IBM Systems Lab Services Infrastructure expertise to help you build the foundation of a smart enterprise

Lab Services Tools

Turgut Genc - Senior Consultant IBM Systems Lab Services, EMEA Geo leader: Power Enterprise Pools – Lab Services tools – Migration and Performance workshops.

E-mail Twitter Slack

- : <u>TurgutGenc@uk.ibm.com</u>
- : @turgutge
- : @TurgutGenc

ibm.biz/IBMLabServices ibmsls@us.ibm.com

Agenda

Who are we? Lab Services Tools overview Lab Services Tools in details Demonstrations

- Demo 1: LPM & SRR Automation Toolkit
- Demo 2: PowerDraw
- Demo 3: Capacity on Demand Dashboard

Questions

2

IBM Systems Lab Services Organization

IBM Systems Lab Services has the infrastructure expertise to help you build the foundation of a smart enterprise.

From servers and mainframes to storage systems and software, Lab Services helps you deploy the building blocks of a next-generation IT infrastructure that empowers your business.

We accelerate adoption of systems and storage with infrastructure services for 8,000+ clients worldwide annually.

Lab Services also promotes best practices and shares experience with clients and ecosystem partners via IBM TechU events.

IBM Systems Lab Services Consultants

Our Lab Services consultants perform infrastructure services for clients on site, offering deep technical expertise, valuable tools and successful methodologies.

Our services are designed to help clients solve business challenges, gain new skills and apply best practices.

Lab Services offers a wide range of infrastructure services for:

- IBM Power Systems and Cognitive •
- IBM Z and IBM LinuxONE \bullet
- IBM Storage and Software Defined Infrastructure

Lab Services has a global presence and can deploy experienced consultants around the world.

Lab Services Tools

Lab Services Tools Overview

Who

IBM Systems Lab Services consultants develop these tools.

Why

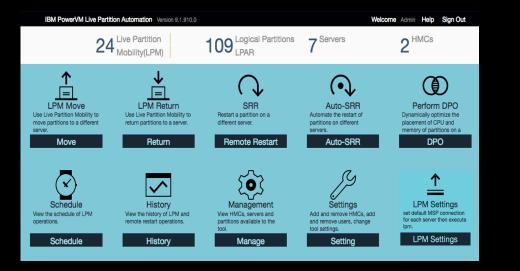
We address clients' needs while simplifying and automating the process with a tool

While providing enhancements to existing capabilities

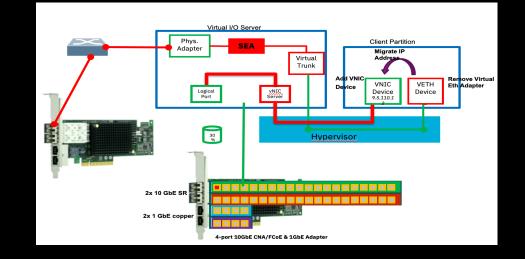
 Useful for Migration, Maintenance, Monitoring and Documentation purposes

How

 We only deliver these tools with a client engagement.


Most of the tools are "free with an engagement"

> => Exception:LPM & SRR Automation Toolkit require purchase of an Enterprise License.


Delivery engagement
can be covered via
Power to Cloud
Rewards program,
direct contract, etc.

=> Work with our Opportunity Managers in your location

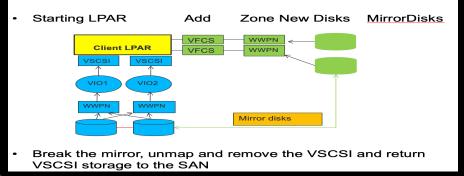
Lab Services Tools: Migration

Image: Comparison of the system of the sy

LPM & SRR Automation Tool v9

Design, automate and accelerate mobility operations for maintenance, migration and outages

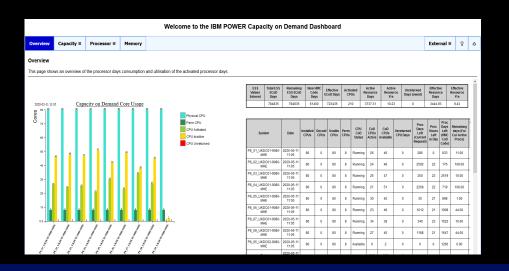
PowerVM Provisioning Toolkit v8


Provision bare metal systems, capture/build from existing systems, orchestrate LPAR Migrations and decommissioning

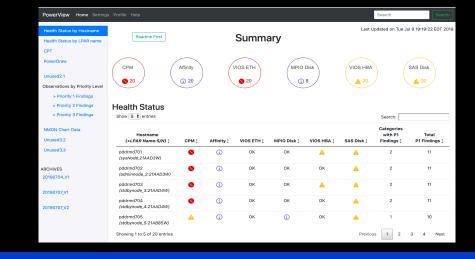
SR-IOV Migration Tool

An assistance tool for live-migration from virtual Ethernet to SR-IOV devices

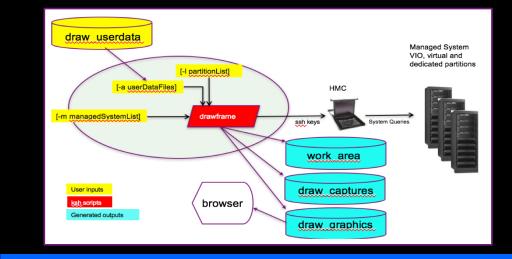
Conversion process


- Create the VFC adapters and vfcmaps.
- Create and zone duplicate storage to the new VFC's WWPN's.
- Mirror with the LVM and sync the Mirror.

VSCSI-to-NPIV Migration Tool


Convert a VSCSI partition to NPIV with no downtime

Lab Services Tools: Monitoring


Capacity on Demand Dashboard

Monitoring CoD utilisation data to provide insight on Capacity usage, burn rate for each system, and a comparison of resource assignments

PowerView

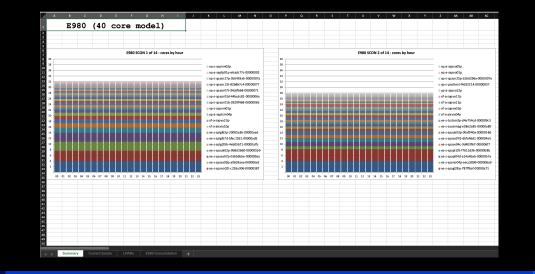
An automated health check assessment toolset, AIX support staff could deploy for ongoing systems compliance validation

Gather and display key configuration information of systems. Ability to perform problem determination using a graphical approach

Common user: promon Centralized Monitoring Serve

PowerDraw

Proactive Monitoring w/ Promon


All systems tend toward chaos, keep environment tidy using this strategic monitoring tool

Lab Services Tools: Capacity Planning

Capacity Planning Tool								
			POWER SYSTEM	S SUMMARY				
bobfP8		EC	Ň	CPU	vc	PU/EC	D	elta
LPAR	Current	Proposed	Current	Proposed	Current	Proposed	EC	VCPU
aaron_client1	0.3	0.1	1	1	3.3	10.0	-0.2	0
aaron_client2	0.3	0.1	2	1	6.7	10.0	-0.2	-1
bb1vios1	4.0	0.8	4	2	1.0	2.5	-3.2	-2
bb1vios2	4.0	0.8	4	2	1.0	2.5	-3.2	-2
thanh_client01	0.3	0.1	2	1	6.7	10.0	-0.2	-1
thanh_client02	0.3	0.1	2	1	6.7	10.0	-0.2	-1
thanh_client03	0.3	0.1	2	1	6.7	10.0	-0.2	-1
thanh_client04	0.3	0.1	2	1	6.7	10.0	-0.2	-1
viren 1	0.2	0.8	2	2	10.0	2.5	0.6	0
TOTAL	10.0	3.0	21	12	2.1	4.0	-7.0	-9
						CORES available	3.2	

Capacity Planning Tool (CPT)

Use customer's utilization data and suggests right-sizing partitions' CPU

CPT-SCONN

Server Consolidation – Correct sizing for migration from one Power platform to another using rPerf scaling

CPT-MCM

Metered Capacity Modeling - Pools 2.0 Value Assessment Tool. Find the optimal number of base licenses for Pools 2.0

co	re	F	r	00																																			
			ir	٥v	rti	h=		. 5	59																														
		te	t	ic		cc	re		5	50	96	9	(a	ic†		rat		ən			\$	1:	16	5.6	57		W	co	s		anr	u	al	ly	*3		ea		
er	ŧ	V	oi.	ca	1	P	EP	1.	ø	c (ore	0	c 1	09	6.5	te	t.	i c		9	Ø%		nok	i	le			\$6	86	20	6	IC!	H	va	ti	on	. .		1116.67 SW cost annually*3 year
	b	as	se		0	re		\$	86	986	3	(a	ct		/at	ic)		S	17	93	3.3	3	S	W		st		an	nuc		lγ	*3		ea	rs		
			2	40		86	Ε.	u	ti		i t	y	pr	i		pe		n	ni.	าน	te		\$6		32														
	+- 			3																																			
		16	90	%		ta		c		pe	ep:	1.	0	ty	/P					oa	se																		
	+	4	3		25	6	50	a -	+-	¢	3		65	6	50			t	1	2	84	- ;	180			¢	2				 07								
		\$,z	25	6,	50	0		\$,7	65	, e	550			\$	2	, z	34	Ç.	160			\$		63	0	,7	81		\$	2	, 8	65	,24	41	
																															09								
	+-								+-			-										1																	
																															51								
																															34								
																															86								
																															09								
		\$	3	,2	25	6,	50	0		\$,7	65	,ε	650			\$	2	, 6	76	, (906			\$		26	4	,7	71		\$	2	,9	40	,7	71	
		\$	3	,2	25	6,	50	0		\$,7	65	,€	650			\$	4	, 0	14	, (906			\$			2	, 9	30		\$	4	, e	16	, 9	30	

LPM and SRR Automation Toolkit v9

Live Partition Mobility (LPM)

Design for maintenance and migration

Build a LPM plan for a maintenance window with control over VIO, HBA mappings, etc.

Automate and accelerate mobility action

 Schedule automated LPM operations or quickly move one or many partitions to another server in as few as 4 clicks with an easy-to-use GUI

Rollback simply to original server

Return the partition/s back in a few as 4 clicks to the original server with the original HBA and Virtual slot ID mappings

Simplified Remote Restart (SRR)

Design for unplanned outages

Automate and accelerate mobility action

servers

Rollback simply to original server

Build a SRR plan ready to execute in the event of an unplanned outage

• Use a GUI to quickly SRR many or all the partitions to one or more destination

Once the outage has been resolved / repaired, move all the partitions back to the original server with just a few clicks 11

Supports Power7 and Power8 and Power9 servers Can be installed on AIX and Windows and Linux platforms. It is packaged as a zip file and contains all the code/packages needed to run. Only communicates to the HMCs in your environment via ssh issuing HMC CLI commands. There is no need for agents or access to the VIOS or client partitions.

Only takes minutes to install the tool and connect to the HMCs and start using the tool.

Move many partitions at a time and the tool remembers where they need to go back to

Customize partition moves to your environment without becoming an HMC Command Line expert

Go during

Plan your partitions moves days in advance and Click and maintenance window

Move partitions back to their original servers with previous as is configuration when needed.

Support for new LPM and SRR features

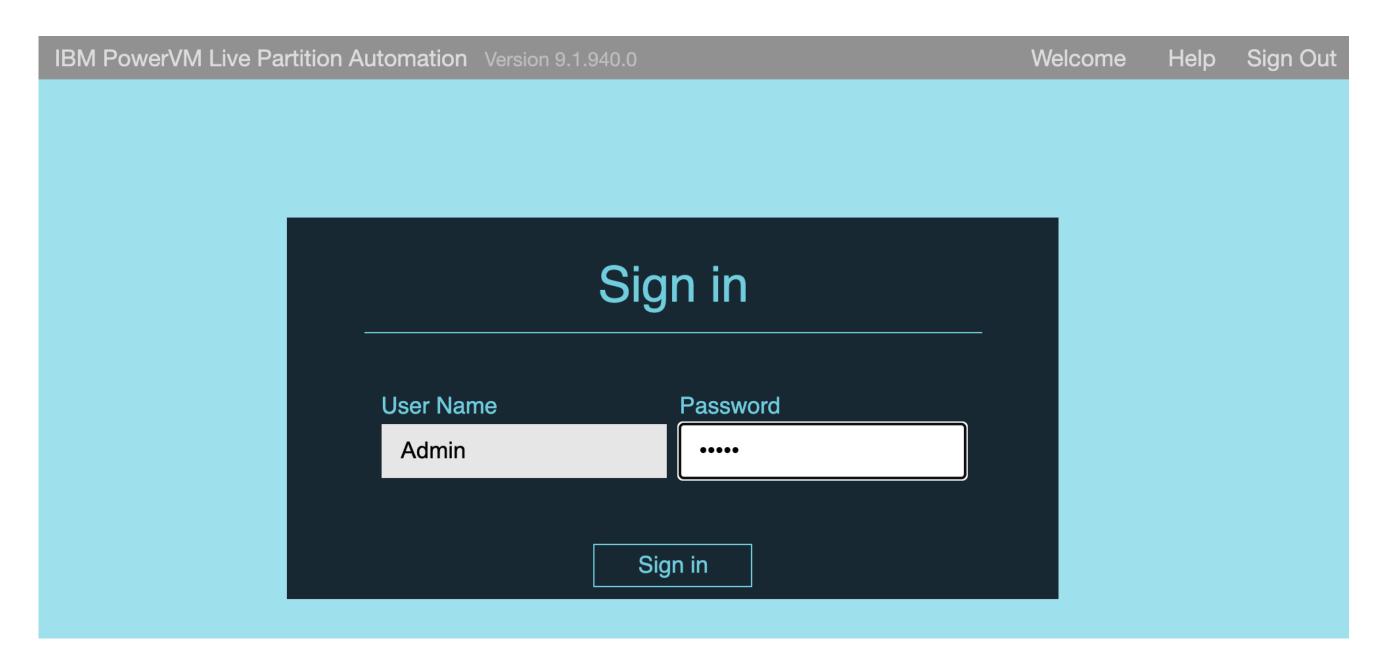
Provide GUI for SRR operations Automate SRR operations

Ability to roll back after a SRR operation

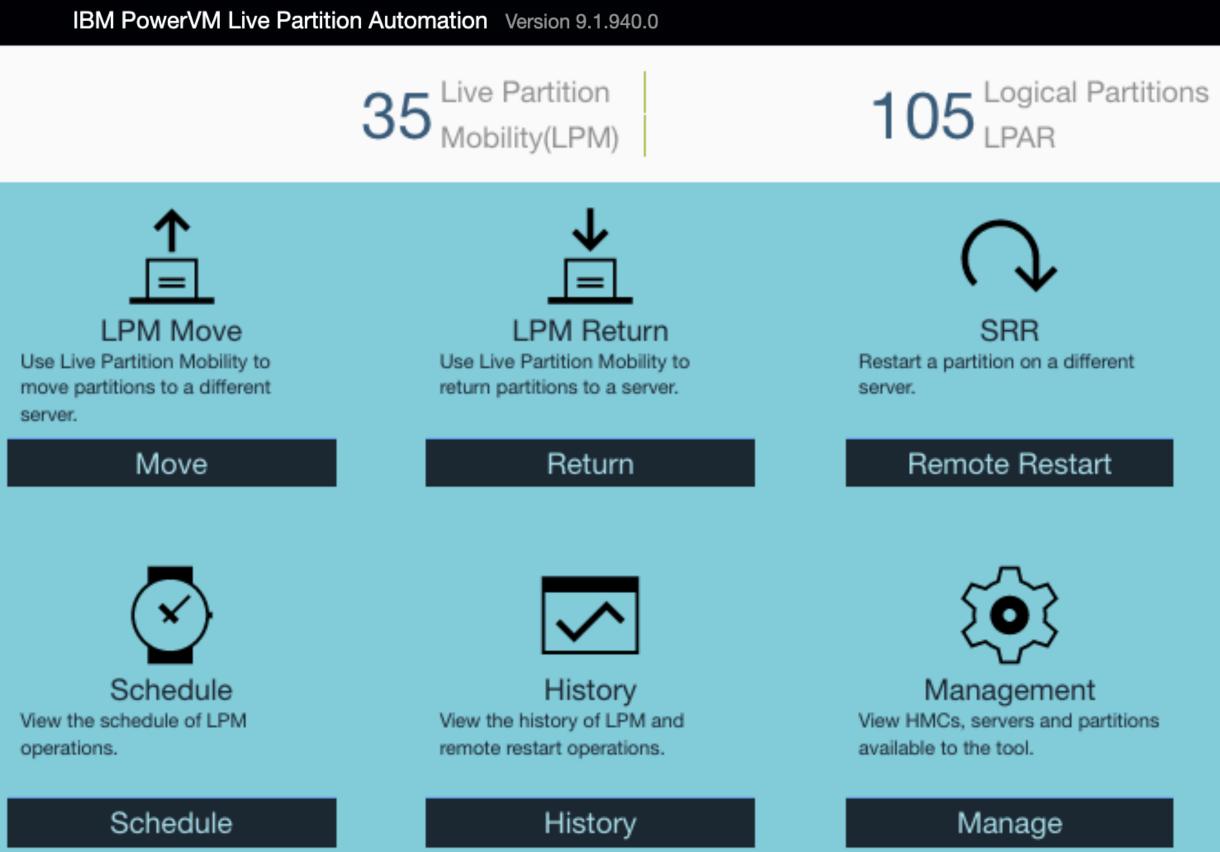
Support for LDAP Authentication

Ability to define default MSPs (VIOS and IP Address) per server

Ability to integrate operations with PEP 1.0


Ability for pre-LPM, post-LPM, pre-SRR and pos-SRR scripting

Using the tool – login to tool


Launch a browser and point to the server where the tool is installed

i.e. <u>https://<server where you installed the tool>:8443/lpm</u>

(make sure you use this complete syntax as some browsers don't like shortened URLs)

Home Screen – V9.9.940 release

Welcome Admin Help Sign Out

HMCs

Auto-SRR

Automate the restart of partitions on different servers.

