
Object APIs (V5R2)

Table of Contents

Object APIs

Data Queue APIs

Using Data Queue APIs❍

APIs

Clear Data Queue (QCLRDTAQ)■

Receive from Data Queue (QRCVDTAQ)■

Retrieve Data Queue Description (QMHQRDQD)■

Retrieve Data Queue Message (QMHRDQM)■

Send to a Data Queue (QSNDDTAQ)■

❍

●

User Queue APIs

Using User Queue APIs❍

APIs

Create User Queue (QUSCRTUQ)■

Delete User Queue (QUSDLTUQ)■

❍

●

User Index APIs

Using User Index APIs❍

APIs

Add User Index Entries (QUSADDUI)■

Create User Index (QUSCRTUI)■

Delete User Index (QUSDLTUI)■

Remove User Index Entries (QUSRMVUI)■

Retrieve User Index Attributes (QUSRUIAT)■

Retrieve User Index Entries (QUSRTVUI)■

❍

●

User Space APIs

Using User Space APIs❍

APIs

Change User Space (QUSCHGUS)■

Change User Space Attributes (QUSCUSAT)■

Create User Space (QUSCRTUS)■

Delete User Space (QUSDLTUS)■

Retrieve Pointer to User Space (QUSPTRUS)■

❍

●

Retrieve User Space (QUSRTVUS)■

Retrieve User Space Attributes (QUSRUSAT)■

Object-related APIs

Change Library List (QLICHGLL)❍

Change Object Description (QLICOBJD)❍

Convert Type (QLICVTTP)❍

List Objects (QUSLOBJ)❍

Materialize Context (QusMaterializeContext)❍

Move Folder to ASP (QHSMMOVF)❍

Move Library to ASP (QHSMMOVL)❍

Open List of Objects (QGYOLOBJ)❍

Rename Object (QLIRNMO)❍

Retrieve Library Description (QLIRLIBD)❍

Retrieve Object Description (QUSROBJD)❍

●

Object APIs
The Object APIs create, manipulate, and delete user spaces, user indexes, and user queues. They send,
receive, and clear entries on a data queue and retrieve data queue information. They also change, list,
rename, and retrieve information about iSeries objects.

The Object APIs include:

Data Queue APIs●

User Queue APIs●

User Index APIs●

User Space APIs●

Object-related APIs●

APIs by category

Data Queue APIs
Data queues are a type of system object that you can create, to which one high-level language (HLL)
program can send data, and from which another HLL program can receive data. The receiving program can
be waiting for the data, or can receive the data later.

Before using a data queue, you must first create it using the Create Data Queue (CRTDTAQ) command.

For additional information, see Using Data Queue APIs.

The data queue APIs are:

Clear Data Queue (QCLRDTAQ) clears entries from a data queue.●

Receive Data Queue (QRCVDTAQ) receives data from the specified data queue.●

Retrieve Data Queue Description (QMHQRDQD) retrieves information about a data queue.●

Retrieve Data Queue Message (QMHRDQM) retrieves an entry from a data queue without
removing the entry.

●

Send Data Queue (QSNDDTAQ) sends data to the specified data queue.●

Top | Object APIs | APIs by category

Using Data Queue APIs
The advantages of using data queues are:

Using data queues frees a job from performing some work. If the job is an interactive job, the data
queue APIs can provide better response time and decrease the size of the interactive program and
its process activation group (PAG). This, in turn, can help overall system performance. For
example, if several work station users enter a transaction that involves updating and adding to
several files, the system can perform better if the interactive jobs submit the request for the
transaction to a single batch processing job.

●

Data queues are a fast means of asynchronous communication between two jobs. Using a data
queue to send and receive data requires less system resource than using database files, message
queues, or data areas to send and receive data.

●

You can send to, receive from, and retrieve a description of a data queue in any HLL program. This
is done by calling the Send to a Data Queue (QSNDDTAQ), Receive from Data Queue
(QRCVDTAQ), Retrieve Data Queue Message (QMHRDQM), Clear Data Queue (QCLRDTAQ),
and Retrieve Data Queue Description (QMHQRDQD) APIs.

●

When receiving data from a data queue, you can set a time-out such that the job waits until an entry
arrives on the data queue. This is different from using the EOFDLY parameter on the Override
Database File (OVRDBF) command, which causes the job to be activated whenever the delay time
ends.

●

More than one job can receive data from the same data queue. This is an advantage in certain
applications where the number of entries to be processed is greater than one job can handle within
the desired performance restraints. For example, if several printers are available to print orders,
several interactive jobs could send requests to a single data queue. A separate job for each printer
could receive data from the data queue in first-in-first-out (FIFO), last-in-first-out (LIFO), or
keyed-queue order.

●

Data queues have the ability to attach a sender ID to each message being placed on the queue. The
sender ID, an attribute of the data queue which is established when the queue is created, contains
the qualified job name and current user profile.

●

Top | Object APIs | APIs by category

Clear Data Queue (QCLRDTAQ) API

 Required Parameter Group:

1 Data queue name Input Char(10)
2 Library name Input Char(10)

 Optional Parameter Group:

3 Key order Input Char(2)
4 Length of key data Input Packed(3,0)
5 Key data Input Char(*)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Clear Data Queue (QCLRDTAQ) API clears all data from the specified data queue, or clears messages
that match the key specification from a keyed data queue.

If the data queue was created with the AUTORCL keyword on the Create Data Queue (CRTDTAQ)
command set to *YES, when the queue is empty the storage allocated to the data queue will be reduced to
the storage needed for the initial number of entries defined for the data queue.

Distributed data management (DDM) data queues are supported using this API. This means that you can
use this API to clear a data queue that exists on a remote iSeries. Clearing messages by key is not supported
for DDM data queues.

Authorities and Locks

Data Queue Authority

*OBJOPR and *READ

Data Queue Library Authority

*EXECUTE

Data Queue Lock

*EXCLRD

Required Parameter Group

Data queue name

INPUT; CHAR(10)

The name of the data queue being cleared.

Library name

INPUT; CHAR(10)

The name of the library where the data queue resides.

You can use these special values for the library name:

*LIBL The library list

*CURLIB The job's current library.

Optional Parameter Group

Key order

INPUT; CHAR(2)

The comparison criteria between the keys of messages on the data queue and the key data
parameter.

Valid values are:

GT Greater than

LT Less than

NE Not equal

EQ Equal

GE Greater than or equal

LE Less than or equal

This parameter is ignored if the length of key data is zero. A value of blanks is recommended if the
length of key data is zero.

For example, assume a keyed data queue contains these three entries:

Physical Entry 3-Character Key

1 GGG

2 XXX

3 AAA

If a key order of LT is specified with key data of XXX, entries 1 and 3 would be removed. If a key

order of EQ is specified with key data of XXX, entry 2 would be removed.

Length of key data

INPUT; PACKED(3,0)

The length of the key data parameter. If this parameter is specified, it must be zero for nonkeyed
data queues. For keyed data queues it must be either zero or equal to the length specified on the
KEYLEN parameter on the Create Data Queue (CRTDTAQ) command. If this parameter is not
specified or is zero, all messages will be cleared from the data queue.

Key data

INPUT; CHAR(*)

The data to be used for selecting messages to be removed from the data queue.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes

This API can be used in a multithreaded job to clear messages from a local data queue. It cannot be used in
a job that allows multiple threads to clear messages from a DDM data queue.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9502 E Key length must be zero for data queue &1 in &2.

CPF9503 E Cannot lock data queue &1 in &2.

CPF9504 E An invalid search order was specified.

CPF9506 E Key length must be &3 for data queue &1 in &2.

CPF9507 E Invalid key length specified.

CPF9510 E Operation on DDM data queue &1 in &2 failed.

CPF9511 E Function not supported for DDM data queue &1.

CPF9523 E Data queue function not successful.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

Top | Object API categories | API by category

Receive Data Queue (QRCVDTAQ) API

 Required Parameter Group:

1 Data queue name Input Char(10)
2 Library name Input Char(10)
3 Length of data Output Packed(5,0)
4 Data Output Char(*)
5 Wait time Input Packed(5,0)

 Optional Parameter Group 1:

6 Key order Input Char(2)
7 Length of key data Input Packed(3,0)
8 Key data I/O Char(*)
9 Length of sender information Input Packed(3,0)
10 Sender information Output Char(*)

 Optional Parameter Group 2:

11 Remove message Input Char(10)
12 Size of data receiver Input Packed(5,0)
13 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Receive Data Queue (QRCVDTAQ) API receives data from the specified data queue.

When more than one program has a receive pending on a data queue at one time, a data entry sent to the
data queue is received by only one of the programs. The program with the highest run priority receives the
entry. The next entry sent to the queue is given to the job with the next highest priority.

If the data queue was created with the AUTORCL keyword on the Create Data Queue (CRTDTAQ)
command set to *YES, when the queue is empty the storage allocated to the data queue will be reduced to
the storage needed for the initial number of entries defined for the data queue.

Distributed data management (DDM) data queues are supported using this API. This means that you can
use this API to receive a message from a data queue that exists on a remote iSeries. However, using this
API to receive messages without removing them from the data queue is not supported for DDM data
queues.

Authorities and Locks

Data Queue Authority

*OBJOPR and *READ

Data Queue Library Authority

*EXECUTE

Data Queue Lock

*EXCLRD

Internally, when a job uses API QSNDDTAQ (Send Data Queue), QRCVDTAQ (Receive Data Queue),
QMHQRDQD (Retrieve Data Queue Description), or QMHRDQM (Retrieve Data Queue Message), a
cache is created to allow faster access to the data queue. An entry in the cache means a user is authorized to
the data queue. An entry is added to the cache when a user calling one of the APIs has the required
authority to the data queue. An entry is also added to the cache when QSNDDTAQ is called to handle a
journal entry for a data queue created with the sender ID attribute set to *YES, and the user requesting the
the send function has the required authority to the current profile name in the sender ID information of the
journal entry. The data in the cache is used until the job ends, so if you need to immediately change a user's
authority to one of these objects, you may need to end that user's jobs.

Required Parameter Group

Data queue name

INPUT; CHAR(10)

The name of the data queue to receive the data from.

Library name

INPUT; CHAR(10)

The name of the library where the data queue resides.

You can use these special values for the library name:

*LIBL The library list

*CURLIB The job's current library.

Note: To improve data queue performance, the data queue APIs remember addressing information
for the last data queues used. This occurs when a specific (not *LIBL or *CURLIB) value is
provided for the library name, and the data queue is located in the system auxiliary storage pool
(ASP number 1) or a basic user ASP (ASP numbers 2-32). The addressing information for data
queues located in independent ASPs is not saved.

Because the addressing information is saved, users of this API should be aware of the following
scenarios.

Scenario 1

If, a job references a library-specific data queue, the data queue is moved using the Move Object
(MOVOBJ) command or renamed using the Rename Object (RNMOBJ) command, and a new data

queue is created with the same name and library as the data queue that was renamed or moved,
then, the job continues to reference the original data queue, not the newly created data queue.

Scenario 2

If, a job references a library-specific distributed data management (DDM) data queue, the DDM
data queue is moved using the Move Object (MOVOBJ) command or renamed using the Rename
Object (RNMOBJ) command, and a new data queue is created with the same name and library as
the DDM data queue that was renamed or moved, the job continues to reference the original DDM
data queue, not the newly created data queue.

Scenario 3

If, a job references a DDM data queue, which starts a DDM target job (DDM conversation) on a
remote system that references a library-specific data queue, the data queue on the remote system is
moved using the Move Object (MOVOBJ) command or renamed using the Rename Object
(RNMOBJ) command, and on the remote system, a new data queue is created with the same name
and library as the data queue that was renamed or moved, then, the DDM target job continues to
reference the original data queue on the remote system, not the newly created data queue, only
when the same DDM target job is used for the subsequent data queue operation. If a new DDM
target job is used for the subsequent data queue operation, then the newly created data queue will
be used on the remote system.

Note: For more information on creating DDM data queues and on DDM target jobs, see Distributed
Data Management in the iSeries Information Center.

Length of data

OUTPUT; PACKED(5,0)

The number of characters received from the data queue. If a time out occurs and no data is received
from the data queue, this field is set to zero. The value of this field will never exceed the value
specified for the MAXLEN parameter on the Create Data Queue (CRTDTAQ) command.

If the size of the data receiver variable is specified, the data received from the data queue will be
truncated if the message is longer than the size of the data receiver variable. The value of this field
will be set to the actual length of the data received before it is truncated.

Data

OUTPUT; CHAR(*)

A field of at least the length of the value specified for the MAXLEN parameter on the Create Data
Queue (CRTDTAQ) command. This field contains the data received from the data queue.

Note: If the length of this field is larger than the size of the message received, only the number of
characters (beginning from the left) as defined by the message received from the data queue are
changed. If the length of this field is smaller than the value specified for the MAXLEN parameter
on the Create Data Queue (CRTDTAQ) command, and the actual length of this field is not
specified in the size of data receiver parameter, unexpected results can occur.

If the length of this field is specified in the size of data receiver parameter, the data received will be
truncated if it is longer than the size specified.

Wait time

INPUT; PACKED(5,0)

The amount of time to wait if no entries exist on the data queue.

When no entries are on the data queue, the wait time parameter (in seconds) specifies the

following:

< 0 Waits forever.

0 Continue processing immediately. If no entry exists, the call completes immediately with
the length of data parameter set to zero.

> 0 The number of seconds to wait. The maximum is 99999 which allows a wait time of
approximately 28 hours.

Notes: If the wait time value is less than or equal to 2, the job does not leave the activity level (for
2 seconds). This is described as a short wait. For more details on activity levels and implementation

applications, see the Work Management book on the V5R1 Supplemental Manuals Web site.

If a wait time is specified when receiving an entry from a data queue located in an independent
auxiliary storage pool (ASP), and the independent ASP is varied off:

If *YES is specified or defaulted for the remove message parameter, QRCVDTAQ will end
with an exception, and no data will be returned.

❍

If *NO is specified for the remove message parameter, QRCVDTAQ will wait for the
specified wait time, and no data will be received, even if the independent ASP is varied on
again and a message is sent to the data queue.

❍

Optional Parameter Group 1

Key order

INPUT; CHAR(2)

The comparison criteria between the keys of messages on the data queue and the key data
parameter. When the system searches for the requested key, the entries are searched in ascending
order from the lowest value key to the highest value key until a match is found. If there are entries
with duplicate keys, the entry that was put on the queue first is received.

Valid values are:

GT Greater than

LT Less than

NE Not equal

EQ Equal

GE Greater than or equal

LE Less than or equal

This parameter is ignored if the length of key data is zero. A value of blanks is recommended if the
length of key data is zero.

For example, assume a keyed data queue contains these three entries:

Physical Entry 3-Character Key

1 GGG

2 XXX

3 AAA

If a key order of LE is specified with key data of XXX, entry 3 would be received. If the same
values were specified on a subsequent request, entry 1 would be received.

Length of key data

INPUT; PACKED(3,0)

The length of the key data parameter. If this parameter is specified, it must be zero for nonkeyed
data queues. For keyed data queues it must be equal to the length specified on the KEYLEN
parameter on the Create Data Queue (CRTDTAQ) command.

Key data

I/O; CHAR(*)

The data to be used for receiving a message from the data queue. The key of the received message
is also returned in this field. It may be different than the key specified to search for. For example, if
the key data parameter is set to AA on input with the key order parameter set to GE (greater than or
equal to), the key of the record that is actually received could be AB or anything else greater than
or equal to AA. The key data parameter is set to the actual key of the received data when the API
returns.

Length of sender information

INPUT; PACKED(3,0)

The length of the sender identification parameter.

Valid values are:

0 No sender information is returned.

8 Returns only the bytes returned and bytes available fields of the sender information.

> 8 Return as much sender information as the length allows.

Sender information

OUTPUT; CHAR(*)

The sender ID information associated with the received message.

Format of Sender Information

The format and content of the sender information returned is shown in the following table. For a detailed
description of each field, see Field Descriptions.

Note: On the CRTDTAQ command, the SENDERID parameter defaults to *NO. To include the sender ID
for each data queue entry, the SENDERID parameter must be *YES when the data queue is created.

Offset

Type FieldDec Hex

0 0 PACKED(7,0) Bytes returned

4 4 PACKED(7,0) Bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User profile name

28 1C CHAR(6) Job number

34 22 CHAR(10) Senders current user profile name.

Note: The last four fields, together, combine to make up the sender ID.

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Job name. The name of the job that sent the message.

Job number. The job number of the job that sent the message.

Senders current user profile name. The current user profile name of the job that sent the message.

User profile name. The user profile name of the job that sent the message.

Optional Parameter Group 2

Remove message

INPUT; CHAR(10)

Whether the message is to be removed from the data queue when it is received.

Valid values are:

*YES The message is removed from the data queue. This is the default value if this parameter
is not specified.

*NO The message is not removed from the data queue.

Size of data receiver

INPUT; PACKED(5,0)

The size of the area to contain the data received from the data queue. If a value of 0 is specified for
this parameter, no data will be returned. If a size greater than 0 is specified, the data will be copied
into the receiver up to the specified length. If the available data is longer than the length specified,
it will be truncated.

If this parameter is not specified, the entire message will be copied into the receiver variable.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes

This API can be used in a multithreaded job to receive messages from a local data queue. It cannot be used
in a job that allows multiple threads to receive messages from a DDM data queue.

Application queueing time and resource usage time for data queue usage are recorded only for messages
that are received in the initial thread of a job.

Error Messages

Message ID Error Message Text

CPF2207 E Not authorized to use object &1 in library &3 type *&2.

CPF24B4 E Severe error while addressing parameter list.

CPF2472 E Invalid wait time specified.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9501 E Data queue &1 in &2 requires a key value.

CPF9502 E Key length must be zero for data queue &1 in &2.

CPF9503 E Cannot lock data queue &1 in &2.

CPF9504 E An invalid search order was specified.

CPF9505 E Sender ID length value is not valid.

CPF9506 E Key length must be &3 for data queue &1 in &2.

CPF9507 E Invalid key length specified.

CPF9508 E Invalid sender ID length specified.

CPF9509 E Space access error.

CPF9510 E Operation on DDM data queue &1 in &2 failed.

CPF9511 E Function not supported for DDM data queue &1.

CPF9514 E Value for data length parameter not valid.

CPF9515 E Value for remove message parameter not valid.

CPF9523 E Data queue function not successful.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 D Cannot allocate object &2 in library &3.

CPF9805 E Object &2 in library &3 destroyed.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R1

Top | Object API categories | API by category

Retrieve Data Queue Description (QMHQRDQD)
API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Qualified data queue name Input Char(20)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Data Queue Description (QMHQRDQD) API retrieves the description and attributes of a data
queue. Examples include the number of entries currently on the data queue, the text description of the data
queue, whether the queue includes sender ID information, and whether the data queue is keyed.

The attributes of a distributed data management (DDM) data queue can be retrieved with this API.

Authorities and Locks

Data Queue Authority

*OBJOPR and *READ

Data Queue Library Authority

*EXECUTE

Data Queue Lock

*EXCLRD

Internally, when a job uses API QSNDDTAQ (Send Data Queue), QRCVDTAQ (Receive Data Queue),
QMHQRDQD (Retrieve Data Queue Description), or QMHRDQM (Retrieve Data Queue Message), a
cache is created to allow faster access to the data queue. An entry in the cache means a user is authorized to
the data queue. An entry is added to the cache when a user calling one of the APIs has the required
authority to the data queue. An entry is also added to the cache when QSNDDTAQ is called to handle a
journal entry for a data queue created with the sender ID attribute set to *YES, and the user requesting the
the send function has the required authority to the current profile name in the sender ID information of the
journal entry. The data in the cache is used until the job ends, so if you need to immediately change a user's
authority to one of these objects, you may need to end that user's jobs.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As a
result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of
receiver variable parameter specified is larger than the allocated size of the receiver variable
specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

The format of the data queue description to be returned.

The valid format names are:

RDQD0100 Basic data queue description.

RDQD0200 DDM data queue description. This is valid for DDM data queues only.

Qualified data queue name

INPUT; CHAR(20)

The data queue whose description is to be returned. The first 10 characters contain the data queue
name, and the second 10 characters contain the data queue library name.

You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Note: To improve data queue performance, the data queue APIs remember addressing information
for the last data queues used. This occurs when a specific (not *LIBL or *CURLIB) value is
provided for the library name, and the data queue is located in the system auxiliary storage pool
(ASP number 1) or a basic user ASP (ASP numbers 2-32). The addressing information for data
queues located in independent ASPs is not saved.

Because the addressing information is saved, users of this API should be aware of the following
scenario:

If, a job references a data queue the data queue is moved using the Move Object (MOVOBJ)
command or renamed using the Rename Object (RNMOBJ) command, and a new data queue is
created with the same name and library as the data queue that was renamed or moved, then, the job
continues to reference the original data queue, not the newly created data queue.

The actual name of the data queue and the library in which it is found are returned by this API.

RDQD0100 Format

The following table shows the information placed in the receiver variable parameter for the RDQD0100
format. For a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Message length

12 C BINARY(4) Key length

16 10 CHAR(1) Sequence

17 11 CHAR(1) Include sender ID

18 12 CHAR(1) Force indicator

19 13 CHAR(50) Text description

69 45 CHAR(1) Type of data queue

70 46 CHAR(1) Automatic Reclaim

71 47 CHAR(1) Reserved

72 48 BINARY(4) Number of messages

76 4C BINARY(4) Number of entries currently allocated

80 50 CHAR(10) Data queue name used

90 5A CHAR(10) Data queue library used

100 64 BINARY(4) Maximum number of entries allowed

104 68 BINARY(4) Initial number of entries

RDQD0200 Format

The following table shows the information placed in the receiver variable parameter for the RDQD0200
format. For a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) APPC device description

18 12 CHAR(8) Mode

26 1A CHAR(8) Remote location name

34 22 CHAR(8) Local location name

42 2A CHAR(8) Remote network identifier

50 32 CHAR(10) Remote data queue name

60 3C CHAR(10) Remote data queue library name

70 46 CHAR(10) Data queue name used

80 50 CHAR(10) Data queue library used

Field Descriptions

APPC device description. The name of the APPC device description on the source system that is used
with this DDM data queue. The special value *LOC can be returned. This is the name that was specified on
the DEV parameter of the CRTDTAQ command.

Automatic reclaim. Whether or not the data queue has the amount of storage allocated for the queue
reclaimed when the queue is empty.

Possible values returned are:

0 Storage is not reclaimed.

1 Storage is reclaimed when the queue is empty. The amount of storage allocated will be set to the
initial number of entries.

This will be blank for a DDM data queue.

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Data queue library used. The library in which the data queue is found. If *LIBL or *CURLIB is specified
for the library name, this field is the actual name of the library in which the data queue was found. If a
specific library (not *LIBL or *CURLIB) is specified, and the data queue is moved from that library to a
different library after this job first accessed the data queue, this will be set to the name of the library in
which the data queue currently exists.

Data queue name used. The name of the data queue. This will be the same as the name specified unless
the data queue was renamed after this job first accessed the data queue.

Force indicator. Whether or not the data queue is forced to auxiliary storage when entries are sent or
received for the specified data queue.

Possible values returned are:

Y The data queue is forced to auxiliary storage after entries are sent or received.

N The data queue is not forced to auxiliary storage after entries are sent or received.

This will be blank for a DDM data queue.

Include sender ID. If the queue was created to include the sender ID with sent messages.

Possible values returned are:

Y The sender ID is included when data is sent to the data queue.

N The sender ID is not included when data is sent to the data queue.

This will be blank for a DDM data queue.

Initial number of entries. The number of messages that will fit into the storage allocated for the data
queue when it is created or when it is automatically reclaimed. This will be 0 for a DDM data queue.

Key length. If the specified data queue was created as a keyed type, this field contains the length, in bytes,
of the message reference key. Values range from 1 to 256. If the specified queue is not a keyed queue or is
a DDM data queue, the value is 0.

Local location name. The name of the local location. The special values *LOC and *NETATR can be
returned. This is the name that was specified on the LCLLOCNAME parameter of the CRTDTAQ
command.

Maximum number of entries allowed. The maximum number of messages that will fit into the data queue
when it is full. This will be 0 for a DDM data queue.

Message length. The maximum length allowed for messages. The is the value that was specified with the
MAXLEN keyword on the CRTDTAQ command. This will be 0 for a DDM data queue.

Mode. The mode name used with the remote location name to communicate with the target system. The
special value *NETATR can be returned. This is the name that was specified on the MODE parameter of
the CRTDTAQ command.

Number of entries currently allocated. The number of entries that will fit into the data queue before it is
extended. When the queue is extended, additional storage is allocated for the queue. The data queue can be
extended until it reaches the value for the maximum number of entries allowed. This will be 0 for a DDM
data queue.

Number of messages. The number of messages currently on the data queue. This will be 0 for a DDM data
queue.

Remote data queue library name. The name of the library for the remote data queue on the target system.
The special values *LIBL and *CURLIB can be returned. This is the data queue name that was specified on
the RMTDTAQ parameter of the CRTDTAQ command.

Remote data queue name. The name of the remote data queue on the target system. This is the data queue
name that was specified on the RMTDTAQ parameter of the CRTDTAQ command.

Remote location name. The name of the remote location that is used with this object. This is the name that
was specified on the RMTLOCNAME parameter of the CRTDTAQ command.

Remote network identifier. The remote network identifier in which the remote location used to
communcate with the target system. The special values *LOC, *NETATR, and *NONE can be returned.
This is the name that was specified on the RMTNETID parameter of the CRTDTAQ command.

Reserved. An unused field.

Sequence. The sequence in which messages can be removed from the queue.

Possible values returned are:

F First-in first-out

K Keyed

L Last-in first-out

This will be blank for a DDM data queue.

Text description. The text description of the data queue. The field contains blanks if no text description
was specified when the data queue was created.

Type of data queue.

This will be set to one of the following values:

0 The data queue is a standard data queue.

1 The data queue is a DDM data queue.

Error Messages

Message ID Error Message Text

CPF2150 E Object information function failed.

CPF2151 E Operation failed for &2 in &1 type *&3.

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9503 E Cannot lock data queue &1 in &2.

CPF9509 E Space access error.

CPF9516 E Format &1 not allowed for data queue.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

Top | Object API categories | API by category

Retrieve Data Queue Message (QMHRDQM) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Qualified data queue name Input Char(20)
5 Message selection information Input Char(*)
6 Length of message selection information Input Binary(4)
7 Message selection information format

name
Input Char(8)

8 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Data Queue Message (QMHRDQM) API retrieves one or more messages from a data queue.

The QMHRDQM API allows the retrieval of multiple messages per call. The message selection
information parameter allows you to have some control over which messages are returned. The
QMHRDQM API can be used to retrieve the following:

The first or last message of a data queue●

All messages of a data queue●

Selected messages from a keyed data queue●

The QMHRDQM API is similar in function to the QRCVDTAQ API. However, the QRCVDTAQ API can
remove the received message from the data queue; QMHRDQM API does not remove received messages.

Distributed data management (DDM) data queues are not supported using this API.

Authorities and Locks

Data Queue Authority

*OBJOPR and *READ

Data Queue Library Authority

*EXECUTE

Data Queue Lock

*EXCLRD

Internally, when a job uses API QSNDDTAQ (Send Data Queue), QRCVDTAQ (Receive Data Queue),
QMHQRDQD (Retrieve Data Queue Description), or QMHRDQM (Retrieve Data Queue Message), a
cache is created to allow faster access to the data queue. An entry in the cache means a user is authorized to

the data queue. An entry is added to the cache when a user calling one of the APIs has the required
authority to the data queue. An entry is also added to the cache when QSNDDTAQ is called to handle a
journal entry for a data queue created with the sender ID attribute set to *YES, and the user requesting the
the send function has the required authority to the current profile name in the sender ID information of the
journal entry. The data in the cache is used until the job ends, so if you need to immediately change a user's
authority to one of these objects, you may need to end that user's jobs.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As a
result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of
receiver variable parameter specified is larger than the allocated size of the receiver variable
specified in the user program, the results are not predictable. The minimum length is 8 bytes

Format name

INPUT; CHAR(8)

The format of the data to be placed in the receiver variable.

The valid format names are:

RDQM0100 Retrieved data queue message(s) information.

RDQM0200 Retrieved data queue message(s) information.

The RDQM0200 format differs from RDQM0100 in that when the user requests to retrieve the
number of bytes equal to the maximum message entry size specified, this returns the length and
data of the message entry that was enqueued instead of the maximum length and data contained in
the data queue entry. Therefore, the repeating fields at the end of format RDQM0200 could require
less space than format RDQM0100, which uses the same amount of space for each entry retrieved
from the queue.

Qualified data queue name

INPUT; CHAR(20)

The data queue whose description is to be returned. The first 10 characters contain the data queue
name, and the second 10 characters contain the data queue library name.

You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Note: To improve data queue performance, the data queue APIs remember addressing information
for the last data queues used. When this occurs, a specific (not *LIBL or *CURLIB) value is
provided for the library name, and the data queue is located in the system auxiliary storage pool
(ASP number 1) or a basic user ASP (ASP numbers 2-32). The addressing information for data
queues located in independent ASPs is not saved.

Because the addressing information is saved, users of this API should be aware of the following
scenario:

If, a job references a data queue, the data queue is moved using the Move Object (MOVOBJ)
command or renamed using the Rename Object (RNMOBJ) command, and a new data queue is
created with the same name and library as the data queue that was renamed or moved, then, the job
continues to reference the original data queue, not the newly created data queue.

Message selection information

INPUT; CHAR(*)

Identifies which message (or messages) you want to retrieve. The layout of this parameter is
determined by the value of the message selection information format name.

Length of message selection information

INPUT; BINARY(4)

The length of the message selection information parameter. This must be 8 bytes for RDQS0100
and 16 bytes plus the size of the key for RDQS0200.

Message selection information format name

INPUT; CHAR(8)

The format of the message selection information parameter.

The following format names can be used:

RDQS0100 Format to select messages when using nonkeyed data queues.

RDQS0200 Format to select messages when using keyed data queues.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

RDQM0100 Format

The following table lists the fields returned in the RDQM0100 format of the receiver variable parameter.
For a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of messages returned

12 C BINARY(4) Number of messages available

16 10 BINARY (4) Message key length returned

20 14 BINARY(4) Message key length available

24 18 BINARY(4) Maximum message text length requested

28 1C BINARY(4) Maximum message text length available

32 20 BINARY(4) Entry length returned

36 24 BINARY(4) Entry length available

40 28 BINARY(4) Offset to first message entry

44 2C CHAR(10) Actual data queue library name

54 36 CHAR(*) Reserved

These fields
repeat for each
message
retrieved.

BINARY(4) Offset to next message entry

CHAR(8) Message enqueue date and time

CHAR(*) Message key

CHAR(*) Message text

CHAR(*) Reserved

RDQM0200 Format

The following table lists the fields returned in the RDQM0200 format of the receiver variable parameter.
For a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of messages returned

12 C BINARY(4) Number of messages available

16 10 BINARY (4) Message key length returned

20 14 BINARY(4) Message key length available

24 18 BINARY(4) Maximum message text length requested

28 1C BINARY(4) Maximum message text length available

32 20 CHAR(8) Reserved

40 28 BINARY(4) Offset to first message entry

44 2C CHAR(10) Actual data queue library name

54 36 CHAR(*) Reserved

These fields
repeat for each
message
retrieved.

BINARY(4) Offset to next message entry

CHAR(8) Message enqueue date and time

BINARY(4) Enqueued message entry length

CHAR(*) Message key

CHAR(*) Message text

CHAR(*) Reserved

RDQS0100 Format

The following table describes the RDQS0100 format of the Message selection information parameter. This
format is used with data queues when selection with keys is not necessary. This format cannot be used with
keyed data queues. To retrieve messages using keys and key search order, use format RDQS0200. For a
detailed description of each field, see Field Descriptions.

For example, to retrieve the first 10 bytes of the last entry in a data queue specify the following: Parameter
seven would contain a format name of 'RDQS0100' and parameter five would consist of a Selection type of
'L', the Reserved field would be blanks, and Number of message text bytes to retrieve would be 10.

Offset

Type FieldDec Hex

0 0 CHAR(1) Selection type

1 1 CHAR(3) Reserved

4 4 BINARY(4) Number of message text bytes to retrieve

RDQS0200 Format

The following table describes the RDQS0200 format of the Message selection information parameter. This
format is used to retrieve messages from data queues when selection with keys is necessary. When using
this format, all messages satisfying the key search order are returned. For a detailed description of each
field, see Field Descriptions.

Note: This format is valid only if the queue was created as a keyed data queue.

Offset

Type FieldDec Hex

0 0 CHAR(1) Selection type

1 1 CHAR(2) Key search order

3 3 CHAR(1) Reserved

4 4 BINARY(4) Number of message text bytes to retrieve

8 8 BINARY(4) Number of message key bytes to retrieve

12 C BINARY(4) Length of Key

16 10 CHAR(*) Key

Field Descriptions

Actual data queue library name. The library in which the data queue was found. This name is found by
searching the library list (*LIBL) or the current library (*CURLIB). If the data queue is in a library other
than your current library or library list, it will not be found.

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Enqueued message entry length. The number of bytes specified for the message entry length when the
entry was placed on the data queue. For a data queue created with SENDERID(*YES), this length is the
message entry length specified plus 36 bytes for the sender ID. This is the number of bytes returned in the
message text field unless the number of message text bytes to retrieve field is less than this value. In that
case, the maximum message text length requested is returned in the message text field.

Entry length available. The total number of bytes available to be retrieved for each message entry.

Entry length returned. The number of bytes retrieved for each message entry.

Key. The key field to be compared with the actual keys of the messages on the data queue.

Key search order. A relational operator specifying the comparison criteria between the message key
specified in the RDQS0200 format and the actual keys of messages in the data queue.

Valid values are:

GT All messages with a key greater than that specified in the key field are to be returned.

LT All messages with a key less than that specified in the key field are to be returned.

NE All messages with a key not equal to that specified in the key field are to be returned.

EQ All messages with a key equal to that specified in the key field are to be returned.

GE All messages with a key greater than or equal to that specified in the key field are to be returned.

LE All messages with a key less than or equal to that specified in the key field are to be returned.

Length of key. The length of the data provided in the key field. This must be a value from 1 through 256.

Maximum message text length available. The maximum message entry size (in bytes) specified when the
data queue was created. For a data queue created with SENDERID(*YES), this length is the maximum
entry size plus 36 bytes for the sender ID.

Maximum message text length requested. The value specified in the message selection format
(RDQS0100 or RDQS0200) for the number of message text bytes to retrieve.

