
Reliable Scalable Cluster Technology
Version 3.1.5.0

Programming RMC for RSCT

���

Reliable Scalable Cluster Technology
Version 3.1.5.0

Programming RMC for RSCT

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 289.

This edition applies to Reliable Scalable Cluster Technology Version 3.1.5.0 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Highlighting v
Entering commands. vi
Case sensitivity in AIX. vi
ISO 9000 vii
RSCT versions vii
Related information viii

Programming RMC for RSCT. 1
What's new in Programming RMC for RSCT . . . 1
RMC API concepts 1

Understanding the RMC API 1
RMC API subroutine overview 31

RMC API reference 40
RMC API subroutines 40
RMC API data definitions 231
RMC API error codes and return values . . . 243
Cluster utilities: error-related subroutines . . . 264

Microsensor API concepts 271
Comparing sensors and microsensors 271
Specifying the attributes that microsensors
support 271

Instructing microsensors to start or stop fetching
dynamic attribute values 272
Passing dynamic attribute values and other
information to the microsensor resource
manager 272
Releasing a microsensor instance 272
Writing safe microsensors 273
Microsensor certification process 274
Obtaining error information returned by the
microsensor API subroutines 276

Microsensor API reference 276
Microsensor API subroutines 276
Microsensor API data types 286

Notices 289
Privacy policy considerations 291
Trademarks 291

Index 293

© Copyright IBM Corp. 2012, 2014 iii

iv Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

About this document

This publication describes the microsensor application programming interface (API) and the resource
monitoring and control (RMC) API.

The RMC API is a library of subroutines and supporting datatypes, written in C, that enable cluster
applications to connect to the RMC subsystem to perform the following tasks:
v list the resources of a resource class
v monitor changes in attribute values for events of interest
v query dynamic or persistent attributes of resources or resource classes
v change the persistent attributes of resources or resource classes
v define and undefine resources
v bring resources online and take them offline

Before using the information about the RMC API in this publication, you must first understand the RMC
subsystem and resource managers. See the Managing and monitoring resources using RMC and
resource managers chapter in the Administering RSCT guide for an overview.

Highlighting
The following highlighting conventions are used in this document:

Table 1. Conventions

Convention Usage

bold Bold words or characters represent system elements that you must use literally, such as
commands, flags, path names, directories, file names, values, PE component names (poe, for
example), and selected menu options.

bold underlined Bold underlined keywords are defaults. These take effect if you do not specify a different
keyword.

constant width Examples and information that the system displays appear in constant-width typeface.

italic Italic words or characters represent variable values that you must supply.

Italics are also used for information unit titles, for the first use of a glossary term, and for general
emphasis in text.

<key> Angle brackets (less-than and greater-than) enclose the name of a key on the keyboard. For
example, <Enter> refers to the key on your terminal or workstation that is labeled with the word
Enter.

\ In command examples, a backslash indicates that the command or coding example continues on
the next line. For example:

mkcondition -r IBM.FileSystem -e "PercentTotUsed > 90" \
-E "PercentTotUsed < 85" -m d "FileSystem space used"

{item} Braces enclose a list from which you must choose an item in format and syntax descriptions.

[item] Brackets enclose optional items in format and syntax descriptions.

<Ctrl-x> The notation <Ctrl-x> indicates a control character sequence. For example, <Ctrl-c> means that
you hold down the control key while pressing <c>.

item... Ellipses indicate that you can repeat the preceding item one or more times.

|
v In synopsis or syntax statements, vertical lines separate a list of choices. In other words, a

vertical line means Or.

v In the left margin of the document, vertical lines indicate technical changes to the information.

© Copyright IBM Corp. 2012, 2014 v

Entering commands
When you work with the operating system, you typically enter commands following the shell prompt on
the command line. The shell prompt can vary. In the following examples, $ is the prompt.

To display a list of the contents of your current directory, you would type ls and press the Enter key:
$ ls

When you enter a command and it is running, the operating system does not display the shell prompt.
When the command completes its action, the system displays the prompt again. This indicates that you
can enter another command.

The general format for entering operating system commands is:

Command Flag(s) Parameter

The flag alters the way a command works. Many commands have several flags. For example, if you type
the -l (long) flag following the ls command, the system provides additional information about the
contents of the current directory. The following example shows how to use the -l flag with the ls
command:
$ ls -l

A parameter consists of a string of characters that follows a command or a flag. It specifies data, such as
the name of a file or directory, or values. In the following example, the directory named /usr/bin is a
parameter:
$ ls -l /usr/bin

When entering commands in, it is important to remember the following items:
v Commands are usually entered in lowercase.
v Flags are usually prefixed with a - (minus sign).
v More than one command can be typed on the command line if the commands are separated by a ;

(semicolon).
v Long sequences of commands can be continued on the next line by using the \ (backslash). The

backslash is placed at the end of the first line. The following example shows the placement of the
backslash:
$ cat /usr/ust/mydir/mydata > \
/usr/usts/yourdir/yourdata

When certain commands are entered, the shell prompt changes. Because some commands are actually
programs (such as the telnet command), the prompt changes when you are operating within the
command. Any command that you issue within a program is known as a subcommand. When you exit
the program, the prompt returns to your shell prompt.

The operating system can operate with different shells (for example, Bourne, C, or Korn) and the
commands that you enter are interpreted by the shell. Therefore, you must know what shell you are
using so that you can enter the commands in the correct format.

Case sensitivity in AIX
Everything in the AIX® operating system is case sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the
system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

vi Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

RSCT versions
This edition applies to RSCT version, release, modification, and fix number 3.1.5.0.

You can use the ctversion command to find out which version of RSCT is running on a particular AIX,
Linux, Solaris, or Windows node. For example:
/usr/sbin/rsct/install/bin/ctversion

An example of the output follows:
/usr/sbin/rsct/install/bin/ctversion
rlis1313a 3.1.5.0

where, rlis1313a is the RSCT build level.

On the AIX operating system, you can also use the lslpp command to find out which version of RSCT is
running on a particular AIX node. For example:
lslpp -L rsct.core.utils

An example of the output follows:
Fileset Level State Type Description (Uninstaller)
--
rsct.core.utils 3.1.5.0 C F RSCT Utilities

State codes:
A -- Applied.
B -- Broken.
C -- Committed.
E -- EFIX Locked.
O -- Obsolete. (partially migrated to newer version)
? -- Inconsistent State...Run lppchk -v.

Type codes:
F -- Installp Fileset
P -- Product
C -- Component
T -- Feature
R -- RPM Package

On the Linux operating system, you can also use the rpm command to find out which version of RSCT is
running on a particular Linux or Solaris node. For example:
rpm -qa | grep rsct.basic

On the Windows operating system, you can also perform the following steps to find out which version of
RSCT is running on a particular Windows node:
1. Click the Windows start button.
2. Select All Programs.
3. Select Tivoli SA MP Base.
4. Click SA MP Version.

About this document vii

Related information
The following PDF documents that contain RSCT information can be found on the Reliable Scalable
Cluster Technology (RSCT) PDFs page:
v Administering RSCT

v Messages for RSCT

v Programming Group Services for RSCT

v Technical Reference: RSCT for AIX

v Technical Reference: RSCT for Multiplatforms

v Troubleshooting RSCT

viii Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Programming RMC for RSCT

This publication is intended for programmers who want to create applications that use the RMC API to
connect to the RMC subsystem to leverage its resource management and monitoring capabilities.

This publication is also intended for programmers who want to create microsensors.

The programmer should be familiar with UNIX operating systems, networked systems, and the C
programming language.

What's new in Programming RMC for RSCT
Read about new or significantly changed information for the Programming RMC for RSCT topic
collection.

How to see what's new or changed

In this PDF file, you might see revision bars (|) in the left margin that identify new and changed
information.

November 2013

The following information is a summary of the updates made to this topic collection:
v Updated information about RMC commands and client applications in the “RMC subsystem session”

on page 2 topic.
v Updated information about the MC_SESSION_OPTS_SR_SCOPE session scope in the

“mc_start_session” on page 206 and “mc_timed_start_session” on page 212 topics.

RMC API concepts
Before you use calls to the RMC API in an application, you should understand basic concepts. For
example, you should understand what an RMC session is and how to establish one. You should also have
an understanding of the RMC API's base programming model including how commands are sent to the
RMC subsystem, how responses are returned to the application, and how the application can register for
event notifications. You should also have a high-level understanding of the RMC API subroutines that are
available.

Understanding the RMC API
The RMC API is a library of subroutines and supporting data types, written in C.

They enable applications (in particular, cluster applications) to establish a connection with the RMC
subsystem to:
v list the resources of a resource class
v monitor changes in attribute values for events of interest
v query dynamic or persistent attributes of resources or resource classes
v change the persistent attributes of resources or resource classes
v define and undefine resources
v bring resources online and take them offline

Using the RMC API, an application can:

© Copyright IBM Corp. 2012, 2014 1

v establish one or more sessions with the RMC subsystem. The scope of a session determines whether
subsequent commands within the session can effect nodes of an RSCT peer domain, nodes and
subdomains of a CSM management domain, or a standalone node only.

v send commands to the RMC subsystem using blocking or nonblocking subroutines. The RMC API can
return responses to the application using callback routines or by returning a pointer to the response.
Callbacks are also used to notify the application when events for which it has registered occur.

v when calling a subroutine to issue a command to the RMC subsystem, target the command at one or
more resources of a resource class, or one resource class.

v obtain error information returned by the RMC API subroutine, an RMC subsystem daemon, or a
resource manager.

RMC subsystem session
A resource monitoring and control (RMC) subsystem session is a connection with the RMC subsystem
that the application establishes through an RMC daemon that runs on a particular node.

Before calling any other RMC API subroutines, the application must establish a session by calling either
the mc_start_session or the mc_timed_start_session subroutine. Both subroutines identify one or more
nodes that the RMC API can contact in an attempt to connect to the node's RMC subsystem daemon, and
so establish a session. If a session is successfully established, the subroutine returns a session handle that
must be used in subsequent subroutine calls to identify the session. The only difference between the
mc_start_session and mc_timed_start_session subroutines is that the mc_timed_start_session subroutine
also specifies time limits for establishing the session and, after the session is established, for completion
of blocking operations.

Since the RMC subsystem operates within the bounds of either an RSCT peer domain, a CSM
management domain, or a stand-alone system, the scope of a particular session is similarly limited.
Subsequent calls to the RMC API issue commands that can affect the following items:
v Nodes in an RSCT peer domain. It is called a peer domain or shared resource (SR) session scope.
v Nodes in a CSM management domain, which might include one or more RSCT peer domains. It is

called a management domain or distributed management (DM) session scope.
v An individual node that runs the RMC subsystem. It is called a local session scope.

Note: If your operating system has an installation of RSCT 3.1.5.0, or later, the RMC subsystem is not
recycled on nodes when the node is brought online or taken offline from a peer domain. The RMC clients
that established the session on the nodes do not lose the connection to RMC when the node is brought
back online. Similarly, the RMC clients that specify a scope other than SR do not lose connection to RMC
if the peer domain or peer node is taken offline.

Although a session scope is limited to a particular RSCT peer domain, CSM management domain, or
individual node, an application can establish multiple sessions with the RMC subsystem in separate
domains or on separate stand-alone nodes. This capability enables the application to call subroutines to
issue commands in different domains or on different stand-alone nodes. The session handle that is
returned by the mc_start_session or the mc_timed_start_session subroutine, and required as input to
other subroutines, enables the application to direct a particular subroutine's command at the appropriate
domain or stand-alone node.

The scope of a session that is established with the RMC subsystem depends upon the following items:
v A session scope option that is specified as a parameter to the mc_start_session or the

mc_timed_start_session subroutine.
v The execution environment of the RMC subsystem daemon with which the session is established.

If the session scope that is specified when calling the mc_start_session or mc_timed_start_session
subroutine is not supported on the node that the RMC API contacts to connect to the RMC subsystem
daemon, a session cannot be established. Instead, the subroutine returns an error. For example:

2 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

|
|
|
|
|

v When calling the mc_start_session or mc_timed_start_session subroutine, the application specifies a
required session scope of peer domain (SR). However, when specifying the nodes for the RMC API to
contact in an attempt to establish a session, the application specifies a node that is not in a peer
domain. The RMC API tries to establish a session with the RMC subsystem daemon on this node and
fails, returning an error to the application.

v To establish a management domain scope, the session must be established with the RMC subsystem
daemon on the management server of the management domain (and not one of the managed nodes).
When calling the mc_start_session or mc_timed_start_session subroutine, the application specifies a
management domain scope, but includes only managed nodes in the list of nodes the RMC API must
attempt to contact to establish a session. The RMC API tries to establish a session with the RMC
subsystem daemon on a managed node and fails, returning an error to the application.

Related reference:
“mc_start_session” on page 206
This subroutine establishes a session with the RMC subsystem.
“mc_timed_start_session” on page 212
This subroutine establishes a session with the RMC subsystem.

RMC API base programming model
The base programming model of the RMC API is command-response with notification of events.

These terms have the following meanings:
v command-response means that the application calls subroutines which issue commands to the RMC

subsystem, and the RMC subsystem returns responses to the application.
v notification of events means that, if the application has registered events with the RMC subsystem (in

other words, asked the RMC subsystem to monitor changes in attribute values for events of interest),
the RMC subsystem will notify the application when such events occur.

Sending commands to the RMC subsystem:

A command is sent to the RMC subsystem by invoking an RMC API subroutine.

The command issued to the RMC subsystem could be:
v a request for information (such as a list of resources of a resource class, or the dynamic or persistent

attribute values of a resource or resource class),
v an operation (such as defining a new resource instance, setting a persistent resource attribute, bringing

a resource online, taking a resource offline, or invoking a resource action).
v an event registration (a request to monitor changes in attribute values for events of interest)

Most of the RMC API command interfaces consist of four related subroutines that issue the same
command action to the RMC subsystem, but differ in how the command is sent to the RMC subsystem
and how responses are returned to the application. When sending a command to the RMC subsystem,
the application can use either a blocking or a nonblocking subroutine.
v blocking subroutines do not return until the command is completely processed by the RMC subsystem.
v nonblocking subroutines return immediately after adding the command to a command group.

A command group is an area of memory that the application can allocate by calling the
mc_start_cmd_grp subroutine. If the memory is successfully allocated, the mc_start_cmd_grp
subroutine returns a command group handle to the application. The application can use this handle in
subsequent subroutine calls to identify the command group to which a command should be added.
It is important to understand that a nonblocking subroutine does not send a command to the RMC
subsystem, but merely adds it to the command group. The command group is later sent as a single
unit to the RMC subsystem. To send all the commands in a command group to the RMC subsystem,
the application calls either the mc_send_cmd_grp or mc_send_cmd_grp_wait subroutine.

Programming RMC 3

– the mc_send_cmd_grp subroutine is nonblocking. It sends the command group to the RMC
subsystem and returns immediately.

– the mc_send_cmd_grp_wait subroutine is blocking. It sends the command group to the RMC
subsystem and blocks execution until all of the command group's commands complete.

The following two figures illustrate the difference between the blocking and nonblocking subroutines.

Ordered command group:

An ordered command group is a command group whose commands will be processed by the RMC
subsystem in the order in which they were added to the group.

Blocking Subroutine 1
11

12

13

Blocking Subroutine 2
11

12

13

Blocking Subroutine 3
11

12

13

RMC APIApplication

RMC
Subsystem

Resource
Manager

Resource
Manager

Resource
Manager

Figure 1. Application using blocking subroutine calls. The application calls a blocking RMC API subroutine which (1)
issues a command to the RMC subsystem. The RMC subsystem performs the operation and (2) sends responses
back to the RMC API which forwards them to the application. Only then does execution of the application resume (3).

Nonblocking Subroutine 1

13

RMC APIApplication

RMC
Subsystem

Resource
Manager

Resource
Manager

Resource
Manager

mc_start_cmd_grp

Command 1

Nonblocking Subroutine 2 Command 1
Command 2

Nonblocking Subroutine 3 Command 1
Command 2
Command 3

mc_send_cmd_grp
or

mc_send_cmd_grp_wait

11

12

Figure 2. Application using nonblocking subroutine calls. The application calls the mc_start_cmd_grp subroutine (1)
to allocate memory for a command group. Subsequent calls to nonblocking subroutines (2) add commands to the
command group. When the application is ready, it calls either the mc_send_cmd_grp or mc_send_cmd_grp_wait
subroutine (3) to send the commands in the command group as a single unit to the RMC subsystem.

4 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

In addition, the application can specify whether or not processing of the ordered command group should
stop with any command that results in an error. Each command in the ordered command group must
specify the same resource or set of resources, and may not contain commands directed to a resource class.
If more than one resource is specified then the ordering applies to the processing of the group against
each individual resource. Only commands that are processed directly by a resource manager may be
placed into an ordered command group. Each command description indicates whether or not the
command may be placed into an ordered command group.

An ordered command group may also be non-interleaved. This means that no command, not in the
command group, can be processed while the command group is being processed.
Related information:
“RMC API subroutines” on page 40
The RMC API is a library of subroutines and supporting data types, written in C.

Returning responses to the application:

When the application invokes an RMC API subroutine to send a command to the RMC subsystem, a
successful return value from the subroutine indicates only that the command was successfully sent to the
RMC subsystem or added to a command group.

The actual response to the command is returned by the RMC API in the form of one or more response
structures.

Table 2. Response structures returned by the RMC API

If the command sent to the RMC API is: Such as: The Response Structure will contain:

a request for information a request for:

v a list of resources of a resource class

v the dynamic or persistent attribute
values of a resource or resource class

v the requested information

v a return value indicating whether the
command was successful or if some or
all of the requested information could
not be returned

an operation on a resource
v setting a resource persistent attribute

value

v bringing a node online

v taking a node offline

v invoking a resource action

v the unique resource handle that
identifies the resource that was the
target of the command

v a return value indicating the command
was successful or an error indicating a
problem in performing the command
operation

an operation on a resource class
v setting a resource class persistent

attribute value

v invoking a resource class action

v defining a new resource instance of the
resource class

v undefining a resource instance of the
resource class

v the name of the resource class that was
the target of the command

v a return value indicating the command
was successful or an error indicating a
problem in performing the command
operation

a request to monitor (or to stop
monitoring) for an event

A request to:

v register a resource event

v register a resource class event

v unregister a resource event or a
resource class event

v a registration ID that uniquely identifies
the event

v a return value indicating that the event
was successfully registered or
unregistered or an error

The preceding table lists only the general information returned by each type of command, and does not
necessarily list all the information returned by each individual command.

A single command can result in multiple response structures being returned. For example, a command
can be targeted to multiple resources, in which case a separate response is returned for each resource.

Programming RMC 5

Most of the RMC API command interfaces consist of four related subroutines that issue the same
command action to the RMC subsystem, but differ on how the command is sent to the RMC subsystem
and how the response is returned to the application. Depending on the particular subroutine used, the
application can determine if the response structures are returned using pointer response or callback response.
When using:
v pointer response, the application specifies, using a parameter of the subroutine, a location where a

response pointer should be returned. When the command is complete, the location specified will
contain a pointer to the response, or (if the command results in multiple responses) a pointer to an
array of responses.

v callback response, the application specifies a callback routine using a parameter of the subroutine. When
a response structure is received by the RMC API, the RMC API invokes the callback and passes it the
response structure. If the command results in multiple responses from the RMC subsystem, the RMC
API invokes the callback for each response.

Once a response or response array has been given to the application, the application may hold the data
as long as necessary, even subsequent to the return of any callback that received the data. When the
response or response array is no longer needed, the application must free it by calling the
mc_free_response subroutine. Note that a response array may be returned even under certain error
conditions.

The callback response approach can be advantageous when multiple responses are expected in reply to a
command. When using callback response, the application does not have to wait for the entire command
to complete (as it does using the pointer response approach). Instead, as the responses arrive, the callback
is invoked to process the data.

The advantage of the pointer response approach is that it supports a simpler programming style, since
the logic to issue a command and process the response can be in the same function.

The nonblocking subroutines return immediately after adding a command to a command group which
the application later sends as a unit to the RMC subsystem by calling the mc_send_cmd_grp or
mc_send_cmd_grp_wait subroutines. Responses are returned for commands in the command group the
same way they are for commands issued by calling blocking subroutines.

If a command group is sent to the RMC subsystem using the nonblocking subroutine mc_send_cmd_grp,
the RMC API will invoke an application-specified completion callback routine once all commands in the
command group have been fully processed. Be aware that the application must provide one or more
threads to the RMC API so in can invoke the completion callback routine for the command group as well
as any callback routines for commands in the command group. The application provides a thread to the
RMC API using the mc_dispatch subroutine.

For blocking subroutines (or nonblocking subroutines that were sent to the RMC subsystem using the
blocking subroutine mc_send_cmd_grp_wait) it is not necessary to provide threads to the RMC API for
processing response callbacks in a separate thread. For blocking subroutines, the RMC API uses the
blocked thread to process the response callback. However, the application could still use the mc_dispatch
subroutine to provide additional threads to the RMC API (which will attempt to parallelize callback
exection if there are threads available).
Related information:
“RMC API subroutines” on page 40
The RMC API is a library of subroutines and supporting data types, written in C.

Illustrations of pointer response:

The following figures illustrate how responses are returned to an application using pointer response.

6 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Blocking Subroutine 1
11

Blocking Subroutine 2

Blocking Subroutine 3

RMC APIApplication

RMC
Subsystem

Resource
Manager

Resource
Manager

Resource
Manager

12

14

13

15

16

Figure 3. Application using blocking subroutine calls and pointer response. The application (1) calls a blocking
subroutine that uses pointer response. A parameter of the subroutine is a pointer to a location in which the RMC API
will return a pointer to the response. The RMC API (2) issues the command to the RMC subsystem. The RMC
subsystem processes the command and (3) returns a Response Structure to the RMC API which (4) returns a pointer
to the response at the location specified in the subroutine call.

If the command sent to the RMC subsystem results in (5) multiple Response Structures being returned to the RMC
API, note that the RMC API waits for all responses to be returned from the RMC subsystem before (6) returning a
pointer to an array of responses at the location specified in the subroutine call.

Programming RMC 7

Nonblocking Subroutine 1

13

RMC APIApplication

RMC
Subsystem

Resource
Manager

Resource
Manager

Resource
Manager

mc_start_cmd_grp

Command 1

Nonblocking Subroutine 2 Command 1
Command 2

Nonblocking Subroutine 3 Command 1
Command 2
Command 3

mc_send_cmd_grp_wait

11

12

1415

16

Command 1
Command 2
Command 3

Response for Command 1

Responses for Command 2

Response for Command 3

Figure 4. Application using nonblocking subroutine calls and pointer response (command group sent using blocking
subroutine mc_send_cmd_grp_wait).. The application (1) calls the mc_start_cmd_grp subroutine to create a
command group. The application calls a number of subroutines (2) to add commands to the command group. A
parameter on each of these subroutines is a pointer to a location in which the RMC API will return a pointer to the
response. The application (3) sends the commands in the command group as a single unit to the RMC subsystem.
The RMC subsystem processes the commands in the command group and (4) returns response structures to the
RMC API. As the response structures are returned, the RMC API (5) returns pointers to the responses at the locations
specified in the subroutine calls. If a command in the command group results in multiple Response Structures being
returned to the RMC API, the RMC API waits until all responses are returned before returning a pointer to an array of
responses at the location specified by the subroutine call. Since the mc_send_cmd_grp_wait subroutine is blocking,
it does not return control to the application until (6) responses have been received and processed for all commands in
the command group.

8 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Illustrations of callback response:

The following figures illustrate how responses are returned to the application using callback response.

Nonblocking Subroutine 1

13

RMC APIApplication

RMC
Subsystem

Resource
Manager

Resource
Manager

Resource
Manager

mc_start_cmd_grp

Command 1

Nonblocking Subroutine 2 Command 1
Command 2

Nonblocking Subroutine 3 Command 1
Command 2
Command 3

mc_send_cmd_grp

11

12

1415

16

Command 1
Command 2
Command 3

Response for Command 1

Responses for Command 2

Response for Command 3

Completion
callback

Figure 5. Application using nonblocking subroutine calls and pointer response (command group sent using nonblocking
subroutine mc_send_cmd_grp).. The application (1) calls the mc_start_cmd_grp subroutine to create a command
group. The application calls a number of subroutines to (2) add commands to the command group. The application (3)
sends the commands in the command group as a single unit to the RMC subsystem. The RMC subsystem processes
the commands in the command group and (4) returns Response Structures to the RMC API. As the Response
Structures are returned, the RMC API returns pointers to the responses at the locations specified in the subroutine
calls. If a command in the command group results in multiple Response Structures being returned to the RMC API, the
RMC API waits until all responses are returned before returning a pointer to an array of responses at the location
specified by the subroutine call. Since the mc_send_cmd_group subroutine is nonblocking, the application is able to
perform other work while the responses are being received and processed by the RMC API. When responses have
been received and processed for all commands in the command group, the RMC API informs the application by
invoking the completion callback routine that was specified by the mc_send_cmd_group subroutine call. The
completion callback runs in a separate thread that the application provided by calling the mc_dispatch subroutine.

Programming RMC 9

Blocking Subroutine 1
11

Blocking Subroutine 2

Blocking Subroutine 3

RMC APIApplication

RMC
Subsystem

Resource
Manager

Resource
Manager

Resource
Manager

12

14

13

15

1

Subroutine 1
callback

Subroutine 2
callback

Subroutine 3
callback

Figure 6. Application using blocking subroutines and callback response. In this illustration, we are assuming that no
additional threads have been supplied to the RMC API. In this case, the RMC API will use the blocked thread to
invoke callback routines. The application (1) calls a blocking subroutine that uses callback response. A parameter of
the subroutine identifies the callback routine that the RMC API should invoke to return responses to the application.
The RMC API (2) issues the command to the RMC subsystem. The RMC subsystem processes the command and (3)
returns a Response Structure to the RMC API which (4) invokes the callback routine specified in the subroutine call for
processing the response. The callback is processed in the application thread.

If the command sent to the RMC subsystem results in (5) multiple response structures being returned by the RMC
API, note that the RMC API invokes the callback routine to process each response as it arrives.

10 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

In the preceding two figures, the callback routines are all processed in the blocked application thread. To
parallelize execution of the callbacks, however, the application can supply one or more additional threads
that the RMC API can use to invoke callback routines. The application can supply these additional
threads by calling the mc_dispatch routine.

Nonblocking Subroutine 1

13

RMC APIApplication

RMC
Subsystem

Resource
Manager

Resource
Manager

Resource
Manager

mc_start_cmd_grp

Command 1

Nonblocking Subroutine 2 Command 1
Command 2

Nonblocking Subroutine 3 Command 1
Command 2
Command 3

mc_send_cmd_grp_wait

11

12

1415

16

Command 1
Command 2
Command 3

Response for Command 1

Responses for Command 2

Response for Command 3

Subroutine 1
callback

Subroutine 2
callback

Subroutine 3
callback

Figure 7. Cluster applicaiton using nonblocking subroutine calls and callback response (command group sent using
blocking subroutine mc_send_cmd_grp_wait). In this illustration, we are assuming that no additional threads have
been supplied to the RMC API. In this case, the RMC API will use the thread blocked by the mc_send_cdm_grp_wait
subroutine to invoke callback routines. The application (1) calls the mc_start_cmd_grp subroutine to create a
command group. The application calls a number of subroutines to (2) add commands to the command group. A
parameter on each of these subroutines identifies the callback routine that the RMC API should invoke to return
responses to the application. The application (3) sends the commands in the command group as a single unit to the
RMC subsystem. The RMC subsystem processes the commands in the command group and (4) returns response
structures to the RMC API. As each response structure arrives, the RMC API (5) invokes the appropriate response
callback routine and passes it the response structure. If the command sent to the RMC subsystem results in multiple
response structures being returned to the RMC API, note that the RMC API invokes the callback routine to process
each response as it arrives. Since the mc_send_cmd_grp_wait subroutine is blocking, all callback routines must
complete before (6) control is returned to the application thread.

Programming RMC 11

Related concepts:
“Providing the RMC API with one or more threads” on page 15
The application must provide the RMC API with a thread for processing responses and event
notifications under two conditions.

Nonblocking Subroutine 1

13

RMC APIApplication

RMC
Subsystem

Resource
Manager

Resource
Manager

Resource
Manager

mc_start_cmd_grp

Command 1

Nonblocking Subroutine 2 Command 1
Command 2

Nonblocking Subroutine 3 Command 1
Command 2
Command 3

mc_send_cmd_grp

11

2

1415

Command 1
Command 2
Command 3

Response for Command 1

Responses for Command 2

Response for Command 3

Subroutine 1
callback

Subroutine 2
callback

Subroutine 3
callback

16

Completion
callback

1

Figure 8. Application using nonblocking subroutine calls and callback response (command group sent using
nonblocking subroutine mc_send_cmd_grp).. In this illustration, we are assuming that the application has created an
additional thread and assigned it to the RMC API using the mc_dispatch subroutine. The application (1) calls the
mc_start_cmd_grp subroutine to create a command group. The application calls a number of subroutines to (2) add
commands to the command group. A parameter on each of these subroutines identifies the callback routine that the
RMC API should invoke to return responses to the application. The application (3) sends the commands in the
command group as a single unit to the RMC subsystem, using the mc_send_cmd_grp subroutine. A parameter of the
mc_send_cmd_grp subroutine identifies a callback routine that the RMC API will invoke after all commands in the
command group are processed. The RMC subsystem processes the commands in the command group and (4) returns
response structures to the RMC API. As each response structure arrives, the RMC API (5) invokes the appropriate
response callback routine and passes it the response structure. If the command sent to the RMC subsystem results in
multiple response structures being returned to the RMC API, note that the RMC API invokes the callback routine to
process each response as it arrives. Since the mc_send_cmd_grp subroutine is nonblocking, the application is able
to perform other work while the response callbacks run in a separate thread. When all response callbacks have
returned, the RMC API (6) invokes the completion callback (specified by the mc_send_cmd_grp subroutine) to notify
the application that all commands in the command group have been processed.

12 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Registering the application for event notifications:

A set of RMC subroutines enables an application to register with the RMC subsystem for event
notifications.

An event is a change in an attribute that is of interest to the application.

To register for event notifications, the application calls a particular RMC subroutine and provides it with
an event expression. In most cases, an event expression consists of one or more attribute names (usually
dynamic attribute names), one or more mathematical comparison symbols, and one or more constants
that together describe the event of interest. The RMC subsystem will evaluate the event expression when
the attribute values are observed. The RMC subsystem observes, or obtains, the values of attributes
specified in event expressions either at periodic intervals or whenever a new value is supplied by the
associated resource manager, depending on the variable type of the attribute.

When the RMC subsystem evaluates an event expression, it will trigger an event if the expression
evaluates to True. For example, resources of the IBM.FileSystem resource class use the dynamic attribute
PercentTotUsed to represent the percentage of space used in a file system. The following event
expression, once registered with the RMC subsystem for a resource, would cause the RMC subsystem to
notify the application if the particular file system resource is over 90 percent full.
PercentTotUsed > 90

As already stated, each event expression refers to a particular attribute value. This is usually a dynamic
attribute, since such attributes represent changing characteristics of a resource. Once the application
registers with the RMC subsystem for event notifications based on a particular event expression, the RMC
subsystem will observe the value of the attribute and evaluate the event expression. If the event
expression evaluates to True, the RMC subsystem will notify the application.

When observing attribute values to evaluate event expressions, RMC remembers the previously observed
value of the attribute. If the event expression suffixes the attribute name with @P, this represents the
previously observed value of the attribute. For example, resources of the IBM.Host resource class have
the dynamic attribute ProcRunQueue, which indicates the average number of processes that are waiting
for the processor. The following event expression, once registered with the RMC subsystem for an
IBM.Host resource, would cause the RMC subsystem to notify the application if the average number of
processes in the run queue has increased by 50 percent or more between observations.
(ProcRunQueue - ProcRunQueue@P) >= (ProcRunQueue@P * 0.5)

Although most event expressions consist of attribute names, one or more mathematical comparison
symbols, and one or more constants, this is not True if the attribute type is of variable type Quantum. An
attribute of variable type Quantum signifies a change, but has no value associated with it. To register for
events involving a single attribute of type Quantum, the event expression must consist of the attribute
name only.

For example, the IBM.FileSystem resource class has the dynamic attribute ResourceDefined that is of
type Quantum. Although it has no value, it is asserted whenever a resource of the class is created. The
following event expression, once registered with the RMC subsystem for the IBM.FileSystem resource
class, would cause the RMC subsystem to notify the application when a file system is created.
ResourceDefined

To register for events involving more than one attribute name, where at least one attribute name is an
attribute of type Quantum, the attributes of type Quantum can only be used as operands of boolean
operators. For example, the IBM.FileSystem resource class has the dynamic resource attributes
ConfigChanged and PercentTotused. The attribute ConfigChanged is of type Quantum, while
PercentTotused is not. The following event expression would result in an event notification if the file
system is more than 90% full or the persistent attributes of the resource are modified:

Programming RMC 13

PercentTotUsed > 90 || ConfigChanged

When registering for event notifications, a cluster applicaiton can optionally specify a rearm event
expression. Like most event expressions, a rearm event expression consists of one or more attribute names,
one or more mathematical comparison symbol, and one or more constants. The attributes in the rearm
event expression do not need to be the same as the attributes that are used in the event expression. If a
rearm event expression is specified, then the RMC will stop evaluating the event expression once it tests
True, and instead will evaluate the rearm event expression until it tests True. Once the rearm event
expression tests True, the RMC subsystem will once again evaluate the event expression.

The following diagram illustrates the cycle of event expression / rearm event expression evaluation.

To understand why the application might want to specify a rearm event expression when registering for
event notifications, consider the event registration that specifies the following event expression on an
IBM.FileSystem resource.
PercentTotUsed > 90

For this event expression, the RMC subsystem will periodically observe the value of the PercentTotUsed
attribute for the resource and will evaluate the event expression. If the event expression evaluates to True,
the RMC subsystem will notify the application. If there is no rearm event expression, and the event
expression still tests True the next time the RMC subsystem evaluates it, the RMC subsystem will again
notify the application. The RMC subsystem will continue to notify the application each time it evaluates
the event expression until it tests false. In some cases, the application may want these repeated
notifications. In other situations, however, it might be preferable to be notified once until the problem has
been solved and only then "rearm" the event expression. The rearm event expression is a way of telling
the RMC subsystem when the event expression should be evaluated again. In our example, say the
application also provides the following rearm event expression when registering for the event
notifications.
PercentTotUsed < 75

If this rearm event expression is specified, then once the event expression PercentTotUsed > 90 evaluates
to True, the RMC subsystem will stop evaluating it, and will instead evaluate the rearm event expression
until it tests True. When calling the RMC subroutine to register for event notifications, the application can
specify whether or not it also wants to be notified when the rearm event expression evaluates to True.
Whether the application chooses to be notified or not, once the rearm event expression tests True, the
RMC subsystem will toggle to once again evaluate the event expression.
Related concepts:

14 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

“Targeting resources for a command” on page 18
Commands issued to the RMC subsystem using the RMC API are usually targeted to one or more
resources of a resource class, or one resource class.
“Data types and operators supported in expressions” on page 19
An expression in RMC is similar to a C language statement or the WHERE clause of an SQL query. It is
composed of variables, operators and constants. The C and SQL syntax styles may be intermixed within a
single expression.
“Data types and operators supported in expressions” on page 19
An expression in RMC is similar to a C language statement or the WHERE clause of an SQL query. It is
composed of variables, operators and constants. The C and SQL syntax styles may be intermixed within a
single expression.
Related information:
“RMC API subroutines” on page 40
The RMC API is a library of subroutines and supporting data types, written in C.

Notifying the application of events:

A set of RMC subroutines enables an application to register with the RMC subsystem for event
notifications.

These subroutines are summarized in “Monitoring command interfaces” on page 32 and described fully
in “RMC API subroutines” on page 40. When calling any of these subroutines, the application identifies a
callback routine. When the event expression (and optionally, the rearm event expression) evaluates to
True, the RMC API will invoke the specified callback, passing it an event notification structure. The event
notification structure will contain information about the event, including:
v A timestamp that indicates when the event occurred.
v For a resource event, the resource handle of the resource whose state change resulted in the generation

of the event. For a resource class event, the name of the resource class whose state change resulted in
the generation of the event.

v The values of the attributes that are used in the event expression.

When calling the particular RMC subroutine to register an event, the application can also specify that the
RMC subsystem should return additional persistent attribute information in the event notification
structure.

Once an event notification has been given to the application, the application may hold the data as long as
necessary, even subsequent to the return of any callback that received the data. When the event
notification is no longer needed, the application must free it by calling the mc_free_response subroutine.
Note that an event notification may be returned even under certain error conditions.

Once the application has registered an event with the RMC subsystem, event notification will continue
until the application unregisters the event using one of the mc_unreg_event_* subroutines.

The RMC API invokes the event callback routine using a thread that the application must provide by
calling the mc_dispatch subroutine. For more information on the mc_dispatch subroutine and supplying
threads to the RMC API, see “Providing the RMC API with one or more threads.”

Providing the RMC API with one or more threads:

The application must provide the RMC API with a thread for processing responses and event
notifications under two conditions.

The application must provide the RMC API with a thread if:
v it sends a command group to the RMC subsystem using the nonblocking subroutine

mc_send_cmd_grp

Programming RMC 15

v it registers for one or more event notifications

In each of these cases, the RMC API needs a thread to invoke callback routines. In the case of a command
group sent to the RMC subsystem using the nonblocking subroutine mc_send_cmd_grp, the RMC API
needs a thread in order to invoke the completion callback routine for the command group as well as any
callback routines for commands in the command group. In the case of one or more registered events, the
RMC API needs a thread in order to invoke the event notification callback routines.

To provide a thread to the RMC API, the application calls the mc_dispatch subroutine (as described in
“mc_dispatch” on page 62). How the application uses the mc_dispatch subroutine depends on whether it
is a single-threaded application or a multi-threaded application.
Related concepts:
“Illustrations of callback response” on page 9
The following figures illustrate how responses are returned to the application using callback response.
Related reference:
“Command management interfaces” on page 32
The following table summarizes the RMC API command management interfaces.

A single-threaded application surrendering its thread to the RMC API:

If an application is single threaded (in other words, does not create any threads) and either sends a
command group using the nonblocking mc_send_cmd_grp subroutine or else registers for event
notifications, it will need to surrender its thread to the RMC API one or more times so that the RMC API
can process the necessary response or event notification callback(s).

To provide the single application thread to the RMC API, the application calls the mc_dispatch
subroutine, specifying the subroutine option MC_DISPATCH_OPTS_WAIT. Calling the mc_dispatch
subroutine with this option causes the application thread to block until the RMC API has used it to
process one response or event notification callback routine. Once one response or event notification
callback routine is processed, the subroutine returns.

Since the mc_dispatch subroutine with the option MC_DISPATCH_OPTS_WAIT returns after processing
one response or event notification callback routine, the application will need to call the mc_dispatch
subroutine for each response or event notification. A difficulty in doing this, however, is it is often
unclear how many responses or event notifications to expect.
v In the case of a command group sent using the nonblocking subroutine mc_send_cmd_grp, the RMC

API will need the thread to process any response callbacks for commands in the command group
(some of which could be receiving multiple responses), as well as the command group's completion
callback. The invocation of the completion callback, however, indicates that all commands in the
command group have been processed.

v In the case of event notification callbacks, the RMC API will need a thread to process these whenever
the event expression evaluates to TRUE; there is no way for the application to determine how often
this will happen. Only when it unregisters the event can the application be certain there will be no
further event notifications.

Another difficulty in using the mc_dispatch subroutine with the option MC_DISPATCH_OPTS_WAIT, is
that it blocks the application thread until a response or event notification callback has been processed. If
called too soon, before there is a response or event notification to process, the application thread is
blocked unnecessarily.

To prevent the mc_dispatch subroutine from blocking unnecessarily, the application can call the
mc_get_descriptor subroutine to obtain a descriptor that is made ready to read whenever the RMC API
has received a response or event notification from the RMC subsystem and needs the application thread
to process the appropriate callback routine. The application can use the descriptor in a select or poll

16 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

system call to determine when it needs to call the mc_dispatch subroutine. When the mc_dispatch
subroutine returns, and another response or event notification is expected, the application can again use
the descriptor in a select or poll system call.

A multi-threaded application providing threads to the RMC API:

When the application either sends a command group using the nonblocking mc_send_cmd_grp
subroutine or else registers for event notifications, it will need to make at least one thread available to the
RMC API to process the necessary response or event notification callback(s).

An application can do this by creating a thread and having it call the mc_dispatch subroutine, specifying
the subroutine option MC_DISPATCH_OPTS_ASSIGN. When the mc_dispatch subroutine is called with
this option, it does not return. Instead the thread is kept by the RMC API to process response and event
notification callbacks. Multiple threads can be provided to the RMC API in this way. When the RMC API
receives multiple responses or event notifications form the RMC subsystem, it will invoke as many
callbacks in parallel as it has threads available, subject to the following rules:
v Multiple responses to the commands in the command group from the same resource or resource class

are processed one at a time. Responses to the commands in the command group from different
resources or resource classes can be processed in parallel. Responses not generated by a resource or
resource class can be processed in parallel. The following subroutines have responses generated by
resources of resource classes:
– mc_enumerate_resources_*

– mc_enumerate_permitted_rsrcs_*

– mc_query_p_select_*

– mc_query_p_handle_*

– mc_class_query_p_*

– mc_define_resource_*

– mc_undefine_resource_*

– mc_refresh_config_*

– mc_set_select_*

– mc_set_handle_*

– mc_class_set_*

– mc_invoke_action_*

– mc_invoke_class_action_*

– mc_online_*

– mc_offline_*

– mc_reset_*

The mc_validate_rsrc_hndl_* subroutines also have responses generated from a resource class.
However, the response serialization rules do no apply to them.

v Event notifications for the same event registration and from the same resource or resource class are
processed one at a time.

v Event notifications for the same event registration, but from different resources or resource classes, can
be processed in parallel

v Event notifications for different event registrations may be processed in parallel, regardless of the
resource class from which they come.

Cancelling threads executing RMC API subroutines:

The RMC API does the necessary internal cleanup when threads are cancelled. A thread executing an
RMC API subroutine can be safely cancelled if the thread's cancelability state type is deferred.

Programming RMC 17

When a thread with a deferred cancelability state type is the target of a cancellation request, the request
is acted upon when a thread cancellation point is reached. The blocking subroutines all contain thread
cancellation points as do the mc_start_session, mc_timed_start_session, mc_send_cmd_grp_wait, and
mc_dispatch subroutines.
v When a thread executing a blocking subroutine is cancelled, the command will have been sent to the

RMC subsystem. None, some, or all of the command group responses will have been delivered to the
application. If the subroutine was an event registration command, the RMC API unregisters the event.
Some event notifications may be delivered to the application before the event is unregistered.

v When a thread executing the mc_start_session or mc_timed_start_session subroutine is cancelled, the
session with the RMC subsystem is not established.

v When a thread executing the mc_send_cmd_grp_wait subroutine is cancelled, the commands in the
command group will have been sent to the RMC subsystem. None, some, or all of the command group
responses will have been delivered to the application. If the command group includes event
registration commands, the RMC API unregisters the events. Some event notifications may be delivered
to the application before the events are unregistered.

An event notification callback, command response callback, or command group completion callback may
include cancellation points. When developing such callback routines for an environment in which threads
are cancelled, it may be necessary to develop thread cancellation cleanup handlers. A thread cancellation
cleanup handler might call the mc_free_response subroutine which frees the storage used by a response
or event notification structure.

Targeting resources for a command
Commands issued to the RMC subsystem using the RMC API are usually targeted to one or more
resources of a resource class, or one resource class.

While a resource class is always identified by its name, there are, depending on the particular subroutine,
two ways to identify target resources for a command.
v When calling some subroutines, an application can identify a single resource by its resource handle. A

resource handle is returned in the response structure for many RMC API subroutines (including the
mc_define_resource_* subroutines for defining a resource, and the mc_enumerate_resources_* and
mc_enumerate_permitted_rsrcs_* subroutines for listing resources of a resource class). A resource
handle is also provided in the resource event notification structures.

v When calling some subroutines, an application can identify one or more resources of a particular
resource class using attribute selection. To identify one or more resources using attribute selection, the
application specifies a resource class name and a selection string that identifies a set of resources of the
resource class. A selection string specifies a set of persistent attributes and associated attribute values.
Resources of the resource class whose persistent attribute values match the values specified in the
selection string are identified as the target resources for the command.

For example, when an application registers for event notifications, it can monitor an attribute of a
resource class or an attribute of one or more resources of a resource class. There are three RMC API
interfaces (each including four subroutine variations to accommodate the blocking/nonblocking, callback
response/pointer response variations). These three interfaces are:
v the mc_reg_class_event_* subroutines. All four variations of this interface register a resource class

event with the RMC subsystem. The application identifies the resource class by its name.
v the mc_reg_event_handle_* subroutines. All four variations of this interface register a resource event

with the RMC subsystem. The application identifies a single resource using a resource handle.
v the mc_reg_event_select_* subroutines. All four variations of this interface register a resource event

with the RMC subsystem. The application identifies one ore more resources of a resource class by:
– specifying the resource class name
– providing a selection string to specify the target resource(s). For example, say the application is

registering for events based on a dynamic attribute of the IBM.Host resource class (which represents
a host machine that is running a single copy of an operating system). However, the application only

18 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

wants to register the event for host machines that are running the AIX operating system. The
following selection string uses the OSName persistent attribute (which indicates the operating
system running on the host machine) to target just those resources of interest.
OSName == ’AIX’

Even if the selection string does not match any resources, the event registration will still succeed. In
such a case, the RMC subsystem will monitor the specified resource class and if, at some future
time, resources then match the selection string, those resources will automatically be added to the
target list. In general, when a selection string is specified for an event registration, the RMC
subsystem continually monitors the resource class to see if additional resources match the selection
string or if resources no longer match the selection string. Such resources are then added to the
target list or, optionally, removed from the target list.

Related concepts:
“Registering the application for event notifications” on page 13
A set of RMC subroutines enables an application to register with the RMC subsystem for event
notifications.

Data types and operators supported in expressions
An expression in RMC is similar to a C language statement or the WHERE clause of an SQL query. It is
composed of variables, operators and constants. The C and SQL syntax styles may be intermixed within a
single expression.

There are two types of expressions in RMC. One type is the event expression or rearm event expressions.
The other type is the selection string expressions.
Related concepts:
“Registering the application for event notifications” on page 13
A set of RMC subroutines enables an application to register with the RMC subsystem for event
notifications.
“Qualifiers” on page 27
A mechanism is needed that permits an RMC client to qualify an event. In other words, an event may be
of some interest, but only if some other condition is also met.

SQL restrictions:

SQL syntax is supported for selection strings.

The following table relates the RMC terminology to SQL terminology.

Table 3. Relationship of RMC terminology to SQL terminology

RMC terminology SQL terminology

attribute name column name

selection string WHERE clause

operators predicates, logical connectives

resource class table

Although SQL syntax is generally supported in selection strings, the following restrictions apply.
v Only a single table may be referenced in an expression.
v Queries may not be nested.
v The IS NULL predicate is not supported because there is no concept of a NULL value.
v The period (.) operator is not a table separator (for example, table.column). Rather, in this context, the

period (.) operator is used to separate a field name from its containing structure name.
v The pound sign (#) is hard-coded as the escape character within SQL pattern strings.

Programming RMC 19

v All column names are case sensitive.
v All literal strings must be enclosed in either single or double quotation marks. Bare literal strings are

not supported because they cannot be distinguished from column and attribute names.

Supported base data types:

The term variable is used in this context to mean the column name or attribute name in an expression.

Variables and constants in an expression may be one of the following data types that are supported by
the RMC subsystem:

Table 4. Supported Base Data Types

Symbolic name Description

CT_INT32 Signed 32–bit integer

CT_UINT32 Unsigned 32–bit integer

CT_INT64 Signed 64–bit integer

CT_UINT64 Unsigned 64–bit integer

CT_FLOAT32 32–bit floating point

CT_FLOAT64 64–bit floating point

CT_CHAR_PTR Null-terminated string

CT_BINARY_PTR Binary data – arbitrary-length block of data

CT_RSRC_HANDLE_PTR Resource handle – an identifier for a resource that is unique over space and time (20
bytes)

Aggregate data types:

In addition to the base data types, aggregates of the base data types may be used as well.

The first aggregate data type is similar to a structure in C in that it can contain multiple fields of different
data types. This aggregate data type is referred to as structured data (SD). The individual fields in the
structured data are referred to as structured data elements, or simply elements. Each element of a structured
data type may have a different data type which can be one of the base types in the preceding table or
any of the array types discussed in the next paragraph, except for the structured data array.

The second aggregate data type is an array. An array contains zero or more values of the same data type,
such as an array of CT_INT32 values. Each of the array types has an associated enumeration value
(CT_INT32_ARRAY, CT_UINT32_ARRAY). Structured data may also be defined as an array but is
restricted to have the same elements in every entry of the array.

Data types that can be used for literal values:

Several literal values can be specified for each of the base data types.

Literal values can be specified for each of the base data types as follows:

Array An array or list of values may be specified by enclosing variables or literal values, or both, within
braces {} or parentheses () and separating each element of the list with a comma. For example: { 1,
2, 3, 4, 5 } or ("abc", "def", "ghi").

Entries of an array can be accessed by specifying a subscript as in the C programming language.
The index corresponding to the first element of the array is always zero; for example, List [2]
references the third element of the array named List. Only one subscript is allowed. It may be a
variable, a constant, or an expression that produces an integer result. For example, if List is an
integer array, then List[2]+4 produces the sum of 4 and the current value of the third entry of the
array.

20 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Binary Data
A binary constant is defined by a sequence of hexadecimal values, separated by white space. All
hexadecimal values comprising the binary data constant are enclosed in double quotation marks.
Each hexadecimal value includes an even number of hexadecimal digits, and each pair of
hexadecimal digits represents a byte within the binary value. For example:
"0xabcd 0x01020304050607090a0b0c0d0e0f1011121314"

Character Strings
A string is specified by a sequence of characters surrounded by single or double quotation marks
(you can have any number of characters, including none). Any character may be used within the
string except the null '\0' character. Double quotation marks and backslashes may be included in
strings by preceding them with the backslash character.

Floating Types
These types can be specified by the following syntax:
v A leading plus (+) or minus (-) sign
v One or more decimal digits
v A radix character, which at this time is the period (.) character
v An optional exponent specified by the following:

– A plus (+) or minus (-) sign
– The letter 'E' or 'e'
– A sequence of decimal digits (0–9)

Integer Types
These types can be specified in decimal, octal, or hexadecimal format. Any value that begins with
the digits 1-9 and is followed by zero or more decimal digits (0-9) is interpreted as a decimal
value. A decimal value is negated by preceding it with the character '-'. Octal constants are
specified by the digit 0 followed by 1 or more digits in the range 0-7. Hexadecimal constants are
specified by a leading 0 followed by the letter x (uppercase or lowercase) and then followed by a
sequence of one or more digits in the range 0–9 or characters in the range a–f (uppercase or
lowercase).

Resource Handle
A fixed-size entity that consists of two 16-bit and four 32-bit words of data. A literal resource
handle is specified by a group of six hexadecimal integers. The first two values represent 16-bit
integers and the remaining four each represent a 32-bit word. Each of the six integers is separated
by white space. The group is surrounded by double quotation marks. The following is an
example of a resource handle:
"0x4018 0x0001 0x00000000 0x0069684c 0x00519686 0xaf7060fc"

Structured Data
Structured data values can be referenced only through variables. Nevertheless, the RMC
command-line interface displays structured data (SD) values and accepts them as input when a
resource is defined or changed. A literal SD is a sequence of literal values, that are separated by
commas and enclosed in square brackets. For example, ['abc',1,{3,4,5}] specifies an SD that consists
of three elements: (a) the string 'abc', (b) the integer value 1, and (c) the three-element array
{3,4,5}.

Variable names refer to values that are not part of the expression but are accessed while
evaluating the expression. For example, when RMC processes an expression, the variable names
are replaced by the corresponding persistent or dynamic attributes of each resource.

Entries of an array may be accessed by specifying a subscript as in 'C'. The index corresponding
to the first element of the array is always 0 (for example, List[2] refers to the third element of the
array named List). Only one subscript is allowed. It may be a variable, a constant, or an
expression that produces an integer result. A subscripted value may be used wherever the base

Programming RMC 21

data type of the array is used. For example, if List is an integer array, then "List[2]+4" produces
the sum of 4 and the current value of the third entry of the array.

The elements of a structured data value can be accessed by using the following syntax:
<variable name>.<element name>

For example, a.b

The variable name is the name of the table column or resource attribute, and the element name is
the name of the element within the structured data value. Either or both names may be followed
by a subscript if the name is an array. For example, a[10].b refers to the element named b of the
11th entry of the structured data array called a. Similarly, a[10].b[3] refers to the fourth element
of the array that is an element called b within the same structured data array entry a[10].

Handling variable names:

Variable names refer to values that are not part of an expression but are accessed while evaluating the
expression. When used to select a resource, the variable name is a persistent attribute.

When used to generate an event, the variable name is usually a dynamic attribute (but may be a
persistent attribute). When used to select audit records, the variable name is the name of a field within
the audit record.

A variable name is restricted to include only 7-bit ASCII characters that are alphanumeric (a-z, A-Z, 0-9)
or the underscore character (_). The name must begin with an alphabetic character.

When the expression is used by the RMC subsystem for an event or a rearm event, the name can have a
suffix that is the '@' character followed by 'P', which refers to RMC's previous observation of the attribute
value. Because RMC observes attribute values periodically and keeps track of the previously observed
value, you can use this syntax to compare the currently observed value with the previously observed
value.

Operators that can be used in expressions:

Constants and variables may be combined by an operator to produce a result that in turn may be used
with another operator.

The resulting data type of the expression must be a scalar integer or floating-point value. If the result is
zero, the expression is considered to be FALSE; otherwise, it is TRUE.

Note: Blanks are optional around operators and operands unless their omission causes an ambiguity. An
ambiguity typically occurs only with the word form of operator (that is, AND, OR, IN, LIKE, etc.). With
these operators, a blank or separator, such as a parenthesis or bracket, is required to distinguish the word
operator from an operand. For example, aANDb is ambiguous. It is unclear if this is intended to be the
variable name aANDb or the variable names a, b combined with the operator AND. It is actually
interpreted by the application as a single variable name aANDb. With non-word operators (for example,
+, -, =, &&, etc.) this ambiguity does not exist, and therefore blanks are optional.

The set of operators that can be used in expressions is summarized in the following table:

22 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 5. Operators That Can Be Used in Expressions

Operator Description Left Data
Types

Right Data
Types

Example Notes

+ Addition Integer,float Integer,float "1+2" results in 3 None

- Subtraction Integer,float Integer,float "1.0-2.0" results in -1.0 None

* Multiplication Integer,float Integer,float "2*3" results in 6 None

/ Division Integer,float Integer,float "2/3" results in 1 None

- Unary minus None Integer,float "-abc" None

+ Unary plus None Integer,float "+abc" None

.. Range Integers Integers "1..3" results in 1,2,3 Shorthand for all integers
between and including the
two values

% Modulo Integers Integers "10%2" results in 0 None

| Bitwise OR Integers Integers "2|4" results in 6 None

& Bitwise AND Integers Integers "3&2" results in 2 None

~ Bitwise
complement

None Integers ~0x0000ffff results in 0xffff0000 None

^ Exclusive OR Integers Integers 0x0000aaaa^0x0000ffff results in
0x00005555

None

>> Right shift Integers Integers 0x0fff>>4 results in 0x00ff None

<< Left shift Integers Integers "0x0ffff<<4" results in 0xffff0 None

==

=

Equality All but SDs All but SDs
"2==2" results in 1

"2=2" results in 1

Result is true (1) or false (0)

!=

<>

Inequality All but SDs All but SDs
"2!=2" results in 0

"2<>2" results in 0

Result is true (1) or false (0)

> Greater than Integer,float Integer,float "2>3" results in 0 Result is true (1) or false (0)

>= Greater than or
equal

Integer,float Integer,float "4>=3" results in 1 Result is true (1) or false (0)

< Less than Integer,float Integer,float "4<3" results in 0 Result is true (1) or false (0)

<= Less than or
equal

Integer,float Integer,float "2<=3" results in 1 Result is true (1) or false (0)

=~ Pattern match Strings Strings "abc"=~"a.*" results in 1 Right operand is interpreted
as an extended regular
expression.

To use this operator in an
expression, the locale(s) of the
node(s) running the RMC
daemon must be using either
Unicode Transfer Format-8
(UTF-8) encoding (or a
codeset that matches UTF-8),
or else C locale encoding. If
multiple nodes are involved,
the encoding must be
consistent across all nodes.

Programming RMC 23

Table 5. Operators That Can Be Used in Expressions (continued)

Operator Description Left Data
Types

Right Data
Types

Example Notes

!~ Not pattern
match

Strings Strings "abc"!~"a.*" results in 0 Right operand is interpreted
as an extended regular
expression.

To use this operator in an
expression, the locale(s) of the
node(s) running the RMC
daemon must be using either
Unicode Transfer Format-8
(UTF-8) encoding (or a
codeset that matches UTF-8),
or else C locale encoding. If
multiple nodes are involved,
the encoding must be
consistent across all nodes.

=?

LIKE

like

SQL pattern
match

Strings Strings "abc"=? "a%" results in 1 Right operand is interpreted
as a SQL pattern

!?

NOT LIKE

not like

Not SQL
pattern match

Strings Strings "abc"!? "a%" results in 0 Right operand is interpreted
as a SQL pattern

|<

IN

in

Contains any All but SDs All but SDs "{1..5}|<{2,10}" results in 1 Result is true (1) if left
operand contains any value
from right operand

><

NOT IN

not in

Contains none All but SDs All but SDs "{1..5}><{2,10}" results in 1 Result is true (1) if left
operand contains no value
from right operand

&< Contains all All but SDs All but SDs "{1..5}&<{2,10}" results in 0 Result is true (1) if left
operand contains all values
from right operand

||

OR

or

Logical OR Integers Integers "(1<2)||(2>4)" results in 1 Result is true (1) or false (0)

&&

AND

and

Logical AND Integers Integers "(1<2)&&(2>4)" results in 0 Result is true (1) or false (0)

24 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 5. Operators That Can Be Used in Expressions (continued)

Operator Description Left Data
Types

Right Data
Types

Example Notes

!

NOT

not

Logical NOT None Integers "!(2==4)" results in 1 Result is true (1) or false (0)

When integers of different signs or size are operands of an operator, standard C style casting is implicitly
performed. When an expression with multiple operators is evaluated, the operations are performed in the
order defined by the precedence of the operator. The default precedence can be overridden by enclosing
the portion or portions of the expression to be evaluated first in parentheses (). For example, in the
expression "1+2*3", multiplication is normally performed before addition to produce a result of 7. To
evaluate the addition operator first, use parentheses as follows: "(1+2)*3". This produces a result of 9. The
default precedence rules are shown in the following table. All operators in the same table cell have the
same or equal precedence.

Table 6. Operator Precedence

Operators Description

. Structured data element separator

~

!

NOT

not

-

+

Bitwise complement

Logical not

Unary minus

Unary plus

*

/

%

Multiplication

Division

Modulo

+

-

Addition

Subtraction

<<

>>

Left shift

Right shift

<

<=

>

>=

Less than

Less than or equal

Greater than

Greater than or equal

Programming RMC 25

Table 6. Operator Precedence (continued)

Operators Description

==

!=

=?

LIKE

like

!?

=~

!~

?=

|

IN

in

NOT IN

not in

Equality

Inequality

SQL match

SQL not match

Reg expr match

Reg expr not match

Reg expr match (compat)

Contains any

Contains none

Contains all

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise inclusive OR

&& Logical AND

|| Logical OR

, List separator

Pattern matching:

Two types of pattern matching are supported; extended regular expressions and that which is compatible
with the standard SQL LIKE predicate.

This type of pattern may include the following special characters:
v The percentage sign (%) matches zero or more characters.
v The underscore (_) matches exactly one character.
v All other characters are directly matched.
v The special meaning for the percentage sign and the underscore character in the pattern may be

overridden by preceding these characters with an escape character, which is the pound sign (#) in this
implementation.

With respect to the extended regular expression matching syntax (=~), anomalous behavior may result if
the locale of the RMC daemon (for event expression evaluation) or the Resource Manager daemons (for
select string evaluation) is not a UTF-8 locale. Expressions and select strings passed into the RMC

26 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

subsystem are converted to UTF-8. The =~ operator is implemented through the use of regcomp and
regexec, which are effected by the locale. Therefore, if the locale is not UTF-8, unexpected results may
occur.

Qualifiers:

A mechanism is needed that permits an RMC client to qualify an event. In other words, an event may be
of some interest, but only if some other condition is also met.

Normally, an expression that evaluates to True results in the generation of an event. But, it might be the
case that a single event is not of much interest. Consider the "file system close to full" example:
PercentTotUsed > 90

While it is interesting that a file system is almost full, to a system administrator responsible for managing
file systems, what might be of more interest is that a file system is close to full and remains in that
condition for a period of time. A temporary spike in usage can be ignored.

