
IBM PowerHA SystemMirror for AIX

Standard Edition

Version 7.2.1

Developing Smart Assist applications
for PowerHA SystemMirror

IBM

IBM PowerHA SystemMirror for AIX

Standard Edition

Version 7.2.1

Developing Smart Assist applications
for PowerHA SystemMirror

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 65.

This edition applies to IBM PowerHA SystemMirror 7.2.1 Standard Edition for AIX and to all subsequent releases
and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Highlighting v
Case-sensitivity in AIX v
ISO 9000. v
Related information v

Developing Smart Assist applications
for PowerHA SystemMirror 1
PowerHA SystemMirror Smart Assist development
concepts 1

Concepts and terms used in Smart Assist
development 1
Smart Assist requirements 2
Smart Assist framework 3
Overall flow of Smart Assist 3

Smart Assist identifiers and component identifiers . . 5
Packaging and installing 6
Developing SMIT panels 7
Smart Assist component discovery 9
Parameterized verification check files 14
Miscellaneous concepts and functionality . . . 16
Planning names and values for the Smart Assist
discovery database 17

Smart Assist commands 18
Smart Assist registration and query 19
Smart Assist application registration and query 23
Convenience routines for SMIT panels 25

clvt API 25
Cluster class operations 25

Node class operations 27
Interface class operations 30
Network class operations 31
resource_group class 34
service_ip class 38
Application controller class use 40
application_monitor class 42
Resource group temporal_dependency class . . 45
Resource group location_dependency class . . . 46
file_collection class 47

Sample Smart Assist program 49
Overview 49
Installing the sample program 49
Deinstalling the sample program 50
Command to discover Smart Assist components 51
Add application instance functionality 51
Modify application instance functionality . . . 53
Deleting application instances 55
SMIT general application Smart Assist add
stanzas 55
SMIT general application Smart Assist modify
stanzas 59

Notices 65
Privacy policy considerations 67
Trademarks 67

Index 69

© Copyright IBM Corp. 2016 iii

iv Developing Smart Assist applications for PowerHA SystemMirror

About this document

This document describes how you can develop a configuration and management tool that makes an
installed application highly available by configuring PowerHA® SystemMirror®.

Highlighting
The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose names are
predefined by the system. Also identifies graphical objects such as buttons, labels, and icons that the user
selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see displayed,
examples of portions of program code similar to what you might write as a programmer, messages from
the system, or information you should actually type.

Case-sensitivity in AIX
Everything in the AIX® operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the
system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related information
v The PowerHA SystemMirror Version 7.2.1 PDF documents are available in the PowerHA SystemMirror

7.2.1 PDFs topic.
v The PowerHA SystemMirror Version 7.2.1 release notes are available in the PowerHA SystemMirror

7.2.1 release notes topic.

© Copyright IBM Corp. 2016 v

http://www.ibm.com/support/knowledgecenter/SSPHQG_7.2.1/com.ibm.powerha.navigation/powerha_pdf.htm
http://www.ibm.com/support/knowledgecenter/SSPHQG_7.2.1/com.ibm.powerha.navigation/powerha_pdf.htm
http://www.ibm.com/support/knowledgecenter/SSPHQG_7.2.1/com.ibm.powerha.navigation/releasenotes.htm
http://www.ibm.com/support/knowledgecenter/SSPHQG_7.2.1/com.ibm.powerha.navigation/releasenotes.htm

vi Developing Smart Assist applications for PowerHA SystemMirror

Developing Smart Assist applications for PowerHA
SystemMirror

Use this information to develop a configuration and management tool that makes an installed application
highly available by configuring PowerHA SystemMirror.

As a prerequisite for developing the tool, you should be familiar with:
v Planning and administering PowerHA SystemMirror, including an existing Smart Assist
v Communications, including the TCP/IP subsystem
v Coding for SMIT
v A scripting language such as Perl or KSH
v Knowledge of the target application.

PowerHA SystemMirror Smart Assist development concepts
Smart Assist is a tool to help end users configure PowerHA SystemMirror to make an instance of an
application (such as a DB2® or Oracle instance, or a WebSphere® component) highly available.

Each Smart Assist manages the collection of PowerHA SystemMirror components needed to support a
particular application. The user sees the collection of PowerHA SystemMirror components as a single
entity, and in PowerHA SystemMirror that entity is represented by an application name. Smart Assists
support adding, modifying and removing individual applications. When configuring PowerHA
SystemMirror for new applications, the Smart Assist will ask the end user for the minimum amount of
information necessary and then auto-detect the file systems, volume groups, service IP labels and other
application resources used by the selected application instance. The Smart Assist then configures one or
more PowerHA SystemMirror resource groups, application controllers and application monitors as
needed to make the application highly available. This saves the end user steps in the configuration
process and also helps ensure the proper configuration of the base application instance within PowerHA
SystemMirror.

Smart Assists can be comprised of multiple components; each component supports a particular aspect of
the target application. As an example, the Oracle Smart Assist has three components - one for supporting
Oracle RDBMS, a second for supporting Oracle Application Server CFC, and a third for supporting
Oracle Application Server AFC. Each of these components can have different Smart Assist properties, as
well as different user interfaces within SMIT.

Smart Assists also integrate with cluster verification. Smart Assists can use the custom PowerHA
SystemMirror verification methods to perform cluster verification. In the event a user modifies either the
target application configuration, or the PowerHA SystemMirror configuration, custom verification
routines will ensure the application will continue to function.

Concepts and terms used in Smart Assist development
Several concepts and their associated terms are used in the Smart Assist implementation.
v Application.

Each Smart Assist supports an application. Smart Assists exist for DB2, WebSphere and Oracle. Also, a
General Application Smart Assist (GASA) is packaged with PowerHA SystemMirror to support a
generic application given user-supplied application start and stop scripts and related volume groups.

v Application instance.

© Copyright IBM Corp. 2016 1

When started, a Smart Assist usually detects an application instance previously created by the user.
The DB2, WebSphere and Oracle Smart Assists all require a pre-existing application instance which
must be set up by the user prior to using the respective Smart Assists.

v Discovery of applications, application components, and application sub-features.
When the user selects the PowerHA SystemMirror SMIT Add an Application to the PowerHA
SystemMirror Configuration menu a discovery script provided by each Smart Assist checks to see if
the application is installed. If the application is installed, the discovery script then goes on to discover
the particular supported component of the application, or sub-feature. The discovery script reports
status back to the application discovery framework indicating whether the particular Smart Assist
component can be used. Note that the use of the term “discovery” is different from the cluster
discovery functionality in the PowerHA SystemMirror SMIT Extended Configuration menu.

v Smart Assist application instance.
When the user selects an application instance to make highly available, the Smart Assist must create a
Smart Assist application instance, which allows the Smart Assist framework to create the various
PowerHA SystemMirror resource groups, applications and application monitors needed to make the
base application instance highly available.

Smart Assist requirements
Smart Assist has several different requirements.

The Smart Assist is responsible for:
v Discovering the installation of the application and (if necessary) the currently configured resources

such as service IP address, file systems and volume groups
v Providing a SMIT interface for getting configuration information from the user including a new Service

IP address
v Providing a SMIT interface for changing PowerHA SystemMirror and application configuration

information
v Defining an application to PowerHA SystemMirror and supplying custom start and stop scripts
v Supplying an application monitor for the application, if applicable
v Configuring a resource group to contain

– Primary and takeover nodes
– The application
– The service IP address
– Shared volume groups

v Configuring various resource group temporal and location dependencies, should the application
solution require it

v Specifying files that need to be synchronized using the PowerHA SystemMirror File Collections feature
v Modifying previously configured applications
v Providing new verification methods
v Providing methods to test the application's cluster configuration (via the Cluster Test Tool), should the

standard cluster test suite not suffice.

The Smart Assist framework described in this document is intended to be an easy-to-use framework for
developing new Smart Assists. Some readers may find it helpful to first take a look at the example in
Sample Smart Assist program and then return to the referenced sections when needed rather than
reading this document from start to end.
Related concepts:
“Sample Smart Assist program” on page 49
These topics provides a sample Smart Assist program, based on the General Application Smart Assist
(GASA).

2 Developing Smart Assist applications for PowerHA SystemMirror

Smart Assist framework
The Smart Assist Framework is the infrastructure PowerHA SystemMirror provides for the development
of a PowerHA SystemMirror Smart Assist.

It includes:
v A discovery feature that automatically provides the end user a list of installed Smart Assists and the

related applications (which may or may not be configured). If an application is not installed or is a
different version than what the Smart Assist supports, then an appropriate message will be displayed.

v A way to enable a silent installation or configuration of software, if needed, prior to getting specific
configuration information from the user through a SMIT panel.

v A Smart Assist API to allow the Smart Assist to change the cluster configuration and affect cluster
operations. This is the interface for creating the PowerHA SystemMirror topology, resource group and
resource configurations.

v A Smart Assist Registration API for saving and looking up information about an application configured
using the Smart Assist.

v Utilities for installing and removing Smart Assist data as the fileset containing it is installed or
removed from AIX. Any applications, resource groups, clusters, etc. configured with this Smart Assist
will still remain, but will have to be maintained using the Standard and Extended PowerHA
SystemMirror SMIT paths.

v A mechanism to test the resource group containing the applications with the Cluster Test Tool.
v A way to add custom verification methods to the cluster verification utility.
v A secure way to gather information from all nodes in the cluster.

Overall flow of Smart Assist
When Smart Assist is installed, the fileset or installation script adds the appropriate Smart Assist registry
entries to the PowerHA SystemMirror as ODM using the framework's API claddsa and then inserts its
SMIT screens into the SMIT ODMs. The registration ODM contains name / value pairs that tie the Smart
Assist Identifier and component Identifier.

Note: If you are using a IBM® in house developed Smart Assist, the entries will be automatically added
in with the help from the build system (packdep.mk file in the packages folder is used).

From the main Smart Assist SMIT Add an Application to the PowerHA SystemMirror Configuration
menu, complete the following steps:
1. Check if both nodes are running latest framework for Smart Assists by looking at the value in the

PowerHA SystemMirror ODM entry called SMARTASSIST_VERSION for GASA smart assist. If any of
the nodes are running an old version go to Step 2. If the nodes are running the current version go to
Step 3.

2. Each Smart Assist in the PowerHA SystemMirror ODM runs a custom script (called a discovery
script) that detects if the application code supported by the Smart Assist is installed at the time. The
Smart Assist menu then informs the end user the status of each Smart Assist (see below) and allows
the user to select any Smart Assist that has the base application code installed. For Smart Assists
whose discovery scripts do not detect installed instances of the target application, an entry will
appear. However once selected, the user will have to navigate further than the initial discover screen.

3. Find out all the Smart Assists installed on both the nodes, and list them. Discovery scripts are not
called at this time, and you should select a Smart Assist to proceed further (for ex. Smart Assist for
SAP).

4. Select Automatic Discovery and Configuration or Manual Configuration for the type of
configuration.

Note: If you select Automatic Discovery and Configuration the discovery scripts runs for all the
components available for the previously selected smart assist.

Developing Smart Assist applications for PowerHA SystemMirror 3

5. Select the component you want to work with. If there are more than one instance of the selected
component that needs to be configured (for example, Different database instances in a given Oracle
Database) you will have select the other instances. If there is only one instance that needs to be
configured then it leads to a dialog screen.

Note: Note: If the user has already configured the cluster and nodes, there is no need to ask again for the
communication path; the user would go directly from the Make Applications Highly Available > Add
an Application to the PowerHA SystemMirror Configuration to the Selector screen.
|***
| Configure PowerHA SystemMirror Cluster and Nodes
|
| Enter Communication Path to Nodes <Entry Fields>
|
|**
|
| Select an Application from the List of Discovered...
| list of applications...
|
|***

Note: Smart Assists with node names listed after their name are “active,” meaning that discovery
detected instances of the application installed on the cluster nodes listed after the application type. In the
figure above, no instances of DB2 or Oracle were discovered. When the Smart Assist is executed, it
usually gets minimal information from the end user and then uses that information to detect any
information it needs about the application instance it has to manage (file systems, volume groups, etc). It
then uses the framework's configuration API to configure a PowerHA SystemMirror cluster and any
necessary resource groups, applications and application monitors needed by the application instance. The
Smart Assist framework used by the Smart Assist developer is:
v Several commands (User Interface API) used by the Smart Assist to add itself to the SMIT and

HACMPsa ODM structures.
v A main Smart Assist SMIT menu (Make Applications Highly Available), which interfaces to the

installed Smart Assists.
v Support for a discovery script, provided by the Smart Assist, and called from the SMIT Add an

Application to the PowerHA SystemMirror Configuration menu, which detects whether the base
application code is installed on a given node.

v A single command clvt (PowerHA SystemMirror Configuration API) gives access to 11 classes of
objects representing the PowerHA SystemMirror components needed to make a base application
instance highly available. The Smart Assist uses these commands to configure PowerHA SystemMirror
to make the base application instance highly available.

The Smart Assist developer must use the framework, and develop a number of SMIT screens to create a
Smart Assist for a particular application. There is a bit more to the Smart Assist framework but the above
covers the basic functionality a Smart Assist developer must consider.

4 Developing Smart Assist applications for PowerHA SystemMirror

Make Applications Highly Available (Use Smart Assists)

Move cursor to desired item and press Enter

Add an Application to the HACMP Configuration
Change/Show an Application’s HACMP Configuration
Remove an Application from the HACMP Configuration

Manage Your Applications
Change/Show the Resources Associated with Your Application

Test Your Application for Availability

F1=Help F12=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do

The Make Applications Highly Available SMIT menu lists the functionality the Smart Assist offers.
Smart Assist Basics of Operation This section presents information on how a Smart Assist works in more
detail. It discusses what issues you must consider and what code you need to write for your own Smart
Assist.

Smart Assist identifiers and component identifiers
The Smart Assist Identifier and Component Identifiers uniquely identify a particular Smart Assist
component within the Smart Assist framework.

The first step in developing a Smart Assist is defining these identifiers. The Smart Assist Identifier reflects
the target application such as DB2, Oracle or WebSphere. Examples of Smart Assist IDs are "DB2_8.0" for
DB2 and "Oracle_10G" for Oracle Application Server and RDBMS. Note that in these particular cases the
Identifier also reflects the version of the application. To ensure version compatibility, it may be useful to
develop separate Smart Assists for different versions of the target application. The Smart Assist
Component Identifiers are used to subclassify a Smart Assist into the various subcomponents of an
application, and into the sub-features of the Smart Assist. In the case of DB2 and Oracle, the database
instances can be configured in different ways; therefore several Component Identifiers are needed, one for
each way the database can be configured. Examples of DB2 Component Identifiers are shown in the table
that follows:

Component Identifier DB2 Component Name (user visible)

DB2_8.0_NON_DPF_SINGLE DB2 Single Instance

DB2_8.0_NON_DPF_MUTUAL DB2 Mutual Takeover

In the case of WebSphere, the Component Identifiers consists of several distinct functional components (a
web server, a log server, etc.), and so each component has its own Component Identifier. Examples of
WebSphere Component IDs are shown in the following table:

Developing Smart Assist applications for PowerHA SystemMirror 5

Component Identifier WebSphere Component Name (user visible)

WAS_6.0_IHS_SERVER IHS HTTP Server

WAS_6.0_APP_SERVER WebSphere Application Server (Standalone)

WAS_6.0_DEPLOYMENT_MANAGER WebSphere Deployment Manager

WAS_6.0_TRANSACTION_LOG_ RECOVERY WebSphere Cluster Transaction Log

Packaging and installing
You can package your Smart Assist using tools appropriate to your environment.