Message enqueue date and time. The date and time that the message was placed on the data queue. Its
format is a system time stamp (*DTS). The Convert Date and Time Format (QWCCVTDT) API can be
used to convert this time stamp to a character format.

Message key. The key of the message.

Message key length available. The size (in bytes) of the key at the creation time of the data queue.

Message key length returned. The number of bytes retrieved in the message key field.

Message text. The text of the message. For the RDQM0100 format, the number of bytes of message text
returned is the maximum message text length requested. For the RDQM0200 format, the number of bytes
of message text returned is the minimum of the maximum message text length requested field or the
enqueued message entry length field. For example, with RDQM0200, if the maximum message text length
requested is less than the enqueued message entry length, some text of the data queue entry would not be

returned.

Number of message key bytes to retrieve. The number of message key bytes to return for each data queue
entry. The maximum value allowed is 256. If the number of bytes requested exceeds the actual message key
length, the key is padded with binary zeros. If the number of message key bytes requested is less than the
actual key, the key is truncated.

Number of message text bytes to retrieve. The number of message text bytes to return for each data
queue entry. The maximum value allowed is 65536. The maximum message text length returned field is
equal to this value. If the number of bytes requested exceeds the actual message text length, the text is
padded with binary zeros if the RDQM0100 format is used. If the RQDM0200 format is used, and the
actual message text length is less than the number of bytes requested, the number of bytes returned is the
actual message length, and no padding is done. If the number of message text bytes is less than the actual
text, the message text is truncated.

Number of messages available. The number of messages on the data queue that satisfy the search criteria
specified in the Message selection information parameter.

Number of messages returned. The number of messages retrieved.

Offset to first message entry. The offset at which the first message entry begins. If this value is 0, there is
no message available.

Offset to next message entry. The offset to the next message entry. If this value is 0, there are no more
messages returned.

Reserved. An unused field.

Selection type. Selection type depends on the format used.

For the RDQS0100 format, valid values are:

A All messages are to be returned in the order based on the type of data queue. FIFO queues are
returned in FIFO order, LIFO queues are returned in LIFO order and keyed queues are returned in
ascending key order.

F The first message is to be returned

L The last message is to be returned

R All messages are to be returned in reverse order of the type of data queue. For example, LIFO queues
are returned in FIFO order.

For the RDQS0200 format, valid values are:

K Messages meeting the key criteria are to be returned

Error Messages

Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9503 E Cannot lock data queue &1 in &2.

CPF9504 E An invalid search order was specified.

CPF9509 E Space access error.

CPF9511 E Function not supported for DDM data queue &1.

CPF950B E The specified selection type is not valid.

CPF950C E The specified retrieve length is not valid.

CPF950D E The specified message selection template length is not valid.

CPF950E E The data queue is not a keyed data queue.

CPF950F E The specified key length is not valid.

CPF9519 E Internal program error occurred.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

Top | Object API categories | API by category

Send Data Queue (QSNDDTAQ) API

 Required Parameter Group:

1 Data queue name Input Char(10)
2 Library name Input Char(10)
3 Length of data Input Packed(5,0)
4 Data Input Char(*)

 Optional Parameter Group 1:

5 Length of key data Input Packed(3,0)
6 Key data Input Char(*)

 Optional Parameter Group 2:

7 Asynchronous request Input Char(10)

 Optional Parameter Group 3:

8 Data is from a journal entry Input Char(10)

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Send Data Queue (QSNDDTAQ) API sends data to the specified data queue. When an entry is sent to a
standard data queue, the storage allocated for each entry will be the value specified for the maximum entry
length on the Create Data Queue (CRTDTAQ) command.

Distributed data management (DDM) data queues are supported using this API. This means that you can
use this API to send data to a data queue that exists on a remote iSeries.

Authorities and Locks

Data Queue Authority

*OBJOPR and *ADD

Data Queue Library Authority

*EXECUTE

When using optional parameter group 3 and the journal entry was deposited for a data queue with the

sender ID attribute set to *YES, authority to the current profile in the sender ID of the journal entry

*USE

Data Queue Lock

*EXCLRD

Internally, when a job uses API QSNDDTAQ (Send Data Queue), QRCVDTAQ (Receive Data Queue),
QMHQRDQD (Retrieve Data Queue Description), or QMHRDQM (Retrieve Data Queue Message), a
cache is created to allow faster access to the data queue. An entry in the cache means a user is authorized to
the data queue. An entry is added to the cache when a user calling one of the APIs has the required
authority to the data queue. An entry is also added to the cache when QSNDDTAQ is called to handle a
journal entry for a data queue created with the sender ID attribute set to *YES, and the user requesting the
the send function has the required authority to the current profile name in the sender ID information of the
journal entry. The data in the cache is used until the job ends, so if you need to immediately change a user's
authority to one of these objects, you may need to end that user's jobs.

Required Parameter Group

Data queue name

INPUT; CHAR(10)

The name of the data queue to send the data to.

Library name

INPUT; CHAR(10)

The name of the library where the data queue resides.

You can use these special values for the library name:

*LIBL The library list

*CURLIB The job's current library.

Note: To improve data queue performance, the data queue APIs remember addressing information
for the last data queues used. This occurs when a specific (not *LIBL or *CURLIB) value is
provided for the library name, and the data queue is located in the system auxiliary storage pool
(ASP number 1) or a basic user ASP (ASP numbers 2-32). The addressing information for data
queues located in independent ASPs is not saved.

Because the addressing information is saved, users of this API should be aware of the following
scenarios.

Scenario 1

If, a job references a library-specific data queue, the data queue is moved using the Move Object
(MOVOBJ) command or renamed using the Rename Object (RNMOBJ) command, and a new data
queue is created with the same name and library as the data queue that was renamed or moved,
then, the job continues to reference the original data queue, not the newly created data queue.

Scenario 2

If, a job references a library-specific distributed data management (DDM) data queue, the DDM

data queue is moved using the Move Object (MOVOBJ) command or renamed using the Rename
Object (RNMOBJ) command, and a new data queue is created with the same name and library as
the DDM data queue that was renamed or moved, then, the job continues to reference the original
DDM data queue, not the newly created data queue.

Scenario 3

If, a job references a DDM data queue, which starts a DDM target job (DDM conversation) on a
remote system that references a library-specific data queue, the data queue on the remote system is
moved using the Move Object (MOVOBJ) command or renamed using the Rename Object
(RNMOBJ) command, and on the remote system, a new data queue is created with the same name
and library as the data queue that was renamed or moved, then, the DDM target job continues to
reference the original data queue on the remote system, not the newly created data queue, only
when the same DDM target job is used for the subsequent data queue operation. If a new DDM
target job is used for the subsequent data queue operation, then the newly created data queue will
be used on the remote system.

Note: For more information on creating DDM data queues and on DDM target jobs, see Distributed
Data Management in the iSeries Information Center.

Length of data

INPUT; PACKED(5,0)

The number of characters to be sent to the data queue.

Note: An error occurs if the value specified is greater than the length specified by the maximum
lenght (MAXLEN) parameter on the Create Data Queue (CRTDTAQ) command, unless optional
parameter group 3 is specified. With optional parameter group 3, the length of the data provided in
the journal entry should be specified, and it could be longer than the maximum entry length. This
will be handled appropriately by the API.

Data

INPUT; CHAR(*)

The data to be sent to the data queue.

Note: If the length of this field is larger than the length of data parameter, only the number of
characters (beginning from the left) as defined by the length of data parameter are sent to the data
queue. If the length of this variable is smaller than the length of data parameter, unexpected results
can occur.

Optional Parameter Group 1

Length of key data

INPUT; PACKED(3,0)

The number of characters in the key data parameter.

Note: The maximum value is the value that is specified on the KEYLEN parameter on the Create
Data Queue (CRTDTAQ) command.

Key data

INPUT; CHAR(*)

The data sent to the data queue. This value must be at least as long as the value specified in the

length of key data parameter; otherwise, unexpected results can occur.

Optional Parameter Group 2

Asynchronous request

INPUT; CHAR(10)

Whether the send data queue request to a DDM data queue should be processed asynchronously.
This parameter only applies to DDM data queues. Valid values are *YES and *NO. An error will
occur if *YES is specified for a non-DDM data queue. If the value *YES is specified for the
asynchronous request parameter for a DDM data queue and an error occurs on the operation, the
error will not be detected until the next time the data queue is accessed.

Note: If this parameter is specified, the key length and key data parameters must also be specified
even if they are not applicable. In that event, the key length should be zero and blanks should be
specified for the key data.

Optional Parameter Group 3

Data is from a journal entry

INPUT; CHAR(10)

Indicate whether the data, in parameter four, came from a journal entry. This parameter only
applies to a non-DDM data queue. Valid values are *YES and *NO.

When using this paramter the data queue needs to have the same attributes as the journaled data
queue. To ensure the attributes of the data queue are the same as the journaled data queue, save the
journaled data queue and restore it to the system where this API will be called with optional
parameter group 3 specified. Refer to Journal management for information on journaling.

Note: When using this parameter, the length of data in parameter three should be obtained from the
journal entry. The length could be longer than the maximum entry length of the data queue and this
will be handled appropriately by the API, an error will not be issued.

Note: If this parameter is specified, the key length, key data, and asynchronous request parameters
must also be specified even if they are not applicable. In that event, the key length should be zero,
key data should be blanks and *NO should be specified for the asynchronous request.

Usage Notes

This API can be used in a multithreaded job to send entries to a non-DDM data queue. It cannot be used in
a job that allows multiple threads to send entries to a DDM data queue.

Error Messages

Message ID Error Message Text

CPF2207 E Not authorized to use object &1 in library &3 type *&2.

CPF24B4 E Severe error while addressing parameter list.

CPF2498 E Invalid length. MAXLEN for data queue &1 in &2 is &3.

CPF3C90 E Literal value cannot be changed.

CPF6565 E User profile storage limit exceeded.

CPF9501 E Data queue &1 in &2 requires a key value.

CPF9502 E Key length must be zero for data queue &1 in &2.

CPF9503 E Cannot lock data queue &1 in &2.

CPF9506 E Key length must be &3 for data queue &1 in &2.

CPF9507 E Invalid key length specified.

CPF9509 E Space access error.

CPF950A E Storage limit exceeded for data queue &1 in &2.

CPF9510 E Operation on DDM data queue &1 in &2 failed.

CPF9512 E Invalid asynchronous request.

CPF9513 E Asynchronous request must be *NO for data queue &1 in &2.

CPF9520 E Value for data is from a journal entry is not valid.

CPF9521 E Entry not sent. Data queue attributes do not match.

CPF9522 E Entry not sent. Data from a journal entry is not valid.

CPF9523 E Data queue function not successful.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 D Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R1

Top | Object APIs | APIs by category

User Queue APIs
The user queue APIs let you create and delete user queues. User queues are permanent objects with an
object type of *USRQ. They provide a way for one or more processes to communicate asynchronously.

For additional information, see Using User Queue APIs.

The user queue APIs are:

Create User Queue (QUSCRTUQ) creates a user queue in either the user domain or the system
domain, based on the input parameters.

●

Delete User Queue (QUSDLTUQ) deletes user queues created with the Create User Queue
(QUSCRTUQ) API.

●

Top | Object APIs | APIs by category

Using User Queue APIs
You can use user queues to:

Communicate between two processes asynchronously.●

Store data in arrival sequence for later use.●

Contain keyed messages.●

Create a batch machine. (For an example, see Creating a Batch Machine in the API Examples.)●

Permit better performance than the data queue interface.●

You can save and restore a user queue; however, you can save or restore its definition only. You cannot
save or restore the messages in it. You cannot restore a user queue if a user queue with the same name
already exists in the library. You must provide programs to use this object type to enqueue and dequeue
messages.

In addition to the user queue APIs, you can work with user queues through the following:

ILE C programming language●

Delete User Queue (DLTUSRQ) command●

Machine interface (MI) instructions●

For details about MI instructions, refer to the iSeries Machine Interface Instructions, which provides
detailed descriptions of the iSeries machine interface instruction fields and the formats of those fields. For
details about the DLTUSRQ command, see the Control Language topic.

Object APIs | APIs by category

Create User Queue (QUSCRTUQ) API

 Required Parameter Group:

1 Qualified user queue name Input Char(20)
2 Extended attribute Input Char(10)
3 Queue type Input Char(1)
4 Key length Input Binary(4)
5 Maximum message size Input Binary(4)
6 Initial number of messages Input Binary(4)
7 Additional number of messages Input Binary(4)
8 Public authority Input Char(10)
9 Text description Input Char(50)

 Optional Parameter Group 1:

10 Replace Input Char(10)
11 Error code I/O Char(*)

 Optional Parameter Group 2:

12 Domain Input Char(10)
13 Pointers Input Char(10)

 Optional Parameter Group 3:

14 Number of queue extensions Input Binary(4)
15 Reclaim storage Input Char(1)

 Default Public Authority: *USE

 Threadsafe: Yes

The Create User Queue (QUSCRTUQ) API creates a user queue in either the user domain or the system
domain, based on the input parameters. A user-domain user queue can be directly manipulated with MI
instructions. If you are running at security level 40 or greater, you cannot directly manipulate a
system-domain user queue using MI instructions.

If the number of queue extensions is not specified, user queues can grow to a maximum of 16MB in size,
though some of that is used for the queue definition. If the number of queue extensions is specified and
non-zero, the queue will be extended by the number of additional messages specified until either the
number of queue extensions is reached or the storage limit of 32MB is reached.

The system can automatically extend user queues, so you should create a small queue and allow the system
to extend the queue as needed. Smaller queues provide better performance and use less storage. However,

the system does not automatically reduce the size of the queue if it is too large. If you specify the additional
number of messages as 0, the system does not extend the user queue you create when the queue is full.

To decrease the size of a user queue, a user must delete the queue and create it again.

There are no APIs to manipulate user queue entries. If you must access a user queue object in a library that
does not permit user-domain user objects, you must use data queue objects. For information about data

queues, refer to the CL Programming book.

If you need to know into which domain the user queue object was created, use either of the following APIs
to retrieve that information:

Retrieve Object Description (QUSROBJD) API●

List Object (QUSLOBJ) API●

Note: For performance reasons, the *USRQ object is created before checking to see if it exists in the library
specified for the qualified user queue name. If you have an application using this API repeatedly, even if
you are using *NO for the replace parameter, permanent system addresses will be used.

Note:User queues created with either the number of queue extensions parameter specified with a positive,
non-zero number or the reclaim storage parameter specified to reclaim the user queue storage are not
eligible to save to a pre-V4R5 system.

Authorities and Locks

Library Authority

*READ and *ADD.

User Queue Authority

*OBJMGT, *OBJEXIST, and *READ. These authorities are required only if the replace parameter
is used and if there is an existing user queue to replace.

User Queue Lock

*EXCL. This applies to both the user queue being created and an existing user queue being
replaced.

Required Parameter Group

Qualified user queue name

INPUT; CHAR(20)

The first 10 characters contain the user queue name, and the second 10 characters contain the name
of the library where the user queue is located. The only special value supported is *CURLIB.

User queues created in the QTEMP and QRPLOBJ libraries are not forced to permanent storage;
they are deleted when those libraries are cleared at sign-off and system IPL, respectively.

Extended attribute

INPUT; CHAR(10)

The extended attribute of the user queue. For example, an object type of *FILE has an extended
attribute of PF (physical file), LF (logical file), DSPF (display file), SAVF (save file), and so on.

The extended attribute must be a valid *NAME. You can enter this parameter in uppercase,
lowercase, or mixed case. The API automatically converts it to uppercase.

Queue type

INPUT; CHAR(1)

The sequence in which messages are to be dequeued from the queue. The valid values are:

F First-in first-out

K Keyed

L Last-in first-out

Key length

INPUT; BINARY(4)

The length in bytes of the message key from 1 to 256 if you specify the queue type as keyed. If you
specify that the queue is not a keyed queue, the value must be 0.

Maximum message size

INPUT; BINARY(4)

The maximum allowed size of messages to be placed on the queue. The API truncates messages
that are longer than the value you specify. The maximum size allowed is 64 000 bytes.

Initial number of messages

INPUT; BINARY(4)

The initial number of messages that the queue can contain.

Additional number of messages

INPUT; BINARY(4)

The amount to increase the maximum number of messages value when the queue is full. When this
parameter is set to 0, the queue is not extended if an overflow occurs and an error message is sent
to the program attempting to place a message on the queue.

Public authority

INPUT; CHAR(10)

The authority you give to the users who do not have specific private or group authority to the user
queue. Once the user queue has been created, its public authority stays the same when it is moved
to another library or restored from backup media.

If the replace parameter is used and a user queue exists to be replaced, this parameter is ignored.
All authorities are transferred from the replaced user queue to the new one.

The valid values for this parameter are:

*ALL The user can perform all authorized operations on the user queue.

Authorization list name The user queue is secured by the specified authorization list, and its
public authority is set to *AUTL. The specified authorization list must
exist on the system when this API is issued. If it does not exist, the
create process fails, and an error message is returned to the
application.

*CHANGE The user has read, add, update, and delete authority to the user queue
and can read the object description.

*EXCLUDE The user cannot access the user queue in any way.

*LIBCRTAUT The public authority for the user queue is taken from the CRTAUT
value for the target library when the object is created. If the CRTAUT
value for the library changes later, that change does not affect user
queues already created. If the CRTAUT value contains an
authorization list name and that authorization list secures an object, do
not delete the list. If you do, the next time you call this API with the
*LIBCRTAUT parameter, it will fail.

*USE The user can read the object description and the user queue's contents
but cannot change them.

Text description

INPUT; CHAR(50)

A brief description of the user queue.

Optional Parameter Group 1

Replace

INPUT; CHAR(10)

Whether to replace an existing user queue. Valid values for this parameter are:

*NO Do not replace an existing user queue of the same name and library. *NO is the default.

*YES Replace an existing user queue of the same name and library.

The user queue being replaced is destroyed if both:

The user queue you are replacing is in the user domain.❍

The allow user domain (QALWUSRDMN) system value is not set to *ALL or does not
contain the library QRPLOBJ.

❍

If the QRPLOBJ library is specified in the QALWUSRDMN system value, then the replaced
user-domain user queue is moved to the QRPLOBJ library. If the user queue is in the system
domain, it is moved to the QRPLOBJ library, which is cleared at system IPL. For details about
authorities, ownership, and renaming, see the discussion of the REPLACE parameter in Control
Language (CL) information.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Optional Parameter Group 2

Domain

INPUT; CHAR(10)

The domain into which the user queue should be created. If this parameter is not specified, the
value of *DEFAULT will be assumed by the API. Valid values for this parameter are:

*DEFAULT Allows the system to decide into which domain the object should be created.

*SYSTEM Creates the user queue object into the system domain. The API can always create
a user queue into the system domain regardless of the security level you are
running at. However, system-domain user queues can only be used at security
level 30 and below because there are no APIs to access user queues.

*USER Attempts to create the user queue object into the user domain. This is not always
possible. If the library you are creating the user queue into does not appear in the
QALWUSRDMN system value, the API cannot create the user queue into the
user domain. An error message will be returned.

The API uses the following criteria to determine into which domain to create the user queue. The
destination library is the library you specified in the qualified user queue name parameter. The
optional domain parameter is the information specified in the domain parameter.

QALWUSRDMN System
Value

Destination
Library

Optional Domain
Parameter

Domain of
Created
Object

*ALL Any *DEFAULT User domain

*ALL Any *SYSTEM
System
domain

*ALL Any *USER User domain

QTEMP QTEMP *DEFAULT User domain

QTEMP QTEMP *SYSTEM
System
domain

QTEMP QTEMP *USER User domain

Does not contain library
name Library name *DEFAULT

System
domain

Does not contain library
name Library name *SYSTEM

System
domain

Does not contain library
name Library name *USER

None; error
is returned

Note: The QALWUSRDMN system value lists the libraries into which the user
domain objects can be created. The libraries include special value *ALL or a list of
one or more library names.

Pointers

INPUT; CHAR(10)

Whether or not the user queue messages can contain pointer data or not. If this parameter is not
specified, *NO is assumed.

*YES Messages can contain pointer and scalar data. Messages to be enqueued must be 16-byte
aligned, regardless of whether or not the message contains pointer data. Only
user-domain user queues can contain pointer data; therefore, queues that support pointers
cannot be created in or restored to a library that is not permitted by system value
QALWUSRDMN. User queues that can contain pointers cannot be saved to a release
prior to Version 2 Release 3 Modification Level 0.

*NO Messages can contain scalar data only. (User queues created prior to Version 2 Release 3
Modification Level 0 contain scalar data only). The user queue can be in either the
system domain or the user domain.

Optional Parameter Group 3

Number of queue extensions

INPUT; BINARY(4)

The maximum number of extensions allowed for the user queue. A value of -1 indicates that the
maximum number of extensions will be chosen by the machine. If this parameter is not specified, 0
is assumed.

Reclaim storage

INPUT; CHAR(1)

Whether storage reclaim will be attempted when the number of currently enqueued messages in the
user queue reaches zero. Allowable values are:

0 Do not reclaim storage when the user queues have no currently enqueued messages. 0 is the
default value.

1 Reclaim storage when the user queues have no currently enqueued messages.

Error Messages

Message ID Error Message Text

CPF2143 E Cannot allocate object &1 in &2 type *&3.

CPF2144 E Not authorized to &1 in &2 type *&3.

CPF2283 E Authorization list &1 does not exist.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C02 E User queue &1 not created.

CPD3C01 D Object name &1 is not valid.

CPD3C03 D Extended attribute &1 is not valid.

CPD3C05 D Value &1 for authority parameter is not valid.

CPD3C06 D Number of messages requested, &1, is too large for this queue.

CPD3C07 D Value &1 for queue type parameter is not valid.

CPD3C08 D Initial number of queue messages specified, &1, is not valid.

CPD3C09 D Extension parameter value &1 for queue overflow is not valid.

CPD3C10 D Value &1 for key length parameter is not valid.

CPD3C11 D Value &1 for maximum message size parameter is not valid.

CPF3C08 E Initial number of queue messages specified, &1, is not valid.

CPF3C09 E Extension parameter value &1 for queue overflow is not valid.

CPF3C10 E Value &1 for key length parameter is not valid.

CPF3C11 E Value &1 for maximum message size parameter is not valid.

CPF3C2B E Extended attribute &1 is not valid.

CPF3C2D E Value &1 for authority parameter is not valid.

CPF3C2E E Number of messages requested, &1, is too large for this queue.

CPF3C2F E Value &1 for queue type parameter not valid.

CPF3C29 E Object name &1 is not valid.

CPF3C34 E Value &1 for replace option is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C45 E Value &1 not valid for domain parameter.

CPF3C46 E Value &1 not valid for pointers parameter.

CPF3C47 E Pointers not valid for system domain user queue.

CPF3C49 E Request for user domain object cannot be granted.

CPF3C90 E Literal value cannot be changed.

CPF3C94 E Value &1 not valid for reclaim storage parameter.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9870 E Object &2 type *&5 already exists in library &3.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V1R3

Top | Object APIs | APIs by category

Delete User Queue (QUSDLTUQ) API

 Required Parameter Group:

1 Qualified user queue name Input Char(20)
2 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Delete User Queue (QUSDLTUQ) API deletes user queues created with the Create User Queue
(QUSCRTUQ) API. The Delete User Queue (DLTUSRQ) command has the same function.

Authorities and Locks

Library Authority

*EXECUTE

User Queue Authority

*OBJEXIST

User Queue Lock

*EXCL

Required Parameter Group

Qualified user queue name

INPUT; CHAR(20)

The name of the user queue and the name of the library in which it resides. The first 10 characters
contain the user queue name, and the second 10 characters contain the library name.

The user queue name can be either a specific name or a generic name, a string of one or more
characters followed by an asterisk (*). If you specify a generic name, QUSDLTUS deletes all user
queues that have names beginning with the string for which the user has authority.

You can use these special values for the library name:

*ALL All libraries

*ALLUSR All user-defined libraries, plus libraries containing user data and having names
starting with Q

*CURLIB The job's current library

*LIBL The library list

*USRLIBL The user portion of the job's library list

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF2105 E Object &1 in &2 type *&3 not found.

CPF2110 E Library &1 not found.

CPF2113 E Cannot allocate library &1.

CPF2114 E Cannot allocate object &1 in &2 type *&3.

CPF2117 E &4 objects type *&3 deleted. &5 objects not deleted.

CPF2125 E No objects deleted.

CPF2176 E Library &1 damaged.

CPF2182 E Not authorized to library &1.

CPF2189 E Not authorized to object &1 in &2 type *&3.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R1

Top | Object API categories | API by category

User Index APIs
The user index APIs allow you to:

Create and delete user indexes●

Add, retrieve, and remove user index entries●

Retrieve the attributes of a user index●

For additional information, see Using User Index APIs.

The user index APIs are:

Add User Index Entries (QUSADDUI) allows you to add one or more new entries or replace
existing entries into the user index.

●

Create User Index (QUSCRTUI) creates a user index.●

Delete User Index (QUSDLTUI) deletes a user index.●

Remove User Index Entries (QUSRMVUI) removes one or more user index entries that match the
remove criteria specified.

●

Retrieve User Index Attributes (QUSRUIAT) retrieves information about the user index attributes,
including when it was created. It also retrieves the current operational statistics of the user index.

●

Retrieve User Index Entries (QUSRTVUI) retrieves user index entries that match the search criteria
specified.

●

Top | Object APIs | APIs by category

Using User Index APIs
A user index is an object that allows search functions for data in the index and automatically sorts data
based on the value of the data. User indexes are permanent objects in the user domain or in the system
domain. They have an object type of *USRIDX and a maximum size of 1 terabyte (1 099 511 627 776
bytes). They help streamline table searching, cross-referencing, and ordering of data. In general, if your
table is longer than 1000 entries, an index performs faster than a user-sorted table.

You can use user indexes to:

Provide search functions●

Do faster insert operations than in a database file●

Do faster retrieve operations than in a database file●

Create an index by name, such as a telephone directory●

Use order entry programs●

Look up abbreviations in an index●

Sort data automatically based on the hexadecimal value of a key●

For more information about user index considerations, refer to the System API Programming book on
the V5R1 Supplemental Manuals Web site. User index entries cannot contain a pointer. You can save and
restore all the data in an index. You can also save and restore user indexes to another system.

In addition to the user index APIs, you can work with user indexes through the following:

ILE C programming language●

Machine interface (MI) instructions●

Delete User Index (DLTUSRIDX) command●

For details about MI instructions, refer to the iSeries Machine Interface Instructions, which provides
detailed descriptions of the iSeries machine interface instruction fields and the formats of those fields. For
details about the DLTUSRIDX command, see the Control Language (CL) topic.

Top | Object APIs | APIs by category

Add User Index Entries (QUSADDUI) API

 Required Parameter Group:

1 Returned library name Output Char(10)
2 Number of entries added Output Binary(4)
3 Qualified user index name Input Char(20)
4 Insert type Input Binary(4)
5 Index entries Input Char(*)
6 Length of index entries Input Binary(4)
7 Entry lengths and offsets Input Array(*) of

Char(8)
8 Number of entries Input Binary(4)
9 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Add User Index Entries (QUSADDUI) API inserts one or more entries into the user index by the insert
type. Each entry is inserted into the index at the appropriate location based on the binary value of the entry.
No other collating sequence is supported. Every entry added causes the number of entries added parameter
to be incremented by 1; you can retrieve the current number of entries added by using the Retrieve User
Index Attributes (QUSRUIAT) API.

When you request to add multiple entries to a user index, the request may be partially successful in the
following situations:

One or more of the entries you requested to add already exists in the index.●

The index becomes full as the entries are added.●

The user profile storage limit is exceeded as entries are added.●

One or more of the entry lengths or offsets are not valid.●

When an error occurs, you should check the number of entries added parameter to see if all entries were
successfully added. If the number of entries added parameter and the number of entries parameter are not
equal, then all entries were not added.

Note:If you add new entries with an entry length longer than the user index is expecting, the entries are
truncated to the right. No error is given.

If you are using a fixed length index and the entries you are adding are less than the fixed length, you may
get undesirable results. The entries are not padded with blanks before being entered into the user index. The
API checks the length of index entries parameter to ensure that the length you pass is a multiple of the
length of one index entry.

Authorities and Locks

User Index Library Authority

*EXECUTE

User Index Authority

*CHANGE

User Index Lock

*SHRUPD

Required Parameter Group

Returned library name

OUTPUT; CHAR(10)

The name of the library that contains the user index to which the entries were added if they were
added successfully. This parameter is not set if no entries were successfully added. This
information helps you identify the specific library used when *LIBL or *CURLIB is specified in
the qualified user index name parameter.

Number of entries added

OUTPUT; BINARY(4)

The number of entries successfully added to the specified user index. If an error is received while
processing the entries, this number indicates how many were added before the error occurred.

Qualified user index name

INPUT; CHAR(20)

The user index to which you want to add entries and the library in which it is located. The first 10
characters contain the user index name, and the second 10 characters contain the library name.

You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Insert type

INPUT; BINARY(4)

The type of insert to be performed against all entries that are to be added.

Valid values are:

1 Insert unique argument

This value is only valid for nonkeyed user indexes. If the entry is already in the
index or the index entries are keyed, an error is returned.

2 Insert with replacement

This value requests to replace the nonkey portion of the index entry if the key is
already in the user index. It is only valid for keyed user indexes. If the entry
does not exist, it will be inserted into the user index. If the index entries are
nonkeyed, an error is returned.

3 Insert without replacement

This value requests to insert the entry only if the key is not already in the user
index. It is only valid for a keyed user index. If the entry does not exist, it will
be inserted into the user index. If the entry is already in the index or the index
entries are nonkeyed, an error is returned.

Index entries

INPUT; CHAR(*)

The actual entry or entries to be added to the user index. If the user index contains fixed length
entries, this parameter is processed using the entry length specified when the user index was
created. If the user index contains variable length entries, this parameter is processed using the
information contained in the entry lengths and entry offsets parameter.

When using an index that contains fixed length entries, this parameter should be the same length as
the length of index entries parameter.

Length of index entries

INPUT; BINARY(4)

The length of the index entries parameter. This value must be greater than 0.

Entry lengths and entry offsets

INPUT; ARRAY(*) of CHAR(8)

If the user index contains variable length entries, this parameter is a data-structure array that is used
to parse through the index entries parameter. In this case, an entry length and entry offset need to be
provided for all entries that are to be added. This parameter is ignored for user indexes containing
fixed length entries.

The size of the entry lengths and entry offsets parameter must be at least eight times the number of
entries parameter; otherwise, an error will be returned.

See Format for Entry Lengths and Entry Offsets for details on the data structure.

Number of entries

INPUT; BINARY(4)

The number of entries that are to be added to the user index. Valid values are 1 through 4095.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format for Entry Lengths and Entry Offsets

The following table defines the format for the entry lengths and entry offsets parameter. This information is
needed to parse through the index entries parameter.For detailed descriptions of the fields in the table, see
Field Descriptions.

Offset

Type FieldDec Hex

Note: The following fields will be repeated. The number of times they are repeated
depends on the value specified in the number of entries parameter.

BINARY(4) Entry length

BINARY(4) Entry offset

Field Descriptions

Entry length The length of the entry to be inserted into the index. Valid values are 1-2000. This value
depends on how the user index was created.

Entry offset. For the first entry, the offset is the number of bytes from the beginning of the index entries
parameter to the first byte of the first entry. For each subsequent entry, the offset is the number of bytes
from the beginning of the previous entry to the first byte of the next entry. Each entry offset value must be
greater than or equal to 0 and must refer to an entry within the index entries parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C7B E Length of index entries is not valid.

CPF3C7C E User index is full.

CPF3C71 E Insert type &1 is not valid.

CPF3C72 E Number of entries &1 is not valid.

CPF3C73 E Error occurred with index entries parameter.

CPF3C74 E Entry is already in the index.

CPF3C75 E Error occurred with entry lengths and offsets parameter.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R3

Top | Object API categories | API by category

Create User Index (QUSCRTUI) API

 Required Parameter Group:

1 Qualified user index name Input Char(20)
2 Extended attribute Input Char(10)
3 Entry length attribute Input Char(1)
4 Entry length Input Binary(4)
5 Key insertion Input Char(1)
6 Key length Input Binary(4)
7 Immediate update Input Char(1)
8 Optimization Input Char(1)
9 Public authority Input Char(10)
10 Text description Input Char(50)

 Optional Parameter Group 1:

11 Replace Input Char(10)
12 Error code I/O Char(*)

 Optional Parameter Group 2:

13 Domain Input Char(10)

 Optional Parameter Group 3:

14 Usage tracking Input Char(1)

 Optional Parameter Group 4:

15 Index size option Input Char(1)

 Default Public Authority: *USE

 Threadsafe: Yes

The Create User Index (QUSCRTUI) API creates a user index in either the user domain or the system
domain. A system-domain user index cannot be saved to a release prior to Version 2 Release 3
Modification 0. A user-domain user index can be directly manipulated with MI instructions and can also be
accessed using system APIs at all security levels. On a system with the QSECURITY system value set to
40 or greater, you must use system APIs to access system-domain user indexes. If you create a permanent
object by using this API, you cannot delete the object by using the MI instruction DESINX when the
system security level is set to 40 or greater. You would have to delete the object by using the Delete User
Index (QUSDLTUI) API.

Note: If the user index is larger than 4 gigabytes, it cannot be saved to a release prior to Version 5
Release 2 Modification 0.

If the user index was created prior to Version 2 Release 2 Modification 0, the size of the user index is
limited to a maximum of 1 gigabyte. (A user index with a size greater than 1 gigabyte cannot be saved to or
restored from a release prior to Version 2 Release 2 Modification 0.) If the user index was created on or
after Version 2 Release 2 Modification 0, the size of the object is limited to a maximum of 4 gigabytes. The
size is dependent on the amount of storage needed for the number and size of index entries and excludes the
size of the associated space, if any.

Note: You can tell whether a user index object can be saved to a release prior to Version 2 Release 2
Modification 0:

By ensuring that the current object size is less than 1 gigabyte by using one of the following:

The Display Object Description (DSPOBJD) command❍

The List Objects (QUSLOBJ) API❍

The Retrieve Object Description (QUSROBJD) API❍

●

By ensuring that the key length field is 120 bytes or less by using either of the following:

The Materialize Index Attributes (MATINXAT) MI instruction❍

The Retrieve User Index Attributes (QUSRUIAT) API❍

●

Note: For performance reasons, the *USRIDX object is created before checking to see if it exists in the
library specified for the qualified user index name. If you have an application using this API repeatedly,
even if you are using *NO for the replace parameter, permanent system addresses will be used.