A qualifier is an extension to the expression syntax that specifies this other condition. A qualifier consists
of a double underscore (__), the string QUAL, a single underscore (_), and the qualifier name (xxxx). It
has the following general form:
expression __QUAL_xxxx(arg1, arg2, ...)

A qualifier is appended to the end of an expression, separated by one or more blanks. A qualifier can be
used with a primary expression or a re-arm expression.

The __QUAL_COUNT(arg1, arg2) qualifier counts the number of True expression evaluations. Once the
arg1 number of True evaluations have occurred, the event notification is generated. However, this count is
maintained within a moving window of the last arg2 consecutive evaluations. Once arg2 consecutive
evaluations have occurred, prior to performing the next evaluation, the count of True evaluations is
reduced by one if the oldest evaluation in the window was True. When an event notification is generated,
or would have been generated if the MC_REG_OPTS_REARM_EVENT option was set, the count of True
evaluations and consecutive evaluations is set to 0.

The value for arg1 must be less than or equal to the value for arg2. Continuing with the file system full
example, consider the following primary and re-arm expressions, respectively:
PercentTotUsed > 90 __QUAL_COUNT(7, 10)
PercentTotUsed < 60

If seven out of the last 10 primary expression evaluations are True, an event notification is generated and
the re-arm expression is evaluated until it is True. In simpler terms, if seven out of the last 10 samples of
file system usage were greater than 90%, an event is generated. Another event will not be generated until
the file system usage drops below 60%.

If all the attributes in the primary expression have a regular period, arg2 can be considered a duration
over which the count of True evaluations is maintained. The actual duration is a function of the shortest
and longest reporting interval associated with the attributes specified in the expression, as given by:
min_interval * arg2 <= duration <= max_interval * arg2

For this example, the duration is 10 minutes.

The __QUAL_RATE(arg1, arg2) qualifier specifies a rate of True expression evaluations that must be
achieved before an event notification is generated. arg1 is a count of True evaluations and arg2 is a
number of seconds. An event notification is generated when the last arg1 True evaluations have occurred
within arg2 seconds. Once arg1 True evaluations have occurred, prior to performing the next evaluation,
the count of True evaluations is reduced by one. False evaluations are ignored and not counted. When an
event notification is generated, or would have been generated if the MC_REG_OPTS_REARM_EVENT

Programming RMC 27

option was set, the count of True evaluations is set to 0. Note that the rate calculation is not performed
until arg1 True evaluations have occurred. The time at which this occurs is a function of the time a new
value is reported for any of the attributes in the expression.

The rate qualifier is probably more appropriate for expressions containing attributes of variable type
State, that is, the periodic evaluation is irregular. If the operational state of a resource is expected to
change, but not change rapidly, this expression is useful:
OpState != OpState@P __QUAL_RATE(5, 60)

If five True evaluations occur within one minute, an event is generated. Note that this qualifier is not an
instantaneous rate calculation, that is, an event is not generated if the express is True every (arg1 / arg2)
seconds, or every 0.0833 seconds in the preceding example.

Qualifiers can be used with re-arm expressions as well.
Related concepts:
“Data types and operators supported in expressions” on page 19
An expression in RMC is similar to a C language statement or the WHERE clause of an SQL query. It is
composed of variables, operators and constants. The C and SQL syntax styles may be intermixed within a
single expression.

Custom dynamic attributes:

The RMC subsystem supports the definition of custom dynamic attributes within a resource class and
their use in event expressions.

Custom dynamic attributes are run-time extensions to the resource dynamic attributes that are returned by
the RMC API's mc_qdef_d_attribute subroutine. Custom dynamic attributes are defined for each
resource. The manner in which custom dynamic attributes are defined is a function of the resource class
implementation. Custom dynamic attributes cannot be defined as class dynamic attributes.

Custom dynamic attributes are supported if the resource class defines the CustomDynamicAttributes
persistent resource attribute. This persistent attribute is of type SD Array and contains one array element
for each custom dynamic attribute that may be defined for the resource. For any given resource, if this
persistent attribute has an array value with zero elements, custom dynamic attribute are not defined for
the resource. This SD contains the following fields:
v Name, which is the name of the custom dynamic attribute.
v ID, which is the ID of the custom dynamic attribute.
v DataType, which is the datatype of the custom dynamic attribute.

Custom dynamic attributes cannot be a Structured Data type.
v VariableType, which is the variable type of the custom dynamic attribute: Counter, Quantity,

Quantum, or State. For more information about variable types, see the Administering RSCT guide.
v ReportingInterval, which is the reporting interval of the custom dynamic attribute.
v Properties, which are the properties of the custom dynamic attribute.

One property is supported. If Bit 0 of the property value is set, the attribute must be monitored using
an event expression in order to query its value using the mc_query_d_handle subroutine or the
mc_query_d_select subroutine.

Each resource does not need to define the same custom dynamic attributes. However, when using the
mc_reg_event_select subroutine, all selected resource must have matching values for their
CustomDynamicAttributes persistent resource attributes if any custom dynamic attributes are used in the
event expressions. If the RMC subsystem cannot obtain the values of the CustomDynamicAttributes
persistent resource attributes for the selected resources, the mc_reg_event_handle subroutine or the
mc_reg_event_select subroutine returns an error in its response, indicating that the custom dynamic
attributes in the expressions could not be validated.

28 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Examples of expressions:

This topic contains examples of the types of expressions that can be constructed.

Some examples of the types of expressions that can be constructed follow:
1. The following expressions match all rows or resources that have a name which begins with 'tr' and

ends with '0', where "Name" indicates the column or attribute that is to be used in the evaluation:
Name =~’tr.*0’
Name LIKE ’tr%0’

2. The following expressions evaluate to TRUE for all rows or resources that contain 1, 3, 5, 6, or 7 in the
column or attribute that is called IntList, which is an array:
IntList|<{1,3,5..7}
IntList in (1,3,5..7)

3. The following expression combines the previous two so that all rows and resources that have a name
beginning with 'tr' and ending with '0' and have 1, 3, 5, 6, or 7 in the IntList column or attribute will
match:
(Name LIKE "tr&(IntList|<(1,3,5..7))
(Name=~’tr.*0’) AND (IntList IN {1,3,5..7})

Notifying the application of errors
Errors can be detected in various ways when using the RMC API.

When using the RMC API, errors can be detected by:
v an RMC API subroutine. When an RMC API subroutine detects an error, the subroutine returns

immediately with an error code. If the subroutine is one that usually issues a command to the RMC
subsystem, the command is not issued and therefore, no response will be generated by the RMC
subsystem. The application can use a set of cluster common utilities to get additional information
about an error returned by an RMC API subroutine.

v an RMC subsystem daemon or a resource manager. When an RMC subsystem daemon or a resource
manager detects an error, the response structure or event notification structure will contain an error
structure.

Related information:
“RMC API error codes and return values” on page 243
Errors can be detected by an RMC API subroutine, an RMC subsystem daemon, or a resource manager.
“Cluster utilities: error-related subroutines” on page 264
The cluster utilities component of RSCT includes several subroutines that an application can use to get
additional information about errors that are returned by RMC API subroutines.

Obtaining error information returned by the RMC API subroutines:

All RMC API subroutines return a value of type ct_int32_t. A return value of 0 indicates that the
subroutine completed successfully. Any non-zero value is an error value.

The possible errors are defined by macros in the header file ct_mc.h.

In many cases, the returned error value is sufficient information for the application to determine the
appropriate recovery action. However, detailed error information can be obtained by calling the
cu_get_error subroutine (described in “cu_get_error” on page 265). This subroutine has one argument,
which is the address in which the function returns a pointer to an error structure. The detailed error
information that can be returned in this structure is stored by the RMC API subroutine in a common,
per-thread data area. Therefore, to obtain additional error information, the application must call the
cu_get_error subroutine using the same thread that invoked the failing subroutine, before calling any
other subroutine on that thread.

Programming RMC 29

In addition to the error structure, the application can obtain a message that corresponds to the error by
calling the “cu_get_errmsg” on page 264 subroutine. This subroutine accepts a pointer to an error
structure and returns, at a location specified by the application, the error message.

The memory that is returned by the cu_get_error and cu_get_errmsg subroutines is not reused by the
subroutines, so the application can hold the memory as long as necessary. The memory returned by these
subroutines, however, must not be modified by the application.

When an error structure that is obtained by the cu_get_error subroutine is no longer needed, the
application can free it by calling the cu_rel_error subroutine (described in “cu_rel_error” on page 270).
Similarly, when a message obtained by the cu_get_errmsg subroutine is no longer needed, the application
can free it by calling the cu_rel_errmsg subroutine (described in “cu_rel_errmsg” on page 269).

To package error information into a cluster error structure or to create cluster error structures that are
returned by microsensor API subroutines, use the cu_pkg_error subroutine or the cu_vpkg_error
subroutine (described in “cu_pkg_error, cu_vpkg_error” on page 267).
Related information:
“Cluster utilities: error-related subroutines” on page 264
The cluster utilities component of RSCT includes several subroutines that an application can use to get
additional information about errors that are returned by RMC API subroutines.
“RMC API error codes and return values” on page 243
Errors can be detected by an RMC API subroutine, an RMC subsystem daemon, or a resource manager.

Obtaining error information returned in response structures or event notification structures:

All response structures and event notification structures contain error information.

The error information is in a structure of type mc_errnum_t.
typedef struct mc_errnum mc_errnum_t;
struct mc_errnum {

ct_uint32_t mc_errnum;
ct_char_t *mc_ffdc_id;
ct_char_t *mc_error_msg;
cu_error_arg_t *mc_args;
ct_uint32_t mc_arg_count;

};

The fields of this structure contain the following:

mc_errnum
An error code from the RMC subsystem. If this field is zero, there is no error. The error codes can
be returned in response structures and event notification structures.

mc_ffdc_id
A pointer to a string that is a failure identifier. This failure identifier specifies additional error
information that may have been logged by the RMC subsystem. If this field contains a NULL
pointer, then no additional error information has been logged. If the application is logging errors
that it has detected, then this failure identifier should be included in the information being
logged.

mc_error_msg
A pointer to an error message.

mc_args
If the mc_arg_count field of this structure is non-zero, a pointer to an array of mc_arg_count
elements. Each element of the array is an error argument specific to the error.

mc_arg_count
The number of elements in the mc_args array.

30 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Error codes that may be returned in the mc_errnum field are grouped in ranges of 64K, starting with the
lowest values in each group. The high-order sixteen bits of the error code identify the error group or
general class of error, and the lower sixteen bits indicate a specific error within the group. The application
can use the macros MC_GET_GENERR and MC_GET_SPECERR to obtain these values. The macro
definitions are:
#define MC_GET_GENERR(e) ((e >> 16) & 0xffff)
#define MC_GET_SPECERR(e) (e & 0xffff)

Related reference:
“Response and event structure error codes” on page 247
All response structures and event notification structures contain error information in a structure of type
mc_errnum_t.
Related information:
“RMC API error codes and return values” on page 243
Errors can be detected by an RMC API subroutine, an RMC subsystem daemon, or a resource manager.

RMC API subroutine overview
The RMC API subroutines are grouped into several categories.

The RMC API subroutines are grouped as:
v Session interfaces for establishing and ending sessions with the RMC subsystem.
v Command management interfaces creating and issuing command groups, assigning threads to the

RMC API, and managing responses and event notifications.
v Monitoring command interfaces for registering events.
v Configuration command interfaces for querying or modifying the configuration of resources.
v Control command interfaces for bringing resources online, and taking them offline.

Session interfaces
The following table summarizes the RMC API session interfaces.

These subroutines enable an application to start and end one or more sessions with the RMC subsystem,
and to obtain a file descriptor to detect when a session has received response or event notifications.

Please note that this table merely summarizes the interfaces, and is not meant to be complete. For
complete information on these subroutines, see “RMC API subroutines” on page 40.

Table 7. Overview of session interfaces

Subroutine: Description:
When calling this subroutine, the application
specifies:

“mc_start_session” on page 206 Establishes a session with the RMC subsystem.
v One or more nodes the RMC API may

contact to start a session with the RMC
subsystem.

v Session scope options

v An address for the session handle.

“mc_timed_start_session” on page 212 Establishes a session with the RMC subsystem.
This subroutine is identical to the
mc_start_session subroutine except that it also
enables the calling application to specify time
limits for establishing a session and, once the
session is established, for completion of blocking
operations.

v One or more nodes the RMC API may
contact to start a session with the RMC
subsystem.

v Session scope options

v An address for the session handle

v A time limit for establishing a session

v A time limit for blocking operations

“mc_end_session” on page 64 Ends a session with the RMC subsystem. The session handle.

Programming RMC 31

Table 7. Overview of session interfaces (continued)

Subroutine: Description:
When calling this subroutine, the application
specifies:

“mc_get_descriptor” on page 76 Returns a descriptor that can be used in a poll
or select system call. The descriptor is made
ready for read whenever the RMC API has
received a response or event notification from
the RMC subsystem, but needs a thread to
process an associated callback routine. Using a
descriptor in a select or poll system call enables
the application to prevent the mc_dispatch
subroutine from blocking as described in “A
single-threaded application surrendering its
thread to the RMC API” on page 16.

v The session handle

v An address for the descriptor.

“mc_free_descriptor” on page 74 Frees a descriptor previously obtained by a call
to the mc_get_descriptor subroutine. .

v The session handle

v The descriptor to be freed

Command management interfaces
The following table summarizes the RMC API command management interfaces.

These subroutines enable an application to create and issue command groups, assign threads to the RMC
API, and manage responses and event notifications.

Please note that this table merely summarizes the interfaces, and is not meant to be complete.

Table 8. Overview of command management interfaces
Subroutine: Description: When calling this subroutine, the application specifies:

“mc_dispatch” on page 62 Provides a thread to the RMC API to
enable it to invoke a callback routine to
process a response or event notification.

v The session handle

v Either the MC_DISPATCH_OPTS_WAIT or the
MC_DISPATCH_OPTS_ASSIGN option.

“mc_start_cmd_grp” on page 204 Alllocates a command group.
v The session handle

v Options for the command group (whether it is an ordered
command group, and, if so, whether it is non-interleaved)

v An address for the returned command group handle.

“mc_cancel_cmd_grp” on page 41 Cancels a command group. The command group handle.

“mc_send_cmd_grp” on page 188 Sends a command group to the RMC
subsystem.

v The command group handle

v The completion callback routine to be invoked by the RMC
API after all responses to commands in the command group
have been processed.

“mc_send_cmd_grp_wait” on page 191 Sends a command group to the RMC
subsystem and waits for completion.

The command group handle.

“mc_free_response” on page 75 Frees the storage used by a response or
event notification structure.

A pointer to the response array or event notification structure.

Related concepts:
“Providing the RMC API with one or more threads” on page 15
The application must provide the RMC API with a thread for processing responses and event
notifications under two conditions.

Monitoring command interfaces
The following table summarizes the RMC API monitoring command interfaces.

These subroutines enable an application to register for event notifications from the RMC subsystem. Each
of the monitoring command interfaces have four related subroutines that issue the same command to the
RMC subsystem, but are differentiated by how the command is sent to the RMC subsystem (using a
blocking subroutine, or added to a command group to be sent later), and how the command response is
made available to the application (using callback response or pointer response). When there are four
related subroutines that all provide essentially the same command interface they are suffixed by _* in
documentation. The _* suffix represents the four individual suffixes of the subroutines, which are _bp

32 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

(blocking/pointer response), _ap (added to command group/pointer response), _bc (blocking/callback
response), and _ac (added to command group/callback response).

Please note that this table merely summarizes the interfaces, and is not meant to be complete.

Table 9. Overview of monitoring command interfaces

Subroutine: Description:
When calling this subroutine, the
application specifies:

If successful, a response structure
contains:

Number of
response
structures
returned:

“mc_reg_event_select_*”
on page 176

Registers a resource
event with the RMC
subsystem. The event
is registered for one or
more resources of the
resource class using
attribute selection.

The application specifies:

v The session handle

v A pointer to resource class name

v Selection string to identify one or
more resources of the resource class

v A pointer to an event expression

v Optionally, a pointer to a rearm
event expression

v The event callback routine to be
invoked to process event
notifications

v Optionally, an array of pointers to
persistent attribute names. This array
identifies additional attribute values
to be returned in event notifications

The event registration ID 1

“mc_reg_event_handle_*”
on page 168

Registers a resource
event with the RMC
subsystem using a
resource handle.

v The session handle

v The resource handle

v a pointer to an event expression

v Optionally, a pointer to a rearm
event expression

v The event callback routine to be
invoked to process event
notifications

v Optionally, an array of pointers to
persistent attribute names. This array
identifies additional attribute values
to be returned in event notifications

The event registration ID 1

“mc_reg_class_event_*” on
page 160

Registers a resource
class event with the
RMC subsystem.

v The session handle

v A pointer to a resource class name

v If the management style of the
resource class is globalized and the
session scope is DM, a pointer to an
array of peer domain names. This
identifies the peer domain(s) where
the resource class event should be
registered.

v A pointer to an event expression

v Optionally, a pointer to a rearm
event expression

v The event callback routine to be
invoked to process event
notifications

v Optionally, an array of pointers to
persistent attribute names. This array
identifies additional attribute values
to be returned in event notifications

The event registration ID 1

“mc_query_event_*” on
page 143

Queries the RMC
subsystem to obtain
an event's current
state.

v The session handle

v The event registration ID

v The event registration ID

v The number of events that were
generated as a result of issuing this
command.

1

“mc_unreg_event_*” on
page 223

Unregisters an event
with the RMC
subsystem.

v The session handle

v The event registration ID

The event registration ID of the event
that was unregistered

1

Programming RMC 33

Configuration command interfaces
The following tables summarize the RMC API configuration command interfaces.

These subroutines enable an application to:
v query resources and resource classes
v query the definition of resource classes, attributes, Structured Data, valid values, or actions
v define or modify a resource
v invoke resource or resource class actions

Please note that the following tables merely summarize the interfaces, and are not meant to be complete.

Each of the configuration command interfaces have four related subroutines that issue the same
command to the RMC subsystem, but are differentiated by how the command is sent to the RMC
subsystem (using a blocking subroutine, or added to a command group to be sent later), and how the
command response is made available to the application (using callback response or pointer response).
When there are four related subroutines that all provide essentially the same command interface they are
suffixed by _* in documentation. The _* suffix represents the four individual suffixes of the subroutines,
which are _bp (blocking/pointer response), _ap (added to command group/pointer response), _bc
(blocking/callback response), and _ac (added to command group/callback response).

The following table summarizes the configuration command interfaces for querying resources and
resource classes

Table 10. Overview of configuration command interfaces – query commands

Subroutine: Description:
When calling this subroutine,
the application specifies:

If successful, a response
structure contains:

Number of
response
structures
returned:

“mc_enumerate_resources_*” on
page 69

Enumerates the resources of a
resource class using attribute
selection.

v the session handle

v A pointer to a resource class
name

v A selection string

v The resource class
name

v A pointer to an array
of resource handles

1 or more

“mc_enumerate_permitted_rsrcs_*”
on page 65

Enumerates the resources of a
resource class using attribute
selection. Enumerates only those
resources for which the calling
application has specified
permissions.

v The session handle

v a pointer to a resource class
name

v A selection string

v The required permissions

v The resource class
name

v A pointer to an array
of resource handles

1 or more

“mc_query_p_select_*” on page
151

Queries the RMC subsystem to
obtain the persistent attribute values
of one or more resources of a
resource class. The resources are
identified using attribute selection.

v The session handle

v A pointer to the resource
class name

v A selection string to specify
one or more resources of the
resource class

v An array of pointers to
persistent attribute names or,
to specify all persistent
attributes, a NULL pointer

v The resource handle of
a resource that was
queried

v A pointer to an array
of the requested
attributes

1 for each
resource
identified by
the selection
string

“mc_query_d_select_*” on page
138

Queries the RMC subsystem to
obtain the dynamic attribute values
of one or more resources of a
resource class. The resources are
identified using attribute selection.

v The session handle

v A pointer to the resource
class name

v A selection string to specify
one or more resources of the
resource class

v An array of pointers to
dynamic attribute names or,
to specify all dynamic
attributes, a NULL pointer

v The resource handle of
a resource that was
queried

v A pointer to an array
of the requested
attributes

1 for each
resource
identified by
the selection
string

34 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 10. Overview of configuration command interfaces – query commands (continued)

Subroutine: Description:
When calling this subroutine,
the application specifies:

If successful, a response
structure contains:

Number of
response
structures
returned:

“mc_query_p_handle_*” on page
147

Queries the RMC subsystem to
obtain the persistent attribute values
of a resource. The resource is
identified using a resource handle.

v The session handle

v The resource handle

v An array of pointers to
persistent attribute names or,
to specify all persistent
attributes, a NULL pointer

v The resource handle of
the resource that was
queried

v A pointer to an array
of the requested
attributes

1

“mc_query_d_handle_*” on page
133

Queries the RMC subsystem to
obtain the dynamic attribute values
of a resource. The resource is
identified using attribute selection.

v The session handle

v The resource handle

v An array of pointers to
dynamic attribute names or,
to specify all dynamic
attributes, a NULL pointer

v The resource handle of
the resource that was
queried

v A pointer to an array
of the requested
attributes

1

“mc_class_query_p_*” on page 47 Queries the RMC subsystem to
obtain the persistent attribute values
of a resource class.

v The session handle

v A pointer to the resource
class name

v An array of pointers to
persistent attribute names or,
to specify all persistent
attributes, a NULL pointer

v If the management style of
the resource class is
globalized and the session
scope is DM, a pointer to an
array of peer domain names

v The name of the
resource class that was
queried

v A pointer to an array
of the requested
attributes

v If the persistent
attribute values were
queried for a peer
domain, the name of
the peer domain

1 for each
peer domain
identified, or,
if no peer
domains
were
identified, 1

“mc_class_query_d_*” on page 42 Queries the RMC subsystem to
obtain the dynamic attribute values
of a resource class.

v The session handle

v A pointer to the resource
class name

v An array of pointers to
dynamic attribute names or,
to specify all dynamic
attributes, a NULL pointer

v If the management style of
the resource class is
globalized and the session
scope is DM, a pointer to an
array of peer domain names

v The name of the
resource class that was
queried

v A pointer to an array
of the requested
attributes

v If the dynamic
attribute values were
queried for a peer
domain, the name of
the peer domain

1 for each
peer domain
identified, or,
if no peer
domains
were
identified, 1

“mc_validate_rsrc_hndl_*” on page
227

Validate one or more resource
handles.

v The session handle

v The pointer to an array of
resource handles

A resource handle for a
resource that was the
target of this command.
The error field of the
return structure will
indicate whether or not
the resource is valid.

1 for each
resource
handle
specified by
the
application

The following table summarizes the configuration command interfaces for querying the definition of
resource classes, attributes, Structured Data, valid values, or actions

Programming RMC 35

Table 11. Overview of configuration command interfaces – query definition commands

Subroutine: Description:
When calling this subroutine, the
application specifies:

If successful, a response structure
contains:

Number of
response
structures
returned:

“mc_qdef_resource_class_*”
on page 114

Queries the RMC
subsystem to obtain
the definition of a
resource class, or all
definitions of all
resource classes.

v The session handle

v A pointer to a resource class name,
or, to return information for all
resource classes, a NULL pointer

v Whether or not detailed
descriptions or display names
should be returned

v The resource class name

v The resource class ID

v If requested, a display name
(suitable to display as the name of
the resource class in a GUI)

v If requested, a pointer to a
detailed description of the
resource class

v The name of a persistent attribute
of a resource of the resource class
that implies the location of the
resource

v The number of persistent
attributes defined for the resource
class itself

v The number of dynamic attributes
defined for the resource class itself

v The number of persistent
attributes for a resource of the
resource class

v The number of dynamic attributes
for a resource of the resource class

v The number of different actions
that can be invoked against a
resource of the resource class

v The number of different actions
that can be invoked against the
resource class itself

v Information on the resource
manager (or resource managers)
that implements this resource class

1 for each
class queried

“mc_qdef_p_attribute_*” on
page 108

Queries the RMC
subsystem to obtain
persistent attribute
definitions for a
resource or resource
class.

v The session handle

v A pointer to the resource class
name

v A pointer to an array of persistent
attribute names

v Whether or not detailed
descriptions or display names
should be returned

v Whether information for persistent
class attributes or persistent
resource attributes should be
returned

v Properties of the persistent
attribute

v The programmatic name of the
attribute

v If requested, a display name
(suitable to display as the name of
the attribute in a GUI)

v A pointer to the name of a group
to which the attribute belongs

v If requested, a pointer to a
detailed description of the
attribute

v The attribute ID

v The attribute's group ID (used to
group related attributes)

v The data type of the attribute

v The default value of the attribute

1 for each
persistent
attribute
queried

36 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 11. Overview of configuration command interfaces – query definition commands (continued)

Subroutine: Description:
When calling this subroutine, the
application specifies:

If successful, a response structure
contains:

Number of
response
structures
returned:

“mc_qdef_d_attribute_*” on
page 102

Queries the RMC
subsystem to obtain
dynamic attribute
definitions for a
resource or resource
class.

v The session handle

v A pointer to the resource class
name

v A pointer to an array of dynamic
attribute names

v Whether or not detailed
descriptions or display names
should be returned

v Whether information for dynamic
class attributes or dynamic resource
attributes should be returned

v Properties of the dynamic attribute

v The programmatic name of the
attribute

v If requested, a display name
(suitable to display as the name of
the attribute in a GUI)

v A pointer to the name of a group
to which the attribute belongs

v If requested, a pointer to a
detailed description of the
attribute

v The attribute ID

v The attribute's group ID (used to
group related attributes)

v The data type of the attribute

v The variable type of the attribute

v The initial value of the attribute

v The minimum value of the
attribute

v The maximum value of the
attribute

v An example event expression for
the variable

v A pointer to a description of the
example event expression

v An example rearm event
expression

v A pointer to a description of the
rearm event expression

v If applicable, a pointer to the PTX
path name for this variable.

1 for each
dynamic
attribute
queried

“mc_qdef_sd_*” on page 120 Queries the RMC
subsystem to obtain
the definition of
Structured Data.

v The session handle

v A pointer to the name of the
resource class name for which
Structured Data information should
be returned

v The type of Structured Data
information to be returned

v If Structured Data information is
being returned for attributes or
actions, the specific attribute or
actions for which information will
be returned

v Whether or not detailed
descriptions or display names
should be returned

A Structured Data definition 1 for each
Structured
Data
definition
requested

“mc_qdef_valid_values_*”
on page 126

Queries the RMC
subsystem to obtain
the definition of valid
values.

v The session handle

v A pointer to the name of the
resource class for which valid value
information is to be returned

v The type of valid value information
to be returned

v The attributes or actions for which
valid value information is to be
returned

v Whether or not detailed
descriptions or display names
should be returned

The requested valid value
information for one persistent
attribute, one dynamic attribute that
has a variable type of RMC_STATE,
one action input, or one command
argument. If the valid values are
Structured Data, the response
contains valid values for each
element of Structured Data

1 for each
attribute or
action for
which valid
value
information
was
requested

Programming RMC 37

Table 11. Overview of configuration command interfaces – query definition commands (continued)

Subroutine: Description:
When calling this subroutine, the
application specifies:

If successful, a response structure
contains:

Number of
response
structures
returned:

“mc_qdef_actions_*” on
page 97

Queries the RMC
subsystem to obtain
the definitions of
actions of a resource
class.

v The session handle

v A pointer to the resource class
name

v A pointer to an array of action
names

v Whether or not detailed
descriptions and display names
should be returned.

v Whether information on resource
class actions or resource actions
should be returned

v A pointer to an array containing
information about each action
queried. This information includes:

– Properties of the action

– If requested, a display name
(suitable to display as the name
of the action in a GUI)

– If requested, a pointer to a
detailed description of the
action

– A pointer to a string that can be
used in a GUI to prompt a user
for confirmation to perform an
action

– The action ID

– The permissions required to
execute the action

v The ID of the resource class

1 or more

The following table summarizes the configuration command interfaces for defining or modifying
resources

Table 12. Overview of configuration command interfaces – modify configuration commands

Subroutine: Description:
When calling this subroutine, the
application specifies:

If successful, a response structure
contains:

Number of
response
structures
returned:

“mc_define_resource_*” on
page 58

Defines a new
resource.

v The session handle

v The resource class of the new
resource

v The persistent attribute values for
the new resource

v any resource-class specific options
for defining a resource

v The name of the resource class

v The resource handle of the new
resource instance

1

“mc_undefine_resource_*”
on page 219

Removes a resource
from the RMC
subsystem.

v The session handle

v The resource handle

v optionally, a pointer to Structured
Data containing resource-class
specific options for undefining a
resource

v The name of the resource class in
which the resource instance is
deleted.

v The resource handle

1

“mc_refresh_config_*” on
page 156

Refreshes the
configuration of
resources within a
resource class.

v The session handle

v A pointer to a resource class name

The resource class name 1 or more

“mc_set_select_*” on page
199

Sets persistent
attribute values of one
or more resources of a
particular resource
class.

v The session handle

v A pointer to the resource class name

v A selection string that identifies one
or more resources of the resource
class

v The persistent attributes to be set
and their new values

The resource handle of a resource
whose attributes were set.

1 for each
resource
identified by
the selection
string

“mc_set_handle_*” on page
194

Sets persistent
attribute values of a
resource identified by
a resource handle.

v The session handle

v The resource handle

v The persistent attribute values to be
set and their new values

The resource handle 1

38 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 12. Overview of configuration command interfaces – modify configuration commands (continued)

Subroutine: Description:
When calling this subroutine, the
application specifies:

If successful, a response structure
contains:

Number of
response
structures
returned:

“mc_class_set_*” on page
53

Sets one ore more
persistent attributes of
a resource class.

v The session handle

v The resource class name

v The persistent class attributes to be
set and their new values

v If the management style of the
resource class is globalized and the
session scope is DM, a pointer to an
array of peer domain names.

v A pointer to the name of the
resource class whose attributes
were set

v If the attributes were set in a peer
domain, the name of the peer
domain

1 for each
peer domain
identified, or,
if no peer
domains
were
identified, 1

The following table summarizes the configuration command interfaces for invoking actions.

Table 13. Overview of configuration command interfaces – invoke action commands

Subroutine: Description:
When calling this subroutine, the
application specifies:

If successful, a response structure
contains:

Number of
response
structures
returned:

“mc_invoke_action_*” on
page 78

Invokes an action on a
resource.

v The session handle

v The resource handle

v A pointer to the action name

v If the action accepts input, a pointer
to Structured Data that may be used
as input to the action.

v The resource handle of the resource
that was the target of the command

v Optionally, a block of response data
from the action

1 or more

“mc_invoke_class_action_*”
on page 82

Invokes an action on a
resource class.

v The session handle

v A pointer to the resource class name

v A pointer to the action name

v If the action accepts input, a pointer
to Structured Data that may be used
as input to the action

v If the management style of the
resource class is subdivided, a
pointer to an array of node names
(identifying where the class action
should be invoked)

v If the management style of the
resource class is globalized, and the
session scope is DM, a pointer to an
array of peer domain names
(identifying the peer domains where
the class action should be invoked)

v The name of the resource class that
was the target of the command

v Optionally, a block of response data
from the action

v The primary node name of the node
where the cluster action was
invoked

v If applicable, the name of the peer
domain where the class action was
invoked.

1 or more

Control command interfaces
The following table summarizes the RMC API control command interfaces.

These subroutines enable an application to bring resources online, and take them offline. Each of the
control command interfaces have four related subroutines that issue the same command to the RMC
subsystem, but are differentiated by how the command is sent to the RMC subsystem (using a blocking
subroutine, or added to a command group to be sent later), and how the command response is made
available to the application (using callback response or pointer response). When there are four related
subroutines that all provide essentially the same command interface they are suffixed by _* in
documentation. The _* suffix represents the four individual suffixes of the subroutines, which are _bp
(blocking/pointer response), _ap (added to command group/pointer response), _bc (blocking/callback
response), and _ac (added to command group/callback response).

Please note that this table merely summarizes the interfaces, and is not meant to be complete.

Programming RMC 39

Table 14. Overview of control command interfaces

Subroutine: Description:
When calling this subroutine, the
application specifies:

If successful, a response structure
contains:

Number of
response
structures
returned:

“mc_offline_*” on page 88 Sends a request to the
RMC subsystem to
bring a resource
online.

v The session handle

v The resource handle

v A pointer to an array of node names
identifying the node(s) on which the
resource should be brought online

v Optionally, a pointer to Structured
Data containing resource class
specific options bringing the
resource online

The resource handle that identifies the
resource that was brought online

1

“mc_online_*” on page 92 Sends a request to the
RMC subsystem to
take a resource offline.

v The session handle

v The resource handle

v Optionally, a pointer to Structured
Data containing resource class
specific options to taking the
resource offline

The resource handle that identifies the
resource that was taken offline

1

“mc_reset_*” on page 184 Sends a request of the
RMC subsystem to
force a resource
offline.

v The session handle

v The resource handle

v Optionally, a pointer to Structured
Data containing resource class
specific options to taking the
resource offline

The resource handle that identifies the
resource that was taken offline

1

RMC API reference
The RMC API defines a number of macros and typedefs in order to simplify the task of programming the
API, provide more complete error checking during compilation, and hide implementation details.
Reference information is provided for these RMC data definitions as well as the RMC API subroutines.

RMC API subroutines
The RMC API is a library of subroutines and supporting data types, written in C.

These enable applications (in particular, cluster applications) to establish a connection with the RMC
subsystem to:
v list the resources of a resource class
v monitor changes in attribute values for events of interest
v query dynamic or persistent attributes of resources or resource classes
v change the persistent attributes of resources or resource classes
v define and undefine resources
v bring resources online and take them offline

For many of the RMC command interfaces, there are four separate subroutines that issue the same
command action, but vary on how the command is sent to the RMC subsystem, and how the command
response is made available to the application. When a subroutine name appears in documentation
suffixed by _*, the _* suffix represents the four individual suffixes of the subroutines. The four individual
suffixes are described in the following table:

40 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 15. Four individual suffixes of the subroutines

This suffix: Indicates that the subroutine:

_bp Is blocking and uses pointer response

_ap Adds the command to a command group, and uses pointer response

_bc Is blocking and uses callback response

_ac Adds the command to a command group and uses callback response

Related concepts:
“Registering the application for event notifications” on page 13
A set of RMC subroutines enables an application to register with the RMC subsystem for event
notifications.
“Returning responses to the application” on page 5
When the application invokes an RMC API subroutine to send a command to the RMC subsystem, a
successful return value from the subroutine indicates only that the command was successfully sent to the
RMC subsystem or added to a command group.
“Ordered command group” on page 4
An ordered command group is a command group whose commands will be processed by the RMC
subsystem in the order in which they were added to the group.

mc_cancel_cmd_grp
This subroutine cancels a command group.

Purpose

Cancels a command group.

Library

RMC Library (libct_mc.a)

Syntax
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_cancel_cmd_grp(

mc_cmdgrp_hndl_t cmd_hndl)

Parameters

INPUT

cmd_hndl
The command group handle that identifies the command group to cancel. A command group
handle is returned by the mc_start_cmd_group subroutine when the application allocates a
command group.

Description

The mc_cancel_cmd_grp subroutine can be used by the application to cancel a command group that it
previously allocated using the mc_start_cmd_grp subroutine. The application will need to call the
mc_cancel_cmd_grp subroutine to free a command group that it no longer needs to send to the RMC
subsystem.

The application can call the mc_cancel_cmd_grp subroutine any time after the mc_start_cdm_grp
subroutine returns the command group handle. However, the application can only call the

Programming RMC 41

mc_cancel_cmd_grp subroutine if it has not already called the mc_send_cmd_grp or
mc_send_cmd_grp_wait subroutine to send the command group to the RMC subsystem.

Return values

A return value of 0 (zero) indicates that the command group has been cancelled. Any other return value
is an error and indicates that the command group has not been cancelled.

The following errors can be returned by this subroutine. Additional error information can be returned by
calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_send_cmd_grp” on page 188
This subroutine sends a command group to the RMC subsystem.
“mc_send_cmd_grp_wait” on page 191
This subroutine sends a command group to the RMC subsystem and waits for completion.
“mc_start_cmd_grp” on page 204
This subroutine allocates a command group.

mc_class_query_d_*
This subroutine queries the RMC subsystem to obtain the dynamic attribute values of a resource class.

Purpose

Queries the RMC subsystem to obtain the dynamic attribute values of a resource class.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_class_query_d_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_class_query_d_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_class_query_d_bp(

mc_sess_hndl_t sess_hndl,
mc_class_query_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,

42 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

ct_char_t **pd_names,
ct_uint32_t name_count,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

v The mc_class_query_d_ap subroutine adds the command to a command group. Note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_class_query_d_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_class_query_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t **pd_names,
ct_uint32_t name_count,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

v The mc_class_query_d_bc subroutine sends the command to the RMC subsystem and blocks execution.
To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_class_query_d_bc(

mc_sess_hndl_t sess_hndl,
mc_class_query_cb_t *query_cb,
void *query_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t **pd_names,
ct_uint32_t name_count,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

The definition for the response callback is:
typedef void (mc_class_query_cb_t)(mc_sess_hndl_t,
mc_class_query_rsp_t *,
void *);

v The mc_class_query_d_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_class_query_d_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_class_query_cb_t *query_cb,
void *query_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t **pd_names,
ct_uint32_t name_count,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

The definition for the response callback is:
typedef void (mc_class_query_cb_t)(mc_sess_hndl_t,
mc_class_query_rsp_t *,
void *);

Parameters

INPUT

Programming RMC 43

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to the variations of this
subroutine that add the command to the command group.

query_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

query_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_class_name
Identifies the resource class whose dynamic attribute values are being requested by the
application.

pd_names

Table 16. mc_class_query_d_* subroutine conditional pd_names parameter functions

If: Then:

The management style of the resource class is globalized and
the session scope is DM

The parameter should be a pointer to an array of name_count
peer domain names. Since a session scope of DM refers to a
CSM management domain, and, since such a domain can
contain multiple peer domains, this enables the application to
specify the peer domain(s) where the class dynamic attributes
should be queried.

To specify all peer domains within the management domain,
this parameter should be a NULL pointer, and the name_count
parameter should be 0 (zero).

The management style of the resource class is subdivided or the
session scope is not DM

This parameter should be a NULL pointer, and the name_count
parameter should be 0 (zero)

name_count
Identifies the number of pointers in the pd_names array. If pd_names is a NULL pointer, this
parameter must be 0 (zero)

return_attrs
An array of attr_count pointers to dynamic class attribute names. This parameter, in conjunction
with the attr_count parameter enables the application to specify dynamic class attributes to be
included in the response structure. If any of the specified attributes are not supported by the
resource class, those attributes will not be included in the response structure.

Dynamic attributes that are of variable type Quantum cannot be queried because Quantum
attributes have no value.

If attr_count is 0 (zero), return_attrs should be a NULL pointer. In this case, the response includes
only the name of the resource class being queried.

attr_count
Indicates the number of pointers to dynamic class attribute names in the return_attrs array. This
parameter, in conjunction with the return_attrs parameter, enables the application to specify

44 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

dynamic attributes to be included in the query response. If set to 0 (zero), the response includes
only the name of the resource class being queried.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_class_query_d_* subroutines can be used by the application to obtain the dynamic attribute
values of a resource class from the RMC subsystem.

The response for these subroutines is a structure of type mc_class_query_rsp_t, and is described in
Response structure.

This command cannot be used in an ordered command group.

Security

To obtain dynamic class attribute information, the user of the calling application must have either q or r
permission specified in an ACL entry for this resource class.

Return values

For the mc_class_query_d_bp and mc_class_query_d_bc subroutines, a return value of 0 indicates that
the command has been successfully sent to the RMC subsystem and one or more responses have been
received and processed.

For the mc_class_query_d_ap and mc_class_query_d_ac subroutines, a return value of 0 indicates that
the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

Programming RMC 45

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_class_query_rsp_t. If any of the query
arguments are invalid, then only one response is returned, indicating the error.

If the management style of the resource class being queried is globalized, and the session scope is DM,
one response will be returned for each peer domain identified by the pd_names and name_count
parameters. If pd_names and name_count are, respectively, a NULL pointer and 0 (zero), a response will be
returned for each peer domain within the management domain.

If the management style of the resource class is subdivided or the session scope is not DM, only one
response will be returned.

The response structure definition is:
typedef struct mc_class_query_rsp mc_class_query_rsp_t;
struct mc_class_query_rsp {

mc_errnum_t mc_error;
ct_char_t *mc_class_name;

46 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

ct_char_t *mc_peer_domain_name;
mc_attribute_t *mc_attrs;
ct_uint32_t mc_attr_count;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the query was successful. Any other value is an error and
indicates that the RMC subsystem or a resource manager could not provide some or all of the
requested information. The error may also indicate that the command arguments were in error.
The error codes imply which of the remaining fields in the structure are defined.

mc_class_name
Specifies the name of the resource class that was queried and whose attributes are contained in
this response.

mc_peer_domain_name
Specifies the name of the peer domain from which the attributes were obtained. This is a NULL
string if the response is from a node not in a peer domain.

mc_attrs
A pointer to an array of the requested attributes.

mc_attr_count
Indicates the number of entries in the mc_attrs array.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_qdef_d_attribute_*” on page 102
This subroutine queries the RMC subsystem to obtain dynamic attribute definitions for a resource or
resource class.
“mc_class_query_p_*”
This subroutine queries the RMC subsystem to obtain the persistent attribute values of a resource class.
“mc_query_d_handle_*” on page 133
This subroutine queries the RMC subsystem to obtain the dynamic attribute values of a resource.
“mc_query_d_select_*” on page 138
This subroutine queries the RMC subsystem to obtain the dynamic attribute values of one or more
resources of a resource class.
“mc_query_p_handle_*” on page 147
This subroutine queries the RMC subsystem to obtain the persistent attribute values of a resource.
“mc_query_p_select_*” on page 151
This subroutine queries the RMC subsystem to obtain the persistent attribute values of one or more
resources of a resource class.
“mc_free_response” on page 75
This subroutine frees a response or event notification structure.

mc_class_query_p_*
This subroutine queries the RMC subsystem to obtain the persistent attribute values of a resource class.

Purpose

Queries the RMC subsystem to obtain the persistent attribute values of a resource class.

Programming RMC 47

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_class_query_p_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_class_query_p_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_class_query_p_bp(

mc_sess_hndl_t sess_hndl,
mc_class_query_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t **pd_names,
ct_uint32_t name_count,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

v The mc_class_query_p_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, the subroutine specifies
the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_class_query_p_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_class_query_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t **pd_names,
ct_uint32_t name_count,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

v The mc_class_query_p_bc subroutine sends the command to the RMC subsystem and blocks execution.
To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_class_query_p_bc(

mc_sess_hndl_t sess_hndl,
mc_class_query_cb_t *query_cb,
void *query_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t **pd_names,
ct_uint32_t name_count,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

The definition for the response callback is:
typedef void (mc_class_query_cb_t)(mc_sess_hndl_t,
mc_class_query_rsp_t *,
void *);

v The mc_class_query_p_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, the subroutine specifies
the callback response method. The syntax is:

48 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_class_query_p_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_class_query_cb_t *query_cb,
void *query_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t **pd_names,
ct_uint32_t name_count,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

The definition for the response callback is:
typedef void (mc_class_query_cb_t)(mc_sess_hndl_t,
mc_class_query_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

query_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

query_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_class_name
Identifies the resource class whose persistent attribute values are being requested by the
application.

pd_names

Table 17. mc_class_query_p_* subroutine conditional pd_names parameter functions

If: Then:

The management style of the resource class is globalized and
the session scope is DM

The parameter should be a pointer to an array of name_count
peer domain names. Since a session scope of DM refers to a
CSM management domain, and, since such a domain can
contain multiple peer domains, this enables the application to
specify the peer domain(s) where the class persistent attributes
should be queried.

To specify all peer domains within the management domain,
this parameter should be a NULL pointer, and the name_count
parameter should be 0 (zero).

The management style of the resource class is subdivided or the
session scope is not DM

This parameter should be a NULL pointer, and the name_count
parameter should be 0 (zero)

Programming RMC 49

name_count
Identifies the number of pointers in the pd_names array. If pd_names is a NULL pointer, this
parameter must be 0 (zero)

return_attrs
An array of attr_count pointers to persistent class attribute names. This parameter, in conjunction
with the attr_count parameter enables the application to specify persistent class attributes to be
included in the Query Response. If any of the specified attributes are not supported by the
resource class, those attributes will not be included in the Query Response.

Persistent attributes that are of variable type Quantum cannot be queried because Quantum
attributes have no value.

If attr_count is 0 (zero), return_attrs should be a NULL pointer. In this case, the response includes
only the name of the resource class being queried.

attr_count
Indicates the number of pointers to persistent class attribute names in the return_attrs array. This
parameter, in conjunction with the return_attrs parameter, enables the application to specify
persistent attributes to be included in the query response. If set to 0 (zero), the response includes
only the name of the resource class being queried.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_class_query_p_* subroutines can be used by the application to obtain the persistent attribute
values of a resource class from the RMC subsystem.

The response for these subroutines is a structure of type mc_class_query_rsp_t, and is described in
Response structure.

This command cannot be used in an ordered command group.

Security

To obtain persistent class attribute information, the user of the calling application must have either q or r
permission specified in an ACL entry for this resource class.

Return values

For the mc_class_query_p_bp and mc_class_query_p_bc subroutines, a return value of 0 indicates that
the command has been successfully sent to the RMC subsystem and one or more responses have been
received and processed.

For the mc_class_query_p_ap and mc_class_query_p_ac subroutines, a return value of 0 indicates that
the command has been successfully added to the command group.

50 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Programming RMC 51

Response structure

The response for these subroutines is a structure of type mc_class_query_rsp_t. If any of the query
arguments are invalid, then only one response is returned, indicating the error.

If the management style of the resource class being queried is globalized, and the session scope is DM,
one response will be returned for each peer domain identified by the pd_names and name_count
parameters. If pd_names and name_count are, respectively, a NULL pointer and 0 (zero), a response will be
returned for each peer domain within the management domain.

If the management style of the resource class is subdivided or the session scope is not DM, only one
response will be returned.

The response structure definition is:
typedef struct mc_class_query_rsp mc_class_query_rsp_t;
struct mc_class_query_rsp {

mc_errnum_t mc_error;
ct_char_t *mc_class_name;
ct_char_t *mc_peer_domain_name;
mc_attribute_t *mc_attrs;
ct_uint32_t mc_attr_count;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the query was successful. Any other value is an error and
indicates that the resource monitoring and control (RMC) subsystem or a resource manager could
not provide some or all of the requested information. The error may also indicate that the
command arguments were in error. The error codes imply which of the remaining fields in the
structure are defined.

mc_class_name
Specifies the name of the resource class that was queried and whose attributes are contained in
this response.

mc_peer_domain_name
Specifies the name of the peer domain from which the attributes were obtained. This is a NULL
string if the response is from a node not in a peer domain.

mc_attrs
A pointer to an array of the requested attributes.

mc_attr_count
Indicates the number of entries in the mc_attrs array.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_class_query_d_*” on page 42
This subroutine queries the RMC subsystem to obtain the dynamic attribute values of a resource class.
“mc_class_set_*” on page 53
This subroutine sets persistent attribute values of a resource class.
“mc_query_p_select_*” on page 151
This subroutine queries the RMC subsystem to obtain the persistent attribute values of one or more
resources of a resource class.

52 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

“mc_query_d_select_*” on page 138
This subroutine queries the RMC subsystem to obtain the dynamic attribute values of one or more
resources of a resource class.

mc_class_set_*
This subroutine sets persistent attribute values of a resource class.

Purpose

Sets persistent attribute values of a resource class.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_class_set_* subroutines. All four subroutines issue
the same command action, but enable your application to vary how the command is sent to the RMC
subsystem, and how the command response is made available to the application.
v The mc_class_set_bp subroutine sends the command to the RMC subsystem and blocks execution. To

receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_class_set_bp(

mc_sess_hndl_t sess_hndl,
mc_class_set_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t **pd_names,
ct_uint32_t name_count,
mc_attribute_t *attrs,
ct_uint32_t count)

v The mc_class_set_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, the subroutine specifies
the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_class_set_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_class_set_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t **pd_names,
ct_uint32_t name_count,
mc_attribute_t *attrs,
ct_uint32_t count)

v The mc_class_set_bc subroutine sends the command to the RMC subsystem and blocks execution. To
receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_class_set_bc(

mc_sess_hndl_t sess_hndl,
mc_class_set_cb_t *set_cb,
void *set_cb_arg,
ct_char_t *rsrc_class_name,

Programming RMC 53

ct_char_t **pd_names,
ct_uint32_t name_count,
mc_attribute_t *attrs,
ct_uint32_t count)

The definition for the response callback is:
typedef void (mc_class_set_cb_t)(mc_sess_hndl_t,
mc_class_set_rsp_t *,
void *);

v The mc_class_set_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, the subroutine specifies
the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_class_set_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_class_set_cb_t *set_cb,
void *set_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t **pd_names,
ct_uint32_t name_count,
mc_attribute_t *attrs,
ct_uint32_t count)

The definition for the response callback is:
typedef void (mc_class_set_cb_t)(mc_sess_hndl_t,
mc_class_set_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

set_cb Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

set_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_class_name
Identifies the resource class whose persistent attribute values are to be set.

pd_names

54 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 18. mc_class_set_* subroutine conditional pd_names parameter functions

If: Then:

The management style of the resource class is globalized and
the session scope is DM

The parameter should be a pointer to an array of name_count
peer domain names. Since a session scope of DM refers to a
CSM management domain, and, since such a domain can
contain multiple peer domains, this enables the application to
specify the peer domain(s) where the class persistent attributes
should be set.

To specify all peer domains within the management domain,
this parameter should be a NULL pointer, and the name_count
parameter should be 0 (zero).

The management style of the resource class is subdivided or the
session scope is not DM

This parameter should be a NULL pointer, and the name_count
parameter should be 0 (zero).

name_count
Identifies the number of pointers in the pd_names array. If pd_names is a NULL pointer, this
parameter must be 0 (zero).

attrs Specifies the persistent class attributes to be set and their new values using a pointer to an array
of count elements of type mc_attribute_t. Each element in the array specifies a persistent attribute
of the resource class and a value.

count Specifies the number of elements in the attrs array.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_class_set_* subroutines can be used by the application to set the persistent attribute values of a
resource class.

The response for these subroutines is a structure of type mc_class_set_rsp_t, and is described in Response
structure.

This command cannot be used in an ordered command group.

Return values

For the mc_class_set_bp and mc_class_set_bc subroutines, a return value of 0 indicates that the
command has been successfully sent to the RMC subsystem and one response has been received and
processed.

For the mc_class_set_ap and mc_class_set_ac subroutines, a return value of 0 indicates that the command
has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

Programming RMC 55

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDDATATYPE
Invalid attribute data type specified.

MC_EINVALIDVALUEPTR
Invalid attribute value pointer specified.

MC_EINVALIDSDTYPE
Invalid structured data subtype specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all

56 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_class_set_rsp_t.

If the management style of the resource class is globalized and the session scope is DM, one response will
be returned for each peer domain identified by the pd_names and name_count parameters. If pd_names and
name_count are, respectively, a NULL pointer and 0, a response will be returned for each peer domain
within the management domain.

If the management style of the resource class is subdivided and the session scope is not DM, only one
response will be returned.

If any of the set attribute arguments are invalid. then only one response is returned, indicating the error.

The response structure definition is:
typedef struct mc_class_set_rsp mc_class_set_rsp_t;
struct mc_class_set_rsp {

mc_errnum_t mc_error;
ct_char_t *mc_class_name;
ct_char_t *mc_peer_domain_name;
mc_error_attr_t *mc_error_attrs;
ct_uint32_t mc_attr_count;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the command was successful, and, if the mc_attr_count is 0
(zero), all the specified attributes were set. If the mc_attr_count field is not 0 (zero), the
mc_error_attrs field contains a pointer to an array of attributes that could not be set. Attributes not
included in the array have been set. If the mc_error field is not 0 (zero), the value indicates the
error.

mc_class_name

If the command is successful, this field is a pointer to the name of the resource class where
attribute were set. If an error is indicated by the mc_error field, this field is a pointer to the name
of the resource class specified on the command.

mc_peer_domain_name
Specifies the name of the peer domain where the attributes were set. This is a NULL string if the
response is from a node not in a peer domain.

mc_error_attrs
If no error is indicated by the mc_error field, and only some of the attributes could be set, this
field is an array of mc_attr_count elements of type mc_error_attr_t.
typedef struct mc_error_attr mc_error_attr_t;
struct mc_error_attr {

mc_errnum_t mc_error;
ct_char_t *mc_at_name;

};

Programming RMC 57

Each element in the array identifies an attribute that could not be set. The fields of this structure
contain the following:

mc_error
Indicates the reason the attribute could not be set.

mc_at_name
Indicates the name of the attribute that could not be set.

mc_attr_count
Indicates the number of entries in the mc_error_attrs array.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_class_query_p_*” on page 47
This subroutine queries the RMC subsystem to obtain the persistent attribute values of a resource class.
“mc_set_handle_*” on page 194
This subroutine sets persistent attribute values of a resource identified by a resource handle.
“mc_set_select_*” on page 199
This subroutine sets persistent attribute values of one or more resources of a particular resource class. The
resources are identified by attribute selection.
“mc_free_response” on page 75
This subroutine frees a response or event notification structure.

mc_define_resource_*
This subroutine defines a new resource.

Purpose

Defines a new resource.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_define_resource_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_define_resource_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_define_resource_bp(

mc_sess_hndl_t sess_hndl,
mc_define_rsrc_rsp_t **response,
ct_char_t *rsrc_class_name,
mc_attribute_t *attrs,
ct_uint32_t count,
ct_structured_data_t *data)

v The mc_define_resource_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:

58 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_define_resource_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_define_rsrc_rsp_t **response,
ct_char_t *rsrc_class_name,
mc_attribute_t *attrs,
ct_uint32_t count,
ct_structured_data_t *data)

v The mc_define_resource_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_define_resource_bc(

mc_sess_hndl_t sess_hndl,
mc_def_rsrc_cb_t *def_rsrc_cb,
void *def_rsrc_cb_arg,
ct_char_t *rsrc_class_name,
mc_attribute_t *attrs,
ct_uint32_t count,
ct_structured_data_t *data)

The definition for the response callback is:
typedef void (mc_def_rsrc_cb_t)(mc_sess_hndl_t,
mc_define_rsrc_rsp_t *,
void *);

v The mc_define_resource_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_define_resource_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_def_rsrc_cb_t *def_rsrc_cb,
void *def_rsrc_cb_arg,
ct_char_t *rsrc_class_name,
mc_attribute_t *attrs,
ct_uint32_t count,
ct_structured_data_t *data)

The definition for the response callback is:
typedef void (mc_def_rsrc_cb_t)(mc_sess_hndl_t,
mc_define_rsrc_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

Programming RMC 59

def_rsrc_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

def_rsrc_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_class_name
Identifies the resource class of the resource to be defined.

attrs Specifies persistent attribute values for the resource using a pointer to an array of count elements
of type mc_attribtue_t. Each element in the array specifies a persistent attribute of the resource
and a value.

count Specifies the number of attributes in the attrs array.

data A pointer to structured data containing resource-class specific options for defining a resource. To
accept the default values (or if the resource class does not define options) for defining a resource,
the data parameter should be a NULL pointer.

To obtain the syntax and semantics for the structured data required by the resource class for
specifying define resource options, the application can use the mc_qdef_sd_* subroutines.

OUTPUT

response
A pointer to a location in which the RMC API will return a pointer to the response. This
parameter applies only to variations of this subroutine that use the pointer response method.

Description

The mc_define_resource_* subroutines can be used by the application to define a new resource. The
resource manager associated with the proposed resource will create the actual resource instance. To define
a new resource, the application identifies the resource class (using the rsrc_class_name parameter) and one
or more persistent attribute values (using the attrs parameter). If the resource manager accepts structured
data as options for defining a resource, the application can provide this using the data parameter.

The response for these subroutines is a structure of type mc_define_rsrc_rsp_t, and is described in
Response structure.

This command cannot be used in an ordered command group.

Security

To define a new resource, the user of the calling application must have either the d or w permission
specified in an ACL entry for the associated resource class.

Return values

For the mc_define_resource_bp and mc_define_resource_bc subroutines, a return value of 0 indicates
that the command has been successfully sent to the RMC subsystem and a response has been received
and processed.

For the mc_define_resource_ap and mc_define_resource_ac subroutines, a return value of 0 indicates
that the command has been successfully added to the command group.

60 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before the response could be received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before the response could be
received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDDATATYPE
Invalid attribute data type specified.

MC_EINVALIDVALUEPTR
Invalid attribute value pointer specified.

MC_EINVALIDSDTYPE
Invalid structured data subtype specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before the
response could be received.

MC_ENOMEM
The API could not allocate required memory.

Programming RMC 61

Response structure

The response for these subroutines is a structure of type mc_define_rsrc_rsp_t. If any of the define
resource arguments are invalid, then the mc_error field in the response indicates an error. This command
results in only one response.

The response structure definition is:
typedef struct mc_define_rsrc_rsp mc_define_rsrc_rsp_t;
struct mc_define_rsrc_rsp {

mc_errnum_t mc_error;
ct_char_t *mc_class_name;
ct_resource_handle_t mc_rsrc_hndl;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the command was successful. Any other value is an error, and
indicates that the RMC subsystem or a resource manager could not complete the command. The
error may also indicate that the command arguments were in error. The error codes imply which
of the remaining fields in the structure are defined.

mc_class_name
The name of the resource class in which a new resource instance is defined.

mc_rsrc_hndl
The resource handle of the new resource instance.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_undefine_resource_*” on page 219
This subroutine removes a resource from the RMC subsystem.
“mc_qdef_sd_*” on page 120
This subroutine queries the RMC subsystem to obtain the definition of structured data.
“mc_qdef_p_attribute_*” on page 108
This subroutine queries the RMC subsystem to obtain the persistent attribute definitions for a resource or
resource class.

mc_dispatch
This subroutine provides a thread to the RMC API to enable it to invoke a callback to process a response
or event notification.

Purpose

Provides a thread to the RMC API to enable it to invoke a callback to process a response or event
notification.

Library

RMC Library (libct_mc.a)

62 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Syntax
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_dispatch(

mc_sess_hndl_t session_hndl,
mc_dispatch_opts_t options)

Parameters

INPUT

session_hndl
The session handle that identifies the RMC subsystem session for which this thread is being
provided. A session handle is returned by the mc_start_session or mc_timed_start_session
subroutine when the application establishes a session with the RMC subsystem.

options Specifies thread behavior using one of the following options:

MC_DISPATCH_OPTS_WAIT
If no response or event notification needs to be processed, the thread blocks execution
until one does need to be processed. The subroutine returns after a response or event
notification is processed.

MC_DISPATCH_OPTS_ASSIGN
The subroutine does not return. The thread is kept by the RMC API to process future
response or event notifications.

When either of these options are used, this subroutine returns if the session is interrupted or
ended by a call to the mc_end_session subroutine.

Description

The mc_dispatch subroutine can be used by the application to provide a thread to the RMC API. This
thread is used by the RMC API to invoke a callback to process a response or event notification received
from the RMC subsystem for the session specified by the session_hndl parameter.

A multithreaded application can call the subroutine a number of times to provide sufficient threads to the
RMC API to process expected responses or event notifications. Such an approach will be especially
needed parallelize callback execution.

To prevent the mc_dispatch subroutine from blocking when using the MC_DISPATCH_OPTS_WAIT
option, the application can obtain a descriptor by calling the mc_get_descriptor subroutine. The
descriptor is made ready for read whenever the RMC API has received a response or event notification
for the session and there is no application thread available to the API to invoke the necessary callback. By
using this in a select or poll system call, the application can detect when it should call the mc_dispatch
subroutine.

Return values

A return value of 0 (zero) indicates that a response or event notification has been successfully processed.
Any other return value is an error.

The following errors can be returned by this subroutine. Additional error information can be returned by
calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

Programming RMC 63

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_EINVALIDOPT
The specified option is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_get_descriptor” on page 76
This subroutine returns a descriptor that can be used in a select or poll system call.

mc_end_session
This subroutine ends a session with the RMC subsystem.

Purpose

Ends a session with the RMC subsystem.

Library

RMC Library (libct_mc.a)

Syntax
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_end_session(

mc_sess_hndl_t session_hndl)

Parameters

INPUT

session_hndl
The session handle that identifies the RMC subsystem session to be ended. A session handle is
returned by the mc_start_session or mc_timed_start_session subroutine when the application
establishes a session with the RMC subsystem.

Description

The mc_end_session subroutine can be used by the application to end a session with the RMC
subsystem. When ending a session with the subroutine, any application threads that are blocked in the
RMC API subroutines, including the mc_dispatch subroutine, will return an error indicating the session
has ended. Any responses or event notifications that are being processed by callbacks are allowed to
complete, and then the associated threads will return with an error indicating that the session has ended.
However, the mc_end_session subroutine does not wait for the callbacks to finish, but will return
immediately.

