IBM PowerHA SystemMirror for AIX Standard Edition バージョン 7.2.2

PowerHA SystemMirror のトラブルシューティング

IBM PowerHA SystemMirror for AIX Standard Edition バージョン 7.2.2

PowerHA SystemMirror のトラブルシューティング

本書および本書で紹介する製品をご使用になる前に、103ページの『特記事項』に記載されている情報をお読みください。

本書は、IBM PowerHA SystemMirror 7.2.2 Standard Edition for AIX および新しい版で明記されていない限り、以降のすべてのリリースおよびモディフィケーションに適用されます。

お客様の環境によっては、資料中の円記号がバックスラッシュと表示されたり、バックスラッシュが円記号と表示されたりする場合があります。

原典: IBM PowerHA SystemMirror for AIX

Standard Edition

Version 7.2.2

Troubleshooting PowerHA

SystemMirror

発行: 日本アイ・ビー・エム株式会社

担当: トランスレーション・サービス・センター

© Copyright IBM Corporation 2017.

目次

本書についてv 強調表示v AIX での大/小文字の区別v ISO 9000v 関連情報v	 論理ボリューム・マネージャーの確認
PowerHA SystemMirror トラブルシュー	システム・ハードウェアの検査 54
ティング・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	PowerHA SystemMirror のインストールの問題55共通問題の解決PowerHA SystemMirror の始動の問題ディスクとファイルシステムの問題ネットワークとスイッチの問題クラスター通信の問題PowerHA SystemMirror のテークオーバーの問題題クライアントの問題その他の問題86
問題判別ツール	特記事項
システム・コンポーネントの調査	索引

© Copyright IBM Corp. 2017

本書について

本書では、PowerHA® SystemMirror® for AIX® ソフトウェアのトラブルシューティングについて紹介します。この情報は、オペレーティング・システム付属の文書 CD にも収録されています。

強調表示

本書では、以下の強調表示規則を使用します。

太字 システムによって名前が事前に定義されているコマンド、サブルーチン、キーワード、ファイル、構造、デ

ィレクトリー、およびその他の項目を示します。また、ユーザーが選択するボタン、ラベル、アイコンなど

のグラフィカル・オブジェクトも示します。

イタリック 実際の名前または値をユーザーが指定する必要があるパラメーターを示します。

モノスペース 特定のデータ値の例、画面に表示されるものと同様のテキスト例、プログラマーが作成するものと同様のプ

ログラム・コード部分の例、システムからのメッセージ、実際に入力する必要がある情報などを示します。

AIX での大/小文字の区別

AIX オペレーティング・システムは、すべてケース・センシティブとなっています。これは、英大文字と小文字が区別されるということです。例えば、ls コマンドを使用するとファイルをリスト表示できます。 LS と入力した場合、そのようなコマンドはないという応答がシステムから返ってきます。同様に、 FILEA、FiLea、および filea は、同じディレクトリーにある場合でも、3 つの異なるファイル名です。予期しない処理が実行されないように、常に正しい大/小文字を使用するようにしてください。

ISO 9000

当製品の開発および製造には、ISO 9000 登録品質システムが使用されました。

関連情報

- PowerHA SystemMirror バージョン 7.2.2 for AIX PDF 資料は、『PowerHA SystemMirror 7.2.2 の PDF』のトピックで入手可能です。
- PowerHA SystemMirror バージョン 7.2.2 for AIX リリース・ノートは、『PowerHA SystemMirror 7.2.2 リリース・ノート』のトピックで入手可能です。

PowerHA SystemMirror トラブルシューティング

本書は PowerHA SystemMirror ソフトウェア (AIX オペレーティング・システム用) のトラブルシュー ティングに使用します。

関連情報:

Administering PowerHA SystemMirror

PowerHA SystemMirror プランニング・ガイド

PowerHA SystemMirror インストール・ガイド

PowerHA SystemMirror クラスターのトラブルシューティング

以下のセクションでは、PowerHA SystemMirror クラスターのトラブルシューティングについて推奨され る戦略を説明します。また、PowerHA SystemMirror メイン SMIT メニューから使用できる問題判別ツ ールを示します。さらに、クラスターのパフォーマンスを最適にするための調整についても説明します。こ れにより、共通問題のいくつかを回避することができます。

通常、機能している PowerHA SystemMirror クラスターに介入する必要はほとんどありません。それで も問題が発生した場合は、診断とリカバリーのスキルが重要になります。 そのため、トラブルシューティ ングでは、問題を素早く特定し、PowerHA SystemMirror ソフトウェアに関する知識を応用してクラスタ ーをフル稼働まで復元させる必要があります。

一般に、PowerHA SystemMirror クラスターのトラブルシューティングには以下のステップが含まれま す。

- 問題の存在の認識
- 問題の原因の特定
- 問題の修正

注: 以下のトピックでは、ログ・ファイルのデフォルト・ロケーションが示されます。 ログをリダイレク トしている場合は、該当するロケーションを確認してください。

関連概念:

12 ページの『クラスター・ログ・ファイルの使用』

以下のトピックでは、PowerHA SystemMirror クラスター・ログ・ファイルを使用したクラスターのトラ ブルシューティング方法について説明します。 一部のログについては、パラメーターの管理に関するセク ションもいくつか含まれています。

56ページの『共通問題の解決』

このセクションでは、よくある問題と、推奨事項について説明します。

関連資料:

36 ページの『システム・コンポーネント』

以下のトピックでは、システム・コンポーネントを調査する手順を示し、PowerHA SystemMirror の使用 時に発生する可能性がある問題を特定し、考えられる解決策を提示します。

問題の認識

PowerHA SystemMirror クラスター内で問題が発生した場合、イベント通知アラートにより、あるいは errpt ファイルまたは hacmp.out ファイルをモニターすることにより、問題発生を知ることができます。

また、クラスターに関する問題は、メール通知、ページャー通知またはテキスト・メッセージングから認識 される場合も多くあります。

- メール通知。 PowerHA SystemMirror 標準コンポーネントでは、問題が発生した場合にシステム管理者にメールは送信されませんが、イベント・スクリプトの実行前または実行後に実行するイベント前処理スクリプトまたはイベント後処理スクリプトとして、メール通知メソッドを作成することができます。 PowerHA SystemMirror クラスター環境では、メール通知が効果的な方法として推奨されます。
- リモート通知。 SMIT インターフェースを使って、クラスター・イベントへの応答をカスタマイズして 発行する通知メソッド (携帯電話を含む任意のアドレスへの数値ページ、英数字ページ、またはテキスト・メッセージ通知) を定義することもできます。
 - ページャー通知。 指定のイベントが発生したときに、ページャー番号にメッセージを送信できます。 テキスト表示 (英数字ページ) をサポートするページャーにはテキスト情報を、数値のみを表示するページャーには数値メッセージを送信できます。
 - テキスト・メッセージング。 標準 Telocator Alphanumeric Protocol (TAP) によって、標準データ・モデムと固定電話を使用してテキスト・メッセージを携帯電話に送信できます。 プロバイダーがこのサービスをサポートしている必要があります。

また、Falcom-compatible GSM モデムを使用して、SMS (Short Message Service) テキスト・メッセージ通知を無線で送信することもできます。 SMS メッセージには SMS サービス・プロバイダーのアカウントが必要です。 GSM モデムは、RS232 回線あるいは USB 回線を介して TAP モデム・プロトコルを入力として受信し、プロバイダーの携帯電話局にメッセージを無線で送信します。プロバイダーはメッセージを宛先の携帯電話に転送します。 各プロバイダーはショート・メッセージ・サービス・センター (SMSC) を持っています。

個々のユーザーについて、すべてのイベントとノードを含むリモート通知メソッドを定義できるので、応答者が変更されても 1 ユニットとして通知メソッドを切り替えることができます。

注: 手動で各メッセージ・ファイルを各ノードに配信してください。 PowerHA SystemMirror は、同期中にファイル・コレクション・ユーティリティーが特別に設定されていない限り、自動的にファイルを他のノードには配信しません。

システム・コンソールに表示されるメッセージ

PowerHA SystemMirror システムによって (クラスター・イベントに応じて) 実行されたスクリプトが開始、停止、またはエラー条件を検出すると、記述メッセージが生成されます。 また、PowerHA SystemMirror クラスターを構成するデーモンにより、開始された時点、停止した時点、エラー状態を検出した時点、または状態を変更した時点でも、デーモンによりメッセージが生成されます。PowerHA SystemMirror システムは、これらのメッセージをシステム・コンソールおよび 1 つ以上のクラスター・ログ・ファイルに書き込みます。 errpt ファイルなどの関連システム・ファイルにもエラーが記録される場合があります。

関連概念:

12 ページの『クラスター・ログ・ファイルの使用』

以下のトピックでは、PowerHA SystemMirror クラスター・ログ・ファイルを使用したクラスターのトラブルシューティング方法について説明します。 一部のログについては、パラメーターの管理に関するセクションもいくつか含まれています。

関連情報:

PowerHA SystemMirror プランニング・ガイド

PowerHA SystemMirror クラスターの検査および同期化

問題の原因の特定

問題があることが判明したら、問題の原因を見つける必要があります。

PowerHA SystemMirror について問題が検出された場合は、最初に問題を分析するために、以下のアクシ ョンを実行してください。

- 1. snap -e コマンドで PowerHA SystemMirror スナップショットを収集します。これは、できるだけ問 題が検出された直後に実行してください。収集されるログ・ファイルにはエラーの 1 期間を保持して いるためです。
- 2. /usr/es/sbin/cluster/clstat コマンドおよび /usr/es/sbin/cluster/utilities/clRGinfo コマンドを使用 して、クラスターとリソース・グループの状態を明確にします。
- 3. イベント・エラーが発生した場合は、/var/hacmp/log/hacmp.out ファイルを検査してエラーを検索 します。 AIX コマンドが失敗した場合は、snap コマンドを使用して、対応する AIX コンポーネント のより詳細なデバッグ・データを積極的に収集してください。 PowerHA SystemMirror のより詳細な 問題の判別のために最もよく要求されるフラグは、snap -egGtL です。
- 4. 最新のクラスター検証の結果を、/var/hacmp/log/clverify.log ファイルと /var/hacmp/log/ autoverify.log ファイルで調べます。 クラスター検証を実行します。
- 5. C-SPOC コマンドが失敗した場合は、/var/hacmp/log/cspoc.log.long ファイルを調べます。
- 6. ノード間のネットワーク接続を検証します。
- 7. エラーが障害の時間ウィンドウのログに記録されている場合は、エラー・ログ (errpt -a) を検査して設 定します。

クラスター・マネージャーの停止

クラスターの問題を修正するには、障害のあるノードでクラスター・マネージャーを停止し、共用リソース を残りのノードにテークオーバーさせる必要があります。

「unmanage resource groups (リソース・グループの管理解除)」オプションでクラスター・サービスを停止 した後で、クラスター・マネージャー処理を停止することもできます。このオプションはリソースをアクテ ィブのままにしますが、ノード上ではモニターできません。停止させたら、トラブルシューティングの手順 を開始できます。

他の手順がすべて失敗した場合は、すべてのクラスター・ノード上で PowerHA SystemMirror クラスタ ー・サービスを停止させます。 次に、PowerHA SystemMirror クラスター・イベント・スクリプトが開 始しようとしていたアプリケーションを手動で開始し、PowerHA SystemMirror ソフトウェアなしでアプ リケーションを実行します。このとき、ボリューム・グループの検証、ファイル・システムのマウント、IP アドレスを使用可能にすることが必要になる場合があります。 全クラスター・ノード上で PowerHA SystemMirror クラスター・サービスを停止させた状態で、最初の問題の原因となった条件を修正します。

AIX データ収集ユーティリティーの使用

AIX snap コマンドを使用して、データを PowerHA SystemMirror クラスターから収集します。

-e フラグは、PowerHA SystemMirror および他のコンポーネントと PowerHA SystemMirror による他 のコンポーネントとの対話についての問題をトラブルシューティングする際に、IBM® サポートに役立つデ ータを収集します。特に、-e フラグは、PowerHA SystemMirror ユーティリティーのすべてのログ・ファイル、PowerHA SystemMirror によって保守される ODM、いくつかの AIX ODM、最もよく必要とされる AIX 構成データ (LVM、TCP/IP、installp 情報など) を収集します。 snap -e コマンドは /usr/sbin/rsct/bin/ctsnap を実行し、ctsnap はグループ・サービスのデータを収集します。

PowerHA SystemMirror スナップショットは、できる限り PowerHA SystemMirror で問題が発生した直後に収集して、エラーの時間ウィンドウに関するデータが確実にログ・ファイルに組み込まれるようにしてください。

snap -e コマンドは、クラスター通信デーモン・サブシステム (clcomd) に依存して、データを収集します。このサブシステムがエラーによって影響を受けると、snap -e コマンドは失敗する場合があります。この場合は、すべてのクラスター・ノードの以下のデータを収集してください。

- ディレクトリー /var/hacmp の tar アーカイブ
- ディレクトリー /etc/es/objrepos および /usr/es/sbin/cluster/etc/objrepos/active の tar アーカイブ
- snap -cfgGLt

PowerHA SystemMirror 診断ユーティリティーの使用

PowerHA SystemMirror および AIX は多くの診断ツールを提供します。

(クラスター・ログとメッセージに加えて) PowerHA SystemMirror 診断ツールには次が含まれます。

- **clRGinfo** は、リソース・グループについての情報およびトラブルシューティングのための情報を提供します。
- **clstat** は、キーになるクラスター・コンポーネント (クラスター自体、クラスターのノード、ノードに接続されたネットワーク・インターフェース、サービス・ラベル、および各ノード上のリソース・グループ) の状況を報告します。
- cldisp ユーティリティーは、リソース・グループとその開始、フォールオーバー、フォールバックの各ポリシーを表示します。
- SMIT の問題判別ツール。詳しくは、セクション『問題判別ツール』を参照してください。

クラスター・スナップショット・ユーティリティーによるクラスター構成の確認

ログを収集する場合は、SMIT でログを収集するよう指定することもできます。ログの収集をスキップすると、スナップショットのサイズを縮小し、スナップショット・ユーティリティーの実行時間を減少できます。

SMIT 問題判別ツールの操作

SMIT「Problem Determination Tools (問題判別ツール)」メニューには、クラスター・スナップショット・ユーティリティーによって提供されるオプションが含まれ、問題の診断および解決にも役立ちます。 関連概念:

5 ページの『問題判別ツール』

SMIT インターフェースを使用すると、PowerHA SystemMirror の問題のトラブルシューティングに役立つことがあります。

関連情報:

PowerHA SystemMirror クラスターのモニター クラスター構成の保管および復元

予想される動作の検証

可用性の高いアプリケーションが稼働している場合は、ユーザーがそれらのアプリケーションにアクセスで きることを確認します。

アプリケーションが稼働していない場合は、他の部分を調べて、クラスターに影響を与えている問題を特定 する必要があります。本書では、潜在的な問題を見つけることができる方法を説明します。

問題判別ツール

SMIT インターフェースを使用すると、PowerHA SystemMirror の問題のトラブルシューティングに役立 つことがあります。

以下のツールを PowerHA SystemMirror のトラブルシューティングに使用できます。これらのツールに アクセスするには、コマンド行に smit sysmirror と入力し、「問題判別ツール (Problem Determination Tools)」を選択します。

PowerHA SystemMirror Verification (検証)

このツールを使用すると、すべてのノード上の構成が同期化されていることの確認、ユーザー定義 検証メソッドのセットアップ、または自動クラスター検証のセットアップを行うことができます。

View Current State (現在の状態の表示)

このツールを使用すると、ノード、通信インターフェース、リソース・グループの状態、および最 終の 5 つのイベントのローカル・イベント要約を表示できます。

PowerHA SystemMirror Log Viewing and Management (ログの表示および管理)

このツールを使用すると、ログ・ファイルに関連したユーティリティーのリストを表示できます。

Recover from PowerHA SystemMirror Script Failure (スクリプト障害からの回復)

このツールを使用すると、スクリプト障害から回復できます。

Restore PowerHA SystemMirror Configuration Database from Active Configuration (アクティブ構 成からの構成データベースの復元)

このツールを使用すると、構成データベースに加えたどの変更でも、スナップショットとしてパス /usr/es/sbin/cluster/snapshots/UserModifiedDB に自動的に保存できます。それらの変更は、ク ラスター・マネージャーで実際に使用される値で構成データベースを復元する前に、保存する必要 があります。

Release Locks Set By Dynamic Reconfiguration (動的再構成によって設定されたロックの解除)

このツールを使用すると、動的再構成中に使用されたロックを解除できます。アクティブ・クラス ターで構成変更を行うと、それらの変更をアクティブ構成にコミットする前に、すべてのノードに 変更を配布するマルチステップの処理が行われます。この処理の各段階で、更新処理の同期化のた めにソフトウェアの「ロック」が行われます。この更新のいずれかの時点で障害が発生した場合、 ロックがそのまま解除されない可能性があります。そのような場合、さらに変更を行うにはまずロ ックを解除することが必要になります。

Cluster Test Tool (クラスター・テスト・ツール)

このツールを使用すると、新しいクラスターを実稼働環境に入れる前にそのクラスターの回復手順 をテストできます。また、既存のクラスターがサービス中でない場合は、その既存クラスターへの 変更をこのツールを使用してテストすることもできます。

PowerHA SystemMirror Trace Facility (トレース機能)

このツールを使用すると、PowerHA SystemMirror デーモンをトレースできます。

PowerHA SystemMirror Error Notification (エラー通知)

このツールを使用すると、エラー通知を作成できます。

AIX Tracing for Cluster Resources (クラスター・リソースの AIX トレース)

このツールを使用すると、イベント・スクリプトの実行時にクラスター・リソースの AIX トレース・データを収集できます。

Compare Active and Default Configurations (アクティブ構成とデフォルト構成の比較)

このツールを使用すると、変更をアクティブ構成に取り込む前に、デフォルト構成内で変更を比較 して識別できます。

Replace the Primary Repository Disk (1 次リポジトリー・ディスクの交換)

このツールを使用すると、クラスター・リポジトリーに使用するディスクを交換できます。

Open a SMIT Session on a Node (ノード上で SMIT セッションを開く)

このツールを使用すると、SMIT 内からリモート・ノード上の SMIT セッションを開くことができます。

関連情報:

動的再構成の問題および同期化

PowerHA SystemMirror クラスターの検査および同期化

エラー通知のタイプ

PowerHA SystemMirror の検証

「Problem Determination Tools (問題判別ツール)」メニューからこのオプションを選択すると、すべてのノード上の構成が同期化されていることの確認、ユーザー定義検証メソッドのセットアップ、または自動クラスター検証のセットアップができます。

表 1. 問題判別ツールのフィールド

フィールド	説明
Verify PowerHA SystemMirror Configuration (構成の検	このオプションを選択してクラスター・トポロジー・リソースを検証
証)	します。
Configure Custom Verification Method (ユーザー定義検	このオプションを使用して、ユーザー定義検証メソッドの追加、表
証メソッドの構成)	示、除去を行います。
Automatic Cluster Configuration Monitoring (自動クラス	このオプションを選択すると 24 時間ごとにクラスターを自動的に検
ター構成モニター)	証でき、クラスター全体の結果が報告されます。

PowerHA SystemMirror 構成の検証:

クラスター・トポロジー・リソースおよびカスタム定義の検証メソッドを検証できます。

PowerHA SystemMirror 構成を検証するには、以下のステップを実行します。

- 1. コマンド行から smit sysmirror と入力します。
- 2. SMIT で、「Problem Determination Tools (問題判別ツール)」 > 「PowerHA SystemMirror Verification (検証)」 > 「Verifying PowerHA SystemMirror Configuration (構成の検証)」を選択し、Enter キーを押します。
- 3. 以下のフィールド値を入力します。

表 2. PowerHA SystemMirror 構成フィールド

フィールド	値
PowerHA SystemMirror の検証メソッド	デフォルトでは、事前インストール・プログラムが、PowerHA SystemMirrorに付属のすべての検証メソッドを実行します。このフィールドを選択してすべての事前インストール・プログラムを実行するか、「none (なし)」を選択して先に定義したユーザー定義検証メソッドを指定することもできます。
Custom Defined Verification Method (ユーザー定義検査メソッド)	ユーザー定義検証メソッドの名前を入力します。 F4 を押して、以前に定義した 検証メソッドのリストを表示することもできます。 どのメソッドも選択せず、 「Base PowerHA SystemMirror Verification Method (基本 PowerHA SystemMirror 検証メソッド)」フィールドで「none (なし)」を選択すると、デフォルトでは「検証と同期」は基本検証メソッドを確認せずにエラー・メッセージを表示します。 メソッドの実行順序は、検証メソッドがリストされている順序で決まります。この実行順序は、後続の検証でも同じであり、別のメソッドが選択されるまで変わりません。 「All (すべて)」を選択した場合、カスタム定義のメソッドがすべて検証されます。
Error Count (エラー・カウント)	デフォルトでは、PowerHA SystemMirror 構成の検証はエラーの全リストを発行するためにエラー発生後も実行し続けます。 エラーの数が一定数に達した時点でプログラムをキャンセルする場合は、このフィールドにエラー数を入力します。
Log File to store output (出力を保管するためのログ・ファイル)	検証の出力を保管する出力ファイルの名前を入力します。 デフォルトでは、検証 出力も /var/hacmp/clverify/clverify.log ファイルに保管されます。
Verify Changes Only? (変更のみを検証する)	現在のクラスター構成に適用するすべての検証を実行するには、「no (いいえ)」を選択します。 変更された PowerHA SystemMirror 構成部分に関連する検査だけを実行するには、「yes (はい)」を選択します。 「yes (はい)」を選択した場合、非アクティブ・クラスターは対象になりません。 注:「yes (はい)」オプションが関係するのは、クラスター構成データベースのみです。 クラスター・ノードの AIX 構成を変更した場合には、「no (いいえ)」を選択してください。AIX 構成を変更していない場合にのみ、「yes (はい)」を選択してください。
Logging (ロギング)	「on (オン)」を選択すると、通常 /var/hacmp/clverify/ clverify.log に送られるすべての出力がコンソールに表示されます。デフォルトは「off (オフ)」です。

クラスター構成の自動モニターおよび検証:

クラスターの検証ユーティリティーは、ユーザーが選択可能な 1 つの PowerHA SystemMirror クラスタ ー・ノード上で 24 時間ごとに実行されます。

デフォルトでは、アルファベット順で最初のノードによって、真夜中に検証が実行されます。 検証中、今 後どこかで問題を発生させる可能性があるエラーがあれば、すべて表示されます。 ノードおよび構成に適 した時間を選択して、デフォルトを変更できます。

選択されたノードが使用できない (電源が切られている)場合、検証は自動モニターを実行しません。選 択されたクラスター・ノードでクラスター検証が完了すると、このノードによって他のクラスター・ノード に次の検証情報が通知されます。

- 検証が実行されたノード名
- 最新検証の日付と時間
- 検証結果

この情報は PowerHA SystemMirror ログ・ファイル /var/hacmp/log/clutils.log に使用可能なクラスタ ー・ノード別に格納されます。 選択されたノードが使用できない場合や、クラスター検証が完了できなか ったことは、/var/hacmp/log/clutils.log ファイルにレポートが無いことによって検出できます。

クラスター検証が完了し、構成エラーが検出された場合は、次のような潜在的な問題について通知されます。

- クラスターの検証の終了状況が、クラスター検証プロセスの完了の情報とともにクラスター全体に連絡されます。
- ブロードキャスト・メッセージがクラスター全体に送信され、stdout に表示されます。これらのメッセージは、ユーザーに、検出された構成エラーについて通知します。
- クラスター上で cluster_notify イベントが実行され、(クラスター・サービスが実行されている場合) hacmp.out ログに記録されます。

さらに詳細な情報は、/var/hacmp/clverify/clverify.log でクラスター検証を完了したノードで入手できます。 処理中に障害が発生した場合、エラー・メッセージおよび警告により、verification で障害が発生したノードとその理由が明確に示されます。

自動検証の構成およびクラスター構成のモニター:

ノードを構成し、クラスターの検証が自動的に実行される時刻を指定できます。

ノード上の /var ファイルシステムに /var/hacmp/log/clutils.log ファイル用の十分なスペースがあることを確認します。

ノードを構成し、クラスターの検証が自動的に実行される時間を指定するには、次の手順を実行します。

- 1. コマンド行から smit sysmirror と入力します。
- 2. SMIT インターフェースから「Problem Determination Tools (問題判別ツール)」 > 「PowerHA SystemMirror Verification (検証)」 > 「Automatic Cluster Configuration Monitoring (自動クラスター構成モニター)」を選択し、Enter キーを押します。
- 3. 以下のフィールド値を入力します。

表 3. 自動クラスター構成モニター・フィールド

フィールド	値
* Automatic cluster configuration verification (自動 クラスター構成検証)	デフォルトは「Enabled (使用可能)」です。
Node name (ノード名)	リストからいずれかのクラスター・ノードを選択します。 デフォルトでは、アルファベット順の最初のノードによって、クラスター構成が検証されます。このノードは、自動検証が実行されると動的に決定されます。
*HOUR (00 - 23) (時 (00 - 23))	デフォルトでは深夜 (00) になっています。 検証は、24 時間ごとに選択された時間に自動的に実行されます。

- 4. すべてのフィールドが正しいことを確認し、Enter キーを押します。
- 5. 変更は、クラスターが同期化されると有効になります。

関連情報:

PowerHA SystemMirror クラスターのモニター

PowerHA SystemMirror ログの表示および管理

「Problem Determination Tools (問題判別ツール)」メニューからこのオプションを選択して、ログ・ファイルに関連するユーティリティーの一覧を表示します。

ここから、次の内容を実行できます。

- イベント要約の表示、保存、または削除
- 詳細 PowerHA SystemMirror ログ・ファイルの表示
- 8 PowerHA SystemMirror のトラブルシューティング

- PowerHA SystemMirror ログ・ファイル・パラメーターの変更または表示
- クラスター・マネージャーのログ・ファイル・パラメーターの変更または表示
- クラスター・ログ・ファイルのディレクトリーの変更または表示
- すべての Cluster Logs ディレクトリーの変更
- 問題報告のためのクラスター・ログ・ファイルの収集

関連概念:

12 ページの『クラスター・ログ・ファイルの使用』

以下のトピックでは、PowerHA SystemMirror クラスター・ログ・ファイルを使用したクラスターのトラ ブルシューティング方法について説明します。 一部のログについては、パラメーターの管理に関するセク ションもいくつか含まれています。

関連情報:

PowerHA SystemMirror クラスターのテスト

PowerHA SystemMirror スクリプト障害からの回復

PowerHA SystemMirror スクリプト障害から回復するには、「Problem Determination Tools (問題判別 ツール)」メニューからこのオプションを選択します。

例えば、ファイルシステム・マウントの失敗のためにスクリプト障害が起こった場合、問題を修正し、ファ イルシステムを手動でマウントしてから、このオプションを使用して残りのクラスター・イベント処理を完 了することができます。

「Recover From PowerHA SystemMirror Script Failure (スクリプト障害からの回復)」メニュー・オプ ションにより、指定されたノードのクラスター・マネージャー・デーモン (clstrmgrES) に信号が送信さ れ、その結果、デーモンはクラスター・イベントの次のステップに進みます。イベント障害が引き続いて起 こった場合、問題修正の処理を繰り返してから、「Recover From PowerHA SystemMirror Script Failure (スクリプト障害からの回復)」オプションを使用して次のステップに進む必要があります。クラス ターの状態が「安定」するまで、この処理を続行する必要があります。

スクリプト障害の原因となった問題が修正されたことを確認します。 イベント・スクリプトの障害後の残 りのステップを手動で完了する必要があります (/var/hacmp/log/hacmp.out を参照してください)。 次 に、クラスタリングを再開するには、次のステップを完了して、PowerHA SystemMirror イベント・スク リプトの状態を EVENT COMPLETED にします。

- 1. smit hacmp と入力します。
- 2. SMIT で、「Problem Determination Tools (問題判別ツール)」>「Recover From PowerHA SystemMirror Script Failure (スクリプト障害からの回復)」を選択します。
- 3. clruncmd コマンドを実行するノードの IP ラベル/アドレスを選択して、Enter を押します。 回復の 試行を確認するプロンプトが表示されます。 IP ラベルが /etc/hosts ファイルにリストされます。この ラベルは、障害が発生したノードのサービス IP アドレスに割り当てられた名前です。
- 4. 続行するには、Enter キーを押してください。 スクリプトの回復の成功を確認する別の SMIT パネル が表示されます。

アクティブ構成からの PowerHA SystemMirror 構成データベースの復元

クラスター・サービスが開始され、構成に変更が加えられると、これらの変更に伴って、DCD (default configuration directory) も変更されます。 これらの変更の影響をよく検討していないことが分かり、元に 戻す場合もあります。 ACD (active configuration directory) は修正されていないため、DCD の変更を元 に戻すために必要な手順は、ACD から DCD を復元することだけです。

「Problem Determination Tools (問題判別ツール)」メニューからこのオプションを選択して、実際にクラスター・マネージャーで使用される値で構成データベースを復元する前に、/usr/es/sbin/cluster/snapshots/UserModifiedDB のパスで変更をスナップショットとして構成データベースに自動的に保存します。

- 1. smit hacmp と入力します。
- 2. SMIT で、「Problem Determination Tools (問題判別ツール)」>「Restore PowerHA SystemMirror Configuration Database from Active Configuration (アクティブ構成からの PowerHA SystemMirror 構成データベースの復元)」を選択します。

SMIT から次の質問が表示されます。

Are you Sure?

3. Enter を押します。

スナップショットが保管され、アクティブ構成が DCD にコピーされます。これで、構成を表示して、さらに必要な変更を行うことができます。

関連情報:

クラスター構成の保管および復元

サンプル・ユーザー定義スクリプト

このトピックには、カスタム・スクリプトの実行が役立つシナリオがいくつか用意されており、サンプル・スクリプトが含まれています。

cron ジョブの高可用化

PowerHA SystemMirror 環境の管理を容易にするには、特定の cron ジョブを現在リソースを保持しているクラスター・ノード上でのみ実行させる必要があります。

cron ジョブがリソースまたはアプリケーションと合わせて実行される場合、この cron エントリーをリソースとともにフォールオーバーさせると有効です。 ノードによって関連するリソースまたはアプリケーションが処理されなくなる場合、cron テーブルから cron エントリーを除去する必要がある場合もあります。

次の例は、カスタマイズしたスクリプトを使用してこれを行う 1 つの方法を示しています。

例に挙げるクラスターは、2 ノードのホット・スタンバイ・クラスターであり、node1 が 1 次ノードで、 node2 がバックアップ・ノードです。 node1 は通常、共用リソース・グループおよびアプリケーションを 所有しています。 アプリケーションは、 ${\bf cron}$ ジョブの実行頻度が 1 日 1 回で、ただし、現在リソースを 所有しているノード上でのみジョブが実行されることを要求します。

共用リソース・グループおよびアプリケーションが node2 ヘフォールオーバーした場合でも、cron ジョブが確実に実行されるようにするには、次のようにして、2 つのファイルを作成します。

1. root ユーザーが **cron** ジョブを実行中である場合、**root.resource** というファイルと **root.noresource** という別のファイルを node1 の非共用ファイル・システムのディレクトリーに作成します。 これらのファイルを、ディレクトリー /var/spool/crontabs にある **cron** テーブルのように変更します。

root.resource テーブルには、通常実行されるすべてのシステム・エントリーと、共用リソースまたはアプリケーションに関連するすべてのエントリーが含まれています。

root.noresource テーブルには、通常実行されるすべてのシステム・エントリーが含まれますが、共用リソースまたはアプリケーションに関連するエントリーは含まれません。

- 2. 両方のノードに 2 つのファイルのコピーが含まれるようにファイルを他のノードにコピーします。
- 3. システム起動時に双方のシステムで次のコマンドを実行します。

crontab root.noresource

これにより、システム始動時に root の cron テーブルに入っているのは「no resource」エントリーの みとなります。

- 4. 2 つの方法のいずれかを使用して、root.resource cron テーブルを活動化できます。 2 つの方法のうち では、最初の方が簡単です。
 - アプリケーション開始スクリプトの最後の行として crontab root.resource を実行します。 アプリ ケーションの停止スクリプトでは、最初の行は crontab root.noresource となります。 アプリケー ションの始動スクリプトと停止スクリプトでこれらのコマンドを実行することにより、これらのコ マンドが正しい時期に正しいノード上でアクティブおよび非アクティブになることが保証されま
 - post event から node up complete および node down complete までの行として crontab コマ ンドを実行します。
 - 1 次ノードの node_up_complete で、crontab root.resources を実行します。
 - node_down_complete で crontab root.noresources を実行します。
 - また、テークオーバー・ノードによって必ずイベント・ハンドラーが使用され、適切な cron テー ブルが実行されます。 テークオーバーが起こったかどうかを特定し、crontab root.resources コマ ンドを実行するために、ロジックが node down complete イベントに書き込まれる必要がありま す。 x 再統合時、必ず node_up に対するイベント前処理によって、1 次ノードがクラスターに戻 っているかが特定され、その後、crontab root.noresource コマンドが実行されます。

印刷キューの高可用化

フォールオーバーが起きた場合、その時点でキューに入っている印刷ジョブを保管し、残った方のノードへ 移動できます。

印刷スプーリング・システムは、2 つのディレクトリー (var/spool/qdaemon および /var/spool/lpd/qdir) で構成されています。 一方のディレクトリーには、各ジョブのデータ (コンテンツ) が入ったファイルが 入ります。 もう一方のディレクトリーには、印刷ジョブ自体に関連した情報から成るファイルが入りま す。 ジョブがキューに入っていると、2 つのディレクトリーのそれぞれに、ファイルが存在します。 フォ ールオーバーが起きると、これらのディレクトリーは通常、フォールオーバーを行わないため印刷ジョブは 失われます。

この問題の解決策は、共用ボリューム・グループ上に 2 つのファイル・システムを定義することです。 こ れらのファイルシステムを /prtjobs および /prtdata と呼びます。 PowerHA SystemMirror が開始され ると、これらのファイルシステムは /var/spool/lpd/qdir および /var/spool/qdaemon に対してマウントさ れます。

この操作を、node_up のイベント後処理として実行するスクリプトを作成してください。 そのスクリプト は、次のことを行います。

- 1. 印刷キューを停止します
- 2. 印刷キュー・デーモンを停止します
- 3. /prtjobs を /var/spool/lpd/qdir に対してマウントします
- 4. /prtdata を /var/spool/qdaemon に対してマウントします
- 5. 印刷キュー・デーモンを再始動します

6. 印刷キューを再始動します

フォールオーバーが起きた場合、残ったノードは、次のことを行います。

- 7. 印刷キューを停止します
- 8. 印刷キュー・デーモンを停止します
- 9. /prtjobs の内容を /var/spool/lpd/qdir に移動します
- 10. /prtdata の内容を /var/spool/gdaemon に移動します
- 11. 印刷キュー・デーモンを再始動します
- 12. 印刷キューを再始動します
- 13. 以上の内容を実行するには、イベント後処理と呼ばれるスクリプトをテークオーバー上の node_down_complete に書き込みます。 このスクリプトは、node_down が 1 次ノードからのもの であるかどうかを特定する内容である必要があります。

クラスター・ログ・ファイルの使用

以下のトピックでは、PowerHA SystemMirror クラスター・ログ・ファイルを使用したクラスターのトラ ブルシューティング方法について説明します。 一部のログについては、パラメーターの管理に関するセク ションもいくつか含まれています。

PowerHA SystemMirror クラスター・ログ・ファイルの表示

クラスターに影響する問題を診断する場合、まず、PowerHA SystemMirror サブシステムにより出力され るメッセージが記録されているクラスター・ログ・ファイルを調べる必要があります。これらのメッセージ には、クラスターの現在の状態を理解するための重要な情報が含まれています。 次のセクションでは、 PowerHA SystemMirror ソフトウェアにより出力されるメッセージのタイプと、これらのメッセージが記 録されるログ・ファイルについて説明します。

ほとんどのトラブルシューティングにおいて、/var/hacmp/log/hacmp.out ファイルが最も役に立つログ・ ファイルになります。 最近のリリースでのリソース・グループ処理の強化に伴い、hacmp.out ファイルが 拡張され、クラスター・イベント後のリソース・グループのアクティビティーとロケーションの情報を従来 よりも取得できるようになりました。 例えば、hacmp.out ファイルは他のログ (クラスター・ヒストリ ー・ログなど)が報告できないリソース・グループ並列処理の詳細を収集します。 このログに含まれるイ ベントの要約を使用すると、クラスターで最新発生したイベントを容易に素早く見ることができます。

クラスター・メッセージ・ログ・ファイルの検討:

PowerHA SystemMirror ソフトウェアは、生成するメッセージをシステム・コンソールおよびいくつかの ログ・ファイルに書き込みます。各ログ・ファイルには、PowerHA SystemMirror ソフトウェアにより生 成されたメッセージの別々のサブセットが含まれます。ログ・ファイルをグループとして表示すると、すべ てのクラスター・アクティビティーの詳細情報が提供されます。