Auto-SRR

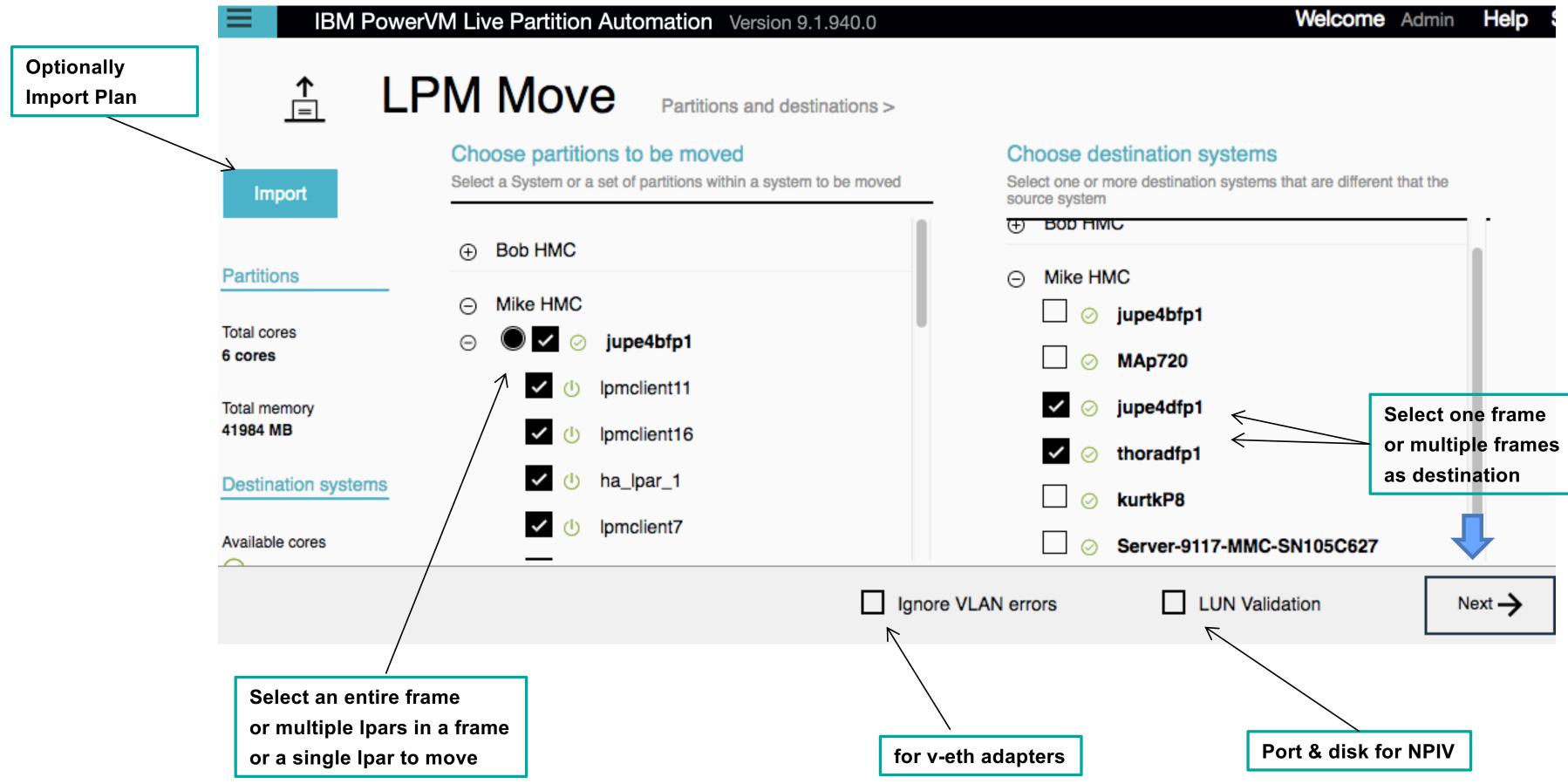
Perform DPO

Dynamically optimize the placement of CPU and memory of partitions on a server.

DPO

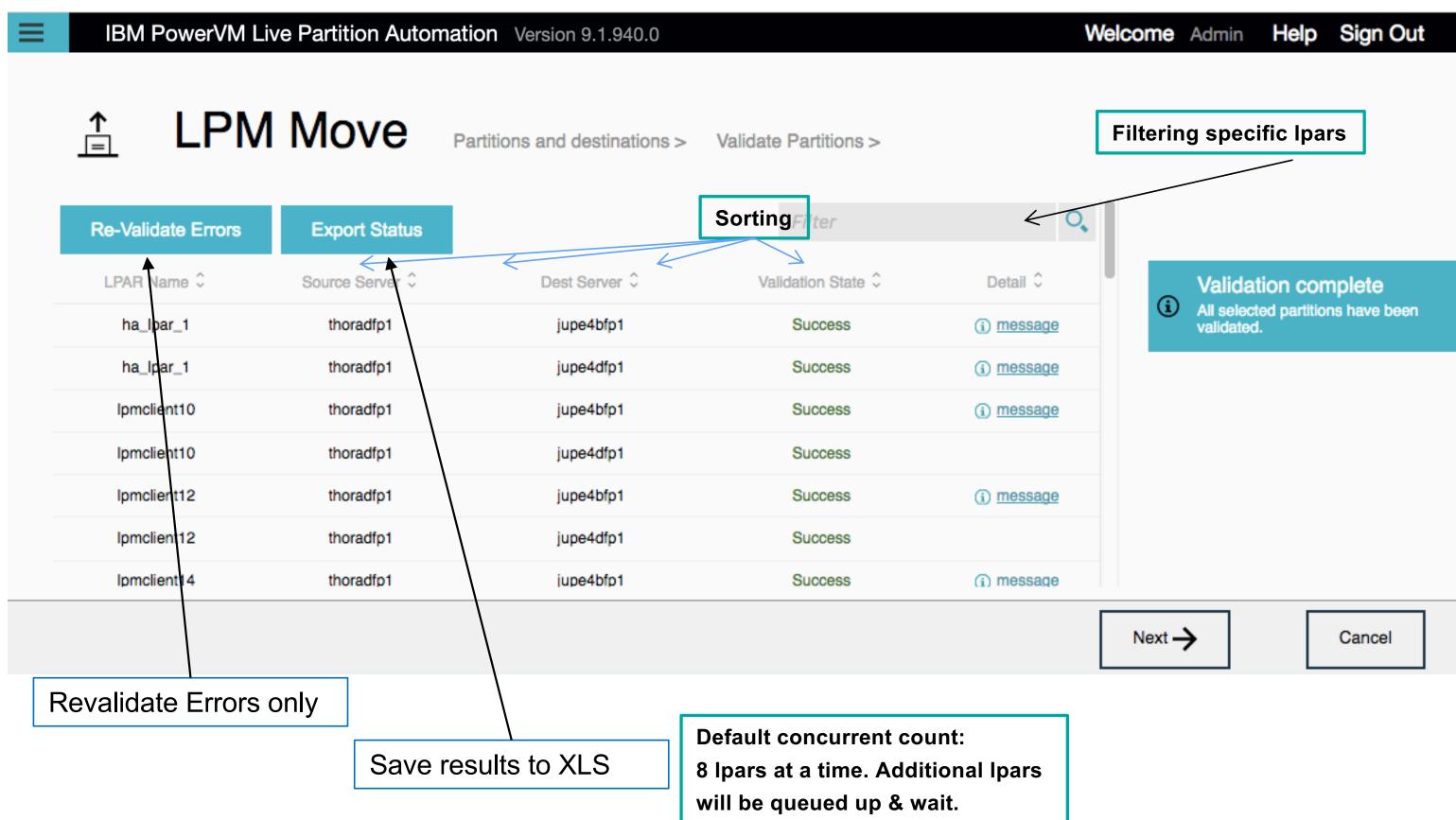
Settings Add and remove HMCs, add and remove users, change tool settings.

Setting

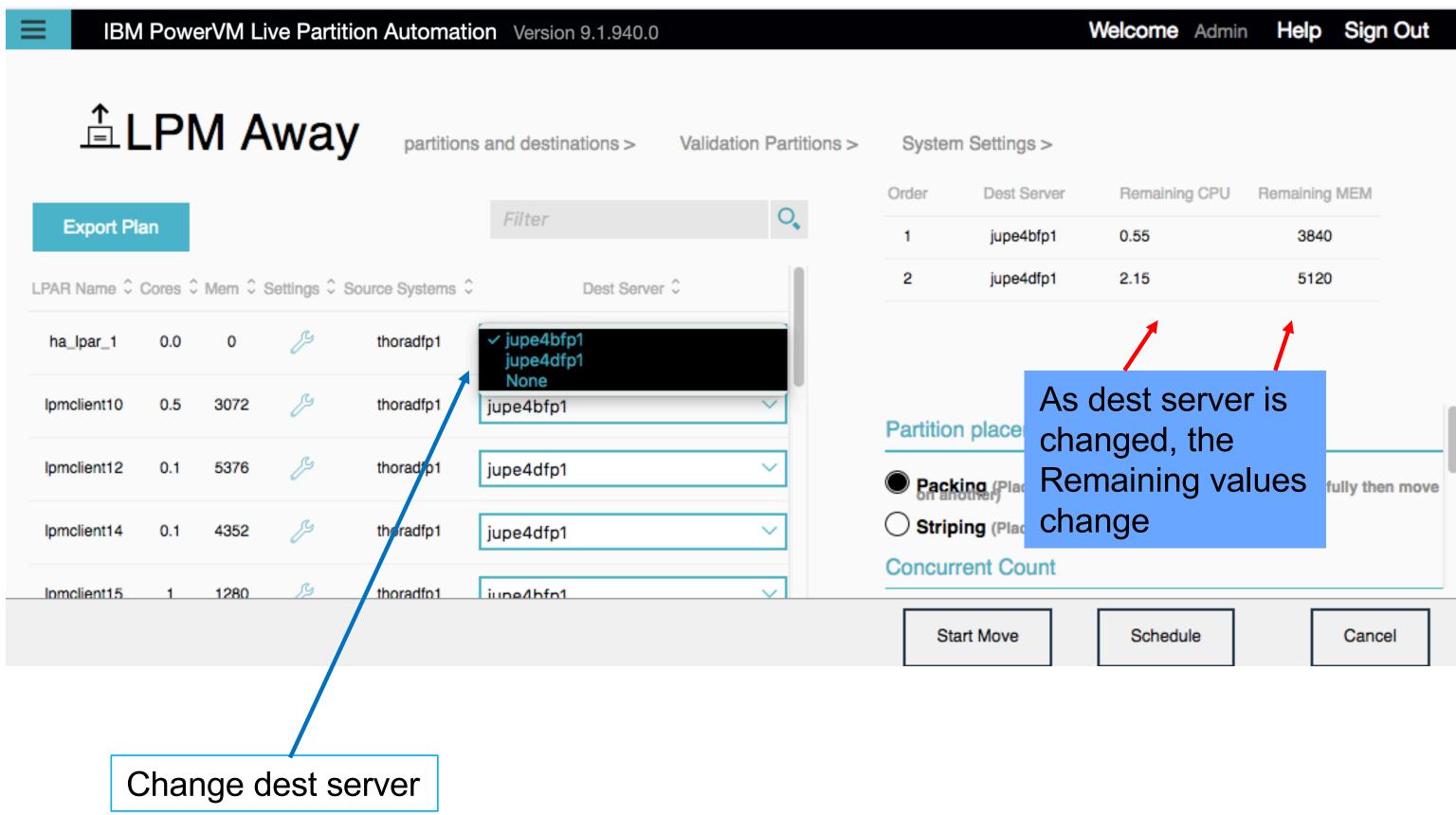


LPM Settings

set default MSP connection for each server then execute lpm.


LPM Settings

LPM Move: One Source & Multiple Destinations



LPM Validation In Progress

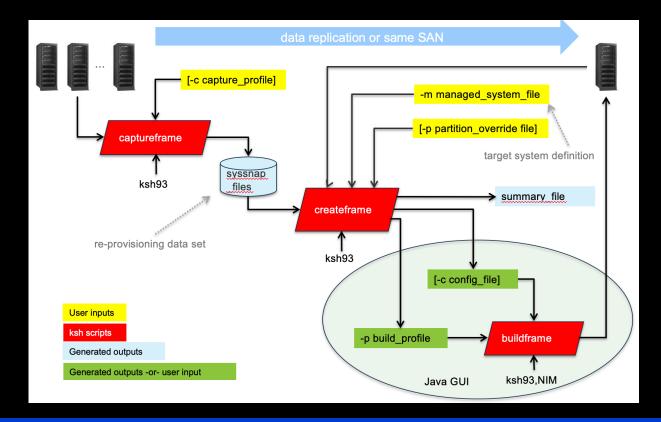
LPM Move – Placement

LPM Move – migration in progress

≡	IBM PowerV	M Live Partition	Automation Vers	ion 9.1.940.0				Welcome Admin	Help	Sign Out
	≟LPM	Away	partitions and des	tinations >	Validation Partition	ns > Sys	stem Settings >	Move Summary		
	Partition name \$	Mem ¢	Source Server \$	LPAR I	Dest Server \$	Remot	Move status \$	<i>Filter</i> Time Remaining ≎		Nove Progress \$
	ha_lpar_1	0	thoradfp1	7	jupe4dfp1	7	Success	0		100%
	lpmclient15	1280	thoradfp1	45	jupe4dfp1	45	Success	0	111	100%
	Ipmclient18	3072	thoradfp1	15	jupe4dfp1	15	227 seconds	2 seconds	- 111	85%
	lpmclient2	3072	thoradfp1	8	jupe4dfp1	8	227 seconds	71 seconds	1111	73%
	Ipmclient20	4352	thoradfp1	16	jupe4dfp1	4	Success	0	- 111	100%
	lpmclient5	3072	thoradfp1	30	jupe4dfp1	9	227 seconds	162 seconds	11	14%

Online Resources for the tool

Community website is ibm.biz/lpm_srr_tool

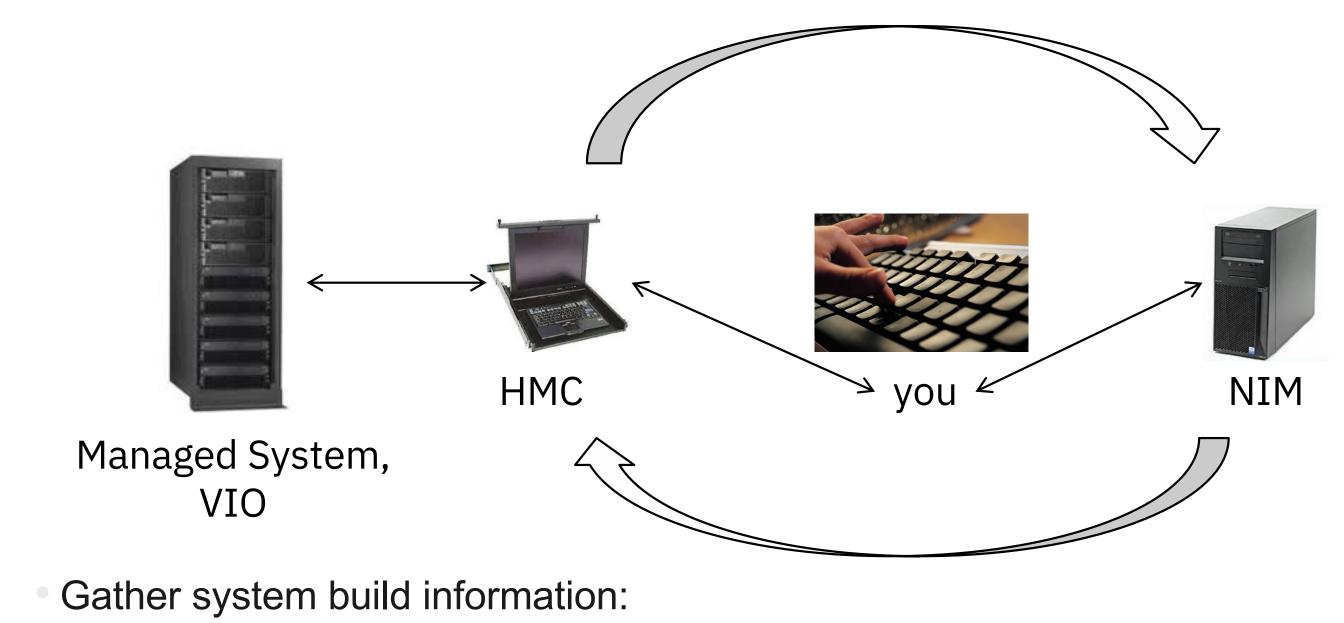

Videos are at ibm.biz/bobtube

PowerVM Provisioning Toolkit v8

PowerVM Provisioning Toolkit v8

Business Challenge

- Clients struggle with consistency in the build process when deploying VIO servers/clients.
- > Differences in configuration depend on who built the systems and when.
- Attempts to develop in-house scripts and automation struggle with adding new features and support


Solution

- The Advanced PowerVM Toolkit to accelerate the client's transition from Power6 \rightarrow Power7 \rightarrow Power8 \rightarrow Power9 across their infrastructure.
- Provide assessment, planning and on-site execution to implement the Toolkit and provisioning process based on client requirements.
- Work with customers to integrate Toolkit into their existing build process and automation

Key Benefits

- Reduced manual errors associated with current build process.
- Create a repeatable methodology for deploying new VIO servers and client LPARs on bare-metal servers.
- Capture entire configuration of an existing system and deploy the same design to other systems. Enabling consistency across datacenters

