_create()--Create a Client Handle●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how clnt_tp_create() is used:

/* Define remote program number and version */
#define RMTPROGNUM ((u_long)0x3fffffff)
#define RMTPROGVER ((u_long)0x1)

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>
#include <netdir.h>

main()
{
 CLIENT *client;
 struct netconfig *nconf;

 /* Returns a pointer to nconf corresponding to NETCONF */
 if ((nconf = getnetconfigent("UDP")) ==
 (struct netconfig *)NULL) {
 fprintf(stderr, "Cannot get netconfig entry for UDP\n");
 exit(1);
 }

 client = clnt_tp_create("as400.somewhere.ibm.com", RMTPROGNUM,
 RMTPROGVER, nconf);
 if (client == (CLIENT *)NULL) {
 fprintf(stderr, "Cannot create an RPC client\n");
 exit(1);
 }

 fprintf(stderr, "Successfully created a client handle\n");

 clnt_destroy(client);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_tp_create()--Create a Server Handle

 Syntax

 #include <rpc/rpc.h>

 SVCXPRT svc_tp_create(const void
 (*dispatch)(const svc_req *,
 const SVCXPRT *),
 const u_long prognum,
 const u_long versnum,
 const struct netconfig *netconf);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svc_tp_create() function creates a server handle for the network specified by netconf, and registers
itself with the RPC service package (RPCBind).

Parameters

dispatch() (Input)

The server dispatch function. dispatch() is called when there is a remote procedure call for the
given prognum and versnum. The call to dispatch requires calling svc_run() on the server side.

prognum (Input)

The program number of the remote program.

vernum (Input)

The version number of the remote program.

netconf (Input)

The transport protocol to use.

Authorities

No authorization is needed.

Return Value

xprt Upon successful completion, this function returns the service handle.

NULL svc_tp_create() was not successful. The errno variable is set to indicate the reason.

Error Conditions

This API calls svc_tli_create() and svc_reg() functions in order to perform its task. It inherits all error
conditions from those functions, except setnetconfig() and getnetconfig() errors and
RPC_UNKNOWNADDR from svc_reg().

Error Messages

Message ID Error Message Text

CPIA1B1 I A problem was encountered in the RPC client.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPIA1B3 I TI-RPC encountered a problem in the server.

CPIA1B8 I A problem occurred while trying to contact the RPCBind daemon.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

svc_create()--Create a Server Handle●

svc_tli_create()--Create a Server Handle●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how svc_tp_create() is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)0x3fffffffL

#define RMTPROGVER (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>

static void exm_proc();
/* Dispatcher routine, defined later in program */

main()
{
 SVCXPRT *transp;
 struct netconfig *nconf;

 /* Returns a pointer to nconf corresponding to UDP */
 if ((nconf = getnetconfigent("UDP")) ==
 (struct netconfig *)NULL) {
 fprintf(stderr, "Cannot get netconfig entry for UDP\n");
 exit(1);
 }

 transp = svc_tp_create(exm_proc, RMTPROGNUM, RMTPROGVER,
 nconf);
 if (transp == (SVCXPRT *)NULL) {
 fprintf(stderr, "Cannot create service.\n");
 exit(1);
 }

 ...
 svc_run();
}

/* The server dispatch function */
static void exm_proc(struct svc_req *rqstp, SVCXPRT *transp)
{

 ...

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

Expert-level APIs
The expert-level APIs are the lowest layer of TI-RPC APIs available on the server. The application directly
chooses the transport to use, and has an increased level of control over the details of the client-side and the
server-side transport handles. These APIs are similar to the intermediate-level APIs with an additional
control provided by using the name-to-address translation APIs.

The expert-level APIs are:

clnt_tli_create() (Create a client handle) creates an RPC client handle for the remote program
prognum and version versnum.

●

rpcb_getaddr() (Find the universal address of a service) is an interface to the RPC service package
(RPCBind).

●

rpcb_set() (Register the server address with the RPCBind) is an interface to the RPC service
package (RPCBind) daemon.

●

rpcb_unset() (Unregister Their Addresses) is an interface to the RPC service package (RPCBind),
which destroys the mapping between the triple (prognum, versnum, netconf->nc_netid) and the
address on the host machine's RPCBind service.

●

svc_reg() (Associate program and version with dispatch) associates prognum and versnum with the
service dispatch procedure dispatch.

●

svc_tli_create() (Create a server handle) creates an RPC server handle.●

svc_unreg() (Delete an association set by svc_reg()) removes mappings between dispatch functions
and the service procedure that is identified by the prognum and versnum parameters.

●

Top | Remote Procedure Call (RPC) APIs | APIs by category

clnt_tli_create()--Create a Client Handle

 Syntax

 #include <rpc/rpc.h>
 #include <netconfig.h>

 CLIENT *clnt_tli_create(const int fildes,
 const struct netconfig
 *netconf,
 const struct netbuf *svcaddr,
 const u_long prognum,
 const u_long versnum,
 const u_int sendsz,
 const u_int recvsz);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The clnt_tli_create() API creates an RPC client handle for the remote program prognum and version
versnum. The remote program is located at address svcaddr. The client uses the transport that is specified
by netconf. Depending upon the type of the transport (connection-oriented or connectionless),
clnt_tli_create() calls the appropriate client-creation functions.

Parameters

fildes (Input)

A file descriptor. The only permitted value is RPC_ANYFD. The API opens an internal file
descriptor which is not accessible by the user applications.

netconf (Input)

The transport protocol.

svcaddr (Input)

A pointer to the address where the remote program is located.

prognum (Input)

The program number of the remote program.

vernum (Input)

The version number of the remote program.

sendsz (Input)

The size of the send buffer. When a value of zero is specified, a suitable default will be chosen by
the system.

recvsz (Input)

The size of the receive buffer. When a value of zero is specified, a suitable default will be chosen
by the system.

Authorities

No authorization is required.

Return Value

clnt Upon successful completion, this function returns a client handle.

NULL clnt_tli_create() was not successful. The rpc_createerr variable is set to indicate the reason.

Error Conditions

Upon failure, clnt_tli_create() sets the global structure rpc_createerr. The rpc_createerr.cf_stat variable
contains a status value that indicates the error reason. The rpc_createerr.cf_error.re_errno variable is
meaningful when some status values are set.

The rpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC API. The
rpc_createerr.cf_error.re_errno is set to EUNKNOWN.

[RPC_SYSTEMERROR] RPC error returned from system call. The rpc_createerr.cf_error.re_errno
variable is set to the value returned from the failed call.

[EACCES] Permission denied.

[EADDRINUSE] Local address is in use. This value is set when
fildes cannot be bound to any local address.

[EADDRNOTAVAIL] Address not available. This value is set when
svcaddr is rejected by the transport layer.

[EAGAIN] Operation would have caused the process to be
blocked.

[EBADF] Bad file descriptor. This value is set when the
fildes parameter is not valid or cannot be used
as a transport endpoint.

[ECONNREFUSED] TI-RPC encountered a problem in the
transport. The client cannot connect to the
server.

[EFAULT] The address used for an svcaddr was not
available.

[EIO] Input/output error. This value is set as a result
of network transport failure. It indicates that
RPC cannot handle an error that occurred in
lower transport levels.

[ENOBUFS] There is not enough buffer space available for
the API.

[ENOMEM] Out of memory.

[EOPNOTSUPP] Operation is not supported. This value is set
when fildes represents a transport endpoint
with limited capabilities.

[EUNKNOWN] Unknown system state.

[RPC_UNKNOWNADDR] Unknown remote address. The rpc_createerr.cf_error.re_errno variable
is not applicable. This error is set when the svcaddr pointer is NULL.

[RPC_UNKNOWNPROTO] Unknown client/server protocol. The rpc_createerr.cf_error.re_errno
variable is not applicable. This error is set when the netconf pointer is
NULL.

Error Messages

Message ID Error Message Text

CPIA1B1 I A problem was encountered in the RPC client.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

clnt_create()--Create a Generic Client Handle●

clnt_tp_create()--Create a Client Handle●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how clnt_tli_create() is used:

/* Define remote program number and version */
#define RMTPROGNUM ((u_long)0x3fffffff)
#define RMTPROGVER ((u_long)0x1)

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>
#include <netdir.h>

main()
{
 CLIENT *client;
 struct netconfig *nconf;
 struct netbuf *service_address;
 struct nd_addrlist *nas;
 struct nd_hostserv hs;

 /* Returns a pointer to nconf corresponding to NETCONF */
 if ((nconf = getnetconfigent("UDP")) ==
 (struct netconfig *)NULL) {
 fprintf(stderr, "Cannot get netconfig entry for UDP\n");
 exit(1);
 }

 hs.h_host = "as400.somewhere.ibm.com";
 hs.h_serv = "RPCBIN";
 if(netdir_getbyname(nconf,&hs,&nas) < 0
 || nas->n_cnt == 0) {
 fprintf(stderr, "Cannot translate host name or service name\n");
 service_address = nas->n_addrs;

 client = clnt_tli_create(RPC_ANYFD, nconf, service_address,
 RMTPROGNUM, RMTPROGVER, 0, 0);
 if (client == (CLIENT *)NULL) {
 fprintf(stderr, "Cannot create an RPC client\n");
 exit(1);
 }

 fprintf(stderr, "Successfully created a client handle\n");

 clnt_destroy(client);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

rpcb_getaddr()--Find the Universal Address of
a Service

 Syntax

 #include <rpc/rpc.h>
 #include <netconfig.h>

 bool_t rpcb_getaddr(const u_long prognum,
 const u_long versnum,
 const struct netconfig *netconf,
 struct netbuf *svcaddr,
 const char *host);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The rpcb_getaddr() function is an interface to the RPC service package (RPCBind). The function finds the
address of the service on the host that is registered with program number prognum and version versnum,
and uses the transport protocol that is associated with netconf.

