
ILE CEE APIs (V5R2)

Table of Contents

ILE CEE APIs

ILE CEE API Calling and Naming Conventions●

Data Type Definitions of ILE CEE●

Omitting Parameters in ILE CEE●

OS/400 Messages and the ILE CEE API Feedback Code●

APIs

Activation Group and Control Flow APIs

Abnormal End (CEE4ABN)■

Find a Control Boundary (CEE4FCB)■

Normal End (CEETREC)■

Register Activation Group Exit Procedure (CEE4RAGE)■

Register Call Stack Entry Termination User Exit Procedure (CEERTX)■

Unregister Call Stack Entry Termination User Exit Procedure (CEEUTX)■

❍

Condition Management APIs

Using Condition Management APIs■

Construct a Condition Token (CEENCOD)■

Decompose a Condition Token (CEEDCOD)■

Handle a Condition (CEE4HC)■

Move the Resume Cursor to a Return Point (CEEMRCR)■

Register a User-Written Condition Handler (CEEHDLR)■

Retrieve ILE Version and Platform ID (CEEGPID)■

Return the Relative Invocation Number (CEE4RIN)■

Signal a Condition (CEESGL)■

Unregister a User-Written Condition Handler (CEEHDLU)■

❍

Date and Time APIs

Date and Time Notation and Limits■

APIs

Calculate Day of Week from Lilian Date (CEEDYWK)■

Convert Date to Lilian Format (CEEDAYS)■

Convert Integers to Seconds (CEEISEC)■

Convert Lilian Date to Character Format (CEEDATE)■

■

❍

●

Convert Seconds to Character Timestamp (CEEDATM)■

Convert Seconds to Integers (CEESECI)■

Convert Timestamp to Number of Seconds (CEESECS)■

Get Current Greenwich Mean Time (CEEGMT)■

Get Current Local Time (CEELOCT)■

Get Offset from Universal Time Coordinated to Local Time (CEEUTCO)■

Get Universal Time Coordinated (CEEUTC)■

Query Century (CEEQCEN)■

Return Default Date and Time Strings for Country or Region (CEEFMDT)■

Return Default Date String for Country or Region (CEEFMDA)■

Return Default Time String for Country or Region (CEEFMTM)■

Set Century (CEESCEN)■

Math APIs

Data Types and Limits■

Calling Math Bindable APIs■

Math Bindable APIs are Procedures■

ILE Math Bindable API Descriptions■

Message Descriptions■

Basic Random Number Generation (CEERAN0)■

Convert 64-Bit Integer to Character String (CEE4JNTS)■

Convert Character String to 64-Bit Integer (CEE4JSTN)■

❍

Message Services APIs

Dispatch a Message (CEEMOUT)■

Get a Message (CEEMGET)■

Get, Format, and Dispatch a Message (CEEMSG)■

❍

Program or Procedure Call APIs

Get String Information (CEEGSI)■

Retrieve Operational Descriptor Information (CEEDOD)■

Test for Omitted Argument (CEETSTA)■

❍

Storage Management APIs

Allocation Strategy Type (CEE4ALC)■

Basic heap operations

Free Storage (CEEFRST)■

Get Heap Storage (CEEGTST)■

Reallocate Storage (CEECZST)■

■

Extended heap operations■

❍

Create Heap (CEECRHP)■

Discard Heap (CEEDSHP)■

Mark Heap (CEEMKHP)■

Release Heap (CEERLHP)■

Heap allocation strategies

Define Heap Allocation Strategy (CEE4DAS) API■

■

ILE CEE APIs

The Integrated Language Environment(R) (ILE) architecture on the OS/400(R) operating system provides a
set of bindable application programming interfaces (APIs) known as ILE CEE APIs. In some cases, they
provide additional function beyond that provided by a specific high-level language. For example, not all
high-level languages (HLL) offer intrinsic means to manipulate dynamic storage. In these cases, you can
supplement an HLL function by using appropriate ILE CEE APIs. If your HLL provides the same function
as a particular ILE CEE API, use the HLL-specific one.

The ILE CEE APIs are useful for mixed-language applications because they are HLL independent. For
example, if you use only condition management ILE CEE APIs with a mixed-language application, you
will have uniform condition handling semantics for that application. This uniformity can make condition
management easier than when using multiple HLL-specific condition handling models.

The ILE CEE APIs provide a wide-range of functional areas including:

Activation Group and Control Flow APIs●

Condition Management APIs●

Date and Time APIs●

Math APIs●

Message Services APIs●

Program or Procedure Call APIs●

Storage Management APIs●

For more information about using ILE CEE APIs, see the following sections:

ILE CEE API Calling and Naming Conventions●

Data Type Definitions of ILE CEE●

Omitting Parameters in ILE CEE●

OS/400 Messages and the ILE CEE API Feedback Code●

Top | APIs by category

ILE CEE API Calling and Naming Conventions
You access ILE CEE APIs using the same call mechanisms currently used by HLLs to support calls in
general.

If you use ILE C, you can use an ILE CEE API with the syntax shown in the following example.

#include <leawi.h>
main ()
{
 CEExxxx(&parm1, &parm2, ... &parmn, &fc);
}

If you use ILE COBOL, you can call most of the ILE CEE APIs using the following syntax.

CALL PROCEDURE 'CEExxxx'
 USING parm1, parm2, ... parmn, fc.

The following APIs require a different calling convention in ILE COBOL than that shown above.

Get String Information (CEEGSI)●

Register a User Written Condition Handler (CEEHDLR)●

Retrieve Operational Descriptor Information (CEEDOD)●

Test for Omitted Argument (CEETSTA)●

Register Call Stack Entry Termination User Exit Procedure (CEERTX)●

Unregister a User Written Condition Handler (CEEHDLU)●

Unregister Call Stack Entry Termination User Exit Procedure (CEEUTX)●

In the SPECIAL-NAMES paragraph specify:

LINKAGE TYPE
 SYS FOR 'CEExxxx' 'CEEyyyy' ...

for the APIs that are to be called. In the PROCEDURE DIVISION, the APIs are called using the following
syntax.

CALL 'CEExxxx' USING parm1, parm2, ... parmn, fc.
 .
 .
 .
CALL 'CEEyyyy' USING parm1, parm2, ... parmn, fc.

If you use ILE RPG, you call an ILE CEE API using the following syntax.

C CALLB 'CEExxxx'
C PARM parm1
C PARM parm2
 ...
C PARM parmn

C PARM fc

Note: Operational descriptors are used for some of the ILE CEE APIs, for example, CEEDATE. Refer to
the section on #pragma descriptors in the WebSphere Development Studio: C/C++ Language Reference

 book for information on how to properly pass arguments to these ILE CEE APIs from inside a C
program.

If you use ILE COBOL, you can call functions that require operational descriptors using the following
syntax.

SPECIAL NAMES.
 LINKAGE PROCEDURE FOR 'CEExxxx' USING ALL DESCRIBED.

PROCEDURE DIVISION.
 CALL PROCEDURE 'CEExxxx'
 USING parm1, parm2, ... parmn, fc.

If you use ILE RPG, you can call functions that require operational descriptors using either of the following
approaches.

C CALLB(D) 'CEExxxx'
C PARM parm1
C PARM parm2
 ...
C PARM parmn
C PARM fc

or

D CEExxxx PR OPDESC
D parm1
D parm2
D ...
D parmn
D fc

C CALLP CEExxxx(parm1 : parm2 :
C ... : parmn : fc)

Note: If you use ILE RPG to call ILE CEE APIs, the following restriction applies:

APIs cannot be used if DFTACTGRP(*YES) is specified on the CRTBNDRPG CL command. ILE
static binding is not available when a program is created with DFTACTGRP(*YES). This means
that your program cannot contain a CALLB operation. (Also, you cannot use the BNDDIR or
ACTGRP parameters when creating this program.) Specifying DFTACTGRP(*YES) during the
creation of an ILE RPG program means that the program will always run in the default activation

group. See the WebSphere Development Studio: ILE RPG Programmer's Guide book for more
information about the CRTBNDRPG CL command and the DFTACTGRP parameter.

●

The following descriptions apply to the call syntax shown in the ILE language examples above:

leawi.h

The name of the header file for C prototypes

Note: Header files used with ILE CEE APIs are in library QSYSINC. To ensure that these header

files are found during compilation, specify *YES on the SYSINC parameter of the CRTCMOD or
CRTBNDC CL commands. Also ensure that the Openness Includes can be selected as an option
under GO LICPGM during the installation of the OS/400 operating system.

CEExxxx

The name of the ILE CEE API

parm1, parm2, ... parmn

Omissible or required parameters passed to or returned from the called ILE CEE API. The &
character in the syntax for ILE C indicates that the parameters are explicitly passed by reference.

fc

An omissible feedback code that indicates the result of the ILE CEE API. The & character in the
syntax for ILE C indicates that the parameter is explicitly passed by reference.

The order in which the parameters are listed in the parameter table for each ILE CEE API, is the order in
which the parameters must be specified. For example, the following table shows the parameters for the
CEEHDLR API:

 Required Parameter Group:

1 procedure Input HDLR_ENTRY
2 token Input POINTER

 Omissible Parameter:

3 fc Output FEEDBACK

When you call the CEEHDLR API, the first parameter you specify must be procedure (number 1 in the
table), followed by token (number 2 in the table), and then fc (number 3 in the table).

Naming Conventions of the ILE CEE APIs

Most ILE CEE APIs are available to any HLL that ILE supports. Naming conventions of the ILE CEE APIs
are as follows:

Bindable API names starting with CEE are intended to be consistent across the IBM SAA systems.●

Bindable API names starting with CEE4 are specific to the iSeries system.●

For more information about using ILE CEE APIs, see the following sections:

Data Type Definitions of ILE CEE ●

Omitting Parameters in ILE CEE●

OS/400 Messages and the ILE CEE API Feedback Code●

Top | ILE CEE APIs | APIs by category

Data Type Definitions of ILE CEE APIs
The data types that are used in the parameter tables for each ILE CEE API are defined in Data Type Definitions across ILE Languages. The information in the ILE RPG
column assumes RPG D-Specification coding.

Data Type Definitions across ILE Languages

Data Type Description ILE C ILE COBOL ILE RPG

CHAR A 1-byte unsigned
character

typedef unsigned char _CHAR; PIC X
blank or A in data type
column
To/L of 1

UCHAR A 1-byte unsigned
character

typedef unsigned char _UCHAR; PIC X
blank or A in data type
column
To/L of 1

SCHAR A 1-byte signed
character

typedef signed char _SCHAR; PIC X
blank or A in data type
column
To/L of 1

INT2 A 2-byte signed
integer

typedef signed short _INT2; PIC S9(4) BINARY
I in data type column
To/L of 5
decimal positions = 0

UINT2 A 2-byte unsigned
integer

typedef unsigned short _UINT2; PIC 9(4) BINARY
U in data type column
To/L of 5
decimal positions = 0

INT4 A 4-byte signed
integer

typedef signed int _INT4; PIC S9(9) BINARY
I in data type column
To/L of 10
decimal positions = 0

UINT4 A 4-byte unsigned
integer

typedef unsigned int _UINT4; PIC 9(9) BINARY
U in data type column
To/L of 10
decimal positions = 0

FLOAT4 A 4-byte
single-precision
floating-point
number

typedef float _FLOAT4; COMP-1
F in data type column
To/L of 4

FLOAT8 An 8-byte
double-precision
floating-point
number

typedef double _FLOAT8; COMP-2
F in data type column
To/L of 8

COMPLEX8 An 8-byte complex
number, whose real
and imaginary
parts are each
4-byte
single-precision
floating-point
numbers. Used
only by ILE math
routines.

typedef struct {
 float real,
 imaginary;
} _COMPLEX8;

01 complex8
 02 real comp-1
 02 imag comp-1

 Name To/L
 Entry Entry
complex8 DS
 real 4F
 imaginary 4F

COMPLEX16 A 16-byte complex
number whose real
and imaginary
parts are each
8-byte
double-precision
floating-point
numbers. Used
only by ILE math
routines.

typedef struct {
 double real,
 imaginary;
} _COMPLEX16;

01 complex16
 02 real comp-2
 02 imag comp-2

 Name To/L
 Entry Entry
complex16 DS
 real 8F
 imaginary 8F

BITS A set of adjacent
bits within a single
storage unit. The
notation is
_BITS: x, where
x is the field width
in bits. (BITS may
also be used to
define unsigned
integers.)

typedef unsigned int _BITS; Not applicable Not applicable

POINTER A
platform-dependent
address pointer

typedef void * _POINTER; USAGE IS POINTER
* in data type column
procedure pointer = ProcPtr
basing pointer is the default
if ProcPtr is not defined in
the keyword section.

INVPTR An invocation
pointer typedef void * _INVPTR;

#pragma pointer (_INVPTR,
INVPTR)

Not applicable Not applicable

LBLPTR A label pointer
typedef void * _LBLPTR;
#pragma pointer (_LBLPTR,
LBLPTR)

Not applicable Not applicable

CHARn A string (character
array) of length n

typedef char[n] _CHAR[n]; PIC X(n)
blank or A in data type
column
To/L >= 1

VFLOAT An ILE
variable-length
floating-point
number used for
polymorphic
parameter
declarations. The
length may be any
one of 4, 8, or 16
bytes
corresponding to
single, double, and
extended precision.

typedef union {
 float TypeFloat4;
 double TypeFloat8;
 long double TypeFloat16;
} _VFLOAT;

Not applicable Not applicable

VSTRING An ILE string of
arbitrary length
used for
polymorphic string
parameter
declarations. The
string may be any
one of a
fixed-length string,
a null-terminated
varying string
(known as an
"ASCIIZ") or a
length-prefixed
string.

(See note 1)

typedef union {
 struct {
 _INT2 length;
 _CHAR255 string;
 } l2pstring;
 struct {
 _INT4 length;
 _CHAR255 string;
 } l4pstring;
 _CHAR1 stringz;
} _VSTRING;

01 string4
 02 len pic 9(9) binary
 02 txt pic x(n)
01 string2
 REDEFINES string4
 02 len pic 9(4) binary
 02 txt pic x(n)

 Name To/L
 Entry Entry
vstring DS
 len 1 2I 0
 txt 3 n
 len2 1 4I 0
 txt2 5 n

FEEDBACK A mapping of the
feedback
(condition) token
(fc)

typedef volatile struct {
 _UINT2 MsgSev;
 _UINT2 MsgNo;
 _BITS Case :2;
 _BITS Severity :3;
 _BITS Control :3;
 _CHAR Facility_ID[3];
 _UINT4 I_S_Info;
} _FEEDBACK;

01 fc
 02 sev pic 9(4) binary
 02 msgno pic 9(4) binary
 02 flgs pic x(1)
 02 facid pic x(3)
 02 isi pic 9(9) binary

 Name To/L
 Entry Entry
fc DS
 sev 5U
 msgno 5U
 flags 1
 facid 3
 isi 10U

CEE-ENTRY A generic entry
constant struct {

_POINTER address;
_POINTER nesting;
}

01 STRUC-NAME.
 05 STRUC-ADDRESS POINTER.
 05 STRUC-NESTING POINTER.

DCEE_ENTRY DS
D Address_Ptr * ProcPtr
D Nesting_Ptr * ProcPtr

HDLR_ENTRY A procedure
pointer used on the
CEEHDLR and
CEEHDLU APIs.

typedef void (*_HDLR_ENTRY)
 (_FEEDBACK *,
 _POINTER *,
 _INT4 *,
 _FEEDBACK *);

77 HDLR_ENTRY
 PROCEDURE-POINTER

DHDLR_ENTRY * ProcPtr

RTX_ENTRY A procedure
pointer used on the
CEERTX and
CEEUTX APIs.

typedef void (*_RTX_ENTRY)
 (_POINTER *);

77 RTX_ENTRY
 PROCEDURE-POINTER

DRTX_ENTRY * ProcPtr

RAGE_ENTRY A procedure
pointer used on the
CEE4RAGE API.

typedef void (*_RAGE_ENTRY)
 (_UINT4 *,
 _UINT4 *,
 _UINT4 *,
 _UINT4 *);

77 RAGE_ENTRY
 PROCEDURE-POINTER

DRAGE_ENTRY * ProcPtr

CEELABEL A target label to a
code point within a
call stack entry.

typedef volatile struct {
 _INVPTR invocation;
 _LBLPTR label;
} _CEELABEL;

Not applicable Not applicable

Note:

1 The typedef for VSTRING is only an indication of the variable string. For ILE C purposes this should be coded as char *.

Strong alignment is assumed in all data structures. Each item is aligned on the proper boundary for its type, with padding if necessary.

For more information about using ILE CEE APIs, see the following sections:

ILE CEE API Calling and Naming Conventions ●

Omitting Parameters in ILE CEE●

OS/400 Messages and the ILE CEE API Feedback Code●

Top | ILE CEE APIs | APIs by category

Omitting Parameters in ILE CEE APIs
The ILE CEE APIs have parameters that can be omitted. The parameter table for each ILE CEE API uses
the term omissible for these parameters.

Warning: It is essential to pass the correct number of parameters, including omitted parameters. You need
to use the language-specific syntax for omitted parameters; failure to do so may result in unpredictable
results, including a system failure.

For ILE C, you can omit a parameter by passing a null pointer in place of the parameter. The following
example in ILE C omits the fc parameter in the call to the API.

#include <leawi.h>
main ()
{
 CEExxxx(&parm1, &parm2, ... &parmn, NULL);
} /* NULL is used instead */
 /* of the omitted parameter */

For ILE COBOL, you can omit a parameter by specifying the reserved word OMITTED in place of the
parameter. The following example in ILE COBOL omits the fc parameter in the call to the API.

CALL PROCEDURE 'CEExxxx'
 USING parm1, parm2, ... parmn, OMITTED.

For ILE RPG, you can omit a parameter by specifying *OMIT in the result field of a PARM opcode. The
following example omits the fc parameter in the call to the API.

C CALLB 'CEExxxx'
C PARM parm1
C PARM parm2
 ...
C PARM parmn
C PARM *OMIT

For ILE RPG if you use a prototyped call when you code the prototype, you specify OPTIONS(*OMIT) in
the keywords area of the omissible parameter. Then you can specify *OMIT for that parameter on the call.

D CEExxxx PR OPDESC
D parm1
D parm2
D ...
D parmn
D fc OPTIONS(*OMIT)

C CALLP CEExxxx(parm1 : parm2 :
C ... : parmn : *OMIT)

For more information about using ILE CEE APIs, see the following sections:

ILE CEE API Calling and Naming Conventions ●

Data Type Definitions of ILE CEE ●

OS/400 Messages and the ILE CEE API Feedback Code●

Top | ILE CEE APIs | APIs by category

OS/400 Messages and the ILE CEE API
Feedback Code
As input to an ILE CEE API, you have the option of coding a feedback code, and using the feedback code
as a return (or feedback) code check in a procedure. The feedback code is a condition token value that is
provided for flexibility in checking returns from calls to other procedures. You can then use the feedback
code as input to a condition token. For information on the condition tokens, see Condition Management

APIs. For more information on condition handling, see Condition Handling in the ILE Concepts book.

If you code the feedback code parameter in your application to receive feedback information from an ILE
CEE API, the following sequence of events occurs when a condition is raised:

An informational message is sent to the caller of the API, communicating the message associated
with the condition.

1.

The ILE CEE API in which the condition occurred builds a condition token for the condition. The
ILE CEE API places information into the instance specific information area. The instance specific
information of the condition token is the message reference key of the informational message. This
is used by the system to react to the condition.

2.

If a detected condition is critical (severity is 4), the system sends an exception message to the caller
of the ILE CEE API.

3.

If a detected condition is not critical (severity less than 4), the condition token is returned to the
routine that called the ILE CEE API.

4.

When the condition token is returned to your application, you have the following options:

Ignore it and continue processing.❍

Signal the condition using the Signal a Condition (CEESGL) bindable API.❍

Get, format, and dispatch the message for display using the Get, Format, and Dispatch a
Message (CEEMSG) bindable API.

❍

Store the message in a storage area using the Get a Message (CEEMGET) bindable API.❍

Use the Dispatch a Message (CEEMOUT) bindable API to dispatch a user-defined
message to a destination that you specify.

❍

When the caller of the API regains control, the informational message is removed and does
not appear in the job log.

❍

5.

If you omit the feedback code parameter when you are calling an ILE CEE API, the ILE CEE API sends an
exception message to the caller of the bindable API.

Top | ILE CEE APIs | APIs by category

Activation Group and Control Flow APIs
ILE CEE APIs are provided to manage activation groups and to determine the control flow of procedures.
The activation group and control flow APIs are:

Abnormal End (CEE4ABN) abnormally ends the activation group containing the nearest control
boundary.