次のリストに、PowerHA SystemMirror ソフトウェアがメッセージを書き込むログ・ファイルと、そこに 含まれるクラスター・メッセージのタイプを示します。 また、このリストには、それぞれのログ・ファイ ルについての推奨される使用方法も示されています。ここで示されているのはデフォルトのログ・ディレク トリーです。選択したディレクトリーにログ・ファイルをリダイレクトするオプションがあります。 ロ グ・ファイルの格納先をリダイレクトしている場合は、適切な場所を確認してください。

表 4. クラスター・メッセージ・ログ・ファイル

ログ・ファイル名	説明
システム・エラー・ロ	~~~ ~ スクリプトおよびデーモンを含むすべての AIX サブシステムにより生成された、タイム・スタンプが付い
グ	た定様式のメッセージが格納されます。 このログ・ファイルの表示とメッセージの解釈については、セク
	ション『システム・エラー・ログの理解』を参照してください。
	 推奨: システム・エラー・ログには、他の多くのシステム・コンポーネントからのタイム・スタンプ付きメ
	ッセージが記録されているため、システム・エラー・ログは、クラスター・イベントとシステム・イベント
	を相互に関連付ける場所として適切です。
/tmp/clconvert.log	最新の PowerHA SystemMirror リリースにアップグレードする際の変換処理の記録が格納されます。インストール・プロセスで cl_convert ユーティリティーが実行され、/tmp/clconvert.log ファイルが作成されま
	す。
	推奨: コマンド行から cl_convert を実行するときは、clconvert.log を表示して、変換が正常に行われたかどうかを判断してください。
/var/ha/log/grpglsm	ASCII フォーマットのタイム・スタンプ付きメッセージが格納されます。 これらは RSCT グループ・サー
	ビス・グローバライズド・スイッチ・メンバーシップ・デーモンの内部アクティビティーの実行を追跡します。 この情報は、IBM サポート担当員がトラブルシューティングのために使用します。 このファイルは定期的に切り詰められます。 そのため、このファイルが必要になった場合は、すぐに別ファイルとして保存するようにしてください。
/var/hacmp/adm/ cluster.log	PowerHA SystemMirror のスクリプトおよびデーモンにより生成される、タイム・スタンプの付いた定様式のメッセージが格納されます。
	 推奨: このログ・ファイルには、現在のクラスター状況の概要が表示されるため、クラスターの問題を診断
	14英: このログ・ファイルには、現在のグラスター状況の概要が表示されるため、グラスターの同題を診断 するときは最初にこのファイルを確認してください。
/var/hacmp/adm/	PowerHA SystemMirror のスクリプトにより生成される、タイム・スタンプの付いた定様式のメッセージ
history/	が格納されます。 クラスター・ヒストリー・ファイルは毎日作成され、ファイル名の拡張子により各ファ
cluster.mmddyyyy	イルが識別されます。mm は月、dd は日、yyyy は年をそれぞれ示します。 このログ・ファイルの表示と、そのメッセージの解釈については、セクション『クラスター・ヒストリー・ログ・ファイルの理解』を参照してください。
	推奨: 時間経過によるクラスターの動作を拡張表示するには、クラスター・ヒストリー・ログ・ファイルを使用してください。
	このログは、並列処理されるリソース・グループの追跡ツールとしては適しません。 並列処理では、以前には個別のイベントとして実行された特定のステップが別の方法で処理されるため、それらのステップがクラスター・ヒストリー・ログでは明確になりません。 並列処理アクティビティーを追跡するには、hacmp.out ファイルを使用してください。
/var/log/clcomd/	clcomd により生成される、タイム・スタンプ付きの定様式診断メッセージが格納されます。
clcomddiag.log	推奨: このファイルに含まれる情報は、IBM サポート担当者用の情報です。
/var/hacmp/log/ autoverify.log	自動クラスター検証実行時に発生した警告またはエラーが含まれます。
/var/hacmp/log/	PowerHA SystemMirror が管理するアプリケーションの状態遷移が含まれます。 例えば、PowerHA
clavan.log	SystemMirror が管理する各アプリケーションが起動または停止した場合や、アプリケーションを実行しているノードが停止した場合です。
	それぞれのノードには、固有のファイルのインスタンスがあります。 clavan.log ファイル内の各レコードは、単一の行で構成されます。 それぞれの行には固定部分と変数部分があります。
	推奨: ユーティリティー・プログラムは、clavan.log ファイルのレコードをクラスター内の各ノードから収集することで、アプリケーションの可用性時間を示す他の統計を計算するだけでなく、各アプリケーション
	が実行されていた期間を判別できます。

表 4. クラスター・メッセージ・ログ・ファイル (続き)

ログ・ファイル名	説明
/var/hacmp/log/ clinfo.log	clinfo.log ファイルには、実行時のイベント・スクリプトにより生成された出力が記録されます。 この情報は、/var/hacmp/log/hacmp.out ファイルにある情報を補足および拡張します。
/var/hacmp/log/ clinfo.log.n, n=1,,7	クライアント・システムとサーバー・システムの両方にクラスター情報 (Clinfo) サービスをインストールできます。クライアント・システム (cluster.es.client) には HACMP ODM (HACMPlogs など) やユーティリティー (clcycle など) はありません。したがって、Clinfo ロギングではサイクル形式やリダイレクトの利点を活用できません。
	デフォルトのデバッグ・レベルは 0 または「オフ」です。 コマンド行フラグを使用してロギングを使用可能にできます。 clinfo -1 フラグを使用してログ・ファイル名を変更します。
/var/hacmp/log/ clstrmgr.debug	clstrmgrES サブシステムによって生成される、タイム・スタンプ付きの定様式メッセージが格納されます。デフォルトの詳細なメッセージは、通常ほとんどの問題のトラブルシューティングに対応しますが、 IBM のサポートによってさらに他のデバッグ方法が提示される場合もあります。
/var/hacmp/log/ clstrmgr.debug.n, n=1,,7	推奨: このファイルに含まれる情報は、IBM サポート担当者用の情報です。
/var/hacmp/log/ clstrmgr.debug.long /var/hacmp/log/ clstrmgr.debug.long.n,	クラスター・マネージャーのアクティビティー、特に、PowerHA SystemMirror のその他のコンポーネントや RSCT との対話の概要レベルのロギング、現在実行されているイベント、およびリソース・グループに関する情報 (例えば、イベント中の獲得や解放など、その状態と実行されるアクション) が格納されます。
n=1,,7	推奨: このファイルに含まれる情報は、IBM サポート担当者用の情報です。
/var/hacmp/log/ cspoc.log	PowerHA SystemMirror の C-SPOC コマンドにより生成される、タイム・スタンプの付いた定様式のメッセージが格納されます。 cspoc.log ファイルは、C-SPOC コマンドを呼び出すノードにあります。
	推奨: クラスター・ノードで C-SPOC コマンドが実行されたときの状況を追跡する場合は、C-SPOC ログ・ファイルを使用してください。
/var/hacmp/log/ cspoc.log.long	C-SPOC ユーティリティーの概要レベルのロギング、つまり、指定されたノードで C-SPOC によって呼び 出されたコマンドおよびユーティリティーと、それらの戻り状況が格納されます。
/var/hacmp/log/ cspoc.log.remote	ksh オプション xtrace が有効な (set -x) リモート・ノードでの C-SPOC コマンド実行のロギングが格納 されます。
/var/hacmp/log/ hacmp.out /var/hacmp/log/	現在日に PowerHA SystemMirror スクリプトにより生成され、タイム・スタンプの付いた定様式のメッセージが格納されます。
hacmp.out.n n=1,,7	冗長モード (推奨モード) の場合このログ・ファイルには、スクリプトによって実行されたすべてのコマンドのレコードが行ごとに、すべての引数の値と共に詳細に記録されます。 各上位イベントのイベント要約は、イベント詳細の最後にそれぞれ含まれます。このログ・ファイルの表示とメッセージの解釈については、セクション『hacmp.out ログ・ファイルの理解』を参照してください。
	推奨: このログ・ファイル内の情報は、/var/hacmp/adm/cluster.log ファイル内の情報に基づいて補足されたり拡張されたりするため、問題を調査するときの主要な情報源になります。
/var/hacmp/log/	Smart Assist を使用しているときに発生する Oracle 固有のエラーに関する情報が含まれ、Oracle Smart Assist によって使用されます。
/var/hacmp/log/ sa.log	Smart Assist を使用しているときに発生する一般的なエラーに関する情報が含まれ、Smart Assist インフラストラクチャーによって使用されます。
/var/log/clcomd/ clcomddiag.log	クラスター通信デーモン (clcomd アクティビティーによって生成されるタイム・スタンプ付きの定様式メッセージが格納されます。 成功したものも失敗したものも含め、着信接続と発信接続に関する情報がログに示されます。また、/usr/es/sbin/cluster/etc/rhosts に対するファイル権限が正しく設定されていない場合、警告が表示され、このシステムのユーザーはファイルに書き込むことができません。
	推奨: PowerHA SystemMirror ユーティリティーの通信問題をトラブルシューティングするには、このファーイルを使用してください。
/var/hacmp/log/ clconfigassist.log	2 ノード・クラスター構成アシストのデバッグ情報が格納されます。 このアシストには、トラブルシューティング・アクティビティーを支援する番号付きのログ・ファイルが最大 10 個格納されます。

表 4. クラスター・メッセージ・ログ・ファイル (続き)

ログ・ファイル名	説明
/var/hacmp/ clverify/clverify.log	clverify.log ファイルには、クラスターの検証ユーティリティーによって出力される詳細メッセージが格納 されます。 このメッセージには、検証エラーが発生したノード、デバイス、コマンドなどが示されます。
/var/hacmp/log/ clutils.log	クラスターの自動構成検証を実行した日付、時刻、結果、およびノードの情報が格納されます。 また、ファイル・コレクション・ユーティリティー、2 ノード・クラスターの構成アシスト、およびクラス ター・テスト・ツールに関する情報も格納されます。
/var/hacmp/log/ cl_testtool.log	hacmp.out ファイルからの抜粋が含まれます。 クラスター・テスト・ツールは、最大 3 個のログ・ファイルを保存し、別のクラスター・テストの結果と比較できるようにそれぞれに番号を付けます。 また、ツールは一番古いファイルを上書きしてファイルを置き換えます。

関連資料:

『クラスター・ログ・ファイルの理解』

/var/hacmp/adm/cluster.log ファイルは標準のテキスト・ファイルです。 このファイルを調べるときは、 初めに、問題に関連する最新のエラー・メッセージを見つけてください。 そこから、ログ・ファイルをさ かのぼって読み、その問題に関連する最初のメッセージを見つけます。 通常、問題のソースを示す最初の エラーから、多くのメッセージが次々と生成されます。

25 ページの『クラスター・ヒストリー・ログ・ファイルの理解』

クラスター・ヒストリー・ログ・ファイルは、標準のテキスト・ファイルです。システムで割り当てられる 名前は /usr/es/sbin/cluster/history/cluster.mmddyyyy です (mm は月、dd は日、yyyy は年を示しま

17 ページの『hacmp.out ログ・ファイルの理解』

/var/hacmp/log/hacmp.out ファイルは標準のテキスト・ファイルです。 システムの hacmp.out ログ・フ ァイルのサイクルは 7 回です。各コピーは、ファイル名に付加された数字で識別されます。 最新のログ・ ファイルは /var/hacmp/log/hacmp.out、最も古いファイル・バージョンは /var/hacmp/log/hacmp.out.7 になります。

関連情報:

PowerHA SystemMirror クラスターのアップグレード

PowerHA SystemMirror クラスターの検査および同期化

クラスター・ログ・ファイルの理解:

/var/hacmp/adm/cluster.log ファイルは標準のテキスト・ファイルです。 このファイルを調べるときは、 初めに、問題に関連する最新のエラー・メッセージを見つけてください。 そこから、ログ・ファイルをさ かのぼって読み、その問題に関連する最初のメッセージを見つけます。 通常、問題のソースを示す最初の エラーから、多くのメッセージが次々と生成されます。

cluster.log ファイルのメッセージ・フォーマット

/var/hacmp/adm/cluster.log ファイル内のエントリーには、次のフォーマットが使用されています。

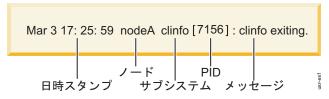


図 1. エントリーのフォーマット

各エントリーには次の情報が含まれます。

表 5. cluster.log ファイル

エントリー	説明
日時スタンプ	イベントが発生した日付と時刻。
ノード	イベントが発生したノード
サブシステム	イベントを生成した PowerHA SystemMirror サブシステム。 サブシステムは、次の省略形によって識別されます。
	• clstrmgrES - クラスター・マネージャー・デーモン
	• clinfoES - クラスター情報プログラム・デーモン
PID	メッセージを生成するデーモンのプロセス ID (スクリプトが出力するメッセージ用のものは含まない)
メッセージ	メッセージ・テキスト

前例のエントリーは、クラスター情報プログラム (clinfoES) の実行が、3月3日午後5時25分に nodeA というノード上で停止されたことを示します。

/var/hacmp/adm/cluster.log ファイルは標準の ASCII テキスト・ファイルなので、more または tail コマ ンドなどの標準の AIX ファイル・コマンドを使用して表示できます。ただし、SMIT インターフェースを 使用することもできます。 次のセクションで、これらのオプションについて説明します。

SMIT による cluster.log ファイルの表示

SMIT を使用して /var/hacmp/adm/cluster.log ファイルを表示するには、以下の手順を実行します。

- 1. smit hacmp と入力します。
- 2. SMIT で、「Problem Determination Tools (問題判別ツール)」>「PowerHA SystemMirror Log Viewing and Management (ログの表示および管理)」>「View Detailed PowerHA SystemMirror Log Files (詳細ログ・ファイルの表示)」を選択して、Enter を押します。
- 「Scan the PowerHA SystemMirror for AIX System Log (PowerHA SystemMirror for AIX シス テム・ログのスキャン)」を選択し、Enter を押します。このオプションでは、/var/hacmp/adm/ cluster.log ファイルが参照されます。

注: cluster.log ファイルの内容をスキャン するか、新規イベントが追加される際に、アクティブなロ グ・ファイルをリアルタイムでモニター するか、いずれかを選択できます。 一般に、すでに発生した 問題を見つける場合にファイルをスキャンし、次に、結果を判別するために問題に対する解決策をテス トする場合にファイルをモニターします。

hacmp.out ログ・ファイルの理解:

/var/hacmp/log/hacmp.out ファイルは標準のテキスト・ファイルです。 システムの hacmp.out ログ・フ ァイルのサイクルは 7 回です。各コピーは、ファイル名に付加された数字で識別されます。 最新のログ・ ファイルは /var/hacmp/log/hacmp.out、最も古いファイル・バージョンは /var/hacmp/log/hacmp.out.7 になります。

フォールオーバー環境でのリソース・グループの処理方法および優先順位付けの方法が最近変更され、 hacmp.out ファイルにイベント要約が含まれることになりました。イベント要約はリソース・グループの アクティビティーおよび場所の追跡に役立ちます。

警告メッセージが表示されるまでの待機期間をカスタマイズできます。 この待機期間は config too long メッセージがログに書き込まれる回数に反映されるため、config_too_long コンソール・メッセージは、問 題が発生しているすべての場合に表示されるわけではありません。 クラスター・イベントの実行に予期し た以上の時間がかかると、hacmp.out に警告メッセージが追加されます。これは、イベント・スクリプト に障害が発生した場合、システム・コマンドがハングした場合、あるいは単にコマンドの実行が遅い場合に 起こります。

hacmp.out ファイルを調べるときは、EVENT FAILED メッセージを探します。 このメッセージは、障害 が発生したことを示します。 次に、その障害のメッセージから、ログ・ファイルを逆方向に読み、実際に 何が問題だったのかを正確に判別します。 hacmp.out ログ・ファイルには、問題を調査する際に、最も重 要な情報源が表示されます。

イベント・プリアンブル:

依存関係または複製リソースのあるリソース・グループがクラスター・イベントで処理されると、 hacmp.out ファイルにイベント・プリアンブルが入れられます。

このプリアンブルは、クラスター・マネージャーが正しいノードおよびサイト上のリソース・グループのオ ンライン化の試行を計画するイベントのシーケンスを示します。さらに、個々のグループの依存関係および サイト構成も考慮されます。

注: このプリアンブルは、イベントの計画段階においてクラスター・マネージャーがエンキューするイベン トのシーケンスを表します。個々のイベントに障害が起こった場合、または何らかの理由でクラスター・マ ネージャーが計画の再見積りを行った場合は、新しいプリアンブルが生成されます。元のプリアンブルのす べてのイベントがすべて実行されるとは限りません。

例

PowerHA SystemMirror Event Preamble
Node Down Completion Event has been enqueued.
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Enqueued rg_move acquire event for resource group rg3.
Enqueued rg_move release event for resource group rg3.
Enqueued rg_move secondary acquire event for resource group 'rg1'. Node Up Completion Event has been enqueued.

イベント要約:

各イベントの詳細の最後に表示されるイベント要約により、hacmp.out ファイルのエラーの有無をより簡単にチェックできます。イベント要約には対応するイベントを指すポインターが含まれています。これによりイベントに関する出力を簡単に見つけることができます。

出力例については、セクション『hacmp.out ログ・ファイルの非詳細出力と詳細出力』を参照してください。

また、現在および過去の hacmp.out ファイルから取得したイベント要約が編集されたセクションのみも表示できます。 この表示用のオプションは、「Problem Determination Tools (問題判別ツール)」> PowerHA SystemMirror「Log Viewing and Management (ログ表示と管理)」>「View/Save/Remove Event Summaries (イベント要約の表示/保存/除去)」>「View Event Summaries (イベント要約の表示)」SMIT パネルにあります。 詳しくは、セクション『収集された hacmp.out イベント要約の表示』を参照してください。

関連資料:

23 ページの『収集された hacmp.out イベント要約の表示』

クラスター・マネージャーがこれらのイベントを起動した後、hacmp.out ファイルにイベント要約が表示されます。 例えば、node_up と node_up_complete、および関連サブイベント (node_up_local や node_up_remote_complete など) が表示されます。

20 ページの『hacmp.out ログ・ファイルの非詳細出力と詳細出力』 詳細出力または非詳細出力のいずれかを選択できます。

HTML フォーマットの hacmp.out:

形式オプションを「Problem Determination Tools (問題判別ツール)」>「PowerHA SystemMirror Log Viewing and Management (ログ表示と管理)」>「Change/Show PowerHA SystemMirror Log File Parameters (PowerHA SystemMirror ログ・ファイル・パラメーターの変更/表示)」の「SMIT 画面」に 設定すると、hacmp.out ログ・ファイルを HTML フォーマットで表示できます。

詳しくは、セクション『hacmp.out ファイルに記録される情報のレベルとフォーマットの設定』を参照してください。

関連タスク:

22 ページの『hacmp.out ファイルに記録される情報のレベルとフォーマットの設定』/var/hacmp/log/hacmp.out ファイルに記録される情報のレベルを設定できます。

hacmp.out でのリソース・グループ獲得失敗とボリューム・グループ障害:

報告されたリソース・グループ獲得失敗 (コマンドが返した非ゼロの終了コードにより示される失敗) は、hacmp.out で追跡されます。

この情報には、以下が含まれます。

- イベントの起動および終了回数
- イベントの結果、影響を受けた (獲得または解放された) リソース・グループ
- イベントが失敗した場合、失敗したリソース・アクション

クラスター・マネージャーがリソースを使用可能な状態に保とうとする経過を追跡できます。

さらに、ボリューム・グループ障害の場合に実行される自動構成の AIX エラー通知メソッドによって、hacmp.out ログ・ファイルに以下の情報が書き込まれます。

- メソッドを起動した AIX エラー・ラベルと ID
- 影響を受けたリソース・グループ名
- エラーが発生したノード名

node_up に基づくリソース・グループ・リカバリーのメッセージ:

hacmp.out ファイル、イベント要約、および clstat には、結合ノードまたは起動しているノードにオンラ イン接続しようとしたエラー状態のリソース・グループの情報やメッセージが含まれます。

同様に、そのようなリソース・グループの獲得失敗のケースを追跡できます。PowerHA SystemMirror は、rg_move イベントを起動して、リソース・グループをノード・リストの他のノードに移動します。 ード間の連続した rg move イベントの結果として、非コンカレントのリソース・グループを取得できない 場合、PowerHA SystemMirror は hacmp.out ファイルにメッセージを追加します。

ネットワークについて報告されるインターフェース・イベント:

ネットワークにネットワーク・インターフェースを追加する場合、この場合に実行される実際のイベントを join_interface といいます。 これは hacmp.out ファイルに反映されます。

同様に、ネットワーク・インターフェース障害が発生した場合、実行される実際のイベントは fail_interface と呼ばれます。 これも hacmp.out ファイルに反映されます。 この場合に実行されるイベ ントは、指定したネットワークのインターフェースに障害が発生したことのみを示します。

hacmp.out ファイルのリソース・グループ処理メッセージ:

hacmp.out ファイルを使用すると、PowerHA SystemMirror のリソース・グループの処理方法を完全に追 跡できます。

このトピックでは、簡単な説明にとどめます。詳細、およびジョブ・タイプ のイベント要約の例について は、セクション『 hacmp.out ファイルでのリソース・グループ並列処理/シリアル処理の追跡』を参照し てください。

PowerHA SystemMirror により処理された各リソース・グループの場合は、以下の情報が hacmp.out フ ァイルに送信されます。

- リソース・グループ名
- スクリプト名
- 実行されているコマンド名

以下に一般的な出力形式を示します。

resource_group_name:script_name [line number] command line

イベント・スクリプトが特定のリソース・グループを処理しない場合、例えば、node up イベントの最初 では、リソース・グループ名は取得できません。 このような場合は、タグのリソース・グループ名の部分 がブランクになります。

例えば、hacmp.out ファイルには以下のいずれかの行が含まれます。

cas2:node_up_local[199] set_resource_status ACQUIRING :node_up[233] cl_ssa_fence up stan

さらに、hacmp.out ファイル内のイベント要約の個々のリソースの参照に、関連するリソース・グループ に対する参照タグが含まれます。 例:

Mon.Sep.10.14:54:49.EDT 2003.cl _swap_IP_address.192.168.1.1.cas2.ref 関連資料:

27 ページの『hacmp.out ファイルでのリソース・グループ処理の追跡』

hacmp.out ファイルへの出力により、特定のリソース・グループとそのリソースに関連する詳細を切り分けることができます。 hacmp.out イベント要約の内容に基づいて、リソース・グループが期待どおりの順序で処理されているかどうかを判断できます。

hacmp.out ファイルでの Config_too_long メッセージ:

指定したイベント期間内に完了しないクラスター・イベントごとに、config_too_long メッセージが hacmp.out ファイルにログ記録されます。

次に、メッセージが以下のパターンに従ってコンソールに送信されます。

- 最初の 5 つの config_too_long メッセージは 30 秒間隔で hacmp.out ファイルに表示されます。
- 次の 5 つのメッセージは、間隔が 1 時間経過するまでそれまでの 2 倍の間隔で表示されます。
- これらのメッセージは、イベントが完了するまで、あるいはイベントがそのノードで終了するまで毎時間ログに記録されます。

config_too_long メッセージを送信する前に待機期間をカスタマイズできます。

関連情報:

クラスター・イベントの計画

hacmp.out ログ・ファイルの非詳細出力と詳細出力:

詳細出力または非詳細出力のいずれかを選択できます。

非詳細出力

非詳細出力モードでは、hacmp.out ログには、すべての PowerHA SystemMirror スクリプトが出力する 起動、完了、およびエラー通知メッセージが含まれます。 各エントリーには次の情報が含まれます。

表 6. hacmp.out ログ・ファイル

エントリー	説明
日時スタンプ	イベントが発生した日付と時刻。
メッセージ	クラスター・アクティビティーを記述するテキスト
戻り状況	障害を報告するメッセージには、スクリプトから戻された状況も含まれます。 正常に完了した スクリプトの場合、この情報は含まれません。
イベントの説明	ノード、ファイル・システム、またはボリューム・グループで試行または完了された特定のア クション

詳細出力

詳細モードでは、hacmp.out ファイルにはスクリプトやコマンドに渡される引数値とフラグ設定も含まれます。

イベント要約を含む詳細出力の例

一部のイベント (クラスター・マネージャーによって開始されたイベント) の後にはイベント要約が表示されます。その抜粋を以下に示します。

Mar 25 15:20:30 EVENT COMPLETED: network up alcuin tmssanet alcuin bede

PowerHA SystemMirror Event Summary

Event: network_up alcuin tmssanet_alcuin_bede

Start time: Tue Mar 25 15:20:30 2003

End time: Tue Mar 25 15:20:30 2003

Action: Resource:Script Name:

No resources changed as a result of this event

整定時間のイベント要約

CustomRG では整定時間が構成されます。 優先順位の低いノードはクラスターに結合します。

Mar 25 15:20:30 EVENT COMPLETED: node_up alcuin

PowerHA SystemMirror Event Summary

Event: node up alcuin

Start time: Tue Mar 25 15:20:30 2003

End time: Tue Mar 25 15:20:30 2003

Action: Resource: Script Name:

No action taken on resource group 'CustomRG'. The Resource Group 'CustomRG' has been configured to use 20 Seconds Settling Time. This group will be processed when the timer expires.

フォールバック・タイマーのイベント要約

CustomRG には毎日フォールバック・タイマーが設定され、22 時間 10 分フォールバックします。リソ ース・グループは、優先順位の低いノード (bede) 上にあります。 したがって、タイマーが作動していま す。優先順位の高いノード (alcuin) はクラスターに結合します。

The message on bede

Mar 25 15:20:30 EVENT COMPLETED: node up alcuin

PowerHA SystemMirror Event Summary

Event: node up alcuin

Start time: Tue Mar 25 15:20:30 2003

End time: Tue Mar 25 15:20:30 2003

Action: Resource: Script Name:

No action taken on resource group 'CustomRG'. The Resource Group 'CustomRG' has been configured to fallback on Mon Mar 25 22:10:00 2003

The message on alcuin ...

Mar 25 15:20:30 EVENT COMPLETED: node up alcuin

PowerHA SystemMirror Event Summary

Event: node up alcuin

Start time: Tue Mar 25 15:20:30 2003

End time: Tue Mar 25 15:20:30 2003

Action: Resource: Script Name:

The Resource Group 'CustomRG' has been configured to fallback using daily1 Timer Policy

SMIT による hacmp.out ファイルの表示:

SMIT を使用すれば、/var/hacmp/log/hacmp.out ファイルを表示できます。

SMIT を使用して /var/hacmp/log/hacmp.out ファイルを表示するには、以下の手順を実行します。

- 1. smit hacmp と入力します。
- 2. SMIT で、「Problem Determination Tools (問題判別ツール)」 > 「PowerHA SystemMirror Log Viewing and Management (ログの表示および管理)」 > 「View Detailed PowerHA SystemMirror Log Files (詳細ログ・ファイルの表示)」を選択して、Enter を押します。
- 3. 「View Detailed PowerHA SystemMirror Log Files (詳細ログ・ファイルの表示)」メニューで、/var/hacmp/log/hacmp.out ファイルのコンテンツをスキャン するか、新規イベントのログ・ファイルへの追加をモニター するかのいずれかを選択できます。 一般に、すでに発生した問題を見つけるためにはファイルをスキャンし、次に、問題に対する解決策をテストするためにファイルをモニターします。 このメニューでは、/var/hacmp/log/hacmp.out ファイルは PowerHA SystemMirror スクリプト・ログ・ファイルとして参照されます。
- 4. 「Scan the PowerHA SystemMirror Script Log File (PowerHA SystemMirror スクリプト・ログ・ファイルのスキャン)」を選択し、Enter を押します。
- 5. スクリプト・ログ・ファイルを選択し、Enter を押します。

hacmp.out ファイルに記録される情報のレベルとフォーマットの設定:

/var/hacmp/log/hacmp.out ファイルに記録される情報のレベルを設定できます。

注: これらの設定値は、設定するとただちに有効になります。

/var/hacmp/log/hacmp.out ファイルに記録された情報レベルを設定するには、次のようにします。

- 1. smit hacmp と入力します。
- 2. SMIT で、「問題判別ツール」>「PowerHA SystemMirror ログの表示および管理」>「PowerHA SystemMirror ログ・ファイル・パラメーターの変更/表示」を選択します。

変更するクラスター・ノード名を指定するプロンプトが表示されます。 ランタイム (実行時) パラメーターは、ノードごとに構成されます。

3. ノード名を入力し、Enter を押します。

SMIT が「**PowerHA SystemMirror Log File Parameters (PowerHA SystemMirror** ログ・ファイル・パラメーター**)**」パネルを表示します。

- 4. 詳細出力を取得するには、「Debug Level (デバッグ・レベル)」フィールドの値を「high (高)」に設定します。
- 5. hacmp.out の表示フォーマットを変更するには、「Formatting options for hacmp.out (hacmp.out の形式オプション)」を選択します。 ノードを選択して、フォーマットを「HTML (Low) (HTML (低))」、「HTML (High) (HTML (高))」、「Default (None) (デフォルト (なし))」、または「Standard (標準)」に設定します。

注: hacmp.out の形式オプションを「Default (None) (デフォルト (なし))」に設定すると、イベント 要約は生成されません。 イベント要約について詳しくは、セクション『収集された hacmp.out イベン ト要約の表示』を参照してください。

6. デバッグ情報のレベルを変更するには、「Cluster Manager debug level (クラスター・マネージャ ー・デバッグ・レベル)」フィールドの値を「standard (標準)」または「high (高)」のいずれかに設定 します。

関連資料:

『収集された hacmp.out イベント要約の表示』

クラスター・マネージャーがこれらのイベントを起動した後、hacmp.out ファイルにイベント要約が表示 されます。 例えば、node_up と node_up_complete、および関連サブイベント (node_up_local や node_up_remote_complete など) が表示されます。

収集された hacmp.out イベント要約の表示:

クラスター・マネージャーがこれらのイベントを起動した後、hacmp.out ファイルにイベント要約が表示 されます。 例えば、node_up と node_up_complete、および関連サブイベント (node_up_local や node up remote complete など) が表示されます。

イベント要約が表示されないイベントもあります。例えば、SMIT を使用してリソース・グループを移動す る場合などは表示されません。

「View Event Summaries (イベント要約の表示)」オプションには、ノードの hacmp.out ファイルに書 き込まれるすべてのイベント要約がまとめられて表示されます。 hacmp.out ファイルを新規の場所にリダ イレクトしても、このユーティリティーはこうした情報を収集して表示します。 また、イベント要約を SMIT で表示する代わりに、選択したファイルに保管することもできます。

注: hacmp.out ファイルから取得されたイベント要約は、/usr/es/sbin/cluster/cl event summary.txt ファ イルに保管されます。このファイルは hacmp.out サイクルに従って累積され続け、自動的に切り捨てられ たり置換されたりすることはありません。 その結果、このファイルが大きくなりすぎて /usr ディレクト リーがいっぱいになります。 SMIT の「Remove Event Summary History (イベント要約ヒストリーの除 去)」オプションを使用して定期的にイベント要約をクリアする必要があります。

この機能は、ノード固有のものです。 したがって、クラスター内の 1 つのノードのイベント要約情報に他 のノードからはアクセスできません。イベント要約を収集し表示する各ノード上で、「View Event Summaries (イベント要約の表示)」オプションを実行します。

イベント要約を表示すると、クラスターで最近発生したイベントの概要を素早く確認できます。 イベント 要約により問題のイベントが示されたら、ソースの hacmp.out ファイルを調べると発生した問題の詳細を 完全に確認できます。

注: hacmp.out の形式オプションを「Default (None) (デフォルト (なし))」に設定すると、イベント要約 は生成されません。 「View Event Summaries (イベント要約の表示)」コマンドからは、何の結果も得ら れません。

イベント要約表示情報の収集方法:

「Problem Determination Tools (問題判別ツール)」>「PowerHA SystemMirror Log Viewing and Management (ログの表示と管理)」->「View/Save/Remove PowerHA SystemMirror Event Summaries (イベント要約の表示/保存/除去)」->「View Event Summaries (イベント要約の表示)」というオプション では、hacmp.out ログ・ファイルから情報が収集されます。実行中の PowerHA SystemMirror から直接

収集されるのではありません。その結果、PowerHA SystemMirror が実行されていないときでもイベント 要約情報にアクセスできます。 要約表示は、現在の日付のイベント要約によって 1 日 1 回更新されま

また、表示情報の下部にはリソース・グループのロケーションと状態情報が示されます。 この情報には、 clRGinfo コマンドの出力が反映されます。

clRGinfo では、クラスター実行時にさらに素早くリソース・グループ情報が表示されます。クラスターが 実行中でない場合は、リソース・グループ情報が表示されるまでに数分かかります。

イベント要約の表示:

SMIT を使用すれば、ノードに関するイベント要約を収集リストで表示できます。

ノードに関するイベント要約を収集リストで表示するには、以下の手順を実行します。

- 1. smit hacmp と入力します。
- 2. SMIT で「View Event Summaries (イベント要約の表示)」を選択し、Enter を押します。 SMIT が ノードで生成されたイベント要約のリストを表示します。 イベント要約が検出されなかった場合は、 SMIT によって通知されます。

指定したファイルへのイベント要約の保存:

SMIT を使用すれば、ノードのイベント要約の収集リストをファイルに保管できます。

ノードのイベント要約の収集リストをファイルに保管するには、以下の手順を実行します。

- 1. smit hacmp と入力します。
- 2. SMIT To View/Save/Remove PowerHA SystemMirror Event Summaries (PowerHA SystemMirror イベント要約の表示/保存/除去)」を選択します。
- 3. 「Save Event Summaries to a file (イベント要約をファイルに保存)」を選択します。
- 4. イベント要約を保管するパスやファイル名を入力します。

選択したフォーマット (.txt や .html など) に応じて、ファイルを移動してテキスト・エディターやブラウ ザーで表示できます。

システム・エラー・ログの理解:

PowerHA SystemMirror ソフトウェアは、デーモンにより状況メッセージが生成されるたびに、メッセー ジをシステム・エラー・ログに記録します。

システム・エラー・ログの PowerHA SystemMirror メッセージのフォーマットは、他の AIX サブシステ ムにより使用されるフォーマットと同じです。 システム・エラー・ログ内のメッセージは、長形式または 短形式で表示できます。

短形式 (要約形式ともいう) では、システム・エラー・ログ内の各メッセージが 1 行に表示されます。 以 下に短形式のシステム・エラー・ログのフィールドについて説明します。

表 7. システム・エラー・ログ

フィールド	説明
Error_ID	固有のエラー ID。
タイム・スタンプ	イベントが発生した日付と時刻。
T	エラー・タイプ: 永久 (P)、未解決 (U)、一時的 (T)。
CL	エラー・クラス: ハードウェア (H)、ソフトウェア (S)、通知 (O)。
Resource_name	メッセージを生成した AIX リソースまたはサブシステムを識別するテキスト・ストリング。 PowerHA SystemMirror メッセージは、そのデーモンの名前によって識別されます。
Error_description	エラーを簡単に記述したテキスト・ストリング。

長形式では、定様式情報が各エラーについて 1 ページずつ表示されます。

PowerHA SystemMirror ログ・ファイルとは異なり、システム・エラー・ログはテキスト・ファイルでは ありません。

AIX errpt コマンドは、システム・エラー・ログのエントリーからエラー・レポートを生成します。 この コマンドの使用方法に関する情報については、errpt マニュアル・ページを参照してください。

AIX システム・エラー・ログを表示するためには、AIX SMIT を使用する必要があります。

- 1. smit と入力します。
- 2. SMIT で、「Problem Determination Tools (問題判別ツール)」>「PowerHA SystemMirror Log Viewing and Management (PowerHA SystemMirror ログの表示および管理)」>「View Detailed PowerHA SystemMirror Log Files (詳細 PowerHA SystemMirror ログ・ファイルの表示)」 > Scan the PowerHA SystemMirror for AIX System Log (PowerHA SystemMirror for AIX >ステム・ログのスキャン)」を選択し、Enter を押します。

エラー・ログが表示されます。

クラスター・ヒストリー・ログ・ファイルの理解:

クラスター・ヒストリー・ログ・ファイルは、標準のテキスト・ファイルです。システムで割り当てられる 名前は /usr/es/sbin/cluster/history/cluster.mmddyyyy です (mm は月、dd は日、yyyy は年を示しま す)。

これらのログ・ファイルのコピーをいくつまで保持するかを決定し、その数を超える余分なコピーは、ディ スクのストレージ・スペースを確保するために定期的に除去するようにします。 また、クラスター・ヒス トリー・ログ・ファイルを定期的なシステム・バックアップ手順に含めることもできます。