Authorities and Locks

Library Authority

*READ and *ADD.

User Index Authority

*OBJMGT, *OBJEXIST, and *READ. These authorities are required only if the replace parameter
is used and there is an existing user index to replace.

User Index Lock

*EXCL. This applies to both the user index being created and an existing user index being
replaced.

Required Parameter Group

Qualified user index name

INPUT; CHAR(20)

The name of the user index being created, and the library in which it is to be located. The first 10
characters contain the user index name, and the second 10 characters contain the library name.

You can use this special value for the library name:

*CURLIB The job's current library

User indexes created in the QTEMP and QRPLOBJ libraries are not forced to permanent storage;
they are deleted when those libraries are cleared at sign-off and system IPL, respectively.

Extended attribute

INPUT; CHAR(10)

The extended attribute of the user index. For example, an object type of *FILE could have an
extended attribute of PF (physical file), LF (logical file), DSPF (display file), or SAVF (save file).

The extended attribute must be a valid *NAME. You can enter this parameter in uppercase,
lowercase, or mixed case. The API automatically converts it to uppercase.

Entry length attribute

INPUT; CHAR(1)

Whether there are fixed-length or variable-length entries in the user index. The valid values are:

F Fixed-length entries

V Variable-length entries

Entry length

INPUT; BINARY(4)

The length of entries in the index.

The valid values for fixed-length entries are from 1 through 2000.

Valid values for variable length entries are 0 or -1. A value of 0 enables a maximum entry length of
120 bytes and a key length from 1 through 120. A value of -1 enables a maximum entry length of
2000 and a key length from 1 through 2000.

Note: A user index created with an entry length greater than 120 cannot be saved or restored to a
release prior to Version 2 Release 2 Modification 0.

Key insertion

INPUT; CHAR(1)

Whether the inserts to the index are by key. The valid values are:

0 No insertion by key

1 Insertion by key

Key length

INPUT; BINARY(4)

The length of the key where the first byte of an entry is the beginning of the key for the index
entries. The value for this parameter must be 0 for no insertion by key. If you specify key length
insertion, this value is from 1 through 2000.

Immediate update

INPUT; CHAR(1)

Whether the updates to the index are written synchronously to auxiliary storage on each update to
the index. The valid values are:

0 No immediate update

1 Immediate update

Each update to the index is written to auxiliary storage after every insert and remove operation.

Optimization

INPUT; CHAR(1)

The type of access in which to optimize the index. The valid values are:

0 Optimize for random references

1 Optimize for sequential references

Public authority

INPUT; CHAR(10)

The authority you give to users who do not have specific private or group authority to the user
index. Once the user index has been created, its public authority stays the same when it is moved to
another library or restored from backup media.

If the replace parameter is used and an existing user index is replaced, this parameter is ignored. All
authorities are transferred from the replaced user index to the new one.

The valid values for this parameter are:

*ALL The user can perform all authorized operations on the user index.

Authorization list name The user index is secured by the specified authorization list, and its
public authority is set to *AUTL. The specified authorization list must
exist on the system when this API is issued. If the list does not exist,
the create process fails, and an error message is returned to the
application.

*CHANGE The user has read, add, update, and delete authority for the user index
and can read the object description.

*EXCLUDE The user cannot access the user index in any way.

*LIBCRTAUT The public authority for the user index is taken from the CRTAUT
value for the target library when the object is created. If the CRTAUT
value for the library changes later, that change does not affect user
indexes already created. If the CRTAUT value contains an
authorization list name and that authorization list secures an object, do
not delete the list. If you do, the next time you call this API with the
*LIBCRTAUT parameter, it will fail.

*USE The user can read the object description and contents but cannot
change the user index.

Text description

INPUT; CHAR(50)

A brief description of the user index.

Optional Parameter Group 1

Replace

INPUT; CHAR(10)

Whether you want to replace an existing user index. Valid values for this parameter are:

*NO Do not replace an existing user index of the same name and library. *NO is the default
value.

*YES Replace an existing user index of the same name and library.

If the user index already exists, you can replace it with a new user index of the same name and
library. The new user index is subject to the same authorities. The user index being replaced is
destroyed if both:

The allow user domain (QALWUSRDMN) system value is not set to *ALL or does not
contain the QRPLOBJ library.

❍

The user index you are replacing is in the user domain.❍

If the user index is in the system domain, it is moved to the QRPLOBJ library. If QALWUSRDMN
is set to *ALL or if it contains QRPLOBJ, the replaced user index is moved to QRPLOBJ, which is
cleared at system IPL. For details about authorities, ownership, and renaming, see the discussion of
the REPLACE parameter in the Control Language (CL) information.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Optional Parameter Group 2

Domain

INPUT; CHAR(10)

The domain into which the user index should be created. If this parameter is not specified, the value
of *DEFAULT will be assumed by the API. Valid values for this parameter are:

*DEFAULT Allows the system to decide into which domain the object should be created.

*SYSTEM Creates the user index object into the system domain. The API can always create
a user index into the system domain, regardless of the security level running.
However, if you are running at security level 40 or greater, you must use APIs to
access system-domain user index objects.

*USER Attempts to create the user index object into the user domain. This is not always
possible. If the library you are creating the user index into does not appear in the
QALWUSRDMN system value, the API cannot create the user index into the user
domain. An error message will be returned.

The API uses the following criteria to determine into which domain to create the user index. The
destination library is the library you specified in the qualified user index name parameter. The
optional domain parameter is the information specified in the domain parameter.

QALWUSRDMN System
Value

Destination
Library

Optional Domain
Parameter

Domain of
Created
Object

*ALL Any *DEFAULT User domain

*ALL Any *SYSTEM
System
domain

*ALL Any *USER User domain

QTEMP QTEMP *DEFAULT User domain

QTEMP QTEMP *SYSTEM
System
domain

QTEMP QTEMP *USER User domain

Does not contain library
name Library name *DEFAULT

System
domain

Does not contain library
name Library name *SYSTEM

System
domain

Does not contain library
name Library name *USER

None; error
is returned

Note: The QALWUSRDMN system value lists the libraries into which the user
domain objects can be created. Valid libraries are the special value *ALL or a list of
one or more library names.

If your system is at security level 40 or greater, you must use APIs to access system-domain user
indexes using APIs. You cannot use MI instructions to directly access system-domain user indexes.

You can use the Retrieve Object Description (QUSROBJD) API or the List Object (QUSLOBJ)
API to determine into which domain the user index object was created.

Optional Parameter Group 3

Usage tracking

INPUT; CHAR(1)

The usage tracking state. Usage tracking provides machine checkpoints to improve availability of
user indexes. If a user index is found to be a state of partial change, it will be marked as damaged.
The valid values are:

0 Do not track usage state. 0 is the default value.

1 Track usage state.

Optional Parameter Group 4

Index size option

INPUT; CHAR(1)

The maximum size of the user index. The valid values are:

0 The maximum size of the user index is 4 gigabytes.

1 The maximum size of the user index is 1 terabyte.

Dependencies between Parameters

Some of the parameters are interdependent and are shown in the following table:

Entry Length Attribute Entry Length (n) Key Insertion Key Length (x)

Fixed 1 <= n <= 2000 No 0

Fixed 1 <= n <= 2000 Yes 1 <= x <= n

Note: For the following entry lengths:

0 signifies a maximum entry length of 120.●

-1 signifies a maximum entry length of 2000.●

Variable 0, -1 No 0

Variable 0 Yes 1 <= x <= 120

Variable -1 Yes 1 <= x <= 2000

Error Messages

Message ID Error Message Text

CPF2143 E Cannot allocate object &1 in &2 type *&3.

CPF2144 E Not authorized to &1 in &2 type *&3.

CPF2283 E Authorization list &1 does not exist.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C0A E Value &1 for entry length parameter is not valid.

CPF3C0B E Value &1 for immediate update parameter is not valid.

CPF3C0C E Value &1 for key length parameter is not valid.

CPF3C0D E Value &1 for key insertion parameter is not valid.

CPF3C0E E Value &1 for the optimization parameter is not valid.

CPF3C03 E User index &2 not created.

CPD3C01 D Object name &1 is not valid.

CPD3C02 D Value &1 for entry length attribute parameter is not valid.

CPD3C03 D Extended attribute &1 is not valid.

CPD3C05 D Value &1 for authority parameter is not valid.

CPD3C0A D Value &1 for entry length parameter is not valid.

CPD3C0B D Value &1 for immediate update parameter is not valid.

CPD3C0C D Value &1 for key length parameter is not valid.

CPD3C0D D Value &1 for key insertion parameter is not valid.

CPD3C0E D Value &1 for the optimization parameter is not valid.

CPF3C2A E Value &1 for entry length attribute parameter is not valid.

CPF3C2B E Extended attribute &1 is not valid.

CPF3C2D E Value &1 for authority parameter is not valid.

CPF3C29 E Object name &1 is not valid.

CPF3C34 E Value &1 for replace option is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C45 E Value &1 not valid for domain parameter.

CPF3C49 E Request for user domain object cannot be granted.

CPF3C90 E Literal value cannot be changed.

CPF3C93 E Value &1 not valid for usage tracking parameter.

CPF3C95 E Value &1 not valid for index size option parameter.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9870 E Object &2 type *&5 already exists in library &3.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V1R3

Top | Object APIs | APIs by category

Delete User Index (QUSDLTUI) API

 Required Parameter Group:

1 Qualified user index name Input Char(20)
2 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Delete User Index (QUSDLTUI) API deletes user indexes created with the Create User Index
(QUSCRTUI) API.

The QUSDLTUI API performs the same function as the Delete User Index (DLTUSRIDX) command.

Authorities and Locks

Library Authority

*EXECUTE

User Index Authority

*OBJEXIST

User Index Lock

*EXCL

Required Parameter Group

Qualified user index name

INPUT; CHAR(20)

The name of the user index and the name of the library in which it resides. The first 10 characters
contain the user index name, and the second 10 characters contain the library name. The user index
name can be either a specific name or a generic name, a string of one or more characters followed
by an asterisk (*). If you specify a generic name, QUSDLTUI deletes all user indexes that have
names beginning with the string for which the user has authority.

You can use these special values for the library name:

*ALL All libraries

*ALLUSR All user-defined libraries, plus libraries containing user data and having names
starting with Q. For information on the libraries included, see *ALLUSR.

*CURLIB The job's current library

*LIBL The library list

*USRLIBL The user portion of the job's library list

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF2105 E Object &1 in &2 type *&3 not found.

CPF2110 E Library &1 not found.

CPF2113 E Cannot allocate library &1.

CPF2114 E Cannot allocate object &1 in &2 type *&3.

CPF2117 E &4 objects type *&3 deleted. &5 objects not deleted.

CPF2125 E No objects deleted.

CPF2176 E Library &1 damaged.

CPF2182 E Not authorized to library &1.

CPF2189 E Not authorized to object &1 in &2 type *&3.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R1

Top | Object APIs | APIs by category

Remove User Index Entries (QUSRMVUI) API

 Required Parameter Group:

1 Number of entries removed Output Binary(4)
2 Entries removed Output Char(*)
3 Length of entries removed Input Binary(4)
4 Entry lengths and entry offsets Output Array(*) of

Char(8)
5 Length of entry lengths and offsets Input Binary(4)
6 Returned library name Output Char(10)
7 Qualified user index name Input Char(20)
8 Format Input Char(8)
9 Maximum number of entries Input Binary(4)
10 Remove type Input Binary(4)
11 Remove criteria Input Char(*)
12 Length of remove criteria Input Binary(4)
13 Remove criteria offset Input Binary(4)
14 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Remove User Index Entries (QUSRMVUI) API removes one or more user index entries that match the
values specified on the remove criteria parameter. It returns the number of entries that were removed and,
optionally, returns the actual index entries removed.

Authorities and Locks

User Index Library Authority

*EXECUTE

User Index Authority

*CHANGE

User Index Lock

*SHRUPD

Required Parameter Group

Number of entries removed

OUTPUT; BINARY(4)

The number of index entries, satisfying the values specified on the remove criteria parameter, that

were successfully removed from the user index. If this field is 0, no entries satisfied the remove
criteria. This value can never be greater than the maximum number of entries parameter.

Entries removed

OUTPUT; CHAR(*)

The actual entries removed. All entries that satisfied the remove criteria parameter and were
removed (up to the maximum number of entries parameter) are returned if sufficient space is
provided. The API returns only the data that the area can hold.

The size of the entries removed parameter should be greater than or equal to:

 8 + (the maximum number of entries parameter
 * the maximum entry length)

The maximum entry length was defined when the index was created. It can be obtained by using
the Retrieve User Index Attributes (QUSRUIAT) API.

To determine if all the entries are valid in the entries removed parameter, compare the bytes
returned and the bytes available fields in the entries removed parameter.

The entries are always returned starting with the entry that is closest to or equal to the remove
argument. Then entries are kept in the order that they proceed away from the remove criteria
parameter. Each entry removed from the user index is based on the binary value of the remove
criteria. No other collating sequence is supported. User indexes can contain only scalar data, which
makes the index entries contiguous. Use the entry lengths and entry offsets parameter to parse the
entries that were removed and returned in this parameter.

If you do not want the entries that were removed to be returned in this parameter, specify 0 for the
length of entries removed parameter.

Every entry removed causes the number of entries removed parameter to be incremented by 1. You
can also use the Retrieve User Index Attributes (QUSRUIAT) API to retrieve this information.

Refer to IDXE0100 Format for the layout of this parameter.

Length of entries removed

INPUT; BINARY(4)

The length of the entries removed parameter. If this length is larger than the actual size of the
entries removed parameter, the results may not be predictable. The minimum length is 0 or >=
(greater than or equal to) 8 bytes. If 0 is used, the entries removed from the index are not returned
and the bytes returned and the bytes available in the entries removed parameter are not set.

Entry lengths and entry offsets

OUTPUT; ARRAY of CHAR(8)

A data structure that contains entry lengths and entry offsets for all entries that were found that met
the remove criteria parameter. An entry length and entry offset exist for every entry returned in the
entries removed parameter. These entry lengths and entry offsets are used to parse through the
entries removed parameter. If the length of entries removed parameter is 0, this information will not
be returned.

The size of the entry lengths and entry offsets parameter should be at least:

 8 + (the maximum number of entries parameter * 8)

You must provide enough space in both the entries removed and the entry lengths and offset
parameter for this API to return complete information to you.

You will not receive complete information in the following two situations.

You provide enough space in the entries removed parameter for the API to return all index
entries removed, but there is not enough space in the entry lengths and entry offset
parameter to return the lengths and offsets for all entries. You will be unable to parse
through all of the entries in the entries removed parameter. Check the bytes returned and
bytes available fields in the entry lengths and entry offsets parameter to ensure the
information is complete.

❍

You provide enough space in the entry lengths and entry offsets parameter to return all
lengths and offsets, but there is not enough space in the entries removed parameter to return
all index entries removed. Some of the entry lengths and entry offsets will not be valid;
they will refer to index entries that could not be returned to you. Check the bytes returned
and bytes available fields in the entries removed parameter to ensure that the information is
complete.

❍

See Format for Entry Lengths and Entry Offsets for details on the data structure.

Length of entry lengths and entry offsets

INPUT; BINARY(4)

The length of the entry lengths and entry offsets. If the length is longer than the entry lengths and
entry offsets parameter, the results may not be predictable. The minimum length is 8. If the length
of entries removed parameter is 0, which means you do not want the entries removed to be
returned, this parameter is ignored.

Returned library name

OUTPUT; CHAR(10)

The name of the library that contains the user index from which the entries were removed. If the
entries are successfully removed from the user index, the name of the library that contained the user
index entries is returned. This parameter is not set if an error occurs.

Qualified user index name

INPUT; CHAR(20)

The user index from which you want to remove entries, and the library in which it is located. The
first 10 characters contain the user index name, and the second 10 characters contain the library
name.

You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Format

INPUT; CHAR(8)

The format of the user index entries that were removed.

The format name supported is:

IDXE0100 Basic Information

Refer to IDXE0100 Format for details on the format.

Maximum number of entries

INPUT; BINARY(4)

The maximum number of user index entries to be removed that satisfy the remove criteria. Valid
values are 1 through 4095.

Remove type

INPUT; BINARY(4)

The type of remove operation that is to be performed.

Valid values are:

1 Equal

Remove entries that are equal to the remove criteria.

2 Greater than

Remove entries that are greater than the remove criteria.

3 Less than

Remove entries that are less than the remove criteria.

4 Greater than or equal

Remove entries that are greater than or equal to the remove criteria.

5 Less than or equal

Remove entries that are less than or equal to the remove criteria.

6 First

Remove the first index entry or entries.

7 Last

Remove the last index entry or entries.

8 Between

Remove all entries between the two arguments specified in the remove criteria.

Remove criteria

INPUT; CHAR(*)

The criteria used to find matches in the user index.

When the remove type is 8 (between), this parameter contains two criteria elements of the same
length. The first element is considered the starting element, and the second element is the ending
element. This parameter is ignored when the remove type is 6 (first) or 7 (last).

Length of remove criteria

INPUT; BINARY(4)

The length of the remove criteria being used. This parameter is ignored when the remove type is 6
(first) or 7 (last). If the remove type is 8 (between), this parameter specifies the length of the first
element. The second element must have the same length as the first element. Valid values are
1-2000, depending on how the user index was created.

For a fixed and keyed user index, the length of the remove criteria can be greater than the length of
the key.

Remove criteria offset

INPUT; BINARY(4)

The offset of the second element from the beginning of the remove criteria parameter. This
parameter is ignored unless the remove type is 8 (between).

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format for Entry Lengths and Entry Offsets

The following information is returned in the entry lengths and entry offsets parameter. This information is
needed to parse through the entries removed parameter. For detailed descriptions of the fields in the table,
see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

Note: The following fields will be repeated. The number of times they are repeated
depends on the length of the entry lengths and entry offsets parameter and the
number of entries actually removed.

 BINARY(4) Entry length

 BINARY(4) Entry offset

IDXE0100 Format

The following information is returned for the IDXE0100 format. For detailed descriptions of the fields in
the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(*) Entry 1-n

Field Descriptions

Bytes available. The length of all data available to return. All available data is returned if enough space is
provided.

Bytes returned. The length of the data actually returned.

Entry length. The length of the entry removed from the user index. Valid values are 1-2000, depending on
how the user index was created.

Entry offset. The number of bytes from the beginning of the immediately preceding entry to the first byte
of the entry returned. For the first entry, the offset is the number of bytes from the beginning of the
parameter to the first byte of the first entry.

Entry 1-n. All entries that satisfy the remove criteria (up through the maximum number of entries) are
returned. User indexes contain only scalar data, which makes the index entries contiguous. Use the entry
length and entry offset values to parse this parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C7D E Remove or search information is not valid.

CPF3C70 E Length of entries removed parameter is not valid.

CPF3C76 E Length of lengths and offsets of entries &1 is not valid.

CPF3C77 E Remove type &1 is not valid.

CPF3C78 E Criteria length &1 is not valid.

CPF3C79 E Maximum number of entries &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R3

Top | Object API categories | API by category

Retrieve User Index Attributes (QUSRUIAT) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Qualified user index name Input Char(20)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve User Index Attributes (QUSRUIAT) API retrieves information about the current attributes
and the current operational statistics of the user index.

Authorities and Locks

User Index Library Authority

*EXECUTE

User Index Authority

*USE

User Index Lock

*SHRUPD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the information requested. You can specify the size of this area to be
smaller than the format requested if you specify the length of receiver variable parameter correctly.
As a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. If the length is larger than the size of the receiver variable, the
results may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

The format of the index information returned.

The format name supported is:

IDXA0100 Basic information

Refer to IDXA0100 Format for details on the format.

Qualified user index name

INPUT; CHAR(20)

The user index for which you want to retrieve information, and the library in which it is located.
The first 10 characters contain the user index name, and the second 10 characters contain the
library name.

You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

IDXA0100 Format

The following information is returned for the IDXA0100 format. For detailed descriptions of the fields in
the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) User index name

18 12 CHAR(10) User index library name

28 1C CHAR(1) Entry length attribute

29 1D CHAR(1) Immediate update

30 1E CHAR(1) Key insertion

31 1F CHAR(1) Optimized processing mode

32 20 CHAR(4) Reserved

36 24 BINARY(4) Entry length

40 28 BINARY(4) Maximum entry length

44 2C BINARY(4) Key length

48 30 BINARY(4) Number of entries added

52 34 BINARY(4) Number of entries removed

56 38 BINARY(4) Number of retrieve operations

Field Descriptions

Bytes available. The length of all data available to return. All available data is returned if enough space is
provided.

Bytes returned. The length of the data actually returned.

Entry length. For user indexes with fixed-length entries, this is the length of each index entry. For user
indexes with variable-length entries, this is equal to the longest entry that has ever been inserted into the
index. Valid values are from 1 through 2000.

Entry length attribute. The types of entries in the user index.

Possible values are:

F Fixed-length entries

V Variable-length entries

Immediate update. Whether or not the updates to the index are written synchronously to auxiliary storage
on each update to the index.

The possible values are:

0 No immediate update

1 Immediate update

Key insertion. Whether or not the inserts to the index are by key.

0 No insertion by key

1 Insertion by key

Key length. The length of the key where the first byte of an entry is the beginning of the key for the index
entries. This field will be 0 for a nonkeyed user index.

Maximum entry length. The maximum entry length any user index entry can have.

Number of entries added. The number of entries added to the user index. The number of entries currently
in the index can be obtained by subtracting the number of entries removed from the number of entries
added.

Number of entries removed. The number of entries removed from the user index.

Number of retrieve operations. The number of times either the FNDINXEN (find independent index
entry) MI instruction or Retrieve User Index Entry (QUSRTVUI) API has been used on this user index. The
QUSRUIAT API or MATINXAT (materialize independent index attributes) MI instruction sets the number
of retrieve operations to 0 after the retrieve or materialize operation is completed.

Optimized processing mode. Whether the user index is maintained in a manner that optimizes
performance for:

0 Random references

1 Sequential references

Reserved. An ignored field.

User index library name. The name of the library containing the user index. This information is helpful
when *CURLIB or *LIBL is specified in the qualified user index name parameter.

User index name. The name of the user index.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R3

Top | Object API categories | API by category

Retrieve User Index Entries (QUSRTVUI) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Entry lengths and entry offsets Output Array(*) of

Char(8)
4 Length of entry lengths and offsets Input Binary(4)
5 Number of entries returned Output Binary(4)
6 Returned library name Output Char(10)
7 Qualified user index name Input Char(20)
8 Format Input Char(8)
9 Maximum number of entries Input Binary(4)
10 Search type Input Binary(4)
11 Search criteria Input Char(*)
12 Length of search criteria Input Binary(4)
13 Search criteria offset Input Binary(4)
14 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve User Index Entries (QUSRTVUI) API retrieves user index entries that match the criteria
specified on the search criteria parameter.

The entries are always returned starting with the entry that is closest to or equal to the search criteria
parameter and then proceeding away from the search criteria. The number of entries returned parameter will
never exceed the value specified in the maximum number of entries parameter. Each entry retrieved from
the user index is based on the binary value of the search criteria parameter. No other collating sequence is
supported.

Every entry retrieved causes the number of retrieve operations to be incremented by 1.

Authorities and Locks

User Index Library Authority

*EXECUTE

User Index Authority

*USE

User Index Lock

*SHRUPD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the information requested. You can specify the size of this area to be
smaller than the format requested as long as you specify the length parameter correctly. As a result,
the API returns only the data that the area can hold.

Use the entry lengths and entry offsets parameter to parse through this parameter. If the number of
entries returned parameter is 0, then only the bytes available and the bytes provided have been
changed.

To determine if all the entries are valid in the receiver variable, compare the bytes returned and
bytes available fields. If the bytes returned are less than the bytes available, your receiver variable
is not large enough to hold all the entries that match the search criteria parameter. While processing
the entries, you need to make sure that both:

Your current offset in the receiver variable plus the entry offset is less than the length of
the receiver variable

❍

Your current offset in the receiver variable plus the entry offset plus the entry length is less
than the length of the receiver variable.

❍

The size of the receiver variable parameter should be greater than or equal to:

 8 + (the maximum number of entries parameter
 * the maximum entry length)

The maximum entry length was defined when the index was created. It can be obtained by using
the Retrieve User Index Attributes (QUSRUIAT) API.

Refer to the IDXE0100 Format for the layout of this parameter.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. If the length is larger than the size of the receiver variable, the
results may not be predictable. The minimum length is 8 bytes.

Entry lengths and entry offsets

OUTPUT; ARRAY(*) of CHAR(8)

A data structure containing entry lengths and entry offsets for all entries found that met the search
criteria. An entry length and entry offset exist for every entry returned in the receiver variable.
These entry lengths and entry offsets are used to parse through the receiver variable.

The size of the entry lengths and entry offsets parameter should be at least:

 8 + (the maximum number of entries parameter * 8)

You must provide enough space in both the receiver variable and the entry lengths and entry offsets
parameter for this API to return this information to you. You will not receive complete information
in the following two situations.

You provide enough space in the receiver variable parameter for the API to return all index
entries, but there is not enough space in the entry lengths and entry offset parameter to
return the lengths and offsets for all entries. You will be unable to parse through all of the

❍

entries in the receiver variable parameter. Check the bytes returned and bytes available
fields in the entry lengths and entry offsets parameter to ensure that the information is
complete.

You provide enough space in the entry lengths and entry offsets parameter to return all
lengths and offsets, but there is not enough space in the receiver variable parameter to
return all index entries removed. Some of the entry lengths and entry offsets will not be
valid; they will refer to index entries that could not be returned to you. Check the bytes
returned and bytes available fields in the receiver variable parameter to ensure that the
information is complete.

❍

See the Format for Entry Lengths and Entry Offsets for details about the data structure.

Length of entry lengths and entry offsets

INPUT; BINARY(4)

The length of the entry lengths and entry offsets parameter. If the length is longer than the entry
lengths and entry offsets parameter, the results may not be predictable. The minimum length is 8.

If the receiver variable cannot hold all the entries that satisfy the search criteria:

The entries are truncated.❍

Not all the information in the entry lengths and entry offsets parameter is valid.❍

Number of entries returned

OUTPUT; BINARY(4)

The total number of index entries found that satisfy the search criteria. If this field is 0, no entries
satisfied the search criteria. This value can never be greater than the maximum number of entries
parameter.

Returned library name

OUTPUT; CHAR(10)

The name of the library that contains the user index from which the entries were successfully
retrieved. This parameter is not set if an error occurs.

Qualified user index name

INPUT; CHAR(20)

The user index for which you want to retrieve information, and the library in which it is located.
The first 10 characters contain the user index name, and the second 10 characters contain the
library name.

You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Format

INPUT; CHAR(8)

The format of the receiver variable.

The format name supported is:

IDXE0100 Basic Information

Refer to IDXE0100 Format for details about the format.

Maximum number of entries

INPUT; BINARY(4)

The maximum number of index entries to be returned that match the search criteria. Valid values
are 1 through 4095.

Search type

INPUT; BINARY(4)

The type of search that is to be performed.

Valid values are:

1 Equal

Remove entries that are equal to the remove criteria.

2 Greater than

Remove entries that are greater than the remove criteria.

3 Less than

Remove entries that are less than the remove criteria.

4 Greater than or equal

Remove entries that are greater than or equal to the remove criteria.

5 Less than or equal

Remove entries that are less than or equal to the remove criteria.

6 First

Remove the first index entry or entries.

7 Last

Remove the last index entry or entries.

8 Between

Remove all entries between the two arguments specified in the remove criteria.

Search criteria

INPUT; CHAR(*)

The criteria used to find matches in the user index.

If the search type is 8 (between), both search elements must have the same length. When the search
type is 8 (between), this parameter contains two search elements. The first element is considered
the starting element, and the second element is the ending element.

This parameter is ignored when the search type parameter is 6 (first) or 7 (last).

Length of search criteria

INPUT; BINARY(4)

The length of the search criteria that is to be used. This parameter is ignored when the search type
is 6 (first) or 7 (last).

If the search type is 8 (between), this parameter specifies the length of the first element. The second
element must have the same length as the first element. Valid values are 1-2000, depending on how
the user index was created.

For a fixed and keyed user index, the length of the search criteria:

Can be greater than the length of the key❍

Must be less than or equal to the entry length❍

Search criteria offset

INPUT; BINARY(4)

The offset of the second search element from the beginning of the search criteria parameter. This
parameter is ignored unless the search type is 8 (between).

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format for Entry Lengths and Entry Offsets

The following information is returned in the entry lengths and entry offsets parameter. The information is
needed to parse through the receiver variable. For detailed descriptions of the fields in the table, see Field
Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

Note: The following fields will be repeated. The number of times they are repeated
depends on the length of the entry lengths and entry offsets parameter and the
number of entries actually retrieved.

 BINARY(4) Entry length

 BINARY(4) Entry offset

IDXE0100 Format

The following index information is returned for the IDXE0100 format in the receiver variable parameter.
For detailed descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(*) Entry 1-n

Field Descriptions

Bytes available. The length of all data available to return. All available data is returned if enough space is
provided.

Bytes returned. The length of the data actually returned.

Entry length. The length of the entry retrieved from the index. Valid values are 1-2000, depending on how
the user index was created.

Entry offset. The number of bytes from the beginning of the immediately preceding entry to the first byte
of the entry returned. For the first entry, the offset is the number of bytes from the beginning of the receiver
variable to the first byte of the first entry.

Entry 1-n. All entries that satisfy the search criteria (up to the maximum number of entries parameter) are
returned. User indexes are created to contain only scalar data, which results in the index entries being
contiguous. Use the entry length and entry offset values to parse this field.

This field is repeated by the value in the number of entries returned parameter if the receiver variable is
large enough to hold all of the entries found.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C7A E Search type &1 is not valid.

CPF3C7D E Remove or search information is not valid.

CPF3C76 E Length of lengths and offsets of entries &1 is not valid.

CPF3C78 E Criteria length &1 is not valid.

CPF3C79 E Maximum number of entries &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R3

Top | Object API categories | API by category

User Space APIs
The user space APIs allow you to create and delete user spaces, change and retrieve the contents of user
spaces, and change and retrieve information about user spaces.

For additional information, see Using User Space APIs.

The user space APIs are:

Change User Space (QUSCHGUS) changes the contents of a user space.●

Change User Space Attributes (QUSCUSAT) changes the attributes of a user space object.●

Create User Space (QUSCRTUS) creates a user space.●

Delete User Space (QUSDLTUS) deletes user spaces created with the QUSCRTUS API.●

Retrieve Pointer to User Space (QUSPTRUS) retrieves a pointer to the beginning of a user space
for a high-level language (HLL) that supports pointers. HLLs that support pointers can use this
pointer to manipulate the contents of a user space directly.

●

Retrieve User Space (QUSRTVUS) retrieves the contents of a user space. It does not retrieve
descriptive information about the user space, such as its size.

●

Retrieve User Space Attributes (QUSRUSAT) retrieves information about creation attributes and
current operational statistics of the user space, such as its size.

●

Top | Object APIs | APIs by category

Using User Space APIs
User spaces are objects that consist of a collection of bytes used for storing user-defined information. They
are permanent objects that are located in either the system domain or the user domain. They have an object
type of *USRSPC and a maximum size of 16MB. You can save and restore user spaces to other systems. If,
however, the user spaces contain pointers, you cannot restore the pointers even if you want to restore them
to the same system.

You can use the user space APIs to:

Create user spaces to be used by list APIs to generate lists of data.●

Store pointers.●

Store large amounts of data. You can create a user space as large as 16 megabytes. You cannot
create a data area larger than 2000 bytes.

●

Save information in user space objects, and save and restore the object with the information in it
using CL commands.

●

Pass data from job to job or from system to system.●

Note: If the allow user domain (QALWUSRDMN) system value contains only the QTEMP library, you can
only use the user space through APIs unless the user space is in QTEMP. You cannot use the Retrieve
Pointer to User Space API.

Top | Object APIs | APIs by category

Change User Space (QUSCHGUS) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Starting position Input Binary(4)
3 Length of data Input Binary(4)
4 Input data Input Char(*)
5 Force changes to auxiliary storage Input Char(1)

 Optional Parameter:

6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Change User Space (QUSCHGUS) API changes the contents of the user space (*USRSPC) object by
moving a specified amount of data to the object. This API allows you to change the contents of a user space
if you are using either:

A language that does not support pointers●

System-domain user spaces●

Note: To determine the starting position for the QUSCHGUS API, you must add 1 to the offset value. In
contrast to the OS/400 list APIs, which use an offset value based on 0 for the starting position, the
QUSCHGUS API uses a value based on 1. For the QUSCHGUS API, the first character in the user space is
at position 1.

Authorities and Locks

Library Authority

*EXECUTE

User Space Authority

*CHANGE

User Space Lock

*EXCLRD

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The first 10 characters contain the user space name, and the second 10 characters contain the name
of the library where the user space is located. The special values supported for the library name are
*LIBL and *CURLIB.

Starting position

INPUT; BINARY(4)

The first byte of the user space that is to be changed. It must have a value greater than 0.

Length of data

INPUT; BINARY(4)

The length of the new data in the input data parameter. The length must be greater than 0.

Input data

INPUT; CHAR(*)

The new data to be placed into the user space. The field must be at least as long as the length of
data parameter.

Force changes to auxiliary storage

INPUT; CHAR(1)

The method of forcing changes made to the user space to auxiliary storage.

The valid values are as follows:

0 Does not force changes. Normal system management writes the changes to auxiliary storage.

1 Forces changes asynchronously. This interrupts the normal system management and ensures
that the user space is written to auxiliary storage.

2 Forces changes synchronously. This interrupts the normal system management and ensures
that the user space is written immediately to auxiliary storage.

Optional Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C0F E Value &1 for starting position parameter is not valid.

CPF3C04 E User space &1 not changed.

CPD3C0F D Value &1 for starting position parameter is not valid.

CPD3C12 D Length of data is not valid.

CPD3C13 D Value &1 for force option is not valid.

CPD3C14 D Starting position &1 and length &2 cause space overflow.

CPD3C15 D New value &1 is shorter than the length specified.

CPD3C17 D Error occurred with input data parameter.

CPF3C12 E Length of data is not valid.

CPF3C13 E Value &1 for force option is not valid.

CPF3C14 E Starting position &1 and length &2 cause space overflow.

CPF3C15 E New value &1 is shorter than the length specified.