●

Find a Control Boundary (CEE4FCB) searches the call stack for the nearest call stack entry that is a
control boundary.

●

Normal End (CEETREC) is used to do a normal ending of the activation group containing the
nearest control boundary.

●

Register Activation Group Exit Procedure (CEE4RAGE) is used to register procedures that are
called when an activation group ends.

●

Register Call Stack Entry Termination User Exit Procedure (CEERTX) registers a user-defined
procedure that runs when the call stack entry for which it is registered is ended by anything other
than a return to the caller.

●

Unregister Call Stack Entry Termination User Exit Procedure (CEEUTX) is used to unregister a
user-defined procedure that was previously registered by the Register Call Stack Entry Termination
User Exit Procedure (CEERTX) API.

●

Top | ILE CEE APIs | APIs by category

Abnormal End (CEE4ABN) API

 Omissible Parameter Group:

1 raise_TI Input INT4
2 cel_rc_mod Input INT4
3 user_rc Input INT4

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Abnormal End (CEE4ABN) API abnormally ends the activation group containing the nearest control
boundary. The termination-imminent condition can be sent first to give all intervening call stack entries a
chance to clean up or stop the abnormal end. This is optional. All call stack entries to the nearest control
boundary are ended, unless the resume cursor is moved while handling the terminate-imminent condition. If
the call stack entry for the control boundary is also the oldest call stack entry in the activation group, the
activation group ends. The exception message CEE9901 (application error) is sent to the caller of the
control boundary, whether or not the activation group ended, provided that call stack entries were ended.

Omissible Parameter Group

raise_TI (input)

Whether or not the terminate-imminent condition should be raised before the end operation.

0 The terminate-imminent condition is not raised; the abnormal end operation starts
immediately. This value is the default if raise_TI is omitted.

1 The terminate-imminent condition is raised. The abnormal end operation occurs only if the
handling of the terminate-imminent condition results in the resume cursor not being moved
after a resume operation was requested, or, the terminate-imminent condition is not handled.

cel_rc_mod (input)

A language-specific return code passed from one ILE language to another ILE language. The value
and meaning is language-specific.

user_rc (input)

A number representing the user portion of the activation group return code. If this parameter is not
supplied, the CEE4ABN API uses the current contents of the activation group return code. If it is
supplied, it takes precedence over previously set values.

Conditions

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

High-level language statements that implement abnormal ending of the activation group do so by
calling the CEE4ABN API.

●

The job-level return codes are updated whether or not the activation group ended, provided that call
stack entries were canceled.

●

This API cannot end the default activation group.●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Find a Control Boundary (CEE4FCB) API

 Omissible Parameter Group:

1 ctlbdy_inv Output INT4
2 ctlbdy_type Output INT4
3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Find a Control Boundary (CEE4FCB) API searches the call stack for the nearest call stack entry that is
a control boundary. Beginning with the caller of the CEE4FCB API, a search for a control boundary starts
from the call stack entry of the caller and progresses to older call stack entries.

Omissible Parameter Group

ctlbdy_inv (output)

A positive number indicating the control boundary call relative to the caller of the CEE4FCB API.

ctlbdy_type (output)

The type of the control boundary found.

0 The control boundary found is the oldest call stack entry in the activation group.

1 The control boundary found is not the oldest call stack entry in the activation group.

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE9902 Unexpected user error occurred in &1

Severity: 30

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Normal End (CEETREC) API

 Omissible Parameter Group:

1 cel_rc_mod Input INT4
2 user_rc Input INT4

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Normal End (CEETREC) API is used to do a normal ending of the activation group containing the
nearest control boundary. First, the terminate-imminent condition is sent to give all intervening call stack
entries a chance to clean up, or stop the end operation. All call stack entries to the nearest control boundary
end unless the resume cursor is moved while handling the terminate-imminent condition. If the call stack
entry for the control boundary is also the oldest call stack entry in the activation group, the activation group
ends, provided that call stack entries were ended.

Omissible Parameter Group

cel_rc_mod (input)

A language-specific return code passed from one ILE language to another ILE language. The value
and meaning is language-specific.

user_rc (input)

A number representing the user portion of the activation group return code. If this parameter is not
supplied, the CEETREC API uses the current contents of the activation group return code. If it is
supplied, it takes precedence over previously set values.

Conditions

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

A normal end operation by high-level language exit statements is implemented by calling the
CEETREC API. The termination-imminent condition is sent to the control boundary.

●

The activation group and job-level return codes are updated whether or not the activation group●

ended, provided call stack entries were canceled.

This API cannot end the default activation group.●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Register Activation Group Exit Procedure
(CEE4RAGE) API

 Required Parameter:

1 procedure Input RAGE_ENTRY

 Omissible Parameter:

2 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Register Activation Group Exit Procedure (CEE4RAGE) API is used to register procedures that are
called when an activation group ends. Activation group exit procedures, registered by CEE4RAGE, are
called after HLL user exit procedures, but before any system level activation group resource clean up takes
place. The procedures are called in the reverse order of their registration. If a procedure fails, subsequent
procedures will not be called.

There is no practical limit to the number of procedures that can be registered. If the same procedure is
registered multiple times, it is called multiple times.

Note: This API cannot be called from code running in the default activation group.

Required Parameter

procedure (input)

An entry variable or constant for the procedure that is to be called at activation group termination.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0257 The procedure provided for &1 is not valid

Severity: 30

CEE3101 &1 cannot be called in the default activation group

Severity: 30

CEE3103 Cannot allocate storage in &1

Severity: 30

CEE3111 &1 cannot be called at this time

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

The message CEE0257 occurs if procedure is not a procedure pointer, or if the procedure identified
by procedure is not in either the current activation group or the default activation group.

●

Once the activation group exit procedures start to run, the CEE4RAGE API cannot be called.●

Interface to the Activation Group Exit Procedure

An activation group exit procedure is called when the activation group is ended. The procedure is coded as
activation_group_exit with the following parameters.

 Required Parameter Group:

1 ag_mark Input UINT4
2 reason Input UINT4
3 result_code I/O UINT4
4 user_rc I/O UINT4

Required Parameter Group

ag_mark (input)

The activation group mark that uniquely identifies the activation group within the job.

reason (input)

The reason for the activation group being ended. See Common Reason Codes for Ending
Activation Groups and Call Stack Entries for a description of the reason codes.

result_code (I/O)

The value passed as input is the action to be taken as specified by a previous exit procedure. The
value passed to the first exit procedure is 0. The output value can specify an action to be taken. If
the result code does not match any of the following actions, the output value is ignored and the
previous action remains unchanged.

No action

0 Do not change the action.

Recover

10 Do not perform any pending error requests. This is used if a previous exit procedure
specified a result code of 20 and a subsequent procedure recovers from the error.
The message CEE9901, indicating an application error, is not sent.

Failure

20 Send message CEE9901 to the caller of the control boundary after the remaining
exit procedures are called.

21 Send message CEE9901 to the caller of the control boundary. The remaining exit
procedures registered by the CEE4RAGE API are not called. This is used if an
unrecoverable error occurs in the exit procedure requesting this action.

Note: The application error message CEE9901 is sent after the activation group resources of the
system are taken down and the activation group has ended.

user_rc (I/O)

The value passed as input is the user_rc returned as output from the previous exit procedure. The
value passed to the first exit procedure is 0.

Common Reason Codes for Ending Activation Groups and Call Stack Entries.

Bit Description

Bits 0 Reserved

Bits 1 Call stack entry is canceled because an exception message was sent.

Bits 2-15 Reserved

Bit 16 0 - normal end 1 - abnormal end

Bit 17 Activation Group is ending.

Bit 18 Initiated by the Reclaim Activation Group (RCLACTGRP) command.

Bit 19 Initiated as a result of the job ending.

Bit 20 Initiated by an exit verb, for example exit() in C, or the CEETREC API.

Bit 21 Initiated by an unhandled function check.

Bit 22 Call stack entry canceled because of an out-of-scope jump, for example longjmp() in C.

Bits 23-31 Reserved (0)

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Register Call Stack Entry Termination User Exit
Procedure (CEERTX) API

 Required Parameter:

1 procedure Input RTX_ENTRY

 Omissible Parameter:

2 token Input POINTER
3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Register Call Stack Entry Termination User Exit Procedure (CEERTX) API registers a user-defined
procedure that runs when the call stack entry for which it is registered is ended by anything other than a
return to the caller.

Required Parameter

procedure (input)

An entry variable or constant for the procedure that is called if the call stack entry is abnormally
ended.

Omissible Parameter

token (input)

A pointer that is passed to procedure. If token is omitted, a null pointer is passed to procedure
when procedure is called.

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0256 Procedure already registered, registered again

Severity: 10

CEE0257 The procedure provided for &1 is not valid

Severity: 30

CEE3103 Cannot allocate storage in &1

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

Multiple user call stack entry termination user exit procedures can be registered for each call stack
entry.

●

Call stack entry termination user exit procedures run in first in/first out (FIFO) order. If a procedure
causes any of the following, the remaining procedures are not run:

The call to a call stack entry termination user exit procedure fails.❍

An exception is not handled.❍

Control has moved past the invocation of the call stack entry termination user exit
procedure. For example, the resume cursor has been moved, or an out-of-scope jump, such
as longjmp() in ILE C, has been used.

❍

●

The message CEE0257 occurs only if the pointer contained in the procedure parameter is not a
procedure pointer. This does not verify that a call through that pointer will be successful. For
example, the call may fail because the activation group containing the procedure no longer exists.

●

Interface to the Call Stack Entry Termination User Exit Procedure

The following is the interface to the call stack entry termination user exit procedure registered by the
CEERTX API. The procedure is coded as termination_procedure with the following parameter.

 Required Parameter:

1 token Input POINTER

Required Parameter

token (input)

The user-supplied pointer passed on the call to CEERTX that registered the call stack entry
termination user exit procedure.

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Unregister Call Stack Entry Termination User
Exit Procedure (CEEUTX) API

 Required Parameter:

1 procedure Input RTX_ENTRY

 Omissible Parameter:

2 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Unregister Call Stack Entry Termination User Exit Procedure (CEEUTX) API is used to unregister a
user-defined procedure that was previously registered by the Register Call Stack Entry Termination User
Exit Procedure (CEERTX) API. The CEEUTX API operates on the call stack entry termination user exits
that are registered for the call stack entry from which the CEEUTX API is called.

Required Parameter

procedure (input)

An entry variable or constant for the procedure that is to be unregistered for the call stack entry.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0252 &1 is unable to find the procedure

Severity: 30

CEE0253 Additional registrations of the procedure remain in the queue

Severity: 10

CEE0257 The procedure provided for &1 is not valid

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

Registered call stack entry termination user exit procedures are automatically unregistered upon the
return from the call stack entry for which they are registered.

●

If the same procedure is registered for the call stack entry more than once, the CEEUTX API
processes the registrations in LIFO order.

●

The message CEE0257 occurs if the pointer contained in procedure is not a procedure pointer.●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Condition Management APIs
ILE condition management APIs allow you to handle errors independent of high-level language-specific
error handling.

See Using Condition Management APIs for information on:

how conditions are represented.●

condition token layout.●

condition token testing.●

The condition management APIs are:

Construct a Condition Token (CEENCOD) is used to dynamically construct a 12-byte condition
token.

●

Decompose a Condition Token (CEEDCOD) returns the individual elements of an existing
condition token.

●

Handle a Condition (CEE4HC) handles a specified condition and, optionally, logs the condition.●

Move the Resume Cursor to a Return Point (CEEMRCR) moves the resume cursor to a return point
relative to the current handle cursor.

●

Register a User-Written Condition Handler (CEEHDLR) registers a user-written condition handler
for the current call stack entry.

●

Retrieve ILE Version and Platform ID (CEEGPID) retrieves the ILE version ID and the platform
(that is, operating system) ID. The IDs are those currently in use for processing the active
condition.

●

Return the Relative Invocation Number (CEE4RIN) retrieves the relative invocation number of an
invocation pointer, and returns it in rel_inv.

●

Signal a Condition (CEESGL) signals or resignals a condition to the ILE condition manager.●

Unregister a User-Written Condition Handler (CEEHDLU) unregisters a user-written condition
handler for the current call stack entry.

●

Top | ILE CEE APIs | APIs by category

Using Condition Management APIs

How Conditions Are Represented

A condition token is used to communicate information about a condition to ILE CEE APIs. It is also used
to communicate information to the condition manager, to message services, and to procedures.

The ILE condition token is a 12-byte compound data type that contains structured fields to convey aspects
of a condition. It conveys aspects such as the severity, the associated message number, and information that
is specific to the given instance of the condition.

Condition Token Layout

Figure 1 displays a map of the condition token.

Figure 1. ILE Condition Token Layout

Every condition token contains the components indicated in the figure above.

Condition_ID

A 4-byte identifier that, with the Facility_ID, describes the condition that the token communicates.
ILE CEE APIs and most applications produce Case 1 conditions.

Case

A 2-bit field that defines the format of the Condition_ID portion of the token. ILE conditions are
always Case 1.

Severity

A 3-bit binary integer that indicates the condition's severity. Severity and MsgSev contain the same
information. See Table 1 for a list of ILE condition severities. See Table 2 and Table 3 for the
corresponding OS/400 message severities.

Control

A 3-bit field containing flags that describe or control various aspects of condition handling. The
third bit specifies whether the Facility--ID has been assigned by IBM.

Facility--ID

A 3-character alphanumeric string that identifies the facility that generated the condition. Although
all ILE languages use ILE message and condition handling ILE CEE APIs, the actual run-time
messages generated under ILE still carry the HLL identification in the Facility--ID.

I--S--Info

A 4-byte field that identifies the instance specific information associated with a given instance of
the condition. The instant specific information contains the reference key to the instance of the
message associated with the condition token. If the message reference key is zero, there is no
associated message.

MsgSev

A 2-byte binary integer that indicates the condition's severity. MsgSev and Severity contain the
same information. See Table 1 for a list of ILE condition severities. See Table 2 and Table 3 for the
corresponding OS/400 message severities.

MsgNo

A 2-byte, hexadecimal number that identifies the message associated with the condition. The
combination of Facility_ID and MsgNo uniquely identifies a condition.

Table 1 contains default responses that the condition manager takes when a handler attempts to percolate a
function check across a control boundary.

Table 1. Default Responses to Unhandled Exceptions

Message Type Severity of Condition

Condition Raised by the
Signal a Condition
(CEESGL) Bindable API

Exception Originated
from Any Other Source

Status 0 (Informative message) Return the unhandled
condition.

Resume without logging
the message.

Status 1 (Warning) Return the unhandled
condition.

Resume without logging
the message.

Notify 0 (Informative message) Not applicable. Log the notify message and
send the default reply.

Notify 1 (Warning) Not applicable. Log the notify message and
send the default reply.

Escape 2 (Error) Return the unhandled
condition.

Log the escape message
and send a function check
message to the call stack
entry of the current resume
point.

Escape 3 (Severe error) Return the unhandled
condition.

Log the escape message
and send a function check
message to the call stack
entry of the current resume
point.

Escape 4 (Critical ILE error) Log the escape message
and send a function check
message to the call stack
entry of the current resume
point.

Log the escape message
and send a function check
message to the call stack
entry of the current resume
point.

Function check 4 (Critical ILE error) Not applicable End the application, and
send the CEE9901 message
to the caller of the control
boundary.

Note: When the application is ended by an unhandled function check, the activation group is deleted if the
control boundary is the oldest call stack entry in the activation group.

Table 2 and Table 3 show how ILE condition severity maps to OS/400 message severity.

Table 2. Mapping OS/400 *ESCAPE Message Severities to ILE Condition Severities

From OS/400 Message Severity To ILE Condition Severity To OS/400 Message Severity

0-29 2 20

30-39 3 30

40-99 4 40

Table 3. Mapping OS/400 *STATUS and *NOTIFY Message Severities to ILE Condition Severities

From OS/400 Message Severity To ILE Condition Severity To OS/400 Message Severity

0 0 0

1-99 1 10

Condition Token Testing

You can test a condition token that is returned from an ILE CEE API for the following:

Success

To test for success, determine if the first 4 bytes are 0. If the first 4 bytes are 0, the remainder of the
condition token is 0, indicating a successful call was made to the ILE CEE API.

Equivalent Tokens

To determine whether two condition tokens are equivalent (that is, the same type of condition
token, but not the same instance of the condition token), compare the first 8 bytes of each condition
token with one another. These bytes are static and do not change depending upon the given instance
when the condition occurs.

Equal Tokens

To determine whether two condition tokens are equal (that is, they represent the same instance of a
condition), compare all 12 bytes of each condition token with one another. The last 4 bytes can
change from instance to instance of a condition.

Top | ILE CEE APIs | APIs by category

Construct a Condition Token (CEENCOD) API

 Required Parameter Group:

1 c_1 Input INT2
2 c_2 Input INT2
3 case Input INT2
4 severity Input INT2
5 control Input INT2
6 facility_id Input CHAR3
7 i_s_info Input INT4
8 cond_token Output FEEDBACK

 Omissible Parameter:

9 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Construct a Condition Token (CEENCOD) API is used to dynamically construct a 12-byte condition
token.

Required Parameter Group

c-1 (input)

A 2-byte binary integer representing the value of the first part of the Condition_ID. See MsgSev.

c-2 (input)

A 2-byte binary integer representing of the value of the second part of the Condition_ID. See the
description of MsgNo.

case (input)

A 2-byte binary integer that defines the format of the Condition_ID portion of the token. See the
description of Case.

severity (input)

A 2-byte unsigned binary integer that indicates the condition's severity. The value of this field is the
same as in C-1.

control (input)

A 2-byte binary number containing the control information of the condition. See the description of
Control.

facility_id (input)

A 3-character field containing three alphanumeric characters that identify the product generating
this condition or feedback information. See the description of Facility-ID.

i_s_info (input)

A 4-byte handle identifying the instance specific information. See the description of I-95 S-Info.

cond_token (output)

The 12-byte representation of the constructed condition or feedback information. See How
Conditions Are Represented.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0401 The Case parameter for &1 is not valid

Severity: 30

CEE0402 Unsupported control code &2 passed to procedure &1

Severity: 30

CEE0403 Severity passed to &1 is not valid

Severity: 30

Usage Notes

If the severity in C_1 does not match the severity in the Severity parameter, message CEE0403 is
raised.

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Decompose a Condition Token (CEEDCOD) API

 Required Parameter Group:

1 cond_token Input FEEDBACK
2 c_1 Output INT2
3 c_2 Output INT2
4 case Output INT2
5 severity Output INT2
6 control Output INT2
7 facility_id Output CHAR3
8 i_s_info Output INT4

 Omissible Parameter:

9 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Decompose a Condition Token (CEEDCOD) API returns the individual elements of an existing
condition token.

Required Parameter Group

Cond_Token (input)

A condition token that represents the current condition or feedback information. See How
Conditions Are Represented

C--1 (output)

A 2-byte binary integer representing the value of the first part of the Condition_ID. See the
description of MsgSev.

C--2 (output)

A 2-byte binary integer representing of the value of the second part of the Condition_ID. See the
description of MsgNo.

Case (output)

A 2-byte binary integer that defines the format of the Condition_ID portion of the token. See the
description of Case.

Severity (output)

A 2-byte unsigned binary integer that indicates the severity of the condition. The value of this field
is the same as in C--1.

Control (output)

A 16-bit field containing flags that describe aspects of the state of the condition. See the description
of Control.

Facility_ID (output)

A 3-character field containing three alphanumeric characters that identify the product generating
this condition or feedback information. See the description of Facility--ID.

I_S_Info (output)

A 4-byte handle identifying the instance specific information. See the description of I--S--Info.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0102 The condition token passed to &1 is not valid

Severity: 30

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Handle a Condition (CEE4HC) API

 Required Parameter Group:

1 isi Input UINT4
2 inv Input INVPTR

 Omissible Parameter Group:

3 option Input UINT4
4 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Handle a Condition (CEE4HC) API handles a specified condition and, optionally, logs the condition.

Required Parameter Group

isi (input)

The instance specific information number for the condition. This is the message reference key of
the underlying server exception.

inv (input)

The call stack entry that the handle cursor points to for the condition. This is the target call stack
entry of the underlying server exception.

Omissible Parameter Group

option (input)

The options are:

0 Take the default log action for the message. *ESCAPE and function check messages are
logged. *STATUS messages are never logged.

1 Do not log the condition.

2 Log the condition. Only conditions with a severity greater than 1 can be logged.

If the option parameter is omitted, the value 0 is used.