Manual PowerVM Provisioning Flow

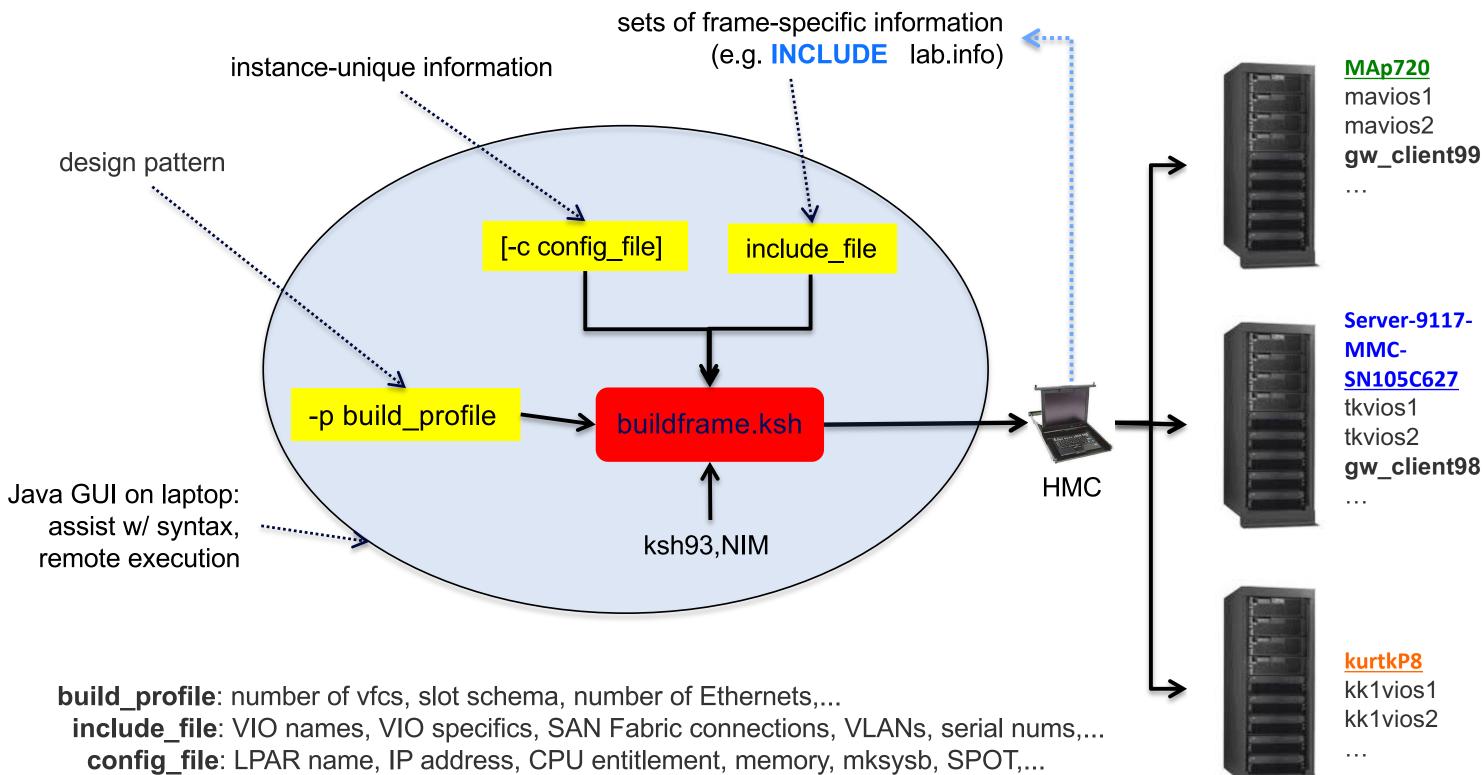
- HMC, managed system
- VIO and client names, IP addresses, VLANs, storage, CPU, memory, virtual switches, shared processor pools, SEA/network designs,...
- Repeat a series of *manual* interactions using that data:
 - HMC GUI or command line execution
 - NIM commands
 - **VIO** commands
- Consistency can be a struggle...

IBM Advanced PowerVM Toolkit v8 - Provisioning

buildframe.ksh

- The buildframe script is the original Provisioning Toolkit component dating back to v1 (circa. 2009) - Provisions VIO servers and clients from easy-to-create ASCII text design patterns ('build profiles',
- 'config_files', and 'include_files').
- Speeds and simplifies PowerVM provisioning and gives repeatable, consistent results every time. - Can be used stand-alone with user-generated, monolithic build profiles.
- With wrapper scripting and config_files/include_files, can be integrated further into any environment for automated, build-on-demand possibilities.

Toolkit 'GUI'/Editor


- Added to Toolkit in v2 timeframe (since 2012) to assist with build_profie language.
- Editor/syntax assistance for build_profile/config_file/include_file_inputs to buildframe.ksh.
- **KEYWORD** samples
- buildframe.ksh execution assistance work on files and provision right from your laptop!

Toolkit 'wiki'

- 'TiddlyWiki' v5 used for Toolkit documentation.
- Embedded graphics
- Searchable/browsable single file syntax and function reference for all Toolkit files and components.

IBM Advanced PowerVM Toolkit v6 - Provisioning

buildframe.ksh – virtual LPAR builds

./buildframe.ksh -p lab_LPAR.bp -i Server-9117-MMC-SN105C627 -f carve,vfcmap,wwpn -c gw_client98.cfg ./buildframe.ksh -p lab LPAR.bp -i MAp720,VSCSI -f build -c gw client99.cfg

buildframe.ksh – Two different modes, -f and -v

In **-f** (**frame** mode), buildframe.ksh creates frame-level objects:

- Partitions (VIOS or VIOC), vswitches, shared processor pools, virtual devices
- '-f build'
 - validate
 - spp, vswitch, hea, carve
 - vfcmap, wwpn
 - vscsimap, vscsimapssp, mkvg, vscsimaplv
 - nim
- 'Utility functions' •
 - *nportlogin, nportlogout, nportquery*
 - *delete, shutdown, activate*
 - add, netboot, drcarve, onlycarve, onlynim, cleannim
- In **-v** (**vio** mode), buildframe.ksh configures VIO servers:
- *'autoconfig'* uses same files as used for –f level creation of VIO LPARs.
- Build files added to lpar_netboot payload during `-f nim` execute automatically on VIO server from • /tmp via inittab following mksysb install (can be run manually).
- '-v build' •
 - *enattr, entattr, inetOattr, fcsattr, fscsiattr Set device attributes.*
 - *network* Create Etherchannels, SEAs, assign IP addresses.
 - *mirror* Initiate VIOS rootvg mirroring.
 - *validate* Optionally ping to specified gateway(s) from all VIOs IPs.

Use Case 1 – PowerVM VIO Provisioning

Typical Use Case 1 – VIO Server on a net-new frame

- Create VIO server build profile and process with buildframe.ksh:
- Frame-by-frame specifics can be input via config files or include files.
- Create virtual switches and/or shared processor pools as needed
- Carve VIO partitions and their virtual devices, assign physical I/O
- Ipar netboot VIOS LPARs from NIM
- Optional auto-configuration of VIO includes:
 - Device attributes (en, ent, hba, fcs, fscsi, inet0...)
 - Networks (Etherchannels, Shared Ethernet Adapters, physical Ports)
 - Optional mirror of rootvg
 - pre- and post- build hooks are provided for customer-specific post-build customization
- Upon completion, VIO servers are loaded, configured, running and ready for client LPARs either for LPM, other migration methods, or new LPAR workloads.
- All performed with a single command:

/buildframe.ksh -p lab_VIOS.bp -i Server-9117-MMC-SN105C627 -f build

build profile – KEYWORDS

VIO Server build profiles

• VIO* (both)

- <u>SEA</u> (VIO build profiles only)
- SEAATTR
- SEADEF
- **SEA***
- VIO Physical Networking (VIO only)
- PORT*
- ETHERCHANNEL*
- FILERESTORE*
- <u>Device Attributes</u> (VIO only)
- ENATTR -> EN*
- ENTATTR -> ENT*
- FCSATTR -> FCS*
- FSCSIATTR -> FSCSI*
- ECHATTR -> ETHERCHANNEL* # Etherchannel
- INETOATTR -> INETO*
- DISKATTR -> DISK*
- HBAATTR -> HBA*

• **ITM***

begins a VIO stanza where VIO servers and their owned

devices and networks are defined and configured

create SEA attribute set (e.g. large_receive=yes) # create common SEA design used by multiple VIOs # create a Shared Ethernet Adapter from an SEA design

Configure IP on a physical *or* virtual ethernet adapter # create an Etherchannel with optional backup (NIB) # save/restore TCP/IP files around network config

apply attributes to en devices

- # ent
- # fcs
- # fscsi
- # inet0 in ODM
- # VIO hdisk, and mirror disk attributes
- # configure HBA attributes for VIO

configure ITM VIO VA premium agent

Toolkit Ul/build profile editor

build_profile/config_file syntax assistance

					Sy				e				
Line 054: T	here is a	a problem	wi			/			~		A	dvanced P	owerVN
											build	_profile	inclu
Line 054: T	here is a	a problem	wi	File	Insert	DEFs	build	dframe	Edit	View	Themes	About	
				12				-					
ine 054: U	ndefined	VARIABLE	: ()	14	,								VI
				15 16	/10		h	ostname	=(VI01)	,profil	ename =defa	ault	
.ne 054: U	ndefined	VARIABLE	: (1	17	/FCGEN		m	apping=	<mark>10:</mark> auto	, <mark>11</mark> :aut	o ,partitic	ons= <mark>(LPAR</mark>	NAME),
				18 19	FDEF		M	Ap720					
e 054: U	ndefined	VARIABLE	: (20 21	# M/	Ap720 V	IO1 ha	s only a	a Fabri	с В соп	nection		
				22	VFC	MAPFABR	IC f	abricid	=VI01_F	AB_B,cl	ientinfo=1	11: (LPARN	AME)
ne 054: U	ndefined	VARIABLE	: (23 24	ELSEDEF # a	ll othe	r fram	es have	both A	and B	Fabric cor	nnections	
				25									
e 054: U	ndefined	VARIABLE	: ((ientinfo=1 ientinfo=1		
				28 29	NDIFDEF								
)54: U	ndefined	VARIABLE	: ()	30 #	‡								VI
				31 32	/10		h	ostname	=(VI02)	,profil	ename =defa	ault	
4: U	ndefined	VARIABLE	: (1	33	/FCGEN						o,partitic		
				35					12.auto	, 13 .aut			
054: U	ndefined	VARTABLE	: (1		LFDEF # M/	4p720 V		Ap720 s onlv a	a Fabri	c A con	nection		
				38				_					
054 · 11	ndefined	VARTARI F	• (1	39 40	ELSEDEF	MAPFABR		apricid:	=V102_F	AB_A,CL	ientinfo=1		AUEL
054.0	nuerineu	VANIADEL	• •	41 42	# a	ll othe	r fram	es have	both A	and B	Fabric cor	nnections	
E4. II	ndafinad			43							ientinfo=1		
54: U	ndefined	VARIABLE	: (1		VFCI	MAPFABR	IC f	abricid	=VI02_F	AB_B.cl	ientinfo=1	L3: (LPARN	AME)
				46	4								Clio
054: U	ndefined	VARIABLE	: (1	47 #	+								- 0010
					/ETHMAP /ETHMAP						LAN),requi AN),requir		
054: U	ndefined	VARIABLE	: ()	51									
					BOSINST		bosins	tid =aix	_image,	source=	mksysb ,mks	sysb= <u>(MKS</u>)	<u> (SB)</u> , s
				53	_		nome_{					(C) doferi	1+ 1
		Constant and			PARTITIO						e= <mark>(LPARNAN</mark> x proc uni		

]	
/M Toolkit GUI v6.2		
ude_file config_file		
IO1 resources		
,required=NO		
IO2 resources		
,required=NO		_
ent enerifice		
ent specifics		
spot= <u>(SPOT)</u> ,bosinst_data= <u>(BOSINST_DATA)</u> ,accept_licenses=yes,		-
spor- <u>Axian</u> , postils c_ud cu- <u>axian kaini</u> , accept_treilses-yes,		-
<pre>ar_env=aixlinux,bosinstid=aix_image,min_proc_units=0.2,</pre>	-	-
UNITS),min procs=1,desired_procs=(DESIRED_PROCS),max_procs=		

Use Case 2 – PowerVM Client LPAR Provisioning

Typical Use Case 2 – VIO Client provisioning

- VIO servers/frame need not have been built with the Toolkit in order to use it to deploy new LPARs.
- Create client LPAR build profile for one or N client partitions and process with buildframe.ksh to:
- Carve client LPARs and virtual SCSI, NPIV, Ethernet devices, VNIC Map VSCSI and/or NPIV storage (even Shared Storage Pools) Optionally assign physical I/O (not recommended)
- Ipar netboot AIX client LPARs from NIM
- As with VIO servers, frame specifics can be isolated into **include_files**, with LPAR specifics represented in **config_files**.

build profile sample – KEYWORDS with key=values

SERVERINFO servername=Server-9117-MMC-SN105C627, buildhmc=mghmc.rchland.ibm.com

VETHMAP	clientslot=2,vlan=50
FABRIC	name=FabricA,clientadapters=4
FABRIC	name=FabricB,clientadapters=7
VIO	hostname= <mark>tkvios1</mark> ,profilename=normal
VFCGEN	mapping=4:auto
VFCMAP	port= <mark>DBJF101</mark> -P2-C1-T1,clientinfo=4:tk_client1
VIO	hostname= <mark>tkvios2</mark> ,profilename=normal
VFCGEN	mapping=7:auto
VFCMAP	port= <mark>DBJF103</mark> -P2-C1-T4,clientinfo=7:tk_client1
BOSINST	bosinstid=aix71,source=mksysb,mksysb=mksysb_AIX710TL02SP2,
spot=AIX710 ⁻	TL2SP2spot, bosinst_data=bosinst_data_aix,accept_licenses=yes,boot_client=no

name=tk_client1,profile_name=normal,min_mem=6144,desired_mem=16384, PARTITION max_mem=24576,min_proc_units=0.1,desired_proc_units=0.3,max_proc_units=2.0,min_procs=1, desired procs=2,max procs=3,lpar env=aixlinux,proc mode=shared,uncap weight=128,mem mode=ded, allow_perf_collection=1, sharing_mode=uncap, max_virtual_slots=11, all_resources=0, conn_monitoring=1, redundant_err_path_reporting=0,**bosinstid**=aix71, **lpar_netboot**=10.0.0.11,tk_client1,10.0.0.55,255.255.255.0,10.0.0.1,NA,auto,auto,NA

```
b AIX710TL02SP2.
```

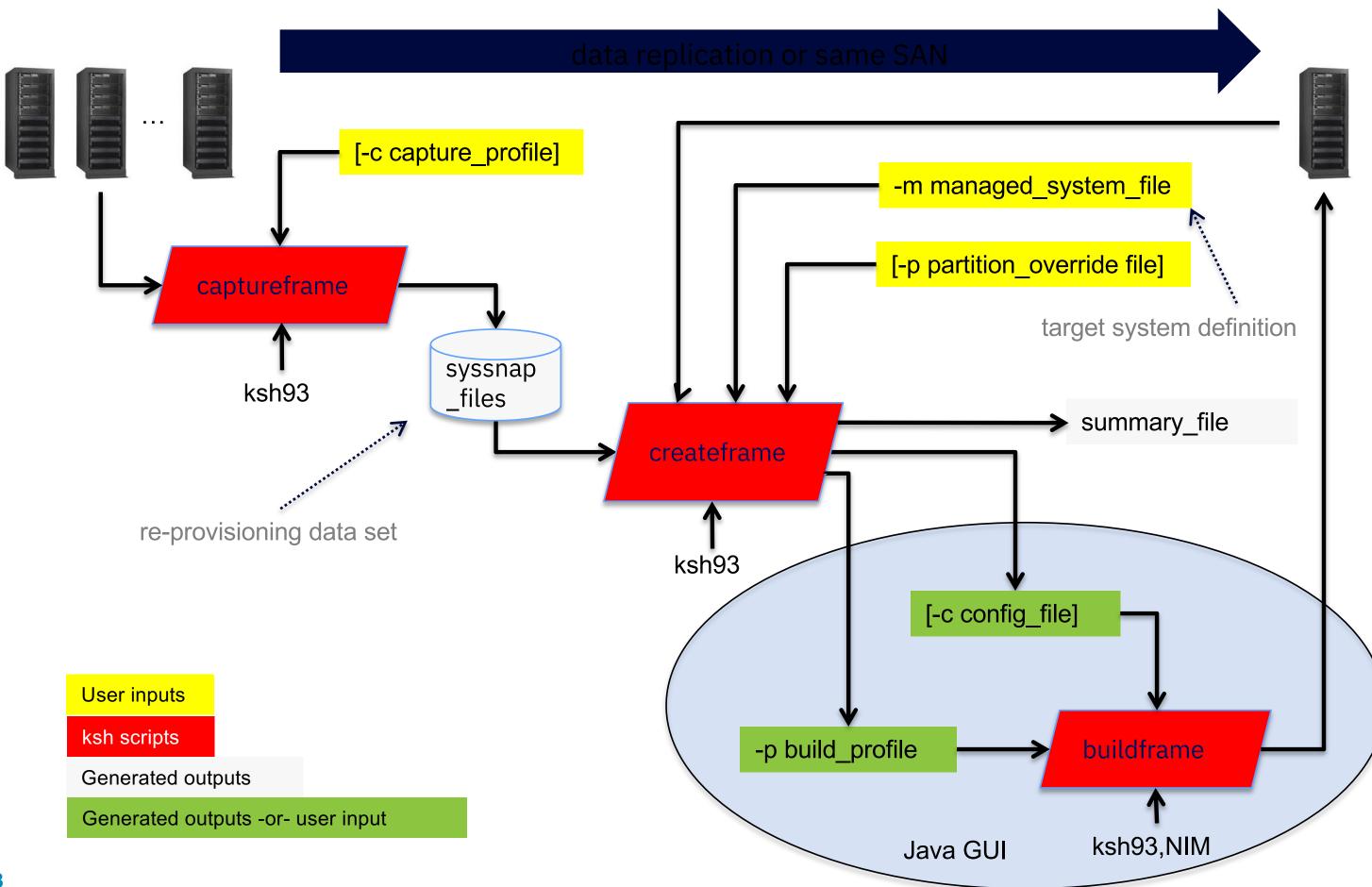
buildframe.ksh 101

NPIV Client LPAR creation

Assuming the build profile on the previous page is named *tk_client1.def*, we might build that NPIV client this way...