Parameters

prognum (Input)

The program number of the remote program.

vernum (Input)

The version number of the remote program.

netconf (Input)

The transport protocol.

svcaddr (Output)

A pointer to the address of the requested service on the remote host machine.

host (Input)

The name of the remote host where the server is located.

Authorities

The caller of the rpcb_getaddr() API must have execute (*X) authority to the /etc directory and must have
read (*R) authority to the netconfig file.

Return Value

TRUE (1) rpcb_getaddr() was successful. The address of the remote service in the svcaddr parameter
was returned.

FALSE (0) rpcb_getaddr() was unsuccessful.

Error Conditions

Upon failure, rpcb_getaddr() sets the global structure rpc_createerr. The rpc_createerr.cf_stat variable
contains a status value, which indicates the error reason. The rpc_createerr.cf_error.re_errno variable is
meaningful when some status values are set.

The rpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_FAILED] The buffer referenced by the svcaddr parameter does not have
enough space. re_errno field is set to ENOBUFS.

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC API.
The rpc_createerr.cf_error.re_errno is set to EUNKNOWN.

[RPC_N2AXLATEFAILURE] Name-to-address translation failed.

[RPC_PROGNOTREGISTERED] Remote program is not registered.

[RPC_RPCBFAILURE] Unable to contact the RPCBind daemon.

[RPC_UNKNOWNADDR] Unknown address. The svcaddr is invalid.

[RPC_UNKNOWNHOST] Unknown host. The rpc_createerr.cf_error.re_errno variable is not
applicable.

[RPC_UNKNOWNPROTO] Unknown client/server protocol. The
rpc_createerr.cf_error.re_errno is set with errno value returned
from the setnetconfig() or getnetconfig() call.

This API calls clnt_tli_create() and clnt_call() APIs. It inherits RPC_SYSTEMERROR from
clnt_tli_create() API and it inherits all error conditions from clnt_call() API except RPC_TIMEDOUT,
RPC_PROGNOTREGISTERED, RPC_PROGVERSMISMATCH, and RPC_FAILED.

Error Messages

Message ID Error Message Text

CPIA1B1 I A problem was encountered in the RPC client.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPIA1B8 I A problem occurred while trying to contact the RPCBind daemon.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how rpcb_getaddr is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)0x3fffffffL
#define RMTPROGVER (u_long)0x1
#define ADDBUFSIZE 100

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>

main()
{
 struct netconfig *nconf;
 struct netbuf *svcaddr;
 char addrbuf[ADDRBUFSIZE];
 ...

 svcaddr.len = 0;
 svcaddr.maxlen = ADDRBUFSIZE;
 svcaddr.buf = addrbuf;

 /* Returns a pointer to nconf corresponding to NETCONF */
 if ((nconf = getnetconfigent("UDP")) ==
 (struct netconfig *)NULL) {
 fprintf(stderr, "Cannot get netconfig entry for UDP\n");
 exit(1);
 }

 ...

 if (!rpcb_getaddr(RMTPROGNUM, RMTPROGVER, nconf,

 svcaddr, "as400.somewhere.ibm.com")){
 fprintf(stderr, "rpcb_getaddr failed!!\n");
 exit(1);
 }

 ...

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

rpcb_set()--Register the Server Address with
the RPCBind

 Syntax

 #include <rpc/rpc.h>
 #include <netconfig.h>

 bool_t rpcb_set(const u_long prognum,
 const u_long versnum,
 const struct netconfig *netconf,
 const struct netbuf *svcaddr);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The rpcb_set() function is an interface to the RPC service package (RPCBind) daemon. The function
establishes a mapping between the triple (prognum, versnum, netconf->nc_netid) and svcaddr on the
machine's RPCBind service. The value of netconf->nc_netid must correspond to a network identifier that is
defined by the netconfig database.

Parameters

prognum (Input)

The program number of the remote program.

vernum (Input)

The version number of the remote program.

netconf (Input)

The transport protocol.

svcaddr (Input)

A pointer to the local address of the service.

Authorities

No authorization is required.

Return Value

TRUE (1) rpcb_set was successful.

FALSE (0) rpcb_set was unsuccessful.

Error Conditions

Upon failure, rpcb_set() sets the global structure rpc_createerr. The rpc_createerr.cf_stat variable contains
a status value, which indicates the error reason. The rpc_createerr.cf_error.re_errno variable is meaningful
when some status values are set.

The rpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC API. The
rpc_createerr.cf_error.re_errno is set to EUNKNOWN.

[RPC_N2AXLATEFAILURE] Name to address translation failed.

[RPC_RPCBFAILURE] Unable to contact the RPCBind daemon.

[RPC_UNKNOWNADDR] Unknown address. The svcaddr is invalid.

[RPC_UNKNOWNADDR] Unknown remote address. The rpc_createerr.cf_error.re_errno variable
is not applicable.

[RPC_UNKNOWNPROTO] Unknown client/server protocol. The rpc_createerr.cf_error.re_errno
variable is not applicable.

This API calls clnt_tli_create() and clnt_call() APIs in order to perform its task. It inherits
RPC_SYSTEMERROR from clnt_tli_create() API and it inherits all error conditions from clnt_call() API
except RPC_TIMEDOUT and RPC_FAILED.

Error Messages

Message ID Error Message Text

CPIA1B1 I A problem was encountered in the RPC client.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPIA1B8 I A problem occurred while trying to contact the RPCBind daemon.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

rpcb_unset()--Unregister Their Addresses●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how rpcb_set() is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)0x3fffffffL
#define RMTPROGVER (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>

main()
{
 struct netconfig *nconf;
 struct netbuf *svcaddr;

 ...

 /* Returns a pointer to nconf corresponding to NETCONF */
 if ((nconf = getnetconfigent("UDP")) ==
 (struct netconfig *)NULL) {
 fprintf(stderr, "Cannot get netconfig entry for UDP\n");
 exit(1);
 }

 ...

 /* Register to the RPCBind */
 if (!rpcb_set(RMTPROGNUM, RMTPROGVER, nconf, svcaddr)){
 fprintf(stderr, "rpcb_set failed!!\n");
 exit(1);
 }

 ...

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

rpcb_unset()--Unregister Their Addresses

 Syntax

 #include <rpc/rpc.h>
 #include <netconfig.h>

 bool_t rpcb_unset(const u_long prognum,
 const u_long versnum,
 const struct netconfig *netconf);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The rpcb_unset() function is an interface to the RPC service package (RPCBind), which destroys the
mapping between the triple (prognum, versnum, netconf->nc_netid) and the address on the host machine's
RPCBind service. If netconf is NULL, rpcb_unset() destroys all mapping between the above triple and the
addresses on the machine's RPCBind service.

Parameters

prognum (Input)

The program number of the remote program.

vernum (Input)

The version number of the remote program.

netconf (Input)

The transport protocol.

Authorities

The caller of the rpcb_unset() API must have execute (*X) authority to the /etc directory and must have
read (*R) authority to the netconfig file.

Return Value

TRUE (1) rpcb_unset was successful.

FALSE (0) rpcb_unset was unsuccessful.

Error Conditions

Upon failure, rpcb_unset() sets the global structure rpc_createerr. The rpc_createerr.cf_stat variable
contains a status value, which indicates the error reason. The rpc_createerr.cf_error.re_errno variable is
meaningful when some status values are set.

The rpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC API. The
rpc_createerr.cf_error.re_errno is set to EUNKNOWN.

[RPC_RPCBFAILURE] Unable to contact the RPCBind daemon.

This API calls clnt_tli_create() and clnt_call() APIs in order to perform its task. It inherits
RPC_SYSTEMERROR from clnt_tli_create() API and it inherits all error conditions from clnt_call() API
except RPC_TIMEDOUT and RPC_FAILED.

Error Messages

Message ID Error Message Text

CPIA1B1 I A problem was encountered in the RPC client.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPIA1B8 I A problem occurred while trying to contact the RPCBind daemon.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

rpcb_set()--Register the Server Address with the RPCBind●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how rpcb_unset() is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)0x3fffffffL
#define RMTPROGVER (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>

main()
{
 struct netconfig *nconf;

 ...