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE3104 The pointer type in &1 is not valid

Severity: 30

CEE3105 The call stack entry given to &1 no longer exists

Severity: 30

CEE3107 The message specified for &1 is not an exception message

Severity: 30

CEE3108 The option specified for &1 is not valid

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

The call stack entry that inv points to must appear in the call stack for the job issuing the call to the
CEE4HC API.

●

The CEE4HC API can be used to take a previously handled message out of the job log, but only if
that message is enqueued on inv.

●

The CEE4HC API can be used to handle *ESCAPE, *STATUS, *NOTIFY, and function check
exceptions. A default reply is sent for *NOTIFY messages if no reply has been sent previously.

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Move the Resume Cursor to a Return Point
(CEEMRCR) API

 Required Parameter:

1 type_of_move Input INT4

 Omissible Parameter:

2 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Move the Resume Cursor to a Return Point (CEEMRCR) API moves the resume cursor to a return
point relative to the current handle cursor.

Initially, the resume cursor is positioned after the machine instruction that caused the condition to be raised.
The direction of movement is always toward older call stack entries.

Required Parameter

type_of_move (input)

The type of movement of the resume cursor relative to the current position of the handle cursor.
The values are:

0 Move the resume cursor from a later call stack entry to the call stack entry that is currently
associated with the handle cursor.

Chose this option if resumption in the call stack entry at which the resume cursor is pointing
is not possible, but may be possible in the call stack entry at which the handle cursor is
pointing.

1 Move the resume cursor to the call return point (immediately following the call statement)
for the call stack entry one prior to the position of the handle cursor. Also move the handle
cursor to the first handler of the call stack entry the resume cursor is being moved to. This
action exits the current call stack entry and skips all condition handlers still to be called for
the call stack entry.

Chose this option if resumption is impossible at the current location, but may be possible in
the caller of the current procedure.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully
Severity: 00
CEE0254 The type of move for &1 is not valid
Severity: 10
CEE0260 No active condition for call to &1
Severity: 30
CEE9902 Unexpected user error occurred in &1
Severity: 30

Usage Notes

If you attempt to move the resume cursor with a type_of_move of 0 and the resume cursor and the
handle cursor are at the same call stack entry, the move is not valid.

●

The actual movement of the resume cursor occurs only after the condition handler returns to the
condition manager. If two or more calls from a given user-written condition handler set the resume
cursor to different places, the most recent call will be used.

●

When a return operation is made to the condition manager after the resume cursor is moved, any
associated exit procedures are called for each call stack entry that is passed. Moving a resume
cursor past a call stack entry also cancels any associated user-written condition handlers.

●

Ensure that the CEEMRCR API is called before handling the condition. A call to the CEEMRCR
API is not valid if there is no active condition. For example, the condition may not be active if the
condition handler uses the message handler API, Change Exception Message (QMHCHGEM), to
handle the condition.

●

When doing a type 1 move, the exception message is immediately moved to the call message queue
of the call stack entry one older than that indicated by the handle cursor. Therefore, when using
APIs to perform some action on the exception (for example, QMHCHGEM), you must indicate a
target invocation of one older than the original handle cursor.

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Register a User-Written Condition Handler
(CEEHDLR) API

 Required Parameter Group:

1 procedure Input HDLR_ENTRY
2 token Input POINTER

 Omissible Parameter:

3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe:

The Register a User-Written Condition Handler (CEEHDLR) API registers a user-written condition handler
for the current call stack entry.

Required Parameter Group

procedure (input)

An entry variable or constant for the procedure that is to be called to process the conditions.

token (input)

A pointer passed to the user-written condition handler at the time the procedure is called.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0256 Procedure already registered, registered again

Severity: 10

CEE0257 The procedure provided for &1 is not valid

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

CEEHDLR is implemented as a builtin and therefore cannot have its address taken or be called
through a procedure pointer.

●

A queue of handlers is maintained for each call stack entry. The handlers are given control in LIFO
order. That is, the handler most recently registered is the first one used for the call stack entry from
which the call to CEEHDLR was made.

●

Any registered user-written condition handlers that were not unregistered by the Unregister a
User-Written Condition Handler (CEEHDLU) API, are unregistered automatically by ILE upon
removal of the associated call stack entry from the call stack. For more information on
unregistering user-written condition handlers, see Unregister a User-Written Condition Handler
(CEEHDLU) API.

●

The message CEE0257 occurs if the pointer contained in procedure is not a procedure pointer.●

ILE Condition Handler Interface

Following is a description of the interface that the system uses to communicate with ILE condition
handlers.

 Required Parameter Group:

1 C_CTOK Input FEEDBACK
2 token Input POINTER
3 result_code Output INT4
4 new_condition Output FEEDBACK

Required Parameter Group

C_CTOK (input)

Identifies the current condition being processed.

token (input)

The token that was passed to the system with the call to CEEHDLR that registered this condition
handler.

result_code (output)

This field contains the instructions from the condition handler to the system regarding the actions
that the system should take.

ILE condition handlers get control for all *ESCAPE, *STATUS, *NOTIFY, and function check
messages. Not all result code actions are valid for all types of messages.

If the message is handled by the ILE condition handler, the result-code action is not performed.

If a result code is returned that is not valid, the following message occurs:

CEE0265 The result code received from a condition handler is not valid

Severity:30

Valid result codes are:

Resume

This result code can be used for all exception types.

10 Resume at the resume cursor, and handle the condition, as follows:

Function Check (severity 4) The message appears in the job log.

*ESCAPE (severity 2-4) The message appears in the job log.

*STATUS (severity 1) The message does not appear in the job log.

*NOTIFY The default reply is sent and the message appears
in the job log.

Percolate

These result codes can be used for all exception types.

20 Percolate to the next condition handler.

21 Percolate to the next call stack entry. This can skip a high-level language condition
handler for this call stack entry. Any remaining user handlers in the queue for this
call stack entry also can be skipped.

This handle cursor movement is in addition to any other handle cursor movement
done explicitly in the handler, for example by the CEEMRCR API.

The handle cursor is not moved past a call stack entry for a control boundary. The
default condition handling actions are applied to the message. Default Responses to
Unhandled Exceptions summarizes the default condition handling actions.

Promote

Only *ESCAPE and *STATUS messages may be promoted.

30 Promote to the next condition handler.

31 Promote to the next call stack entry. This may skip a high-level language condition
handler for this call stack entry. Any remaining user handlers in the queue for this
call stack entry also can be skipped.

This handle cursor movement is in addition to any other handle cursor movement
done explicitly in the handler, for example by the CEEMRCR API.

The handle cursor is not moved past a call stack entry for a control boundary. The
default condition handling actions are applied to the new message. Default
Responses to Unhandled Exceptions summarizes the default condition handling
actions.

32 Promote and restart condition handling with the first condition handler for the call
stack entry at which the handle cursor currently points.

Note: It is not valid to promote a condition without returning a new condition token. If the
original condition is returned in new_condition, the following message occurs:

CEE0262 The condition being promoted is not valid

Severity:30

new_condition (output)

The condition token representing the promoted condition. This field is used only for result_code
values of 30, 31, and 32 denoting promote or fix-up and resume.

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Retrieve ILE Version and Platform ID
(CEEGPID) API

 Required Parameter Group:

1 CEE_Version Output INT4
2 Plat_ID Output INT4

 Omissible Parameter:

3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe:

The Retrieve ILE Version and Platform ID (CEEGPID) API retrieves the ILE version ID and the platform
(that is, operating system) ID. The IDs are those currently in use for processing the active condition.

Required Parameter Group

CEE_Version (output)

A 32-bit numeric representation of the version of ILE that created this condition. For example, if
230 is returned as the version, it represents Version 2 Release 3 Modification 0.

Plat_ID (output)

A 32-bit numeric representation of the operating system on which this condition was created. The
possible values are:

2 OS/2

3 MVS/VM/370

4 OS/400

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE9902 Unexpected user error occurred in &1

Severity: 30

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Return the Relative Invocation Number
(CEE4RIN) API

 Required Parameter Group:

1 rel_inv Output INT4
2 inv Input INVPTR

 Omissible Parameter:

3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Return the Relative Invocation Number (CEE4RIN) API retrieves the relative invocation number of an
invocation pointer, and returns it in rel_inv.

Required Parameter Group

rel_inv (output)

The relative invocation number. This is a positive number indicating the number of invocations
back from the caller that inv occurs.

inv (input)

An invocation pointer.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE3104 The pointer type in &1 is not valid

Severity: 30

CEE3105 The call stack entry given to &1 no longer exists

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

The invocation specified by inv must appear in the call stack for the job issuing the CEE4RIN API.

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Signal a Condition (CEESGL) API

 Required Parameter:

1 cond_rep I/O FEEDBACK

 Omissible Parameter Group:

2 q_data_token Input INT4
3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Signal a Condition (CEESGL) API signals or resignals a condition to the ILE condition manager.

Required Parameter

cond_rep (I/O)

A condition token defining the condition to be raised.

The CEESGL API always uses the facility_ID to retrieve a message, whether or not instance
specific information (ISI) is provided. If ISI is provided, the message data from the message is used
as insert data for the condition that is to be raised.

Omissible Parameter Group

q_data_token (input)

A 32-bit data object to be placed in the ISI field for use in accessing the qualifying data associated
with the given instance of the condition. This parameter is provided for compatibility purposes
only. It is ignored on the system.

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0201 The condition sent by &1 was not handled

Severity: 00

CEE0258 The condition token passed to &1 is not valid

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

If the condition is unhandled and a feedback code is provided, a message number is returned in the
fc parameter. The message number returned is dependent on the severity of the condition when it
reaches the control boundary.

If the severity of the condition is 0-1, message number CEE0000 is returned. The message
is classified as a *STATUS message.

If the severity of the condition is 2-4, message number CEE0201 is returned. The message
is classified as an *ESCAPE message.

See Mapping OS/400 *ESCAPE Message Severities to ILE Condition Severities and Mapping
OS/400 *STATUS and *NOTIFY Message Severities to ILE Condition Severities for the
relationship of condition severities and message severities.

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Unregister a User-Written Condition Handler
(CEEHDLU) API

 Required Parameter:

1 procedure Input HDLR_ENTRY

 Omissible Parameter:

2 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe:

The Unregister a User Condition Handler (CEEHDLU) API unregisters a user-written condition handler for
the current call stack entry.

Required Parameter

procedure (input)

An entry variable or constant for a user-written condition handler that was previously registered for
the current call stack entry using the Register a User-Written Condition Handler (CEEHDLR) API.
For more information on registering user-written condition handlers, see Register a User-Written
Condition Handler (CEEHDLR) API.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0252 &1 is unable to find the procedure

Severity: 10

CEE0253 Additional registrations of the procedure remain in the queue

Severity: 10

CEE0257 The procedure provided for &1 is not valid

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

Any registered user-written condition handlers not unregistered by CEEHDLU, are unregistered
automatically by the system upon removal of the associated call stack entry from the call stack.

●

If the specified procedure is registered more than once, the most recent registration is removed.
Earlier registrations remain in the queue for the call stack entry.

●

The message CEE0257 occurs if the pointer contained in procedure is not a procedure pointer.●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Date and Time APIs
For information on using the date and time APIs, see Date and Time Notation and Limits.

The Convert Date and Time Format (QWCCVTDT) API converts date and time values from one format to
another format. For more information about this API, see Miscellaneous APIs .

The date and time APIs are:

Calculate Day of Week from Lilian Date (CEEDYWK) returns the day of the week as a number
between 1 and 7.

●

Convert Date to Lilian Format (CEEDAYS) converts a string representing a date into a number
representing the number of days since 14 October 1582.

●

Convert Integers to Seconds (CEEISEC) converts separate binary integers representing year,
month, day, hour, minute, second, and millisecond to a number representing the number of seconds
since 00:00:00 14 October 1582.

●

Convert Lilian Date to Character Format (CEEDATE) formats a number representing a Lilian date.●

Convert Seconds to Character Timestamp (CEEDATM) formats a number representing the number
of seconds since 00:00:00 14 October 1582.

●

Convert Seconds to Integers (CEESECI) converts a number representing the number of seconds
since 00:00:00 14 October 1582 to seven separate binary integers representing year, month, day,
hour, minute, second, and millisecond.

●

Convert Timestamp to Number of Seconds (CEESECS) converts a string representing a timestamp
into a number representing the number of seconds since 00:00:00 14 October 1582.

●

Get Current Greenwich Mean Time (CEEGMT) is an alias of CEEUTC.●

Get Current Local Time (CEELOCT) returns the current local time in three formats: Lilian date
(the number of days since 14 October 1582), Lilian timestamp (the number of seconds since
00:00:00 14 October 1582), and Gregorian character string (in the form
YYYYMMDDHHMISS999').

●

Get Offset from Universal Time Coordinated to Local Time (CEEUTCO) provides three values
representing the current offset from Universal Time Coordinated (UTC) to local system time.

●

Get Universal Time Coordinated (CEEUTC) returns the current Universal Time Coordinated as
both a Lilian date and as the number of seconds since 00:00:00 14 October 1582.

●

Query Century (CEEQCEN) queries the century within which 2-digit year values are assumed to
lie.

●

Return Default Date and Time Strings for Country or Region (CEEFMDT) returns the default date
and time picture strings for the country or region specified in the country/region_code parameter.

●

Return Default Date String for Country or Region (CEEFMDA) returns the default date picture
string for the country or region specified in the country/region_code parameter.

●

Return Default Time String for Country or Region (CEEFMTM) returns the default time picture
string for the country or region specified in the country/region_code parameter.

●

Set Century (CEESCEN) sets the century within which 2-digit year values are assumed to lie.●

Top | ILE CEE APIs | APIs by category

Date and Time Notation and Limits
Calendars used by the date and time ILE CEE APIs have specific notation and limits associated with them.
Following is a description of the notation and the limits.

Notation

Calendars based on eras use unique strings to identify these eras. An era is defined by a major event in time
from which date calculations take place. These identification strings are called picture strings. The
following picture strings are supported:

Japanese era

Identified by one 6-character string

<JJJJ>

Republic of China (ROC) era

Identified by one 6-character string

<CCCC>

or by one 10-character string

<CCCCCCCC>

The era picture string begins with the less than character (<) and ends with the greater than character (>).
The characters within these characters are either uppercase Js or uppercase Cs.

Note: An era is defined by a major event in time from which date calculations take place.

Limits

Date variables associated with certain calendars have certain limitations. These limits are:

starting Lilian date

The beginning of the Lilian date range is set to 15 October 1582. This is defined as Lilian day 1.
Lilian day zero is defined as 14 October 1582, and is used for calculation purposes in several of the
APIs. Lilian second 1 is defined as 00:00:01 on 14 October 1582, and is used for calculation
purposes in several of the APIs. Only Lilian dates greater than or equal to 1 are valid as input or
produced as output in the date and time APIs. This is the date of adoption of the Gregorian
calendar. Lilian dates preceding this date are undefined.

end Lilian date

The end of the Lilian date range is set to 31 December 9999. Lilian dates following this date are
undefined.

limit of current era

The maximum future date that can be expressed in the era system must be within the first 999 years
of the current era. Future dates beyond year 999 of the current era are not defined.

number of eras

The eras supported by ILE are shown within this section. No other past eras are supported by ILE
at the present time. Future eras will be added as required.

Top | ILE CEE APIs | APIs by category

Calculate Day of Week from Lilian Date
(CEEDYWK) API

 Required Parameter Group:

1 input_Lilian_date Input INT4
2 output_day_no Output INT4

 Omissible Parameter:

3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Calculate Day of Week from Lilian Date (CEEDYWK) API returns the day of the week as a number
between 1 and 7.

Required Parameter Group

input_Lilian_date (input)

A 32-bit binary integer representing the Lilian date, which is the number of days since 14 October
1582. For example, 16 May 1988 is day number 148 138. The valid range is 1 to 3 074 324 (31
December 9999).

output_day_no (output)

A 32-bit binary integer representing the day of week of the input_Lilian_date. For the day of week,
1 indicates Sunday, 2 indicates Monday, ..., 7 indicates Saturday. If input_Lilian_date is not valid,
output_day_no is set to 0 and CEEDYWK ends with a nonzero feedback code.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, feedback information (a
condition token) is returned to the calling procedure. If not specified and the requested operation
was not successfully completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE2512 The value for the given Lilian date is not valid

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

The number returned by CEEDYWK is useful for end-of-week calculations.●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Convert Date to Lilian Format (CEEDAYS) API

 Required Parameter Group:

1 input_char_date Input VSTRING
2 picture_string Input VSTRING
3 output_Lilian_date Output INT4

 Omissible Parameter:

4 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Convert Date to Lilian Format (CEEDAYS) API converts a string representing a date into a number
representing the number of days since 14 October 1582. This API makes it easier to do calculations such as the
number of days between two dates.

Required Parameter Group

input_char_date (input by descriptor)

A character string representing a date or timestamp in the format shown by picture_string. Field width is 5
to 255 characters. Input-char-date can contain leading or trailing blanks. Parsing for a date begins with the
first non-blank character unless the picture string contains leading blanks, in which case CEEDAYS skips
exactly that many positions before parsing begins. After a valid date is parsed, remaining characters are
ignored. Valid dates are in the range 15 October 1582 to 31 December 9999.

picture_string (input by descriptor)

A character string indicating the format of the date value in input_char_date, for example MM/DD/YY.
Each character in picture_string represents a character in input_char_date. If delimiters such as the slash (/)
appear in the picture string, then leading zeros can be omitted. For example:

CALL CEEDAYS('6/2/88' , 'MM/DD/YY', lildate, fc);
CALL CEEDAYS('06/02/88', 'MM/DD/YY', lildate, fc);
CALL CEEDAYS('060288' , 'MMDDYY' , lildate, fc);
CALL CEEDAYS('88154' , 'YYDDD' , lildate, fc);

would all assign the same value to variable lildate. If any time characters are included, for example
HH:MI:SS YY/MM/DD, they count as place holders but are otherwise ignored.

Picture Characters Used in Picture Strings contains a list of valid picture characters, and Examples of Picture
Strings Recognized by ILE Date and Time APIs has examples of valid picture strings.

If picture_string is null or blank, CEEDAYS obtains picture_string based on the current job value for the
country or region ID (CNTRYID). For example, if the current value for CNTRYID is US (United States),
the date format is MM/DD/YY. If the current job value for CNTRYID is FR (France), the date format is
DD.MM.YYYY.

This default mechanism makes it easy for translators to specify the preferred date format, and also easy for
application programs and library procedures to automatically use this format.

output_Lilian_date (output)

A 32-bit binary integer representing the Lilian date, which is the number of days since 14 October 1582. For
example, 16 May 1988 is day number 148 138. If input_char_date does not contain a valid date,
output_Lilian_date is set to 0 and CEEDAYS ends with a nonzero feedback code.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, feedback information (a
condition token) is returned to the calling procedure. If not specified and the requested operation was not
successfully completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0501 The operational descriptor data type is not valid

Severity: 30

CEE0502 Missing operational descriptor

Severity: 30

CEE2507 Insufficient data provided

Severity: 30

CEE2508 The value for day is not valid

Severity: 30

CEE2509 The value for era is not valid

Severity: 30

CEE2513 The value for Lilian date is not valid

Severity: 30

CEE2517 The value for month is not valid

Severity: 30

CEE2518 The picture string specification is not valid

Severity: 30

CEE2521 The value for year is not valid

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

The inverse of CEEDAYS is CEEDATE. The CEEDATE API converts a date in the Lilian format to
character format.

●

Date calculations can be performed easily on the output_Lilian_date, because it is an integer. Leap year and
end-of-year anomalies are avoided.

●

See Set Century (CEESCEN) API and Query Century (CEEQCEN) API for information on 2-digit years.●

If picture_string includes a Japanese era symbol <JJJJ>, the YY position in input_char_date is assumed to
contain the year within Japanese era. Examples of Picture Strings Recognized by ILE Date and Time APIs
has an example. Japanese Eras Used by ILE Date and Time APIs When <JJJJ> Specified contains a list of
the Japanese eras recognized by CEEDAYS.

●

If picture_string includes a Republic of China (ROC) era symbol <CCCC> or <CCCCCCCC>, the YY
position in input_char_date is assumed to contain the year within ROC era. Examples of Picture Strings
Recognized by ILE Date and Time APIs has an example. Republic of China Eras Used by ILE Date and
Time APIs When <CCCC> or <CCCCCCCC> Specified contains a list of the ROC eras recognized by
CEEDAYS. The coding of YYY or ZYY without including one of the era symbols is a picture string
specification error.

●

Picture Characters Used in Picture Strings

Picture
Characters

Explanation Valid Values Notes

Y
YY

YYY
ZYY
YYYY

1-digit year
2-digit year

3-digit year
3-digit year within era
4-digit year

0-9
00-99

000-999
1-999
1582-9999

Y valid for
output only. YY
implies the
years
xx00-xx99.
(The years are
dependent on
the century start
value and the
system date.)
YYY or ZYY
used with
<JJJJ>,
<CCCC>, and
<CCCCCCCC>.