The LPP package management system is the preferred method of packaging files on the AIX platform,
but you can use RPMs, or other package and file management tools that provide the ability to:
v Install
v Remove
v Update
v Pre-require the PowerHA SystemMirror fileset cluster.es.assist.common to be installed prior to

attempting to install the new Smart Assist fileset.

Adding a Smart Assist at install time
When Smart Assist is installed, it performs two tasks for each of its components.

These tasks are:
v Call the UI API routine claddsa which adds information about each component in the PowerHA

SystemMirror ODM for later use by the framework. Some items specified at this time are the discovery
script path and the Add and Modify SMIT menu paths.

v Add the particular Add and Modify SMIT screens specified for each component to the SMIT ODM for
use when the end user invokes the Smart Assist. Any other dependent SMIT menus must be added to
the ODM at this time as well.

Here is an example of a claddsa call:
claddsa -s “Apache_2” -c “APACHE_2.0_HS_SSL” \

COMPONENT_ID=“APACHE_2.0_HS_SSL” \
SMARTASSIST_VERSION=“1.0” \
SMIT_ADD=“clsa_apache_add” \
SMIT_MODIFY=“clsa_apache_modify \
SMIT_ADD_TYPE=”d“ \ SMIT_MODIFY_TYPE=”d“ \
DISCOVERY_COMMAND=”/usr/es/sbin/cluster/sa/apache/sbin/discover“

\
DEINSTALLATION_COMMAND=”/usr/es/sbin/cluster/sa/apache/sbin/discover“

\
REGISTRATION_COMMAND=”/usr/es/sbin/cluster/sa/apache/sbin/register“

\
DEREGISTRATION_COMMAND=”/usr/es/sbin/cluster/sa/apache/sbin/deregister“

\
MIGRATION_COMMAND=”/usr/es/sbin/cluster/sa/sample/sbin/migrate“

\
SA_ROOT=”/usr/es/sbin/cluster/sa/sample/sbin/“ \
SA_NAME=”Sample Smart Assist“ \
COMPONENT_NAME=”Sample Smart Assist Component“

Related concepts:
“Smart Assist commands” on page 18
Use these topics as reference for the commands you use to develop a Smart Assist for PowerHA
SystemMirror. Each topic lists syntax diagrams and provides examples for using each command.

6 Developing Smart Assist applications for PowerHA SystemMirror

Directory structure
Smart Assists should adhere to the directory structure underneath the Smart Assist name.

/usr/es/sbin/cluster/sa/SmartAssistID

Note: The SmartAssistID is the same Identifier used in the claddsa command.

Directory Contents

./sbin/ Executables, and scripts that need to be executed on behalf of the Smart Assist; this includes any scripts
run using the SMIT interface

./appserver/ PowerHA SystemMirror application controller start and stop scripts

./monitor/ PowerHA SystemMirror custom application monitors

./verification/ PowerHA SystemMirror cluster custom verification files for performing validation of configured
applications

./smit A collection of SMIT menus to be added to the PowerHA SystemMirror cluster. If the Smart Assist
developer does not provide a mechanism at install time to add these ODM stanzas, it is required that the
framework be able to find the SMIT ODM stanzas in this directory. One or more SMIT ODM stanzas may
reside in this directory with the file extension 'odm'.

Developing SMIT panels
The Smart Assist you develop must fit into the current PowerHA SystemMirror SMIT panels designed for
Smart Assists.

The SMIT menus are either installed via the Smart Assist at the time of installation, or alternatively the
Smart Assist can request that the registration API inject the ODM stanzas. The preferred approach is to
request the registration API to add the ODM stanzas, so that the Smart Assist deinstallation process can
remove the ODM entries on your behalf.

The four SMIT stanza types: sm_cmd_opt, sm_cmd_hdr, sm_menu_opt, sm_name_hdr are supported by
the PowerHA SystemMirror registration API. The Smart Assist framework keeps track of the entries
added into the SMIT ODM stanzas, and at the time of deinstallation removes the appropriate entries
simply by calling the deregistration command. If the Smart Assist performs the operation of adding the
entries, then it is assumed by the framework that the Smart Assist will also remove the entries upon
deinstallation.

There are several points in the Smart Assist framework where control will transfer from the Smart Assist
framework to your new Smart Assist. You must use the correct Smart Assist Identifiers for the SMIT
ODM classes in order for control to properly transfer from one session to another.
Related information:
System Management Interface Tool (SMIT)

Add an application to the PowerHA SystemMirror configuration
The Add an Application to the PowerHA SystemMirror Configuration SMIT session goes through a
number of transitions before finally passing control off to the Smart Assist.

The user must first specify nodes for the cluster (if nodes exist). Next, you are presented a selector screen
showing the available applications. Once the user selects an application, control is passed along to the
Smart Assist Add screen.

If nodes and or sites were specified by the user, then the discovery information within SMIT would
provide the following name value pairs:
#nodes: SmartAssistID_ComponentID
nodeA nodeB:<SmartAssistID_ComponentID>

Developing Smart Assist applications for PowerHA SystemMirror 7

Change or show an application's PowerHA SystemMirror configuration
Similar to the Add An Application to the PowerHA SystemMirror Configuration SMIT screen, users
will select a particular application already defined to PowerHA SystemMirror, and then modify the
existing values.

Control will be passed off to the Smart Assist once the user selects the application to change or show.

Manage your applications
The Manage Your Applications SMIT screen is different from the Add and Change/Show SMIT screens
in that it transfers control over to a SMIT menu system written by the Smart Assist, rather than to a SMIT
dialog.

After selecting the Manage Your Applications SMIT screen, the user is presented a list of applications
that are already configured and have management screens. Once the user selects a particular component
of the Smart Assist, control is passed to the Smart Assist menus. The Smart Assist developer must
provide a sm_menu_opt SMIT ODM with an id of clsa-manage <your_next_id>.

General guidelines for developing SMIT
Each Smart Assist will need two developing SMIT displays at a minimum: One for adding an application
and one for modifying an existing configuration. It is beyond the scope of this document to explain how
to develop SMIT, but we can mention some requirements that facilitate a smooth flow from the Smart
Assist menus to the displays that add or modify the application's configuration within PowerHA
SystemMirror. The Smart Assist Framework will also supply some useful information you can choose to
use.

You may find that you will need additional selectors prior to navigating to the SMIT display to add your
application. For instance, if you are trying to make a database instance highly available, your Smart
Assist may need to have the user select a specific database instance from a list. In this case, you may
choose to have a selector rather than a display as an entry point. SMIT menus are not an option (due to
SMIT requirements). To register the entry points for Add and Modify, when the Smart Assist is installed,
the clquerysa command that needs to run must specify these parameters:

SMIT_ADD String containing the ID for the SMIT stanza.

SMIT_ADD_TYPE String "d" for display, "n" for selector. "d" by default.

SMIT_MODIFY String containing the ID for the SMIT stanza.

SMIT_MODIFY_TYPE String "d" for display, "n" for selector. "d" by default.

The Smart Assist Framework will provide values for the following cooked field names for use by the
SMIT display or selector:

sa_id Smart Assist ID

component_id Component ID

cluster_name Name of the cluster

nodes Space-separated list of nodes on which the component was installed.

application_id (for modify only) the application Identifier

The Smart Assist may need to offer a way of getting additional information from the user, or give the
user operations to perform other than add, change/show, remove, and test.

You as the developer can provide additional SMIT menus, selectors, and dialogs under the Manage Your
Applications menu heading of SMIT (clsa_manage). Your first sm_menu_opt stanza will need to start
with a sequence number that does not collide with any of the existing Smart Assist sequence numbers.
The fileset packaging for your Assist should check the available SMIT IDs and use the next available ID,

8 Developing Smart Assist applications for PowerHA SystemMirror

or pre-assign a set of IDs and check to ensure that range is available. If the ID is not available, the SMIT
sm_menu_opt IDs will need to be changed by your installation script.

Note: As of this writing, sequence numbers of 100 and below and 900 and above are reserved for
clsa_manage.

Smart Assist component discovery
When you select the main Smart Assist Add an Application to the PowerHA SystemMirror
Configuration screen, the discovery scripts provided by each added Smart Assist component are called.

Each script checks to see if the base application (such as DB2 or WebSphere) is installed on the nodes of
the cluster, and then checks to ensure the sub-component or sub-feature can be used on the local node
where the discovery command is executed. If the functionality or application is installed, the Smart Assist
is ”enabled“ on the menu and the node where the feature or application sub-component is accessible will
be listed next to the Smart Assist. This gives the user a menu constructed in real-time indicating what
applications are installed, and which Smart Assists are usable on which cluster nodes. If the application is
not installed, the user can install it and restart the Smart Assist.

The discovery script is run on each node where the Smart Assist is installed; it is up to the Smart Assist
developer whether to require the base application be installed on all defined cluster nodes. To ensure that
multiple nodes, or all cluster nodes contain the Smart Assist fileset, you can use the parameterized
verification functionality. This functionality is described in the section Parameterized verification check
files.
Related reference:
“Parameterized verification check files” on page 14
Each parameterized verification check file can contain one or more different parameterized verification
checks.

Example: Smart Assist discovery script
Here is an example of a Smart Assist discovery script.
#!/bin/ksh93
#
Apache 2.0 Discovery script
#
This script will determine if Apache is installed, and if so, if the
#mod_ssl.so module is installed on the local node. If both conditions
#are true, the script will output the following string:
#
Apache v2.0 Smart Assist:APACHE_2.0:Hot-Standby SSL Apache
#Server:APACHE_2.0_HS_SSL:1
#
Otherwise, the last 2 characters will be replaced with :0 noting that
#the apache/ssl package is not properly installed on the local node.
#
dspmsg -s 1 apache.cat 1 "Apache v2.0 Smart Assist"
print -n ":APACHE_2.0:"
dspmsg -s 1 apache.cat 2
"Hot-Standby SSL Apache Server"
print -n ":APACHE_2.0_HS_SSL:"
Simple example of scanning for the apache RPM on an AIX machine
result=$(rpm -qa 2>/dev/null | grep apache)
[[-z $result]] && {
echo "0"
exit 0

}
If SSL is installed in this version of apache, this node has SSL
#available
rpm -ql apache 2>/dev/null | grep mod_ssl.so >/dev/null

Developing Smart Assist applications for PowerHA SystemMirror 9

(($? == 0)) && {
echo "1"
}
echo "0"

Invoking the Smart Assist's component Add menu
If you choose a Smart Assist with an application installed, the framework then displays a list of
component names.

These names are generated from the component discovery process. You must select a component and the
SMIT Add menu specified when the Smart Assist was added is invoked. The code in the SMIT menu
generated by the Smart Assist developer is then executed.

The Smart Assist framework uses the two name value pairs sent to claddsa: SMIT_ADD and
SMIT_ADD_TYPE. The value for SMIT_ADD_TYPE is either 'n' or 'd'. These values correspond to the
values used in smitty ODM classes such as sm_name_hdr, in particular the next_type field.

Specifying 'n' means that after you select the particular Smart Assist component, the next SMIT ID will be
a sm_name_hdr entry. In most cases the sm_name_hdr SMIT screen is used to select a particular
application instance (for example, a DB2 instance name) or option before entering the ADD dialog.
Specifying 'd' for SMIT_ADD_TYPE means that the next SMIT identifier will be a sm_cmd_hdr entry
(dialog). The SMIT_ADD field for the Smart Assist component designates the next identifier SMIT will
visit.

Before the particular Smart Assist SMIT stanzas are invoked, the application discovery framework builds
the following cooked name fields. These fields can be used in SMIT for cmd_to_classify, cmd_to_discover,
or cmd_to_exec functions.

Once control is passed within SMIT to the particular Smart Assist no further application framework SMIT
screens are invoked. The developer is free to construct the sm_name_hdr, and sm_cmd_hdr entries as
necessary.

Cooked name in SMIT Description

sa_id Smart Assist ID

component_id Component ID

cluster_name Name of the cluster

nodes Comma-separated list of nodes on which the component was installed.

application_id (for the modify screen only) the application identifier

Typical Add menu functionality for a Smart Assist component:

Typically the application instance is already configured; the task is to use SMIT panels to get user input
and detect the resources already used by the application instance, and make them known to PowerHA
SystemMirror so they can be made highly available.

You are asked to enter instance names. Then volume group names, file system name, and service labels
are usually determined from that input.

The Smart Assist application instance is then created using the claddsaapp API routine, which stores
instance information in the HACMPsa_metadata ODM. Other attributes of the Smart Assist application
instance can be registered as needed.
/usr/es/sbin/cluster/sa/sbin/claddsaapp -a example_app \
APPLICATION_NAME=" example_app" \
RESOURCE_GROUP="example_app_group" \
SMARTASSIST_ID="zzOther" \
COMPONENT_ID="GASA"

10 Developing Smart Assist applications for PowerHA SystemMirror

The cluster configuration API (clvt) is then used by the Smart Assist to configure the resource groups
and application monitors needed by the application.

The very first call the add script makes should be to the application framework API /usr/es/sbin/cluster/
sa/sbin/clsapre . This script can be passed the -c flag to change the name of the cluster to suit the
particular application being configured if needed.

After the add script completes successfully, the developer should call the script /usr/es/sbin/sa/sbin/
clsapost -v. Note that the -v flag will run verification and synchronization as the last step of adding a
application instance.

See the GASA script /usr/es/sbin/cluster/sa/gasa/sbin/add as an example of the add script.
Related concepts:
“clvt API” on page 25
These topics describe the clvt (cluster virtualization tool) API.

Change or show existing Smart Assist application instance with PowerHA SystemMirror resources:

The Change/Show an Application's PowerHA SystemMirror Configuration menu can provide you a
way to make minor changes to a given PowerHA SystemMirror configuration.

When selected, the Change/Show an Application's PowerHA SystemMirror Configuration displays a
list of Smart Assist application instances that can be changed. The Smart Assist developer must provide
the screens to make the desired changes. Again, changes are made using the cluster configuration API
clvt.

Make Applications Highly Available (Use Smart Assists)

Move cursor to desired item and press Enter

Add an Application to the PowerHA SysteMirror Configuration
Change/Show an Application’s PowerHA SysteMirror Configuration
Remove an Application from the PowerHA SysteMirror Configuration

Manage Your Applications
Change/Show the Resources Associated with Your Application

Test Your Application for Availability

| |
| Select an Application from the List of Discovered Applications Below |
| |
| Move cursor to desired item and press Enter. |
| |
| example_app |
| |
| F1=Help F12=Refresh F3=Cancel F8=Image |
| F9=Shell F10=Exit Enter=Do |
| /=Find n=Find Next |
| |
|__|

See the GASA script /usr/es/sbin/cluster/sa/gasa/sbin/modify as an example of a Modify change/show
script.

Once you select a particular application instance, (example_app in the figure above) the application
framework reads the SMIT_MODIFY_TYPE and SMIT_MODIFY fields from the HACMPsa ODM. These
entries are defined when the Smart Assist fileset, or package is installed, and the installer calls the
claddsa Smart Assist command.