 /* Returns a pointer to nconf corresponding to NETCONF */
 if ((nconf = getnetconfigent("UDP")) ==
 (struct netconfig *)NULL) {
 fprintf(stderr, "Cannot get netconfig entry for UDP\n");
 exit(1);
 }
 ...

 /* Destroy the connect with the RPCBind daemon */
 if (!rpcb_unset(RMTPROGNUM, RMTPROGVER, nconf)){
 fprintf(stderr, "rpcb_unset failed!!\n");
 exit(1);
 }

 ...
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_reg()--Associate Program and Version with
Dispatch

 Syntax

 #include <rpc/rpc.h>
 #include <netconfig.h>

 bool_t svc_reg(const SVCXPRT *xprt,
 const u_long prognum,
 const u_long versnum,
 const void (*dispatch)(const svc_req *,
 const SVCXPRT *),
 const struct netconfig *netconf);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svc_reg() API associates prognum and versnum with the service dispatch procedure dispatch. If
netconf is NULL, the service is not registered with the RPC service package (RPCBind). If netconf is
non-null, then a mapping of the triple (prognum, versnum, netconf->nc_netid) to xprt->xp_ltaddr is
established with the local RPCBind service.

Parameters

xprt (I/O)

A pointer to a Remote Procedure Call (RPC) service transport handle.

prognum (Input)

The program number of the remote program.

versnum (Input)

The version number of the remote program.

dispatch (Input)

The server dispatch function.

netconf (Input)

The transport protocol.

Authorities

The caller of the svc_reg() API must have execute (*X) authority to the /etc directory and must have read
(*R) authority to the netconfig file.

Return Value

TRUE (1) svc_reg() was successful.

FALSE (0) svc_reg() was not successful. The errno variable is set to indicate the reason.

Error Conditions

This API calls the setnetconfig() and getnetconfig() functions in order to perform its task. The API inherits
all error conditions from those functions. It also calls rpcb_set() for registering in RPCBind inheriting all
error conditions from the API, except RPC_UNKNOWNPROTO.

[EINVAL] Attempt to register a dispatcher with prognum and versnum, which are already used by
another dispatcher.

[EALREADY] Attempting to register a service which is already registered.

Error Messages

Message ID Error Message Text

CPIA1B1 I A problem was encountered in the RPC client.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPIA1B8 I A problem occurred while trying to contact the RPCBind daemon.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPIA1B2 I TI-RPC encountered a problem with the transport protocol.

CPIA1B8 I A problem occurred while trying to contact the RPCBind daemon.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how svc_reg() is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)0x3fffffffL
#define RMTPROGVER (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>

static void exm_proc();

main()
{
 SVCXPRT *xprt;
 struct netconfig *nconf;
 int result;

 ...
 /* Returns a pointer to nconf corresponding to NETCONF */
 if ((nconf = getnetconfigent("UDP")) ==
 (struct netconfig *)NULL) {
 fprintf(stderr, "Cannot get netconfig entry for UDP\n");
 exit(1);
 }

 ...

 result = svc_reg(xprt, RMTPROGNUM, RMTPROGVER,
 exm_proc, nconf);
 if (!result){
 fprintf(stderr, "svc_reg failed!!\n");
 exit(1);
 }
 ...
}

/* The server dispatch function */
static void exm_proc(struct svc_req *rqstp, SVCXPRT *transp)
{

 ...

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_tli_create()--Create a Server Handle

 Syntax

 #include <rpc/rpc.h>
 #include <netconfig.h>

 SVCXPRT svc_tli_create(const int fildes,
 const struct netconfig
 *netconf,
 const struct t_bind
 *bindaddr,
 const u_int sendsz,
 const u_int recvsz);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svc_tli_create() function creates an RPC server handle.

Parameters

fildes (Input)

The file descriptor on which the service is listening. The only permitted value for a user application
is RPC_ANYFD. If the file descriptor fildes is RPC_ANYFD, it opens a file descriptor on the
transport specified by netconf.

netconf (Input)

The transport protocol.

bindaddr (Input)

The address where fildes is bound if it is unbound.

sendsz (Input)

The size of the send buffer. When a value of zero is specified, a suitable default value will be
chosen by the system.

recvsz (Input)

The size of the receive buffer. When a value of zero is specified, a suitable default value will be
chosen by the system.

Authorities

No authorization is required.

Return Value

xprt Upon successful completion, this function returns a pointer to the created RPC server handle.

NULL svc_tli_create() was not successful. The errno variable is set to indicate the reason.

Error Conditions

[ENOMEM] Out of memory.

[EUNKNOWN] Unknown system state.

[EADDRNOTAVAIL] Address not available. This value is set when bindaddr is rejected by the
transport layer.

[EIO] Input/output error. This value is set as a result of network transport failure. It
indicates that RPC cannot handle an error that occurred in lower transport levels.

[EACCES] Permission denied.

[EBADF] Bad file descriptor. This value is set when the fildes parameter is not valid or
cannot be used as a transport endpoint.

[EFAULT] The address used for a bindaddr was not available.

[ENOBUFS] There is not enough buffer space available for the API.

[EINVAL] An invalid value was supplied for the input parameter nconf.

[EADDRINUSE] Local address is in use. This value is set when fildes cannot be bound to any
local address.

Error Messages

Message ID Error Message Text

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPIA1B3 I TI-RPC encountered a problem in the server.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

svc_create()--Create a Server Handle●

svc_tp_create()--Create a Server Handle●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how svc_tli_create is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)0x3fffffffL
#define RMTPROGVER (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>

main()
{
 SVCXPRT *svc;
 struct netconfig *nconf;
 int fd;

 ...
 /* Returns a pointer to nconf corresponding to UDP */
 if ((nconf = getnetconfigent("UDP")) ==
 (struct netconfig *)NULL) {
 fprintf(stderr, "Cannot get netconfig entry for UDP\n");
 exit(1);
 }

 ...

 svc = svc_tli_create(RPC_ANYFD,nconf,
 (struct t_bind *)NULL,
 0, 0);
 if (svc == (SVCXPRT *)NULL){
 fprintf(stderr, "svc_tli_create failed!!\n");
 exit(1);
 }

 ...

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_unreg()--Delete an Association Set by
svc_reg()

 Syntax

 #include <rpc/rpc.h>

 void svc_unreg(const u_long prognum,
 const u_long versnum);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svc_unreg() function removes mappings between dispatch functions and the service procedure that is
identified by the prognum and versnum parameters. It also removes the mapping between the port number
and the service procedure, which is identified by the prognum and versnum parameters.

Parameters

prognum (Input)

The program number of the remote program.

vernum (Input)

The version number of the remote program.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPIA1B1 I A problem was encountered in the RPC client.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPIA1B8 I A problem occurred while trying to contact the RPCBind daemon.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

svc_reg()--Associate Program and Version with Dispatch●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how svc_unreg is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)0x3fffffffL
#define RMTPROGVER (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>

static void exm_proc();

main()
{
 SVCXPRT *xprt;
 struct netconfig *nconf;

 ...

 result = svc_reg(xprt, RMTPROGNUM, RMTPROGVER,

 exm_proc, nconf);
 if (!result){
 fprintf(stderr, "svc_reg failed!!\n");
 exit(1);
 }

 ...

 /* Removes mapping between procedures and objects */
 svc_unreg(RMTPROGNUM, RMTPROGVER);

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

Other APIs
These APIs are used primarily in conjunction with all the layers except the simplified-level APIs. These
APIs provide methods for sending back errors from the service to the client, for freeing space allocated to
the clients and services, and for enhancing error detection and reporting.

The system functions that work with applications from the previous four categories are:

clnt_freeres() (Free data allocated by the RPC or XDR system) frees any data allocated by the RPC
or XDR system when it decoded the results of an RPC call.

●

clnt_geterr() (Get the error structure from the client handle) copies the error structure out of the
client handle to the structure at address errp.

●

svcerr_decode() (Send information to client for decode error) sends information to the remote client
that the service dispatch routine could not decode the remote parameters.

●

svcerr_noproc() (Send information to client for procedure number error) sends information to the
client that the service dispatch routine did not implement the procedure number that the caller
requested.

●

svcerr_systemerr() (Send information to client for system error) sends information to the remote
client that the service dispatch routine detected a system error not covered by any particular
protocol.

●

svcerr_weakauth() (Send Authentication Error Indication to a Client) sends information to a remote
client that the server dispatch function detected an authentication error.

●

svc_freeargs() (Free data allocated by the RPC or XDR system) frees any data allocated by the
RPC or XDR functions when those functions decode the arguments to a service procedure by using
svc_getargs().

●

svc_getargs() (Decode the arguments of an RPC request) decodes the arguments of an RPC request
associated with the RPC service transport handle xprt.

●

svc_getrpccaller() (Get the network address of the caller) retrieves the network address of the
remote client who is calling the procedure that is associated with the RPC service transport handle.