64 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Return values

A return value of 0 (zero) indicates that the session with the RMC subsystem has ended. The session
handle can no longer be used to send commands to, or receive responses from, the RMC subsystem. Any
non-zero value is an error. If an error is returned, the session will not have ended.

The following errors can be returned by this subroutine. Additional error information can be returned by
calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_ESESSENDED
The session has been ended.

MC_EINVALIDSESS
The specified session handle is invalid.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_session_info” on page 193
This subroutine gets information about a session.
“mc_start_session” on page 206
This subroutine establishes a session with the RMC subsystem.

mc_enumerate_permitted_rsrcs_*
This subroutine enumerates the resources of a resource class using attribute selection. Enumerates only
those resources for which the calling application has specified permissions.

Purpose

Enumerates the resources of a resource class using attribute selection. Enumerates only those resources
for which the calling application has specified permissions.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_enumerate_permitted_rsrcs_* subroutines. All four
subroutines issue the same command action, but enable your application to vary how the command is
sent to the RMC subsystem, and how the command response is made available to the application.
v The mc_enumerate_permitted_rsrcs_bp subroutine sends the command to the RMC subsystem and

blocks execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_enumerate_permitted_rsrcs_bp(

mc_sess_hndl_t sess_hndl,
mc_enumerate_rsp_t **rsp_array,

Programming RMC 65

ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs
ct_uint32_t perms)

v The mc_enumerate_permitted_rsrcs_ap subroutine adds the command to a command group. Please
note that this command cannot be used in an ordered command group. To receive responses, this
subroutine specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_enumerate_permitted_rsrcs_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_enumerate_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs
ct_uint32_t perms)

v The mc_enumerate_permitted_rsrcs_bc subroutine sends the command to the RMC subsystem and
blocks execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_enumerate_permitted_rsrcs_bc(

mc_sess_hndl_t sess_hndl,
mc_enumerate_cb_t *enumerate_cb,
void *enumerate_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs
ct_uint32_t perms)

The definition for the response callback is:
typedef void (mc_enumerate_cb_t)(mc_sess_hndl_t,
mc_enumerate_rsp_t *,
void *);

v The mc_enumerate_permitted_rsrcs_ac subroutine adds the command to a command group. Please
note that this command cannot be used in an ordered command group. To receive responses, this
subroutine specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_enumerate_permitted_rsrcs_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_enumerate_cb_t *enumerate_cb,
void *enumerate_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs
ct_uint32_t perms)

The definition for the response callback is:
typedef void (mc_enumerate_cb_t)(mc_sess_hndl_t,
mc_enumerate_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

66 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

enumerate_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

enumerate_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_class_name
Pointer to a resource class name. Identifies the resource class whose resources are to be
enumerated.

select_attrs
A pointer to a selection string expression that limits the resource enumeration to a subset of
resources in the resource class. The selection string expression filters the available resources by
one or more persistent attributes of the resource class. Only the resources that match the selection
string (and whose associated resource ACL contains the permissions specified by the perms
parameter for the user of the calling application) will be enumerated.

If this parameter is a NULL pointer, then all resources of the resource class identified by the
rsrc_class_name parameter are selected.

perms Identifies the permissions required by the user of the calling application. Resource handles will be
returned only if the user has the correct permissions in the resource's resource ACL.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_enumerate_permitted_rsrcs_* subroutines can be used by the application to enumerate the
resources of a specified resource class using attribute selection. Unlike the mc_enumerate_resources_*
subroutines, these subroutines enumerate only those resources for which the calling application has
correct permissions (as specified by the perms parameter).

The response for these subroutines is a structure of type mc_enumerate_rsp_t, and is described in
Response structure.

This command cannot be used in an ordered command group.

Programming RMC 67

Security

To enumerate resources of a resource class, the user of the calling application must have either l or r
permission specified in an ACL entry for the resource class.

Return values

For the mc_enumerate_permitted_rsrcs_bp and mc_enumerate_permitted_rsrcs_bc subroutines, a return
value of 0 indicates that the command has been successfully sent to the RMC subsystem and one or more
one or more response have been received and processed.

For the mc_enumerate_permitted_rsrcs_ap and mc_enumerate_permitted_rsrcs_ac subroutines, a return
value of 0 indicates that the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

68 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_enumerate_rsp_t. If any of the enumerate
arguments are invalid, then the response indicates the error.

The response structure definition is:
typedef struct mc_enumerate_rsp mc_enumerate_rsp_t;
struct mc_enumerate_rsp {

mc_errnum_t mc_error;
ct_char_t *mc_class_name;
ct_resource_handle_t *mc_rsrc_handles;
ct_uint32_t mc_rsrc_handle_count;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the enumeration was successful. Any other value is an error
and indicates that the RMC subsystem or a resource manager could not provide some or all of
the requested information. The error may also indicate that the command arguments were in
error. The error codes imply which of the remaining fields in the structure are defined.

mc_class_name
Specifies the name of the resource class whose resources are contained in this response.

mc_rsrc_handles
A pointer to an array of resource handles for the selected resources.

mc_rsrc_handle_count
Indicates the number of resource handles in the array

Location

/usr/lib/libct_mc.a

Related reference:
“mc_enumerate_resources_*”
This subroutine enumerates the resources of a resource class using attribute selection.

mc_enumerate_resources_*
This subroutine enumerates the resources of a resource class using attribute selection.

Programming RMC 69

Purpose

Enumerates the resources of a resource class using attribute selection.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_enumerate_resources_* subroutines. All four
subroutines issue the same command action, but enable your application to vary how the command is
sent to the RMC subsystem, and how the command response is made available to the application.
v The mc_enumerate_resources_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_enumerate_resources_bp(

mc_sess_hndl_t sess_hndl,
mc_enumerate_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs)

v The mc_enumerate_resources_ap subroutine adds the command to a command group. Please note that
this command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_enumerate_resources_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_enumerate_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs)

v The mc_enumerate_resources_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_enumerate_resources_bc(

mc_sess_hndl_t sess_hndl,
mc_enumerate_cb_t *enumerate_cb,
void *enumerate_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs)

The definition for the response callback is:
typedef void (mc_enumerate_cb_t)(mc_sess_hndl_t,
mc_enumerate_rsp_t *,
void *);

v The mc_enumerate_resources_ac subroutine adds the command to a command group. Please note that
this command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_enumerate_resources_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,

70 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

mc_enumerate_cb_t *enumerate_cb,
void *enumerate_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs)

The definition for the response callback is:
typedef void (mc_enumerate_cb_t)(mc_sess_hndl_t,
mc_enumerate_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

enumerate_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

enumerate_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_class_name
Pointer to a resource class name. Identifies the resource class whose resources are to be
enumerated.

select_attrs
A pointer to a selection string expression that limits the resource enumeration to a subset of
resources in the resource class. The selection string expression filters the available resources by
one or more persistent attributes of the resource class. Only the resources that match the selection
string will be enumerated.

If this parameter is a NULL pointer, then all resources of the resource class identified by the
rsrc_class_name parameter are selected.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Programming RMC 71

Description

The mc_enumerate_resources_* subroutines can be used by the application to enumerate the resources of
a specified resource class using attribute selection.

The response for these subroutines is a structure of type mc_enumerate_rsp_t, and is described in
Response structure.

This command cannot be used in an ordered command group.

Security

To enumerate resources of a resource class, the user of the calling application must have either l or r
permission specified in an ACL entry for the resource class.

Return values

For the mc_enumerate_resources_bp and mc_enumerate_resources_bc subroutines, a return value of 0
indicates that the command has been successfully sent to the RMC subsystem and one or more responses
have been received and processed.

For the mc_enumerate_resources_ap and mc_enumerate_resources_ac subroutines, a return value of 0
indicates that the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be

72 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_enumerate_rsp_t. If any of the enumerate
arguments are invalid, then the response indicates the error.

The response structure definition is:
typedef struct mc_enumerate_rsp mc_enumerate_rsp_t;
struct mc_enumerate_rsp {

mc_errnum_t mc_error;
ct_char_t *mc_class_name;
ct_resource_handle_t *mc_rsrc_handles;
ct_uint32_t mc_rsrc_handle_count;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the enumeration was successful. Any other value is an error
and indicates that the RMC subsystem or a resource manager could not provide some or all of
the requested information. The error may also indicate that the command arguments were in
error. The error codes imply which of the remaining fields in the structure are defined.

mc_class_name
Specifies the name of the resource class whose resources are contained in this response.

mc_rsrc_handles
A pointer to an array of resource handles for the selected resources.

mc_rsrc_handle_count
Indicates the number of resource handles in the array

Programming RMC 73

Location

/usr/lib/libct_mc.a

Related reference:
“mc_enumerate_permitted_rsrcs_*” on page 65
This subroutine enumerates the resources of a resource class using attribute selection. Enumerates only
those resources for which the calling application has specified permissions.
“mc_free_response” on page 75
This subroutine frees a response or event notification structure.

mc_free_descriptor
This subroutine frees a descriptor that was previously obtained by the mc_get_descriptor subroutine.

Purpose

Frees a descriptor that was previously obtained by the mc_get_descriptor subroutine.

Library

RMC Library (libct_mc.a)

Syntax
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_free_descriptor(

mc_sess_hndl_t session_hndl,
int descriptor)

Parameters

INPUT

session_hndl
The session handle that identifies the RMC subsystem session for which the descriptor was
obtained. A session handle is returned by the mc_start_session or mc_timed_start_session
subroutine when the application establishes a session with the RMC subsystem.

descriptor
Identifies the descriptor to be freed.

Description

The mc_free_descriptor subroutine can be used by the application to free a descriptor that was
previously obtained by the mc_get_descriptor subroutine. Once this subroutine returns successfully, the
descriptor can no longer be used in a select or poll system call.

Return values

A return value of 0 (zero) indicates that the descriptor has been successfully freed and can no longer be
used in a select or poll system call. Any other value is an error and indicates that the descriptor has not
been freed.

The following errors can be returned by this subroutine. Additional error information can be returned by
calling the cu_get_error function.

74 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_ESESSENDED
The session has been ended.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_EINVALIDDSCRP
The specified descriptor is invalid.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_get_descriptor” on page 76
This subroutine returns a descriptor that can be used in a select or poll system call.

mc_free_response
This subroutine frees a response or event notification structure.

Purpose

Frees a response or event notification structure.

Library

RMC Library (libct_mc.a)

Syntax
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_free_response(

void *rsp_ptr)

Parameters

INPUT

rsp_ptr A pointer to the response, response array or event notification, previously passed to the
application by the RMC API, to be freed.

Description

The mc_free_response subroutine can be used by the application to free the storage used by a response,
response array, or event notification structure.

If the response array contains more than one element, note that the entire array must be freed. The
rsp_prt parameter must not point to a response array element other than the first element in the array.

Return values

A return value of 0 (zero) indicates that the storage has been successfully freed. Any other value is an
error and indicates that the storage has not been freed.

Programming RMC 75

The following errors can be returned by this subroutine. Additional error information can be returned by
calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDDATA
The specified pointer does not point to a response or event notification structure.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_class_query_d_*” on page 42
This subroutine queries the RMC subsystem to obtain the dynamic attribute values of a resource class.
“mc_class_set_*” on page 53
This subroutine sets persistent attribute values of a resource class.
“mc_enumerate_resources_*” on page 69
This subroutine enumerates the resources of a resource class using attribute selection.
“mc_invoke_action_*” on page 78
This subroutine invokes an action on a resource.
“mc_offline_*” on page 88
This subroutine sends a request to the RMC subsystem to take a resource offline.
“mc_qdef_actions_*” on page 97
This subroutine queries the RMC subsystem to obtain the definitions of resource class actions.
“mc_qdef_p_attribute_*” on page 108
This subroutine queries the RMC subsystem to obtain the persistent attribute definitions for a resource or
resource class.
“mc_reg_event_handle_*” on page 168
This subroutine registers a resource event with the RMC subsystem using a resource handle.

mc_get_descriptor
This subroutine returns a descriptor that can be used in a select or poll system call.

Purpose

Returns a descriptor that can be used in a select or poll system call.

Library

RMC Library (libct_mc.a)

Syntax
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_get_descriptor(

mc_sess_hndl_t session_hndl,
int *descriptor)

Parameters

INPUT

76 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

session_hndl
The session handle that identifies the RMC subsystem session for which this descriptor is being
obtained. A session handle is returned by the mc_start_session or mc_timed_start_session
subroutine when the application establishes a session with the RMC subsystem.

OUTPUT

descriptor
The address, allocated by the application, for the descriptor. The subroutine, if successful, returns
the descriptor at this address.

Description

The mc_get_descriptor subroutine can be used by the application to obtain a descriptor that can be used
in the select or poll system call. The descriptor is made ready for read whenever the RMC API has
received a response or event notification for the session identified by the session_hndl parameter and there
is no thread available to the RMC API to process the response.

The application can use this descriptor in a select or poll system call to determine when it should call the
mc_dispatch subroutine. This is intended for applications that call the mc_dispatch subroutine with the
MC_DISPATCH_OPTS_WAIT option. When the MC_DISPATCH_OPTS_WAIT option is specified, the
thread provided by the mc_dispatch subroutine will block execution if no response or event notification
needs to be processed. Using a descriptor returned by the mc_get_descriptor subroutine in a select or
poll system call enables the application to call the mc_dispatch subroutine only when the thread is
needed.

The descriptor is also made ready to read by the RMC API if the session is interrupted and there are no
application threads blocked in the RMC API. In this situation, if the application were to call the
mc_dispatch subroutine, and error would be returned indicating the session was interrupted.

The application can call this subroutine only once during a session, unless it calls the mc_free_descriptor
subroutine to free the specified descriptor.

Although this subroutine is intended for single-threaded applications, it can also be used by
multithreaded applications.

Return values

A return value of 0 (zero) indicates that a descriptor has been successfully returned at the address
specified by the descriptor parameter. Any other value is an error and indicates that the descriptor has not
been returned.

The following errors can be returned by this subroutine. Additional error information can be returned by
calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ENODSCRP
A descriptor cannot be allocated by the API.

MC_ESESSENDED
The session has been ended.

Programming RMC 77

MC_ESESSINTRPT
The session has been interrupted.

MC_EBUSY
A descriptor has already been allocated to the specified session.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_dispatch” on page 62
This subroutine provides a thread to the RMC API to enable it to invoke a callback to process a response
or event notification.
“mc_free_descriptor” on page 74
This subroutine frees a descriptor that was previously obtained by the mc_get_descriptor subroutine.

mc_invoke_action_*
This subroutine invokes an action on a resource.

Purpose

Invokes an action on a resource.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_invoke_action_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_invoke_action_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_invoke_action_bp(

mc_sess_hndl_t sess_hndl,
mc_action_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_resource_handle_t rsrc_hndl,
ct_char_t *action_name,
ct_structured_data_t *data)

v The mc_invoke_action_ap subroutine adds the command to a command group. To receive responses, it
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_invoke_action_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_action_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_resource_handle_t rsrc_hndl,
ct_char_t *action_name,
ct_structured_data_t *data)

v The mc_invoke_action_bc subroutine sends the command to the RMC subsystem and blocks execution.
To receive responses, it specifies the callback response method. The syntax is:

78 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_invoke_action_bc(

mc_sess_hndl_t sess_hndl,
mc_action_cb_t *action_cb,
void *action_cb_arg,
ct_resource_handle_t rsrc_hndl,
ct_char_t *action_name,
ct_structured_data_t *data)

The definition for the response callback is:
typedef void (mc_action_cb_t)(mc_sess_hndl_t,
mc_action_rsp_t *,
void *);

v The mc_invoke_action_ac subroutine adds the command to a command group. To receive responses, it
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_invoke_action_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_action_cb_t *action_cb,
void *action_cb_arg,
ct_resource_handle_t rsrc_hndl,
ct_char_t *action_name,
ct_structured_data_t *data)

The definition for the response callback is:
typedef void (mc_action_cb_t)(mc_sess_hndl_t,
mc_action_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

action_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

action_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_hndl
The resource handle that identifies the resource upon which the action is to be invoked. A
resource handle is returned in the response structure for many RMC API subroutines including
the mc_define_resource_* subroutine. An array of resource handles for resources of a particular
resource class is returned in the response structure for the mc_enumerate_resources_* and

Programming RMC 79

mc_enumerate_permitted_rsrcs_* subroutines. To validate the resource handle before calling this
subroutine, the application can call one of the mc_validate_rsrc_hndl_* subroutines.

action_name
Pointer to an action name. Identifies the action to be invoked.

data A pointer to structured data to be used as input to the action. If the action identified by the
action_name parameter does not accept input, the data parameter should be a NULL pointer.

To obtain the format of input structured data accepted by the action, the application can use the
mc_get_sd_* subroutines.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_invoke_action_* subroutines can be used by the application to invoke an action (identified by
the action_name parameter) on a resource (identified by the rsrc_hndl parameter). If the action accepts
structured data as input, the application can provide this using the data parameter.

The response for these subroutines is a structure of type mc_action_rsp_t, and is described in Response
structure.

Security

To invoke a resource action, the user of the calling application must have the permission defined for the
action specified in an ACL entry for the resource. If no permission is defined for the action, then the user
of the calling application must have either the s or w permission specified in an ACL entry for the
resource.

Return values

For the mc_invoke_action_bp and mc_invoke_action_bc subroutines, a return value of 0 indicates that
the command has been successfully sent to the RMC subsystem and one or more responses have been
received and processed.

For the mc_invoke_action_ap and mc_invoke_action_ac subroutines, a return value of 0 indicates that
the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

80 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_ETARGETMISMATCH
The target specified for the command does not match the target of the command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDDATATYPE
Invalid attribute data type specified.

MC_EINVALIDVALUEPTR
Invalid attribute value pointer specified.

MC_EINVALIDSDTYPE
Invalid structured data subtype specified.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Programming RMC 81

Response structure

The response for these subroutines is a structure of type mc_action_rsp_t. This command may have more
than one response.

The response structure definition is:
typedef struct mc_action_rsp mc_action_rsp_t;
struct mc_action_rsp {

mc_errnum_t mc_error;
ct_resource_handle_t mc_rsrc_hndl;
ct_structured_data_t **mc_data;
ct_uint32_t mc_count;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the command was successful, and the action was successfully
processed. Any other value is an error, and indicates a problem in processing the action.

mc_rsrc_hndl
The resource handle of the resource that was the target of the command.

mc_data
Optionally contains a block of response data from the action. If the mc_count field is zero, then
this field is undefined. If the mc_count field is non-zero, this field is a pointer to an array of
pointers to structured data (SD) resulting from the action. Each SD in the response has an
identical format, as defined for the action resulting in the response. More than one response may
be generated from invoking an action, each containing one or more SDs.

To obtain the format of the structured data resulting from the action, the application can use the
mc_qdef_sd_* subroutines.

mc_count
Indicates the number of entries in the mc_data array.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_free_response” on page 75
This subroutine frees a response or event notification structure.
“mc_invoke_class_action_*”
This subroutine invokes an action on a resource class.
“mc_qdef_sd_*” on page 120
This subroutine queries the RMC subsystem to obtain the definition of structured data.

mc_invoke_class_action_*
This subroutine invokes an action on a resource class.

Purpose

Invokes an action on a resource class.

Library

RMC Library (libct_mc.a)

82 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Syntax

Like many of the RMC interfaces, there are four mc_invoke_class_action_* subroutines. All four
subroutines issue the same command action, but enable your application to vary how the command is
sent to the RMC subsystem, and how the command response is made available to the application.
v The mc_invoke_class_action_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_invoke_class_action_bp(

mc_sess_hndl_t sess_hndl,
mc_class_action_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t *action_name,
ct_char_t **names,
ct_uint32_t name_count,
mc_list_usage_t list_use,
ct_structured_data_t *data)

v The mc_invoke_class_action_ap subroutine adds the command to a command group. To receive
responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_invoke_class_action_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_class_action_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t *action_name,
ct_char_t **names,
ct_uint32_t name_count,
mc_list_usage_t list_use,
ct_structured_data_t *data)

v The mc_invoke_class_action_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_invoke_class_action_bc(

mc_sess_hndl_t sess_hndl,
mc_class_action_cb_t *action_cb,
void *action_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t *action_name,
ct_char_t **names,
ct_uint32_t name_count,
mc_list_usage_t list_use,
ct_structured_data_t *data)

The definition for the response callback is:
typedef void (mc_class_action_cb_t)(mc_sess_hndl_t,
mc_class_action_rsp_t *,
void *);

v The mc_invoke_class_action_ac subroutine adds the command to a command group. To receive
responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_invoke_class_action_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,

Programming RMC 83

mc_class_action_cb_t *action_cb,
void *action_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t *action_name,
ct_char_t **names,
ct_uint32_t name_count,
mc_list_usage_t list_use,
ct_structured_data_t *data)

The definition for the response callback is:
typedef void (mc_class_action_cb_t)(mc_sess_hndl_t,
mc_class_action_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

action_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

action_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_class_name
Pointer to a resource class name. Identifies the resource class upon which the action is to be
invoked.

action_name
Pointer to an action name. Identifies the action to be invoked.

names

Table 19. mc_invoke_class_action_* subroutine conditional names parameter functions

If: Then:

The management style of the resource class is subdivided. This parameter is a pointer to an array of name_count node
names, identifying where the class action should be invoked.
The list_use parameter must specify the
MC_LIST_USAGE_NODES setting.

To specify that the class action should be invoked on all nodes
of the cluster, this parameter should be a NULL pointer and the
name_count parameter should be 0 (zero).

84 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 19. mc_invoke_class_action_* subroutine conditional names parameter functions (continued)

If: Then:

The management style of the resource class is globalized, and
the session scope is DM

This parameter is a pointer to an array of name_count peer
domain names identifying the peer domains where the class
action should be invoked. The list_use parameter must specify
the MC_LIST_USAGE_PEER_DOMAINS setting.

To specify that the class action should be invoked on all peer
domains within the management domain, this parameter should
be a NULL pointer and the name_count parameter should be 0
(zero).

name_count
Identifies the number of pointers in the names array. If names is a NULL pointer, this parameter
must be 0 (zero).

list_use
Indicates whether the names parameter is a pointer to an array of node names or peer domain
names. Valid values are:

MC_LIST_USAGE_NODES
The names parameters identifies node names.

MC_LIST_USAGE_PEER_DOMAINS
The names parameter identifies peer domain names.

data A pointer to structured data to be used as input to the action. If the action identified by the
action_name parameter does not accept input, the data parameter should be a NULL pointer.

To obtain the format of input structured data accepted by the action, the application can use the
mc_get_sd_* subroutines.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_invoke_class_action_* subroutines can be used by the application to invoke an action (identified
by the action_name parameter) on a resource class (identified by the rsrc_class_name parameter). If the
action accepts structured data as input, the application can provide this using the data parameter.

The response for these subroutines is a structure of type mc_class_action_rsp_t, and is described in
Response structure.

Security

To invoke a resource class action, the user of the calling application must have the permission defined for
the action specified in an ACL entry for the resource class. If no permission is defined for the action, then
the user of the calling application must have either the s or w permission specified in an ACL entry for
the resource class.

Programming RMC 85

Return values

For the mc_invoke_class_action_bp and mc_invoke_class_action_bc subroutines, a return value of 0
indicates that the command has been successfully sent to the RMC subsystem and one or more responses
have been received and processed.

For the mc_invoke_class_action_ap and mc_invoke_class_action_ac subroutines, a return value of 0
indicates that the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

86 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_EINVALIDDATATYPE
Invalid attribute data type specified.

MC_EINVALIDVALUEPTR
Invalid attribute value pointer specified.

MC_EINVALIDSDTYPE
Invalid structured data subtype specified.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_class_action_rsp_t. This command may have
more than one response.

The response structure definition is:
typedef struct mc_class_action_rsp mc_class_action_rsp_t;
struct mc_class_action_rsp {

mc_errnum_t mc_error;
ct_char_t *mc_class_name;
ct_structured_data_t **mc_data;
ct_uint32_t mc_count;
ct_char_t *mc_node_name;
ct_char_t *mc_peer_domain_name;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the command was successful, and the action was successfully
processed. Any other value is an error, and indicates a problem in processing the action.

mc_class_name
The resource class that was the target of the invoke action command.

mc_data
Optionally contains a block of response data from the action. If the mc_count field is zero, then
this field is undefined. If the mc_count field is non-zero, this field is a pointer to an array of
pointers to structured data (SD) resulting from the action. Each SD in the response has an
identical format, as defined for the action resulting in the response. More than one response may
be generated from invoking an action, each containing one or more SDs.

To obtain the format of the structured data resulting from the action, the application can use the
mc_qdef_sd_* subroutines.

mc_count
The number of entries in the mc_data array.

mc_node_name
The primary node name of the node where the class action was invoked.

Programming RMC 87

mc_peer_domain_name
The name of the peer domain where the class action was invoked. The name is a NULL string if
the response is from a node not in a peer domain.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_invoke_action_*” on page 78
This subroutine invokes an action on a resource.
“mc_qdef_sd_*” on page 120
This subroutine queries the RMC subsystem to obtain the definition of structured data.
“mc_qdef_actions_*” on page 97
This subroutine queries the RMC subsystem to obtain the definitions of resource class actions.

mc_offline_*
This subroutine sends a request to the RMC subsystem to take a resource offline.

Purpose

Sends a request to the RMC subsystem to take a resource offline.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_offline_* subroutines. All four subroutines issue the
same command action, but enable your application to vary how the command is sent to the RMC
subsystem, and how the command response is made available to the application.
v The mc_offline_bp subroutine sends the command to the RMC subsystem and blocks execution. To

receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_offline_bp(

mc_sess_hndl_t sess_hndl,
mc_rsrc_hndl_rsp_t **response,
mc_offline_opts_t options,
ct_resource_handle_t rsrc_hndl,
ct_structured_data_t *data)

v The mc_offline_ap subroutine adds the command to a command group. If used in an ordered
command group, however, please note that all other commands in the command group must also be
the form that uses a resource handle to specify a command target. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_offline_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_rsrc_hndl_rsp_t **response,
mc_offline_opts_t options,
ct_resource_handle_t rsrc_hndl,
ct_structured_data_t *data)

v The mc_offline_bc subroutine sends the command to the RMC subsystem and blocks execution. To
receive responses, it specifies the callback response method. The syntax is:

88 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_offline_bc(

mc_sess_hndl_t sess_hndl,
mc_offline_cb_t *offline_cb,
void *offline_cb_arg,
mc_offline_opts_t options,
ct_resource_handle_t rsrc_hndl,
ct_structured_data_t *data)

The definition for the response callback is:
typedef void (mc_offline_cb_t)(mc_sess_hndl_t,
mc_rsrc_hndl_rsp_t *,
void *);

v The mc_offline_ac subroutine adds the command to a command group. If used in an ordered
command group, however, please note that all other commands in the command group must also be
the form that uses a resource handle to specify a command target. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_offline_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_offline_cb_t *offline_cb,
void *offline_cb_arg,
mc_offline_opts_t options,
ct_resource_handle_t rsrc_hndl,
ct_structured_data_t *data)

The definition for the response callback is:
typedef void (mc_offline_cb_t)(mc_sess_hndl_t,
mc_rsrc_hndl_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

offline_cb
Identifies the callback routine that will be invoked by the RMC API to return the command
response to the application. This parameter applies only to the variations of this subroutine that
use the callback response method.

offline_cb_arg
Identifies the argument that the RMC API will use to pass the command response to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

options Specifies one of the following:

Programming RMC 89

MC_OFFLINE_OPTS_FAILED
The target state of the resource is to be failed off-line. If this option is not specified, the
target state of the resource will be off-line.

MC_OFFLINE_OPTS_NONE
There are no options.

rsrc_hndl
The resource handle that identifies the resource to be taken offline. A resource handle is returned
in the response structure for many RMC API subroutines including the mc_define_resource_*
subroutine. An array of resource handles for resources of a particular resource class is returned in
the response structure for the mc_enumerate_resources_* and mc_enumerate_permitted_rsrcs_*
subroutines. To validate the resource handle before calling this subroutine, the application can call
one of the mc_validate_rsrc_hndl_* subroutines.

data A pointer to structured data containing resource class specific options for taking the resource
offline. To accept the default values (or if the resource class does not define options) for going
offline, the data parameter should be a NULL pointer.

To obtain the syntax and semantics for the structured data required by the resource class for
specifying offline options, the application can use the mc_qdef_sd_* subroutine.

OUTPUT

response
A pointer to a location in which the RMC API will return a pointer to the response. This
parameter applies only to variations of this subroutine that use the pointer response method.

Description

The mc_offline_* subroutines can be used by the application to request the RMC subsystem to take a
resource (identified by the rsrc_hndl parameter) offline. If the resource manager accepts structured data
options for taking a resource offline, the application can provide this using the data parameter. The
request is performed by the resource's associated resource manager. If the resource is online on multiple
nodes, then it will be taken offline on each of the nodes.

The response for these subroutines is a structure of type mc_rsrc_hndl_rsp_t, and is described in
Response structure.

If this command is used in an ordered command group, please note that all other commands in the
command group must be the form that uses a resource handle to specify the command target. The
same resource handle must be used on all commands in the command group.

Security

To take a resource offline, the user of the calling application must have either o or w permission specified
in an ACL entry for this resource.

Return values

For the mc_offline_bp and mc_offline_bc subroutines, a return value of 0 indicates that the command
has been successfully sent to the RMC subsystem and a response has been received and processed.

For the mc_offline_ap and mc_offline_ac subroutines, a return value of 0 indicates that the command
has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

90 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_ETARGETMISMATCH
The target specified for the command does not match the target of the command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before the response could be received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before the response could be
received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDDATATYPE
Invalid attribute data type specified.

MC_EINVALIDVALUEPTR
Invalid attribute value pointer specified.

MC_EINVALIDSDTYPE
Invalid structured data subtype specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before the
response could be received.

MC_ENOMEM
The API could not allocate required memory.

Programming RMC 91

Response structure

The response for these subroutines is a structure of type mc_rsrc_hndl_rsp_t. Although the mc_error field
of the mc_rsrc_hndl_rsp_t structure indicates whether or not the resource manager has successfully
processed the command, it does not mean that the resource is offline. To determine if the resource is
actually offline, the application must register an event to monitor the resource's OpState attribute value.
This command results in only one response.

The response structure definition is:
typedef struct mc_rsrc_hndl_rsp mc_rsrc_hndl_rsp_t;
struct mc_rsrc_hndl_rsp {

mc_errnum_t mc_error;
ct_resource_handle_t mc_rsrc_hndl;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the command was successful. Any other value is an error. If
there is an error, the error codes indicate whether the resource handle contained in mc_rsrc_hndl is
invalid or the command could not be completed for the resource specified by the resource handle.
The error may also indicate that the command arguments were in error.

mc_rsrc_hndl
The resource handle that identifies the resource that was the target of the command.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_free_response” on page 75
This subroutine frees a response or event notification structure.
“mc_online_*”
This subroutine requests the RMC subsystem to bring a resource online.
“mc_reset_*” on page 184
This subroutine requests the RMC subsystem to force a resource offline.
“mc_qdef_sd_*” on page 120
This subroutine queries the RMC subsystem to obtain the definition of structured data.

mc_online_*
This subroutine requests the RMC subsystem to bring a resource online.

Purpose

Requests the RMC subsystem to bring a resource online.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_online_* subroutines. All four subroutines issue the
same command action, but enable your application to vary how the command is sent to the RMC
subsystem, and how the command response is made available to the application.

92 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

v The mc_online_bp subroutine sends the command to the RMC subsystem and blocks execution. To
receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_online_bp(

mc_sess_hndl_t sess_hndl,
mc_rsrc_hndl_rsp_t **response,
ct_resource_handle_t rsrc_hndl,
ct_char_t **node_names,
ct_uint32_t name_count,
ct_structured_data_t *data)

v The mc_online_ap subroutine adds the command to a command group. If used in an ordered
command group, however, please note that all other commands in the command group must also be
the form that uses a resource handle to specify a command target. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_online_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_rsrc_hndl_rsp_t **response,
ct_resource_handle_t rsrc_hndl,
ct_char_t **node_names,
ct_uint32_t name_count,
ct_structured_data_t *data)

v The mc_online_bc subroutine sends the command to the RMC subsystem and blocks execution. To
receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_online_bc(

mc_sess_hndl_t sess_hndl,
mc_online_cb_t *online_cb,
void *online_cb_arg,
ct_resource_handle_t rsrc_hndl,
ct_char_t **node_names,
ct_uint32_t name_count,
ct_structured_data_t *data)

The definition for the response callback is:
typedef void (mc_online_cb_t)(mc_sess_hndl_t,
mc_rsrc_hndl_rsp_t *,
void *);

v The mc_online_ac subroutine adds the command to a command group. If used in an ordered
command group, however, please note that all other commands in the command group must also be
the form that uses a resource handle to specify a command target. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_online_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_online_cb_t *online_cb,
void *online_cb_arg,
ct_resource_handle_t rsrc_hndl,
ct_char_t **node_names,
ct_uint32_t name_count,
ct_structured_data_t *data)

The definition for the response callback is:

Programming RMC 93

typedef void (mc_online_cb_t)(mc_sess_hndl_t,
mc_rsrc_hndl_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

online_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

online_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_hndl
The resource handle that identifies the resource to be brought online. A resource handle is
returned in the response structure for many RMC API subroutines including the
mc_define_resource_* subroutine. An array of resource handles for resources of a particular
resource class is returned in the response structure for the mc_enumerate_resources_* and
mc_enumerate_permitted_rsrcs_* subroutines. To validate the resource handle before calling this
subroutine, the application can call one of the mc_validate_rsrc_hndl_* subroutines.

node_names
Specifies the nodes on which the resource should be brought online. Specifies this using a pointer
to an array of name_count elements of type ct_char_t. Each element in the array specifies a node
name.

name_count
Specifies the number of elements in the node_names array.

data A pointer to structured data containing resource-class specific options for bringing a resource
online. To accept the default values (or if a resource class does not define options) for going
online, the data parameter should be a NULL pointer.

To obtain the syntax and semantics for the structured data required by this resource class for
specifying online options, the application can use the mc_qdef_sd_* subroutines.

OUTPUT

response
A pointer to a location in which the RMC API will return a pointer to the response. This
parameter applies only to variations of this subroutine that use the pointer response method.

94 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Description

The mc_online_* subroutines can be used by the application to request the RMC subsystem to bring a
resource (identified by the rsrc_hndl parameter) online on a set of nodes (identified by the node_names
parameter). If the resource accepts structured data as options for bringing a resource online, the
application can provide this using the data parameter.

The response for these subroutines is a structure of type mc_rsrc_hndl_rsp_t, and is described in
Response structure.

If this command is used in an ordered command group, please note that all other commands in the
command group must be the form that uses a resource handle to specify the command target. The
same resource handle must be used on all commands in the command group.

Security

To bring a resource online, the user of the calling application must have either o or w permission
specified in an ACL entry for this resource.

Return values

For the mc_online_bp and mc_online_bc subroutines, a return value of 0 indicates that the command has
been successfully sent to the RMC subsystem and a response has been received and processed.

For the mc_online_ap and mc_online_ac subroutines, a return value of 0 indicates that the command has
been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_ETARGETMISMATCH
The target specified for the command does not match the target of the command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before the response could be received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before the response could be
received.

Programming RMC 95

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDDATATYPE
Invalid attribute data type specified.

MC_EINVALIDVALUEPTR
Invalid attribute value pointer specified.

MC_EINVALIDSDTYPE
Invalid structured data subtype specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before the
response could be received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_rsrc_hndl_rsp_t. Although the mc_error field
of the mc_rsrc_hndl_rsp_t structure indicates whether or not the resource manager has successfully
processed the command, it does not mean that the resource is online. To determine if the resource is
actually online, the application must register an event to monitor the resource's OpState attribute value.
This command results in only one response.

The response structure definition is:
typedef struct mc_rsrc_hndl_rsp mc_rsrc_hndl_rsp_t;
struct mc_rsrc_hndl_rsp {

mc_errnum_t mc_error;
ct_resource_handle_t mc_rsrc_hndl;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the command was successful. Any other value is an error. If
there is an error, the error codes indicate whether the resource handle contained in mc_rsrc_hndl is
invalid or the command could not be completed for the resource specified by the resource handle.
The error may also indicate that the command arguments were in error.

mc_rsrc_hndl
The resource handle that identifies the resource that was the target of the command.

Location

/usr/lib/libct_mc.a

Related reference:

96 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

“mc_offline_*” on page 88
This subroutine sends a request to the RMC subsystem to take a resource offline.
“mc_qdef_sd_*” on page 120
This subroutine queries the RMC subsystem to obtain the definition of structured data.

mc_qdef_actions_*
This subroutine queries the RMC subsystem to obtain the definitions of resource class actions.

Purpose

Queries the RMC subsystem to obtain the definitions of resource class actions.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_qdef_actions_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_qdef_actions_bp subroutine sends the command to the RMC subsystem and blocks execution.

To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_actions_bp(

mc_sess_hndl_t sess_hndl,
mc_qdef_actions_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
ct_uint32_t query_class_actions,
ct_char_t **names,
ct_uint32_t count)

v The mc_qdef_actions_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_actions_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_qdef_actions_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
ct_uint32_t query_class_actions,
ct_char_t **names,
ct_uint32_t count)

v The mc_qdef_actions_bc subroutine sends the command to the RMC subsystem and blocks execution.
To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_actions_bc(

mc_sess_hndl_t sess_hndl,
mc_qdef_actions_cb_t *qdef_cb,
void *qdef_cb_arg,

Programming RMC 97

mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
ct_uint32_t query_class_actions,
ct_char_t **names,
ct_uint32_t count)

The definition for the response callback is:
typedef void (mc_qdef_actions_cb_t)(mc_sess_hndl_t,
mc_qdef_actions_rsp_t *,
void *);

v The mc_qdef_actions_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_actions_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_qdef_actions_cb_t *qdef_cb,
void *qdef_cb_arg,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
ct_uint32_t query_class_actions,
ct_char_t **names,
ct_uint32_t count)

The definition for the response callback is:
typedef void (mc_qdef_actions_cb_t)(mc_sess_hndl_t,
mc_qdef_actions_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

qdef_cb Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

qdef_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

options Specifies one of the following:

MC_QDEF_OPTS_NODSCRP
No descriptions or display names are returned in the response structure.

MC_QDEF_OPTS_NONE
There are no options.

98 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

rsrc_class_name
Pointer to a resource class name. Identifies the resource class whose resource class action
definitions or resource action definitions are to be returned.

query_class_actions
Indicates whether information on actions that can be invoked on the resource class itself should
be returned. If this parameter is 0 (zero), then the subroutine returns information on the actions
that can be invoked on resources of the resource class. If this parameter is any non-zero value,
then the subroutine returns information on actions that can be invoked on the resource class
itself.

names Specifies the action(s) whose information you want returned. Specifies this using a pointer to an
array of count elements of type ct_char_t. Each element in the array identifies an action name. If
the count parameter is 0, then the names parameter must be a NULL pointer. In this case,
information is returned for all actions that can be invoked on either the resource class or
resources of the resource class (as indicated by the query_class_actions parameter.

count Specifies the number of elements in the names array. If 0, the names parameter must be a NULL
pointer.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_qdef_actions_* subroutines can be used by the application to obtain the definitions of the actions
that can be invoked on either a resource of a resource class, or on the resource class itself (as indicated by
the query_class_actions parameter).

The response for these subroutines is a structure of type mc_qdef_actions_rsp_t, and is described in
Response structure.

This command cannot be used in an ordered command group.

Return values

For the mc_qdef_actions_bp and mc_qdef_actions_bc subroutines, a return value of 0 indicates that the
command has been successfully sent to the RMC subsystem and one response has been received and
processed.

For the mc_qdef_actions_ap and mc_qdef_actions_ac subroutines, a return value of 0 indicates that the
command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

Programming RMC 99

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

100 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Response structure

The response for these subroutines is a structure of type mc_qdef_actions_rsp_t. The response contains
the requested information for one or more actions that can be invoked on a resource of the resource class
or on the resource class itself. The amount of information can vary depending on the options and names
parameters.

The response structure definition is:
typedef struct mc_qdef_actions_rsp mc_qdef_actions_rsp_t;
struct mc_qdef_actions_rsp {

mc_errnum_t mc_error;
mc_action_t *mc_actions;
ct_uint32_t mc_action_count;
rmc_resource_class_id_t mc_class_id;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the query was successful. Any other value is an error and
indicates that the resource monitoring and control (RMC) subsystem could not provide some or
all of the requested information. The error may also indicate that the command arguments were
in error. The error codes imply which of the remaining fields in the structure are defined.

mc_actions
A pointer to an array of mc_action_count elements of type mc_action_t;
typedef struct mc_action mc_action_t;
struct mc_action {

mc_action_props_t mc_properties;
ct_char_t *mc_action_name;
ct_char_t *mc_display_name;
ct_char_t *mc_description;
ct_char_t *mc_confirm_prompt;
rmc_action_id_t mc_action_id;
mc_variety_t *mc_variety_list;
ct_uint32_t mc_variety_count;
ct_uint32_t mc_timeout;
ct_uint32_t mc_permissions;

};

The fields of this structure contain the following:

mc_properties
A bit field that specifies the properties of the action, as defined by the mc_action_props_t
enumeration.
typedef enum mc_action_props mc_action_props_t;
enum mc_action_props {

MC_RSRC_ACTION_LONG_RUNNING = 0x0001,
MC_RSRC_ACTION_PUBLIC = 0x0002

};

mc_action_name
A pointer to the programmatic name of the action (this name is provided as input to
other RMC API subroutines).

mc_display_name
A pointer to a string that is suitable to display as the name of this action in a Graphical
User Interface.

mc_description
A pointer to a string that contains a description of the action. The description may
contain multiple lines of text.

Programming RMC 101

mc_confirm_prompt
A pointer to a string that is used by a GUI to prompt the user for confirmation to
perform the action.

mc_action_id
The action ID.

mc_variety_list
A pointer to an array of mc_variety_count elements of type mc_variety_t . Each element of
the array is a range of resource variety numbers. This action then applies to any resource
of the class (or the resource class itself if this response is that of a resource class action)
that has one of the indicated variety numbers.

mc_variety_count
The number of elements in the mc_variety_list array.

mc_timeout
The approximate amount of time, in seconds, that the action should take to complete.
This value is defined only if the MC_RSRC_ACTION_LONG_RUNNING property is
set.

mc_permissions
The permissions required to execute this action.

mc_action_count
Indicates the number of entries in the mc_actions array.

mc_class_id
The ID of the resource class for which these actions are being returned.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_free_response” on page 75
This subroutine frees a response or event notification structure.
“mc_invoke_class_action_*” on page 82
This subroutine invokes an action on a resource class.

mc_qdef_d_attribute_*
This subroutine queries the RMC subsystem to obtain dynamic attribute definitions for a resource or
resource class.

Purpose

Queries the RMC subsystem to obtain dynamic attribute definitions for a resource or resource class.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_qdef_d_attribute_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_qdef_d_attribute_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:

102 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_d_attribute_bp(

mc_sess_hndl_t sess_hndl,
mc_qdef_dattr_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
ct_uint32_t query_class_attrs,
ct_char_t **attr_names,
ct_uint32_t attr_count)

v The mc_qdef_d_attribute_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_d_attribute_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_qdef_dattr_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
ct_uint32_t query_class_attrs,
ct_char_t **attr_names,
ct_uint32_t attr_count)

v The mc_qdef_d_attribute_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_d_attribute_bc(

mc_sess_hndl_t sess_hndl,
mc_qdef_dattr_cb_t *qdef_cb,
void *qdef_cb_arg,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
ct_uint32_t query_class_attrs,
ct_char_t **attr_names,
ct_uint32_t attr_count)

The definition for the response callback is:
typedef void (mc_qdef_dattr_cb_t)(mc_sess_hndl_t,
mc_qdef_dattr_rsp_t *,
void *);

v The mc_qdef_d_attribute_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_d_attribute_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_qdef_dattr_cb_t *qdef_cb,
void *qdef_cb_arg,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
ct_uint32_t query_class_attrs,
ct_char_t **attr_names,
ct_uint32_t attr_count)

The definition for the response callback is:

Programming RMC 103

typedef void (mc_qdef_dattr_cb_t)(mc_sess_hndl_t,
mc_qdef_dattr_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

qdef_cb Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

qdef_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

options Specifies one of the following:

MC_QDEF_OPTS_NODSCRP
No descriptions or display names are returned in the response structure.

MC_QDEF_OPTS_NONE
There are no options.

rsrc_class_name
Pointer to a resource class name. Identifies the resource class whose dynamic class attribute
definitions or resource dynamic attribute definitions are to be returned.

query_class_attrs
Indicates whether the subroutine should return the dynamic attribute definitions for the resource
class itself. If this parameter is 0 (zero), then the subroutine returns dynamic attribute definitions
for resources of the resource class. If this parameter is any non-zero value, then the subroutine
returns dynamic attribute definitions for the resource class itself.

attr_names
Specifies the dynamic attribute(s) whose definition(s) you want returned. Specifies this using an
array of attr_count elements of type ct_char_t. Each element in the array identifies a dynamic
attribute.

If the attr_count parameter is 0, then the attr_names parameter must be a NULL pointer. In this
case, information is returned for all dynamic attributes of either the resource class or resources of
the resource class (as indicated by the query_class_attrs parameter).

attr_count
Specifies the number of elements in the attr_names array. If 0, the attr_names parameter must be a
NULL pointer.

OUTPUT

104 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_qdef_d_attribute subroutines can be used by the application to obtain dynamic attribute
definitions for a resource or resource class (as indicated by the query_class_attrs parameter).

This command cannot be used in an ordered command group.

Return values

For the mc_qdef_d_attribute_bp and mc_qdef_d_attribute_bc subroutines, a return value of 0 indicates
that the command has been successfully sent to the RMC subsystem and one or more responses have
been received and processed.

For the mc_qdef_d_attribute_ap and mc_qdef_d_attribute_ac subroutines, a return value of 0 indicates
that the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

Programming RMC 105

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_qdef_dattr_rsp_t. The response contains the
requested information for one dynamic attribute of the specified resource or resource class. If more that
one attribute is specified by the attr_names parameter, then there will be one response for each attribute.
The amount of information will vary depending on the options and attr_names parameters. If any of the
query arguments are invalid, then only one response is returned, indicating the error (even if more than
one attribute was specified by the attr_names parameter).

The response structure definition is:
typedef struct mc_qdef_dattr_rsp mc_qdef_dattr_rsp_t;
struct mc_qdef_dattr_rsp {

mc_errnum_t mc_error;
mc_dattr_props_t mc_properties;
ct_char_t *mc_program_name;
ct_char_t *mc_display_name;
ct_char_t *mc_group_name;
ct_char_t *mc_description;
rmc_attribute_id_t mc_attribute_id;
ct_uint32_t mc_group_id;
ct_data_type_t mc_data_type;
rmc_variable_type_t mc_variable_type;
mc_variety_t *mc_variety_list;
ct_uint32_t mc_variety_count;
ct_value_t mc_init_value;
ct_value_t mc_min_value;
ct_value_t mc_max_value;
ct_char_t *mc_expression;
ct_char_t *mc_expression_description;

106 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

ct_char_t *mc_rearm_expression;
ct_char_t *mc_rearm_description;
ct_char_t *mc_PTX_name;
ct_uint32_t mc_reporting_interval;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the query was successful. Any other value is an error and
indicates that the RMC subsystem could not provide some or all of the requested information.
The error may also indicate that the command arguments were in error. The error codes imply
which of the remaining fields in the structure are defined.

mc_properties
A bit field that specifies the properties of the dynamic attribute, as defined by the
mc_dattr_props_t enumeration.
typedef enum mc_dattr_props mc_dattr_props_t;
enum mc_dattr_props {

MC_RSRC_DATTR_PUBLIC = 0x0020
MC_RSRC_DATTR_QRY_REQS_MONITORING = 0x0040

};

The MC_RSRC_DATTR_QRY_REQS_MONITORING property indicates that, in order to query
the value of this dynamic attribute, the attribute must already be monitored as a result of some
current event registration.

mc_program_name
A pointer to the programmatic name of the attribute (this name is provided as input to other
RMC API subroutines).

mc_display_name
A pointer to a string that is suitable to display as the name of this attribute in a Graphical User
Interface.

mc_group_name
A pointer to a string containing the name of the group to which this attribute belongs. This name
is designed to be suitable to display in a Graphical User Interface.

mc_description
A pointer to a string that contains a description of the dynamic attribute. The description may
contain multiple lines of text.

mc_attribute_id
The attribute ID.

mc_group_id
The group ID. This ID is used to group related attributes of a resource or the resource class.

mc_data_type
The data type of the dynamic attribute.

mc_variable_type
The variable type of the dynamic attribute. A dynamic attribute can have a variable type of
Counter, Quantity, State or Quantum.

mc_variety_list
A pointer to an array of mc_variety_t types. Each element of the array is a range of resource
variety numbers. This attribute then applies to any resource of the class, or the resource class
itself if this response is that of a resource class dynamic attribute, which has one of the indicated
variety numbers.

Programming RMC 107

mc_variety_count
The number of elements in the mc_variety_list array.

mc_init_value
The initial value that this variable assumes the first time it is monitored. Some event expressions
compare the currently observed value of an attribute with the previously observed value. For
those expressions, the initial value specified in this field will, upon first observation of this
variable, be reference as the previously observed value.

mc_min_value
The lowest value in a dynamic range for the variable that should be displayed in a GUI. The
highest value in this dynamic range is specified in the mc_max_value field. This dynamic range is
defined only if the attribute type is an arithmetic type.

mc_max_value
The highest value in a dynamic range for the variable that should be displayed in a GUI. The
lowest value in this dynamic range is specified in the mc_min_value field. This dynamic range is
defined only if the attribute type is an arithmetic type.

mc_expression
A NULL pointer or a pointer to a string that is an example expression for this variable.

mc_expression_description
A NULL pointer or a pointer to a string that is a description of the event generated by the
example expression.

mc_rearm_expression
A NULL pointer or a pointer to a string that is an example rearm expression for this variable.

mc_rearm_description
A NULL pointer or a pointer to a string that is a description of the example rearm expression.

mc_PTX_name
A NULL pointer or a pointer or a pointer to a string that is the PTX path name for this variable.

mc_reporting_interval
If the attribute is of variable type Counter or Quantity and is being monitored, a new attribute
value is reported every mc_reporting_interval seconds.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_class_query_d_*” on page 42
This subroutine queries the RMC subsystem to obtain the dynamic attribute values of a resource class.
“mc_query_d_handle_*” on page 133
This subroutine queries the RMC subsystem to obtain the dynamic attribute values of a resource.
“mc_qdef_p_attribute_*”
This subroutine queries the RMC subsystem to obtain the persistent attribute definitions for a resource or
resource class.

mc_qdef_p_attribute_*
This subroutine queries the RMC subsystem to obtain the persistent attribute definitions for a resource or
resource class.

Purpose

Queries the RMC subsystem to obtain the persistent attribute definitions for a resource or resource class.

108 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_qdef_p_attribute_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_qdef_p_attribute_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_p_attribute_bp(

mc_sess_hndl_t sess_hndl,
mc_qdef_pattr_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
ct_uint32_t query_class_attrs,
ct_char_t **attr_names,
ct_uint32_t attr_count)

v The mc_qdef_p_attribute_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_p_attribute_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_qdef_pattr_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
ct_uint32_t query_class_attrs,
ct_char_t **attr_names,
ct_uint32_t attr_count)

v The mc_qdef_p_attribute_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_p_attribute_bc(

mc_sess_hndl_t sess_hndl,
mc_qdef_pattr_cb_t *qdef_cb,
void *qdef_cb_arg,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
ct_uint32_t query_class_attrs,
ct_char_t **attr_names,
ct_uint32_t attr_count)

The definition for the response callback is:
typedef void (mc_qdef_pattr_cb_t)(mc_sess_hndl_t,
mc_qdef_pattr_rsp_t *,
void *);

v The mc_qdef_p_attribute_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:

Programming RMC 109

#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_p_attribute_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_qdef_pattr_cb_t *qdef_cb,
void *qdef_cb_arg,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
ct_uint32_t query_class_attrs,
ct_char_t **attr_names,
ct_uint32_t attr_count)

The definition for the response callback is:
typedef void (mc_qdef_pattr_cb_t)(mc_sess_hndl_t,
mc_qdef_pattr_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

qdef_cb Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

qdef_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

options Specifies one of the following:

MC_QDEF_OPTS_NODSCRP
No descriptor or display names are returned in the response structure.

MC_QDEF_OPTS_NONE
There are no options.

rsrc_class_name
Pointer to a resource class name. Identifies the resource class whose persistent class attribute
definitions or resource persistent attribute definitions are to be returned.

query_class_attrs
Indicates whether the subroutine should return the persistent attribute definitions for the resource
class itself. If this parameter is 0 (zero), then the subroutine returns persistent attribute definitions
for resources of the resource class. If this parameter is any non-zero value, then the subroutine
returns persistent attribute definitions for the resource class itself.

attr_names
Specifies the persistent attribute(s) whose definition(s) you want returned. Specifies this using an
array of attr_count elements of type ct_char_t. Each element in the array identifies a persistent
attribute.

110 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

If the attr_count parameter is 0, then the attr_names parameter must be a NULL pointer. In this
case, information is returned for all persistent attributes of either the resource class or resources
of the resource class (as indicated by the query_class_attrs parameter).

attr_count
Specifies the number of elements in the attr_names array. If 0, the attr_names parameter must be a
NULL pointer.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_qdef_p_attribute subroutines can be used by the application to obtain persistent attribute
definitions for a resource or resource class (as indicated by the query_class_attrs parameter).

The response for these subroutines is a structure of type mc_qdef_pattr_rsp_t, and is described in
Response structure.

This command cannot be used in an ordered command group.

Return values

For the mc_qdef_p_attribute_bp and mc_qdef_p_attribute_bc subroutines, a return value of 0 indicates
that the command has been successfully sent to the RMC subsystem and one or more responses have
been received and processed.

For the mc_qdef_p_attribute_ap and mc_qdef_p_attribute_ac subroutines, a return value of 0 indicates
that the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

Programming RMC 111

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_qdef_pattr_rsp_t. The response contains the
requested information for one persistent attribute of the specified resource or resource class. If more that
one attribute is specified by the attr_names parameter, then there will be one response for each attribute.
The amount of information will vary depending on the options and attr_names parameters. If any of the
query arguments are invalid, then only one response is returned, indicating the error (even if more than
one attribute was specified by the attr_names parameter).

The response structure definition is:
typedef struct mc_qdef_pattr_rsp mc_qdef_pattr_rsp_t;
struct mc_qdef_pattr_rsp {

mc_errnum_t mc_error;
mc_pattr_props_t mc_properties;
ct_char_t *mc_program_name;
ct_char_t *mc_display_name;

112 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

ct_char_t *mc_group_name;
ct_char_t *mc_description;
rmc_attribute_id_t mc_attribute_id;
ct_uint32_t mc_group_id;
ct_data_type_t mc_data_type;
mc_variety_t *mc_variety_list;
ct_uint32_t mc_variety_count;
ct_value_t mc_default_value;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the query was successful. Any other value is an error and
indicates that the RMC subsystem could not provide some or all of the requested information.
The error may also indicate that the command arguments were in error. The error codes imply
which of the remaining fields in the structure are defined.

mc_properties
A bit field that specifies the properties of the persistent attribute, as defined by the
mc_pattr_props_t enumeration.
typedef enum mc_pattr_props mc_pattr_props_t;
enum mc_pattr_props {

MC_RSRC_PATTR_READ_ONLY = 0x0001,
MC_RSRC_PATTR_REQD_FOR_DEFINE = 0x0002,
MC_RSRC_PATTR_INVAL_FOR_DEFINE = 0x0004,
MC_RSRC_PATTR_OPTION_FOR_DEFINE = 0x0008,
MC_RSRC_PATTR_SELECTABLE = 0x0010,
MC_RSRC_PATTR_PUBLIC = 0x0020

};

mc_program_name
A pointer to the programmatic name of the attribute (this name is provided as input to other
RMC API subroutines).

mc_display_name
A pointer to a string that is suitable to display as the name of this attribute in a Graphical User
Interface.

mc_group_name
A pointer to a string containing the name of the group to which this attribute belongs. This name
is designed to be suitable to display in a Graphical User Interface.

mc_description
A pointer to a string that contains a description of the persistent attribute. The description may
contain multiple lines of text.

mc_attribute_id
The attribute ID.

mc_group_id
The group ID. This ID is used to group related attributes of a resource or the resource class.

mc_data_type
The data type of the persistent attribute.

mc_variety_list
A pointer to an array of mc_variety_t types. Each element of the array is a range of resource
variety numbers. This attribute then applies to any resource of the class (or the resource class
itself if this response is that of a resource class persistent attribute) which has one of the indicated
variety numbers.

mc_variety_count
The number of elements in the mc_variety_list array.

Programming RMC 113

mc_default_value
The default value this attribute assumes when a resource, for which this attribute is defined, is
created.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_define_resource_*” on page 58
This subroutine defines a new resource.
“mc_free_response” on page 75
This subroutine frees a response or event notification structure.
“mc_qdef_d_attribute_*” on page 102
This subroutine queries the RMC subsystem to obtain dynamic attribute definitions for a resource or
resource class.
“mc_set_select_*” on page 199
This subroutine sets persistent attribute values of one or more resources of a particular resource class. The
resources are identified by attribute selection.
“mc_qdef_resource_class_*”
This subroutine queries the RMC subsystem to obtain the definition of a resource class or all definitions
of all resource classes.

mc_qdef_resource_class_*
This subroutine queries the RMC subsystem to obtain the definition of a resource class or all definitions
of all resource classes.

Purpose

Queries the RMC subsystem to obtain the definition of a resource class or all definitions of all resource
classes.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_qdef_resource_class_* subroutines. All four
subroutines issue the same command action, but enable your application to vary how the command is
sent to the RMC subsystem, and how the command response is made available to the application.
v The mc_qdef_resource_class_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_resource_class_bp(

mc_sess_hndl_t sess_hndl,
mc_qdef_rsrc_class_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name)

v The mc_qdef_resource_class_ap subroutine adds the command to a command group. Please note that
this command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:

114 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_resource_class_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_qdef_rsrc_class_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name)

v The mc_qdef_resource_class_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_resource_class_bc(

mc_sess_hndl_t sess_hndl,
mc_qdef_rsrc_class_cb_t *qdef_cb,
void *qdef_cb_arg,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name)

The definition for the response callback is:
typedef void (mc_qdef_rsrc_class_cb_t)(mc_sess_hndl_t,
mc_qdef_rsrc_class_rsp_t *,
void *);

v The mc_qdef_resource_class_ac subroutine adds the command to a command group. Please note that
this command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_resource_class_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_qdef_rsrc_class_cb_t *qdef_cb,
void *qdef_cb_arg,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name)

The definition for the response callback is:
typedef void (mc_qdef_rsrc_class_cb_t)(mc_sess_hndl_t,
mc_qdef_rsrc_class_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

qdef_cb Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

Programming RMC 115

qdef_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

options Specifies one of the following:

MC_QDEF_OPTS_NODSCRP
No description or display names are retuned in the response structure.

MC_QDEF_OPTS_NONE
There are no options.

rsrc_class_name
Pointer to a resource class name identifying the resource class whose definition is to be returned.
If this parameter is a Null pointer, then definitions are returned for all resource classes.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_qdef_resource_class_* subroutines can be used by the application to obtain the definition of one
resource class or the definitions for all resource classes (as specified by the rsrc_class_name parameter).

The response for these subroutines is a structure of type mc_qdef_rsrc_class_rsp_t, and is described in
Response structure.

This command cannot be used in an ordered command group.

Return values

For the mc_qdef_resource_class_bp and mc_qdef_resource_class_bc subroutines, a return value of 0
indicates that the command has been successfully sent to the RMC subsystem and one or more responses
have been received and processed.

For the mc_qdef_resource_class_ap and mc_qdef_resource_class_ac subroutines, a return value of 0
indicates that the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

116 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_qdef_rsrc_class_rsp_t. The response contains
the requested information for one resource class. If the rsrc_class_name parameter is a Null pointer (which
indicates that definitions for all resource classes should be returned), then there will be one response for
each resource class. The amount of information will vary depending on the options parameter. If any of
the query arguments are not valid, then only one response is returned, indicating the error.