クラスター・ヒストリー・ログ・ファイルのメッセージのフィールドについて説明します。

表 8. クラスター・ヒストリー・ログ・ファイル

フィールド	説明
日時スタンプ	イベントが発生した日時
メッセージ	メッセージのテキスト
説明	イベント・スクリプトの名前

注: このログは特定のイベントをレポートします。 リソース・グループが並列処理されている場合は、以 前には個別のイベントとして実行された特定のステップが別の方法で処理されるため、それらのステップは クラスター・ヒストリー・ログ・ファイルにイベントとして示されません。 hacmp.out ファイルを使用す

る必要があります。このファイルには、リソース・グループ・アクティビティーとロケーションが非常に詳 細に記載されているので、並列処理アクティビティーを追跡できます。

クラスター・ヒストリー・ログ・ファイルは標準のテキスト・ファイルなので、cat、more、および tail などの標準の AIX ファイル・コマンドを使用してコンテンツを表示できます。 このログ・ファイルは、 SMIT では表示できません。

問題を報告するためにクラスター・ログ・ファイルを収集するには、以下の手順を実行します:

PowerHA SystemMirror に問題が発生して、IBM サポートに報告する場合は、その問題に関連するロ グ・ファイルを収集しておいてください。 それには、PowerHA SystemMirror の「問題報告用に PowerHA SystemMirror ログ・ファイルを収集」SMIT パネルが役に立ちます。

注意:

このパネルは、IBM サポート担当員からの依頼があった場合にのみ使用してください。 IBM サポートか らの指示なしでこのユーティリティーを使用する場合は、アクションおよび生じる結果を十分に理解してか ら行ってください。

問題報告用にクラスター・ログ・ファイルを収集するには、以下の手順を実行します。

- 1. smit hacmp と入力します。
- 2. SMIT で、「Problem Determination Tools (問題判別ツール)」> PowerHA SystemMirror「Log Viewing and Management (ログの表示および管理)」>「Collect Log Files for Problem Reporting (問題報告のためのログ・ファイルの収集)」を選択します。
- 「entry (エントリー)」フィールドに以下の値を入力するか、選択します。

表 9. 問題報告フィールド用のログ・ファイルの収集

フィールド	值
Log Destination Directory (ログ宛先ディレ	クラスター・ログが収集されるディレクトリー名を入力します。デフォルトは /tmp
クトリー)	です。
Collection Pass Number (収集パス番号)	このフィールドで値を選択します。 デフォルトは 2 (収集する) です。必要なスペー
	ス量を計算するには、1 を選択します。 実際のデータを収集するには、2 を選択しま
	す。
Nodes to Collect Data from (データの収集	データの収集元のノードを入力するか、選択します。ノード名はコンマで区切りま
元ノード)	す。 デフォルトは All ノードです。
Debug (デバッグ)	デフォルトは「No (いいえ)」です。 IBM サポートがデバッグをオンにするように要
	求した場合は、このオプションを使用してください。
Collect RSCT Log Files (RSCT ログ・ファ	デフォルトは「Yes (はい)」です。 RSCT データ収集をスキップします。
イルの収集)	

クラスター・ログ・ファイルの管理:

PowerHA SystemMirror は、クラスター・ログ・ファイルの管理を自動的に行います。個々のログは最大 サイズに制限されており、一定期間が経過すると削除されるか、新しいバージョンで上書きされます。

一般的に、PowerHA SystemMirror ではすべてのログ・ファイルについて、デフォルトで以下の規則に従 っています。

表 10. ログ・ファイルの一般規則

項目	規則
最大サイズ	サイズが 1 MB を超えるログ・ファイルは循環されます。
期限切れログの最大数	以前のバージョンのファイルが、最大で 7 個保存されます。
最大経過日数	経過時間が 1 日を超えるログ・ファイルは循環されます。

これらの一般規則で指定されている値をカスタマイズする場合は、各クラスター・ノードの /etc/environment ファイルで異なる値を指定してオーバーライドすることができます。

デフォルト値をオーバーライドするには、以下の項目を追加します。

表 11. オーバーライド値

項目	説明
CLCYCLE_MAX_SIZE=<サイズ (バイト単位)>	保存されるすべてのログ・ファイルの最大サイズを制限するには、この項目を 追加します。
CLCYCLE_MAX_LOGS=<保存する古いファイルの数>	clcycle コマンドで保存する古いログ・ファイルの数を変更するには、この項目を追加します。
CLCYCLE_MAX_DAYS=<ログ・ファイルが循環される経過日数>	ログ・ファイルを循環させる経過日数を変更するには、この項目を追加します。
CLCYCLE_CLUSTER_LOG= <false true></false true>	cluster.log ファイルが PowerHA SystemMirror によってデフォルトで管理されないようにするには、この項目を追加します。代わりに、PowerHA SystemMirror は syslog.conf ファイルに項目を追加します。この結果、syslog サブシステム が cluster.log ファイルのサイズ、経過日数、およびバックアップ・コピーを管理します。 注: PowerHA SystemMirror で cluster.log ファイルを管理したい場合は、/etc/environmment ファイルで CLCYCLE_CLUSTER_LOG=TRUE を指定します。

hacmp.out ファイルでのリソース・グループ処理の追跡

hacmp.out ファイルへの出力により、特定のリソース・グループとそのリソースに関連する詳細を切り分 けることができます。 hacmp.out イベント要約の内容に基づいて、リソース・グループが期待どおりの順 序で処理されているかどうかを判断できます。

イベント要約で反映される並列処理順序:

hacmp.out ファイルとイベント要約には、並列リソース・グループ処理の流れをたどるために役立ついく つかの機能がリストされています。

- hacmp.out ファイルのフローの各行には、適用されるリソース・グループの名前が入ります。
- イベント要約情報には、すべてのリソース・タイプの詳細が示されます。
- イベント要約内の各行には、関連するリソース・グループが示されます。

以下の例は、並列処理される cascrg1 および cascrg2 という名前のリソース・グループのイベント要約を 示します。

PowerHA SystemMirror Event Summary

Event: node up electron

Start time: Wed May 8 11: 06: 30 2002 End time: Wed May 8 11: 07: 49 2002

Action: Resource: Script Name: -----

Acquiring resource group: cascrg1 process resources Search on: Wed. May. 8. 11: 06: 33. EDT. 2002. process resources. cascrgl. ref Acquiring resource group: cascrg2 process_ resources
Search on: Wed. May. 8. 11: 06: 34. EDT. 2002. process_ resources. cascrg2. ref Acquiring resource: 192. 168. 41. 30 cl_ swap_ IP_ address Search on: Wed. May. 8. 11: 06: 36. EDT. 2002. cl_ swap_ IP_ address. 192. 168. 41. 30 Acquiring resource: hdisk1 cl disk available Search on: Wed. May. 8. 11: 06: 40. EDT. 2002. cl disk available. hdisk1. cascrg1 Acquiring resource: hdisk2 cl_ disk_ available Search on: Wed. May. 8. 11: 06: 40. EDT. 2002. cl disk available. hdisk2. cascrg2 Resource online: hdisk1 cl disk available Search on: Wed. May. 8. 11: 06: 42. EDT. 2002. cl disk available. hdisk1. cascrg1 Resource online: hdisk2 cl_ disk_ available Search on: Wed. May. 8. 11: 06: 43. EDT. 2002. cl disk available. hdisk2. cascrg2

ここに示されているように、処理されるリソース・グループがすべて最初に示され、その次に処理中の個々 のリソースが示されます。

ジョブ・タイプ: 並列リソース・グループ処理:

クラスターにリソース・グループ依存関係またはサイトを構成する場合、クラスター・マネージャーのアク ション計画がリストされているイベント・プリアンブルを確認してください。この計画には、事前に規定さ れたイベントについてリソース・グループが行う処理が記載されています。

個別のイベントの実行は hacmp.out ファイルにトレースされます。あるイベントに問題がある場合、また は予期された結果が戻されない場合、hacmp.out ファイルに一定のパターンとキーワードが表示されま す。このファイルを使用して問題の原因の識別を試みてください。

以下の情報は、クラスター・イベント処理に関する詳細を必要とするユーザー用です。問題判別の最初の参 照用ではありません。

PowerHA SystemMirror Enterprise Edition に問題がある場合、基本的な対応として、ソフトウェア障害 報告手続きに従ってください。

クラスター・マネージャーは、クラスター・イベントを計画するために、「並列処理」と言われる手法を使 用します。並列処理は、複数の異なるリカバリー・ステップを単一イベントに結合して、イベント処理の効 率と速度を最大化します。並列処理では、リソース・タイプに基づいて各種のリソースを処理するために process resources イベント・スクリプトがメイン・イベントとして使用されます。process resources イ ベントは現在処理中のリソースを識別するためにキーワード「JOB_TYPE」を使用します。

ジョブ・タイプは hacmp.out ログ・ファイルにリストされます。このリストは、各種のタイプのリソース の獲得または解放の際に発生するイベントの順序の識別に役立ちます。クラスター・リソース・グループの 構成によっては、リソース・グループの並列処理の際に他の特定のジョブ・タイプが発生します。

- リソース・タイプごとに 1 つずつジョブ・タイプが存在します。ジョブ・タイプには以下のものがあり ますが、これに限られるわけではありません。DISKS、 FILESYSTEMS、 TAKEOVER LABELS、 TAPE RESOURCES, AIX FAST CONNECTIONS, APPLICATIONS, COMMUNICATION LINKS, USERDEF_RESOURCES、 CONCURRENT_VOLUME_GROUPS、 EXPORT_FILESYSTEMS、 MOUNT_FILESYSTEMS および REMOUNT FILESYSTEMS.
- また、次のように、並列処理の利点を生かすために使用されるジョブ・タイプが多数あります。 SETPRKEY、TELINIT、SYNC_VGS、LOGREDO、NFS_STOP、および UPDATESTATD。今後、関連

した操作は、リソース・グループごとにではなくイベントごとに一度のみ実行されるようになりまし た。この変更は、特にクラスターが小さい場合、リソース・グループの並列処理の利点が生かされる主 な領域の1つです。

JOB_TYPE=ONLINE:

獲得イベントが完了する段階では、すべてのリソース・グループのリソースがすべて正常に獲得されたら、 ONLINE ジョブ・タイプが実行されます。 このジョブは、正常に獲得されたすべてのリソース・グルー プが確実にオンライン状態に設定されるようにします。 RESOURCE GROUPS 変数には、獲得されたす べてのグループのリストが含まれます。

```
:process resources[1476] clRGPA
:c1RGPA[48] [[ high = high ]]
:clRGPA[48] version= 1. 16
:clRGPA[50] usingVer= clrgpa
:clRGPA[55] clrgpa
:clRGPA[56] exit 0
:process resources[1476] eval JOB TYPE= ONLINE RESOURCE GROUPS="
cascrg1 cascrg2 conc rg1"
:process resources[1476] JOB TYPE= ONLINE RESOURCE GROUPS=
cascrg1 cascrg2 conc_rg1 :process_resources[1478] RC= 0
:process_resources[1479] set +a
:process_resources[1481] [ 0 -ne 0 ]
:process resources[1700] set resource group state UP
```

JOB_TYPE= OFFLINE:

解放イベントが完了する段階では、すべてのリソース・グループのリソースがすべて正常に解放されたら、 OFFLINE ジョブ・タイプが実行されます。 このジョブは、正常に解放されたすべてのリソース・グルー プが確実にオフライン状態に設定されるようにします。 RESOURCE_GROUPS 変数には、解放されたす べてのグループのリストが含まれます。

```
conc_rg1 :process_resources[1476] clRGPA
conc rg1 : c1RGPA[\overline{48}] [[ high = high ]]
conc_rg1 :clRGPA[48] version= 1. 16
conc rg1 :clRGPA[50] usingVer= clrgpa
conc rg1 :clRGPA[55] clrgpa
conc rg1 :clRGPA[56] exit 0
conc rg1 :process resources[1476] eval JOB TYPE= OFFLINE RESOURCE GROUPS=" cascrg2 conc rg1"
conc rg1:process resources[1476] JOB TYPE= OFFLINE RESOURCE GROUPS= cascrg2 conc rg1
conc_ rg1 :process_resources[1478] RC= 0
conc_rg1 :process_resources[1479] set +a
conc rg1 :process resources[1481] [ 0 -ne 0 ]
conc_rg1 :process_resources[1704] set_resource_group_state DOWN
```

JOB_TYPE=ERROR:

エラーがリソースの獲得時または解放時に発生すると、ERROR ジョブ・タイプが実行されます。 変数 RESOURCE_GROUPS には、現在のイベント時に獲得または解放が失敗したすべてのグループのリストが 含まれます。 これらのリソース・グループは、エラー状態に移動されます。 獲得イベント時にこのジョブ が実行されると、PowerHA SystemMirror はリソース・グループ獲得失敗回復機能を使用し、エラー状態 の各リソース・グループごとに rg_move イベントを起動します。

```
conc_rg1: process_resources[1476] c1RGPA
conc rg1: clRGPA[50] usingVer= clrgpa
conc rg1: clRGPA[55] clrgpa
conc rg1: clRGPA[56] exit 0
conc rg1: process resources[1476] eval JOB TYPE= ERROR RESOURCE GROUPS=" cascrg1"
```

```
conc_rg1: process_resources[1476] JOB_TYPE= ERROR RESOURCE_GROUPS= cascrg1 conc_rg1: process_resources[1478] RC= 0 conc_rg1: process_resources[1479] set +a conc_rg1: process_resources[1481] [ 0 -ne 0 ] conc_rg1: process_resources[1712] set_resource_group_state ERROR 関連情報:
```

クラスター・イベントでのリソース・グループの動作

JOB_TYPE=NONE:

現在の process_resources スクリプトに対するすべての処理が完了すると、最後のジョブ・タイプ NONE を使用して、処理が完了しスクリプトの戻りが可能になったことを示します。 process_resources スクリプトは、このジョブを受け取った後に終了すると、成功を表す 0 を必ず返します。

```
conc_rg1: process_resources[1476] clRGPA
conc_rg1: clRGPA[48] [[ high = high ]]
conc_rg1: clRGPA[48] version= 1.16
conc_rg1: clRGPA[50] usingVer= clrgpa
conc_rg1: clRGPA[55] clrgpa
conc_rg1: clRGPA[56] exit 0
conc_rg1: process_resources[1476] eval JOB_TYPE= NONE
conc_rg1: process_resources[1476] JOB_TYPE= NONE
conc_rg1: process_resources[1478] RC= 0
conc_rg1: process_resources[1479] set +a
conc_rg1: process_resources[1481] [ 0 -ne 0 ]
conc_rg1: process_resources[1721] break
conc_rg1: process_resources[1731] exit 0
```

JOB_TYPE=ACQUIRE:

ACQUIRE ジョブ・タイプはリソース・グループ獲得イベントの始めに発生します。 JOB_ TYPE= ACQUIRE で hacmp. out を検索し、RESOURCE_ GROUPS 変数の値を表示して、イベント時に並列処理で獲得されるリソース・グループのリストを確認します。

```
:process_resources[1476] clRGPA
:clRGPA[48] [[ high = high ]]
:clRGPA[48] version= 1. 16
:clRGPA[50] usingVer= clrgpa
:clRGPA[55] clrgpa
:clRGPA[56] exit 0
:process_resources[1476] eval JOB_TYPE= ACQUIRE RESOURCE_GROUPS=" cascrg1 cascrg2"
:process_resources[1476] JOB_TYPE= ACQUIRE RESOURCE_GROUPS= cascrg1 cascrg2"
:process_resources[1478] RC= 0
:process_resources[1479] set +a
:process_resources[1481] [ 0 -ne 0 ]
:process_resources[1687] set_resource_group_state ACQUIRING
```

JOB_TYPE=RELEASE:

RELEASE ジョブ・タイプはリソース・グループ解放イベントの始めに発生します。 JOB_ TYPE= RELEASE で hacmp.out を検索し、RESOURCE_ GROUPS 変数の値を表示して、イベント時に並列処理で解放されるリソース・グループのリストを確認します。

```
:process_resources[1476] clRGPA
:clRGPA[48] [[ high = high ]]
:clRGPA[48] version= 1. 16
:clRGPA[50] usingVer= clrgpa
:clRGPA[55] clrgpa
:clRGPA[56] exit 0
:process_resources[1476] eval JOB_ TYPE= RELEASE RESOURCE_ GROUPS=" cascrg1 cascrg2"
:process_resources[1476] JOB_ TYPE= RELEASE RESOURCE_ GROUPS= cascrg1 cascrg2
```

```
:process resources[1478] RC= 0
:process resources[1479] set +a
:process resources[1481] [ 0 -ne 0 ]
:process_resources[1691] set_ resource_ group_ state RELEASING
```

JOB_TYPE= SSA_FENCE:

SSA FENCE ジョブ・タイプを使用して、SSA ディスクのフェンシングおよびアンフェンシングを処理し ます。 変数 ACTION は、HDISKS 変数にリストされたディスクに実行する必要のある処理を示しま す。すべてのリソース・グループ (並列およびシリアル) は、ディスク・フェンシングにこのメソッドを使 用します。

```
:process resources[1476] clRGPA FENCE
:c1RGPA[\overline{48}] [[ high = high ]]
:clRGPA[55] clrgpa FENCE
:clRGPA[56] exit 0
:process_resources[1476] eval JOB_TYPE= SSA_ FENCE ACTION= ACQUIRE HDISKS=" hdisk6" RESOURCE_GROUPS=" conc_ rg1 " HOSTS=" electron" :process_ resources[1476] JOB_TYPE= SSA_FENCE ACTION= ACQUIRE
HDISKS= hdisk6 RESOURCE_GROUPS= conc_rg1 HOSTS=electron
:process_ resources[1478] RC= 0
:process resources[1479] set +a
:process_ resources[1481] [ 0 -ne 0 ]
:process_ resources[1675] export GROUPNAME= conc_ rg1 conc rg1
:process_ resources[1676] process_ ssa_ fence ACQUIRE
```

注: ディスク・フェンシングは process_resources スクリプトを使用します。したがって、ディスク・フェ ンシングが発生すると、誤ってリソース処理が行われているとみなす場合がありますが、実際にはディス ク・フェンシングのみが行われています。 ディスク・フェンシングが有効な場合、hacmp.out ファイルで は、ディスク・フェンシング処理がどのリソース・グループ処理よりも前に 行われていることがわかりま す。 SSA ディスク・フェンシングは process resources スクリプトにより処理されますが、リソース・ グループはシリアルに処理されます。 cl ssa fence は、ディスク・フェンシングが必要なリソース・グ ループごとに一度呼び出されます。 hacmp.out のコンテンツは、処理されるリソース・グループを示しま す。

```
conc_ rg1: process_resources[8] export GROUPNAME
conc_ rg1: process_resources[10] get_ list_ head hdisk6
conc_ rg1: process_resources[10] read LIST_OF_HDISKS_ FOR_ RG
conc_ rg1: process_resources[11] read HDISKS
conc_ rg1: process_resources[11] get_ list_ tail hdisk6
conc_ rg1: process_resources[13] get_ list_ head electron
conc_ rg1: process_resources[13] read HOST_ FOR_ RG
conc rg1: process resources[14] get list tail electron
conc_ rg1: process_resources[14] read HOSTS
conc rg1: process resources[18] cl ssa fence ACQUIRE electron hdisk6
conc_ rg1: cl_ssa_fence[43] version= 1. 9. 1. 2
conc_ rg1: cl_ssa_fence[44]
conc_ rg1: cl_ssa_fence[44]
     rg1: cl_ssa_fence[46] STATUS= 0
     rg1: cl ssa fence[48] (( 3 < 3
conc_ rg1: c1_ssa_fence[56] OPERATION= ACQUIRE
```

JOB_TYPE=SERVICE_LABELS:

SERVICE LABELS ジョブ・タイプは、サービス・ラベルの獲得または解放を処理します。 変数 ACTION は、IP_LABELS 変数にリストされたサービス IP ラベルに実行する必要のある処理を示しま す。

```
conc_ rg1: process_ resources[ 1476] clRGPA
conc_ rg1: clRGPA[ 55] clrgpa
conc_ rg1: c1RGPA[ 56] exit 0
conc rg1: process resources[ 1476] eval JOB TYPE= SERVICE LABELS
```

```
ACTION= ACQUIRE IP_ LABELS=" elect_ svc0: shared_ svc1, shared_ svc2" RESOURCE_ GROUPS=" cascrg1 rotrg1" COMMUNICATION_ LINKS=": commlink1"
conc_ rg1: process_ resources[1476] JOB_ TYPE= SERVICE_ LABELS
ACTION= ACQUIRE IP_ LABELS= elect_ svc0: shared_ svc1, shared_ svc2
RESOURCE_ GROUPS= cascrg1 rotrg1 COMMUNICATION_LINKS=: commlink1
conc_ rg1: process_ resources[1478] RC= 0
conc_ rg1: process_ resources[1479] set +a
conc rg1: process resources[1481] [ 0 -ne 0 ]
conc_ rg1: process_ resources[ 1492] export GROUPNAME= cascrg1
このジョブ・タイプの場合、acquire service addr イベントが起動されます。イベント内で、個々のサー
ビス・ラベルが獲得されます。 hacmp.out ファイルのコンテンツは、処理されるリソース・グループを示
します。 各リソース・グループ内では、イベント・フローはシリアル処理の場合と同じです。
cascrg1: acquire service addr[ 251] export GROUPNAME
cascrg1: acquire service_addr[251] [[ true = true ]]
cascrg1: acquire_service_addr[254] read SERVICELABELS
cascrg1: acquire_service_addr[254] get_ list_ head electron_ svc0
cascrg1: acquire_service_addr[255] get_ list_ tail electron_ svc0
cascrg1: acquire service addr[255] read IP LABELS
cascrg1: acquire service addr[257] get list head
cascrg1: acquire_service_addr[257] read SNA_ CONNECTIONS
cascrg1: acquire_service_addr[258] export SNA_ CONNECTIONS
cascrg1: acquire_service_addr[259] get_ list_ tail
cascrg1: acquire_service_addr[259] read _SNA_ CONNECTIONS
cascrg1: acquire service addr[270] clgetif -a electron svc0
IOB TYPE=VGS:
VGS ジョブ・タイプはボリューム・グループの獲得または解放を処理します。 変数 ACTION は処理さ
れるボリューム・グループに実行する必要のある処理を示します。ボリューム・グループ名は
VOLUME_GROUPS および CONCURRENT_VOLUME_GROUPS 変数にリストされています。
conc rg1 :process resources[1476] c1RGPA
conc rg1 :c1RGPA[55] c1rgpa
conc_rg1 :c1RGPA[56] exit 0
conc_rg1 :process_resources[1476] eval JOB TYPE= VGS ACTION= ACQUIRE
CONCURRENT VOLUME GROUP=" con vg6" VOLUME GROUPS=""
casc vg1: casc vg2" RESOURCE GROUPS=" cascrg1 cascrg2 "
EXPORT_FILESYSTEM=""
conc rg1 :process resources[1476] JOB TYPE= VGS
ACTION= ACQUIRE CONCURRENT VOLUME GROUP= con vg6 VOLUME GROUPS= casc vg1: casc vg2
RESOURCE_GROUPS= cascrg1 cascrg2 EXPORT_FILESYSTEM=""
conc rg1 :process resources[1478] RC= 0
conc rg1 :process resources[1481] [ 0 -ne 0 ]
conc_rg1 :process_resources[1529]
export GROUPNAME= cascrg1 cascrg2
このジョブ・タイプは、個別のボリューム・グループを獲得する cl_activate_vgs イベント・ユーティリテ
ィー・スクリプトを実行します。 hacmp.out ファイルのコンテンツは、処理されるリソース・グループを
示します。各リソース・グループ内では、スクリプト・フローはシリアル処理の場合と同じです。
cascrg1 cascrg2 :cl activate vgs[256] 1> /usr/ es/ sbin/ cluster/ etc/ lsvg. out. 21266 2> /tmp/ lsvg. err
cascrg1: cl activate vgs[260] export GROUPNAME
cascrg1: cl_activate_vgs[262] get_ list_head
casc_vg1: casc_vg2
cascrg1: cl activate vgs[62] read LIST OF VOLUME GROUPS FOR RG
cascrg1: cl_activate_vgs[263] get_list_tail casc_vg1: casc_vg2
cascrg1: cl_activate_vgs[263] read VOLUME_GROUPS
cascrg1: cl_activate_vgs[265] LIST_OF_VOLUME_GROUPS_ FOR_ RG=
```

```
cascrg1: cl_activate_vgs[ 270] fgrep -s -x casc_ vg1 /usr/ es/ sbin/
cluster/ etc/ lsvg. out. 21266
cascrg1: cl activate vgs[275] LIST OF VOLUME GROUPS FOR RG= casc vg1
cascrg1: cl_activate_vgs[275] [[ casc_ vg1 = ]]
```

ディスク・フェンシング:

ディスク・フェンシングでは、JOB_TYPE=SSA_FENCE を指定した process_resources スクリプトを使用 します。

従属リソース・グループまたはサイトを有するクラスター内の処理:

従属グループまたはサイトを設定したクラスターのリソース・グループは、動的イベント変換で処理されま す。

これらのイベントは 1 つ以上のリソース・グループを同時に処理します。 複数の非コンカレント・リソー ス・グループは、1 つの rg_move イベント内で処理できます。

関連情報:

アプリケーションおよび PowerHA SystemMirror

Siblings を持つイベントの hacmp.out への出力のサンプル:

このトピックでは、兄弟イベントを持つイベントのサンプル出力 (hacmp.out への出力) を示します。

```
Mar 28 09:40:42 EVENT START: rg move a2 1ACQUIRE
:process_resources[1952] eval JOB_TYPE=ACQUIRE RESOURCE_GROUPS="rg3"
SIBLING GROUPS="rg1 rg3" SIBLING NODES BY GROUP="b2 : b2"
SIBLING ACQUIRING GROUPS="" SIBLING ACQUIRING NODES BY GROUP=""
PRINCIPAL ACTION="ACQUIRE" AUXILLIARY ACTION="NONE"
:process resources[1952] JOB TYPE=ACQUIRE RESOURCE GROUPS=rg3
SIBLING GROUPS=rg1 rg3 SIBLING NODES BY GROUP=b2 : b2
SIBLING ACQUIRING GROUPS= SIBLING ACQUIRING NODES BY GROUP=
PRINCIPAL_ACTION=ACQUIRE AUXILLIARY_ACTION=NONE
:rg_move_complete[157] eval FORCEDOWN_GROUPS="" RESOURCE_GROUPS=""
HOMELESS_GROUPS="" ERRSTATE_GROUPS="" PRINCIPAL_ACTIONS=""
ASSOCIATE ACTIONS="" AUXILLIARY ACTIONS="" SIBLING GROUPS="rg1 rg3"
SIBLING_NODES_BY_GROUP="b2 : b2" SIBLING_ACQUIRING_GROUPS="" SIBLING_ACQUIRING_NODES_BY_GROUP="" SIBLING_RELEASING_GROUPS=""
SIBLING RELEASING NODES BY GROUP=""
:rg move complete[157] FORCEDOWN GROUPS= RESOURCE GROUPS=
HOMELESS_GROUPS= ERRSTATE_GROUPS= PRINCIPAL_ACTIONS= ASSOCIATE_ACTIONS=
AUXILLIARY_ACTIONS= SIBLING_GROUPS=rg1 rg3 SIBLING_NODES_BY_GROUP=b2:
b2 SIBLING_ACQUIRING_GROUPS= SIBLING_ACQUIRING_NODES_BY_GROUP
= SIBLING_RELEASING_GROUPS= SIBLING_RELEASING_NODES_BY_GROUP=
:process resources[1952] eval JOB TYPE=SYNC VGS ACTION=ACQUIRE
VOLUME GROUPS="vg3,vg3sm" RESOURCE GROUPS="rg3"
:process resources[1952] JOB TYPE=SYNC VGS
ACTION=ACQUIRE VOLUME GROUPS=vg3,vg3sm RESOURCE GROUPS=rg3
rg3:process_resources[1952] eval JOB_TYPE=ONLINE RESOURCE_GROUPS="rg3" rg3:process_resources[1952] JOB_TYPE=ONLINE RESOURCE_GROUPS=rg3
rg3:process resources[1954] RC=0
rg3:process_resources[1955] set +a
rg3:process_resources[1957] [ 0 -ne 0 ]
rg3:process resources[2207] set resource group state UP
rg3:process resources[3] STAT=0
rg3:process_resources[6] export GROUPNAME
rg3:process resources[7] [ UP != DOWN ]
```

```
rg3:process_resources[9] [ REAL = EMUL ] rg3:process_resources[14] clchdaemons -d clstrmgr_scripts -t resource_locator -n a1 -o rg3 -v UP
rg3:process resources[15] [ 0 -ne 0 ]
rg3:process_resources[26] [ UP = ACQUIRING ]
rg3:process_resources[31] [ UP = RELEASING ]
rg3:process resources[36] [ UP = UP ]
rg3:process resources[38] cl RMupdate rg up rg3 process resources
Reference string: Sun.Mar.27.18:02:09.EST.2005.process resources.rg3.ref
rg3:process_resources[39] continue
rg3:process_resources[80] return 0
rg3:process resources[1947] true
rg3:process_resources[1949] set -a
rg3:process resources[1952] clRGPA
rg3:clRGPA[\overline{3}3] [[ high = high ]]
rg3:clRGPA[33] version=1.16
rg3:c1RGPA[35] usingVer=c1rgpa
rg3:c1RGPA[40] c1rgpa
rg3:c1RGPA[41] exit 0
rg3:process_resources[1952] eval JOB_TYPE=NONE rg3:process_resources[1952] JOB_TYPE=NONE
rg3:process resources[1954] RC=0
rg3:process resources[1955] set +a
rg3:process_resources[1957] [ 0 -ne 0 ]
rg3:process resources[2256] break
rg3:process resources[2267] [[ FALSE = TRUE ]]
rg3:process_resources[2273] exit 0
:rg_move_complete[346] STATUS=0
:rg move complete[348] exit 0
Mar 27 18:02:10 EVENT COMPLETED: rg move complete al 2 0
```

ノードの PowerHA SystemMirror ログ・ファイル・パラメーターの管理

各クラスター・ノードは 2 つのログ・ファイル・パラメーターをサポートします。

これらのパラメーターによって、以下のことを実行できます。

- PowerHA SystemMirror スクリプトによるデバッグ情報出力のレベルの設定。 デフォルトでは、 PowerHA SystemMirror によってデバッグ情報パラメーターが「high (高)」に設定され、詳細なスク リプトの実行結果出力が作成されます。
- hacmp.out ログ・ファイルの出力フォーマットを設定します。

ノードのログ・ファイル・パラメーターを変更するには、以下の手順を実行します。

- 1. smit hacmp と入力します。
- 2. SMIT で、「Problem Determination Tools (問題判別ツール)」> PowerHA SystemMirror「Log Viewing and Management (ログの表示および管理)」>「Change/Show PowerHA SystemMirror Log File Parameters (PowerHA SystemMirror ログ・ファイル・パラメーターの変更/表示)」を選択 して、Enter を押します。
- 3. リストからノードを選択します。
- 4. 以下のフィールド値を入力します。

表 12. PowerHA SystemMirror ログ・ファイル・パラメーターの変更/表示のフィールド

フィールド	値
Debug Level (デバッグ・レベル)	クラスター・イベント・スクリプトには、2 つのログ・レベルがあります。 低レベルは、スクリプト実行中に発生したイベントおよびエラーのみ記録します。高 (デフォルト) レベルは、スクリプトが実行したすべてのコマンドを記録します。強くお勧めするレベルです。 高レベルは多くのクラスターの問題を解決するためのスクリプト追跡レベルを提供します。
Formatting options for hacmp.out (hacmp.out の形式オプション)	「Default (None) (デフォルト (なし))」(特定の形式なし)、「Standard (標準)」(検索文字列を含む)、「HTML (Low) (HTML (低))」(HTML 制限形式)、および「HTML (High) (HTML (高))」(HTML 完全形式) からいずれか 1 つを選択します。

- 5. Enter を押して、AIX 構成データベースの PowerHA SystemMirror に値を入力します。
- 6. PowerHA SystemMirror のメインメニューに戻ります。「Extended Configuration (拡張構成)」 >「Extended Verification and Synchronization (拡張検証および同期化)」を選択します。

任意のクラスター・ノードでクラスター・サービスが実行されているかどうかが検査されます。 実行 されている場合、検証をスキップするオプションはありません。

7. 検証に使用するオプションを選択して Enter を押し、クラスター全体でクラスター構成とノード環境 を同期します。

関連情報:

PowerHA SystemMirror クラスターの検査および同期化

clcomd のログ

clcomd デーモンのログを clcomd.log および clcomddiag.log に記録する処理はデフォルトでオンになっ ています。

clcomd.log 内の情報には、ディスカバリー実行時に確立された最初の接続情報を含むデーモンとのすべて の接続情報が含まれています。 clcomddiag.log には、デーモンの診断情報が記載されているため、トラブ ルシューティングではこのファイルは通常使用しません。

以下の例は、clcomd.log ファイルで生成される出力タイプを示します。 2番目と 3番目のエントリー は、ディスカバリー・プロセス中に生成されます。

```
Wed May 7 12:43:13 2003: Daemon was successfully started
Wed May 7 12:44:10 2003: Trying to establish connection to node
temporarynode0000001439363040
Wed May 7 12:44:10 2003: Trying to establish connection to node
temporarynode0000002020023310
Wed May 7 12:44:10 2003: Connection to node temporarynode0000002020023310, success, 192.0.24.4->
Wed May 7 12:44:10 2003: CONNECTION: ACCEPTED: test2: 192.0.24.4->192.0.24.4
Wed May 7 12:44:10 2003: WARNING: /usr/es/sbin/cluster/etc/rhosts permissions
must be -rw-----
Wed May 7 12:44:10 2003: Connection to node temporarynode0000001439363040: closed
Wed May 7 12:44:10 2003: Connection to node temporarynode0000002020023310: closed
Wed May 7 12:44:10 2003: CONNECTION: CLOSED: test2: 192.0.24.4->192.0.24.4
Wed May 7 12:44:11 2003: Trying to establish connection to node test1
Wed May 7 12:44:11 2003: Connection to node test1, success, 192.0.24.4->192.0.24.5
Wed May 7 12:44:11 2003: Trying to establish connection to node test3.
```

AIX の vi コマンドまたは more コマンドを使用すれば、clcomd.log ファイルまたは clcomddiag.log フ ァイルの内容を表示できます。

AIX の tracesoff コマンドを使用して、clcomddiag.log へのログ記録を一時的にオフにできます (次の再起動またはこのコンポーネントへのログ記録を再度有効にするまで)。 clcomddiag.log へのログ記録を永続的に停止するには、以下のコマンドを使用して、-d フラグなしで SRC からデーモンを起動します。 chssys -s clcomd -a ""

PowerHA SystemMirror クラスター・ログ・ファイルのリダイレクト

PowerHA SystemMirror は通常の操作中に、システムのモニターやデバッグに使用できる各種の出力ログ・ファイルを作成します。必要な場合には、クラスター・ログをデフォルト・ディレクトリー以外のロケーションに保管することもできます。 そのように保管する場合は、ほとんどのクラスター・ログの最小ディスク・スペースは 2MB であることに留意してください。 hacmp.out には 14MB が推奨されます。

注: ログはローカル・ファイル・システムにリダイレクトする必要があります。共有したり NFS ファイル・システムにリダイレクトすることはできません。 それらのファイル・システムにログを置くと、フォールオーバー・イベント時に、そのファイル・システムをアンマウントする必要がある場合に、問題が発生するおそれがあります。 また、ログを NFS ファイル・システムにリダイレクトした場合、ノードの再統合時にクラスター・サービスが開始できなくなることがあります。

このログ・ファイルのリダイレクト機能は、以下のように実行されます。

- ターゲット・ディレクトリーの場所を検査し、そのディレクトリーがローカルとリモートのどちらのファイル・システムに属しているかを判別します。
- ターゲット・ディレクトリーが PowerHA SystemMirror によって管理されているかどうかを判別する ための検査が実施されます。管理されている場合、ログ・ファイルをリダイレクトする試みは、すべて 失敗します。
- ターゲット・ディレクトリーが、相対パス (「mylogdir」など) ではなく、絶対パス (「/mylogdir」な ど) により指定されていることを確認します。

これらの検査によって、選択されたファイル・システムが予期せず使用できなくなる可能性が低くなります。

注: ターゲット・ディレクトリーに読み取り書き込みアクセスを持つ必要があります。

システム・コンポーネント

以下のトピックでは、システム・コンポーネントを調査する手順を示し、PowerHA SystemMirror の使用時に発生する可能性がある問題を特定し、考えられる解決策を提示します。

コンソールにエラー・メッセージが表示されず、ログ・ファイルを調査しても有用な情報が得られない場合は、PowerHA SystemMirror 環境の各コンポーネントを調査し、問題の原因となるコンポーネントを除去します。