●

svc_run() (Wait for RPC requests to arrive) waits for RPC requests to arrive and calls the
appropriate service procedure.

●

svc_sendreply() (Send the results of a procedure call to a remote client) sends the results of a
procedure call to a remote client.

●

Top | Remote Procedure Call (RPC) APIs | APIs by category

clnt_freeres()--Free Data Allocated by the RPC
or XDR System

 Syntax

 #include <rpc/rpc.h>

 bool_t clnt_freeres(CLIENT *clnt,
 const xdrproc_t inproc,
 caddr_t in);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The clnt_freeres() function frees any data allocated by the RPC or XDR system when it decoded the results
of an RPC call.

Parameters

clnt (Input)

A pointer to the client handle.

inproc (Input)

XDR routine describing the results.

in (Input)

(Input) The address of the results.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

This function returns FALSE when the in parameter is NULL or an exception has occurred. In case of an
exception, clnt_freeres() tries to set RPC_INTR in the client handle. This status can be retrieved by a call
to clnt_geterr().

Error Messages

Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how clnt_freeres() is used:

#include <stdio.h>
#include <rpc/rpc.h>

 ...

u_long procnum;
CLIENT *clnt;
enum clnt_stat stat;
struct rpc_err client_error;
struct timeval timeout;

struct array_args{
 unsigned int size;
 char *data;
};

struct array_args args; /* Arg with buffer to send */
struct array_args result; /* Arg with buffer to receive */

 ...

/* Call the remote procedure that is associated with client */

 ...

stat = clnt_call(clnt, procnum, (xdrproc_t)xdr_array,
 (char *)&args, (xdrproc_t)xdr_array,
 (char *)&result, timeout);

if (stat != RPC_SUCCESS){
 /* Failure on call */
 if (result.data != (char *) NULL){
 if(!clnt_freeres(clnt, (xdrproc_t)xdr_array,
 (char *)&result))
 /* clnt_freeres() failed */

 ...

 }
 ...
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

clnt_geterr()--Get the Error Structure from the
Client Handle

 Syntax

 #include <rpc/rpc.h>

 void clnt_geterr(const CLIENT *clnt,
 struct rpc_err *errp);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The clnt_geterr() function copies the error structure out of the client handle to the structure at address errp.

Parameters

clnt (Input)

A pointer to the client handle.

errp (Output)

A pointer to the error structure.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

When an exception occurs, clnt_geterr() tries to set RPC_INTR in the client handle. This status can be
retrieved by another valid clnt_geterr() call. If the attempt was unsuccessful, no error indication is given.

Error Messages

Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how clnt_geterr() is used:

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/time.h>

main()
{
 u_long procnum;
 CLIENT *clnt;
 enum clnt_stat cs;
 struct rpc_err client_error;
 struct timeval total_timeout;
 int intsend, intrecv;

 ...

 /* Call the remote procedure that is associated with client */
 cs = clnt_call(clnt, procnum, xdr_int,
 (caddr_t)&intsend, xdr_int,
 (caddr_t)&intrecv, total_timeout);

 if (cs != RPC_SUCCESS){
 clnt_geterr(clnt,&client_error);
 ...
 exit(1);
 }
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svcerr_decode()--Send Information to Client for
Decode Error

 Syntax

 #include <rpc/rpc.h>

 void svcerr_decode(const SVCXPRT *xprt);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svcerr_decode() function sends information to the remote client that the service dispatch routine could
not decode the remote parameters.

Parameters

xprt (Input)

A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

In case of an exception, the errno global variable is set to EUNKNOWN.

Error Messages

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

Refer to the example for svcerr_systemerr()--Send Information to Client for System Error

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svcerr_noproc()--Send Information to Client for
Procedure Number Error

 Syntax

 #include <rpc/rpc.h>

 void svcerr_noproc(const SVCXPRT *xprt);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svcerr_noproc() function sends information to the client that the service dispatch routine did not
implement the procedure number that the caller requested.

Parameters

xprt (Input)

A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

In case of an exception, the errno global variable is set to EUNKNOWN.

Error Messages

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

Refer to the example for svcerr_systemerr()--Send Information to Client for System Error

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svcerr_systemerr()--Send Information to Client
for System Error

 Syntax

 #include <rpc/rpc.h>
 void svcerr_systemerr(const SVCXPRT *xprt);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svcerr_systemerr() function sends information to the remote client that the service dispatch routine
detected a system error not covered by any particular protocol.

Parameters

xprt (Input)

A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

In case of an exception, the errno global variable is set to EUNKNOWN.

Error Messages

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how svcerr_systemerr() is used:

#include <stdio.h>
#include <stdlib.h> /* getenv, exit */
#include <rpc/rpc.h>

#define MESSAGEPROG ((unsigned long)(0x20000001))
#define PRINTMESSAGEVERS ((unsigned long)(1))
#define PRINTMESSAGE ((unsigned long)(1))

/* This procedure is called by dispatcher routine */
int *printmessage_l(char **msg, struct svc_req *req)
{
 static int result;
 char stffl30";
 int fd;

 /* Do something with *msg contents */
 ...

 result = 1;
 return(&result);
}

/* This is the server dispatcher routine.
 It is called when a request arrives from client
 and it applies to MESSAGEPROG program number and PRINTMESSAGEVERS
 version number */

static void
messageprog_l(struct svc_req *rqstp, SVCXPRT *transp)
{
 union u_argument{
 char *printmessage_l_arg;
 }argument;
 char *result;
 bool_t (*_xdr_argument)(), (*_xdr_result)();
 char *(*local)(union u_argument *, struct svc_req *);

 _rpcsvccount++;

 switch(rqstp->rq_proc)
 {
 /* rqstp->rq_proc contains the procedure number
 of procedure that should be called */

 case NULLPROC: /* empty procedure, do nothing, just send the ack */
 svc_sendreply(transp, (xdrproc_t)xdr_void, (char *)NULL);
 return;
 case PRINTMESSAGE: /* printmessage_l() */
 if (rqstp->rq_cred.oa_flavor != AUTH_SYS) {
 /* AUTH_SYS is required by this procedure */
 svcerr_weakauth(transp);
 return;
 }
 _xdr_argument = (bool_t(*)())xdr_wrapstring;
 _xdr_result = (bool_t(*)())xdr_int;
 local = (char *(*)(u_argument *, struct svc_req *))
 printmessage_l;
 break;
 default: /* no other procedures available */
 svcerr_noproc(transp);
 return;
 }
 memset((char *)&argument, 0, sizeof(argument));

 /* decode arguments for the procedure */
 if (!svc_getargs(transp, (xdrproc_t)_xdr_argument,
 (char *)&argument)){
 svcerr_decode(transp);
 return;
 }

 /* Invoke the procedure */
 result = (*local)(&argument, rqstp);

 /* Send reply to the client containing results of the invocation */
 if (result != NULL && !svc_sendreply(transp,
 (xdrproc_t)_xdr_result, result)){
 svcerr_systemerr(transp);
 }

 if (!svc_freeargs(transp, (xdrproc_t)_xdr_argument,
 (char *)&argument)){
 printf("unable to free arguments");
 exit(1);
 }
 return;
}

main()
{
 pid_t pid;
 int i;

 printf("Start..");

 printf("Try to create..");

 /* Create a new RPC server instance which will use messageprog_l()
 as a dispatcher function associated with MESSAGEPROG program
 number and PRINTMESSAGEVERS version number.
 Since "VISIBLE" nettype is selected, a number of server instances
 will be actually created: one for each "VISIBLE" entry in
 /etc/netconfig */
 if(!svc_create(messageprog_l, MESSAGEPROG, PRINTMESSAGEVERS,
 "VISIBLE")){
 printf("Unable to create service.");
 return 1;
 }

 /* Enter the main loop of RPC */
 svc_run();

 return 0;
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svcerr_weakauth()--Send Authentication Error
Indication to a Client

 Syntax

 #include <rpc/rpc.h>

 void svcerr_weakauth(const SVCXPRT *xprt);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svcerr_weakauth() function sends information to a remote client that the server dispatch function
detected an authentication error.

Parameters

xprt (Input)

A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

In case of an exception, the errno global variable is set to EUNKNOWN.

Error Messages

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

Refer to the example for svcerr_systemerr()--Send Information to Client for System Error

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_freeargs()--Free Data Allocated by the RPC
or XDR System

 Syntax

 #include <rpc/rpc.h>

 bool_t svc_freeargs(const SVCXPRT *xprt,
 const xdrproc_t inproc,
 caddr_t in);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svc_freeargs() function frees any data allocated by the RPC or XDR functions when those functions
decode the arguments to a service procedure by using svc_getargs().

Parameters

xprt (Input)

A pointer to the RPC service transport handle.

inproc (Input)

The XDR routine to free the arguments.

in (Input)

The address of the arguments.

Authorities

No authorization is required.

Return Value

TRUE (1) svc_freeargs was successful.

FALSE (0) svc_freeargs was unsuccessful.