Programming RMC 117

The response structure definition is:
typedef struct mc_qdef_rsrc_class_rsp mc_qdef_rsrc_class_rsp_t;
struct mc_qdef_rsrc_class_rsp {

mc_errnum_t mc_error;
mc_rsrc_class_props_t mc_properties;
ct_char_t *mc_class_name;
rmc_resource_class_id_t mc_class_id;
ct_char_t *mc_display_name;
ct_char_t *mc_description;
ct_char_t *mc_locator;
ct_uint32_t mc_class_pattr_count;
ct_uint32_t mc_class_dattr_count;
ct_uint32_t mc_pattr_count;
ct_uint32_t mc_dattr_count;
ct_uint32_t mc_action_count;
ct_uint32_t mc_class_action_count;
ct_uint32_t mc_error_count;
mc_rsrc_mgr_t *mc_rsrc_mgrs;
ct_uint32_t mc_rsrc_mgr_count;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the query was successful. Any other value is an error and
indicates that the resource monitoring and control (RMC) subsystem could not provide some or
all of the requested information. The error may also indicate that the command arguments were
in error. The error codes imply which of the remaining fields in the structure are defined.

mc_properties
A bit field that specifies the properties of the resource class, as defined by the
mc_rsrc_class_props_t enumeration.
typedef enum mc_rsrc_class_props mc_rsrc_class_props_t;
enum mc_rsrc_class_props {

MC_RSRC_CLASS_HAS_IW_ACCESS = 0x0001,
MC_RSRC_CLASS_HAS_RSRC_INSTS = 0x0002,
MC_RSRC_CLASS_HAS_CTRL_INTERFACE = 0x0004,
MC_RSRC_CLASS_CAN_DEFINE_UNDEFINE = 0x0008,
MC_RSRC_CLASS_SUPPORTS_MOVE = 0x0200,
MC_RSRC_CLASS_CAN_BATCH_DEFINE = 0x0400,
MC_RSRC_CLASS_CAN_BATCH_UNDEFINE = 0x0800,
MC_RSRC_CLASS_CAN_BATCH_SET_ATTR = 0x1000,
MC_RSRC_CLASS_MTYPE_SUBDIVIDED = 0x2000,
MC_RSRC_CLASS_MTYPE_GLOBALIZED = 0x8000,
MC_RSRC_CLASS_ACT_QUORUM_CHANGE = 0x00010000,
MC_RSRC_CLASS_QRY_REQS_MONITORING = 0x00020000

};

mc_class_name
Specifies the name of the resource class that was queried and whose definition is contained in
this response.

mc_class_id
Specifies the resource class ID of the resource class that was queried and whose definition is
contained in this response.

mc_display_name
A pointer to a string that is suitable to display as the name of this resource class in a graphical
user interface.

mc_description
A pointer to a string that contains a description of the resource class; the description may
contains multiple lines of text.

118 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

mc_locator
The name of a persistent attribute of a resource of this resource class that implies the location of
the resource.

mc_class_pattr_count
The number of persistent attributes defined for the resource class itself.

mc_class_dattr_count
The number of dynamic attributes defined for the resource class itself.

mc_pattr_count
The number of persistent attributes defined for a resource of the resource class.

mc_dattr_count
The number of dynamic attributes defined for a resource of the resource class.

mc_action_count
The number of different actions that can be invoked against the resources of the resource class.

mc_class_action_count
The number of different actions that can be invoked against the resource class itself.

mc_error_count
The number of different errors that can be injected into the resources of the resource class.

mc_rsrc_mgrs
A pointer to an array of mc_rsrc_mgr_t types. Each element of this array specifies a resource
manager that implements the resource class.
typedef struct mc_rsrc_mgr mc_rsrc_mgr_t;
struct mc_rsrc_mgr {

ct_char_t *mc_mgr_name;
ct_uint32_t mc_first_key;
ct_uint32_t mc_last_key;

};

The fields of this structure contain the following:

mc_mgr_name
The name of the resource manager that supports the resource class

mc_first_key
The start of the range of resource manager ClassKeys that implement the resource class.

mc_last_key
The end of the range of resource manager ClassKeys that implement the resource class.

Note that there may be multiple entries specifying the same resource manager in the
mc_rsrc_mgrs array. If there are multiple entries, however, each entry specifies non-overlapping
ranges of ClassKeys.

mc_rsrc_mgr_count
The number of elements in the mc_rsrc_mgrs array.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_qdef_p_attribute_*” on page 108
This subroutine queries the RMC subsystem to obtain the persistent attribute definitions for a resource or
resource class.

Programming RMC 119

mc_qdef_sd_*
This subroutine queries the RMC subsystem to obtain the definition of structured data.

Purpose

Queries the RMC subsystem to obtain the definition of structured data.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_qdef_sd_* subroutines. All four subroutines issue the
same command action, but enable your application to vary how the command is sent to the RMC
subsystem, and how the command response is made available to the application.
v The mc_qdef_sd_bp subroutine sends the command to the RMC subsystem and blocks execution. To

receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_sd_bp(

mc_sess_hndl_t sess_hndl,
mc_qdef_sd_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
mc_sd_usage_t sd_use,
ct_char_t **names,
ct_uint32_t count)

v The mc_qdef_sd_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_sd_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_qdef_sd_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
mc_sd_usage_t sd_use,
ct_char_t **names,
ct_uint32_t count)

v The mc_qdef_sd_bc subroutine sends the command to the RMC subsystem and blocks execution. To
receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_sd_bc(

mc_sess_hndl_t sess_hndl,
mc_qdef_sd_cb_t *qdef_cb,
void *qdef_cb_arg,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
mc_sd_usage_t sd_use,
ct_char_t **names,
ct_uint32_t count)

The definition for the response callback is:

120 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

typedef void (mc_qdef_sd_cb_t)(mc_sess_hndl_t,
mc_qdef_sd_rsp_t *,
void *);

v The mc_qdef_sd_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_sd_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_qdef_sd_cb_t *qdef_cb,
void *qdef_cb_arg,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
mc_sd_usage_t sd_use,
ct_char_t **names,
ct_uint32_t count)

The definition for the response callback is:
typedef void (mc_qdef_sd_cb_t)(mc_sess_hndl_t,
mc_qdef_sd_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

qdef_cb Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

qdef_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

options Specifies one of the following:

MC_QDEF_OPTS_NODSCRP
No descriptions or display names are returned in the response structure.

MC_QDEF_OPTS_NONE
There are no options.

rsrc_class_name
Pointer to a resource class name. Identifies the resource class for which structured data (SD)
information is to be returned.

sd_use Specifies, using one of the following values, the structured data information to be returned.

MC_SD_USAGE_PATTR_RESOURCE
SD persistent attributes of the resource of the specified resource class

Programming RMC 121

MC_SD_USAGE_PATTR_RSRC_CLASS
SD persistent attributes of the specified resource class

MC_SD_USAGE_DATTR_RESOURCE
SD dynamic attributes of the resource of the specified resource class

MC_SD_USAGE_DATTR_RSRC_CLASS
SD dynamic attributes of the specified resource class

MC_SD_USAGE_RSRC_ACTION_INPUT
SD input formats for the resource actions of the specified resource class

MC_SD_USAGE_RSRC_ACTION_RESPONSE
SD response formats for the resource actions of the specified resource class

MC_SD_USAGE_CLASS_ACTION_INPUT
SD input formats for the class actions of the specified resource class

MC_SD_USAGE_CLASS_ACTION_RESPONSE
SD response formats for the class actions of the specified resource class

MC_SD_USAGE_DEFINE_ARG
SD format for the define resource command argument of the specified resource class

MC_SD_USAGE_UNDEFINE_ARG
SD format for the undefine resource command argument of the specified resource class

MC_SD_USAGE_ONLINE_ARG
SD format for the online command argument of the specified resource class

MC_SD_USAGE_OFFLINE_ARG
SD format for the offline command argument of the specified resource class

MC_SD_USAGE_RESET_ARG
SD format for the reset command argument of the specified resource class

names

Table 20. mc_qdef_sd_* subroutine conditional names parameter functions

If the sd_use parameter specifies that structured data (SD)
should be returned for: Then:

attributes or actions This parameter specifies the attributes or actions for which
information will be retuned. This parameter specifies this using
an array of count elements of type ct_char_t. Each element in the
array identifies an SD type attribute name or an action name as
appropriate.

If the count parameter is 0, then the names parameter must be a
NULL pointer. In this case, structured data information is
returned for all SD attributes or actions of the resource class.

command arguments This parameter must be NULL and the count parameter must be
0.

count Specifies the number of elements in the names array. If 0, the names array must be a NULL
pointer.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

122 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_qdef_sd_* subroutines can be used by the application to obtain the definition of structured data
(SD). Structured data definitions will be returned for the type of structured data specified by the sd_use
parameter for the resource class identified by the rsrc_class_name parameter. If the sd_use parameter
specifies that structured data should be returned for SD attributes or actions, then the names parameter
identifies the SD attributes or actions for which information will be returned.

Structured data:
v can be a data type of attributes
v is used to pass input, if necessary, to an action when calling the mc_invoke_action_* or

mc_invoke_class_action_* subroutines.
v is the type of response data resulting from calls to the mc_invoke_action_* or

mc_invoke_class_action_* subroutines.
v is the type of an optional argument for passing resource class-specific options to the

mc_define_resource_*, mc_undefine_resource_*, mc_online_*, mc_offline_*, and mc_reset_*
subroutines.

The structured data definitions include the
v Structured data element program name
v Element display name
v Element description
v Data type
v Structured data element index value

The response for these subroutines is a structure of type mc_qdef_sd_rsp_t, and is described in Response
structure.

This command cannot be used in an ordered command group.

Return values

For the mc_qdef_sd_bp and mc_qdef_sd_bc subroutines, a return value of 0 indicates that the command
has been successfully sent to the RMC subsystem and one or more responses have been received and
processed.

For the mc_qdef_sd_ap and mc_qdef_sd_ac subroutines, a return value of 0 indicates that the command
has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

Programming RMC 123

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_qdef_sd_rsp_t. The response contains the
requested structured data information for one of the following (depending on the value specified by the
sd_use parameter).
v one structured data type attribute

124 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

v one action input format
v one action response format
v one command option

If more than one attribute or action name is specified by the names parameter, then there is a response
for each. The amount of information in any response can vary depending on the value specified by the
options parameter. The mc_error field of the mc_qdef_sd_rsp_t structure indicates whether or not the
query was successful. If any of the query arguments are invalid, then only one response is returned,
indicating the error.

The response structure definition is:
typedef struct mc_qdef_sd_rsp mc_qdef_sd_rsp_t;
struct mc_qdef_sd_rsp {

mc_errnum_t mc_error;
mc_sd_element_t *mc_sd_elements;
ct_uint32_t mc_element_count;
ct_uint32_t mc_id;
ct_char_t *mc_program_name;
mc_sd_usage_t mc_usage;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the query was successful. Any other value is an error and
indicates that the RMC subsystem could not provide some or all of the requested information.
The error may also indicate that the command arguments were in error. The error codes imply
which of the remaining fields in the structure are defined.

mc_sd_elements
A pointer to an array of mc_element_count elements of type mc_sd_element_t;
typedef struct mc_sd_element mc_sd_element_t;
struct mc_sd_element {

ct_char_t *mc_element_name;
ct_char_t *mc_display_name;
ct_char_t *mc_description;
ct_data_type_t mc_element_data_type;
ct_uint32_t mc_element_index;

};

The fields of this structure contain the following:

mc_element_name
A pointer to the programmatic name of the structured data (SD) element (this name is
provided as input to other RMC API functions).

mc_display_name
A pointer to a string that is suitable to display as the name of this element in a graphical
user interface.

mc_description
A pointer to a string that contains a description of the SD element. The description may
contain multiple lines of text.

mc_element_data_type
The data type of the SD element.

mc_element_index
The index of this SD element. This number can be used as an index into the array
specified by the elements field of a ct_structured_data_t type.

Programming RMC 125

mc_element_count
Specifies the number of elements in the mc_sd_elements array.

mc_id If SD information for an attribute is being returned, this field is the ID of the attribute. If SD
information is being returned for an action, this field is the ID of the action. If SD information for
a command argument is being returned, this field is undefined. The type of SD information being
returned is indicated in the mc_usage field.

mc_program_name
If SD information for an attribute is being returned, this field is a pointer to the programmatic
name of the attribute. If SD information is being returned for an action, this field is a pointer to
the programmatic name of the action. If SD information for a command argument is being
returned, this field is undefined. The type of SD information being returned is indicated in the
mc_usage field.

mc_usage
Indicates the type of SD information being returned using the mc_sd_usage_t enumeration.
typedef enum mc_sd_usage mc_sd_usage_t;
enum mc_sd_usage {

MC_SD_USAGE_PATTR_RSRC_CLASS,
MC_SD_USAGE_PATTR_RESOURCE,
MC_SD_USAGE_DATTR_RSRC_CLASS,
MC_SD_USAGE_DATTR_RESOURCE,
MC_SD_USAGE_RSRC_ACTION_INPUT,
MC_SD_USAGE_RSRC_ACTION_RESPONSE,
MC_SD_USAGE_CLASS_ACTION_INPUT,
MC_SD_USAGE_CLASS_ACTION_RESPONSE,
MC_SD_USAGE_DEFINE_ARG,
MC_SD_USAGE_UNDEFINE_ARG,
MC_SD_USAGE_ONLINE_ARG,
MC_SD_USAGE_OFFLINE_ARG,
MC_SD_USAGE_RESET_ARG

};

Location

/usr/lib/libct_mc.a

Related reference:
“mc_define_resource_*” on page 58
This subroutine defines a new resource.
“mc_invoke_action_*” on page 78
This subroutine invokes an action on a resource.
“mc_invoke_class_action_*” on page 82
This subroutine invokes an action on a resource class.
“mc_offline_*” on page 88
This subroutine sends a request to the RMC subsystem to take a resource offline.
“mc_online_*” on page 92
This subroutine requests the RMC subsystem to bring a resource online.

mc_qdef_valid_values_*
This subroutine queries the RMC subsystem to obtain the definition of valid values.

Purpose

Queries the RMC subsystem to obtain the definition of valid values.

126 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_qdef_valid_values_* subroutines. All four
subroutines issue the same command action, but enable your application to vary how the command is
sent to the RMC subsystem, and how the command response is made available to the application.
v The mc_qdef_valid_values_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_valid_values_bp(

mc_sess_hndl_t sess_hndl,
mc_qdef_valid_vals_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
mc_vv_usage_t vv_use,
ct_char_t **names,
ct_uint32_t count)

v The mc_qdef_valid_values_ap subroutine adds the command to a command group. Please note that
this command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_valid_values_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_qdef_valid_vals_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
mc_vv_usage_t vv_use,
ct_char_t **names,
ct_uint32_t count)

v The mc_qdef_valid_values_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_valid_values_bc(

mc_sess_hndl_t sess_hndl,
mc_qdef_valid_vals_cb_t *qdef_cb,
void *qdef_cb_arg,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
mc_vv_usage_t vv_use,
ct_char_t **names,
ct_uint32_t count)

The definition for the response callback is:
typedef void (mc_qdef_valid_vals_cb_t)(mc_sess_hndl_t,
mc_qdef_valid_vals_rsp_t *,
void *);

v The mc_qdef_valid_values_ac subroutine adds the command to a command group. Please note that
this command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:

Programming RMC 127

#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_qdef_valid_values_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_qdef_valid_vals_cb_t *qdef_cb,
void *qdef_cb_arg,
mc_qdef_opts_t options,
ct_char_t *rsrc_class_name,
mc_vv_usage_t vv_use,
ct_char_t **names,
ct_uint32_t count)

The definition for the response callback is:
typedef void (mc_qdef_valid_vals_cb_t)(mc_sess_hndl_t,
mc_qdef_valid_vals_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

qdef_cb Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

qdef_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

options Specifies one of the following

MC_QDEF_OPTS_NODSCRP
No descriptions are returned.

MC_QDEF_OPTS_NONE
There are no options.

rsrc_class_name
Pointer to a resource class name. Identifies the resource class for which valid value information is
to be returned.

vv_use Specifies, using one of the following values, the valid value information to be returned.

MC_VV_USAGE_PATTR_RESOURCE
Valid values of the persistent attributes of the resource of the specified resource class

MC_VV_USAGE_PATTR_RSRC_CLASS
Valid values of the persistent attributes of the specified resource class

MC_VV_USAGE_DATTR_RESOURCE
Valid values of the dynamic attributes, of variable type RMC_STATE, of the resource of
the specified resource class

128 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_VV_USAGE_DATTR_RSRC_CLASS
Valid values of the dynamic attributes, of variable type RMC_STATE, of the specified
resource class

MC_VV_USAGE_RSRC_ACTION_INPUT
Valid values for the input to the resource actions of the specified resource class

MC_VV_USAGE_CLASS_ACTION_INPUT
Valid values for the input to the class actions of the specified resource class

MC_VV_USAGE_DEFINE_ARG
Valid values for the define resource command argument of the specified resource class

MC_VV_USAGE_UNDEFINE_ARG
Valid values for the undefine resource command argument of the specified resource class

MC_VV_USAGE_ONLINE_ARG
Valid values for the online command argument of the specified resource class

MC_VV_USAGE_OFFLINE_ARG
Valid values for the offline command argument of the specified resource class

MC_VV_USAGE_RESET_ARG
Valid values for the reset command argument of the specified resource class

names Specifies the attributes or actions for which valid value information should be returned. Specifies
this using a pointer to an array of count elements of type ct_char_t. Each element in this array
identifies an attribute or action (depending on the value of the vv_use parameter).

If the count parameter is 0, then the names parameter must be a NULL pointer. In this case,
information is returned for all attributes or actions of the resource class.

count Specifies the number of elements in the names array. If 0, the names parameter must be a NULL
pointer.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_qdef_valid_values_* subroutines can be used by the application to obtain the definition of valid
values from the RMC subsystem. Valid values are a set of values and/or a set of value ranges that an
attribute may assume or that may be used as input to the mc_invoke_action_*,
mc_invoke_class_action_*, mc_define_resource_*, mc_undefine_resource_*, mc_online_*, mc_offline_*,
and mc_reset_* subroutines.

The definition of valid values often includes:
v the valid values
v the range of valid values
v a descriptive label for each value or range of values

Programming RMC 129

However, some resource classes, instead of having a statically defined set of valid values, may have an
action defined that can be invoked to obtain a set of valid values for an attribute or command argument.
In such a case, the definition of valid values includes:
v the name of the action
v the action type (whether it is a resource action or a resource class action).

The response for these subroutines is a structure of type mc_qdef_valid_vals_rsp_t, and is described in
Response structure.

This command cannot be used in an ordered command group.

Return values

For the mc_qdef_valid_values_bp and mc_qdef_valid_values_bc subroutines, a return value of 0
indicates that the command has been successfully sent to the RMC subsystem and one or more responses
have been received and processed.

For the mc_qdef_valid_values_ap and mc_qdef_valid_values_ac subroutines, a return value of 0
indicates that the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

130 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_qdef_valid_vals_rsp_t. Depending on the
value of the vv_use parameter, the response contains the requested information for one persistent
attribute, one dynamic attribute that has a variable type of RMC_STATE, one action input, or one
command argument of the specified resource class. If more than one attribute or action name is specified
by the names parameter, then there will be one response for each. In addition, if the valid values are
structured data, then the response contains valid values for each element of the structured data. The
amount of information returned will vary depending on the options and names parameters. If any of the
query arguments are invalid, then only one response is returned, indicating the error (even if more that
one attribute or action is specified).

The response structure definition is:
typedef struct mc_qdef_valid_vals_rsp mc_qdef_valid_vals_rsp_t;
struct mc_qdef_valid_vals_rsp {

mc_errnum_t mc_error;
mc_valid_value_t *mc_valid_values;
ct_uint32_t mc_count;
ct_uint32_t mc_id;
mc_vv_usage_t mc_usage;
ct_data_type_t mc_data_type;
ct_char_t *mc_action_name;
mc_action_type_t mc_action_type;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the query was successful. Any other value is an error and
indicates that the RMC subsystem could not provide some or all of the requested information.
The error may also indicate that the command arguments were in error. The error codes imply
which of the remaining fields in the structure are defined.

Programming RMC 131

mc_valid_values
If the mc_count field is not zero, this field is a pointer to an array of mc_count elements of type
mc_valid_value_t. Each entry in this array specifies a valid value or range of valid values for the
attribute, input or argument.
typedef struct mc_valid_value mc_valid_value_t;
struct mc_valid_value {

ct_value_t mc_low_value;
ct_value_t mc_high_value;
ct_char_t *mc_label;
ct_uint32_t mc_sd_element_index;
ct_data_type_t mc_sd_element_data_type;

};

The fields of this structure contain the following:

mc_low_value
If the mc_data_type field specifies an arithmetic type and this field is less than the
mc_high_value field, then this field is the lowest value in a range. The highest value in the
range is specified in the mc_high_value field. If this field and the mc_high_value field
specify the same value, then they both specify a single valid value.

If the mc_data_type field specifies a non-arithmetic type, but not CT_SD_PTR or
CT_SD_PTR_ARRAY, this field specifies the valid value and the mc_high_value field is
undefined.

mc_high_value
If the mc_data_type field specifies an arithmetic type and this field is greater than the
mc_low_value field, then this field is the highest value in a range. The lowest value in the
range is specified in the mc_low_value field. If this field and the mc_low_value field specify
the same value, then they both specify a single valid value.

If the mc_data_type field specifies a non-arithmetic type, but not CT_SD_PTR or
CT_SD_PTR_ARRAY, this field is undefined and the mc_low_value field specifies the valid
value

mc_label
If non-NULL, this field specifies a pointer to a string containing a short description of the
valid value or range.

mc_sd_element_index
If the mc_data_type field is CT_SD_PTR, this field specifies the index of the structured
data (SD) element. If the mc_data_type field is CT_SD_PTR_ARRAY, then the valid values
returned apply to all elements with the identical index value in each SD of the array. If
the mc_data_type field is not CT_SD_PTR or CT_SD_PTR_ARRAY, then this field is
undefined.

mc_sd_element_data_type
If the mc_data_type field is CT_SD_PTR or CT_SD_PTR_ARRAY, the data type of the
element. If the mc_data_type field is not CT_SD_PTR or CT_SD_PTR_ARRAY, then this
field is undefined.

mc_count
The number of entries in the mc_valid_values array.

mc_id

Depending on the type of valid value information being returned, this field contains the ID of a
either a persistent attribute, a dynamic attribute or an action for which these valid values are
being returned (or for which the named action can be used to obtain valid values). If the valid
values are that of a command argument, this field is undefined. The type of valid value
information being returned is indicated in the mc_usage field.

132 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

mc_usage

Indicates if the valid value information being returned is for:
v a persistent attribute
v a dynamic attribute that has a variable type of RMC_STATE
v action input
v a command argument used when calling the mc_define_resource_*, mc_undefine_resource_*,

mc_online_*, mc_offline_* or mc_reset_* subroutines.

The possible values for this field are defined by the mc_vv_usage_t enumeration.
typedef enum mc_vv_usage mc_vv_usage_t;
enum mc_vv_usage {

MC_VV_USAGE_PATTR_RSRC_CLASS,
MC_VV_USAGE_PATTR_RESOURCE,
MC_VV_USAGE_DATTR_RSRC_CLASS,
MC_VV_USAGE_DATTR_RESOURCE,
MC_VV_USAGE_RSRC_ACTION_INPUT,
MC_VV_USAGE_CLASS_ACTION_INPUT,
MC_VV_USAGE_DEFINE_ARG,
MC_VV_USAGE_UNDEFINE_ARG,
MC_VV_USAGE_ONLINE_ARG,
MC_VV_USAGE_OFFLINE_ARG,
MC_VV_USAGE_RESET_ARG

};

mc_data_type
If the returned valid values are those of an attribute, this field specifies the data type of the
attribute. If the returned valid values are those of an action input or a command argument, this
field is set to CT_SD_PTR.

mc_action_name
If the mc_count field is zero, then this field is the name of an action that can be invoked to obtain
valid values.

mc_action_type

Indicates whether the action identified by the mc_action_name field is a resource action or class
action. The possible values for this field are defined by the mc_action_type_t enumeration.
typedef enum mc_action_type mc_action_type_t;
enum mc_action_type {

MC_ACTION_TYPE_RESOURCE,
MC_ACTION_TYPE_CLASS

};

Location

/usr/lib/libct_mc.a

mc_query_d_handle_*
This subroutine queries the RMC subsystem to obtain the dynamic attribute values of a resource.

Purpose

Queries the RMC subsystem to obtain the dynamic attribute values of a resource. The resource is
identified using a resource handle.

Library

RMC Library (libct_mc.a)

Programming RMC 133

Syntax

Like many of the RMC interfaces, there are four mc_query_d_handle_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_query_d_handle_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_d_handle_bp(

mc_sess_hndl_t sess_hndl,
mc_query_rsp_t **response,
ct_resource_handle_t rsrc_hndl,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

v The mc_query_d_handle_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_d_handle_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_query_rsp_t **response,
ct_resource_handle_t rsrc_hndl,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

v The mc_query_d_handle_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_d_handle_bc(

mc_sess_hndl_t sess_hndl,
mc_query_cb_t *query_cb,
void *query_cb_arg,
ct_resource_handle_t rsrc_hndl,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

The definition for the response callback is:
typedef void (mc_query_cb_t)(mc_sess_hndl_t,
mc_query_rsp_t *,
void *);

v The mc_query_d_handle_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_d_handle_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_query_cb_t *query_cb,
void *query_cb_arg,
ct_resource_handle_t rsrc_hndl,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

The definition for the response callback is:

134 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

typedef void (mc_query_cb_t)(mc_sess_hndl_t,
mc_query_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

query_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

query_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_hndl
The resource handle that identifies the resource whose dynamic attribute values are being
requested by the application. A resource handle is returned in the response structure for many
RMC API subroutines including the mc_define_resource_* subroutine. An array of resource
handles for resources of a particular resource class is returned in the response structure for the
mc_enumerate_resources_* and mc_enumerate_permitted_rsrcs_* subroutines. To validate the
resource handle before calling this subroutine, the application can call one of the
mc_validate_rsrc_hndl_* subroutines.

return_attrs
An array of attr_count pointers to dynamic attribute names. This parameter, in conjunction with
the attr_count parameter, enables the application to specify dynamic attributes to be included in
the query response. If any of the specified attributes are not supported by the resource, they will
not be included in the query response.

If attr_count is 0 (zero), return_attrs should be a NULL pointer. In this case, all dynamic attribute
values for a resource are returned.

attr_count
Indicates the number of pointers to dynamic attribute names in the return_attrs array. This
parameter, in conjunction with the return_attrs parameter, enables the application to specify
dynamic attributes to be included in the query response. If set to 0, all dynamic attribute values
for the resource are returned.

OUTPUT

response
A pointer to a location in which the RMC API will return a pointer to the response. This
parameter applies only to variations of this subroutine that use the pointer response method.

Programming RMC 135

Description

The mc_query_d_handle_* subroutines can be used by the application to obtain dynamic attribute values
of a resource from the RMC subsystem. The resource is identified using a resource handle (specified by
the rsrc_hndl parameter).

Dynamic attributes that are of variable type Quantum cannot be queried since such attributes have no
value.

The response for these subroutines is a structure of type mc_query_rsp_t, and is described in Response
structure.

Custom dynamic attributes can be specified. However, all selected resources must have matching values
for their CustomDynamicAttributes persistent resource attributes if any custom dynamic attributes are
used in this subroutine. Furthermore, if the RMC subsystem cannot obtain the values of the
CustomDynamicAttributes persistent resource attributes for the selected resources, this subroutine
returns an error in the Query Response, indicating that the specified custom dynamic attributes could not
be validated.

This subroutine cannot be used in an ordered command group.

Security

To query resource dynamic attributes, the user of the calling application must have either q or r
permission specified in an ACL entry for the resource.

Return values

For the mc_query_d_handle_bp and mc_query_d_handle_bc subroutines, a return value of 0 indicates
that the command has been successfully sent to the RMC subsystem and a response has been received
and processed.

For the mc_query_d_handle_ap and mc_query_d_handle_ac subroutines, a return value of 0 indicates
that the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

136 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before the response could be received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before the response could be
received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before the
response could be received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_query_rsp_t. The response contains the
values of the requested attributes for the specified resource.

The response structure definition is:
typedef struct mc_query_rsp mc_query_rsp_t;
struct mc_query_rsp {

mc_errnum_t mc_error;
ct_resource_handle_t mc_rsrc_hndl;
mc_attribute_t *mc_attrs;
ct_uint32_t mc_attr_count;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the query was successful. Any other value is an error and
indicates that the resource monitoring and control (RMC) subsystem or a resource manager could
not provide some or all of the requested information. The error may also indicate that the
command arguments were in error. The error codes imply which of the remaining fields in the
structure are defined.

mc_rsrc_hndl
Specifies the resource handle of the resource that was queried, and whose attributes are contained
in this response.

mc_attrs
A pointer to an array of the requested attributes.

Programming RMC 137

mc_attr_count
Indicates the number of entries in the mc_attrs array.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_class_query_d_*” on page 42
This subroutine queries the RMC subsystem to obtain the dynamic attribute values of a resource class.
“mc_qdef_d_attribute_*” on page 102
This subroutine queries the RMC subsystem to obtain dynamic attribute definitions for a resource or
resource class.

mc_query_d_select_*
This subroutine queries the RMC subsystem to obtain the dynamic attribute values of one or more
resources of a resource class.

Purpose

Queries the RMC subsystem to obtain the dynamic attribute values of one or more resources of a
resource class. The resources are identified using attribute selection.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_query_d_select_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_query_d_select_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_d_select_bp(

mc_sess_hndl_t sess_hndl,
mc_query_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

v The mc_query_d_select_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_d_select_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_query_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

138 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

v The mc_query_d_select_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_d_select_bc(

mc_sess_hndl_t sess_hndl,
mc_query_cb_t *query_cb,
void *query_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

The definition for the response callback is:
typedef void (mc_query_cb_t)(mc_sess_hndl_t,
mc_query_rsp_t *,
void *);

v The mc_query_d_select_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_d_select_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_query_cb_t *query_cb,
void *query_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

The definition for the response callback is:
typedef void (mc_query_cb_t)(mc_sess_hndl_t,
mc_query_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

query_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

query_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

Programming RMC 139

rsrc_class_name
Pointer to a resource class name. Identifies the parent resource class of the resource(s) whose
dynamic attribute values are being requested by the application.

select_attrs
A selection string expression that identifies one or more resources of the resource class identified
by the rsrc_class_name parameter. Dynamic attribute values will be returned for all resources of
the resource that match the selection string expression.

return_attrs
An array of attr_count pointers to dynamic attribute names. This parameter, in conjunction with
the attr_count parameter, enables the application to specify dynamic attributes to be included in
the query response. If any of the specified attributes are not supported by the resource, they will
not be included in the query response.

If attr_count is 0 (zero), return_attrs should be a NULL pointer. In this case, all dynamic attribute
values for a resource are returned.

attr_count
Indicates the number of pointers to dynamic attribute names in the return_attrs array. This
parameter, in conjunction with the return_attrs parameter, enables the application to specify
dynamic attributes to be included in the query response. If set to 0, all dynamic attribute values
for the resource are returned.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_query_d_select_* subroutines can be used by the application to obtain the dynamic attribute
values of one or more resources of a resource class (identified by the rsrc_class_name parameter). The
resource or resources are identified using a selection string (specified by the select_attrs parameter)

Dynamic attributes that are of variable type Quantum cannot be queried since such attributes have no
value.

The response for these subroutines is a structure of type mc_query_rsp_t, and is described in Response
structure.

Custom dynamic attributes can be specified. However, all selected resources must have matching values
for their CustomDynamicAttributes persistent resource attributes if any custom dynamic attributes are
used in this subroutine. Furthermore, if the RMC subsystem cannot obtain the values of the
CustomDynamicAttributes persistent resource attributes for the selected resources, this subroutine
returns an error in the Query Response, indicating that the specified custom dynamic attributes could not
be validated.

This subroutine cannot be used in an ordered command group.

140 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Security

To query resource dynamic attributes, the user of the calling application must have either q or r
permission specified in the ACL entry for the resource(s).

Return values

For the mc_query_d_select_bp and mc_query_d_select_bc subroutines, a return value of 0 indicates that
the command has been successfully sent to the RMC subsystem and one or more responses have been
received and processed.

For the mc_query_d_select_ap and mc_query_d_select_ac subroutines, a return value of 0 indicates that
the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

Programming RMC 141

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_query_rsp_t. A response contains the values
of the requested attributes for one specified resource. If more than one resource is identified by the
select_attrs parameter, then there will be one response for each resource. If any of the query arguments are
invalid, then only one response is returned, indicating the error (even if more than one resource was
identified by the select_attrs parameter).

The response structure definition is:
typedef struct mc_query_rsp mc_query_rsp_t;
struct mc_query_rsp {

mc_errnum_t mc_error;
ct_resource_handle_t mc_rsrc_hndl;
mc_attribute_t *mc_attrs;
ct_uint32_t mc_attr_count;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the query was successful. Any other value is an error and
indicates that the resource monitoring and control (RMC) subsystem or a resource manager could
not provide some or all of the requested information. The error may also indicate that the
command arguments were in error. The error codes imply which of the remaining fields in the
structure are defined.

mc_rsrc_hndl
Specifies the resource handle of the resource that was queried, and whose attributes are contained
in this response.

mc_attrs
A pointer to an array of the requested attributes.

mc_attr_count
Indicates the number of entries in the mc_attrs array.

Location

/usr/lib/libct_mc.a

Related reference:

142 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

“mc_class_query_d_*” on page 42
This subroutine queries the RMC subsystem to obtain the dynamic attribute values of a resource class.
“mc_class_query_p_*” on page 47
This subroutine queries the RMC subsystem to obtain the persistent attribute values of a resource class.

mc_query_event_*
This subroutine queries the RMC subsystem to obtain an event's current state.

Purpose

Queries the RMC subsystem to obtain an event's current state.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_query_event_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_query_event_bp subroutine sends the command to the RMC subsystem and blocks execution.

To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_event_bp(

mc_sess_hndl_t sess_hndl,
mc_query_event_rsp_t **response,
mc_registration_id_t registration_id)

v The mc_query_event_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_event_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_query_event_rsp_t **response,
mc_registration_id_t registration_id)

v The mc_query_event_bc subroutine sends the command to the RMC subsystem and blocks execution.
To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_event_bc(

mc_sess_hndl_t sess_hndl,
mc_query_event_cb_t *query_event_cb,
void *query_event_cb_arg,
mc_registration_id_t registration_id)

The definition for the response callback is:
typedef void (mc_query_event_cb_t)(mc_sess_hndl_t,
mc_query_event_rsp_t *,
void *);

v The mc_query_event_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:

Programming RMC 143

#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_event_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_query_event_cb_t *query_event_cb,
void *query_event_cb_arg,
mc_registration_id_t registration_id)

The definition for the response callback is:
typedef void (mc_query_event_cb_t)(mc_sess_hndl_t,
mc_query_event_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

query_event_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

query_event_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

registration_id
The event registration ID that identifies the event whose state information is being requested. A
valid event registration ID is one returned in a successful response from one of the
mc_reg_event_select_* or mc_reg_event_handle_* subroutines. In order for the registration ID to
be valid, the response from the mc_reg_event_select_* or mc_reg_event_handle_* subroutine
must have indicated that the event was successfully registered.

An event returned in a Registration Response from one of the mc_reg_class_event_* subroutines
is not valid.

OUTPUT

response
A pointer to a location in which the RMC API will return a pointer to the response. This
parameter applies only to variations of this subroutine that use the pointer response method.

Description

The mc_query_event_* subroutines can be used by the application to obtain the current state of an event
previously registered by the application using the mc_reg_event_select_* or mc_reg_event_handle_*
subroutines. These subroutines return the current event state by forcing the generation of an event
notification for each resource assigned to the event registration (specified by the registration_id parameter).

144 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Since the event registrations are forced and not the result of the event expression or rearm event
expression evaluating to TRUE, the expression being evaluated will not be toggled.

If the event notification is an error event, then the error indicates the monitoring status as one of the
following:
v waiting for monitoring to commence
v monitoring is suspended due to termination of the resource manager
v monitoring is suspended due to the departure of the node from the cluster

As these events are generated, the expression used in the evaluation is not toggled. If an expression
includes a qualifier, the qualifier is ignored when evaluating the expression and the internal state of the
qualifier remains unchanged.

The response for these subroutines is a structure of type mc_query_event_rsp_t, and is described in
Response structure.

If the mc_query_event_bp or mc_query_event_ap subroutines are called, the RMC subsystem guarantees
that the response is not delivered to the application (in other words, the command or command group
does not complete) until all event notification callbacks for the specified event, resulting from this
command, have been executed. The application cannot invoke any other mc_query_event_* subroutine,
specifying the same registration ID, until the response is delivered.

If the mc_query_event_bc or mc_query_event_ac subroutines are called, the RMC subsystem guarantees
that the response callback is invoked only when all event notification callbacks for the specified event,
resulting from this command, have been executed. The application cannot invoke any other
mc_query_event_* subroutine, specifying the same registration ID, until the response has returned.

In order to avoid deadlocks, the mc_query_event_bp and mc_query_event_bc subroutines may not be
called from within an event notification callback. Furthermore, the mc_send_cmd_grp_wait subroutine
may not be called from within an event notification callback if the associated command group contains
commands added by the mc_query_event_ap or mc_query_event_ac subroutines.

This command cannot be used in an ordered command group.

Security

To query an event state, the user of the calling application must have either e or r permission specified in
an ACL entry for the associated resource or resource class.

Return values

For the mc_query_event_bp and mc_query_event_bc subroutines, a return value of 0 indicates that the
command has been successfully sent to the RMC subsystem and a response has been received and
processed.

For the mc_query_event_ap and mc_query_event_ac subroutines, a return value of 0 indicates that the
command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

Programming RMC 145

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EDEADLOCK
An attempt was made to invoke the command from within an event notification callback.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_EINVALIDEID
The specified registration ID is invalid.

MC_ECLASSEID
The registration ID specified a class event

MC_EQEVENTACTIVE
A previous query event command has not yet completed.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before the response could be received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before the response could be
received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before the
response could be received.

MC_ENOMEM
The API could not allocate required memory.

146 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Response structure

The response for these subroutines is a structure of type mc_query_event_rsp_t.

The response structure definition is:
typedef struct mc_query_event_rsp mc_query_event_rsp_t;
struct mc_query_event_rsp {

mc_errnum_t mc_error;
mc_registration_id_t mc_registration_id;
ct_uint32_t mc_event_count;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the event query command has completed. Any other value is
an error and indicates that the RMC subsystem could not complete the command. The error may
also indicate that the command arguments were in error. The error codes imply which of the
remaining fields in the structure are defined.

mc_registration_id
The event registration ID of the event that was queried.

mc_event_count
The number of events that were generated as a result of this command. If this field is not zero,
then the RMC subsystem guarantees that this response is passed to the application only after all
event notification callbacks for the events generated by this command have been executed.

Location

/usr/lib/libct_mc.a

mc_query_p_handle_*
This subroutine queries the RMC subsystem to obtain the persistent attribute values of a resource.

Purpose

Queries the RMC subsystem to obtain the persistent attribute values of a resource. The resource is
identified using a resource handle.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_query_p_handle_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_query_p_handle_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_p_handle_bp(

mc_sess_hndl_t sess_hndl,

Programming RMC 147

mc_query_rsp_t **response,
ct_resource_handle_t rsrc_hndl,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

v The mc_query_p_handle_ap subroutine adds the command to a command group. If used in an
ordered command group, however, please note that all other commands in the command group must
also be the form that uses a resource handle to specify the command target. The same resource handle
must be used on all commands in the command group.
To receive responses, this subroutine specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_p_handle_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_query_rsp_t **response,
ct_resource_handle_t rsrc_hndl,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

v The mc_query_p_handle_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_p_handle_bc(

mc_sess_hndl_t sess_hndl,
mc_query_cb_t *query_cb,
void *query_cb_arg,
ct_resource_handle_t rsrc_hndl,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

The definition for the response callback is:
typedef void (mc_query_cb_t)(mc_sess_hndl_t,
mc_query_rsp_t *,
void *);

v The mc_query_p_handle_ac subroutine adds the command to a command group. If used in an ordered
command group, however, please note that all other commands in the command group must also be
the form that uses a resource handle to specify the command target.
To receive responses, this subroutine specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_p_handle_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_query_cb_t *query_cb,
void *query_cb_arg,
ct_resource_handle_t rsrc_hndl,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

The definition for the response callback is:
typedef void (mc_query_cb_t)(mc_sess_hndl_t,
mc_query_rsp_t *,
void *);

Parameters

INPUT

148 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

query_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

query_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_hndl
The resource handle that identifies the resource whose persistent attribute values are being
requested by the application. A resource handle is returned in the response structure for many
RMC API subroutines including the mc_define_resource_* subroutine. An array of resource
handles for resources of a particular resource class is returned in the response structure for the
mc_enumerate_resources_* and mc_enumerate_permitted_rsrcs_* subroutines. To validate the
resource handle before calling this subroutine, the application can call one of the
mc_validate_rsrc_hndl_* subroutines.

return_attrs
An array of attr_count pointers to persistent attribute names. This parameter, in conjunction with
the attr_count parameter, enables the application to specify persistent attributes to be included in
the query response. If any of the specified attributes are not supported by the resource, they will
not be included in the query response.

If attr_count is 0 (zero), return_attrs should be a NULL pointer. In this case, all persistent attribute
values for a resource are returned.

attr_count
Indicates the number of pointers to persistent attribute names in the return_attrs array. This
parameter, in conjunction with the return_attrs parameter, enables the application to specify
persistent attributes to be included in the query response. If set to 0, all persistent attribute values
for the resource are returned.

OUTPUT

response
A pointer to a location in which the RMC API will return a pointer to the response. This
parameter applies only to variations of this subroutine that use the pointer response method.

Description

The mc_query_p_handle_* subroutines can be used by the application to obtain persistent attribute
values of a resource from the RMC subsystem. The resource is identified using a resource handle
(specified by the rsrc_hndl parameter).

Persistent attributes that are of variable type Quantum cannot be queried since such attributes have no
value.

Programming RMC 149

The response for these subroutines is a structure of type mc_query_rsp_t, and is described in Response
structure.

If this command is used in an ordered command group, please note that all other commands in the
command group must be the form that uses a resource handle to specify the command target. The
same resource handle must be used on all commands in the command group.

Security

To query resource persistent attributes, the user of the calling application must have either q or r
permission specified in an ACL entry for the resource.

Return values

For the mc_query_p_handle_bp and mc_query_p_handle_bc subroutines, a return value of 0 indicates
that the command has been successfully sent to the RMC subsystem and a response has been received
and processed.

For the mc_query_p_handle_ap and mc_query_p_handle_ac subroutines, a return value of 0 indicates
that the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_ETARGETMISMATCH
The target specified for the command does not match the target of the command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before the response could be received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before the response could be
received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

150 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before the
response could be received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_query_rsp_t. The response contains the
values of the requested attributes for the specified resource.

The response structure definition is:
typedef struct mc_query_rsp mc_query_rsp_t;
struct mc_query_rsp {

mc_errnum_t mc_error;
ct_resource_handle_t mc_rsrc_hndl;
mc_attribute_t *mc_attrs;
ct_uint32_t mc_attr_count;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the query was successful. Any other value is an error and
indicates that the RMC subsystem or a resource manager could not provide some or all of the
requested information. The error may also indicate that the command arguments were in error.
The error codes imply which of the remaining fields in the structure are defined.

mc_rsrc_hndl
Specifies the resource handle of the resource that was queried, and whose attributes are contained
in this response.

mc_attrs
A pointer to an array of the requested attributes.

mc_attr_count
Indicates the number of entries in the mc_attrs array.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_class_query_d_*” on page 42
This subroutine queries the RMC subsystem to obtain the dynamic attribute values of a resource class.

mc_query_p_select_*
This subroutine queries the RMC subsystem to obtain the persistent attribute values of one or more
resources of a resource class.

Programming RMC 151

Purpose

Queries the RMC subsystem to obtain the persistent attribute values of one or more resources of a
resource class. The resources are identified using attribute selection.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_query_p_select_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_query_p_select_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_p_select_bp(

mc_sess_hndl_t sess_hndl,
mc_query_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

v The mc_query_p_select_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_p_select_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_query_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

v The mc_query_p_select_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_p_select_bc(

mc_sess_hndl_t sess_hndl,
mc_query_cb_t *query_cb,
void *query_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

The definition for the response callback is:
typedef void (mc_query_cb_t)(mc_sess_hndl_t,
mc_query_rsp_t *,
void *);

152 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

v The mc_query_p_select_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_query_p_select_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_query_cb_t *query_cb,
void *query_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
ct_char_t **return_attrs,
ct_uint32_t attr_count)

The definition for the response callback is:
typedef void (mc_query_cb_t)(mc_sess_hndl_t,
mc_query_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

query_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

query_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_class_name
Pointer to a resource class name. Identifies the parent resource class of the resource(s) whose
persistent attribute values are being requested by the application.

select_attrs
A selection string expression that identifies one or more resources of the resource class identified
by the rsrc_class_name parameter. Persistent attribute values will be returned for all resources of
the resource that match the selection string expression.

return_attrs
An array of attr_count pointers to persistent attribute names. This parameter, in conjunction with
the attr_count parameter, enables the application to specify persistent attributes to be included in
the query response. If any of the specified attributes are not supported by the resource, they will
not be included in the query response.

If attr_count is 0 (zero), return_attrs should be a NULL pointer. In this case, all persistent attribute
values for a resource are returned.

Programming RMC 153

attr_count
Indicates the number of pointers to persistent attribute names in the return_attrs array. This
parameter, in conjunction with the return_attrs parameter, enables the application to specify
persistent attributes to be included in the query response. If set to 0, all persistent attribute values
for the resource are returned.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_query_d_select_* subroutines can be used by the application to obtain the persistent attribute
values of one or more resources of a resource class (identified by the rsrc_class_name parameter). The
resource or resources are identified using a selection string (specified by the select_attrs parameter)

Persistent attributes that are of variable type Quantum cannot be queried since such attributes have no
value.

The response for these subroutines is a structure of type mc_query_rsp_t, and is described in Response
structure.

This command cannot be used in an ordered command group.

Security

To query resource persistent attributes, the user of the calling application must have either q or r
permission specified in the ACL entry for the resource(s).

Return values

For the mc_query_p_select_bp and mc_query_p_select_bc subroutines, a return value of 0 indicates that
the command has been successfully sent to the RMC subsystem and one or more responses have been
received and processed.

For the mc_query_p_select_ap and mc_query_p_select_ac subroutines, a return value of 0 indicates that
the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

154 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_ETARGETMISMATCH
The target specified for the command does not match the target of the command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_query_rsp_t. The response contains the
values of the requested attributes for one specified resource. If more than one resource is identified by the
select_attrs parameter, then there will be one response for each resource. If any of the query arguments are
invalid, then only one response is returned, indicating the error (even if more than one resource was
identified by the select_attrs parameter).

Programming RMC 155

The response structure definition is:
typedef struct mc_query_rsp mc_query_rsp_t;
struct mc_query_rsp {

mc_errnum_t mc_error;
ct_resource_handle_t mc_rsrc_hndl;
mc_attribute_t *mc_attrs;
ct_uint32_t mc_attr_count;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the query was successful. Any other value is an error and
indicates that the RMC subsystem or a resource manager could not provide some or all of the
requested information. The error may also indicate that the command arguments were in error.
The error codes imply which of the remaining fields in the structure are defined.

mc_rsrc_hndl
Specifies the resource handle of the resource that was queried, and whose attributes are contained
in this response.

mc_attrs
A pointer to an array of the requested attributes.

mc_attr_count
Indicates the number of entries in the mc_attrs array.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_class_query_d_*” on page 42
This subroutine queries the RMC subsystem to obtain the dynamic attribute values of a resource class.
“mc_class_query_p_*” on page 47
This subroutine queries the RMC subsystem to obtain the persistent attribute values of a resource class.

mc_refresh_config_*
This subroutine refreshes the configuration of resources within a resource class.

Purpose

Refreshes the configuration of resources within a resource class.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_refresh_config_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_refresh_config_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_refresh_config_bp(

156 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

mc_sess_hndl_t sess_hndl,
mc_class_name_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name)

v The mc_refresh_config_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_refresh_config_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_class_name_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name)

v The mc_refresh_config_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>
ct_int32_t

mc_refresh_config_bc(
mc_sess_hndl_t sess_hndl,
mc_refresh_cfg_cb_t *refresh_cfg_cb,
void *refresh_cfg_cb_arg,
ct_char_t *rsrc_class_name)

The definition for the response callback is:
typedef void (mc_refresh_cfg_cb_t)(mc_sess_hndl_t,
mc_class_name_rsp_t *,
void *);

v The mc_refresh_config_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_refresh_config_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_refresh_cfg_cb_t *refresh_cfg_cb,
void *refresh_cfg_cb_arg,
ct_char_t *rsrc_class_name)

The definition for the response callback is:
typedef void (mc_refresh_cfg_cb_t)(mc_sess_hndl_t,
mc_class_name_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

Programming RMC 157

refresh_cfg_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

refresh_cfg_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_class_name
Pointer to a resource class name. Identifies the resource class whose resource configuration is to
be refreshed.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_refresh_config_* subroutines can be used by the application to have the RMC subsystem refresh
the configuration of the resources within one resource class (identified by the rsrc_class_name parameter).
If the application is monitoring any of the resources within the resource class, it may receive events as the
configuration is refreshed.

The response for these subroutines is a structure of type mc_class_name_rsp_t, and is described in
Response structure.

This command cannot be used in an ordered command group.

Security

To refresh resource configuration, the user of the calling application must have either c or w permission
specified in an ACL entry for the resource class.

Return values

For the mc_refresh_config_bp and mc_refresh_config_bc subroutines, a return value of 0 indicates that
the command has been successfully sent to the RMC subsystem and one or more responses have been
received and processed.

For the mc_refresh_config_ap and mc_refresh_config_ac subroutines, a return value of 0 indicates that
the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

158 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Programming RMC 159

Response structure

The response for these subroutines is a structure of type mc_class_name_rsp_t. This command results in
one response if there are no errors, and one or more responses if there are one or more errors.

The response structure definition is:
typedef struct mc_class_name_rsp mc_class_name_rsp_t;
struct mc_class_name_rsp {

mc_errnum_t mc_error;
ct_char_t *mc_class_name;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the command was successful. Any other value is an error. If
there is an error, the error codes indicate whether the class name specified by the mc_class_name
field is invalid or if the command could not be completed for the resource class. The error may
also indicate that the command arguments were in error.

mc_class_name
The name of the resource class that was the target of the command.

Location

/usr/lib/libct_mc.a

mc_reg_class_event_*
This subroutine registers a resource class event with the RMC subsystem.

Purpose

Registers a resource class event with the RMC subsystem.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_reg_class_event_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_reg_class_event_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reg_class_event_bp(

mc_sess_hndl_t sess_hndl,
mc_reg_rsp_t **response,
mc_reg_opts_t options,
ct_char_t *rsrc_class_name,
ct_char_t **pd_names,
ct_uint32_t name_count,
ct_char_t **return_attrs,
ct_uint32_t attr_count,

160 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

ct_char_t *expr,
ct_char_t *raexpr,
mc_class_event_cb_t *event_cb,
void *event_cb_arg)

The definition for the event notification callback is:
typedef void (mc_class_event_cb_t)(mc_sess_hndl_t,
mc_class_event_t *,
void *);

v The mc_reg_class_event_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reg_class_event_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_reg_rsp_t **response,
mc_reg_opts_t options,
ct_char_t *rsrc_class_name,
ct_char_t **pd_names,
ct_uint32_t name_count,
ct_char_t **return_attrs,
ct_uint32_t attr_count,
ct_char_t *expr,
ct_char_t *raexpr,
mc_class_event_cb_t *event_cb,
void *event_cb_arg)

The definition for the event notification callback is:
typedef void (mc_class_event_cb_t)(mc_sess_hndl_t,
mc_class_event_t *,
void *);

v The mc_reg_class_event_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reg_class_event_bc(

mc_sess_hndl_t sess_hndl,
mc_reg_cb_t *reg_cb,
void *reg_cb_arg,
mc_reg_opts_t options,
ct_char_t *rsrc_class_name,
ct_char_t **pd_names,
ct_uint32_t name_count,
ct_char_t **return_attrs,
ct_uint32_t attr_count,
ct_char_t *expr,
ct_char_t *raexpr,
mc_class_event_cb_t *event_cb,
void *event_cb_arg)

The definition for the response callback is:
typedef void (mc_reg_cb_t)(mc_sess_hndl_t,
mc_reg_rsp_t *,
void *);

The definition for the event notification callback is:
typedef void (mc_class_event_cb_t)(mc_sess_hndl_t,
mc_class_event_t *,
void *);

Programming RMC 161

v The mc_reg_class_event_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reg_class_event_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_reg_cb_t *reg_cb,
void *reg_cb_arg,
mc_reg_opts_t options,
ct_char_t *rsrc_class_name,
ct_char_t **pd_names,
ct_uint32_t name_count,
ct_char_t **return_attrs,
ct_uint32_t attr_count,
ct_char_t *expr,
ct_char_t *raexpr,
mc_class_event_cb_t *event_cb,
void *event_cb_arg)

The definition for the response callback is:
typedef void (mc_reg_cb_t)(mc_sess_hndl_t,
mc_reg_rsp_t *,
void *);

The definition for the event notification callback is:
typedef void (mc_class_event_cb_t)(mc_sess_hndl_t,
mc_class_event_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

reg_cb Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

reg_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

options Specifies the value MC_REG_OPTS_NONE to indicate that there are no options or is the bitwise
inclusive OR of one or more of the following options:

MC_REG_OPTS_IMMED_EVAL
Generate an event at the first observation of the resource class specified in the event
expression (identified by the expr parameter). Generate the event even if the event
expression evaluates to FALSE. This option enables the application to obtain the value of
the attribute when the event is registered.

162 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_REG_OPTS_NO_REG
Do not register the event. Instead, merely evaluate the remaining arguments for
syntactical correctness and return an appropriate response.

MC_REG_OPTS_NO_TOGGLE
If this option is set when a re-arm expression is specified, the re-arm expression is not a
toggle. Rather, upon each evaluation, the primary expression is evaluated first. If the
expression evaluates to True, an event is generated. If the expression evaluates to FALSE,
the re-arm expression is then evaluated. If the re-arm expression is True, an event is
generated. This evaluation procedure occurs if any of the attributes in either expression is
reported by the resource manager to have a new value.

This option implicitly sets the MC_REG_OPTS_REARM_EVENT option. If a re-arm
expression is not specified, the MC_REG_OPTS_NO_TOGGLE option is ignored.

The re-arm expression is considered an alternative expression to be evaluated; it does not
"re-arm" a trigger that is specified by the primary expression.

MC_REG_OPTS_REARM_EVENT
Also trigger events when the rearm event expression (identified by the raexpr parameter)
evaluates to True.

rsrc_class_name
Pointer to a resource class name. Identifies the resource class for which the event is being
registered.

pd_names

Table 21. mc_reg_class_event_* subroutine conditional pd_names parameter functions

If: Then:

The management style of the resource class is globalized and
the session scope is DM

The parameter should be a pointer to an array of name_count
peer domain names. Since a session scope of DM refers to a
CSM management domain, and, since such a domain can
contain multiple peer domains, this enables the application to
specify the peer domain(s) where the resource class event
should be registered.

To specify all peer domains within the management domain,
this parameter should be a Null pointer, and the name_count
parameter should be 0 (zero).

The management style of the resource class is subdivided or the
session scope is not DM

This parameter should be a Null pointer, and the name_count
parameter should be 0 (zero)

name_count
Identifies the number of pointers in the pd_names array. If pd_names is a Null pointer, this
parameter must be 0 (zero)

return_attrs
An array of attr_count pointers to persistent attribute names. This parameter, in conjunction with
the attr_count parameter, enables the application to specify additional persistent attribute values
to be included in the event notification.

If the attr_count is 0 (zero), return_attrs should be a Null pointer.

attr_count
Identifies the number of pointers to persistent attribute names in the return_attrs array. This
parameter, in conjunction with the return_attrs parameter, enables the application to specify
additional persistent attribute values to be included in the event notification.

expr A pointer to the event expression. In many cases, the event expression consists of an attribute
name, a mathematical expression symbol, and a constant.

raexpr A pointer to a rearm event expression.

Programming RMC 163

If no rearm event expression is needed for the resource class event, then this parameter can be a
Null pointer.

If a pointer to a rearm event expression is provided, then RMC will stop evaluating the event
expression once it evaluates to True, and instead will evaluate the rearm event expression until it
is True. Once the rearm event expression evaluates to True, the resource class event is rearmed. In
other words, RMC will once again evaluate the event expression identified by the expr parameter.

If a pointer to a rearm event expression is provided, and the command option
MC_REG_OPTS_REARM_EVENT is set (using the options parameter), then events will be
generated when the rearm event expression evaluates to True. Otherwise, no events are generated
when the rearm event expression is True.

event_cb
Identifies the callback routine that will be invoked by the RMC API when the event expression
identified by the expr parameter evaluates to True. If the MC_REG_OPTS_REARM_EVENT
option is set (using the options parameter), then the RMC API will also invoke this callback
routine when the rearm event expression identified by the raexpr parameter evaluates to True.

The callback is invoked using a thread supplied to the RMC API by the application calling the
mc_dispatch subroutine.

event_cb_arg
Specifies an argument that the RMC API will pass to the callback routine identified by the
event_cb parameter.

OUTPUT

response
A pointer to a location in which the RMC API will return a pointer to the response. This
parameter applies only to variations of this subroutine that use the pointer response method.

Description

The mc_reg_class_event subroutines can be used by the application to register a resource class event with
the RMC subsystem. When an event occurs, the RMC subsystem sends an event notification to the
application. Included in the event notification is the name of the resource class associated with the event.
In order to get additional information about the resource class associated with the event, the application
can, when calling these subroutines, use the return_attrs and attr_count parameters to specify that the
RMC subsystem should return additional persistent attribute information.

This command cannot be used in an ordered command group.

If the resource class specified by the rsrc_class_name parameter is not available when the application calls
the subroutine, the event registration will still succeed (as long as there are no errors). If the specified
resource class becomes available, then the registration will be completed. Resource classes can become
available when a node joins a cluster or a resource manager is started.

The response for these subroutines is a structure of type mc_reg_rsp_t, and is described in Response
structure.

The event notification consists of a structure of type mc_class_event_t.
typedef struct mc_class_event mc_class_event_t;
struct mc_class_event {

mc_errnum_t mc_error;
mc_event_flags_t mc_event_flags;
struct timeval mc_timestamp;
ct_char_t *mc_class_name;
ct_char_t *mc_peer_domain_name;

164 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

mc_attribute_t *mc_attrs;
ct_uint32_t mc_attr_count;
ct_uint32_t mc_e_attr_count;

};

The fields of this structure contain the following:

mc_error
Indicates whether or not the event is an error event. If an error event, the error codes imply
which of the remaining fields in the structure are defined. If not an error event, all of the
remaining fields are defined.

mc_event_flags
A bit field that describes the event using values defined by the mc_event_flags_t enumeration.
Event flags are defined by the mc_event_flags_t enumeration.
typedef enum mc_event_flags mc_event_flags_t;
enum mc_event_flags {

MC_EVENT_RE_ARM = 0x0001,
MC_EVENT_EXPR_FALSE = 0x0002,
MC_EVENT_IMMED_EVAL = 0x0004,
MC_EVENT_REFRESH = 0x0008,
MC_EVENT_MISSING_PATTR = 0x0010,
MC_EVENT_UNASSIGN = 0x0020,
MC_EVENT_UNASSIGN_UNDEF = 0x0040,
MC_EVENT_UNASSIGN_NO_MATCH = 0x0080,
MC_EVENT_UNASSIGN_NO_GROUP = 0x0100,
MC_EVENT_QUERY_EVENT = 0x0200,
MC_EVENT_ASSIGN_RESOURCE = 0x0400,
MC_EVENT_ASSIGN_NEW_RESOURCE = 0x0800

};

The mc_event_flags_t enumeration defines the following values:

MC_EVENT_RE_ARM
The event was generated from the rearm expression.

MC_EVENT_EXPR_FALSE
The expression evaluated to false. However, an event was generated for one of the
following reasons:
v The application requested immediate evaluation when the event was registered.
v The resource variable was refreshed.
v The event was queried using one of the mc_query_event_* subroutines.

MC_EVENT_IMMED_EVAL
The event was generated as the result of an immediate evaluation.

MC_EVENT_REFRESH
The event was generated as the result of a refresh of the resource variable. For example,
monitoring of the variable resumed after a resource manager recovered from a failure.

MC_EVENT_MISSING_PATTR
One or more requested persistent attributes could not be returned because they are not
supported in the resource class identified in the mc_class_name field.

MC_EVENT_UNASSIGN
The resource variable specified in the event has been unassigned from the event
registration. The MC_EVENT_UNASSIGN_UNDEF,
MC_EVENT_UNASSIGN_NO_MATCH, or MC_EVENT_UNASSIGN_NO_GROUP values
indicate why the event has been unassigned.

MC_EVENT_UNASSIGN_UNDEF
The associated resource has been undefined.

Programming RMC 165

MC_EVENT_UNASSIGN_NO_MATCH
The persistent attributes of the associated resource no longer match the select string or
the associated resource is located on a node that has been unconfigured.

MC_EVENT_UNASSIGN_NO_GROUP
The associated resource is located on a node that is no longer in the node group specified
in the select string that was supplied to the event registration command.

MC_EVENT_QUERY_EVENT
The event was generated as the result of a query event command.