システム・コンポーネントの調査

PowerHA SystemMirror と AIX のいずれにも、PowerHA SystemMirror クラスターとそのクラスター 内のリソースの状態を判別するために使用できるユーティリティーが用意されています。これらのコマンド を使用すると、ボリューム・グループやネットワークに関する情報を収集できます。

この場合、PowerHA SystemMirror システムに関する知識が必要です。あらかじめ通常のクラスターの特性を理解し、クラスター・コンポーネントを調査するときに通常の状態からの逸脱を見つける必要があります。 多くの場合、残っているクラスター・ノードが、システム・パラメーターやその他のクラスター構成情報の正しい設定の例になります。

確認可能な PowerHA SystemMirror クラスター・コンポーネントを検討し、有用なユーティリティーを 挙げておいてください。 クラスター・ログ・ファイルを検査しても問題の原因が判別されない場合は、各 層をたどるトップダウン方法で各システム・コンポーネントを検査する必要があります。 コンポーネント は、必ず以下の順序で調査してください。

- 1. アプリケーション層
- 2. PowerHA SystemMirror 層
- 3. 論理ボリューム・マネージャー層
- 4. TCP/IP 層
- 5. AIX 層
- 6. 物理ネットワーク層
- 7. 物理ディスク層
- 8. システム・ハードウェア層

各層を調べるときに期待すべき内容、および層の調査に使用すべきツールについても知っておく必要があり ます。

高可用性アプリケーションの確認

クラスターに影響を及ぼす問題を検出するための最初のステップとして、クラスターで実行されている各高 可用性アプリケーションを検査します。 アプリケーション固有のログ・ファイルをすべて調査し、各アプ リケーションの資料で推奨されているトラブルシューティング手順をすべて実行します。

さらに、以下の点についても検査します。

- 例えば、記録の追加や削除を試行するデータベース・アプリケーション用の簡単なテストを行います。
- ps コマンドを使用して必要なプロセスが実行されているかを検査したり、そのプロセスが正常に停止さ れたかどうかを検証します。
- アプリケーションが必要とするリソースが存在するかどうかを検査し、それらのリソースが使用可能で あることを確認します (例: ファイル・システムやボリューム・グループ)。

PowerHA SystemMirror 層の検査

アプリケーション層を検査しても問題の原因が判明しない場合は、PowerHA SystemMirror 層を検査しま す。

調査対象は以下の 2 つの領域です。

- PowerHA SystemMirror コンポーネントと必要なファイル
- クラスター・トポロジーと構成

注: これらのステップでは、ログ・ファイルをすでに検査しており、ログ・ファイルに問題が示されていな いことを前提としています。

PowerHA SystemMirror コンポーネントの検査

PowerHA SystemMirror クラスターは、いくつかの必須のファイルおよびデーモンから構成されます。以 下のセクションでは、PowerHA SystemMirror 層で検査する対象について説明します。

PowerHA SystemMirror で必要なファイルの確認

クラスターに必要な PowerHA SystemMirror ファイルが適切な場所に存在し、適切なアクセス権 (読み取 り可能および実行可能)が設定されており、長さがゼロでないことを確認します。 PowerHA SystemMirror ソフトウェアによって変更される PowerHA SystemMirror ファイルおよび AIX ファイル は、製品に付属している README ファイルにリストされています。

クラスター・サービスおよびプロセスの確認

以下の PowerHA SystemMirror デーモンの状況を検査します。

- クラスター・マネージャー (clstrmgrES) デーモン
- クラスター通信 (clcomdES) デーモン
- クラスター情報プログラム (clinfoES) デーモン

これらのコンポーネントが通常通りに応答しない場合、デーモンがクラスター・ノードでアクティブかどう か判別します。 SMIT の「System Management (C-SPOC) (システム管理 (C-SPOC))」「Cluster Services (クラスター・サービス)」「Show Cluster Services (クラスター・サービスの表示)」パネルのオ プション、または lssrc コマンドのいずれかを使用します。

例えば、SRC で制御されるすべてのデーモンの状況を調べるには、以下のように入力します。

1ssrc -a | grep active syslogdras 290990active sendmail mail270484active portmapportmap286868active inetd tcpip 295106active snmpd tcpip 303260active dpid2 tcpip 299162active hostmibd tcpip 282812active aixmibdtcpip 278670active biodnfs 192646active rpc.statd nfs 254122 active rpc.lockd nfs 274584active qdaemonspooler196720active writesrv spooler250020active ctrmc rsct98392 active clcomdES clcomdES 204920active IBM.CSMAgentRMrsct_rm90268 active IBM.ServiceRM rsct rm229510active IBM.ERRM rsct rm188602active IBM.AuditRMrsct rm151722active topsvcstopsvcs602292active grpsvcsgrpsvcs569376active emsvcs emsvcs 561188active emaixosemsvcs 557102active clstrmgrEScluster544802active gsclvmd565356active IBM.HostRMrsct_rm442380active

SRC で制御されるすべてのクラスター・デーモンの状況を調べるには、次のように入力します。1ssrc -g cluster

注: lssrc コマンドで -g フラグを使用すると、サブシステムが非アクティブの場合、状況情報にはサブシ ステムの状況が記載されません。 この情報が必要な場合は、代わりに -a フラグを使用してください。 lssrc コマンドの詳細については、マニュアル・ページを参照してください。

デーモンの状況の追加情報を表示させるため clcheck server コマンドを実行します。 clcheck server コ マンドは、lssrc コマンドよりも詳細に繰り返し検査を試みます。詳しくは、clcheck_server マニュアル・ ページを参照してください。

クラスター・マネージャーが実行されているかどうか、あるいは、クラスター・マネージャーによって起動 されたプロセスが現在ノード上で実行されているかどうかを判別するには、ps コマンドを使用します。

例えば、clstrmgrES デーモンが実行されているかどうかを判別するには、以下のように入力します。

ps -ef | grep clstrmgrES

root 18363 3346 3 11:02:05 - 10:20 /usr/es/sbin/cluster/clstrmgrES root 19028 19559 2 16:20:04 pts/10 0:00 grep clstrmgrES

このコマンドの使用について詳しくは、ps マニュアル・ページを参照してください。

クラスター構成問題の検査

PowerHA SystemMirror クラスターが正常に機能するためには、クラスター・トポロジー、ネットワーク 構成、および PowerHA SystemMirror リソースの所有権とテークオーバーが、クラスター内のすべての ノードで一致している必要があります。この情報は、各クラスター・ノードの構成データベースに格納され ます。

構成の問題を調べる前に、システムを破損させるような変更を最近行ったかどうかを考えてみてください。 コンポーネントの追加や削除を行いませんでしたか。 新しいソフトウェアをマシンにロードしませんでし たか。 新しい PTF やアプリケーションの更新を実行しませんでしたか。 システムのバックアップを復元 しませんでしたか。 次に、検証を実行して AIX ソフトウェアに対して PowerHA SystemMirror 固有の 変更が適切に実施され、クラスター構成が有効であることを確認します。

クラスターの検証ユーティリティーによって、多くのクラスター構成が多面的に検査され、不整合があれば 報告されます。 このユーティリティーを使用すると、次の診断タスクを実行できます。

- すべてのクラスター・ノードに、同じクラスター・トポロジーの情報が含まれていることを検証しま す。
- すべてのネットワーク・インターフェース・カードが適切に構成されており、所有するすべてのノード から共用ディスクにアクセスできるかどうかを検査します。
- 定義済みリソース (ファイルシステム、ログ・ファイル、ボリューム・グループ、ディスク、アプリケ ーション・コントローラーなど)の所有権が、すべてのノード間で一致しているかどうかを調べます。
- クラスター名、ノード名、ネットワーク名、ネットワーク・インターフェース名、リソース・グループ 名に無効な文字がないかどうかを検査します。
- テークオーバー情報を検証します。

検証ユーティリティーは、以下に関する診断情報も出力します。

- ユーザー定義スナップショット・メソッド
- カスタム検証メソッド
- ユーザー定義のイベント前処理または後処理
- クラスター・ログ・ファイルのリダイレクト

メイン PowerHA SystemMirror SMIT パネルで、「Problem Determination Tools (問題判定ツール)」 >「PowerHA SystemMirror Verification (検証)」>「Verify PowerHA SystemMirror Configuration (構成の検証)」を選択します。 構成に関する問題が見つかったら、その問題を訂正してから、クラスター を再度同期化します。

注: エラーによっては、各クラスター・ノードで変更が必要な場合もあります。 例えば、アプリケーションの始動スクリプトが欠落している場合やボリューム・グループが autovaryon=TRUE の場合は、影響を受ける各ノードで訂正を行う必要があります。 PowerHA SystemMirror ファイル・コレクションを使用して、処理できる問題もあります。

クラスター・トポロジーの完全なリストを参照するには、/usr/es/sbin/cluster/utilities/cltopinfo コマンドを実行します。 PowerHA SystemMirror 検証プロセスを実行するほか、ノード構成ファイルに対する最近の変更についても検査してください。

コマンド ls -lt /etc は、/etc ディレクトリー内の全てのファイルをリストし、AIX の構成に重要な最後に変更された、例えば以下のようなファイルを表示します。

- · etc/inett.conf
- /etc/hosts
- etc/services

必ず、検証プロセスで検出されない可能性があるエラーがリソース・グループの構成に含まれていないかどうかも検査してください。 例えば、アプリケーション・コントローラーが必要とするファイルシステムがアプリケーションと共にリソース・グループに含まれているようにする必要があります。

各リソース・グループのノードが所定のノードであり、適切な順序でリストされているかどうかを検査します。メイン PowerHA SystemMirror SMIT パネルからクラスター・リソース構成の情報を表示するには、「Extended Configuration (拡張構成)」>「Extended Resource Configuration (拡張リソース構成)」>「PowerHA SystemMirror Extended Resource Group Configuration (拡張リソース・グループ構成)」>「Show All Resources by Node or Resource Group (ノードまたはリソース・グループ別にリソースをすべて表示)」を選択します。

また、/usr/es/sbin/cluster/utilities/clRGinfo コマンドを実行して、リソース・グループ情報を表示できます。

注: クラスターの検証ユーティリティーの実行後に、クラスター構成の問題が発生した場合、この環境では C-SPOC コマンドを実行しないでください。このコマンドはクラスター・ノードで実行できない場合があります。

関連情報:

PowerHA SystemMirror クラスターの検査および同期化

クラスター・スナップショット・ファイルの検査

PowerHA SystemMirror クラスター・スナップショット機能 (/usr/es/sbin/cluster/utilities/clsnapshots) を使用すると、特定のクラスター構成を定義するすべてのデータのレコードをファイルに保存できます。 また、独自のユーザー定義スナップショット・メソッドを作成し、構成に対して重要な追加情報を保管することもできます。 このスナップショットは、クラスターに関する問題のトラブルシューティングに使用できます。

スナップショットを保管または検索するためのデフォルトのディレクトリー・パスは、/usr/es/sbin/cluster/snapshots です。

クラスター・スナップショット機能は、異なるバージョンの PowerHA SystemMirror が並行して稼働しているクラスター内では使用できません。

関連情報:

クラスター構成の保管および復元

クラスター・スナップショットに保管される情報:

クラスター・スナップショットに保管される主要な情報は、PowerHA SystemMirror 構成データベースの クラス (HACMPcluster、HACMPnode、および HACMPnetwork など) に保管された情報です。この情 報は、クラスター・スナップショットを適用する場合、クラスター構成を再作成するために使用されます。

クラスター・スナップショットには、ユーザーがカスタマイズしたスクリプト、アプリケーション、および PowerHA SystemMirror 用でないその他の構成パラメーターは保存されません。例えば、アプリケーショ ン・コントローラーの名前やその始動スクリプトおよび停止スクリプトのロケーションは、PowerHA SystemMirrorサーバー構成データベースのオブジェクト・クラスに保管されます。ただし、スクリプトそ のものと、スクリプトが呼び出す可能性のあるアプリケーションは、保管されません。

また、クラスター・スナップショットでは、PowerHA SystemMirror の適用範囲外のデバイス・データや 構成固有のデータは保管されません。 例えば、共用ファイル・システムおよびボリューム・グループの名 前は保管されますが、NFS オプションや LVM ミラーリング構成などの他の詳細情報は保管されません。

リソース・グループ管理ユーティリティー clRGmove を使用してリソース・グループを移動した場合に、 スナップショットを適用すると、リソース・グループの動作はデフォルト・ノード・リストで指定されたも のに戻ります。 スナップショットの適用後にクラスターを調査するには、clRGinfo を実行してリソー ス・グループのロケーションおよび状況を表示します。

この ODM データのほか、クラスター・スナップショットには、さまざまな PowerHA SystemMirror や 標準 AIX のコマンドやユーティリティーによって生成される出力も組み込まれます。 このデータには、 各クラスター・ノードによって表示されるクラスター、ノード、ネットワーク、およびネットワーク・イン ターフェースの現在の状態と、実行中の PowerHA SystemMirror デーモンの状態も含まれます。

クラスター・スナップショットには、以下のコマンドからの出力が含まれます。

- cllscf
- df
- lsfs
- netstat
- cllsnw
- · exportfs
- lslpp
- no
- cllsif
- ifconfig
- lslv
- clchsyncd
- clshowres
- ls
- lsvg
- cltopinfo

ログの収集をスキップすると、スナップショットのサイズを縮小し、スナップショット・ユーティリティー の実行をスピード・アップできます。

SMIT を使用してクラスター・ログ・ファイルを収集し、問題を報告できます。 このオプションは、SMIT メニューの「Problem Determination Tools (問題判別ツール)」>「PowerHA SystemMirror Log Viewing and Management (PowerHA SystemMirror ログの表示および管理)」>「Collect Cluster log files for Problem Reporting (問題を報告するためのクラスター・ログ・ファイルの収集)」で使用できます。 IBM サポート担当者より依頼がある場合にのみ、このオプションを使用することをお勧めします。

また、AIX snap -e コマンドを使用して、hacmp.out や clstrmgr.debug ログ・ファイルなどの PowerHA SystemMirror クラスター・データを収集できます。

関連情報:

クラスター構成の保管および復元

クラスター・スナップショット・ファイル:

クラスター・スナップショット機能は、保管するデータを構成データベース・データ・ファイルとクラスター状態の情報ファイルの 2 つのファイルに格納します。それぞれのファイルは 3 つのセクションで情報を示します。

構成データベース・データ・ファイル (.odm):

このファイルには、そのクラスターの PowerHA SystemMirror ODM オブジェクト・クラスに格納されたすべてのデータが入ります。

このファイルには、ファイル拡張子が .odm のユーザー定義のベース名が与えられます。 構成データベース情報はすべてのクラスター・ノード上でほとんど同じであるはずなので、クラスター・スナップショットは、1 つのノードの値のみを保管します。 クラスター・スナップショットの構成データベース・データ・ファイルは、ASCII テキスト・ファイルで、次の 3 つのセクションがあります。

表 13. データベース・データ・ファイル (.odm) のセクション

セクション	説明
バージョン・セクション	このセクションは、クラスター・スナップショットのバージョンを示します。 <ver という<br="">文字でこのセクションの始まりを示し、</ver> ます。 クラスター・スナップショット・ソフトウェアはバージョン番号を設定します。
説明セクション	このセクションには、クラスター・スナップショットを説明するユーザー定義のテキストが 入ります。 最大 255 文字までの説明文を指定することができます。 <dsc という文字でこ<br="">のセクションの始まりを示し、</dsc>
ODM データ・セクション	このセクションには、汎用 AIX ODM スタンザ形式の PowerHA SystemMirror ODM オブジェクト・クラスが含まれます。 <0DM という文字でこのセクションの始まりを示し、 0DM という文字でこのセクションの終わりを示します。</td

以下の例は、サンプル・クラスター・スナップショット構成データベース・データ・ファイルからの抜粋で、保管されている ODM スタンザの一部を示しています。

<VER

1.0

</VER

<DSC

My Cluster Snapshot

</DSC

<0DM

PowerHA SystemMirror cluster: id = 1106245917 name = "HA52 TestCluster"

```
nodename = "mvnode"
sec level = "Standard"
sec_level_msg = ""
sec_encryption = ""
sec_persistent = ""
last_node ids = ""
highest node id = 0
last_network_ids = ""
highest_network_id = 0
last site ides = ""
highest site id = 0
handle = 1
cluster version = 7
reserved1 = 0
reserved2 = 0
wlm_subdir = ""
settling time = o
rg_distribution_policy = "node"
noautoverification = 0
clvernodename = ""
clverhour = 0
PowerHA SystemMirror node:
name = "mynode"
object = "VERBOSE LOGGING"
value = "high"
</0DM
```

クラスター状態情報ファイル (.info):

このファイルには、AIX と PowerHA SystemMirror の標準システム管理コマンドの出力が格納されま す。

このファイルには、ファイル拡張子が.info のユーザー定義のベース名が与えられます。 ユーザー定義ス ナップショット・メソッドを定義した場合は、その出力がこのファイルに追加されます。 クラスター状態 の情報ファイルには、以下の3つのセクションがあります。

表 14. クラスター状態情報ファイル (.info)

セクション	説明
バージョン・セクション	このセクションは、クラスター・スナップショットのバージョンを示します。 <ver td="" ver="" という文字でこのセクションの始まりを示し、<="" という文字でこのセクションの終わりを示します。="" クラスター・スナップショット・ソフトウェアはこのセクションを設定します。<=""></ver>
説明セクション	このセクションには、クラスター・スナップショットを説明するユーザー定義のテキストが入ります。 最大 255 文字までの説明文を指定することができます。 <dsc dsc="" td="" という文字でこのセクションの始まりを示し、<="" という文字でこのセクションの終わりを示します。<=""></dsc>
コマンド出力セクション	このセクションには、AIX および PowerHA SystemMirror ODM コマンドによって生成された出力が入ります。このセクションには、実行されたコマンドおよび関連した出力がリストされます。このセクションは、区切り文字などで区切られません。

論理ボリューム・マネージャーの確認

PowerHA SystemMirror クラスターのトラブルシューティングを行う場合、ボリューム・グループ、物理 ボリューム、論理ボリューム、およびファイルシステムの LVM エンティティーを調べる必要がありま す。

ボリューム・グループ定義の検査

クラスター内のすべての共用ボリューム・グループが適切なノードでアクティブであるかどうかを検査します。 ボリューム・グループがアクティブでない場合は、構成に応じて適切なコマンドを使用してオンに変更します。

SMIT パネルで、「Initialization and Standard Configuration (初期化および標準構成)」>「Configure PowerHA SystemMirror Resource Groups (PowerHA SystemMirror リソース・グループの構成)」>「Change/Show Resources for a Resource Group (standard) (リソース・グループのリソースの変更/表示 (標準))」を選択し、リソース・グループの「Volume Groups (ボリューム・グループ)」フィールドにリストされているすべてのボリューム・グループを、そのリソース・グループがオンラインのノード上でオンに変更する必要があります。

ボリューム・グループを検査する Isvg コマンドの使用

クラスター・ノードのボリューム・グループ定義間の不整合を検査するには、lsvg コマンドを使用してクラスターの各ノードに定義されたボリューム・グループの情報を表示します。

1sva

システムは、以下のようなボリューム・グループ情報を戻します。

rootvg

datavg

システムのアクティブな (オンに変更された) ボリューム・グループのみを表示するには、lsvg -o コマンドを以下のように使用します。

lsvg -o

システムは、以下のようなボリューム・グループ情報を戻します。

rootvq

ボリューム・グループのすべての論理ボリュームをリストし、ボリューム・グループ状態および属性を検査するには、lsvg -1 コマンドを使用して、以下の例で示すようにボリューム・グループ名を指定します。lsvg -1 rootvg

注: lsvg-1 コマンドが使用できるように、ボリューム・グループをオンに変更する必要があります。

また、PowerHA SystemMirror SMIT を使用して矛盾点を検査することもできます。「System Management (C-SPOC) (システム管理 (C-SPOC))」 > 「PowerHA SystemMirror Logical Volume Management (PowerHA SystemMirror 論理ボリューム管理)」 > 「Shared Volume Groups (共用ボリューム・グループ)」オプションを選択してクラスターの共用ボリューム・グループの情報を表示します。

ボリューム・グループの varyon 状態の確認

lsvg < vgname > コマンドを発行して、ボリューム・グループの状態を検査できます。

構成に応じて、lsvg コマンドは以下のオプションを戻します。

vg state は active (アクティブな varyon の場合)、または passive only (パッシブな varyon の場合) になります。

vg mode は concurrent または enhanced concurrent になります。

以下に lsvg 出力の例を示します。

44 PowerHA SystemMirror のトラブルシューティング

1svg myvg

VOLUME GROUP: Volume Group 01 VG IDENTIFIER: 0002231b00004c00000000f2801blcc3 VG STATE: active PP SIZE: 16 megabyte(s) VG PERMISSION: read/write TOTAL PPs: 1084 (17344 megabytes) MAX LVs:256FREE PPs:977 (15632 megabytes) LVs:4USED PPs:107 (1712 megabytes) OPEN LVs: 0QUORUM:2 TOTAL PVs:2VG DESCRIPTORS:3 STALE PVs:0 STALE PPs 0 ACTIVE PVs: 2AUTO ON:no MAX PPs per PV1016 MAX PVs: 32 LTG size: 128 kilobyte (s) AUTO SYNC:no HOT SPARE:no

C-SPOC ユーティリティーによる共用ボリューム・グループの確認

2 ノード C-SPOC 環境でクラスター・ノード上のボリューム・グループ定義間に不整合があるかどうかを 確認するには、以下の手順を実行します。

- 1. smitty hacmp と入力します。
- 2. SMIT で、「System Management (C-SPOC) (システム管理 (C-SPOC))」>「PowerHA SystemMirror Logical Volume Management (PowerHA SystemMirror 論理ボリューム管理)」 >「Shared Volume Groups (共用ボリューム・グループ)」>「List All Shared Volume Groups (共 用ボリューム・グループをすべてリスト)」を選択し、Enter を押してデフォルト (「no (いいえ)」) を 受け入れます。

C-SPOC 環境のすべての共用ボリューム・グループのリストが表示されます。 このリストには、非コンカ レント・リソース・グループのリソースとして含まれる拡張コンカレント・ボリューム・グループも含まれ ます。

また、コマンド行から C-SPOC cl_lsvg コマンドを使用して、この情報を表示できます。

物理ボリュームの検査

各ノードに定義された物理ボリュームの不整合を検査するには、システムが認識しているすべての物理ボリ ュームのリストを取得し、このリストを「Command Status (コマンドの状態)」画面の「Disks (ディス ク)」フィールドに指定したディスクのリストと比較します。 SMIT の「Extended Configuration (拡張構 成)」>「Extended Resource Configuration (拡張リソース構成)」>「PowerHA SystemMirror Extended Resource Group Configuration (拡張リソース・グループ構成)」 > 「Show All Resources by Node or Resource Group (ノードまたはリソース・グループ別にリソースをすべて表示)」画面を介して 「Command Status (コマンドの状態)」画面にアクセスします。

ノードが認識しているすべての物理ボリュームのリストを取得し、属するボリューム・グループを見つける には、lspv コマンドを使用します。 ボリューム・グループ名を引数として指定しない場合、lspv コマン ドはシステムに既知の物理ボリュームをすべて表示します。 その例を次に示します。

1spv hdisk00000914312e971arootvg hdisk100000132a78e213rootvg hdisk200000902a78e21adatavg hdisk300000321358e354datavg

カラム表示の 1 列目には、ディスクの論理名が表示されます。 2 列目には、ディスクの物理ボリューム識 別子がリストされます。 3 列目には、属するボリューム・グループ (ある場合) がリストされます。

各クラスター・ノードで、AIX は同じ物理ボリュームに異なる名前 (hdisk 番号) を割り当てます。 特定の物理ボリュームに対応する名前を調べるには、各ノードにリストされた物理ボリューム識別子を比較します。

物理ボリュームの論理デバイス名 (hdisk x) を lspv コマンドの引数として指定すると、アクティブ (オンに変更された) かどうかなどの物理ボリュームの情報が表示されます。 その例を次に示します。

1spv hdisk2

PHYSICAL VOLUME:hdisk2 VOLUME GROUP:abalonevg

PV IDENTIFIER: 0000301919439ba5 VG IDENTIFIER: 00003019460f63c7

PV STATE:active VG STATE:active/complete STALE PARTITIONS: 0 ALLOCATABLE:yes PP SIZE: 4 megabyte(s)LOGICAL VOLUMES:2

TOTAL PPs: 203 (812 megabytes) VG DESCRIPTORS: 2

FREE PPs:192 (768 megabytes) USED PPs:11 (44 megabytes)

FREE DISTRIBUTION: 41..30..40..41..3D DISTRIBUTION: 00..11..00..00..00

物理ボリュームが非アクティブの場合 (PV STATE フィールドで疑問符で示されているように、オンに変更されていない場合)、構成用の適切なコマンドを使用して、物理ボリュームを含むボリューム・グループをオンに変更します。 ただし、これを行う前に、システム・エラー・レポートを検査して、ディスクに関する問題が存在するかどうかを判別してください。システム・エラー・レポートを検査するには、以下のコマンドを入力します。

errpt -a more

また、lsdev コマンドを使用して、システムに認識されたすべての物理ボリュームの可用性、つまり状態を検査することもできます。

論理ボリュームの検査

物理ボリュームに定義された論理ボリュームの状態を検査するには、lspv -1 コマンドを使用して、検査するディスクの論理名を指定します。

以下の例に示すように、このコマンドを使用して物理ボリュームで定義されている論理ボリュームの名前を 判別できます。

lspv -1 hdisk2 LV NAMELPs PPs DISTRIBUTIONMOUNT POINT lv02 50 50 25..00..00..025/usr lv04 44 44 06..00..00..32..06/clusterfs

Islv *logicalvolume* コマンドを使用して、LV **STATE** フィールドで示されるように特定の論理ボリュームの 状態 (オープンまたはクローズ) に関する情報を表示します。 その例を次に示します。

1slv nodeAlv

LOGICAL VOLUME: nodeAlv VOLUME GROUP:nodeAvg

LV IDENTIFIER: 00003019460f63c7.1PERMISSION: read/write

VG STATE:active/complete LV STATE:opened/syncd

TYPE: jfs WRITE VERIFY:off

MAX LPs: 128 PP SIZE: 4 megabyte(s) COPIES: 1 SCHED POLICY:parallel

LPs: 10PPs: 10

STALE PPs:0 BB POLICY:relocatable
INTER-POLICY:minimum RELOCATABLE: yes
INTRA-POLICY:middleUPPER BOUND: 32
MOUNT POINT: /nodeAfsLABEL:/nodeAfs
MIRROR WRITE CONSISTENCY: on

EACH LP COPY ON A SEPARATE PV ?: yes

論理ボリュームが非アクティブの場合 (つまり、「LV STATE」フィールドで示されているように、クロ ーズしている場合)、構成用の適切なコマンドを使用して、論理ボリュームを含むボリューム・グループを オンに変更します。

C-SPOC ユーティリティーによる共用論理ボリュームの確認

クラスター・ノード上の共用論理ボリュームの状態を検査するには、次の手順を実行します。

SMIT で「System Management (C-SPOC) (システム管理 (C-SPOC))」>「PowerHA SystemMirror Logical Volume Management (PowerHA SystemMirror 論理ボリューム管理)」>「Shared Logical Volumes (共用論理ボリューム)」 > 「List All Shared Logical Volumes by Volume Group (ボリュー ム・グループ別に共用論理ボリュームをすべてリスト)」を選択します。 すべての共用論理ボリュームのリ ストが表示されます。

また、コマンド行から C-SPOC cl_lslv コマンドを使用して、この情報を表示できます。

ファイル・システムの検査

必要なファイル・システムがマウントされているかどうか、およびマウントされている場所を確認します。 この情報を PowerHA SystemMirror 定義と比較し、差があるかどうかを調べます。 ファイル・システム のアクセス権およびファイル・システムで使用可能なスペースの量を検査します。

以下のコマンドを使用して、ファイル・システムに関するこの情報を取得します。

- mount コマンド。
- **df** コマンド。
- **lsfs** コマンド。

cl lsfs コマンドを使用して、C-SPOC ユーティリティーの実行時にファイル・システムの情報をリストし ます。

ファイル・システムのリストの取得:

mount コマンドを使用して、システムに現在マウントされているすべてのファイル・システム (JFS およ び NFS の両方) とそのマウント・ポイントをリストします。

その例を次に示します。

mount

node mountedmounted over vfs date options

/dev/hd4 / jfs Oct 06 09:48 rw,log=/dev/hd8 /dev/hd2 /usr jfs Oct 06 09:48 rw,log=/dev/hd8 /dev/hd9var /var jfs Oct 06 09:48 rw,log=/dev/hd8 /dev/hd3 /tmp jfs Oct 06 09:49 rw,log=/dev/hd8 /dev/hd1 /home ifs Oct 06 09:50 rw,log=/dev/hd8 pearl /home/home nfs Oct 07 09:59 rw,soft,bg,intr jade /usr/local /usr/localnfs Oct 07 09:59 rw,soft,bg,intr

ファイル・システムがマウントされているかどうか、およびファイル・システムがマウントされている場所 を判別し、この情報を PowerHA SystemMirror 定義と比較し、差があるかどうかを調べます。

使用可能なファイルシステム・スペースの確認:

ファイル・システムで使用可能なスペースを確認するには、df コマンドを使用します。

その例を次に示します。

df

File System Total KB free %usediused %iused Mounted on /dev/hd4 12288 530856% 896 21%/ /dev/hd2 4136962676893%19179 18%/usr /dev/hd9var8192 373654% 115 5%/var /dev/hd38192 7576 7%72 3%/tmp /dev/hd14096 3932 4%17 1%/home /dev/crab11v8192 7904 3%17 0%/crab1fs /dev/crab31v 1228811744 4%16 0%/crab3fs /dev/crab41v 1638415156 7%17 0%/crab4fs /dev/crab1v4096 325220%17 1%/crabfs

使用可能なスペースの 90% 以上を超えて使用しているファイル・システムの %used 列を検査します。 次に、free 列を検査して、残りの正確な空きスペースを判別します。

マウント・ポイント、アクセス権、ファイルシステム情報の確認

lsfs コマンドを使用して、マウント・ポイント、アクセス権、ファイル・システムのサイズなどの情報を表示します。

その例を次に示します。

1sfs

Name Nodename Mount PtVFS Size Options Auto /dev/hd4 --/jfs 24576 -- yes /dev/hd1 --/homejfs 8192 -- yes /dev/hd2 --/usrjfs 827392 -- yes /dev/hd9var--/varjfs 16384-- yes /dev/hd3 -- /tmp jfs 16384-- yes /dev/hd7 --/mntjfs -- -- no /dev/hd5 --/blvjfs -- -- no /dev/crab1lv --/crab1fsjfs 16384rw no /dev/crab3lv --/crab4fsjfs 24576rw no /dev/crab4lv --/crab4fsjfs 32768rw no /dev/crablv-- /crabfs jfs 8192 rw no

重要:ファイル・システムを NFS エクスポートする場合は、これらのファイル・システムの論理ボリューム名がクラスター全体で整合していることを確認します。

C-SPOC ユーティリティーによる共用ファイルシステムの確認:

必要な共用ファイルシステムがマウントされているかどうか、およびその共用ファイルシステムがマウントされている 2 ノード C-SPOC 環境内のクラスター・ノード上の場所を確認します。

SMIT で「System Management (C-SPOC) (システム管理 (C-SPOC))」>「PowerHA SystemMirror Logical Volume Management (PowerHA SystemMirror 論理ボリューム管理)」>「Shared Filesystems (共用ファイルシステム)」を選択します。 「Journaled Filesystems (Journaled ファイルシステム)」>「List All Shared Filesystems (共用ファイルシステムをすべてリスト)」または「Enhanced Journaled Filesystems (拡張 Journaled ファイルシステム)」>「List All Shared Filesystems (共用ファイルシステムをすべてリスト)」を選択して、共用ファイルシステムのリストを表示します。

また、コマンド行から C-SPOC cl lsfs コマンドを使用して、この情報を表示できます。

ファイルシステムの自動マウント属性の検査:

ブート時に、AIX では fsck コマンドを実行して check=true 属性により /etc/filesystems にリストされ たすべてのファイル・システムを検査します。

AIX がファイル・システムを検査できない場合は、以下のエラーがレポートされます。

Filesystem helper: 0506-519 Device open failed

PowerHA SystemMirror で制御されるファイル・システムの場合、通常、このエラー・メッセージは問題 を示していません。 ファイル・システムの検査が失敗するのは、ファイル・システムが定義されているボ リューム・グループがブート時にはオンに変更されていないためです。

このメッセージが生成されないようにするには、/etc/filesystems ファイルを編集して、共用ファイル・シ ステムのスタンザに check=true 属性が含まれないようにします。

TCP/IP サブシステムの検査

AIX コマンドで TCP/IP サブシステムを調査できます。

以下のようなコマンドがあります。

- netstat コマンドを使用して、必ずネットワーク・インターフェースが初期化され、通信パスがローカ ル・ノードとターゲット・ノード間に存在することを確認します。
- ping コマンドを使用して、ノード間の Point-to-Point 接続を確認します。
- すべてのネットワーク・インターフェースで ifconfig コマンドを使用して、無効な IP アドレス、不正 なサブネット・マスク、および不適切なブロードキャスト・アドレスを検出します。
- /var/hacmp/log/hacmp.out ファイルを調べて、/etc/rc.net スクリプトが正常に実行されたことを確認し ます。 ゼロの終了状況を探してください。
- IP アドレス・テークオーバーが有効な場合、/etc/rc.net スクリプトが実行され、サービス・インターフ ェースが基本 (ブート) アドレスではなく、サービス・アドレス上に存在していることを確認します。
- lssrc -g tcpip コマンドを使用して、inetd デーモンが実行されていることを確認します。
- lssrc -g portmap コマンドを使用して、portmapper デーモンが実行されていることを確認します。
- arp コマンドを使用して、クラスター・ノードが同一の IP アドレスまたはハードウェア・アドレスを 使用していないことを確認します。
- netstat コマンドを使用して、以下を行います。
 - ノードに定義されたネットワーク・インターフェースの状況を表示します。
 - ローカル・ノードからターゲット・ノードの経路を定義するかどうかを判別します。

netstat -in コマンドはノードの初期化済みインターフェースすべてのリスト、およびそのインター フェースの接続先のネットワークと IP アドレスを表示します。 このコマンドを使用すると、サー ビス・インターフェースとブート・インターフェースが別々のサブネットに存在するかどうかを判別 できます。サブネットは、「Network (ネットワーク)」列に表示されます。

Name Mtu NetworkAddress IpktsIerrs OpktsOerrsColl lo0 1536 <Link> 18406 0 18406 00 100 1536 127 127.0.0.118406 0 18406 00 en1 1500 <Link> 11116260 58643 00 en1 1500 100.100.86.100.100.86.136 11116260 58643 00

```
en0 1500 <Link> 943656 0 52208 00
en0 1500 100.100.83.100.100.83.136 943656 0 52208 00
tr1 1492 <Link> 18790 165600
tr1 1492 100.100.84.100.100.84.136 18790 165600
```

出力の 1 列目、3 列目、4 列目を確認します。「Name (名前)」列は、このノードで定義され使用できるすべてのインターフェースをリストします。 名前の前のアスタリスクは、インターフェースがダウンしている (使用できない) ことを示します。 「Network (ネットワーク)」列は、インターフェースの接続先(そのサブネット)を示します。 「Address (アドレス)」列は、ノードに割り当てられている IP アドレスを識別します。

netstat -rn コマンドは、ターゲット・ノードの経路が定義されているかどうかを示します。 定義済みの経路をすべて表示するには、以下のように入力します。

netstat -rn

以下の例のような情報が表示されます。

```
Routing tables
DestinationGateway Flags Refent UseInterface
Netmasks:
(root node)
(0)0
(0)0 ff00 0
(0)0 ffff 0
(0)0 ffff ff80 0
(0)0 70 204 1 0
(root node)Route Tree for Protocol Family 2:
(root node)
127 127.0.0.1U 3 1436 lo0
127.0.0.1 127.0.0.1UH0456 100
100.100.83.128100.100.83.136 U 6 18243
100.100.84.128100.100.84.136 U 1 1718
                                     tr1
100.100.85.128100.100.85.136
                          U 2
                                1721
100.100.86.128100.100.86.136 U 8 21648 en1
(root node) Route Tree for Protocol Family 6:
(root node)
(root node)
```

ネットワークへの特定の経路 (例えば、100.100.83) をテストするには、以下のように入力します。 $netstat -nr \mid grep '100¥.100¥.83'$

100.100.83.128100.100.83.136 U 6 18243 en0

同じテストを、経路指定テーブルにこの経路が存在しないシステムで実行しても、応答は戻されません。サービス・インターフェースとブート・インターフェースがブリッジ、ルーター、またはハブによって分離され、ネットワーク・デバイスとの通信に問題が発生する場合は、デバイスが 2 つのネットワーク・セグメントを 1 つの物理ネットワークとして処理するように設定されていない可能性があります。構成から独立したデバイスをテストするか、システム管理者に支援を求めてください。