Developing Smart Assist applications for PowerHA SystemMirror 11

General Applications Smart Assist

Type or select values in entry fields
Press Enter AFTER making all desired changes

[Entry Fields]
* Application Kane example_app
* Primary Node [cujo] +
* Takeover Nodes [cemetery] +
* Application Controller Start Script [/exampleapp/start]
* Application Controller Stop Script [exampleapp/stop]
* Service IP Label [service1] +

F1=Help F12=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

The Smart Assist Manage menu:

As a SMIT limitation, Add and Change/Show menus can only be displays and selectors. You as the
developer can provide additional SMIT menus, selectors, and dialogs under the Manage Your
Applications menu heading of SMIT (clsa_manage).

Your first sm_menu_opt stanza will need to have clsa_manage with a sequence number that does not
collide with other sequence numbers. You will need to install the SMIT ODM stanzas at install time
through odmadd calls within the install script. None of the cooked field names mentioned previously will
be available for use by SMIT.

Note: Sequence numbers of 100 and below and 900 and above are reserved for clsa_manage screens
developed by the Smart Assist developer.

Removing Smart Assist application instances:

The Remove an Application from the PowerHA SystemMirror Configuration menu selection presents a
list of Smart Assist application instances.

To remove a Smart Assist application instance, select the one you want to delete and the clrmsaapp UI
API routine removes the instance data from HACMPsa_metadata. Any resource groups created are
typically kept so they can be managed by the user using the regular PowerHA SystemMirror
functionality.

12 Developing Smart Assist applications for PowerHA SystemMirror

Make Applications Highly Available (Use Smart Assists)

Move cursor to desired item and press Enter

Add an Application to the PowerHA SystemMirror Configuration
Change/Show an Application’s PowerHA SystemMirror Configuration
Remove an Application from the PowerHA SystemMirror Configuration

Manage Your Applications
Change/Show the Resources Associated with Your Application

Test Your Application for Availability

| |
| Select an Application from the List of Discovered Applications Below |
| |
| Move cursor to desired item and press Enter. |
| |
| example_app |
| |
| F1=Help F12=Refresh F3=Cancel F8=Image |
| F9=Shell F10=Exit Enter=Do |
| /=Find n=Find Next |

F1| |
F9|__|

Any DEREGISTRATION_COMMAND specified in the claddsa call made by the Smart Assist is called
before the above actions are taken.

Removing Smart Assists:

Removing a Smart Assist is the reverse of the Add a Smart Assist at Install Time operation.

It is done by an uninstall script:
v The Add, Change/Show and Manage SMIT menus must be removed from the SMIT ODM.
v The entries in the Smart Assist ODMs are removed using the clrmsa UI API routine.

Any resource groups created are typically kept so they can be managed by the user using the regular
PowerHA SystemMirror functionality.

Custom verification and parameterized verification checks
Once the cluster is configured via the Smart Assist add or modify script, the final step is a verify and
synchronize, which is performed via the clsapost -v script.

At that time, a number of checks can optionally be made on the nodes in the cluster to make sure the
necessary resources exist.

Developers of Smart Assists have two methods of introducing new verification checks into the PowerHA
SystemMirror product:
1. Custom verification methods. This is the preexisting PowerHA SystemMirror mechanism used to

perform third-party verification for system or application components that are not using PowerHA
SystemMirror.

2. Parameterized verification checks, described in this section.

Parameterized verification checks are described files that reside in the /usr/es/sbin/cluster/etc/config/
verify directory.

Developing Smart Assist applications for PowerHA SystemMirror 13

These files have an extension of.ver and are typically created when the Smart Assist instance is created
via the REGISTRATION_COMMAND. They make specific checks to ensure that the resources needed by
the instance exist and are sufficient. The checks that can be made are:
v APAR is loaded
v Disk space is available
v File exists
v Fileset is installed
v Group exists
v Swap space exists
v User exists.
Related reference:
“Parameterized verification check files”
Each parameterized verification check file can contain one or more different parameterized verification
checks.

Parameterized verification check files
Each parameterized verification check file can contain one or more different parameterized verification
checks.

Each file has the following attributes which apply globally to all parameterized verification checks within
the file. Add comments to the file by starting the line with the pound sign (#).
Component.Name.DefaultName = "Default name as visible in error or
warning messages"
Component.MsgCat.ID = 1
Component.MsgCat.Set = 10
Component.MsgCat.Catalog = "myassist.cat"

Component.Nodes = "AlL"
or
Component.Nodes = "S=<smart assist ID>:A=<ApplicationID>"
or
Component.Nodes = "LOCALNODE"

Component.Name.DefaultName

Component.Name.DefaultName is the name that is used in verification errors or warnings produced by the
parameterized verification checks listed below.

Component.MsgCat

v ID - message catalog identifier as used in dspmsg
v Set - The message catalog set as used in dspmsg
v Catalog - the message catalog name as used in dspmsg

Component.Nodes

v ALL - Verify on all available nodes
v LOCALNODE - Verify only on the local node
v S=<SmartAssistID>:A=<ApplicationID> Verifies the nodes associated with the specific application

instance.

APAR verification
The APAR parameterized verification check validates that the set of APARs specified is installed on the
nodes defined by Component.Nodes.

14 Developing Smart Assist applications for PowerHA SystemMirror

If one or more nodes are missing the required fileset, a verification message is printed, the severity of the
message (error or warning) is determined by the value of HAVerify.APAR.severity, which can be either
"ERROR" or "WARNING" as shown below:
HAVerify.APAR.severity = "ERROR | WARNING"
HAVerify.APAR.exists[0].apar = "IY7265H"
HAVerify.APAR.exists[1].apar = "IY72657"
.
.
.
HAVerify.APAR.exists[n].apar = "..."

Disk space verification
The disk space parameterized verification check validates that the specified file systems have sufficient
space (as specified).

The format of the diskspace verification check is as follows:
HAVerify.DiskSpace.severity = "ERROR | WARNING"

#Validate /var filesystem has 200 MB of free space
HAVerify.DiskSpace.check[0].filesystem = "/var"
HAVerify.DiskSpace.check[0].minsize = "200MB"

Validate /oradata has 1GB of free space
HAVerify.DiskSpace.check[1].filesystem = "/var"
HAVerify.DiskSpace.check[1].minsize = "200GB"

Validate /orasoft has 4000Kb of free space
HAVerify.DiskSpace.check[2].filesystem = "/orasoft"
HAVerify.DiskSpace.check[2].minsize = "4000Kb"
...

The qualifiers for minsize are # followed by [Kb - KiloBytes | MB - MegaBytes | GB - GigaBytes | B -
Bytes].

File verification
The file verification determines if the set of specified files exist on the specified nodes.

If not, an error or warning message is produced in the verification output. The format of the File section
is as follows:
HAVerify.File.severity = "ERROR | WARNING"
HAVerify.File.exists[0].name = "/etc/hosts"
HAVerify.File.exists[1].name = "/orasoft/10g/admin/dbs/asdb/pfile/
warehouse_pfile.ora"
.
.
.
HAVerify.File.exists[n].name = "..."

Fileset verification
The fileset parameterized verification check validates that the set of LPP filesets is installed on the set of
nodes present in the header information of the file.

The format of the fileset section follows:
HAVerify.Fileset.severity = "ERROR | WARNING"

Detect cluster.es.server.cfgast version installed
HAVerify.Fileset.exists[0].name = "cluster.es.server.cfgast"
HAVerify.Fileset.exists[0].version = "n.n"

Detect cluster.es.server.testtool is installed (no version required)
HAVerify.Fileset.exists[1].name = "cluster.es.server.testtool"

Developing Smart Assist applications for PowerHA SystemMirror 15

Group verification
The group validation parameterized verification check validates that the AIX group is defined on the set
of nodes specified in the header with an ID as specified in the section.

One or more groups can be validated. The format of the section follows:
HAVerify.Group.exists.severity = "ERROR | WARNING"
HAVerify.Group.exists[0].name = "dba"
HAVerify.Group.exists[0].GID = 100

User verification
The user validation parameterized verification check validates that the AIX user is defined on the set of
nodes specified in the header.

The user must have the same ID as specified in the section. One or more users can be validated within
one verification script. The format of the section follows:
HAVerify.User.exists.severity. = "ERROR | WARNING"
HAVerify.User.exists[0].name = "oracle"
HAVerify.User.exists[0].UID = 100 ...

Swap space verification
The swap space parameterized verification check validates that the swap space for the set of nodes
specified in the header meets the requirements for free swap space and total available swap space.

The format of this section is as follows:
HAVerify.SwapSpace.severity = "ERROR | WARNING"
At a minimum 1024MB must be allocated to the swap space
HAVerify.SwapSpace.minsize = "1024MB"

At a minimum 512MB of space must be available at the time verification
executes
HAVerify.SwapSpace.minfree = "512MB"

Miscellaneous concepts and functionality
This section describes additional functionality available to the Smart Assist developer.

Define the cluster automatically

If the cluster is not defined when the Add an Application to the PowerHA SystemMirror Configuration
menu selection is made, the Smart Assist framework automatically queries the end user for the nodes in
the cluster and creates the cluster. This step is equivalent to the Configure a PowerHA SystemMirror
Cluster and Nodes SMIT function.

Query and list commands used in the API

Several utility commands are available to the Smart Assist developer. See Smart Assist commands for a
detailed description of these routines:
v cllsssaapp - List configured Smart Assists application instances.
v cllsserviceips - List available service IP labels
v clquerysa - Return attributes of specified Smart Assist
v clquerysaapp - Return attributes of specified Smart Assist application instance

The clsapre and clsapost routines must be called before and after creating a Smart Assist application
instance. They provide hooks back to the framework during these operations.

16 Developing Smart Assist applications for PowerHA SystemMirror

clsapre [-c cluster_name]
-c cluster_name Change the name of the cluster to the specified value
clsapost [-v]
-v Run cluster verification after the application instance is added

Registration and deregistration commands

The REGISTRATION_COMMAND and DEREGISTRATTION_COMMAND specified in the claddsa call
allow the Smart Assist developer to perform activities before the Smart Assist is installed and before it is
removed.

Smart Assist migration commands

The MIGRATION_COMMAND specified in the claddsa call allows the Smart Assist developer to specify
a migration script in case a newer Smart Assist is superseding an older one. If the
SMARTASSIST_VERSION values don't match when the claddsa call is made, the
MIGRATION_COMMAND specified in the new Smart Assist is called to migrate any existing Smart
Assist application instance data to a new format if necessary, or to make modifications to the existing
data as necessary.

Smart Assist test command

If a TEST_COMMAND is specified in the claddsa call, the script is called when the end user selects the
Test Your Application for Availability menu selection. The test script will be given the name of the
application to test as the first argument. It is the test script's responsibility to produced stdout output that
conforms to the cluster test tool script format. If a TEST_COMMAND is not specified a default test script
will execute if the user chooses to test Planning Names and Values for the Smart Assist for the Discovery
Database.
Related concepts:
“Smart Assist commands” on page 18
Use these topics as reference for the commands you use to develop a Smart Assist for PowerHA
SystemMirror. Each topic lists syntax diagrams and provides examples for using each command.

Planning names and values for the Smart Assist discovery database
When a Smart Assist is installed using installp or the SMIT equivalent, the Smart Assist must add
information about itself to the discovery database, PowerHA SystemMirror, in order to ensure that the
discovery process will find the applications that can be made highly available.

The installation script associated with the fileset must register each component of the Smart Assist using
the claddsa command. The information about each Smart Assist should be stored in an ODM or similar
structure so that cluster synchronization will distribute this information to the rest of the cluster. Each
component of a Smart Assist should specify some or all of the following information. This information is
needed for discovery and other processes:

Entry Type Required Default Value Notes

Smart Assist ID String - 32 characters or
less

yes Must be common to all
components of the
Smart Assist

Component ID String -32 characters or
less

yes Must be unique among
the components of the
Smart Assist

Smart Assist Version Number yes Must be greater than
previous versions

Discovery Command Full File Path plus
arguments

yes See the description and
requirements for the
Discovery Script.

Developing Smart Assist applications for PowerHA SystemMirror 17

Entry Type Required Default Value Notes

Uninstallation
Command

Full File Path plus
arguments

no none Used if special steps
must be taken to
completely uninstall a
Smart Assist.

Registration Command Full File Path plus
arguments

no none The optional command
is run before the Add
SMIT path is invoked

Deregistration
Command

Full File Path plus
arguments

no none The optional script is
run before the resource
group and resources
have been removed
from PowerHA
SystemMirror and the
information removed
from the Smart Assist
databases.

Migration Script Full File Path plus
arguments

no none This optional script is
run if claddsa detects a
previous version was
installed.

SMIT Add Screen or
Selector

SMIT Path

SMIT Add Type

SMIT Modify Screen or
Selector

SMIT Path

SMIT Modify Type

Resource Group Name
Generation Script

Full File Path plus
arguments

Yes Used by the Registration
Process

Application Sontroller
Name Generation Script

Full File Path plus
arguments

yes Used by the Registration
Process

Custom Test Script Full File path no Uses the
Application-based utility
for generating a test
plan

Smart Assist commands
Use these topics as reference for the commands you use to develop a Smart Assist for PowerHA
SystemMirror. Each topic lists syntax diagrams and provides examples for using each command.

Highlighting

The following highlighting conventions are used in this topic:

Item Description

Bold Identifies command words, keywords, files, directories, and other items whose actual names are predefined by
the system.

Italics Identifies parameters whose actual names or values are supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see displayed, examples
of program code similar to what you might write as a programmer, messages from the system, or information
you should actually type.

Reading syntax diagrams

Usually, a command follows this syntax:

18 Developing Smart Assist applications for PowerHA SystemMirror

Item Description

[] Material within brackets is optional.

{} Material within braces is required.

| Indicates an alternative. Only one of the options can be chosen.

... Indicates that one or more of the kinds of parameters or objects preceding the ellipsis can be entered.

Related information

For complete information on a command's capabilities and restrictions, see the online man page. Man
pages for PowerHA SystemMirror for AIX commands and utilities are installed in the /usr/share/man/cat1
directory. Use the following syntax to read man page information where command-name is the actual name
of the PowerHA SystemMirror command or script.:
man command-name

For example, type man clpasswd to obtain information about the PowerHA SystemMirror user password
command.
Related concepts:
“clvt API” on page 25
These topics describe the clvt (cluster virtualization tool) API.

Smart Assist registration and query
These commands add or remove a Smart Assist from the discovery and registration databases.

claddsa command
Registers a Smart Assist for use in application discovery.

Syntax
claddsa -s SmartAssistID -c ComponentID [-C] name1= "value1"
name2=name1= "value1"..

Parameters

-s SmartAssistID Unique Identifier for the Smart Assist

-c ComponentID Unique Identifier for the Smart Assist Component

name1= "value1"...
nameN= "valueN"

Names of the name value pairs to be stored within the database.

-C Causes a check to see if the Smart Assist and component can be configured on the local node
(software is installed).

If you specify a Migration Script, then claddsa will first check to see if a previous version of the Smart
Assist was installed. After the database is updated with the values specified on the command line, then
the Migration script will be invoked, passing in the version of the previous Smart Assist via the
CLSA_VER environment variable. Please note that unlike other values, the MIGRATION_COMMAND
will not be stored in the HACMPsa ODM. The following list details the name and value pairs that the
Smart Assist framework recognizes. All of these require both the Smart Assist identifier and the
component identifier to be Smart Assist wide. Note: Please check to ensure that the Smart Assist and
component identifiers used are unique.