- 1. buildframe.ksh –p *tk_client1.def* **-f carve**
- 2. buildframe.ksh –p *tk_client1.def* **-f vfcmap** # map vfcs to VIOS-owned fibre ports
- 3. buildframe.ksh –p *tk_client1.def* **-f wwpn** *#* 'harvest' WWPNs for SAN team
- 4. ...Obtain SAN zoning and allocation...
- 5. buildframe.ksh –p *tk_client1.def* **-f nim**

buildframe.ksh –p *tk_client1.def* **-f carve,vfcmap,wwpn** Or... and then buildframe.ksh –p *tk_client1.def* **-f nim**


create partition profile and devices

lpar_netboot from NIM

Use Case 3 – 'Re-Provisioning'

IBM Advanced PowerVM Provisioning Toolkit v3+

captureframe/createframe/buildframe

Capture/create/build application to LPAR migration

Basic use case

- 1. Capture a source group of LPARs to move to a common target frame with captureframe.ksh.
- 2. Validate captured data no files should be missing or contain errs.
- 3. Prepare a managed system file to define a target frame and its mapping scheme.
- 4. Prepare partition file to override any specific LPAR properties, if needed.
- Process captured data, managedsystem file, partition file through *createframe.ksh*. 5.
- Examine summary file and resulting config file and build profile. 6.
- 7. Adjust build profile(s) and config file as required or change managed system file and return to step 5.
- 8. Process client build profile and config file through *buildframe.ksh* to stage new LPARs.
- 9. Validate new LPAR shells on target frame. Delete and restage if needed.
- 10. Deactivate source LPARs and activate target LPARs as per plan. ("toggle")

The Provisioning Toolkit does not migrate data; it 're-provisions' LPARs:

- It wires up existing storage known *a priori* (same or replicated for VSCSI),
- Duplicates virtual fibre channel WWPN values (virtual MAC address, too)
- Can also builds all-new LPAR shells for mksysb-style installation/migration

Use Case 4 – LPAR decommission

IBM Advanced PowerVM Provisioning Toolkit v5+

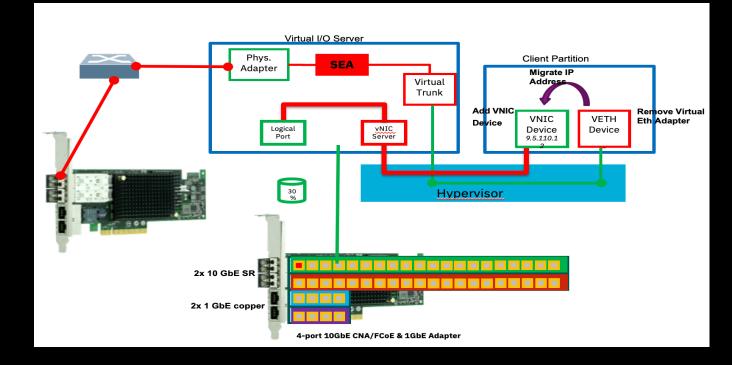
delete_lpars.ksh

- Simplifying wrapper script around the powerful `buildframe –f delete` function.
- May be used whether or not the Toolkit was used to build the LPAR in the first place.
 - Dynamically generates build_profile for input to buildframe.
- Same functional environment and directories as for Provisioning Toolkit core scripts.
- Uses same user(s) and SSH key(s).
- Assumes short, symbolic names to existing Toolkit scripts.
 - buildframe.ksh -> buildframe.ksh.v6.0
- Simple calling convention: single HMC, single frame, prompt or no-prompt, single LPAR name
 - Optional HMC user (default hscroot).
 - Checks/requires that LPAR is 'Not Activated'
 - Unmaps and deletes any vfchost, vhost devices on parent VIO servers then saves VIO profiles if needed.
 - Deletes LPAR and its profile.

./delete_lpar.ksh -u toolkit -h mghmc -m Server-9117-MMC-SN105C627 -n gw_client77

Capture/create/build application to LPAR migration

Basic use case


- 1. Capture a source group of LPARs to move to a common target frame with captureframe.ksh.
- 2. Validate captured data no files should be missing or contain errs.
- 3. Prepare a managed system file to define a target frame and its mapping scheme.
- 4. Prepare partition file to override any specific LPAR properties, if needed.
- Process captured data, managedsystem file, partition file through *createframe.ksh*. 5.
- Examine summary file and resulting config file and build profile. 6.
- 7. Adjust build profile(s) and config file as required or change managed system file and return to step 5.
- 8. Process client build profile and config file through *buildframe.ksh* to stage new LPARs.
- 9. Validate new LPAR shells on target frame. Delete and restage if needed.
- 10. Deactivate source LPARs and activate target LPARs as per plan. ("toggle")

The Provisioning Toolkit does not migrate data; it 're-provisions' LPARs:

- It wires up existing storage known *a priori* (same or replicated for VSCSI),
- Duplicates virtual fibre channel WWPN values (virtual MAC address, too)
- Can also builds all-new LPAR shells for mksysb-style installation/migration

SR-IOV Migration Tool

SR-IOV Migration Tool

Dynamically add a new SR-IOV VNIC adapter to a running client LPAR

- Currently supports AIX versions 7.1 & 7.2
- Linux support planned for future release, starting with SUSE Linux on Power

Live-migrate IP address from a specified virtual Ethernet adapter to the new VNIC

- Non-disruptive IP address migration while the LPAR is up and running (AIX only)
- Linux IP address migration planned (disruptive)

Remove existing virtual Ethernet adapter

- Optionally (dynamically) remove virtual Ethernet adapter.
- Removes OS level-devices, as well as saves configuration to client's HMC partition profile

Traditional Network Options for POWER Systems

Dedicated Adapters

- -Best possible performance
- -Adapter exclusively bound to particular partition; no resource sharing

Virtual Ethernet Adapter

-Hypervisor internal switching

VIOS Shared Ethernet Adapter

- -Hypervisor Switch "uplink" to physical network through Virtual I/O Server (required).
- –Options for high availability
 - SEA failover, SEA failover w. load sharing, Network Interface Backup (NIB)

Why do we need something new?

- -Overcome software based virtualization limitations.
- -Adoption of high network bandwidths of 10 Gigabit Ethernet and beyond.
- -Running high network speeds for affordable overhead.
- Ethernet and beyond. ead.

Single Root I/O Virtualization (SR-IOV) defines extensions to the PCI Express[®] specification to allow multiple partitions to share a PCIe[®] device.

vNIC is a new virtual adapter type, based on SR-IOV technology.

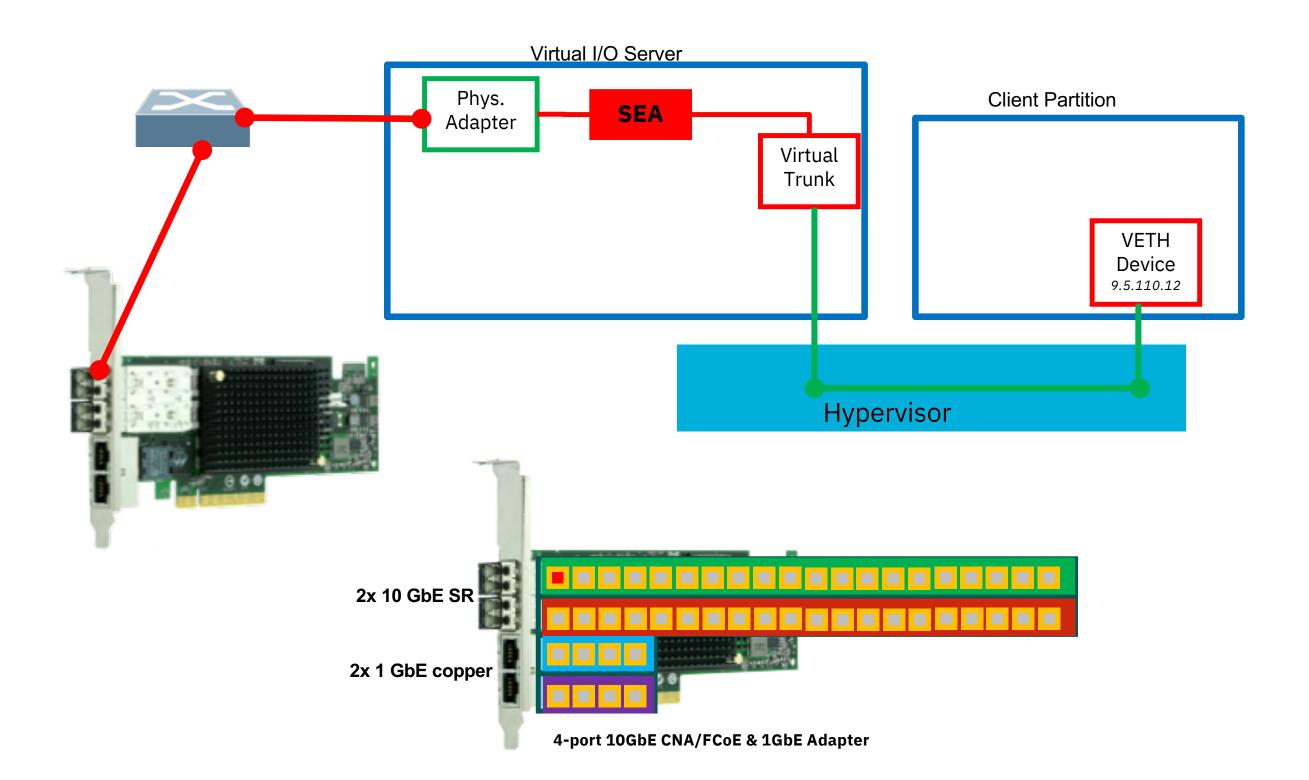
Values:

- Increased I/O efficiency
- Better "out of the box" performance ullet
- Maximize use of high bandwidth I/O infrastructure and adapters ullet
- Facilitates consolidation by reducing data center hardware • requirement, associated energy costs, and floor space requirements

SR-IOV Migration Tool AIX client LPAR IP address migration

Moving IP Addresses seamlessly with AIX ifconfig transfer

netstat -in

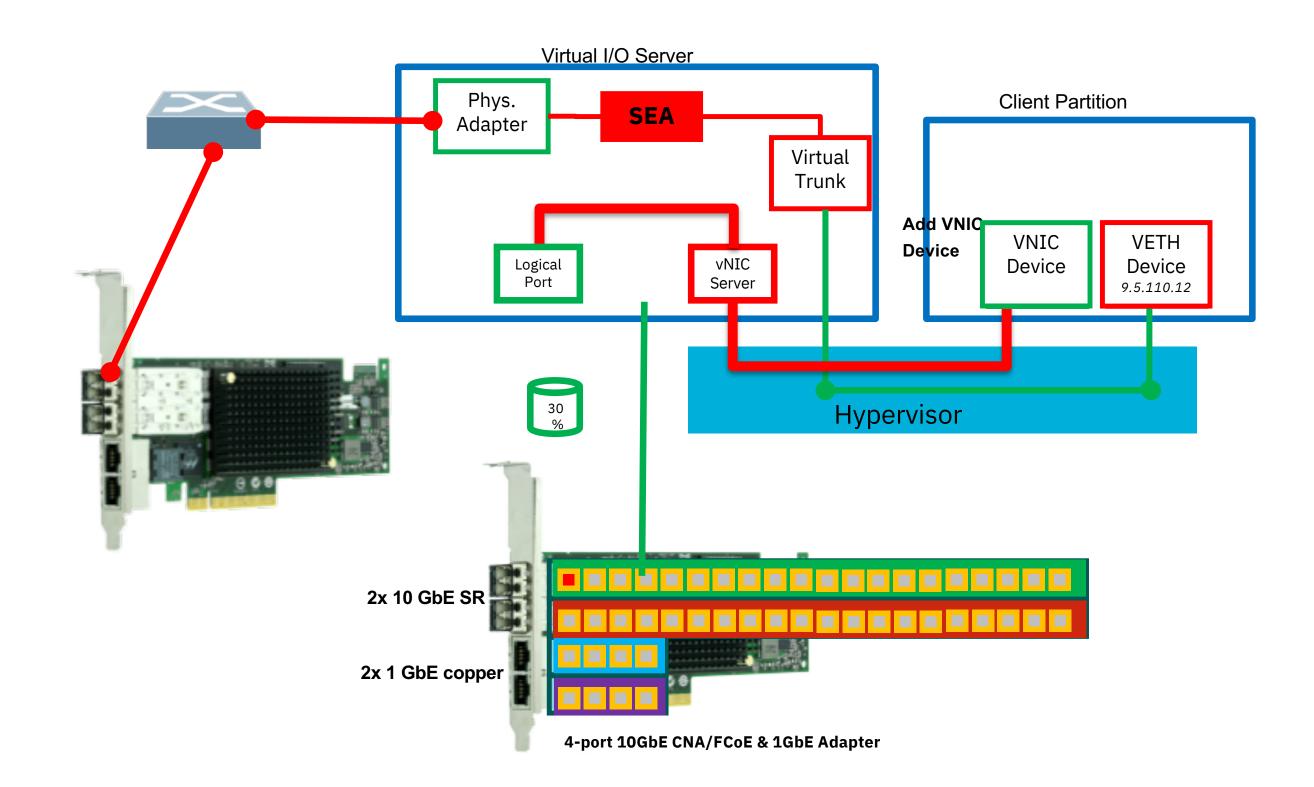

Name	Mtu	Network	Address	Ipkts Ie	rrs	Opkts Oe:	rrs	Coll
en0	1500	link#2	6e.14.ca.5b.9.4	8275945	0	3937496	0	0
en0	1500	9.156.175	9.156.175.25	8275945	0	3937496	0	0
100	16896	link#1		21583	0	21583	0	0
100	16896	127	127.0.0.1	21583	0	21583	0	0
100	16896	::1%1		21583	0	21583	0	0

ifconfig en0 9.156.175.25 transfer en1

netstat -in

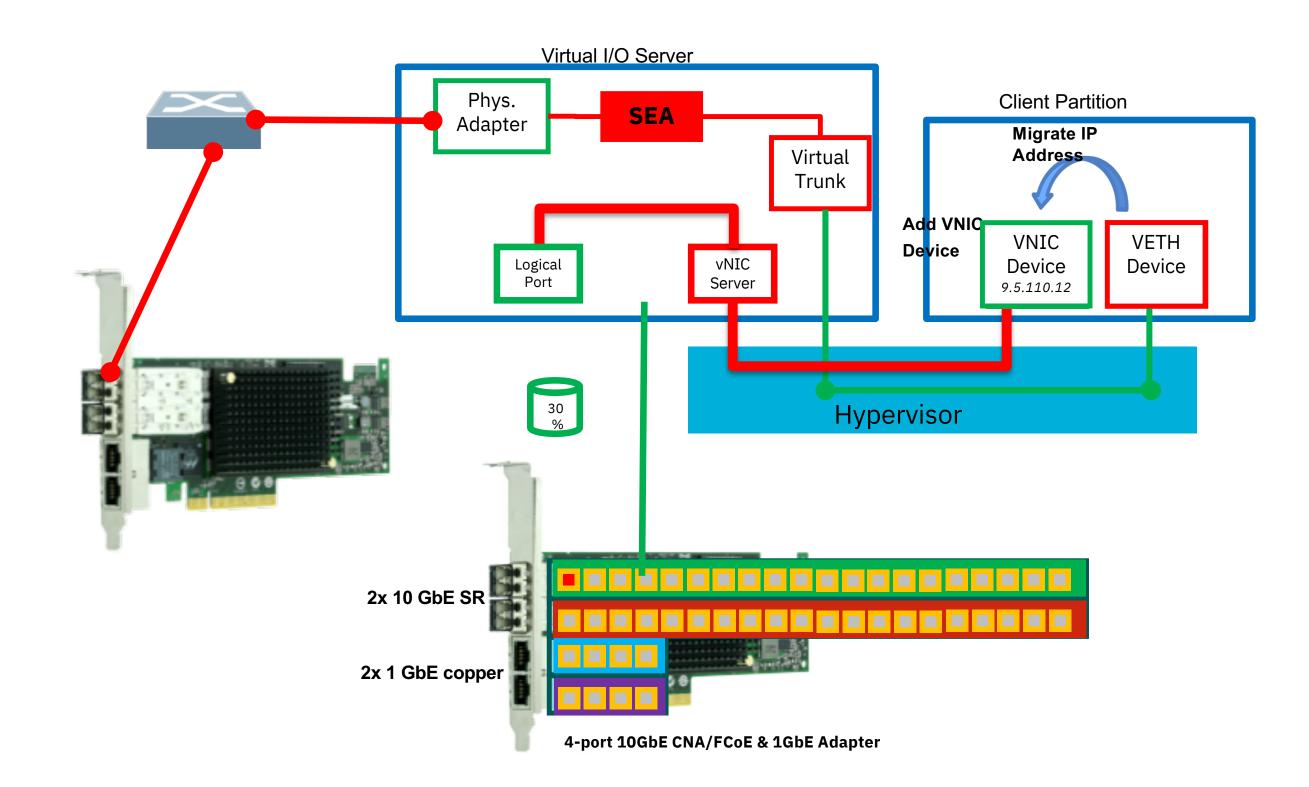
•• -		-						
Name	Mtu	Network	Address	Ipkts Ier	rs	Opkts Oei	rrs	Coll
en0	1500	link#2	6e.14.ca.5b.9.4	8276617	0	3937572	0	0
enl	1500	link#3	c6.e6.3.d7.79.0	16	0	3	0	0
en1	1500	192.168.11	9.156.175.25	16	0	3	0	0
100	16896	link#1		21628	0	21628	0	0
100	16896	127	127.0.0.1	21628	0	21628	0	0
100	16896	::181		21628	0	21628	0	0