<JJJJ> Japanese era name in DBCS
characters Heisei

(X'0E458D45BA0F')
Showa
(X'0E45B3457A0F')
Taisho
(X'0E455B45770F')
Meiji
(X'0E45A645840F')

Affects YY
field: if <JJJJ>
specified, YY
means the year
within Japanese
era. For
example, 1988 =
Showa 63. See
example in
Examples of
Picture Strings
Recognized by
ILE Date and
Time APIs.

<CCCC>
<CCCCCCCC>

Republic of China (ROC) era name in
DBCS characters MinKow

(X'0E4D8256CE0F')
ChuHwaMinKow
(X'0E4C845ADD4D8256CE0F')

Affects YY
field: if
<CCCC>
specified, YY
means the year
within ROC era.
For example,
1988 = Minkow
77. See example
in Examples of
Picture Strings
Recognized by
ILE Date and
Time APIs.

MM
ZM

2-digit month
1- or 2-digit month

01-12
1-12

For output,
leading zero
suppressed. For
input, ZM
treated as MM.

RRRR
RRRZ

Roman numeral month I-XII (Left-justified) For input,
source string is
folded to
uppercase. For
output,
uppercase only.
I=Jan, II=Feb,
..., XII=Dec.

MMM
Mmm
MMMMMMMMMM
Mmmmmmmmmm
MMMMMMMMMZ
Mmmmmmmmmz

3-char month, uppercase
3-char month, mixed case
20-char month, uppercase
20-char month, mixed case
trailing blanks suppressed
trailing blanks suppressed

JAN-DEC
Jan-Dec
JANUARY -DECEMBER
January -December
JANUARY-DECEMBER
January-December

For input,
source string
always folded to
uppercase. For
output, M
generates
uppercase and
m generates
lowercase.
Output is
padded with
blanks ()
(unless Z
specified) or
truncated to
match the
number of Ms.

DD
ZD
DDD

2-digit day of month
1- or 2-digit day of month
day of year (Julian day)

01-31
1-31
001-366

For output,
leading zero
suppressed. For
input, ZD and
DD are
equivalent. That
is, each accepts
the format of the
other.

HH
ZH

2-digit hour
1- or 2-digit hour

00-23
0-23

For output,
leading zero
suppressed. For
input, ZH and
HH are
equivalent. That
is, each accepts
the format of the
other. If AP is
specified, valid
values are
01-12.

MI minute 00-59

SS second 00-59

9
99
999

tenths of a second
hundredths of a second
thousandths of a second

0-9
00-99
000-999

No rounding.

AP
ap
A.P.
a.p.

AM/PM indicator
AM or PM
am or pm
A.M. or P.M.

AP affects
HH/ZH field.
For input,
source string
always folded to
uppercase. For
output, AP
generates
uppercase and
ap generates
lowercase.

W
WWW
Www
WWWWWWWWWW
Wwwwwwwwww
WWWWWWWWWZ
Wwwwwwwwwz

1-char day-of-week
3-char day, uppercase
3-char day, mixed case
10-char day, uppercase
10-char day, mixed case
trailing blanks suppressed
trailing blanks suppressed

S, M, T, W, T, F, S
SUN-SAT
Sun-Sat
SUNDAY -SATURDAY
Sunday -Saturday
SUNDAY-SATURDAY
Sunday-Saturday

For input, Ws
are ignored. For
output, W
generates
uppercase and w
generates
lowercase.
Output padded
with blanks
(unless Z
specified) or
truncated to
match the
number of Ws.

All others, not
including
numbers 0
through 9 and
any characters
used in the
month or
day-of-week
names.

delimiters X'01'-X'FF'(X'00' reserved for ILE
use.)

For input,
treated as
delimiters
between the
month, day,
year, hour,
minute, second,
and fraction of a
second. For
output, copied
exactly as is to
the target string.

Examples of Picture Strings Recognized by ILE Date and Time APIs

Picture String Example Notes

YYMMDD
YYYYMMDD
YYYY-MM-DD

<JJJJ> YY.MM.DD

<CCCC> YY.MM.DD

880516
19880516
1988-05-16

Showa 63.05.16

MinKow 77.05.16

1988-5-16 would
also be valid
input.

Showa is a
Japanese era
name.
Showa 63 = 1988.

MinKow is an
ROC era name.
MinKow 77 =
1988.

MMDDYY
MM/DD/YY
ZM/ZD/YY
MM/DD/YY
MM/DD/Y

050688
05/06/88
5/6/88
05/06/1988
05/06/8

1-digit year
format (Y) valid
for output only

DD.MM.YY
DD-RRRR-YY
DD MMM YY
DD Mmmmmmmmmm YY
ZD Mmmmmmmmmz YY
Mmmmmmmmmz ZD, YYYY
ZDMMMMMMMMZYY

09.06.88
09- VI-88
09 JUN 88
09 June 88
9 June 88
June 9, 1988
9JUNE88

Z suppresses zeros
and blanks

YY.DDD
YYDDD
YYYY/DDD

88.137
88137
1988/137

Julian date

YYMMDDHHMISS
YYYYMMDDHHMISS
YYYY-MM-DD HH:MI:SS.999
WWW, ZM/ZD/YY HH:MI AP
Wwwwwwwwwz, DD Mmm YYYY, ZH:MI AP

880516204229
19880516204229
1988-05-16 20:42:29.046
MON, 5/16/88 08:42 PM
Monday, 16 May 1988, 8:42 PM

Timestamp --
valid only for
CEESECS and
CEEDATM. If
used with
CEEDATE, time
positions are left
blank. If used with
CEEDAYS, HH,
MI, SS, and 999
fields are ignored.

Japanese Eras Used by ILE Date and Time APIs When <JJJJ> Specified

First date of Japanese Era Era Name Era Name in IBM Japanese DBCS Code Valid Year (YY, ZYY)
Values

1868-09-08 Meiji X'0E45A645840F' 01-45

1912-07-30 Taisho X'0E455B45770F' 01-15

1926-12-25 Showa X'0E45B3457A0F' 01-64

1989-01-08 Heisei X'0E458D45BA0F' 01-999 (01 = 1989)

Republic of China Eras Used by ILE Date and Time APIs When <CCCC> or <CCCCCCCC> Specified

First date of ROC Era Era Name Era Name in Traditional Chinese DBCS Code Valid Year (YY,
ZYY) Values

1912-01-01 MinKow X'0E4D8256CE0F' 01-999 (77 =
1988)

 ChuHwaMinKow X'0E4C845ADD4D8256CE0F'

Example

Convert a date to the Lilian format to calculate the date 60 days hence:

CALL CEEDAYS ('880516','YYMMDD', ndays, fc);
ndays = ndays + 60;
CALL CEEDATE (ndays, 'YYMMDD', newdate, fc);

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Convert Integers to Seconds (CEEISEC) API

 Required Parameter Group:

1 input_year Input INT4
2 input_month Input INT4
3 input_day Input INT4
4 input_hours Input INT4
5 input_minutes Input INT4
6 input_seconds Input INT4
7 input_milliseconds Input INT4
8 output_seconds Output FLOAT8

 Omissible Parameter:

9 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe:

The Convert Integers to Seconds (CEEISEC) API converts separate binary integers representing year,
month, day, hour, minute, second, and millisecond to a number representing the number of seconds since
00:00:00 14 October 1582. Use CEEISEC instead of CEESECS when the input is in numeric format rather
than character format.

Required Parameter Group

input_year (input)

A 32-bit binary integer representing year. The range is 1582 through 9999.

input_month (input)

A 32-bit binary integer representing month. The range is 1 through 12.

input_day (input)

A 32-bit binary integer representing day. The range is 1 through 31.

input_hours (input)

A 32-bit binary integer representing hours. The range is 0 through 23.

input_minutes (input)

A 32-bit binary integer representing minutes. The range is 0 through 59.

input_seconds (input)

A 32-bit binary integer representing seconds. The range is 0 through 59.

input_milliseconds (input)

A 32-bit binary integer representing milliseconds. The range is 0 through 999.

output_seconds (output)

A 64-bit double floating-point number representing the number of seconds since 00:00:00 on 14
October 1582. For example, 00:00:01 on 15 October 1582 is second number 86,401 (24*60*60 +
01). The range is 86,400 to 265 621 679 999.999 (23:59:59.999 31 December 9999).

If any input values are not valid, output_seconds is set to zero.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, feedback information (a
condition token) is returned to the calling procedure. If not specified and the requested operation
was not successfully completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE2510 The value for hour is not valid

Severity: 30

CEE2511 The value for day is not valid

Severity: 30

CEE2513 The value for Lilian date is not valid

Severity: 30

CEE2514 The value for Lilian year is not valid

Severity: 30

CEE2515 The value for millisecond is not valid

Severity: 30

CEE2516 The minute value is not valid

Severity: 30

CEE2517 The value for month is not valid

Severity: 30

CEE2519 The value for second is not valid

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

The inverse of CEEISEC is CEESECI. The CEESECI API converts number of seconds to integer
year, month, day, and so forth.

●

To convert output_seconds to a Lilian day number, divide output_seconds by 86 400 (number of
seconds in a day).

●

CEEISEC can be used to do date arithmetic that cannot otherwise be done with Lilian dates or
number of seconds. For example, to add exactly 6 months to a date rather than add 180 days, use
CEEISEC.

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Convert Lilian Date to Character Format (CEEDATE)
API

 Required Parameter Group:

1 input_Lilian_date Input INT4
2 picture_string Input VSTRING
3 output_char_date Output VSTRING

 Omissible Parameter:

4 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Convert Lilian Date to Character Format (CEEDATE) API formats a number representing a Lilian date. The output is
a character string such as 1988/07/26.

Required Parameter Group

input_Lilian_date (input)

A 32-bit binary integer representing the Lilian date, which is the number of days since 14 October 1582. For
example, 16 May 1988 is day number 148 138. Valid range is 1 to 3 074 324 (31 December 9999).

picture_string (input by descriptor)

A character string representing the desired format of output_char_date, for example MM/DD/YY. Each character
in picture_string represents a character in output_char_date. If delimiters such as the slash (/) appear in the picture
string, they are copied as is to output_char_date.

Picture Characters Used in Picture Strings has a list of valid picture characters, and Examples of Picture Strings
Recognized by ILE Date and Time APIs contains examples of valid picture strings.

If picture_string is null or blank, CEEDATE obtains picture_string based on the current job value for the country
or region ID (CNTRYID). For example, if the current job value for CNTRYID is US (United States), the date
format is MM/DD/YYYY. If the current job value for CNTRYID is FR (France), the date format is
DD.MM.YYYY.

This default mechanism makes it easy for translators to specify the preferred date format, and also easy for
application programs and library procedures to automatically use this format.

output_char_date (output by descriptor)

A character string that is the result of converting input_Lilian_date to the format specified by picture_string. If
necessary, output will be truncated to the length of output_char_date. Sample Output of the CEEDATE API
contains sample output dates. If input_Lilian_date is not valid, output_char_date is set to all blanks and
CEEDATE ends with a nonzero feedback-code.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, feedback information (a condition
token) is returned to the calling procedure. If not specified and the requested operation was not successfully
completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0501 The operational descriptor data type is not valid

Severity: 30

CEE0502 Missing operational descriptor

Severity: 30

CEE2512 The value for the given Lilian date is not valid

Severity: 30

CEE2518 The picture string specification is not valid

Severity: 30

CEE2522 Lilian date outside of era

Severity: 30

CEE2526 Date truncated

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

The inverse of CEEDATE is CEEDAYS. The CEEDAYS API converts character dates to the Lilian format.●

If picture_string includes a Japanese era symbol <JJJJ>, the YY position in output_char_date is replaced by "year
within Japanese era". Examples of Picture Strings Recognized by ILE Date and Time APIs has an example.
Japanese Eras Used by ILE Date and Time APIs When <JJJJ> Specified contains a list of Japanese eras supported
by CEEDATE.

●

If picture_string includes a Republic of China (ROC) Era symbol <CCCC> or <CCCCCCCC>, the YY position in
output_char_date is replaced by the year within ROC era. Examples of Picture Strings Recognized by ILE Date
and Time APIs has an example. Republic of China Eras Used by ILE Date and Time APIs When <CCCC> or
<CCCCCCCC> Specified contains a list of ROC eras supported by CEEDATE.

●

Sample Output of the CEEDATE API

input_Lilian_date picture_string output_char_date

148138
YY
YYMM
YY-MM
YYMMDD
YYYYMMDD
YYYY-MM-DD
YYYY-ZM-ZD
<JJJJ> YY.MM.DD
<CCCC> YY.MM.DD

88
8805
88-05
880516
19880516
1988-05-16
1988-5-16
Showa 63.05.16 (in a DBCS string)
MinKow 77.05.16 (in a DBCS string)

148139
MM
MMDD
MM/DD
MMDDYY
MM/DD/YYYY
ZM/DD/YYYY

05
0517
05/17
051788
05/17/1988
5/17/1988

148140
DD
DDMM
DDMMYY
DD.MM.YY
DD.MM.YYYY
DD Mmm YYYY

18
1805
180588
18.05.88
18.05.1988
18 May 1988

148141
DDD
YYDDD
YY.DDD
YYYY.DDD

140
88140
88.140
1988.140

148142
YY/MM/DD HH:MI:SS.99
YYYY/ZM/ZD ZH:MI AP

88/05/20 00:00:00.00
88/5/20 0:00 AM

148143
WWW., MMM DD, YYYY
Www., Mmm DD, YYYY
Wwwwwwwwww, Mmmmmmmmmm DD, YYYY
Wwwwwwwwwz, Mmmmmmmmmz DD, YYYY

SAT., MAY 21, 1988
Sat., May 21, 1988
Saturday , May 21, 1988
Saturday, May 21, 1988

Example

Convert a date from the Lilian format to IBM USA standard format MM/DD/YYYY:

CALL CEEDATE (lildate, 'MM/DD/YYYY', usadate, fc);

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Convert Seconds to Character Timestamp
(CEEDATM) API

 Required Parameter Group:

1 input_seconds Input FLOAT8
2 picture_string Input VSTRING
3 output_timestamp Output VSTRING

 Omissible Parameter:

4 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Convert Seconds to Character Timestamp (CEEDATM) API formats a number representing the number of
seconds since 00:00:00 14 October 1582. The output is a character string such as 1988/07/26 20:37:00.

Required Parameter Group

input_seconds (input)

A 64-bit double floating-point number representing the number of seconds since 00:00:00 on 14 October
1582. For example, 00:00:01 on 15 October 1582 is second number 86,401 (24*60*60 + 01). The valid
range is 86 400 to 265 621 679 999.999 (23:59:59.999 31 December 9999).

picture_string (input by descriptor)

A character string representing the desired format of output_timestamp, for example MM/DD/YY
HH:MM AP. Each character in picture_string represents a character in output_timestamp. If delimiters
such as the slash (/) appear in the picture string, they are copied as is to output_char_date.

Picture Characters Used in Picture Strings contains a list of valid picture characters, and Examples of
Picture Strings Recognized by ILE Date and Time APIs has examples of valid picture strings.

If picture_string is null or blank, CEEDATM obtains picture_string based on the current job value for the
country or region ID (CNTRYID). For example, if the current job value for CNTRYID is US (United
States), the date-time format is MM/DD/YYYY HH:MI AP. If the current job value for CNTRYID is FR
(France), the date-time format is YYYY-MM-DD HH.MI.

This default mechanism makes it easy for translators to specify the preferred timestamp format, and also
easy for application programs and library procedures to automatically use this format.

output_timestamp (output by descriptor)

A character string that is the result of converting input_seconds to the format specified by picture_string.
If necessary, output is truncated to the length of output_timestamp. Sample Output of the CEEDATM API
shows sample output. If input_seconds is not valid, output_timestamp is set to all blanks and CEEDATM

ends with a nonzero feedback-code.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, feedback information (a
condition token) is returned to the calling procedure. If not specified and the requested operation was not
successfully completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0501 The operational descriptor data type is not valid

Severity: 30

CEE0502 Missing operational descriptor

Severity: 30

CEE2505 The value for seconds is out of range

Severity: 30

CEE2506 The value for seconds is outside of era

Severity: 30

CEE2518 The picture string specification is not valid

Severity: 30

CEE2527 Timestamp truncated

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

The inverse of CEEDATM is CEESECS. The CEESECS converts timestamp values to number-of-seconds
values.

●

If the input value is a Lilian date instead of seconds, multiply the Lilian date by 86 400 (number of
seconds in a day), and pass the new value to CEEDATM.

●

If picture_string includes the Japanese era symbol <JJJJ>, the YY position in output_timestamp is
replaced by the year within Japanese era. Examples of Picture Strings Recognized by ILE Date and Time
APIs has an example. Japanese Eras Used by ILE Date and Time APIs When <JJJJ> Specified contains a
list of Japanese eras supported by CEEDATM.

●

If picture_string includes the Republic of China (ROC) era symbol <CCCC> or <CCCCCCCC>, the YY
position in output_timestamp is replaced by the year within ROC era. See Examples of Picture Strings
Recognized by ILE Date and Time APIs for an example. See Republic of China Eras Used by ILE Date

●

and Time APIs When <CCCC> or <CCCCCCCC> Specified for a list of ROC eras supported by
CEEDATM.

Sample Output of the CEEDATM API

input_seconds picture_string output_timestamp

12 799 191 601.000
YYMMDD
HH:MI:SS
YY-MM-DD
YYMMDDHHMISS
YY-MM-DD HH:MI:SS
YYYY-MM-DD HH:MI:SS AP

880516
19:00:01
88-05-16
880516190001
88-05-16 19:00:01
1988-05-16 07:00:01 PM

12 799 191 661.986
DD Mmm YY
DD MMM YY HH:MM
WWW, MMM DD, YYYY ZH:MI AP
Wwwwwwwwwz, ZM/ZD/YY HH:MI:SS.99

16 May 88
16 MAY 88 19:01
MON, MAY 16, 1988 7:01 PM
Monday, 5/16/88 19:01:01.98

12 799 191 662.009
YYYY
YY
Y
MM
ZM
RRRR
MMM
Mmm
Mmmmmmmmmm
Mmmmmmmmmz
DD
ZD
DDD
HH
ZH
MI
SS
99
999
AP
WWW
Www
Wwwwwwwwww
Wwwwwwwwwz

1988
88
8
05
5
V
MAY
May
May
May
16
16
137
19
19
01
02
00
009
PM
MON
Mon
Monday
Monday

Example

Convert number of seconds to YYYY/MM/DD HH.MM.SS format:

CALL CEEDATM (secs, 'YYYY/MM/DD HH.MI.SS', timestmp,
 fc);

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Convert Seconds to Integers (CEESECI) API

 Required Parameter Group:

1 input_seconds Input FLOAT8
2 output_year Output INT4
3 output_month Output INT4
4 output_day Output INT4
5 output_hours Output INT4
6 output_minutes Output INT4
7 output_seconds Output INT4
8 output_milliseconds Output INT4

 Omissible Parameter:

9 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Convert Seconds to Integers (CEESECI) API converts a number representing the number of seconds
since 00:00:00 14 October 1582 to seven separate binary integers representing year, month, day, hour,
minute, second, and millisecond. Use CEESECI instead of CEEDATM when the output is needed in
numeric format rather than in character format.

Required Parameter Group

input_seconds (input)

A 64-bit double floating-point number representing the number of seconds since 00:00:00 on 14
October 1582. For example, 00:00:01 on 15 October 1582 is second number 86 401 (24*60*60 +
01). The valid range is 86 400 to 265 621 679 999.999 (23:59:59.999 31 December 9999).

If input_seconds is not valid, all output parameters are set to zero.

output_year (output)

A 32-bit binary integer representing year. The range is 1582 through 9999.

output_month (output)

A 32-bit binary integer representing month. The range is 1 through 12.

output_day (output)

A 32-bit binary integer representing day. The range is 1 through 31.

output_hours (output)

A 32-bit binary integer representing hours. The range is 0 through 23.

output_minutes (output)

A 32-bit binary integer representing minutes. The range is 0 through 59.

output_seconds (output)

A 32-bit binary integer representing seconds. The range is 0 through 59.

output_milliseconds (output)

A 32-bit binary integer representing milliseconds. The range is 0 through 999.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, feedback information (a
condition token) is returned to the calling procedure. If not specified and the requested operation
was not successfully completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE2505 The value for seconds is out of range

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

The inverse of CEESECI is CEEISEC. The CEEISEC API converts integer year, month, day, hour,
minute, second, and millisecond to number of seconds.