Developing Smart Assist applications for PowerHA SystemMirror 19

Name Description

SMARTASSIST_ID Unique identifier for the Smart Assist

COMPONENT_ID Unique string to identify the component within the Smart Assist

SMARTASSIST_VERSION Unique string that identifies the Smart Assist version. This is used to determine if
migration is necessary.

MIGRATION_COMMAND In the event an older version of the same Smart Assist is already installed, the new
migration script will run before the older version is removed. The script should
migrate any existing application instances defined to PowerHA SystemMirror to the
new Smart Assist format. Note: unlike other values, the value for this entry will not
be stored in the HACMPsa ODM.

SMIT_MODIFY_TYPE Either 'd' for sm_cmd_hdr screens, or 'n' for sm_name_hdr screens

SMIT_MODIFY SMIT identifier used to navigate to either the name selector screen, or the cmd hdr
dialog screen when modifying the particular Smart Assist component

DISCOVERY_ COMMAND Command to discover whether the particular application component or application
sub-feature is accessible on the local cluster node

DEINSTALLATION_ COMMAND Command that executes before the Smart Assist is removed from the local node

REGISTRATION_ COMMAND The command that executes when the user adds an application instance to the
PowerHA SystemMirror configuration

DEREGISTRATION_ COMMAND Command that executes before the Smart Assist framework removes the application
from the PowerHA SystemMirror configuration

SMIT_ADD_TYPE Either 'd' for sm_cmd_hdr screens, or 'n' for sm_name_hdr screens

SMIT_ADD SMIT identifier used to navigate to the Smart Assist add screen for the user selected
Smart Assist component.

You can add additional Smart Assist component name value pairs as needed. The Smart Assist
framework will not interpret any name and value pairs that are not one of the above. If -C is specified,
then the last step is to run the DISCOVER_COMMAND (if specified). If the command returns
information, then print out a message of the form:
The following components of <Smart Assist> can be configured on the
local node because the software is installed:

<component 1>
<component 2>
...

Please run "smit clsa" to start configuring them to make them highly
available with PowerHA SystemMirror.

claddsa example
claddsa -s MYSMARTASSIST_8.0 -c FIRST_COMPONENT \
SMARTASSIST_ID="MYAPP_8.0" \
COMPONENT_ID="FIRST_COMPONENT" \
DISCOVERY_COMMAND="/usr/es/sbin/cluster/sa/MyApp/sbin/discovery"\
DEINSTALLATION_COMMAND="/usr/es/sbin/cluster/sa/MyApp/install/uninstall"
\
REGISTRATION_COMMAND="/usr/es/sbin/cluster/sa/MyApp/sbin/register"\
DEREGISTRATION_COMMAND="/usr/es/sbin/cluster/sa/sbin/MyApp/deregister" \
SMARTASSIST_VERSION="1.0" \
SMIT_ADD_TYPE="n" \
SMIT_ADD="clsa_mysmartassist_add_selector"
SMIT_MODIFY_TYPE="d" \
SMIT_MODIFY="clsa_mysmartassist_modify_dialog"

The resulting HACMPsa ODM entries will be:
HACMPsa:

sa_id ="MYSMARTASSIST_8.0"
component_id ="FIRST_COMPONENT"
name="SMARTASSIST_ID"
value="MYSMARTASSIST_ID"

HACMPsa:

20 Developing Smart Assist applications for PowerHA SystemMirror

sa_id ="MYSMARTASSIST_8.0"
component_id ="FIRST_COMPONENT"
name="COMPONENT_ID"
value="FIRST_COMPONENT"

HACMPsa:
sa_id ="MYSMARTASSIST_8.0"
component_id ="FIRST_COMPONENT"
name="DEREGISTRATION_COMMAND"
value="/usr/es/sbin/cluster/sa/sbin/MyApp/deregister"

HACMPsa:
sa_id ="MYSMARTASSIST_8.0"
component_id ="FIRST_COMPONENT"
name="SMARTASSIST_VERSION"
value="1.0"

HACMPsa:
sa_id ="MYSMARTASSIST_8.0"
component_id ="FIRST_COMPONENT"
name="SMIT_ADD_TYPE"
value="n"

HACMPsa:
sa_id ="MYSMARTASSIST_8.0"
component_id ="FIRST_COMPONENT"
name="SMIT_ADD"
value=" clsa_mysmartassist_add_selector"

HACMPsa:
sa_id ="MYSMARTASSIST_8.0"component_id ="FIRST_COMPONENT"
name="SMIT_MODIFY_TYPE"
value=" clsa_mysmartassist_add_selector"

HACMPsa:
sa_id ="MYSMARTASSIST_8.0"
component_id ="FIRST_COMPONENT"
name="SMIT_MODIFY"
value=" clsa_mysmartassist_add_selector"

HACMPsa:
sa_id ="MYSMARTASSIST_8.0"
component_id ="FIRST_COMPONENT"
name="DISCOVERY_COMMAND"
value="/usr/es/sbin/cluster/sa/MyApp/sbin/discovery"

HACMPsa:
sa_id ="MYSMARTASSIST_8.0"
component_id="FIRST_COMPONENT"
name="REGISTRATION_COMMAND"
value="/usr/es/sbin/cluster/sa/MyApp/sbin/register"

clquerysa command
This commands queries the nodes of the cluster for available Smart Assist components and whether the
component can run on the remote node.

-t discover : Queries the nodes of the cluster for available Smart Assist components and whether the
component can run on the remote node.

-t filter : Filters the raw list of Smart Assists [and or components] to produce a list usable by SMIT for
selecting a Smart Assist.The raw list has to be passed in by standard input.

Syntax for discovery
clquerysa -t discover [-n nodename]

Parameters for discovery

Developing Smart Assist applications for PowerHA SystemMirror 21

Parameter Description

-n nodename If -n is specified, then only the information from the remote node is returned.

Note: clquery -t discover is equivalent to:
for each node in the cluster

clquerysa -t discover -n $node

Discovery output

The output that results is one line of text for each installed component with the following information:

Item Description

Node Name of the node on which discovery found the component.

SmartAssistName Internationalized name of the Smart Assist.

SmartAssistID ID of the Smart Assist; it must match what is in the Discovery DB.

ComponentName Internationalized name of the Smart Assist component.

ComponentID ID of the Component; it must match what is in the Discovery DB.

[0|1] 0 if the component is not installed; 1 if it is installed.

Syntax for filter
clquerysa -t filter

Filters the raw list of Smart Assists and components to produce a list usable by SMIT for selecting a
Smart Assist. Only the Smart Assists names and the relevant nodes will be displayed (selector shown
after the user selects Add an Application to the PowerHA SystemMirror Configuration):
DB2 UDB non-DPF Smart Assistant
Oracle Smart Assist #
WebSphere Smart Assistant #
Other Applications # NodeA NodeB

clquerysa -t filter -s SmartAssistID

Filters the raw list of Smart Assists and components to produce a list usable by SMIT for selecting a
Smart Assist component. Only the available components of a given Smart Assist will be given, as in:
DB2_8.0
DB2 Hot Standby
DB2 Mutual Takeover

clquerysa -t filter -s SmartAssistID -c Component ID

Filters the raw list of Smart Assists and components so only the list of nodes for the application
component of a Smart Assist will be displayed as a comma separated list.

clrmsa command
Removes all Smart Assist components or a specified component.

Syntax

clrmsa -s SmartAssistID -c ComponentID

Parameters

22 Developing Smart Assist applications for PowerHA SystemMirror

Parameter Description

-s SmartAssistID Unique Identifier for the Smart Assist to remove.

-c componentID ID of component to remove

First, clrmsa runs the uninstallation command for all components (unless you specify one). Then it
removes all information pertaining to the Smart Assist from the discovery and registration databases
HACMPsa and HACMPsa_metadata. It does not remove the application from the PowerHA
SystemMirror configuration; it removes only the associated Smart Assist configuration. This allows the
user to continue to manage the application using the regular SMIT PowerHA SystemMirror menus.

clrmsa example

Remove the Smart Assist zzother: clrmsa -s zzOther

Smart Assist application registration and query
These commands add or remove a Smart Assist from the discovery and registration databases of
applications.

claddsaapp command
Registers information about an application in the HACMPsa database.

Syntax
claddsaapp -a [ApplicationID] name1="value1" name2="value2" ...
nameN="valueN"

Parameters

Parameter Description

-a Invoking the claddsaapp command with just the -a switch lists the next available
application ID that can be used.

-a ApplicationID Lists names of the applications included in the name=value pairs

name=value pairs Names of application components.

Required name / value pairs for this command are the SMARTASSIST_ID, COMPONENT_ID, and
APPLICATION_NAME.

Item Description

SMARTASSIST_ID Smart Assist identifier that this particular application instance implements.

COMPONENT_ID Smart Assist component identifier.

APPLICATION_NAME This is the same value as the value passed to the -a flag or the ApplicationID.

claddsaapp example
claddsaapp -a MyApp \

SMARTASSIST_ID="zzOther" \
COMPONENT_ID="GASA" \
APPLICATION_NAME="MyApp" \
RESOURCE_GROUP="MyApp_group"

clquerysaapp command
Returns information about a registered application.

Syntax
clquerysaapp -a applicationID name1 ... nameN

Developing Smart Assist applications for PowerHA SystemMirror 23

Parameters

Parameter Description

-a ApplicationID Lists names of the applications included in the name=value pairs

name=value pairs Names of application components.

If a name is specified, then only values associated with that name are returned in the form of name
=VALUE (if more than one value is present, they are comma-separated). If more than one name is
specified, these are presented as NAME1=VALUE1 ... NAMEN=VALUEN Specifying no names means all
information will be returned as if all applicable names were specified on the command line, but in no
defined order.

clquerysaapp examples

Query all names/values for MyApp:
clquerysaapp -a MyApp
SMARTASSIST_ID="zzOther"
COMPONENT_ID="GASA"
RESOURCE_GROUP="MyApp_group"
APPLICATION_NAME="MyApp"

Query the name of the Smart Assist for MyApp:
clquerysaapp -a MyApp SMARTASSIST_ID
SMARTASSIST_ID="zzOther"

clrmsaapp command
Removes specific or all information about a registered Smart Assist.

Syntax
clrmsaapp -a applicationID
clrmsaapp -a applicationID [name1|name1=VALUE1] ... [nameN|nameN=VALUEN]
clrmsaapp -s SmartAssistID

Parameters

Parameter Description

-a ApplicationID Lists names of the applications included in the name=value pairs

name=value pairs Names of application components.

-s Removes information about all applications configured with the specific Smart Assist ID.

After a component is registered or further configured, the application must be verified and synchronized.
This is to ensure the registration database is synchronized with all nodes of the cluster.

clrmsaapp examples

Remove all information about MyApp:
Clrmsaapp -a MyAPP

cllssaapp command
Returns a list of applications configured by a Smart Assist.

Syntax
cllsaapp

24 Developing Smart Assist applications for PowerHA SystemMirror

Example output
DB2_UDB_db2inst1
DB2_UDB_db2inst2
OracleAFC_ias10g
OracleCFC_ias10g.

Convenience routines for SMIT panels
These routines must be called before and after creating a Smart Assist application instance. They provide
hooks back to the framework during these operations.

clsapre [-c cluster_name]

Parameter Description

-c clustername Change the name of the cluster to this value.

clsapost [-v]

Parameter Description

-v Run cluster verification after the application instances is added

clvt API
These topics describe the clvt (cluster virtualization tool) API.

The clvt commands perform PowerHA SystemMirror cluster operations. Cluster operations include
adding, deleting, and querying cluster objects, as well as bringing nodes on or offline and modifying
resource groups and interfaces.

The general syntax for clvt commands:
clvt action class object name [name=value]...

Not all action class combinations require object or name=value pairs.

Not all commands have output. If they do, this is noted.

If the user enters an illegal value, the return code is non-zero. Not all commands produce error messages.

General rules for syntax

[]Material within brackets is optional

{} Material within braces is required

italics with no flag - the object named is required.

| =Indicates an alternative. Use one of the options.

... Indicates that one or more of the kinds of objects or parameters preceding the ellipsis can be entered.

Cluster class operations
Use clvt to perform operations on a cluster.

Developing Smart Assist applications for PowerHA SystemMirror 25

add cluster
Creates a PowerHA SystemMirror cluster with the specified name. If the cluster name already exists,
returns non-zero. If you do not supply a name, the cluster will be named cluster_nodename where
nodename is the node where you run the command.

Syntax
clvt add cluster [cluster_name]

cluster_name The cluster name can contain up to 32 alphanumeric characters and underscores.

Example

Create a cluster named ClusterA:
clvt add cluster clusterA

delete cluster
Deletes the currently defined cluster. If the specified cluster does not exist or does not match the existing
cluster, returns non-zero.

Syntax
clvt delete cluster

Example

Delete a cluster:
clvt delete cluster

query cluster
Returns information about the cluster. If the cluster does not exist, returns non-zero.

Syntax
clvt query cluster

Example
clvt query cluster

SECURITY="Standard"
CLUSTER_ID="1146018839"
STATE="ST_INIT"
CLUSTER_NAME="regaa11_cluster"

sync cluster
Performs a verification and synchronization of the cluster. Errors found during verification are
automatically corrected. If the cluster does not exist, returns non-zero.

Syntax
clvt sync cluster

Example

To verify and synchronize the cluster:
clvt sync cluster

discover cluster
Performs cluster discovery of PowerHA SystemMirror related information from nodes configured in the
specified cluster. If the cluster does not exist, returns non-zero.

26 Developing Smart Assist applications for PowerHA SystemMirror

Syntax
clvt discover cluster

Example

To discover the current cluster:
clvt discover cluster

Node class operations
Use clvt to perform operations on a cluster node.

add node
Adds a node with the specified name to the cluster.

Syntax
clvt add node node_name COMMPATH =IPaddress | IPlabel

Parameters

Parameter Description

node_name Name of a defined cluster node.

PATH Communication path to the node.

Required objects

The cluster.

Errors
v The cluster is not defined
v The node name already exists
v The maximum number of nodes already exists.

Example

To add a node named node1 to the cluster with its IP address:
clvt add node node1 COMMPATH=10.10.2.2

delete node
Deletes the specified node from the cluster.

Syntax
clvt delete node node_name

Parameters

Developing Smart Assist applications for PowerHA SystemMirror 27

Parameter Description

node_name Name of an existing cluster node.

Required objects
v cluster
v node.

Errors
v The cluster is not defined
v The node does not exist.

Example

To delete node2 from the cluster:
clvt delete node node2

query node
If a node name is specified, the command returns discovered information about the node attributes. If a
node name is not specified, the command returns a list of all nodes.

Syntax
clvt query node [node_name]

Parameters

Parameter Description

node_name Name of an existing cluster node.

Required objects

cluster

Errors
v The cluster is not defined
v The node does not exist.

Output

If node name is supplied, information about the following items are returned:
v Node Name
v Communication Path
v ATTR = (public or private)
v IPADDRESS = boot addresses and interface addresses
v IPLABEL=boot labels and interface labels
v NETMASK=for each path
v NETTYPE=type of networks
v NETWORK=network names.