SR-IOV Migration Tool Live-migration from virtual Ethernet to SR-IOV devices

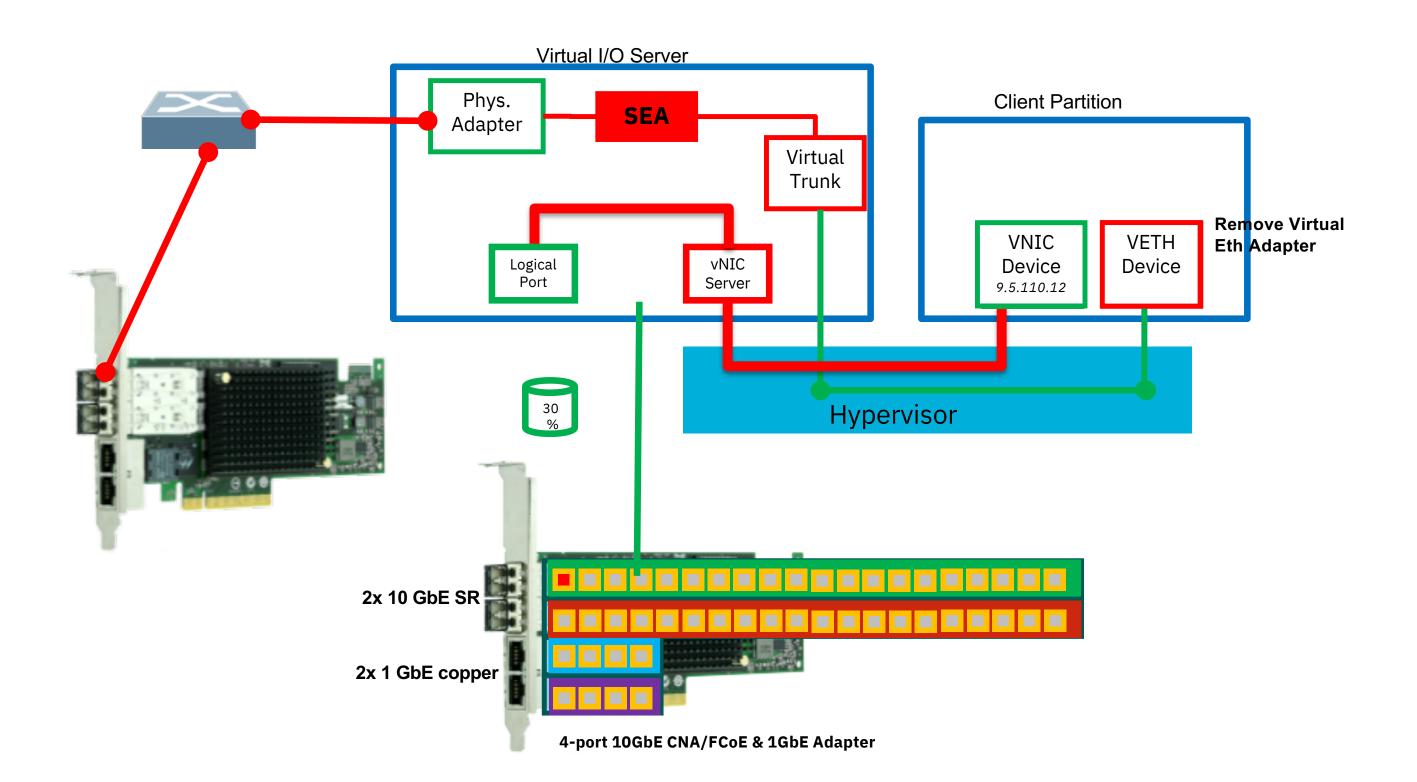


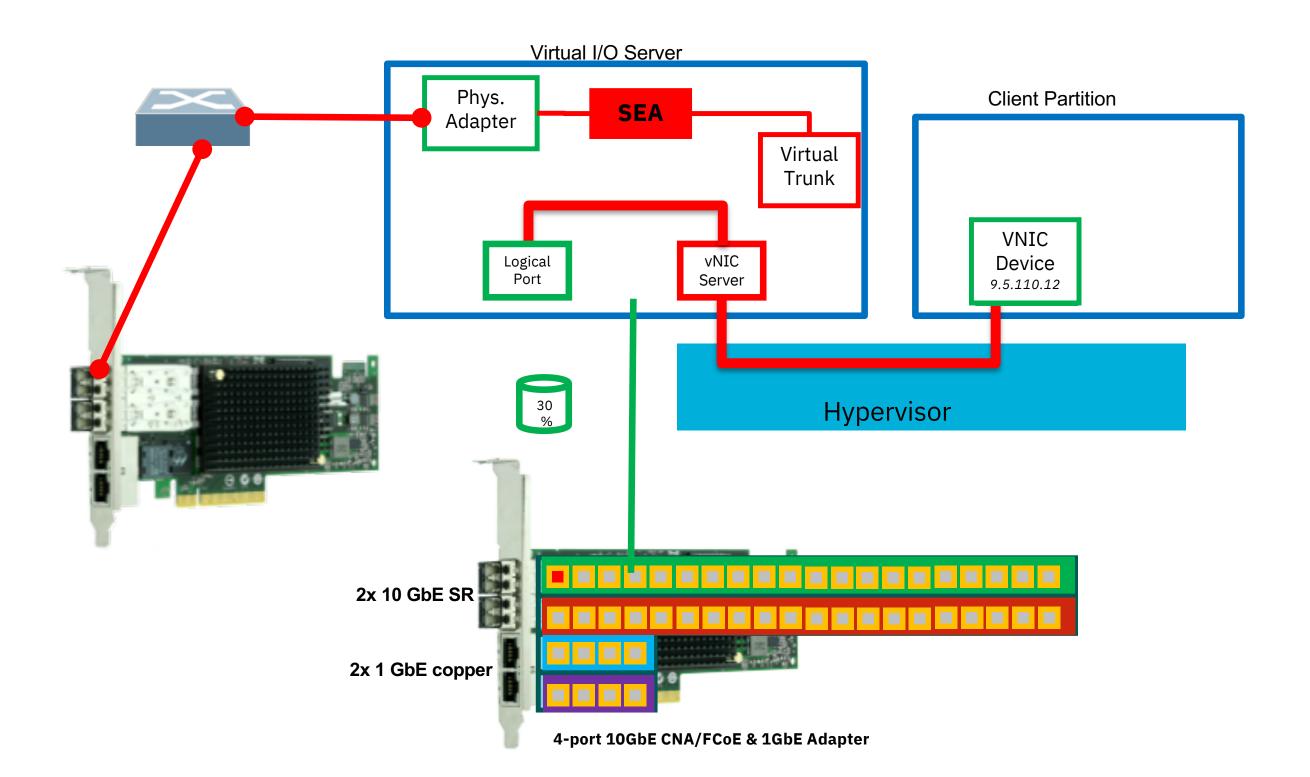
SR-IOV Migration Tool

Live-migration from virtual Ethernet to SR-IOV devices

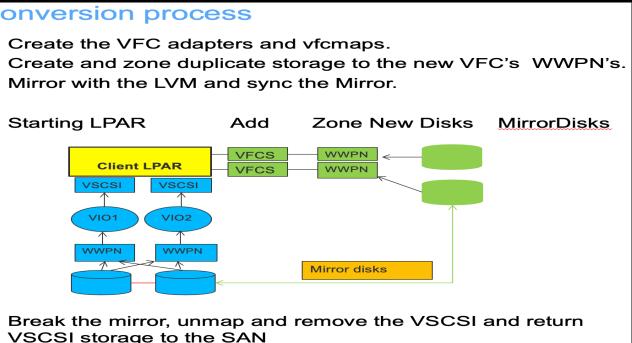


SR-IOV Migration Tool


Live-migration from virtual Ethernet to SR-IOV devices


SR-IOV Migration Tool Live-migration from virtual Ethernet to SR-IOV devices

SR-IOV Migration Tool Live-migration from virtual Ethernet to SR-IOV devices



VSCSI-to-NPIV Migration Tool

VSCSI-to-NPIV Migration Tool

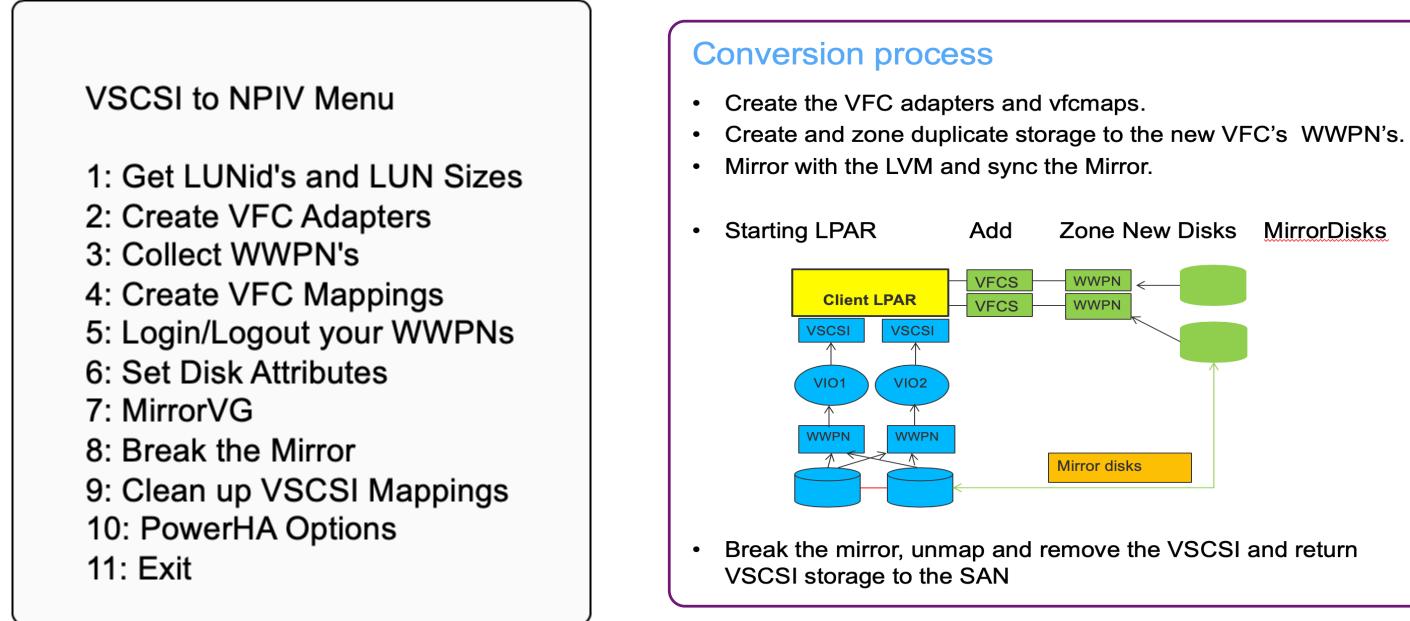
Conversion process

- Create the VFC adapters and vfcmaps.
- Mirror with the LVM and sync the Mirror.

VSCSI storage to the SAN

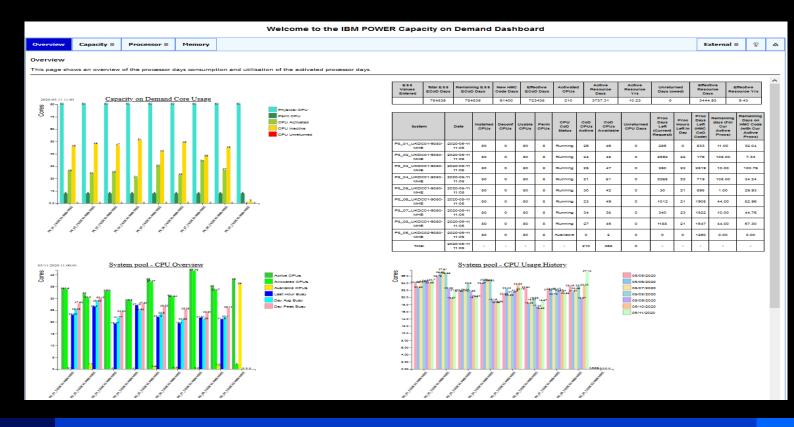
Convert a VSCSI partition to NPIV with no downtime

NPIV virtual adapter creation/mapping


LUN mirroring and mirror breaking

VSCSI virtual adapter unmapping/deletion

VSCSI-to-NPIV Migration Tool


Accelerate conversion of a VSCSI partition to NPIV with no downtime

- NPIV virtual adapter creation/mapping
- LUN mirroring and mirror breaking
- VSCSI virtual adapter unmapping/deletion
- Support for EMC, 3PAR, NAS, Hitachi and IBM storage
- **PowerHASupport**

Capacity on Demand Dashboard (CoDD)

Capacity on Demand Dashboard

Consolidates data from multiple HMCs into a single dashboard.

Simplifies access to HMC data and \bullet provides context to help analyse Elastic CoD activations

Capacity on Demand Status

- Snapshot of status for each server showing where applied codes require refreshing.
- Breakdown of server activation codes with consumption rate at current resource level.
- Consolidates server data to indicate the consumption of pre-purchased days

Utilisation Overview

- System Overview to compare • resource assignment against actual & peak usage
- Historical Utilisation charts \bullet show trends in resource usage

CoD Dashboard - Default View

- The initial display provides an overview of the common Processor information charts.
- Menu options for specific resource views show larger charts and additional data

Displays the active and available CoD resources for each server

Any CPU days owed against the current HMC activation code are flagged by red bars

on Processor information charts.

Welcome to the IB	M POWE	R Capao	city on [)emai	nd Da	ashbo	oard										days from the
													Exte	ernal ≡	१ ₽		Entitled Systems
isation of the activated processo	or days.																Support site and calculates the
	ESS Values Entered	Total ESS ECoD Days	Remaining ES ECoD Days	S New Code		Effective CoD Days		vated PUs	Active Resource Days	Active Resource		nreturned ys (owed)		Effective ource Days	Effective Resource Yrs	s	burn rate based
80		784835	784835	614	00	723435	2	10	3737.31	10.23		0		3444.93	9.43		on the current
Physical CPU Perm CPU CPU Activated CPU Inactive	System	n Da	te Installe CPUs	d Deconf CPUs	Usable CPUs		CPU CoD Status	CoD CPUs Active	CoD CPUs Available	Unreturned CPU Days	Proc Day Left (Curren Request	Hours t Left in	Proc Days Left (HMC CoD Code	Remaining days (For Cur Active Procs)	HMC Code		CPU activations
CPU Unreturned	P8_01_UKDC0 MHE	1-9080- 2020- 11:		0	80	8	Running	26	46	0	286	0	833	11.00	32.04	L	
	P8_02_UKDC0 MHE		05-11 80 05	0	80	8	Running	24	48	0	2592	22	176	108.00	7.33		
	P8_03_UKDC0 MHE	11:	05 00	0	80	8	Running	25	47	0	250	23	2519	10.00	100.76		
	P8_04_UKDC0 MHE	11:	05 00	0	80	8	Running	21	51	0	2268	22	719	108.00	34.24		
	P8_05_UKDC0 MHE P8_06_UKDC0	11:	05 11	0	80	8	Running	30	42	0	30	21	898	1.00	29.93		Individual server
8	P8_07_UKDC0	11:	05 00	0	80	8	Running	23 34	49 38	0	1012 340	21	1908 1522	44.00	82.96 44.76	-	
ρ <mark>≟</mark> ο ≫		11: 1-9080- 2020-	05-11 80	0	80	8	Running	27	45	0	1188	23	1522	44.00	57.30		burn rate for
the second	P8_05_UKDC0 MHE		05	0	80	8	Available		2	0	0	0	1260	-	0.00		currently applied &
Ş	Total	2020-		-	-	-	-	210	368	0	-	-	-	-	-		available HMC
						· I										7	codes

Remaining CPU

&

CoD Dashboard - 'Capacity' Views

Overview	Capaci	ty ≡	Processo	r≡	Memory
	Process		y Options Menu		
	Memory				
	History				

The **Processor & Memory** views gives the CoD status and the "burn rate" tables as well as additional Capacity charts.

CPU Capacity on Demand Burn

 \bigcirc

CoD Days manually entered using information from the $\underline{\rm IBM\,ESS}$ site ("My entitled hardware" ==> "Elastic CoD - Generate new codes"

ESS Values Entered	Total ESS ECoD Days	Remaining ESS ECoD Days	New HMC Code Days	Effective ECoD Days	Activated CPUs	Active Resource Days	Active Resource Yrs	Unreturned Days (owed)	Effective Resource Days	Effective Resource Yrs
	784835	784835	61400	723435	210	3737.31	10.23	0	3444.93	9.43

Change the CoD days values by running : ${\sim}CoDD/config/CoDD_days.sh$

CPU Capacity on Demand Usage per System

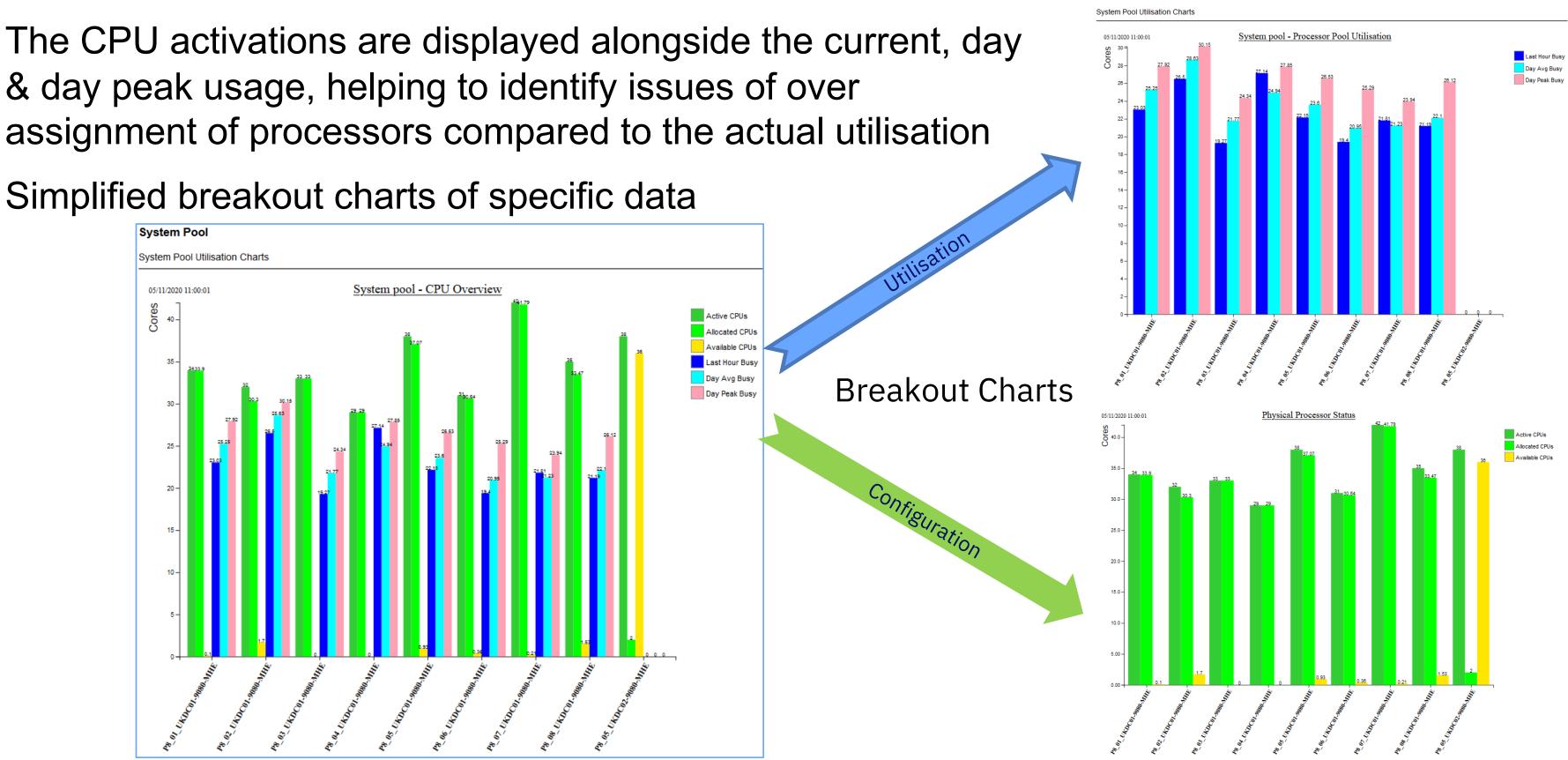
Based on information collected from the HMC