●

If the input value is a Lilian date instead of seconds, multiply the Lilian date by 86 400 (number of
seconds in a day), and pass the new value to CEESECI.

●

CEESECI can be used to do date arithmetic that cannot otherwise be done with Lilian dates or
number of seconds.

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Convert Timestamp to Number of Seconds
(CEESECS) API

 Required Parameter Group:

1 input_timestamp Input VSTRING
2 picture_string Input VSTRING
3 output_seconds Output FLOAT8

 Omissible Parameter:

4 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Convert Timestamp to Number of Seconds (CEESECS) API converts a string representing a timestamp
into a number representing the number of seconds since 00:00:00 14 October 1582. This API makes it
easier to do time calculations, such as the elapsed time between two timestamps.

Required Parameter Group

input_timestamp (input by descriptor)

A character string representing a date or timestamp in the format shown by picture_string. The
field width is 5 through 255 characters. Input-timestamp may contain leading or trailing blanks.
After a valid date or timestamp is parsed, remaining characters are ignored. Valid dates are in the
range 15 October 1582 to 31 December 9999. A full date must be specified. Valid times are in the
range 00:00:00.000 to 23:59:59.999.

If any part or all of the time value is omitted, zeros are substituted for the remaining values. For
example,

1988-05-17-19:02 is equivalent to 1988-05-17-19:02:00
1988-05-17 is equivalent to 1988-05-17-00:00:00

picture_string (input by descriptor)

A character string indicating the format of the date or timestamp value in input_timestamp, for
example

YY/MM/DD
HH.MI.SS.

Each character in picture_string represents a character in input_timestamp. If delimiters such as
the slash (/) appear in the picture string, leading zeros may be omitted. For example, these calls

assign the same value to the variable secs.

CALL CEESECS('88/06/03 15.35.03',
 'YY/MM/DD HH.MI.SS', secs, fc);

CALL CEESECS('88/6/3 15.35.03' ,
 'YY/MM/DD HH.MI.SS', secs, fc);

CALL CEESECS('88/6/3 3.35.03 PM',
 'YY/MM/DD HH.MI.SS AP', secs, fc);

CALL CEESECS('88.155 3.35.03 pm',
 'YY.DDD HH.MI.SS AP', secs, fc);

See Picture Characters Used in Picture Strings for a list of valid picture characters, and Examples
of Picture Strings Recognized by ILE Date and Time APIs for examples of valid picture strings.

If picture_string is null or blank, CEESECS obtains picture_string based on the current job value
for the country or region ID (CNTRYID). For example, if the current job value for CNTRYID is
US (United States), the date format is MM/DD/YYYY. If the current job value for CNTRYID is
FR (France), the date format is DD.MM.YYYY.

This default mechanism makes it easy not only for translators to specify the preferred date format,
but also for application programs and library routines to automatically use this format.

output_seconds (output)

A 64-bit double floating-point number representing the number of seconds since 00:00:00 on 14
October 1582. For example, 00:00:01 on 15 October 1582 is second 86 401 (24*60*60 + 01).
19:00:01.12 on 16 May 1988 is second 12 799 191 601.12. The largest value that can be
represented is 23:59:59.999 on 31 December 9999, which is second 265 621 679 999.999.

Note: A 64-bit double floating-point value can accurately represent approximately 16 significant
decimal digits without loss of precision. Therefore, accuracy is available to the nearest millisecond
(15 decimal digits).

If input_timestamp does not contain a valid date or timestamp, output_seconds is set to 0 and
CEESECS ends with a nonzero feedback code.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, feedback information (a
condition token) is returned to the calling routine. If not specified, and the requested operation was
not successfully completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0501 The operational descriptor data type is not valid

Severity: 30

CEE0502 Missing operational descriptor

Severity: 00

CEE2508 The value for day is not valid

Severity: 30

CEE2509 The value for era is not valid

Severity: 30

CEE2510 The value for hour is not valid

Severity: 30

CEE2513 The value for Lilian date is not valid

Severity: 30

CEE2515 The value for millisecond is not valid

Severity: 30

CEE2516 The minute value is not valid

Severity: 30

CEE2517 The value for month is not valid

Severity: 30

CEE2518 The picture string specification is not valid

Severity: 30

CEE2519 The value for second is not valid

Severity: 30

CEE2521 The value for year is not valid

Severity: 30

CEE2525 Timestamp picture mismatch

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

The inverse of CEESECS is CEEDATM. The CEEDATM API converts output_seconds to
character format.

●

Elapsed time calculations can be performed easily on the output_seconds, because it represents
elapsed time. Leap year and end-of-year anomalies are avoided.

●

See Set Century (CEESCEN) API and Query Century (CEEQCEN) API for information on 2-digit
years.

●

If picture_string includes a Japanese era symbol <JJJJ>, the YY position in input_timestamp is
assumed to contain the year within Japanese era. See Examples of Picture Strings Recognized by

●

ILE Date and Time APIs for an example. See Japanese Eras Used by ILE Date and Time APIs
When <JJJJ> Specified for a list of the Japanese eras recognized by CEESECS.

If picture_string includes an ROC era symbol <CCCC> or <CCCCCCCC> , the YY position in
input_timestamp is assumed to contain the year within ROC era. See Examples of Picture Strings
Recognized by ILE Date and Time APIs for an example. See Republic of China Eras Used by ILE
Date and Time APIs When <CCCC> or <CCCCCCCC> Specified for a list of the ROC eras
recognized by CEESECS.

●

Example

Calculate the difference between two timestamps, in hours:

CALL CEESECS ('19880516190001','YYYYMMDDHHMISS',
 secs1, fc);
CALL CEESECS ('1988-05-17-03.00.01',
 'YYYY-MM-DD-HH.MI.SS', secs2, fc);
 diff = (secs2 - secs1) / 3600;
 /* Assume floating-point division */

●

Convert a timestamp to number of seconds, to calculate the date and time 36 hours ago:

now = '1988/07/26 19:55:00';
CALL CEESECS (now, 'YYYY/MM/DD HH:MI:SS', secs, fc);
secs = secs - 36*60*60;
CALL CEEDATM (secs, 'YYYY/MM/DD HH:MI:SS', before,
 fc);

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Get Current Greenwich Mean Time (CEEGMT)
API
The Get Current Greenwich Mean Time (CEEGMT) API is an alias of CEEUTC. See Get Universal Time
Coordinated (CEEUTC) API for details.

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Get Current Local Time (CEELOCT) API

 Required Parameter Group:

1 output_Lilian Output INT4
2 output_seconds Output FLOAT8
3 output_Gregorian Output CHAR23

 Omissible Parameter:

4 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe:

The Get Current Local Time (CEELOCT) API returns the current local time in three formats: Lilian date
(the number of days since 14 October 1582), Lilian timestamp (the number of seconds since 00:00:00 14
October 1582), and Gregorian character string (in the form YYYYMMDDHHMISS999'). These values are
compatible with the other ILE date and time APIs and with existing language intrinsic functions.
CEELOCT performs the same service, faster, than calling CEEUTC, CEEUTCO, and CEEDATM in
succession.

Required Parameter Group

output_Lilian (output)

A 32-bit binary integer representing the current local date in the Lilian format. That is, day 1 is 15
October 1582, day 148 887 is 4 June 1990. If local time is not available from the system,
output_Lilian is set to 0 and CEELOCT ends with a nonzero feedback code.

output_seconds (output)

A 64-bit double floating point number representing the current local date and time as the number of
seconds since 00:00:00 on 14 October 1582. For example, 00:00:01 on 15 October 1582 is second
number 86 401 (24*60*60 + 01). 19:00:01.078 on 4 June 1990 is second number
12 863 905 201.078. If local time is not available from the system, output_seconds is set to 0 and
CEELOCT ends with a nonzero feedback code.

output_Gregorian (output)

A 17-byte character string in the form YYYYMMDDHHMISS999 representing local year, month,
day, hour, minute, second, and millisecond.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, feedback information (a
condition token) is returned to the calling procedure. If not specified and the requested operation
was not successfully completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE2502 Local time not available

Severity: 30

Usage Notes

Use CEEUTC to determine Universal Time Coordinated (UTC).●

Use CEEUTCO to obtain the offset from UTC to local time.●

The character value returned by CEELOCT is designed to match that produced by existing
language intrinsic functions. The numeric values returned can be used to simplify date calculations.

●

If the format of output_Gregorian is inappropriate, CEEDATM can be used to convert
output_seconds to any required format.

●

Example

Extract current local date and time in the form YYYYMMDDHHMISS999:

CALL CEELOCT (days, secs, localdatetime, fc);

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Get Offset from Universal Time Coordinated to
Local Time (CEEUTCO) API

 Required Parameter Group:

1 offset_hours Output INT4
2 offset_minutes Output INT4
3 offset_seconds Output FLOAT8

 Omissible Parameter:

4 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Get Offset from Universal Time Coordinated to Local Time (CEEUTCO) API provides three values
representing the current offset from Universal Time Coordinated (UTC) to local system time.
Offset_seconds can be used with CEEUTC to calculate local date and time. Offset_hours and offset_minutes
express the offset from UTC in terms of hours and minutes.

Required Parameter Group

offset_hours (output)

A 32-bit binary integer representing the offset from UTC to local time, in hours; for Pacific
Standard Time offset_hours is -8. The range for offset_hours is -12 to -13, where +13 is Daylight
Savings Time in the +12 time zone. If local time offset is not available, offset_hours is set to 0 and
CEEUTCO ends with a nonzero feedback code.

offset_minutes (output)

A 32-bit binary integer representing the number of additional minutes that local time is ahead of, or
behind, UTC. The range for offset_minutes is 0 to 59. If the local time offset is not available,
offset_minutes is set to 0 and CEEUTCO ends with a nonzero feedback code.

offset_seconds (output)

A 64-bit double floating point (output) number representing the offset from UTC to local time, in
seconds. For example, Pacific Standard Time is eight hours behind UTC. If the system is in the
Pacific time zone during standard time, CEEUTCO returns -28 800 (-8 * 60 * 60). The range for
offset_seconds is -43 200 to +46 800. If the local time offset is not available from the system,
offset_seconds is set to 0 and CEEUTCO ends with a nonzero feedback code.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, feedback information (a
condition token) is returned to the calling procedure. If not specified and the requested operation
was not successfully completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE2503 UTC offset not available

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

The values returned by CEEUTCO and CEEUTC can be used together to calculate the local date
and time.

●

The CEEDATM API can be used to convert number of seconds to character timestamp.●

Example

Extract current UTC and convert to local date and time in YYYY-MM-DD HH.MM.SS format:

CALL CEEUTC (days, secs, fc);
CALL CEEUTCO (hrs, mins, secoffset, fc);
secs = secs + secoffset;
CALL CEEDATM (secs, 'YYYY-MM-DD HH.MI.SS', timestmp,
 fc);

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Get Universal Time Coordinated (CEEUTC) API

 Required Parameter Group:

1 output_UTC_Lilian Output INT4
2 output_UTC_seconds Output FLOAT8

 Omissible Parameter:

3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Get Universal Time Coordinated (CEEUTC) API returns the current Universal Time Coordinated as
both a Lilian date and as the number of seconds since 00:00:00 14 October 1582. These values are
compatible with the other ILE date and time APIs.

Required Parameter Group

output_UTC_Lilian (output)

A 32-bit binary integer representing the current date in Greenwich, England, in the Lilian format.
That is, the number of days since 14 October 1582, also known as Universal Time Coordinated
(UTC). For example, 16 May 1988 is day number 148 138. If UTC is not available from the
system, output_UTC_Lilian is set to 0 and CEEUTC ends with a nonzero feedback code.

output_UTC_seconds (output)

A 64-bit double floating-point number representing the current date and time in Greenwich,
England as the number of seconds since 00:00:00 on 14 October 1582. For example, 00:00:01 on
15 October 1582 is second number 86 401 (24*60*60 + 01). 19:00:01.078 on 16 May 1988 is
second number 12 799 191 601.078. If UTC is not available from the system, output_UTC_seconds
is set to 0 and CEEUTC ends with a nonzero feedback code.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, feedback information (a
condition token) is returned to the calling procedure. If not specified and the requested operation
was not successfully completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE2502 Local time not available

Severity: 30

CEE2531 UTC not available

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

Use CEELOCT to obtain local time.●

Use CEEUTCO to obtain the offset from UTC to local time.●

The values returned by CEEUTC are handy for wall-clock calculations.●

CEEDATE will convert output_UTC_Lilian to character date, and CEEDATM will convert
output_UTC_seconds to character timestamp.

●

Example

Extract current UTC and convert to local date and time in YYMMDDHHMMSS format:

CALL CEEUTC (days, secs, fc);
CALL CEEUTCO (hrs, mins, secoffset, fc);
secs = secs + secoffset;
CALL CEEDATM (secs, 'YYMMDDHHMISS', localdatetime,
 fc);

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Query Century (CEEQCEN) API

 Required Parameter:

1 century_start Output INT4

 Omissible Parameter:

2 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Query Century (CEEQCEN) API queries the century within which 2-digit year values are assumed to
lie. Use it in conjunction with CEESCEN when it is necessary to save and restore the current setting. If the
ILE default is in effect, all 2-digit years are assumed to lie within a 100-year window. This window starts
80 years prior to the system date and CEEQCEN returns a value of 80.

Required Parameter

century_start (output)

An integer between 0 and 100. A value of 80 (the ILE default) means all 2-digit years lie within the
100-year window starting 80 years before the system date. For example, in 1990, all 2-digit years
are assumed to represent dates between 1910 and 2009, inclusive.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, a condition token is
returned to the calling procedure. If not specified and the requested operation was not successfully
completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE9902 Unexpected user error occurred in &1

Severity: 30

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Return Default Date and Time Strings for
Country or Region (CEEFMDT) API

 Omissible Parameter:

1 country/region_code Input CHAR2

 Required Parameter:

2 datetime_str Output VSTRING

 Omissible Parameter:

3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Return Default Date and Time String for Country or Region (CEEFMDT) API returns the default date
and time picture strings for the country or region specified in the country/region_code parameter.

Omissible Parameter

country/region_code (input)

The 2-character string that represents the country or region code. See Country/Region Codes for
values. If this value is blank, the default country or region code is used.

Required Parameter

datetime_str (output by descriptor)

The default date and time picture string for the country or region code is placed into this character
string variable.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, a condition token is
returned to the calling procedure. If not specified and the requested operation was not successfully
completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE3470 The resulting string is truncated

Severity: 20

CEE3471 The country/region_code identifier is not valid for CEEFMDT

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Country/Region Code Identifiers

The following table lists the country or region code identifiers.

Country/Region Codes

Country/Region ID

Albania AL

Algeria DZ

Argentina AR

Australia AU

Austria AT

Bahrain BH

Belgium BE

Bolivia BO

Brazil BR

Bulgaria BG

Canada CA

Chile CL

Colombia CO

Costa Rica CR

Countries of the former Yugoslavia YU

Czech Republic CZ

Denmark DK

Dominican Republic DO

Ecuador EC

Egypt EG

El Salvador SV

Finland FI

France FR

Germany DE

Greece GR

Guatemala GT

Honduras HN

Hungary HU

Iceland IS

India IN

Iran IR

Iraq IQ

Ireland IE

Israel IL

Italy IT

Japan JP

Jordan JO

Korea, Democratic People's Republic KP

Korea, Republic of KR

Kuwait KW

Lebanon LB

Libya LY

Mexico MX

Morocco MA

Netherlands NL

New Zealand NZ

Norway NO

Oman OM

Pakistan PK

Panama PA

Paraguay PY

People's Republic of China CN

Peru PE

Poland PL

Portugal PT

Qatar QA

Romania RO

Russia RU

Saudi Arabia SA

Slovakia SK

Slovenia SI

South Africa ZA

Spain ES

Sudan SD

Sweden SE

Switzerland CH

Syria SY

Taiwan TW

Thailand TH

Tunisia TN

Turkey TR

United Arab Emirates AE

United Kingdom GB

United States US

Uruguay UY

Venezuela VE

Yemen YE

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Return Default Date String for Country or
Region (CEEFMDA) API

 Omissible Parameter:

1 country/region_code Input CHAR2

 Required Parameter:

2 date_pic_str Output CHAR

 Omissible Parameter:

3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Return Default Date String for Country or Region (CEEFMDA) API returns the default date picture
string for the country or region specified in the country/region_code parameter.

Omissible Parameter

country/region_code (input)

The 2-character string that represents the country or region code. See Country/Region Codes for
specific codes. If this value is blank, the default country or region code is used.

Required Parameter

date_pic_str (output by descriptor)

The default date picture string for the country or region code is placed into this character string
variable.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, a condition token is
returned to the calling procedure. If not specified and the requested operation was not successfully
completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE3466 The date picture string is truncated

Severity: 20

CEE3467 The country/region_code identifier is not valid for CEEFMDA

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Return Default Time String for Country or
Region (CEEFMTM) API

 Omissible Parameter:

1 country/region_code Input CHAR2

 Required Parameter:

2 time_pic_str Output VSTRING

 Omissible Parameter:

3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Return Default Time String for Country or Region (CEEFMTM) API returns the default time picture
string for the country or region specified in the country/region_code parameter.

Omissible Parameter

country/region_code (input)

The 2-character string that represents the country or region code. See Country/Region Codes for
values. If this value is blank, the default country or region code will be used.

Required Parameter

time_pic_str (output)

The default time picture string for the country or region code is placed into this character string
variable.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, a condition token is
returned to the calling procedure. If not specified and the requested operation was not successfully
completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE3468 The time picture string is truncated

Severity: 20

CEE3469 The country/region_code identifier is not valid for CEEFMTM

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Set Century (CEESCEN) API

 Required Parameter:

1 century_start Input INT4

 Omissible Parameter:

2 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Set Century (CEESCEN) API sets the century within which 2-digit year values are assumed to lie. Use
it in conjunction with CEEDAYS or CEESECS when processing date values that contain 2-digit years (in
the YYMMDD format), and when the ILE default century interval does not meet the requirements of a
particular application.

Required Parameter

century_start (input)

An integer between 0 and 100. A value of 80 (the ILE default) means all 2-digit years lie within the
100-year window starting 80 years before the system date. For example, in 1990, all 2-digit years
are assumed to represent dates between 1910 and 2009, inclusive.

Omissible Parameter

fc (output/optional)

A 12-byte feedback code passed by reference. If specified as an argument, a condition token is
returned to the calling procedure. If not specified and the requested operation was not successfully
completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE2502 Local time not available

Severity: 30

CEE2533 The century_start value is not between 0 - 100

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Math APIs
The ILE math bindable APIs can be called either through the intrinsic functions of an ILE high-level
language, or from an ILE HLL as a call to the API.

For additional information on using the math APIs, see:

Data Types and Limits●

Calling Math Bindable APIs●

Math Bindable APIs are Procedures●

ILE Math Bindable API Descriptions●

Message Descriptions●

Messages that can be generated by the math bindable APIs are summarized in Message Descriptions.

The following math bindable APIs are presented in the Math API Descriptions table.

Absolute Function (CEESxABS)●

Arccosine (CEESxACS)●

Arcsine (CEESxASN)●

Arctangent (CEESxATN)●

Arctangent2 (CEESxAT2)●

Conjugate of Complex (CEESxCJG)●

Cosine (CEESxCOS)●

Cotangent (CEESxCTN)●

Error Function and Its Complement (CEESxERx)●

Exponential Base e (CEESxEXP)●

Exponentiation (CEESxXPx)●

Factorial (CEE4SxFAC)●

Floating Complex Divide (CEESxDVD)●

Floating Complex Multiply (CEESxMLT)●

Gamma Function (CEESxGMA)●

Hyperbolic Arctangent (CEESxATH)●

Hyperbolic Cosine (CEESxCSH)●

Hyperbolic Sine (CEESxSNH)●

Hyperbolic Tangent (CEESxTNH)●

Imaginary Part of Complex (CEESxIMG)●

Log Gamma Function (CEESxLGM)●

Logarithm Base 10 (CEESxLG1)●

Logarithm Base 2 (CEESxLG2)●

Logarithm Base e (CEESxLOG)●

Modular Arithmetic (CEESxMOD)●

Nearest 64-Bit Integer (CEESxNJN)●

Nearest Integer (CEESxNIN)●

Nearest Whole Number (CEESxNWN)●

Positive Difference (CEESxDIM)●

Sine (CEESxSIN)●

Square Root (CEESxSQT)●

Tangent (CEESxTAN)●

Transfer of Sign (CEESxSGN)●

Truncation (CEESxINT)●

The following math APIs can be accessed individually:

Basic Random Number Generation (CEERAN0)●

Convert 64-Bit Integer to Character String (CEE4JNTS)●

Convert Character String to 64-Bit Integer (CEE4JSTN)●

Top | ILE CEE APIs | APIs by category

Data Types and Limits
Following is a description of the data types used in the math bindable APIs. The special values and limits of
the data types are also listed.