MC_EVENT_ASSIGN_RESOURCE
The associated resource has been assigned subsequent to the initial event registration.
This flag is only present in the first event notification after the resource is assigned. Note
that, unless the event registration specified immediate evaluation, some time may elapse
between the time the resource was assigned to the registration and when the event
notification was generated.

MC_EVENT_ASSIGN_NEW_RESOURCE
Indicates that the resource assigned subsequent to the initial event registration has
recently been created. This flag is only present in the first event notification after the
resource is assigned.

This field is undefined in any error event.

mc_timestamp
The time the event was generated.

mc_class_name
The name of the resource class, whose state change resulted in the generation of this event.

mc_peer_domain_name
The peer domain where the class event was generated. The name is a Null string if the response
is from a node not in a peer domain.

mc_attrs
Specifies attributes using a pointer to an array of mc_attr_count elements of type mc_attribute_t.

mc_attr_count
The number of elements in the mc_attrs array.

mc_e_attr_count
The number of attributes in the mc_attrs array that were specified in the event expressions.

The attribute array specified by mc_attrs is considered a list, consisting of up to two sub-lists. The first
sub-list consists of the attributes that are found in the event expressions. The second sub-list consists of
the persistent attributes that are specified as return attributes to this subroutine. There are no duplicate
attributes between the two sub-lists. If a persistent attribute is specified in an event expression and as a
return attribute, it is only placed in the first sub-list.

The number of attributes in the first sub-list is given by mc_e_attr_count. The number of attributes in the
second sub-list is given by the expression:
mc_attr_count - mc_e_attr_count

This expression is guaranteed to be greater than or equal to zero. The MC_RETURN_ATTR_COUNT
macro can be used to calculate the number of return attributes.

Security

To register a resource class event with the RMC subsystem, the user of the calling application must have
either e or r permission specified in an ACL entry for the resource class.

166 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Return values

For the mc_reg_class_event_bp and mc_reg_class_event_bc subroutines, a return value of 0 indicates that
the command has been successfully sent to the RMC subsystem and a response has been received and
processed.

For the mc_reg_class_event_ap and mc_reg_class_event_ac subroutines, a return value of 0 indicates that
the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before the response could be received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before the response could be
received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before the
response could be received.

Programming RMC 167

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_reg_rsp_t. The response structure definition
is:
typedef struct mc_reg_rsp mc_reg_rsp_t;
struct mc_reg_rsp {

mc_errnum_t mc_error;
mc_registration_id_t mc_registration_id;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the event has been successfully registered by the RMC
subsystem. Any other value is an error. If this field indicates an error in the arguments supplied
with the event registration command, the error code indicates which argument is in error.

mc_registration_id
If the mc_error field indicates the event has been registered successfully, this field contains the
registration ID. The registration ID can be used by the application to unregister the event using
the mc_unreg_event_* subroutines.

If the response indicates an error, the event has not been registered by the RMC subsystem and
this field is undefined. Note that:
v a successful registration does not indicate that events will ever be generated.
v If events are generated in a multithreaded application, the event notification callback can be

invoked before the Registration Response is processed by the application.

Location

/usr/lib/libct_mc.a

mc_reg_event_handle_*
This subroutine registers a resource event with the RMC subsystem using a resource handle.

Purpose

Registers a resource event with the RMC subsystem using a resource handle.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_reg_event_handle_* subroutines. All four
subroutines issue the same command action, but enable your application to vary how the command is
sent to the RMC subsystem, and how the command response is made available to the application.
v The mc_reg_event_handle_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reg_event_handle_bp(

mc_sess_hndl_t sess_hndl,

168 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

mc_reg_rsp_t **response,
mc_reg_opts_t options,
ct_resource_handle_t rsrc_hndl,
ct_char_t **return_attrs,
ct_uint32_t attr_count,
ct_char_t *expr,
ct_char_t *raexpr,
mc_event_cb_t *event_cb,
void *event_cb_arg)

The definition for the event notification callback is:
typedef void (mc_event_cb_t)(mc_sess_hndl_t,
mc_event_t *,
void *);

v The mc_reg_event_handle_ap subroutine adds the command to a command group. Please note that
this command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reg_event_handle_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_reg_rsp_t **response,
mc_reg_opts_t options,
ct_resource_handle_t rsrc_hndl,
ct_char_t **return_attrs,
ct_uint32_t attr_count,
ct_char_t *expr,
ct_char_t *raexpr,
mc_event_cb_t *event_cb,
void *event_cb_arg)

The definition for the event notification callback is:
typedef void (mc_event_cb_t)(mc_sess_hndl_t,
mc_event_t *,
void *);

v The mc_reg_event_handle_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reg_event_handle_bc(

mc_sess_hndl_t sess_hndl,
mc_reg_cb_t *reg_cb,
void *reg_cb_arg,
mc_reg_opts_t options,
ct_resource_handle_t rsrc_hndl,
ct_char_t **return_attrs,
ct_uint32_t attr_count,
ct_char_t *expr,
ct_char_t *raexpr,
mc_event_cb_t *event_cb,
void *event_cb_arg)

The definition for the response callback is:
typedef void (mc_reg_cb_t)(mc_sess_hndl_t,
mc_reg_rsp_t *,
void *);

The definition for the event notification callback is:
typedef void (mc_event_cb_t)(mc_sess_hndl_t,
mc_event_t *,
void *);

Programming RMC 169

v The mc_reg_event_handle_ac subroutine adds the command to a command group. Please note that
this command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reg_event_handle_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_reg_cb_t *reg_cb,
void *reg_cb_arg,
mc_reg_opts_t options,
ct_resource_handle_t rsrc_hndl,
ct_char_t **return_attrs,
ct_uint32_t attr_count,
ct_char_t *expr,
ct_char_t *raexpr,
mc_event_cb_t *event_cb,
void *event_cb_arg)

The definition for the response callback is:
typedef void (mc_reg_cb_t)(mc_sess_hndl_t,
mc_reg_rsp_t *,
void *);

The definition for the event notification callback is:
typedef void (mc_event_cb_t)(mc_sess_hndl_t,
mc_event_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

reg_cb Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

reg_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

options Specifies the value MC_REG_OPTS_NONE to indicate that there are no options or is the bitwise
inclusive OR of one or more of the following options:

MC_REG_OPTS_IMMED_EVAL
Generate an event at the first observation of the resource class specified in the event
expression (identified by the expr parameter). Generate the event even if the event
expression evaluates to FALSE. This option enables the application to obtain the value of
the attribute when the event is registered.

170 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_REG_OPTS_NO_REG
Do not register the event. Instead, merely evaluate the remaining arguments for
syntactical correctness and return an appropriate response.

MC_REG_OPTS_NO_TOGGLE
If this option is set when a re-arm expression is specified, the re-arm expression is not a
toggle. Rather, upon each evaluation, the primary expression is evaluated first. If the
expression evaluates to True, an event is generated. If the expression evaluates to FALSE,
the re-arm expression is then evaluated. If the re-arm expression is True, an event is
generated. This evaluation procedure occurs if any of the attributes in either expression is
reported by the resource manager to have a new value.

This option implicitly sets the MC_REG_OPTS_REARM_EVENT option. If a re-arm
expression is not specified, the MC_REG_OPTS_NO_TOGGLE option is ignored.

The re-arm expression is considered an alternative expression to be evaluated; it does not
"re-arm" a trigger that is specified by the primary expression.

MC_REG_OPTS_REARM_EVENT
Also trigger events when the rearm event expression (identified by the raexpr parameter)
evaluates to True.

rsrc_hndl
The resource handle that identifies the resource for which the event is being registered. A
resource handle is returned in the response structure for many RMC API subroutines including
the mc_define_resource_* subroutine. An array of resource handles for resources of a particular
resource class is returned in the response structure for the mc_enumerate_resources_* and
mc_enumerate_permitted_rsrcs_* subroutines. To validate the resource handle before calling this
subroutine, the application can call one of the mc_validate_rsrc_hndl_* subroutines.

If the specified resource is not currently available, the event registration will still succeed
provided there are no other errors. When the specified resource becomes available, the event
registration is extended to include the resource.

return_attrs
An array of attr_count pointers to persistent attribute names. This parameter, in conjunction with
the attr_count parameter, enables the application to specify additional persistent attribute values
to be included in the event notification.

If the attr_count is 0 (zero), return_attrs should be a Null pointer.

attr_count
Identifies the number of pointers to persistent attribute names in the return_attrs array. This
parameter, in conjunction with the return_attrs parameter, enables the application to specify
additional persistent attribute values to be included in the event notification.

expr A pointer to the event expression. In many cases, the event expression consists of an attribute
name, a mathematical expression symbol, and a constant.

raexpr A pointer to a rearm event expression.

If no rearm event expression is needed for the event, this parameter can be a Null pointer.

If a pointer to a rearm event expression is provided, then RMC will stop evaluating the event
expression once it evaluates to True, and instead will evaluate the rearm event expression until is
True. Once the rearm event expression evaluates to True, the event is rearmed. In other words,
RMC will once again evaluate the event expression identified by the expr parameter.

If a pointer to a rearm event expression is provided, and the command option
MC_REG_OPTS_REARM_EVENT is set (using the options parameter), then events will be
generated when the rearm event expression evaluates to True. Otherwise, no events are generated
when the rearm event expression is True.

Programming RMC 171

event_cb
Identifies the callback routine that will be invoked by the RMC API when the event expression
identified by the expr parameter evaluates to True. If the MC_REG_OPTS_REARM_EVENT
option is set (using the options parameter), then the RMC API will also invoke this callback
routine when the rearm event expression identified by the raexpr parameter evaluates to True.

The callback is invoked using a thread supplied to the RMC API by the application calling the
mc_dispatch subroutine.

event_cb_arg
Specifies an argument that the RMC API will pass to the callback routine identified by the
event_cb parameter.

OUTPUT

response
A pointer to a location in which the RMC API will return a pointer to the response. This
parameter applies only to variations of this subroutine that use the pointer response method.

Description

Usage: These subroutines cannot be used in an ordered command group.

The mc_reg_event_handle_* subroutines can be used by the application to register a resource class event
with the RMC subsystem. The resource is identified using a resource handle (as specified by the rsrc_hndl
parameter). When an event occurs, the RMC subsystem sends an event notification to the application.

The primary node name of the node where the resource is being monitored, which is not necessarily the
same node as where the resource is located, is included in the event notification. In order to get
additional information about the resource associated with the event, the application can, when calling
these subroutines, use the return_attrs and attr_count parameters to specify that the RMC subsystem
should return additional persistent attribute information.

If the resource specified by the rsrc_hndl parameter is not available when the application calls the
subroutine, the event registration will still succeed (as long as there are no errors). If the specified
resource becomes available, the event registration will be automatically extended to include the resource.
Resources can become available when a node joins a cluster or a resource manager is started.

The response for these subroutines is a structure of type mc_reg_rsp_t, and is described in Response
structure.

The event notification consists of a structure of type mc_event_t.
typedef struct mc_event mc_event_t;
struct mc_event {

mc_errnum_t mc_error;
mc_event_flags_t mc_event_flags;
struct timeval mc_timestamp;
ct_resource_handle_t mc_rsrc_hndl;
mc_attribute_t *mc_attrs;
ct_uint32_t mc_attr_count;
ct_uint32_t mc_e_attr_count;
ct_char_t *mc_node_name;

};

The fields of this structure contain the following:

172 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

mc_error
Indicates whether or not the event is an error event. If an error event, the error codes imply
which of the remaining fields in the structure are defined. If not an error event, all of the
remaining fields are defined.

mc_event_flags
A bit field that describes the event using values defined by the mc_event_flags_t enumeration.
Event flags are defined by the mc_event_flags_t enumeration.
typedef enum mc_event_flags mc_event_flags_t;
enum mc_event_flags {

MC_EVENT_RE_ARM = 0x0001,
MC_EVENT_EXPR_FALSE = 0x0002,
MC_EVENT_IMMED_EVAL = 0x0004,
MC_EVENT_REFRESH = 0x0008,
MC_EVENT_MISSING_PATTR = 0x0010,
MC_EVENT_UNASSIGN = 0x0020,
MC_EVENT_UNASSIGN_UNDEF = 0x0040,
MC_EVENT_UNASSIGN_NO_MATCH = 0x0080,
MC_EVENT_UNASSIGN_NO_GROUP = 0x0100,
MC_EVENT_QUERY_EVENT = 0x0200,
MC_EVENT_ASSIGN_RESOURCE = 0x0400,
MC_EVENT_ASSIGN_NEW_RESOURCE = 0x0800

};

The mc_event_flags_t enumeration defines the following values:

MC_EVENT_RE_ARM
The event was generated from the rearm expression.

MC_EVENT_EXPR_FALSE
The expression evaluated to false. However, and event was generated for one of the
following reasons:
v The application requested immediate evaluation when the event was registered
v The resource variable was refreshed.
v The event was queried using one of the mc_query_event_* subroutines.

MC_EVENT_IMMED_EVAL
The event was generated as the result of an immediate evaluation.

MC_EVENT_REFRESH
The event was generated as the result of a refresh of the resource variable. For example,
monitoring of the variable resumed after a resource manager recovered from a failure.

MC_EVENT_MISSING_PATTR
One or more requested persistent attributes could not be returned because they are not
supported in the resource identified in the mc_rsrc_hndl field.

MC_EVENT_UNASSIGN
The resource variable specified in the event has been unassigned from the event
registration. The MC_EVENT_UNASSIGN_UNDEF,
MC_EVENT_UNASSIGN_NO_MATCH, or MC_EVENT_UNASSIGN_NO_GROUP values
indicate why the event has been unassigned.

MC_EVENT_UNASSIGN_UNDEF
The associated resource has been undefined.

MC_EVENT_UNASSIGN_NO_MATCH
The persistent attributes of the associated resource no longer match the select string or
the associated resource is located on a node that has been unconfigured.

MC_EVENT_UNASSIGN_NO_GROUP
The associated resource is located on a node that is no longer in the node group specified
in the select string that was supplied to the event registration command.

Programming RMC 173

MC_EVENT_QUERY_EVENT
The event was generated as the result of a query event command.

MC_EVENT_ASSIGN_RESOURCE
The associated resource has been assigned subsequent to the initial event registration.
This flag is only present in the first event notification after the resource is assigned. Note
that, unless the event registration specified immediate evaluation, some time may elapse
between the time the resource was assigned to the registration and when the event
notification was generated.

MC_EVENT_ASSIGN_NEW_RESOURCE
Indicates that the resource assigned subsequent to the initial event registration has
recently been created. This is flag only present in the first event notification after the
resource is assigned.

This field is undefined in any error event.

mc_timestamp
The time the event was generated.

mc_rsrc_hndl
The resource handle of the resource whose state change resulted in the generation of this event.

mc_attrs
Specifies attributes using a pointer to an array of mc_attr_count elements of type mc_attribute_t.

mc_attr_count
The number of elements in the mc_attrs array.

mc_e_attr_count
The number of attributes in the mc_attrs array that were specified in the event expressions.

mc_node_name
The primary node name of the node where the resource identified by the mc_rsrc_hndl field, is,
(or was, in the case of certain error events) being monitored.

The attribute array specified by mc_attrs is considered a list, consisting of up to two sub-lists. The first
sub-list consists of the attributes that are found in the event expressions. The second sub-list consists of
the persistent attributes that are specified as return attributes to this subroutine. There are no duplicate
attributes between the two sub-lists. If a persistent attribute is specified in an event expression and as a
return attribute, it is only placed in the first sub-list.

The number of attributes in the first sub-list is given by mc_e_attr_count. The number of attributes in the
second sub-list is given by the expression:
mc_attr_count - mc_e_attr_count

This expression is guaranteed to be greater than or equal to zero. The MC_RETURN_ATTR_COUNT
macro can be used to calculate the number of return attributes.

Security

To register a resource event with the RMC subsystem, the user of the calling application must have either
the e or r permission specified in an ACL entry for the resource.

Return values

For the mc_reg_event_handle_bp and mc_reg_event_handle_bc subroutines, a return value of 0 indicates
that the command has been successfully sent to the RMC subsystem and a response has been received
and processed.

174 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

For the mc_reg_event_handle_ap and mc_reg_event_handle_ac subroutines, a return value of 0 indicates
that the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before the response could be received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before the response could be
received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before the
response could be received.

MC_ENOMEM
The API could not allocate required memory.

Programming RMC 175

Response structure

The response for these subroutines is a structure of type mc_reg_rsp_t. The response structure definition
is:
typedef struct mc_reg_rsp mc_reg_rsp_t;
struct mc_reg_rsp {

mc_errnum_t mc_error;
mc_registration_id_t mc_registration_id;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the event has been successfully registered by the resource
monitoring and control (RMC) subsystem. Any other value is an error. If this field indicates an
error in the arguments supplied with the event registration command, the error code indicates
which argument is in error.

mc_registration_id
If the mc_error field indicates the event has been registered successfully, this field contains the
registration ID. The registration ID can be used by the application to unregister the event using
the mc_unreg_event_* subroutines.

If the response indicates an error, the event has not been registered by the RMC subsystem and
this field is undefined. Note that:
v a successful registration does not indicate that events will ever be generated.
v If events are generated in a multithreaded application, the event notification callback can be

invoked before the Registration Response is processed by the application.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_free_response” on page 75
This subroutine frees a response or event notification structure.

mc_reg_event_select_*
This subroutine registers a resource event with the RMC subsystem using attribute selection.

Purpose

Registers a resource event with the RMC subsystem using attribute selection.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_reg_event_select_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_reg_event_select_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t

176 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

mc_reg_event_select_bp(
mc_sess_hndl_t sess_hndl,
mc_reg_rsp_t **response,
mc_reg_opts_t options,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
ct_char_t **return_attrs,
ct_uint32_t attr_count,
ct_char_t *expr,
ct_char_t *raexpr,
mc_event_cb_t *event_cb,
void *event_cb_arg)

The definition for the event notification callback is:
typedef void (mc_event_cb_t)(mc_sess_hndl_t,
mc_event_t *,
void *);

v The mc_reg_event_select_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reg_event_select_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_reg_rsp_t **response,
mc_reg_opts_t options,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
ct_char_t **return_attrs,
ct_uint32_t attr_count,
ct_char_t *expr,
ct_char_t *raexpr,
mc_event_cb_t *event_cb,
void *event_cb_arg)

The definition for the event notification callback is:
typedef void (mc_event_cb_t)(mc_sess_hndl_t,
mc_event_t *,
void *);

v The mc_reg_event_select_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reg_event_select_bc(

mc_sess_hndl_t sess_hndl,
mc_reg_cb_t *reg_cb,
void *reg_cb_arg,
mc_reg_opts_t options,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
ct_char_t **return_attrs,
ct_uint32_t attr_count,
ct_char_t *expr,
ct_char_t *raexpr,
mc_event_cb_t *event_cb,
void *event_cb_arg)

The definition for the response callback is:
typedef void (mc_reg_cb_t)(mc_sess_hndl_t,
mc_reg_rsp_t *,
void *);

The definition for the event notification callback is:

Programming RMC 177

typedef void (mc_event_cb_t)(mc_sess_hndl_t,
mc_event_t *,
void *);

v The mc_reg_event_select_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reg_event_select_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_reg_cb_t *reg_cb,
void *reg_cb_arg,
mc_reg_opts_t options,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
ct_char_t **return_attrs,
ct_uint32_t attr_count,
ct_char_t *expr,
ct_char_t *raexpr,
mc_event_cb_t *event_cb,
void *event_cb_arg)

The definition for the response callback is:
typedef void (mc_reg_cb_t)(mc_sess_hndl_t,
mc_reg_rsp_t *,
void *);

The definition for the event notification callback is:
typedef void (mc_event_cb_t)(mc_sess_hndl_t,
mc_event_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

reg_cb Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

reg_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

options Specifies the value MC_REG_OPTS_NONE to indicate that there are no options or is the bitwise
inclusive OR of one or more of the following options:

MC_REG_OPTS_IMMED_EVAL
Generate an event at the first observation of the resource class specified in the event

178 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

expression (identified by the expr parameter). Generate the event even if the event
expression evaluates to FALSE. This option enables the application to obtain the value of
the attribute when the event is registered.

MC_REG_OPTS_KEEP_REG
Maintain event registration even if a persistent attributes of resource change such that the
resource would no longer match the selection string expression specified by the
select_attrs parameter. If this option is not specified, such a resource would no longer be
assigned to the event registration and an error would be generated.

MC_REG_OPTS_NO_REG
Do not register the event. Instead, merely evaluate the remaining arguments for
syntactical correctness and return an appropriate response.

MC_REG_OPTS_NO_TOGGLE
If this option is set when a re-arm expression is specified, the re-arm expression is not a
toggle. Rather, upon each evaluation, the primary expression is evaluated first. If the
expression evaluates to True, an event is generated. If the expression evaluates to FALSE,
the re-arm expression is then evaluated. If the re-arm expression is True, an event is
generated. This evaluation procedure occurs if any of the attributes in either expression is
reported by the resource manager to have a new value.

This option implicitly sets the MC_REG_OPTS_REARM_EVENT option. If a re-arm
expression is not specified, the MC_REG_OPTS_NO_TOGGLE option is ignored.

The re-arm expression is considered an alternative expression to be evaluated; it does not
"re-arm" a trigger that is specified by the primary expression.

MC_REG_OPTS_REARM_EVENT
Also trigger events when the rearm event expression (identified by the raexpr parameter)
evaluates to True.

rsrc_class_name
Pointer to a resource class name. Identifies the resource class of the resource(s) for which the
event is being registered.

select_attrs
A selection string expression that identifies one or more resources of the resource class identified
by the rsrc_class_name parameter. Resources of the resource class that match the selection string
expression will be assigned to the event registration.

return_attrs
An array of attr_count pointers to persistent attribute names. This parameter, in conjunction with
the attr_count parameter, enables the application to specify additional persistent attribute values
to be included in the event notification.

If the attr_count is 0 (zero), return_attrs should be a Null pointer.

attr_count
Identifies the number of pointers to persistent attribute names in the return_attrs array. This
parameter, in conjunction with the return_attrs parameter, enables the application to specify
additional persistent attribute values to be included in the event notification.

expr A pointer to the event expression. In many cases, the event expression consists of an attribute
name, a mathematical expression symbol, and a constant.

raexpr A pointer to a rearm event expression.

If no rearm event expression is needed for the event, then this parameter can be a Null pointer.

If a pointer to a rearm event expression is provided, then RMC will stop evaluating the event
expression once it evaluates to True, and instead will evaluate the rearm event expression until is

Programming RMC 179

True. Once the rearm event expression evaluates to True, the event is rearmed. In other words,
RMC will once again evaluate the event expression identified by the expr parameter.

If a pointer to a rearm event expression is provided, and the command option
MC_REG_OPTS_REARM_EVENT is set (using the options parameter), then events will be
generated when the rearm event expression evaluates to True. Otherwise, no events are generated
when the rearm event expression is True.

event_cb
Identifies the callback routine that will be invoked by the RMC API when the event expression
identified by the expr parameter evaluates to True. If the MC_REG_OPTS_REARM_EVENT
option is set (using the options parameter), then the RMC API will also invoke this callback
routine when the rearm event expression identified by the raexpr parameter evaluates to True.

The callback is invoked using a thread supplied to the RMC API by the application calling the
mc_dispatch subroutine.

event_cb_arg
Specifies an argument that the RMC API will pass to the callback routine identified by the
event_cb parameter.

OUTPUT

response
A pointer to a location in which the RMC API will return a pointer to the response. This
parameter applies only to variations of this subroutine that use the pointer response method.

Description

Usage: These subroutines cannot be used in an ordered command group.

The mc_reg_event_select_* subroutines can be used by the application to register a resource event with
the RMC subsystem. Resources of the resource class (identified by the rsrc_class_name parameter) that
match the selection string (specified by the select_attrs parameter) are assigned to the event registration.

The primary node name of the node where the resource is being monitored, which is not necessarily the
same node as where the resource is located, is included in the event notification. In order to get
additional information about the resource associated with the event, the application can, when calling
these subroutines, use the return_attrs and attr_count parameters to specify that the RMC subsystem
should return additional persistent attribute information.

Even if no resource that matches the select_attrs selection string is found when the application calls the
subroutine, the event registration will still succeed (as long as there are no other errors). If a resource
becomes available that matches the select_attrs selection string, the event registration will be automatically
extended to include the resource. Resources can become available when a node joins a cluster, a resource
manager is started, or a resource manager defines new resources.

The response for these subroutines is a structure of type mc_reg_rsp_t, and is described in Response
structure.

The event notification consists of a structure of type mc_event_t.
typedef struct mc_event mc_event_t;
struct mc_event {

mc_errnum_t mc_error;
mc_event_flags_t mc_event_flags;
struct timeval mc_timestamp;
ct_resource_handle_t mc_rsrc_hndl;
mc_attribute_t *mc_attrs;

180 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

ct_uint32_t mc_attr_count;
ct_uint32_t mc_e_attr_count;
ct_char_t *mc_node_name;

};

The fields of this structure contain the following:

mc_error
Indicates whether or not the event is an error event. If an error event, the error codes imply
which of the remaining fields in the structure are defined. If not an error event, all of the
remaining fields are defined.

mc_event_flags
A bit field that describes the event using values defined by the mc_event_flags_t enumeration.
Event flags are defined by the mc_event_flags_t enumeration.
typedef enum mc_event_flags mc_event_flags_t;
enum mc_event_flags {

MC_EVENT_RE_ARM = 0x0001,
MC_EVENT_EXPR_FALSE = 0x0002,
MC_EVENT_IMMED_EVAL = 0x0004,
MC_EVENT_REFRESH = 0x0008,
MC_EVENT_MISSING_PATTR = 0x0010,
MC_EVENT_UNASSIGN = 0x0020,
MC_EVENT_UNASSIGN_UNDEF = 0x0040,
MC_EVENT_UNASSIGN_NO_MATCH = 0x0080,
MC_EVENT_UNASSIGN_NO_GROUP = 0x0100,
MC_EVENT_QUERY_EVENT = 0x0200,
MC_EVENT_ASSIGN_RESOURCE = 0x0400,
MC_EVENT_ASSIGN_NEW_RESOURCE = 0x0800

};

The mc_event_flags_t enumeration defines the following values:

MC_EVENT_RE_ARM
The event was generated from the rearm expression.

MC_EVENT_EXPR_FALSE
The expression evaluated to false. However, and event was generated for one of the
following reasons:
v The application requested immediate evaluation when the event was registered
v The resource variable was refreshed.
v The event was queried using one of the mc_query_event_* subroutines.

MC_EVENT_IMMED_EVAL
The event was generated as the result of an immediate evaluation.

MC_EVENT_REFRESH
The event was generated as the result of a refresh of the resource variable. For example,
monitoring of the variable resumed after a resource manager recovered from a failure.

MC_EVENT_MISSING_PATTR
One or more requested persistent attributes could not be returned because they are not
supported in the resource identified in the mc_rsrc_hndl field.

MC_EVENT_UNASSIGN
The resource variable specified in the event has been unassigned from the event
registration. The MC_EVENT_UNASSIGN_UNDEF,
MC_EVENT_UNASSIGN_NO_MATCH, or MC_EVENT_UNASSIGN_NO_GROUP values
indicate why the event has been unassigned.

MC_EVENT_UNASSIGN_UNDEF
The associated resource has been undefined.

Programming RMC 181

MC_EVENT_UNASSIGN_NO_MATCH
The persistent attributes of the associated resource no longer match the select string or
the associated resource is located on a node that has been unconfigured.

MC_EVENT_UNASSIGN_NO_GROUP
The associated resource is located on a node that is no longer in the node group specified
in the select string that was supplied to the event registration command.

MC_EVENT_QUERY_EVENT
The event was generated as the result of a query event command.

MC_EVENT_ASSIGN_RESOURCE
The associated resource has been assigned subsequent to the initial event registration.
This flag is only present in the first event notification after the resource is assigned. Note
that, unless the event registration specified immediate evaluation, some time may elapse
between the time the resource was assigned to the registration and when the event
notification was generated.

MC_EVENT_ASSIGN_NEW_RESOURCE
Indicates that the resource assigned subsequent to the initial event registration has
recently been created. This flag is only present in the first event notification after the
resource is assigned.

This field is undefined in any error event.

mc_timestamp
The time the event was generated.

mc_rsrc_hndl
The resource handle of the resource whose state change resulted in the generation of this event.

mc_attrs
Specifies attributes using a pointer to an array of mc_attr_count elements of type mc_attribute_t.

mc_attr_count
The number of elements in the mc_attrs array.

mc_e_attr_count
The number of attributes in the mc_attrs array that were specified in the event expressions.

mc_node_name
The primary node name of the node where the resource identified by the mc_rsrc_hndl field, is,
(or was, in the case of certain error events) being monitored.

The attribute array specified by mc_attrs is considered a list, consisting of up to two sub-lists. The first
sub-list consists of the attributes that are found in the event expressions. The second sub-list consists of
the persistent attributes that are specified as return attributes to this subroutine. There are no duplicate
attributes between the two sub-lists. If a persistent attribute is specified in an event expression and as a
return attribute, it is only placed in the first sub-list.

The number of attributes in the first sub-list is given by mc_e_attr_count. The number of attributes in the
second sub-list is given by the expression:
mc_attr_count - mc_e_attr_count

This expression is guaranteed to be greater than or equal to zero. The MC_RETURN_ATTR_COUNT
macro can be used to calculate the number of return attributes.

Security

To register a resource event with the RMC subsystem, the user of the calling application must have either
the e or r permission specified in an ACL entry for the specified resource(s)

182 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Return values

For the mc_reg_event_select_bp and mc_reg_event_select_bc subroutines, a return value of 0 indicates
that the command has been successfully sent to the RMC subsystem and a response has been received
and processed.

For the mc_reg_event_select_ap and mc_reg_event_select_ac subroutines, a return value of 0 indicates
that the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before the response could be received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before the response could be
received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before the
response could be received.

Programming RMC 183

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_reg_rsp_t. The response structure definition
is:
typedef struct mc_reg_rsp mc_reg_rsp_t;
struct mc_reg_rsp {

mc_errnum_t mc_error;
mc_registration_id_t mc_registration_id;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the event has been successfully registered by the resource
monitoring and control (RMC) subsystem. Any other value is an error. If this field indicates an
error in the arguments supplied with the event registration command, the error code indicates
which argument is in error.

mc_registration_id
If the mc_error field indicates the event has been registered successfully, this field contains the
registration ID. The registration ID can be used by the application to unregister the event using
the mc_unreg_event_* subroutines.

If the response indicates an error, the event has not been registered by the RMC subsystem and
this field is undefined. Note that:
v a successful registration does not indicate that events will ever be generated.
v If events are generated in a multithreaded application, the event notification callback can be

invoked before the Registration Response is processed by the application.

Location

/usr/lib/libct_mc.a

mc_reset_*
This subroutine requests the RMC subsystem to force a resource offline.

Purpose

Requests the RMC subsystem to force a resource offline.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_reset_* subroutines. All four subroutines issue the
same command action, but enable your application to vary how the command is sent to the RMC
subsystem, and how the command response is made available to the application.
v The mc_reset_bp subroutine sends the command to the RMC subsystem and blocks execution. To

receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reset_bp(

184 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

mc_sess_hndl_t sess_hndl,
mc_rsrc_hndl_rsp_t **response,
ct_resource_handle_t rsrc_hndl,
ct_structured_data_t *data)

v The mc_reset_ap subroutine adds the command to a command group. If used in an ordered command
group, however, please note that all other commands in the command group must also be the form
that uses a resource handle to specify a command target. To receive responses, this subroutine specifies
the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reset_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_rsrc_hndl_rsp_t **response,
ct_resource_handle_t rsrc_hndl,
ct_structured_data_t *data)

v The mc_reset_bc subroutine sends the command to the RMC subsystem and blocks execution. To
receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reset_bc(

mc_sess_hndl_t sess_hndl,
mc_reset_cb_t *reset_cb,
void *reset_cb_arg,
ct_resource_handle_t rsrc_hndl,
ct_structured_data_t *data)

The definition for the response callback is:
typedef void (mc_reset_cb_t)(mc_sess_hndl_t,
mc_rsrc_hndl_rsp_t *,
void *);

v The mc_reset_ac subroutine adds the command to a command group. If used in an ordered command
group, however, please note that all other commands in the command group must also be the form
that uses a resource handle to specify a command target. To receive responses, this subroutine specifies
the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_reset_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_reset_cb_t *reset_cb,
void *reset_cb_arg,
ct_resource_handle_t rsrc_hndl,
ct_structured_data_t *data)

The definition for the response callback is:
typedef void (mc_reset_cb_t)(mc_sess_hndl_t,
mc_rsrc_hndl_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should

Programming RMC 185

be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

reset_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

reset_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_hndl
The resource handle that identifies the resource to be forced offline. A resource handle is returned
in the response structure for many RMC API subroutines including the mc_define_resource_*
subroutine. An array of resource handles for resources of a particular resource class is returned in
the response structure for the mc_enumerate_resources_* and mc_enumerate_permitted_rsrcs_*
subroutines. To validate the resource handle before calling this subroutine, the application can call
one of the mc_validate_rsrc_hndl_* subroutines.

data A pointer to structured data containing resource class specific options for taking the resource
offline. To accept the default values (or if the resource class does not define options) for going
offline, the data parameter should be a NULL pointer.

To obtain the syntax and semantics for the structured data required by the resource class for
specifying offline options, the application can use the mc_qdef_sd_* subroutine.

OUTPUT

response
A pointer to a location in which the RMC API will return a pointer to the response. This
parameter applies only to variations of this subroutine that use the pointer response method.

Description

The mc_reset_* subroutines can be used by the application to send a request to the RMC subsystem to
force a resource (identified by the rsrc_hndl parameter) offline. The request is performed by the resource's
associated resource manager. If the resource manager accepts structured data as options for taking a
resource offline, the application can provide this using the data parameter.

The mc_rest_* subroutines are more forceful versions of the mc_offline_* subroutines, in that the
resource manager must ensure that the resource goes offline.

The response for these subroutines is a structure of type mc_rsrc_hndl_rsp_t, and is described in
Response structure.

If this command is used in an ordered command group, please note that all other commands in the
command group must be the form that uses a resource handle to specify the command target. The
same resource handle must be used on all commands in the command group.

Security

To take a resource offline, the user of the calling application must have either o or w permission specified
in an ACL entry for this resource.

186 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Return values

For the mc_reset_bp and mc_reset_bc subroutines, a return value of 0 indicates that the command has
been successfully sent to the RMC subsystem and a response has been received and processed.

For the mc_reset_ap and mc_reset_ac subroutines, a return value of 0 indicates that the command has
been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_ETARGETMISMATCH
The target specified for the command does not match the target of the command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before the response could be received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before the response could be
received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDDATATYPE
Invalid attribute data type specified.

MC_EINVALIDVALUEPTR
Invalid attribute value pointer specified.

Programming RMC 187

MC_EINVALIDSDTYPE
Invalid structured data subtype specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before the
response could be received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_rsrc_hndl_rsp_t. The mc_error field of the
mc_rsrc_hndl_rsp_t structure indicates whether or not the resource manager has successfully processed
the command. If does not mean that the resource is offline. To determine if the resource is actually offline,
the application must register an event to monitor the resource's OpState attribute value. This command
results in only one response.

The response structure definition is:
typedef struct mc_rsrc_hndl_rsp mc_rsrc_hndl_rsp_t;
struct mc_rsrc_hndl_rsp {

mc_errnum_t mc_error;
ct_resource_handle_t mc_rsrc_hndl;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the command was successful. Any other value is an error. If
there is an error, the error codes indicate whether the resource handle contained in mc_rsrc_hndl is
invalid or the command could not be completed for the resource specified by the resource handle.
The error may also indicate that the command arguments were in error.

mc_rsrc_hndl
The resource handle that identifies the resource that was the target of the command.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_offline_*” on page 88
This subroutine sends a request to the RMC subsystem to take a resource offline.

mc_send_cmd_grp
This subroutine sends a command group to the RMC subsystem.

Purpose

Sends a command group to the RMC subsystem.

Library

RMC Library (libct_mc.a)

188 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Syntax
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_send_cmd_grp(

mc_cmdgrp_hndl_t cmd_hndl,
mc_complete_cb_t *complete_cb,
void *cb_arg)

The definition for the response callback is:
typedef void (mc_complete_cb_t)(mc_sess_hndl_t, ct_int32_t, void *);

Parameters

INPUT

cmd_hndl
The command group handle that identifies the command group to send to the RMC subsystem.
A command group handle is returned by the mc_start_cmd_group subroutine when the
application allocates a command group. The command group is sent for the RMC session
specified on the call to the mc_start_cmd_group subroutine.

complete_cb
A pointer to the completion callback routine. This callback will be invoked by the RMC API after
all response callbacks have been returned, or all pointers have been placed in their specified
locations for the commands in the command group.

cb_arg Identifies an argument that the RMC API will pass to the callback routine identified by the
complete_cb parameter.

Description

The mc_send_cmd_grp subroutine can be used by the application to send a command group (identified
by the cmd_hndl parameter) to the RMC subsystem. The application should have, prior to calling this
subroutine, added one or more commands to the command group.

Provided the subroutine does not detect any errors, it returns immediately after sending the command
group to the RMC subsystem. Unlike the mc_send_cmd_grp_wait subroutine, this subroutine will not
cause the calling application to block in the RMC API.

Table 22. mc_send_cmd_grp subroutine processing alternatives depending on the response method

If the command in the command group uses the:
Then responses to the commands in the command group are
processed by:

pointer response method returning a pointer to the response in the location specified by
the command.

callback response method invoking the associated callback using a thread supplied by a
call to the mc_dispatch subroutine. When there is more than
one response ready to be processed using callback response, the
RMC API will parallelize callback invocation if there are threads
available.

After all response callbacks have been returned, or all pointers have been placed in their specified
locations, for the commands in the command group, the RMC API will invoke the completion callback
(identified by the complete_cb parameter). Like the individual response callbacks, the RMC API invokes
the completion callback using a thread supplied by a call to the mc_dispatch subroutine. The RMC API
passes the completion callback three arguments: a session handle, an error value, and the cb_arg
argument. The error value is either 0 (zero), indicating no error, or one of the following values:

Programming RMC 189

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for any commands in the command group, check the appropriate
pointer or array count, if defined, for any responses. If callback response was selected for any
commands in the command group, the callbacks were invoked for any responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for any commands in the command group, check the
appropriate pointer or array count, if defined, for any responses. If callback response was selected
for any commands in the command group, the callbacks were invoked for any responses
received.

If the error value is non-zero, the application can call the cu_get_error function from within the callback
for additional error information.

The RMC API guarantees that all commands in an ordered command group, with respect to each
specified resource, are processed in the order in which they were added to the command group. In
addition, all responses to commands in a command group, ordered or not, from the same resource or
resource class are processed serially.

Security

Authorization checks are performed for each command in the command group (if authorization checks
are necessary) as each command is processed by the RMC subsystem. See the reference information for
each command for information on any required authorization level.

Return values

A return value of 0 (zero) indicates that the command group has been successfully sent to the RMC
subsystem. Any other return value is an error and indicates that the command group was not sent.

The following errors can be returned by this subroutine. Additional error information can be returned by
calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_EINVALIDCB
Invalid callback specified.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ENOCMDS
The command group contains no commands.

MC_ENOMEM
The API could not allocate required memory.

190 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Location

/usr/lib/libct_mc.a

Related reference:
“mc_cancel_cmd_grp” on page 41
This subroutine cancels a command group.

mc_send_cmd_grp_wait
This subroutine sends a command group to the RMC subsystem and waits for completion.

Purpose

Sends a command group to the RMC subsystem and waits for completion.

Library

RMC Library (libct_mc.a)

Syntax
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_send_cmd_grp_wait(

mc_cmdgrp_hndl_t cmd_hndl)

Parameters

INPUT

cmd_hndl
The command group handle that identifies the command group to send to the RMC subsystem.
A command group handle is returned by the mc_start_cmd_group subroutine when the
application allocates a command group. The command group is sent for the RMC session
specified on the call to the mc_start_cmd_grooup subroutine.

Description

The mc_send_cmd_grp_wait subroutine can be used by the application to send a command group
(identified by the cmd_hndl parameter) to the RMC API. The application should have, prior to calling this
subroutine, added one or more commands to the command group. Provided this subroutine does not
detect any errors, the application thread will block in the RMC API until responses have been received
and processed for each command in the command group.

Table 23. mc_send_cmd_grp_wait subroutine processing alternatives depending on the response method

If the command in the command group uses the:
Then responses to the commands in the command group are
processed by:

pointer response method returning a pointer to the response in the location specified by
the command.

callback response method invoking the associated callback using a thread supplied by a
call to the mc_dispatch subroutine. When there is more than
one response ready to be processed using callback response, the
RMC API will parallelize callback invocation if there are threads
available.

The RMC API guarantees that all commands in an ordered command group, with respect to each
specified resource, are processed in the order in which they were added to the command group. In

Programming RMC 191

addition, all responses to commands in a command group, ordered or not, from the same resource or
resource class are processed serially.

Security

Authorization checks are performed for each command in the command group (if authorization checks
are necessary) as each command is processed by the RMC subsystem. See the reference information for
each command for information on any required authorization level.

Return values

A return value of 0 (zero) indicates that the command group has been successfully sent to the RMC
subsystem. Any other return value is an error and indicates that the command group was not sent.

The following errors can be returned by this subroutine. Additional error information can be returned by
calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_EDEADLOCK
The subroutine was invoked from within an event notification callback and the command group
contains an unregister event command.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command group has been sent but the session ended before all responses could be received.
If pointer response was selected for any commands in the command group, check the appropriate
pointer or array count, if defined, for any responses. If callback response was selected for any
commands in the command group, the callbacks were invoked for any responses received.

MC_ESENTINTRPT
The command group has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for any commands in the command group, check the
appropriate pointer or array count, if defined, for any responses. If callback response was selected
for any commands in the command group, the callbacks were invoked for any responses
received.

MC_ENOCMDS
The command group contains no commands.

MC_ETIMEDOUT
The command group has been sent to the RMC subsystem, but the command timeout limit
(specified by the mc_timed_start_session subroutine when the session was established) was
reached before all responses could be received. If subroutine uses pointer response, check the
appropriate pointer or array count, if defined, for any responses. If a subroutine uses callback
response, the callback will have been invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

192 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Location

/usr/lib/libct_mc.a

Related reference:
“mc_cancel_cmd_grp” on page 41
This subroutine cancels a command group.

mc_session_info
This subroutine gets information about a session.

Purpose

Gets information about a session.

Library

RMC Library (libct_mc.a)

Syntax
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_session_info(

mc_sess_hndl_t session_hndl,
mc_sess_info_t info_type,
void *info_return

)

Parameters

INPUT

session_hndl
Specifies the handle of the session for which information is to be obtained. A session handle is
returned by the mc_start_session or mc_timed_start_session subroutine when the application
establishes a session with the RMC subsystem.

info_type
Specifies the type of information to be returned: MC_SESS_INFO_LOCAL_IP_ADDRESS.

OUTPUT

info_return
Is a pointer to a location in memory that is large enough to hold the requested information. For
MC_SESS_INFO_LOCAL_IP_ADDRESS, this parameter must point to an in6_addr structure as
defined in netinet/in.h.

Description

The mc_session_info subroutine is used by a cluster application to obtain information about a session
with the RMC subsystem. This subroutine is supported for MC_VERSION values 2 and greater.

Return values

If this subroutine returns a value of 0, the requested information has been returned in the specified
memory location. If this subroutine returns a non-zero value, it is an error value; no information is
returned.

Programming RMC 193

The following errors can be returned by this subroutine. Additional error information can be returned by
calling the cu_get_error function.

MC_EIMPROPERINFO
The requested information is not defined for the specified session.

MC_EINVALIDSESS
The specified session handle is not valid.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_EUNATTAINABLEINFO
The requested information cannot be obtained.

MC_EUNKNOWNINFO
The info_type parameter specifies an unknown value.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_end_session” on page 64
This subroutine ends a session with the RMC subsystem.
“mc_timed_start_session” on page 212
This subroutine establishes a session with the RMC subsystem.

mc_set_handle_*
This subroutine sets persistent attribute values of a resource identified by a resource handle.

Purpose

Sets persistent attribute values of a resource identified by a resource handle.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_set_handle_* subroutines. All four subroutines issue
the same command action, but enable your application to vary how the command is sent to the RMC
subsystem, and how the command response is made available to the application.
v The mc_set_handle_bp subroutine sends the command to the RMC subsystem and blocks execution.

To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_set_handle_bp(

mc_sess_hndl_t sess_hndl,

194 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

mc_set_rsp_t **response,
ct_resource_handle_t rsrc_hndl,
mc_attribute_t *attrs,
ct_uint32_t count)

v The mc_set_handle_ap subroutine adds the command to a command group. If used in an ordered
command group, however, note that all other commands in the command group must also be the form
that uses a resource handle to specify the command target. The same resource handle must be used on
all commands in the command group.
To receive responses, This subroutine specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_set_handle_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_set_rsp_t **response,
ct_resource_handle_t rsrc_hndl,
mc_attribute_t *attrs,
ct_uint32_t count)

v The mc_set_handle_bc subroutine sends the command to the RMC subsystem and blocks execution. To
receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_set_handle_bc(

mc_sess_hndl_t sess_hndl,
mc_set_cb_t *set_cb,
void *set_cb_arg,
ct_resource_handle_t rsrc_hndl,
mc_attribute_t *attrs,
ct_uint32_t count)

The definition for the response callback is:
typedef void (mc_set_cb_t)(mc_sess_hndl_t,
mc_set_rsp_t *,
void *);

v The mc_set_handle_ac subroutine adds the command to a command group. If used in an ordered
command group, however, please note that all other commands in the command group must also be
the form that uses a resource handle to specify the command target.
To receive responses, this subroutine specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_set_handle_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_set_cb_t *set_cb,
void *set_cb_arg,
ct_resource_handle_t rsrc_hndl,
mc_attribute_t *attrs,
ct_uint32_t count)

The definition for the response callback is:
typedef void (mc_set_cb_t)(mc_sess_hndl_t,
mc_set_rsp_t *,
void *);

Parameters

INPUT

Programming RMC 195

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

set_cb Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

set_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_hndl
The resource handle that identifies the resource whose persistent attributes are to be set. A
resource handle is returned in the response structure for many RMC API subroutines including
the mc_define_resource_* subroutine. An array of resource handles for resources of a particular
resource class is returned in the response structure for the mc_enumerate_resources_* and
mc_enumerate_permitted_rsrcs_* subroutines. To validate the resource handle before calling this
subroutine, the application can call one of the mc_validate_rsrc_hndl_* subroutines.

attrs Specifies the persistent attribute values to be set for the resource identified by the rsrc_hndl
parameter. Specifies this using an array of count elements of type mc_attribute_t. Each element in
the array identifies a persistent attribute of the resource and a value. Persistent attribute of the
resource that are not specified in this array remain unchanged.

count Specifies the number of elements in the attrs array.

OUTPUT

response
A pointer to a location in which the RMC API will return a pointer to the response. This
parameter applies only to variations of this subroutine that use the pointer response method.

Description

The mc_set_handle_* subroutines can be used by the application to set persistent attribute values of a
resource. The resource is identified using a resource handle (as specified by the rsrc_hndl parameter).

The response for these subroutines is a structure of type mc_set_rsp_t, and is described in Response
structure.

If the command is used in an ordered command group, please note that all other commands in the
command group must be the form that uses a resource handle to specify the command target. The
same resource handle must be used on all commands in the command group.

Security

To set persistent attribute values of a resource, the user of the calling application must have either s or w
permission specified in an ACL entry for the resource.

196 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Return values

For the mc_set_handle_bp and mc_set_handle_bc subroutines, a return value of 0 indicates that the
command has been successfully sent to the RMC subsystem and a response has been received and
processed.

For the mc_set_handle_ap and mc_set_handle_ac subroutines, a return value of 0 indicates that the
command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_ETARGETMISMATCH
The target specified for the command does not match the target of the command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before the response could be received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before the response could be
received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDDATATYPE
Invalid attribute data type specified.

MC_EINVALIDVALUEPTR
Invalid attribute value pointer specified.

Programming RMC 197

MC_EINVALIDSDTYPE
Invalid structured data subtype specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before the
response could be received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_set_rsp_t. If any of the set attribute
arguments are invalid, then the response returned indicates the error and no attributes are set.

The response structure definition is:
typedef struct mc_set_rsp mc_set_rsp_t;
struct mc_set_rsp {

mc_errnum_t mc_error;
ct_resource_handle_t mc_rsrc_hndl;
mc_error_attr_t *mc_error_attrs;
ct_uint32_t mc_attr_count;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the command was successful, and, if the mc_attr_count is 0
(zero), all the specified attributes were set. If the mc_attr_count field is not 0 (zero), the
mc_error_attrs field contains a pointer to an array of attributes that could not be set. Attributes not
included in the array have been set. If the mc_error field is not 0 (zero), the value indicates the
error.

mc_rsrc_hndl
If the command is successful, this field specifies the resource handle of the resource that was set.
If an error is indicated by the mc_error field, this field contains the resource handle that was
specified on the command.

mc_error_attrs
If no error is indicated by the mc_error field, and only some of the attributes could be set, this
field is an array of mc_attr_count elements of type mc_error_attr_t.
typedef struct mc_error_attr mc_error_attr_t;
struct mc_error_attr {

mc_errnum_t mc_error;
ct_char_t *mc_at_name;

};

Each element in the array identifies an attribute that could not be set. The fields of this structure
contain the following:

mc_error
Indicates the reason the attribute could not be set.

mc_at_name
Indicates the name of the attribute that could not be set.

mc_attr_count
Indicates the number of entries in the mc_error_attrs array.

198 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Location

/usr/lib/libct_mc.a

Related reference:
“mc_class_set_*” on page 53
This subroutine sets persistent attribute values of a resource class.

mc_set_select_*
This subroutine sets persistent attribute values of one or more resources of a particular resource class. The
resources are identified by attribute selection.

Purpose

Sets persistent attribute values of one or more resources of a particular resource class. The resources are
identified by attribute selection.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_set_select_* subroutines. All four subroutines issue
the same command action, but enable your application to vary how the command is sent to the RMC
subsystem, and how the command response is made available to the application.
v The mc_set_select_bp subroutine sends the command to the RMC subsystem and blocks execution. To

receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_set_select_bp(

mc_sess_hndl_t sess_hndl,
mc_set_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
mc_attribute_t *attrs,
ct_uint32_t count)

v The mc_set_select_ap subroutine adds the command to a command group. If used in an ordered
command group, however, please note that all other commands in the command group must also be
the form that uses attribute selection to specify the command target. The values of the select_attrs and
rsrc_class_name parameters must be identical on all commands in the command group.
To receive responses, this subroutine specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_set_select_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_set_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
mc_attribute_t *attrs,
ct_uint32_t count)

v The mc_set_select_bc subroutine sends the command to the RMC subsystem and blocks execution. To
receive responses, it specifies the callback response method. The syntax is:

Programming RMC 199

#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_set_select_bc(

mc_sess_hndl_t sess_hndl,
mc_set_cb_t *set_cb,
void *set_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
mc_attribute_t *attrs,
ct_uint32_t count)

The definition for the response callback is:
typedef void (mc_set_cb_t)(mc_sess_hndl_t,
mc_set_rsp_t *,
void *);

v The mc_set_select_ac subroutine adds the command to a command group. The values of the select_attrs
and rsrc_class_name parameters must be identical on all commands in the command group.
To receive responses, this subroutine specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_set_select_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_set_cb_t *set_cb,
void *set_cb_arg,
ct_char_t *rsrc_class_name,
ct_char_t *select_attrs,
mc_attribute_t *attrs,
ct_uint32_t count)

The definition for the response callback is:
typedef void (mc_set_cb_t)(mc_sess_hndl_t,
mc_set_rsp_t *,
void *);

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

set_cb Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

set_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_class_name
Pointer to a resource class name. Identifies the resource class of the resource(s) whose persistent
attribute values are being set.

200 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

select_attrs
A selection string that identifies one or more resources of the resource class identified by the
rsrc_class_name parameter. Resources of the resource class that match the selection string
expression will have the persistent attributes (identified by the attrs array) set.

If this parameter is a NULL pointer, then all resources of the resource class identified by the
rsrc_class_name parameter are selected.

attrs Specifies the persistent attributes to be set and their new values using a pointer to an array of
count elements of type mc_attribute_t. Each element in the array specifies a persistent attribute of
the resource and a value. Persistent attribute values of the resource that are not specified in this
array remain unchanged.

count Specifies the number of elements in the attrs array.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_set_selct_* subroutine can be used by the application to set persistent attribute values of one or
more resources of a resource class (identified by the rsrc_class_name parameter). The resource or resources
are identified using a selection string (specified by the select_attrs parameter).

The response for these subroutines is a structure of type mc_set_rsp_t, and is described in Response
structure.

If this command is used in an ordered command group, please note that all other commands in the
command group must also be the form that uses attribute selection to specify the command target. The
values of the select_attrs and rsrc_class_name parameters must be identical on all commands in the
command group.

Security

To set persistent attribute values of a resource, the user of the calling application must have either s or w
permission specified in an ACL entry for the resource.

Return values

For the mc_set_select_bp and mc_set_select_bc subroutines, a return value of 0 indicates that the
command has been successfully sent to the RMC subsystem and one or more responses have been
received and processed.

For the mc_set_select_ap and mc_set_select_ac subroutines, a return value of 0 indicates that the
command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

Programming RMC 201

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_ETARGETMISMATCH
The target specified for the command does not match the target of the command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDDATATYPE
Invalid attribute data type specified.

MC_EINVALIDVALUEPTR
Invalid attribute value pointer specified.

MC_EINVALIDSDTYPE
Invalid structured data subtype specified.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

202 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_set_rsp_t. There will be one response for
each resource identified by the select_attrs parameter. If any of the set attribute arguments are invalid,
then only one response is returned, indicating the error, and no attributes are set (even if more than one
resource was identified by the select_attrs parameter).

The response structure definition is:
typedef struct mc_set_rsp mc_set_rsp_t;
struct mc_set_rsp {

mc_errnum_t mc_error;
ct_resource_handle_t mc_rsrc_hndl;
mc_error_attr_t *mc_error_attrs;
ct_uint32_t mc_attr_count;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the command was successful, and, if the mc_attr_count is 0
(zero), all the specified attributes were set. If the mc_attr_count field is not 0 (zero), the
mc_error_attrs field contains a pointer to an array of attributes that could not be set. Attributes not
included in the array have been set. If the mc_error field is not 0 (zero), the value indicates the
error.

mc_rsrc_hndl
If the command is successful, this field specifies the resource handle of the resource that was set.
If an error is indicated by the mc_error field, this field contains the resource handle that was
specified on the command.

mc_error_attrs
If no error is indicated by the mc_error field, and only some of the attributes could be set, this
field is an array of mc_attr_count elements of type mc_error_attr_t.
typedef struct mc_error_attr mc_error_attr_t;
struct mc_error_attr {

mc_errnum_t mc_error;
ct_char_t *mc_at_name;

};

Each element in the array identifies an attribute that could not be set. The fields of this structure
contain the following:

mc_error
Indicates the reason the attribute could not be set.

mc_at_name
Indicates the name of the attribute that could not be set.

mc_attr_count
Indicates the number of entries in the mc_error_attrs array.

Programming RMC 203

Location

/usr/lib/libct_mc.a

Related reference:
“mc_class_set_*” on page 53
This subroutine sets persistent attribute values of a resource class.
“mc_qdef_p_attribute_*” on page 108
This subroutine queries the RMC subsystem to obtain the persistent attribute definitions for a resource or
resource class.

mc_start_cmd_grp
This subroutine allocates a command group.

Purpose

Allocates a command group.

Library

RMC Library (libct_mc.a)

Syntax
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_start_cmd_grp(

mc_sess_hndl_t session_hndl,
mc_cmd_grp_opts_t options,
mc_cmdgrp_hndl_t *cmd_hndl)

Parameters

INPUT

session_hndl
The session handle that identifies the RMC subsystem session to which the command group will
be sent. A session handle is returned by the mc_start_session or mc_timed_start_session
subroutine when the application establishes a session with the RMC subsystem.

options Specifies one of the following:

MC_CMD_GRP_OPTS_ORDERED
This is an ordered command group. Process the commands in the order in which they are
placed in the group.

MC_REG_OPTS_NONE
There are no options.

OUTPUT

cmd_hndl
An address allocated by the application for the command group handle. This subroutine, if
successful, returns the command group handle at the specified address. The command group
handle can then be used in subsequent RMC API calls.

Description

The mc_start_cmd_group subroutine can be used by the application to allocate a command group. A
command group enables an application to send multiple commands to the RMC subsystem. The

204 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

subroutine returns a command handle that the application can use in subsequent RMC API calls to
identify the command group. Many of the RMC interfaces consist of four related subroutines that issue
the same command action, but vary on how the command is sent to the RMC subsystem, and how the
command response is made available to the application. The subroutine variations that are suffixed by
_ap or _ac add the particular command to a command group. The maximum number of commands that
can be added to a command group can be determined using the MC_CMD_GRP_LIMIT macro.

Two subroutines are available to send a command group to the RMC subsystem. These are the:
v mc_send_cmd_grp subroutine which returns immediately after sending the command group
v mc_send_cmd_grp_wait subroutine which sends the command group and then blocks execution of the

application thread until responses have been received and processed for each command in the
command group.

If the application does not need to send the command group, it can use the mc_cancel_cmd_grp
subroutine to deallocate the command group.

If the command group is an ordered command group (as determined by the options parameter), its
commands will be processed in the order in which they were placed in the group. All commands placed
in an ordered command group must specify the same resource or set of resources. If the target (or targets)
of the first command in an ordered command group is specified using attribute selection, then the
remaining commands in the group must also use attribute selection with identical attribute selection
arguments. If the target of the first command in an ordered command group is specified using a resource
handle, then the remaining commands in the group must use the identical resource handle. An ordered
command group cannot contain a mix of commands that use attribute selection and resource handles to
specify their targets.

Return values

A return value of 0 (zero) indicates that a command group has been allocated and a command handle has
been returned at the address specified by the cmd_hndl parameter. Any other return value is an error and
indicates that the command group was not allocated.

The following errors can be returned by this subroutine. Additional error information can be returned by
calling the cu_get_error_function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDOPT
The specified option is invalid.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

Programming RMC 205

MC_ENOMEM
The API could not allocate required memory.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_cancel_cmd_grp” on page 41
This subroutine cancels a command group.

mc_start_session
This subroutine establishes a session with the RMC subsystem.

Purpose

Establishes a session with the RMC subsystem.

Library

RMC Library (libct_mc.a)

Syntax
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_start_session(

ct_contact_t *contact_array,
ct_uint32_t number_of_contacts,
mc_session_opts_t options,
mc_sess_hndl_t *session_hndl)

Parameters

INPUT

contact_array

Specifies one or more nodes that the RMC API can contact to start a session with the RMC
subsystem. Specifies this using either a NULL pointer (indicating the local node on which the
application is executing) or an array of number_of_contacts elements of type ct_contact_t (each
array element representing a machine running the RMC subsystem).

If using a NULL pointer to specify the local node, the number_of_contacts parameter must be 0
(zero). The local node can be a cluster node or a single system.

If this parameter specifies an array identifying more than one contact node, all contact nodes
should be in the same RSCT peer domain. It only makes sense for this parameter to specify an
array of more than one element if the contact type is CT_CONTACT_IP (since the other contact
types specify a single node).

The mc_start_session subroutine attempts to start a session with the RMC subsystem on the
contact node in the array. If a session cannot be established on that node, the subroutine attempts
to establish a session with the RMC subsystem on the next contact node in the array. This process
continues until either a session with the RMC subsystem is established or the array is exhausted.
The ct_contact_t data type is defined as:
typedef struct {

ct_contact_type_t type;
ct_contact_point_t point;

} ct_contact_t;

206 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

The fields of this structure contain the following items:

type Specifies one of the three supported contact types, as defined by the ct_contact_type_t
enumeration.
typedef enum {

CT_CONTACT_IP,
CT_CONTACT_ENV_VAR,
CT_CONTACT_LOCAL

} ct_contact_type_t;

The ct_contact_type_t enumeration defines the following values:

CT_CONTACT_IP
Indicates that the subroutine should attempt to establish a session with the RMC
subsystem executing on the node identified in the point field of this structure.

CT_CONTACT_ENV_VAR
Indicates that the subroutine should attempt to establish a session with the RMC
subsystem executing on the node identified by the CT_CONTACT environment
variable. The CT_CONTACT environment variable can identify the node using a
host name or an IP address. If the application specifies this contact type, the point
field of this structure is ignored.

CT_CONTACT_LOCAL
Indicates that the subroutine should attempt to establish a session with the RMC
subsystem that is executing on the local node. If the application specifies this
contact type, the point field of this structure is ignored.

point If the contact type is specified as CT_CONTACT_ENV_VAR or CT_CONTACT_LOCAL
the RMC API ignores this field. If the contact type is specified as CT_CONTACT_IP, then
this field identifies the node running the RMC subsystem to which the subroutine should
attempt to connect. The node can be identified by its host name or IP address. This field
is a union of type ct_contact_type_t.
typedef union {

ct_IP_contact_point_t IP_point;
} ct_contact_point_t;

And the contact point itself, identified in the IP_point field is defined as a structure of
type ct_IP_contact_point_t.
typedef struct {

ct_int32_t port;
ct_char_ptr_t name;

} ct_IP_contact_point_t;

The fields of this structure specify the following items:

port This field is not used by the mc_start_session subroutine and should be set to 0.

name Specifies the name or IP address of the contact point.