System	Date	Installed CPUs	Deconf CPUs	Usable CPUs	Perm CPUs	CPU CoD Status	CoD CPUs Active	CoD CPUs Available	Unreturned CPU Days	Proc Days Left (Current Request)	Proc Hours Left in Day	Proc Days Left (HMC CoD Code)	Remaining days (For Cur Active Procs)	Remaining Days on HMC Code (with Cur Active Procs)
P8_01_UKDC01-9080- MHE	2020-05-11 11:05	80	0	80	8	Running	26	46	0	286	0	833	11.00	32.04
P8_02_UKDC01-9080- MHE	2020-05-11 11:05	80	0	80	8	Running	24	48	0	2592	22	176	108.00	7.33
P8_03_UKDC01-9080- MHE	2020-05-11 11:05	80	0	80	8	Running	25	47	0	250	23	2519	10.00	100.76
P8_04_UKDC01-9080- MHE	2020-05-11 11:05	80	0	80	8	Running	21	51	0	2268	22	719	108.00	34.24
P8_05_UKDC01-9080- MHE	2020-05-11 11:05	80	0	80	8	Running	30	42	0	30	21	898	1.00	29.93
P8_06_UKDC01-9080- MHE	2020-05-11 11:05	80	0	80	8	Running	23	49	0	1012	21	1908	44.00	82.96
P8_07_UKDC01-9080- MHE	2020-05-11 11:05	80	0	80	8	Running	34	38	0	340	23	1522	10.00	44.76
P8_08_UKDC01-9080- MHE	2020-05-11 11:05	80	0	80	8	Running	27	45	0	1188	21	1547	44.00	57.30
P8_05_UKDC02-9080- MHE	2020-05-11 11:05	80	0	80	8	Available	0	2	0	0	0	1260	0.00	0.00
Total	2020-05-11 11:05	-	-	-	-	-	210	368	0	-	-	-	-	-

Overview Capa Capacity on Dem All Logs Resour System P8_05_UKDC02-9080-P8 05 UKDC02-9080-P8 05 UKDC02-9080-P8_05_UKDC02-9080-I P8_08_UKDC01-9080-I P8_08_UKDC01-9080-I P8_06_UKDC01-9080-P8_06_UKDC01-9080-P8_05_UKDC02-9080-P8_04_UKDC01-9080-P8_04_UKDC01-9080-P8_02_UKDC01-9080-P8_02_UKDC01-9080-I P8 07 UKDC01-9080-P8_03_UKDC01-9080-P8_01_UKDC01-9080-P8_01_UKDC01-9080-I

Ο

The **History** view shows the CoD activity from all systems, including what resources were activated by codes applied on the HMC against individual systems.


Welcome to the IBM POWER Capacity on Demand Dashboard

pacit	y≡ F	rocess	or ≡	Memory							
man	and History Information										
irce	e Access Key										
	Date	Time	Code	Activity	Activity Details	Additional Information					
0-MHE	04/22/2020	13:42:57	HSCL034B	Mobile CoD memory set during power on	GB of memory: 847.						
0-MHE	04/22/2020	13:42:56	HSCL034A	Mobile CoD processors set during power on	number of processors: 30.						
0-MHE	04/22/2020	13:42:54	HSCL034B	Mobile CoD memory set during power on	GB of memory: 847.						
0-MHE	04/22/2020	13:42:53	HSCL034A	Mobile CoD processors set during power on	number of processors: 30.						
0-MHE	03/26/2020	11:57:04	HSCL032B	3 additional processor days will be charged for the hours remaining in the current processor day for the additional processor	rs.						
0-MHE	03/26/2020	11:57:03	HSCL0329	On/Off CoD processors changed	number of processors: 27	number of days: 90.					
0-MHE	03/26/2020	11:55:08	HSCL032B	2 additional processor days will be charged for the hours remaining in the current processor day for the additional processor	rs.						
0-MHE	03/26/2020	11:55:06	HSCL0329	On/Off CoD processors changed	number of processors: 23	number of days: 90.					
0-MHE	03/06/2020	13:50:48	HSCL0346	Mobile CoD processors activated	number of processors: 10	total number of Mobile CoD processors on server: 30					
0-MHE	02/28/2020	20:03:53	HSCL032B	1 additional processor days will be charged for the hours remaining in the current processor day for the additional processor	rs.						
0-MHE	02/28/2020	20:03:52	HSCL0329	On/Off CoD processors changed	number of processors: 21	number of days: 180.					
0-MHE	02/28/2020	20:03:14	HSCL032B	4 additional processor days will be charged for the hours remaining in the current processor day for the additional processor	rs.						
0-MHE	02/28/2020	20:03:13	HSCL0329	On/Off CoD processors changed	number of processors: 24	number of days: 180.					
0-MHE	02/21/2020	08:28:07	HSCL0329	On/Off CoD processors changed	number of processors: 34	number of days: 90.					
0-MHE	02/21/2020	08:24:19	HSCL0329	On/Off CoD processors changed	number of processors: 25	number of days: 90.					
0-MHE	02/21/2020	08:20:30	HSCL032B	2B 1 additional processor days will be charged for the hours remaining in the current processor day for the additional processors.							
0-MHE	02/21/2020	08:20:27	HSCL0329	On/Off CoD processors changed	number of processors: 26	number of days: 90.					

CoD Dashboard - Processor Pool Views

Resource view for processor pool utilisation


- & day peak usage, helping to identify issues of over
- Simplified breakout charts of specific data

System Pool

CoD Dashboard - Processor Pool Views...

Historical charts help determine if current values are typical and show utilisation trends

Seven Day history for quick trend checking

CoDD Tool Enablement

CoDD Offering

Provided through a Systems Lab Services Engagement using a Power to Cloud voucher

CoDD Operating System requirements

- AIX or Linux environment with SSH access to HMC(s)
 - Non-privileged user accounts used to gather data from the HMCs
 - Tool uses standard Unix components of the Host OS lacksquare
 - Minimal storage required for the scripts, dashboard files and data •
- HTTP server (Apache/ngnix) required to display dashboard ¹.

CoDD Data

- HMC data is collected and processed by the tool to produce the dashboard
- Collected data and processed output are available in CSV files for use by customer tooling \bullet
- CoD history is collated each time the CoDD scripts run, all other data is refreshed hourly \bullet
- The number of pre-purchased resource days can be added to the tool to show their burn rate ². \bullet

1. Dashboard display requires an browser with internet access, or local copy of "d3" library

2. The number of pre-purchased resource days can be checked on the Entitled Systems Support (ESS) site, and then must be manually added to the CoDD Tool.

PowerView Point in time Health Check Dashboard

PowerView

PowerView Home Settings	s Profile Help					
Health Status by Hostname Health Status by LPAR name	Readme First			Summa	ary	
CPT PowerDraw Unused2.1	СРМ	Affinity		/IOS ETH	MPIO)
Observations by Priority Level > Priority 1 Findings	S 20	(j) 20		S 20	Í	8
> Priority 2 Findings> Priority 3 Findings	Health Status					
NMON Chart Data Unused3.2	Hostname (+LPAR Name:S/N) ‡	СРМ ↓	Affinity 🕽	VIOS ETH 🕽	MPIO Disk ‡	VIOS HB
Unused3.3	pddrmd701 (sysNode:21AAD3W)	8	í	ОК	ОК	A
ARCHIVES 20190704_V1	pddrmd702 (adminnode_2:21AAD3W)	•	í	ОК	ОК	ОК
20190707_V1	pddrmd703 (stdbynode_3:21AAD4W)	0	í	ОК	ОК	A
20190707_V2	pddrmd704 (stdbynode_4:21AAD4W)	8	í	ОК	ОК	ОК
	pddrmd705 (stdbynode_5:21AB85W) Showing 1 to 5 of 20 entries	A	í	ок	Ì	ок

Daily Data Collection (AIX/VIOS)

- ✓ Point in time 'agentless' data collection scheduled via crontab.
- ✓ Collects configuration and performance data via standard AIX commands.
- ✓ ALL commands are light weight and non intrusive

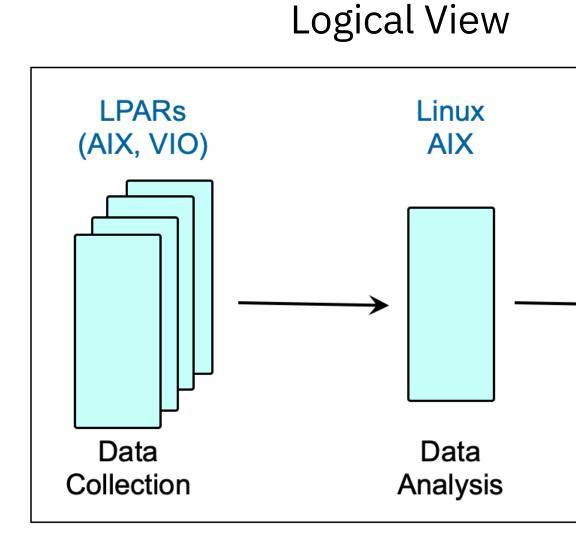
Analyze (Linux/AIX)

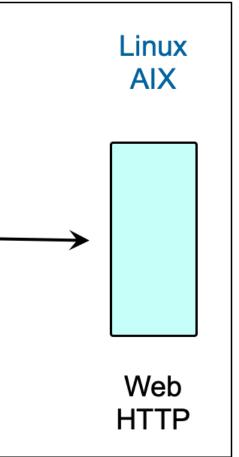
- ✓ Repository on AIX or Linux
- ✓ Apache server for dashboard creation; optional NFS share for collection phase
- ✓ CSV file, excel file and html file creation are performed using AIX/VIOS collections

	Search		Search
Last U	pdated on Tue	Jul 9 19:19:22	2 EDT 2019
VIOS HBA	Search:	SAS Disk)
↓ SAS Disk ‡	Categories with P1 Findings ↓	Tot P1 Find	
A	2	11	
A	1	10	J
Previou	s 1 2	3 4	Next

Present (HTML/excel)

- ✓ View assessment results in familiar dashboard format
- Navigation panel (left) presents findings by topic, both table and graphical formats
- ✓ Various of predefined health checks can be enhanced by adding custom checks

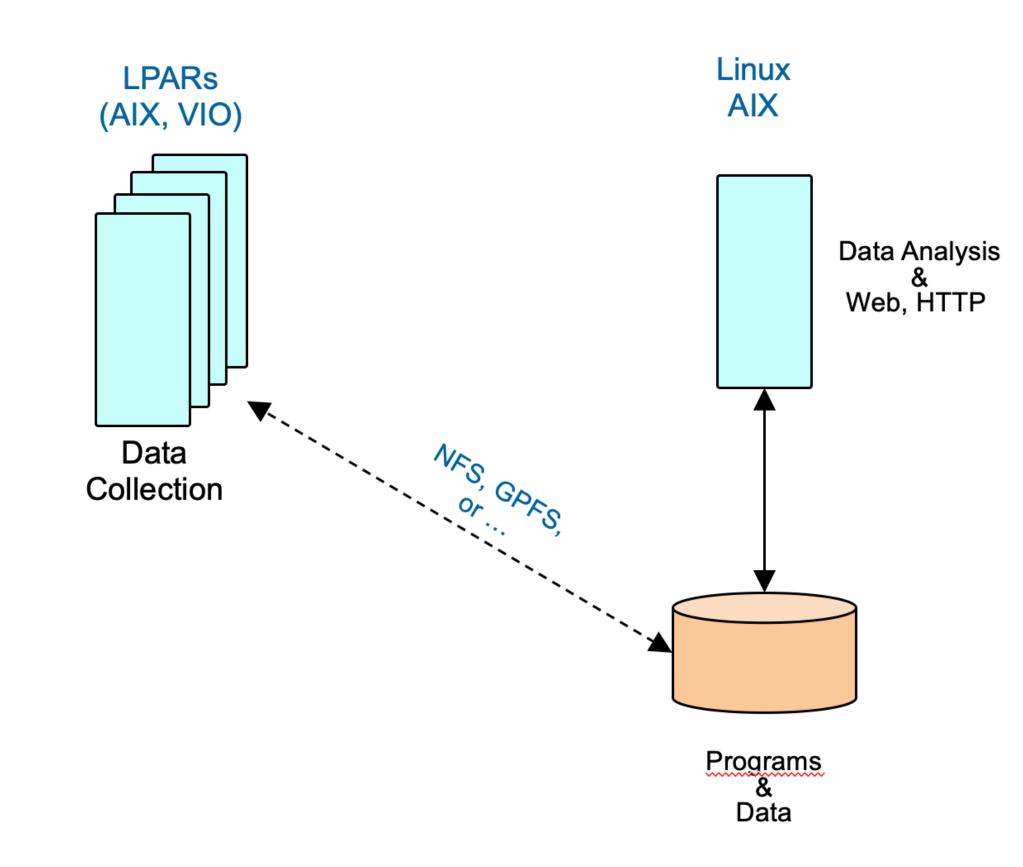

PowerView Overview


What is PowerView

• It's a point in time based health check

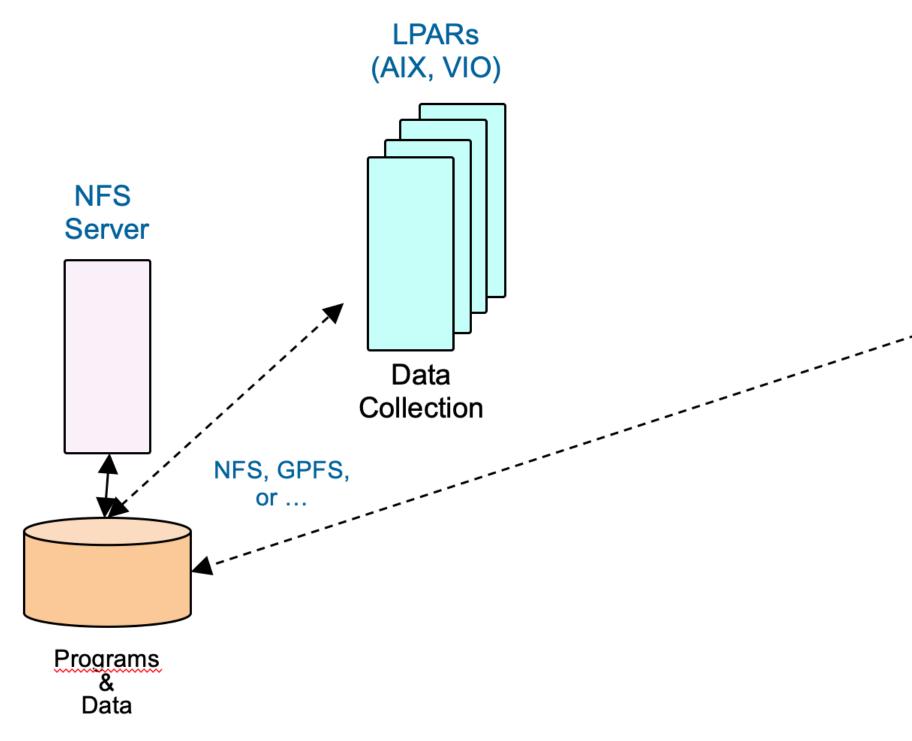
Main Components

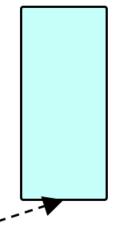
- Data Collection (AIX/VIOS)
- Analyze (Linux/AIX)
- Present (HTML/excel)