ネットワークにアクティブなインターフェースが 1 つしかない場合は、クラスター・マネージャーはそのインターフェースの障害イベントを生成しません。

このコマンドの使用について詳しくは、netstat マニュアル・ページを参照してください。

関連情報:

ネットワーク・インターフェース・イベント

Point-to-Point 接続の確認

ping コマンドは、クラスター内における 2 つのノード間の point-to-point 接続をテストします。 ping コマンドを使用して、ターゲット・ノードがネットワークに接続されているかどうか、ノード間のネットワ ーク接続が信頼できるかどうかを判別します。

ノード (サービスおよびブート) 上で構成されているすべての TCP/IP インターフェースを必ずテストし てください。

例えば、ローカル・ノードから nodeA という名前のリモート・ノードへの接続をテストするには、以下の ように入力します。

/etc/ping nodeA

PING testcluster.nodeA.com: (100.100.81.141): 56 data bytes 64 bytes from 100.100.81.141: icmp seq=0 ttl=255 time=2 ms 64 bytes from 100.100.81.141: icmp_seq=1 ttl=255 time=1 ms 64 bytes from 100.100.81.141: icmp_seq=2 ttl=255 time=2 ms 64 bytes from 100.100.81.141: icmp_seq=3 ttl=255 time=2 ms

Control-C と入力して、パケットの表示を終了します。 以下の統計情報が表示されます。

----testcluster.nodeA.com PING Statistics----4 packets transmitted, 4 packets received, 0% packet loss round-trip min/avg/max = 1/1/2 ms

ping コマンドはパケットを特定のノードに送信して、応答を要求します。 正しい応答が返されると、 ping はパケットが失われていないことを示す前述の出力と同様のメッセージを出力します。これにより、 ノード間の接続が有効であることが示されます。

ping コマンドがハングする場合は、ping コマンドを発行しているノードと到達しようとしているノード 間のパスが無効であることを示します。 必要な TCP/IP デーモンが実行されていないことを示している場 合もあります。 2 つのノードの間の物理接続を検査してください。 構成を確認するには、ifconfig コマ ンドおよび netstat コマンドを使用します。 「bad value (値が無効)」であることを示すメッセージは、 IP アドレスまたはサブネット定義に関する問題を示しています。

「DUP!」が ping 応答の最後に表示された場合は、ping コマンドが同一アドレスで複数の応答を受信した ことを示します。 通常、この応答が発生するのは、ネットワーク・インターフェースの構成が誤っている か、IP アドレス・テークオーバー中にクラスター・イベントが失敗した場合です。 サブネット上のすべて のインターフェースの構成を検査し、1 つのアドレスに 1 つのインターフェースしか存在しないことを検 証してください。 詳しくは、ping マニュアル・ページを参照してください。

さらに、永続ノード IP ラベル をノードのクラスター・ネットワークに割り当てることができます。 使用 しているサービス IP ラベルがそのノードにあるいずれのリソース・グループに属しているかどうかを気に せずに、ping または telnet コマンドを使用して、管理目的でクラスターの特定のノードに到達する場合 は、そのノードに定義された永続ノード IP ラベルを使用すると便利です。

関連情報:

PowerHA SystemMirror プランニング・ガイド

PowerHA SystemMirror クラスター・トポロジーとリソースの構成 (拡張)

IP アドレスとネットマスクの検査

ifconfig コマンドを使用して、IP アドレスおよびネットマスクが正しいことを確認します。 調査対象の ネットワーク・インターフェースの名前を指定して ifconfig を呼び出します。

例えば、最初のイーサネット・インターフェースを検査するには、以下のように入力します。

ifconfig en0

en0: flags=2000063<UP,BROADCAST,NOTRAILERS,RUNNING,NOECHO>
 inet 100.100.83.136 netmask 0xffffff00 broadcast 100.100.83.255
 inet6 fe80::214:5eff:fe4d:6045/64
 tcp_sendspace 131072 tcp_recvspace 65536 rfc1323 0

指定のインターフェースが存在しない場合、ifconfig が次のように応答します。

No such device

ifconfig コマンドは複数の行の出力を表示します。1 行目には、インターフェースの名前および特性が表示されます。以下の特性を検査してください。

表 15. ifconfig コマンドの出力

, , ,	
フィールド	値
UP	インターフェースが使用可能です。 インターフェースが停止している場合は、ifconfig コマンドを使用してそのインターフェースを初期化してください。 次に例を示します。 ifconfig en0 up
	インターフェースが起動しない場合は、インターフェース・ケーブルを取り替えて再試行してください。 それでも起動しない場合は、diag コマンドを使用してデバイスを検査してください。
RUNNING	インターフェースが稼働しています。 インターフェースが実行されていない場合は、このインターフェースのドライバーが正常にインストールされていないか、インターフェースが正常に構成されていない可能性があります。 このインターフェースのインストールに必要なすべてのステップを確認し、誤りや飛ばしたステップがないかどうかを確認してください。 注: ifconfig コマンドはアダプターの構成のみを表示し、機能状態は表示しません。構成された状態が「稼働中」であっても、それ以外の何らかの問題で通信できないことがあります。

ifconfig コマンドの残りの出力には、インターフェースで構成された各アドレスに関する情報が含まれます。これらのフィールドを検査し、ネットワーク・インターフェースが正常に構成されていることを確認します。

詳細については、ifconfig マニュアル・ページを参照してください。

arp コマンドを使用する方法

arp コマンドを使用して、ホストの **arp** キャッシュにリストされているノードに関連付けられた現在の **IP** アドレスを表示します。 その例を次に示します。

arp -a

flounder (100.50.81.133) at 8:0:4c:0:12:34 [ethernet] cod (100.50.81.195) at 8:0:5a:7a:2c:85 [ethernet] pollock (100.50.81.147) at 10:0:5a:5c:36:b9 [ethernet]

この出力は、ホスト・ノードが現在認識している flounder ノード、cod ノード、seahorse ノード、および pollock ノードの IP アドレスと MAC アドレスを示しています。 (ハードウェア・アドレス・テークオーバーなしで IP アドレス・テークオーバーが実行されると、ホストの arp キャッシュ内の IP アドレスに関連付けられている MAC アドレスが古くなってしまうことがあります。 これを訂正するには、ホストの arp キャッシュを更新します。)

詳細については、arp マニュアル・ページを参照してください。

AIX オペレーティング・システムの検査

クラスターに影響を及ぼす可能性のあるハードウェアやソフトウェアのエラーを表示する場合、errpt コマ ンドを使用してください。

実際の障害を示すディスクおよびネットワークに関するエラー・メッセージ (特に永久的なエラー)を探し ます。 詳細については、errpt マニュアル・ページを参照してください。

物理ネットワークの検査

物理ネットワークおよび接続を確認します。

物理接続を調査する際のチェックポイントを以下に示します。

- ノードの各ペアの間のシリアル回線を検査します。
- イーサネットを使用している場合は、以下のように実行します。
 - diag コマンドを使用して、ネットワーク・インターフェース・カードおよびケーブルが適正である ことを確認します。
 - IBM System p 用のイーサネット・アダプターは、カード上のトランシーバーと外部トランシーバ ーのいずれとも使用できます。使用している側を指定するジャンパーが NIC にあります。 ジャン パーが正常に設定されているかどうかを検証します。
 - 接続されているケーブルのハブのライトがオンになっていることを確認します。

関連情報:

クラスター・ネットワーク接続の計画

ディスクおよびディスク・アダプターの検査

diag コマンドを使用して、アダプター・カードが正常に機能していることを確認します。 問題が発生して いる場合は、SCSI バスに沿ってジャンパー、ケーブル、およびターミネーターを検査します。

IBM SCSI ディスクやアレイなどの SCSI ディスクの場合は、SCSI バス上の各アレイ・コントローラー、 アダプター、および物理ディスクに一意の SCSI ID が付いていることを確認してください。一部の SCSI アダプターには、設定できる SCSI ID に制限がありますが、バスの各 SCSI ID は、0 から 15 までの整 数値でなければなりません。デバイス固有の制限については、デバイスに関する資料を参照してください。 一般的な構成では、ノード上のアダプターの SCSI ID には、共用デバイスの SCSI ID より大きい値を設 定します。値の大きい ID を持つデバイスは、SCSI バスの競合で優先されます。

例えば、標準の SCSI アダプターが 5 および 6 の ID を使用する場合は、0 から 4 までの値をバス上の 他のデバイスに割り当てます。アダプターの SCSI ID を 5 および 6 に設定すると、デフォルトでは、7 の ID が常に使用されるために、他のブート・デバイスの mksysb テープからサービス・モードでいずれ かのシステムをブートする際に、考えられる競合を防止できます。

SCSI アダプターが 14 および 15 の ID を使用する場合は、バス上の他のデバイスに 3 から 13 の値を 割り当てます。

lsattr または lsdev コマンドを使用して、アダプターとディスクの SCSI ID を検査できます。 例えば、 アダプター scsi1 (SCSI-3) の SCSI ID を判別するには、以下の lsattr コマンドを使用してアダプターの 論理名を引数として指定します。

lsattr -E -l scsil | grep id

デバイス名を指定するコマンド行では、ワイルドカード文字または絶対パス名は使用しないでください。

重要: クラスター構成のバックアップを既存のシステムに復元する場合、SCSI ID を再検査するかリセットして、共用バス上の考えられる SCSI ID 競合を防ぎます。システムのバックアップを復元すると、アダプター SCSI ID はデフォルトの 7 の SCSI ID にリセットされます。

SCSI ID 競合に関連するディスクとディスク・アダプターへの SCSI ID の設定については、「プランニング・ガイド」を参照してください。

ディスクの SCSI ID を判別するには、以下のように入力します。

1sdev -Cc disk -H

関連情報:

PowerHA SystemMirror プランニング・ガイド

PCI ホット・プラグ NIC 障害からの回復

回復不能エラーが原因で PCI ホット・リプレース・プロセスが失敗した場合、NIC が未構成または保守モードのままの状態である場合があります。 新しいカードやそのカードが挿入されている PCI スロットがこの時点で損傷している可能性があります。 このノードを完全に稼働した状態に回復するには、ユーザーの介入が必要です。

詳細については、ハードウェア・マニュアルを参照するかまたは IBM の Web サイトのデバイス情報を検索してください。

クラスター通信デーモンの検査

クラスターが同期化された後で AIX アダプター構成の IP アドレスを変更または除去すると、クラスター通信デーモンが /etc/cluster/rhosts ファイルまたは PowerHA SystemMirror 構成データベース・エントリーに対してそれらのアドレスを検証できない場合があります。この問題が発生すると、構成の処理中または検証と同期化の実行中に PowerHA SystemMirror から 1 つ以上のエラーが出されることがあります。

あるいは、クラスターの同期化中にエラーを受け取る場合があります。

その場合、/etc/cluster/rhosts ファイルに保管されているすべてのクラスター・ノードに関する情報を更新し、clcomd コマンドを更新して、変更を認識させる必要があります。 クラスターの同期化と検証を再び行うと、clcomd コマンドは PowerHA SystemMirror 構成データベースに追加された IP アドレスの使用を開始します。

クラスター通信デーモンを更新するには、次のコマンドを使用します。

refresh -s clcomd

さらに、現在 PowerHA SystemMirror がノード間通信に使用しているすべてのアドレスが含まれるように /etc/cluster/rhosts ファイルを構成してから、このファイルをすべてのクラスター・ノードにコピーします。 /etc/cluster/rhosts ファイルには IPv4 アドレスと IPv6 アドレスを含めることができます。

関連資料:

78 ページの『クラスター通信の問題』

以下のトピックでは、潜在的なクラスター通信の問題について説明します。

システム・ハードウェアの検査

電源装置および LED 表示を検査し、エラー・コードが表示されているかどうかを確認します。 AIX の diag コマンドを実行して、システム装置をテストします。

diag は、引数がない場合、メニュー方式プログラムとして実行されます。 diag は、特定ハードウェア部 分に対しても実行できます。その例を次に示します。

diag -d hdisk0 -c

Starting diagnostics. Ending diagnostics.

この出力は、hdisk0 が正常であることを示します。

PowerHA SystemMirror のインストールの問題

以下のトピックでは、潜在的なインストールの問題についていくつか説明します。

ブート時にファイルシステムが見つからない

このトピックでは、AIX がブート時にファイルシステムを検出できないときの問題と解決策について説明 します。

問題

ブート時に、AIX では fsck コマンドを実行して check=true 属性により /etc/filesystems にリストされ たすべてのファイル・システムを検査します。ファイル・システムを検査できない場合、 AIX からエラー が報告されます。 システムから次の出力が表示されます。

Filesystem Helper: 0506-519 Device open failed

解決方法

PowerHA SystemMirror で制御されるファイル・システムの場合、通常、このエラーは問題を示していま せん。 ファイル・システムの検査が失敗するのは、ファイル・システムが定義されているボリューム・グ ループがブート時にはオンに変更されていないためです。 このメッセージが生成されないようにするに は、/etc/filesystems ファイルを編集して、共用ファイル・システムのスタンザに check=true 属性が含ま れないようにします。

インストールが失敗したために cl convert が実行されない

このトピックでは、インストールが失敗したために cl convert が実行されないときの問題と解決策につい て説明します。

問題

PowerHA SystemMirror をインストールすると、cl_convert が自動的に実行されます。 ソフトウェア は、既存の PowerHA SystemMirror 構成があるかどうかを検査し、その構成を、インストール中のソフ トウェアのバージョンで使用する形式に変換しようとします。 ただし、インストールが失敗したら、 cl convert は結果として実行されません。 したがって、以前の PowerHA SystemMirror バージョンの構 成データベースから現行バージョンの構成データベースへの変換も失敗します。

解決方法

コマンド行から cl convert を実行します。 変換が成功したかどうかを判別するには、変換の進捗状況を ログ記録した clconvert.log ファイルを参照してください。

cl convert を実行するには、ルート・ユーザーのアクセス権が必要です。

注意:

変換を行う前に、ODMDIR 環境変数が /etc/es/objrepos に設定されていることを確認してください。

cl_convert フラグについて詳しくは、cl_convert マニュアル・ページを参照してください。

インストール時に構成ファイルをマージできなかった

このトピックでは、インストール時の構成ファイルの問題について説明します。

問題

PowerHA SystemMirror クライアント・ソフトウェアのインストール中に、以下のメッセージが表示されます。

+-----+

Post-installation Processing...

+------

Some configuration files could not be automatically merged into the system during the installation. The previous versions of these files have been saved in a configuration directory as listed below. Compare the saved files and the newly installed files to determine if you need to recover configuration data. Consult product documentation to determine how to merge the data. Configuration files, which were saved in /usr/lpp/save.config:/usr/es/sbin/cluster/utilities/clexit.rc

解決方法

PowerHA SystemMirror インストール・プロセスの一部として、サイト固有の変更が含まれる可能性がある PowerHA SystemMirror ファイルのコピーは、上書きされる前に /usr/lpp/save.config ディレクトリーに保管されます。メッセージに示されるように、ユーザーがサイト固有の構成情報を新しくインストールされたファイルにマージする必要があります。

PowerHA SystemMirror および Tivoli System Automation for Multiplatform のトラブルシューティング

Tivoli® System Automation for Multiplatform を、PowerHA SystemMirror バージョン 7.1.0 以降が既 にインストールされている同じノードにインストールすることはできません。

PowerHA SystemMirror 7.1.0 以降は、Cluster Aware AIX (CAA) 機能を基礎としています。 Tivoli System Automation for Multiplatform は、高信頼性スケーラブル・クラスター・テクノロジー (RSCT) (Reliable Scalable Cluster Technology (RSCT)) 機能を基礎としています。 つまり、PowerHA SystemMirror と Tivoli System Automation for Multiplatform は異なるクラスタリング機能を基礎としているため、これらを同じノード上で使用することはできません。

共通問題の解決

このセクションでは、よくある問題と、推奨事項について説明します。

PowerHA SystemMirror の始動の問題

以下のトピックでは、潜在的な PowerHA SystemMirror 始動の問題について説明します。

ODMPATH 環境変数が正しく設定されない

このトピックでは、照会したオブジェクトが見つからない場合の考えられる原因について説明します。

問題

照会したオブジェクトが見つかりません。

解決方法

PowerHA SystemMirror は、構成データを格納する特定の ODM リポジトリーのロケーションに依存し ます。 ODMPATH 環境変数により、ODM コマンドおよびサブルーチンは、照会したオブジェクトがデ フォルトのロケーションに存在しない場合でもデフォルト以外のロケーションを照会できます。 この変数 は設定できますが、デフォルトのロケーション、/etc/objrepos を含める必要があります。そうしないと、 構成情報の整合性が失われる場合があります。

clinfo デーモンが始動後に終了する

このトピックでは、clinfoES デーモンを -a オプションとともに開始した後に発生する「smux-connect」 エラーについて説明します。

問題

clinfoES デーモンを -a オプションとともに開始した後に「smux-connect」エラーが発生します。別のプ ロセスがポート 162 を使用してトラップを受信しています。

解決方法

NetView® for AIX の trapgend smux サブエージェントまたは AIX sysmond デーモンのシステム・モ ニターなどの別のプロセスがポート 162 を使用しているかどうかを検査します。使用している場合は、-a オプションなしに clinfoES を再始動し、NetView for AIX を構成して、SNMP トラップを受信します。 clinfoES が通常の方法で startsrc コマンドを使用して開始されている場合、このエラーは発生しません。

ノードの電源が遮断されている、またはクラスター・マネージャーが開始されない このトピックでは、ノードの電源自体が遮断されているか、またはクラスター・マネージャーの開始後にハ ングしたようになっているときの問題と解決策について説明します。

問題

クラスター・サービスの開始後にノードの電源が自動的に遮断されるかハング状態になります。errpt レポ ートには、システムに halt -q コマンドを発行する clexit.rc スクリプトによってログに記録されたオペレ ーター・メッセージが示されます。

解決方法

クラスターの検証ユーティリティーを使用して、すべてのクラスター・ノード上のクラスター構成情報の非 整合を明らかにします。

クラスターの検証ユーティリティーによって明らかにされた構成エラーを修正します。 PowerHA SystemMirror 構成 SMIT パネルを使用して、必要な変更を加えます。問題を修正した後、「Verify and Synchronize PowerHA SystemMirror Configuration (構成の検証および同期化)」オプションを使用し て、すべてのノード間でクラスター構成を同期化します。次に、SMIT パネルで「System Management (C-SPOC) (システム管理 (C-SPOC))」 > 「Manage PowerHA SystemMirror Services (サービスの管 理)」から「Start Cluster Services (クラスター・サービスの始動)」オプションを選択して、クラスター・ マネージャーを始動します。

この問題は、構成が検証に合格しクラスター全体で同期化された後は起こらないはずです。問題が解消され ない場合は、ソフトウェア障害報告手続きに従って、IBM サポートに問題を報告してください。

snap -e コマンドの詳細については、『AIX データ収集ユーティリティーの使用』セクションを参照して ください。

関連資料:

3 ページの『AIX データ収集ユーティリティーの使用』

AIX snap コマンドを使用して、データを PowerHA SystemMirror クラスターから収集します。 関連情報:

クラスター・マネージャー・デーモンの異常終了

configchk コマンドが不明ホスト・メッセージを返す

このトピックでは、configchk コマンドが不明ホスト・メッセージを返す特定の状態について説明します。

問題

各クラスター・ノードの /etc/hosts ファイルには、クラスター内の別のノードの IP ラベルは含まれてい ません。 例えば、4 ノード・クラスター、ノード A、ノード B、およびノード C の /etc/hosts ファイル には、別のクラスター・ノードの IP ラベルは含まれていません。

このような状況の場合、configchk コマンドは以下のメッセージをコンソールに戻します。

"your hostname not known," "Cannot access node x."

このメッセージは、ノード x 上の /etc/hosts ファイルにあなたのノードのエントリーが含まれていないこ とを示しています。

解決方法

PowerHA SystemMirror ソフトウェアを始動する前に、各ノードの /etc/hosts ファイルに各クラスター・ ノードのサービスおよびブート IP ラベルが含まれていることを確認します。

再構成時にクラスター・マネージャーがハングする

このトピックでは、再構成時にクラスター・マネージャーがハングする状態について説明します。

問題

再構成中にクラスター・マネージャーがハングし、以下のようなメッセージが生成されます。

The cluster has been in reconfiguration too long; Something may be wrong.

すべてのイベント・スクリプトが失敗しました。

解決方法

/var/hacmp/log/hacmp.out ファイルを調べてゼロ以外の状況で終了したプロセスを確認し、スクリプトが 失敗した原因を判別します。 /var/hacmp/adm/cluster.log ファイルのエラー・メッセージも有用です。 ロ グ・ファイルで示された問題を修正します。 コマンド行または、SMIT「Problem Determination Tools (問題判別ツール)」>「Recover From PowerHA SystemMirror Script Failure (スクリプト障害からの回 復)」パネルを使用して、clruncmd コマンドを実行します。 clruncmd コマンドは、クラスター・マネー ジャーにシグナルを送信してクラスター処理を再開させます。

新たにインストールした AIX ノード上で clcomd および clstrmgrES が起動に失敗

この問題では、新たにインストールした AIX ノード上で clcomd および clstrmgrES が起動に失敗する 状態について説明します。

問題

新たにインストールされた AIX ノード上で、clcomd および clstrmgrES が開始されません。

解決方法

AIX のインストールが完了したことを (AIX インストール・アシストの) システム・コンソールに手動で 指示します。

通常新しくインストールされた AIX ノードでこの問題は発生します。すなわち、最初のブートで AIX は /etc/inittab からインストール・アシストを実行し、このファイルの他のエントリーの実行を続けません。 AIX インストール・アシストはシステム・コンソールへの入力を待っています。 インストールが完了した ことを指示するまで、以降の起動時に毎回 AIX はインストール・アシストを実行します。完了を指示する と、システムはクラスター通信デーモン (clcomd) とクラスター・マネジャー・デーモン (clstrmgr) の始 動に移ります。

アップグレード後にノードにイベント前処理または後処理が存在しない

このトピックでは、アップグレード後にノードにイベント前処理や後処理がない問題について説明します。

問題

クラスターの検証ユーティリティーは、新規の PowerHA SystemMirror ソフトウェアのバージョンにア ップグレードされた後、イベント前処理またはイベント処理後がノードに存在しないことを示します。

解決方法

定義済みの名前のスクリプトが存在し、すべてのクラスター・ノードで実行可能であることを確認します。

各ノードは、定義済みのイベント前処理または後処理に関連したスクリプトを含む必要があります。 各ノ ードでスクリプトの内容が同じである必要はありませんが、スクリプトの名前はクラスター全体にわたって 整合している必要があります。 特定のノードでアクションが必要でない場合は、同じイベント・スクリプ ト名を持つ no-op スクリプトが、処理が行われないノードに存在する必要があります。

構成時にノード障害が発生し、**869 LED** が表示される

このトピックでは、システムがハングして 869 が表示される状態について説明します。

問題

システムがハングしているように見えます。 システム LED に 869 が継続的に表示されます。

解決方法

この表示は、さまざまな状態で発生します。 SCSI バスに接続された各デバイスの SCSI ID が固有であ り、SCSI ID が競合しないことを確認します。 特に、SCSI バスに接続されている各クラスター・ノード のアダプターおよびデバイスに、異なる SCSI ID が付けられているかどうかを検査します。デフォルトで は、アダプターの構成時に AIX は 7 の ID を SCSI アダプターに割り当てます。 SCSI ID の確認およ び設定について詳しくは、「プランニング・ガイド」を参照してください。

関連情報:

PowerHA SystemMirror プランニング・ガイド

ノードを動的に除去した後にクラスターに再結合できない

このトピックでは、クラスターから動的に除去されて再結合できなくなったノードについて説明します。

解決方法

クラスターからノードを除去する場合、クラスター定義はノードの構成データベースにそのまま存在します。 除去したノード上でクラスター・サービスを始動すると、ノードは、このクラスター構成データを読み取り、除去元のクラスターと再結合しようとします。 他のノードはこのノードをクラスターのメンバーとして認識しないため、このノードの結合を拒否します。 クラスターへの結合を要求しているノードのクラスター名が既存のクラスターと同じであるため、このクラスターが不安定になったり、既存のノードをクラッシュさせたりする場合があります。

古くなった構成データベース情報で除去したノードが再始動されないようにするには、次の手順を実行して ノードからクラスター定義を除去します。

1. 以下のコマンドを使用して、除去されるノード上のクラスター・サービスを停止します。 clstop -R

重要: ノードのクラスター・サービスを停止してから、ノードをクラスターから除去してください。

- -R フラグは、/etc/inittab ファイルの PowerHA SystemMirror エントリーを削除し、ノードのリブート時にクラスター・サービスが自動的に始動するのを防ぎます。
- 2. 以下のコマンドを使用して、rc.net ファイルから PowerHA SystemMirror エントリーを削除します。 clchipat false
- 3. 以下のコマンドを使用して、ノードの構成データベースからクラスター定義を削除します。 clrmclstr

このタスクは、SMIT パネルから「Extended Configuration (拡張構成)」>「Extended Topology Configuration (拡張トポロジー構成)」>「Configure a PowerHA SystemMirror Cluster (クラスターの構成)」>「Remove a PowerHA SystemMirror Cluster (クラスターの除去)」を選択しても実行できます。

リソース・グループの移行がクラスターの始動後に永続的でなくなる

このトピックでは、リソース・グループの移行がクラスターの始動後に永続的でなくなる状態について説明 します。

問題

リソース・グループ移行ユーティリティーを使用して、リソース・グループ移行の操作を指定しました。ここで、フラグを true に設定して (または clRGmove コマンドを発行して)、この特定の移行「Persists across Cluster Reboot (クラスターのリブート後も持続)」を要求しました。しかし、クラスター・サービスを停止して再始動した後、このポリシーがクラスター内のいずれかのノードで適用されません。

解決方法

この問題が発生するのは、永続リソース・グループ移行を指定したとき、ノードがダウンしてアクセス不能であった場合です。 この場合、ノードは永続リソース・グループ移行に関する情報は取得していません。クラスター・サービスの再始動後、このノードが最初にクラスターに結合する場合は、「Persist across Cluster Reboot (クラスターのリブート後も持続)」の設定を認識しません。このため、リソース・グルー

プ移行が永続的でなくなります。 永続的な移行の設定を復元するには、「Extended Resource Configuration (拡張リソース構成)」 > 「PowerHA SystemMirror Resource Group Configuration (リソ ース・グループ構成)」SMIT メニューで、SMIT に再指定する必要があります。

PowerHA SystemMirror へのアップグレード後にクラスターが始動しない

このトピックでは、PowerHA SystemMirror へのアップグレード後にクラスターが始動しない状態につい て説明します。

問題

グループ「hacmp」の ODM エントリーが SP ノードで除去されています。 この問題は、クラスターが 起動しない場合や、clcomd エラーの場合に発生します。

解決方法

PowerHA SystemMirror 構成データベース (ODM) を以下のように強化して、セキュリティーをさらに向 上させてください。

- 所有権。 ユーザー root およびグループ hacmp が、すべての PowerHA SystemMirror ODM ファイ ルを所有しています。 さらに、root 以外のユーザーが使用するすべての PowerHA SystemMirror バ イナリー・ファイルは、ユーザー root およびグループ hacmp も所有しています。
- アクセス権。 600 のアクセス権を持つ hacmpdisksubsystem ファイルを除くすべての PowerHA SystemMirror ODM ファイルには、640 のアクセス権 (ユーザー root およびグループ hacmp が読み 取り可能で、ユーザー root が書き込み可能) が設定されています。 root 以外のユーザーが使用するす べての PowerHA SystemMirror バイナリー・ファイルには、2555 のアクセス権が設定されます (すべ てのユーザーが読み取りおよび実行可能で、setgid ビットがオンになりプログラムがグループ hacmp として実行される)。

インストール時に PowerHA SystemMirror は、グループ「hacmp」がまだ存在していない場合、すべて のノードに作成します。 デフォルトで、グループ hacmp には PowerHA SystemMirror ODM を読み取 るアクセス権があるが、その他には特別な権限はありません。 セキュリティー上の理由から、グループ hacmp の権限を拡張しないことをお勧めします。

PowerHA SystemMirror ODM に直接アクセスするプログラムを使用する場合、root 以外のユーザーが実 行する際にはそのプログラムを再度書き込む必要があります。

- root 以外のユーザーによる ODM データへのすべてのアクセスは、所定の PowerHA SystemMirror ユーティリティーを介して処理される必要があります。
- さらに、PSSP ファイル・コレクション機能を使用して、/etc/group の整合性を保持する場合、個々の クラスター・ノードでのインストール時に作成される新規のグループ「hacmp」は、次のファイルが同 期化されると失われる場合があります。

さまざまなファイルセット・レベルがノードにある場合の検証問題

クラスターにさまざまなファイルセット・レベル (cluster.es.server.diag など) のノードがあると、clverify プログラムがハングしたり、コアをダンプしたりすることがあります。

一般に、PowerHA SystemMirror ノードには同じファイルセット・レベルがありますが、ノード単位のロ ーリング PTF アップグレードの実行中には、このような状況になる傾向があります。 このようなタイプ のエラーは、正常なクラスターの始動を妨げます。

この状況でクラスターを始動するときは、検証エラーを無視してください。 そのためには、smit sysmirror>「System Management (C-SPOC) (システム管理 (C-SPOC))」> Manage PowerHA SystemMirror Services (サービスの管理)」>「Start Cluster Services (クラスター・サービスの始動)」と いう SMIT パスを入力 (選択) します。

このパネルで、「Ignore verification errors? (検証エラーを無視する)」(デフォルトは「false (いいえ)」) を「true (はい)」に変更します。

その後、クラスターを起動して、問題の clverify プログラムを回避できます。

注: この手順を実行しなくてもすむようにするには、できるだけ早めに、ノードが同じファイルセット・レ ベルにあることを確認してください。検証エラーを無視しなくてもすむはずです。

ディスクとファイルシステムの問題

以下のトピックでは、潜在的なディスクとファイルシステムの問題について説明します。

AIX ボリューム・グループ・コマンドが原因でシステム・エラー・レポートが生成され る

このトピックでは、AIX ボリューム・グループ・コマンドが原因で生成されるシステム・エラー・レポー トについて説明します。

問題

redefinevg、varyonvg、lqueryvg、および syncvg コマンドは失敗し、システム再始動時に共用ボリュー ム・グループのエラーが報告されます。 これらのコマンドは、共用ボリューム・グループを自動的にオン に変更するときにコンソールにメッセージを送信します。 共用ディスク用にボリューム・グループを構成 するとき、「autovaryon at boot」が無効にされませんでした。 起動しているノードが共用ドライブを所 有し、他のノードが共用ボリューム・グループをオンに変更しようとすると、さまざまな varyon エラ ー・メッセージが表示されます。

解決方法

共有ボリューム・グループを設定する場合、「システム再起動時にボリューム・グループを自動的に活動化 する」フィールドを SMIT 画面の 「システム管理 (C-SPOC))」>「PowerHA SystemMirror 論理ボリュ ーム管理」>「共有ボリューム・グループ」>「共有ボリューム・グループの作成」画面で「いいえ」に設 定します。別のクラスター・ノードの共用ボリューム・グループをインポートした後、以下のコマンドを使 用して、各ノードのボリューム・グループが「autovaryon at boot」に設定されていないことを確認しま す。

chvg -an vgname

varyonvg コマンドがボリューム・グループで失敗する

このトピックでは、ボリューム・グループで失敗する varyonvg コマンドによって示されるさまざまな問 題について説明します。

問題

PowerHA SystemMirror ソフトウェア (/var/hacmp/log/hacmp.out ファイル) は、varyonvg コマンドが ボリューム・グループをオンに変更しようとして失敗したことを示します。

解決方法

ボリューム・グループが、いずれのノード上でも「autovaryon」に設定されていなくて、ボリューム・グ ループ (コンカレント・アクセス・モードでない場合) が別のノードによりオンにまだ変更されていないこ とを確認します。

lsvg -o コマンドを使用して、共用ボリューム・グループがアクティブであるかどうかを判別します。 ボ リューム・グループが活動化されているノードで 1svg volume group name と入力し、「AUTO ON (自 動オン)」フィールドを調べて、ボリューム・グループが自動的にオンに設定されているかどうかを判別し ます。「AUTO ON (自動 ON)」が「yes (はい)」に設定されている場合は、chvg -an volume_group_name と入力して、これを修正します。

問題 2

ディスク上のボリューム・グループ情報がデバイス構成データベースの情報と異なっています。

解決方法 2

以下のように、情報が誤っているノードのデバイス構成データベースを訂正します。

- 1. smit exportvg 高速パスを使用して、ボリューム・グループ情報をエクスポートします。 このステッ プにより、デバイス構成データベースからボリューム・グループ情報が除去されます。
- 2. smit importvg 高速パスを使用して、ボリューム・グループをインポートします。このステップによ り、ディスク上の情報から新規デバイス構成データベース・エントリーが作成されます。 インポート 後にボリューム・グループを次のシステム・ブート時に autovaryon に変更しないようにしてくださ V10
- 3. SMIT の「Problem Determination Tools (問題判別ツール)」>「Recover From PowerHA SystemMirror Script Failure (スクリプト障害からの回復)」パネルを使用して、clruncmd コマンド を発行し、クラスター・マネージャーにシグナルを送信してクラスター処理を再開します。

問題 3

PowerHA SystemMirror ソフトウェアは、ボリューム・グループが見つからなかったために、varyonvg コマンドが失敗したことを示します。

解決方法 3

ボリューム・グループがシステムに定義されていません。 ボリューム・グループが新規に作成されエクス ポートされるか、mksysb システム・バックアップが復元された場合は、ボリューム・グループをインポ ートする必要があります。 『問題 2』のステップに従って、正しいボリューム・グループ名が参照されて いるかどうかを検証します。

問題 4

PowerHA SystemMirror ソフトウェアは、次の論理ボリュームが不完全であるために varyonvg コマンド が失敗したことを表しています。

<name>

これが不完全です。

解決方法 4

これは、SMIT でボリューム・グループに対して強制 varyon 属性が構成されており、強制 varyon 操作の試行時に PowerHA SystemMirror がこのボリューム・グループに指定された論理ボリュームの単一の完全なコピーを検出しなかったことを示します。

また、強制 varyon 操作を要求しましたが、ミラーリングされた論理ボリュームに対して **super strict** 割り当てポリシーを指定しなかった可能性があります。 この場合、**varyon** コマンドが成功する保証はありません。

関連情報:

HACMP リソース・グループの構成 (拡張)

共用 LVM コンポーネントの計画

cl nfskill コマンドが失敗する

このトピックでは、cl nfskill コマンドが失敗する状態について説明します。

問題

/var/hacmp/log/hacmp.out ファイルは、cl_nfskill コマンドが NFS マウントされたファイル・システム を強制的にアンマウントしようとして失敗したことを示します。 NFS には、cl_nfskill コマンドにより強制的なアンマウントの影響を受けないファイル・システムの特定レベルのロックがあります。

解決方法

cl_nfskill コマンドを実行する前に、別個のディレクトリーに /etc/locks ファイルをコピーします。その後で、元の /etc/locks ファイルを削除し、cl_nfskill コマンドを実行します。コマンドが成功したら節約済みのコピーを使用して、/etc/locks ファイルを再作成します。

cl scdiskreset コマンドが失敗する

このトピックでは、cl_scdiskreset コマンドが失敗したときに発生するエラー・メッセージについて説明します。

問題

cl_scdiskreset コマンドは、エラー・メッセージを /var/hacmp/log/hacmp.out ファイルに記録します。 SCSI デバイスの 1 つのシステムが保持した予約を削除するために、PowerHA SystemMirror ディスク・ユーティリティーは cl_scdiskreset コマンドを発行します。 バックレベルのハードウェアが SCSI バス (アダプター、ケーブルまたはデバイス) に存在するか、SCSI ID 競合がバスに存在する場合、 cl_scdiskreset コマンドは失敗することがあります。

解決方法

SCSI アダプター、ケーブル、およびデバイスを検査するには、『クラスター・ログ・ファイルの使用』の該当するセクションを参照してください。最新のアダプターおよびケーブルを使用していることを確認します。 各 SCSI デバイスの SCSI ID は、異なっている必要があります。

関連概念:

12 ページの『クラスター・ログ・ファイルの使用』

以下のトピックでは、PowerHA SystemMirror クラスター・ログ・ファイルを使用したクラスターのトラブルシューティング方法について説明します。 一部のログについては、パラメーターの管理に関するセクションもいくつか含まれています。

ブート時に fsck コマンドが失敗する

このトピックでは、ブート時に fsck コマンドが失敗する場合について説明します。

問題

ブート時に、AIX は fsck コマンドを実行して check=true 属性により /etc/filesystems にリストされた すべてのファイル・システムを検査します。 AIX がファイル・システムを検査できない場合は、以下のエ ラーがレポートされます。