The following example shows how to initialize a contact of type CT_CONTACT_IP.
ct_contact_t c;

c.type = CT_CONTACT_IP;
c.point.IP_point.port = 0;
c.point.IP_point.name = "host_name_or_IP_address";

number_of_contacts
Specifies the number of elements in the contact_array array. If the contact_array parameter specifies
a NULL pointer, this parameter must be 0 (zero).

Programming RMC 207

options Either specifies the value MC_SESSION_OPTS_NONE (indicating there are no options), or else is
the bitwise inclusive or of one or more of the following options. Most of these options are for
setting the session scope. The RMC subsystem with which the session is established may be
executing in a stand-alone environment, in an RSCT peer domain, in a CSM management
domain, or in both an RSCT peer domain and a CSM management domain. Furthermore, if the
RMC subsystem is running in a CSM management domain, it may be designated as the
distinguished daemon (meaning the RMC subsystem is executing on the management server of the
management domain). By specifying a session scope using this parameter, the application
determines the scope for all commands issued in the session. The commands are issued within:
v An RSCT peer domain, which in the options that follow are identified by SR for shared

resource.
v A CSM management domain, which in the options that follow are identified by DM for

distributed management.
v Locally on the node that runs the RMC subsystem where the session was established.

Although this parameter can be the bitwise inclusive or of one or more of the following options,
note that:
v The options for specifying the scope of the session are mutually exclusive
v The MC_SESSION_OPTS_IP_AUTHENTICATION option can only be used if the contact name

is an IP address.

MC_SESSION_OPTS_LOCAL_SCOPE
The session scope is local. Commands are issued only on the node where the session was
established. This is the default if no session scope is specified.

MC_SESSION_OPTS_SR_SCOPE
The session scope is an RSCT peer domain (also known as SR scope). Commands will be
issued within the RSCT peer domain that contains the node where the session was
established. If the execution environment of the RMC subsystem on the node at the time
this subroutine is invoked does not include an RSCT peer domain, the subroutine will
return an error.

MC_SESSION_OPTS_DM_SCOPE
The session scope is a CSM management domain (also know and DM scope). Commands
will be issued within the CSM management domain that contains the node where the
session was established. The node specified by the contact array parameter should be the
CSM management server. If the node running the RMC subsystem with which the session
is established is not a CSM management server, the subroutine will return an error.

MC_SESSION_OPTS_SR_LOCAL_SCOPE
The session scope is either an RSCT peer domain or local (depending on the execution
environment of the RMC subsystem at the time the mc_start_session subroutine is
invoked). If the RMC subsystem is running in an RSCT peer domain, the scope is the
peer domain. If the execution environment of the RMC subsystem on the node at the
time this subroutine is invoked does not include an RSCT peer domain, the scope is local.

MC_SESSION_OPTS_DM_LOCAL_SCOPE
The session scope is either a CSM management domain or local (depending on the
execution environment of the RMC subsystem at the time the mc_start_session
subroutine is invoked). If the node running the RMC subsystem with which the session is
established is a CSM management server, the session scope is the CSM management
domain. Otherwise the scope is local.

MC_SESSION_OPTS_SR_DM_SCOPE
The session scope is either an RSCT peer domain or a CSM management domain
(depending on the execution environment of the RMC subsystem at the time the
mc_start_session subroutine is invoked). If the RMC subsystem is running in an RSCT
peer domain, the scope is the peer domain. Otherwise, if the node running the RMC

208 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

subsystem with which the session is established is a CSM management server, the session
scope is the CSM management domain. If the node is neither in a peer domain, nor the
management server in a management domain, the subroutine will return an error.

MC_SESSION_OPTS_DM_SR_SCOPE

The session scope is either a CSM management domain or an RSCT peer domain
(depending on the execution environment of the RMC subsystem at the time the
mc_start_session subroutine is invoked). If the node running the RMC subsystem with
which the session is established is a CSM management server, the session scope is the
CSM management domain. Otherwise, if the RMC subsystem is running in an RSCT peer
domain, the scope is the peer domain. If the node is neither the management server in a
management domain, nor in a peer domain, the subroutine will return an error.

MC_SESSION_OPTS_SR_DM_LOCAL_SCOPE
The session scope is either an RSCT peer domain, a CSM management domain, or local
(depending on the execution environment of the RMC subsystem at the time the
mc_start_session subroutine is invoked). If the RMC subsystem is running in an RSCT
peer domain, the scope is the peer domain. Otherwise, if the node running the RMC
subsystem with which the session is established is a CSM management server, the session
scope is the CSM management domain. If the node is neither in a peer domain, nor the
management server in a management domain, the scope is local.

MC_SESSION_OPTS_DM_SR_LOCAL_SCOPE

The session scope is either a CSM management domain, an RSCT peer domain, or local
(depending on the execution environment of the RMC subsystem at the time the
mc_start_session subroutine is invoked). If the node running the RMC subsystem with
which the session is established is a CSM management server, the session scope is the
CSM management domain. Otherwise, if the RMC subsystem is running in an RSCT peer
domain, the scope is the peer domain. If the node is neither the management server in a
management domain, nor in a peer domain, the scope is local.

MC_SESSION_OPTS_IP_AUTHENTICATION
Specifies that one of the IP addresses configured on the host where the application is
executing should be included in the user's network credentials. If this option is not
specified, the host name is either a fully qualified host domain name or a "short" name,
depending on the host's DNS configuration. The application can specify this option to
avoid a dependency on DNS.

OUTPUT

session_hndl
The address, allocated by the application, for the session handle. The subroutine, if successful,
returns the session handle at this address.

Description

The mc_start_session subroutine can be used by the application to establish a session with the RMC
subsystem on a node identified by the contact_array parameter. Depending on the execution environment
of the RMC subsystem with which the session is established, and any session scope option specified by
the options parameter, the scope of the RMC session will be an RSCT peer domain, a CSM management
domain, or the local node.

An error is returned if the requested scope option specified by the options parameter cannot be
supported by the current execution environment of the RMC subsystem with which the session is
established. The following table illustrates what the resulting session scope would be depending on the
execution environment of the RMC subsystem and the session scope option specified by the options
parameter.

Programming RMC 209

Table 24. Session scope depending on the execution environment of the RMC subsystem and the session scope
option

Session scope option specified by the options
parameter

Stand-alone
environment

Peer domain Management
server in a
management
domain

Peer domain
and on the
management
server in a
management
domain

Managed
node in a
management
domain *

Peer domain
and a
managed
node in a
management
domain *

MC_SESSION_OPTS_LOCAL_SCOPE or if no
session scope is specified

local local local local local local

MC_SESSION_OPTS_SR_SCOPE error peer domain error peer domain error peer domain

MC_SESSION_OPTS_DM_SCOPE error error management
domain

management
domain

error error

MC_SESSION_OPTS_SR_LOCAL_SCOPE local peer domain local peer domain local peer domain

MC_SESSION_OPTS_DM_LOCAL_SCOPE local local management
domain

management
domain

local local

MC_SESSION_OPTS_SR_DM_SCOPE error peer domain management
domain

peer domain error peer domain

MC_SESSION_OPTS_DM_SR_SCOPE error peer domain management
domain

management
domain

error peer domain

MC_SESSION_OPTS_SR_DM_LOCAL_SCOPE local peer domain management
domain

peer domain local peer domain

MC_SESSION_OPTS_DM_SR_LOCAL_SCOPE local peer domain management
domain

management
domain

local peer domain

* If a node is a managed node in one CSM management domain and also the management server in
another management domain, see the management server columns above for the resulting session scope.

The subroutine, if successful, returns the session handle at the address specified in the session_hndl
parameter. Subsequent calls to the RMC API can identify this session using the returned session handle.
The session scope established when the mc_start_session subroutine is called determines where
subsequent commands issued in the session using other RMC API calls are executed, and where any
associated selection string is evaluated.

After a session is established successfully, if the options parameter is set to the
MC_SESSION_OPTS_SR_SCOPE session scope and if the execution environment is going out of SR
scope, an error message, which indicates that the session is ended, is returned to the application.
Similarly, a session is ended if the present execution environment is going out of SR scope, and if the
session was established with a scope option that resolved to SR scope. For example, if the contact node or
peer domain is brought offline, a session that specified the MC_SESSION_OPTS_SR_LOCAL_SCOPE
session scope on an online node in a peer domain is ended. If the scope option is not specified, or if the
MC_SESSION_OPTS_LOCAL_SCOPE session scope is specified, a change in execution environment has
no impact on the session.

Any error messages or descriptive text returned in responses resulting from commands issued in this
session, are returned in the locale that was in effect at the time the mc_start_session subroutine was
invoked. By calling the setlocale subroutine and then the mc_start_session subroutine, the application
can change the locale used by the RMC subsystem when returning messages or descriptive text.

It is expected that all subroutines that specify the session handle returned by a successful call to the
mc_start_session subroutine are compiled using the same value of the MC_VERSION macro used when
compiling the call to the mc_start_session subroutine. Otherwise, the MC_EVERSIONMISMATCH error
is returned by the other subroutines.

When the RMC API detects the interruption of a session with the RMC subsystem, it completes the
processing of any responses and event notifications that have been received before the session
interruption. Any application threads that are blocked in API subroutines, including the mc_dispatch
subroutine, return with an error indicating the session was interrupted. If the application has obtained a

210 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

|
|
|
|
|
|
|
|
|

descriptor using the mc_get_descriptor subroutine, the API makes the descriptor ready for read to ensure
that the application has an opportunity to call the mc_dispatch subroutine and receive the error. If any
subroutine, other than the mc_end_session subroutine is invoked, then the subroutine call returns the
error.

Once the application has received the error indicating the session was interrupted, it must call the
mc_end_session subroutine. The application can then establish a new session by once again calling the
mc_start_session subroutine. If the subroutine returns the MC_ESESSREFUSED error, the application
should call the subroutine again after a short time, since the RMC subsystem may not yet have recovered.
This can be repeated as many times as appropriate for the application until a new session is established.
Once the new session is established, the application must register any events that were registered in the
old session (if the event notifications are still required).

The managed nodes in a CSM management domain may be configured into one or more RSCT peer
domains. In such a case, any application with a management domain session scope can access peer
domain resources by specifying the peer domain name (known as the Active Peer Domain name).

Security

When establishing a session, the RMC subsystem authenticates the user of the calling application. The
RMC API, if appropriate, authenticates the RMC subsystem. Successful authentication is a necessary
condition for the session to be established. If the session is established, the network credentials of the
user are saved by the RMC subsystem to perform authorization checks as various command interfaces
are executed. In an RSCT peer domain or a CSM management domain, the cluster the authorization
checks are performed on the node where the command is actually executed. This is typically, but not
always, the node where the resource is located. For this reason, ACLs specifying the user's network
credentials should be replicated throughout the cluster.

Return values

A return value of 0 indicates that a session was established with the RMC subsystem, and a session
handle is available at the location that is specified by the session_hndl parameter. The session handle can
now be used in subsequent RMC API calls to send commands to, and receive responses from, the RMC
subsystem for the session scope. Any nonzero value returned by this subroutine is an error, and indicates
that the session was not established. The following errors can be returned by this subroutine. Additional
error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_ESESSREFUSED
A session could not be established with the RMC subsystem in the specified cluster. The
application should try again later.

MC_EINVALIDNAME
Invalid contact name specified.

MC_EINVALSCOPE
The specified session scope is not currently supported.

MC_EMULTISCOPE
Multiple session scope options are specified.

MC_ENOTPRIVATESCOPE
The specified session scope cannot be combined with the private option.

Programming RMC 211

MC_ELIBSECURITY
The RMC API detected an error in security services.

MC_ESUBSECURITY
The RMC subsystem detected an error in security services.

MC_EAUTHENTICATE
Could not authenticate the user of the calling application.

MC_EMUTUALAUTHENT
The RMC API could not authenticate the RMC subsystem.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDCONTACT
Invalid contact type specified.

MC_ENOMEM
The API could not allocate required memory.

Location

/usr/lib/libct_mc.a

Related concepts:
“RMC subsystem session” on page 2
A resource monitoring and control (RMC) subsystem session is a connection with the RMC subsystem
that the application establishes through an RMC daemon that runs on a particular node.
Related reference:
“mc_end_session” on page 64
This subroutine ends a session with the RMC subsystem.

mc_timed_start_session
This subroutine establishes a session with the RMC subsystem.

Purpose

Establishes a session with the RMC subsystem. This subroutine is identical to the mc_start_session
subroutine except that it also enables the calling application to specify time limits for establishing a
session and, once a session is established, for completion of blocking operations.

Library

RMC Library (libct_mc.a)

Syntax
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_start_session(

ct_contact_t *contact_array,
ct_uint32_t number_of_contacts,
mc_session_opts_t options,
ct_uint32_t start_timeout,
ct_uint32_t cmd_timeout,
mc_sess_hndl_t *session_hndl)

212 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Parameters

INPUT

contact_array

Specifies one or more nodes the RMC API may contact to start a session with the RMC
subsystem. Specifies this using either a NULL pointer (indicating the local node on which the
application is executing) or an array of number_of_contacts elements of type ct_contact_t (each
array element representing a machine running the RMC subsystem).

If using a NULL pointer to specify the local node, the number_of_contacts parameter must be 0
(zero). The local node can be a cluster node or a single system.

If this parameter specifies an array identifying more than one contact node, all contact nodes
should be in the same RSCT peer domain. It only makes sense for this parameter to specify an
array of more than one element if the contact type (described below) is CT_CONTACT_IP (since
the other contact types specify a single node).

The mc_timed_start_session subroutine will attempt to start a session with the RMC subsystem
on the contact node in the array. If a session cannot be established on that node, then the
subroutine will attempt to establish a session with the RMC subsystem on the next contact node
in the array. This process will continue until either a session with the RMC subsystem is
established or the array is exhausted. The ct_contact_t data type is defined as:
typedef struct {

ct_contact_type_t type;
ct_contact_point_t point;

} ct_contact_t;

The fields of this structure contain the following:

type Specifies one of the three supported contact types, as defined by the ct_contact_type_t
enumeration.
typedef enum {

CT_CONTACT_IP,
CT_CONTACT_ENV_VAR,
CT_CONTACT_LOCAL

} ct_contact_type_t;

The ct_contact_type_t enumeration defines the following values:

CT_CONTACT_IP
Indicates that the subroutine should attempt to establish a session with the RMC
subsystem executing on the node identified in the point field of this structure.

CT_CONTACT_ENV_VAR
Indicates that the subroutine should attempt to establish a session with the RMC
subsystem executing on the node identified by the CT_CONTACT environment
variable. The CT_CONTACT environment variable can identify the node using a
host name or an IP address. If the application specifies this contact type, the point
field of this structure is ignored.

CT_CONTACT_LOCAL
Indicates that the subroutine should attempt to establish a session with the RMC
subsystem that is executing on the local node. If the application specifies this
contact type, the point field of this structure is ignored.

point If the contact type is specified as CT_CONTACT_ENV_VAR or CT_CONTACT_LOCAL
the RMC API ignores this field. If the contact type is specified as CT_CONTACT_IP, then
this field identifies the node running the RMC subsystem to which the subroutine should
attempt to connect. The node can be identified by its host name or IP address. This field
is a union of type ct_contact_point_t.

Programming RMC 213

typedef union {
ct_IP_contact_point_t IP_point;

} ct_contact_point_t;

And the contact point itself, identified in the IP_point field is defined as a structure of
type ct_IP_contact_point_t.
typedef struct {

ct_int32_t port;
ct_char_ptr_t name;

} ct_IP_contact_point_t;

The fields of this structure specify the following:

port This field is not used by the mc_timed_start_session subroutine and should be
set to 0.

name Specifies the name or IP address of the contact point.

The following example shows how to initialize a contact of type CT_CONTACT_IP.
ct_contact_t c;

c.type = CT_CONTACT_IP;
c.point.IP_point.port = 0;
c.point.IP_point.name = "host_name_or_IP_address";

number_of_contacts
Specifies the number of elements in the contact_array array. If the contact_array parameter specifies
a NULL pointer, this parameter must be 0 (zero).

options Either specifies the value MC_SESSION_OPTS_NONE (indicating there are no options), or else is
the bitwise inclusive OR of one or more of the following options. Most of these options are for
setting the session scope. The RMC subsystem with which the session is established may be
executing in a stand-alone environment, in an RSCT peer domain, in a CSM management
domain, or in both an RSCT peer domain and a CSM management domain. Furthermore, if the
RMC subsystem is running in a CSM management domain, it may be designated as the
distinguished daemon (meaning the RMC subsystem is executing on the management server of the
management domain). By specifying a session scope using this parameter, the application
determines the scope for all commands issued in the session. The commands will be issued
within either
v an RSCT peer domain (which in the options that follow are identified by SR for shared resource)
v a CSM management domain (which in the options that follow are identified by DM for

distributed management)
v locally on the node running the RMC subsystem where the session was established.

Although this parameter can be the bitwise inclusive OR of the following options, please note
that:
v the nine options for specifying the scope of the session are mutually exclusive
v the MC_SESSION_OPTS_IP_AUTHENTICATION option may only be used if the contact name

is an IP address.

MC_SESSION_OPTS_LOCAL_SCOPE
The session scope is local. Commands will be issued only on the node where the session
was established. This is the default if no session scope is specified.

MC_SESSION_OPTS_SR_SCOPE
The session scope is an RSCT peer domain (also known as SR scope). Commands will be
issued within the RSCT peer domain that contains the node where the session was

214 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

established. If the execution environment of the RMC subsystem on the node at the time
this subroutine is invoked does not include an RSCT peer domain, the subroutine will
return an error.

MC_SESSION_OPTS_DM_SCOPE
The session scope is a CSM management domain (also know and DM scope). Commands
will be issued within the CSM management domain that contains the node where the
session was established. The node specified by the contact array parameter should be the
CSM management server. If the node running the RMC subsystem with which the session
is established is not an CSM management server, the subroutine will return an error.

MC_SESSION_OPTS_SR_LOCAL_SCOPE
The session scope is either an RSCT peer domain or local (depending on the execution
environment of the RMC subsystem at the time the mc_start_session subroutine is
invoked). If the RMC subsystem is running in an RSCT peer domain, the scope is the
peer domain. If the execution environment of the RMC subsystem on the node at the
time this subroutine is invoked does not include an RSCT peer domain, the scope is local.

MC_SESSION_OPTS_DM_LOCAL_SCOPE
The session scope is either a CSM management domain or local (depending on the
execution environment of the RMC subsystem at the time the mc_start_session
subroutine is invoked). If the node running the RMC subsystem with which the session is
established is a CSM management server, the session scope is the CSM management
domain. Otherwise the scope is local.

MC_SESSION_OPTS_SR_DM_SCOPE
The session scope is either an RSCT peer domain or a CSM management domain
(depending on the execution environment of the RMC subsystem at the time the
mc_start_session subroutine is invoked). If the RMC subsystem is running in an RSCT
peer domain, the scope is the peer domain. Otherwise, if the node running the RMC
subsystem with which the session is established is a CSM management server, the session
scope is the CSM management domain. If the node is neither in a peer domain, nor the
management server in a management domain, the subroutine will return an error.

MC_SESSION_OPTS_DM_SR_SCOPE

The session scope is either a CSM management domain or an RSCT peer domain
(depending on the execution environment of the RMC subsystem at the time the
mc_start_session subroutine is invoked). If the node running the RMC subsystem with
which the session is established is a CSM management server, the session scope is the
CSM management domain. Otherwise, if the RMC subsystem is running in an RSCT peer
domain, the scope is the peer domain. If the node is neither the management server in a
management domain, nor in a peer domain, the subroutine will return an error.

MC_SESSION_OPTS_SR_DM_LOCAL_SCOPE
The session scope is either an RSCT peer domain, a CSM management domain, or local
(depending on the execution environment of the RMC subsystem at the time the
mc_start_session subroutine is invoked). If the RMC subsystem is running in an RSCT
peer domain, the scope is the peer domain. Otherwise, if the node running the RMC
subsystem with which the session is established is a CSM management server, the session
scope is the CSM management domain. If the node is neither in a peer domain, nor the
management server in a management domain, the scope is local.

MC_SESSION_OPTS_DM_SR_LOCAL_SCOPE

The session scope is either a CSM management domain, an RSCT peer domain, or local
(depending on the execution environment of the RMC subsystem at the time the
mc_start_session subroutine is invoked). If the node running the RMC subsystem with
which the session is established is a CSM management server, the session scope is the
CSM management domain. Otherwise, if the RMC subsystem is running in an RSCT peer

Programming RMC 215

domain, the scope is the peer domain. If the node is neither the management server in a
management domain, nor in a peer domain, the scope is local.

MC_SESSION_OPTS_IP_AUTHENTICATION
Specifies that one of the IP addresses configured on the host where the application is
executing should be included in the user's network credentials. If this option is not
specified, the host name is either a fully qualified host domain name or a "short" name,
depending on the host's DNS configuration. The application can specify this option in
order to avoid a dependency on DNS.

start_timeout
If non-zero, specifies a time limit (in seconds) for establishing a session with the RMC subsystem.
This limits the amount of time the subroutine waits for responses from the RMC subsystem
running on the nodes specified by the contact_array parameter. If this limit is exceeded, the error
MC_ETIMEDOUT is returned. Due to time limits used in authentication processing, the actual
subroutine timeout may be longer than the value specified.

If zero, specifies that there is no time limit for establishing an RMC subsystem.

cmd_timeout
If non-zero, specifies the number of seconds that any blocking subroutine (including the
mc_send_cmd_grp_wait subroutine) waits for a completion response from the RMC subsystem. If
a completion response is not received within the specified time limit, the error MC_ETIMEDOUT
is returned. This error does not imply that the subroutine command did not complete; it indicates
only that the timeout value was reached before a completion response could be received.

When the mc_send_cmd_grp_wait subroutine returns the MC_ETIMEDOUT error, this means
that the command group has been sent to the RMC subsystem, but none or only some of the
command group responses have been delivered to the application.

If the command group contains one or more event registration commands, the RMC API
unregisters the events. Some event notifications, however, may be delivered to the application
before the events are unregistered.

When a blocking subroutine returns the MC_ETIMEDOUT error, this means that the command
has been sent to the RMC subsystem, but none or only some of the command responses have
been delivered to the application. If the subroutine was an event registration command, the RMC
API unregisters the event. Some event notifications, however, may be delivered to the application
before the event is unregistered.

If the value of this parameter is zero, this specifies that there is no time limit for the blocking
subroutine calls.

OUTPUT

session_hndl
The address, allocated by the application, for the session handle. The subroutine, if successful,
returns the session handle at this address.

Description

The mc_timed_start_session subroutine can be used by the application to establish a session with the
RMC subsystem on a node identified by the contact_array parameter.

This subroutine behaves exactly that same way as the mc_start_session subroutine, except for the
addition of the start_timeout and cmd_timeout parameters. If the start_timeout parameter specifies a
non-zero value, it indicates a time limit (in seconds) for establishing a session with the RMC subsystem.
If the cmd_timeout parameter specifies a non-zero value, it indicates a time limit (in seconds) that a
blocking subroutine (including the mc_send_cmd_grp_wait subroutine) waits for a completion callback.

216 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Depending on the execution environment of the RMC subsystem with which the session is established,
and any session scope option specified by the options parameter, the scope of the RMC session will be an
RSCT peer domain, a CSM management domain, or the local node.

An error is returned if the requested scope option specified by the options parameter cannot be
supported by the current execution environment of the RMC subsystem with which the session is
established. The following table illustrates what the resulting session scope would be depending on the
execution environment of the RMC subsystem and the session scope option specified by the options
parameter.

Table 25. Session scope depending on the execution environment of the RMC subsystem and the session scope
option

Session scope option specified by the options
parameter

Stand-alone
environment

Peer domain Management
server in a
management
domain

Peer domain
and on the
management
server in a
management
domain

Managed
node in a
management
domain *

Peer domain
and a
managed
node in a
management
domain *

MC_SESSION_OPTS_LOCAL_SCOPE or if no
session scope is specified

local local local local local local

MC_SESSION_OPTS_SR_SCOPE error peer domain error peer domain error peer domain

MC_SESSION_OPTS_DM_SCOPE error error management
domain

management
domain

error error

MC_SESSION_OPTS_SR_LOCAL_SCOPE local peer domain local peer domain local peer domain

MC_SESSION_OPTS_DM_LOCAL_SCOPE local local management
domain

management
domain

local local

MC_SESSION_OPTS_SR_DM_SCOPE error peer domain management
domain

peer domain error peer domain

MC_SESSION_OPTS_DM_SR_SCOPE error peer domain management
domain

management
domain

error peer domain

MC_SESSION_OPTS_SR_DM_LOCAL_SCOPE local peer domain management
domain

peer domain local peer domain

MC_SESSION_OPTS_DM_SR_LOCAL_SCOPE local peer domain management
domain

management
domain

local peer domain

* If a node is a managed node in one CSM management domain and also the management server in
another management domain, see the management server columns above for the resulting session scope.

The subroutine, if successful, returns the session handle at the address specified in the session_hndl
parameter. Subsequent calls to the RMC API can identify this session using the returned session handle.
The session scope established when the mc_timed_start_session subroutine is called determines where
subsequent commands issued in the session using other RMC API calls are executed, and where any
associated selection string is evaluated.

After a session is established successfully, if the options parameter is set to the
MC_SESSION_OPTS_SR_SCOPE session scope and if the execution environment is going out of SR
scope, an error message, which indicates that the session is ended, is returned to the application.
Similarly, a session is ended if the present execution environment is going out of SR scope, and if the
session was established with a scope option that resolved to SR scope. For example, if the contact node or
peer domain is brought offline, a session that specified the MC_SESSION_OPTS_SR_LOCAL_SCOPE
session scope on an online node in a peer domain is ended. If the scope option is not specified, or if the
MC_SESSION_OPTS_LOCAL_SCOPE session scope is specified, a change in execution environment has
no impact on the session.

Any error messages or descriptive text returned in responses resulting from commands issued in this
session, are returned in the locale that was in effect at the time the mc_timed_start_session subroutine
was invoked. By calling the setlocale subroutine and then the mc_timed_start_session subroutine, the
application can change the locale used by the RMC subsystem when returning messages or descriptive
text.

Programming RMC 217

|
|
|
|
|
|
|
|
|

It is expected that all subroutines that specify the session handle returned by a successful call to the
mc_timed_start_session subroutine are compiled using the same value of the MC_VERSION macro used
when compiling the call to the mc_timed_start_session subroutine. Otherwise, the
MC_EVERSIONMISMATCH error is returned by the other subroutines.

When the RMC API detects the interruption of a session with the RMC subsystem, it completes the
processing of any responses and event notifications that have been received prior to the session
interruption. Any application threads that are blocked in API subroutines, including the mc_dispatch
subroutine, return with an error indicating the session was interrupted. If the application has obtained a
descriptor using the mc_get_descriptor subroutine, the API makes the descriptor ready for read to ensure
that the application has an opportunity to call the mc_dispatch subroutine and receive the error. If any
subroutine, other than the mc_end_session subroutine is invoked, then the subroutine call returns the
error.

Once the application has received the error indicating the session was interrupted, it must call the
mc_end_session subroutine. The application can then establish a new session by once again calling the
mc_timed_start_session subroutine. If the subroutine returns the MC_ESESSREFUSED error, the
application should call the subroutine again after a short time, since the RMC subsystem may not yet
have recovered. This can be repeated as many time as appropriate for the application until a new session
is established. Once the new session is established, the application must register any events that were
registered in the old session (if the event notifications are still desired).

The managed nodes in a CSM management domain may be configured into one or more RSCT peer
domains. In such a case, any application with a management domain session scope can access peer
domain resources by specifying the peer domain name (known as the Active Peer Domain name).

Security

When establishing a session, the RMC subsystem authenticates the user of the calling application. The
RMC API, if appropriate, authenticates the RMC subsystem. Successful authentication is a necessary
condition for the session to be established. If the session is established, the network credentials of the
user are saved by the RMC subsystem in order to perform authorization checks as various command
interfaces are executed. In an RSCT peer domain or a CSM management domain, the cluster the
authorization checks are performed on the node where the command is actually executed. This is
typically, but not always, the node where the resource is located. For this reason, ACLs specifying the
user's network credentials should be replicated throughout the cluster.

Return values

A return value of 0 indicates that a session was established with the RMC subsystem, and a session
handle is available at the location specified by the session_hndl parameter. The session handle can now be
used in subsequent RMC API calls to send commands to, and receive responses from, the RMC
subsystem for the session scope. Any non-zero value returned by this subroutine is an error, and
indicates that the session was not established. The following errors can be returned by this subroutine.
Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_ESESSREFUSED
A session could not be established with the RMC subsystem in the specified cluster. The
application should try again later.

MC_EINVALIDNAME
Invalid contact name specified.

218 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_EINVALSCOPE
The specified session scope is not currently supported.

MC_EMULTISCOPE
Multiple session scope options are specified.

MC_ENOTPRIVATESCOPE
The specified session scope cannot be combined with the private option.

MC_ELIBSECURITY
The RMC API detected an error in security services.

MC_ESUBSECURITY
The RMC subsystem detected an error in security services.

MC_EAUTHENTICATE
Could not authenticate the user of the calling application.

MC_EMUTUALAUTHENT
The RMC API could not authenticate the RMC subsystem.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDCONTACT
Invalid contact type specified.

MC_ETIMEDOUT
The session could not be established prior to expiration of the timeout.

MC_ENOMEM
The API could not allocate required memory.

Location

/usr/lib/libct_mc.a

Related concepts:
“RMC subsystem session” on page 2
A resource monitoring and control (RMC) subsystem session is a connection with the RMC subsystem
that the application establishes through an RMC daemon that runs on a particular node.
Related reference:
“mc_session_info” on page 193
This subroutine gets information about a session.

mc_undefine_resource_*
This subroutine removes a resource from the RMC subsystem.

Purpose

Removes a resource from the RMC subsystem.

Library

RMC Library (libct_mc.a)

Syntax

Like many of the RMC interfaces, there are four mc_undefine_resource_* subroutines. All four
subroutines issue the same command action, but enable your application to vary how the command is
sent to the RMC subsystem, and how the command response is made available to the application.

Programming RMC 219

v The mc_undefine_resource_bp subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_undefine_resource_bp(

mc_sess_hndl_t sess_hndl,
mc_undefine_rsrc_rsp_t **response,
ct_resource_handle_t rsrc_hndl,
ct_structured_data_t *data)

v The mc_undefine_resource_ap subroutine adds the command to a command group. Please note that
this command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_undefine_resource_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_undefine_rsrc_rsp_t **response,
ct_resource_handle_t rsrc_hndl,
ct_structured_data_t *data)

v The mc_undefine_resource_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_undefine_resource_bc(

mc_sess_hndl_t sess_hndl,
mc_undef_rsrc_cb_t *undef_rsrc_cb,
void *undef_rsrc_cb_arg,
ct_resource_handle_t rsrc_hndl,
ct_structured_data_t *data)

The definition for the response callback is:
typedef void (mc_undef_rsrc_cb_t)(mc_sess_hndl_t,
mc_undefine_rsrc_rsp_t *,
void *);

v The mc_undefine_resource_ac subroutine adds the command to a command group. Please note that
this command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_undefine_resource_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_undef_rsrc_cb_t *undef_rsrc_cb,
void *undef_rsrc_cb_arg,
ct_resource_handle_t rsrc_hndl,
ct_structured_data_t *data)

The definition for the response callback is:
typedef void (mc_undef_rsrc_cb_t)(mc_sess_hndl_t,
mc_undefine_rsrc_rsp_t *,
void *);

Parameters

INPUT

220 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

undef_rsrc_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

undef_rsrc_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_hndl
The resource handle that identifies the resource to be undefined. A resource handle is returned in
the response structure for many RMC API subroutines including the mc_define_resource_*
subroutine. An array of resource handles for resources of a particular resource class is returned in
the response structure for the mc_enumerate_resources_* and mc_enumerate_permitted_rsrcs_*
subroutines. To validate the resource handle before calling this subroutine, the application can call
one of the mc_validate_rsrc_hndl_* subroutines.

data A pointer to structured data containing resource-class specific options for undefining a resource.
To accept the default values (or if the resource class does not define options) for undefining a
resource, the data parameter should be a NULL pointer.

To obtain the syntax and semantics for the structured data required by the resource class for
specifying undefine resource options, the application can use the mc_qdef_sd_* subroutines.

OUTPUT

response
A pointer to a location in which the RMC API will return a pointer to the response. This
parameter applies only to variations of this subroutine that use the pointer response method.

Description

The mc_undefine_resource_* subroutines can be used by the application to undefine a resource
(identified by the rsrc_hndl parameter). The resource manager associated with the resource will remove
the actual instance. If the resource manager accepts structured data as options for undefining a resource,
the application can provide this using the data parameter. Once a resource is undefined, the resource
handle (specified by the rsrc_hndl parameter) is invalid and cannot be used in subsequent RMC API calls.

The response for these subroutines is a structure of type mc_undefine_rsrc_rsp_t, and is described in
Response structure.

This command cannot be used in an ordered command group.

Security

To undefine a resource, the user of the calling application must have either the d or w permission
specified in an ACL entry for the associated resource class.

Programming RMC 221

Return values

For the mc_undefine_resource_bp and mc_undefine_resource_bc subroutines, a return value of 0
indicates that the command has been successfully sent to the RMC subsystem and a response has been
received and processed.

For the mc_undefine_resource_ap and mc_undefine_resource_ac subroutines, a return value of 0
indicates that the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before the response could be received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before the response could be
received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDDATATYPE
Invalid attribute data type specified.

MC_EINVALIDVALUEPTR
Invalid attribute value pointer specified.

222 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_EINVALIDSDTYPE
Invalid structured data subtype specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before the
response could be received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_undefine_rsrc_rsp_t. The response contains
the resource handle of the resource that was undefined (provided the mc_error field of the
mc_undefine_rsrc_rsp_t structure indicates there was no error). If the mc_error field indicates an error, the
response contains the resource handle in error. This command results in only one response.

The response structure definition is:
typedef struct mc_undefine_rsrc_rsp mc_undefine_rsrc_rsp_t;
struct mc_undefine_rsrc_rsp {

mc_errnum_t mc_error;
ct_char_t *mc_class_name;
ct_resource_handle_t mc_rsrc_hndl;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the command was successful. Any other value is an error, and
indicates that the RMC subsystem or a resource manager could not complete the command. The
error may also indicate that the command arguments were in error. The error codes imply which
of the remaining fields in the structure are defined.

mc_class_name
The name of the resource class in which the resource instance is deleted.

mc_rsrc_hndl
The resource handle of the deleted resource instance.

Location

/usr/lib/libct_mc.a

Related reference:
“mc_define_resource_*” on page 58
This subroutine defines a new resource.

mc_unreg_event_*
This subroutine unregisters an event with the RMC subsystem.

Purpose

Unregisters an event with the RMC subsystem.

Library

RMC Library (libct_mc.a)

Programming RMC 223

Syntax

Like many of the RMC interfaces, there are four mc_unreg_event_* subroutines. All four subroutines
issue the same command action, but enable your application to vary how the command is sent to the
RMC subsystem, and how the command response is made available to the application.
v The mc_unreg_event_bp subroutine sends the command to the RMC subsystem and blocks execution.

To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_unreg_event_bp(

mc_sess_hndl_t sess_hndl,
mc_unreg_rsp_t **response,
mc_registration_id_t registration_id)

v The mc_unreg_event_ap subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>
ct_int32_t

mc_unreg_event_ap(
mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_unreg_rsp_t **response,
mc_registration_id_t registration_id)

v The mc_unreg_event_bc subroutine sends the command to the RMC subsystem and blocks execution.
To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_unreg_event_bc(

mc_sess_hndl_t sess_hndl,
mc_unreg_cb_t *unreg_cb,
void *unreg_cb_arg,
mc_registration_id_t registration_id)

The definition for the response callback is:
typedef void (mc_unreg_cb_t)(mc_sess_hndl_t,
mc_unreg_rsp_t *,
void *);

v The mc_unreg_event_ac subroutine adds the command to a command group. Please note that this
command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_unreg_event_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_unreg_cb_t *unreg_cb,
void *unreg_cb_arg,
mc_registration_id_t registration_id)

The definition for the response callback is:
typedef void (mc_unreg_cb_t)(mc_sess_hndl_t,
mc_unreg_rsp_t *,
void *);

Parameters

INPUT

224 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_ start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

unreg_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

unreg_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

registration_id
The event registration ID that identifies the event to be unregistered. A valid event registration ID
is one returned by the rm_reg_event_select_*, mc_reg_event_handle_*, or mc_reg_class_event_*
subroutines. In order for the registration ID to be valid, the response from the
rm_reg_event_select_*, mc_reg_event_handle_*, or mc_reg_class_event_* subroutine must have
indicated that the event was successfully registered.

If an event registration ID is specified in a call to an mc_query_event_* subroutine, and the
command has not yet completed, you cannot specify the registration ID when calling an
mc_unreg_event_* subroutine.

OUTPUT

response
A pointer to a location in which the RMC API will return a pointer to the response. This
parameter applies only to variations of this subroutine that use the pointer response method.

Description

The mc_unreg_event_* subroutines can be used by the application to unregister a resource or resource
class event that was previously registered using the mc_reg_event_select_*, mc_reg_event_handle_*, or
mc_reg_class_event_* subroutines.

The response for these subroutines is a structure of type mc_unreg_rsp_t, and is described in Response
structure. The mc_error field of the mc_unreg_rsp_t structure indicates whether or not the event has been
successfully unregistered. Included in a successful response is the registration ID of the event that was
unregistered. The RMC subsystem will not pass this response to the application until all event
notification callbacks being processed for the event have completed. This enables the application to safely
release any resources associated with the event when it receives this response.

In order to avoid deadlocks, the blocking versions of this interface (the mc_unreg_event_bp and
mc_unreg_event_bc subroutines) should not be called from within an event notification callback. Also to
avoid deadlocks, the mc_send_cmd_grp_wait subroutine should not be called from within an event
notification callback if the command group it would be sending contains commands added by the
mc_unreg_event_ap or mc_unreg_event_ac subroutines.

This command cannot be used in an ordered command group.

Programming RMC 225

Security

To unregister a resource or resource class event, the user of the calling application must have either s or r
permission specified in an ACL entry for the resource or resource class.

Return values

For the mc_unreg_event_bp and mc_unreg_event_bc subroutines, a return value of 0 indicates that the
command has been successfully sent to the RMC subsystem and a response has been received and
processed.

For the mc_unreg_event_ap and mc_unreg_event_ac subroutines, a return value of 0 indicates that the
command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EDEADLOCK
An attempt was made to invoke the command from within an event notification callback.

MC_EQEVENTACTIVE
A query event command has not yet completed.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_EINVALIDEID
The specified registration ID is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before the response could be received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before the response could be
received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

226 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before the
response could be received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_unreg_rsp_t. The response structure
definition is:
typedef struct mc_unreg_rsp mc_unreg_rsp_t;
struct mc_unreg_rsp {

mc_errnum_t mc_error;
mc_registration_id_t mc_registration_id;

};

The fields of this structure contain the following:

mc_error
This field is always 0 (zero), indicating that the event has been successfully unregistered.

mc_registration_id
The event registration ID of the event that was unregistered. This registration ID is now invalid
and cannot be used in subsequent calls to the RMC API.

The RMC subsystem guarantees that this response is passed to the application only when no event
notification callbacks for the specified event are being executed. Once the response has been passed to the
application, no more event notifications for this event will be delivered to the application. This permits
the application to release any application resources associated with the event when it receives the
response.

Location

/usr/lib/libct_mc.a

mc_validate_rsrc_hndl_*
This subroutine validates one or more resource handles.

Purpose

Validates one or more resource handles.

Library

RMC Library (libct_mc.a)

Programming RMC 227

Syntax

Like many of the RMC interfaces, there are four mc_validate_rsrc_hndl_* subroutines. All four
subroutines issue the same command action, but enable your application to vary how the command is
sent to the RMC subsystem, and how the command response is made available to the application.
v The mc_validate_rsrc_hndl_bp subroutine sends the command to the RMC subsystem and blocks

execution. To receive responses, it specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_validate_rsrc_hndl_bp(

mc_sess_hndl_t sess_hndl,
mc_rsrc_hndl_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_resource_handle_t *rsrc_hndl,
ct_uint32_t rsrc_hndl_cnt)

v The mc_validate_rsrc_hndl_ap subroutine adds the command to a command group. Please note that
this command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the pointer response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_validate_rsrc_hndl_ap(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_rsrc_hndl_rsp_t **rsp_array,
ct_uint32_t *array_cnt,
ct_resource_handle_t *rsrc_hndl,
ct_uint32_t rsrc_hndl_cnt)

v The mc_validate_rsrc_hndl_bc subroutine sends the command to the RMC subsystem and blocks
execution. To receive responses, it specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_validate_rsrc_hndl_bc(

mc_sess_hndl_t sess_hndl,
mc_val_rsrc_hndl_cb_t *val_rsrc_hndl_cb,
void *val_rsrc_hndl_cb_arg,
ct_resource_handle_t *rsrc_hndl,
ct_uint32_t rsrc_hndl_cnt)

The definition for the response callback is:
typedef void (mc_val_rsrc_hndl_cb_t)(mc_sess_hndl_t,
mc_rsrc_hndl_rsp_t *,
void *);

v The mc_validate_rsrc_hndl_ac subroutine adds the command to a command group. Please note that
this command cannot be used in an ordered command group. To receive responses, this subroutine
specifies the callback response method. The syntax is:
#include <rsct/ct_mc_v6.h>

ct_int32_t
mc_validate_rsrc_hndl_ac(

mc_cmdgrp_hndl_t cmdgrp_hndl,
mc_val_rsrc_hndl_cb_t *val_rsrc_hndl_cb,
void *val_rsrc_hndl_cb_arg,
ct_resource_handle_t *rsrc_hndl,
ct_uint32_t rsrc_hndl_cnt)

The definition for the response callback is:
typedef void (mc_val_rsrc_hndl_cb_t)(mc_sess_hndl_t,
mc_rsrc_hndl_rsp_t *,
void *);

228 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Parameters

INPUT

sess_hndl
The session handle that identifies the RMC subsystem session. A session handle is returned by
the mc_start_session or mc_timed_start_session subroutine when the application establishes a
session with the RMC subsystem.

cmdgrp_hndl
The command group handle that identifies the command group to which this command should
be added. A command group handle is returned by the mc_start_cmd_grp subroutine when the
application allocates a command group. This parameter applies only to variations of this
subroutine that add the command to a command group.

val_rsrc_hndl_cb
Identifies the callback routine that will be invoked by the RMC API to return command responses
to the application. This parameter applies only to the variations of this subroutine that use the
callback response method.

val_rsrc_hndl_cb_arg
Identifies the argument that the RMC API will use to pass command responses to the callback
routine. This parameter applies only to the variations of this subroutine that use the callback
response method.

rsrc_hndl
Identifies the resource handles to be validated using a pointer to an array of rsrc_hndl_cnt
elements of type ct_resource_handle_t.

rsrc_hndl_cnt
Specifies the number of elements in the rsrc_hndl array.

OUTPUT

rsp_array
A pointer to a location in which the RMC API will return a pointer to a response array of
array_cnt elements. This parameter applies only to variations of this subroutine that use the
pointer response method.

array_cnt
Identifies a location in which the RMC API will return the number of elements in the response
array rsp_array. This parameter applies only to variations of this subroutine that use the pointer
response method.

Description

The mc_validate_rsrc_hndl_* subroutines can be used by the application to verify that one or more
resource handles (identified by the rsrc_hndl parameter) are still valid. This enables the application to
ensure that a resource handle previously obtained by the RMC subsystem represents a resource that is
still defined by its resource manager.

The response for these subroutines is a structure of type mc_rsrc_hndl_rsp_t, and is described in
Response structure.

This command cannot be used in an ordered command group.

Security

To validate resource handles, the user of the calling application must have either v or r permission
specified in an ACL entry for each resource class implied by the resource handles.

Programming RMC 229

Return values

For the mc_validate_rsrc_hndl_bp and mc_validate_rsrc_hndl_bc subroutines, a return value of 0
indicates that the command has been successfully sent to the RMC subsystem and one or more responses
have been received and processed.

For the mc_validate_rsrc_hndl_ap and mc_validate_rsrc_hndl_ac subroutines, a return value of 0
indicates that the command has been successfully added to the command group.

Any non-zero value returned by these subroutines is an error. The following errors can be returned by
these subroutines. Additional error information can be returned by calling the cu_get_error function.

MC_ELIB
A severe library or system error occurred.

MC_ELIBNOMEM
A severe library memory allocation error occurred.

MC_EINVALIDCMD
The specified command group handle is invalid.

MC_EINVALIDRSRCCNT
Invalid resource handle count.

MC_ECMDGRPLIMIT
The command group already contains the maximum number of commands, as specified by the
MC_CMD_GRP_LIMIT macro.

MC_EORDERGROUP
An attempt was made to add the command to an ordered command group.

MC_EINVALIDSESS
The specified session handle is invalid.

MC_ESESSENDED
The session has been ended.

MC_ESESSINTRPT
The session has been interrupted.

MC_ESENTENDED
The command has been sent but the session ended before all responses could be received. If
pointer response was selected for the command, check the appropriate array count for any
responses. If callback response was selected for the command, the callback was invoked for any
responses received.

MC_ESENTINTRPT
The command has been sent but the session was interrupted before all responses could be
received. If pointer response was selected for the command, check the appropriate array count for
any responses. If callback response was selected for the command, the callback was invoked for
any responses received.

MC_EAGAIN
Some system resource is not available. The application should try again later.

MC_EINVALIDRSPPTR
Invalid response pointer specified.

MC_EINVALIDCB
Invalid callback specified.

MC_ECMDTOOLARGE
The command is too large to send to the RMC subsystem.

230 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

MC_ECMDGRPSLIMIT
The maximum number of command groups are active.

MC_EINVALIDCNTPTR
Invalid response count pointer specified.

MC_ETIMEDOUT
The command has been sent to the RMC subsystem, but the command timeout limit (specified by
the mc_timed_start_session subroutine when the session was established) was reached before all
responses could be received. If subroutine uses pointer response, check the appropriate array
count for any responses. If the subroutine uses callback response, the callback will have been
invoked for any responses received.

MC_ENOMEM
The API could not allocate required memory.

Response structure

The response for these subroutines is a structure of type mc_rsrc_hndl_rsp_t. If multiple resource handles
were identified using the rsrc_hndl parameter of the subroutine, then one response will be returned for
each resource handle specified.

The response structure definition is:
typedef struct mc_rsrc_hndl_rsp mc_rsrc_hndl_rsp_t;
struct mc_rsrc_hndl_rsp {

mc_errnum_t mc_error;
ct_resource_handle_t mc_rsrc_hndl;

};

The fields of this structure contain the following:

mc_error
If 0 (zero), this field indicates that the command was successful. Any other value is an error. If
there is an error, the error codes indicate whether the resource handle contained in mc_rsrc_hndl is
invalid or the command could not be completed for the resource specified by the resource handle.
The error may also indicate that the command arguments were in error.

mc_rsrc_hndl
The resource handle that identifies the resource that was the target of the command.

Location

/usr/lib/libct_mc.a

RMC API data definitions
The RMC API includes several macros and datatypes that simplify the task of programming the API,
provide more complete error checking during compilation, and hide implementation details.

This information will help you understand the subroutine parameters described in “RMC API
subroutines” on page 40.

The RMC API data declarations are contained in the header file rsct/ct_mc.h. The definitions in this
header file are prefixed by mc_, in appropriate case. The rsct/ct_mc.h header file also includes the
following header files:

ct_mcerr.h
Definitions of error codes, prefixed by RMC_, and descriptions of error arguments that can be
returned in responses and event notifications. These error codes are summarized in “RMC API
error codes and return values” on page 243.

Programming RMC 231

ct_rmc.h
Definitions, prefixed by rmc_, that are common to several cluster APIs

ct_cu.h
Definitions, prefixed by cu_, for the cluster common utilities API.

ct.h Definitions, prefixed by ct_, that are common to all cluster APIs.

In order to use the version of the RMC API described here, the rsct/ct_mc.h header file must be preceded
by the MC_VERSION macro definition, as shown in the following:
#define MC_VERSION 6
#include <rsct/ct_mc.h>

You can also, instead of defining the MC_VERSION and including the rsct/ct_mc.h header file, include
the header file rsct/ct_mc_v6.h. This header file defines the MC_VERSION and includes the rsct/ct_mc.h
header file.

RMC API macro definitions
The RMC API defines two macros to represent the maximum number of commands allowed in a
command group, and the maximum number of command groups allowed in a session.

The macro definitions are:
#define MC_CMD_GRP_LIMIT 65535 /* max number of commands

in a command group */

#define MC_CMD_GRPS_LIMIT 65535 /* max number of command
groups in a session */

RMC API datatypes
The RMC API defines a number of datatypes that are summarized in the following table.

The error structure used in all response structures and event notification structures, is described in
“Obtaining error information returned in response structures or event notification structures” on page 30.
The following table lists the data types in alphabetical order and refers you to where you can obtain
more information.

Table 26. RMC API datatypes

Data type Description For more information, see

*ct_array_ptr_t A pointer type to the composite type ct_array_t. This type
is provided for convenience.

“RMC API data types for values,
resources, and resource attributes”
on page 238

ct_array_t A structure used to specify an array of values. “RMC API data types for values,
resources, and resource attributes”
on page 238

*ct_binary_ptr_t A pointer type to the composite type ct_binary_t. This
type is provided for convenience.

“RMC API data types for values,
resources, and resource attributes”
on page 238

ct_binary_t A structure used to specify a binary value. “RMC API data types for values,
resources, and resource attributes”
on page 238

*ct_char_ptr_t Specifies a pointer to scalar value of type char. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_char_t Specifies a scalar value of type char. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_contact_point_t A union that identifies a node running the RMC
subsystem.

“mc_start_session” on page 206 or
“mc_timed_start_session” on page
212

232 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 26. RMC API datatypes (continued)

Data type Description For more information, see

ct_contact_t Used to specify one or more nodes the RMC API may
contact to start a session with the RMC subsystem.

“mc_start_session” on page 206 or
“mc_timed_start_session” on page
212

ct_contact_type_t Enumeration that specifies supported contact types. “mc_start_session” on page 206 or
“mc_timed_start_session” on page
212

ct_data_type_t An enumeration used to identify the data types, or
pointers to data types, of values that are used by the RMC
API.

“RMC API data types for values,
resources, and resource attributes”
on page 238

ct_float32_t Specifies a scalar value of type float. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_float64_t Specifies a scalar value of type double. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_int8_t Specifies a scalar value of type int8_t. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_int16_t Specifies a scalar value of type int16_t. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_int32_t Specifies a scalar value of type int32_t. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_int64_t Specifies a scalar value of type int64_t. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_IP_contact_point_t A structure that identifies a contact point. “mc_start_session” on page 206 or
“mc_timed_start_session” on page
212

ct_uint8_t Specifies a scalar value of type uint8_t. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_uint16_t Specifies a scalar value of type uint16_t. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_uint32_t Specifies a scalar value of type uint32_t. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_uint64_t Specifies a scalar value of type uint64_t. “RMC API data types for values,
resources, and resource attributes”
on page 238

*ct_resource_handle_ptr_t A pointer type to the composite type
ct_resource_handle_t. This type is provided for
convenience.

“RMC API data types for values,
resources, and resource attributes”
on page 238

ct_resource_handle_t A structure used to contain a resource handle “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_resource_id_t A structure used to contain a resource ID. “RMC API data types for values,
resources, and resource attributes”
on page 238

*ct_sd_ptr_t A pointer type to the composite type ct_structured_data_t.
This type is provided for convenience.

“RMC API data types for values,
resources, and resource attributes”
on page 238

ct_structured_data_element_t A structure used to define an element of Structured Data. “RMC API data types for values,
resources, and resource attributes”
on page 238

Programming RMC 233

Table 26. RMC API datatypes (continued)

Data type Description For more information, see

ct_structured_data_t A structure used to define a Structured Data value. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_value_t A union used to return resource attribute values. “RMC API data types for values,
resources, and resource attributes”
on page 238

mc_action_cb_t Callback definition for the response callback specified on
the variations of the mc_invoke_action_* subroutines that
use callback response.

“mc_invoke_action_*” on page 78

mc_action_props_t An enumeration that defines the properties on an action.
Used in the response structure returned by the RMC API
in response to a call to an mc_qdef_actions_* subroutine.

“mc_qdef_actions_*” on page 97

mc_action_rsp_t A response structure returned by the RMC API in
response to a call to an mc_invoke_action_* subroutine.

“mc_invoke_action_*” on page 78

mc_action_t A structure that describes an action. Used in the response
structure returned by the RMC API in response to a call to
an mc_qdef_actions_* subroutine.

“mc_qdef_actions_*” on page 97

mc_action_type_t An enumeration used to indicate the type of an action.
Used in the response structure returned by the RMC API
in response to a call to an mc_qdef_valid_values_*
subroutine.

“mc_qdef_valid_values_*” on page
126

mc_attribute_t A structure used to return a resource attribute. “RMC API data types for values,
resources, and resource attributes”
on page 238

mc_class_action_cb_t Callback definition for the response callback specified on
the variations of the mc_invoke_class_action_*
subroutines that use callback response.

“mc_invoke_class_action_*” on
page 82

mc_class_action_rsp_t A response structure returned by the RMC API in
response to a call to an mc_invoke_class_action_*
subroutine.

“mc_invoke_class_action_*” on
page 82

mc_class_event_cb_t Callback definition for the resource class event notification
callback specified on calls to the mc_reg_class_event_*
subroutine.

“mc_reg_class_event_*” on page
160

mc_class_event_t Event notification structure used to notify an application
of resource class events for which it registered using the
mc_reg_class_event_* subroutine.

“mc_reg_class_event_*” on page
160

mc_class_name_rsp_t A response structure returned by the RMC API in
response to a call to an mc_refresh_config_* subroutine.

“mc_refresh_config_*” on page 156

mc_class_query_cb_t Callback definition for the response callback specified on
the variations of the mc_class_query_d_* and
mc_class_query_p_* subroutines that use callback
response.

“mc_class_query_d_*” on page 42
and “mc_class_query_p_*” on page
47

mc_class_query_rsp_t A response structure returned by the RMC API in
response to a call to an mc_class_query_d_* or
mc_class_query_p_* subroutine.

“mc_class_query_d_*” on page 42
and “mc_class_query_p_*” on page
47

mc_class_set_cb_t Callback definition for the response callback specified on
the variations of the mc_class_set_* subroutines that use
callback response.

“mc_class_set_*” on page 53

mc_class_set_rsp_t A response structure returned by the RMC API in
response to a call to an mc_class_set_* subroutine.

“mc_class_set_*” on page 53

mc_cmdgrp_hndl_t An opaque data type used as a handle to represent
command groups.

“RMC API opaque data types” on
page 241

mc_cmd_grp_opts_t An enumeration that defines options for allocating a
command group that can be specified on the
mc_start_cmd_grp subroutine.

“Start command group options” on
page 242 and “mc_start_cmd_grp”
on page 204

234 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 26. RMC API datatypes (continued)

Data type Description For more information, see

mc_complete_cb_t Callback definition for the completion callback specified
on calls to the mc_send_cmd_grp subroutine.

“mc_send_cmd_grp” on page 188

mc_dattr_props_t An enumeration that defines properties of a dynamic
attribute. Used in the response structure returned by the
RMC API in response to a call to an
mc_qdef_d_attribute_* subroutine.

“mc_qdef_d_attribute_*” on page
102

mc_define_rsrc_rsp_t A response structure returned by the RMC API in
response to a call to an mc_define_resource_* subroutine.

“mc_define_resource_*” on page 58

mc_def_rsrc_cb_t Callback definition for the response callback specified on
the variations of the mc_define_resource_* subroutines
that use callback response.

“mc_define_resource_*” on page 58

mc_dispatch_opts_t An enumeration that defines dispatch options that can be
specified on the mc_dispatch subroutine.

“Dispatch options” on page 242
and “mc_dispatch” on page 62

mc_enumerate_cb_t Callback definition for the response callback specified on
the variations of the mc_enumerate_resources_*, and
mc_enumerate_permitted_rsrcs_* subroutines that use
callback response.

“mc_enumerate_resources_*” on
page 69 and
“mc_enumerate_permitted_rsrcs_*”
on page 65

mc_enumerate_rsp_t A response structure returned by the RMC API in
response to a call to an mc_enumerate_resources_* or
mc_enumerate_permitted_rsrcs_* subroutine.

“mc_enumerate_resources_*” on
page 69 and
“mc_enumerate_permitted_rsrcs_*”
on page 65

mc_errnum_t A structure used to contain error information. A structure
of this type is contained within all response structures and
event notifications.

“Obtaining error information
returned in response structures or
event notification structures” on
page 30

mc_error_attr_t A structure that describes attribute that could not be set.
Used in the response structure returned by the RMC API
in response to a call to an mc_class_set_*,
mc_set_handle_*, or mc_set_select_* subroutine.

“mc_class_set_*” on page 53,
“mc_set_handle_*” on page 194,
and “mc_set_select_*” on page 199

mc_event_cb_t Callback definition for the resource event notification
callback specified on calls to the mc_reg_event_handle_*
and mc_reg_event_select_* subroutines.

“mc_reg_event_handle_*” on page
168 and “mc_reg_event_select_*” on
page 176

mc_event_flags_t An enumeration that defines event flags returned in event
notification structures.

“mc_reg_class_event_*” on page
160, “mc_reg_event_handle_*” on
page 168, and
“mc_reg_event_select_*” on page
176

mc_event_t Event notification structure, used to notify an application
of resource events for which it registered using the
mc_reg_event_handle_* or mc_reg_event_select_*
subroutines.

“mc_reg_event_handle_*” on page
168 and “mc_reg_event_select_*” on
page 176

mc_list_usage_t An enumeration that defines options used by the
mc_invoke_class_action_* subroutines.

“Name list usage” on page 243 and
“mc_invoke_class_action_*” on
page 82

mc_offline_cb_t Callback definition for the response callback specified on
the variations of the mc_offline_* subroutines that use
callback response.

“mc_offline_*” on page 88

mc_offline_opts_t An enumeration that defines options for taking a resource
offline. These options are used by the mc_offline_*
subroutines.

“Offline command options” on
page 243 and “mc_offline_*” on
page 88

mc_online_cb_t Callback definition for the response callback specified on
the variations of the mc_online_* subroutines that use
callback response.

“mc_online_*” on page 92

mc_pattr_props_t An enumeration that defines properties of a persistent
attribute. Used in the response structure returned by the
RMC API in response to a call to an
mc_qdef_p_attribute_* subroutine.

“mc_qdef_p_attribute_*” on page
108

Programming RMC 235

Table 26. RMC API datatypes (continued)

Data type Description For more information, see

mc_qdef_actions_cb_t Callback definition for the response callback specified on
the variations of the mc_qdef_actions_* subroutines that
use callback response.

“mc_qdef_actions_*” on page 97

mc_qdef_actions_rsp_t A response structure returned by the RMC API in
response to a call to an mc_qdef_actions_* subroutine.

“mc_qdef_actions_*” on page 97

mc_qdef_dattr_cb_t Callback definition for the response callback specified on
the variations of the mc_qdef_d_attribute_* subroutines
that use callback response.

“mc_qdef_d_attribute_*” on page
102

mc_qdef_dattr_rsp_t A response structure returned by the RMC API in
response to a call to an mc_qdef_d_attribute_* subroutine.

“mc_qdef_d_attribute_*” on page
102

mc_qdef_opts_t An enumeration that defines query definition options for
the mc_qdef_actions_*, mc_qdef_d_attribute_*,
mc_qdef_p_attribute_*, mc_qdef_resource_class_*,
mc_qdef_sd_*, and mc_qdef_valid_values_* subroutines.

“Query definition command
options” on page 243

mc_qdef_pattr_cb_t Callback definition for the response callback specified on
the variations of the mc_qdef_p_attribute_* subroutines
that use callback response.

“mc_qdef_p_attribute_*” on page
108

mc_qdef_pattr_rsp_t A response structure returned by the RMC API in
response to a call to an mc_qdef_p_attribute_* subroutine.

“mc_qdef_p_attribute_*” on page
108

mc_qdef_rsrc_class_cb_t Callback definition for the response callback specified on
the variations of the mc_qdef_resource_class_*
subroutines that use callback response.

“mc_qdef_resource_class_*” on
page 114

mc_qdef_rsrc_class_rsp_t A response structure returned by the RMC API in
response to a call to an mc_qdef_resource_class_*
subroutine.

“mc_qdef_resource_class_*” on
page 114

mc_qdef_sd_cb_t Callback definition for the response callback specified on
the variations of the mc_qdef_sd_* subroutines that use
callback response.