28 Developing Smart Assist applications for PowerHA SystemMirror

Examples
clvt query node

maple
elm
oak

clvt query node regaa11 | sort
ATTR1="public"
ATTR2="public"
ATTR3="public"
IPADDRESS1="192.168.210.11"
IPADDRESS2="192.168.220.11"
IPADDRESS3="10.70.33.11"
IPLABEL1="regaa11_base10"
IPLABEL2="regaa11_base20"
IPLABEL3="regaa11"
NAME="regaa11"
NETMASK1="255.255.255.0"
NETMASK2="255.255.255.0"
NETMASK3="255.255.0.0"
NETTYPE1="ether"
NETTYPE2="ether"
NETTYPE3="ether"
NETWORK1="net_ether_01"
NETWORK2="net_ether_01"
NETWORK3="net_ether_00"

online node
Starts the Cluster Manager on the specified node. If the Cluster Manager is already started the command
is ignored.

Syntax
clvt online node node_name

Parameters

Parameter Description

node_name Node to bring online.

Required objects
v cluster
v node.

Errors
v The cluster is not defined
v The node does not exist.

Example

To bring node2 online:
clvt online node node2

offline node
Stops the Cluster Manager on the specified node. If the Cluster Manager is already stopped the command
is ignored.

Syntax
clvt offline node node_name

Developing Smart Assist applications for PowerHA SystemMirror 29

Parameters

Parameter Description

node_name Name of an existing cluster node.

Required objects
v cluster
v node.

Errors
v The cluster is not defined
v The node does not exist.

Example

To bring node2 offline:
Clvt offline node node2

Interface class operations
Use clvt to perform operations on an interface.

modify interface
Modifies the network to which an interface will be bound.

Syntax
clvt modify interface iplabel NETWORK=networkname

Parameters

Parameter Description

iplabel Name of the interface

networkname Network to which an interface will be bound.

Required objects
v cluster
v node
v interface.

Errors
v Interface does not exist
v Network does not exist.

Example

To bind the iplabel named mylabel to the network ether2:
clvt modify interface mylabel NETWORKNAME=ether2

query interface
Returns information about an interface label. If an interface label is not specified, returns a list of all
interface labels.

30 Developing Smart Assist applications for PowerHA SystemMirror

Syntax
clvt query interface [interface_label]

Parameters

Parameter Description

interface_label The name of the interface

Required objects

cluster

Errors
v The cluster is not defined
v The node does not exist.

Output

If no interface label is supplied, displays a list of interface labels. If an interface label is supplied, returns
the following information:
v Interface Label Name
v Interface Type
v Network
v Network Type
v Network Attribute (Public or Private)
v Node
v IP Address
v Hardware Address
v Interface Name.

Examples

To list all interfaces:
clvt query interface

maple_base_10
maple_base_20
elm_base_10
elm_base_20

To list the attributes of interface regaa11_base10:
clvt query interface regaa11_base10

INTERFACENAME="en0"
NETTYPE="ether"
TYPE="boot"
ATTR="public"
IPADDR="192.168.210.11"
NODE="regaa11"
GLOBALNAME=""
HADDR=""
NETWORK="net_ether_01"
NAME="regaa11_base10"

Network class operations
Use clvt to perform operations on a cluster network.

Developing Smart Assist applications for PowerHA SystemMirror 31

add network
Adds a network to the cluster.

Syntax
clvt add network networkname NETWORKTYPE=networktype [NETMASK=netmask]

Parameters

Parameter Description

networkname Name of the network to add.

NETWORKTYPE Type of network being added. Choices are ether, XD_ip, or XD_data.

NETMASK Netmask for the network

Required objects

cluster

Errors
v Cluster does not exist
v Invalid network type
v Invalid netmask.

Examples

Add a network named ether_01 of type ether, with a netmask of 255.255.128:
clvt add network ether_01 NETWORKTYPE=ether \

NETMASK=255.255.255.128 \

delete network
Deletes a previously defined network.

Syntax
clvt delete network networkname

Parameters

Parameter Description

networkname Name of the network to delete.

Required objects

cluster network.

Errors

Network does not exist.

Example

To delete a network named ether1 from the cluster:
clvt delete network ether1

32 Developing Smart Assist applications for PowerHA SystemMirror

query network
Returns information about the specified network. If a network name is not specified, returns a list of all
networks.

Syntax
clvt query network [networkname]

Parameters

Parameter Description

networkname Name of the network to delete.

Required objects

cluster

Errors
v The cluster is not defined
v The network does not exist.

Output

If a network name is not supplied, lists all cluster networks. If a network name is supplied, lists the
following network attributes:
ALIAS="true | false"
ALIAS_HB_ADDR= " "
ALIAS_HB_NETMASK=""
ATTR="public | private"
GLOBALNAME=""
MONITOR_METHOD="default | custom"
NAME="network_name"
NETMASK=""
NETWORK_ID=""
NIMNAME=""
POLLINTERVAL=""

Example

To list the cluster networks:
clvt query network

net_XD_data_01
net_XD_ip_01
net_ether_01
token_01

To list the attributes of the network named net_ether_01:
clvt query network net_ether_01

ALIAS="aliased"
ATTR="public"
POLLINTERVAL="0"
NIMNAME="ether"
NETWORK_ID="0"
GLOBALNAME=""
NAME="net_ether_01"
ALIAS_HB_NETMASK=""
NETMASK="255.255.255.0"
ALIAS_HB_ADDR=""
MONITOR_METHOD="default"

Developing Smart Assist applications for PowerHA SystemMirror 33

resource_group class
The resource_group class is a little different in that the clvt add action is used to add the resource group
to the cluster and the clvt modify action is used to either add or modify the attributes and resources of
the resource group. Use clvt to perform operations on a resource group.

add resource_group
Adds a resource group to a cluster. If the cluster and nodes are not yet defined, adding a resource group
defines them and runs cluster discovery. The cluster name is generated from the resource group name. If
no startup, fallover, or fallback policies are defined, the defaults are used.

Syntax
clvt add resource_group resource_group_name PRIMARYNODES="primary node
list" [STARTUP="startup policy"] [FALLBACK="fall back policy"]
[FALLOVER="fall over policy"]

Parameters

Parameter Description

Resource_group_name Alphanumeric string of no more than 32 characters.

PRIMARYNODES Node list for the resource group. The node list is in priority order.

STARTUP Startup up policy for the resource group. Possible values are:

v OHN - Online on home node (Default)

v OFAN - Online on first available node

v OAAN - Online on all available nodes

v OUDP - Online using distribution policy

FALLBACK Fallback policy for the resource group. Possible values are:

v NFB - Never fall back (Default if STARTUP = OAAN)

v FBHPN - Fall back to higher priority node in list (Default if STARTUP!= OAAN)

FALLOVER Fallover policy for the resource group. Possible values are:

v FNPN - Fall over to next priority node in the list (Default if STARTUP != OAAN)

v FUDNP - Fall over using Dynamic Node Priority

v BO - Bring offline (on error node only)(Default if STARTUP = OAAN)

Errors
v Node could not be added to cluster
v Invalid startup policy
v Invalid fallback policy
v Invalid fallover policy.

Example

To add a resource group named myDBapp with a startup policy of OFAN, fallback policy of NFB and
fallover policy of FNPN that can run on Nodes Apple and Basket:
clvt add resource_group myDBapp NODE_LIST="Apple, Basket"
[STARTUP="OFAN"] [FALLBACK="NFB"] [FALLOVER="FNPN"]

delete resource_group
Deletes a specified resource group from the cluster.

Syntax
clvt delete resource_group resource_group_name

34 Developing Smart Assist applications for PowerHA SystemMirror

Parameters

Parameter Description

resource_group_name Resource group to delete.

Required objects
v cluster
v resource_group.

Errors
v The cluster is not defined
v The resource group does not exist.

Example

To delete resource group MyDBapp:
clvt delete resource_group MyDBapp

modify resource_group
Adds or modifies the attributes and resources that are part of the resource group.

Syntax
clvt modify resource_group <resource group name>
[SERVICE_LABEL="service1 service2..."]
[APPLICATIONS="app1 app2..."]
[VOLUME_GROUP="vg1 vg2 ..."]
[FORCED_VARYON="true | false"]
[VG_AUTO_IMPORT="true | false"]
[FILESYSTEM="/fs1 /fs2 ..."]
[FS_BEFORE_IPADDR="true | false"]
[EXPORT_FILESYSTEM="/expfs1 /expfs2 ..."]
[MOUNT_FILESYSTEM="/nfs_fs1 /nfs_fs2 ..."]
[NFS_NETWORK="nfs_network"][DISK="hdisk1 hdisk2 ..."]

Parameters

Parameter Description

SERVICE_LABEL Comma-separated list of defined service labels and addresses

APPLICATIONS Comma-separated list of defined application controllers

VOLUME_GROUP Comma-separated list of volume groups to be varied on

FORCED_VARYON True if force varyon will be used to varyon volume groups

VG_AUTO_IMPORT = "true | false"

FILESYSTEM File systems to mount. (Default is ALL)

FS_BEFORE_IPADDR = "true | false"

EXPORT_FILESYSTEM The mount points of the file systems and directories that are exported to all nodes in the
resource chain when the resource is initially acquired.

NFS_NETWORK Preferred network for NFS mounts

MOUNT_FILESYSTEM All nodes in the resource chain that do not currently hold the resource will attempt to
NFS-mount these file systems.

DISK = "hdisk1 hdisk2..."

Developing Smart Assist applications for PowerHA SystemMirror 35

Required objects
v cluster
v resource_group.

Errors
v The cluster is not defined
v The resource group does not exist
v The service label is not defined
v The application controller does not exist.

Examples
v To modify the volume groups to be varied on in resource group MyDBapp:

clvt modify resource_group MyDBGapp VOLUME_GROUP=vgmyDB1,vgmyDB3

v To modify the NFS network and application controllers for resource group MyDBapp:
clvt modify resource_group myDBapp NFS_NETWORK=ether2
APPLICATIONS=appserv1,appserv3

query resource_group
Returns information about a specified resource group. The information returned contains both items from
the add action and the modify action. If you do not specify a resource group name, the command returns
a list of all resource groups.

Syntax
clvt query resource_group [resource_group_name]

Parameters

Parameter Description

resource_group_name Name of the resource group for which to list information.

Required objects

cluster

Errors
v The cluster is not defined
v The resource group does not exist.

Output

If the name of a non-modified resource group is supplied, output shows the basic information about the
resource group:
v Name
v Node list
v Startup, fallover, and fallback policies
v State.

If the name of a resource group that has been modified is supplied, returns complete information about
all resource group attributes:
Disk
Volume Group
Concurrent Volume Group

36 Developing Smart Assist applications for PowerHA SystemMirror

Forced Varyon
Filesystem
Export Filesystem
Shared Tape Resources
Communication Links
Applications
Mount Filesystem
Service Label
VG Auto Import
Mount Filesystem before IP Address
NFS Network
Node Priority Policy
Mount All Fs
Fallback At
Relationship
Secondary Nodes
Primary Nodes
Startup Policy
Fallover Policy
Fallback Policy
Resource Group State

Examples
clvt query resource_group

rg1
rg2
rg3

clvt query resource_group RG1
DISK= "hdisk3"
EXPORT_FILESYSTEM="/FSa1"
FALLBACK="FBHPN"
FALLOVER="FNPN"
FILESYSTEM="/FSa1"
FORCED_VARYON="false"
FSCHECK_TOOL="fsck"
FS_BEFORE_IPADDR="true"
MOUNT_FILESYSTEM="/mnt1;/FSa1"
NAME="RG1" NFS_NETWORK=""
NODES="regaa11 regaa12"
RECOVERY_METHOD="sequential"
SERVICE_LABEL="alias_svc1"
SSA_DISK_FENCING="false"
STARTUP="OHN" STATE=""
VG_AUTO_IMPORT="true"
VOLUME_GROUP="vg1"

online resource_group
Brings a specified resource group online. If the resource group is already online, the command is ignored.

Syntax
clvt online resource_group resource_group_name

Parameters

Developing Smart Assist applications for PowerHA SystemMirror 37

Parameter Description

resource_group_name Name of the resource group to bring online.

Required objects
v cluster
v resource_group.

Errors
v The cluster is not defined
v The resource group does not exist.

Example

To bring the resource group named MyDBapp1 online:
clvt online resource group MyDBapp1

offline resource_group
Brings a resource group offline. If the resource group is already offline, the command is ignored. The
resource group name must be specified.

Syntax
clvt offline resource_group resource_group_name

Parameters

Parameter Description

resource_group_name Name of the resource group to bring online.

Required objects
v cluster
v resource_group.

Errors
v The cluster is not defined
v The resource group does not exist

Example

To bring the resource group named MyDBapp1 offline:
clvt offline resource group MyDBapp1

service_ip class
Use clvt to do perform operations on a service IP

add service_ip
Adds a shared or node bound service IP label to the cluster. This label can later be added to a resource
group.

Syntax
clvt add service_ip ip_label_name NETWORKNAME=networkname SHARED="true |
false" [NODENAME=nodename]

38 Developing Smart Assist applications for PowerHA SystemMirror

Parameters

Parameter Description

ip_label_name Name of the IP label.

NETWORKNAME Name of the network on which the IP label and address will be attached.

SHARED "True" if the service IP label is configurable on multiple nodes. "False "if the service IP label is
node bound.

NODENAME Node where the service IP label will be bound.

Required objects
v cluster
v network.

Errors
v Cluster does not exist
v Invalid network name
v Undefined node name
v Unshared service IP label requires node name.

Example
clvt add service_ip {LabelA} NETWORK={ServiceNetwork} \

SHARED=false \
NODENAME={NodeA}

delete service_ip
Deletes a previously defined service IP label.

Syntax
clvt delete service_ip service_IP_label

Parameters

Parameter Description

service_IP_label Service_IP_label to delete.

Required objects
v cluster
v service_ip.

Example

Delete a service IP label named LabelA:
Clvt delete service_ip LabelA

query service_ip
Returns information about the specified service IP label. If a service IP label is not specified, returns a list
of all service IP labels.

Syntax
clvt query service_ip [service_IP_label]

Developing Smart Assist applications for PowerHA SystemMirror 39

Parameters
service_IP_label

Required objects

cluster

Output

If a service IP label is supplied, the following information is returned:
v Service IP Label Name
v IP Label Type
v Network
v Network Type
v Network Attribute
v Node
v IP address
v Hardware Address
v Interface Name
v Global Name.

Examples
clvt query service_ip

alias_svc1
alias_svc2
maple_base10
elm_base10
oak_base10

clvt query service_ip alias_svc1
INTERFACENAME=""
NETTYPE="ether"
TYPE="service"
ATTR="public"
IPADDR="192.168.250.1"
NODE=""
GLOBALNAME="ignore"
HADDR=""
NETWORK="net_ether_01"
NAME="alias_svc1"

Application controller class use
clvt to perform operations for an application controller.

add application
Adds an application controller to the cluster.

This can later be added to a resource group.

Syntax

clvt add application application_controller_name STARTPATH=start_script_path
STOPPATH=stop_script_path

Parameters

40 Developing Smart Assist applications for PowerHA SystemMirror

Parameter Description

Application_controller_name Alphanumeric string of no more than 32 characters.

STARTPATH Full path for the start script for the application controller.

STOPPATH Full path for the stop script for the application controller.

Required Objects

cluster

Errors
v Cluster does not exist
v Application monitor is not defined.

Example

To add an application controller named App1: clvt add application App1 STARTSCRIPT=/full
pathnameX \STOPSCRIPT=/full pathnameY

delete application
Deletes a previously defined application controller.