CPF3C17 E Error occurred with input data parameter.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V1R3

Top | Object API categories | API by category

Change User Space Attributes (QUSCUSAT)
API

 Required Parameter Group:

1 Returned library name Output Char(10)
2 Qualified user space name Input Char(20)
3 Attributes to change Input Char(*)
4 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Change User Space Attributes (QUSCUSAT) API changes the attributes of a user space object. This
API can be used to:

Extend or truncate a user space●

Mark or unmark the user space as automatically extendible by the system●

Change the initial value to which future extensions of the user space will be set●

Change the number of pages transferred between main storage and auxiliary storage●

Authorities and Locks

Library Authority

*EXECUTE

User Space Authority

*CHANGE, *OBJMGT

User Space Lock

*EXCL

Required Parameter Group

Returned library name

OUTPUT; CHAR(10)

The name of the library that contains the changed user space object. If the space attributes are
successfully changed, the name of the library in which the user space was found is returned.

Qualified user space name

INPUT; CHAR(20)

The first 10 characters contain the user space name, and the second 10 characters contain the name
of the library where the user space is located. The special values supported for the library name are
*LIBL and *CURLIB.

Attributes to change

INPUT; CHAR(*)

The attributes of the user space object that you want to change.

The information must be in the following format:

Number of variable length records BINARY(4)

The total number of all of the variable length records.

Variable length records The attributes of the user space to change and the data used
for the change. For the specific format of the variable
length record, refer to Format for Variable Length Records.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format for Variable Length Records

Offset

Type FieldDec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Length of data

8 8 CHAR(*) Data

If you specify a length of data that is longer than the key field's defined data length, the data will be
truncated at the right. No error message will be returned.

If you specify a length of data that is shorter than the key field's defined data length, an error message will
be returned.

You may specify a key more than once. If duplicate keys are specified, the last specified value for that key
is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions

Data. The value to which a specific user space attribute is to be changed. All values are validity checked.

Key. The user space attribute to be changed. Only specific attributes can be changed. Refer to Keys for
more information.

Length of data. The length of the new user space attribute value. The length of data field is used to get
addressability to the next attribute record.

Keys

The following table lists the keys that can be used in the attribute record.

Key Type Attribute

1 BINARY(4) Space size

2 CHAR(1) Initial value

3 CHAR(1) Automatic extendibility

4 BINARY(4) Transfer size request

Field Descriptions

Automatic extendibility. Whether or not the user space is automatically extended by the system when the
end of the space is encountered.

0 The user space is not automatically extendible.

1 The user space is automatically extendible.

Initial value. The initial value to which future extensions of the user space will be set. You will achieve the
best performance if you set this byte to hexadecimal zeros (X'00').

Space size. The size in bytes of the user space object. If this value is smaller than the current size of the
space, the user space is truncated. If it is larger, the space is extended.

Transfer size request. The number of pages to be transferred between main storage and auxiliary storage.
This is only a request, as the machine may use a value of its choice in some circumstances. Allowable
values range between 0 and 32 pages. A value of 0 is an indication that the machine should use the default
transfer size for the user space. A larger transfer size may allow for better performance of applications
processing the user space.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C4B E Value not valid for field &1.

CPF3C4C E Value not valid for field &1.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R3

Top | Object API categories | API by category

Create User Space (QUSCRTUS) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Extended attribute Input Char(10)
3 Initial size Input Binary(4)
4 Initial value Input Char(1)
5 Public authority Input Char(10)
6 Text description Input Char(50)

 Optional Parameter Group 1:

7 Replace Input Char(10)
8 Error code I/O Char(*)

 Optional Parameter Group 2:

9 Domain Input Char(10)

Optional Parameter Group 3:

10 Transfer size request Input Binary(4)
11 Optimum space alignment Input Char(1)

 Default Public Authority: *USE

 Threadsafe: Yes

The Create User Space (QUSCRTUS) API creates a user space in either the user domain or the system
domain. A system-domain user space cannot be saved to a release prior to Version 2 Release 3
Modification 0. A user-domain user space can be directly manipulated with machine interface (MI)
instructions or can be accessed using system APIs. On systems with a QSECURITY system value of 40 or
greater, applications can only access system-domain user spaces using APIs. The user space objects you
create are larger than or equal to the size specified. They have a fixed length and can be extended or
truncated using the Change User Space Attributes (QUSCUSAT) API of the Modify Space (MODS) MI
instruction (for user-domain user spaces). (The MODS instruction will not work on system-domain user
spaces if the security level of the system is 40 or greater.)

Note: For performance reasons, the *USRSPC object is created before checking to see if it exists in the
library specified for the qualified user space name. If you have an application using this API repeatedly,
even if you are using *NO for the replace parameter, permanent system addresses will be used. Change
User Space Attributes (QUSCUSAT) API or the Modify Space (MODS) MI instruction (for user-domain
user spaces). (The MODS instruction will not work on system-domain user spaces if the security level of
the system is 40 or greater.)

Authorities and Locks

User Space Authority

*OBJMGT, *OBJEXIST, and *READ. These authorities are required only if the replace parameter
is used and if there is an existing user space to replace.

User Space Library Authority

*READ and *ADD.

User Space Lock

*EXCL. This applies to both the user space being created and an existing user space being
replaced.

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The first 10 characters contain the user space name, and the second 10 characters contain the name
of the library where the user space is located. The only special value supported for the library name
is *CURLIB.

User spaces created in the QTEMP and QRPLOBJ libraries are not forced to permanent storage;
they are deleted when those libraries are cleared at sign-off and system IPL, respectively.

Extended attribute

INPUT; CHAR(10)

The extended attribute of the user space. For example, an object type of *FILE has an extended
attribute of PF (physical file), LF (logical file), DSPF (display file), SAVF (save file), and so on.

The extended attribute must be a valid *NAME. You can enter this parameter in uppercase,
lowercase, or mixed case. The API converts it to uppercase.

Initial size

INPUT; BINARY(4)

The initial size of the user space being created. This value must be from 1 byte to 16, 776, 704
bytes.

Initial value

INPUT; CHAR(1)

The initial value of all bytes in the user space. You will achieve the best performance if you set this
byte to X'00'.

Public authority

INPUT; CHAR(10)

The authority you give users who do not have specific private or group authority to the user space.
Once the user space has been created, its public authority stays the same when it is moved to
another library or restored from backup media.

If the replace parameter is used and a user space exists to be replaced, this parameter is ignored. All
authorities are transferred from the replaced user space to the new one.

The valid values for this parameter are:

*ALL The user can perform all authorized operations on the object.

Authorization list name The user space is secured by the specified authorization list, and its
public authority is set to *AUTL. The specified authorization list must
exist on the system when this API is called. If it does not exist, the
create process fails, and an error is returned to the application.

*CHANGE The user can read the object description and has read, add, update, and
delete authority to the object.

*EXCLUDE The user cannot access the object in any way.

*LIBCRTAUT The public authority for the user space is taken from the CRTAUT
value for the target library when the object is created. If the CRTAUT
value for the library changes later, that change does not affect user
spaces already created. If the CRTAUT value contains an
authorization list name and that authorization list secures an object, do
not delete the list. If you do, the next time you call this API with the
*LIBCRTAUT parameter, it will fail.

*USE The user can read the object and its description but cannot change
them.

Text description

INPUT; CHAR(50)

This text briefly describes the user space.

Optional Parameter Group 1

Replace

INPUT; CHAR(10)

Whether you want to replace an existing user space.

Valid values for this parameter are:

*NO Do not replace an existing user space of the same name and library. *NO is the default
value.

*YES Replace an existing user space of the same name and library.

If the user space already exists, it is replaced by a new user space of the same name and
library, and is subject to the same authorities. The user space being replaced is destroyed
if both:

The allow user domain (QALWUSRDMN) system value is not set to *ALL or
does not contain the library QRPLOBJ.

❍

The user space you are replacing is in the user domain.❍

If the user space is in the system domain, it is moved to QRPLOBJ. If QALWUSRDMN is set to
*ALL or if it contains QRPLOBJ, the replaced user space is moved to QRPLOBJ, which is cleared
at system IPL. For details about authorities, ownership, and renaming, see the discussion of the
REPLACE parameter in the Control Language (CL) information in the iSeries Information Center.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Optional Parameter Group 2

Domain

INPUT; CHAR(10)

The domain into which the user space is created. If this parameter is not specified, the value of
*DEFAULT is assumed by the API.

Valid values for this parameter are:

*DEFAULT Allows the system to decide into which domain the object should be created.

*SYSTEM Creates the user space object into the system domain. The API can always create a
user space into the system domain regardless of the security level in effect.
However, you must use APIs to access system-domain user spaces if you are
running at security level 40 or greater.

*USER Attempts to create the user space object into the user domain. This is not always
possible. If the library you are creating the user space into does not appear in the
QALWUSRDMN system value, the API cannot create the user space into the user
domain. An error will be returned.

The API uses the following values to determine into which domain to create the user space. The destination
library is the library you specified in the qualified user space name parameter. The optional domain
parameter is the information specified in the domain parameter.

QALWUSRDMN System
Value

Destination
Library

Optional Domain
Parameter

Domain of
Created
Object

*ALL Any *DEFAULT User domain

*ALL Any *SYSTEM
System
domain

*ALL Any *USER User domain

QTEMP QTEMP *DEFAULT User domain

QTEMP QTEMP *SYSTEM
System
domain

QTEMP QTEMP *USER User domain

Does not contain library
name Library name *DEFAULT

System
domain

Does not contain library
name Library name *SYSTEM

System
domain

Does not contain library
name Library name *USER

None; error
is returned

Note: The QALWUSRDMN system value lists the libraries into which user domain
objects can be created. The libraries can be the special value *ALL or a list of one
or more library names.

You must use APIs to access data or information in system-domain user spaces on systems with a
QSECURITY level of 40 or greater. You cannot use MI instructions to directly access system-domain user
objects.

The Retrieve Object Description (QUSROBJD) or List Objects (QUSLOBJ) API can be used to determine
into which domain the user-space object was created.

Optional Parameter Group 3

Transfer size request

INPUT; BINARY(4)

The number of pages to be transferred between main storage and auxiliary storage This is only a
request, as the machine may use a value of its choice in some circumstances. Allowable values
range between 0 and 32 pages. A value of 0 is an indication that the machine should use the default
transfer size for the user space. If this parameter is not specified, the default is 0. A larger transfer
size may allow for better performance of applications processing the user space.

Optimum space alignment

INPUT; CHAR(1)

Allows the machine to choose optimum alignment for the user space. Optimum alignment may
allow for better performance of applications that manipulate the user space.

Allowable values are:

0 Do not choose optimum space alignment. 0 is the default value.

1 Choose optimum space alignment.

Note: If not using the optimum space alignment, the user space has a maximum size of 16MB minus 512
bytes (16,776,704 bytes). If optimum alignment is specified, the maximum size of the user space is 16MB
minus one disk page (current page size is 4096 bytes, giving a maximum space size of 16,773,120 bytes).

Error Messages

Message ID Error Message Text

CPF2143 E Cannot allocate object &1 in &2 type *&3.

CPF2144 E Not authorized to &1 in &2 type *&3.

CPF2283 E Authorization list &1 does not exist.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C01 E User space &2 in library &1 not created.

CPD3C01 D Object name &1 is not valid.

CPD3C03 D Extended attribute &1 is not valid.

CPD3C04 D Value &1 for size parameter is not valid.

CPD3C05 D Value &1 for authority parameter is not valid.

CPF3C2B E Extended attribute &1 is not valid.

CPF3C2C E Value &1 for size parameter is not valid.

CPF3C2D E Value &1 for authority parameter is not valid.

CPF3C29 E Object name &1 is not valid.

CPF3C34 E Value &1 for replace option is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C45 E Value &1 not valid for domain parameter.

CPF3C49 E Request for user domain object cannot be granted.

CPF3C90 E Literal value cannot be changed.

CPF3C91 E Value &1 not valid for transfer size request parameter.

CPF3C92 Value &1 not valid for optimum space alignment parameter.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9870 E Object &2 type *&5 already exists in library &3.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V1R3

Top | Object API categories | API by category

Delete User Space (QUSDLTUS) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Delete User Space (QUSDLTUS) API deletes user spaces created with the Create User Space
(QUSCRTUS) API. The QUSDLTUS API performs the same function as the Delete User Space
(DLTUSRSPC) command.

Authorities and Locks

Library Authority

*EXECUTE

User Space Authority

*OBJEXIST

User Space Lock

*EXCL

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The name of the user space and the name of the library in which it resides. The first 10 characters
contain the user space name, and the second 10 characters contain the library name.

The user space name can be either a specific name or a generic name, a string of one or more
characters followed by an asterisk (*). If you specify a generic name, QUSDLTUS deletes all user
spaces that have names beginning with the string for which the user has authority.

You can use these special values for the library name:

*ALL All libraries

*ALLUSR All user-defined libraries, plus libraries containing user data and having names
starting with Q. For information on the libraries included, see *ALLUSR.

*CURLIB The job's current library

*LIBL The library list

*USRLIBL The user portion of the job's library list

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF2105 E Object &1 in &2 type *&3 not found.

CPF2110 E Library &1 not found.

CPF2113 E Cannot allocate library &1.

CPF2114 E Cannot allocate object &1 in &2 type *&3.

CPF2117 E &4 objects type *&3 deleted. &5 objects not deleted.

CPF2125 E No objects deleted.

CPF2176 E Library &1 damaged.

CPF2182 E Not authorized to library &1.

CPF2189 E Not authorized to object &1 in &2 type *&3.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R1

Top | Object APIs | APIs by category

Retrieve Pointer to User Space (QUSPTRUS)
API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Return pointer Output PTR(SPP)

 Optional Parameter:

3 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Pointer to User Space (QUSPTRUS) API retrieves a pointer to the contents of a user-domain
user space. The data in that user space then can be directly manipulated by high-level language programs
that support pointers, such as C or COBOL. The QUSPTRUS API will not return a pointer to a
system-domain user space; you must use system APIs to access system-domain user spaces. If you attempt
to retrieve the pointer to a system-domain user space, an error will be returned.

The QUSPTRUS API even returns a pointer to an object that is subject to an exclusive (*EXCL) lock. If
you create application programs using HLLs that can directly update user spaces using pointers (instead of
using the Change User Space (QUSCHGUS) API), you should use your own synchronization data methods.
You can use one of the following methods to avoid updates at the same time to the same location within a
user space:

CMPSW MI instruction●

CMPSWP MI instruction●

LOCK MI instruction●

LOCKSL MI instruction●

Allocate Object (ALCOBJ) command●

Use of the QUSPTRUS API does not update the object usage information (such as last changed date, last
date used, and so on). You should use the Change User Space or the Retrieve User Space API to update the
object usage information if needed.

Examples of the API are in API examples.

Authorities and Locks

Library Authority

*EXECUTE

User Space Authority

*USE

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The first 10 characters contain the user space name, and the second 10 characters contain the name
of the library where the user space is located. The special values supported for the library name are
*LIBL and *CURLIB.

Return pointer

OUTPUT; PTR(SPP)

The variable containing the pointer to the user space after the QUSPTRUS API has completed
running. This parameter must be on a 16-byte boundary alignment.

Optional Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C05 E One or more errors found while trying to retrieve a pointer.

CPF3C18 E Pointer parameter is not on a 16-byte boundary.

CPD3C18 D Pointer parameter is not on a 16-byte boundary.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C48 E Operation not valid on system domain object.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R3

Top | Object API categories | API by category

Retrieve User Space (QUSRTVUS) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Starting position Input Binary(4)
3 Length of data Input Binary(4)
4 Receiver variable Output Char(*)

 Optional Parameter Group:

5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve User Space (QUSRTVUS) API allows you to retrieve the contents of a user space. The
QUSRTVUS API does not retrieve descriptive information about the user space object, such as its size. To
retrieve information about the attributes of a user space, refer to the Retrieve User Space Attributes
(QUSRUSAT) API.

If you are repeatedly accessing the contents of a user space and are using an HLL that supports pointers, see
the Retrieve Pointer to User Space (QUSPTRUS) API; this API provides a pointer to the user space for
improved performance. When you have obtained a pointer, you use pointer arithmetic to access the contents
of a user space.

Note: To determine the starting position for the QUSRTVUS API, you must add 1 to the offset value. In
contrast to the OS/400 list APIs, which use an offset value based on 0 for the starting position, the
QUSRTVUS API uses a value based on 1. For the QUSRTVUS API, the first character in the user space is
at position 1.

Authorities and Locks

Library Authority

*EXECUTE

User Space Authority

*USE

User Space Lock

*SHRNUP

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The first 10 characters contain the user space name, and the second 10 characters contain the name
of the library where the user space is located. The special values supported for the library name are
*LIBL and *CURLIB.

Starting position

INPUT; BINARY(4)

The first byte of the user space to be retrieved. A value of 1 will identify the first character in the
user space.

Length of data

INPUT; BINARY(4)

The length of the data to retrieve. This length must not be larger than the size of the variable that is
to receive the data. It must also be greater than 0.

Receiver variable

OUTPUT; CHAR(*)

The variable that will receive the contents of the user space being retrieved.

Optional Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C0F E Value &1 for starting position parameter is not valid.

CPF3C06 E Information not retrieved from user space &1.

CPD3C0F D Value &1 for starting position parameter is not valid.

CPD3C12 D Length of data is not valid.

CPD3C14 D Starting position &1 and length &2 cause space overflow.

CPD3C16 D Receiver area too small for length of data &1 specified.

CPD3C20 D Error occurred with receiver variable specified.

CPF3C12 E Length of data is not valid.

CPF3C14 E Starting position &1 and length &2 cause space overflow.

CPF3C16 E Receiver area too small for length of data &1 specified.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

Top | Object API categories | API by category

Retrieve User Space Attributes (QUSRUSAT)
API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Qualified user space name Input Char(20)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve User Space Attributes (QUSRUSAT) API retrieves information about the current attributes
and the current operational statistics of the user space.

You can also retrieve information about user space attributes by using one of the following:

The Materialize Space (MATS) machine interface (MI) instruction●

The Retrieve Object Description (QUSROBJD) API described on page●

The Retrieve Object Description (RTVOBJD) command●

Authorities and Locks

User Space Library Authority

*EXECUTE

User Space Authority

*USE

User Space Lock

*SHRNUP

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the information requested. You can specify the size of this area to be
smaller than the format requested as long as you specify the length parameter correctly. As a result,
the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. If the length is larger than the size of the receiver variable, the
results may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

The format of the space information to be returned.

The format names supported are:

SPCA0100 Basic information

Refer to SPCA0100 Format for details on the format.

Qualified user space name

INPUT; CHAR(20)

The user space for which you want to retrieve information, and the library in which it is located.
The first 10 characters contain the user space name, and the second 10 characters contain the
library name.

You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

SPCA0100 Format

The following information about a user space is returned for the SPCA0100 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Space size

12 C CHAR(1) Automatic
extendibility

13 D CHAR(1) Initial value

14 E CHAR(10) User space
library name

Field Descriptions

Automatic extendibility. Whether or not the space is extended automatically by the system when the end
of the space is encountered.

0 Space is not automatically extendible

1 Space is automatically extendible

Bytes available. The length of all data available to return. All available data is returned if enough space is
provided.

Bytes returned. The length of the data actually returned.

Initial value. The initial value to which future extensions of the user space will be set.

Space size. The size of the user space object in bytes.

User space library name. The library in which the user space is located. This is helpful when *LIBL or
*CURLIB is specified as the library name in the qualified user space name parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R3

Top | Object API categories | API by category

Object-related APIs
You can use object-related APIs to obtain information about OS/400 objects.

The QUSLOBJ and QUSROBJD APIs return much of the same information. The APIs differ, however, in
several respects:

The APIs group the returned information differently among their output formats. For example, the
OBJL0300 format of the QUSLOBJ API does not contain exactly the same data as the OBJD0300
format of the QUSROBJD API.

●

The APIs use different data formats for some specific items, such as dates and times.●

The APIs differ in efficiency, depending on your application. In most cases, the QUSROBJD API
is faster at retrieving information about a single object. The QUSLOBJ API is faster at retrieving
information about several objects.

●

The object-related APIs are:

Change Library List (QLICHGLL) changes the current library, the two product libraries, and the
user part of the job's library list.

●

Change Object Description (QLICOBJD) changes object information for a specific object.●

Convert Type (QLICVTTP) converts an object type to and from hexadecimal format.●

List Objects (QUSLOBJ) generates a list of object names and descriptive information based on the
specified parameters.

●

Materialize Context (QusMaterializeContext) returns either the type and subtype of the object or
system pointers for all or for a selected set of objects that are contained by the context.

●

Move Folder to ASP (QHSMMOVF) moves a root folder and its contents from its existing
auxiliary storage pool (ASP) to the specified target ASP through a save and restore process.

●

Move Library to ASP (QHSMMOVL) moves a library and its contents from its existing auxiliary
storage pool (ASP) to the specified target ASP through a save and restore process.

●

Open List of Objects (QGYOLOBJ) generates a list of object names and descriptive information
based on specified selection parameters.

●

Rename Object (QLIRNMO) renames an existing object to a new object name or new library name
or both and optionally replaces the object.

●

Retrieve Library Description (QLIRLIBD) retrieves attributes for a specific library.●

Retrieve Object Description (QUSROBJD) retrieves object information for a specific object.●

Top | Object APIs | APIs by category

Change Library List (QLICHGLL) API

 Required Parameter Group:

1 Current library name Input Char(11)
2 First product library name Input Char(11)
3 Second product library name Input Char(11)
4 User library list names Input Array(*) of

Char(11)
5 Number of user library names Input Binary(4)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Change Library List (QLICHGLL) API changes the current library, the two product libraries, and the
user part of the current thread's library list.

When the initial thread's library list is changed, each library added to the list may be locked with a
shared-read lock. The value of the QLIBLCKLVL system value determines whether libraries in the library
list are locked. If a library is being removed from the initial thread's library list, and it was locked when it
was added to the library list, the shared-read lock is released. When a secondary thread's library list is
changed, libraries added to the library list are not locked.

Authority to the library is checked whenever a library name is specified on one of the required parameters.

You may want to save the current thread's library list before changing it. The QWCRTVCA API can be
used to retrieve the current thread's library list. The Retrieve Job Information (QUSRJOBI) API can be used
to retrieve the initial thread's library list, when the current thread is not the initial thread. You can then
change the library list back to its original value by using the QLICHGLL API with the libraries saved from
the QUSRJOBI or QWCRTVCA API.

Authorities and Locks

Library Authority

*USE

Library Lock

*SHRRD (initial thread only)

The QLIBLCKLVL system value determines whether libraries in the library list are locked.

Required Parameter Group

Current library name

INPUT;CHAR(11)

The library that replaces the current library in the library list. (The data is left-justified with a blank
at the end.)

The current library can be, but does not have to be, a duplicate of any library in the library list.
QTEMP cannot be specified for the library name.

The following special values can be used:

*CRTDFT No library should be in the current library entry in the library list. If objects are
created into the current library, then library QGPL is used as the current default
library.

*SAME The current library in the library list is not changed.

First product library name

INPUT;CHAR(11)

The library that replaces the first product library entry in the library list. (The data is left-justified
with a blank at the end.)

A product library may be a duplicate of the current library or of a library in the user part of the
library list. QTEMP cannot be specified for the library name.

The following special values can be used:

*NONE The first product library entry in the library list is removed.

*SAME The first product library entry in the library list is not changed.

Second product library name

INPUT;CHAR(11)

The library that replaces the second product library entry in the library list. (The data is
left-justified with a blank at the end.) QTEMP cannot be specified for the library name.

The following special values can be used:

*NONE The second product library entry in the library list is removed.

*SAMET he second product library entry in the library list is not changed.

User library list names

INPUT; ARRAY(*) of CHAR(11)

The libraries that replace the libraries in the user part of the library list. Specify the names of the
libraries in the order in which they are to be searched. (The data is left-justified with a blank at the
end.)

The same library name cannot be specified more than once. A library cannot exist in the system
part and the user part of the library list.

Number of user library names

INPUT;BINARY(4)

The total number of library names that will be changed in the user part of the library list.

This must be a value from -1 through 250. There is a limit of 250 libraries in the user part of the
library list. When either of the following values is specified, the user library list names parameter is
ignored:

-1 The user part of the library list remains the same.

0 All libraries in the user part of the library list are removed.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF2106 E Library list not changed.

CPF2110 E Library &1 not found.

CPF2113 E Cannot allocate library &1.

CPF2133 E First product library on library list destroyed.

CPF2134 E Second product library on library list destroyed.

CPF2137 E Current library on library list destroyed.

CPF2176 E Library &1 damaged.

CPF2182 E Not authorized to library &1.

CPF2184 E Library list not replaced.

CPF219A E Library QTEMP cannot be specified.

CPF219F E Number of libraries for library list not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R1

Top | Object API categories | API by category

Change Object Description (QLICOBJD) API

 Required Parameter Group:

1 Returned library name Output Char(10)
2 Object and library name Input Char(20)
3 Object type Input Char(10)
4 Changed object information Input Char(*)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Change Object Description (QLICOBJD) API lets you change object information for a specific object.

Before the object can be changed with the API, the allow change by program field is checked. If the API
cannot be used to change the object, message CPF219B is issued.

When an object has been successfully updated by the API, the date and time the object was changed and the
changed by program field are updated.

Authorities and Locks

Library Authority

*EXECUTE

Non-*FILE Object Authority

*OBJMGT

*FILE Object Authority

*OBJOPR and *OBJMGT

Object Lock

*EXCLRD

Required Parameter Group

Returned library name

OUTPUT; CHAR(10)

The name of the library that contains the changed object. If *CURLIB, *LIBL, or a name is
specified for the library name in the object and library name parameter, the value returned is the
name of the library where the object was found. If an error occurred while the API was accessing
the object, blanks are returned.

Object and library name

INPUT; CHAR(20)

The object for which you want to change information and the library in which it is located. The first
10 characters contain the object name, and the second 10 characters contain the library name. You
can use these special values for the library name:

*CURLIB The job's current library

*LIBL The job's library list

Object type

INPUT; CHAR(10)

The type of object for which you want to change the information. You can only specify specific
external object types. An asterisk (*) must precede the object type. For a complete list of the
available object types, see the Control Language (CL) information.

Changed object information

INPUT; CHAR(*)

The information for the object that you want to change. The information must be in the following
format:

Number of variable length records BINARY(4)
Total number of all of the variable length records. If the
value of this field is less than 0, an error message is
returned.

Variable length records The fields of the object's description to change and the data
used for the change. For the specific format of the variable
length record, see Format for Variable Length Record.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format for Variable Length Record

The following table defines the format for the variable length records.

Offset

Type FieldDec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Length of data

8 8 CHAR(*) Data

If the length of the data is longer than the key field's data length, the data will be truncated at the right. No
message will be issued.

If the length of the data is smaller than the key field's data length, the data will be padded with blanks at the
right. No message will be issued.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value for
that key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions

Data. The data used to change a specific field of the object description. Validity checking is done on the
values specified for the following keys to verify that they are 0 or 1.

Allow change by program●

Days used count●

Last used date●

Changed date and time stamp●

The data specified for other keys is not validity checked.

Key. Identifies a field of the object's description to change. Only specific fields of the object's description
can be changed. See Keys for the list of valid keys.

Length of data. The length of the data used to change a specific field of the object's description. If the
value of this field is 0 or negative, an error message is returned.

Keys

The following table lists the valid keys for the key field area of the variable length record.

Key Type Field

1 CHAR(30) Source file

2 CHAR(13) Source file last changed date and time

3 CHAR(13) Compiler

4 CHAR(8) Object control level

5 CHAR(13) Licensed program

6 CHAR(7) Program temporary fix (PTF)

7 CHAR(6) Authorized program analysis report (APAR)

8 CHAR(1) Allow change by program

9 CHAR(10) User-defined attribute

10 CHAR(50) Text

11 CHAR(1) Days used count

12 CHAR(4) Product option load ID

13 CHAR(4) Product option ID

14 CHAR(4) Component ID

15 CHAR(1) Last used date

16 CHAR(1) Changed date and time stamp

17 CHAR(10) Member's days used count

Field Descriptions

Allow change by program. Whether to prevent users from changing an object's description with this API.
It must have a value of 0 or 1.

0 Changes are not allowed with the API. Once this field has been changed to 0, the API cannot be used
to make any further changes to the object's description.

1 Changes are allowed with the API. The API can be used to change the object's description.

Authorized program analysis report (APAR). The authorized program analysis report identification that
caused this object to be patched. IBM APARs have an uppercase alphabetic character followed by 5
decimal numbers. If you want to conform with the system, this format should be followed.

Changed date and time stamp. The date and time the object was last changed. This is useful if you only
want to update an object's change date/time stamp and do not want to update any other key fields.

0 The changed date and time stamp is not updated.

1 The changed date and time stamp is updated to the current system date and time.

This key cannot be specified with any other key. If it is, message CPF21A6 is issued.

Note: For database files, the last change date/time is updated for all members in the file and the file itself.

Compiler. The name, version level, release level, and modification level of the compiler. Objects created
with IBM products will have the licensed program name of the compiler in the compiler name field and a
version field in the VxRxMy format where x must be 0-9 and y must be 0-9 or A-Z. If you want to conform
with the system, this format should be followed.

Compiler name CHAR(7)

Version CHAR(6)

Component ID. The product administrator owns this field. It can be used to track information about
objects, such as object size, at a lower level than the product option ID.

Days used count. This field is used to:

Reset the number of days an object has been used on the system.●

Update the date the days used count was last reset to 0.●

It must have a value of 0 or 1.

0 Neither the days used count nor the reset date on the Display Object Description panel is updated.

1 The days used count is set to 0. The reset date on the Display Object Description panel is updated to
the current system date.

Key fields 11 and 15 cannot both be specified. These changes are incompatible because key 11 will change
the days used count to 0 and key 15 will increase the days used count. If both keys 11 and 15 are specified,
error message CPF21A1 is issued.

This field cannot be specified for *DOC object types or when object usage information is not updated for
this object type. Object usage information is not updated for all object types. For more details on usage

information, see the CL Programming book. Use the Qp0lSetAttr() API to update this field for *DOC
object types. If this field is not allowed for an object type, error message CPF2131 is issued.

Note: For database files, the days used count reset date and the days used count are updated for all
members in the file.

Last used date. This field is used to:

Update the last used date to the current system date.●

Increase the days used count.●

It must have a value of 0 or 1.

0 The last used date field is not updated. The field is not increased.

1 The last used date field is updated to the current system date. If this is the first use of the object today
(since midnight), the days used count field is increased.

This field cannot be specified for *DOC object types or when object usage information is not updated for
this object type. Object usage information is not updated for all object types. For more details on usage

information, see the CL Programming book. Use the Qp0lSetAttr() API to update this field for *DOC
object types. If this field is not allowed for an object type, error message CPF2131 is issued.

Note: For database files, the last used date and number of days used count are updated for all members in
the file.

The last used date field cannot be changed for a database file that does not have any members. Error
message CPF21A2 will be issued.

Licensed program. The name, version level, release level, and modification level of the licensed program.
Objects that are a part of an IBM licensed program have a valid licensed program name (7 characters
containing 0-9 and uppercase A-Z). The version field is in the VxRxMy format where x must be 0-9 and y
must be 0-9 or A-Z. If you want to conform with the system, this format should be followed.

Licensed program name CHAR(7)

Version CHAR(6)

Member's days used count. This field is used to:

Reset the number of days a database file member has been used on the system.●

Update the member's date that the days used count was last reset to 0.●

This field must be a valid 10-character file-member name and must be padded with blank characters. No
special values are allowed.

It must be a valid 10-character file-member name and must be padded with blank characters. No special
values are allowed.

Key fields 11 and 17 cannot both be specified. These changes are incompatible because key 11 will change
the days used count for all members in a file and key 17 will change the days used count for a single
member. If both keys 11 and 17 are specified, error message CPF21A1 is issued.

Key fields 15 and 17 cannot both be specified. These changes are incompatible because key 15 will
increase the days used count and key 17 will change the days used count to 0 for a member. If both keys 15
and 17 are specified, error message CPF21A1 is issued.

This field can be specified only for an object type of *FILE. If the object is not a *FILE object, error
message CPF2131 is issued.

Note: This field updates the days used count for a single member only. To reset the days used count for all
members in a database file, specify key field 11.

Object control level. The object control level for the object. IBM programs will have an 8-character
decimal value.

Product option ID. Identifies part of a licensed program (product). Products can have multiple options.
Objects that are a part of an IBM licensed program must be 0000 (*BASE) through 0099. If you want to
conform with the system, this format should be followed.

Product option load ID. The language identifier associated with the object. Objects that are a part of an
IBM licensed program must have one of the allowed languages in the 29xx format. If you want to conform
with the system, this format should be followed.

Program temporary fix. The program temporary fix (PTF) that resulted in the creation of the object. For
IBM objects the first 2 characters are a prefix ID, and the remaining 5 characters are the program change ID
(decimal). The field is blank if the object was not changed because of a PTF. If you want to conform with
the system, this format should be followed.

Source file. The source file used to create the object, the library name in which it is located, and the name
of the source file member.

Source file name CHAR(10)

Library name CHAR(10)

Member name CHAR(10)

Objects created with IBM products have valid object names for the qualified source file name. If you want
to conform with the system, this format should be followed.

Source file last changed date and time. The date and time the member in the source file was last updated.
Objects created with IBM products will be in the CYYMMDDHHMMSS format:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

HH Hour

MM Minute

SS Second

If you want to conform with the system, this format should be followed.

Text. The user-defined text that briefly describes the object and its function.

User-defined attribute. An attribute you define. This should not be confused with the extended attribute of
the object. The extended attribute is set by the system when an object is created.

Error Messages

Message ID Error Message Text

CPF21A1 E Key &1 not allowed with key &2.

CPF21A2 E Last used date for &1 in &2 type *FILE cannot be changed.

CPF21A6 E Cannot specify field &1 with any other fields.

CPF2131 E Key &1 not allowed with object type *&2.

CPF2150 E Object information function failed.

CPF2151 E Operation failed for &2 in &1 type *&3.

CPF219B E Cannot change &1 in &2 type *&3.

CPF219E E Object type *&1 not valid external object type.

CPF2199 E &2 not valid for field &1.

CPF24B4 E Severe error while addressing parameter list.

CPF2451 E Message queue &1 is allocated to another job.

CPF3CF1 E Error code parameter not valid.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C88 E Number of variable length records &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF36F7 E Message queue QSYSOPR is allocated to another job.

CPF7304 E File &1 in &2 not changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9812 E File &1 in library &2 not found.

CPF9814 E Device &1 not found.

CPF9815 E Member &5 file &2 in library &3 not found.

CPF9820 E Not authorized to use library &1.

CPF9821 E Not authorized to program &1 in library &2.

CPF9822 E Not authorized to file &1 in library &2.

CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9831 E Cannot assign device &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R2

Top | Object APIs | APIs by category

Convert Type (QLICVTTP) API

 Required Parameter Group:

1 Conversion Input Char(10)
2 Symbolic object type I/O Char(10)
3 Hexadecimal object type I/O Char(2)
4 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Convert Type (QLICVTTP) API lets you convert an object type from the external symbolic format to
the internal hexadecimal format and vice versa.

You can use the QLICVTTP API to:

Convert a specific symbolic object type to an equivalent hexadecimal object type●

Convert a specific hexadecimal object type to an equivalent symbolic object type●

Required Parameter Group

Conversion

INPUT; CHAR(10)

The type of conversion to perform.

*HEXTOSYM An object type in hexadecimal form is converted to an equivalent symbolic
object type.

*SYMTOHEX A symbolic object type is converted to an equivalent hexadecimal form.

Symbolic object type

I/O; CHAR(10)

The external symbolic name given to an object type. An asterisk (*) precedes the object type. The
value of the conversion parameter specified determines if this is an input or output field. For a
complete list of the available object types, see the Control Language (CL) information in the iSeries
Information Center.

Hexadecimal object type

I/O; CHAR(2)

The MI representation of an external object type. This field is in hexadecimal form. The value of
the conversion specified determines if this is an input or output field.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF2101 E Object type *&1 not valid.

CPF2102 E Object type and subtype code &1 not valid.

CPF219C E Conversion value &1 not valid.

CPF219D E Object type &1 not valid external object type.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R2

Top | Object APIs | APIs by category

List Objects (QUSLOBJ) API

 Required Parameter Group:

1 Qualified user space object Input Char(20)
2 Format name Input Char(8)
3 Object and library name Input Char(20)
4 Object type Input Char(10)

 Optional Parameter Group 1:

5 Error Code I/O Char(*)

 Optional Parameter Group 2:

6 Authority control Input Char(*)
7 Selection control Input Char(*)

 Optional Parameter Group 3:

8 Auxiliary storage pool (ASP) control Input Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The List Objects (QUSLOBJ) API lets you generate a list of object names and descriptive information
based on specified selection parameters. The QUSLOBJ API places the list in the specified user space. The
generated list replaces any existing list in the user space.

You can use the QUSLOBJ API to:

List objects in a library●

List objects of only one type●

Write an application program to move programs from the QRPLOBJ library (or the QRPLxxxxx
library where 'xxxxx' is the number of a primary auxiliary storage pool) back to where they were
originally located

●

Provide backup analysis based on when the object was last saved or last updated●

Provide source member and object analysis from source member information to verify that the
current source was used to create the specified object

●

The QUSLOBJ API returns information in several formats. All formats except OBJL0100 include an
information status field that describes the completeness and validity of the information. Be sure to check
the information status field before using any other information returned.

Authorities and Locks

If the user is authorized to the library, some object information is always returned for the objects meeting
the search criteria identified in the required parameter group. To return any detailed object information in
format OBJL0200 and above, the user must be authorized to the objects. The information status field in
format OBJL0200 is set to 'A' when the user is not authorized to the objects.

Auxiliary Storage Pool (ASP) Device Authority

*EXECUTE when a specific auxiliary storage pool (ASP) device name is specified for the auxiliary
storage pool (ASP) control parameter.

Object Authority

To return detailed object information, any authority except *EXCLUDE is needed when optional
parameter group 2 is not specified.

Object Library Authority

*EXECUTE when optional parameter group 2 is not specified.

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

Required Parameter Group

Qualified user space object

INPUT; CHAR(20)

The name of the *USRSPC object that is to receive the generated list. The first 10 characters
contain the user space object name, and the second 10 characters contain the name of the library
where the user space is located. The special values supported for the library name are *LIBL and
*CURLIB.

Format name

INPUT; CHAR(8)

The format of the information returned on each object that is requested. You must use one of the
following format names:

OBJL0100 Object names (fastest)

OBJL0200 Text description and extended attribute

OBJL0300 Basic object information

OBJL0400 Creation information

OBJL0500 Save and restore information; journal information

OBJL0600 Usage information

OBJL0700 All object information (slowest)

For details about the formats, see Format of the Generated Lists. For performance reasons, you
should choose the format that returns only as much information as you need. The higher the
number of the format name, the more information is returned and the more time it takes to process.

Object and library name

INPUT; CHAR(20)

The object and library names to place in the *USRSPC object. The first 10 characters contain the
object name, which may be a simple name, a generic name, or the special values of *ALL,
*ALLUSR, or *IBM. If *ALLUSR or *IBM is used, the library name must be *LIBL or QSYS and
the object type parameter must be *LIB.

When *ALLUSR is specified with a library name of *LIBL and an object type parameter
of *LIB, a list of all user libraries in the thread's library name space is returned. When
LIBL is specified, the auxiliary storage pool (ASP) device name must be an asterisk () if
the auxiliary storage pool (ASP) control parameter is specified. Refer to *ALLUSR in the
description of the second 10 characters of this parameter for a definition of user libraries.

1.

When *ALLUSR is specified with a library name of QSYS and an object type parameter of
*LIB, a list of all user libraries in the auxiliary storage pools defined by the auxiliary
storage pool (ASP) control parameter is returned. Refer to *ALLUSR in the description of
the second 10 characters of this parameter for a definition of user libraries.

2.

When *IBM is specified with a library name of *LIBL and an object type of *LIB, a list of
libraries in the thread's library name space that are saved or restored on the Save Library
(SAVLIB) or Restore Library (RSTLIB) CL command with LIB(*IBM) is returned. When
LIBL is specified, the auxiliary storage pool (ASP) device name must be an asterisk () if
the auxiliary storage pool (ASP) control parameter is specified.

3.

When *IBM is specified with a library name of QSYS and an object type of *LIB, a list of
libraries in the auxiliary storage pools specified by the auxiliary storage pool (ASP) control
parameter that are saved or restored on the Save Library (SAVLIB) or Restore Library
(RSTLIB) CL command with LIB(*IBM) is returned.

4.

Library name errors are reported with escape messages when a single library is specified. When
searching a set of libraries (library specified as *ALL, *ALLUSR, *LIBL, or *USRLIBL or
auxiliary storage pool (ASP) device name specified as *ALLAVL), library errors are reported with
diagnostic messages and processing continues. Library authority error messages are not sent when
searching a set of libraries. Escape messages are not sent for object name errors. To determine if
errors occurred on the object, use the number of list entries field returned in the generic header and
the information status field in format OBJL0200.

The second 10 characters identify the name of the library or libraries to search for the specified
objects. The following special values are allowed:

*ALL All libraries in the auxiliary storage pools defined by the auxiliary storage pool
(ASP) control parameter are searched.

*ALLUSR All user libraries in the auxiliary storage pools (ASPs) defined by the auxiliary
storage pool (ASP) control parameter are searched. User libraries are all libraries
with names that do not begin with the letter Q except for the following:

#CGULIB
#COBLIB
#DFULIB
#DSULIB

#RPGLIB
#SDALIB
#SEULIB

Although the following libraries with names that begin with the letter Q are
provided by IBM, they typically contain user data that changes frequently.
Therefore, these libraries are also considered user libraries:

QDSNX
QGPL
QGPL38
QMPGDATA
QMQMDATA
QMQMPROC
QPFRDATA
QRCL
QRCLxxxxx
QSYS2

QSYS2xxxxx
QS36F
QUSER38
QUSRADSM
QUSRBRM
QUSRDIRCL
QUSRDIRDB
QUSRIJS
QUSRINFSKR
QUSRNOTES

QUSROND
QUSRPOSGS
QUSRPOSSA
QUSRPYMSVR
QUSRRDARS
QUSRSYS
QUSRVI
QUSRVxRxMx

Notes:

'xxxxx' is the number of a primary auxiliary storage pool (ASP).1.

A different library name, of the form QUSRVxRxMx, can be created by
the user for each release that IBM supports. VxRxMx is the version,
release, and modification level of the library.

2.

*CURLIB The thread's current library is searched. When this value is used, the auxiliary
storage pool (ASP) device name in the auxiliary storage pool (ASP) control
parameter must be an asterisk (*), if specified.

*LIBL All libraries in the thread's library list are searched. When this value is used, the
auxiliary storage pool (ASP) device name in the auxiliary storage pool (ASP)
control parameter must be an asterisk (*), if specified.

*USRLIBL All libraries in the user portion of the thread's library list are searched. When this
value is used, the auxiliary storage pool (ASP) device name in the auxiliary storage
pool (ASP) control parameter must be an asterisk (*), if specified.

Object type

INPUT; CHAR(10)

The types of objects to search for. You may either enter a specific object type, or a special value of
*ALL. For a complete list of the available object types, see the Control Language information.

Optional Parameter Group 1

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Optional Parameter Group 2

Authority control

INPUT; CHAR(*)

This parameter is used to specify the authority check that should be done for objects and libraries.
Detailed object information will only be returned for an object when the user has the specified
authority to the object. If this parameter is omitted, the following occurs:

*EXECUTE authority is checked for on the libraries❍

Object name and object type information are always returned for each object. *ANY
authority (any authority other than *EXCLUDE) is checked for on the objects to return any
detailed information about the objects.

❍

Call level 0 is used❍

This parameter is useful to select objects to which a user is authorized. To accomplish this, specify
a select or omit status value in the selection control parameter. The object name information in
format OBJL0100 is always returned for objects meeting the search criteria identified in the
required parameter group. (This assumes the thread has the required authority to the library.) The
information status field is set to an A when the thread does not have the object authority specified.

The following example shows what you would specify to obtain a subset of all objects that you
have object management authority to.

The authority control parameter would contain:

Length of authority control format: 48

Call level: 1

Displacement to object authorities: 28

Number of object authorities: 1

Displacement to library authorities: 38

Number of library authorities: 1

Object authorities: '*OBJMGT '

Library authorities: '*USE '

The selection control parameter would contain:

Length of selection control format: 21

Select or omit status value: 1

Displacement to statuses: 20

Number of statuses: 1

Statuses: 'A'

Because the program that calls the QUSLOBJ API adopts authority, the authority check should be
done at the call level previous to the current level (thus call level 1). With call level 1, the list
would not include any objects for which you have adopted authority by the current program.

The select or omit status value of 1 indicates that the returned list will omit the objects you do not
have object management authority to. This authority is specified in the object authorities field.

The format of this parameter is described in Authority Control Format.

Selection control

INPUT; CHAR(*)

The criteria used to select or filter objects from the list based on specified information status values.

This parameter is useful to reduce the total number of objects returned in the list. The list of objects
can be generated with only the specific status that you are interested in. For example, this might be
all damaged objects or all objects that the caller of the API is not authorized to. The list of objects
also can be generated with all objects except objects of a specific status.

The following example shows what you would specify to select all damaged objects:

Length of selection control format: 22

Select or omit status value: 0

Displacement to statuses: 20

Number of statuses: 2

Statuses: DP

The format of this parameter is described in Selection Control Format.

Optional Parameter Group 3

Auxiliary storage pool (ASP) control

Input; CHAR(*)

The information used to define the auxiliary storage pool (ASP) to search. See Auxiliary Storage
Pool (ASP) Control Format for details.

Authority Control Format

The following shows the format of the authority control parameter. For detailed descriptions of the fields in
the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of authority control format

4 4 BINARY(4) Call level

8 8 BINARY(4) Displacement to object authorities

12 C BINARY(4) Number of object authorities

16 10 BINARY(4) Displacement to library authorities

20 14 BINARY(4) Number of library authorities

24 18 BINARY(4) Reserved

 ARRAY(*) of
CHAR(10)

Object authorities

 ARRAY(*) of
CHAR(10)

Library authorities

Selection Control Format

The following shows the format of the selection control parameter. For detailed descriptions of the fields in
the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of selection control format

4 4 BINARY(4) Select or omit status value

8 8 BINARY(4) Displacement to statuses

12 C BINARY(4) Number of statuses

16 10 BINARY(4) Reserved

 ARRAY(*) of
CHAR(1)

Statuses

Auxiliary Storage Pool (ASP) Control Format

The following shows the format of the auxiliary storage pool (ASP) control parameter. This parameter is
used to define the auxiliary storage pools (ASPs) to search. For detailed descriptions of the fields in the
table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of auxiliary storage pool (ASP) control
format

4 4 CHAR(10) Auxiliary storage pool (ASP) device name

14 E CHAR(10) Auxiliary storage pool (ASP) search type

Field Descriptions

Auxiliary storage pool (ASP) device name. The name of an auxiliary storage pool (ASP) device in
which storage is allocated for the library containing the object. The ASP device must have a status of
'Available'. This field must be an asterisk (*) if optional parameter group 3 is specified when *CURLIB,
*LIBL, or *USRLIBL is specified as the library name in the object and library name parameter. If optional
parameter group 3 is omitted in cases where it is valid for the ASP device name to have a value other than
an asterisk (*), the thread's library name space will be used. One of the following special values may be
specified:

* The ASPs in the thread's library name space.

*SYSBAS The system ASP (ASP 1) and defined basic user ASPs (ASPs 2-32).

*CURASPGRP The ASPs in the current thread's ASP group.

*ALLAVL All available ASPs. This includes the system ASP (ASP 1), all defined basic user ASPs
(ASPs 2-32), and all available primary and secondary ASPs (ASPs 33-255 with a
status of 'Available').

Auxiliary storage pool (ASP) search type. The type of the search when a specific auxiliary storage pool
(ASP) device name is specified for the ASP device name field. This field must be blanks when a special
value is specified for the auxiliary storage pool (ASP) device name field. One of the following values may
be specified:

*ASP Only the single ASP named in the auxiliary storage pool (ASP) device name field will be
searched.

*ASPGRP All ASPs in the auxiliary storage pool (ASP) group named in the auxiliary storage pool
(ASP) device name field will be searched. The device name must be the name of the
primary auxiliary storage pool (ASP) in the group.

Call level. The number of call levels to go back in the call stack to do the authority check. If optional
parameter group 2 is omitted, a call level of 0 is used.

For example, if the program that calls this API adopts authority, you probably would not want the authority
check to use the adopted authority. Therefore, the authority check should be done at the call level previous
to the current level. This field should then contain a 1. You can check the authority at various call levels by
specifying a number equivalent to the call level. For example, to check the authority at the current call
level, specify a 0. To check the authority at the previous call level, specify a 1.

This field must be greater than or equal to 0 and less than the number of programs in the call stack.

Displacement to library authorities. The displacement, in bytes, from the beginning of the authority
control format to the list of library authorities. The displacement value must be at least 28, which is past the
reserved portion of the format.

Displacement to object authorities. The displacement, in bytes, from the beginning of the authority
control format to the list of object authorities. The displacement value must be at least 28, which is past the
reserved portion of the format.

Displacement to statuses. The displacement, in bytes, from the beginning of the selection control format to
the list of statuses requested. The displacement value must be at least 20, which is past the reserved portion
of the format.

Length of authority control format. The total length of the authority control format. The length can be 0

bytes to indicate that no authority control information is provided. Otherwise, the minimum size is 48 bytes,
which allows for one object and one library authority. An error is returned if the length specified is less than
the minimum and not 0.

Length of auxiliary storage pool (ASP) control format. The total length of the auxiliary storage pool
(ASP) control format. The length can be 0 bytes to indicate that no auxiliary storage pool (ASP) control
information is provided. Otherwise, the length must be 24 bytes. An error is returned if the length specified
is not 24 or 0.

Length of selection control format. The total length of the selection control format. The length can be 0
bytes to indicate that no selection control information is provided. Otherwise, the minimum size is 21 bytes,
which allows for one status value. An error is returned if the length specified is less than the minimum and
not 0.

Library authorities. The authority to check for libraries. The array can contain up to ten 10-character
fields. If optional parameter group 2 is omitted, *EXECUTE authority is checked for on the libraries.

The authority values can be specified in any combination. If *ALL, *CHANGE, or *USE is specified with
any of the other authority values, the authority checked is the cumulative authority value.

The maximum number of authorities that can be specified is 10. This equals all of the specific object and
data authorities that can be listed separately.

The following identifies the type of authority the user has to the library:

*ALL All authority

*CHANGE Change authority

*USE Use authority

*OBJOPR Object operational authority

*OBJMGT Object management authority

*OBJEXIST Object existence authority

*OBJALTER Alter authority

*OBJREF Reference authority

*READ Read authority

*ADD Add authority

*UPD Update authority

*DLT Delete authority

*EXECUTE Execute authority

Number of library authorities. The number of authorities specified in the library authorities array. You
can specify 1 through 10 authorities.

Number of object authorities. The number of authorities specified in the object authorities array. You can
specify 1 through 11 authorities.

Number of statuses. The number of statuses specified in the statuses array. You can specify 1 through 5
statuses.

Object authorities. The authority to check for objects. The array can contain up to eleven 10-character
fields. If optional parameter group 2 is omitted, *ANY authority is checked for on the objects.

The authority values can be specified in any combination with the exception of the special value *ANY.
This must be specified as the only value. If *ALL, *CHANGE, *USE, or *AUTLMGT is specified with
any of the other authority values, the authority checked is the cumulative authority value.

The maximum number of authorities that can be specified is 11, which equals all the specific object and
data authorities and *AUTLMGT authority.

The following identifies the type of authority the user has to the object:

*ALL All authority

*CHANGE Change authority

*USE Use authority

*AUTLMGT Authorization list management authority. (This value is valid only if the object type is
*AUTL. It will be ignored for other object types.)

*OBJOPR Object operational authority

*OBJMGT Object management authority

*OBJEXIST Object existence authority

*OBJALTER Alter authority

*OBJREF Reference authority

*READ Read authority

*ADD Add authority

*UPD Update authority

*DLT Delete authority

*EXECUTE Execute authority

*ANY Any authority other than *EXCLUDE. (If this value is specified, no other values can be
specified.)

Reserved. This field is reserved. It must be set to hexadecimal zeros.

Select or omit status value. An indicator that determines whether objects are selected or omitted from the
list based on the statuses specified.

This field is useful in generating a list of objects with a certain information status, such as damaged or
partially damaged objects. It can also be used to generate a list of all objects except objects with a certain
information status, such as unauthorized objects.

Valid values are:

0 Select on status value

1 Omit on status value

Statuses. The status of objects to select or omit from the list of objects generated. Valid values are all of the
possible values listed under the information status field (format OBJL0200). The special value * can be
used to select all objects with any information status field. If optional parameter group 2 is omitted, all
objects with any information status are selected.

Format of the Generated Lists

The object list consists of:

A user area●

A generic header●

An input parameter section●

A list data section●

For details about the user area and generic header, see User space format for list APIs. For details about the
other items, see the following sections. For a detailed description of each field in the information returned,
see Field Descriptions.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the result
may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library name

20 14 CHAR(8) Format name

28 1C CHAR(10) Object name specified

38 26 CHAR(10) Object library name specified

48 30 CHAR(10) Object type specified

58 3A CHAR(2) Reserved

60 3C BINARY(4) Error code bytes provided

64 40 BINARY(4) Length of authority control format

68 44 BINARY(4) Call level

72 48 BINARY(4) Displacement to object authorities

76 4C BINARY(4) Number of object authorities

80 50 BINARY(4) Displacement to library authorities

84 54 BINARY(4) Number of library authorities

88 58 BINARY(4) Length of selection control format

92 5C BINARY(4) Select or omit status value

96 60 BINARY(4) Displacement to statuses

100 64 BINARY(4) Number of statuses

 104 68 BINARY(4) Length of auxiliary storage pool (ASP) control
format

108 6C CHAR(10) Auxiliary storage pool (ASP) device name

118 76 CHAR(10) Auxiliary storage pool (ASP) search type

 ARRAY(*) of
CHAR(10)

Object authorities

 ARRAY(*) of
CHAR(10)

Library authorities

 ARRAY(*) of
CHAR(1)

Statuses

OBJL0100 List Data Section

The following information is returned in the list data section of the OBJL0100 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Object name used

10 A CHAR(10) Object library name used

20 14 CHAR(10) Object type used

OBJL0200 List Data Section

The following information is returned in the list data section of the OBJL0200 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Everything from the OBJL0100 format

30 1E CHAR(1) Information status

31 1F CHAR(10) Extended object attribute

41 29 CHAR(50) Text description

91 5B CHAR(10) User-defined attribute

101 65 CHAR(7) Reserved

OBJL0300 List Data Section

The following information is returned in the list data section of the OBJL0300 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Everything from the OBJL0200 format

108 6C BINARY(4) Object auxiliary storage pool (ASP) number

112 70 CHAR(10) Object owner

122 7A CHAR(2) Object domain

124 7C CHAR(8) Creation date and time

132 84 CHAR(8) Change date and time

140 8C CHAR(10) Storage

150 96 CHAR(1) Object compression status

151 97 CHAR(1) Allow change by program

152 98 CHAR(1) Changed by program

153 99 CHAR(10) Object auditing value

163 A3 CHAR(1) Digitally signed

 164 A4 CHAR(1) Digitally signed by system-trusted source

165 A5 CHAR(1) Digitally signed more than once

166 A6 CHAR(2) Reserved

168 A8 BINARY(4) Library auxiliary storage pool (ASP) number

OBJL0400 List Data Section

The following information is returned in the list data section of the OBJL0400 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Everything from the OBJL0300 format

172 AC CHAR(10) Source file name

182 B6 CHAR(10) Source file library name

192 C0 CHAR(10) Source file member name

202 CA CHAR(13) Source file updated date and time

215 D7 CHAR(10) Creator's user profile

225 E1 CHAR(8) System where object was created

233 E9 CHAR(9) System level

242 F2 CHAR(16) Compiler

258 102 CHAR(8) Object level

266 10A CHAR(1) User changed

267 10B CHAR(16) Licensed program

283 11B CHAR(10) Program temporary fix (PTF)

293 125 CHAR(10) Authorized program analysis report (APAR)

303 12F CHAR(10) Primary group

313 139 CHAR(11) Reserved

OBJL0500 List Data Section

The following information is returned in the list data section of the OBJL0500 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Everything from the OBJL0400 format

324 144 CHAR(8) Object saved date and time

332 14C CHAR(8) Object restored date and time

340 154 BINARY(4) Save size

344 158 BINARY(4) Save size multiplier

348 15C BINARY(4) Save sequence number

352 160 CHAR(10) Save command

362 16A CHAR(71) Save volume ID

433 1B1 CHAR(10) Save device

443 1BB CHAR(10) Save file name

453 1C5 CHAR(10) Save file library name

463 1CF CHAR(17) Save label

480 1E0 CHAR(8) Save active date and time

488 1E8 CHAR(1) Journal status

489 1E9 CHAR(10) Journal name

499 1F3 CHAR(10) Journal library name

509 1FD CHAR(1) Journal images

510 1FE CHAR(1) Journal entries to be omitted

511 1FF CHAR(8) Journal start date and time

519 207 CHAR(13) Reserved

OBJL0600 List Data Section

The following information is returned in the list data section of the OBJL0600 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Everything from the OBJL0500 format

532 214 CHAR(8) Last-used date and time

540 21C CHAR(8) Reset date and time

548 224 BINARY(4) Days-used count

552 228 CHAR(1) Usage information updated

 553 229 CHAR(10) Object auxiliary storage pool (ASP) device
name

563 233 CHAR(10) Library auxiliary storage pool (ASP) device
name

573 23D CHAR(3) Reserved

OBJL0700 List Data Section

The following information is returned in the list data section of the OBJL0700 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Everything from the OBJL0600 format

576 240 BINARY(4) Object size

580 244 BINARY(4) Object size multiplier

584 248 CHAR(1) Object overflowed ASP indicator

585 249 CHAR(3) Reserved

Field Descriptions

Allow change by program. A 1-character variable that is used to return the allow change by program flag.
A 1 is returned if the object can be changed with the Change Object Description (QLICOBJD) API. A 0 is
returned if the object cannot be changed with the API.

Authorized program analysis report (APAR). The identifier of the authorized program analysis report
(APAR) that caused this object to be replaced. The field is blank if the object did not change because of an
APAR.

Auxiliary storage pool (ASP) device name. The name of the auxiliary storage pool (ASP) device to be
searched for the library, as specified in the call to the API.

Auxiliary storage pool (ASP) search type. The type of the auxiliary storage pool (ASP) search, as
specified in the call to the API.

Call level. The number of call levels to go back in the call stack to do the authority check. If optional
parameter group 2 is omitted, a call level of 0 is used.

For example, if the program that calls this API adopts authority, you would probably not want the authority
check to use the adopted authority. Therefore, the authority check should be done at the call level previous

to the current level. This field should then contain a 1. You can check the authority at various call levels by
specifying a number equivalent to the call level. For example, to check the authority at the current call
level, specify a 0. To check the authority at the previous call level, specify a 1.

This field must be greater than or equal to 0 and less than the number of programs in the call stack.

Changed by program. A 1-character variable that is used to return the changed by program flag. A 1 is
returned if the object has been changed with the QLICOBJD API. A 0 is returned if the object has not been
changed by the API.

Change date and time. The time at which the object was last changed, in system time-stamp format.

Compiler. The licensed program identifier, version number, release level, and modification level of the
compiler. The field has a pppppppVvvRrrMmm format where:

ppppppp The licensed program identifier.

Vvv The character V is followed by a 2-character version number.

Rrr The character R is followed by a 2-character release level.

Mmm The character M is followed by a 2-character modification level.

The field is blank if you do not compile the program.

Creation date and time. The time at which the object was created, in system time-stamp format. See the
Convert Date and Time Format (QWCCVTDT) API for more information about using this time-stamp
format.

Creator's user profile. The name of the user that created the object.

Days-used count. The number of days the object was used. If the object does not have a last-used date, the
count is 0.

Digitally signed. A 1-character variable that indicates whether the object has an OS/400 digital signature.

0 The object does not have an OS/400 digital signature.

1 The object has an OS/400 digital signature.

Digitally signed by system-trusted source. A 1-character variable indicates whether the object is signed
by a source that is trusted by the system.

0 None of the object signatures came from a source that is trusted by the system.

1 The object is signed by a source that is trusted by the system. If the object has multiple signatures, at
least one of the signatures came from a source that is trusted by the system.

Digitally signed more than once. A 1-character variable that indicates whether the object has more than
one OS/400 digital signature.

0 The object has only one OS/400 digital signature or does not have an OS/400 digital signature. Refer
to the digitally signed variable to determine whether the object has an OS/400 digital signature.

1 The object has more than one OS/400 digital signature. Refer to the digitally signed by
system-trusted source variable to determine whether the object has an OS/400 digital signature from
a source trusted by the system.

Displacement to library authorities. The displacement, in bytes, from the beginning of this input
parameter structure to the list of library authorities, as specified in the call to the API.

Displacement to object authorities. The displacement, in bytes, from the beginning of this input
parameter structure to the list of object authorities, as specified in the call to the API.

Displacement to statuses. The displacement, in bytes, from the beginning of this input parameter structure
to the list of statuses requested, as specified in the call to the API.

Error code bytes provided. The length of the area that the calling application provides for the error code,
in bytes.

Extended object attribute. The extended attribute of the object, such as a program or file type. Extended
attributes further describe the object. For example, an object type of *PGM may have a value of RPG (RPG
program) or CLP (CL program), and an object type of *FILE may have a value of PF (physical file), LF
(logical file), DSPF (display file), SAVF (save file), and so on.

Format name. The format of the returned output.

Information status. Whether or not the QUSLOBJ API returns the requested information for this object.
Possible values are:

blank The requested information is returned. No errors occurred.

A No information is returned. The thread that called this API needs either the authority specified in
the object authorities field or *ANY authority (the default) to the object.

D The requested information is returned. However, the object is damaged and should be re-created
as soon as possible.

L No information is returned because the object is locked.

P The requested information is returned. However, the object is partially damaged. In most
instances, to recover from partial object damage, you delete the damaged object and either
restore a saved copy or create the object again. For some damaged objects, special recovery

procedures are possible. Refer to the Backup and Recovery book for more information on
damaged objects.

If two or more conditions occur that include no authorization (A) to the object, the status is set to A. If the
object is damaged (D) and locked (L), or if the object is partially damaged (P) and locked, the status is set
to L.

If the value of this field is A or L, your application should not use the other fields for the object. Only the
object name, library, and type fields contain accurate data.

Journal entries to be omitted. The journal entries to be omitted. The field is 1 if open and close operations
do not generate open and close journal entries. The field is 0 if no entries are omitted. This field is blank if
the object has never been journaled.

Journal images. The type of images that are written to the journal receiver for updates to the object. The
field is 0 if only after images are generated for changes to the object. The field is 1 if both before and after
images are generated for changes to the object. This field is blank if the object has never been journaled.

Journal library name. The name of the library containing the journal. This field is blank if the object has
never been journaled.

Journal name. The name of the current or last journal. This field is blank if the object has never been
journaled.

Journal start date and time. The time at which journaling for the object was last started, in system
time-stamp format. This field contains hexadecimal zeros if the object has never been journaled.

Journal status. The 1-character variable that returns the current journaling status of an object. The value is
1 if the object currently is being journaled; the value is 0 if the object currently is not being journaled.

Last-used date and time. The date and time at which the object was last used, in system time-stamp
format. If the object has no last-used date, the field contains hexadecimal zeros.

Length of authority control format. The total length of the authority control format, as specified in the
call to the API.

Length of auxiliary storage pool (ASP) control format. The total length of the auxiliary storage pool
(ASP) control format, as specified in the call to the API.

Length of selection control format. The total length of the selection control format, as specified in the
call to the API.

Library authorities. The authority to check for libraries. The array can contain up to ten 10-character
fields. If optional parameter group 2 is omitted, *EXECUTE authority is checked for on the libraries.

The authority values can be specified in any combination. If *ALL, *CHANGE, or *USE is specified with
any of the other authority values, the authority checked is the cumulative authority value.

The maximum number of authorities that can be specified is 11. This equals all of the specific object and
data authorities that can be listed separately.

The following identifies the type of authority the user has to the library:

*ALL All authority

*CHANGE Change authority

*USE Use authority

*OBJOPR Object operational authority

*OBJMGT Object management authority

*OBJEXIST Object existence authority

*OBJALTER Alter authority

*OBJREF Reference authority

*READ Read authority

*ADD Add authority

*UPD Update authority

*DLT Delete authority

*EXECUTE Execute authority

Library auxiliary storage pool (ASP) device name. The name of the auxiliary storage pool (ASP)

device where storage is allocated for the library containing the object. The following special value may be
returned:

*SYSBAS System ASP (ASP 1) or basic user ASPs (ASPs 2-32)

Library auxiliary storage pool (ASP) number. The number of the auxiliary storage pool (ASP) where
storage is allocated for the library containing the object. Valid values are:

1 System ASP

2-32 Basic user ASP

33-255 Primary or secondary ASP

Licensed program. The name, release level, and modification level of the licensed program if the retrieved
object is part of a licensed program. The 7-character name starts in character position 1, the version number
starts in position 8, the release level starts in position 11, and the modification level starts in position 14.
The field is blank if the retrieved object is not a part of a licensed program.

Number of library authorities. The number of authorities specified in the library authorities array. You
can specify 1 through 10 authorities.

Number of object authorities. The number of authorities specified in the object authorities array. You can
specify 1 through 11 authorities.

Number of statuses. The number of statuses specified in the statuses array. You can specify 1 through 5
statuses.

Object auditing value. A 10-character variable that is used to return the type of auditing for an object. The
valid values are:

*NONE No auditing occurs for this object when it is read or changed regardless of the user who is
accessing the object.

*USRPRF Audit this object only if the user accessing the object is being audited. The user profile for
the thread is tested to determine if auditing should be done for this object. The user profile
can specify if only change access is audited or if both read and change accesses are audited
for this object.

*CHANGE Audit all change access to this object by all users on the system.

*ALL Audit all access to this object by all users on the system. All access is defined as a read or
change operation.

Object authorities. The authority to check for objects. The array can contain up to eleven 10-character
fields. If optional parameter group 2 is omitted, *ANY authority is checked for on the objects.

The authority values can be specified in any combination with the exception of the special value *ANY.
This must be specified as the only value. If *ALL, *CHANGE, *USE, or *AUTLMGT is specified with
any of the other authority values, the authority checked is the cumulative authority value.

The maximum number of authorities that can be specified is 11, which equals all the specific object and
data authorities and *AUTLMGT authority.

The following identifies the type of authority the user has to the object:

*ALL All authority

*CHANGE Change authority

*USE Use authority

*AUTLMGT Authorization list management authority. (This value is valid only if the object type is
*AUTL. It will be ignored for other object types.)

*OBJOPR Object operational authority

*OBJMGT Object management authority

*OBJEXIST Object existence authority

*OBJALTER Alter authority

*OBJREF Reference authority

*READ Read authority

*ADD Add authority

*UPD Update authority

*DLT Delete authority

*EXECUTE Execute authority

*ANY Any authority other than *EXCLUDE. (If this value is specified, no other values can be
specified.)

Object auxiliary storage pool (ASP) device name The name of the auxiliary storage pool (ASP) device
where storage is allocated for the object. The following special value may be returned:

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

Object auxiliary storage pool (ASP) number. The number of the auxiliary storage pool (ASP) where
storage is allocated for the object. Valid values are:

1 System ASP

2-32 Basic user ASP

33-255 Primary or secondary ASP

Object compression status. Whether the object is compressed or decompressed. The status is returned in a
1-character variable with one of these values:

Y Compressed.

N Permanently decompressed and compressible.

X Permanently decompressed and not compressible.

T Temporarily decompressed.

F Saved with storage freed; compression status cannot be determined.

Temporarily decompressed objects exist in both decompressed and compressed form. Permanently

decompressed objects exist in decompressed form only. The system handles some decompression
automatically, depending on the type of object, the operation performed on it, and its frequency of use. For

an overview of object compression and decompression, see the CL Programming book. For details
about how to explicitly compress and decompress objects, see the entries for these commands in the
Control Language (CL) information: Compress Object (CPROBJ), Decompress Object (DCPOBJ), and
Reclaim Temporary Storage (RCLTMPSTG).

Object domain. The domain that contains the object. The value is *U if the object is in the user domain, or
*S if the object is in the system domain.

Object level. The object control level for the created object.

Object library name specified. The name of the object library, as specified in the call to the API.

Object library name used. The name of the library containing the object.

Object name specified. The name of the object, as specified in the call to the API.

Object name used. The name of the object.

Object overflowed ASP indicator. The 1-character variable that returns the object overflowed auxiliary
storage pool (ASP) indicator. The value is 1 if the object overflowed the ASP in which it resides; the value
is 0 if the object has not overflowed the ASP. For objects in the system ASP (ASP 1) or in a primary or
secondary ASP (ASPs 33-255), a 0 is always returned because it is not possible for an object that resides in
the system ASP or in a primary or secondary ASP to overflow its ASP.