“mc_qdef_sd_*” on page 120

mc_qdef_sd_rsp_t A response structure returned by the RMC API in
response to a call to an mc_qdef_sd_* subroutine.

“mc_qdef_sd_*” on page 120

mc_qdef_valid_vals_cb_t Callback definition for the response callback specified on
the variations of the mc_qdef_valid_values_* subroutines
that use callback response.

“mc_qdef_valid_values_*” on page
126

mc_qdef_valid_vals_rsp_t A response structure returned by the RMC API in
response to a call to an mc_qdef_valid_values_*
subroutine.

“mc_qdef_valid_values_*” on page
126

mc_query_cb_t Callback definition for the response callback specified on
the variations of the mc_query_d_handle_*,
mc_query_d_select_*, mc_query_p_handle_*, and
mc_query_p_select_* subroutines that use callback
response.

“mc_query_d_handle_*” on page
133, “mc_query_d_select_*” on
page 138, “mc_query_p_handle_*”
on page 147, and
“mc_query_p_select_*” on page 151

mc_query_event_cb_t Callback definition for the response callback specified on
the variations of the mc_query_event_* subroutines that
use callback response.

“mc_query_event_*” on page 143

mc_query_event_rsp_t A response structure returned by the RMC API in
response to a call to an mc_query_event_* subroutine.

“mc_query_event_*” on page 143

mc_query_rsp_t A response structure returned by the RMC API in
response to a call to an mc_query_d_handle_*,
mc_query_d_select_*, mc_query_p_handle_*, or
mc_query_p_select_* subroutine.

“mc_query_d_handle_*” on page
133, “mc_query_d_select_*” on
page 138, “mc_query_p_handle_*”
on page 147, and
“mc_query_p_select_*” on page 151

mc_refresh_cfg_cb_t Callback definition for the response callback specified on
the variations of the mc_refresh_config_* subroutines that
use callback response.

“mc_refresh_config_*” on page 156

236 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 26. RMC API datatypes (continued)

Data type Description For more information, see

mc_reg_cb_t Callback definition for the response callback specified on
the variations of the mc_reg_class_event_*,
mc_reg_event_handle_*, and mc_reg_event_select_*
subroutines that use callback response.

“mc_reg_class_event_*” on page
160, “mc_reg_event_handle_*” on
page 168, and
“mc_reg_event_select_*” on page
176

mc_registration_id_t An opaque data type. The data type of an event
registration ID.

“RMC API opaque data types” on
page 241

mc_reg_opts_t An enumeration that defines event registration options for
the mc_reg_class_event_*, mc_reg_event_handle_*, and
mc_reg_event_select_* subroutines.

“Event registration command
options” on page 242,
“mc_reg_class_event_*” on page
160, “mc_reg_event_handle_*” on
page 168, and
“mc_reg_event_select_*” on page
176

mc_reg_rsp_t A response structure returned by the RMC API in
response to a call to an mc_reg_class_event_*,
mc_reg_event_handle_*, or mc_reg_event_select_*
subroutine.

“mc_reg_class_event_*” on page
160, “mc_reg_event_handle_*” on
page 168, and
“mc_reg_event_select_*” on page
176

mc_reset_cb_t Callback definition for the response callback specified on
the variations of the mc_reset_* subroutines that use
callback response.

“mc_reset_*” on page 184

mc_rsrc_class_props_t An enumeration that defines properties of a resource class.
Used in the response structure returned by the RMC API
in response to a call to an mc_qdef_resource_class_*
subroutine.

“mc_qdef_resource_class_*” on
page 114

mc_rsrc_hndl_rsp_t A response structure returned by the RMC API in
response to a call to an mc_offline_*, mc_online_*,
mc_reset_*, or mc_validate_rsrc_hndl_* subroutine.

“mc_offline_*” on page 88,
“mc_online_*” on page 92,
“mc_reset_*” on page 184,
“mc_validate_rsrc_hndl_*” on page
227

mc_rsrc_mgr_t A structure used to specify a resource manager that
supports a particular resource class. Used in the response
structure returned by the RMC API in response to a call to
an mc_qdef_resource_class_* subroutine.

“mc_qdef_resource_class_*” on
page 114

mc_sd_element_t A structure that describes an individual Structured Data
element. Used in the response structure returned by the
RMC API in response to a call to an mc_qdef_sd_*
subroutine.

“mc_qdef_sd_*” on page 120

mc_sd_usage_t An enumeration that defines how Structured Data is used.
Used as input to the mc_qdef_sd_* subroutines to specify
the kind of Structured Data information to be returned.
Also used in the response structure returned by the RMC
API in response to a call to an mc_qdef_sd_* subroutine.

“mc_qdef_sd_*” on page 120

mc_sess_info_t An enumeration that specifies what type of session
information is requested:
MC_SESS_INFO_LOCAL_IP_ADDRESS.

“mc_session_info” on page 193

mc_session_hndl_t An opaque datatype used as a handle to represent RMC
sessions.

“RMC API opaque data types” on
page 241

mc_session_opts_t An enumeration that defines session options that can be
specified on the mc_start_session or
mc_timed_start_session subroutine.

“Start session options” on page 241.

“mc_start_session” on page 206 or
“mc_timed_start_session” on page
212

mc_set_cb_t Callback definition for the response callback specified on
the variations of the mc_set_handle_* and mc_set_select_*
subroutines that use callback response.

“mc_set_handle_*” on page 194 and
“mc_set_select_*” on page 199

Programming RMC 237

Table 26. RMC API datatypes (continued)

Data type Description For more information, see

mc_set_rsp_t A response structure returned by the RMC API in
response to a call to an mc_set_handle_* or
mc_set_select_* subroutine.

“mc_set_handle_*” on page 194 and
“mc_set_select_*” on page 199

mc_undefine_rsrc_rsp_t A response structure returned by the RMC API in
response to a call to an mc_undefine_resource_*
subroutine.

“mc_undefine_resource_*” on page
219

mc_undef_rsrc_cb_t Callback definition for the response callback specified on
the variations of the mc_undefine_resource_* subroutines
that use callback response.

“mc_undefine_resource_*” on page
219

mc_unreg_cb_t Callback definition for the response callback specified on
the variations of the mc_unreg_event_* subroutines that
use callback response.

“mc_unreg_event_*” on page 223

mc_unreg_rsp_t A response structure returned by the RMC API in
response to a call to an mc_unreg_event_* subroutine.

“mc_unreg_event_*” on page 223

mc_valid_value_t A structure used to describe an individual valid value.
Used in the response structure returned by the RMC API
in response to a call to an mc_qdef_valid_values_*
subroutine.

“mc_qdef_valid_values_*” on page
126

mc_val_rsrc_hndl_cb_t Callback definition for the response callback specified on
the variations of the mc_validate_rsrc_hndl_* subroutines
that use callback response.

“mc_define_resource_*” on page 58

mc_vv_usage_t An enumeration that defines the possible applications of
valid values. Used as input to the
mc_qdef_valid_values_* subroutines to specify the kind
of valid value information to be returned. Also used in the
response structure returned by the RMC API in response
to a call to an mc_qdef_valid_values_* subroutine.

“mc_qdef_valid_values_*” on page
126

rmc_attribute_id_t A datatype for attribute IDs. “RMC API data types for values,
resources, and resource attributes”

rmc_opstate_t An enumeration that is used to specify the possible values
of the OpState resource dynamic attribute defined in
many resource classes.

“RMC API data types for values,
resources, and resource attributes”

rmc_variable_type_t Enumeration that identifies the variable types of dynamic
resource attributes that are returned by the RMC API.

“RMC API data types for values,
resources, and resource attributes”

RMC API data types for values, resources, and resource attributes:

This topic addresses RMC API data types for values, resources, and resource attributes.

The ct_data_type_t enumeration is used to identify the data types, or pointers to data types, of values
that are used by the RMC API.
typedef enum {

CT_UNKNOWN = 0,
CT_NONE, /* for Quantum variables only */
CT_INT32,
CT_UINT32,
CT_INT64,
CT_UINT64,
CT_FLOAT32,
CT_FLOAT64,
CT_CHAR_PTR, /* pointer to NULL terminated string*/
CT_BINARY_PTR, /* pointer to ct_binary_t */
CT_RSRC_HANDLE_PTR, /* pointer to ct_resource_handle_t */
CT_SD_PTR, /* pointer to ct_structured_data_t */
CT_INT32_ARRAY, /* CT_INT32 array */
CT_UINT32_ARRAY, /* CT_UINT32 array */
CT_INT64_ARRAY, /* CT_INT64 array */
CT_UINT64_ARRAY, /* CT_UINT64 array */

238 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

CT_FLOAT32_ARRAY, /* CT_FLOAT32 array */
CT_FLOAT64_ARRAY, /* CT_FLOAT64 array */
CT_CHAR_PTR_ARRAY, /* CT_CHAR_PTR array */
CT_BINARY_PTR_ARRAY, /* CT_BINARY_PTR array */
CT_RSRC_HANDLE_PTR_ARRAY /* CT_RSRC_HANLE_PTR array */
CT_SD_PTR_ARRAY, /* CT_SD_PTR array */

} ct_data_type_t;

The rmc_variable_type_t enumeration is used to identify the variable types of dynamic resource
attributes that are returned by the RMC API:
typedef enum {

RMC_COUNTER,
RMC_QUANTITY,
RMC_STATE,
RMC_QUANTUM

} rmc_variable_type_t;

The rmc_opstate_t enumeration is used to specify the possible values of the OpState resource dynamic
attribute, defined in many resource classes:
typedef enum {

RMC_OPSTATE_UNKNOWN = 0,
RMC_OPSTATE_ONLINE,
RMC_OPSTATE_OFFLINE,
RMC_OPSTATE_FAILED_OFFLINE,
RMC_OPSTATE_STUCK_ONLINE,
RMC_OPSTATE_PENDING_ONLINE,
RMC_OPSTATE_PENDING_OFFLINE,
RMC_OPSTATE_MIXED

} rmc_opstate_t;

Scalar values are specified using one of the following types:
typedef int8_t ct_int8_t;
typedef uint8_t ct_uint8_t;
typedef int16_t ct_int16_t;
typedef uint16_t ct_uint16_t;
typedef int32_t ct_int32_t;
typedef uint32_t ct_uint32_t;
typedef int64_t ct_int64_t;
typedef uint64_t ct_uint64_t;
typedef float ct_float32_t;
typedef double ct_float64_t;
typedef char ct_char_t;
typedef char *ct_char_ptr_t;

A ct_binary_t type is used to specify a binary value. Note that the structure only defines a binary type of
length 1. Otherwise, the type is used to overlay a buffer of appropriate size to contain the desired binary
value. If the length field is zero, a NULL binary value is indicated. If such is the case, the first element of
the data array should not be assumed to be addressable.
typedef struct {

ct_uint32_t length;
ct_char_t data[1];

} ct_binary_t;

A ct_structured_data_element_t type is used to define an element of Structured Data.
typedef struct {

ct_data_type_t data_type;
ct_value_t value;

} ct_structured_data_element_t;

Programming RMC 239

Note that data_type can be any value taken from ct_data_type_t except CT_SD_PTR and
CT_SD_PTR_ARRAY. In other words, a SD element can be any type other than Structured Data or
Structured Data Array.

A ct_structured_data_t type is used to define a Structured Data value.
typedef struct {

ct_uint32_t element_count;
ct_structured_data_element_t elements[1];

} ct_structured_data_t;

Note that the structure only defines an array with one array element. Otherwise, the type is used to
overlay a buffer of appropriate size to contain the desired number of elements. If the element_count field
is 0, a Null array is indicated. If such is the case, the first element of the array should not be assumed to
be addressable.

A ct_resource_id_t structure is used to contain a resource ID. A resource ID is a resource class specific
identifier of a resource. The resource ID is considered an opaque type to the user of the RMC API.
typedef struct {

ct_uint32_t id1;
ct_uint32_t id2;
ct_uint32_t id3;
ct_uint32_t id4;

} ct_resource_id_t;

A ct_resource_handle_t structure is used to contain a resource handle. A resource handle is a cluster
unique, persistent identifier of a resource. The resource handle is considered an opaque type.
typedef struct {

ct_uint32_t header;
ct_resource_id_t id;

} ct_resource_handle_t;

For convenience, pointer types to the composite types are also defined:
typedef ct_binary_t *ct_binary_ptr_t;
typedef ct_resource_handle_t *ct_resource_handle_ptr_t;
typedef ct_structured_data_t *ct_sd_ptr_t;
typedef ct_array_t *ct_array_ptr_t;

Resource attribute values are returned in the ct_value_t type. This type provides a uniform representation
of the preceding value types. The actual type of the value contained in the ct_value_t is specified by a
value from the ct_data_type_t enumeration.
typedef union {

ct_int32_t val_int32;
ct_uint32_t val_uint32;
ct_int64_t val_int64;
ct_uint64_t val_uint64;
ct_float32_t val_float32;
ct_float64_t val_float64;
ct_char_ptr_t ptr_char;
ct_binary_ptr_t ptr_binary;
ct_resource_handle_ptr_t ptr_rsrc_handle;
ct_sd_ptr_t ptr_sd;
ct_array_ptr_t ptr_array;

} ct_value_t;

Note that for the character string, binary, resource handle, Structured Data and array data types, the
value returned is actually a pointer to the value.

A ct_array_t type is used to specify an array of values.

240 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

typedef struct {
ct_uint32_t element_count;
ct_value_t elements[1];

} ct_array_t;

Note that the structure only defines an array with one array element. Otherwise, the type is used to
overlay a buffer of appropriate size to contain the desired number of elements. If the element_count field
is zero, a NULL array is indicated. If such is the case, the first element of the array should NOT be
assumed to be addressable.

When a ct_value_t has a type from the ct_data_type_t enumeration of the form CT_ type_ARRAY, then
the ptr_array field is to be used; the type of the elements in the ct_array_t are then CT_ type.

A resource attribute is returned in a mc_attribute_t type. his type includes the (programmatic) attribute
name, ID and data type. This type is also used to provide attributes to the RMC API. When provided to
the RMC API, the mc_at_id field is not defined and the mc_at_dtype field must be set appropriately.
typedef struct mc_attribute mc_attribute_t;
struct mc_attribute {

ct_char_t *mc_at_name;
rmc_attribute_id_t mc_at_id;
ct_data_type_t mc_at_dtype;
ct_value_t mc_at_value;

};

A response or event notification contains a pointer to an array of type mc_attribute_t and a count of
elements in the array. The application can examine this array directly.

The rmc_attribute_id_t datatype is defined as follows:
typedef ct_int32_t rmc_attribute_id_t;

RMC API opaque data types:

The RMC API defines two opaque data types used as handles.

One is used to identify a session and the other used to identify a command group.
typedef void *mc_sess_hndl_t; /* session handle */

typedef void *mc_cmdgrp_hndl_t; /* command group handle */

The command subroutines take either a session handle or command group handle as their first argument.

The RMC API defines a registration ID as an opaque data type.
typedef void *mc_registration_id_t; /* registration ID */

RMC API enumerations to define subroutine options:

Enumerations define options to several of the RMC API subroutines.

These options are described in the corresponding subroutine descriptions in “RMC API subroutines” on
page 40.

Start session options:

The mc_session_opts_t enumeration defines session options that can be specified on the mc_start_session
or mc_timed_start_session subroutine.

Programming RMC 241

See “mc_start_session” on page 206 or “mc_timed_start_session” on page 212 for a description of each of
these options.
typedef enum mc_session_opts mc_session_opts_t;
enum mc_session_opts {

MC_SESSION_OPTS_NONE = 0x0000,
MC_SESSION_OPTS_LOCAL_SCOPE = 0x0001,
MC_SESSION_OPTS_SR_SCOPE = 0x0002,
MC_SESSION_OPTS_DM_SCOPE = 0x0004,
MC_SESSION_OPTS_PRIVATE = 0x0008,
MC_SESSION_OPTS_SR_LOCAL_SCOPE = 0x0010,
MC_SESSION_OPTS_DM_LOCAL_SCOPE = 0x0020,
MC_SESSION_OPTS_SR_DM_SCOPE = 0x0040,
MC_SESSION_OPTS_DM_SR_SCOPE = 0x0080,
MC_SESSION_OPTS_SR_DM_LOCAL_SCOPE = 0x0100,
MC_SESSION_OPTS_DM_SR_LOCAL_SCOPE = 0x0200,
MC_SESSION_OPTS_IP_AUTHENTICATION = 0x0400

};

Dispatch options:

The mc_dispatch_opt_t enumeration defines dispatch options that can be specified on the mc_dispatch
subroutine.

See “mc_dispatch” on page 62 for a description of each of these options
typedef enum mc_dispatch_opts mc_dispatch_opts_t;
enum mc_dispatch_opts {

MC_DISPATCH_OPTS_WAIT,
MC_DISPTACH_OPTS_ASSIGN

};

Start command group options:

The mc_cmd_grp_opts_t enumeration defines options for allocating a command group that can be
specified on the mc_start_cmd_grp subroutine.

See “mc_start_cmd_grp” on page 204 for a description of each of these options.
typedef enum mc_cmd_grp_opts mc_cmd_grp_opts_t;
enum mc_cmd_grp_opts {

MC_CMD_GRP_OPTS_NONE = 0x0000,
MC_CMD_GRP_OPTS_ORDERED = 0x0001,

};

Event registration command options:

The mc_reg_opts_t enumeration defines event registration options for the mc_reg_class_event_*,
mc_reg_event_handle_*, and mc_reg_event_select_* subroutines. The MC_REG_OPTS_KEEP_REG
constant is used only with the mc_reg_event_select_* subroutines.

See “mc_reg_class_event_*” on page 160, “mc_reg_event_handle_*” on page 168, or
“mc_reg_event_select_*” on page 176 for a description of these options.
typedef enum mc_reg_opts mc_reg_opts_t;
enum mc_reg_opts {

MC_REG_OPTS_NONE = 0x0000,
MC_REG_OPTS_NO_REG = 0x0001,
MC_REG_OPTS_IMMED_EVAL = 0x0002,
MC_REG_OPTS_REARM_EVENT = 0x0004,
MC_REG_OPTS_KEEP_REG = 0x0008
MC_REG_NO_TOGGLE = 0x0010

};

242 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Query definition command options:

The mc_qdef_opts_t enumeration defines query definition options for the mc_qdef_actions_*,
mc_qdef_d_attribute_*, mc_qdef_p_attribute_, mc_qdef_resource_class_*, mc_qdef_sd_*, and
mc_qdef_valid_values_* subroutines.

For a description of these options, see the reference information on any of these subroutines in “RMC API
subroutines” on page 40.
typedef enum mc_qdef_opts mc_qdef_opts_t;
enum mc_qdef_opts {

MC_QDEF_OPTS_NONE = 0x0000,
MC_QDEF_OPTS_NODSCRP = 0x0001

};

Offline command options:

The mc_offline_opts_t enumeration defines options for taking a resource offline. These options are used
by the mc_offline_* subroutines.

See “mc_offline_*” on page 88 for a description of each of these options.
typedef enum mc_offline_opts mc_offline_opts_t;
enum mc_offline_opts {

MC_OFFLINE_OPTS_NONE = 0x0000,
MC_OFFLINE_OPTS_FAILED = 0x0001

};

Name list usage:

The mc_list_usage_t enumeration defines options used by the mc_invoke_class_action_* subroutines.

See “mc_invoke_class_action_*” on page 82 for a description of each of these options.
typedef enum mc_list_usage mc_list_usage_t;
enum mc_list_usage {

MC_LIST_USAGE_NODES = 0x0000,
MC_LIST_USAGE_PEER_DOMAINS = 0x0001

};

RMC API error codes and return values
Errors can be detected by an RMC API subroutine, an RMC subsystem daemon, or a resource manager.

As described in “Notifying the application of errors” on page 29, errors can be detected by an RMC API
subroutine, an RMC subsystem daemon, or a resource manager.
v When an RMC API subroutine detects an error, the subroutine returns immediately with an error code.

These error codes are listed in “RMC API errors” on page 244.
v When an RMC subsystem daemon or a resource manager detects an error, the response structure or

event notification structure will contain an error structure that provides an error code. These error
codes are listed in “Response and event structure error codes” on page 247.

Related concepts:
“Notifying the application of errors” on page 29
Errors can be detected in various ways when using the RMC API.
“Obtaining error information returned by the RMC API subroutines” on page 29
All RMC API subroutines return a value of type ct_int32_t. A return value of 0 indicates that the
subroutine completed successfully. Any non-zero value is an error value.
“Obtaining error information returned in response structures or event notification structures” on page 30
All response structures and event notification structures contain error information.

Programming RMC 243

RMC API errors
The following two tables describe the error codes that may be returned by an RMC API subroutine.

This first table lists the errors by error code. These same errors are also listed alphabetically by return
value in Table 28 on page 245. As described in “Obtaining error information returned by the RMC API
subroutines” on page 29, an application can also use the cluster common subroutines cu_get_error and
cu_get_errmsg to obtain more information about an error. For complete syntax information on these
subroutines, see “Cluster utilities: error-related subroutines” on page 264.

Table 27. RMC API errors (listed by error code)

Error code Return value Description

1 MC_ELIB A severe library or system error occurred.

2 MC_ESESSREFUSED A session could not be established with the RMC subsystem in
the specified cluster. The application should try again later.

3 MC_ESESSINTRPT The session has been interrupted.

4 MC_ESESSENDED The session has been ended.

5 MC_EINVALIDSESS The specified session handle is invalid.

6 MC_ENODSCRP A descriptor cannot be allocated by the API.

7 MC_EINVALIDDSCRP The specified descriptor is invalid.

8 MC_EINVALIDCMD The specified command group handle is invalid.

9 MC_ENOCMDS The command group contains no commands.

10 MC_ESENTENDED The command has been sent but the session ended before all
responses could be received. If pointer response was selected for
the command, check the appropriate pointer or array count, if
defined, for any responses. If callback response was selected for
the command, the callback was invoked for any responses
received.

11 MC_ESENTINTRPT The command has been sent but the session was interrupted
before all responses could be received. If pointer response was
selected for the command, check the appropriate pointer or array
count, if defined, for any responses. If callback response was
selected for the command, the callback was invoked for any
responses received.

12 MC_EINVALIDDATA Invalid response or event notification structure.

13 MC_ECMDGRPSLIMIT The maximum number of command groups are active for the
session.

14 MC_ECMDGRPLIMIT The command group already contains the maximum number of
commands, as specified by the MC_CMD_GRP_LIMIT macro.

15 MC_EINVALIDEID The specified registration ID is invalid.

16 MC_EINVALIDOPT The specified option is invalid.

17 MC_EBUSY Function busy. When returned by the mc_get_descriptor
subroutine, indicates that a descriptor has already been allocated
to the specified session.

18 MC_ENOMEM The API could not allocate required memory.

19 MC_EAGAIN Some system resource is not available. The application should try
again later.

20 MC_EINVALIDCB Invalid callback routine specified.

21 MC_EINVALIDRSPPTR Invalid response pointer specified.

22 MC_EINVALIDCNTPTR Invalid response count pointer specified.

23 MC_EINVALIDRSRCCNT Invalid resource handle count.

24 MC_ECMDTOOLARGE The command is too large to send to the RMC subsystem.

25 MC_ELIBNOMEM A severe library memory allocation error occurred.

26 MC_EORDERGROUP An attempt was made to add the command to an ordered
command group.

244 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 27. RMC API errors (listed by error code) (continued)

Error code Return value Description

27 MC_ETARGETMISMATCH The target specified for the command does not match the target
of the command group.

28 MC_EINVALIDDATATYPE Invalid attribute data type specified.

29 MC_EINVALIDVALUEPTR Invalid attribute value pointer specified.

30 MC_EINVALIDSBSLEN Invalid structured byte string len.

31 MC_EINVALIDSDTYPE Invalid structured data subtype specified.

32 MC_EINVALIDCONTACT Invalid contact type specified.

33 MC_ENOTSUPPORTED Called function is not supported.

34 MC_EDEADLOCK An attempt was made to invoke the command from within an
event notification callback.

35 MC_EINVALIDNAME Invalid contact point name.

36 MC_EINVALIDSTRING Invalid string

37 MC_ELIBSECURITY The RMC API detected an error in security services.

38 MC_ESUBSECURITY The RMC subsystem detected an error in security services.

39 MC_EAUTHENTICATE Could not authenticate the user of the calling application.

40 MC_EAUTHORIZATION User not authorized to use RMC.

41 MC_EMUTUALAUTHENT The RMC API could not authenticate the RMC subsystem.

42 MC_EVERSIONMISMATCH RMC API version mismatch.

43 MC_EINVALSCOPE The specified session scope is not currently supported.

44 MC_EMULTISCOPE Multiple session scope options are specified.

45 MC_ENOTPRIVATESCOPE The specified session scope cannot be combined with the private
option.

46 MC_EQEVENTACTIVE A query event command has not yet completed.

47 MC_ENOSUPPORTRTNVER No support for routine in this version of RMC.

48 MC_ENOSUPPORTARGVER No support for arguments in this version of RMC.

49 MC_ECLASSEID The registration ID specified a class event.

50 MC_ENOIPADDRCONTACT Contact must be an IP address.

51 MC_ENOIPAUTHENTSUPPORT IP authentication not supported by session.

52 MC_ETIMEDOUT Start session, or command, timed out.

The following table lists the error codes that may be returned by an RMC API subroutine alphabetically
by return value. These same errors are also listed numerically by error code in Table 27 on page 244.

Table 28. RMC API errors (listed by return value)

Return value Error code Description

MC_EAGAIN 19 Some system resource is not available. The application should try
again later.

MC_EAUTHENTICATE 39 Could not authenticate the user of the calling application.

MC_EAUTHORIZATION 40 User not authorized to use RMC.

MC_EBUSY 17 Function busy. When returned by the mc_get_descriptor
subroutine, indicates that a descriptor has already been allocated
to the specified session.

MC_ECLASSEID 49 The registration ID specified a class event.

MC_ECMDGRPLIMIT 14 The command group already contains the maximum number of
commands, as specified by the MC_CMD_GRP_LIMIT macro.

MC_ECMDGRPSLIMIT 13 The maximum number of command groups are active for the
session.

MC_ECMDTOOLARGE 24 The command is too large to send to the RMC subsystem.

Programming RMC 245

Table 28. RMC API errors (listed by return value) (continued)

Return value Error code Description

MC_EDEADLOCK 34 An attempt was made to invoke the command from within an
event notification callback.

MC_EINVALIDCB 20 Invalid callback routine specified.

MC_EINVALIDCMD 8 The specified command group handle is invalid.

MC_EINVALIDCONTACT 32 Invalid contact type specified.

MC_EINVALIDDATA 12 Invalid response or event notification structure.

MC_EINVALIDDATATYPE 28 Invalid attribute data type specified.

MC_EINVALIDDSCRP 7 The specified descriptor is invalid.

MC_EINVALIDEID 15 The specified registration ID is invalid.

MC_EINVALIDNAME 35 Invalid contact point name.

MC_EINVALIDOPT 16 The specified option is invalid.

MC_EINVALIDRSPPTR 21 Invalid response pointer specified.

MC_EINVALIDRSRCCNT 23 Invalid resource handle count.

MC_EINVALIDSBSLEN 30 Invalid structured byte string len.

MC_EINVALIDSDTYPE 31 Invalid structured data subtype specified.

MC_EINVALIDSESS 5 The specified session handle is invalid.

MC_EINVALIDSTRING 36 Invalid string

MC_EINVALIDVALUEPTR 29 Invalid attribute value pointer specified.

MC_EINVALSCOPE 43 The specified session scope is not currently supported.

MC_ELIB 1 A severe library or system error occurred.

MC_ELIBNOMEM 25 A severe library memory allocation error occurred.

MC_ELIBSECURITY 37 The RMC API detected an error in security services.

MC_EMULTISCOPE 44 Multiple session scope options are specified.

MC_EMUTUALAUTHENT 41 The RMC API could not authenticate the RMC subsystem.

MC_ENOCMDS 9 The command group contains no commands.

MC_ENODSCRP 6 A descriptor cannot be allocated by the API.

MC_ENOIPADDRCONTACT 50 Contact must be an IP address.

MC_ENOIPAUTHENTSUPPORT 51 IP authentication not supported by session.

MC_ENOMEM 18 The API could not allocate required memory.

MC_ENOSUPPORTARGVER 48 No support for arguments in this version of RMC.

MC_ENOSUPPORTRTNVER 47 No support for routine in this version of RMC.

MC_ENOTPRIVATESCOPE 45 The specified session scope cannot be combined with the private
option.

MC_ENOTSUPPORTED 33 Called function is not supported.

MC_EORDERGROUP 26 An attempt was made to add the command to an ordered
command group.

MC_EQEVENTACTIVE 46 A query event command has not yet completed.

MC_ESENTENDED 10 The command has been sent but the session ended before all
responses could be received. If pointer response was selected for
the command, check the appropriate array count for any
responses. If callback response was selected for the command, the
callback was invoked for any responses received.

MC_ESENTINTRPT 11 The command has been sent but the session was interrupted
before all responses could be received. If pointer response was
selected for the command, check the appropriate array count for
any responses. If callback response was selected for the
command, the callback was invoked for any responses received.

MC_ESESSENDED 4 The session has been ended.

246 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 28. RMC API errors (listed by return value) (continued)

Return value Error code Description

MC_ESESSINTRPT 3 The session has been interrupted.

MC_ESESSREFUSED 2 A session could not be established with the RMC subsystem in
the specified cluster. The application should try again later.

MC_ESUBSECURITY 38 The RMC subsystem detected an error in security services.

MC_ETARGETMISMATCH 27 The target specified for the command does not match the target
of the command group.

MC_ETIMEDOUT 52 Start session, or command, timed out.

MC_EVERSIONMISMATCH 42 RMC API version mismatch.

Response and event structure error codes
All response structures and event notification structures contain error information in a structure of type
mc_errnum_t.

As described in “Obtaining error information returned in response structures or event notification
structures” on page 30, all response structures and event notification structures contain error information
in a structure of type mc_errnum_t. Error codes that may be returned are grouped in ranges of 64K,
starting with the lowest values in each group. Each range represents errors of a similar nature. The
high-order sixteen bits of the error code identify the error group or general class of error, and the lower
sixteen bits indicate a specific error within the group. The application can identify the error group using
the MC_GET_GENERR macro.

The error groups are:

Table 29. Error groups

Error code value Error group
For information of the errors in this
group, see:

0x10000 thru 0x1ffff Errors common to all resource managers The error message returned in the
mc_errnum_t structure.

0x30000 thru 0x3ffff Command specification “Command specification errors”

0x40000 thru 0x4ffff Resource access or usage “Resource access or usage errors” on page
255

0x50000 thru 0x5ffff Expression specification “Expression specification errors” on page
262

0x60000 thru 0x6ffff Select string specification “Select string specification errors” on page
263

Related concepts:
“Obtaining error information returned in response structures or event notification structures” on page 30
All response structures and event notification structures contain error information.

Command specification errors:

The following two tables describe the command specification errors that may be returned to the
application in response structures.

This first table lists the command specification errors by error code. These same errors are also listed
alphabetically by return value in Table 31 on page 251.

Programming RMC 247

Table 30. Command specification errors (listed by error code)

Error code Return value Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

0x30001 RMC_EOKBUTOTHERERROR This command was correctly specified but
another command in the ordered command
group was not.

No arguments

0x30002 RMC_ECLASSNOTDEFINED The specified class name is not defined. class name

0x30011 RMC_ESELSTRBADNODNUM select string does not contain any node
numbers within the range 1-N, where N is
the highest configured cluster node number

v highest configured node
number

v highest configured node
number

v select string

0x30012 RMC_ESELSTRBADNODID select string does not contain any configured
node IDs

select string

0x30014 RMC_ESELSTRBADNEXPR select string contains an improper expression
involving a node number, i.e. the node
number is not an integral value

select string

0x30018 RMC_GENERR_CMD_SPEC The class name has not been specified No arguments

0x3001e RMC_ECMDNOTSUPPORTED the command is not supported by the
specified class

class name

0x3001f RMC_EDUPATTRNAM attribute name is a duplicate
v array index of duplicate

attr

v attribute name

0x30020 RMC_EEXPRNODATTRNAME expression does not contain a dynamic
attribute name

expression

0x30021 RMC_GENERR_CMD_SPEC expression is missing from command No arguments

0x30022 RMC_ERAEXPRISNULL rearm expression is a NULL string No arguments

0x30023 RMC_EEXPRDIFFATTRS expression and rearm expression contain
different attribute names

v attribute name

v attribute name

0x30024 RMC_EATTRMISSING an attribute name is missing from the
attribute array

array index of missing attr

0x30025 RMC_EBADATTRNAM attribute name is not defined
v array index of invalid attr

v attribute name

0x30026 RMC_ENOREGEVENT event not registered; validity check only
requested

No arguments

0x30027 RMC_EBADREGID specified registration ID does not match a
registered event for the session

No arguments

0x30028 RMC_ENOPATTRSDEFINED no persistent attributes are defined for the
specified class.

class name

0x30029 RMC_ENODATTRSDEFINED no dynamic attributes are defined for the
specified class.

class name

0x3002a RMC_ENOCPATTRSDEFINED no class persistent attributes are defined for
the specified class.

class name

0x3002b RMC_ENOCDATTRSDEFINED no class dynamic attributes are defined for
the specified class.

class name

0x3002c RMC_EBADRSRCHANDLE the specified resource handle is invalid no arguments

0x3002d RMC_ENOLOCATORATTR the locator attribute was not included in the
define resource command for the specified
class.

v locator attribute name

v class name

248 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 30. Command specification errors (listed by error code) (continued)

Error code Return value Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

0x3002e RMC_EBADATTRTYPE specified attribute type does not match
defined type for specified attribute

v array index of invalid attr

v attribute name

0x3002f RMC_ENORSRCFORCMD the command specified one or more resources
but the specified class does not support
resources

class name

0x30030 RMC_EEXPRNOTFORQUANTUM expression contains more than just a single
attribute name token and the named attribute
is a quantum variable type

expression

0x30031 RMC_ERAEXPRNOTALLOWED a re-arm expression was specified with a
dynamic attribute that is a quantum variable
type

expression

0x30032 RMC_ENOQUERYQUANTUM a query dynamic attribute command
specified an attribute that is of quantum
variable type. Quantum dynamic attributes
cannot be queried

v array index of quantum
attr

v attribute name

0x30033 RMC_EALLQUANTUM a query dynamic attribute command
indicated that all attributes were to be
returned, but all dynamic attributes are of
quantum variable type. Quantum dynamic
attributes cannot be queried

name of associated class

0x30034 RMC_ENOATTRIBUTES the command specified no attributes but this
command requires that at least one attribute
be specified.

name of associated class

0x30035 RMC_EMAYNOTSETPATTRS persistent attributes of a MtypDivided class
itself cannot be set

name of class

0x30036 RMC_ENOVALOTHERERROR This command could not be validated since a
previous command in the ordered command
group was incorrectly specified

no arguments

0x30037 RMC_EBADSDUSEARG an invalid sd_use argument was specified no arguments

0x30038 RMC_EBADNAMECOUNT a non-zero name count was specified but the
remaining command arguments require that
it be zero

no arguments

0x30039 RMC_ESDNOTDEFINED No SDs for the use specified in the command
are defined for this class

class name

0x3003a RMC_EATTRNOTSD attribute name is not an SD data type
v array index of invalid attr

v attribute name

0x3003b RMC_EACTIONMISSING an action name is missing from the action
array

array index of missing action

0x3003c RMC_EBADACTIONNAM action name is not defined
v array index of invalid

action

v action name

0x3003d RMC_ENOACTIONSDINPUT the specified action does not have a defined
SD input

v array index of invalid
action

v action name

0x3003e RMC_ENOACTIONSDRESPONSE the specified action does not have a defined
SD response

v array index of invalid
action

v action name

0x3003f RMC_EBADVVUSEARG an invalid vv_use argument was specified no arguments

Programming RMC 249

Table 30. Command specification errors (listed by error code) (continued)

Error code Return value Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

0x30040 RMC_EAACNOTDEFINED No attributes, actions with defined inputs or
commands with defined inputs for the use
specified in the command are defined for this
class

class name

0x30041 RMC_EBADLOCATORVALUE the locator attribute is of array type and does
not contain just one element

locator attribute name

0x30042 RMC_ESELSTRNOSELECT select string contains attributes that are not
all defined for any variety of the resource; no
resources can be selected

select string

0x30043 RMC_ESELSTRBADNAMEXPR select string contains an improper expression
involving a node name, i.e. the node name is
not a string value

select string

0x30044 RMC_EINVALSCOPE Requested scope does not match current
daemon cluster configuration

no arguments

0x30045 RMC_EINVALNODENAMEARG a command argument specified a node name
but the node name is not a configured node
name

invalid node name

0x30046 RMC_ENOCLUSTERNODES The command specified a resource class that
is not supported by any of the currently
configured cluster nodes or there are no
configured cluster nodes.

no arguments

0x30047 RMC_ENOTSUBDIVIDED The command specified a node name list
argument but the specified resource class is
not of the Subdivided Management style. The
node name list argument may only be used
with resource classes that are managed using
the Subdivided Management style.

no arguments

0x30048 RMC_EINVALLOCATORVALUE the locator attribute value is not a configured
Node ID.

locator attribute name

0x30049 RMC_EACCESSFORSESSION the specified resource class cannot be
accessed from a session in Distributed
Management scope

resource class name

0x3004a RMC_ENOAPDATTR the ActivePeerDomain attribute was not
included in the define resource command for
the specified class.

v APD attribute name

v class name

0x3004b RMC_EBADAPDATTRVAL the value of the ActivePeerDomain attribute
is not a configured Peer Domain name.

APD attribute name

0x3004c RMC_ENOTGLOBALIZED The command specified a peer domain name
list argument but the specified resource class
is not of the Globalized Management style.
The peer domain name list argument may
only be used with resource classes that are
managed using the Globalized Management
style.

no arguments

0x3004d RMC_EINVALAPDNAMEARG a command argument specified a peer
domain name but the peer domain name is
not an active peer domain name

invalid peer domain name

0x3004e RMC_ENOTDMSCOPE The command specified a peer domain name
list argument but the session is not in
Distributed Management session scope. The
peer domain name list argument may only be
used when the session scope is Distributed
Management.

no arguments

250 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 30. Command specification errors (listed by error code) (continued)

Error code Return value Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

0x3004f RMC_EEXPRNOATTRNAME expression does not contain an attribute
name

expression

0x30050 RMC_EEXPRPATTRNOSUP expression contains a persistent attribute not
supported in expressions

expression

0x30051 RMC_EEXPRPTYPENOSUP expression contains a persistent attribute of
type resource handle

expression

0x30052 RMC_EINVALPERM the permission argument contains no valid
permission bits

permission argument

0x30053 RMC_EINVALLISTUSAGE the list usage argument is not valid list usage argument

0x30054 RMC_EACLTYPETARGET the ACL type argument is not valid for the
target of the command

ACL type argument

0x30055 RMC_EINVALACLTYPE the ACL type argument is not valid ACL type argument

0x30056 RMC_EACLFLAGTYPE the ACL flag argument specifies to use the
Resource Shared ACL, but the specified ACL
type is not Resource nor Resource Initial

no arguments

0x30057 RMC_ENOACLALLOWED the ACL flag argument indicates to use the
Resource Shared ACL, but an ACL was also
specified

no arguments

0x30058 RMC_EINVALACL the specified ACL is not valid no arguments

The following table lists the command specification errors by return value.

Table 31. Command specification errors (listed by return value)

Return value Error code Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

RMC_EAACNOTDEFINED 0x30040 No attributes, actions with defined inputs or
commands with defined inputs for the use
specified in the command are defined for this
class

class name

RMC_EACCESSFORSESSION 0x30049 the specified resource class cannot be
accessed from a session in Distributed
Management scope

resource class name

RMC_EACLFLAGTYPE 0x30056 the ACL flag argument specifies to use the
Resource Shared ACL, but the specified ACL
type is not Resource nor Resource Initial

no arguments

RMC_EACLTYPETARGET 0x30054 the ACL type argument is not valid for the
target of the command

ACL type argument

RMC_EACTIONMISSING 0x3003b an action name is missing from the action
array

array index of missing action

RMC_EALLQUANTUM 0x30033 a query dynamic attribute command
indicated that all attributes were to be
returned, but all dynamic attributes are of
quantum variable type. Quantum dynamic
attributes cannot be queried

name of associated class

RMC_EATTRMISSING 0x30024 an attribute name is missing from the
attribute array

array index of missing attr

RMC_EATTRNOTSD 0x3003a attribute name is not an SD data type
v array index of invalid attr

v attribute name

Programming RMC 251

Table 31. Command specification errors (listed by return value) (continued)

Return value Error code Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

RMC_EBADACTIONNAM 0x3003c action name is not defined
v array index of invalid

action

v action name

RMC_EBADAPDATTRVAL 0x3004b the value of the ActivePeerDomain attribute
is not a configured Peer Domain name.

APD attribute name

RMC_EBADATTRNAM 0x30025 attribute name is not defined
v array index of invalid attr

v attribute name

RMC_EBADATTRTYPE 0x3002e specified attribute type does not match
defined type for specified attribute

v array index of invalid attr

v attribute name

RMC_EBADLOCATORVALUE 0x30041 the locator attribute is of array type and does
not contain just one element

locator attribute name

RMC_EBADNAMECOUNT 0x30038 a non-zero name count was specified but the
remaining command arguments require that
it be zero

no arguments

RMC_EBADREGID 0x30027 specified registration ID does not match a
registered event for the session

No arguments

RMC_EBADRSRCHANDLE 0x3002c the specified resource handle is invalid no arguments

RMC_EBADSDUSEARG 0x30037 an invalid sd_use argument was specified no arguments

RMC_EBADVVUSEARG 0x3003f an invalid vv_use argument was specified no arguments

RMC_ECLASSNOTDEFINED 0x30002 The specified class name is not defined. class name

RMC_ECMDNOTSUPPORTED 0x3001e the command is not supported by the
specified class

class name

RMC_EDUPATTRNAM 0x3001f attribute name is a duplicate
v array index of duplicate

attr

v attribute name

RMC_EEXPRDIFFATTRS 0x30023 expression and rearm expression contain
different attribute names

v attribute name

v attribute name

RMC_EEXPRNOATTRNAME 0x3004f expression does not contain an attribute
name

expression

RMC_EEXPRNODATTRNAME 0x30020 expression does not contain a dynamic
attribute name

expression

RMC_EEXPRNOTFORQUANTUM 0x30030 expression contains more than just a single
attribute name token and the named attribute
is a quantum variable type

expression

RMC_EEXPRPATTRNOSUP 0x30050 expression contains a persistent attribute not
supported in expressions

expression

RMC_EEXPRPTYPENOSUP 0x30051 expression contains a persistent attribute of
type resource handle

expression

RMC_EINVALACL 0x30058 the specified ACL is not valid no arguments

RMC_EINVALACLTYPE 0x30055 the ACL type argument is not valid ACL type argument

RMC_EINVALAPDNAMEARG 0x3004d a command argument specified a peer
domain name but the peer domain name is
not an active peer domain name

invalid peer domain name

RMC_EINVALLISTUSAGE 0x30053 the list usage argument is not valid list usage argument

RMC_EINVALLOCATORVALUE 0x30048 the locator attribute value is not a configured
Node ID.

locator attribute name

252 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 31. Command specification errors (listed by return value) (continued)

Return value Error code Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

RMC_EINVALNODENAMEARG 0x30045 a command argument specified a node name
but the node name is not a configured node
name

invalid node name

RMC_EINVALPERM 0x30052 the permission argument contains no valid
permission bits

permission argument

RMC_EINVALSCOPE 0x30044 Requested scope does not match current
daemon cluster configuration

no arguments

RMC_EMAYNOTSETPATTRS 0x30035 persistent attributes of a MtypDivided class
itself cannot be set

name of class

RMC_ENOACLALLOWED 0x30057 the ACL flag argument indicates to use the
Resource Shared ACL, but an ACL was also
specified

no arguments

RMC_ENOACTIONSDINPUT 0x3003d the specified action does not have a defined
SD input

v array index of invalid
action

v action name

RMC_ENOACTIONSDRESPONSE 0x3003e the specified action does not have a defined
SD response

v array index of invalid
action

v action name

RMC_ENOAPDATTR 0x3004a the ActivePeerDomain attribute was not
included in the define resource command for
the specified class.

v APD attribute name

v class name

RMC_ENOATTRIBUTES 0x30034 the command specified no attributes but this
command requires that at least one attribute
be specified.

name of associated class

RMC_ENOCDATTRSDEFINED 0x3002b no class dynamic attributes are defined for
the specified class.

class name

RMC_ENOCLUSTERNODES 0x30046 The command specified a resource class that
is not supported by any of the currently
configured cluster nodes or there are no
configured cluster nodes.

no arguments

RMC_ENOCPATTRSDEFINED 0x3002a no class persistent attributes are defined for
the specified class.

class name

RMC_ENODATTRSDEFINED 0x30029 no dynamic attributes are defined for the
specified class.

class name

RMC_ENOLOCATORATTR 0x3002d the locator attribute was not included in the
define resource command for the specified
class.

v locator attribute name

v class name

RMC_ENOPATTRSDEFINED 0x30028 no persistent attributes are defined for the
specified class.

class name

RMC_ENOQUERYQUANTUM 0x30032 a query dynamic attribute command
specified an attribute that is of quantum
variable type. Quantum dynamic attributes
cannot be queried

v array index of quantum
attr

v attribute name

RMC_ENOREGEVENT 0x30026 event not registered; validity check only
requested

No arguments

RMC_ENORSRCFORCMD 0x3002f the command specified one or more resources
but the specified class does not support
resources

class name

Programming RMC 253

Table 31. Command specification errors (listed by return value) (continued)

Return value Error code Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

RMC_ENOTDMSCOPE 0x3004e The command specified a peer domain name
list argument but the session is not in
Distributed Management session scope. The
peer domain name list argument may only be
used when the session scope is Distributed
Management.

no arguments

RMC_ENOTGLOBALIZED 0x3004c The command specified a peer domain name
list argument but the specified resource class
is not of the Globalized Management style.
The peer domain name list argument may
only be used with resource classes that are
managed using the Globalized Management
style.

no arguments

RMC_ENOTSUBDIVIDED 0x30047 The command specified a node name list
argument but the specified resource class is
not of the Subdivided Management style. The
node name list argument may only be used
with resource classes that are managed using
the Subdivided Management style.

no arguments

RMC_ENOVALOTHERERROR 0x30036 This command could not be validated since a
previous command in the ordered command
group was incorrectly specified

no arguments

RMC_EOKBUTOTHERERROR 0x30001 This command was correctly specified but
another command in the ordered command
group was not.

No arguments

RMC_ERAEXPRISNULL 0x30022 rearm expression is a NULL string No arguments

RMC_ERAEXPRNOTALLOWED 0x30031 a re-arm expression was specified with a
dynamic attribute that is a quantum variable
type

expression

RMC_ESDNOTDEFINED 0x30039 No SDs for the use specified in the command
are defined for this class

class name

RMC_ESELSTRBADNAMEXPR 0x30043 select string contains an improper expression
involving a node name, i.e. the node name is
not a string value

select string

RMC_ESELSTRBADNEXPR 0x30014 select string contains an improper expression
involving a node number, i.e. the node
number is not an integral value

select string

RMC_ESELSTRBADNODID 0x30012 select string does not contain any configured
node IDs

select string

RMC_ESELSTRBADNODNUM 0x30011 select string does not contain any node
numbers within the range 1-N, where N is
the highest configured cluster node number

v highest configured node
number

v highest configured node
number

v select string

RMC_ESELSTRNOSELECT 0x30042 select string contains attributes that are not
all defined for any variety of the resource; no
resources can be selected

select string

RMC_GENERR_CMD_SPEC 0x30018 The class name has not been specified No arguments

RMC_GENERR_CMD_SPEC 0x30021 expression is missing from command No arguments

254 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Resource access or usage errors:

The following two tables describe the resource access or usage errors that may be returned to the
application in response structures.

This first table lists the resource access or usage errors by error code. These same errors are also listed
alphabetically by return value in Table 33 on page 258.

Table 32. Resource access or usage errors (listed by error code)

Error code Return value Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

0x40001 RMC_ERSRCNOTDEFINED The resource indicated by the resource handle
in the response is not defined

no arguments

0x40002 RMC_ERSRCUNDEFINED The resource indicated by the resource handle
in the response has been undefined

no arguments

0x40003 RMC_ESHAREDMEMORY The shared memory used to monitor the
resource specified by the resource handle in
the response is no longer valid

no arguments

0x40004 RMC_ERSRCSTALE The resource indicated by the resource handle
in the response is stale; the resource manager
supplying the resource has terminated. The
remaining data in the response represents the
last known values

no arguments

0x40005 RMC_EEVALUATIONERROR The evaluation of the dynamic attribute the
resource specified by the resource handle
resulted in an error

v expr evaluation error
number

1 divide by 0

2 invalid SD array
index

3 array index is out
of bounds

4 SD element ID is
greater than the
number of
elements present

5 operator used
where the left
operand is greater
than the right

>100 unexpected
evaluation error

v attribute name

0x40006 RMC_EMISSINGPATTRVALUES Not all of the requested persistent attribute
values could be obtained from the resource
specified by the resource handle or from the
class specified by the class name. The count in
the response specifies how many are returned

number of attribute values not
returned

0x40007 RMC_ENODENOTAVAILABLE The command for the resource or resource
class specified in the response could not be
executed on the node specified by the error
argument; the node is not currently in the
cluster.

name of unavailable node

0x40008 RMC_ENORSRCSFOUND No resources could be found using the select
string specified in the command

no arguments

Programming RMC 255

Table 32. Resource access or usage errors (listed by error code) (continued)

Error code Return value Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

0x40009 RMC_ENOSELECTDONE Resource selection could not be performed
using the select string specified in the
command

no arguments

0x4000a RMC_ERMNOTAVAILABLE In Cluster Mode:

The command for the resource or resource
class specified in the response could not be
executed on the node specified by the second
error argument; the Resource Manager
identified by the first error argument is not
available.In Stand-alone Mode:

The command for the resource or resource
class specified in the response could not be
executed; the Resource Manager named by the
error argument is not available.

In Cluster Mode:

v Resource Manager name

v number or name of
unavailable node

In Stand-alone Mode:

Resource Manager name

0x4000b RMC_ERMTERMWITHRSP In Cluster Mode:

The command for the resource or resource
class specified in the response could not be
completed on the node specified by the
second error argument; the Resource Manager
identified by the first error argument has
terminated. A partial response was previously
returned.In Stand-alone Mode:

The command for the resource or resource
class specified in the response could not be
completed; the Resource Manager named by
the error argument has terminated. A partial
response was previously returned.

In Cluster Mode:

v Resource Manager name

v number or name of
unavailable node

In Stand-alone Mode:

Resource Manager name

0x4000c RMC_ERMTERMWITHNORSP In Cluster Mode:

The command for the resource or resource
class specified in the response could not be
completed on the node specified by the
second error argument; the Resource Manager
identified by the first error argument has
terminated. While no response was returned,
the command may have executed prior to RM
termination.In Stand-alone Mode:

The command for the resource or resource
class specified in the response could not be
completed; the Resource Manager named by
the error argument has terminated. While no
response was returned, the command may
have executed prior to RM termination.

In Cluster Mode:

v Resource Manager name

v number or name of
unavailable node

In Stand-alone Mode:

Resource Manager name

0x4000d RMC_ENOENUMRSP A Resource Manager terminated while
attempting to enumerate resources for this
command. If an FFDC ID is present it can be
used to obtain more information about the
error. Additional responses may still be
returned for this command.

no arguments

256 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 32. Resource access or usage errors (listed by error code) (continued)

Error code Return value Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

0x4000e RMC_EENUMERROR An error was detected when attempting to
enumerate resources for this command. If an
FFDC ID is present it can be used to obtain
more information about the error. Additional
responses may still be returned for this
command.

no arguments

0x4000f RMC_ENODESCRIPTIONS Descriptions were requested by this command
for the specified resource class but cannot be
returned; descriptions are not currently
available. All other requested information is in
the response.

Resource Class name

0x40010 RMC_EACCESS If the response structure is for a command
that operates on a one or more resources:

Permission denied to access a resource
specified in this command.If the response
structure is for a command that operates on a
resource class:

Permission denied to access the resource class
specified in this command.

If the response structure is
for a command that operates
on a one or more resources:

v Network Identity

v permission character

v Resource Class name

v node name

v Resource Handle

If the response structure is
for a command that operates
on a resource class:

v Network Identity

v permission character

v Resource Class name

v node name

0x40011 RMC_ENODEOUT The resource or resource class specified the
response is no longer available on the node
specified by the error argument; the node has
left the cluster

name of node

0x40012 RMC_EDATTRNOTSUPPORTED The dynamic attribute specified in the
expression(s) supplied in the event registration
command is not supported in the resource
specified by the resource handle or in the
class specified by the class name.

no arguments

0x40013 RMC_EMISSINGDATTRVALUES Not all of the requested dynamic attribute
values could be obtained from the resource
specified by the resource handle or from the
class specified by the class name. The count in
the response specifies how many are returned.

number of attribute values not
returned

0x40014 RMC_ERSRCNOTAVAILABLE The resource or resource class specified in the
response is not currently available on the
node specified by the error argument.

name of node

0x40015 RMC_EMONITRINGSUSPENDED Monitoring of the resource indicated by the
resource handle in the response is temporarily
suspended; the monitoring location is
changing.

no arguments

0x40016 RMC_EMONITRINGNOTSTARTD Monitoring of the resource indicated by the
resource handle in the response has not yet
started; a response is pending from the
resource manager.

no arguments

Programming RMC 257

Table 32. Resource access or usage errors (listed by error code) (continued)

Error code Return value Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

0x40017 RMC_ECLASSNOTINSTALLED The resource class specified, explicitly or
implicitly, in the response is not installed on
the node specified by the error argument

name of node

0x40018 RMC_ENOENUMNODE Cannot enumerate resources for this command
on the node specified by the error argument;
the node is not currently in the cluster.
Additional responses may still be returned for
this command.

name of unavailable node

0x40019 RMC_EMONITRINGNODATA Monitoring of the resource indicated by the
resource handle in the response has started
but data is not yet available from the resource
manager.

no arguments

0x4001a RMC_EATTRNOTSUPPORTED The attribute specified in the expression(s)
supplied in the event registration command is
not supported in the resource specified by the
resource handle or in the class specified by
the class name.

no arguments

0x4001b RMC_ENODEFUNCLEVEL The resource or resource class specified in the
response cannot be accessed on the node
specified by the error argument; the node is
not operating at the necessary functional level
for this command.

name of node

0x4001c RMC_EDOMAINFUNCLEVEL The resource or resource class specified the
response cannot be accessed; the domain is
not operating at the necessary functional level
for this command.

name of peer domain

The following table lists the resource access or usage errors by return value.

Table 33. Resource access or usage errors (listed by return value)

Error code Return value Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

0x40010 RMC_EACCESS If the response structure is for a command
that operates on a one or more resources:

Permission denied to access a resource
specified in this command.If the response
structure is for a command that operates on a
resource class:

Permission denied to access the resource class
specified in this command.

If the response structure is
for a command that operates
on a one or more resources:

v Network Identity

v permission character

v Resource Class name

v node name

v Resource Handle

If the response structure is
for a command that operates
on a resource class:

v Network Identity

v permission character

v Resource Class name

v node name

258 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 33. Resource access or usage errors (listed by return value) (continued)

Error code Return value Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

0x4001a RMC_EATTRNOTSUPPORTED The attribute specified in the expression(s)
supplied in the event registration command is
not supported in the resource specified by the
resource handle or in the class specified by
the class name.

no arguments

0x40017 RMC_ECLASSNOTINSTALLED The resource class specified, explicitly or
implicitly, in the response is not installed on
the node specified by the error argument

name of node

0x40012 RMC_EDATTRNOTSUPPORTED The dynamic attribute specified in the
expression(s) supplied in the event registration
command is not supported in the resource
specified by the resource handle or in the
class specified by the class name.

no arguments

0x4001c RMC_EDOMAINFUNCLEVEL The resource or resource class specified the
response cannot be accessed; the domain is
not operating at the necessary functional level
for this command.

name of peer domain

0x4000e RMC_EENUMERROR An error was detected when attempting to
enumerate resources for this command. If an
FFDC ID is present it can be used to obtain
more information about the error. Additional
responses may still be returned for this
command.

no arguments

0x40005 RMC_EEVALUATIONERROR The evaluation of the dynamic attribute the
resource specified by the resource handle
resulted in an error

v expr evaluation error
number

1 divide by 0

2 invalid SD array
index

3 array index is out
of bounds

4 SD element ID is
greater than the
number of
elements present

5 operator used
where the left
operand is greater
than the right

>100 unexpected
evaluation error

v attribute name

0x40013 RMC_EMISSINGDATTRVALUES Not all of the requested dynamic attribute
values could be obtained from the resource
specified by the resource handle or from the
class specified by the class name. The count in
the response specifies how many are returned.

number of attribute values not
returned

0x40006 RMC_EMISSINGPATTRVALUES Not all of the requested persistent attribute
values could be obtained from the resource
specified by the resource handle or from the
class specified by the class name. The count in
the response specifies how many are returned

number of attribute values not
returned

Programming RMC 259

Table 33. Resource access or usage errors (listed by return value) (continued)

Error code Return value Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

0x40019 RMC_EMONITRINGNODATA Monitoring of the resource indicated by the
resource handle in the response has started
but data is not yet available from the resource
manager.

no arguments

0x40016 RMC_EMONITRINGNOTSTARTD Monitoring of the resource indicated by the
resource handle in the response has not yet
started; a response is pending from the
resource manager.

no arguments

0x40015 RMC_EMONITRINGSUSPENDED Monitoring of the resource indicated by the
resource handle in the response is temporarily
suspended; the monitoring location is
changing.

no arguments

0x4001b RMC_ENODEFUNCLEVEL The resource or resource class specified in the
response cannot be accessed on the node
specified by the error argument; the node is
not operating at the necessary functional level
for this command.

name of node

0x40007 RMC_ENODENOTAVAILABLE The command for the resource or resource
class specified in the response could not be
executed on the node specified by the error
argument; the node is not currently in the
cluster.

name of unavailable node

0x40011 RMC_ENODEOUT The resource or resource class specified the
response is no longer available on the node
specified by the error argument; the node has
left the cluster

name of node

0x4000f RMC_ENODESCRIPTIONS Descriptions were requested by this command
for the specified resource class but cannot be
returned; descriptions are not currently
available. All other requested information is in
the response.

Resource Class name

0x4000d RMC_ENOENUMRSP A Resource Manager terminated while
attempting to enumerate resources for this
command. If an FFDC ID is present it can be
used to obtain more information about the
error. Additional responses may still be
returned for this command.

no arguments

0x40008 RMC_ENORSRCSFOUND No resources could be found using the select
string specified in the command

no arguments

0x40009 RMC_ENOSELECTDONE Resource selection could not be performed
using the select string specified in the
command

no arguments

0x40018 RMC_ENOENUMNODE Cannot enumerate resources for this command
on the node specified by the error argument;
the node is not currently in the cluster.
Additional responses may still be returned for
this command.

name of unavailable node

260 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 33. Resource access or usage errors (listed by return value) (continued)

Error code Return value Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

0x4000a RMC_ERMNOTAVAILABLE In Cluster Mode:

The command for the resource or resource
class specified in the response could not be
executed on the node specified by the second
error argument; the Resource Manager
identified by the first error argument is not
available.In Stand-alone Mode:

The command for the resource or resource
class specified in the response could not be
executed; the Resource Manager named by the
error argument is not available.

In Cluster Mode:

v Resource Manager name

v number or name of
unavailable node

In Stand-alone Mode:

Resource Manager name

0x4000c RMC_ERMTERMWITHNORSP In Cluster Mode:

The command for the resource or resource
class specified in the response could not be
completed on the node specified by the
second error argument; the Resource Manager
identified by the first error argument has
terminated. While no response was returned,
the command may have executed prior to RM
termination.In Stand-alone Mode:

The command for the resource or resource
class specified in the response could not be
completed; the Resource Manager named by
the error argument has terminated. While no
response was returned, the command may
have executed prior to RM termination.

In Cluster Mode:

v Resource Manager name

v number or name of
unavailable node

In Stand-alone Mode:

Resource Manager name

0x4000b RMC_ERMTERMWITHRSP In Cluster Mode:

The command for the resource or resource
class specified in the response could not be
completed on the node specified by the
second error argument; the Resource Manager
identified by the first error argument has
terminated. A partial response was previously
returned.In Stand-alone Mode:

The command for the resource or resource
class specified in the response could not be
completed; the Resource Manager named by
the error argument has terminated. A partial
response was previously returned.