Error Conditions

svc_freeargs() returns FALSE only when the in parameter is NULL or an exception has occurred. In case
of the exception, the errno global variable is set to EUNKNOWN.

Error Messages

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library amp;2 ended. Reason code &3.

Example

Refer to the example for svcerr_systemerr()--Send Information to Client for System Error.

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_getargs()--Decode the Arguments of an
RPC Request

 Syntax

 #include <rpc/rpc.h>

 bool_t svc_getargs(const SVCXPRT *xprt,
 const xdrproc_t inproc,
 caddr_t in);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svc_getargs() function decodes the arguments of an RPC request associated with the RPC service
transport handle xprt.

Parameters

xprt (Input)

A pointer to the RPC service transport handle.

inproc (Input)

The XDR routine to decode the arguments.

in (Input)

The address of the arguments.

Authorities

No authorization is required.

Return Value

TRUE (1) svc_getargs was successful.

FALSE (0) svc_getargs was unsuccessful.

Error Conditions

svc_getargs() returns FALSE only when the in parameter is NULL or an exception has occurred. In case of
the exception, the errno global variable is set to EUNKNOWN.

Error Messages

Message ID Error Message Text

CPIA1B3 I TI-RPC encountered a problem in the server.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

Refer to the example for svcerr_systemerr()--Send Information to Client for System Error

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_getrpccaller()--Get the Network Address of
the Caller

 Syntax

 #include <rpc/rpc.h>

 struct netbuf *svc_getrpccaller(SVCXPRT *xprt);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svc_getrpccaller() function macro retrieves the network address of the remote client who is calling the
procedure that is associated with the RPC service transport handle.

Parameters

xprt (Input)

A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

netbuf Returns a pointer to a netbuf structure containing the address of the caller of a procedure that is
associated with the RPC service xprt.

Error Conditions

None.

Error Messages

None.

Example

The following example shows how svc_getrpccaller() is used :

#include <rpc/rpc.h>

main()
{
 SVCXPRT *svc;
 struct netbuf *net_buf;

 ...
 /* Get the caller address */
 net_buf = svc_getrpccaller(svc);

 ...
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_run()--Wait for RPC Requests to Arrive

 Syntax

 #include <rpc/rpc.h>

 void svc_run(void);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svc_run() function waits for RPC requests to arrive and calls the appropriate service procedure.

Parameters

None.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

The svc_run() function rarely exits. It exits only when an exception has occurred. In this case the errno
global variable is set to EUNKNOWN.

Error Messages

Message ID Error Message Text

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPIA1B3 I TI-RPC encountered a problem in the server.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

Refer to the example for svcerr_systemerr()--Send Information to Client for System Error.

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

svc_sendreply()--Send the Results of a
Procedure Call to a Remote Client

 Syntax

 #include <rpc/rpc.h>

 bool_t svc_sendreply(const SVCXPRT *xprt,
 const xdrproc_t inproc,
 const caddr_t in);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The svc_sendreply() function sends the results of a procedure call to a remote client.

Parameters

xprt (Input)

A pointer to the RPC service transport handle.

inproc (Input)

XDR routine to encode the results.

in (Input)

The address of the results.

Authorities

No authorization is required.

Return Value

TRUE (1) svc_sendreply() was successful.

FALSE (0) svc_sendreply() was unsuccessful.

Error Conditions

The svc_sendreply() function returns FALSE when some transport error or some exception has occurred.
The errno global variable can be set to the following values:

[EBADF] Bad file descriptor.

[EINVAL] General I/O error.

[EOPNOTSUPP] Operation is not supported.

[EUNKNOWN] Unknown system state or exception has occurred.

Error Messages

Message ID Error Message Text

CPIA1B3 I TI-RPC encountered a problem in the server.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

Refer to the example for svcerr_systemerr()--Send Information to Client for System Error

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

External Data Representation APIs
The eXternal Data Representation (XDR) functions define a uniform way to represent data types and define
a language that can describe data structures of arbitrary complexity in a standard way.

All XDR APIs can translate data in two directions:

Serializing Translation from a local machine data representation to canonical XDR form.

Deserializing Translation from canonical XDR form to a local machine representation.

The eXternal Data Representation APIs are:

xdr_array() (Translate between arrays and their XDR) is a filter primitive that translates between
variable-length arrays and their corresponding external representations.

●

xdr_bool() (Translate between Booleans and their XDR) is a filter primitive that translates between
Booleans (C integers) and their external representations.

●

xdr_bytes() (Translate between counted byte arrays and their XDR) is a filter primitive that
translates between counted byte arrays and their external representations.

●

xdr_char() (Translate between characters and their XDR) is a filter primitive that translates between
C-language characters and their external representation.

●

xdr_double() (Translate between double-precision and XDR) is a filter primitive that translates
between C-language double-precision numbers and their external representations.

●

xdr_double_char() (Translate between two-byte characters) is a filter primitive that translates
between C-language 2-byte characters and their external representation.

●

xdr_enum() (Translate between enumeration and XDR) is a filter primitive that translates between
C-language enumeration (enum) and its external representation.

●

xdr_float() (Translate between floats and their XDR) is a filter primitive that translates between
C-language floating-point numbers (normalized single floating-point numbers) and their external
representations.

●

xdr_free() (Generic freeing function) recursively frees the object pointed to by the pointer passed
in.

●

xdr_int() (Translate between integers and their XDR) is a filter primitive that translates between
C-language integers and their external representation.

●

xdr_long() (Translate between long integers and their XDR) is a filter primitive that translates
between C-language long integers and their external representations.

●

xdr_netobj() (Translate between netobj structures and their XDR) is a filter primitive that translates
between variable-length opaque data and its external representation.

●

xdr_opaque() (Translate between fixed-size data and its XDR) is a filter primitive that translates
between fixed-size opaque data and its external representation.

●

xdr_pointer() (Provide pointer chasing within structures) provides pointer chasing within structures
and serializes null pointers.

●

xdr_reference() (Provide pointer chasing within structures) is a filter primitive that provides pointer
chasing within structures.

●

xdr_short() (Translate between short integers and their XDR) is a filter primitive that translates
between C-language short integers and their external representation.

●

xdr_string() (Translate between strings and their XDR) is a filter primitive that translates between
C-language strings and their corresponding external representations.

●

xdr_union() (Translate between unions and their XDR) is a filter primitive that translates between
discriminated C unions and their corresponding external representations.

●

xdr_u_char() (Translate between unsigned characters and their XDR) is a filter primitive that
translates between unsigned C-language characters and their external representations.

●

xdr_u_int() (Translate between an unsigned integer and its XDR) is a filter primitive that translates
between C-language unsigned integers and their external representations.

●

xdr_u_long() (Translate between an unsigned long and its XDR) is a filter primitive that translates
between C-language unsigned long integers and their external representations.

●

xdr_u_short() (Translate between an unsigned short and its XDR) is a filter primitive that translates
between C-language unsigned short integers and their external representations.

●

xdr_vector() (Translate between arrays and their XDR) is a filter primitive that translates between
fixed-length arrays and their corresponding external representations.

●

xdr_void() (Supply an XDR function to the RPC system) has no parameters.●

xdr_wrapstring() (Call the xdr_string() function) is a primitive that calls the xdr_string(xdr, sp,
maxuint) API, where maxuint is the maximum value of an unsigned integer.

●

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_array()--Translate between Arrays and
Their XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_array(XDR *xdrs,
 caddr_t *arrp,
 u_int *sizep,
 const u_int maxsize,
 const u_int elsize,
 const xdrproc_t elproc);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_array() function is a filter primitive that translates between variable-length arrays and their
corresponding external representations. This function is called to encode or decode each element of the
array.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

arrp (I/O)

The address of the pointer to the array. If *arrp==NULL and the array is being deserialized, XDR
allocates an array of the appropriate size and sets this parameter to point to that array.

sizep (I/O)

The address of the element count of the array. The element count cannot exceed the value for the
maxsize parameter.

maxsize (Input)

The maximum number of array elements.

elsize (Input)

The byte size of each of the array elements.

elproc (Input)

Translates between the C form of the array elements and their external representations. This
parameter is an XDR filter.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_array() is used:

#include <stdio.h>
#include <values.h>
#include <xdr.h>

#define ARRAY_SIZE 256

typedef struct xarray
{
 int size;

 int *p_array;
} xarray ;

bool_t xdr_xarray(XDR *xdrs, xarray *p_xarray)
{
 /*
 * Force XDR to allocate memory while decoding
 */
 if((xdrs->x_op==XDR_DECODE)&&
 (p_xarray->p_array!=NULL))
 {
 free(p_xarray->p_array);
 p_xarray->p_array=NULL;
 }
 /*
 * This code has a dual job :
 * A) While decoding, it allocated memory, stores the decoded
 * xarray in it, and updates size field in xarray
 * struct.
 * B) While decoding it stores xarray's size and the data
 * itself in XDR.
 */
 return xdr_array(
 xdrs,
 (char**)(&(p_xarray->p_array)),
 &(p_xarray->size),
 MAX_INT,
 sizeof(int),
 (xdrproc_t)xdr_int))