Filesystem Helper: 0506-519 Device open failed

解決方法

PowerHA SystemMirror で制御されるファイル・システムの場合、通常、このメッセージは問題を示して いません。 ファイル・システムの検査が失敗するのは、ファイル・システムを定義しているボリューム・ グループがオンに変更されていないためです。ブート・プロシージャーは、PowerHA SystemMirror 制御 のボリューム・グループを自動的には varyon しません。

このメッセージが表示されないようにするには、PowerHA SystemMirror 制御下のすべてのファイル・シ ステムの /etc/filesystems スタンザに check=true 属性を設定しないようにします。この属性を削除した り check=false に変更したりするには、/etc/filesystems ファイルを編集します。

指定のファイルシステムをシステムでマウントできない

このトピックでは、指定のファイルシステムをシステムでマウントできない状態について説明します。

問題

/etc/filesystems ファイルは論理ボリュームのログ名への変更を反映するように更新されていません。 そ の論理ボリューム用のファイル・システムの作成後に、論理ボリューム名を変更すると、そのログの /etc/filesystems エントリーは更新されません。 このため、ファイル・システムをマウントするときに、 PowerHA SystemMirror ソフトウェアが、論理ボリューム名に関する必要な情報を古いログ名から取得し ようとします。 この情報は更新されていないため、ファイル・システムをマウントできません。

解決方法

論理ボリューム名を変更した後は、必ず /etc/filesystems ファイルを更新してください。

クラスター・ディスク交換プロセスが失敗する

このトピックでは、クラスター・ディスク交換プロセスが失敗する状態についていくつか説明します。

問題

node down イベントが原因でディスク交換プロセスが完了しませんでした。

解決方法

ノードがオンラインに戻ったら、このノードで PowerHA SystemMirror を開始する前に、ボリューム・ グループをエクスポートしてから再びインポートします。

問題 2

ディスク交換プロセスが、replacepv コマンドの実行中に失敗しました。

解決方法 2

/tmp/replacepv ディレクトリーを削除し、交換プロセスをやり直します。

別のディスクでこのプロセスを実行してみることもできます。

問題 3

VPATH デバイスが交換に使用可能ですが、「no free disks (空きディスクがありません)」というメッセ ージが表示されて、ディスク交換プロセスが失敗しました。

解決方法 3

必ず VPATH デバイスのボリューム・グループを hdisks に変換して、交換プロセスを再試行します。 デ ィスクを交換したら、hdisks を VPATH デバイスに戻します。

関連情報:

共用 LVM コンポーネントの管理

ファイルシステム変更がレイジー更新で認識されない

このトピックでは、レイジー更新で認識されないファイルシステム変更について説明します。

問題

ファイル・システム名を変更したり、ファイル・システムを除去してレイジー更新を実行する場合、レイジ 一更新は imfs コマンドを実行してから imfs -lx コマンドを実行します。 これによって、フォールオー バー時に失敗が起きたり、PowerHA SystemMirror クラスター・サービスの再起動に失敗することがあり ます。

解決方法

C-SPOC ユーティリティーを使用して、ファイル・システムを変更または除去します。 これによって、 imfs-lx が実行された後 imfs が実行され、クラスターのすべてのノードで変更が更新されます。

エラー報告機能は、クラスター全体におけるボリューム・グループ状態の矛盾に関して、詳細な情報を提供 します。エラー報告機能が動作した場合、手動で修正措置を取る必要があります。 ファイル・システムの 変更がすべてのノード上で更新されない場合、この情報を使用して手動でノードを更新します。

clam nfsv4 アプリケーション・モニター障害

このトピックでは、clam nfsv4 アプリケーション・モニターに障害が起こって反応しなくなった場合に問 題を修正する方法について説明します。

問題

clam nfsv4 アプリケーション・モニターが完了するまでの時間が 60 秒を超えました。モニターは応答せ ず、停止しました。そのため、ネットワーク・ファイルシステム (NFS) ノードでフォールオーバーが起こ りました。このフォールオーバーは、通常、アプリケーション・モニターをホストするシステムのパフォー マンス・ワークロードが高いときに発生します。

解決方法

この問題を修正するには、システムのワークロードを減らす必要があります。また、システムに APAR IV08873 を適用して、clam nfsv4 アプリケーション・モニター・スクリプトの実行にかかる時間を短縮す ることもできます。

関連情報:

clam nfsv4 アプリケーション・モニターの概念

PowerHA SystemMirror での NFS の使用

PowerHA SystemMirror での NFS クロスマウント

APAR IV08873: NFSV4 モニター・スクリプト実行時間の改善

LVM 分割サイト・ミラーリングのトラブルシューティング

PowerHA SystemMirror および LVM には、ミラー・プールの定義時に指定された情報を除いて、ディス クの物理的なロケーションに関する情報はありません。

以下の情報を検討して、LVM 分割サイト・ミラーリングの問題に関する可能な解決策を確認します。

- コマンド行から smitty cl mirrorpool mgt と入力し、「Show Mirror Pools for a Volume Group (ボリューム・グループのミラー・プールの表示)」を選択して、ミラー・プールへのディスクの割り当て を検証します。
- コマンド行から smitty cl lv と入力し、「Show Characteristics of a Logical Volume (論理ボリュ ーム特性の表示)」を選択して、個々のファイルシステムおよび論理ボリュームのミラーリングが正しい ことを検証します。
- コマンド行から smitty cl vgsc と入力し、「Change/Show characteristics of a Volume Group (ボ リューム・グループの特性を変更/表示)」を選択して、ボリューム・グループが非常に厳密であることを 検証します。
- 再同期が失敗した場合は、AIX エラー・ログで、ボリューム・グループのディスクに関連した問題を調 べます。ボリューム・グループを手動で再同期するには、コマンド行から smitty cl syncvg と入力 し、「Synchronize LVM Mirrors by Volume Group (ボリューム・グループによる LVM ミラーリ ングの同期化)」を選択します。

リポジトリー・ディスクのトラブルシューティング

クラスター内のいずれかのノードがリポジトリー・ディスクのエラーまたはディスク・アクセス中の障害を 検出した場合、クラスターは限定された、すなわち、制限された操作モードになります。この操作モードで は、トポロジー関連の操作の大部分は実行できず、再始動したノードはいずれもクラスターに再結合できま せん。

リポジトリー・ディスクに障害が起こると、ディスク障害通知が出されます。PowerHA SystemMirror は、リポジトリー・ディスク障害通知を、解決されるまで、出し続けます。

リポジトリー・ディスクにどのような問題が起こっているかを判別するには、以下のログ・ファイルを調べ てください。

- hacmp.out
- AIX エラー・ログ (errpt コマンドを使用)

例: hacmp.out ログ

次に示すものは、リポジトリー・ディスクに障害が起こった場合に hacmp.out ログ・ファイルに書き込まれるエラー・メッセージの一例です。

ERROR: rep_disk_notify: Tue Jan 10 13:38:22 CST 2012: Node "r6r4m32" (0x54628FEA1D0611E183EE001A64B90DF0) on Cluster r6r4m31_32_33_34 has lost access to repository disk hdisk75.

例: AIX エラー・ログ

ノードがリポジトリー・ディスクにアクセスできなくなると、問題のあるノードごとに AIX エラー・ログ に項目が立てられます。

次に示すものは、リポジトリー・ディスクに障害が起こった場合にエラー・ログ・ファイルに書き込まれる エラー・メッセージの一例です。

注: AIX エラー・ログを表示するには、errpt コマンドを使用してください。

LABEL: OPMSG IDENTIFIER: AA8AB241

Date/Time: Tue Jan 10 13:38:22 CST 2012

Sequence Number: 21581

Machine Id: 00CDB2C14C00
Node Id: r6r4m32
Class: 0
Type: TEMP

Type: TEMP
WPAR: Global
Resource Name: clevmgrd

Description

OPERATOR NOTIFICATION

User Causes ERRLOGGER COMMAND

> Recommended Actions REVIEW DETAILED DATA

Detail Data

MESSAGE FROM ERRLOGGER COMMAND

Error: Node 0x54628FEA1D0611E183EE001A64B90DF0 has lost access to repository disk hdisk75.

障害または破損のあるリポジトリー・ディスクの交換

リポジトリー・ディスクに障害が発生した場合、すべてのクラスターの動作を回復するために、そのリポジトリー・ディスクを異なるディスク上で復旧する必要があります。ご使用のクラスター環境およびリポジトリー・ディスクの障害のタイプによって、リポジトリー・ディスクの復旧に使用可能な方法は異なります。

以下に、リポジトリー・ディスクに障害が発生した場合の 2 つのシナリオ、およびそのリポジトリー・ディスクを新しいストレージ・ディスク上で復旧する方法について示します。

リポジトリー・ディスクに障害が発生したが、クラスターは作動可能である

このシナリオでは、クラスター内の 1 つ以上のノードでリポジトリー・ディスクのアクセスが失われているとします。この障害が発生すると、Cluster Aware AIX (CAA) は、メモリーにキャッシュされているリポジトリー・ディスクの情報を使用して、制限されたモードで動作を続行しま

す。 CAA がクラスター内の 1 つのノードでアクティブなままである場合、古いリポジトリー・ ディスクからの情報を使用して、新しいリポジトリー・ディスクを再ビルドすることができます。

障害の発生後にリポジトリー・ディスクを再ビルドするには、CAA がアクティブになっているノ ードから以下の手順を実行します。

- 1. lscluster -c コマンド、次に lscluster -m コマンドを使用して、CAA がノード上でアクティ ブであることを確認します。
- 2. SMIT を使用したリポジトリー・ディスクの交換のトピックにある手順を実行して、リポジト リー・ディスクを交換します。PowerHA SystemMirror が問題を認識し、新しいストレージ・ ディスク上にリポジトリー・ディスクを再ビルドするために CAA と相互に作用します。

注: この手順では、PowerHA SystemMirror の構成データに保管されたリポジトリー情報が更 新されます。

3. SMIT インターフェースから「クラスター・ノードおよびネットワーク」 > 「クラスター構成 の検証と同期化」を選択し、PowerHA SystemMirror クラスター構成情報を同期化します。

リポジトリー・ディスクに障害が発生し、クラスター内のノードがリブートした

まれに、以下のシナリオのようにクリティカルな障害が連続して発生することにより、リポジトリ ー・ディスクへのアクセスが失われ、クラスター内のすべてのノードがリブートされるという最悪 のケースとなる場合があります。これにより、障害発生時にクラスター内のすべてのノードがオン ラインではなくなるため、AIX オペレーティング・システムのメモリーからリポジトリー・ディス クを再ビルドすることはできません。ノードが再びオンラインに戻っても、クラスター内にリポジ トリー・ディスクが存在しないために、ノードは CAA を始動することができません。この問題を 修正するために理想的なのは、リポジトリー・ディスクを復旧し、クラスターを自己回復させるこ とです。この方法が不可能な場合、新しいストレージ・ディスク上にリポジトリー・ディスクを再 ビルドし、そのリポジトリー・ディスクを使用して CAA クラスターを始動する必要があります。

リポジトリー・ディスクを再ビルドしてクラスター・サービスを開始するには、以下の手順を実行 します。

1. SMIT を使用したリポジトリー・ディスクの交換のトピックにある手順を実行して、クラスタ ー内の 1 つのノードでリポジトリーを再ビルドします。PowerHA SystemMirror が問題を認 識し、新しいストレージ・ディスク上にリポジトリー・ディスクを再ビルドするために CAA と相互に作用します。

注: この手順では、PowerHA SystemMirror の構成データに保管されたリポジトリー情報が更 新され、CAA クラスター・キャッシュ・ファイルからリポジトリー・ディスクが再ビルドさ れます。

- 2. クラスター・サービスの開始のトピックにある手順を実行して、リポジトリー・ディスクをホ ストするノード上でクラスター・サービスを開始します。
- 3. クラスター内の他のすべてのノードは、元のリポジトリー・ディスクへのアクセス試行を続行 します。新しいリポジトリー・ディスクを使用するようにこれらのノードを構成して、CAA クラスター・サービスを開始する必要があります。lscluster -m コマンドを使用して、これら のいずれのノードでも CAA クラスターがアクティブになっていないことを確認します。CAA クラスターが非アクティブであるか、またはローカル・ノードがダウン状態である場合は、次 のコマンドを入力して、古いリポジトリー・ディスクの情報を削除します。

export CAA FORCE ENABLED=true clusterconf -fu

4. 他のノードを CAA クラスターに参加させるには、新規作成したリポジトリー・ディスクにつ いて、アクティブなノードで次のコマンドを使用します。

clusterconf -p

- 5. 最初に lscluster -c コマンド、次に lscluster -m コマンドを使用して、CAA がアクティブであることを確認します。
- 6. SMIT インターフェースから「クラスター・ノードおよびネットワーク」 > 「クラスター構成 の検証と同期化」を選択し、新規作成したリポジトリー・ディスクに関する PowerHA SystemMirror クラスター構成情報を、他のすべてのノードに同期化します。
- 7. SMIT インターフェースから「システム管理 (C-SPOC)」 > 「PowerHA SystemMirror サービス」 > 「クラスター・サービスの開始」を選択して、(リポジトリー・ディスクが作成された最初のノードに加えて) すべてのノードで PowerHA SystemMirror クラスター・サービスを開始します。

スナップショットのマイグレーションおよびリポジトリー・ディスク

オンライン・クラスターでのスナップショットのマイグレーション・プロセスを行うには、スナップショットのクラスター情報がオンラインのクラスター情報と一致している必要があります。この要件は、リポジトリー・ディスクにも適用されます。リポジトリー・ディスクの構成を変更した場合、これらの変更を反映するためにスナップショットを更新してから、スナップショットのマイグレーション・プロセスを実行する必要があります。

関連情報:

リポジトリー・ディスクのプランニング

リポジトリー・ディスクの障害

クラスター構成のスナップショットの作成

スナップショットを使用した PowerHA SystemMirror のアップグレード

ディスク・フェンシングのトラブルシューティング

ディスク・フェンシングは、PowerHA SystemMirror での検疫ポリシーにのみ使用できます。

問題

ディスク・フェンシングが、ご使用の環境に不要になりました。ディスク・フェンシングを無効にして、ディスクやボリューム・グループの予約を解除できます。

解決方法

ディスク・フェンシングを無効にして、ディスクやボリューム・グループの予約を解除するには、以下の手順を実行します。

1. コマンド行から以下のコマンドを実行して、ディスクまたはボリューム・グループから予約を解除します。

clgmr modify physical_volume <disk> scsipr_clear={yes}
clgmr modify volume_group <vg> scsipr_clear={yes}

disk はディスクの名前です。 vg はボリューム・グループの名前です。

- 2. コマンド行から smit sysmirror と入力します。
- 3. SMIT インターフェースから「ユーザー定義クラスター構成」 > 「クラスター・ノードおよびネット ワーク」 > 「初期クラスター・セットアップ (ユーザー定義)」 > 「クラスター分割およびマージ・ポリシーの構成」 > 「検疫ポリシー」 > 「ディスク・フェンシング」を選択し、Enter を押します。

- 4. 「ディスク・フェンシング」フィールドに対して「いいえ」を指定し、「クリティカル・リソース・グ ループ」フィールドでクリティカル・リソース・グループを指定します。 Enter を押して変更を保存 します。
- 5. 「検疫ポリシー」パネルで「アクティブ・ノード停止ポリシー」 > 「アクティブ・ノード停止ポリシ ーの構成」を選択し、Enter を押します。
- 6. 「アクティブ・ノード停止ポリシー」フィールドに対して「いいえ」を指定し、「クリティカル・リソ ース・グループ」フィールドでクリティカル・リソース・グループを指定します。 Enter を押して変 更を保存します。

注: 指定するクリティカル・リソース・グループは、ステップ 4 で指定したクリティカル・リソース・ グループと同じでなければなりません。

問題

アクティブ・クラスターにおいてリソース・グループがエラー状態になります。そのリソース・グループが エラー状態になるのは、ノードにおいてリソース・グループ内の単一ボリューム・グループを登録して予約 することができないためです。

解決方法

リソース・グループに関するこの問題を修正するには、以下のいずれかのオプションを使用します。

- cl_scsipr_revover_rg スクリプトを実行します。 cl_scsipr_revover_rg スクリプトにより、エラー状態 にあるリソース・グループのボリューム・グループが登録されて予約されます。
- SMIT インターフェースを使用してこの問題を修正するには、以下の手順を実行します。
 - 1. コマンド行から smit sysmirror と入力します。
 - 2. SMIT インターフェースから「問題判別ツール」 > 「SCSI 永続予約エラーからリソース・グルー プを回復 (Recover Resource Group from SCSI Persistent Reserve Error)」を選択し、Enter を 押します。
 - 3. エラー状態にあるリソースを選択し、Enter を押します。
 - 4. SMIT インターフェースから「システム管理 (C-SPOC)」 > 「リソース・グループおよびアプリケ ーション」 > 「リソース・グループのオンライン」を選択し、Enter を押します。
 - 5. 再びオンラインにするリソース・グループを選択し、Enter を押します。

コマンドが実行されたり特定のイベントが発生したりしたときのディスク・フェンシングに関する各種シナ リオを次の表に示します。これらのシナリオの構成では、サイトに NodeA (クリティカル・リソース・グ ループが含まれる) および NodeB (クリティカル・リソース・グループは含まれない) が含まれていま す。また、この構成では、リソース・グループに属するすべてのディスク上で NodeA と NodeB が登録 されます。

表 16. ディスク・フェンシング・シナリオ

シナリオ	NodeA の観察	NodeB の観察
hmc シャットダウン	NodeA はディスク上に登録されます。	NodeB はディスク上に登録されません。
hmc リブート	NodeA はディスク上に登録されます。	NodeB はディスク上に登録されません。
reboot	リブート後であっても、リソース・グループが取得されるより前にリブートが行われたため、ディスクは依然としてそのままです。	NodeB はディスク上に登録されません。

表 16. ディスク・フェンシング・シナリオ (続き)

シナリオ	NodeA の観察	NodeB の観察
reboot -q	リブート後であっても、リソース・グルー	NodeB はディスク上に登録されません。
	プが取得されるより前にリブートが行われ	
	たため、ディスクは依然としてそのままで	
	す。	
shutdown -Fr	NodeA はディスク上に登録されません。	NodeB はディスク上に登録されません。
shutdown	NodeA はディスク上に登録されます。	NodeB はディスク上に登録されません。
halt -q	NodeA はディスク上に登録されます。	NodeB はディスク上に登録されません。
halt	NodeA はディスク上に登録されます。	NodeB はディスク上に登録されません。
ノード・クラッシュ	NodeA はディスク上に登録されます。	NodeB はディスク上に登録されません。
clstop (リソース・グループのオフライン)	NodeA はディスク上に登録されます。	NodeB はディスク上に登録されます。
clstop (リソース・グループの移動)	NodeA はディスク上に登録されます。	NodeB はディスク上に登録されます。
clstop (リソース・グループの管理解除)	NodeA はディスク上に登録されません。	NodeB はディスク上に登録されません。

関連情報:

ディスク・フェンシングの計画

検疫ポリシーの構成

ネットワークとスイッチの問題

以下のトピックでは、潜在的なネットワークおよびスイッチの問題について説明します。

スイッチ・ネットワークでの予期しないネットワーク・インターフェース障害

このトピックでは、スイッチ・ネットワークを使用した PowerHA SystemMirror 構成での予期しないネ ットワーク・インターフェース障害について説明します。

問題

スイッチ・ネットワークを使用した PowerHA SystemMirror 構成では、ネットワークとスイッチが正し く定義および構成されていないと、予期しないネットワーク・インターフェース障害が発生する可能性があ ります。

解決方法

スイッチとネットワークを正しく構成してください。

関連情報:

スイッチ・ネットワークの PowerHA SystemMirror 構成

ネットワーク検証におけるマルチキャスト

デフォルトでは、PowerHA SystemMirror はハートビートにユニキャスト通信を使用します。クラスター 通信では、使用するネットワークがマルチキャスト通信をサポートするように構成されている場合、オプシ ョンとしてマルチキャスト・アドレスを構成することを選択できるか、CAA に自動的にマルチキャスト・ アドレスを選択させることができます。マルチキャスト通信の使用を選択した場合は、クラスターに含まれ るすべてのノード間でマルチキャスト・パケットを正常に送信できることを確認するまでは、クラスターの 作成を試みないでください。

ネットワーク上にクラスターを作成するために使用するすべてのノードについてエンドツーエンド・マルチ キャスト通信をテストするには、mping コマンドを実行してノード間でパケットの送受信を行います。

PowerHA SystemMirror 7.1.1 以降を使用する場合、mping コマンドが失敗するとクラスターを作成でき ません。mping コマンドが失敗した場合、ネットワークはマルチキャスト通信用に正しくセットアップさ れていません。そのような場合は、スイッチおよびルーターの資料を検討してマルチキャスト通信を使用可 能にしてください。

特定のマルチキャスト・アドレスを指定して mping コマンドを実行できます。指定しない場合はデフォル トのマルチキャスト・アドレスが使用されます。mping コマンドの入力に使用するマルチキャスト・アド レスは、クラスターの作成に使用するものと同じでなければなりません。

注: mping コマンドではデフォルトの経路を持つインターフェースが使用されます。デフォルトの経路を 持たない別のインターフェースでマルチキャスト通信をテストするために mping コマンドを使用する場 合、マルチキャスト IP アドレスへの必要なインターフェースがある静的ルートを一時的に追加する必要が あります。

以下の例では、mping コマンドの成功例と失敗例を示します。ノード A は受信側、ノード B は送信側で

成功例:

Receiver

```
root@nodeA:/# mping -r -R -c 5
mping version 1.1
Listening on 227.1.1.1/4098:
Replying to mping from 9.3.207.195 (nodeB.aus.stglabs.ibm.com) bytes=32 segno=0 ttl=1
Replying to mping from 9.3.207.195 (nodeB.aus.stglabs.ibm.com) bytes=32 segno=1 ttl=1
Replying to mping from 9.3.207.195 (nodeB.aus.stglabs.ibm.com) bytes=32 seqno=2 ttl=1
Replying to mping from 9.3.207.195 (nodeB.aus.stglabs.ibm.com) bytes=32 seqno=3 ttl=1
```

Replying to mping from 9.3.207.195 (nodeB.aus.stglabs.ibm.com) bytes=32 seqno=4 ttl=1

Sender

```
root@nodeB:/# mping -R -s -c 5
mping version 1.1
mpinging 227.1.1.1/4098 with ttl=1:
32 bytes from 9.3.207.190 (nodeA.aus.stglabs.ibm.com) seqno=0 ttl=1 time=0.985 ms
32 bytes from 9.3.207.190 (nodeA.aus.stglabs.ibm.com) seqno=1 ttl=1 time=0.958 ms
32 bytes from 9.3.207.190 (nodeA.aus.stglabs.ibm.com) seqno=2 ttl=1 time=0.998 ms
32 bytes from 9.3.207.190 (nodeA.aus.stglabs.ibm.com) seqno=3 ttl=1 time=0.863 ms
32 bytes from 9.3.207.190 (nodeA.aus.stglabs.ibm.com) seqno=4 ttl=1 time=0.903 ms
--- 227.1.1.1 mping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.863/0.941/0.998 ms
```

失敗例:

Receiver

```
root@nodeA:/# mping -r -R -c 5 -6
mping version 1.1
Listening on ff05::7F01:0101/4098:
Replying to mping from fe80::18ae:19ff:fe72:1a15 bytes=48 seqno=0 ttl=1
Replying to mping from fe80::18ae:19ff:fe72:1a15 bytes=48 seqno=1 ttl=1
Replying to mping from fe80::18ae:19ff:fe72:1a15 bytes=48 seqno=2 ttl=1
Replying to mping from fe80::18ae:19ff:fe72:1a15 bytes=48 seqno=3 ttl=1
Replying to mping from fe80::18ae:19ff:fe72:1a15 bytes=48 seqno=4 ttl=1
```

Sender

root@nodeB:/# mping -R -s -c 5 -6
mping version 1.1
mpinging ff05::7F01:0101/4098 with ttl=1:

--- ff05::7F01:0101 mping statistics --- 5 packets transmitted, 0 packets received, 100% packet loss round-trip min/avg/max = 0.000/0.000/0.000 ms

注: 結果を検証するには、mping コマンドの送信側のみをチェックする必要があります。また、パケット・ロスのパーセンテージもメモしておいてください。ネットワーク上でマルチキャストが機能しているかどうかを確認するには、両方のノードを送信側と受信側の両方としてテストするように、mping テストを実行する必要があります。一般的に、非詳細出力でも必要な情報を得ることができます。ただし、mping コマンドで -v フラグの使用を選択した場合、プログラム内部に関して十分な知識が必要です。そうでない場合、詳細出力の理解を誤ってしまう可能性があります。また、mping コマンドの送信側の戻りコードもチェックすることができます。エラーが発生すると、送信側は 255 を返します。成功時には 0 を返します。

クラスターの作成時にマルチキャスト・アドレスを指定しなかった場合、Cluster Aware AIX (CAA) はデフォルトのマルチキャスト・アドレスを選択します。このデフォルトのマルチキャスト・アドレスは、値 (228.0.0.0) と、ノード IP アドレスの下位 24 ビットの論理和として作成されます。例えば、IP アドレスが 9.3.199.45 であれば、デフォルトのマルチキャスト・アドレスは 228.3.199.45 です。

PowerHA SystemMirror 7.1.2 以降ではインターネット・プロトコル・バージョン 6 (IPv6) アドレスがサポートされます。クラスターで IPv6 アドレスが構成されると、Cluster Aware AIX (CAA) は IPv6 マルチキャスト・アドレスを使用して IPv6 アドレスのハートビートを活動化します。環境内の IPv6 接続でマルチキャスト・アドレスとの通信が可能であることを確認する必要があります。

環境内で IPv6 マルチキャスト通信が正しく構成されているかどうかを検証するには、-6 オプションを指定した mping コマンドを実行します。この mping コマンドを実行すると、デフォルトの IPv6 マルチキャスト・アドレスとの IPv6 マルチキャスト・アドレスを指定するには、-a オプションと IPv6 マルチキャスト・アドレスを指定して mping コマンドを実行します。-a オプションを使用すれば、-6 オプションの指定は必要ありません。 mping コマンドは、-a オプションで渡されたアドレスのファミリーを自動的に判別します。

関連情報:

- Cisco マルチキャスト・スイッチのトラブルシューティング
- Cisco スイッチのマルチキャスト・サポート

マルチキャストのトラブルシューティング

mping コマンドを使用して、ノードでマルチキャスト・パケットの送受信ができるかどうかをテストします。mping コマンドが失敗した場合、ネットワーク環境内の問題を特定する必要があります。

ネットワーク内のマルチキャスト問題のトラブルシューティングを行うには、以下のガイドラインを検討してください。

- マルチキャスト通信に使用しているスイッチの資料を検討します。
- マルチキャスト通信に使用しているスイッチ上の Internet Group Management Protocol (IGMP) スヌープ機能を使用不可にします。

注: ネットワーク・インフラストラクチャーのため IGMP スヌープ機能を永続的に使用不可にできない 場合は、スイッチ上のスヌープ機能を一時的に使用不可にしてから、追加のネットワーク・コンポーネ ントを一度に 1 つずつ追加して、問題のトラブルシューティングを行うことができます。

クラスターのノード間のカスケード・スイッチをすべて除去します。つまり、クラスターのノード間に は単一のスイッチのみがあるようにします。

関連情報:

- □ → Cisco マルチキャスト・スイッチのトラブルシューティング
- Cisco スイッチのマルチキャスト・サポート

ユニキャストのトラブルシューティング

デフォルトでは、PowerHA SystemMirror はクラスター内のノード間で、ユニキャスト・ソケット・ベー スの通信を使用します。

ユニキャスト通信に問題がある場合は、汎用のネットワーク・トラブルシューティング手順に従います。そ の例を次に示します。

- ifconfig コマンドと netstat コマンドを使用して、IP アドレスの構成とルーティングを確認します。
- ping コマンドと traceroute コマンドを使用して、ノードとアダプターが通信できることを確認しま
- 上記の手順で問題を識別できない場合は、iptrace コマンドを使用して、低レベルのパケット・アクティ ビティーをトレースします。

システム・リブート時の IPv6 アドレスの持続化

インターネット・プロトコル・バージョン 6 (IPv6) は、AIX オペレーティング・システムと同様に動的構 成用に設計されています。IPv6 アドレスはシステム・リブート操作時に持続しません。

リブート後に IPv6 アドレスを構成するには、autoconf6 コマンドを手動で実行します。あるいは、クラ スター・サービスを開始する前に PowerHA SystemMirror に autoconf6 コマンドを自動的に実行させる こともできます。

AIX オペレーティング・システム用に自動的に実行されるように autoconf6 コマンドを構成するには、以 下のステップを実行して /etc/rc.tcpip ファイルを変更します。

1. autoconf6 コマンドが実行されるように以下の行のコメントを外します。

Start up autoconf6 process start /usr/sbin/autoconf6

注: -i フラグを入力して個別のインターフェースを指定することができます。例:

Start up autoconf6 process start /usr/sbin/autoconf6 "" "-i en1"

2. ndpd デーモンが開始されるように以下の行のコメントを外します。

Start up ndpd-host daemon start /usr/sbin/ndpd-host "\$src running"

Start up the ndpd-router daemon start /usr/sbin/ndpd-router "\$src running"

関連情報:

autoconf6 コマンド ndpd-host デーモン ndpd-router デーモン

VLAN のトラブルシューティング

このトピックでは、仮想ローカル・エリア・ネットワークのインターフェース障害のトラブルシューティン グについて説明します。

問題

仮想 LAN ネットワーク (これ以降は VLAN (仮想ローカル・エリア・ネットワーク) と表記) でのインタ ーフェース障害

解決方法

PowerHA SystemMirror に定義されている VLAN インターフェースをトラブルシューティングして、イ ンターフェース障害を検出するには、これらのインターフェースを単一アダプター・ネットワーク上に定義 されたインターフェースと見なします。

具体的には、VLAN に属するネットワーク・インターフェースを /usr/es/sbin/cluster/etc/clinfo.rc スクリ プトの ping_client_list 変数にリストして、clinfo を実行します。このようにすることで、クラスター・ イベントが発生すると必ず、clinfo は、リストされているネットワーク・インターフェースをモニターし て障害を検出します。 仮想ローカル・エリア・ネットワークの性質上、ネットワーク・インターフェース の障害を検出するこれ以外のメカニズムは無効です。

クラスター・ノードが通信できない

このトピックでは、分割されたクラスターがある場合の問題と解決策について説明します。

問題

構成において複数のノードを単一のネットワークで接続している場合は、クラスターが分割される場合があ ります。 クラスターの分割が発生するのは、クラスター・ノードが通信できない場合です。通常の環境で は、ノードのサービス・ネットワーク・インターフェースの障害により、クラスター・マネージャーは swap adapter イベントを認識し、処理します。つまり、サービス IP ラベル/アドレスが別の IP ラベル/ アドレスに交換されます。ハートビートは共有ディスクを介して交換されます。 しかし、ノードがクラス ターから分離される可能性があります。 他のノードのクラスター・マネージャーが実行された swap_adapter イベントを認識しても、通信パスが存在しないため現在分離された (分割された) ノードに 通信できません。

解決方法

単一障害点がなくなるようにネットワークを構成します。

分散 SMIT で予測不能な結果が発生する

このトピックでは、PowerHA SystemMirror クラスター・サービスの開始/停止以外の操作で分散 SMIT を使用したときの問題と解決策について説明します。

問題

PowerHA SystemMirror クラスター・サービスの始動および停止以外の操作に AIX ユーティリティー DSMIT を使用すると、予測不能な結果が発生する場合があります。

解決方法

DSMIT はネットワーク化された IBM System p プロセッサーの操作を管理します。 これには、全ネット ワーク・ノードにおける AIX コマンドの実行を制御するために必要なロジックが組み込まれています。 PowerHA SystemMirror 機能と競合する可能性があるため、DSMIT の使用は PowerHA SystemMirror クラスター・サービスの始動および停止に限定してください。

PCI ホット・プラグ NIC 障害からの回復

このトピックでは、PCI ホット・プラグ NIC 障害からの回復について説明します。

問題

回復不能エラーが原因で PCI ホット・リプレース・プロセスが失敗した場合、NIC が未構成のままの状 態になり、ノードが保守モードのままの状態になる場合があります。 新しい NIC やその NIC が挿入さ れている PCI スロットがこの時点で損傷している可能性があります。

解決方法

このノードを完全に稼働した状態に回復するには、ユーザーの介入が必要です。

関連情報:

オペレーティング・システムおよびデバイスの管理

PowerHA SystemMirror の IP ラベルが AIX インターフェースから切断される

このトピックでは、PowerHA SystemMirror の IP ラベルが AIX インターフェースから切断される状態 について説明します。

問題

PowerHA SystemMirror の IP ラベルを入力または選択してクラスター構成にネットワーク・インターフ ェースを定義すると、PowerHA SystemMirror は関連する AIX ネットワーク・インターフェース名をデ ィスカバーします。PowerHA SystemMirror ではこの関係が未変更であると仮定します。クラスターを構 成および同期化したあとに AIX ネットワーク・インターフェースの名前を変更した場合は、PowerHA SystemMirror は正しく機能しません。

解決方法

この問題が発生した場合、SMIT PowerHA SystemMirror 「System Management (C-SPOC) (システム 管理 (C-SPOC))」パネルからネットワーク・インターフェース名をリセットできます。

関連情報:

クラスター・リソースの管理

データ送信時にパケットが損失する

このトピックでは、データが遷移時に断続的に失われる場合の問題と解決策について説明します。

問題

送信中に途中でデータを損失した場合、各ノード上で最大送信単位 (MTU) の設定が異なっている可能性 があります。 例えば、ノード A が 1.5 K のパケットを受信できるノード B に 8 K のパケットを送っ た場合、ノード B はメッセージが完了したと認識しますが、データは失われていることがあります。

解決方法

クラスターの検証ユーティリティーを実行して、同じネットワーク時にすべてのクラスター・ノード上のす べてのネットワーク・インターフェース・カードが、MTU サイズに関して同等に設定されていることを確 認します。 MTU サイズがネットワーク上で整合していない場合、エラーが表示されるので、これによっ て調整するノードを判別できます。

注: MTU サイズは、以下のコマンドを使用して変更できます。 chev -l en0 -a mtu=<new_value_from_1_to_8>

クラスター通信の問題

以下のトピックでは、潜在的なクラスター通信の問題について説明します。

メッセージの暗号化が失敗する

このトピックでは、メッセージの暗号化が失敗したときの問題と解決策について説明します。

問題

暗号化または暗号化解除が、セキュリティーの有効化後に失敗し、clcomd デーモンのコミュニケーション が複数のノードで失敗する。 暗号化または暗号化解除が失敗する可能性があるか検査するには、 clcomddiag.log ファイルを表示します。

解決方法

マスター・ノードまたは任意のノードから SMIT を使用してセキュリティーを無効にしてから、すべての ノードの PowerHA SystemMirror コミュニケーション・デーモンを停止して始動します。

セキュリティーの有効化前にインストールされた以下のファイル・セットをクラスター・ノードが持ってい るかどうか確認します。

- DES メッセージ認証を使用したデータ暗号化の場合: rsct.crypt.des
- 標準のトリプル DES メッセージ認証を使用したデータ暗号化の場合: rsct.crypt.3des
- Advanced Encryption Standard (AES) メッセージ認証を使用したデータ暗号化の場合: rsct.crypt.aes256.。 clic バージョン 4.7 のファイル・セットをインストールしたに違いありません。

必要に応じて、AIX 拡張パック CD-ROM から、これらのファイルセットをインストールします。

PowerHA SystemMirror の実行後にファイルセットをインストールする場合は、PowerHA SystemMirror クラスター通信デーモンを始動して停止し、PowerHA SystemMirror がこれらのファイルセットを使用で きるようにします。 クラスター通信デーモンを再始動するには、次を実行します。

stopscr -s clcomd startsrc -s clcomd

ファイルセットが存在し、暗号化エラーが表示される場合、PowerHA SystemMirror の実行後に暗号化フ ァイルセットがインストールされたか、再インストールされた可能性があります。 この場合は、上述した ようにクラスター通信デーモンを再始動します。

クラスター・ノードが相互に通信しない

このトピックでは、相互に通信しないクラスター・ノードについて説明します。

クラスター・ノードは相互に通信できないため、以下のいずれかを構成しました。

- メッセージ認証、またはメッセージ認証および暗号化を使用可能にしました。
- VPN トンネルの永続 IP ラベルの使用

解決方法

ネットワークが操作可能であることを確認します。『ネットワークとスイッチの問題』を参照してくださ

クラスターに永続 IP ラベルが設定されているかどうかを検査します。 設定されている場合は、正しい設 定がされているかどうか、IP ラベルを ping できるかどうかを確認します。