Object owner. The name of the object owner's user profile.

Object restored date and time. The time at which the object was restored, in system time-stamp format. If
the object has never been restored, the field contains hexadecimal zeros.

Object saved date and time. The time at which the object was saved, in system time-stamp format. If the
object has never been saved, the field contains hexadecimal zeros.

Object size. The size of the object in units of the size multiplier. The object size is equal to or smaller than
the object size multiplied by the object size multiplier.

Object size multiplier. The value to multiply the object size by to get the true size. The value is 1 if the
object is smaller than 1 000 000 000 bytes, and 1024 if it is larger.

Object type specified. The type of the object, as specified in the call to the API.

Object type used. The type of the object. For a list of all the available object types, see the Control
Language information.

Primary group. The name of the user who is the primary group for the object. If no primary group exists
for the object, this field contains a value of *NONE.

Program temporary fix (PTF). The number of the program temporary fix (PTF) number that caused this
object to be replaced. This field is blank if the object was not changed because of a PTF.

Reserved. An unused field. It contains hexadecimal zeros.

Reset date and time. The date the days-used count was last reset to zero, in system time-stamp format. If
the days-used count has never been reset, the field contains hexadecimal zeros.

Save active date and time. The date and time the object was last saved when the SAVACT(*LIB,

*SYSDFN, or *YES) save operation was specified, in system time-stamp format. This parameter is found
on the Save Library (SAVLIB), Save Object (SAVOBJ), Save Changed Object (SAVCHGOBJ), and Save
Document Library Object (SAVDLO) CL commands. If the object has never been saved or if
SAVACT(*NO) was specified on the last save operation for the object, the field contains hexadecimal
zeros.

Save command. The command used to save the object. The field is blank if the object was not saved.

Save device. The type of device to which the object was last saved. The field is *SAVF if the last save
operation was to a save file. The field is *DKT if the last save operation was to diskette. The field is *TAP
if the last save operation was to tape. The field is *OPT if the last save operation was to optical. The field is
blank if the object was not saved.

Save file library name. The name of the library that contains the save file if the object was saved to a save
file. The field is blank if the object was not saved to a save file.

Save file name. The name of the save file if the object was saved to a save file. The field is blank if the
object was not saved to a save file.

Save label. The file label used when the object was saved. The variable is blank if the object was not saved
to tape, diskette, or optical. The value of the variable corresponds to the value specified for the LABEL of
OPTFILE parameter on the command used to save the object.

Save sequence number. The tape sequence number assigned when the object was saved on tape. If the
object was not saved to tape, the field contains zeros.

Save size. The size of the object in bytes of storage at the time of the last save operation. The save size is
equal to or smaller than the save size multiplied by the save size multiplier. The field contains zeros if the
object was not saved.

Save size multiplier. The value to multiply the save size by to get the true size. The value is 1 if the save
size is smaller than 1 000 000 000 bytes, and 1024 if it is larger.

Save volume ID. The tape, diskette, or optical volumes that are used for saving the object. The variable
returns a maximum of 10 six-character volumes. The volume IDs begin in character positions 1, 8, 15, 22,
29, 36, 43, 50, 57, and 64. Each volume ID entry is separated by a single character. If the object was saved
in parallel format, the separator character contains a 2 before the first volume in the second media file, a 3
before the third media file, and so on, up to a 0 before the tenth media file. Otherwise, the separator
characters are blank. If more than 10 volumes are used and the object was saved in serial format, 1 is
returned in the 71st character of the variable. If the object was saved in parallel format, a 2 is returned in the
71st character of the variable. Otherwise, the 71st character is blank. The field is blank if the object was last
saved to a save file or if it was never saved.

Select or omit status value. An indicator that determines whether objects are selected or omitted from the
list based on the statuses specified.

This field is useful in generating a list of objects with a certain information status, such as damaged or
partially damaged objects. It can also be used to generate a list of all objects except objects with a certain
information status, such as unauthorized objects.

0 Select on status value

1 Omit on status value

Source file library name. The name of the library that contains the source file used to create the object.
The field is blank if no source file created the object.

Source file member name. The name of the member in the source file. The field is blank if no source file
created the object.

Source file name. The name of the source file used to create the object. The field is blank if no source file
created the object.

Source file updated date and time. The date and time the member in the source file was last updated. This
field is in the CYYMMDDHHMMSS format where:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

HH Hour

MM Minute

SS Second

The field is blank if no source file created the object.

Statuses. The status of objects to select or omit from the list of objects generated. Valid values are all of the
possible values listed under the information status field (format OBJL0200). The special value * can be
used to select all objects with any information status field. If optional parameter group 2 is omitted, all
objects with any information status are selected.

Storage. The storage status of the object data. *FREE indicates the object data is freed and the object is
suspended. *KEEP indicates the object data is not freed and the object is not suspended.

System level. The level of the operating system when the object was created. The field has a VvvRrrMmm
format where:

Vvv The character V is followed by a 2-character version number.

Rrr The character R is followed by a 2-character release level.

Mmm The character M is followed by a 2-character modification level.

System where object was created. The name of the system on which the object was created.

Text description. The text description of the object. The field is blank if no text description is specified.

Usage information updated. Whether the object usage information is updated for this object type. The
indicator is returned as Y (Yes) or N (No).

User changed. Whether the user program was changed. A character 1 is returned if the user changed the
object. If the object was not changed by the user, the field is character 0.

User-defined attribute. Further defines an object type. This field is set by the user while using the
QLICOBJD API.

User space library name. The library containing the user space, as specified in the call to the API.

User space name. The name of the user space.

Error Messages

Message ID Error Message Text

 CPFB8ED E Device description &1 not correct for operation.

CPF21A7 E Authority value &1 not valid.

CPF21A8 E Must specify *ANY as only authority value.

CPF21A9 E Select or omit value &1 not valid.

CPF21AA E Number of statuses must be between 1 and 5.

CPF21AB E Status value &1 not valid.

CPF21AC E Length or displacement value &1 not valid.

 CPF2173 E Value for ASPDEV not valid with special value for library.

 CPF218C E &1 not a primary or secondary ASP.

 CPF218D E &1 not a primary ASP when *ASPGRP specified.

CPF22F7 E Number of authorities must be between 1 and &1.

CPF22F9 E Call level &1 not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3CAA E List is too large for user space &1.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C20 E Error found by program &1.

CPD3C21 D Format name &1 is not valid.

CPD3C31 D Object type &1 is not valid.

CPF3C21 E Format name &1 is not valid.

 CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C31 E Object type &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

 CPF980B E Object &1 in library &2 not available.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

 CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

 CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

 CPF9833 E *CURASPGRP or *ASPGRPPRI specified and thread has no ASP group.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

Top | Object APIs | APIs by category

Materialize Context (QusMaterializeContext)
API

 Required Parameter Group:

1 Receiver I/O PTR(SPP)
2 Context Input PTR(SYP)
3 Materialize options Input Char(*)

 Default Public Authority: *USE

 Service Program: QUSMIAPI

 Threadsafe: No

The term context in this API is synonymous with the OS/400 term library.

The Materialize Context (QusMaterializeContext) API returns either the type and subtype of the object or
system pointers, based on what you specify for the materialize options parameter. The API returns the
information for all or for a selected set of objects that are contained by the context. This information is
returned to a receiver variable. If the context is null, the machine context (the QSYS library) is returned.

This API provides the function of the MATCTX MI instruction on all security levels of OS/400. See the
MATCTX instruction in the iSeries Machine Interface Instructions for the documentation of this API.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

MCHxxxx E See the iSeries Machine Interface Instructions for exact MCH messages that could be
signaled.

API introduced: V3R7

Top | Object APIs | APIs by category

Move Folder to ASP (QHSMMOVF) API

 Required Parameter Group:

1 Folder name Input Char(12)
2 Target auxiliary storage pool

(ASP)
Input Binary(4)

3 Error code I/O Char(*)

 Default Public Authority: *USE

The Move Folder to ASP (QHSMMOVF) API moves a root folder and its contents from its existing
auxiliary storage pool (ASP) to the specified target ASP through a save and restore process. The API,
however, will retain private authorities to the objects that would normally be lost with a save and restore
operation.

Restrictions

The Move Folder to ASP (QHSMMOVF) API has the following restrictions:

The folder must be a root folder and will be moved as such.●

The folder and its contents must not be in use by other jobs.●

Folders that were restored using the Restore Licensed Program (RSTLICPGM) should not be
moved.

●

After the root folder has been moved, the following parameters are changed:

The date last used will be set to blank.❍

The change date and time will be set to the current date and time.❍

The days used count will be set to zero.❍

The days used count reset will be set to blank.❍

The save date/time and restore date/time will be updated.❍

●

The target ASP must have enough space for the folder and its objects in order for the API to
perform the move action.

●

The target ASP must be either the system ASP, a library-type ASP, or an empty ASP.●

The user must be enrolled in the system distribution directory.●

Access codes are the responsibility of the user and will be lost.●

A root folder that contains documents checked out or saved with STG(*FREE) will not be moved.●

A root folder that contains more than 99 subfolders will not be moved.●

Authorities and Locks

See Lock Conditions When Saving and Restoring Objects in the Backup and Recovery book for
detailed information on locks that are applied to objects during save operations.

To prevent access to other jobs, the folder is renamed to QHSMFLR.xxx, where xxx is a numeric increment
to allow multiple concurrent move operations.

The user profile must have *OBJALTER authority to the folder and its objects if it does not have
*ALLOBJ authority.

See Authority Required for Objects Used by Commands in the iSeries Security Reference book for
detailed information on object authorities required when you save objects.

Required Parameter Group

Folder name

INPUT; CHAR(12)

The name of the folder to be moved to the specified auxiliary storage pool (ASP).

Target auxiliary storage pool (ASP)

INPUT; BINARY(4)

The number of the auxiliary storage pool (ASP) to which the folder is to be moved. You can use
one of the following values for the ASP number:

1-16 The number that was assigned to the ASP at creation time. ASP 1 is the system ASP. This
ASP must be different from the ASP where the folder exists.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF2115 E Object &1 in &2 type *&3 damaged.

CPF3C90 E Literal value cannot be changed.

CPF8A00 E All CPF8Axx messages could be signaled. xx is from 01 to FF.

CPF9000 E All CPF90xx messages could be signaled. xx is from 01 to FF.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB78B E Errors encountered while moving or migrating folder &1.

CPFB781 E Not authorized to folder &1.

CPFB783 E Folder &1 cannot be moved or migrated into an object-based ASP &2.

CPFB784 E Target ASP &1 is not valid for the move or migrate operation.

CPFB786 E Insufficient disk capacity in ASP &1 for specified objects.

CPFB79E E Auxiliary storage pool &1 does not exist.

CPFB790 E Move or migrate of folder &1 failed.

CPFB799 E Unexpected condition with &1 API. Reason & 6.

API Introduced: V4R3

Top | Object API categories | API by category

Move Library to ASP (QHSMMOVL) API

 Required Parameter Group:

1 Library name Input Char(10)
2 Target auxiliary storage pool (ASP)

number
Input Binary(4)

3 Check dependencies Input Char(10)
4 Error Code I/O Char(*)

 Optional Parameter Group 1:

5 Target auxiliary storage pool (ASP)
device name

Input Char(10)

6 Source auxiliary storage pool (ASP)
number

Input Binary(4)

7 Source auxiliary storage pool (ASP)
device name

Input Char(10)

 Default Public Authority: *USE

 Threadsafe: No

The Move Library to ASP (QHSMMOVL) API moves a library and its contents from its existing auxiliary
storage pool (ASP) to the specified target ASP through a save and restore process. The API, however, will
preserve private authorities to the objects that would normally be lost with a save and restore operation.

Restrictions

The Move Library to ASP (QHSMMOVL) API has the following restrictions:

When you move a library from the system ASP to a user ASP, libraries and their objects are
checked for eligibility.

Libraries that begin with 'Q' are considered to be system libraries and will not be moved.

See the Backup and Recovery book for detailed information on the list of objects that
cannot be moved.

❍

If the library cannot be renamed, the library is not allowed to be moved. See the
RNMOBJ (Rename Object) Control Language (CL) information in the iSeries Information
Center for the restrictions on renaming a library.

❍

●

Libraries that contain journal objects or journaled files are not allowed to be moved.●

Libraries that contain files with database dependencies outside the library are not allowed to be
moved.

●

Job queue and output queue entries are moved if the queue is not allocated.●

Data queue entries are the responsibility of the user and will be lost.●

A library cannot be moved if it is in the library list of the current thread.●

A library cannot be moved if it is in the library list of any primary thread that is active on the
system when the QLIBLCKLVL system value is set to lock libraries in the library list.

●

The QSYSWRK subsystem must be active.●

Program (*PGM) objects in a library will be placed in library QRPLOBJ (or library QRPLxxxxx
if the library is in a primary ASP with an ASP number corresponding to 'xxxxx' (where 'xxxxx' is
the ASP number right adjusted and padded on the left with zeros) or in a secondary auxiliary
storage pool in the same group as that primary ASP) and another copy of each *PGM object will
be moved with the library to the target ASP.

●

After a library has been moved, the following attributes are changed

The date last used will be set to blank.❍

The change date and time will be set to the current date and time.❍

The days used count will be set to zero.❍

The date use count reset will be set to blank.❍

The restore date and time will be set to the current date and time.❍

●

The target ASP must have enough space for the library and its objects in order for the API to
perform the move operation.

●

The target ASP must be either the system ASP (ASP 1), a library-type or empty basic user ASP
(ASPs 2-32), or a primary or secondary ASP (ASPs 33-255).

●

Authorities and Locks

The user profile must have *USE authority to the auxiliary storage pool (ASP) device when a specific
ASP device name is specified for the source or target auxiliary storage pool (ASP) device name or when a
value greater than 32 is specified for the source or target auxiliary storage pool (ASP) number.

See Lock Conditions When Saving and Restoring Objects in the Backup and Recovery book for
detailed information on locks that are applied to objects during save operations.

To prevent access to other jobs, the library is renamed to QHSMLIBxxx where xxx is a numeric increment
to allow multiple concurrent move operations.

The user profile must have *OBJALTER authority to the library if it does not have *ALLOBJ authority.

See Authority Required for Objects Used by Commands in the iSeries Security Reference book for
detailed information on object authorities required when you save objects.

Required Parameter Group

Library name

INPUT; CHAR(10)

The name of the library to be moved to the specified auxiliary storage pool (ASP).

Target auxiliary storage pool (ASP) number

INPUT; BINARY(4)

The number of the auxiliary storage pool (ASP) to which the library is to be moved. The following
values can be used for the ASP number:

1-255 The number that was assigned to the ASP at creation time. ASP 1 is the system ASP.
ASP numbers 2-32 are basic user ASPs. ASP numbers 33-255 are primary or
secondary ASPs. This ASP must be different from the ASP where the library exists.

-1 The ASP value is specified on the target auxiliary storage pool (ASP) device name
parameter.

Check dependencies

INPUT; CHAR(10)

The API checks for object, database and journal dependencies. You can use one of the following
values:

*YES The API will check for object dependencies, database dependencies outside the
library, and for journal dependencies. An exception is signaled in case any of the
conditions are found.

*NO The API bypasses the validation for object and journal dependencies. This
value could be used if the user knows that dependencies do not exist to save on
processing time. However, the API will end abnormally during the move
operation if dependency conditions are encountered.

*VALIDATE The API will perform the validation for object, database, and journal
dependencies. An information message will be sent to the caller of the API
indicating that the library can be moved to the selected ASP. This option is best
used for planning purposes to determine which libraries can be moved to a
specific ASP.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Optional Parameter Group 1

Target auxiliary storage pool (ASP) device name

INPUT; CHAR(10)

The name of the auxiliary storage pool (ASP) device from which storage is allocated for the library
after the move. The ASP device must have a status of 'Available'. If this parameter is omitted, the
target auxiliary storage pool (ASP) number parameter will be used. This parameter must be
*TGTASP if specified when the target auxiliary storage pool (ASP) number parameter has a value
other than -1. The ASP device must be different from the ASP device where the library exists.

One of the following special values may be specified:

*TGTASP The ASP is determined from the target auxiliary storage pool (ASP) number
parameter.

*CURGRPPRI If the thread has an ASP group, the storage for the library is allocated from the
the primary ASP of the group.

*SYSTEM The system ASP (ASP 1).

Source auxiliary storage pool (ASP) number

INPUT; BINARY(4)

The number of the auxiliary storage pool (ASP) from which the library is to be moved. If this
parameter and the source auxiliary storage pool (ASP) device name parameter are both omitted, the
thread's library name space will be searched for the library.

The following values for the ASP number can be used:

1-255 The number that was assigned to the ASP at creation time. ASP 1 is the system ASP.
ASP numbers 2-32 are basic user ASPs. ASP numbers 33-255 are primary or secondary
ASPs. The primary or secondary ASP must have a status of 'Available'.

-1 The ASP value is specified on the source auxiliary storage pool (ASP) device name
parameter.

Source auxiliary storage pool (ASP) device name

INPUT; CHAR(10)

The name of the auxiliary storage pool (ASP) device from which storage is allocated for the library
to be moved. The ASP device must have a status of 'Available'. This parameter must be *ASP if
specified when the source auxiliary storage pool (ASP) number parameter has a value other than -1.
If this parameter and the source auxiliary storage pool (ASP) number parameter are both omitted,
the thread's library name space will be searched for the library.

One of the following special values may be specified:

*ASP The ASP to be searched is determined from the source auxiliary storage pool
(ASP) number parameter.

* The ASPs in the thread's library name space will be searched for the library.

*CURASPGRP The ASPs in the thread's ASP group will be searched for the library.

*SYSBAS The system ASP (ASP 1) and defined basic user ASPs (ASPs 2-32) will be
searched for the library.

Error Messages

Message ID Error Message Text

CPFB78A E Job queue &1 in library &2 is attached to subsystem &3.

 CPFB78C E Library &1 not moved or migrated.

CPFB78D E Library &1 not moved or migrated.

CPFB78E E Move or migrate of library &1 failed.

 CPFB78F E Move or migrate of library &1 failed

CPFB780 E Not authorized to library &1.

CPFB782 E Library &1 cannot be moved or migrated into an object-based ASP &2.

CPFB784 E Target ASP &1 is not valid for the move or migrate operation.

CPFB785 E Library &1 contains objects not valid for selected ASP.

CPFB786 E Insufficient disk capacity in ASP &1 for specified objects.

CPFB787 E Library &1 has journal dependencies.

CPFB788 E Library &1 has database dependencies.

CPFB789 E Output queue &1 in library &2 is attached to writer &3.

CPFB79E E Auxiliary storage pool &1 does not exist.

CPFB791 E Cannot access object &1 in library &2 type &3.

CPFB792 E An error was encountered while moving or migrating library &1.

CPFB793 E Move or migrate of job queue entries failed.

CPFB794 E Move of output queue entries failed.

CPFB795 E Library &1 cannot be allocated.

CPFB799 E Unexpected condition with &1 API. Reason &6.

 CPFB8ED E Device description &1 not correct for operation.

CPF2115 E Object &1 in &2 type *&3 damaged.

 CPF2166 E Library name &1 not valid.

 CPF218C E &1 not a primary or secondary ASP.

 CPF24B4 E Severe error while addressing parameter list.

 CPF3C36 E Number of parameters, &1, entered for this API was not valid.

 CPF3C3C E Value for parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF9810 E Library &1 not found.

 CPF9814 E Device &1 not found.

CPF9825 E Not authorized to device &1.

CPF9833 E *CURASPGRP or *CURGRPPRI specified and thread has no ASP group.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V4R3

Top | Object APIs | APIs by category

Open List of Objects (QGYOLOBJ) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 List Information Output Char(80)
4 Number of records to return Input Binary(4)
5 Sort information Input Char(*)
6 Object and library name Input Char(20)
7 Object type Input Char(10)
8 Authority control Input Char(*)
9 Selection control Input Char(*)
10 Number of fields to return Input Binary(4)
11 Key of fields to return Input Array(*) of Binary(4)
12 Error Code I/O Char(*)

 Optional Parameter Group 1:

13 Job identification information Input Char(*)
14 Format of job identification information Input Char(8)

 Optional Parameter Group 2:

15 Auxiliary storage pool (ASP) control Input Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Open List of Objects (QGYOLOBJ) API lets you generate a list of object names and descriptive
information based on specified selection parameters. The QGYOLOBJ API places the list into a receiver
variable. You can access additional records by using the Get List Entries (QGYGTLE) API. On successful
completion of this API, a handle is returned in the list information parameter. You may use this handle on
subsequent calls to the following APIs:

Get List Entries (QGYGTLE)

Find Entry Number in List (QGYFNDE)

Close List (QGYCLST)

You can use the QGYOLOBJ API to:

Open a list of objects in a library●

Open a list of objects of only one type●

Open a list of objects in another thread's library list●

Write an application program to move programs from the QRPLOBJ library back to their original
location

●

Provide backup analysis based on when the object was last saved or last updated●

Provide source member and object analysis from source member information to verify that the
current source was used to create the specified object

●

The records returned by QGYOLOBJ include an information status field that describes the completeness
and validity of the information. Be sure to check the information status field before using any other
information returned.

Note: The QTEMP library and the system portion of the library list could be different between the main job
and the server job when the list is being built asynchronously. If this is a problem, then request that the list
be built synchronously.

For more information, see the Process Open List APIs within the OS/400 Miscellaneous APIs.

Authorities and Locks

If the user is authorized to the library, some object information is always returned for the objects meeting
the search criteria identified in the required parameter group. To return any of the data identified in the key
fields, the user must be authorized to the objects. The information status field in the receiver variable is set
to 'A' when the user is not authorized to the objects.

Auxiliary Storage Pool (ASP) Device Authority

*EXECUTE when a specific auxiliary storage pool (ASP) device name is specified for the auxiliary
storage pool (ASP) control parameter.

Object Authority

Authority specified in the Authority control parameter

Object Library Authority

Authority specified in the Authority control parameter

Job Authority

When optional parameter group 1 is specified, the API must be called from within the thread for
which the object list is being retrieved, or the caller of the API must be running under a user profile
that is the same as the job user identity of the job for which the object list is being retrieved.
Otherwise, the caller of the API must be running under a user profile that has job control
(*JOBCTL) special authority.

The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management book on the V5R1 Supplemental Manuals
Web site.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable used to return the number of records requested (given in the number of records to
return parameter) of object information. For details about the structure of the receiver variable, see
Format of Receiver Variable.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable.

List information

OUTPUT; CHAR(80)

Information about the list of objects that was opened. For a description of the layout of this
parameter, see Format of open list information.

Number of records to return

INPUT; BINARY(4)

The number of records in the list to put into the receiver variable after filtering and sorting has been
done. Possible values follow:

-1 All records are built synchronously in the list.

0 All records are built asynchronously in the list.

If a positive number of records is specified at least that many are built synchronously (in order to
return those immediately to the caller of this API) and the remainder are built asynchronously by a
server job.

Sort information

INPUT; CHAR(*)

Information about which fields within the record structure to sort. For the layout of this structure,
see Sort Information Format.

Object and library name

INPUT; CHAR(20)

The object and library names to place in the list. The first 10 characters contain the object name,
which may be a simple name, a generic name, or the special values *ALL, *ALLUSR, or *IBM. If
*ALLUSR or *IBM is used, the library name must be *LIBL or QSYS and the object type
parameter must be *LIB. When QSYS is specified, the list of libraries returned varies with the
device name specified in the auxiliary storage pool (ASP) control parameter.

When *ALLUSR is specified with a library name of *LIBL and an object type parameter
of *LIB, a list of all user libraries in the thread's library name space is returned. When
LIBL is specified, the auxiliary storage pool (ASP) device name must be an asterisk () if
the auxiliary storage pool (ASP) control parameter is specified. Refer to *ALLUSR in the
description of the second 10 characters of this parameter for a definition of user libraries.

1.

When *ALLUSR is specified with a library name of QSYS and an object type parameter of2.

*LIB, a list of all user libraries in the auxiliary storage pools defined by the auxiliary
storage pool (ASP) control parameter is returned. Refer to *ALLUSR in the description of
the second 10 characters of this parameter for a definition of user libraries.

When *IBM is specified with a library name of *LIBL and an object type of *LIB, a list of
libraries in the thread's library name space that are saved or restored on the Save Library
(SAVLIB) or Restore Library (RSTLIB) CL command with LIB(*IBM) is returned. When
LIBL is specified, the auxiliary storage pool (ASP) device name must be an asterisk () if
the auxiliary storage pool (ASP) control parameter is specified.

3.

When *IBM is specified with a library name of QSYS and an object type of *LIB, a list of
libraries in the auxiliary storage pools specified by the auxiliary storage pool (ASP) control
parameter that are saved or restored on the Save Library (SAVLIB) or Restore Library
(RSTLIB) CL command with LIB(*IBM) is returned.

4.

Library name errors are reported with escape messages when a single library is specified. When
searching a set of libraries (library specified as *ALL, *ALLUSR, *LIBL, or *USRLIBL or
auxiliary storage pool (ASP) device name specified as *ALLAVL), library errors are reported with
diagnostic messages and processing continues. Library authority error messages are not sent when
searching a set of libraries. Escape messages are not sent for object name errors. To determine if
errors occurred on the object, check the list information returned and the information status field in
the receiver variable.

The second 10 characters identify the name of the library or libraries to search for the specified
objects. The following special values are allowed:

*ALL All libraries in the auxiliary storage pools defined by the auxiliary storage pool
(ASP) control parameter are searched.

*ALLUSR All user libraries in the auxiliary storage pools (ASPs) defined by the auxiliary
storage pool (ASP) control parameter are searched. User libraries are all libraries
with names that do not begin with the letter Q except for the following:

#CGULIB
#COBLIB
#DFULIB
#DSULIB

#RPGLIB
#SDALIB
#SEULIB

Although the following libraries with names that begin with the letter Q are
provided by IBM, they typically contain user data that changes frequently.
Therefore, these libraries are also considered user libraries:

QDSNX
QGPL
QGPL38
QMPGDATA
QMQMDATA
QMQMPROC
QPFRDATA
QRCL
QRCLxxxxx
QSYS2

QSYS2xxxxx
QS36F
QUSER38
QUSRADSM
QUSRBRM
QUSRDIRCL
QUSRDIRDB
QUSRIJS
QUSRINFSKR
QUSRNOTES

QUSROND
QUSRPOSGS
QUSRPOSSA
QUSRPYMSVR
QUSRRDARS
QUSRSYS
QUSRVI
QUSRVxRxMx

Notes:

'xxxxx' is the number of a primary auxiliary storage pool (ASP).1.

A different library name, of the form QUSRVxRxMx, can be created by2.

the user for each release that IBM supports. VxRxMx is the version,
release, and modification level of the library.

*CURLIB The thread's current library is searched. When this value is used, the auxiliary
storage pool (ASP) device name in the auxiliary storage pool (ASP) control
parameter must be an asterisk (*), if specified.

*LIBL All libraries in the thread's library list are searched. When this value is used, the
auxiliary storage pool (ASP) device name in the auxiliary storage pool (ASP)
control parameter must be an asterisk (*), if specified.

*USRLIBL All libraries in the user portion of the thread's library list are searched. When this
value is used, the auxiliary storage pool (ASP) device name in the auxiliary storage
pool (ASP) control parameter must be an asterisk (*), if specified.

When optional parameter group 1 is specified and the job is not the current job, the library name
must be a special value of *CURLIB, *LIBL, or *USRLIBL.

Object type

INPUT; CHAR(10)

The types of objects to search for. You may either enter a specific object type, or the special value
*ALL. For a complete list of the available object types, see the Control Language (CL)
information.

Authority control

INPUT; CHAR(*)

The authority to check for on objects and libraries. This parameter can be used with the selection
control parameter to select the objects to which a user is authorized. To accomplish this, specify a
select or omit status value in the selection control parameter. The object name information is
always returned for objects meeting the search criteria. (This assumes the job has the required
authority to the library.) The information status field is set to an A when the job does not have the
object authority that is specified.

The following example shows what you would specify to obtain a subset of all objects that you
have object management authority to.

The authority control parameter would contain:

Length of authority control format: 48

Call level: 1

Displacement to object authorities: 28

Number of object authorities: 1

Displacement to library authorities: 38

Number of library authorities: 1

Object authorities: '*OBJMGT '

Library authorities: '*USE '

The selection control parameter would contain:

Length of selection control format: 21

Select or omit status value: 1

Displacement to statuses: 20

Number of statuses: 1

Statuses: 'A'

Because the program that calls the QGYOLOBJ API adopts authority, the authority check should
be done at the call level previous to the current level (thus call level 1). With call level 1, the list
would not include any objects for which you have adopted authority by the current program.

The select or omit status value of 1 indicates that the returned list will omit the objects you do not
have object management authority to. This authority is specified in the object authorities field.

The format of this parameter is described in Authority Control Format.

Selection control

INPUT; CHAR(*)

The criteria used to select or filter objects from the list based on specified information status values.

This parameter is useful to reduce the total number of objects returned in the list. The list of objects
can be generated with only the specific status that you are interested in. For example, this might be
all damaged objects or all objects that the caller of the API is not authorized to. The list of objects
also can be generated with all objects except objects of a specific status.

The following example shows what you would specify to select all damaged objects:

Length of selection control format: 22

Select or omit status value: 0

Displacement to statuses: 20

Number of statuses: 2

Statuses: DP

The format of this parameter is described in Selection Control Format.

Number of keyed fields to return

INPUT; BINARY(4)

The number of keyed fields to return in addition to the fields returned with the specified format.

Key of fields to be returned

INPUT; ARRAY(*) of BINARY(4)

The list of the fields to be returned in addition to the fields returned with the specified format. For a
list of the valid keys, see Valid Keys.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter . If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Optional Parameter Group 1

Job identification information

INPUT; CHAR(*)

The information that is used to identify the thread within a job for which objects can be searched
using the thread's library list. The format of this parameter is described in Job Identification
Information Formats.

When this parameter is specified and the job is not the current job, a library name of *CURLIB,
*LIBL, or *USRLIBL must be specified for the library name on the object and library name
parameter.

A limited amount of information is returned for objects in another job's QTEMP library.
Information is returned for keys 201, 202, 203, 205, 701, and 702 only. Any other keys requested
will have blanks, hexadecimal 0 (date fields), or 0 returned.

Format of job identification information

INPUT; CHAR(8)

The format of the job identification information. See Job Identification Information Formats for
details. The possible format names are:

JIDF0000 See JIDF0000 Format for details on this format. This format is provided to
simplify the coding of this parameter when this parameter must be specified
because optional parameter groups after this one are to be specified and the
functions provided by the other formats of this parameter are not needed. Using
this format gives the same result as if optional parameter group 1 were not
specified. The information retrieved is for the thread in which this program is
running.

JIDF0100 See JIDF0100 Format for details on this format.

JIDF0200 See JIDF0200 Format for details on this format. If the thread handle is available,
format JIDF0200 provides faster access than format JIDF0100 to a thread other
than the current thread.

Optional Parameter Group 2

Auxiliary storage pool (ASP) control

Input; CHAR(*)

The information used to define the auxiliary storage pool (ASP) to search. The format of this
parameter is described in Auxiliary Storage Pool (ASP) Control Format.

Sort Information Format

The following shows the format of the sort information parameter. For detailed descriptions of the fields in
the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of keys to sort on

Offsets vary.
These fields
repeat for each
sort key field.

BINARY(4) Sort key field starting position

BINARY(4) Sort key field length

BINARY(2) Sort key field data type

CHAR(1) Sort order

CHAR(1) Reserved.

Note: If the last three fields (sort key field data type, sort order and the reserved field) are not used, they
must be set to hexadecimal zeros. This causes all the data to be treated as character data, and it is sorted in
ascending order.

Field Descriptions

Number of keys to sort on. The number of fields within the record structure to sort on. If zero is specified,
the list is not sorted.

Reserved. An unused. This field must contain hexadecimal zeros.

Sort key field data type. The data type of the field to sort. Refer to the key data type field in the for
information about the list of data types available.

Sort key field length. The length of the field to sort on.

Sort key field starting position. The starting position of the field within the record of information to sort
on.

Sort order. Whether the list should be sorted in ascending or descending order according to the key.

1 Sort in ascending order.

2 Sort in descending order.

Authority Control Format

The following shows the format of the authority control parameter. For detailed descriptions of the fields in
the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of authority control format

4 4 BINARY(4) Call level

8 8 BINARY(4) Displacement to object authorities

12 C BINARY(4) Number of object authorities

16 10 BINARY(4) Displacement to library authorities

20 14 BINARY(4) Number of library authorities

24 18 BINARY(4) Reserved

 ARRAY(*) of
CHAR(10)

Object authorities

 ARRAY(*) of
CHAR(10)

Library authorities

Field Descriptions

Call level. The number of call levels to go back in the call stack to do the authority check.

For example, if the program that calls this API adopts authority, you probably would not want the authority
check to use the adopted authority. Therefore, the authority check should be done at the call level previous
to the current level. This field should then contain a 1. You can check the authority at various call levels by
specifying a number equivalent to the call level. For example, to check the authority at the current call
level, specify a 0. To check the authority at the previous call level, specify a 1.

This field must be greater than or equal to 0 and less than the number of programs in the call stack.

Displacement to library authorities. The byte offset from the beginning of the authority control format to
the list of library authorities. The offset value must be 0, 28, or a number greater than 28. When 0 is
specified, the number of library authorities should also be 0. A value of 28 is past the reserved portion of
the format.

Displacement to object authorities. The byte offset from the beginning of the authority control format to
the list of object authorities. The offset value must be 0, 28, or a number greater than 28. When 0 is
specified, the number of object authorities should also be 0. A value of 28 is past the reserved portion of the
format.

Length of authority control format. The total length of the authority control format. The minimum size is
28 bytes. When the size is 28, it is assumed that the number of library authorities and the number of object
authorities are both 0. To allow for one object and one library authority, the size should be 48 bytes. An
error is returned if the length specified is less than the minimum.

Library authorities. The authority to check for libraries. The array can contain up to ten 10-character
fields. If the number of library authorities is 0, *EXECUTE authority is checked for on the libraries.

The authority values can be specified in any combination. If *ALL, *CHANGE, or *USE is specified with
any of the other authority values, the authority checked is the cumulative authority value.

The maximum number of authorities that can be specified is 10. This equals all of the specific object and
data authorities that can be listed separately.