}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_bool()--Translate between Booleans and
Their XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_bool(XDR *xdrs,
 bool_t *bp);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_bool() function is a filter primitive that translates between Booleans (C integers) and their external
representations. When encoding data, this filter produces values of either 1 or 0.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

bp (I/O)

The address of the Boolean data.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_bool() is used:

#include <stdio.h>
#include <types.h>
#include <xdr.h>

typedef struct node
{
 bool_t connected;
 bool_t visited;
} node ;

bool xdr_node(XDR *xdrs, node *p_node)
{
 if(!xdr_bool(xdrs,&(p_node->connected)))
 return FALSE;
 return xdr_bool(xdrs,&(p_node->visited));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_bytes()--Translate between Counted Byte
Arrays and Their XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_bytes(XDR *xdrs,
 char **sp,
 u_int *sizep,
 const u_int maxsize);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_bytes() function is a filter primitive that translates between counted byte arrays and their external
representations. This function treats a subset of generic arrays in which the size of array elements is known
to be 1 and the external description of each element is built-in. The length of the byte sequence is explicitly
located in an unsigned integer. The byte sequence is not ended by a null character. The external
representation of the bytes is the same as their internal representation.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

sp (I/O)

The address of the pointer to the byte array. If *sp==NULL and the stream is being decoded, then
XDR allocates the needed amount of memory.

sizep (I/O)

A pointer to the length of the byte area. The value of this parameter cannot exceed the value of the
maxsize parameter.

maxsize (Input)

The maximum number of bytes allowed when XDR encodes or decodes messages.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_bytes() is used:

#include <stdio.h>
#include <values.h>
#include <xdr.h>

#define ARRAY_SIZE 256

typedef struct xarray
{
 int size;
 char *p_array;
} xarray ;

bool_t xdr_xarray(XDR *xdrs, xarray *p_xarray)

{
 /*
 * Force XDR to allocate memory while decoding
 */
 if((xdrs->x_op==XDR_DECODE)&&
 (p_xarray->p_array!=NULL))
 {
 free(p_xarray->p_array);
 p_xarray->p_array=NULL;
 }
 /*
 * This code has a dual job :
 * A) While decoding, it allocated memory, stores the decoded
 * xarray in it, and updates size field in xarray
 * struct.
 * B) While decoding it stores xarray's size and the data
 * itself in XDR.
 */
 return xdr_bytes(
 xdrs,
 (&(p_xarray->p_array)),
 &(p_xarray->size),
 MAX_INT);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_char()--Translate between Characters and
Their XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_char(XDR *xdrs,
 char *cp);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_char() function is a filter primitive that translates between C-language characters and their
external representation.

Note: Encoded characters are not packed and occupy 4 bytes each. For strings of characters, consider using
the xdr_string function.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

cp (I/O)

A pointer to the character.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_char() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct grades
{
 char math; /* Each grade is 'A'..'D' */
 char literature;
 char geography;
 char computers;
} grades ;

bool xdr_grades(XDR *xdrs, grades *p_grades)
{
 if(!xdr_char(xdrs,&(p_grades->math)))
 return FALSE;
 if(!xdr_char(xdrs,&(p_grades->literature)))
 return FALSE;
 if(!xdr_char(xdrs,&(p_grades->geography)))
 return FALSE;
 return xdr_char(xdrs,&(p_grades->computers));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_double()--Translate between
Double-Precision and XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_double(XDR *xdrs,
 double *dp);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_double() function is a filter primitive that translates between C-language double-precision
numbers and their external representations.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

dp (I/O)

The address of the double-precision number.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_double() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct vector
{
 double x,y,z;
} vector ;

bool xdr_vector(XDR *xdrs, vector *p_vector)
{
 if(!xdr_double(xdrs,&(p_vector->x)))
 return FALSE;
 if(!xdr_double(xdrs,&(p_vector->y)))
 return FALSE;
 return xdr_double(xdrs,&(p_vector->z));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_double_char()--Translate between
Two-Byte Characters

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_double_char(XDR *xdrs,
 char_double_t *cp);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_double_char() function is a filter primitive that translates between C-language 2-byte characters
and their external representation.

Note: Encoded characters are not packed and occupy 2 bytes each. For strings of characters, consider using
the xdr_string() API.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

cp (I/O)

A pointer to the character.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_double_char() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct grades
{
 char_double_t math; /* Each grade is 'A'..'D' */
 char_double_t literature;
 char_double_t geography;
 char_double_t computers;
} grades ;

bool xdr_grades(XDR *xdrs, grades *p_grades)
{
 if(!xdr_double_char(xdrs,&(p_grades->math)))
 return FALSE;
 if(!xdr_double_char(xdrs,
 &(p_grades->literature)))
 return FALSE;
 if(!xdr_double_char(xdrs,&(p_grades->geography)))
 return FALSE;
 return xdr_double_char(xdrs,
 &(p_grades->computers));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_enum()--Translate between Enumeration
and XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_enum(XDR *xdrs,
 enum_t *ep);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_enum function is a filter primitive that translates between C-language enumeration (enum) and its
external representation.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

ep (I/O)

The address of the enumeration data.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_enum() is used:

#include <stdio.h>
#include <xdr.h>

typedef enum fruit_state { green, ripe } fruit_state;
typedef enum fruit_weight { small, sufficient } fruit_weight;

typedef struct fruit
{
 fruit_state state;
 fruit_weight weight;
} fruit;

bool xdr_fruit(XDR *xdrs, fruit *p_fruit)
{
 if(!xdr_enum(xdrs,(enum_t *)&(p_fruit->state)))
 return FALSE;
 return xdr_enum(xdrs,
 (enum_t *)&(p_fruit->weight));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_float()--Translate between Floats and Their
XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_float(XDR *xdrs,
 float *fp);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_float() function is a filter primitive that translates between C-language floating-point numbers
(normalized single floating-point numbers) and their external representations.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

fp (I/O)

The address of the floating-point number.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_float() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct vector
{
 float x,y,z;
} vector ;

bool xdr_vector(XDR *xdrs, vector *p_vector)
{
 if(!xdr_float(xdrs,&(p_vector->x)))
 return FALSE;
 if(!xdr_float(xdrs,&(p_vector->y)))
 return FALSE;
 return xdr_float(xdrs,&(p_vector->z));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_free()--Generic Freeing Function

 Syntax

 #include <rpc/rpc.h>

 void xdr_free(xdrproc_t proc,
 char *objp);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_free() function recursively frees the object pointed to by the pointer passed in.

Parameters

proc (Input)

XDR routine for the object being freed.

objp (Input)

A pointer to the object to be freed.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

In case of an exception, the errno global variable is set to EUNKNOWN.

Error Messages

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 API.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_free() is used:

#include <rpc/rpc.h>

main()
{
 CLIENT *cl;
 char *outparam;
 int inparam;
 ...
 cl = clnt_create(...);
 ...
 outparam = NULL;
 clnt_call(cl, MYPROC, xdr_int, &inparam,
 xdr_wrapstring, &outparam, timeout);
 ...
 xdr_free(xdr_wrapstring, &outparam);
 ...
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_int()--Translate between Integers and Their
XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_int(XDR *xdrs,
 int *ip);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_int() function is a filter primitive that translates between C-language integers and their external
representation.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

ip (I/O)

The address of the integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_int() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct vector
{
 int x,y,z;
} vector ;

bool xdr_vector(XDR *xdrs, vector *p_vector)
{
 if(!xdr_int(xdrs,&(p_vector->x)))
 return FALSE;
 if(!xdr_int(xdrs,&(p_vector->y)))
 return FALSE;
 return xdr_int(xdrs,&(p_vector->z));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_long()--Translate between Long Integers
and Their XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_long(XDR *xdrs,
 long *lp);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_long() function is a filter primitive that translates between C-language long integers and their
external representations.