Setup Example

Using one system for both analysis and HTTP server

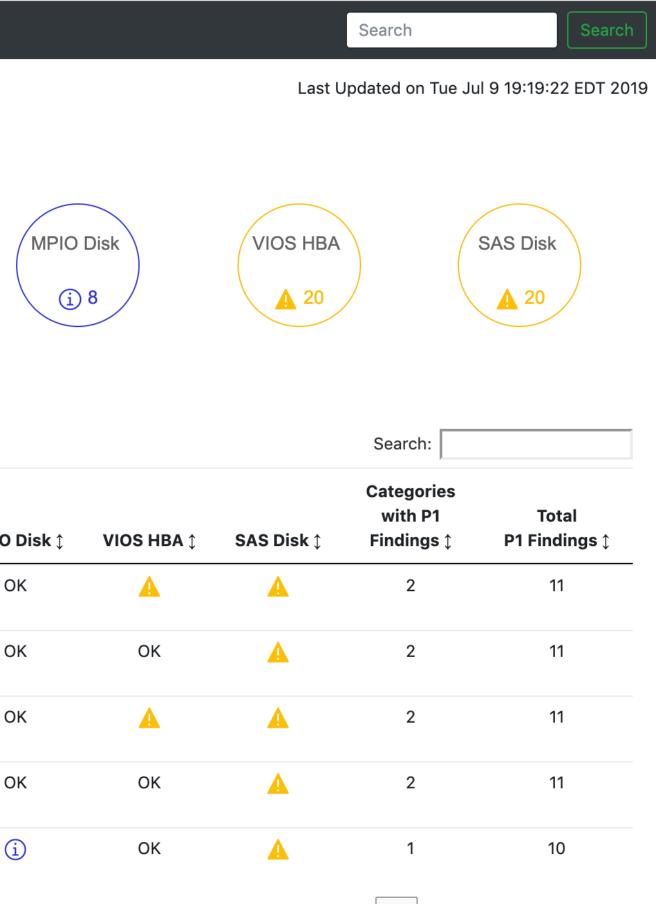

Also hosts the executables and collected data



Setup Example

Using dedicated NFS server and one system for both analysis and HTTP server

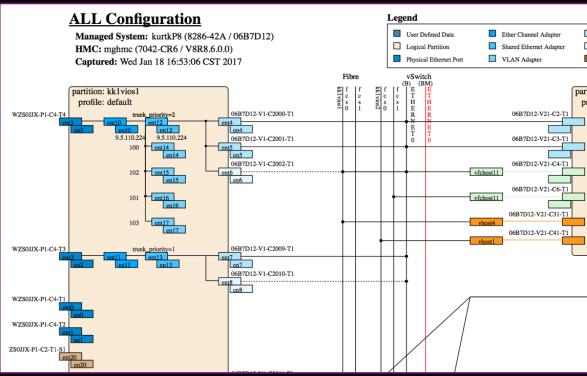
• Also hosts the executables and collected data



Data Analysis & Web, HTTP

PowerView Dashboard

PowerView Home Setting	s Profile Help				
Health Status by Hostname Health Status by LPAR name	Readme First			Summa	ary
СРТ					_
PowerDraw	СРМ	Affinity		/IOS ETH	
Unused2.1	20	(i) 20		2 0	
Observations by Priority Level					
> Priority 1 Findings					
> Priority 2 Findings> Priority 3 Findings	Show 5 Centries				
NMON Chart Data					
Unused3.2	Hostname (+LPAR Name:S/N) ‡	СРМ ↓	Affinity 🕽	VIOS ETH \updownarrow	MPIO
Unused3.3	pddrmd701 (sysNode:21AAD3W)	8	í	ОК	O
ARCHIVES	pddrmd702	8	í	ОК	0
20190704_V1	(adminnode_2:21AAD3W)				
20190707_V1	pddrmd703 (stdbynode_3:21AAD4W)		í	ОК	0
20190707_V2	pddrmd704 (stdbynode_4:21AAD4W)	•	í	ОК	0
	pddrmd705 (stdbynode_5:21AB85W)	A	í	ОК	(i
	Showing 1 to 5 of 20 entries				

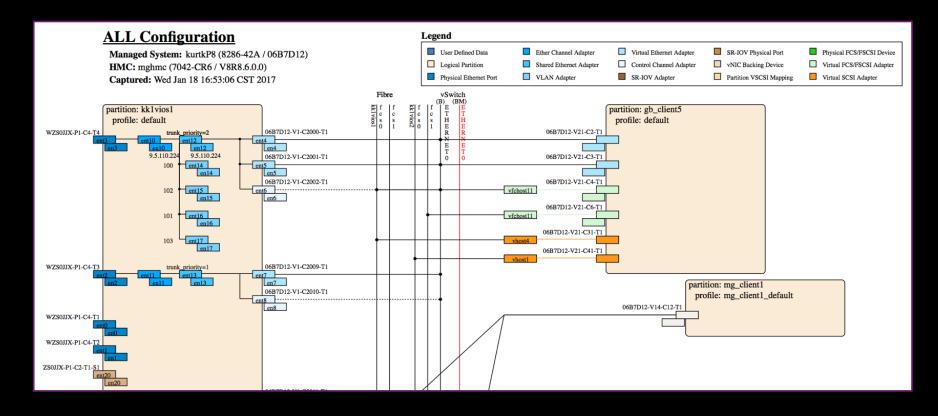

Previous

Next

PowerDraw Graphical view of Power Systems

PowerDraw

Visualize system virtualization design


Document components, linkages, parameters

	Virtual Ethernet Adapter Control Channel Adapter SR-IOV Adapter	SR-IOV Physical Port vNIC Backing Device Partition VSCSI Mapping	Physical FCS/FSCSI Device Virtual FCS/FSCSI Adapter Virtual SCSI Adapter
	ion: gb_client5 file: default		
06		mg_client1 mg_client1_default	

Explore, analyze and debug

PowerDraw

Business Challenge

- Unable to visualize configuration of \bullet a given managed system.
- Lacking ability to document key • components in PowerVM design.
- Unable to graphically drill down to \bullet key elements within the PowerVM design of a managed system to query attributes or debug current problems or issues.

Solution

- PowerDraw which provides the \bullet ability to gather and display key configuration information within the managed system.
- Layered approach allows for \bullet viewing details at all or different levels within the PowerVM design

Key Benefits

- Ability to view any level of configuration for documentation purposes.
- Ability to perform problem determination using a graphical approach with current configuration settings

PowerDraw – at a glance

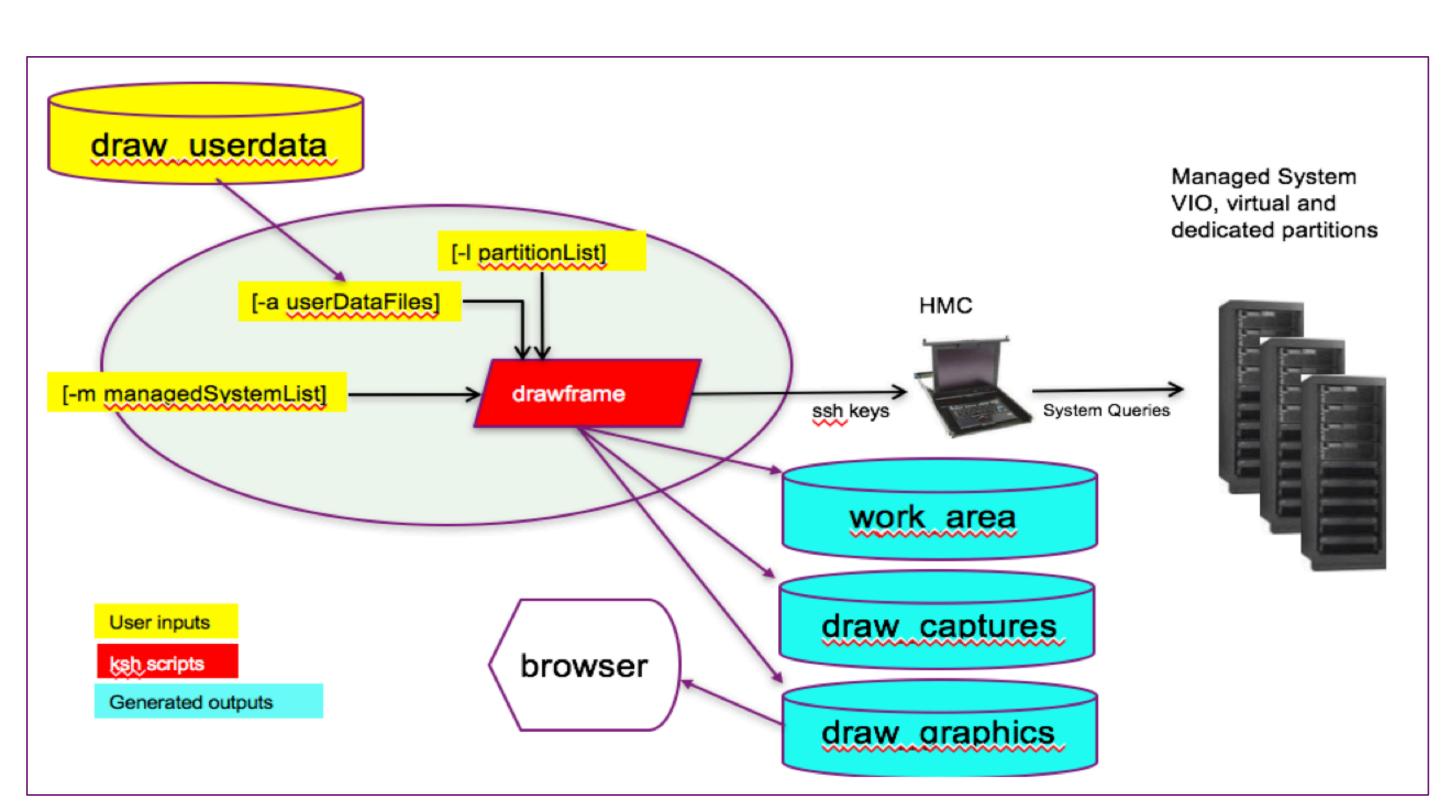
Drawframe

- Capture and draw from existing design ullet
 - capture all/any managed systems and/or partitions from managing HMC
 - draw all/any managed systems and/or partitions from an HMC •
 - merge user defined data so PowerDraw becomes launch point for any system ulletrelated data

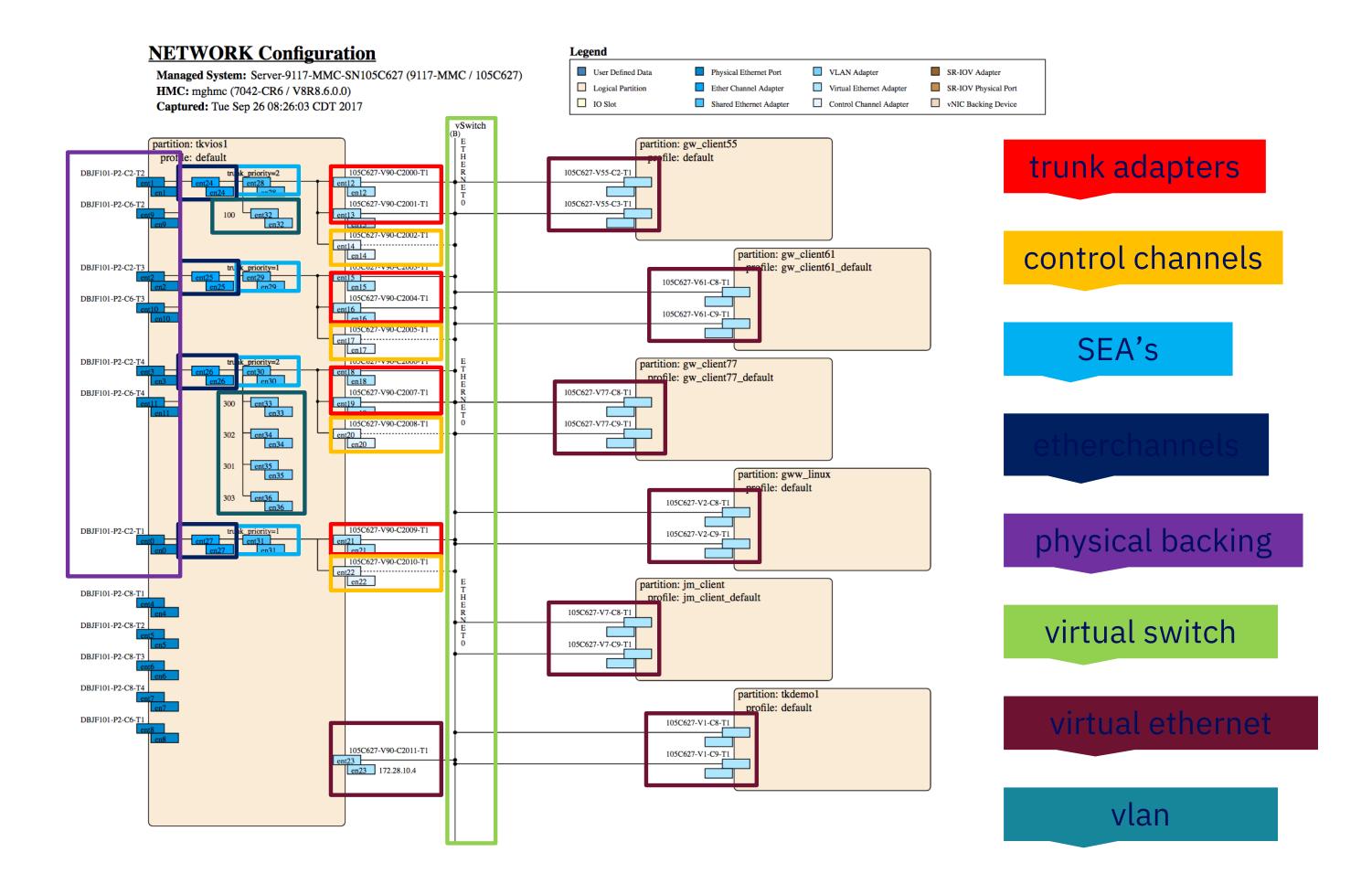
Views Generated

- Network
- Storage
- SR-IOV / vNIC
- All

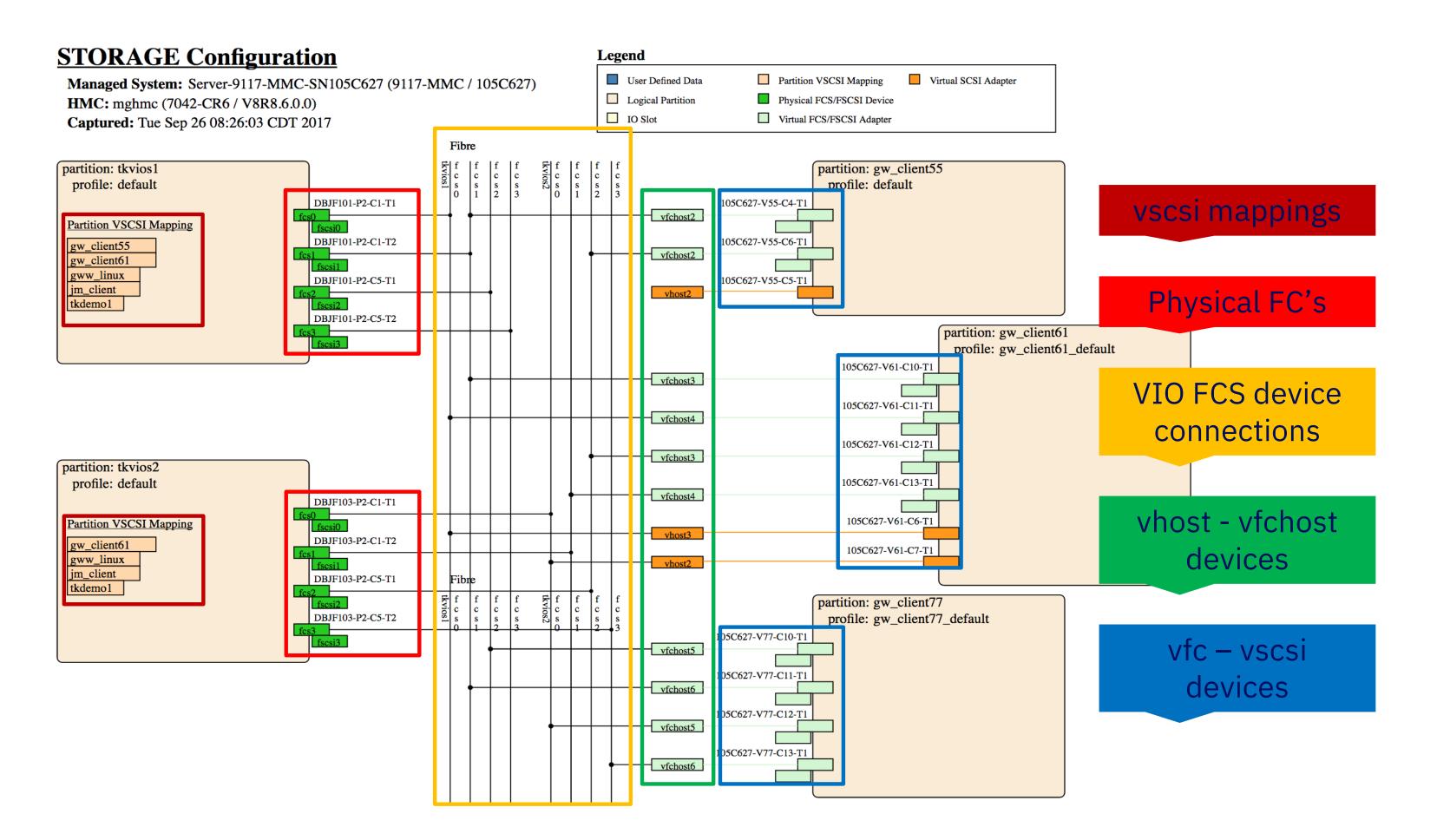
Implementation


• SVG (Scalable Vector Graphics), JavaScript

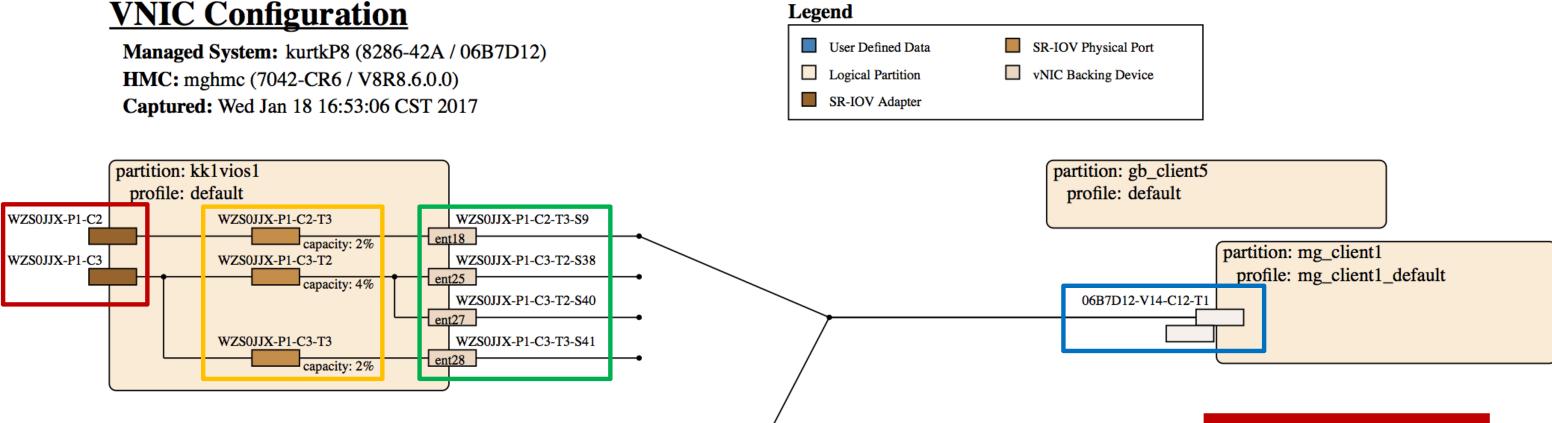
Browser

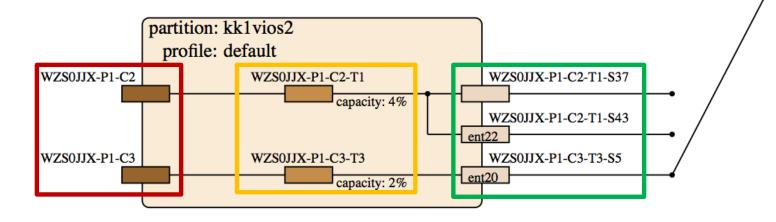

- Consumer of draw files produced by PowerDraw
- Displays detailed data utilizing onclick, onmouseover, onmouseout \bullet