The following identifies the type of authority the user has to the library:

*ALL All authority

*CHANGE Change authority

*USE Use authority

*OBJOPR Object operational authority

*OBJMGT Object management authority

*OBJEXIST Object existence authority

*OBJALTER Alter authority

*OBJREF Reference authority

*READ Read authority

*ADD Add authority

*UPD Update authority

*DLT Delete authority

*EXECUTE Execute authority

Number of library authorities. The number of authorities specified in the library authorities array. You
can specify 0 through 10 authorities. When 0 is specified, *EXECUTE authority is checked for on the
objects.

Number of object authorities. The number of authorities specified in the object authorities array. You can
specify 0 through 11 authorities. When 0 is specified, *ANY authority is checked for on the objects.

Object authorities. The authority to check for objects. The array can contain up to eleven 10-character
fields. If the number of object authorities is 0, *ANY authority is checked for on the objects.

The authority values can be specified in any combination with the exception of the special value *ANY.
This must be specified as the only value. If *ALL, *CHANGE, *USE, or *AUTLMGT is specified with
any of the other authority values, the authority checked is the cumulative authority value.

The maximum number of authorities that can be specified is 11, which equals all the specific object and
data authorities and *AUTLMGT authority.

The following identifies the type of authority the user has to the object:

*ALL All authority

*CHANGE Change authority

*USE Use authority

*AUTLMGT Authorization list management authority. (This value is valid only if the object type is
*AUTL. It will be ignored for other object types.)

*OBJOPR Object operational authority

*OBJMGT Object management authority

*OBJEXIST Object existence authority

*OBJALTER Alter authority

*OBJREF Reference authority

*READ Read authority

*ADD Add authority

*UPD Update authority

*DLT Delete authority

*EXECUTE Execute authority

*ANY Any authority other than *EXCLUDE. (If this value is specified, no other values can be
specified.)

Reserved. An unused field. This field must contain hexadecimal zeros.

Selection Control Format

The following shows the format of the selection control parameter. For detailed descriptions of the fields in
the table, see Field Descriptions .

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of selection control format

4 4 BINARY(4) Select or omit status value

8 8 BINARY(4) Displacement to statuses

12 C BINARY(4) Number of statuses

16 10 BINARY(4) Reserved

 ARRAY(*) of
CHAR(1)

Statuses

Field Descriptions

Displacement to statuses. The byte offset from the beginning of the selection control format to the list of
statuses requested. The offset value must be at least 20, which is past the reserved portion of the format.

Length of selection control format. The total length of the selection control format. The minimum size is
21 bytes, which allows for one status value. An error is returned if the length specified is less than the
minimum.

Number of statuses. The number of statuses specified in the statuses array. You can specify 1 through 5
statuses.

Reserved. An unused field. This field must contain hexadecimal zeros.

Select or omit status value. An indicator that determines whether objects are selected or omitted from the
list based on the statuses specified.

This field is useful in generating a list of objects with a certain information status, such as damaged or

partially damaged objects. It can also be used to generate a list of all objects except objects with a certain
information status, such as unauthorized objects.

0 Select on status value

1 Omit on status value

Statuses. The status of objects to select or omit from the list of objects generated. Valid values are all of the
possible values listed under the information status field in the Format of Receiver Variable. The special
value * can be used to select all objects with any information status field.

Job Identification Information Formats

 JIDF0000 Format

The following shows the details of format JIDF0000. For detailed descriptions of the field in the table, see
Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Default job name

Field Descriptions

Default job name. This field must contain an asterisk '* '. The information retrieved is for the thread in
which this program is running.

JIDF0100 Format

The following shows the details of format JIDF0100 of the information needed to identify the thread's
library list used for an object search. For detailed descriptions of the fields in the table, see Field
Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

* The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread identifier. The unique value that is used to identify the thread within the job. If the thread
indicator is not 0, this field must contain hexadecimal zeros.

Thread indicator. The value that is used to specify the thread within the job for which information is to be
retrieved. The following values are supported:

 0 Specifies that information should be retrieved for the thread specified in the thread identifier field.

1 Specifies that information should be retrieved for the thread that this program is currently running
in. The combination of the internal job identifier, job name, job number, and user name fields must
also identify the job containing the current thread.

2 Information should be retrieved for the initial thread of the identified job.

User name. A specific user profile name, or blanks when the job name specified is a special value.

 JIDF0200 Format

The following shows the details of format JIDF0200 for the information needed to identify the thread's
library list used for an object search. For detailed descriptions of the fields in the table, see Field
Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4),
UNSIGNED

Thread handle

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

* The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread handle. A value which is used to address a particular thread within a job. A valid thread handle
must be specified. The thread handle is returned on several other interfaces.

Thread identifier. A value which is used to uniquely identify a thread within a job. A valid thread
identifier must be specified.

User name. A specific user profile name, or blanks when the job name specified is a special value.

Auxiliary Storage Pool (ASP) Control Format

The following shows the format of the auxiliary storage pool (ASP) control parameter. This parameter is
used to define the auxiliary storage pools (ASPs) to search. For detailed descriptions of the fields in the
table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of auxiliary storage pool (ASP) control
format

4 4 CHAR(10) Auxiliary storage pool (ASP) device name

14 E CHAR(10) Auxiliary storage pool (ASP) search type

Field Descriptions

Auxiliary storage pool (ASP) device name. The name of an auxiliary storage pool (ASP) device in which
storage is allocated for the library containing the object. The ASP device must have a status of 'Available'.
This parameter must be an asterisk (*) if optional parameter group 2 is specified when *CURLIB, *LIBL,
or *USRLIBL is specified as the library name in the object and library name parameter. If optional
parameter group 2 is omitted in cases where it is valid for the ASP device name to have a value other than
an asterisk (*), the thread's library name space will be used. One of the following special values may be
specified:

* The ASPs in the thread's library name space.

*SYSBAS The system ASP (ASP 1) and defined basic user ASPs (ASPs 2-32).

*CURASPGRP The ASPs in the current thread's ASP group.

*ALLAVL All available ASPs. This includes the system ASP (ASP 1), all defined basic user ASPs
(ASPs 2-32), and all available primary and secondary ASPs (ASPs 33-255 with a
status of 'Available').

Auxiliary storage pool (ASP) search type. The type of the search when a specific auxiliary storage pool
(ASP) device name is specified for the ASP device name field. This field must be blanks when a special
value is specified for the auxiliary storage pool (ASP) device name field. One of the following values may
be specified:

*ASP Only the single ASP named in the auxiliary storage pool (ASP) device name field will be
searched.

*ASPGRP All ASPs in the auxiliary storage pool (ASP) group named in the auxiliary storage pool
(ASP) device name field will be searched. The device name must be the name of the
primary auxiliary storage pool (ASP) in the group.

Length of auxiliary storage pool (ASP) control format. The total length of the auxiliary storage pool
(ASP) control format. The length can be 0 bytes to indicate that no auxiliary storage pool (ASP) control
information is provided. Otherwise, the length must be 24 bytes. An error is returned if the length specified
is not 24 or 0.

Format of Receiver Variable

To get all of the information from a format, specify the key that will return all of the fields associated with
the format. There is no format parameter for this API.

The offsets given in the tables below apply only if the key for a format is specified. If individual field keys
are specified, the fields are returned in the order in which the keys are specified.

For detailed descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Object name used

10 A CHAR(10) Object library name used

20 14 CHAR(10) Object type used

30 1E CHAR(1) Information status

31 1F CHAR(1) Reserved

32 20 BINARY(4) Number of fields returned

Offsets vary.
these fields
repeat, in the
order listed, for
each key field
selected.

BINARY(4) Length of field information returned

BINARY(4) Key field for field returned

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data returned

CHAR(*) Data

CHAR(*) Reserved

Field Descriptions

Data. The actual data contained in the keyed field.

Information status. Whether the QGYOLOBJ API returns the requested information for this object. If you
do not request any keys to be returned, ignore this field. Possible values are:

blank The requested information is returned. No errors occurred.

A No information is returned. The job that called this API needs the authority specified in the
object authorities field to the object.

D The requested information is returned. However, the object is damaged and should be recreated
as soon as possible.

L No information is returned because the object is locked.

P The requested information is returned. However, the object is partially damaged. In most
instances, to recover from partial object damage, you delete the damaged object and either
restore a saved copy or create the object again. For some damaged objects, special recovery

procedures are possible. Refer to the Backup and Recovery book for more information on
damaged objects.

If two or more conditions occur that include no authorization (A) to the object, the status is set to A. If the
object is damaged (D) and locked (L), or if the object is partially damaged (P) and locked, the status is set
to L.

If the value of this field is A or L, your application should not use the other fields for the object. Only the
object name, library, and type fields contain accurate data.

Key field for field returned. The specific key for the field being returned. See Valid Keys.

Length of data returned. The length of data returned for this keyed field.

Length of field information returned. The length of information returned for this keyed field.

Number of fields returned. The number of keyed fields of information returned.

Object library name used. The name of the library containing the object.

Object name used. The name of the object.

Object type used. The type of the object. For a list of all the available object types, see the Control
Language (CL) information.

Reserved. An unused field. This field contains hexadecimal zeros.

Type of data. The type of data that is contained in this keyed field. Possible values follow:

B Binary data

C Character data

S Special structured field used for key combinations.

Valid Keys

The following table contains a list of the valid keys that are used for the key of fields to be returned
parameter. See Field Descriptions for the descriptions of the valid key fields.

Key Type Description

0200 CHAR(80) Special key combination. See Key 0200 Contents for
the key combination.

0201 CHAR(1) Information status

0202 CHAR(10) Extended object attribute

0203 CHAR(50) Text description

0204 CHAR(10) User-defined attribute

0205 BINARY(4) Order in library list

0300 CHAR(144) Special key combination. See Key 0300 Contents for
the key combination.

0301 BINARY(4) Object auxiliary storage pool (ASP) number

0302 CHAR(10) Object owner

0303 CHAR(2) Object domain

0304 CHAR(8) Creation date and time

0305 CHAR(8) Change date and time

0306 CHAR(10) Storage

0307 CHAR(1) Object compression status

0308 CHAR(1) Allow change by program

0309 CHAR(1) Changed by program

0310 CHAR(10) Object auditing value

0311 CHAR(1) Digitally signed

 0312 CHAR(1) Digitally signed by a system-trusted source

0313 CHAR(1) Digitally signed more than once

0314 BINARY(4) Library auxiliary storage pool (ASP) number

0400 CHAR(296) Special key combination. See Key 0400 Contents for
the key combination.

0401 CHAR(10) Source file name

0402 CHAR(10) Source file library name

0403 CHAR(10) Source file member name

0404 CHAR(13) Source file updated date and time

0405 CHAR(10) Creator's user profile

0406 CHAR(8) System where object was created

0407 CHAR(9) System level

0408 CHAR(16) Compiler

0409 CHAR(8) Object level

0410 CHAR(1) User changed

0411 CHAR(16) Licensed program

0412 CHAR(10) Program temporary fix (PTF)

0413 CHAR(10) Authorized program analysis report (APAR)

0414 CHAR(10) Primary group

0500 CHAR(504) Special key combination. See Key 0500 Contents for
the key combination.

0501 CHAR(8) Object saved date and time

0502 CHAR(8) Object restored date and time

0503 BINARY(4) Save size

0504 BINARY(4) Save size multiplier

0505 BINARY(4) Save sequence number

0506 CHAR(10) Save command

0507 CHAR(71) Save volume ID

0508 CHAR(10) Save device

0509 CHAR(10) Save file name

0510 CHAR(10) Save file library name

0511 CHAR(17) Save label

0512 CHAR(8) Save active date and time

0513 CHAR(1) Journal status

0514 CHAR(10) Journal name

0515 CHAR(10) Journal library name

0516 CHAR(1) Journal images

0517 CHAR(1) Journal entries to be omitted

0518 CHAR(8) Journal start date and time

0600 CHAR(548) Special key combination. See Key 0600 Contents for
the key combination.

0601 CHAR(8) Last-used date and time

0602 CHAR(8) Reset date and time

0603 BINARY(4) Days-used count

0604 CHAR(1) Usage information updated

 0605 CHAR(10) Object auxiliary storage pool (ASP) device name

0606 CHAR(10) Library auxiliary storage pool (ASP) device name

0700 CHAR(560) Special key combination. See Key 0700 Contents for
the key combination.

0701 BINARY(4) Object size

0702 BINARY(4) Object size multiplier

0703 CHAR(1) Object overflowed ASP indicator

Key 0200 Contents

The following information is returned in the field when key 0200 is specified. For detailed descriptions of
the subfields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(1) Information status

1 1 CHAR(10) Extended object attribute

11 B CHAR(50) Text description

61 3D CHAR(10) User-defined attribute

71 47 BINARY(4) Order in library list

75 4B CHAR(5) Reserved

Key 0300 Contents

the following information is returned in the field when key 0300 is specified. For detailed descriptions of
the subfields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Everything from key 0200

80 50 BINARY(4) Object auxiliary storage pool (ASP) number

84 54 CHAR(10) Object owner

94 5E CHAR(2) Object domain

96 60 CHAR(8) Creation date and time

104 68 CHAR(8) Change date and time

112 70 CHAR(10) Storage

122 7A CHAR(1) Object compression status

123 7B CHAR(1) Allow change by program

124 7C CHAR(1) Changed by program

125 7D CHAR(10) Object auditing value

135 87 CHAR(1) Digitally signed

 136 88 CHAR(1) Digitally signed by system-trusted source

137 89 CHAR(1) Digitally signed more than once

138 8A CHAR(2) Reserved

140 8C BINARY(4) Library auxiliary storage pool (ASP) number

Key 0400 Contents

The following information is returned in the field when key 0400 is specified. For detailed descriptions of

the subfields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Everything from key 0300

144 90 CHAR(10) Source file name

154 9A CHAR(10) Source file library name

164 A4 CHAR(10) Source file member name

174 AE CHAR(13) Source file updated date and time

187 BB CHAR(10) Creator's user profile

197 C5 CHAR(8) System where object was created

205 CD CHAR(9) System level

214 D6 CHAR(16) Compiler

230 E6 CHAR(8) Object level

238 EE CHAR(1) User changed

239 EF CHAR(16) Licensed program

255 FF CHAR(10) Program temporary fix (PTF)

265 109 CHAR(10) Authorized program analysis report (APAR)

275 113 CHAR(10) Primary group

285 11D CHAR(11) Reserved

Key 0500 Contents

The following information is returned in the field when key 0500 is specified. For detailed descriptions of
the subfields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Everything from key 0400

 296 128 CHAR(8) Object saved date and time

304 130 CHAR(8) Object restored date and time

312 138 BINARY(4) Save size

316 13C BINARY(4) Save size multiplier

320 140 BINARY(4) Save sequence number

324 144 CHAR(10) Save command

334 14E CHAR(71) Save volume ID

405 195 CHAR(10) Save device

415 19F CHAR(10) Save file name

425 1A9 CHAR(10) Save file library name

435 1B3 CHAR(17) Save label

452 1C4 CHAR(8) Save active date and time

460 1CC CHAR(1) Journal status

461 1CD CHAR(10) Journal name

471 1D7 CHAR(10) Journal library name

481 1E1 CHAR(1) Journal images

482 1E2 CHAR(1) Journal entries to be omitted

483 1E3 CHAR(8) Journal start date and time

491 1EB CHAR(13) Reserved

Key 0600 Contents

The following information is returned in the field when key 0600 is specified. For detailed descriptions of
the subfields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Everything from key 0500

 504 1F8 CHAR(8) Last-used date and time

512 200 CHAR(8) Reset date and time

520 208 BINARY(4) Days-used count

524 20C CHAR(1) Usage information updated

525 20D CHAR(10) Object auxiliary storage pool (ASP) device
name

535 217 CHAR(10) Library auxiliary storage pool (ASP) device
name

545 221 CHAR(3) Reserved

Key 0700 Contents

the following information is returned in the field when key 0700 is specified. For detailed descriptions of
the subfields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Everything from key 0600

 548 224 BINARY(4) Object size

552 228 BINARY(4) Object size multiplier

556 22C CHAR(1) Object overflowed ASP indicator

557 22D CHAR(3) Reserved

Field Descriptions

Allow change by program. Whether the object can be changed by the Change Object Description
(QLICOBJD) API.

0 The object cannot be changed with the QLICOBJD API.

1 The object can be changed with the QLICOBJD API.

Authorized program analysis report (APAR). The identifier of the authorized program analysis report
(APAR) that caused this object to be replaced. the field is blank if the object did not change because of an
APAR.

Changed by program. Whether the object has been changed by the Change Object Description
(QLICOBJD) API.

0 The object has not been changed with the QLICOBJD API.

1 The object has been changed with the QLICOBJD API.

Change date and time. The time at which the object was last changed, in system time-stamp format.

Compiler. The licensed program identifier, version number, release level, and modification level of the
compiler. The field has a pppppppVvvRrrMmm format, where:

ppppppp The licensed program identifier.

Vvv The character V is followed by a 2-character version number.

Rrr The character R is followed by a 2-character release level.

Mmm The character M is followed by a 2-character modification level.

The field is blank if you do not compile the program.

Creation date and time. The time at which the object was created, in system time-stamp format. See the
Convert Date and Time Format (QWCCVTDT) API for more information about using this time-stamp
format.

Creator's user profile. The name of the user that created the object.

Days-used count. The number of days the object was used. If the object does not have a last-used date, the
count is 0.

Digitally signed. A 1-character variable that indicates whether the object has an OS/400 digital signature.

0 The object does not have an OS/400 digital signature.

1 The object has an OS/400 digital signature.

Digitally signed by system-trusted source. A 1-character variable indicates whether the object is signed
by a source that is trusted by the system.

0 None of the object signatures came from a source that is trusted by the system.

1 The object is signed by a source that is trusted by the system. If the object has multiple signatures, at
least one of the signatures came from a source that is trusted by the system.

Digitally signed more than once. A 1-character variable that indicates whether the object has more than
one OS/400 digital signature.

0 The object has only one OS/400 digital signature or does not have an OS/400 digital signature. Refer to
the digitally signed variable to determine whether the object has an OS/400 digital signature.

1 The object has more than one OS/400 digital signature. Refer to the digitally signed by system-trusted
source variable to determine whether the object has an OS/400 digital signature from a source trusted by
the system.

Extended object attribute. The extended attribute of the object, such as a program or file type. Extended
attributes further describe the object. For example, an object type of *PGM may have a value of RPG (RPG
program) or CLP (CL program), and an object type of *FILE may have a value of PF (physical file), LF
(logical file), DSPF (display file), SAVF (save file), and so on.

Information status. Whether the QGYOLOBJ API returns the requested information for this object. If you
do not request any keys to be returned, ignore this field. Possible values are:

blank The requested information is returned. No errors occurred.

A No information is returned. The job that called this API needs the authority specified in the
object authorities field to the object.

D The requested information is returned. However, the object is damaged and should be recreated
as soon as possible.

L No information is returned because the object is locked.

P The requested information is returned. However, the object is partially damaged. In most
instances, to recover from partial object damage, you delete the damaged object and either
restore a saved copy or create the object again. For some damaged objects, special recovery

procedures are possible. Refer to the Backup and Recovery book for more information on
damaged objects.

If two or more conditions occur that include no authorization (A) to the object, the status is set to A. If the
object is damaged (D) and locked (L), or if the object is partially damaged (P) and locked, the status is set
to L.

If the value of this field is A or L, your application should not use the other fields for the object. Only the
object name, library, and type fields contain accurate data.

Journal entries to be omitted. The journal entries to be omitted. the field is 1 if open and close operations
do not generate open and close journal entries. The field is 0 if no entries are omitted. This field is blank if
the object has never been journaled.

Journal images. The type of images that are written to the journal receiver for updates to the object. the
field is 0 if only after images are generated for changes to the object. The field is 1 if both before and after
images are generated for changes to the object. This field is blank if the object has never been journaled.

Journal library name. The name of the library containing the journal. This field is blank if the object has
never been journaled.

Journal name. The name of the current or last journal. This field is blank if the object has never been
journaled.

Journal start date and time. The time at which journaling for the object was last started, in system
time-stamp format. This field contains hexadecimal zeros if the object has never been journaled.

Journal status. The 1-character variable that returns the current journaling status of an object. The value is
1 if the object currently is being journaled; the value is 0 if the object currently is not being journaled.

Last-used date and time. The date and time at which the object was last used, in system time-stamp
format. If the object has no last-used date, the field contains hexadecimal zeros.

Library auxiliary storage pool (ASP) device name. The name of the auxiliary storage pool (ASP)
device where storage is allocated for the library containing the object. The following special value may be
returned:

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

Library auxiliary storage pool (ASP) number. The number of the auxiliary storage pool (ASP) where
storage is allocated for the library containing the object. Valid values are:

1 System ASP

2-32 Basic user ASP

33-255 Primary or secondary ASP

Licensed program. The name, release level, and modification level of the licensed program if the retrieved
object is part of a licensed program. The 7-character name starts in character position 1, the version number
starts in position 8, the release level starts in position 11, and the modification level starts in position 14.
The field is blank if the retrieved object is not a part of a licensed program.

Object auditing value. The type of auditing for an object. The valid values are:

*NONE No auditing occurs for this object when it is read or changed regardless of the user who is
accessing the object.

*USRPRF Audit this object only if the user accessing the object is being audited. The user profile for
the job is tested to determine if auditing should be done for this object. The user profile can
specify if only change access is audited or if both read and change accesses are audited for
this object.

*CHANGE Audit all change access to this object by all users on the system.

*ALL Audit all access to this object by all users on the system. All access is defined as a read or
change operation.

Object auxiliary storage pool (ASP) device name. The name of the auxiliary storage pool (ASP) device
where storage is allocated for the object. The following special value may be returned:

*SYSBAS System ASP (ASP 1) or basic user ASPs (ASPs 2-32)

Object auxiliary storage pool (ASP) number. The auxiliary storage pool (ASP) identifier where storage
is allocated for the object. Valid values are:

1 System ASP

2-32 Basic user ASP

33-255 Primary or secondary ASP

Object compression status. Whether the object is compressed or decompressed. The status is returned
with one of these values:

Y Compressed.

N Permanently decompressed and compressible.

X Permanently decompressed and not compressible.

T Temporarily decompressed.

F Saved with storage freed; compression status cannot be determined.

Temporarily decompressed objects exist in both decompressed and compressed form. Permanently
decompressed objects exist in decompressed form only. the system handles some decompression
automatically, depending on the type of object, the operation performed on it, and its frequency of use. For

an overview of object compression and decompression, see theCL Programming book. For details
about how to explicitly compress and decompress objects, see the entries for these commands in the
Control Language (CL) information: Compress Object (CPROBJ), Decompress Object (DCPOBJ), and
Reclaim Temporary Storage (RCLTMPSTG).

Object domain. The domain that contains the object. Possible values follow:

*S The object is in the system domain.

*U The object is in the user domain.

Object level. The object control level for the created object.

Object overflowed ASP indicator. Whether the object overflowed the auxiliary storage pool (ASP).

0 The object has not overflowed the ASP.

1 The object overflowed the ASP in which it resides.

For objects in the system auxiliary storage pool (ASP 1) or in a primary or secondary ASP (ASPs
33-255), a 0 is always returned because it is not possible for an object that resides in the system ASP or in a
primary or secondary ASP to overflow its ASP.

Object owner. The name of the object owner's user profile.

Object restored date and time. The time at which the object was restored, in system time-stamp format. If
the object has never been restored, the field contains hexadecimal zeros.

Object saved date and time. The time at which the object was saved, in system time-stamp format. If the
object has never been saved, the field contains hexadecimal zeros.

Object size. The size of the object in units of the size multiplier. The object size is equal to or smaller than
the object size multiplied by the object size multiplier.

Object size multiplier. The value to multiply the object size by to get the true size. The value is 1 if the
object is smaller than 1 000 000 000 bytes, and 1024 if it is larger.

Order in library list. The order in which the library appears in the entire library list. If the library is in the
library list more than once, the order of the first occurrence of the library is returned. If the library is not in
the library list, then 0 is returned for the order number.

Primary group. The name of the user who is the primary group for the object. If no primary group exists
for the object, this field contains a value of *NONE.

Program temporary fix (PTF). The number of the program temporary fix (PTF) number that caused this
object to be replaced. This field is blank if the object was not changed because of a PTF.

Reserved. An unused field. This field contains hexadecimal zeros.

Reset date and time. The date the days-used count was last reset to zero, in system time-stamp format. If
the days-used count has never been reset, the field contains hexadecimal zeros.

Save active date and time. The date and time the object was last saved when the SAVACT(*LIB,
*SYSDFN, or *YES) save operation was specified, in system time-stamp format. This parameter is found
on the Save Library (SAVLIB), Save Object (SAVOBJ), Save Changed Object (SAVCHGOBJ), and Save
Document Library Object (SAVDLO) CL commands. If the object has never been saved or if
SAVACT(*NO) was specified on the last save operation for the object, the field contains hexadecimal
zeros.

Save command. The command used to save the object. The field is blank if the object was not saved.

Save device. The type of device to which the object was last saved. The field is *SAVF if the last save
operation was to a save file. The field is *DKT if the last save operation was to diskette. The field is *TAP
if the last save operation was to tape. The field is *OPT if the last save operation was to optical. The field is
blank if the object was not saved.

Save file library name. The name of the library that contains the save file if the object was saved to a save
file. The field is blank if the object was not saved to a save file.

Save file name. The name of the save file if the object was saved to a save file. The field is blank if the
object was not saved to a save file.

Save label. The file label used when the object was saved. The variable is blank if the object was not saved
to tape, diskette, or optical. The value of the variable corresponds to the value specified for the LABEL
parameter on the command used to save the object.

Save sequence number. The tape sequence number assigned when the object was saved on tape. The field
contains zeros if the object was not saved.

Save size. The size of the object in bytes of storage at the time of the last save operation. The save size is
equal to or smaller than the save size multiplied by the save size multiplier. The field contains zeros if the
object was not saved.

Save size multiplier. The value to multiply the save size by to get the true size. The value is 1 if the save
size is smaller than 1 000 000 000 bytes, and 1024 if it is larger.

Save volume ID. The tape, diskette, or optical volumes that are used for saving the object. The variable
returns a maximum of ten 6-character volumes. The volume IDs begin in character positions 1, 8, 15, 22,
29, 36, 43, 50, 57, and 64. Each volume ID entry is separated by a single character. If the object was saved
in parallel format, the separator character contains a 2 before the first volume in the second media file, a 3
before the third media file, and so on, up to a 0 before the tenth media file. Otherwise, the separator
characters are blank. If more than 10 volumes are used and the object was saved in serial format, 1 is
returned in the 71st character of the variable. If the object was saved in parallel format, a 2 is returned in the
71st character of the variable. Otherwise, the 71st character is blank. The field is blank if the object was last
saved to a save file or if it was never saved.

Source file library name. The name of the library that contains the source file that is used to create the
object. The field is blank if no source file created the object.

Source file member name. The name of the member in the source file. The field is blank if no source file
created the object.

Source file name. The name of the source file that is used to create the object. The field is blank if no
source file created the object.

Source file updated date and time. The date and time the member in the source file was last updated. This
field is in the CYYMMDDHHMMSS format:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

HH Hour

MM Minute

SS Second

The field is blank if no source file created the object.

Storage. The storage status of the object data. *FREE indicates the object data is freed and the object is
suspended. *KEEP indicates the object data is not freed and the object is not suspended.

System level. The level of the operating system when the object was created. The field has a VvvRrrMmm
format, where:

Vvv The character V is followed by a 2-character version number.

Rrr The character R is followed by a 2-character release level.

Mmm The character M is followed by a 2-character modification level.

System where object was created. The name of the system on which the object was created.

Text description. The text description of the object. The field is blank if no text description is specified.

Usage information updated. Whether the object usage information is updated for this object type. The
indicator is returned as Y (Yes) or N (No).

User changed. Whether the user program was changed.

0 The object was not changed by the user.

1 The user changed the object.

User-defined attribute. A characteristic of an object type. This field is set by the user while using the
Change Object Description (QLICOBJD) API.

Error Messages

Message ID Error Message Text

 CPFB8ED E Device description &1 not correct for operation.

CPF136A E Job &3/&2/&1 not active.

 CPF18BF E Thread &1 not found.

CPF1867 E Value &1 in list not valid.

CPF21AA E Number of statuses must be between 1 and 5.

CPF21AB E Status value &1 not valid.

CPF21AC E Length or offset value &1 not valid.

CPF21A7 E Authority value &1 not valid.

CPF21A8 E Must specify *ANY as only authority value.

CPF21A9 E Select or omit value &1 not valid.

 CPF218C E &1 not a primary or secondary ASP.

 CPF218D E &1 not a primary ASP when *ASPGRP specified.

CPF22F7 E Number of authorities must be between 1 and &1.

CPF22F9 E Call level &1 not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C31 E Object type &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C57 E Not authorized to retrieve job information.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9804 E Object &2 in library &3 damaged.

CPF9810 E Library &1 not found.

 CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

 CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

 CPF9833 E *CURASPGRP or *ASPGRPPRI specified and thread has no ASP group.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0024 E &1 is not valid for number of keys to sort on.

GUI0025 E &1 is not valid for sort key field starting position.

GUI0026 E &1 is not valid for sort key field length.

GUI0027 E &1 is not valid for number of records to return.

GUI0083 E &1 is not valid for number of fields to return.

API introduced: V3R6

Top | Object APIs | APIs by category

Rename Object (QLIRNMO) API

 Required Parameter Group:

1 From qualified object name Input Char(20)
2 Object type Input Char(10)
3 To qualified object name Input Char(20)
4 Replace object Input Char(1)
5 Error code I/O Char(*)

 Optional Parameter Group 1:

6 From library auxiliary storage pool
(ASP) device name

Input Char(10)

7 To library auxiliary storage pool (ASP)
device name

Input Char(10)

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Rename Object (QLIRNMO) API renames an existing object to a new object name or moves the object
to a different library or both, and optionally replaces the object.

When the replace object parameter requests to replace an existing object and the to object already exists, the
following occur:

The *PUBLIC and private authorities from the to object replace the authorities on the renamed
object.

●

The owner of the object is the owner of the from object.●

If the object is not a *PGM object, the to object is deleted.●

For a *PGM object, the to object is moved to the QRPLOBJ library (or the QRPLxxxxx library if
the to object is in a library in primary or secondary auxiliary storage pool 'xxxxx'). The renamed
program will have the same user profile (USRPRF) value as the to program. If the to program has
the adopted authority USRPRF(*OWNER) attribute, the owner of the from program must be the
same as the owner of the to program. An error message is issued if the owners do not match. For

more information on adopted authority, see the iSeries Security Reference book. The use
adopted authority (USEADPAUT) value from the to program is copied to the from program as long
as the user who performs the rename operation can create and update programs with the
USEADPAUT(*YES) attribute. The QUSEADPAUT system value determines whether or not
users can create and update programs to use adopted authority. If the program being replaced has
USEADPAUT(*YES) and the user cannot create and update programs to use adopted authority, the
USEADPAUT value of the from program remains the same.

●

For a *CRQD object, the from change request description will have the same user profile
(USRPRF) value as the to change request description. If the to change request description has a
user profile value of USRPRF(*OWNER), the owner of the from object must be the same as the to
object. An error message is issued if the owners do not match.

●

Restrictions

All restrictions that apply to the Move Object (MOVOBJ) and Rename Object (RNMOBJ) commands also
apply to the QLIRNMO API.

Authorities and Locks

Auxiliary Storage Pool (ASP) Device Authority

*USE when a specific ASP device name is specified for optional parameter group 1.

Library Authority

*CHANGE

Note: If you are renaming an object that can only exist in library QSYS, the library authority is not
checked.

Object Authority

*OBJMGT

Notes:

Object types of *FILE, *JRN, *JRNRCV, and *MSGQ need *OBJOPR and *OBJMGT
authorities.

1.

An object type of *AUTL needs *AUTLMGT authority.2.

Library Lock

*SHRUPD

Object Lock

*EXCL

If you replace an object, you must be the owner of the from object or have *ALLOBJ special authority.
*ALLOBJ authority is needed to replace the authority on the from object.

When the request is to replace an existing object and the to object already exists, the following authority
considerations apply:

For *PGM objects, the user must have *OBJEXIST, *OBJMGT, and *READ authorities to the
existing program object.

●

For *MENU and *FILE objects, *OBJOPR and *OBJEXIST authorities are needed in addition to
the other authorities listed.

●

For other object types, *OBJEXIST authority is needed to delete the existing object in addition to
the other authorities listed. *OBJEXIST and *USE authorities are needed to delete *LIB and
*SBSD objects.

●

Required Parameter Group

From qualified object name

INPUT; CHAR(20)

The object being renamed and the library in which it is located. The first 10 characters contain the
object name, and the second 10 characters contain the library name.

You can use these special values for the library name:

*CURLIB The thread's current library

*LIBL The thread's library list

Object type

INPUT; CHAR(10)

The type of object being renamed. If the from object and the to object belong to the same library,
only a rename operation is done. The object type must be supported on the RNMOBJ command. If
the from object and the to object belong to different libraries, a move operation is done. The object
type must be supported on the MOVOBJ command. If both a rename and a move operation are
done, the object type must be supported on both the RNMOBJ and MOVOBJ commands. An
asterisk (*) must precede the object type. For a list of the object types that cannot be moved or

renamed, see the CL Programming book.

To qualified object name

INPUT; CHAR(20)

The new name of the object and the new library in which it will be located. The object name can be
the same name as the original object or a new name. The library name can be the same name as the
original library or a new name. If the object name is the same as the original object, the library
name must not be the same as the original library unless the to and from auxiliary storage pool
(ASP) device names are not the same. The first 10 characters contain the object name, and the
second 10 characters contain the library name.

Replace object

INPUT; CHAR(1)

Whether to replace an existing object with the same name as the to object and library name
parameter in the auxiliary storage pool named in the to auxiliary storage pool (ASP) device name
parameter. The following values can be specified:

0 Do not replace the existing object. If 0 is specified and the object already exists, an error
message is returned to the application.

1 Replace the existing object.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Optional Parameter Group 1

From library auxiliary storage pool (ASP) device name

INPUT; CHAR(10)

The name of the auxiliary storage pool (ASP) device from which storage is allocated for the library
containing the object to be renamed or moved. For all operations other than a library rename, the
ASP device must have status of 'Available'. For a library rename operation, the ASP device must
have a status of 'Active' or 'Available' and the to library auxiliary storage pool (ASP) device and the
from auxiliary storage pool (ASP) device must be the same device. If this parameter is omitted in
cases where it is valid for this parameter to have a value other than an asterisk (*), the thread's
library name space will be used.