Syntax
clvt delete application application_controller_name

Parameters

Parameter Description

application_controller_name Application controller to delete.

Required objects
v cluster
v application.

Errors

The application controller does not exist.

Example

To delete the application controller named MyApp:
clvt delete application MYApp

query application
Returns information about the specified application controller. If no application controller is specified,
returns a list of all application controllers.

Syntax
clvt query application [application_controller_name]

Parameters
application_controller_name

Developing Smart Assist applications for PowerHA SystemMirror 41

Required objects

cluster

Errors
v The cluster is not defined
v The application controller does not exist.

Output

If no application controller is supplied, a list of application controllers. If an application controller is
supplied, the following information is returned:
Application Controller Name
Start Script
Stop Script
Application Monitors (if configured)

Examples
clvt query application

app_srv_1
db2
websphere

clvt query application App1
STARTSCRIPT="/xxxx"
ASSOCIATEDMONITORS="AppMon"
NAME="App1"
STOPSCRIPT="/yyyy"

application_monitor class
Use clvt to perform operations for an application monitor.

add application_monitor
Adds an application monitor to the cluster. This can later be added to an application controller.

Syntax
clvt add application_monitor <application monitor name>

APPLICATIONMONITORTYPE="Process | Custom"
APPLICATIONSERVERNAME="appserver1"
MONITORMODE="longrunning | startup | longrunningandstartup"
FAILUREACTION="notify | fallover"
STABILIZATION="1 .. 3600"
RESTARTCOUNT="0 .. 100"

[PROCESSMONITORS="pmon1 dbmon ..."]
[INSTANCECOUNT="1 .. 1024"]
[MONITORMETHOD="/script/to/monitor"]
[MONITORINTERVAL="1 .. 1024"]
[HUNGSIGNAL="1 .. 63"]
[RESTARTINTERVAL="1 .. 3600"]

Parameters

42 Developing Smart Assist applications for PowerHA SystemMirror

Parameter Description

APPLICATIONMONITORTYPE Monitor type. Options are "Process" and "Custom"

MONITORMODE Monitor mode. Options are "longrunning", "startup", or "both"

APPLICATIONSERVERNAME Application controller name being monitored

PROCESSMONITORS Process names to be monitored

INSTANCECOUNT Count of processes to be monitored

MONITORMETHOD Custom application monitor script

MONITORINTERVAL The monitor method will be run periodically at this interval (in seconds).

HUNGSIGNAL The signal sent to stop the Monitor Method if it doesn't return within Monitor
Interval seconds. The default is SIGKILL(9).

STABILIZATION Time to wait for monitor to stabilize

RESTARTCOUNT Number of times to restart the application controller

RESTARTINTERVAL Time that the application must remain stable before resetting RESTARTCOUNT

FAILUREACTION Action to take on failure detection. Options are "notify" or "fallover"

Required objects

cluster

Errors
v The cluster is not defined
v Application controller is not defined.

Examples

To add a process monitor named pmon1:
clvt add application monitor pmon1
APPLICATIONSERVERNAME="appserver1"
MONITORMODE="longrunning"
FAILUREACTION="notify"
PROCESSMONITORS="pmon1."

PROCESSOWNER="<username>"
INSTANCECOUNT="5"
STABILIZATION="50"
RESTARTCOUNT="5"

RESTARTINTERVAL="50"
NOTIFYMETHOD="</script/name>"

To add a custom monitor named cmon1:
clvt add application monitor cmon1
APPLICATIONSERVERNAME="appserver1"

MONITORMODE="longrunningandstartup"
MONITORMETHOD="/script/to/monitor"
MONITORINTERVAL="1024"
HUNGSIGNAL="60"
STABILIZATION="3600"
RESTARTCOUNT="100"
RESTARTINTERVAL="2400"
FAILUREACTION="fallover"

delete application_monitor
Deletes a previously defined application monitor.

Syntax
clvt delete application_monitor application_monitor_name

Developing Smart Assist applications for PowerHA SystemMirror 43

Parameters

Parameter Description

application_monitor_name The application monitor to delete.

Required objects
v cluster
v application_monitor.

Errors

The application monitor does not exist.

Example

To delete an application monitor named MyMonitor:
clvt delete application monitor MyMonitor

query application_monitor
Returns information about the specified application monitor. If an application monitor is not specified,
returns a list of all application monitors.

Syntax
clvt query application_monitor [application_monitor_name]

Parameters

Parameter Description

app_monitor_name The application monitor to delete.

Required objects
v cluster

Errors
v The application monitor does not exist
v The cluster is not defined.

Examples
clvt query application_monitor
app_srv_1_mon
db2_mon
websphere_mon

clvt query application_monitor App1Mon1
MONITORINTERVAL="30"
CLEANUPMETHOD="/xxxx"
RESTARTCOUNT="3"
HUNGSIGNAL="9"
MONITORMODE="longrunning"
APPLICATIONSERVERNAME="App1"
RESTARTMETHOD="/yyyy"
FAILUREACTION="notify"
MONITORMETHOD="/xxxx"

44 Developing Smart Assist applications for PowerHA SystemMirror

APPLICATIONMONITORTYPE="user"
NAME="App1Mon1"
RESTARTINTERVAL="132"
STABILIZATION="10" s

Resource group temporal_dependency class
Use clvt to modify or query a resource group temporal dependency configuration.

modify temporal_dependency
Modifies a parent and child resource group dependency.

Syntax
clvt modify temporal_dependency parent_resource_group
[RESOURCEGROUPCHILD=child_resource_groups]

Parameters

Parameter Description

parent_resource_group Parent resource group.

RESOURCEGROUPCHILDREN Space-delimited list of child resource groups. If none are specified, then all child
resource group associations for the specified parent resource group are removed.
Specifying a new list replaces the current one.

Required objects
v cluster
v resource group.

Errors
v The cluster is not defined
v The parent resource group does not exist
v The child resource group does not exist.

Example

To add a child resource group RG2c2 to RG2, thus modifying a temporal dependency that had only one
child (RG2c1) previously:
clvt modify temporal_dependency RG2 RESOURCEGROUPCHILDREN="RG2c1 RG2c2"

query temporal dependency
Lists the parent and child dependencies for the specified resource group.

Syntax
clvt query temporal_dependency resource group MODE="children | parents"

Parameters

Developing Smart Assist applications for PowerHA SystemMirror 45

Parameter Description

resource group Resource group to display

MODE How output is displayed: by "parents" or by "children."

Required objects
v cluster
v resource group.

Output

A list of parent and child dependencies.

Examples
clvt query temporal_ dependency RG2c1 MODE=parents

RG2

clvt query temporal_dependency RG2 MODE=children
RG2c1
RG2c2

Resource group location_dependency class
Use clvt to modify or query a resource group location dependency configuration.

modify location_dependency
Modify a location dependency between resource groups. The only location dependency type supported is
SAME_NODE.

Syntax
clvt modify location_dependency SAME_NODE
RESOURCEGROUPLIST=resource_group_list

Parameters

Parameter Description

SAME_NODE Location dependency type.

RESOURCEGROUPLIST Space-delimited list of resource groups

Required objects
v cluster
v resource group.

Errors
v The cluster is not defined
v The resource group does not exist.

Examples

To set up a location dependency so that RG1 and RG2 stay on the same node:
clvt modify location_dependency SAME_NODE\ RESOURCEGROUPLIST="RG1 RG2"

query location_dependency
Returns a list of the sets of resource groups that are configured to always be on the same node.

46 Developing Smart Assist applications for PowerHA SystemMirror

Syntax
clvt query location_dependency [SAME_NODE]

Parameters

Parameter Description

SAME_NODE Type of location dependency to display.

Required objects

cluster

Examples

Where was_rg_1 and ihs_rg_1 are defined to stay on the same node, and was_rg_2 and ihs_rg_2 are
defined to stay on the same node:
clvt query location dependency SAME_NODE

was_rg_1 ihs_rg_1
was_rg_2 ihs_rg_2

file_collection class
Use clvt to do these operations on a file collection.

add file_collection
Adds a file collection to the cluster.

Syntax
clvt add file_collection file_collection_name
[ISPROPOGATEFILESDURINGSYNC="true | false"]
[ISPROPOGATEAUTOWHENDETECTED="true | fslse"] [FILES= "/path/to/file1
/path/to/file2..."]

Parameters

Parameter Description

file_collection_name Alphanumeric string of not more than 32 characters.

ISPROPOGATEFILESDURINGSYNC "true" or "false". Cause files to propagate from the cluster when and
where synchronization occurs. Default is false.

ISPROPOGATEAUTOWHENDETECTED "true" or "false". Cause files to propagate when changes occur.
Default is false.

FILES Space-delimited list of full pathname of files to be managed by the
specified file collection.

Required objects

cluster

Errors

The cluster is not defined.

Developing Smart Assist applications for PowerHA SystemMirror 47

Example

To add a file collection named FC1 With files xxxx and yyyy that are propagated automatically when
detected during a sync:
clvt add file_collection FC1 FILES="/xxxx /yyyy"\
ISPROPOGATEDFILEDURINGSYNC=true \
ISPROPOGATEAUTOWHENDETECTED=true

delete file_collection
Deletes a specified file collection.

Syntax
clvt delete file_collection file_collection_name

Parameters

Parameter Description

file_collection_name File collection to delete.

Required objects
v cluster
v file_collection.

Errors
v The cluster is not defined
v The file collection does not exist.

Example

Delete a file collection named FC1
clvt delete file collection FC1

query file_collection
Returns information about the specified file collection. If a file collection is not specified, returns a list of
all file collections.

Syntax
clvt query file_collection [file_collection_name]

Parameters

Parameter Description

file_collection_name Name of file collection to query.

Required objects

cluster

Errors
v The cluster is not defined
v The file collection does not exist.

48 Developing Smart Assist applications for PowerHA SystemMirror

Output

If no file collection is supplied, the output is a list of file collections. If a file collection is supplied, the
following information is returned: File Collection Name File Collection Description Propagate during
synced Propagate when changed Files - Each file is separated by a space

Example
clvt query file_collection FC1

ISPROPOGATEDFILEDURINGSYNC="false"
FILES="/xxxx /yyyy"
ISPROPOGATEAUTOWHENDETECTED="false"
DESCRIPTION="File_Collection_FC1"
NAME="FC1"

Sample Smart Assist program
These topics provides a sample Smart Assist program, based on the General Application Smart Assist
(GASA).

Overview
The General Application Smart Assist (GASA) is a pre-installed Smart Assist that comes with PowerHA
SystemMirror. Its intended purpose is for configuring applications that do not already have a target
Smart Assists, but can be easily managed via start and stop scripts.

The general Smart Assist requests the minimal amount of information from the user and will configure
the PowerHA SystemMirror resource group and application controller necessary to support the target
application. The GASA Smart Assist has only one Smart Assist component; more complicated Smart
Assists will have several components. All of the concepts and tasks associated with creating a single
component Smart Assist can be extended and applied to constructing a Smart Assist with multiple
components.

Functionality of the sample program

The add screen for the Smart Assist associates a resource group to a set of participating nodes selected by
the user. Inside the resource group is an application controller constructed via the Smart Assist In the
sections that follow we'll dissect the General Application Smart Assist into the sub-tasks required to
create a new Smart Assist.

Installing the sample program
The General Application Smart Assist is installed via the cluster.es.assist.common fileset, several files are
copied to the local filesystem.

These files are:
/usr/es/sbin/cluster/sa

/gasa
./sbin

add
discovery
modify
smit.utils

Developing Smart Assist applications for PowerHA SystemMirror 49

Script Name Description

add Adds new instances of the GASA application to the PowerHA SystemMirror cluster configuration

discovery Runs discovery on the local cluster node, determines if the Smart Assist component can be configured. Script
typically asks the question: Is the application installed on the local node?

modify Modifies the existing PowerHA SystemMirror application instance

smit_util SMIT utilities for performing cmd_to_list, cmd_to_discover, cmd_to_classify operations

Each of the above scripts is written in ksh93; all of the source code to the GASA Smart Assist is
accessible. It is recommended to package all of the scripts under the same directory hierarchy:
/usr/es/sbin/cluster/sa/<Smart Assist name>/sbin/

There are no functional limitations imposed if this hierarchy is not followed; it is simply the
recommended practice.

File permissions

Because PowerHA SystemMirror requires the root user to configure PowerHA SystemMirror, all of the
Smart Assist scripts and binaries require root permissions to execute, and typically will have the
permissions set to 500, owner root, group system. This requirement is especially true of the clvt API
commands. All of the clvt API commands manipulate the ODMs and therefore require root privileges.

Smart Assist registration

After the files are installed on the local node, the Smart Assist installation process should call the claddsa
script to register the various attributes of the Smart Assist components with the application framework.
With GASA this is accomplished with the following command:
/usr/es/sbin/cluster/sa/sbin/claddsa -a zz_Other -c GASA \
SMARTASSIST_VERSION="1.0" \

COMPONENT_ID="GASA" \
SMARTASSIST_ID="zzOther" \
DISCOVERY_COMMAND="/usr/es/sbin/cluster/sa/gasa/sbin/discovery" \
SMIT_ADD="clsa_gasa_add" \
SMIT_ADD_TYPE="d" \
SMIT_MODIFY="clsa_gasa_modify" \
SMIT_MODIFY_TYPE="d"

Note that for GASA there is only one Smart Assist component. If additional components are required,
multiple calls to the above command would be necessary for each component.

The result of calling the claddsa command is a set of HACMPsa ODM entries. These entries can be seen
by using the command:
odmget -q "sa_id=zzOther and component_id=GASA" HACMPsa

On any PowerHA SystemMirror cluster node where the cluster.es.assist.common fileset has been
installed, the above ODM entries will be installed.

Deinstalling the sample program
The Smart Assist component entries added via the claddsa command need to be removed during
deinstallation. Call the clrmsa command to remove the entries.

The GASA Smart Assist calls the following command to remove its entries from HACMPsa:
/usr/es/sbin/cluster/sa/sbin/clrmsa -a zzOther

Unlike the claddsa command, the clrmsa command can remove all entries for the entire Smart Assist (as
shown above), or for a particular component of the Smart Assist by specifying the -c <component id > flag.

50 Developing Smart Assist applications for PowerHA SystemMirror

Once the entries are removed, any existing application instance constructed with the uninstalled Smart
Assist will have its references to the application removed. Users will be unable to modify the application
from within the Smart Assist UI, but will still be able to modify or delete the constructed resource groups
and associated resources.

Command to discover Smart Assist components
Recall that the DISCOVERY_COMMAND is per Smart Assist per component. For the GASA Smart Assist
there is only one component, and therefore only one command to execute.

The command is executed when the user selects the SMIT menu option:

Add an Application to the PowerHA SystemMirror Configuration

Once the user selects that SMIT menu, the framework runs the DISCOVERY_COMMAND of every Smart
Assist component on every available node in the cluster where that discovery command exists. The
command to discover determines whether the target application is installed and suitable for use with the
Smart Assist. The GASA Smart Assist is very generic; it allows all PowerHA SystemMirror cluster nodes
in the Smart Assist and therefore performs no validation.