The semantics and requirements of a high-level language may affect the values of the data types.

Integer Data Types

The following table shows the range of values that math bindable APIs can represent and use with the
integer data types.

Precise Limit Values of Integer Data Types

Data Type Length (bytes) Range of values

INT2 2 -32 768 through 32 767

INT4 4 -2 147 483 648 through 2 147 483 647

INT8 (See
note)

8 -9223372036854775808 through 9223372036854775807

Note: The data type is not currently available. For ILE C, storage for this variable could be defined as
char(8).

The operating system represents integers internally in two's complement notation, and the leftmost bit is the
sign of the number.

Real Data Types

The following table shows the range of values that math bindable APIs can represent and use with the real
data types.

Approximate Limit Values of Real Data Types

Data Type
Length
(bytes)

Approximate Absolute
Nonzero Minimum

Approximate Absolute
Maximum

Approximate
Precision (Decimal
Digits)

FLOAT4 4 1.175494 x 10-38 3.402823 x 1038 7

FLOAT8 8 2.225074 x 10-308 1.797693 x 10308 15

The operating system represents real data type values in IEEE floating-point format.

The following table lists the special values for floating-point operations. The values adhere to the IEEE
standard for binary floating-point arithmetic.

Floating-point Special Values

Data Type Description Values

FLOAT4 +INF 0x7F800000

FLOAT4 HUGE 0x7F7FFFFF

FLOAT4 +0 0x00000000

FLOAT4 -0 0x80000000

FLOAT4 -INF 0xFF800000

FLOAT4 masked NaN 0x7FC00000

FLOAT4 unmasked NaN 0x7F800010

FLOAT8 +INF 0x7FF00000 0x00000000

FLOAT8 HUGE 0x7FEFFFFF 0xFFFFFFFF

FLOAT8 +0 0x00000000 0x00000000

FLOAT8 -0 0x80000000 0x00000000

FLOAT8 -INF 0xFFF00000 0x00000000

FLOAT8 masked NaN 0x7FF80000 0x00000000

FLOAT8 unmasked NaN 0x7FF00000 0x00000001

Complex Data Types

The following table shows the range of values that the math bindable APIs can represent and can use with
complex data types.

Approximate Limit Values of Complex Data Types

Data Type Length (bytes) Approximate Values

COMPLEX8 8 Both real and imaginary parts are _FLOAT4. See Approximate Limit
Values of Real Data Types

COMPLEX16 16 Both real and imaginary parts are FLOAT8. See Approximate Limit
Values of Real Data Types

Top | ILE CEE APIs | APIs by category

Calling Math Bindable APIs
ILE math bindable APIs can be called through the intrinsic functions of an ILE language or through a call
statement specific to the ILE language. In either of the calling conventions, you need to specify one or two
input parameters for the math bindable API being called. The number of input parameters is indicated in
Table 5 under the No. Inputs column.

For example, if the number of input parameters for CEESxnnn is 1, the API is based on the following
format:

 Required Parameter:

1 parm1 Input Data type
2 result Output Data type

 Omissible Parameter:

3 fc Output FEEDBACK

If the number of input parameters for CEESxnnn is 2, the API is based on the following format:

 Required Parameter Group:

1 parm1 Input Data type
2 parm2 Input Data type
3 result Output Data type

 Omissible Parameter:

4 fc Output FEEDBACK

CEESxnnn

The name of the math bindable API being called. The character x identifies the type of parameters
being passed to the API, and may be one of the following:

I 32-bit binary integer. The data type is INT4.

J 64-bit binary integer. The data type is INT8.

S 32-bit single floating-point number. The data type is FLOAT4.

D A 64-bit double floating-point number. The data type is FLOAT8.

T A 32-bit single floating-complex number (both real and imaginary parts are 32 bits long).
The data type is COMPLEX8.

E A 64-bit double floating-complex number (both real and imaginary parts are 64 bits long).
The data type is COMPLEX16.

The character nnn identifies the API being called. contains information about each of the ILE math
bindable APIs.

parm1

The first input parameter to the API. The declared type of this parameter must match the type
specified by the x in the called API.

parm2

The second input parameter to the API. The declared type of this parameter must match the type
specified by the x in the called API.

fc

This omissible parameter represents a 12-byte feedback code.

result

The output parameter containing the result of the computations performed by the API.

Top | ILE CEE APIs | APIs by category

Math Bindable APIs Are Procedures
The math bindable APIs are procedures, and therefore parameters are passed by reference. The math library
handles all exceptions by returning a feedback code, if one was specified on the call. If the pointer to the
feedback area is null (0), the feedback area is created and signaled to the ILE condition manager and a
program message is generated by the condition manager.

The APIs that perform computations will do so in the rounding mode of "round to nearest" to achieve better
accuracy. The APIs save the current rounding mode (before the computations start), and restore the
previous one before the APIs exit. This is a general rule for the math bindable APIs.

Top | ILE CEE APIs | APIs by category

ILE Math Bindable API Descriptions
The following information is provided for each math bindable API.

Definition

This column states the nature of the computation performed by the API.

API Name

This column gives the API names of the procedure.

Parameter Type

This column describes the acceptable parameter types that are input to and output by the specified API, and is indicated by the following characters:

I 32-bit binary integer.

J 64-bit binary integer.

S 32-bit single floating-point number.

D A 64-bit double floating-point number.

T A 32-bit single floating-complex number (both real and imaginary parts are 32 bits long).

E A 64-bit double floating-complex number (both real and imaginary parts are 64 bits long).

Note: The characters correspond to the fifth character of the called API.

Equation

This column gives a math equation that represents the computation.

The following notation is used in the equations of the APIs:

|x| denotes the absolute value of x.

sign(x) is +1 if x >= 0 or -1 if x < 0.

f denotes a function result.

z denotes a complex argument, where

z = x + iy.

z1 and z2 denote two complex arguments, where

z1 = x1 + iy1 and z2 = x2 +iy2.

No. Inputs

This column states how many input parameters must be passed to the routine. See Calling Math Bindable APIs for a description of the format of APIs with 1 or 2 input
parameters.

Input Range

This column gives the valid range for input parameters. If a parameter is not within the range, an error message is issued. (See the table below for a description of the messages
that can be generated by the math bindable APIs.)

For output ranges, see Data Types and Limits for information concerning integer data types, real data types, and complex data types.

Math API Descriptions

Definition API Name
Para-meter
Type Equation

No.
Inputs Input Range1

Absolute
Function CEESxABS

I
J
S
D
T
E

f = |x|
or
f = |z|

1

Any integer number (for parameter type I and J).

Any real number (for parameter types S and D).

Any complex number (for parameter types T and E).

Arccosine CEESxACS
S
D f = cos-1(x) 1 |x| <= 1

Arcsine CEESxASN
S
D f = sin-1(x) 1 |x| <= 1

Arctangent CEESxATN

S
D
T
E

f = tan-1(x)
or
f = tan-1(z) = tan-1(x + iy)

1
Any real argument (for parameter types S and D).

Any complex argument (for parameter types T and E).

Arctangent2 CEESxAT2
S
D

f = atan2(y/x)

For x > 0,
atan2(y, x) = tan-1(y/x).

For x < 0 and y > 0,
atan2(y, x) = pi + tan-1(y/x).

For x < 0 and y < 0,
atan2(y, x) = -pi + tan-1(x/y).

2

y is not equal to 0.0 and
x is not equal to 0.0;

y is not equal to +INF or -INF and
x is not equal to +INF or -INF

Conjugate of
Complex CEESxCJG

T
E f = x - iy for argument z = x + iy. 1 Any complex number.

Cosine CEESxCOS

S
D
T
E

f = cos(x)
or
f = cos(z) = cos (x + iy)

1

Any real argument, in radians, such that
|x| <= 0x432921FB54442D18 ~= pi * 250

~= 3537118876014220.0.
Any complex number such that
|y| <= 88.7228 for FLOAT4 and
|y| <= 709.7827 for FLOAT8,
and x is any real argument.

Cotangent CEESxCTN
S
D f = cot(x) 1

Any real argument, in radians, such that
|x| <= 0x432921FB54442D18 ~= pi * 250

~= 3537118876014220.0.

Error Function
and its
Complement

CEESxERF
CEESxERC

S
D 1 Any real argument

Exponential
Base e CEESxEXP

S
D
T
E

f = ex

or
f = ez = ex+iy

1

-87.3365 <= x <= 88.7228
(for parameter type S).
-708.3964 <= x <= 709.7827
(for parameter type D).
-87.3365 <= x <= 88.7228 and y is any
real number (for parameter type T).
-708.3964 <= x <= 709.7827 and y is
any real number where
|y| <= 0x432921FB54442D18 ~= pi * 250

~= 3537118876014220.0.
(for parameter type E).

Exponentiation CEESxXPy

I
J
S
D
T
E

f = xy (See note 2) 2

Any integer arguments (for CEESIXPI, CEESSXPI, CEESDXPI,
CEESTXPI, CEESEXPI, CEESJXPJ, CEESSXPJ, CEESDXPJ,
CEESTXPJ, CEESEXPJ).

Any real argument subject to the condition that if x is negative, y must be
an integer (for CEESSXPS, CEESDXPD).

For complex data types, see the argument for real data types above (for
CEESTXPT, CEESEXPE).

Factorial CEE4SxFAC
I
J n! = 1*2*3 ... (n-1)*n. 1 For parameter type I, any integer <=12. For parameter type J, any integer

<=20.

Floating
Complex
Divide

CEESxDVD
T
E f = z1 / z2 = (x1 + iy1) / (x2 + iy2) 2 Any complex number.

Floating
Complex
Multiply

CEESxMLT
T
E f = z1 * z2 = (x1 + iy1) * (x2 + iy2) 2 Any complex number.

Gamma
Function CEESxGMA

S
D 1

0 < x <= 35.04
(for parameter type S).
0 < x <= 171.6243
(for parameter type D).

Hyperbolic
Arctangent CEESxATH

S
D
T
E

f = tanh-1(x)
or
f = tanh-1(z) = tanh-1(x + iy)

1

Any real argument such that

|x| <= 1
(for parameter types S and D).
Any complex number such that
x is not equal to 1.0 and y is not equal to 0
(for parameter types T and E).

Hyperbolic
Cosine CEESxCSH

S
D
T
E

f = cosh(x)
or
f = cosh(z) = cosh(x + iy)

1

Any real argument such that
|x| <= 89.4159 (for FLOAT4)
and |x| <= 709.7827 (for FLOAT8).
Any complex number such that
|x| <= 89.4159 (for FLOAT4)
|x| <= 709.7827 (for FLOAT8).

Hyperbolic
Sine CEESxSNH

S
D
T
E

f = sinh(x)
or
f = sinh(z) = sinh(x + iy)

1

Any real argument such that
|x| <= 89.4159 (for FLOAT4)
and |x| <= 709.7827 (for FLOAT8).
Any complex number such that
|x| <= 89.4159 (for FLOAT4)
and |x| <= 709.7827 (for FLOAT8).

Hyperbolic
Tangent CEESxTNH

S
D
T
E

f = tanh(x)
or
f = tanh(z) = tanh(x + iy)

1

Any real argument
(for parameter types S and D).
Any complex number such that
|x| < 43.66825 (for parameter type T),
and |x| < 354.1982
(for parameter type E).

Imaginary Part
of Complex CEESxIMG

T
E f = y, where z = x + iy. 1 Any complex number.

Log Gamma
Function CEESxLGM

S
D f = ln(Gamma (x)) 1

0 < x <= 4.0850*1036

(for parameter type S),
and 0.0 < x <= 21014

(for parameter type D).

Logarithm
Base 10 CEESxLG1

S
D f = log10(x) 1 x > 0.0

Logarithm
Base 2 CEESxLG2

S
D f = log2(x) 1 x > 0.0

Logarithm
Base e CEESxLOG

S
D
T
E

f = loge(x)
or
f = ln(z) = loge(|z|) + iatan2(y, x)

1

x > 0.0 (for parameter types S
and D).
z is not equal to 0+i0 (for parameter types T
and E).

Modular
Arithmetic CEESxMOD

I
J
S
D

f = remainder of x/y (See note 3) 2

Any two integer numbers such that
y is not equal to 0 (for parameter types I and J).
Any two real numbers such that
y is not equal to 0.0 (for parameter types S
and D).

Nearest 64-Bit
Integer CEESxNJN

S
D

If x >= 0.0
f = sign(x)*n
where n is the largest 64-bit integer
<= |x + 0.5|
or
If x < 0.0
f = sign(x)*n
where n is the largest 64-bit integer
<= |x - 0.5|

1 Any real number.

Nearest
Integer CEESxNIN

S
D

If x >= 0.0
f = sign(x)*n
where n is the largest integer
<= |x + 0.5|
or
If x < 0.0
f = sign(x)*n
where n is the largest integer
<= |x - 0.5|

1 Any real number.

Nearest Whole
Number CEESxNWN

S
D

If x >= 0.0
f = sign(x)*n
where n is the largest integer
<= |x + 0.5|
or
If x < 0.0
f = sign(x)*n
where n is the largest integer
<= |x - 0.5|

1 Any real number.

Positive
Difference CEESxDIM

I
J
S
D

If x > y, f = x - y
or
If x <= y, f = 0

2

Any integer argument
(for parameter types I and J).
Any real number
(for parameter types S and D).

Sine CEESxSIN

S
D
T
E

f = sin(x)
or
f = sin(z) = sin(x + iy)

1

Any real argument, in radians, such that
|x| <= 0x432921FB54442D18 ~= pi*250

~= 3537118876014220.0
(for parameter types S and D).
Any complex number such that
|y| <= 88.7228 (for parameter type T),
and |y| <= 709.7827, and
|x| <= 0x432921FB54442D18 ~= pi*250

~= 3537118876014220.0
(for parameter type E).

Square Root CEESxSQT

S
D
S
D

1

Any real argument such that x >= 0.0
(for parameter types S and D).
Any complex number such that
|z| + |x| <= 1.797693*10308

(for parameter types T and E).

Tangent CEESxTAN

S
D
T
E

f = tan(x)
or
f = tan(z) = tan(x + iy)

1

Any real argument, in radians, such that
|x| <= 0x432921FB54442D18 ~= pi*250

~= 3537118876014220.0
(for parameter types S and D).
Any complex number such that
|y| < 43.66825 (for parameter
type T), and |y| < 354.1982
(for parameter type E).

Transfer of
Sign CEESxSGN

I
J
S
D

f = sign(y)|x| 2

Any integer argument
(for parameter types I and J).
Any real number
(for parameter types S and D).

Truncation CEESxINT
S
D

f = sign(x)*n,
where n is the largest integer
<= |x|

1 Any real number.

Notes:

1

For output ranges, see Data Types and Limits, including information on Integer Data Types, Real Data Types, and Complex Data Types.

2

Where x and y have the following combinations, respectively:

integer, integer
real FLOAT4, integer
real FLOAT8, integer
single complex, integer
double complex, integer
real FLOAT4, integer
real FLOAT8, integer
single complex, integer
double complex, integer
64-bit integer, 64-bit integer
real FLOAT4, 64-bit integer
real FLOAT8, 64-bit integer
single complex, 64-bit integer
double complex, 64-bit integer
real FLOAT4, real FLOAT4
real FLOAT8, real FLOAT8

single complex, single complex
double complex, double complex

3

The absolute value of the result is always less than the absolute value of y.

Top | ILE CEE APIs | APIs by category

Message Descriptions for Math Bindable APIs
A summary of the messages generated by the math bindable APIs is contained in the table below.

Msg_No Msg_Id Explanation

2002 CEE2002 The argument is too close to multiple (pi/2)'s for tangent and multiple pi's for
cotangent. This causes an inaccurate result.

2003 CEE2003 In (x**y) both x and y are integers, x = 0 and y < 0 for procedure &1. The
result is undefined. The fixed-point zero-divide exception occurs.

2004 CEE2004 In (x**y) x is real and y is integer, x = 0.0 and y < 0 for procedure &1. The
result is undefined. The floating-point zero-divide exception occurs.

2005 CEE2005 The value of the argument for &1 is outside the range &2. It causes a
floating-point overflow exception.

2006 CEE2006 In (x**y) both x and y are real, x = 0.0 and y < 0.0 for procedure &1. The result
is undefined. The floating-point zero-divide exception occurs.

2008 CEE2008 For an exponentiation operation (Z**P) where the complex base Z equals 0, the
real part of the complex exponent P is less than or equal to 0. The floating-point
zero-divide exception occurs in procedure &1.

2009 CEE2009 The value of the real part of a complex argument is greater than &2 for
procedure &1. It causes a floating-point overflow exception.

2010 CEE2010 The value of the argument is less than 0.0 for procedure &1. It is not valid for
the square root function. The result is undefined.

2011 CEE2011 The argument for procedure &1 is greater than &2. It causes a floating-point
overflow exception.

2012 CEE2012 The argument for procedure &1 is negative. It is not valid for the logarithmic
function.

2013 CEE2013 The absolute value of the imaginary part of the complex argument for &1 is
greater than &2. This causes floating-point overflow.

2014 CEE2014 Both arguments to the arctangent2 function are either 0 or infinity for
procedure &1. They are not valid for arctangent2 function.

2015 CEE2015 The value of the real part of a complex argument for procedure &1 is less than
&2. It causes a floating-point underflow exception.

2016 CEE2016 The absolute value of the argument for procedure &1 is greater than &2. The
argument is out of range and the result is undefined.

2017 CEE2017 The absolute value of the argument for procedure &1 is greater than or equal to
&2. This causes a floating-point overflow exception.

2018 CEE2018 The real and imaginary parts of the argument for procedure &1 are zero or
infinity. They are not valid for complex logarithmic functions.

2019 CEE2019 The absolute value of the real part of the complex argument for procedure &1
is greater than &2. This causes a floating-point overflow exception.

2020 CEE2020 In (x**y) x < 0.0 and y is not an integer for procedure &1. It causes a
floating-point zero-divide exception. The result is undefined.

2022 CEE2022 The complex argument is not valid for procedure &1. It may be one of the
following:

The real part of the argument is 0.●

Real**2 + imaginary**2 = 1.0.●

2023 CEE2023 The calculated result overflows the result field in procedure &1.

2024 CEE2024 Floating-point overflow exception occurred in procedure &1.

2025 CEE2025 Floating-point underflow exception occurred in procedure &1.

2026 CEE2026 The denominator is 0. The operand for the modular function is not valid. It
causes a floating-point zero-divide exception.

2027 CEE2027 Floating-point zero divide exception occurred in procedure &1.

2101 CEE2101 The argument is an unmasked NaN for procedure &1. If the argument is a
complex number, either its real part or imaginary part is an unmasked NaN. It
causes a floating-point incorrect operand exception.

2102 CEE2102 The argument for procedure &1 is less than &2. It causes a floating-point
underflow exception.

2103 CEE2103 Floating-point operand exception occurred in &1.

2117 CEE2117 The values of the real part and imaginary part cannot be 1.0 and 0.0
respectively at the same time for procedure &1. The result is undefined.

2118 CEE2118 The sum of the absolute value of the complex number, and the absolute value
of its real part, is greater than the maximum FLOAT8 (1.797693*10**308) for
procedure &1.

Top | ILE CEE APIs | APIs by category

Basic Random Number Generation (CEERAN0)
API

 Required Parameter Group:

1 seed I/O INT4
2 random_no Output FLOAT8

 Omissible Parameter:

3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

The Basic Random Number Generation (CEERAN0) API generates a sequence of uniform pseudorandom
numbers between 0 and 1 using the multiplicative congruential method with a user-specified seed.

Required Parameter Group

seed (I/O)

A 32-bit binary integer representing an initial value used to generate random numbers. It must be a
variable; that is, it cannot be an input-only parameter. The valid range is 0 to 2 147 483 646.

If the value of the seed parameter is 0, the seed is generated from the current Greenwich Mean
Time.

On return, CEERAN0 changes the value of seed so that it may be used as the new seed in the next
call.

random_no (output)

A 64-bit double floating-point pseudorandom number with a value between 0 and 1, exclusive. If
seed is not valid, random_no is set to -1 and CEERAN0 ends with a nonzero feedback code.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, feedback information (a
condition token) is returned to the calling procedure. If not specified, and the requested operation
was not successfully completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE2523 UTC not available to generate random seed from system time

Severity: 10

CEE2524 Seed value for &1 is not valid

Severity: 30

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Convert 64-Bit Integer to Character String
(CEE4JNTS) API

 Required Parameter Group:

1 integer Input INT8
2 sign Input INT4
3 length I/O INT4
4 output_string Output VSTRING

 Omissible Parameter:

5 fc Output FEEDBACK

 Default Public Authority: *USE

The Convert 64-Bit Integer to Character String (CEE4JNTS) API converts a 64-bit binary integer to its
character string equivalent.