This parameter must be an asterisk (*) if specified when *CURLIB or *LIBL is specified as the
library name in the from qualified object name parameter. If a library to be renamed is in an
auxiliary storage pool (ASP) device that is not currently part of the thread's library name space,
specify current-library-name in the first 10 characters and QSYS in the second 10 characters of the
from qualified object name and the auxiliary-storage-pool-device-name in the from library
auxiliary storage pool (ASP) device name.

One of the following special values may be specified:

* The ASPs in the thread's library name space.

*CURASPGRP The ASPs in the thread's ASP group.

*SYSBAS The system ASP (1) and defined basic user ASPs (2-32).

To library auxiliary storage pool (ASP) device name

INPUT; CHAR(10)

The name of the auxiliary storage pool (ASP) device from which storage is allocated for the library
to contain the object after the rename or move. For all operations other than a library rename, the
ASP device must have status of 'Available'. For a library rename operation, the ASP device must
have a status of 'Active' or 'Available' and the to library auxiliary storage pool (ASP) device and the
from auxiliary storage pool (ASP) device must be the same device. If this parameter is omitted, the
thread's library name space will be used.

If a library to be renamed is to be in an auxiliary storage pool (ASP) device that is not currently part
of the thread's library name space, specify new-library-name in the first 10 characters and QSYS in
the second 10 characters of the to qualified object name and specify either *SAME or an
auxiliary-storage-pool-device-name in the to library auxiliary storage pool (ASP) device name that
is the same as specified in the from library auxiliary storage pool (ASP) device name.

One of the following special values may be specified:

* The ASPs in the thread's library name space.

*SAME The library to which the object will be renamed or moved is in the same ASP
as the library containing the object to be renamed or moved.

*CURASPGRP The ASPs in the thread's ASP group.

*SYSBAS The system ASP (ASP 1) and defined basic user ASPs (ASPs 2-32).

Usage Notes

This API is conditionally threadsafe. For multithreaded jobs, see the restrictions in the Rename Object
(RNMOBJ) command.

Error Messages

Message ID Error Message Text

 CPFB8ED E Device description &1 not correct for operation.

CPF180B E Function &1 not allowed.

CPF21A3 E &1 not valid for replace object option.

CPF21A4 E Objects cannot be moved into QTEMP.

CPF21A5 E Cannot replace object &1 in &2 type *&3.

CPF2111 E Library &1 already exists.

CPF2112 E Object &1 in &2 type *&3 already exists.

CPF2132 E Object &1 already exists in library &2.

CPF2136 E Renaming library &1 failed.

CPF2139 E Rename of library &1 failed.

CPF2140 E Rename of library &1 previously failed.

CPF2146 E Owner of object &1 and object being replaced not the same.

CPF2160 E Object type *&1 not eligible for requested function.

CPF2164 E Rename of library &2 not complete.

CPF2166 E System library cannot be renamed or deleted.

 CPF2173 E Value for ASPDEV not valid with special value for library.

CPF2176 E Library &1 damaged.

 CPF218C E &1 not a primary or secondary ASP.

CPF2183 E Object &1 cannot be moved into library &3.

CPF2189 E Not authorized to object &1 in &2 type *&3.

CPF219E E Object type *&1 not valid external object type.

CPF2193 E Object &1 cannot be moved into library &4.

CPF22BC E Object &1 type &3 is not program defined.

CPF24B4 E Severe error while addressing parameter list.

CPF2512 E Operation not allowed for message queue &1.

CPF2691 E Rename of &2 type *&5 did not complete.

CPF2692 E Object &2 type *&5 must be varied off.

CPF2693 E &2 type *&5 cannot be used for rename.

CPF2694 E Object &2 type *&5 cannot be renamed.

 CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7010 E Object &1 in &2 type *&3 already exists.

CPF88C4 E Value &1 for new object is more than 8 characters.

CPF9801 E Object &2 in library &3 not found.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9809 E Library &1 cannot be accessed.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9812 E File &1 in library &2 not found.

CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9821 E Not authorized to program &1 in library &2.

 CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9831 E Cannot assign device &1.

 CPF9833 E *CURASPGRP or *ASPGRPPRI specified and thread has no ASP group.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R3

Top | Object APIs | APIs by category

Retrieve Library Description (QLIRLIBD) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Library name Input Char(10)
4 Attributes to retrieve Input Char(*)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Library Description (QLIRLIBD) API lets you retrieve attributes for a specific library.

Authorities and Locks

Library Authority

*READ

Library Lock

*SHRRD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the information requested. If this area is smaller than the actual
length of the data returned, the API returns only the data that the area can hold. Refer to Format of
Data Returned for details about the format.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. The minimum length is 8 bytes. If the length is larger than the
size of the receiver variable, results may be unpredictable.

Library name

INPUT; CHAR(10)

The name of the library for which information is being retrieved.

Attributes to retrieve

INPUT; CHAR(*)

The information for the library that you want to retrieve.

The information must be in the following format:

Number of elements in request array BINARY(4)

The total number of all of the request keys.

Request keys ARRAY of BINARY(4)

An array of request keys to identify what fields of
information about the library are requested. The size of
the array is defined in the preceding number of elements
in request array value. For a list of the valid key
identifiers, see the topic Keys.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Data Returned

For detailed descriptions of the fields, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Variable length records returned

12 C BINARY(4) Variable length records available

16 10 CHAR(*) Variable length record for each key specified.
For the specific format of the variable length
record, see Format for Variable Length Record.

Format for Variable Length Record

For detailed descriptions of the fields, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of returned data

4 4 BINARY(4) Key identifier

8 8 BINARY(4) Size of field

12 C CHAR(*) Field value

CHAR(*) Reserved

Field Descriptions

Bytes available. The length of all data available to return. All available data is returned if enough space is
provided.

Bytes returned. The length of the data actually returned. This value includes the length of this field and all
the fields following it in the structure.

If insufficient space is provided for the receiver variable, this value would be set to the last byte of the last
complete variable length record.

Field value. The value of the field returned.

Key identifier. The key that identifies the returned field. For a list of the valid keys, see Keys.

Length of returned data. The length associated with a particular field.

The length includes the space required to hold the following fields:

This field●

The key identifier●

The size of (returned) field●

The field value●

Reserved. An unused field. This field contains hexadecimal zeros. If multiple keys are requested, a
reserved value is added for boundary alignment.

Size of field. The size of the returned field.

Variable length records available. The number of complete variable length records that can be returned.
All variable length records are returned if enough space is provided.

Variable length records returned. The number of variable length records actually returned.

Keys

The following table lists the valid key identifiers that can be specified in the attributes to retrieve parameter.
See the Field Descriptions for the descriptions of the valid key fields.

Key ID Type Field

1 CHAR(1) Type of library

2 BINARY(4) Auxiliary storage pool (ASP) number

3 CHAR(10) Create authority

4 CHAR(10) Create object auditing

5 CHAR(50) Text description

6 CHAR(12) Library size information

7 BINARY(4) Number of objects in library

8 CHAR(10) Auxiliary storage pool (ASP) device name

Field Descriptions

Auxiliary storage pool (ASP) device name. The name of the auxiliary storage pool (ASP) device from
which the system allocates storage for the library. The following special values may be returned:

*N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or basic user ASPs (ASPs 2-32).

Auxiliary storage pool (ASP) number. The number of the auxiliary storage pool (ASP) from which the
system allocates storage for the library.

Possible values are:

1 System ASP

2-32 Basic user ASPs

33-255 Primary or secondary ASPs

Create authority. The default public authority used when an object is created into a library. This authority
is given to the following users:

Users who do not have specific authority to the object.●

Users who are not on the authorization list.●

Users whose user group has no specific authority to the object.●

The valid values are:

*ALL The user can perform all authorized operations on an object created in this
library.

*CHANGE The user can read the object description and has read, add, update, and delete
authority to an object created in this library.

*EXCLUDE The user is prevented from accessing an object created in this library.

*SYSVAL The default authority for an object created in this library is determined by the
value specified by the QCRTAUT system value.

*USE The user can read the object and its description but cannot change them for an
object created in this library.

Authorization list name The name of the authorization list that secures an object created in this library.
The default public authority is taken from the authorization list, and the public
authority for the object is specified as *AUTL.

Create object auditing. The auditing value for objects created in this library.

The valid values are:

*ALL All change or read access to the object is logged.

*CHANGE All change access to the object by all users is logged.

*NONE Use or change access to the object is not logged (no audit entry is sent to the security
journal).

*SYSVAL The value specified in the system value QCRTOBJAUD is used.

*USRPRF The user profile of the user who accesses the object is used to determine if an audit record
is sent for this access. The OBJAUD parameter of the Change User Auditing
(CHGUSRAUD) command is used to turn auditing on for a specific user.

Library size information. Information about the size of the library. To include the size of an object in the
total library size, you need an authority other than *EXCLUDE to the object. See Library Size Information
Format for the format of this key.

Number of objects in library. The total number of objects in the specified library.

Text description. The user-defined text that briefly describes the library and its function.

Type of library. The library type.

Possible values are:

0 The library is a production library. Database files in production libraries cannot be opened for
updating if a user, while in debug mode, requested that production libraries be protected.

1 The library is a test library. All objects in a test library can be updated during a test. See the Start
Debug (STRDBG) command in the online help for more details.

Library Size Information Format

The following table shows the layout of the library size information key. For detailed descriptions of the
fields, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Library size

4 4 BINARY(4) Library size multiplier

8 8 CHAR(1) Information status

9 9 CHAR(3) Reserved

Field Descriptions

Information status. Whether or not all objects in the library were calculated in the library size.

The following values can be returned:

0 Some objects in the library are locked, or the user does not have any authority to the object. The size
of these objects was not included in the total library size.

1 The size of all the objects in the library was used in determining the total library size.

Library size. The size of the library object and all of the objects in the library in units of the library size
multiplier. If the information status field is 1, the total library size is equal to or smaller than the library size
multiplied by the library size multiplier. If the information status field is 0, the total library size could be
greater than the library size multiplied by the library size multiplier because the size of some objects has not
been included in the total library size.

Library size multiplier. The value to multiply the library size by to get the total library size.

The following values can be returned:

1 The total library size is smaller than 1, 000, 000, 000 bytes.

1024 The total library size is between 1, 000, 000, 000 and 1, 024, 000, 000, 000 bytes.

1 048 576 The total library size is larger than 1, 024, 000, 000, 000 bytes.

Reserved. An unused field. This field contains hexadecimal zeros.

Error Messages

Message ID Error Message Text

CPFB8ED E Device description &1 not correct for operation.

CPF2115 E Object &1 in &2 type *&3 damaged.

CPF2150 E Object information function failed.

CPF2151 E Operation failed for &2 in &1 type *&3.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C82 E Key &1 not valid for API &2.

CPF3C88 E Number of variable length records &1 is not valid.

CPF3C89 E Key &1 specified more than once.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF980B E Object &1 in library &2 not available.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V3R1

Top | Object API categories | API by category

Retrieve Object Description (QUSROBJD) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Object and library name Input Char(20)
5 Object type Input Char(10)

 Optional Parameter Group 1:

6 Error code I/O Char(*)

 Optional Parameter Group 2:

7 Auxiliary storage pool (ASP) control Input Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Object Description (QUSROBJD) API lets you retrieve object information about a specific
object. This information is similar to the information returned using the Display Object Description
(DSPOBJD) command or Retrieve Object Description (RTVOBJD) command.

You can use the QUSROBJD API to:

Determine who owns which objects in the specified libraries●

Provide disk management functions based on the object's size and use●

Provide backup analysis based on when the object was last saved or last updated●

Provide source member and object analysis from source member information to verify that the
current source was used to create the specified object

●

Work with a list of objects created by the QUSLOBJ API●

Authorities and Locks

Auxiliary Storage Pool (ASP) Device Authority

*EXECUTE when a specific auxiliary storage pool (ASP) device name or *ALLAVL is specified
for the auxiliary storage pool (ASP) control parameter.

Library Authority

*EXECUTE

Object Authority for Non-*FILE Objects

Any authority other than *EXCLUDE

Object Authority for *FILE Objects

*OBJOPR

Library Lock

None

Object Lock

*SHRRD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the requested information. It can be smaller than the format requested
as long as the next parameter, length of receiver variable, specifies the length correctly. When this
variable is smaller than the format, the API returns only the data that the variable can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. The minimum length is 8 bytes. Do not specify a length that is
longer than the receiver variable; the results are unpredictable.

Format name

INPUT; CHAR(8)

The content and format of the information returned for each specified member. The possible format
names are:

OBJD0100 Basic information (fastest)

OBJD0200 Information similar to that displayed by the programming development manager
(PDM)

OBJD0300 Service information

OBJD0400 Full information (slowest)

These are described in the following sections.

Object and library name

INPUT; CHAR(20)

The object for which you want to retrieve information, and the library in which it is located. The
first 10 characters contain the object name, and the second 10 characters contain the library name.
You can use these special values for the library name:

*CURLIB The thread's current library is searched. When this value is used, the auxiliary
storage pool (ASP) device name in the auxiliary storage pool (ASP) control
parameter must be an asterisk (*), if specified.

*LIBL All libraries in the thread's library list are searched. When this value is used, the
auxiliary storage pool (ASP) device name in the auxiliary storage pool (ASP)
control parameter must be an asterisk (*), if specified.

Object type

INPUT; CHAR(10)

The type of object for which you want to retrieve the information. You can only specify external
object types. Refer to the Control Language (CL) information in the iSeries Information Center for
a complete list of available object types.

Optional Parameter Group 1

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Optional Parameter Group 2

Auxiliary storage pool (ASP) control

Input; CHAR(*)

The information used to define the auxiliary storage pool (ASP) to search. See Auxiliary Storage
Pool (ASP) Control Format for details. If optional parameter group 2 is omitted in cases where it is
valid for the ASP device name to have a value other than an asterisk (*), the thread's library name
space will be used.

Auxiliary Storage Pool (ASP) Control Format

The following shows the format of the auxiliary storage pool (ASP) control parameter. This parameter is
used to define the auxiliary storage pools (ASPs) to search. For detailed descriptions of the fields in the
table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of auxiliary storage pool (ASP) control
format

4 4 CHAR(10) Auxiliary storage pool (ASP) device name

14 E CHAR(10) Auxiliary storage pool (ASP) search type

Field Descriptions

Auxiliary storage pool (ASP) device name. The name of an auxiliary storage pool (ASP) device in which
storage is allocated for the library containing the object. The ASP device must have a status of 'Available'.
This field must be an asterisk (*) if optional parameter group 2 is specified when *CURLIB or *LIBL is
specified as the library name in the object and library name parameter. If optional parameter group 2 is
omitted in cases where it is valid for the ASP device name to have a value other than an asterisk (*), the
thread's library name space will be used. One of the following special values may be specified:

* The ASPs that are currently part of the thread's library name space will be searched to
locate the library. This includes the system ASP (ASP 1), all defined basic user ASPs
(ASPs 2-32), and, if the thread has an ASP group, the primary and secondary ASPs in
the thread's ASP group.

*SYSBAS The system ASP (ASP 1) and all defined basic user ASPs (ASPs 2-32) will be
searched to locate the library. No primary or secondary ASPs will be searched, even if
the thread has an ASP group.

*CURASPGRP If the thread has an ASP group, the primary and secondary ASPs in the ASP group will
be searched to locate the library. The system ASP (ASP 1) and defined basic user
ASPs (ASPs 2-32) will not be searched.

*ALLAVL All available ASPs will be searched. This includes the system ASP (ASP 1), all
defined basic user ASPs (ASPs 2-32), and all available primary and secondary ASPs
(ASPs 33-255 with a status of 'Available'). The ASP groups are searched in
alphabetical order by the primary ASP. The system ASP and all defined basic user
ASPs are searched after the ASP groups. ASPs and libraries to which the user is not
authorized are bypassed and no authority error messages are sent. The search ends
when the first object is found of the specified object name, library name and object
type. If the user is not authorized to the object, an authority error message is sent.

Auxiliary storage pool (ASP) search type. The type of the search when a specific auxiliary storage pool
(ASP) device name is specified for the ASP device name field. This field must be blanks when a special
value is specified for the auxiliary storage pool (ASP) device name field. One of the following values may
be specified:

*ASP Only the single ASP named in the auxiliary storage pool (ASP) device name field will be
searched.

*ASPGRP All ASPs in the auxiliary storage pool (ASP) group named in the auxiliary storage pool
(ASP) device name field will be searched. The device name must be the name of the
primary auxiliary storage pool (ASP) in the group.

Length of auxiliary storage pool (ASP) control format. The total length of the auxiliary storage pool
(ASP) control format. The length can be 0 bytes to indicate that no auxiliary storage pool (ASP) control
information is provided. Otherwise, the length must be 24 bytes. An error is returned if the length specified
is not 24 or 0.

OBJD0100 Format

The following information is returned for the OBJD0100 format. For detailed descriptions of the fields in
the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Object name

18 12 CHAR(10) Object library name

28 1C CHAR(10) Object type

38 26 CHAR(10) Return library

48 30 BINARY(4) Object ASP number

52 34 CHAR(10) Object owner

62 3E CHAR(2) Object domain

64 40 CHAR(13) Creation date and time

77 4D CHAR(13) Object change date and time

OBJD0200 Format

The following information is returned for the OBJD0200 format. For detailed descriptions of the fields in
the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Everything from the OBJD0100 format

90 5A CHAR(10) Extended object attribute

100 64 CHAR(50) Text description

150 96 CHAR(10) Source file name

160 A0 CHAR(10) Source file library name

170 AA CHAR(10) Source file member name

OBJD0300 Format

The following information is returned for the OBJD0300 format. For detailed descriptions of the fields in
the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Everything from the OBJD0200 format

180 B4 CHAR(13) Source file updated date and time

193 C1 CHAR(13) Object saved date and time

206 CE CHAR(13) Object restored date and time

219 DB CHAR(10) Creator's user profile

229 E5 CHAR(8) System where object was created

237 ED CHAR(7) Reset date

244 F4 BINARY(4) Save size

248 F8 BINARY(4) Save sequence number

252 FC CHAR(10) Storage

262 106 CHAR(10) Save command

272 110 CHAR(71) Save volume ID

343 157 CHAR(10) Save device

353 161 CHAR(10) Save file name

363 16B CHAR(10) Save file library name

373 175 CHAR(17) Save label

390 186 CHAR(9) System level

399 18F CHAR(16) Compiler

415 19F CHAR(8) Object level

423 1A7 CHAR(1) User changed

424 1A8 CHAR(16) Licensed program

440 1B8 CHAR(10) Program temporary fix (PTF)

450 1C2 CHAR(10) Authorized program analysis report (APAR)

OBJD0400 Format

The following information is returned for the OBJD0400 format. For detailed descriptions of the fields in
the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Everything from the OBJD0300 format

460 1CC CHAR(7) Last-used date

467 1D3 CHAR(1) Usage information updated

468 1D4 BINARY(4) Days-used count

472 1D8 BINARY(4) Object size

476 1DC BINARY(4) Object size multiplier

480 1E0 CHAR(1) Object compression status

481 1E1 CHAR(1) Allow change by program

482 1E2 CHAR(1) Changed by program

483 1E3 CHAR(10) User-defined attribute

493 1ED CHAR(1) Object overflowed ASP indicator

494 1EE CHAR(13) Save active date and time

507 1FB CHAR(10) Object auditing value

517 205 CHAR(10) Primary group

527 20F CHAR(1) Journal status

528 210 CHAR(10) Journal name

538 21A CHAR(10) Journal library name

548 224 CHAR(1) Journal images

549 225 CHAR(1) Journal entries to be omitted

550 226 CHAR(13) Journal start date and time

563 233 CHAR(1) Digitally signed

564 234 BINARY(4) Saved size in units

568 238 BINARY(4) Saved size multiplier

 572 23C BINARY(4) Library ASP number

576 240 CHAR(10) Object ASP device name

586 24A CHAR(10) Library ASP device name

596 254 CHAR(1) Digitally signed by system-trusted source

597 255 CHAR(1) Digitally signed more than once

Field Descriptions

Allow change by program. A 1-character variable that is used to return the allow change by program flag.
A 1 is returned if the object can be changed with the Change Object Description (QLICOBJD) API. A 0 is
returned if the object cannot be changed with the API.

Authorized program analysis report (APAR). The identifier of the authorized program analysis report
(APAR) that caused this object to be replaced. The field is blank if the object did not change because of an
APAR.

Bytes available. The length of all data available to return. All available data is returned if enough space is
provided.

Bytes returned. The length of the data actually returned.

Changed by program. A 1-character variable that is used to return the changed by program flag. A 1 is
returned if the object has been changed with the QLICOBJD API. A 0 is returned if the object has not been
changed by the API.

Compiler. The licensed program identifier, version number, release level, and modification level of the
compiler.

The field has a pppppppVvvRrrMmm format where:

ppppppp The licensed program identifier.

Vvv The character V is followed by a 2-character version number.

Rrr The character R is followed by a 2-character release level.

Mmm The character M is followed by a 2-character modification level.

The field is blank if you do not compile the program.

Creation date and time. The date and time the object was created. The creation date and time field is in
the CYYMMDDHHMMSS format:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

HH Hour

MM Minute

SS Second

Creator's user profile. The name of the user that created the object.

Days-used count. The number of days the object was used. If the object does not have a last used date, the
count is 0.

Digitally signed. A 1-character variable that indicates whether the object has an OS/400 digital signature.

0 The object does not have an OS/400 digital signature.

1 The object has an OS/400 digital signature.

Digitally signed by system-trusted source. A 1-character variable that indicates whether the object is
signed by a source that is trusted by the system.

0 None of the object signatures came from a source that is trusted by the system.

1 The object is signed by a source that is trusted by the system. If the object has multiple signatures, at
least one of the signatures came from a source that is trusted by the system.

Digitally signed more than once. A 1-character variable that indicates whether the object has more than
one OS/400 digital signature.

0 The object has only one OS/400 digital signature or does not have an OS/400 digital signature. Refer
to the digitally signed variable to determine whether the object has an OS/400 digital signature.

1 The object has more than one OS/400 digital signature. Refer to the digitally signed by
system-trusted source variable to determine whether the object has an OS/400 digital signature from
a source trusted by the system.

Extended object attribute. The extended attribute of the object, such as a program or file type. Extended
attributes further describe the object. For example, an object type of *PGM may have a value of RPG (RPG
program) or CLP (CL program), and an object type of *FILE may have a value of PF (physical file), LF
(logical file), DSPF (display file), SAVF (save file), and so on.

Journal entries to be omitted. The journal entries to be omitted. The field is 1 if open and close operations
do not generate open and close journal entries. The field is 0 if no entries are omitted. This field is blank if
the object has never been journaled.

Journal images. The type of images that are written to the journal receiver for updates to the object. The
field is 0 if only after images are generated for changes to the object. The field is 1 if both before and after
images are generated for changes to the object. This field is blank if the object has never been journaled.

Journal library name. The name of the library containing the journal. This field is blank if the object has
never been journaled.

Journal name. The name of the current or last journal. This field is blank if the object has never been
journaled.

Journal start date and time. The time at which journaling for the object was last started. The format is the
same as the creation date description. This field is blank if the object has never been journaled.

Journal status. The 1-character variable that returns the current journaling status of an object. The value is
1 if the object is currently being journaled; the value is 0 if the object is currently not being journaled.

Last-used date. The date the object was last used. This field is in the CYYMMDD format, which is the
same format used for the reset date. If the object has no last-used date, the field is blank.

Licensed program. The name, release level, and modification level of the licensed program if the retrieved
object is part of a licensed program. The 7-character name starts in character position 1, the version number
starts in position 8, the release level starts in position 11, and the modification level starts in position 14.
The field is blank if the retrieved object is not a part of a licensed program.

Library ASP device name. The name of the auxiliary storage pool (ASP) device where storage is
allocated for the library containing the object. The following special values can be returned:

*N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

Library ASP number. The number of the auxiliary storage pool (ASP) where storage is allocated for the
library containing the object. A value from one of the following ranges is returned:

1 System ASP

2-32 Basic user ASP

33-255 Primary or secondary ASP

Object auditing value. A 10-character variable that is used to return the type of auditing for an object. The
valid values are:

*NONE No auditing occurs for this object when it is read or changed regardless of the user who is
accessing the object.

*USRPRF Audit this object only if the current user is being audited. The current user is tested to
determine if auditing should be done for this object. The user profile can specify if only
change access is audited or if both read and change accesses are audited for this object.

*CHANGE Audit all change access to this object by all users on the system.

*ALL Audit all access to this object by all users on the system. All access is defined as a read or
change operation.

Object change date and time. The date and time the object was last changed. The format is the same as
the creation date description, or it is blank if the object was not changed.

Object compression status. Whether the object is compressed or decompressed. The status is returned in a
1-character variable with one of these values:

Y Compressed.

N Permanently decompressed and compressible.

X Permanently decompressed and not compressible.

T Temporarily decompressed.

F Saved with storage freed; compression status cannot be determined.

Temporarily decompressed objects exist in both decompressed and compressed form. Permanently
decompressed objects exist in decompressed form only. The system handles some decompression
automatically, depending on the type of object, the operation performed on it, and its frequency of use. For

an overview of object compression and decompression, see the CL Programming book. For details
about how to explicitly compress and decompress objects, see the online help for these commands:
Compress Object (CPROBJ), Decompress Object (DCPOBJ), and Reclaim Temporary Storage
(RCLTMPSTG).

Object domain. The domain that contains the object. The value is *U if the object is in the user domain, or
*S if the object is in the system domain.

Object level. The object control level for the created object.

Object ASP device name. The name of the auxiliary storage pool (ASP) device where storage is
allocated for the object. The following special values can be returned:

*N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

Object ASP number. The number of the auxiliary storage pool (ASP) where storage is allocated for the
object. A value from one of the following ranges is returned:

1 System ASP

2-32 Basic user ASP

33-255 Primary or secondary ASP

Object library name. The name of the library containing the object.

Object name. The name of the object.

Object overflowed ASP indicator. The 1-character variable that returns the object overflowed auxiliary
storage pool (ASP) indicator. The value is 1 if the object overflowed the ASP in which it resides; the value
is 0 if the object has not overflowed the ASP. For objects in the system ASP (ASP 1) or in a primary or
secondary ASP (ASPs 33-255), a 0 is always returned because an object that resides in the system ASP or
in a primary or secondary ASP cannot overflow its ASP.

Object owner. The name of the object owner's user profile.

Object restored date and time. The date and time the object was last restored. The format is the same as
for the creation date, or it is blank if the object was never restored.

Object saved date and time. The date and time the object was last saved. The format is the same as for the
creation date description, or it is blank if the object was never saved.

Object size. The size of the object in units of the size multiplier. The object size is equal to or smaller than
the object size multiplied by the object size multiplier.

Object size multiplier. The value to multiply the object size by to get the true size. The value is 1 if the
object is smaller than 1 000 000 000 bytes, and 1024 if it is larger.

Object type. The object type. For a list of all the available o bject types, see the Control Language (CL)
information in the iSeries Information Center.

Primary group. The name of the user who is the primary group for the object. If no primary group exists
for the object, this field contains a value of *NONE.

Program temporary fix (PTF). The number of the program temporary fix (PTF) number that caused this
object to be replaced. This field is blank if the object was not changed because of a PTF.

Reset date. The date the days-used count was last reset to 0. The reset date field is in the CYYMMDD
format:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

If the days-used count was not reset, the date is blank.

Return library. The name of the library containing the object if *LIBL or *CURLIB is specified for the
library name on the object parameter.

Save active date and time. The date and time the object was last saved when the SAVACT(*LIB,
*SYSDFN, or *YES) save operation was specified, in system time-stamp format. This parameter is found
on the Save Library (SAVLIB), Save Object (SAVOBJ), Save Changed Object (SAVCHGOBJ), and Save
Document Library Object (SAVDLO) CL commands. The format is the same as for the creation date
description, or it is blank if the object was never saved or if SAVACT(*NO) was specified on the last save
operation for the object.

Save command. The command used to save the object. The field is blank if the object was not saved.

Save device. The type of device to which the object was last saved. The field is *SAVF if the last save
operation was to a save file. The field is *DKT if the last save operation was to diskette. The field is *TAP
if the last save operation was to tape. The field is *OPT if the last save operation was to optical. The field is
blank if the object was not saved.

Save file library name. The name of the library that contains the save file if the object was saved to a save
file. The field is blank if the object was not saved to a save file.

Save file name. The name of the save file if the object was saved to a save file. The field is blank if the
object was not saved to a save file.

Save label. The file label used when the object was saved. The variable is blank if the object was not saved
to tape, diskette, or optical. The value of the variable corresponds to the value specified for the LABEL or
OPTFILE parameter on the command used to save the object.

Save sequence number. The tape sequence number assigned when the object was saved on tape. If the
object was not saved to tape, the field contains zeros.

Save size. The size of the object in bytes of storage at the time of the last save operation. The field contains
zeros if the object was not saved. This field will contain a size up to 2 GB. If the save size is actually
greater than 2GB, -1 is returned in this field. Fields save size in units and save size multiplier should be
used to get the save size that is larger than 2GB.

Save size in units. The size of the object in units of the size multiplier at the time of the last save operation.
The save size is equal to or smaller than the save size multiplied by the save size multiplier. The field
contains zeros if the object was not saved.

Save size multiplier. The value to multiply the save size (in units) by to get the true size. The value is 1 if
the save size is smaller than 1 000 000 000 bytes, and 1024 if it is larger.

Save volume ID. The tape, diskette, or optical volumes that are used for saving the object. The variable
returns a maximum of 10 six-character volumes. The volume IDs begin in character positions 1, 8, 15, 22,
29, 36, 43, 50, 57, and 64. Each volume ID entry is separated by a single character. If the object was saved
in parallel format, the separator character contains a 2 before the first volume in the second media file, a 3
before the third media file, and so on, up to a 0 before the tenth media file. Otherwise, the separator
characters are blank. If more than 10 volumes are used and the object was saved in serial format, 1 is
returned in the 71st character of the variable. If the object was saved in parallel format, a 2 is returned in the
71st character of the variable. Otherwise, the 71st character is blank. The field is blank if the object was last
saved to a save file or if it was never saved.

Source file library name. The name of the library that contains the source file used to create the object.
The field is blank if no source file created the object.

Source file member name. The name of the member in the source file. The field is blank if no source file
created the object.

Source file name. The name of the source file used to create the object. The field is blank if no source file
created the object.

Source file updated date and time. The date and time the member in the source file was last updated. The
field is in the same format as the creation time and date. The field is blank if no source file created the
object.

Storage. The storage status of the object data. *FREE indicates the object data is freed and the object is
suspended. *KEEP indicates the object data is not freed and the object is not suspended.

System level. The level of the operating system when the object was created.

The field has a VvvRrrMmm format where:

Vvv The character V is followed by a 2-character version number.

Rrr The character R is followed by a 2-character release level.

Mmm The character M is followed by a 2-character modification level.

System where object was created. The name of the system on which the object was created.

Text description. The text description of the object. The field is blank if no text description is specified.

Usage information updated. Whether the object usage information is updated for this object type. The
indicator is returned as Y (Yes) or N (No).

User changed. Whether the user program was changed. A character 1 is returned if the user changed the
object. If the object was not changed by the user, the field is character 0.

User-defined attribute. Further defines an object type. This field is set by the user while using the
QLICOBJD API.

Error Messages

Message ID Error Message Text

 CPFB8ED E Device description &1 not correct for operation.

CPF21AC E Length or displacement value &1 not valid.

CPF2101 E Object type *&1 not valid.

CPF2115 E Object &1 in &2 type *&3 damaged.

CPF2150 E Object information function failed.

CPF2151 E Operation failed for &2 in &1 type *&3.

 CPF2173 E Value for ASPDEV not valid with special value for library.

 CPF218C E &1 not a primary or secondary ASP.

 CPF218D E &1 not a primary ASP when *ASPGRP specified.

CPF2451 E Message queue &1 is allocated to another job.

CPF3CF1 E Error code parameter not valid.

CPF3C07 E Error occurred while retrieving information from object &1.

CPD3C20 D Error occurred with receiver variable specified.

CPD3C21 D Format name &1 is not valid.

CPD3C24 D Length of the receiver variable is not valid.

CPD3C31 D Object type &1 is not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

 CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

 CPF3202 E File &1 in library &2 in use.

 CPF3203 E Cannot allocate object for file &1 in &2.

CPF36F7 E Message queue QSYSOPR is allocated to another job.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

 CPF980B E Object &1 in library &2 not available.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9812 E File &1 in library &2 not found.

CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9821 E Not authorized to program &1 in library &2.

CPF9822 E Not authorized to file &1 in library &2.

CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9831 E Cannot assign device &1.

 CPF9833 E *CURASPGRP or *ASPGRPPRI specified and thread has no ASP group.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V1R3

Top | Object APIs | APIs by category

	Object APIs (V5R2)
	Table of Contents
	Object APIs
	Data Queue APIs
	Using Data Queue APIs
	APIs
	Clear Data Queue (QCLRDTAQ) API
	Receive Data Queue (QRCVDTAQ) API
	Retrieve Data Queue Description (QMHQRDQD) API
	Retrieve Data Queue Message (QMHRDQM) API
	Send Data Queue (QSNDDTAQ) API

	User Queue APIs
	Using User Queue APIs
	APIs
	Create User Queue (QUSCRTUQ) API
	Delete User Queue (QUSDLTUQ) API

	User Index APIs
	Using User Index APIs
	APIs
	Add User Index Entries (QUSADDUI) API
	Create User Index (QUSCRTUI) API
	Delete User Index (QUSDLTUI) API
	Remove User Index Entries (QUSRMVUI) API
	Retrieve User Index Attributes (QUSRUIAT) API
	Retrieve User Index Entries (QUSRTVUI) API

	User Space APIs
	Using User Space APIs
	APIs
	Change User Space (QUSCHGUS) API
	Change User Space Attributes (QUSCUSAT) API
	Create User Space (QUSCRTUS) API
	Delete User Space (QUSDLTUS) API
	Retrieve Pointer to User Space (QUSPTRUS) API
	Retrieve User Space (QUSRTVUS) API
	Retrieve User Space Attributes (QUSRUSAT) API

	Object-related APIs
	Change Library List (QLICHGLL) API
	Change Object Description (QLICOBJD) API
	Convert Type (QLICVTTP) API
	List Objects (QUSLOBJ) API
	Materialize Context (QusMaterializeContext) API
	Move Folder to ASP (QHSMMOVF) API
	Move Library to ASP (QHSMMOVL) API
	Open List of Objects (QGYOLOBJ) API
	Rename Object (QLIRNMO) API
	Retrieve Library Description (QLIRLIBD) API
	Retrieve Object Description (QUSROBJD) API