Parameters

xdrs (Input)

A pointer to the XDR stream handle.

lp (I/O)

The address of the number.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_long() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct vector
{
 long x,y,z;
} vector ;

bool xdr_vector(XDR *xdrs, vector *p_vector)
{
 if(!xdr_long(xdrs,&(p_vector->x)))
 return FALSE;
 if(!xdr_long(xdrs,&(p_vector->y)))
 return FALSE;
 return xdr_long(xdrs,&(p_vector->z));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_netobj()--Translate between Netobj
Structures and Their XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_netobj(XDR *xdrs,
 struct netobj *np);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_netobj() function is a filter primitive that translates between variable-length opaque data and its
external representation.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

np (I/O)

A pointer to the address of the netobj structure that contains both a length and a pointer to the
opaque data.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_netobj() is used:

#include <stdio.h>
#include <xdr.h>

/*
 * Handle of an external client -
 * pid - process ID of the server process on our host
 * oid - object ID of the server assigned to that client
 * Typical case when the other side needs a handle, without
 * actually knowing what is it. We can use xdr_netobj() to send
 * the value
 * or xdr_opaque() to send a pointer.
 */
typedef struct handle
{
 int pid;
 int oid;
} handle ;

bool_t xdr_handle(XDR *xdrs, handle *p_handle)
{
 struct netobj obj;
 obj.n_len=sizeof(handle);
 obj.n_bytes=(char *)p_handle;
 return xdr_netobj(xdrs,&obj);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_opaque()--Translate between Fixed-Size
Data and Its XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_opaque(XDR *xdrs,
 caddr_t cp,
 const u_int cnt);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_opaque() function is a filter primitive that translates between fixed-size opaque data and its
external representation.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

cp (I/O)

The address of the opaque object.

cnt (Input)

The size, in bytes, of the object. By definition, the actual data that is contained in the opaque object
will not be portable to another system.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_opaque() is used:

#include <stdio.h>
#include <xdr.h>

/*
 * Handle of an external client -
 * pid - process ID of the server process on our host
 * oid - object ID of the server assigned to that client
 * Typical case when the other side needs a handle, without
 * actually knowing what it is. We can use xdr_netobj()
 * or xdr_opaque().
 */
typedef struct handle
{
 int pid;
 int oid;
} handle ;

bool_t xdr_handle(XDR *xdrs, handle *p_handle)
{
 return xdr_opaque(xdrs,(caddr_t)p_handle,sizeof(handle));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_pointer()--Provide Pointer Chasing within
Structures

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_pointer(XDR *xdrs,
 char **objpp,
 u_int objsize,
 const xdrproc_t xdrobj);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_pointer() function provides pointer chasing within structures and serializes null pointers. This
function can represent recursive data structures, such as binary trees or linked lists.

Pointer chasing is the substitution of the pointer itself with the actual structure it points to.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

objpp (I/O)

A pointer to the character pointer of the data structure. If decoding and *objpp==NULL, then the
memory is allocated by XDR.

objsize (Input)

The size of the structure.

xdrobj (Input)

The XDR filter for the object.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_pointer() is used:

#include <xdr.h>

typedef struct node
{
 int value;
 struct node *p;
} node ;

bool_t xdr_list(XDR *xdrs, node **p_node)
{
 return xdr_pointer(xdrs,(caddr *)p_node,
 sizeof(node),(xdrproc_t)xdr_node)
}

bool_t xdr_node(XDR *xdrs, node *p_node)
{
 xdr_int(xdrs,&(p_node->value));
 return xdr_list(xdrs,&(p_node->p));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_reference()--Provide Pointer Chasing
within Structures

 Syntax

#include <rpc/xdr.h>

bool_t xdr_reference(XDR *xdrs,
 caddr_t *pp,
 u_int size,
 const xdrproc_t proc);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_reference() function is a filter primitive that provides pointer chasing within structures. This
primitive allows the serializing, deserializing, and freeing of any pointers within one structure that are
referenced by another structure.

The xdr_reference() function does not attach special meaning to a null pointer during serialization, and
passing the address of a null pointer may cause a memory error. Therefore, the programmer must describe
data with a two-sided discriminated union. One side is used when the pointer is valid; the other side, when
the pointer is null.

Pointer chasing is the substitution of the pointer itself with the actual structure it points to.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

pp (I/O)

The address of the structure. When you decode data, XDR allocates storage if the pointer is NULL.

size (Input)

The byte size of the structure pointed to by the pp parameter.

proc (Input)

A translation of the structure between its C form and its external representation. This parameter is
the XDR procedure that describes the structure.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_reference() is used:

#include <xdr.h>

typedef struct node
{
 int value;
 struct node *p;
} node ;

/*
 * Do not call it with p_node==NULL, because it will fail.
 */
bool_t xdr_list(XDR *xdrs, node **p_node)
{

 return xdr_reference(xdrs,(caddr_t)p_node,
 sizeof(node),(xdrproc_t)xdr_node)
}

bool_t xdr_node(XDR *xdrs, node *p_node)
{
 xdr_int(xdrs,&(p_node->value));
 return xdr_list(xdrs,&(p_node->p));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_short()--Translate between Short Integers
and Their XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_short(XDR *xdrs,
 short *sp);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_short() function is a filter primitive that translates between C-language short integers and their
external representation.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

sp (I/O)

The address of the short integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_short() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct vector
{
 short x,y,z;
} vector ;

bool_t xdr_vector(XDR *xdrs, vector *p_vector)
{
 if(!xdr_short(xdrs,&(p_vector->x)))
 return FALSE;
 if(!xdr_short(xdrs,&(p_vector->y)))
 return FALSE;
 return xdr_short(xdrs,&(p_vector->z));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_string()--Translate between Strings and
Their XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_string(XDR *xdrs,
 char **sp,
 u_int maxsize);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_string() function is a filter primitive that translates between C-language strings and their
corresponding external representations.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

sp (I/O)

The address of the pointer to the string. If decoding and *sp==NULL, XDR allocated the storage
needed for the decoded string.

maxsize (Input)

The maximum length of the string in bytes allowed during encoding or decoding.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_string() is used:

#include <stdio.h>
#include <xdr.h>

#define MAX_LENGTH 100

typedef struct adress
{
 char street[MAX_LENGTH];
 int number;
 int apartment;
} address ;

bool_t xdr_address(XDR *xdrs, address *p_address)
{
 if!(xdr_string(xdrs,&(p_address->street),
 MAX_LENGTH))
 return FALSE;
 if(!xdr_int(xdrs,&(p_address->number)))
 return FALSE;
 return xdr_int(xdrs,&(p_address->apartment));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_union()--Translate between Unions and
Their XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_union(XDR *xdrs,
 enum_t *dscmp,
 char *unp,
 const struct xdr_discrim *choices,
 const xdrproc_t (*defaultarm));

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_union() function is a filter primitive that translates between discriminated C unions and their
corresponding external representations.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

dscmp (Input)

The address of the union's discriminant. The discriminant is an enumeration (enum_t) value.

unp (I/O)

The address of the union.

choices (Input)

A pointer to an array of xdr_discrim structures.

defaultarm (Input)

A structure provided in case no discriminants are found. This parameter can have a null value.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

The size of any enum data types passed to the xdr_union() must be defined as 4 bytes.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_union() is used:

#include <stdio.h>
#include <xdr.h>

#pragma enum size(4) /* Set enum size to 4 bytes */

typedef enum time_type {END=0,DC,CT} time_type ;

#pragma enum size() /* Reset enum size */

typedef union time_value
{
 int discrete_time;
 float continuous_time;
} time_value ;

typedef struct time
{
 time_type type;
 time_value value;
} time;

bool_t xdr_time(XDR *xdrs, time *p_time)
{
 struct xdr_discrim handlers[] =
 {
 {DT,(xdrproc_t)xdr_int},
 {CT,(xdrproc_t)xdr_float},
 {END,NULL}
 };
 return
xdr_union(xdrs,(enum_t *)(&(p_time->type)),
(caddr_t)&(p_time->value),handlers,NULL);
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_u_char()--Translate between Unsigned
Characters and Their XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_u_char(XDR *xdrs,
 char *ucp);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_u_char() function is a filter primitive that translates between unsigned C-language characters and
their external representations.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

ucp (I/O)

A pointer to an unsigned character.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_u_char() is used:

#include <stdio.h>
#include <xdr.h>
typedef struct grades
{
 u_char math; /* Each grade is 'A'..'D' */
 u_char literature;
 u_char geography;
 u_char computers;
} grades ;

bool_t xdr_grades(XDR *xdrs, grades *p_grades)
{
 if(!xdr_u_char(xdrs,&(p_grades->math)))
 return FALSE;
 if(!xdr_u_char(xdrs,&(p_grades->literature)))
 return FALSE;
 if(!xdr_u_char(xdrs,&(p_grades->geography)))
 return FALSE;
 return xdr_u_char(xdrs,&(p_grades->computers));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_u_int()--Translate between an Unsigned
Integer and Its XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_u_int(XDR *xdrs,
 u_int *ulp);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_u_int() function is a filter primitive that translates between C-language unsigned integers and their
external representations.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

ulp (I/O)

The address of the unsigned integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_u_int() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct vector
{
 u_int x,y,z;
} vector ;

bool_t xdr_vector(XDR *xdrs, vector *p_vector)
{
 if(!xdr_u_int(xdrs,&(p_vector->x)))
 return FALSE;
 if(!xdr_u_int(xdrs,&(p_vector->y)))
 return FALSE;
 return xdr_u_int(xdrs,&(p_vector->z));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_u_long()--Translate between an Unsigned
Long and Its XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_u_long(XDR *xdrs,
 u_long *ulp);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_u_long() function is a filter primitive that translates between C-language unsigned long integers
and their external representations.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

ulp (I/O)