メッセージ認証、またはメッセージ認証および暗号化を使用している場合は、以下のように実行してくださ い。

- メッセージ認証モードに対する各クラスター・ノードの設定が同じであるかどうかを確認します。 モー ドが異なる場合は、各ノードでメッセージ認証を「None (なし)」に設定し、メッセージ認証を再構成し
- 各ノードで /usr/es/sbin/cluster/etc ディレクトリーに同じタイプの暗号鍵が設定されているかどうかを 確認します。暗号鍵は、他のディレクトリーに存在できません。

VPN に永続 IP ラベルを構成した場合は、以下のように実行します。

- 「User Persistent Labels (ユーザー永続ラベル)」を「No (いいえ)」に変更します。
- 2. Synchronize Cluster Configuration (クラスター構成を同期化する)
- 3. 「User Persistent Labels (ユーザー永続ラベル)」を「Yes (はい)」に変更します。 関連概念:

72 ページの『ネットワークとスイッチの問題』

以下のトピックでは、潜在的なネットワークおよびスイッチの問題について説明します。

PowerHA SystemMirror のテークオーバーの問題

以下のトピックでは、潜在的なテークオーバーの問題について説明します。

PowerHA SystemMirror のリソース・グループの移動を調査し、rg move イベントが発生した理由を知 るには、必ず /var/hacmp/log/hacmp.out ファイルを調べてください。特に PowerHA SystemMirror に おいて、リソース・グループの処理方法やフォールオーバー環境の優先順位付けが最近変更されたので hacmp.out ファイルおよびイベント要約が、リソース・グループのアクティビティーと場所を追跡する際 にさらに重要になりました。 さらに、リソース・グループの並列処理の場合、hacmp.out ファイルはクラ スター・ヒストリー・ログまたは clstrmgr.debug ログ・ファイルに示されない詳細を報告します。 テー クオーバー・アクティビティーの後にリソース・グループの移動を調査する場合は、必ず早い段階で hacmp.out ログを検査してください。

テークオーバー時に varyonvg コマンドが失敗する

このトピックでは、PowerHA SystemMirror ソフトウェアが共用ボリューム・グループを varyon できな かった理由について説明します。

PowerHA SystemMirror ソフトウェアが共用ボリューム・グループを varyon できませんでした。 PowerHA SystemMirror 構成データベース・オブジェクト・クラスにボリューム・グループ名がないか、ボリューム・グループ名が誤っています。

解決方法

- /var/hacmp/log/hacmp.out ファイルを検査し、varyonvg の失敗に関連するエラーがないかどうかを検査してください。
- Isvg コマンドを使用して、システムが認識しているすべてのボリューム・グループをリストして、PowerHA SystemMirror リソース構成データベース・オブジェクト・クラスで使用されているボリューム・グループ名が正しいかどうかを検査します。 構成データベース内のボリューム・グループ名を変更するには、メインの PowerHA SystemMirror SMIT パネルで、「Initialization and Standard Configuration (初期化および標準構成)」>「Configure PowerHA SystemMirror Resource Groups (PowerHA SystemMirror リソース・グループの構成)」>「Change/Show Resource Groups (リソース・グループの変更/表示)」を選択し、ボリューム・グループを含めるリソース・グループを選択します。「Change/Show Resources and Attributes for a Resource Group (リソース・グループのリソースおよび属性の変更/表示)」パネルの「Volume Groups (ボリューム・グループ)」または「Concurrent Volume Groups (コンカレント・ボリューム・グループ)」フィールドを使用して、ボリューム・グループ名を設定します。 問題を訂正してから、SMIT の「Problem Determination Tools (問題判別ツール)」>「Recover From PowerHA SystemMirror Script Failure (スクリプト障害からの回復)」パネルを使用して、clruncmd コマンドを発行し、クラスター・マネージャーにシグナルを送信してクラスター処理を再開します。
- クラスター検証ユーティリティーを実行して、クラスター・リソースを検証します。

高可用性アプリケーションが失敗する

このトピックでは、高可用性アプリケーションが失敗する状態について説明します。

問題

リソース・グループが UNMANAGED 状態にあったクラスター・サービスの停止後にユーザーが手動で 停止したアプリケーションは、ノードの再統合により再始動しません。

解決方法

/usr/es/sbin/cluster/server.status ファイル内の関連アプリケーション・エントリーが、ノードの再統合前 に削除されたかどうかを検査します。

/usr/es/sbin/cluster/server.status ファイルのアプリケーション・エントリーは、ノードですでに実行されているすべてのアプリケーションをリストするため、PowerHA SystemMirror は server.status ファイル内のエントリーのアプリケーションを再始動しません。

再統合前に、関連のアプリケーション server.status エントリーを削除すると、高可用性アプリケーション が実行していないこと、およびノードで再始動する必要があることを、PowerHA SystemMirror が認識できます。

AIX でのボリューム・グループ・クォーラム損失エラーによって PowerHA SystemMirror 選択フォールオーバーがトリガーされない

このトピックでは、PowerHA SystemMirror 選択フォールオーバーについて説明します。

PowerHA SystemMirror は、ボリューム・グループのクォーラムの損失が発生したときに、影響を受ける リソース・グループを選択して別のクラスター・ノードに移動することができません。

解決方法

クラスター・ノード上のリソース・グループに属するボリューム・グループのクォーラムを損失すると、シ ステムは、そのノードの AIX エラー・ログ・ファイルに LVM SA QUORCLOSE エラーが表示されたか どうかを検査し、影響を受けるリソース・グループを選択して移動するようにクラスター・マネージャーに 通知します。 PowerHA SystemMirror がこのエラー通知メソッドを使用するのは、ミラーリングされた ボリューム・グループでクォーラムが使用可能になっている場合のみです。

フォールオーバーが発生しない場合は、AIX エラー・ログに LVM SA OUORCLOSE エラーが表示され たかどうかを検査します。 AIX エラー・ログ・バッファーがいっぱいになると、新規エントリーはバッフ ァー・スペースが使用可能になるまで破棄され、エラー・ログ・エントリーによってこの問題が通知されま す。 この問題を解決するには、デバイス・ドライバーの AIX エラー・ログ内部バッファーのサイズを増 やしてください。

グループ・サービスが GS_DOM_MERGE_ER メッセージを送信する

このトピックでは、グループ・サービスのマージ・メッセージについて説明します。

問題

グループ・サービスのマージ・メッセージが表示され、このメッセージを受信したノードが自動的にシャッ トダウンします。 GS_DOM_MERGE_ER エラー・ログ・エントリーのほか、グループ・サービス・デー モンのログ・ファイルにも以下のメッセージが出力されます。

"A better domain XXX has been discovered, or domain master requested to dissolve the domain."

ノードでクラスターとの通信が失われ、通信を再確立するときには、グループ・サービスのマージ・メッセ ージが送信されます。

解決方法

欠落しているノードおよびそのリソースの状態を判別する (そして、クラスター再結合時のデータの相違を 回避する)のは困難なため、ノードをシャットダウンし、そのリソースのテークオーバーを正常に完了しま

例えば、クラスター・ノードが他のノードと通信できなくなった場合、そのノードが引き続きプロセス・テ ーブルを処理していても、他のノードが「欠落している」ノードからキープアライブ・メッセージを受信し なくなるため、他のノードは「欠落している」ノードで障害が発生したと判断します。 残りのノードは、 必要なイベントを処理し、ディスク、IP アドレスなどのリソースを「欠落している」ノードから獲得しま す。 このリソースのテークオーバーにより、複数接続されたディスクがリセットを受信し、「欠落してい る」ノードから解放し、IP アドレス・テークオーバー・スクリプトを始動します。

ディスクがテークオーバー・ノードによって獲得されると (またはディスクが獲得され、アプリケーション が実行された後)、「欠落している」ノードはプロセス・テーブルを完了し (またはアプリケーションの問 題をクリアし)、キープアライブ・メッセージを再送してクラスターを再結合しようとします。 ディスクお よび IP アドレスがテークオーバーされているため、ネットワークで IP アドレスが重複し、ディスクのデ ータ・バスで余分なトラフィックが発生する場合があります。

ノードが「欠落した」理由が判別していないため、問題が今後も繰り返し発生する可能性があると判断し、 ノードだけでなくクラスターやアプリケーションのダウン時間が長くなる場合があります。 このため、最 高のクラスター可用性を確保するために、GS のマージ・メッセージがすべての「欠落している」クラスタ ー・ノードに送信され、ノードの分離を識別し、リソースを正常にテークオーバーできるようにし、テーク オーバー・ノードと再結合する「欠落している」ノードの両方がディスクに書き込もうとした場合でもデー タが破壊されないようにします。 また、IP アドレスが同じノードがネットワークに 2 つ存在する場合 は、トランザクションが失われ、アプリケーションがハングする場合があります。

クラスターが区画化されている場合は、各側の区画のノードがこれを検出し、反対側の区画のノードの **node_down** を実行します。 この実行中または通信が回復された後で、パーティションの両側がノードが クラスターのメンバーとして残すパーティションについて一致しない場合、作動したままにする区画が決定 され、他の区画は、他の区画のノードからの GA マージ、または GS マージをノード自体に送信するノードによってシャットダウンされます。

3 つ以上のノードから構成されるクラスターでは、最も多くのノードが残っている区画が判断され、その区画が残されます。 各区画のノード数が等しい場合は (2 ノード・クラスターの場合は常にこの状態になります)、起動しておくノードはノード番号によって決定されます (クラスターで最も低いノード番号のものが残ります。一般にアルファベット順で先頭となるノードです)。

グループ・サービス・ドメインのマージ・メッセージには、ノード分離の問題が処理され、リソースの可用性ができるだけ高くなるように保持されたことが示され、後でこの問題およびその原因を調査できます。ドメイン・マージが発生すると、グループ・サービスおよびクラスター・マネージャーは終了します。clstrmgr.debug ファイルに、以下のエラーが記録されます。

cfgmgr コマンドを実行するとクラスター内で不要な動作が行われる

このトピックでは、cfgmgr コマンドと、このコマンドの実行時にクラスター内で不要な動作が行われる状態について説明します。

問題

「Configure Devices Added After IPL (IPL 後に追加したデバイスの構成)」のような SMIT コマンドは、cfgmgr コマンドを使用します。 場合によっては、このコマンドによってクラスターで不要な動作が発生する場合があります。 例えば、ネットワーク・インターフェース・スワップが発生すると、cfgmgr コマンドはネットワーク・インターフェースを再度スワップするため、クラスター・マネージャーに障害が発生します。

解決方法

rc.net の変更について「インストール・ガイド」を参照し、この問題を回避してください。 この手法は IP アドレス・テークオーバーの場合に限らず常に使用できますが、テークオーバー全体の時間が追加されるため、お勧めしません。

関連情報:

PowerHA SystemMirror インストール・ガイド

rmdev「device busy (デバイスが使用中)」エラーのために、ネットワーク・インターフェース・スワップが失敗する

このトピックでは、rmdev「device busy (デバイスが使用中)」エラーが原因でネットワーク・インターフェース・スワップが失敗したときの問題と解決策について説明します。

[&]quot;announcementCb: GRPSVCS announcement code=n; exiting"

[&]quot;CHECK FOR FAILURE OF RSCT SUBSYSTEMS (topsvcs or grpsvcs)"

rmdev「device busy (デバイスが使用中)」エラーのために、ネットワーク・インターフェース・スワップが 失敗する。 例えば、/var/hacmp/log/hacmp.out には以下のようなメッセージが示されます。

Method error (/etc/methods/ucfgdevice):

0514-062 Cannot perform the requested function because the specified device is busy.

解決方法

システムで以下のアプリケーションが実行されているかどうかを検査します。 これらのアプリケーション はデバイスを使用中として保持する場合があります。

SNA

以下のコマンドを使用して SNA が実行されているかどうかを調べます。

lssrc -g sna

以下のコマンドを使用して、SNA を停止します。

stopsrc -g sna

停止しない場合は、以下のコマンドを使用します。

stopsrc -f -s sna

停止しない場合は、以下のコマンドを使用します。

/usr/bin/sna -stop sna -t forced

停止しない場合は、以下のコマンドを使用します。

/usr/bin/sna -stop sna -t cancel

· Netview / Netmon

sysmond デーモンが -H フラグで開始されたことを確認します。 この場合、SM/6000 が状態を読み 取るたびに、ネットワーク・インターフェースがオープンおよびクローズします。さらに、ハードウェ ア・アドレスのスワッピング前の ifconfig のデタッチ後に rmdev コマンドを実行すると cl_swap_HW_address スクリプトが成功します。

以下のコマンドを使用して、すべての Netview デーモンを停止します。

/usr/OV/bin/nv6000 smit stopdaemons

IPX

以下のコマンドを使用して IPX が実行されているかどうかを調べます。

ps -ef | grep npsd ps -ef | grep sapd

以下のコマンドを使用して、IPX を停止します。

/usr/lpp/netware/bin/stopnps

NetBIOS

以下のコマンドを使用して NetBIOS が実行されているかどうかを調べます。

ps -ef | grep netbios

以下のコマンドを使用し、NetBIOS を停止して NetBIOS ストリームをアンロードします。

mcsadm stop; mcs0 unload

適用可能な場合は(ファイルが存在する場合は)、以下のように各種のストリームをアンロードしま

cd /etc strload -uf /etc/dlpi.conf strload -uf /etc/pse.conf strload -uf /etc/netware.conf strload -uf /etc/xtiso.conf

デバイスを使用中として保持するカスタマー・アプリケーションもあります。 共用アプリケーショ ンが正常に停止していることを確認します。

クライアントの問題

このセクションでは、PowerHA SystemMirror クライアントの潜在的な問題について説明します。

ネットワーク・インターフェース・スワップが原因でクライアント接続問題が発生する このトピックでは、ネットワーク・インターフェース・スワップが原因でクライアント接続問題が発生する 状態について説明します。

問題

クライアントがクラスターに接続できません。 クライアント・ノードの ARP キャッシュには、フォール オーバー・ノードではなく、障害が発生したノードのアドレスが格納されたままになっています。

解決方法

クラスター・ノードからクライアントに ping コマンドを発行して、クライアントの ARP キャッシュを 更新します。 このコマンドの引数には、必ずクライアント名を指定してください。 ping コマンドは、ク ライアントが clinfoES を実行していない場合でも、クライアントの ARP キャッシュを更新します。アプ リケーションのイベント前処理スクリプトまたはイベント後処理スクリプトに ping コマンドの呼び出し を追加して、特定のクライアント上でこの更新を自動化します。

クライアントがアプリケーションにアクセスできない

このトピックでは、クライアントがアプリケーションにアクセスできない状態について説明します。

問題

SNMP 処理は失敗しました。

解決方法

SNMP がクラスター・ノードの IP ラベルまたはアドレスを含むことを確認できなかったノードの /etc/hosts ファイルを検査します。 『クライアントがクラスターを見つけられない』も参照してくださ い。

関連資料:

85 ページの『クライアントがクラスターを見つけられない』 このトピックでは、クライアント上で実行されている clstat ユーティリティーがクラスターを検出できな い状態について説明します。

クライアントがクラスターを見つけられない

このトピックでは、クライアント上で実行されている clstat ユーティリティーがクラスターを検出できな い状態について説明します。

問題

クライアント上で実行されている clstat ユーティリティーが、クラスターを検出できません。 clinfoES デーモンは、そのデーモンが通信できる SNMP 処理を見つけられなかったため、クライアント (clstat な ど)に作成したデータ構成を適切に管理していません。 これは、clinfoES は、クラスター状態情報を SNMP から獲得するため、SNMP がこのデーモンと通信できなければ PowerHA SystemMirror MIB に データを設定できないからです。 その結果として、さまざまな断続的な問題が SNMP と clinfoES 間で 発生する場合があります。

解決方法

自動訂正アクションを有効にして検証を実行することにより、更新されたクライアント・ベースの clhosts ファイルを作成します。これにより、サーバー・ノードに clhosts.client ファイルが作成されます。 この ファイルをクライアントの /usr/es/sbin/cluster/etc/ ディレクトリーにコピーして、名前を clhosts に変更 します。 clinfoES デーモンはこのファイル内のアドレスを使用して、PowerHA SystemMirror サーバー 上で実行される SNMP 処理との通信を試みます。

また、SNMP 処理が実行されているノードや、clstat や他の clinfo API プログラムに問題があるノード 上の /etc/hosts ファイルを検査します。

Clinfo が実行中であるように見えない

このトピックでは、clinfo が実行されていないようになっている状態について説明します。

問題

clinfoES を始動したクラスター・ノードのサービスおよびブート・アドレスが、クライアント・ベースの clhosts ファイルに存在しません。

解決方法

自動訂正アクションを有効にして検証を実行することにより、更新されたクライアント・ベースの clhosts ファイルを作成します。 これにより、サーバー・ノードに clhosts.client ファイルが作成されます。 この ファイルをクライアントの /usr/es/sbin/cluster/etc/ ディレクトリーにコピーして、名前を clhosts に変更 します。 その後で、clstat コマンドを実行します。

ノードがダウンしていることを clinfo が報告しない

このトピックでは、ノードがダウンしていても、ノードが稼働中であると SNMP デーモンおよび clinfoES が報告する状態について説明します。

問題

ノードがダウンしていても、SNMP デーモンおよび clinfoES はノードが稼働中であると報告します。 す べてのノードのインターフェースがダウンしているとリストされます。

解決方法

1 つ以上のノードがアクティブで、他のノードがクラスターに結合しようとする場合、現在のクラスター・ノードは結合するノードが稼働中であるという情報を SNMP デーモンに送信します。 何らかの理由で、ノードがクラスターとの結合に失敗した場合、clinfoES は、ノードがダウンしているということを報告する別のメッセージを SNMP デーモンに送信しません。

クラスターの状態情報を修正するには、「PowerHA SystemMirror クラスター・サービス」SMIT パネルのオプションを使用して、SNMP デーモンを再始動します。

その他の問題

以下のトピックでは、特定のカテゴリーに分類されない潜在的な PowerHA SystemMirror の問題について説明します。

PowerHA SystemMirror のリソース・グループの移動を調査し、rg_move イベントが発生した理由を知るには、必ず /var/hacmp/log/hacmp.out ファイルを調べてください。特に PowerHA SystemMirror において、リソース・グループの処理方法やフォールオーバー環境の優先順位付けが最近変更されたのでhacmp.out ファイルおよびイベント要約が、リソース・グループのアクティビティーと場所を追跡する際にさらに重要になりました。 さらに、リソース・グループの並列処理の場合、hacmp.out ファイルはクラスター・ヒストリー・ログまたは clstrmgr.debug ファイルに示されない詳細を報告します。 テークオーバー・アクティビティーの後にリソース・グループの移動を調査する場合は、必ず早い段階でこのログを検査してください。

/var/hacmp/log/hacmp.out に対して tail -f コマンドを実行するときに出力が限定される場合

このトピックでは、/var/hacmp/log/hacmp.out ファイルで出力が限定される状態について説明します。

問題

スクリプト始動メッセージのみが /var/hacmp/log/hacmp.out ファイルに表示されます。メッセージに指定されたスクリプトは実行不可能であるか、DEBUG レベルが「low (低)」に設定されます。

解決方法

chmod コマンドを使用して、実行可能なアクセス権をスクリプトに追加し、DEBUG レベルが「**high** (高)」に設定されているかどうかを確認します。

クラスターの検証で、不必要なメッセージが出力される

このトピックでは、自動エラー通知を構成したかどうかに関係なく、クラスターの検証でメッセージが返される状態について説明します。

問題

自動エラー通知を構成したかどうかにかかわらず、以下のメッセージが出力されます。

"Remember to redo automatic error notification if configuration has changed."

解決方法

自動エラー通知を構成していない場合は、このメッセージを無視します。

config_too_long メッセージが表示される

このトピックでは、config_too_long メッセージが表示されるシナリオについて説明します。

このメッセージは、指定されたタイムアウト期間内にクラスター・イベントが完了しないたびに出されま す。

4.5 より前のバージョンでは、タイムアウト期間はすべてのクラスター・イベントについて固定され、デフ ォルトでは 360 秒に設定されていました。 node up または node down イベントなどのクラスター・イ ベントが、360 秒より長く続いた場合、30 秒ごとに PowerHA SystemMirror は、hacmp.out ファイルに ログ記録された config_too_long 警告メッセージを発行しました。

PowerHA SystemMirror では、クラスター・イベントに許容される時間枠をカスタマイズして、 PowerHA SystemMirror がシステム警告を出す前にクラスター・イベントを完了させることができます。

hacmp.out の「Event Start (イベントの開始)」にこのメッセージが出力される場合は、以下のように出力 されます。

config too long \$sec \$event name \$argument<</pre>

- \$event name は、失敗した再構成イベントです。
- \$argument は、イベントが使用するパラメーターです。
- \$sec はメッセージの送信までの秒数です。

PowerHA SystemMirror 4.5 より前のバージョンでは、アクションが実行されるまで、30 秒ごとに hacmp.out ファイルに config_too_long メッセージが付加され続けます。

バージョン 4.5 で始動し、指定したイベント期間内に完了しない各クラスター・イベントの場合は、 config_too_long メッセージが hacmp.out ファイルにログ記録され、以下の形式にしたがってコンソール に送信されます。

- 最初の 5 つの config_too_long メッセージは 30 秒間隔で hacmp.out ファイルに表示されます。
- 次の5つのメッセージは、間隔が1時間に達するまで直前の2倍の間隔で表示されます。
- これらのメッセージは、イベントが完了するまで、あるいはイベントがそのノードで終了するまで毎時 間ログに記録されます。

このメッセージは、以下の問題に対する応答として出力されます。

問題

スクリプトが実行しているアクティビティーに、完了までに指定の時間より長い時間がかかります (この状 態は、多くのディスクや複雑なスクリプトが関係するイベントなどで発生します)。

解決方法

- 実行に長い時間がかかっているプロセスを判別し、可能な場合はそのプロセスを訂正するか簡素化しま す。
- config_too_long を呼び出すまでの待機時間を増やします。

SMIT の「Change/Show Time Until Warning (警告までの時間の変更/表示)」パネルを使用すれば、 「Event Duration Time (イベント期間)」をカスタマイズできます。 このパネルにアクセスするには、 「Extended Configuration (拡張構成)」>「Extended Event Configuration (拡張イベント構成)」SMIT パネルを選択します。

再開を実行するまでコマンドがハングし、イベント・スクリプトが待機します。 その場合、AIX プロセス・テーブル (ps -ef) でコマンドを表示できます。 可能性が非常に高いのは、config_too_long スクリプト出力の前の /var/hacmp/log/hacmp.out ファイルの最後のコマンドです。

解決方法

hung コマンドを終了する必要がある場合があります。

問題

アプリケーション・コントローラーの始動スクリプト用にフォアグラウンド始動プロセスが指定されましたが、そのスクリプトが終了しません。

注: この問題は、PowerHA SystemMirror 7.1.1 以降を使用する場合にのみ発生します。

解決方法

始動スクリプトが正しく機能しているかどうかを調べます。スクリプトのハングの可能性がある場合は、フォアグラウンド始動ではなく、バックグラウンド始動オプションを始動モニターと組み合わせて使用することを検討してください。

関連資料:

93 ページの『動的再構成でロックが設定される』

このトピックでは、動的再構成の試行時にエラー・メッセージが生成される状態について説明します。

関連情報:

警告が出されるまでのイベント期間の調整

コンソールに SNMP メッセージが表示される

このトピックでは、/etc/syslogd ファイルが出力を誤ったロケーションに送信する状態について説明します。

問題

/etc/syslogd ファイルが、daemon.notice 出力を /dev/console に送信するよう変更されました。

解決方法

daemon.notice 出力を /usr/tmp/snmpd.log にリダイレクトするように /etc/syslogd ファイルを編集します。 snmpd.log ファイルは、メッセージのロギング用のデフォルト・ロケーションです。

計画外のシステム・リブートによりフォールオーバーの試行が失敗する

このトピックでは、計画外のシステム・リブートが行われたときにフォールオーバーしようとしてもフォールオーバーできない可能性がある状況について説明します。

問題

システムをリブートした後にクラスター・ノードがフォールオーバーしません。

解決方法

計画外のシステム・リブートによるクラスター環境でのフォールオーバーの障害を回避するには、クラスタ ーのすべてのノードで、「Change/Show Characteristics of Operating System (オペレーティング・シス テムの特性の変更/表示)」SMIT パネルの「Automatically REBOOT a system after a crash (クラッシ ュ後にシステムを自動リブート)」フィールドで、「false」に設定するか、通常の操作時に、IBM System p キーをセキュア・モードにしておく必要があります。

いずれの方法も shutdown コマンドが不用意に発行された場合に、システムがリブートするのを回避しま す。 これらの方法が 1 つでも適切でない場合、計画外のリブートが発生すると、リブート中ノードのディ スクに対するアクティビティーにより、他のノードが正常にディスクを獲得できなくなる場合があります。

削除されたオブジェクトまたは関係のないオブジェクトが NetView マップに表示される このトピックでは、NetView マップについて、および削除されたオブジェクトや、関係のないオブジェク トが表示された場合の対処方法について説明します。

問題

NetView マップに、すでに削除したオブジェクト・シンボルまたは余分なオブジェクト・シンボルが出力 されます。

解決方法

NetView データベースの構築

NetView データベースを再構築するために、NetView サーバーで以下の手順を実行します。

1. すべての NetView デーモンを停止します。

/usr/OV/bin/ovstop -a

2. NetView サーバーからデータベースを削除します。

rm -rf /usr/OV/database/*

3. 以下のように、NetView オブジェクト・データベースを始動します。

/usr/OV/bin/ovstart ovwdb

4. 「NetView/HAView」フィールドを復元します。

/usr/OV/bin/ovw -fields

5. すべての NetView デーモンを始動します。

/usr/OV/bin/ovstart -a

F1 キーを押しても SMIT パネルにヘルプが表示されない

このトピックでは、F1 キーを押しても SMIT パネルにヘルプが表示されないシナリオについて説明しま す。

問題

SMIT パネルで F1 キーを押してもヘルプは表示されません。

解決方法

ヘルプが表示されるのは、PowerHA SystemMirror でサポートされるいずれかの言語に LANG 変数を設定し、関連する PowerHA SystemMirror メッセージ・カタログをインストールしている場合のみです。 PowerHA SystemMirror でサポートされる言語は以下のとおりです。

- en_US
- ja_JP

インストール済みロケール (bsl LPP) をリストするには、以下のように入力します。

locale -a

アクティブなロケールをリストするには、以下のように入力します。

locale

LANG 環境変数がアクティブ・ロケールを決定するため、LANG=en_US の場合のロケールは en_US となります。

イベント要約表示が大きくなりすぎる

このトピックでは、/usr/es/sbin/cluster/cl_event_summary.txt ファイル (イベント要約表示) が大きくなりすぎる状態について説明します。

問題

PowerHA SystemMirror では、イベント要約は、hacmp.out ファイルから呼び出され、cl_event_summary.txt ファイルに保管されます。このファイルは hacmp.out サイクルに従って累積され続け、自動的に切り捨てられたり置換されたりすることはありません。 その結果、このファイルが大きくなりすぎて /usr ディレクトリーがいっぱいになります。

解決方法

SMIT の「Problem Determination Tools (問題診断ツール)」>「PowerHA SystemMirror Log Viewing and Management (PowerHA SystemMirror ログの表示および管理)」>「View/Save/Remove PowerHA SystemMirror Event Summaries (PowerHA SystemMirror イベント要約の表示/保存/除去)」
>「Remove Event Summary History (イベント要約ヒストリーの除去)」オプションを使用して、定期的にイベント要約をクリアしてください。

「View event summaries (イベント要約の表示)」でリソース・グループ情報が予想どおりには表示されない

このトピックでは、「View event summaries (イベント要約の表示)」でリソース・グループ情報が予想どおりには表示されない状況について説明します。

問題

PowerHA SystemMirror では、イベント要約は hacmp.out ファイルから呼び出され、SMIT の「Problem Determination Tools (問題診断ツール)」>「PowerHA SystemMirror Log Viewing and Management (PowerHA SystemMirror ログの表示および管理)」>「View/Save/Delete Event Summaries (イベント要約の表示/保管/除去)」>「View Event Summaries (イベント要約の表示)」オプションを使用して表示できます。 この表示の末尾には、リソース・グループの状況およびロケーション情報が含まれます。 リソース・グループ情報は、clRGinfo により収集され、「View Event Summaries (イ

ベント要約の表示)」オプションの実行時にクラスターが実行されていない場合には、余分な時間がかかる ことがあります。

解決方法

clRGinfo は、クラスター実行時にはより迅速にリソース・グループ情報を表示します。

クラスターが実行中でない場合は、リソース・グループ情報が表示されるまでに数分かかります。

アプリケーション・モニターの問題

アプリケーション・モニターを実行している場合に、モニターの状態や構成を調べる必要が生じることがあ ります。 発生する可能性のあるいくつかの問題と、その診断方法および処置を以下に示します。

問題

アプリケーション・モニターの状態の検査。 状況によっては、アプリケーション・モニターが現在実行中 かどうかはっきりしないことがあります。 アプリケーション・モニターの状態をチェックするには、次の コマンドを実行します。

ps -ef | grep <application controller name> | grep clappmond

アプリケーションがモニターされている場合、このコマンドにより、長い行の冗長な出力が生成されます。

出力がない場合、アプリケーションはモニターされていません。

解決方法

アプリケーション・モニターが稼働していない場合、以下のような多くの理由が考えられます。

- アプリケーション・コントローラー用にモニターが構成されていません。
- 安定化間隔が完了していないため、モニターがまだ開始していません。
- モニターが中断状態になっています。
- モニターが正しく構成されていません。
- エラーが発生しました。

何か異常があると結論づける前に、モニターが構成されているか、安定化間隔が終了しているか、モニター が停止状態になっていないかをチェックしてください。

明らかに障害が発生している場合は、SMIT でモニターの元の構成を再度検査して、必要に応じて再構成し ます。

問題 2

アプリケーション・モニターが、指定した障害処置を実行しません。 アプリケーションに明らかに障害が 発生しているにもかかわらず、指定された障害処置が行われません。

解決方法 2

再始動間隔を検査します。 設定が短すぎる場合、再始動カウンターがすぐにゼロにリセットされてしまう ため、再始動の試行が限りなく続けられ、他の処置が実行できない可能性があります。

アプリケーション・モニターで、アプリケーションが正しく機能していることが示されないことがあります。

解決方法 3

- モニターがあらゆる場合に正しい終了コードを返すように作成されていることを確認します。戻り値は、アプリケーションが良好に機能している場合はゼロになり、アプリケーションに障害が発生している場合はゼロ以外の値にならなければなりません。
- 終了コードがアプリケーションの状態と整合することを確認するために、エラー・パスも含め、コードを通過する可能性があるすべてのパスを検査します。

問題 4

どのような場合にモニターが稼働するのか判別できません。

解決方法 4

モニターによって作成されたログ・ファイルを検査します。モニターは、メッセージを標準出力 **stdout** ファイルに出力することによって、メッセージを口グに記録することができます。長期モニターの場合、出力は **/var/hacmp/log/clappmond.**application monitor name.resource group name.monitor.**log** ファイルに保管されます。 始動モニターの場合、この出力は **/var/hacmp/log/clappmond.**application server name.resource group name.monitor.**log** ファイルに保管されます。モニター・ログ・ファイルは、アプリケーション・モニターが実行されるたびに上書きされます。

クラスター・ディスク交換プロセスが失敗する

このトピックでは、クラスター・ディスク交換プロセスが失敗したときの対処方法について説明します。

問題

ディスク交換プロセスが、replacepv コマンドの実行中に失敗しました。

解決方法

/tmp/replacepv ディレクトリーを削除し、交換プロセスを再度試みます。

別のディスクでこのプロセスを実行してみることもできます。

rg move イベントが一度にいくつかのリソース・グループを処理する

このトピックでは、rg_move イベントが一度に複数のリソース・グループを処理する状態について説明します。

問題

hacmp.out では、rg_move イベントが複数の非コンカレント・リソース・グループを一度の操作で処理します。

解決方法

これは予想された動作です。依存関係を持つクラスターでは、PowerHA SystemMirror はすべてのリソース・グループを node_up イベント時に rg_move イベントを介して処理します。単一の rg_move イベン

ト時には、PowerHA SystemMirror は 1 つのイベント内で複数の非コンカレント・リソース・グループ を処理します。

関連資料:

33 ページの『従属リソース・グループまたはサイトを有するクラスター内の処理』 従属グループまたはサイトを設定したクラスターのリソース・グループは、動的イベント変換で処理されま す。

ファイルシステムがアンマウントされない

このトピックでは、ファイルシステムがアンマウントされないシナリオについて説明します。

問題

リソース・グループをオフラインにするオプションを指定してクラスター・サービスを停止するなどのイベ ント時に、ファイル・システムは正常にアンマウントされません。

解決方法

リソース・グループをオフラインにするオプションを指定してクラスター・サービスを停止するとファイ ル・システムがアンマウントに失敗する一般的な理由の 1 つに、ファイル・システムが使用中である場合 があります。 ファイル・システムを正常にアンマウントするには、アンマウント時に、プロセスまたはユ ーザーが、そのファイル・システムにアクセスしてはなりません。 ユーザーまたはプロセスが保持してい ると、ファイル・システムは「busy (使用中)」のままで、アンマウントされません。

削除されたファイルが開いたままになっている場合、同じ問題が発生する可能性があります。

アプリケーション停止スクリプトには、共用ファイル・システムが使用中でなく、削除されておらず、オー プンされた状態でもないことを確認する検査も含める必要があります。 この確認には、fuser コマンドを 使用します。スクリプトで fuser コマンドを使用し、問題のファイル・システムにアクセスしているプロ セスまたはユーザーを確認します。 これらのプロセスの PID を取得して kill することができます。 フ ァイル・システムが解放されれば、アンマウントすることができます。

このコマンドの詳細については、AIX のマニュアル・ページを参照してください。

動的再構成でロックが設定される

このトピックでは、動的再構成の試行時にエラー・メッセージが生成される状態について説明します。

問題

他の動的再構成 (DARE) 操作が処理中の場合、または以前の DARE 操作が適切に完了しなかった場合に は、DARE 操作の試行時に、DARE ロックに関するエラー・メッセージが生成される場合があります。

エラー・メッセージは、DARE 操作が処理中でない場合に、ロックをクリアする処置を取る必要があるこ とを示します。 この場合の「In process (処理中)」は、発行された可能性がある別の DARE 操作を示し ますが、正しく完了しなかった以前の DARE 操作も示します。

解決方法

最初のステップは、クラスター・ノードの /var/hacmp/log/hacmp.out ログを調べて、以前の DARE が失 敗した原因を判別します。 イベント・スクリプトの操作が長くなり完了できない場合に、config_too_long エントリーが hacmp.out に表示されることがよくあります。 hacmp.ou が、一部のエラーが原因でスクリプトが完了されなかったことを示す場合は、この問題を修正し、イベントの完了に必要な残りの手順を手動で完了します。

PowerHA SystemMirror SMIT の「Problem Determination Tools (問題判別ツール)」>「Recover from PowerHA SystemMirror Script Failure (スクリプト障害からの回復)」オプションを実行します。これによって、クラスターのノードが次の完全イベント状態になります。

PowerHA SystemMirror SMIT の「Recover from PowerHA SystemMirror Script Failure (PowerHA SystemMirror スクリプト障害の回復)」でクリアできなかった場合は、PowerHA SystemMirror SMIT オプションの「Problem Determination Tools (問題判別ツール)」>「Release Locks Set by Dynamic Configuration (動的構成によって設定されたロックの解除)」を選択すると DARE ロックをクリアできます。

WPAR 対応のリソース・グループに関する問題

このトピックでは、WPAR 対応のリソース・グループに関して発生する可能性のある問題について説明します。

問題

リソース・グループが、特定のノード上の WPAR でオンラインになりません。

解決方法

- 1. 問題のノードが WPAR 対応であることを確認します。 WPAR 対応の AIX ノードには bos.wpars ファイルセットがインストールされていなければなりません。 ノードが WPAR 対応でない場合、リソース・グループは WPAR で実行されません。 このファイルセットがインストールされているかどうかをチェックするには、次のコマンドを発行します。
 - lslpp -L "bos.wpars"
- 2. 指定のノードで、WPAR 対応のリソース・グループと同じ名前を持つ WPAR があることを確認します。 この確認には、1swpar <resource group name> コマンドを使用します。 指定の名前を持つ WPAR がない場合は、mkwpar コマンドで作成します。 WPAR を作成した後、WPAR 対応のリソース・グループに関連付けられたすべてのユーザー定義スクリプトが WPAR 内にアクセスできることを確認してください。
- 3. ノード上のファイルシステムがいっぱいになっていないことを確認します。いっぱいになっている場合は、いくつかのファイルを外部ストレージに移動して、ディスク・スペースを一部空けてください。
- 4. 対応する WPAR で rsh サービスが使用可能になっていることを確認します。 これは次のようにして 実行できます。
 - WPAR で次のコマンドを発行して、inetd サービスが WPAR で実行されていることを確認します。

lssrc -s inetd

inetd サービスがアクティブではない場合は、startsrc コマンドで inetd サービスを開始します。

• WPAR 内の /etc/inetd.conf ファイルに rsh が、認識されているサービスとしてリストされている ことを確認します。

SNMP ベースの状況コマンドのトラブルシューティング

このセクションでは、SNMP ベースの状況コマンド (clstat、cldump、および cldisp) の失敗の原因になる可能性がある問題について説明します。

Simple Network Management Protocol (SNMP) は、管理情報ベース (MIB) と呼ばれる、状況変数と構 成変数のデータベースへのアクセスを提供します。基本 AIX で提供される SNMP サブシステムは、MIB 全体のサブセットを提供するだけでなく、MIB のその他の部分へのアクセスを提供するピア・デーモンと も連携することができます。SystemMirror クラスター・マネージャー・デーモンは、そのようなピアとし て動作し、MIB 内の SystemMirror 固有の変数へのアクセスを提供します。