The output of the discovery command is one line that contains information in the following form:
Smart Assist Name in I8N format :
Smart Assist Identifier :
Component Name in I8N form :
Component Identifier :
0 | 1

The trailing 0, or 1 value determines whether the Smart Assist can be used on the local node. If the
discovery command prints 0, then the Smart Assist component cannot be used on the local node; a value
of 1 means the Smart Assist component can be used on the local node. For the GASA Smart Assist a line
is printed as shown below:
Other Applications:zzOther:General Application Smart Assist:GASA:1

The first and third column values are internationalized using dspmsg and a message catalog.

Add application instance functionality
There are two pieces to constructing a Smart Assist that allow users to add new instances of an
application to the PowerHA SystemMirror configuration, the SMIT component, which include the dialog
and smit fields, and the script that performs the add operation.

Both of these operate on a single Smart Assist component and are described in the sections that follow.

Creating the add SMIT screen

The add SMIT screens identifiers for the GASA Smart Assist are defined in the call to claddsa:
SMIT_ADD="clsa_gasa_add"

and
SMIT_ADD_TYPE="d"

These entries point to a SMIT sm_cmd_hdr element, whose children are sm_cmd_opt entries that form
the SMIT dialog fields. These fields are where the user enters information related to the application, such
as the name, service IP label to use, and the start and stop scripts that are required by the Smart
Assistant. The entries used to construct the dialog are shown in the section SMIT general application
Smart Assist add stanzas.

Developing Smart Assist applications for PowerHA SystemMirror 51

The application framework will call the following SMIT command header entry "clsa_gasa_add", which
provides the General Application Smart Assist SMIT screen:

General Application Smart Assist - Add Screen

General Application Smart Assist

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[Entry Fields]
* Application Name []
* Primary Node [node name displays here] +
* Takeover Nodes [node names display here] +
* Application Controller Start Script []
* Application Controller Stop Script []
* Service IP Label [] +

Not all Smart Assists transition to a sm_cmd_hdr; in some cases a sm_name_hdr is required to provide a
select list prior to entering the dialog. In those cases the SMIT_ADD_TYPE would equal 'n' for name
selector, and the SMIT_ADD field for the component would point to the SMIT id of the sm_name_hdr.

Creating the add script

Each of the field entries that are provided above correspond to an argument that will be passed to the
add script: GASA Smart Assist add script: /usr/es/sbin/cluster/sa/gasa/add

Field Name Argument Discovery Field Name (disc_name)

Application Name -a name N/A
Primary Node -P node Primary
Takeover Nodes -T nodes takeover
Start Script -R script N/A
Stop Script -O script N/A
Service IP label -S ip_label N/A

-C component_id N/A
-s smartassist_id N/A

GASA Add Screen Field Names to Arguments

The GASA add script can be re-used in your Smart Assist. Note that the caller provides the Smart Assist
identifier and the component identifier. By changing the Smart Assist identifier -s, and the component
identifier -C, you can use the existing GASA add script as the basis for your Smart Assist components
add script. The add script performs the following sequence of operations:
1. Checks the user-entered application name for a duplicate entry using the claddsaapp API command.
2. Determines if the Application Controller already exists using:

clvt query application

3. Determines if the resource group already exists using:
clvt query resource_group

4. Calls clsapre

5. Adds the application controller to the PowerHA SystemMirror configuration.
clvt add application $SERVERNAME \

STARTSCRIPT=$STARTSCRIPT \
STOPSCRIPT=$STOPSCRIPT

6. Adds the resource group to the PowerHA SystemMirror configuration.

52 Developing Smart Assist applications for PowerHA SystemMirror

clvt add resource_group "$RG_NAME" \
PRIMARYNODES="$PRIMARY $TAKEOVER" \
STARTUP="OHN" \
FALLBACK="NFB" \
FALLOVER="FNPN"

7. Creates the service IP label if it is not already defined.
clvt add service_ip $SERVICE_LABEL

8. Associates the service IP label and any available (shared) volume groups amongst the participating
nodes (primary and takeover).
clvt modify resource_group "$RG_NAME" \

APPLICATIONS="$NAME" \
SERVICE_LABEL="$IP" \
VOLUME_GROUP="$VGS" \
VG_AUTO_IMPORT="true" \
FORCED_VARYON="false" \
FILESYSTEM=""

9. Registers the application name resource group with the Smart Assist identifier and component
identifier. This ensures that when the user goes to select the particular application instance to
modify, the framework knows what type of application it is associated with.
claddsaapp -a $APPLICATION_NAME \
APPLICATION_NAME="$APPLICATION_NAME"
RESOURCE_GROUP="$RG_NAME" \
SMARTASSIST_ID="$SMARTASSIST_ID" \
COMPONENT_ID="$COMPONENT_ID"

The claddsaapp command could contain other information unrelated to the application framework,
variables, and values specific to the application instance such as a path to the application, etc. Name
value pairs can overlap, the same name can be used more than once.

10. Calls clsapost -v which will run cluster verification

After all of the above steps are completed, the application instance is associated (registered) to the Smart
Assist component and the user can then perform modify or delete operations on the application and all
of its associated resources as a whole.

Registration script

The zzOther (GASA) Smart Assist does not make use of the REGISTRATION_COMMAND for the GASA
component. If it did, when the user added the Smart Assist and the add script called claddsaapp to
associate the application instance properties with the application name, the registration command would
be invoked as specified in the HACMPsa ODM stanza.
Related concepts:
“SMIT general application Smart Assist add stanzas” on page 55
This section lists the commented SMIT add stanzas for the GASA Smart Assist.

Modify application instance functionality
The modify functionality is similar to the add functionality. The user selects a particular application
instance to modify, based on the application instance Smart Assist identifier and component identifier.

Creating the modify SMIT screen

The modify SMIT screens identifiers for the GASA Smart Assist are defined in the call to claddsa
SMIT_MODIFY="clsa_gasa_modify"

and
SMIT_MODIFY_TYPE="d"

Developing Smart Assist applications for PowerHA SystemMirror 53

Identical in approach to the add screen, the application framework will call the clsa_gasa_modify dialog,
or name selector based on the entry in the HACMPsa ODM.

What is different about the modify screen is that the framework will also pass along the application_id as
a cooked field name, along with the Smart Assist identifier sa_id and the component_id of the application
to the dialog or name selector.

The application framework will call the following SMIT command header entry "clsa_gasa_modify",
which provides the SMIT screen Make Applications Highly Available (Use Smart Assists):

General Application Smart Assist - Selector Screen

Make Applications Highly Available (Use Smart Assists)

Move cursor to desired item and press Enter.

Add an Application to the PowerHA SystemMirror Configuration
Change/Show an Application’s PowerHA SystemMirror Configuration
Remove an Application from the PowerHA SystemMirror Configuration
Manage Your Applications
Change/Show the Resources Associated with Your Application
Test Your Application for Availability

+""""""""""""""""""""""""""""""""""-+
| Select an Application from the List of Discovered Applications Below
|
| Move cursor to desired item and press Enter.
|
| example_app
+""-+

The following cooked field names are passed along to the dialog:

Item Description

application_id =example_app

sa_id =zzOther

component_id =GASA

The user's SMIT session will transition onto the clsa_gasa_modify dialog:

General Application Smart Assist Modify Dialog

General Application Smart Assist
Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[Entry Fields]
* Application Name example_app

* Primary Node [nodeA] +

* Takeover Nodes [nodeB nodeC] +

* Application Controller Start [/example_app/start]
Script

* Application Controller Stop [/example_app/stop]
Script

* Service IP Label [service1] +

54 Developing Smart Assist applications for PowerHA SystemMirror

Typically the modify screen of the Smart Assist will look identical to the add screen, what differs is that
some of the fields are not editable. Note that in the above figure the application name cannot be changed.
The user however can change all other aspects of the application's configuration within SMIT. See SMIT
general application Smart Assist modify stanzas for The ODM stanzas.

Note that the fields are already populated when the user enters the modify screen. This is accomplished
via the cmd_to_discover method in the sm_cmd_hdr ODM stanza. In the case of the GASA Smart Assist
the smit_util script gathers the participating nodes from the associated resource group, and extracts the
service IP label, and application start / stop scripts by using the clvt API. A similar approach would be
taken for all Smart Assists.

Creating the modify script

In the case of the GASA Smart Assist all of the requisite resources constructed in the add phase are
removed, and the add script is called again. In more complicated Smart Assists the modify script would
only change those properties of the application that were modified by the user. The GASA first calls the
clsapre script, then uses the clvt API to remove PowerHA SystemMirror components from the cluster
configuration. The add script is then called and the application resources are added to the PowerHA
SystemMirror configuration. Again, at the tail end of the add script the command clsapost -v is called to
run verification. If the modify script were to only modify the resources, it should call clsapost -v directly.
Related concepts:
“SMIT general application Smart Assist modify stanzas” on page 59
This section lists the commented SMIT Modify stanzas for the GASA Smart Assist.

Deleting application instances
All of the operations required to remove an application instance from the cluster configuration are self
contained within the Smart Assist framework. No additional code is required to simply remove the
instance.

Deregister script

The GASA does use the DEREGISTRATION_COMMAND, however if one were required the developer
only need add the entry to claddsa call. Once the user selected an application instance to remove from
the cluster configuration the DEREGISTRATION_COMMAND script would be executed prior to actually
removing the PowerHA SystemMirror resources. This allows the Smart Assist developer to restore
application configuration settings, or provide other application restoration prior to removing PowerHA
SystemMirror control of the application.

SMIT general application Smart Assist add stanzas
This section lists the commented SMIT add stanzas for the GASA Smart Assist.
Cooked Field: nodes
#
Note that the text "nodes" in the cmd_to_discover_postfix is part
of #the cooked fields from the Smart Assist screens that precede this
dialog. Users will #select a Smart Assist to instantiate, once
selected a list of nodes where that smart #assist can be
used will be provided to the SMIT screens that follow. The "nodes"
cooked field contains a comma ’,’ delimited list of node names
sm_cmd_hdr:

id = "clsa_gasa_add"
option_id = "clsa_gasa_add_opts"
has_name_select = ""
name = "General Application Smart Assist"
name_msg_file = "cluster.cat"
name_msg_set = 51
name_msg_id = 17
cmd_to_exec = "/usr/es/sbin/cluster/sa/gasa/sbin/add"

Developing Smart Assist applications for PowerHA SystemMirror 55

ask = ""
exec_mode = ""
ghost = ""
cmd_to_discover = "/usr/es/sbin/cluster/sa/gasa/sbin/smit_util

add_discover"
cmd_to_discover_postfix = "nodes"
name_size = 0
value_size = 0
help_msg_id = "42,10"
help_msg_loc = "cluster_hlp.cat"
help_msg_base = ""
help_msg_book = ""

Application Name
#
This is the name that PowerHA SystemMirror will use to uniquely identify the
collection of PowerHA SystemMirror resource groups, application controller, and other
related resources
Users can modify / delete an existing application given its name
All Smart Assists must contain an application name
#
sm_cmd_opt:

id_seq_num = "10"
id = "clsa_gasa_add_opts"
disc_field_name = ""
name = "Application Name"
name_msg_file = "cluster.cat"
name_msg_set = 43
name_msg_id = 32
op_type = ""
entry_type = "t"
entry_size = 24
required = "+"
prefix = "-a"
cmd_to_list_mode = ""
cmd_to_list = ""
cmd_to_list_postfix = ""
multi_select = ""
value_index = 0
disp_values = ""
values_msg_file = ""
values_msg_set = 0
values_msg_id = 0
aix_values = ""
help_msg_id = "30,3"
help_msg_loc = "cluster_hlp.cat"
help_msg_base = ""
help_msg_book = ""

Primary Node:
#
For the GASA Smart Assist there exists a separation of primary and
takeover nodes.
#
The primary node is where the application will be brought online
initially and will be the first node in the participating nodes of the
constructed PowerHA SystemMirror resource group.
#
sm_cmd_opt:

id_seq_num = "20"
id = "clsa_gasa_add_opts"
disc_field_name = "primary"
name = "Primary Node"
name_msg_file = "cluster.cat"
name_msg_set = 51
name_msg_id = 15
op_type = "l"

56 Developing Smart Assist applications for PowerHA SystemMirror

entry_type = "t"
entry_size = 33
required = "+"
prefix = "-P"
cmd_to_list_mode = ""
cmd_to_list = "/usr/es/sbin/cluster/sa/gasa/sbin/smit_util list"
cmd_to_list_postfix = "nodes"
multi_select = ""
value_index = 0
disp_values = ""
values_msg_file = ""
values_msg_set = 0
values_msg_id = 0
aix_values = ""
help_msg_id = "42,8"
help_msg_loc = "cluster_hlp.cat"
help_msg_base = ""
help_msg_book = ""

Takeover Nodes:
#
List of nodes that participate in the constructed resource group
#
Note that the SMIT cmd_to_list command uses our internal smit_util
command, which internally calls "clvt query node"
#
sm_cmd_opt:

id_seq_num = "30"
id = "clsa_gasa_add_opts"
disc_field_name = "takeover"
name = "Takeover Nodes"
name_msg_file = "cluster.cat"
name_msg_set = 51
name_msg_id = 16
op_type = "l"
entry_type = "t"
entry_size = 0
required = "+"
prefix = "-T"
cmd_to_list_mode = ""
cmd_to_list = "/usr/es/sbin/cluster/sa/gasa/sbin/smit_util list"
cmd_to_list_postfix = "nodes"
multi_select = ","
value_index = 0
disp_values = ""
values_msg_file = ""
values_msg_set = 0
values_msg_id = 0
aix_values = ""
help_msg_id = "42,9"
help_msg_loc = "cluster_hlp.cat"
help_msg_base = ""
help_msg_book = ""

Application Controller Start Script
#
Script name used to start the application
#
No default value
This property is required
#
sm_cmd_opt:

id_seq_num = "40"
id = "clsa_gasa_add_opts"
disc_field_name = ""
name = "Application Controller Start Script"
name_msg_file = "cluster.cat"

Developing Smart Assist applications for PowerHA SystemMirror 57

name_msg_set = 43
name_msg_id = 4
op_type = ""
entry_type = "t"
entry_size = 256
required = "+"
prefix = "-R"
cmd_to_list_mode = ""
cmd_to_list = ""
cmd_to_list_postfix = ""
multi_select = ""
value_index = 0
disp_values = ""
values_msg_file = ""
values_msg_set = 0
values_msg_id = 0
aix_values = ""
help_msg_id = "30,4"
help_msg_loc = "cluster_hlp.cat"
help_msg_base = ""
help_msg_book = ""

Application Controller Stop Script
#
Script name used to start the application
#
No default value
This property is required
#
sm_cmd_opt:

id_seq_num = "50"
id = "clsa_gasa_add_opts"
disc_field_name = ""
name = "Application Controller Stop Script"
name_msg_file = "cluster.cat"
name_msg_set = 43
name_msg_id = 5
op_type = ""
entry_type = "t"
entry_size = 256
required = "+"
prefix = "-O"
cmd_to_list_mode = ""
cmd_to_list = ""
cmd_to_list_postfix = ""
multi_select = ""
value_index = 0
disp_values = ""
values_msg_file = ""
values_msg_set = 0
values_msg_id = 0
aix_values = ""
help_msg_id = "30,5"
help_msg_loc = "cluster_hlp.cat"
help_msg_base = ""
help_msg_book = ""

Service IP label
#
The user must choose a service IP label to participate in the
constructed HACM resource group
#
The command to list cllsserviceips can be used by other Smart Assists
to provide a list of pre-configured service IP labels, and available
labels that can be defined to PowerHA SystemMirror.
#
sm_cmd_opt:

58 Developing Smart Assist applications for PowerHA SystemMirror

id_seq_num = "60"
id = "clsa_gasa_add_opts"
disc_field_name = ""
name = "Service IP Label"
name_msg_file = "cluster.cat"
name_msg_set = 43
name_msg_id = 6
op_type = "l"
entry_type = "t"
entry_size = 32
required = "+"
prefix = "-I"
cmd_to_list_mode = "1"
cmd_to_list = "/usr/es/sbin/cluster/sa/sbin/cllsserviceips"
cmd_to_list_postfix = ""
multi_select = "n"
value_index = 0
disp_values = ""
values_msg_file = ""
values_msg_set = 0
values_msg_id = 0
aix_values = ""
help_msg_id = "30,6"
help_msg_loc = "cluster_hlp.cat"
help_msg_base = ""
help_msg_book = ""

SMIT general application Smart Assist modify stanzas
This section lists the commented SMIT Modify stanzas for the GASA Smart Assist.
#
Modify SMIT Dialog
#
The smit_util modify_discover uses the application_id to determine
what PowerHA SystemMirror components are associated with the application instance and
produces cmd_to_discover output of the form:
#
/usr/es/sbin/cluster/sa/gasa/sbin/smit_util modify_discover exampleapp
#
#application:primary:takeover:start:stop:ip
exampleapp:nodeA:nodeB
nodeC:/exampleapp/start:/exampleapp/stop:service1
#
sm_cmd_hdr:

id = "clsa_gasa_modify"
option_id = "clsa_gasa_modify_opts"
has_name_select = ""
name = "General Application Smart Assist"
name_msg_file = "cluster.cat"
name_msg_set = 51
name_msg_id = 17
cmd_to_exec = "/usr/es/sbin/cluster/sa/gasa/sbin/modify"
ask = ""
exec_mode = ""
ghost = ""
cmd_to_discover = "/usr/es/sbin/cluster/sa/gasa/sbin/smit_util

modify_discover"
cmd_to_discover_postfix = "application_id"
name_size = 0
value_size = 0
help_msg_id = "42,11"
help_msg_loc = "cluster_hlp.cat"
help_msg_base = ""
help_msg_book = ""

Application Name
#

Developing Smart Assist applications for PowerHA SystemMirror 59

This is the name that PowerHA SystemMirror will use to uniquely identify the
#collection of PowerHA SystemMirror resource groups, application controllers, and other
#related resources.
Users can modify / delete an existing application given its name
All Smart Assists must contain an application name
#
The name cannot be modified in the modify dialog.
#
sm_cmd_opt:

id_seq_num = "10"
id = "clsa_gasa_modify_opts"
disc_field_name = "application"
name = "Application Name"
name_msg_file = "cluster.cat"
name_msg_set = 43
name_msg_id = 32
op_type = ""
entry_type = "n"
entry_size = 24
required = "+"
prefix = "-a"
cmd_to_list_mode = ""
cmd_to_list = ""
cmd_to_list_postfix = ""
multi_select = ""
value_index = 0
disp_values = ""
values_msg_file = ""
values_msg_set = 0
values_msg_id = 0
aix_values = ""
help_msg_id = "30,3"
help_msg_loc = "cluster_hlp.cat"
help_msg_base = ""
help_msg_book = ""

Primary Node:
#
For the GASA Smart Assist there exists a separation of primary and
takeover nodes.
#
The primary node is where the application will be brought online
initially and will be the first node in the participating nodes of the
constructed PowerHA SystemMirror resource group.
#
sm_cmd_opt:

id_seq_num = "20"
id = "clsa_gasa_modify_opts"
disc_field_name = "primary"
name = "Primary Node"
name_msg_file = "cluster.cat"
name_msg_set = 51
name_msg_id = 15
op_type = "l"
entry_type = "t"
entry_size = 33
required = "+"
prefix = "-P"
cmd_to_list_mode = ""
cmd_to_list = "cmd_to_list() {\n\

/usr/es/sbin/cluster/utilities/clvt query node\n\
return 0\n\

}\n\
cmd_to_list"
cmd_to_list_postfix = ""
multi_select = ""
value_index = 0

60 Developing Smart Assist applications for PowerHA SystemMirror

disp_values = ""
values_msg_file = ""
values_msg_set = 0
values_msg_id = 0
aix_values = ""
help_msg_id = "42,8"
help_msg_loc = "cluster_hlp.cat"
help_msg_base = ""
help_msg_book = ""

Takeover Nodes:
#
List of nodes that participate in the constructed resource group
#
Note that the SMIT cmd_to_list command uses our internal smit_util
command, which internally calls "clvt query node"
#

sm_cmd_opt:
id_seq_num = "30"
id = "clsa_gasa_modify_opts"
disc_field_name = "takeover"
name = "Takeover Nodes"
name_msg_file = "cluster.cat"
name_msg_set = 51
name_msg_id = 16
op_type = "l"
entry_type = "t"
entry_size = 0
required = "+"
prefix = "-T"
cmd_to_list_mode = ""
cmd_to_list = "cmd_to_list() {\n\

/usr/es/sbin/cluster/utilities/clvt query node\n\
return 0\n\

}\n\
cmd_to_list"
cmd_to_list_postfix = ""
multi_select = ","
value_index = 0
disp_values = ""
values_msg_file = ""
values_msg_set = 0
values_msg_id = 0
aix_values = ""
help_msg_id = "42,9"
help_msg_loc = "cluster_hlp.cat"
help_msg_base = ""
help_msg_book = ""

Application Controller Start Script
#
Script name used to start the application
#
No default value
This property is required
#
sm_cmd_opt:

id_seq_num = "40"
id = "clsa_gasa_modify_opts"
disc_field_name = "start"
name = "Application Controller Start Script"
name_msg_file = "cluster.cat"
name_msg_set = 43
name_msg_id = 4
op_type = ""
entry_type = "t"
entry_size = 256

Developing Smart Assist applications for PowerHA SystemMirror 61

required = "+"
prefix = "-R"
cmd_to_list_mode = ""
cmd_to_list = ""
cmd_to_list_postfix = ""
multi_select = ""
value_index = 0
disp_values = ""
values_msg_file = ""
values_msg_set = 0
values_msg_id = 0
aix_values = ""
help_msg_id = "30,4"
help_msg_loc = "cluster_hlp.cat"
help_msg_base = ""
help_msg_book = ""

Application Controller Stop Script
#
Script name used to start the application
#
No default value
This property is required
#
sm_cmd_opt:

id_seq_num = "50"
id = "clsa_gasa_modify_opts"
disc_field_name = "stop"
name = "Application Controller Stop Script"
name_msg_file = "cluster.cat"
name_msg_set = 43
name_msg_id = 5
op_type = ""
entry_type = "t"
entry_size = 256
required = "+"
prefix = "-O"
cmd_to_list_mode = ""
cmd_to_list = ""
cmd_to_list_postfix = ""
multi_select = ""
value_index = 0
disp_values = ""
values_msg_file = ""
values_msg_set = 0
values_msg_id = 0
aix_values = ""
help_msg_id = "30,5"
help_msg_loc = "cluster_hlp.cat"
help_msg_base = ""
help_msg_book = ""

Service IP label
#
The user must choose a service IP label to participate in the
constructed PowerHA SystemMirror resource group
#
The command to list cllsserviceips can be used by other Smart Assists
to provide a ist of pre-configured service IP labels, and available
labels that can be defined to PowerHA SystemMirror.
#
sm_cmd_opt:

id_seq_num = "60"
id = "clsa_gasa_modify_opts"
disc_field_name = "ip"
name = "Service IP Label"
name_msg_file = "cluster.cat"
name_msg_set = 43

62 Developing Smart Assist applications for PowerHA SystemMirror

name_msg_id = 6
op_type = "l"
entry_type = "t"
entry_size = 32
required = "+"
prefix = "-I"
cmd_to_list_mode = "1"
cmd_to_list = "/usr/es/sbin/cluster/sa/sbin/cllsserviceips"
cmd_to_list_postfix = ""
multi_select = "n"
value_index = 0
disp_values = ""
values_msg_file = ""
values_msg_set = 0
values_msg_id = 0
aix_values = ""
help_msg_id = "30,6"
help_msg_loc = "cluster_hlp.cat"
help_msg_base = ""
help_msg_book = ""

Developing Smart Assist applications for PowerHA SystemMirror 63

64 Developing Smart Assist applications for PowerHA SystemMirror

Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 2016 65

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows:

© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_.

66 Developing Smart Assist applications for PowerHA SystemMirror

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at
http://www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other
Technologies” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Notices 67

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

68 Developing Smart Assist applications for PowerHA SystemMirror

Index

A
add application 40
add application_monitor 42
add cluster 26
add file_collection 47
add network 32
add node 27
add resource_group 34
add service_ip 38
APAR 15
API

clvt 25
application controller class operations 40
application registration and query commands 23
application_monitor class operations 42

C
claddsa command 19
claddsaapp command 23
cllssaapp command 24
clquerysa command 21
clquerysaapp command 23
clrmsa command 22
clrmsaapp command 24
cluster class operations 26
clvt

add application 40
add application_monitor 42
add cluster 26
add file_collection 47
add network 32
add node 27
add resource_group 34
add service_ip 38
application controller class operations 40
application_monitor class operations 42
cluster class operations 26
delete application 41
delete application_monitor 43
delete cluster 26
delete file_collection 48
delete network 32
delete node 27
delete resource_group 34
delete service_ip 39
discover cluster 27
file_collection class operations 47
interface class operations 30
modify interface 30
modify location_dependency 46
modify resource_group 35
modify temporal_dependency 45
network class operations 32
node class operations 27
offline node 29
offline resource_group 38
online node 29
online resource_group 37
query application 41

clvt (continued)
query application_monitor 44
query cluster 26
query file_collection 48
query interface 31
query location_dependency 47
query network 33
query node 28
query resource_group 36
query service_ip 39
query temporal_dependency 45
resource group location_dependency class operations 46
resource group temporal_dependency class operations 45
resource_group class operations 34
service_ip class operations 38
sync cluster 26

clvt API 25
commands 18

application registration and query 23
claddsa 19
claddsaapp 23
cllssaapp 24
clquerysa 21
clquerysaapp 23
clrmsa 22
clrmsaapp 24
registration and query 19

concepts 1
convenience routines 25

D
delete application 41
delete application_monitor 43
delete cluster 26
delete file_collection 48
delete network 32
delete node 27
delete resource_group 34
delete service_ip 39
developing panels 7
developing SMIT panels 7
directory structure 7
discover cluster 27
discovery database

planning names 17
planning values 17

discovery script
example 9

disk space
parameterized verification check 15

E
example

discovery script 9

© Copyright IBM Corp. 2016 69

F
file

parameterized verification check 15
file_collection class operations 47
fileset

parameterized verification check 15
framework 3

G
group

parameterized verification check 16

I
identifier 5
installing 6
interface class operations 30

M
manage menu 12
modify interface 30
modify location_dependency 46
modify resource_group 35
modify temporal_dependency 45

N
network class operations 32
node class operations 27

O
offline node 29
offline resource_group 38
online node 29
online resource_group 37

P
packaging 6
parameterized verification check 13, 14, 15

APAR 15
disk space 15
file 15
fileset 15
group 16
swap space 16
user 16

planning names
discovery database 17

planning values
discovery database 17

Q
query application 41
query application_monitor 44
query cluster 26
query file_collection 48
query interface 31
query location_dependency 47

query network 33
query node 28
query resource_group 36
query service_ip 39
query temporal_dependency 45

R
registration and query commands 19
remove menu 12
requirements 2
resource group location_dependency class operations 46
resource group temporal_dependency class operations 45
resource_group class operations 34
routines

SMIT 25

S
sample program 49

add application instance 51
commands 51
deinstalling 50
deleting application instance 55
installing 49
modify application instance 53
overview 49

service_ip class operations 38
Smart Assist 7, 19, 23

add application instance 51
commands 18, 51
component discovery 9
concepts 1
deinstalling 50
deleting application instance 55
framework 3
identifier 5
installing 6
modify application instance 53
overall flow 3
overview 49
packaging 6
requirements 2
sample program 49, 50, 51, 53, 55

installing 49
terms 1

SMIT 7, 12, 25
add menu functionality 10
add stanzas 55
change/show 11
modify stanzas 59

swap space
parameterized verification check 16

sync cluster 26

T
terms

application 1
application instance 1
discovery of applications 1

70 Developing Smart Assist applications for PowerHA SystemMirror

U
user

parameterized verification check 16

V
verification

custom 13
parameterized 13, 14

APAR 15
disk space 15
file 15
fileset 15
group 16
swap space 16
user 16

Index 71

72 Developing Smart Assist applications for PowerHA SystemMirror

IBM®

Printed in USA

	Contents
	About this document
	Highlighting
	Case-sensitivity in AIX
	ISO 9000
	Related information

	Developing Smart Assist applications for PowerHA SystemMirror
	PowerHA SystemMirror Smart Assist development concepts
	Concepts and terms used in Smart Assist development
	Smart Assist requirements
	Smart Assist framework
	Overall flow of Smart Assist

	Smart Assist identifiers and component identifiers
	Packaging and installing
	Adding a Smart Assist at install time
	Directory structure

	Developing SMIT panels
	Add an application to the PowerHA SystemMirror configuration
	Change or show an application's PowerHA SystemMirror configuration
	Manage your applications
	General guidelines for developing SMIT

	Smart Assist component discovery
	Example: Smart Assist discovery script
	Invoking the Smart Assist's component Add menu
	Custom verification and parameterized verification checks

	Parameterized verification check files
	APAR verification
	Disk space verification
	File verification
	Fileset verification
	Group verification
	User verification
	Swap space verification

	Miscellaneous concepts and functionality
	Planning names and values for the Smart Assist discovery database

	Smart Assist commands
	Smart Assist registration and query
	claddsa command
	clquerysa command
	clrmsa command

	Smart Assist application registration and query
	claddsaapp command
	clquerysaapp command
	clrmsaapp command
	cllssaapp command

	Convenience routines for SMIT panels

	clvt API
	Cluster class operations
	add cluster
	delete cluster
	query cluster
	sync cluster
	discover cluster

	Node class operations
	add node
	delete node
	query node
	online node
	offline node

	Interface class operations
	modify interface
	query interface

	Network class operations
	add network
	delete network
	query network

	resource_group class
	add resource_group
	delete resource_group
	modify resource_group
	query resource_group
	online resource_group
	offline resource_group

	service_ip class
	add service_ip
	delete service_ip
	query service_ip

	Application controller class use
	add application
	delete application
	query application

	application_monitor class
	add application_monitor
	delete application_monitor
	query application_monitor

	Resource group temporal_dependency class
	modify temporal_dependency
	query temporal dependency

	Resource group location_dependency class
	modify location_dependency
	query location_dependency

	file_collection class
	add file_collection
	delete file_collection
	query file_collection

	Sample Smart Assist program
	Overview
	Installing the sample program
	Deinstalling the sample program
	Command to discover Smart Assist components
	Add application instance functionality
	Modify application instance functionality
	Deleting application instances
	SMIT general application Smart Assist add stanzas
	SMIT general application Smart Assist modify stanzas

	Notices
	Privacy policy considerations
	Trademarks

	Index
	A
	C
	D
	E
	F
	G
	I
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