Required Parameter Group

integer (input)

A 64-bit integer that needs to be formatted.

sign (input)

A 32-bit binary integer of one of the following values.

0 Parameter 1 is an unsigned 64-bit integer

1 Parameter 1 is a signed 64-bit integer

length (I/O)

A 32-bit binary integer representing the length of the output string provided.

On return, this parameter will contain the number of bytes used to represent the string.

output_string (output)

A character string that is the result of formatting the 64-bit integer. The string is left-justified. The
condition CEE3470 will be signaled to the condition manager if output is truncated.

The output_string will not contain the plus character (+) if the integer provided is unsigned.

The output_string length should contain enough space to store the resulting string. The maximum
storage needed is 20 bytes based on a maximum value of 18446744073709551615 and a minimum

value of -9223372036854775808.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, feedback information (a
condition token) is returned to the calling procedure. If not specified, and the requested operation
was not successfully completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE3470 The resulting string is truncated

Severity: 30

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Convert Character String to 64-Bit Integer
(CEE4JSTN) API

 Required Parameter Group:

1 input_string Input VSTRING
2 length Input INT4
3 output_integer output INT8

 Omissible Parameter:

5 fc Output FEEDBACK

 Default Public Authority: *USE

The Convert Character String to 64-Bit Integer (CEE4JSTN) API converts a character string representation
of an integer to its 64-bit integer equivalent.

Required Parameter Group

input_string (input)

A character string representing the integer that needs to be formatted. The valid range for signed
integer is (-263) < x < (263 - 1). The range for unsigned is (0 < x < 264 - 1).

The following rules apply to input_string.

The decimal separator is retrieved from the job attributes. The input string is scanned left to right
until the decimal point or end of string is reached. Any character to the right of the decimal point
will be ignored.

Multiple - and + are allowed. The first sign, starting from right to left will indicate the sign of the
input.

Imbedded spaces, "-", "+", "." and "," are valid characters.

For examples of this process, see API Examples.

length (input)

A 32-bit binary integer representing the number of characters in the input string provided including
the sign.

output_integer (output)

A 64-bit storage in which the result is stored.

Omissible Parameter

fc (output)

A 12-byte feedback code passed by reference. If specified as an argument, feedback information (a
condition token) is returned to the calling procedure. If not specified, and the requested operation
was not successfully completed, the condition is signaled to the condition manager.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE2537 Intput string contains characters that are not valid

Severity: 30

CEE2539 Intput integer is too large or too small

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Examples

In the following examples, "." is the decimal separator.

Input Output

" +241-" -241

" +1 001.23-" -1001

" 537,072.34+ " 537072

API Introduced: V4R3

Top | ILE CEE APIs | APIs by category

Message Services APIs
Bindable APIs are provided for message services. The APIs can be used to dispatch, format, obtain,
retrieve, and store messages.

The message services APIs are:

Dispatch a Message (CEEMOUT) dispatches a message string.●

Get a Message (CEEMGET) retrieves a message and stores it in a buffer.●

Get, Format, and Dispatch a Message (CEEMSG) obtains, formats, and dispatches a message that
corresponds to an input condition token.

●

Top | ILE CEE APIs | APIs by category

Dispatch a Message (CEEMOUT) API

 Required Parameter Group:

1 message_string Input VSTRING
2 destination_code Input INT4

 Omissible Parameter:

3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe:

The Dispatch a Message (CEEMOUT) API is used to dispatch a message string.

Required Parameter Group

message_string (input by descriptor)

A valid ILE string, passed by reference with a descriptor, to be dispatched as a message. It is not
necessary that this string first be retrieved by the CEEMGET API. Insert data cannot be inserted
with this call.

destination_code (input)

A 4-byte binary integer of one of the following values:

1 Dispatch the message for output to the standard output (console or file). The message is also
logged in the *EXT message queue of the job.

2 Log the message to the system message file only; the message is not displayed.

Note: Messages sent through this API are subject to the normal server rules for message filtering.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0451 Unsupported destination code &2 passed to &1

Severity: 30

CEE0501 The operational descriptor data type is not valid

Severity: 30

CEE0502 Missing operational descriptor

Severity: 30

CEE3101 &1 cannot be called in the default activation group

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

A CPF9898 message of type *INFO is used to log the message being dispatched. It is sent to the
message queue of the caller of CEEMOUT. Message CPF9898 appends a period to the displayed
text.

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Get a Message (CEEMGET) API

 Required Parameter Group:

1 cond_token Input FEEDBACK
2 message_area Output VSTRING
3 msg_ptr I/O INT4

 Omissible Parameter:

4 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe:

The Get a Message (CEEMGET) API retrieves a message and stores it in a buffer for manipulation or
output by the caller.

The API retrieves a message and places it in the storage location referenced by the message_area
parameter.

The msg_ptr parameter has a value of zero on the initial call to the CEEMGET API. If the message is too
large to be contained in message_area, msg_ptr is returned containing an index into the message. The index
is used in subsequent calls to CEEMGET to retrieve the remaining portion of the message. When the entire
message has been retrieved, msg_ptr is returned containing a value of zero.

Required Parameter Group

cond_token (input)

A 12-byte condition token. See for a description of the condition token.

message_area (output by descriptor)

A valid ILE string variable, passed by reference with a descriptor. The CEEMGET API places the
retrieved message into this string variable.

msg_ptr (input/output)

A 4-byte integer with a value of 0 on the initial call to CEEMGET to retrieve a message. If the
message is too large to be contained in the message_area, msg_ptr will be returned containing an
index into the message. The index is used in subsequent calls to CEEMGET to retrieve the
remaining portion of the message. When the entire message has been retrieved, msg_ptr is returned
with a value of 0.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0102 The condition token passed to &1 is not valid

Severity: 30

CEE0454 &1 cannot find message &3 in message file &2

Severity: 30

CEE0455 The message returned is truncated

Severity: 10

CEE0458 &1 cannot find message file &2

Severity: 30

CEE0501 The operational descriptor data type is not valid

Severity: 30

CEE0502 Missing operational descriptor

Severity: 30

CEE3103 Cannot allocate storage in &1

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

If msg_ptr is greater than the length of the message being retrieved, then msg_ptr is set to 0, and a
zero-length string is copied into message_area.

●

Insert data cannot be inserted with this call.●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Get, Format, and Dispatch a Message
(CEEMSG) API

 Required Parameter Group:

1 cond_token Input FEEDBACK
2 destination_code Input INT4

 Omissible Parameter:

3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Get, Format, and Dispatch a Message (CEEMSG) API is used to obtain, format, and dispatch a
message corresponding to an input condition token.

Required Parameter Group

cond_token (input)

A 12-byte condition token. See for a description of the condition token.

destination_code (input)

A 4-byte binary integer of one of the following values:

1 Dispatch the message for output to the standard output. The message is also logged in the
system message file.

2 Log the message to the system message file only; the message is not displayed.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0102 The condition token passed to &1 is not valid

Severity: 30

CEE0451 Unsupported destination code &2 passed to &1

Severity: 30

CEE0458 &1 cannot find message file &2

Severity: 30

CEE9902 Unexpected user error occurred in &1

Severity: 30

Usage Notes

A CPF9898 message of type *INFO is used to log the message being dispatched. It is sent to the
message queue of the caller of CEEMSG. Message CPF9898 appends a period to the displayed
text.

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Program or Procedure Call APIs
ILE CEE APIs are provided to retrieve operational descriptor information and to test for omitted arguments.

The program or procedure call APIs are:

Get String Information (CEEGSI) retrieves string information about a parameter used in the call to
this API.

●

Retrieve Operational Descriptor Information (CEEDOD) retrieves operational descriptor
information about a parameter used in the call to this API.

●

Test for Omitted Argument (CEETSTA) is used to test for the presence or absence of an omissible
argument.

●

Top | ILE CEE APIs | APIs by category

Get String Information (CEEGSI) API

 Required Parameter Group:

1 posn Input INT4
2 datatype Output INT4
3 currlen Output INT4
4 maxlen Output INT4

 Omissible Parameter:

5 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe:

The Get String Information (CEEGSI) API retrieves string information about a parameter used in the call to
this API. String information describes the elements of a parameter, such as the type and the length of the
string.

Required Parameter Group

posn (input)

The ordinal position in the parameter list of the formal parameter whose operational descriptor is
required. A value of 1 denotes the leftmost parameter.

datatype (output)

The binary value of the data type field. The possible values and their data types are:

1 (typeEsc) An element descriptor type (descElmt) that is not one of the following data types.

2 (typeChar) A string of SBCS characters with values in the range X'00' through X'FF'.

3 (typeCharZ) A string of SBCS characters with values in the range X'01' through X'FF' that
ends with a null byte (X'00').

4 (typeCharV2) A string of SBCS characters prefixed by an unsigned 2-byte binary count
field. The count field specifies the current length of the string in terms of the number of
string elements, that is, the number of characters.

5 (typeCharV4) A string of SBCS characters prefixed by an unsigned 4-byte binary count
field. The count field specifies the current length of the string in terms of the number of
string elements, that is, the number of characters.

6 (typeBit) A string of bits with values of 0 or 1.

7 (typeBitV2) A string of bits prefixed by an unsigned 2-byte binary count field. The count
field specifies the current length of the string in terms of the number of string elements, that
is, the number of bits.

8 (typeBitV4) A string of bits prefixed by an unsigned 4-byte binary count field. The count
field specifies the current length of the string in terms of the number of string elements, that
is, the number of bits.

9 (typeGChar) A string of DBCS characters with values in the range X'0000' through
X'FFFF'.

10 (typeGCharZ) A string of DBCS characters with values in the range X'0001' through
X'FFFF' that end with a null byte (X'0000').

11 (typeGCharV2) A string of DBCS characters prefixed by an unsigned 2-byte binary count
field. The count field specifies the current length of the string in terms of the number of
string elements, that is, the number of characters.

12 (typeGCharV4) A string of DBCS characters prefixed by an unsigned 4-byte binary count
field. The count field specifies the current length of the string in terms of the number of
string elements, that is, the number of characters.

currlen (output)

A binary number containing the current number of elements in the string, as follows:

For strings of typeEsc, this is the length from the descriptor, and is equal to the maximum
length returned in maxlen.

❍

For strings of typeCharV2 and typeCharV4, this is the length from the argument (binary
prefix) itself.

❍

For strings of typeCharZ, the API determines the current length (in number of characters,
either SBCS or DBCS) of the string by scanning for the null character. If the length in the
descriptor is nonzero (the compiler of the caller knew the extent), the search is confined to
that length. Otherwise, the scan continues until a null character is found.

❍

If the data type was undefined, the contents of this field are undefined.❍

maxlen (output)

A binary number containing the maximum number of string elements, as follows:

For strings of typeEsc, this is the length from the descriptor, and is equal to the current
length returned in currlen.

❍

For strings of typeCharV2 and typeCharV4, this is the length from the descriptor (which
does not include the length of the prefix).

❍

For strings of typeCharZ, the maximum length is the number of the characters excluding
the null character. It is the maximum length from the descriptor minus 1 (to account for the
SBCS or DBCS null character). If the length in the descriptor is zero, the maximum length
is set equal to the current length.

❍

If the data type was undefined, the contents of this field are undefined.❍

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0501 The operational descriptor data type is not valid

Severity: 30

CEE0502 Missing operational descriptor

Severity: 30

CEE0505 A NULL-terminated string is not found

Severity: 10

Usage Notes

It is an error to use CEEGSI to test an argument that is not a reference argument or that is preceded
in the argument list by other arguments that are not reference arguments.

Note: This error may not be diagnosed.

●

The results are undefined if this API is used in a function that does not have operational descriptors
specified.

●

CEEGSI is implemented as a builtin and therefore cannot have its address taken or be called
through a procedure pointer.

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Retrieve Operational Descriptor Information
(CEEDOD) API

 Required Parameter Group:

1 posn Input INT4
2 desctype Output INT4
3 datatype Output INT4
4 descinf1 Output INT4
5 descinf2 Output INT4
6 datalen Output INT4

 Omissible Parameter:

7 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Operational Descriptor Information (CEEDOD) API retrieves operational descriptor
information about a parameter used in the call to this API. The operational descriptor communicates
additional information about a parameter, such as size and shape.

Required Parameter Group

posn (input)

The ordinal position in the parameter list of the formal parameter whose operational descriptor is
required. A value of 1 denotes the leftmost parameter.

desctype (output)

The binary value of the descriptor type field. The possible values and their descriptor types are:

1 (descEsc) An escape descriptor.

2 (descElmt) An element descriptor. Elements are objects such as numbers and strings, that
can be aggregated into arrays and structures.

3 (descArray) An array descriptor.

4 (descStruct) A structure descriptor.

datatype (output)

The binary value of the data type field. The possible values and their data types are:

1 (typeEsc) An element descriptor type (descElmt) that is not one of the following data types.

2 (typeChar) A string of SBCS characters with values in the range X'00' through X'FF'.

3 (typeCharZ) A string of SBCS characters with values in the range X'01' through X'FF' that
ends with a null byte (X'00').

4 (typeCharV2) A string of SBCS characters prefixed by an unsigned 2-byte binary count
field. The count field specifies the current length of the string in terms of the number of
string elements, that is, the number of characters.

5 (typeCharV4) A string of SBCS characters prefixed by an unsigned 4-byte binary count
field. The count field specifies the current length of the string in terms of the number of
string elements, that is, the number of characters.

6 (typeBit) A string of bits with values of 0 or 1.

7 (typeBitV2) A string of bits prefixed by an unsigned 2-byte binary count field. The count
field specifies the current length of the string in terms of the number of string elements, that
is, the number of bits.

8 (typeBitV4) A string of bits prefixed by an unsigned 4-byte binary count field. The count
field specifies the current length of the string in terms of the number of string elements, that
is, the number of bits.

9 (typeGChar) A string of DBCS characters with values in the range X'0000' through
X'FFFF'.

10 (typeGCharZ) A string of DBCS characters with values in the range X'0001' through
X'FFFF' that end with a null byte (X'0000').

11 (typeGCharV2) A string of DBCS characters prefixed by an unsigned 2-byte binary count
field. The count field specifies the current length of the string in terms of the number of
string elements, that is, the number of characters.

12 (typeGCharV4) A string of DBCS characters prefixed by an unsigned 4-byte binary count
field. The count field specifies the current length of the string in terms of the number of
string elements, that is, the number of characters.

descinf1 (output)

The binary value of the first descriptor information field. If the descriptor omits this field, descinf1
is set to 0.

descinf2 (output)

The binary value of the second descriptor information field (used for bit alignment, for example). If
the descriptor omits this field, descinf2 is set to 0.

datalen (output)

The 4-byte binary value of the descriptor length field.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0501 The operational descriptor data type is not valid

Severity: 30

CEE0502 Missing operational descriptor

Severity: 30

Usage Notes

CEEDOD is implemented as a builtin and therefore cannot have its address taken or be called
through a procedure pointer.

●

It is an error to use CEEDOD to test an argument that is not a reference argument. It is also an error
to test an argument that is preceded in the argument list by other arguments that are not reference
arguments.

●

The results are undefined if you use the CEEDOD API in a function that does not specify
operational descriptors.

●

API introduced: V2R3

Top | ILE CEE APIs | APIs by category

Test for Omitted Argument (CEETSTA) API

 Required Parameter Group:

1 presence_flag Output INT4
2 arg_num Input INT4

 Omissible Parameter:

3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Test for Omitted Argument (CEETSTA) API is used to test for the presence or absence of an omissible
argument.

Required Parameter Group

presence_flag (output)

The presence or absence of the argument tested. A value of 1 indicates that the argument is present;
a value of 0 indicates that the argument was omitted.

arg_num (input)

The argument number to be tested (in the argument list of the procedure that called the procedure
where the CEETSTA call is coded), counting the first argument as 1.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0503 The argument number is not valid

Note: ILE does not check the condition where the argument number is greater than the
number of arguments in the list.

Severity: 30

CEE3005 The argument being tested is not an address

Severity: 30

Usage Notes

It is an error to use CEETSTA to test an argument that is not a reference argument or that is
preceded in the argument list by other arguments that are not reference arguments.

Note: This error may not be diagnosed.

●

CEETSTA is implemented as a builtin and therefore cannot have its address taken or be called
through a procedure pointer.

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Storage Management APIs
ILE CEE APIs are provided for all heap operations. Applications can be written using either the storage
management APIs, language-intrinsic functions, or both.

The storage management APIs fall into the following categories:

Basic heap operations●

Extended heap operations●

Heap allocation strategies●

See Allocation Strategy Type (CEE4ALC) for information on the attributes that are used to define the
characteristics of the storage allocated for heaps.

Top | ILE CEE APIs | APIs by category

Allocation Strategy Type (CEE4ALC)
The CEE4ALC allocation strategy type contains attributes that are used to define the characteristics of the storage
allocated for heaps. ILE C defines the attributes as shown in CEE4ALC Definition for ILE C. ILE COBOL
defines the attributes as shown in CEE4ALC Definition for ILE COBOL, and ILE RPG defines the attributes as
shown in CEE4ALC Definition for ILE RPG.

User-Defined Allocation Strategy

You can define an allocation strategy by altering the attributes of the CEE4ALC allocation strategy type. You do
this with the Define Heap Allocation Strategy (CEE4DAS) API. Then, when you use the Create Heap
(CEECRHP) API, you can specify the allocation strategy that you defined for the heap attributes you require.

If you use the CEECRHP API, but did not define an allocation strategy, a default allocation strategy provides the
heap attributes. See The Default Heap for a description of the default allocation strategy.

Note: The creation size and extension size values of CEE4ALC may be overridden. You do this by specifying
values for the initial_size parameter and the increment parameter on the CEECRHP bindable API.

For ILE C the CEE4ALC allocation strategy type is defined as follows:

CEE4ALC Definition for ILE C

struct _CEE4ALC {
 _INT4 max_sngl_alloc; /* maximum size of a single allocation */
 _INT4 min_ddy; /* minimum boundary alignment of any
allocation */
 _INT4 crt_size; /* initial creation size of the heap */
 _INT4 ext_size; /* the extension size of the heap */
 _INT2 reserved1; /* must be binary 0 */
 _BITS alloc_strat:1; /* a choice for allocation strategy */
 _BITS no_mark:1; /* a group deallocation choice */
 _BITS blk_xfer:1; /* a choice for block transfer of a heap */
 _BITS PAG:1; /* a choice for heap creation in a PAG */
 _BITS alloc_init:1; /* a choice for allocation initialization
*/
 _UCHAR init_value; /* initialization value */
 _BITS reserved2:3; /* must be binary 0 */
 _BITS reserved3:32; /* must be binary 0 */
 };

For ILE COBOL the CEE4ALC allocation strategy type is defined as follows:

CEE4ALC Definition for ILE COBOL

 01 CEE4ALC-my-own.
 05 max-sngl-alloc pic 9(9) BINARY.
 05 min-bdy pic 9(9) BINARY.
 05 crt-size pic 9(9) BINARY.
 05 ext-size pic 9(9) BINARY.
 05 reserved1 pic 9(4) BINARY VALUE 0.
 05 my-bits pic x VALUE X"F8".
* Using initial value of X"F8" , alloc_strat, no_mark,
* blk_xfer, PAG, and alloc_init are set to TRUE
 05 init-value pic x.

 05 my-reserved2 pic x(5).
 05 my-reserved3 pic x(5).

For ILE RPG the CEE4ALC allocation strategy type is defined as follows:

CEE4ALC Definition for ILE RPG

D CEE4ALC DS
D MaxSglAloc 10I 0
D MinBdy 10I 0
D CrtSiz 10I 0
D ExtSiz 10I 0
D res1 5I 0
D AllocBits 1A
D InitValue 1A
D res2 5A
 * Use BITON to set on the appropriate bit.
 * For example BITON AllocInit AllocBits
D AllocStrat C '0'
D NoMark C '1'
D BlkXfer C '2'
D PAG C '3'
D AllocInit C '4'

max_sngl_alloc

The maximum allocation size, in bytes, of any single allocation from the heap. This attribute is useful for
controlling the use of the heap. The minimum value for this attribute is 4 bytes, and the maximum value
is 16MB minus 64KB. If 0 is specified, the default value of 16MB minus 64KB is used.

min_bdy

The minimum boundary alignment, in bytes, associated with any allocation from the heap. The minimum
value for a boundary alignment is 4 bytes, and maximum value is 512 bytes. To allow valid pointers to be
stored in a storage allocation with the heap, a minimum boundary alignment of 16 bytes is required. If
zero is specified, a default value of 16 bytes is used for the boundary alignment. The minimum boundary
alignment is rounded up to a power of 2.

crt_size

The creation size, in bytes, of the heap. The minimum value for the size of the heap is 512 bytes and the
maximum value is 16MB minus 1KB. If 0 is specified, the system computes a default value. The value is
rounded up to a 512-byte boundary.