SNMP やそれに依存するユーティリティーで問題が起きたときは、まず基本 SNMP 構成が機能している ことを確認し、次に SystemMirror 固有機能の検査に進みます。

snmpinfo コマンドを使用して、SNMP の基本機能を検査できます。 MIB のデフォルト部分を表示する には、snmpinfo -m dump コマンドを使用します。このコマンドで出力が生成されない場合は、SNMP の基本セットアップと snmpd サブシステム自体に問題があります。snmpd サブシステムが稼働している ことを確認し、以下のセクションの手順に従って、基本的な snmpinfo コマンドが機能していることを確 認してください。

基本機能が稼働していることを確認した後、次のコマンドを使用して、MIB の SystemMirror 固有の部分 に照会を行うことができます。

snmpinfo -m dump -v -o /usr/sbin/cluster/hacmp.defs risc6000clsmuxpd

上記のコマンドで出力が生成されない (しかも、snmpinfo -m dump では生成される) 場合は、MIB の SystemMirror 部分に固有な問題です。下記の手順に従って、SystemMirror 固有のコンポーネントの状況 と構成を確認してください。

問題

AIX オペレーティング・システムに同梱されている snmpdv3.conf ファイルには、2 つの一般的な問題が あります。それらは、以下のとおりです。

- SNMP 管理情報ベース (MIB) の internet 部分へのアクセスがコメント化されています。
- PowerHA SystemMirror 7.1.2 では、IPv6 ループバック・アドレスの COMMUNITY エントリーがあ りません。

これらの問題を解決するには、『一般的な SNMP の問題のトラブルシューティング』の手順を実行しま す。ただし、最初の 2 つの問題を修正した後でも、他の問題によって、依然として SNMP 状況コマンド の正しい機能が阻害される場合があります。これらの問題を解決するには、 97 ページの『SNMP の状況 コマンドのトラブルシューティング』の手順を実行します。それでも状況コマンドが失敗する場合は、 98 ページの『snmpdv3.conf ファイルのトラブルシューティング』セクションの手順を実行して、残りの問題 を解決します。

解決方法

一般的な SNMP の問題のトラブルシューティング:

このトピックは、一般的な 2 つの問題の解決に役立ちます。通常、これらの問題の修正により、問題は解 決し、他のセクションを読む必要がなくなる可能性があります。

1. SNMP 構成ファイルで、SNMP 管理情報ベース (MIB) の PowerHA 部分に対するアクセス許可があ るかどうかを検査します。/etc/snmpdv3.conf ファイル内で defaultView エントリーを見つけます。

```
# grep defaultView /etc/snmpdv3.conf
#VACM VIEW defaultView
                            internet
                                                       included -
VACM VIEW defaultView
                            1.3.6.1.4.1.2.2.1.1.1.0 - included -
VACM VIEW defaultView
                           1.3.6.1.4.1.2.6.191.1.6 - included -
VACM_VIEW defaultView
VACM VIEW defaultView
                           snmpModules
                                                       excluded -
VACM VIEW defaultView
                           1.3.6.1.6.3.1.1.4
                                                       included -
```

VACM_VIEW defaultView 1.3.6.1.6.3.1.1.5 - included - VACM_VIEW defaultView 1.3.6.1.4.1.2.6.191 - excluded - VACM_ACCESS group1 - noAuthNoPriv SNMPv1 defaultView - defaultView -

AIX 7.1 以降、セキュリティー上の予防措置として、snmpdv3.conf ファイルは internet アクセスがコメント化されて出荷されています。上記の例は、未修正の構成ファイルを示しています。internet ディスクリプターがコメント化されており、これは、PowerHA 情報を含む MIB の大部分に対するアクセス権限がないことを意味します。 (その他の included エントリーは、これ以外の MIB の限られた部分に対するアクセスを提供します。)AIX 7.1 以降のデフォルトでは、snmpdv3.conf ファイルを編集しない限り、PowerHA の SNMP ベースのコマンドは機能しません。 PowerHA MIB へのアクセスを提供するには、次の 2 つの方法があります。

• snmpdv3.conf ファイルで、次の internet 行をアンコメントします。

VACM_VIEW defaultView internet - included -

これにより、MIB 全体にアクセスできるようになります。

• MIB 全体へのアクセス権を提供したくない場合は、snmpdv3.conf ファイルに次の行を追加します。これにより、PowerHA MIB だけにアクセスできるようになります。

VACM VIEW defaultView risc6000clsmuxpd - included

注: SNMP 構成ファイルを編集した後、以下のコマンドを使用して、snmpd をいったん停止して再始動してから、クラスター・マネージャーをリフレッシュする必要があります。

stopsrc -s snmpd
startsrc -s snmpd
refresh -s clstrmgrES

SNMP ベースの状況コマンドを再試行します。コマンドが機能する場合、このセクションの残りの部分を読む必要はありません。

- 2. PowerHA SystemMirror 7.1.2 またはそれ以降を使用している場合は、clinfoES および snmpd の構成ファイルに正しい IPv6 エントリーが存在するかどうかを検査します。 PowerHA 7.1.2 では、IPv6をサポートするために、/usr/es/sbin/cluster/etc/clhosts ファイルに 1 つのエントリーが追加されています。しかし、これに対応する必須エントリーが /etc/snmpdv3.conf ファイルに追加されていません。このため、clstat コマンドで再現性の低い問題が発生します。 この問題に対処するには、次の 2 つの方法があります。
 - IPv6 を使用する計画でない場合は、/usr/es/sbin/cluster/etc/clhosts ファイル内の該当する行をコメント化し、以下のコマンドを使用して clinfoES を再始動します。

::1 # PowerHA SystemMirror
stopsrc -s clinfoES
startsrc -s clinfoES

SNMP ベースの状況コマンドを再試行します。コマンドが機能する場合、このセクションの残りの部分を読む必要はありません。

• 将来 IPv6 を使用する計画の場合は、/snmpdv3.conf ファイルに次の行を追加します。

COMMUNITY public public noAuthNoPriv :: 0 -

別の (public 以外の) コミュニティーを使用している場合は、public という語をそのコミュニティーの名前に置き換えます。

注: SNMP 構成ファイルを編集した後、以下のコマンドを使用して、snmpd をいったん停止して再始動してから、クラスター・マネージャーをリフレッシュする必要があります。

stopsrc -s snmpd startsrc -s snmpd refresh -s clstrmgrES

SNMP ベースの状況コマンドを再試行します。コマンドが機能する場合、次のセクションを読む必要 はありません。

SNMP の状況コマンドのトラブルシューティング:

このトピックは、一般的な問題を修正した後でも依然として SNMP ベースの状況コマンドの機能を阻害す る可能性がある、その他の問題の解決に役立ちます。

1. 次のコマンドを実行して、snmpd が稼働しているかどうかを検査します。

1ssrc -s snmpd

稼働していない場合は、次のコマンドを実行して、snmpd を始動します。

startsrc -s snmpd

2. 次のコマンドを実行して、クラスター・サービスが稼働しているかどうかを検査します。

lssrc -ls clstrmgrES | grep state (looking for a state of ST STABLE)

稼働していない場合は、クラスター・サービスを開始します。クラスター・サービスが稼働していない 場合は、どの SNMP 状況コマンドも機能しません。

- 3. clstat コマンドを使用している場合は、/usr/es/sbin/cluster/etc/clhosts ファイルが正しいかどうかを検 査します。clhosts ファイルには、clinfoES デーモンが通信できる PowerHA ノードの IP アドレス のリストが入っている必要があります。 (好ましいのは永続アドレスです。クラスター・ノードに属さ ないアドレスがファイルに入っている場合、さらなる問題の原因になる可能性があります。) あるシス テムのファイルを編集したら、そのシステムで clinfoES を再始動する必要があります。
 - クラスター・ノードでの操作
 - デフォルトでは、clhosts ファイルに事前にローカル・ホスト・アドレスが入力されています。 クラスター内のすべてのノードのエントリーを追加することができ、これにより、clstat コマン ドはクラスター・サービスがノード上で稼働している間、機能します。
 - PowerHA SystemMirror 7.1.2 以降、デフォルトの clhosts ファイルに IPv6 ループバック・ア ドレスのエントリーが追加されています。 95 ページの『一般的な SNMP の問題のトラブルシ ューティング』セクションで説明されているように、この行をコメント化するか、または SNMP 構成ファイルに IPv6 ループバック・アドレスの行を追加することができます。
 - クライアント・システムでの操作
 - デフォルトでは、clhosts ファイルは空になっています。ユーザーは、クラスター・ノードのア ドレスを追加する必要があります。
- 4. clstat コマンドを使用している場合は、次のコマンドを実行して、clinfoES が稼働しているかどうか を検査します。

lssrc -s clinfoES

稼働していない場合は、次のコマンドを実行して始動します。

startsrc -s clinfoES

ヒント:この問題を回避するために、クラスター・サービスを開始するときは、常に clinfoES を始動 してください。

5. **snmpd** が **smux** ポートで listen を行っているかどうか、およびクラスター・マネージャーが接続されているかどうかを検査します。 次の **netstat** コマンドを実行して、**smux** ポートを使用しているアクティブなソケットをリストします。

netstat -Aa | grep smux
f1000e0002988bb8 tcp 0 *.smux *.* LISTEN
f1000e00029d8bb8 tcp4 0 0 loopback.smux loopback.32776 ESTABLISHED
f1000e00029d4bb8 tcp4 0 0 loopback.32776 loopback.smux ESTABLISHED
f1000e000323fbb8 tcp4 0 0 loopback.smux loopback.34266 ESTABLISHED
f1000e0001b86bb8 tcp4 0 0 loopback.34266 loopback.smux ESTABLISHED

LISTEN 状態にあるソケットが表示されない場合は、次のコマンドを使用して、snmpd をいったん停止してから始動します。

stopsrc -s snmpd; startsrc -s snmpd

- 6. LISTEN 状態の smux ソケットができたら、クラスター・マネージャーが所有するソケットの 1 つを持つ ESTABLISHED 状態のソケット・ペアを探します。rmsock コマンドを使用して、どのプロセスがソケットを所有しているかを知ることができます。snmpd を再始動したばかりである場合は、smux ポートに LISTEN ソケットが存在することを確認します。 ESTABLISHED 状態の smux ソケットが 1 つも表示されない場合は、クラスター・マネージャーをリフレッシュするか (refresh -s clstrmgrES)、数分間待ちます。その後、netstat -Aa コマンドを再試行します。クラスター・マネージャーはサービスが開始されたとき、およびサービス開始後の数分ごとに、snmpd への接続を試みます。リフレッシュ・コマンドを実行すると、クラスター・マネージャーは即時に snmpd への接続を試みます。クラスター・マネージャーに対しては、stopsrc および startsrc を使用しないでください。
- 7. **rmsock** を使用して、**ESTABLISHED** 状態の **smux** ソケットの所有者を見つけます。**netstat** 出力の最初のフィールド (これはソケットのメモリー・アドレスです) を、**rmsock** への引数として使用します。 次に例を示します。

rmsock f1000e00029d4bb8 tcpcb The socket 0xf1000e00029d4808 is being held by proccess 4063356 (muxatmd). # rmsock f1000e0001b86bb8 tcpcb The socket 0xf1000e0001b86808 is being held by proccess 18546850 (clstrmgr).

この例では、2 つの **ESTABLISHED** ソケット・ペアが存在します。snmpd と muxatmd の間の 1 つと、snmpd とクラスター・マネージャーの間の 1 つです。

8. SNMP ベースの状況コマンドを再試行します。コマンドが機能する場合、次のセクションを読む必要はありません。

snmpdv3.conf ファイルのトラブルシューティング:

このトピックは、SNMP 構成ファイルに関連した問題の解決に役立ちます。

1. 次のコマンドを使用して、稼働している snmpd のバージョンを判別します。

ls -l /usr/sbin/snmpd

lrwxrwxrwx 1 root system 9 May 14 22:19 /usr/sbin/snmpd -> snmpdv3ne

snmpdv1 は /etc/snmpd.conf ファイルを使用し、snmpdv3 は /etc/snmpdv3.conf ファイルを使用します。

注: この手順の残りの部分では、デフォルト・バージョンである snmpdv3 デーモンが稼働していることを想定しています。

2. snmpdv3.conf ファイルの認証とアクセス制御 (許可) の設定を検査します。clinfoES、cldump、および cldisp は、コミュニティー・ベースの認証を使用します。それらは、構成ファイルにリストされている最初のコミュニティーを使用します。まれにですが、clinfoES に対してコミュニティーを指定することもできます。 この設定を検査するには、次のコマンドを使用します。

odmget SRCsubsys | grep -p clinfo

cmdargs フィールドの値を探します。

- このフィールドが空の場合、clinfoES は構成ファイル内の最初の COMMUNITY エントリーを使 用します。
- このフィールドが -c community_name に設定されている場合、clinfoES は community_name を使用します。

注: clinfoES によって使用されるコミュニティーを変更したい場合は、chssys コマンドを使用しま す。clinfoES によって使用されるコミュニティーを変更した後、clinfoES を再始動する必要があり ます。

3. snmpdv3.conf ファイル内で最初の SNMP コミュニティーを見つけます。

grep -i comm /etc/snmpdv3.conf | grep -v ^# COMMUNITY powerha powerha noAuthNoPriv 0.0.0.0 0.0.0.0 COMMUNITY test test noAuthNoPriv 0.0.0.0 0.0.0.0

この例では、最初のコミュニティーは powerha です。

- アンコメントされたコミュニティー・エントリーがない場合は、snmpdv3.conf ファイルにエント リーを追加する必要があります。これらのエントリーをテンプレートとして使用できます。任意の テキスト・ストリングをコミュニティー名として使用します (ただし、public は、ありふれている ので、良い選択肢とは考えられません)。コミュニティー名は、行内の 2 番目と 3 番目のフィール ドにする必要があります。
- 変更を有効にするためには、ファイルを編集した後に snmpd を再始動する必要があります。ただ し、再始動の前に、その他の変更が必要かどうか、ファイルの残りの部分を確認してください。
- 4. snmpdv3 デーモンは、アクセス制御に View-based Access Control Model (VACM) を使用します。 使用しているコミュニティーに関連付けられている VACM_GROUP、VACM_ACCESS、

VACM_VIEW の各エントリーを見つけます。

a. 最初のコミュニティーに関連付けられているグループを見つけます。構成ファイルの中で、コミュ ニティー名を検索してください。その例を次に示します。

grep powerha /etc/snmpdv3.conf VACM GROUP group1 SNMPv1 powerha -TARGET PARAMETERS trapparms1 SNMPv1 SNMPv1 powerha noAuthNoPriv -COMMUNITY powerha powerha noAuthNoPriv 0.0.0.0 0.0.0.0

この例では、VACM_GROUP が group1 です。

b. 識別されたグループを検索して、このグループに関連付けられているビューを見つけます。そのビ ューは VACM_ACCESS エントリーにリストされています。

grep group1 /etc/snmpdv3.conf VACM GROUP group1 SNMPv1 powerha -VACM_ACCESS group1 - - noAuthNoPriv SNMPv1 defaultView - defaultView -

VACM ACCESS エントリーの構文は、以下のとおりです。

VACM ACCESS groupName contextPrefix contextMatch securityLevel securityModel readView writeView notifyView storageType

readView アクセスのビューの名前を探します。この例では、グループ group1 の readView お よび notifyView アクセスに defaultView が使用されています。writeView と storageType の アクセスは提供されていません。

c. 識別したビューを検索することにより、このコミュニティーに関連付けられている VACM VIEW エントリーを見つけます。

```
# grep defaultView /etc/snmpdv3.conf
#VACM VIEW defaultView
                                                       - included -
VACM VIEW defaultView
                            1.3.6.1.4.1.2.2.1.1.1.0
                                                      included -
VACM_VIEW defaultView
                            1.3.6.1.4.1.2.6.191.1.6
                                                      included -
VACM VIEW defaultView
                            snmpModules
                                                      - excluded -
VACM VIEW defaultView
                            1.3.6.1.6.3.1.1.4
                                                       - included -
VACM VIEW defaultView
                            1.3.6.1.6.3.1.1.5
                                                       - included -
VACM VIEW defaultView
                            1.3.6.1.4.1.2.6.191
                                                      excluded -
VACM_ACCESS group1 - - noAuthNoPriv SNMPv1 defaultView - defaultView -
```

- 1) PowerHA MIB へのアクセス権限を与える VACM_VIEW エントリーを探します。MIB 内のロケーションは、数値のストリング (オブジェクト ID (OID)) または名前 (オブジェクト・ディスクリプター) のいずれかによって識別されます。この例では、最初のエントリーはオブジェクト・ディスクリプター internet を使用しています。それは OID 1.3.6.1 に対応します。この行がアンコメントされている場合は、MIB 全体、つまり、1.3.6.1 と 1.3.6.1 で始まるすべてのもの (これは事実上 SNMP MIB 全体です) へのアクセスが許可されます。
- 2) ただし、この例では、internet ディスクリプターがコメント化されており、これは、そのレベルのアクセス権限がないことを意味します。 AIX 7.1 以降、セキュリティー上の予防措置として、snmpdv3.conf ファイルは internet アクセスがコメント化されて出荷されています。これは、AIX 7.1 以降では、snmpdv3.conf ファイルを編集しない限り、デフォルトで PowerHA SNMP ベースの状況コマンドが機能しないことを意味します。また、関連する VACM_VIEW エントリーの最後から 2 番目のフィールドに、excluded でなく included という語があることを確認してください。
- 3) 95 ページの『一般的な SNMP の問題のトラブルシューティング』のセクションで説明されているように、PowerHA MIB へのアクセスを提供するには、2 つの方法があります。
 - snmpdv3.conf 内の internet 行をアンコメントします。これにより、MIB 全体にアクセス できるようになります。
 - PowerHA MIB のみへのアクセスを提供する行を追加します。PowerHA MIB は、オブジェクト・ディスクリプターまたは OID によって識別できます。
- 5. **snmpdv3.conf** ファイルを編集して、最初のコミュニティーが PowerHA MIB にアクセスできるようにします。必ず、ファイル内の最初の **COMMUNITY** エントリーが **VACM_GROUP** エントリーにマップされ、そのエントリーが **VACM_ACCESS** エントリーにマップされ、そのエントリーが、 PowerHA MIB を含んでいる **VACM_VIEW** にマップされるようにする必要があります。 この例で必要となる変更は、**risc6000clsmuxpd** オブジェクト・ディスクリプターの **VACM_VIEW** エントリーを追加することだけです。

VACM VIEW defaultView risc6000clsmuxpd - included -

6. snmpdv3.conf ファイルを編集した場合は、snmpd を再始動します。

注: snmpd に対して、refresh コマンドでなく、stopsrc コマンドと startsrc コマンドを使用する必要があります。

stopsrc -s snmpd; startsrc -s snmpd

- 7. 97 ページの『SNMP の状況コマンドのトラブルシューティング』のセクションで説明されているように、ステップ 5、6、7 を繰り返して、クラスター・マネージャーが確実に **snmpd** に接続されるようにします。
- 8. SNMP ベースの状況コマンドを再試行します。

ノードとリポジトリー・ディスクで同時に障害が発生する

このトピックでは、ノードとリポジトリー・ディスクに同時に障害が発生したときの対処方法について説明 します。

問題

データ・センター障害などのイベント時に、ノードとリポジトリー・ディスクで同時に障害が発生する。

解決方法

データ・センターの障害時などにおけるノードとリポジトリー・ディスクの同時障害では、すべてのノード を再始動する前に、リポジトリー・ディスクの交換が必要になる場合があります。

1. リポジトリー・ディスクを交換するには、次の SMIT (System Management Interface Tool) パスを使 用します。

\$ smitty sysmirror

>Problem Determination Tools > Replace the Primary Repository Disk

注: リポジトリー・ディスクの交換中にダウン状態にあるノードは、リブートを行った後も、元の (交 換前の) リポジトリー・ディスクへのアクセスを続行します。元の (交換前の) リポジトリー・ディス クが再び使用可能になると、Cluster Aware AIX (CAA) クラスター・サービスは、そのディスクの使 用を開始します。ノードはダウン状態のままです。

2. ノードの状況を確認するには、次のコマンドを入力します。

lscluster -m

このコマンドにより、次のような出力が作成されます。

Calling node query for all nodes... Node query number of nodes examined: 2

Node name: halclA

Cluster shorthand id for node: 1

UUID for node: 1ab63438-d7ed-11e2-91ce-46fc4000a002

State of node: DOWN NODE LOCAL

Node name: ha2c1A

Cluster shorthand id for node: 2

UUID for node: 1ac309e2-d7ed-11e2-91ce-46fc4000a002

State of node: UP

Points of contact for node: 2

Interface	State	Protocol	Status
en0	UP	IPv4	none
en1	UP	IPv4	none

- 3. 以前に障害が発生したノードが新しいリポジトリー・ディスクを強制的に使用するようにするには、影 響を受けるノードで次のコマンドを入力します。
 - a. \$ export CAA_FORCE_ENABLED=true
 - b. \$ clusterconf -fu
- 4. CAA クラスター・サービスがアクティブであるかどうかを確認するには、次のコマンドを入力しま す。

lscluster -c

注: 新しいリポジトリー・ディスクを使用して、ノードが CAA クラスターに参加するには、最大で 10 分を要する場合があります。

- CAA クラスター・サービスが正常に再始動したことを確認するには、次のコマンドを入力します。
 - a. lscluster -c
 - b. lscluster -m

6. 影響を受けるノードで PowerHA を再始動する前に、PowerHA 構成を同期化する必要があります。 この同期化は、リポジトリー・ディスクの交換時に稼働中の状態であったノードで開始する必要があり ます。ノードで確認プロセスおよび同期化プロセスを開始するには、以下の SMIT パスを使用しま す。

\$ smitty sysmirror

>Cluster Nodes and Networks > Verify and Synchronize Cluster Configuration

注: 使用可能なノードが複数あり、そのすべてのノードで PowerHA が稼働していない場合は、同期化 を開始するためにアクティブなノードを選択する必要があります。

ステップ 6 の確認および同期化が正常に終了したら、次の SMIT パスを使用して、以前に障害が発生した ノードで PowerHA を再始動することができます。

\$ smitty sysmirror

>System Management (C-SPOC) > PowerHA SystemMirror Services > Start Cluster Services

特記事項

本書は米国 IBM が提供する製品およびサービスについて作成したものです。

本書に記載の製品、サービス、または機能が日本においては提供されていない場合があります。日本で利用可能な製品、サービス、および機能については、日本 IBM の営業担当員にお尋ねください。本書で IBM 製品、プログラム、またはサービスに言及していても、その IBM 製品、プログラム、またはサービスのみが使用可能であることを意味するものではありません。これらに代えて、IBM の知的所有権を侵害することのない、機能的に同等の製品、プログラム、またはサービスを使用することができます。ただし、IBM 以外の製品とプログラムの操作またはサービスの評価および検証は、お客様の責任で行っていただきます。

IBM は、本書に記載されている内容に関して特許権 (特許出願中のものを含む) を保有している場合があります。本書の提供は、お客様にこれらの特許権について実施権を許諾することを意味するものではありません。実施権についてのお問い合わせは、書面にて下記宛先にお送りください。

〒103-8510

東京都中央区日本橋箱崎町19番21号 日本アイ・ビー・エム株式会社 法務・知的財産 知的財産権ライセンス渉外

IBM およびその直接または間接の子会社は、本書を特定物として現存するままの状態で提供し、商品性の保証、特定目的適合性の保証および法律上の瑕疵担保責任を含むすべての明示もしくは黙示の保証責任を負わないものとします。国または地域によっては、法律の強行規定により、保証責任の制限が禁じられる場合、強行規定の制限を受けるものとします。

この情報には、技術的に不適切な記述や誤植を含む場合があります。本書は定期的に見直され、必要な変更は本書の次版に組み込まれます。 IBM は予告なしに、随時、この文書に記載されている製品またはプログラムに対して、改良または変更を行うことがあります。

本書において IBM 以外の Web サイトに言及している場合がありますが、便宜のため記載しただけであり、決してそれらの Web サイトを推奨するものではありません。それらの Web サイトにある資料は、この IBM 製品の資料の一部ではありません。それらの Web サイトは、お客様の責任でご使用ください。

IBM は、お客様が提供するいかなる情報も、お客様に対してなんら義務も負うことのない、自ら適切と信ずる方法で、使用もしくは配布することができるものとします。

本プログラムのライセンス保持者で、(i) 独自に作成したプログラムとその他のプログラム (本プログラムを含む) との間での情報交換、および (ii) 交換された情報の相互利用を可能にすることを目的として、本プログラムに関する情報を必要とする方は、下記に連絡してください。

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

本プログラムに関する上記の情報は、適切な使用条件の下で使用することができますが、有償の場合もあります。

本書で説明されているライセンス・プログラムまたはその他のライセンス資料は、IBM 所定のプログラム契約の契約条項、IBM プログラムのご使用条件、またはそれと同等の条項に基づいて、IBM より提供されます。

記載されている性能データとお客様事例は、例として示す目的でのみ提供されています。実際の結果は特定 の構成や稼働条件によって異なります。

IBM 以外の製品に関する情報は、その製品の供給者、出版物、もしくはその他の公に利用可能なソースから入手したものです。 IBM は、それらの製品のテストは行っておりません。したがって、他社製品に関する実行性、互換性、またはその他の要求については確証できません。IBM 以外の製品の性能に関する質問は、それらの製品の供給者にお願いします。

IBM の将来の方向または意向に関する記述については、予告なしに変更または撤回される場合があり、単に目標を示しているものです。

表示されている IBM の価格は IBM が小売り価格として提示しているもので、現行価格であり、通知なしに変更されるものです。卸価格は、異なる場合があります。

本書はプランニング目的としてのみ記述されています。記述内容は製品が使用可能になる前に変更になる場合があります。

本書には、日常の業務処理で用いられるデータや報告書の例が含まれています。より具体性を与えるために、それらの例には、個人、企業、ブランド、あるいは製品などの名前が含まれている場合があります。これらの名前はすべて架空のものであり、名前や住所が類似する個人や企業が実在しているとしても、それは偶然にすぎません。

著作権使用許諾:

本書には、様々なオペレーティング・プラットフォームでのプログラミング手法を例示するサンプル・アプリケーション・プログラムがソース言語で掲載されています。お客様は、サンプル・プログラムが書かれているオペレーティング・プラットフォームのアプリケーション・プログラミング・インターフェースに準拠したアプリケーション・プログラムの開発、使用、販売、配布を目的として、いかなる形式においても、IBM に対価を支払うことなくこれを複製し、改変し、配布することができます。このサンプル・プログラムは、あらゆる条件下における完全なテストを経ていません。従って IBM は、これらのサンプル・プログラムについて信頼性、利便性もしくは機能性があることをほのめかしたり、保証することはできません。これらのサンプル・プログラムは特定物として現存するままの状態で提供されるものであり、いかなる保証も提供されません。 IBM は、お客様の当該サンプル・プログラムの使用から生ずるいかなる損害に対しても一切の責任を負いません。

それぞれの複製物、サンプル・プログラムのいかなる部分、またはすべての派生した創作物には、次のよう に、著作権表示を入れていただく必要があります。

© (お客様の会社名) (西暦年).

このコードの一部は、IBM Corp. のサンプル・プログラムから取られています。

© Copyright IBM Corp. _年を入れる_.

プライバシー・ポリシーに関する考慮事項

サービス・ソリューションとしてのソフトウェアも含めた IBM ソフトウェア製品 (「ソフトウェア・オファリング」) では、製品の使用に関する情報の収集、エンド・ユーザーの使用感の向上、エンド・ユーザーとの対話またはその他の目的のために、Cookie はじめさまざまなテクノロジーを使用することがあります。多くの場合、ソフトウェア・オファリングにより個人情報が収集されることはありません。 IBM の「ソフトウェア・オファリング」の一部には、個人情報を収集できる機能を持つものがあります。ご使用の「ソフトウェア・オファリング」が、これらのCookie およびそれに類するテクノロジーを通じてお客様による個人情報の収集を可能にする場合、以下の具体的事項を確認ください。

この「ソフトウェア・オファリング」は、Cookie もしくはその他のテクノロジーを使用して個人情報を収集することはありません。

この「ソフトウェア・オファリング」が Cookie およびさまざまなテクノロジーを使用してエンド・ユーザーから個人を特定できる情報を収集する機能を提供する場合、お客様は、このような情報を収集するにあたって適用される法律、ガイドライン等を遵守する必要があります。これには、エンドユーザーへの通知や同意の要求も含まれますがそれらには限られません。

このような目的での Cookie などの各種テクノロジーの使用について詳しくは、『IBM オンラインでのプライバシー・ステートメントのハイライト』(http://www.ibm.com/privacy/jp/ja/)、『IBM オンラインでのプライバシー・ステートメント』(http://www.ibm.com/privacy/details/jp/ja/) の『クッキー、ウェブ・ビーコン、その他のテクノロジー』というタイトルのセクション、および『IBM Software Products and Software-as-a-Service Privacy Statement』(http://www.ibm.com/software/info/product-privacy)を参照してください。

商標

IBM、IBM ロゴおよび ibm.com は、世界の多くの国で登録された International Business Machines Corp. の商標です。他の製品名およびサービス名等は、それぞれ IBM または各社の商標である場合があります。現時点での IBM の商標リストについては、http://www.ibm.com/legal/copytrade.shtml をご覧ください。

索引

日本語, 数字, 英字, 特殊文字の順に配列されてい ます。なお、濁音と半濁音は清音と同等に扱われて います。

「ア行]

アクセス権 検査 48 アプリケーション 検査 37 イベント要約 18 収集された hacmp.out の表示 23 並列処理順序 27 保存 24 イベント・プリアンブル 17 印刷キュー 高可用化 11 オペレーティング・システム 検査 53

[力行]

管理

検査

アクセス権 48 アプリケーション 37

クラスター・ログ 26 ログ パラメーターの管理 34 ログ・ファイル・パラメーター node 34 node ログ・ファイル・パラメーターの管理 34 クライアントの問題 84 クラスター 構成の確認 39 スナップショットの確認 40 通信デーモンの検査 54 通信の問題 78 停止 3 メッセージ・ログ・ファイルの検討 12 リソース・グループの追跡 27 ログ・ファイルの収集 26 ログ・ファイルの表示 12 ログ・ファイルの理解 15,17 クラスター状態情報ファイル 43 クラスター・ヒストリー・ログ 理解 25 クラスター・ログ 管理 26

検査 (続き)

クラスター構成 39 クラスター通信デーモン 54 クラスター・スナップショット 40 システム・ハードウェア 55 ディスク 53 ディスク・アダプター 53 ネットマスク 52 ファイルシステム 47 ファイルシステム情報 48 物理ネットワーク 53 物理ボリューム 45 ボリューム・グループ 定義 44 varyon 状態 44 マウント・ポイント 48 論理ボリューム 46 論理ボリューム・マネージャー 44 AIX オペレーティング・システム 53 IP アドレス 52 Point-to-Point 接続 51 PowerHA SystemMirror コンポーネント 38 TCP/IP サブシステム 49 検討 メッセージ・ログ・ファイル 12

[サ行]

構成データベースの復元

問題判別ツール 10

構成データベース・データ・ファイル 42

システム・エラー・ログ 12 理解 24 システム・コンポーネント 調査 36 収集 クラスター・ログ・ファイル 26 使用 診断ユーティリティー 4 問題判別ツール 5 ジョブ・タイプ 並列リソース・グループ処理 28 診断ユーティリティー 使用 4 スイッチの問題 72 スクリプト障害 リカバリー 問題判別ツール 9 その他の問題 86

107 © Copyright IBM Corp. 2017

[夕行]

調查

システム・コンポーネント 36

停止

クラスター・マネージャー 3

ディスク

検査 53

ディスクの問題 62

ディスク・アダプター

検査 53

ディスク・フェンシング 70

トラッキング

リソース・グループ処理 27

「ナ行]

ネットマスク

検査 52

ネットワークの問題 72

「ハ行]

ハードウェア

検査 55

表示

クラスター・ログ・ファイル 12

収集された hacmp.out イベント要約 23

SMIT での hacmp.out 22

ファイルシステム

検査 47

ファイルシステム情報

検査 48

ファイルシステムの問題 62

物理ネットワーク

検査 53

物理ボリューム

検査 45

変更

印刷キューを高可用性に 11

cron ジョブを高可用性に 10

保存

イベント要約 24

ボリューム・グループ

定義の確認 44

varyon 状態の検査 44

「マ行]

マウント・ポイント

検査 48

マルチキャスト

テスト 72

トラブルシューティング 74

メッセージ・ログ

検討 12

問題

クライアント 84

クラスター通信 78

検索 2,3

スイッチ 72

その他 86

ディスク 62

ネットワーク 72

ファイルシステム 62

PowerHA SystemMirror 始動 56

PowerHA SystemMirror テークオーバー 79

問題判別ツール

構成データベースの復元 10

使用 5

スクリプト障害からの回復9

PowerHA SystemMirror ログの表示および管理 8

[ヤ行]

ユニキャスト

トラブルシューティング 75

[ラ行]

理解

クラスター・ログ・ファイル 15, 17 システム・エラー・ログ 24, 25

リソース・グループ

hacmp.out での追跡 27

リポジトリー・ディスク 67

ログ

クラスター・メッセージの検討 12

システム・エラー・ログの理解 24,25

収集 26

情報のレベルの設定 22

表示 12

問題判別ツール

管理 8

表示 8

理解 15, 17

ログ・ファイルの管理 26

SMIT を使用した表示 22

論理ボリューム

検査 46

論理ボリューム・マネージャー

検査 44

A

AIX オペレーティング・システム 検査 53

C S clam_nfsv4 アプリケーション 66 cluster.log 15 hacmp.out の表示 22 cron ジョブ 高可用化 10 TCP/IP Н サブシステムの確認 49 hacmp.out 12, 17, 22 tmp/clconvert.log 12 イベント要約 18 イベント要約の保存 24 「特殊文字〕 イベント・プリアンブル 17 記録される 情報のレベルの設定 22 .info 43 収集されたイベント要約の表示 23 .odm 42 ジョブ・タイプ /usr/es/sbin/cluster/history/cluster.mmddyyyy 並列リソース・グループ処理 28 並列処理順序 27 /usr/es/sbin/cluster/snapshots/ clsnapshot.log 12 リソース・グループの追跡 27 /usr/es/sbin/cluster/wsm/logs/ wsm_smit.log 12 /var/hacmp/adm/cluster.log 12, 15 /var/hacmp/adm/history/cluster.mmddyyyy 12 /var/hacmp/clverify/clverify.log 12 IP アドレス /var/hacmp/log/ 12 検査 52 /var/hacmp/log/ clconfigassist.log 12 IPv6 アドレス 75 /var/hacmp/log/ clstrmgr.debug.long 12 /var/hacmp/log/ cl_testtool.log 12 /var/hacmp/log/autoverify.log 12 /var/hacmp/log/clavan.log 12 /var/hacmp/log/clinfo.log 12 JOB_TYPE /var/hacmp/log/clstrmgr.debug 12 AOUIRE 30 /var/hacmp/log/clutils.log 12 ERROR 29 /var/hacmp/log/cspoc.log 12 NONE 30 /var/hacmp/log/cspoc.log.long/var/hacmp/log/ OFFLINE 29 cspoc.log.remote 12 ONLINE 29 /var/hacmp/log/hacmp.out 12, 17, 22 RELEASE 30 イベント要約 18 SERVICE_LABELS 31 イベント・プリアンブル 17 SSA_FENCE 31 記録される 情報のレベルの設定 22 VGS 32 収集されたイベント要約の表示 23 /var/hacmp/log/migration.log 12 /var/hacmp/log/sa.log 12 /var/ha/log/grpglsm 12 LVM 分割サイト・ミラーリング 67 /var/ha/log/grpsvcs 12 Point-to-Point 接続 検査 51 PowerHA SystemMirror コンポーネント 検査 38 PowerHA SystemMirror 始動の問題 56

PowerHA SystemMirror のテークオーバーの問題 79

IBM

Printed in Japan