The address of the unsigned long integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_u_long() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct vector
{
 u_long x,y,z;
} vector ;

bool_t xdr_vector(XDR *xdrs, vector *p_vector)
{
 if(!xdr_u_long&((xdrs,p_vector->x)))
 return FALSE;
 if(!xdr_u_long(xdrs,&(p_vector->y)))
 return FALSE;
 return xdr_u_long(xdrs,&(p_vector->z));
}

API introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_u_short()--Translate between an Unsigned
Short and Its XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_u_short(XDR *xdrs,
 u_short *usp);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_u_short() function is a filter primitive that translates between C-language unsigned short integers
and their external representations.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

usp (I/O)

The address of the unsigned short integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_u_short() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct vector
{
 u_short x,y,z;
} vector ;

bool_t xdr_vector(XDR *xdrs, vector *p_vector)
{
 if(!xdr_u_short(xdrs,&(p_vector->x)))
 return FALSE;
 if(!xdr_u_short(xdrs,&(p_vector->y)))
 return FALSE;
 return xdr_u_short(xdrs,&(p_vector->z));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_vector()--Translate between Arrays and
Their XDR

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_vector(XDR *xdrs,
 char *arrp,
 const u_int size,
 const u_int elsize,
 const xdrproc_t elproc);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_vector() function is a filter primitive that translates between fixed-length arrays and their
corresponding external representations.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

arrp (I/O)

The pointer to the array.

size (Input)

The element count of the array.

elsize (Input)

The byte size of each of the array elements.

elproc (Input)

Translates between the C form of the array elements and their external representations. This
parameter is an XDR filter.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_vector() is used:

#include <stdio.h>
#include <xdr.h>

#define MAX_VERTECIES 10
#define MAX_EDGES ((MAX_VERTECIES*(MAX_VERTECIES-1))/2)

typedef struct graph
{
 bool_t adjacent[MAX_VERTICIES,MAX_VERTICIES];
} graph ;

bool_t xdr_graph(XDR *xdrs, graph *p_graph)
{

 int i;
 for(i=0;i<MAX_VERTECIES;i++)
 if(!xdr_vector(xdrs,
 p_graph->adjacent[i]
 AX_VERTECIES,sizeof(bool_t),xdr_bool))
 return FALSE;
 return TRUE;
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_void()--Supply an XDR Function to the RPC
System

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_void();

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_void() function has no parameters. It is passed to other RPC functions that require a parameter,
but does not transmit data.

Parameters

None

Authorities

No authorization is required.

Return Value

This function always returns a value of TRUE.

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_void() is used:

#include <stdio.h>
#define RMTPROGNUM (u_long)0x3fffffffL
#define RMTPROGVER (u_long)0x1
#define RMTPROCNUM (u_long)0x1
main()
{
 int inproc=100;
 enum clnt_stat, rstat;
 ...

 /* Service request to host RPCSERVER_HOST */
 if ((rstat = rpc_call("RPCSERVER_HOST", RMTPROGNUM, RMTPROGVER,
 RMTPROCNUM, xdr_int, (char *)&inproc,
 xdr_void, (char *)0, "visible")) !=
 RPC_SUCCESS) {
 printf("Error in the rpc_call().\n");
 exit(1);
 }
 ...
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

xdr_wrapstring()--Call the xdr_string() Function

 Syntax

 #include <rpc/xdr.h>

 bool_t xdr_wrapstring(XDR *xdrs,
 char **sp);

 Service Program Name: QZNFTRPC

 Default Public Authority: *USE

 Threadsafe: No

The xdr_wrapstring() function is a primitive that calls the xdr_string(xdr, sp, maxuint) API, where
maxuint is the maximum value of an unsigned integer. The xdr_wrapstring() is useful where a translation
of xdrproc_t is required. xdrproc_t has only two parameters while the xdr_string() function requires three.

Parameters

xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

sp (I/O)

The address of the pointer to the string. If decoding and *sp==NULL, XDR allocated memory for
the decoded string.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how xdr_wrapstring() is used:

#include <stdio.h>
#include <xdr.h>

#define MAX_LENGTH 100
typedef struct address
{
 char street[MAX_LENGTH];
 int number;
 int apartment;
} address ;

bool_t xdr_address(XDR *xdrs, address *p_address)
{
 if!(xdr_wrapstring(xdrs,&(p_address->street)))
 return FALSE;
 if(!xdr_int(xdrs,&(p_address->number)))
 return FALSE;
 return xdr_int(xdrs,&(p_address->apartment));
}

API Introduced: V4R2

Top | Remote Procedure Call (RPC) APIs | APIs by category

	Remote Procedure Call APIs
	Table of Contents
	Remote Procedure Call (RPC) APIs
	Header Files for Remote Procedure Call APIs
	Authentication APIs
	authnone_create()--Create Null Authentication
	authsys_create()--Create Authentication with OS Permission
	auth_destroy()--Destroy Authentication Information

	Name-to-Address Translation APIs
	netdir_free()--Free Netdir Structures
	netdir_getbyaddr()--Translate a Netbuf Address to a Host
	netdir_getbyname()--Translate a Given Host-Service Pair
	netdir_options()--Access Transport-Specific Capabilities
	netdir_sperror()--Indicate an Error in an NTA Routine
	taddr2uaddr()--Translate a Local Address
	uaddr2taddr()--Translate a Universal Address

	Network Selection APIs
	endnetconfig()--Release the Pointer in the Netconfig File
	freenetconfigent()--Free the Netconfig Structure
	getnetconfig()--Return Current Record from the Netconfig File
	getnetconfigent()--Return a Pointer to a Netconfig Structure
	setnetconfig()--Initialize the Pointer in the Netconfig File

	Transport-Independent Remote Procedure Call APIs
	Simplified APIs
	rpc_call()--Call a Remote Procedure on the Specified System
	rpc_reg()--Register a Procedure with RPC Service Package

	Top-level APIs
	clnt_call()--Call a Remote Procedure Associated with the Client
	clnt_control()--Change Information about a Client Object
	clnt_create()--Create a Generic Client Handle
	clnt_destroy()--Destroy the RPC Client's Handle
	svc_create()--Create a Server Handle
	svc_destroy()--Destroy an RPC Service Transport Handle

	Intermediate-level APIs
	clnt_tp_create()--Create a Client Handle
	svc_tp_create()--Create a Server Handle

	Expert-level APIs
	clnt_tli_create()--Create a Client Handle
	rpcb_getaddr()--Find the Universal Address of a Service
	rpcb_set()--Register the Server Address with the RPCBind
	rpcb_unset()--Unregister Their Addresses
	svc_reg()--Associate Program and Version with Dispatch
	svc_tli_create()--Create a Server Handle
	svc_unreg()--Delete an Association Set by svc_reg()

	Other APIs
	clnt_freeres()--Free Data Allocated by the RPC or XDR System
	clnt_geterr()--Get the Error Structure from the Client Handle
	svcerr_decode()--Send Information to Client for Decode Error
	svcerr_noproc()--Send Information to Client for Procedure Number Error
	svcerr_systemerr()--Send Information to Client for System Error
	svcerr_weakauth()--Send Authentication Error Indication to a Client
	svc_freeargs()--Free Data Allocated by the RPC or XDR System
	svc_getargs()--Decode the Arguments of an RPC Request
	svc_getrpccaller()--Get the Network Address of the Caller
	svc_run()--Wait for RPC Requests to Arrive
	svc_sendreply()--Send the Results of a Procedure Call to a Remote Client

	External Data Representation APIs
	xdr_array()--Translate between Arrays and Their XDR
	xdr_bool()--Translate between Booleans and Their XDR
	xdr_bytes()--Translate between Counted Byte Arrays and Their XDR
	xdr_char()--Translate between Characters and Their XDR
	xdr_double()--Translate between Double-Precision and XDR
	xdr_double_char()--Translate between Two-Byte Characters
	xdr_enum()--Translate between Enumeration and XDR
	xdr_float()--Translate between Floats and Their XDR
	xdr_free()--Generic Freeing Function
	xdr_int()--Translate between Integers and Their XDR
	xdr_long()--Translate between Long Integers and Their XDR
	xdr_netobj()--Translate between Netobj Structures and Their XDR
	xdr_opaque()--Translate between Fixed-Size Data and Its XDR
	xdr_pointer()--Provide Pointer Chasing within Structures
	xdr_reference()--Provide Pointer Chasing within Structures
	xdr_short()--Translate between Short Integers and Their XDR
	xdr_string()--Translate between Strings and Their XDR
	xdr_union()--Translate between Unions and Their XDR
	xdr_u_char()--Translate between Unsigned Characters and Their XDR
	xdr_u_int()--Translate between an Unsigned Integer and Its XDR
	xdr_u_long()--Translate between an Unsigned Long and Its XDR
	xdr_u_short()--Translate between an Unsigned Short and Its XDR
	xdr_vector()--Translate between Arrays and Their XDR
	xdr_void()--Supply an XDR Function to the RPC System
	xdr_wrapstring()--Call the xdr_string() Function