Note: If system resources are constrained, the system may override the value specified.

ext_size

The extension size of the heap in bytes. The minimum value for extension size is 512 bytes and the
maximum value is 16MB minus 1KB. If 0 is specified the system computes a default value. The value is
rounded up to a 512-byte boundary.

Note: If system resources are constrained, the system may override the value specified.

reserved1

Must be binary 0.

alloc_strat

Allows a choice between:

0 Normal allocation strategy.

1 Create a process space on each allocation.

Note: This option should be used only in unusual situations, such as in debugging application problems
caused by references past the end of an allocation.

no_mark

Allows a choice between:

0 Allow the use of the CEEMKHP and CEERLHP APIs.

1 Do not allow the use of the CEEMKHP and CEERLHP APIs.

blk_xfer

Used to increase the performance of a heap based on prior knowledge of how the heap is used. This
attribute is used only when the heap is not a member of a process access group (PAG). The values are:

0 Transfer the minimum storage transfer size (that is, 1 storage unit).

1 Transfer the machine default storage transfer size (that is, 8 storage units).

Note: On the reduced instruction set computer (RISC) hardware, this parameter has no effect. Regardless
of whether 0 or 1 is specified for blk_xfer, the machine default storage transfer size will always be
transferred.

PAG

A heap can be created as a process access group (PAG) member. The values are:

0 Do not create the heap in the PAG.

1 Create the heap in the PAG.

Note: It is possible for the PAG to overflow, at which point any requested PAG heap creations or
extensions will not reside in the PAG. Therefore, the system may ignore the request to create the heap in
the PAG.

alloc_init

Allows the user to specify if all storage allocations from the heap being created will be initialized to the
initialization value. The values are:

0 Do not initialize the heap with Init_Value.

1 Initialize the heap with Init_Value.

init_value

The value used to initialize the storage allocations. This value is not used if alloc_value is 0.

reserved2

Must be binary 0.

reserved3

Must be binary 0.

The Default Heap

From the programmer's viewpoint, a default heap is always available in the activation group. In fact, the first
request to allocate storage results in the creation of the default heap from which the storage allocation takes place.

The attributes of the default heap are defined by the system through a default allocation strategy. You cannot
change this default allocation strategy. Following is an example of the default allocation strategy:

 Max_Sngl_Alloc = 16MB - 64KB
 Min_Bdy = 16
 Crt_Size = 4KB
 Ext_Size = 4KB
 Alloc_Strat = 0
 No_Mark = 1
 Blk_Xfer = 0
 PAG = 0
 Alloc_Init = 0
 Init_Value = 0x00 /* This value is not used */
 /* if Alloc_Init is 0 */

In addition, the default heap in an activation group has the following special characteristics:

It may not be discarded by CEEDSHP (discard a heap); it is guaranteed to be present for the life of the
activation group.

●

It is referred to with a heap identifier of 0.●

Languages that do not have an intrinsic multiple-heap storage model (such as ILE C) use the default heap. This
heap cannot be discarded and is immune to the Mark Heap (CEEMKHP) and Release Heap (CEERLHP) APIs.
Storage allocated within the default heap can be freed only by explicit free operations or when the owning
activation group ends.

This implementation ensures that the storage is not inadvertently released in mixed-language applications.
Release heap and discard heap operations are considered insecure for the following reasons:

Large applications that re-use existing code with potentially different storage models.●

The programmer is not completely familiar with the internals of each procedure.●

If release heap operations were valid for the default heap, then procedures that correctly use different storage
management capabilities separately might fail when used in combination.

Top | ILE CEE APIs| APIs by category

Basic Heap Operations APIs
The basic heap operations APIs are:

Allocation Strategy Type (CEE4ALC) specifies the allocation strategy defined for the heap
attributes.

●

Free Storage (CEEFRST) frees one previously allocated heap storage.●

Get Heap Storage (CEEGTST) allocates storage within a heap.●

Reallocate Storage (CEECZST) changes the size of previously allocated storage.●

Top | ILE CEE APIs | APIs by category

Free Storage (CEEFRST) API

 Required Parameter:

1 address Input POINTER

 Omissible Parameter:

2 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Free Storage (CEEFRST) API frees previously allocated heap storage.

Required Parameter

address (input)

The address returned by a previous CEEGTST call or a language-intrinsic function. The storage at
this address is deallocated.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0802 The storage headers are damaged

Severity: 40

CEE0810 The starting address for reallocation is not valid

Severity: 30

Usage Notes

The heap identifier is inferred from the address of the storage to be freed. The storage is deallocated
from the heap in which it was allocated. The deallocate operation may be issued from an activation
group other than the activation group that owns the heap.

●

The pointer to the address passed as the argument is no longer valid after this call. The storage
freed by this operation can be reallocated on a subsequent CEEGTST call. If the pointer is not
reassigned, any further use of it will have unpredictable results.

●

API introduced: V2R3

Top | ILE CEE APIs | APIs by category

Get Heap Storage (CEEGTST) API

 Required Parameter Group:

1 heap_id Input INT4
2 size Input INT4
3 address Output POINTER

 Omissible Parameter:

4 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe:

The Get Heap Storage (CEEGTST) API allocates storage within a heap.

Required Parameter Group

heap_id (input)

A heap identifier of the heap in which the storage is allocated.

size (input)

The number of bytes of storage to be allocated.

address (output)

The address of the first byte of allocated storage.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0802 The storage headers are damaged

Severity: 40

CEE0803 The heap identifier does not match any existing heap

Severity: 30

CEE0808 Requested storage size is not valid

Severity: 30

CEE0813 Insufficient storage available to satisfy the request

Severity: 30

Usage Notes

The size value is rounded up to a multiple of the minimum boundary specified when the heap space
is created. The minimum boundary for the activation group default heap is 16 bytes.

●

The address of the first byte of the allocation begins on a boundary at least as great as the minimum
boundary specified when the heap is created. The minimum boundary for the activation group
default heap is 16 bytes.

●

A heap_id of 0 specifies the default heap in the activation group.●

Individual allocations within a heap may not be contiguous.●

Each allocation associated with a heap provides a sequence of contiguously addressable bytes. The
bytes do not cross a 64KB boundary unless the allocation size is greater than 64KB.

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Reallocate Storage (CEECZST) API

 Required Parameter Group:

1 address I/O POINTER
2 new_size Input INT4

 Omissible Parameter:

3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Reallocate Storage (CEECZST) API changes the size of a previously allocated storage block,
preserving the contents.

Required Parameter Group

address (I/O)

On input, this parameter contains an address returned by a previous CEEGTST call or a language
intrinsic function. On output, the address of the first byte of the newly allocated storage is returned
in this parameter.

In effect, reallocation of a storage block is accomplished by allocating a new storage block, of size
new_size, and copying the contents of the old block to the new block.

new_size (input)

The number of bytes of storage to be allocated for the new storage block. This value is rounded up
to a multiple of the minimum boundary specified when the heap was created. The minimum
boundary for the activation group default heap is 16 bytes.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

A message severity of 10 or less represents success. If the severity is greater than 10:

No storage is allocated.●

The previous allocation remains intact.●

The value in address remains unchanged.●

CEE0000 The API completed successfully

Severity: 00

CEE0802 The storage headers are damaged

Severity: 40

CEE0808 Requested storage size is not valid

Severity: 30

CEE0810 The starting address for reallocation is not valid

Severity: 30

CEE0813 Insufficient storage available to satisfy the request

Severity: 30

Usage Notes

The heap identifier is inferred from the address. The new storage block is allocated from the same
heap that contained the old block. The reallocate operation may be issued from an activation group
other than the one that owns the heap.

●

The contents of the old storage block are preserved in the following way:

If new_size is greater than the old size, the entire contents of the old storage block are
copied to the new block.

❍

If new_size is less than the old size, the contents of the old block are truncated to the size of
the new block.

❍

If new_size is equal to the old size, the contents of the old storage block are copied to the
new block.

❍

Note: Because the new storage may be allocated at a different location than the existing allocation,
any pointers that referred to the old storage are no longer valid. Continued use of such pointers will
give unpredictable, or incorrect results.

●

Storage that is reallocated maintains the same mark and release status as the old storage block. If
the old storage block was marked, the new storage block carries the same mark and is released by a
release operation that specifies the mark.

●

API introduced: V2R3

Top | ILE CEE APIs | APIs by category

Extended Heap Operations APIs
The extended heap operations APIs are:

Create Heap (CEECRHP) creates a new heap.●

Discard Heap (CEEDSHP) discards an existing heap.●

Mark Heap (CEEMKHP) returns a token that can be used to identify heap storage to be freed by the
CEERLHP API.

●

Release Heap (CEERLHP) frees all storage allocated in the heap since the mark was specified.●

Top | ILE CEE APIs | APIs by category

Create Heap (CEECRHP) API

 Required Parameter:

1 heap_id Output INT4

 Omissible Parameter Group:

2 initial_size Input INT4
3 increment Input INT4
4 alloc_strat_id Input INT4
5 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Create Heap (CEECRHP) API creates a new heap.

Required Parameter

heap_id (output)

The heap identifier of the created heap.

Omissible Parameter Group

initial_size (input)

The initial amount of storage, in bytes, allocated for the new heap. If this parameter is 0 or omitted,
and there is no corresponding value in the user-defined allocation strategy, the system computes a
default value. The minimum value that can be specified is 512 bytes. If values between 1 and 512
bytes are specified, the system rounds the value up to 512 bytes automatically. The maximum value
that can be specified is 16MB minus 1KB. The value specified is rounded up to a 512-byte
boundary.

Note: If system resources are constrained, the system may override the value specified.

increment (input)

The number of bytes by which the heap is extended when it is necessary to enlarge the heap to
satisfy an allocation request. If this parameter is 0 or omitted, and there is no corresponding value
in the user-defined allocation strategy, the system computes a default value. The minimum value
that can be specified is 512 bytes. If values between 1 and 512 bytes are specified, the system
rounds the value up to 512 bytes automatically. The maximum value that can be specified is 16MB
minus 1KB. The value specified is rounded up to a 512-byte boundary.

Note: If system resources are constrained, the system may override the value specified.

alloc_strat_ID (input)

The allocation strategy used. ILE allows allocation strategy values of 0, 1, and 40 through 44 from
the possible range of values 0 through 99, where:

0 Specifies use of an allocation strategy that is the optimal default for the system.

1 Same as 0.

40-44 User-defined allocation strategies. See Define Heap Allocation Strategy (CEE4DAS)
API for information on defining allocation strategies.

For allocation strategy values outside of the values specified above:

2-39 The values are reserved for other systems. If they are specified, message CEE0814 is
issued.

45-49 The values are reserved for other systems. If they are specified, message CEE0815 is
issued.

50-99 The values are not supported by ILE. If they are specified, message CEE0806 is issued.

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

Severities of 10 or less represent success. For higher severities, no heap is created, and all other output
values are undefined.

CEE0000 The API completed successfully

Severity: 00

CEE0804 The initial_size parameter is not valid

Severity: 30

CEE0805 The increment parameter is not valid

Severity: 30

CEE0806 Allocation strategy identifier value is not valid

Severity: 30

CEE0809 The maximum number of heaps supported by ILE has been reached

Severity: 30

CEE0813 Insufficient storage available to satisfy the request

Severity: 30

CEE0814 Allocation strategy identifier is not supported by ILE

Severity: 30

CEE0815 Allocation strategy identifier is not supported by ILE

Severity: 30

CEE3006 At least one field in the allocation strategy is not valid

Severity: 30

Usage Notes

If a user-defined allocation strategy value is specified for which the CEE4DAS API was not called,
the default user-created heap strategy is used. See User-Defined Allocation Strategy.

●

The initial_size and increment values, if specified, will override any default or user-created heap
strategy values.

●

If one of the fields in the allocation strategy CEE4DAS is not valid, the heap is not created and an
error condition is raised. This API checks the allocation strategy.

●

API introduced: V2R3

Top | ILE CEE APIs | APIs by category

Discard Heap (CEEDSHP) API

 Required Parameter:

1 heap_id Input INT4

 Omissible Parameter:

2 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Discard Heap (CEEDSHP) API deletes an existing heap.

Required Parameter

heap_id (input)

The heap identifier of the heap to be discarded.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0803 The heap identifier does not match any existing heap

Severity: 30

CEE0812 The basic initial heap cannot be marked and discarded

Severity: 30

CEE0850 The heap cannot be marked

Severity: 30

Usage Notes

A heap_id of 0 is not valid. This is the heap identifier of the default heap; it cannot be discarded.●

After this call, there may still be pointers to storage that had been allocated from this heap. Their
use can cause unpredictable or erroneous results.

●

API introduced: V2R3

Top | ILE CEE APIs | APIs by category

Mark Heap (CEEMKHP) API

 Required Parameter Group:

1 heap_id Input INT4
2 mark Output POINTER

 Omissible Parameter:

3 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe:

The Mark Heap (CEEMKHP) API returns a token, which can be used with the Release Heap (CEERLHP)
API to free a heap storage group. After a CEEMKHP call, all storage subsequently obtained by the
CEEGTST API can be freed by a single CEERLHP call. A heap may have multiple marks.

Required Parameter Group

heap_id (input)

A heap identifier token specifying the heap to be marked.

mark (output)

The mark token for use in a subsequent CEERLHP call.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0803 The heap identifier does not match any existing heap

Severity: 30

CEE0812 The basic initial heap cannot be marked and discarded

Severity: 30

Usage Notes

The default heap in the activation group cannot be marked.●

Multiple marks are maintained for each heap.

When a release operation is performed, the specified mark and all subsequent marks are removed
from the list of active marks.

●

A mark should only be used in release operations. It should not be used as a pointer.●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Release Heap (CEERLHP) API

 Required Parameter:

1 mark Input POINTER

 Omissible Parameter:

2 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Release Heap (CEERLHP) API frees all storage allocated since the specified mark in the heap.

Required Parameter

mark (input)

A mark returned by a previous CEEMKHP call. All storage allocated in the marked heap since the
corresponding mark operation is released. Marks obtained after the specified mark are also
discarded.

Omissible Parameter

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0807 The mark does not match any existing mark

Severity: 30

Usage Notes

No heap identifier is required for this call. The heap identifier of the heap to be released is inferred
from the mark address. The release operation may be issued from an activation group other than the
activation group that owns the heap.

●

Multiple marks can be maintained for each heap. A release operation deallocates all storage
allocated since the specified mark operation.

Mark and release operations treat the heap in a fashion similar to a stack. There must be a mark
operation outstanding at the location used in a release operation. A release operation can reset the
heap to any mark; a release operation can clear one or several mark operations.

●

Pointers obtained by CEEGTST for storage that is freed by the release operation are no longer valid
after this call. Continued use of these pointers will give unpredictable or incorrect results.

●

API Introduced: V2R3

Top | ILE CEE APIs | APIs by category

Heap allocation strategies APIs
The heap allocation strategies API is:

Define Heap Allocation Strategy (CEE4DAS) defines an allocation strategy that determines the
attributes for a heap created with the CEECRHP API.

●

Top | ILE CEE APIs | APIs by category

Define Heap Allocation Strategy (CEE4DAS)
API

 Required Parameter Group:

1 alloc_strat_id Input INT4
2 alloc_strat_in Input CEE4ALC

 Omissible Parameter Group:

3 alloc_strat_out Output CEE4ALC
4 fc Output FEEDBACK

 Service Program Name: QILE

 Default Public Authority: *USE

 Threadsafe: Yes

The Define Heap Allocation Strategy (CEE4DAS) API defines a system-specific allocation strategy and
associates the defined strategy with a specified allocation strategy identifier. When creating a heap using
the CEECRHP API, the allocation strategy identifier can be used within the activation group in which it
was defined.

Required Parameter Group

alloc_strat_ID (input)

The allocation strategy identifier being defined. The valid values are 40 through 44.

alloc_strat_in (input)

A structure of allocation strategy type CEE4ALC that defines the new allocation strategy to be
assigned to the specified allocation strategy identifier. See Allocation Strategy Type (CEE4ALC)
for a description.

Omissible Parameter Group

alloc_strat_out (output)

An optional structure of type CEE4ALC that will be set to the value of the previous allocation
strategy that was assigned to the specified allocation strategy identifier. If no previous allocation
strategy was assigned, the default allocation strategy is returned. See User-Defined Allocation
Strategy for more information.

fc (output)

A 12-byte feedback code.

Feedback Codes and Conditions

CEE0000 The API completed successfully

Severity: 00

CEE0816 The allocation strategy identifier is out of range

Severity: 30

Usage Notes

The CEE4DAS API does not perform a validity check on the contents of alloc_strat_in. When the defined
allocation strategy is used, checking is enforced by the CEECRHP API.

API introduced: V2R3

Top | ILE CEE APIs | APIs by category

	ILE CEE APIs (V5R2)
	Table of Contents
	ILE CEE APIs
	ILE CEE API Calling Conventions
	Data Type Definitions of ILE CEE APIs
	Omitting Parameters in ILE CEE APIs
	OS/400 Messages and the ILE CEE API Feedback Code
	APIs
	Activation Group and Control Flow APIs
	Abnormal End (CEE4ABN) API
	Find a Control Boundary (CEE4FCB) API
	Normal End (CEETREC) API
	Register Activation Group Exit Procedure (CEE4RAGE) API
	Register Call Stack Entry Termination User Exit Procedure (CEERTX) API
	Unregister Call Stack Entry Termination User Exit Procedure (CEEUTX) API

	Condition Management APIs
	Using Condition Management APIs
	Construct a Condition Token (CEENCOD) API
	Decompose a Condition Token (CEEDCOD) API
	Handle a Condition (CEE4HC) API
	Move the Resume Cursor to a Return Point (CEEMRCR) API
	Register a User-Written Condition Handler (CEEHDLR) API
	Retrieve ILE Version and Platform ID (CEEGPID) API
	Return the Relative Invocation Number (CEE4RIN) API
	Signal a Condition (CEESGL) API
	Unregister a User-Written Condition Handler (CEEHDLU) API

	Date and Time APIs
	Date and Time Notation and Limits
	APIs
	Calculate Day of Week from Lilian Date (CEEDYWK) API
	Convert Date to Lilian Format (CEEDAYS) API
	Convert Integers to Seconds (CEEISEC) API
	Convert Lilian Date to Character Format (CEEDATE) API
	Convert Seconds to Character Timestamp (CEEDATM) API
	Convert Seconds to Integers (CEESECI) API
	Convert Timestamp to Number of Seconds (CEESECS) API
	Get Current Greenwich Mean Time (CEEGMT) API
	Get Current Local Time (CEELOCT) API
	Get Offset from Universal Time Coordinated to Local Time (CEEUTCO) API
	Get Universal Time Coordinated (CEEUTC) API
	Query Century (CEEQCEN) API
	Return Default Date and Time Strings for Country or Region (CEEFMDT) API
	Return Default Date String for Country or Region (CEEFMDA) API
	Return Default Time String for Country or Region (CEEFMTM) API
	Set Century (CEESCEN) API

	Math APIs
	Data Types and Limits
	Calling Math Bindable APIs
	Math Bindable APIs Are Procedures
	ILE Math Bindable API Descriptions
	Message Descriptions for Math Bindable APIs
	Basic Random Number Generation (CEERAN0) API
	Convert 64-Bit Integer to Character String (CEE4JNTS) API
	Convert Character String to 64-Bit Integer (CEE4JSTN) API

	Message Services APIs
	Dispatch a Message (CEEMOUT) API
	Get a Message (CEEMGET) API
	Get, Format, and Dispatch a Message (CEEMSG) API

	Program or Procedure Call APIs
	Get String Information (CEEGSI) API
	Retrieve Operational Descriptor Information (CEEDOD) API
	Test for Omitted Argument (CEETSTA) API

	Storage Management APIs
	Allocation Strategy Type (CEE4ALC)
	Basic Heap Operations APIs
	Free Storage (CEEFRST) API
	Get Heap Storage (CEEGTST) API
	Reallocate Storage (CEECZST) API

	Extended Heap Hperations APIs
	Create Heap (CEECRHP) API
	Discard Heap (CEEDSHP) API
	Mark Heap (CEEMKHP) API
	Release Heap (CEERLHP) API

	Heap allocation strategies APIs
	Define Heap Allocation Strategy (CEE4DAS) API