In Cluster Mode:

v Resource Manager name

v number or name of
unavailable node

In Stand-alone Mode:

Resource Manager name

0x40014 RMC_ERSRCNOTAVAILABLE The resource or resource class specified in the
response is not currently available on the
node specified by the error argument.

name of node

0x40001 RMC_ERSRCNOTDEFINED The resource indicated by the resource handle
in the response is not defined

no arguments

0x40004 RMC_ERSRCSTALE The resource indicated by the resource handle
in the response is stale; the resource manager
supplying the resource has terminated. The
remaining data in the response represents the
last known values

no arguments

0x40002 RMC_ERSRCUNDEFINED The resource indicated by the resource handle
in the response has been undefined

no arguments

Programming RMC 261

Table 33. Resource access or usage errors (listed by return value) (continued)

Error code Return value Description

The mc_args field of the
mc_errnum structure will be
a pointer to an array
containing, in order, the
following argument(s):

0x40003 RMC_ESHAREDMEMORY The shared memory used to monitor the
resource specified by the resource handle in
the response is no longer valid

no arguments

Expression specification errors:

The following two tables describe the expression specification errors that may be returned to the
application in response structures.

This first table lists the expression specification errors by error code. These same errors are also listed
alphabetically by return value in Table 35.

Table 34. Expression specification errors (listed by error code)

Error code Return value Description

0x50002 CU_EINVALIDNAME Invalid attribute name in expression

0x50003 CU_ENOMEM Cannot allocate memory

0x50004 CU_EINVAL Invalid constant value

0x50005 CU_EDIVIDEZERO Divide by zero

0x50006 CU_EINVALIDSDINDEX Invalid Structure Data index value

0x50007 CU_EINVALIDINDEX Invalid array index

0x50008 CU_EINVALIDELEMENTID Invalid SD element ID

0x50009 CU_EINVALIDOPTION Invalid option to expression engine

0x5000a CU_EMISSINGFUNC Function not specified to expression engine

0x5000b CU_ENOEXPR Missing expression

0x5000c CU_ETOOFEWVALUES Too few values passed to expression engine

0x5000d CU_EINVALIDRANGE Invalid range

0x5000e CU_EINVALIDFORMAT Invalid data format given to expression engine

0x5000f CU_EVARCONFLICT Error in expression expansion

The following table lists the expression specification errors by return value.

Table 35. Expression specification errors (listed by return value)

Return value Error code Description

CU_EDIVIDEZERO 0x50005 Divide by zero

CU_EINVAL 0x50004 Invalid constant value

CU_EINVALIDELEMENTID 0x50008 Invalid SD element ID

CU_EINVALIDFORMAT 0x5000e Invalid data format given to expression engine

CU_EINVALIDINDEX 0x50007 Invalid array index

CU_EINVALIDNAME 0x50002 Invalid attribute name in expression

CU_EINVALIDOPTION 0x50009 Invalid option to expression engine

CU_EINVALIDRANGE 0x5000d Invalid range

CU_EINVALIDSDINDEX 0x50006 Invalid Structure Data index value

CU_EMISSINGFUNC 0x5000a Function not specified to expression engine

CU_ENOEXPR 0x5000b Missing expression

262 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 35. Expression specification errors (listed by return value) (continued)

Return value Error code Description

CU_ENOMEM 0x50003 Cannot allocate memory

CU_ETOOFEWVALUES 0x5000c Too few values passed to expression engine

CU_EVARCONFLICT 0x5000f Error in expression expansion

Select string specification errors:

The following two tables describe the expression specification errors that may be returned to the
application in response structures.

This first table lists the select string specification errors by error code. These same errors are also listed
alphabetically by return value in Table 37.

Table 36. Select string specification errors (listed by error code)

Error code Return value Description

0x60002 CU_EINVALIDNAME Invalid attribute name in expression

0x60003 CU_ENOMEM Cannot allocate memory

0x60004 CU_EINVAL Invalid constant value

0x60005 CU_EDIVIDEZERO Divide by zero

0x60006 CU_EINVALIDSDINDEX Invalid Structure Data index value

0x60007 CU_EINVALIDINDEX Invalid array index

0x60008 CU_EINVALIDELEMENTID Invalid SD element ID

0x60009 CU_EINVALIDOPTION Invalid option to expression engine

0x6000a CU_EMISSINGFUNC Function not specified to expression engine

0x6000b CU_ENOEXPR Missing expression

0x6000c CU_ETOOFEWVALUES Too few values passed to expression engine

0x6000d CU_EINVALIDRANGE Invalid range

0x6000e CU_EINVALIDFORMAT Invalid data format given to expression engine

0x6000f CU_EVARCONFLICT Error in expression expansion

The following table lists the select string specification errors by return value.

Table 37. Select string specification errors (listed by return value)

Return value Error code Description

CU_EDIVIDEZERO 0x60005 Divide by zero

CU_EINVAL 0x60004 Invalid constant value

CU_EINVALIDELEMENTID 0x60008 Invalid SD element ID

CU_EINVALIDFORMAT 0x6000e Invalid data format given to expression engine

CU_EINVALIDINDEX 0x60007 Invalid array index

CU_EINVALIDNAME 0x60002 Invalid attribute name in expression

CU_EINVALIDOPTION 0x60009 Invalid option to expression engine

CU_EINVALIDRANGE 0x6000d Invalid range

CU_EINVALIDSDINDEX 0x60006 Invalid Structure Data index value

CU_EMISSINGFUNC 0x6000a Function not specified to expression engine

CU_ENOEXPR 0x6000b Missing expression

CU_ENOMEM 0x60003 Cannot allocate memory

CU_ETOOFEWVALUES 0x6000c Too few values passed to expression engine

Programming RMC 263

Table 37. Select string specification errors (listed by return value) (continued)

Return value Error code Description

CU_EVARCONFLICT 0x6000f Error in expression expansion

Cluster utilities: error-related subroutines
The cluster utilities component of RSCT includes several subroutines that an application can use to get
additional information about errors that are returned by RMC API subroutines.
Related concepts:
“Notifying the application of errors” on page 29
Errors can be detected in various ways when using the RMC API.
“Obtaining error information returned by the RMC API subroutines” on page 29
All RMC API subroutines return a value of type ct_int32_t. A return value of 0 indicates that the
subroutine completed successfully. Any non-zero value is an error value.

cu_get_errmsg
Gets an error message that corresponds to an error structure that is obtained by the cu_get_error
subroutine.

Library

Cluster utilities library (libct_cu.a)

Syntax
#include <rsct/ct_cu.h>

extern void
cu_get_errmsg(

cu_error_t *err_p,
ct_char_t **msg_pp

);

Parameters

Input

err_p Pointer to an error structure obtained by the cluster common subroutine cu_get_error.

Output

msg_pp
Pointer to a location where the subroutine will place the error message.

Description

The cu_get_errmsg subroutine enables the application to get an error message, suitably translated, that
corresponds to an error structure obtained by the cluster common subroutine cu_get_error. The
application passes the cu_get_errmsg subroutine a pointer to the error structure and specifies a location
for the message.

The memory returned by the cu_get_errmsg subroutine is not reused by the subroutine. The application
can therefore hold the memory as long as necessary, independent of any other subroutine call. However,
the memory returned by the subroutine must not be modified by the application. When it no longer
needs the error message, the application can invoke the cu_rel_errmsg subroutine to free the memory
used to store the message.

264 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Location

/usr/lib/libct_cu.a

Related reference:
“cu_get_error”
Gets detailed error information about errors that are returned by RMC API subroutines.
“cu_pkg_error, cu_vpkg_error” on page 267
Package error information into a cluster error structure or create cluster error structures that are returned
by microsensor API subroutines.
“cu_rel_errmsg” on page 269
Frees the memory associated with a message that is obtained by the cu_get_errmsg subroutine.
“cu_rel_error” on page 270
Frees the memory associated with an error structure that is obtained by the cu_get_error subroutine.

cu_get_error
Gets detailed error information about errors that are returned by RMC API subroutines.

Library

Cluster utilities library (libct_cu.a)

Syntax
#include <rsct/ct_cu.h>

extern void
cu_get_error(

cu_error_t **err_pp,
);

Parameters

Input

err_pp The address of a location in which the cu_get_error subroutine returns a pointer to an error
structure.

Description

The cu_get_error subroutine enables an application to obtain detailed error information for errors that are
returned by RMC API subroutines.

RMC API subroutines save this error information in a common, per-thread area. Therefore, to obtain
additional error information, the application must call the cu_get_error subroutine using the same thread
that invoked the subroutine that returned the error, before calling any other subroutine on that thread.

This subroutine has one argument, which is the address of a location in which the subroutine returns a
pointer to the following error structure:
typedef struct cu_error cu_error_t;
struct cu_error {

ct_int32_t cu_error_id;
ct_char_t *cu_ffdc_id;
ct_char_t *cu_msg_cat;
ct_int32_t cu_msg_set
ct_int32_t cu_msg_num;

Programming RMC 265

ct_char_t *cu_msg_default;
ct_uint32_t cu_arg_cnt;
cu_error_arg_t *cu_args;

};

The fields of this structure contain the following:

cu_error_id
The error value originally returned by the RMC API subroutine.

cu_ffdc_id
A pointer to a string that is a failure identifier. This failure identifier specifies additional error
information that may have been logged by the subroutine. If this field contains a Null pointer,
then no additional error information has been logged. If the application is logging errors that is
has detected, then this failure identifier should be included in the information being logged.

cu_msg_cat
A pointer to the name of the message catalog that contains the error.

cu_msg_set
The message set number.

cu_msg_num
The message number.

cu_msg_default
A pointer to the error message.

cu_arg_cnt
The number of elements in the cu_args array.

cu_args
A pointer to an array of cu_arg_cnt elements of type cu_error_arg_t. Each cu_error_arg_t element
is a structure of that contains an argument value and a value type.
typedef struct cu_error_arg cu_error_arg_t;
struct cu_error_arg {

cu_error_arg_type_t cu_arg_type;
cu_error_arg_value_t cu_arg_value;

};

The fields of this structure contain the following:

cu_arg_type
The argument type are defined by the cu_error_arg_type_t enumeration.
typdef enum cu_error_arg_type cu_error_arg_type_t;
enum cu_error_arg_type {

CU_ERROR_ARG_INT,
CU_ERROR_ARG_LONG,
CU_ERROR_ARG_LONG_LONG,
CU_ERROR_ARG_DOUBLE,
CU_ERROR_ARG_RESERVED,
CU_ERROR_ARG_CHAR_STR,
CU_ERROR_ARG_VOID_PTR

};

cu_arg_value
The argument value as defined by the cu_error_arg_value_t union.
typedef union cu_error_arg_value cu_error_arg_value_t;
union cu_error_arg_value {

int cu_arg_int;
long cu_arg_long;
long long cu_arg_long_long;

266 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

double cu_arg_double;
char *cu_arg_char_str;
void *cu_arg_void_ptr;

};

The memory returned by the cu_get_error subroutine is not reused by the subroutine. The application
can therefore hold the memory as long as necessary, independent of any other subroutine call. However,
the memory returned by this subroutine must not be modified by the application. When the detailed
error information is no longer needed, the application can free it by calling the cluster common
subroutine cu_rel_errmsg.

The application can obtain a message corresponding to the error, suitably translated, by invoking the
cluster common subroutine cu_get_errmsg, passing it a pointer to the cu_error structure. When the
application no longer needs the error message, it can call the cu_rel_errmsg subroutine to free the
memory used to store the message.

Location

/usr/lib/libct_cu.a

Related reference:
“cu_get_errmsg” on page 264
Gets an error message that corresponds to an error structure that is obtained by the cu_get_error
subroutine.
“cu_pkg_error, cu_vpkg_error”
Package error information into a cluster error structure or create cluster error structures that are returned
by microsensor API subroutines.
“cu_rel_errmsg” on page 269
Frees the memory associated with a message that is obtained by the cu_get_errmsg subroutine.
“cu_rel_error” on page 270
Frees the memory associated with an error structure that is obtained by the cu_get_error subroutine.

cu_pkg_error, cu_vpkg_error
Package error information into a cluster error structure or create cluster error structures that are returned
by microsensor API subroutines.

Library

Cluster utilities library (libct_cu.a)

Syntax
#include <rsct/ct_cu.h>

extern ct_int32_t
cu_pkg_error(

cu_error_t **err_pp,
ct_int32_t error_id,
const ct_char_t *ffdc_id,
const ct_char_t *msg_cat,
ct_int32_t msg_set,
ct_int32_t msg_num,
const ct_char_t *msg_default,
...

);

extern ct_int32_t
cu_vpkg_error(

cu_error_t **err_pp,
ct_int32_t error_id,

Programming RMC 267

const ct_char_t *ffdc_id,
const ct_char_t *msg_cat,
ct_int32_t msg_set,
ct_int32_t msg_num,
const ct_char_t *msg_default,
va_list val

);

Parameters

Input

error_id
The cluster function error code.

ffdc_id The first failure data capture identifier.

msg_cat
Name of message catalog from which an error message describing the error can be obtained.

msg_set
Number of the set within the message catalog identified by the msg_cat argument from which an
error message describing the error can be obtained.

msg_num
Number of the message within the set identified by the msg_set argument and the message
catalog identified by the msg_cat argument describing the error.

msg_default
Default message describing the error.

... Error arguments.

va_list
Variable argument list as defined by stdarg.h.

Output

err_pp Specifies a pointer to memory where a pointer to a cu_error_t structure is to be returned.

Description

You can call these subroutines to package error information into a cluster error structure or to create
cluster error structures that are returned by microsensor API subroutines.

These subroutines interpret the default error message specified by the msg_default parameter as a printf()
format string. These routines recognize printf() conversion specifications within the format string, and
like printf(), use the conversion specifications to interpret the remaining arguments.

Most, but not all, valid printf() conversion specifications are recognized by these subroutines.

A printf() conversion specification starts with the % character or the %n$ character sequence, followed, in
order, by any of the following:
v Zero or more flags
v An optional minimum field width
v An optional precision
v An optional length modifier that specifies the size of an error argument
v A conversion specifier character that indicates the type of conversion to apply to an error argument

See the printf() man page for details.

268 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

These subroutines recognize the following combinations of length modifier and conversion specifier.

In order to support integer error arguments, these subroutines recognize the following conversion
specifiers: d, i, o, u, x, and X

These subroutines also recognize the following optional length modifiers applied to them: h, l, and ll

In order to support floating point error arguments, these subroutines recognize the following conversion
specifiers: e, E, f, g, and G, and the following optional length modifier applied to them: l

In order to support character, character string, and void pointer error arguments, respectively, these
subroutines also recognize the following conversion specifiers: c, p, and s

These subroutines recognize no optional length modifiers for these conversion specifiers.

The message identified by the msg_cat, msg_num, and msg_set parameters is expected to contain the same
conversion specifications as the default message.

The returned cluster error structure can be released by calling cu_rel_error().

Return values

If successful, this subroutine returns the value of the error_id argument. If unsuccessful, this subroutine
returns -1.

Location

/usr/lib/libct_cu.a

Related reference:
“cu_get_errmsg” on page 264
Gets an error message that corresponds to an error structure that is obtained by the cu_get_error
subroutine.
“cu_get_error” on page 265
Gets detailed error information about errors that are returned by RMC API subroutines.
“cu_rel_errmsg”
Frees the memory associated with a message that is obtained by the cu_get_errmsg subroutine.
“cu_rel_error” on page 270
Frees the memory associated with an error structure that is obtained by the cu_get_error subroutine.

cu_rel_errmsg
Frees the memory associated with a message that is obtained by the cu_get_errmsg subroutine.

Library

Cluster utilities library (libct_cu.a)

Syntax
#include <rsct/ct_cu.h>

extern void
cu_rel_errmsg(

ct_char_t *msg_p
);

Programming RMC 269

Parameters

Input

msg_p Pointer to the error message to be freed.

Description

The cu_rel_errmsg subroutine enables the application to free the memory associated with a message
previously obtained by the cu_get_errmsg subroutine. The memory returned by the cu_get_errmsg
subroutine is not reused by the subroutine. The cu_rel_errmsg subroutine enables the application to free
the memory.

Location

/usr/lib/libct_cu.a

Related reference:
“cu_get_errmsg” on page 264
Gets an error message that corresponds to an error structure that is obtained by the cu_get_error
subroutine.
“cu_get_error” on page 265
Gets detailed error information about errors that are returned by RMC API subroutines.
“cu_pkg_error, cu_vpkg_error” on page 267
Package error information into a cluster error structure or create cluster error structures that are returned
by microsensor API subroutines.
“cu_rel_error”
Frees the memory associated with an error structure that is obtained by the cu_get_error subroutine.

cu_rel_error
Frees the memory associated with an error structure that is obtained by the cu_get_error subroutine.

Library

Cluster utilities library (libct_cu.a)

Syntax
#include <rsct/ct_cu.h>

extern void
cu_rel_errmsg(

cu_error_t *err_p,
);

Parameters

Input

err_p Pointer to an error structure to be freed.

Description

The cu_rel_error subroutine enables the application to free the memory associated with an error structure
previously obtained by the cu_get_error subroutine. The memory returned by the cu_get_error
subroutine is not reused by the subroutine. The cu_rel_error subroutine enables the application to free the
memory.

270 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Location

/usr/lib/libct_cu.a

Related reference:
“cu_get_errmsg” on page 264
Gets an error message that corresponds to an error structure that is obtained by the cu_get_error
subroutine.
“cu_get_error” on page 265
Gets detailed error information about errors that are returned by RMC API subroutines.
“cu_pkg_error, cu_vpkg_error” on page 267
Package error information into a cluster error structure or create cluster error structures that are returned
by microsensor API subroutines.
“cu_rel_errmsg” on page 269
Frees the memory associated with a message that is obtained by the cu_get_errmsg subroutine.

Microsensor API concepts
Before you use calls to the microsensor API in an application, you must understand basic concepts. The
microsensor API includes subroutines, macros, datatypes, and other data definitions you can use to create
microsensors.

RSCT provides a C header file called ct_microsensor.h for microsensor implementers to include. This
header file defines various datatypes, enumeration values, numeric constants, subroutines, and other data
definitions. In order to use the microsensor API, the header file must be included as follows:
#include <rsct/ct_microsensor.h>

Comparing sensors and microsensors
RSCT microsensors are extensions of RSCT sensors.

A sensor is a command that the RMC subsystem runs to retrieve one or more user-defined values. A
microsensor is a dynamically-loaded shared library that provides C-based functions invoked by the RMC
subsystem's IBM.MicroSensorRM daemon to obtain control information and values for monitored
dynamic attributes of the IBM.MicroSensor resource class.

The IBM.SensorRM and the IBM.MicrosensorRM processes run as root, so sensors and microsensors
execute with root privileges.

The main difference between a sensor and a microsensor is that the sensor code is executed in a process
outside the IBM.SensorRM process, while the microsensor code is executed inside the
IBM.MicrosensorRM process. This creates a distinctly different paradigm when writing microsensors.

Microsensors do not need to spawn a new process and parse the output, so they are more efficient than
sensors. In addition, the microsensor implementer can provide a file descriptor that the microsensor
resource manager can use in a select() call to eliminate polling.

Programming errors in sensor code only affect the execution of a specific sensor. Programming errors that
occur in microsensor code affect the execution of all microsensors.

Specifying the attributes that microsensors support
The microsensor API includes a subroutine for specifying which attributes the microsensor resource
manager supports.

Programming RMC 271

Use the usf_get_control_data() subroutine to specify which attributes the microsensor resource manager
supports.
Related reference:
“usf_get_control_data” on page 277
Specifies which attributes the microsensor resource manager supports.

Instructing microsensors to start or stop fetching dynamic attribute
values
The microsensor API includes subroutines for instructing microsensors to start and stop fetching standard
and custom dynamic attribute values.

Use the usf_start_standard_dattr subroutine to instruct a microsensor to start fetching standard dynamic
attribute values from the microsensor instance.

Use the usf_stop_standard_dattr subroutine to instruct a microsensor to stop fetching standard dynamic
attribute values from the microsensor instance.

Use the usf_start_custom_dattr subroutine to instruct a microsensor to start fetching custom dynamic
attribute values from the microsensor instance.

Use the usf_stop_custom_dattr subroutine to instruct a microsensor to stop fetching custom dynamic
attribute values from the microsensor instance.
Related reference:
“usf_start_standard_dattr” on page 283
Instructs the microsensor to start fetching dynamic attribute values from the microsensor instance.
“usf_stop_standard_dattr” on page 285
Instructs the microsensor to stop fetching standard dynamic attribute values from the microsensor
instance.
“usf_start_custom_dattr” on page 282
Acquires a custom dynamic attribute value from the microsensor instance.
“usf_stop_custom_dattr” on page 284
Stops acquiring custom dynamic attribute values from the microsensor instance.

Passing dynamic attribute values and other information to the
microsensor resource manager
This section specifies the subroutines used to pass standard and custom dynamic attribute values and
information to the microsensor resource manager.

Use the usf_get_standard_dattr_values subroutine to pass standard dynamic attribute values to the
microsensor resource manager.

Use the usf_get_custom_dattr_values subroutine to pass custom dynamic attribute values to the
microsensor resource manager.

Use the usf_get_custom_dattr_info subroutine to pass custom dynamic attribute information to the
microsensor resource manager.

Releasing a microsensor instance
The microsensor API includes a subroutine for releasing a microsensor instance.

Use the usf_fini subroutine to release a microsensor instance. For more information about this
subroutine, see “usf_fini” on page 276.

272 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Writing safe microsensors
When writing a microsensor, or when accepting a microsensor from third-party software vendors (other
than IBM), make sure that the microsensor code does exactly what it intended to do (and nothing more),
that the execution of the microsensor code does not impact any of the microsensor resource manager's
functions, and that the microsensor code is free of security vulnerabilities.

To ensure microsensor safety, it is essential that you adhere to the following guidelines:
v Microsensors must not create threads, processes, or call functions such as exec() that replace the

IBM.MicrosensorRM process and, in general, must be tolerant of a multi-threaded environment.
Assume that a microsensor could terminate at any time, without invocation of its usf_fini() routine.

v Microsensors must not set or change the disposition of signal.
v Microsensors must not include such process-ending calls as exit().
v Microsensors must not change the process user IDs.

Multi-threading tolerance
Microsensors must be sufficiently tolerant to run successfully in multi-threading environments that they
do not control.

To assure multi-threading tolerance, you need to adhere to the following principles when creating
microsensors:
v Microsensors must not create threads. The purpose of a microsensor is to increase performance. This

requires that it be small, simple and efficient. The execution of microsensor code must be entirely
under the control of the microsensor resource manager in such a way that it can unload the
microsensor safely.

v Microsensors must not create child or other processes. The interface defined by RMC and exported by
the microsensors does not provide the means to control such processes. Microsensors should not call
functions such as fork() or exec(), which duplicate the IBM.MicrosensorRM process or create a new
process.

v Microsensors must be expected to run in a thread that can be cancelled at any time. Microsensors must
be able to handle thread-cancellation requests safely and in a timely manner. When writing
microsensors, use pthread_testcancel(), pthread_cleanup_push(), and pthread_cleanup_pop() to make
sure that memory or file descriptors are not leaked when the thread in which they run is being
cancelled. Also, pay attention to system calls that are thread cancellation points and make sure system
resources are released when the thread of execution is cancelled.

Well-behaved microsensors
Microsensors are loadable objects that the microsensor resource manager loads in its process space.
Consequently, they affect the overall behavior of the microsensor resource manager.

To maximize control over their behavior, you need to adhere to the following principles when creating
microsensors:
v Microsensors must not change the disposition of signals. Signals affect the behavior of the entire

process, and shared libraries or other modules that are loaded and executed in another process space
cannot make any assumption about how the program loading them handles signals.

v Microsensors must not change the identity of the process in which they run. Microsensors cannot
change the user identity (real, effective, and saved) of the process or the thread they in which they run.
Microsensors are expected to run with root privileges in the IBM.MicrosensorRM process.

v Microsensors must not call process exiting routines, such as exit() and abort(). Like any loadable object
or shared library, microsensors must not terminate the process in which they run.

v Microsensors must return clear and unambiguous return codes. Each error condition encountered by
the exported interface must be clearly identified by a distinct return code that is thoroughly described
in the microsensor documentation.

Programming RMC 273

Secure microsensors
Microsensors run with root privileges inside the IBM.MicrosensorRM process. Make sure that their code
is secure and does not introduce security vulnerabilities.

To assure their security, adhere to the following principles when developing microsensors:
v Do not use environment variables for a microsensor's functionality. Microsensors are intended to be

simple and efficient, running their code self-contained in a single thread. Because environment
variables affect the entire process, their use should be limited only to testing. Remove them when you
complete testing, and before releasing the microsensor into a production environment.

v Handle files and directories with care. Microsensor code runs with root privileges. As a result, any
operation on files and directories, especially operations that create or write to files, must ensure that
system files are not destroyed or overwritten. If a microsensor needs to create files using well-known
names, make sure the file does not exist. If the file exists, make sure it is not unexpected type. Writing
to the file should be done in a safe manner, at a minimum, a manner that would ensure a small
amount of space remains on the device.

v Create temporary files with random file names. If a microsensor needs to create a temporary file for
whatever reason, use the mkstemp() system call to get a file descriptor to a new file with a unique file
name. Make sure temporary files are removed when the usf_fini() subroutine is called.

v Check external input, boundary checks, within the range values. If external input is read from a file,
the microsensor code must check the validity of that input, whether it comes from a regular file that
only root can write to, whether it conforms to the defined format, and whether all values are within
established boundaries.

v Limit memory allocations to what appears to be acceptable memory sizes. Do not allocate memory
indiscriminately, especially as a result of parsing external input. Verify that the size of memory to
allocate is within specified limits that make sense for how the allocated memory is to be used. Pay
attention to allocating zero bytes, as results are undefined.

v Use datatypes consistently. Pay attention to signed data versus unsigned data, especially when dealing
with pointers. Do not use unsigned data in the place of signed data, or the reverse. Use well-sized
datatypes (for example, use short instead of int for port numbers).

Microsensor certification process
The purpose of microsensor certification is to ensure that each microsensor complies with good, secure
engineering practices and that it does not introduce security vulnerabilities. This certification is often, but
not always, provided by some form of external review, education, or assessment.

For microsensors, this certification is based on either of the following:
v Trust, if the microsensor is provided by a trusted software vendor, such as IBM.
v A review of the microsensor's functionality and implementation, and an assessment of its security

posture. It is recommended that you independently review and assess all microsensors. Microsensors
that you supply are easily reviewed and assessed by system administrators, since they have access to
the source code, as well as to the developers that designed and implemented the microsensor.

Reviewing and assessing a microsensor
The task of reviewing and assessing a microsensor is the most important part of the certification process.

Once you are comfortable that a microsensor is tolerant of multi-threading, well-behaved, safe, and
secure, run a command that certifies that specific copy or version of the microsensor. Reviewers who
have access to a microsensor's code must follow the guidelines listed in “Writing safe microsensors” on
page 273 to determine its compliance with multi-threading tolerance, well-behavior, and security. This
requires a thorough code review. Reviewers who do not have access to a microsensor's code must ask the
microsensor's provider pertinent questions to determine its compliance with multi-threading tolerance,
behavior, and security requirements.

274 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Certifying a microsensor
There are two ways to certify a microsensor module.

The first occurs when a microsensor is created. The second occurs when there is a need to re-certify a
microsensor module because it was marked as unusable, updated, or upgraded.

Creating a microsensor:

Use the mksensor command to create a microsensor. Each time a new microsensor is created, the
microsensor resource manager certifies the microsensor module.

The administrator creates a microsensor by running the mksensor command and specifying the module
name as a parameter to the command:
mksensor -m microsensor_name microsensor_module_path

where microsensor_name is the name of the microsensor and microsensor_module_path is the full path of the
microsensor module. The microsensor resource manager performs the following tasks before allowing the
creation of the new microsensor:
1. Checks that the module exists and is a regular file.
2. Verifies that the module is not writable by users other than the owner.
3. Calculates and stores the module digital signature.

If all of these tasks succeed, the module is considered certified.

When the microsensor resource manager loads the microsensor module, its signature is calculated again
and compared with that of the microsensor module that was stored originally. If the calculated signature
does not match the stored signature, the microsensor resource manager marks the module in a manner
that signifies it as unusable by each of the microsensors that might refer to it.

If the microsensor resource manager finds a microsensor module with an unrecoverable problem, it
marks the module as unusable. To make such a microsensor module usable again, you must re-certify it.
If the unusable module is loaded, the Reload action of the IBM.MicroSensor resource class must also be
called so that the existing module is unloaded, then the new module is loaded. The module status is
changed accordingly after the module is reloaded.

The Reload resource class action reloads the passed module. If the module is currently loaded, it is
unloaded first, and calls to usf_fini() are made as appropriate, then the module is reloaded into memory.

Re-certifying a microsensor module:

To re-certify a microsensor module, the administrator must call the Certify action of the
IBM.MicroSensor resource class.

To re-certify a microsensor module, enter:
runact -c IBM.MicroSensor Certify ModuleName=module_name

In this example, module_name is the name of the microsensor module that needs to be re-certified.

The Certify resource class action updates the signature value of all IBM.MicroSensor resources that use
the passed module.

Programming RMC 275

Obtaining error information returned by the microsensor API
subroutines
All of the microsensor API subroutines return a cu_error_t structure pointer.

The format of the cu_error_t structure pointer follows:
typedef struct {

ct_int32_t cu_error_id; /* error value */
ct_char_t *cu_ffdc_id; /* FFDC ID library logged entry */
ct_char_t *cu_msg_cat; /* message catalog name */
ct_int32_t cu_msg_set; /* message catalog set */
ct_int32_t cu_msg_num; /* message number */
ct_char_t *cu_msg_default; /* default message */
ct_uint32_t cu_arg_cnt; /* count of error arguments */
cu_error_arg_t *cu_args; /* array of error arguments */

} cu_error_t;

The microsensor API subroutines can fill this structure in using the cu_pkg_error() subroutine (described
in “cu_pkg_error, cu_vpkg_error” on page 267). The microsensor resource manager releases these
structures as needed using the cu_rel_error() subroutine (described in “cu_rel_error” on page 270). A Null
cu_error_t pointer value indicates success, while a non-Null cu_error_t pointer value indicates that an
error occurred. If an error occurs, most of the microsensor API subroutines will assume the module is
unusable and will fence it.

Microsensor API reference
The microsensor API includes several subroutines and data types you can use to create microsensors.

Microsensor API subroutines
The microsensor API includes several subroutines for performing various tasks related to creating
microsensors.

usf_fini
Releases the microsensor instance when the microsensor is no longer needed.

Syntax

#include <rsct/ct_microsensor.h>

cu_error_t*
usf_fini(

void *anchor_p,
ct_uint_32_t unload_flag

);

Parameters

Input

anchor_p
is the anchor pointer for the microsensor instance.

unload_flag
if non-zero, indicates that the resource manager will unload the microsensor upon return of this
subroutine.

Description

Called by: the microsensor resource manager

276 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

The usf_fini subroutine releases the microsensor instance when the microsensor is no longer needed. The
microsensor is expected to free the anchor object. If the value of unload_flag is not zero, the microsensor is
expected to perform any necessary clean-up appropriate for the module to be unloaded. Any error that is
returned by this subroutine is logged.

usf_get_control_data
Specifies which attributes the microsensor resource manager supports.

Syntax

#include <rsct/ct_microsensor.h>

cu_error_t*
usf_get_control_data(

ct_int32_t argc,
char **argv,
usf_control_data *control_data_p

);

Parameters

Input

argc is a count of entries in the argument vector.

argv is a pointer to an array of pointers to strings.

Output

control_data_p
is a pointer to a structure of type usf_control_data_t.

Description

Called by: the microsensor resource manager

The usf_get_control_data subroutine is used to specify which attributes the microsensor resource
manager supports. This is the first function call that the microsensor resource manager makes to the
microsensor after it is loaded. If the information returned by the microsensor indicates that it is
re-entrant, this call is made for each IBM.MicroSensor resource for which it is specified.

The argv parameter contains argc + 1 entries, where the last entry is a Null pointer. The first element in
this array is the path name of the microsensor to load. In the microsensor Arguments string, each
subsequent element is derived from the microsensor Arguments attribute. Each token, separated by white
space, becomes a string in the argument vector in the same order. This array is read-only for the
microsensor. It will be de-allocated by the microsensor resource manager after this call is made.

The format of the usf_control_data structure is:
typedef struct usf_control_data
{

ct_uint32_t usf_API_version;
ct_uint32_t usf_uSensor_version;
ct_uint64_t usf_standard_dattrs;
void *usf_anchor;
ct_uint32_t usf_num_custom_dattrs;

} usf_control_data_t;

The structure fields of the usf_control_data_t datatype are set as follows by the subroutine:

Programming RMC 277

v The usf_API_version field is set to the value USF_API_VERSION. The microsensor resource manager
uses this field to determine the version of the microsensor API that is implemented by the microsensor.

v The usf_uSensor_version field is set to a value that is indicative of the version of the microsensor. This
value should change whenever the semantic of the microsensor changes, that is, when new custom
dynamic attributes are added or there is a change in support of the standard dynamic resource
attributes, for example. The binary format of the value is opaque to the resource manager, other than
the value for each successive microsensor version, which must compare numerically higher than the
value for the prior version.

v If the microsensor supports one or more of the standard dynamic resource attributes of the
IBM.MicroSensor resource class, the appropriate bits are set in the usf_standard_dattrs field.

v If the microsensor is re-entrant, the usf_anchor field is set to a non-Null pointer; otherwise, it is set to
Null. It is assumed that this pointer refers to a control block allocated by the microsensor. The pointer
is saved with its resource and is passed on all subsequent API calls for the same microsensor instance.

v The usf_num_custom_dattrs field is set to the number of custom dynamic attributes that are supported
by the microsensor.

If the microsensor is not re-entrant, an error will occur if more than one resource uses it.

If this subroutine returns an error, the microsensor will be rendered unusable.
Related concepts:
“Specifying the attributes that microsensors support” on page 271
The microsensor API includes a subroutine for specifying which attributes the microsensor resource
manager supports.

usf_get_custom_dattr_info
Gets information about the custom dynamic attributes of a microsensor.

Syntax

#include <rsct/ct_microsensor.h>
cu_error_t *
usf_get_custom_dattr_info(

void anchor_p,
ct_uint32_t num_values,
usf_custom_dattr_info_t dattr_info[]

);

Parameters

Input

anchor_p
is the anchor pointer for the microsensor instance.

num_values
is the number of custom dynamic attributes (N) for which the microsensor resource manager is
acquiring information.

Output

dattr_info[]
is a pointer to an array of structures of type usf_custom_dattr_info_t.

Description

Called by: the microsensor resource manager

278 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

The usf_get_custom_dattr_info subroutine is used to obtain information about the custom dynamic
attributes of a microsensor. It is called only in cases where the microsensor specifies that it supports at
least one custom dynamic attribute. Also, it is called for each microsensor instance if the microsensor is
re-entrant.

If the value of the usf_control_data_t datatype's usf_num_custom_dattrs field is N, where N > 0, it is
assumed that each custom dynamic attribute has a unique attribute ID (internal to the microsensor
instance) that is taken from the set {1, N}. The internal attribute ID of the custom dynamic attributes is its
index in the dattr_info array +1. This internal attribute ID is used by the microsensor resource manager to
reference the various custom dynamic attributes in this and other microsensor API calls. For more
information about usf_control_data_t, see “usf_get_control_data” on page 277.

The format of the usf_custom_dattr_info structure is:
typedef struct usf_custom_dattr_info
{

char *usf_name;
ct_int32_t usf_data_type;
ct_int32_t usf_variable_type;
ct_int32_t usf_reporting_interval;
ct_uint32_t usf_properties;

} usf_custom_dattr_info_t;

The subroutine sets the structure fields of the usf_custom_dattr_info_t datatype as follows:
v The usf_name field is set to a pointer to the name of the custom dynamic attribute. This is the

programmatic name of the attribute, which must begin with an alphabetic character and must be taken
from the portable character set as defined in IEEE Std 1003.1, 2004 Edition. It can only contain these
characters: 0 to 9, A to Z, a to z, and _ (underscore). The pointer is assumed to reference static data
that is copied by the microsensor resource manager.

v The usf_data_type field is set to the datatype of the attribute. The value is taken from the ct_data_type_t
enumeration. For more information about ct_data_type_t, see “RMC API data types for values,
resources, and resource attributes” on page 238.

v The usf_variable_type field is set to the variable type of the attribute. The variable type indicates the
semantics of the attribute: Counter, Quantity, Quantum, or State. The value is taken from the
rmc_variable_type_t enumeration. For more information about rmc_variable_type_t, see “RMC API
data types for values, resources, and resource attributes” on page 238.

v The usf_reporting_interval field is set to the default time interval, in seconds, during which the
microsensor resource manager fetches the custom dynamic attribute value from the microsensor. If this
value is 0, the microsensor might be queried for a new value when a file descriptor, supplied by the
microsensor, is ready to be read. If this value is not 0 and no file descriptor is supplied, it is assumed a
new value is pushed into the microsensor resource manager through a call to
usf_get_custom_dattr_values. If the file descriptor value is not 0 and a reporting interval other than 0
is specified, an error is logged and the module is made unusable. If the usf_reporting_interval value is 0
and no file descriptor is specified, the module will obtain its values when the Refresh resource action
is called on this particular microsensor. A Refresh resource action updates the signature value of all
IBM.MicroSensor resources that use the passed module.
The reporting interval can be changed by the RMC API client application.

v The usf_properties field is a bitfield that specifies the properties of the custom dynamic attribute in
addition to the public property. The only property that can be specified is QryReqsMonitoring. To
specify this property, the USF_RSRC_DATTR_QRY_REQS_MONITORING bit must be set in this
field. If the value is 0, the only property for this attribute is public.

Related reference:
“usf_get_custom_dattr_values” on page 280
Passes custom dynamic attribute values to the microsensor resource manager.

Programming RMC 279

usf_get_custom_dattr_values
Passes custom dynamic attribute values to the microsensor resource manager.

Syntax

#include <rsct/ct_microsensor.h>

cu_error_t
usf_get_custom_dattr_values(

void *anchor_p,
ct_uint32_t num_values,
usf_attribute_t values[]

);

Parameters

Input

anchor_p
is the anchor pointer for the microsensor instance.

num_values
is the number of custom dynamic attributes for which the microsensor resource manager is
acquiring a value.

Output

values[]
is a pointer to an array of type usf_attribute_t.

Description

Called by: the microsensor resource manager

The usf_get_custom_dattr_values subroutine is used to obtain values for each custom dynamic attribute
from the microsensor instance. It is called only in the case where the microsensor specifies that it
supports at least one custom dynamic attribute.

This subroutine is called under one of the following conditions:
v The reporting interval is not 0 and the interval time has elapsed.
v The reporting interval is 0, a non-negative file descriptor has been supplied by this microsensor and

the descriptor is ready for read.
v The reporting interval is 0, no file descriptor is supplied, and the Refresh resource action is called on

this microsensor resource.
A Refresh resource action updates the signature value of all IBM.MicroSensor resources that use the
passed module.

The format of the usf_attribute structure is:
typedef struct usf_attribute
{

rmc_attribute_id_t attribute_id;
ct_data_type_t data_type;
ct_value_t value;

} usf_attribute_t;

The structure fields of the usf_attribute_t datatype are set as follows:
v The microsensor resource manager sets the attribute_id field to the ID of the custom dynamic attribute

value that is being requested.

280 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

v The microsensor resource manager sets the data_type field to the datatype of the custom dynamic
attribute value that is being requested. The valid values are: USF_DATTR_FLOAT32_ID,
USF_DATTR_FLOAT32_ARRAY_ID, USF_DATTR_FLOAT64_ID,
USF_DATTR_FLOAT64_ARRAY_ID, USF_DATTR_INT32_ID, USF_DATTR_INT32_ARRAY_ID,
USF_DATTR_INT64_ID, USF_DATTR_INT64_ARRAY_ID, USF_DATTR_QUANTUM_ID,
USF_DATTR_STRING_ID, USF_DATTR_STRING_ARRAY_ID, USF_DATTR_UINT32_ID,
USF_DATTR_UINT32_ARRAY_ID, USF_DATTR_UINT64_ID, and
USF_DATTR_UINT64_ARRAY_ID.

v The microsensor sets the value field to the ct_value of the custom dynamic attribute value that is being
requested.

If the datatype of the attribute is scalar, the value is placed directly in the memory addressed by the value
field. Otherwise, the memory that contains the aggregate type (array, binary, string, or structured data)
must be allocated and set by the subroutine and a pointer to the aggregate type placed in the memory
addressed by the value field. The microsensor resource manager will eventually free such allocated
memory.

If a specified dynamic attribute's datatype is USF_DATTR_QUANTUM_ID, the val_int32 field of the
value field is set to a non-zero value to assert the attribute's Quantum variable type. If the field is set to 0,
the attribute's Quantum variable type is not asserted, that is, no event is generated.
Related reference:
“usf_get_custom_dattr_info” on page 278
Gets information about the custom dynamic attributes of a microsensor.
“usf_start_custom_dattr” on page 282
Acquires a custom dynamic attribute value from the microsensor instance.
“usf_stop_custom_dattr” on page 284
Stops acquiring custom dynamic attribute values from the microsensor instance.

usf_get_standard_dattr_values
Passes standard dynamic attribute values to the microsensor resource manager.

Syntax

#include <rsct/ct_microsensor.h>

cu_error_t*
usf_get_standard_dattr_values(

void *anchor_p,
ct_uint32_t num_values,
usf_attribute_t values[]

);

Parameters

Input

anchor_p
is the anchor pointer for the microsensor instance.

num_values
is the number of elements in the values[] array.

Input/Output

values[]
is an array of usf_attribute structures.

Programming RMC 281

Description

Called by: the microsensor resource manager

The usf_get_standard_dattr_values subroutine is used to pass standard dynamic attribute values to the
microsensor resource manager. The microsensor resource manager calls this subroutine to obtain standard
dynamic attribute values from the microsensor instance.

This subroutine is called under one of the following conditions:
v The refresh interval is not 0 and the interval time has elapsed.
v The refresh interval is 0, a non-negative file descriptor has been supplied by this microsensor and the

descriptor is ready for read.
v The refresh interval is 0, no file descriptor is supplied, and the Refresh resource action is called on this

microsensor resource.
A Refresh resource action updates the signature value of all IBM.MicroSensor resources that use the
passed module.

The format of the usf_attribute structure is:
typedef struct usf_attribute
{

rmc_attribute_id_t attribute_id;
ct_data_type_t data_type;
ct_value_t value;

} usf_attribute_t;

The structure fields of the usf_attribute_t datatype are set as follows:
v The microsensor resource manager sets the attribute_id field to the ID of the standard dynamic attribute

value that is being requested.
v The microsensor resource manager sets the data_type field to the datatype of the standard dynamic

attribute value that is being requested. The valid values are: USF_DATTR_FLOAT32_ID,
USF_DATTR_FLOAT32_ARRAY_ID, USF_DATTR_FLOAT64_ID,
USF_DATTR_FLOAT64_ARRAY_ID, USF_DATTR_INT32_ID, USF_DATTR_INT32_ARRAY_ID,
USF_DATTR_INT64_ID, USF_DATTR_INT64_ARRAY_ID, USF_DATTR_QUANTUM_ID,
USF_DATTR_STRING_ID, USF_DATTR_STRING_ARRAY_ID, USF_DATTR_UINT32_ID,
USF_DATTR_UINT32_ARRAY_ID, USF_DATTR_UINT64_ID, and
USF_DATTR_UINT64_ARRAY_ID.

v The microsensor sets the value field to the ct_value of the standard dynamic attribute value that is being
requested.

If the datatype of the attribute is scalar, the value is placed directly in the memory addressed by the value
field. Otherwise, the memory that contains the aggregate type (a string), must be allocated and set by the
microsensor and a pointer to the aggregate type placed in the memory addressed by the value field. The
microsensor resource manager will eventually free such allocated memory.

If a specified dynamic attribute's datatype is USF_DATTR_QUANTUM_ID, the val_int32 field of the
value field is set to a non-zero value to assert the attribute's Quantum variable type. If the field is set to 0,
the attribute's Quantum variable type is not asserted, that is, no event is generated.

usf_start_custom_dattr
Acquires a custom dynamic attribute value from the microsensor instance.

Syntax

#include <rsct/ct_microsensor.h>

282 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

cu_error_t*
usf_start_custom_dattr(

void *anchor_p,
ct_uint32_t dattr_ID,
int *fd_p

);

Parameters

Input

anchor_p
is the anchor pointer for the microsensor instance.

dattr_ID
is the internal attribute ID of the custom dynamic attribute for which the microsensor resource
manager will be acquiring values.

Output

fd_p is a pointer to a memory location in which the microsensor optionally returns a file descriptor.

Description

Called by: the microsensor resource manager

The usf_start_custom_dattr subroutine is called by the microsensor resource manager to indicate that it
will acquire a custom dynamic attribute value from the microsensor instance. It is called only in the case
where the microSensor specifies it supports at least one custom dynamic attribute.

Microsensors use this subroutine to allocate any resources necessary to supply the attribute value - for
allocation of memory, opening a file, or creating a socket, for example.

Typically, the microsensor resource manager calls the microsensor at some regular interval to fetch the
value of a monitored dynamic attribute. If this subroutine returns a non-negative value at the location
specified by the fd_p parameter, the microsensor resource manager interprets this value as a descriptor to
be used in a poll() or select() system call.

When the descriptor is ready for read, the microsensor resource manager calls the microsensor to fetch
the value of the attribute specified by the dattr_ID parameter. It is assumed that the descriptor is suitable
for use in poll() or select() system calls, that is, it represents a socket or special device file. The same
descriptor can be returned in other calls to the usf_start_custom_dattr subroutine or the
usf_start_standard_dattr subroutine. The microsensor resource manager keeps track of how many times
the same descriptor is returned.
Related concepts:
“Instructing microsensors to start or stop fetching dynamic attribute values” on page 272
The microsensor API includes subroutines for instructing microsensors to start and stop fetching standard
and custom dynamic attribute values.
Related reference:
“usf_get_custom_dattr_values” on page 280
Passes custom dynamic attribute values to the microsensor resource manager.
“usf_stop_custom_dattr” on page 284
Stops acquiring custom dynamic attribute values from the microsensor instance.

usf_start_standard_dattr
Instructs the microsensor to start fetching dynamic attribute values from the microsensor instance.

Programming RMC 283

Syntax

#include <rsct/ct_microsensor.h>

cu_error_t*
usf_start_standard_dattr(

void *anchor_p,
ct_int32_t dattr_ID,
int *fd_p

);

Parameters

Input

anchor_p
is the anchor pointer for the microsensor instance.

dattr_ID
is a bitfield that contains the attribute ID of the standard dynamic attribute for which the
resource manager will be acquiring values.

Output

fd_p is a pointer to a memory location in which the microsensor optionally returns a file descriptor.

Description

Called by: the microsensor resource manager

The usf_start_standard_dattr subroutine is used to notify the microsensor to start fetching dynamic
attribute values from the microsensor instance. The microsensor uses this subroutine to allocate any
resources necessary to supply the attribute values for allocation of memory, opening a file, create a
socket, for example.

Typically, the microsensor resource manager calls the microsensor at some regular interval to fetch the
value of a monitored dynamic attribute. If this subroutine returns a non-negative value at the location
specified by the fd_p parameter, the microsensor resource manager interprets this value as a descriptor to
be used in a poll() or select() system call.

When the descriptor is ready for read, the microsensor resource manager calls the microsensor to fetch
the value of the attribute specified by the dattr_ID parameter. It is assumed that the descriptor is suitable
for use in poll() or select() system calls, that is, it represents a socket or special device file. The same
descriptor can be returned in other calls to the usf_start_custom_dattr subroutine or the
usf_start_standard_dattr subroutine. The microsensor resource manager tracks how many times the same
descriptor is returned.

If this function returns an error, the microsensor will be rendered unusable.
Related concepts:
“Instructing microsensors to start or stop fetching dynamic attribute values” on page 272
The microsensor API includes subroutines for instructing microsensors to start and stop fetching standard
and custom dynamic attribute values.

usf_stop_custom_dattr
Stops acquiring custom dynamic attribute values from the microsensor instance.

284 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Syntax

#include <rsct/ct_microsensor.h>

cu_error_t*
usf_stop_custom_dattr(

void *anchor_p,
ct_int32_t dattr_ID

);

Parameters

Input

anchor_p
is the anchor pointer for the microsensor instance.

dattr_ID
is the internal attribute ID of the custom dynamic attribute for which the microsensor resource
manager will no longer be acquiring values.

Description

Called by: the microsensor resource manager

The usf_stop_custom_dattr subroutine is called by the microsensor resource manager to indicate that it
will no longer be acquiring a custom dynamic attribute value from the microsensor instance. It is called
only in the case where the microsensor specifies that it supports at least one custom dynamic attribute.

The microsensor uses this subroutine to free any resources obtained by the call to the
usf_start_custom_dattr function.

Any descriptor returned for the specified attribute is no longer used in a poll() or select() system call by
the microsensor resource manager, unless the descriptor is referenced by other dynamic attributes still
being monitored.
Related concepts:
“Instructing microsensors to start or stop fetching dynamic attribute values” on page 272
The microsensor API includes subroutines for instructing microsensors to start and stop fetching standard
and custom dynamic attribute values.
Related reference:
“usf_get_custom_dattr_values” on page 280
Passes custom dynamic attribute values to the microsensor resource manager.
“usf_start_custom_dattr” on page 282
Acquires a custom dynamic attribute value from the microsensor instance.

usf_stop_standard_dattr
Instructs the microsensor to stop fetching standard dynamic attribute values from the microsensor
instance.

Syntax

#include <rsct/ct_microsensor.h>

cu_error_t*
usf_stop_standard_dattr(

void *anchor_p,
ct_int32_t dattr_ID,

);

Programming RMC 285

Parameters

Input

anchor_p
is the anchor pointer for the microsensor instance.

dattr_ID
is a bitfield that contains the attribute ID of the standard dynamic attribute for which the
resource manager will be acquiring values.

Description

Called by: the microsensor resource manager

The usf_stop_standard_dattr subroutine is used to indicate that the microsensor resource manager will
no longer fetch standard dynamic attribute values from the microsensor instance.

The microsensor uses this subroutine to free any resources obtained by the call to the
usf_start_standard_dattr subroutine.

Any descriptor returned for the specified attribute is no longer used in a poll() or select() system call by
the microsensor resource manager, unless the descriptor is referenced by other dynamic attributes still
being monitored.

If this subroutine returns an error, the microsensor will be rendered unusable.
Related concepts:
“Instructing microsensors to start or stop fetching dynamic attribute values” on page 272
The microsensor API includes subroutines for instructing microsensors to start and stop fetching standard
and custom dynamic attribute values.

Microsensor API data types
The microsensor API uses a number of data types, which are summarized in the following table.

The following table lists the data types that are associated with the microsensor API.

Table 38. Microsensor API data types

Data type Description For more information, see:

ct_data_type_t An enumeration used to identify the data types, or
pointers to data types, of values that are used by the
microsensor API.

“RMC API data types for values,
resources, and resource attributes”
on page 238

ct_int32_t Specifies a scalar value of type int32_t. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_uint32_t Specifies a scalar value of type uint32_t. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_uint64_t Specifies a scalar value of type uint64_t. “RMC API data types for values,
resources, and resource attributes”
on page 238

ct_value_t A union used to return resource attribute values. “RMC API data types for values,
resources, and resource attributes”
on page 238

cu_error_t A structure pointer for subroutines that handle cluster
software error information in a common manner.

“Obtaining error information
returned by the microsensor API
subroutines” on page 276

286 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Table 38. Microsensor API data types (continued)

Data type Description For more information, see:

rmc_attribute_id_t A data type for attribute IDs. “RMC API data types for values,
resources, and resource attributes”
on page 238

usf_attribute_t Specifies basic information about resource attributes. “usf_get_custom_dattr_values” on
page 280,
“usf_get_standard_dattr_values” on
page 281

usf_control_data_t Specifies basic information about microsensors. “usf_get_control_data” on page 277

usf_custom_dattr_info_t Specifies basic information about custom dynamic
attributes.

“usf_get_custom_dattr_info” on
page 278

Programming RMC 287

288 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this

© Copyright IBM Corp. 2012, 2014 289

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Dept. LRAS/Bldg. 903
11501 Burnet Road
Austin, TX 78758-3400
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

290 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Privacy policy considerations
IBM® Software products, including software as a service solutions, (“Software Offerings”) may use
cookies or other technologies to collect product usage information, to help improve the end user
experience, to tailor interactions with the end user or for other purposes. In many cases no personally
identifiable information is collected by the Software Offerings. Some of our Software Offerings can help
enable you to collect personally identifiable information. If this Software Offering uses cookies to collect
personally identifiable information, specific information about this offering’s use of cookies is set forth
below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at
http://www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other
Technologies” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Windows is a trademark of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 291

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

292 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

Index

A
action

invoking resource action 78
invoking resource class action 82
querying definition of 97

audience 1

B
base data types, supported 20
blanks, use of in expressions 22

C
callback response

illustrations of 9
callback resposne 5
command group

allocating 204
cancelling 41
described 3
ordered 5
sending to RMC subsystem 188, 191
starting 204

D
data definitions 231
data types

microsensor API 286
data types used for literal values 20
data types, base 20
data types, structured 20
datatypes 232
descriptor

freeing 74
obtaining 76

dynamic attributes
querying definition of 102
querying for a resource class 42
querying value of 133, 138

E
errors

getting additional information for 264
listing of 243
overview 29

event
overview of event registration 13
querying current state of 143
registering for a resource 168, 176
registering for a resource class 160
unregistering 223

event expressions 13
event notification structure

freeing 75
event registration overview 13

expressions
pattern matching supported in 26

expressions, operators for 22

M
mc_cancel_cmd_grp subroutine 41
mc_class_query_d_* subroutines 42
mc_class_query_p_* subroutines 47
mc_class_set_* subroutines 53
mc_define_resource_* subroutines 58
mc_dispatch subroutine 62
mc_end_session subroutine 64
mc_enumerate_permitted_rsrcs_* subroutines 65
mc_enumerate_resources_* subroutines 70
mc_free_descriptor subroutine 74
mc_free_response subroutine 75
mc_get_descriptor subroutine 76
mc_invoke_action_* subroutines 78
mc_invoke_class_action_* subroutines 82
mc_offline_* subroutines 88
mc_online_* subroutines 92
mc_qdef_actions_* subroutines 97
mc_qdef_d_attribute_* subroutines 102
mc_qdef_p_attribute_* subroutines 108
mc_qdef_resource_class_* subroutines 114
mc_qdef_sd_* subroutines 120
mc_qdef_valid_values_* subroutines 126
mc_query_d_handle_* subroutines 133
mc_query_d_select_* subroutines 138
mc_query_event_* subroutines 143
mc_query_p_handle_* subroutines 147
mc_query_p_select_* subroutines 152
mc_refresh_config_* subroutines 156
mc_reg_class_event_* subroutines 160
mc_reg_event_handle_* subroutines 168
mc_reg_event_select_* subroutines 176
mc_reset_* subroutines 184
mc_send_cmd_grp subroutine 188
mc_send_cmd_grp_wait subroutine 191
mc_session_info subroutine 193
mc_set_handle_* subroutines 194
mc_set_select_* subroutines 199
mc_start_cmd_grp subroutine 204
mc_start_session subroutine 206
mc_timed_start_session subroutine 212
mc_undefine_resource_* subroutines 219
mc_unreg_event_* subroutines 223
mc_validate_rsrc_hndl_* subroutines 227
microsensor API

data types 286

O
operator precedence 22
operators available for use in expressions 22
ordered command group 5

© Copyright IBM Corp. 2012, 2014 293

P
pattern matching supported in expressions 26
persistent attributes

querying definition of 108
querying for a resource class 47
querying value of 147, 152
setting for a resource class 53
setting value of 194

pointer response 5
illustrations of 6

precedence of operators 22
prerequisite knowledge 1

R
resource

bringing online 92
defining 58
enumeration 65, 70
forcing offline 184
invoking action on 78
querying dynamic attribute values of 133, 138
querying persistent attribute values of 147, 152
refreshing configuration of 156
removing 219
setting persistent attribute values of 194, 199
taking offline 88

resource class
enumerating resources of 65, 70
invoking action on 82
querying definition of 114
querying dynamic attribute values of 42
querying persistent attribute values of 47
setting persistent attributes of 53

resource handle, validating 227
response structure

freeing 75
responses 5
RMC API datatypes 232

S
session

ending 64
information 193
overview 2
starting 206, 212

structured data types 20
structured data, querying definition of 120
subroutines

mc_cancel_cmd_grp 41
mc_class_query_d_* 42
mc_class_query_p_* 47
mc_class_set_* 53
mc_define_resource_* 58
mc_dispatch 62
mc_end_session 64
mc_enumerate_permitted_rsrcs_* 65
mc_enumerate_resources_* 70
mc_free_descriptor 74
mc_free_response 75
mc_get_descriptor 76
mc_invoke_action_* 78
mc_invoke_class_action_* 82
mc_offline_* 88
mc_online_* 92

subroutines (continued)
mc_qdef_actions_* 97
mc_qdef_d_attribute_* 102
mc_qdef_p_attribute_* 108
mc_qdef_resource_class_* 114
mc_qdef_sd_* 120
mc_qdef_valid_values_* 126
mc_query_d_handle_* 133
mc_query_d_select_* 138
mc_query_event_* 143
mc_query_p_handle_* 147
mc_query_p_select_* 152
mc_refresh_config_* 156
mc_reg_class_event_* 160
mc_reg_event_handle_* 168
mc_reg_event_select_* 176
mc_reset_* 184
mc_send_cmd_grp 188
mc_send_cmd_grp_wait 191
mc_session_info 193
mc_set_handle_* 194
mc_set_select_* 199
mc_start_cmd_grp 204
mc_start_session 206
mc_timed_start_session 212
mc_undefine_resource_* 219
mc_unreg_event_* 223
mc_validate_rsrc_hndl_* 227

T
threads

providing to RMC API 15, 62

V
valid values, querying definition of 126
variable names 22
variable names, restrictions for 22

294 Reliable Scalable Cluster Technology Version 3.1.5.0: Programming RMC for RSCT

����

Printed in USA

	Contents
	About this document
	Highlighting
	Entering commands
	Case sensitivity in AIX
	ISO 9000
	RSCT versions
	Related information

	Programming RMC for RSCT
	What's new in Programming RMC for RSCT
	RMC API concepts
	Understanding the RMC API
	RMC subsystem session
	RMC API base programming model
	Targeting resources for a command
	Data types and operators supported in expressions
	Notifying the application of errors

	RMC API subroutine overview
	Session interfaces
	Command management interfaces
	Monitoring command interfaces
	Configuration command interfaces
	Control command interfaces

	RMC API reference
	RMC API subroutines
	mc_cancel_cmd_grp
	mc_class_query_d_*
	mc_class_query_p_*
	mc_class_set_*
	mc_define_resource_*
	mc_dispatch
	mc_end_session
	mc_enumerate_permitted_rsrcs_*
	mc_enumerate_resources_*
	mc_free_descriptor
	mc_free_response
	mc_get_descriptor
	mc_invoke_action_*
	mc_invoke_class_action_*
	mc_offline_*
	mc_online_*
	mc_qdef_actions_*
	mc_qdef_d_attribute_*
	mc_qdef_p_attribute_*
	mc_qdef_resource_class_*
	mc_qdef_sd_*
	mc_qdef_valid_values_*
	mc_query_d_handle_*
	mc_query_d_select_*
	mc_query_event_*
	mc_query_p_handle_*
	mc_query_p_select_*
	mc_refresh_config_*
	mc_reg_class_event_*
	mc_reg_event_handle_*
	mc_reg_event_select_*
	mc_reset_*
	mc_send_cmd_grp
	mc_send_cmd_grp_wait
	mc_session_info
	mc_set_handle_*
	mc_set_select_*
	mc_start_cmd_grp
	mc_start_session
	mc_timed_start_session
	mc_undefine_resource_*
	mc_unreg_event_*
	mc_validate_rsrc_hndl_*

	RMC API data definitions
	RMC API macro definitions
	RMC API datatypes

	RMC API error codes and return values
	RMC API errors
	Response and event structure error codes

	Cluster utilities: error-related subroutines
	cu_get_errmsg
	cu_get_error
	cu_pkg_error, cu_vpkg_error
	cu_rel_errmsg
	cu_rel_error

	Microsensor API concepts
	Comparing sensors and microsensors
	Specifying the attributes that microsensors support
	Instructing microsensors to start or stop fetching dynamic attribute values
	Passing dynamic attribute values and other information to the microsensor resource manager
	Releasing a microsensor instance
	Writing safe microsensors
	Multi-threading tolerance
	Well-behaved microsensors
	Secure microsensors

	Microsensor certification process
	Reviewing and assessing a microsensor
	Certifying a microsensor

	Obtaining error information returned by the microsensor API subroutines

	Microsensor API reference
	Microsensor API subroutines
	usf_fini
	usf_get_control_data
	usf_get_custom_dattr_info
	usf_get_custom_dattr_values
	usf_get_standard_dattr_values
	usf_start_custom_dattr
	usf_start_standard_dattr
	usf_stop_custom_dattr
	usf_stop_standard_dattr

	Microsensor API data types

	Notices
	Privacy policy considerations
	Trademarks

	Index
	A
	B
	C
	D
	E
	M
	O
	P
	R
	S
	T
	V