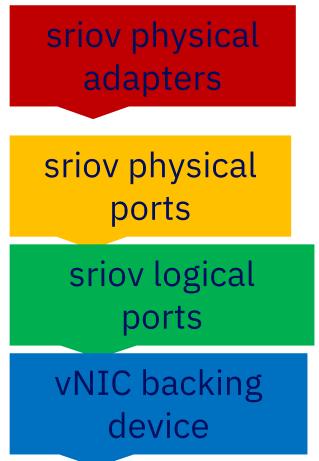
PowerDraw


- Visualize system virtualization design
- **Document** components, linkages, parameters
- Explore, analyze and debug

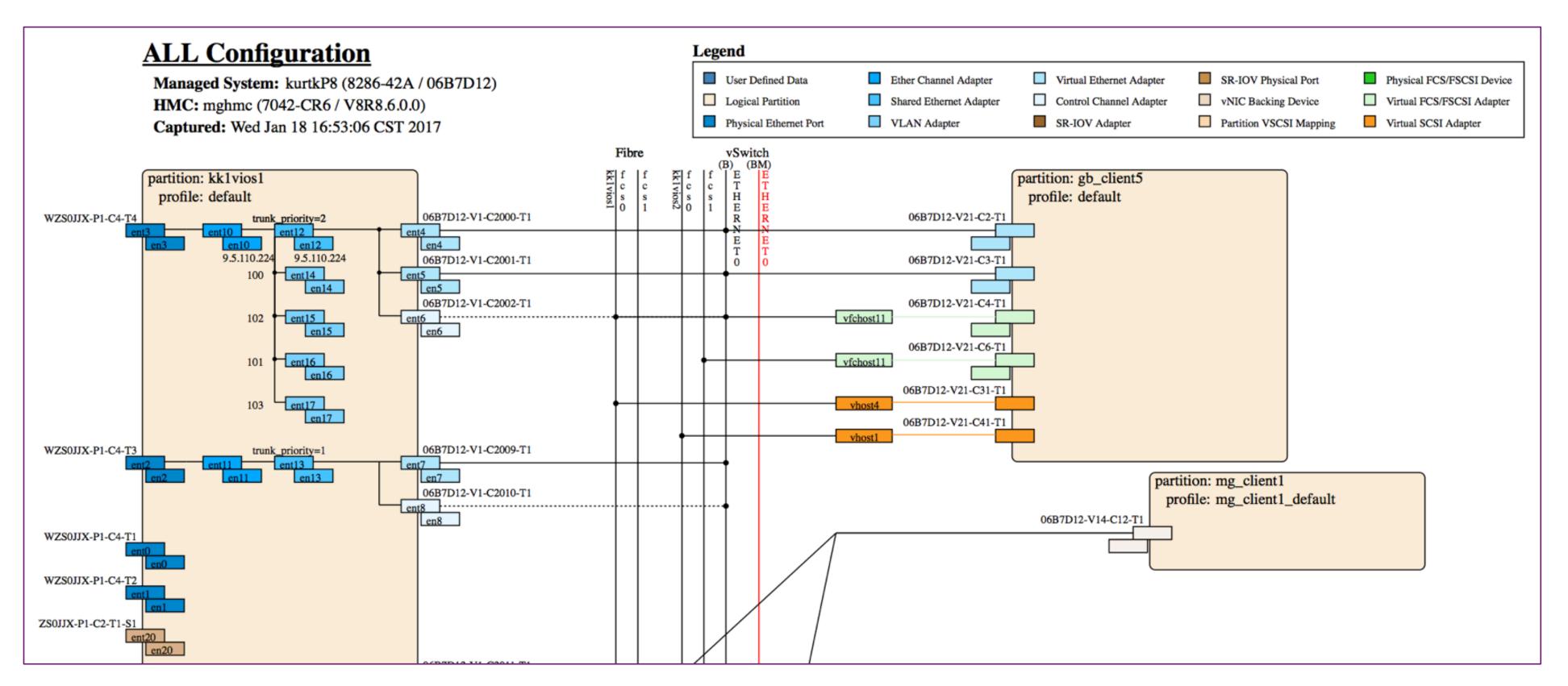
PowerDraw – NETWORK view



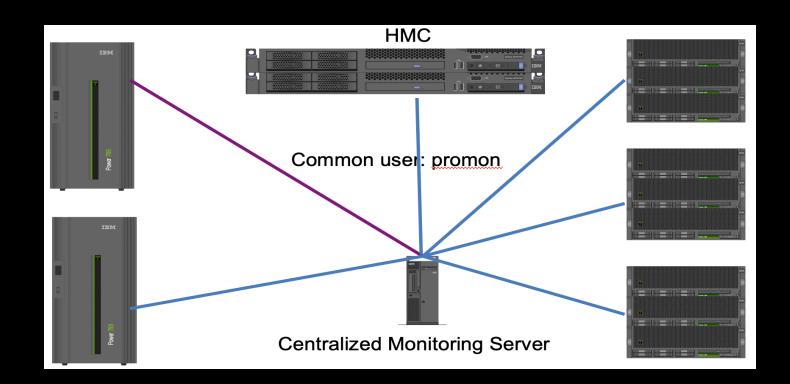

PowerDraw – STORAGE view



PowerDraw – VNIC view


VNIC Configuration

PowerDraw



IBM Systems Lab Services Youtube channel - Demo: PowerDraw - Graphical View of Power Systems <u>https://www.youtube.com/watch?v=8P6q87bU5qo</u>

ProMon Strategic Monitoring

ProMon

Why

- Your system is deployed perfectly, keep it that way with proactive monitoring.
- All systems tend toward chaos. \bullet Even with proper build and change procedures, people still make errors
- Redundancy built and properly \bullet verified during initial install, but it only protects against the first failure

Solution

- Introduce ProMon which runs daily \bullet audits to;
 - verify system configuration
 - alert system administrators against changes
 - and ensure the stability and health of the managed systems.

Key Benefits

- Prevent unplanned outages by leveraging a centralized auditing of multiple systems.
- Notify IT staff about looming problems before they become critical

Provide real-time views of the :

- Resource status
- **Resource allocation**
- System configuration settings

ProMon Strategic Monitoring

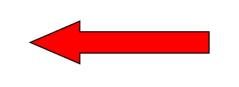
- Run daily audits across systems
- Custom and built-in predefined best practices and configuration checks
- Sends e-mail reports to system admins

Sample LPAR Report

LPAR Status Report Jul 21 2016 at 02:01:00 AM

Processing HMC unxhmcpa002 Collecting LPAR list from HMC unxhmcpa002 Processing HMC unxhmcpa003 Collecting LPAR list from HMC unxhmcpa003

Processing Frame florida


- Processing Frame mississippi
- Ipar001-NoLPM, Unable to audit LPAR due to failure of ssh
- lpar2, Check rootvg on lpar2 for closed/stale partitions
- Ipar2, MPIO policy error. Fewer than 4 path to disk hdisk0
- Ipar2, MPIO policy error. Fewer than 4 path to disk hdisk1
- Ipar2, Shortage of DMA Resources found for fcs2
- Ipar2, Consider changing command elements on fcs2 from 500 to 1024
- Ipar2, Consider changing transfer size on fcs2 from 0x100000 to 0x200000
- lpar2, OS inconsistencies found on lpar2
- .
- lpar3, Check rootvg on lpar3 for closed/stale partitions
- Ipar3, Health Check interval policy error on hdisk12
- Ipar3, Queue depth policy error for hdisk12
- Ipar3, Health Check interval policy error on hdisk13
- Ipar3, Queue depth policy error for hdisk13
- Ipar4, TSM may not be running .
- fcs and vscsi adapters both exist on lpar4
- lpar5, Check rootvg on lpar5 for closed/stale partitions
- Ipar5, Reserve lock set to yes for hdiskpower0
- Ipar5, Reserve lock set to yes for hdiskpower2
- Ipar5, Reserve lock set to yes for hdiskpower3 .
- Ipar5, Reserve lock set to yes for hdiskpower4 .
- Ipar5, Shortage of DMA Resources found for fcs0

Starting VIOS audits at 0257 on 052013

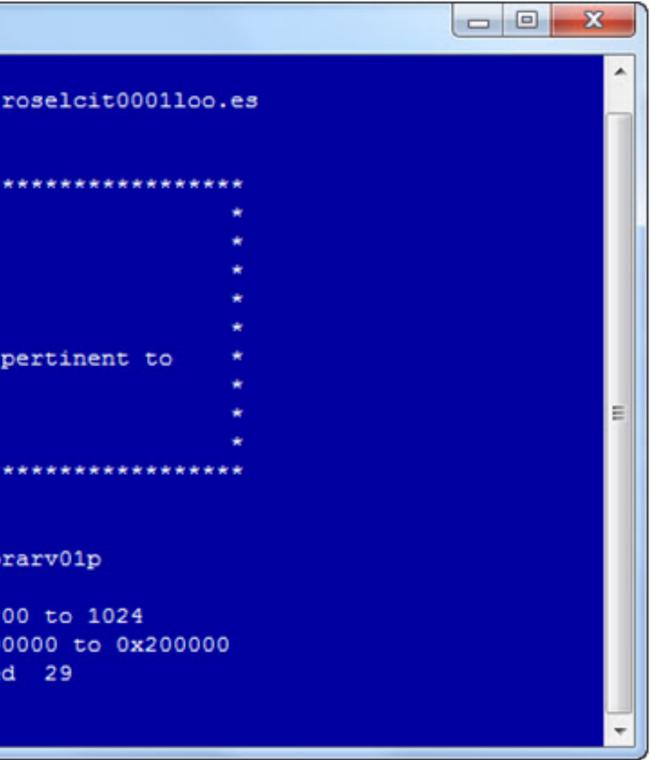
atl750dvio01 There is/are 2 configured Shared Ethernet Adapters on atl750dvio01 functioning normally For ent10 there were 2 MB sent and 6 MB received with 36447 xmit errors and 0 receive errors Maximum Queue Depth was 4 packets with no overflow errors For ent11 there were 0 MB sent and 9 MB received with 0 xmit errors and 0 receive errors Maximum Queue Depth was 2 packets with no overflow errors

Unmirrored LV found on atl750dvio01 rootvg hd5 boot N/A Unmirrored LV found on atl750dvio01 rootvg hd6 paging N/A Unmirrored LV found on atl750dvio01 rootvg paging00 paging N/A Unmirrored IV found on at 750 dvio 01 rootva hd8 ifs2 log N/A

Sample VIOS report

Actual VIOS report

sv65759 For ent14 there were 2 MB sent and 2 MB received with 0 xmit errors and 0 receive errors sv65759 Maximum Transmit Queue was 0 packets with no overflow errors sv65759, For ent18 there were 7 MB sent and 11 MB received with 55428 xmit errors and 0 receive errors sv65759 Maximum Transmit Queue was 0 packets with no overflow errors


sv65759 Rootvg properly mirrored sv65759, Dynamic tracking not set on fscsi0 sv65759, Fast Fail attribute not set on fscsi0 sv65759, Dynamic tracking not set on fscsi1 sv65759, Fast Fail attribute not set on fscsi1

Once a day audit against the entire environment

```
dc1prscm01.es.ad. .com - PuTTY
promon@dc1prscm01's password:
Last unsuccessful login: Thu Jan 14 11:36:38 2016 on ssh from roselcit00011co.es
.ad.adp.com
Last login: Tue Mar 15 02:06:18 2016 on ssh
Welcome to AIX Version 7.1!
  Please see the README file in /usr/lpp/bos for information pertinent to
  this release of the AIX Operating System.
[YOU HAVE NEW MAIL]
[promon@dc1prscm01:/home/promon]# cd scripts
[promon@dc1prscm01:/home/promon/scripts]# ./promon.ksh -1 dc2prarv01p
dc2prarv01p, Shortage of DMA Resources found for fcs3
dc2prarv01p, Consider changing command elements on fcs3 from 200 to 1024
dc2prarv01p, Consider changing transfer size on fcs3 from 0x100000 to 0x200000
dc2prarv01p, Disks present without Vendor Device drivers loaded 29
/tmp/*.22085782 not found
[promon@dc1prscm01:/home/promon/scripts]#
```

You can always run an audit against a single LPAR.

Capacity Planning Toolkit

Capacity Planning Toolkit

			POWER SYSTEM	IS SUMMARY					
bobfP8		EC		/CPU	vo	PU/EC	Delta		
LPAR	Current	Proposed	Current	Proposed	Current	Proposed	EC	VCP	
aaron_client1	0.3	0.1	1	1	3.3	10.0	-0.2	0	
aaron_client2	0.3	0.1	2	1	6.7	10.0	-0.2	-1	
bb1vios1	4.0	0.8	4	2	1.0	2.5	-3.2	-2	
bb1vios2	4.0	0.8	4	2	1.0	2.5	-3.2	-2	
thanh_client01	0.3	0.1	2	1	6.7	10.0	-0.2	-1	
thanh_client02	0.3	0.1	2	1	6.7	10.0	-0.2	-1	
thanh_client03	0.3	0.1	2	1	6.7	10.0	-0.2	-1	
thanh_client04	0.3	0.1	2	1	6.7	10.0	-0.2	-1	
viren1	0.2	0.8	2	2	10.0	2.5	0.6	0	
TOTAL	10.0	3.0	21	12	2.1	4.0	-7.0	-9	

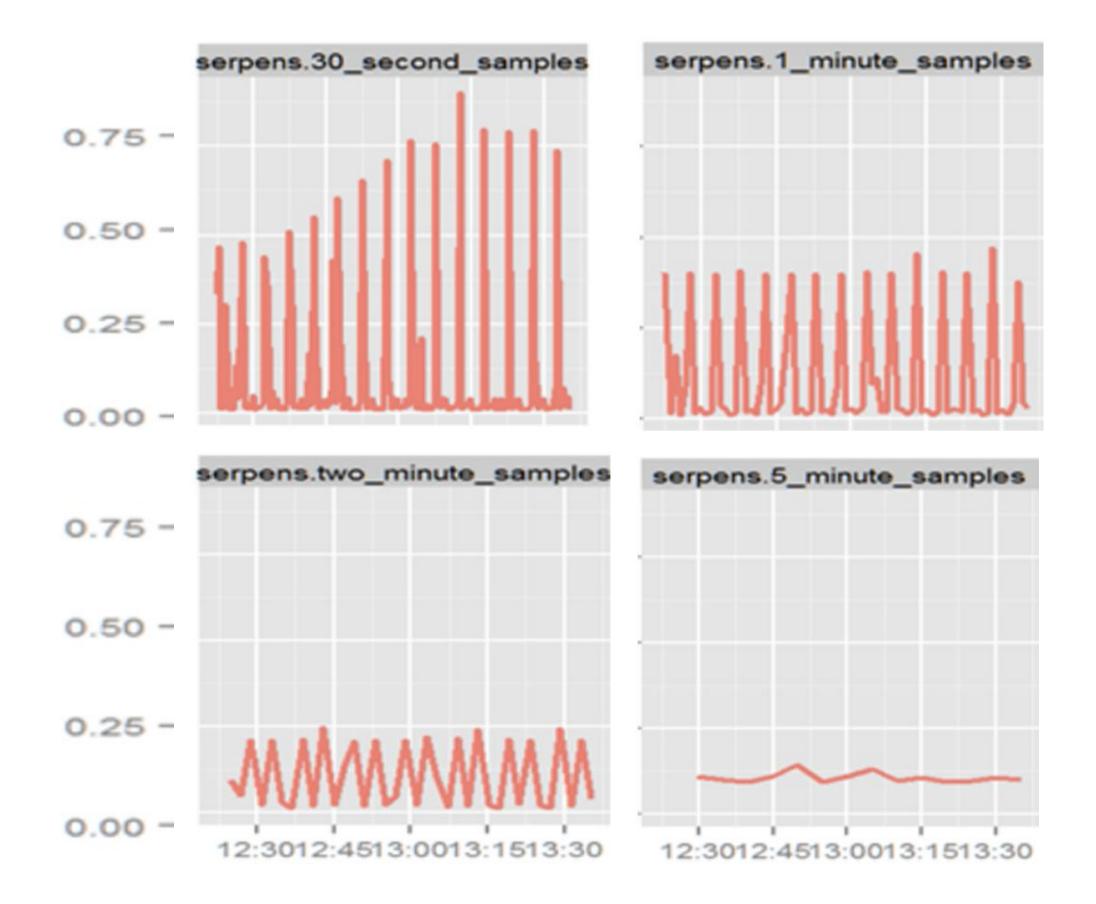
Designed to give helpful insight to your Power Systems capacity and guide right-sizing based on statistical analysis and IBM best practice recommendations from the experience of IBM Lab Services Power Systems performance consultants.

Helps clients better understand their current usage and plan for growth

Give accurate sizing for migration of legacy hardware to Power9 systems.

Capacity Planning Toolkit

Capacity Planning Tool								
POWER SYSTEMS SUMMARY								
bobfP8		EC	VCPU VC			PU/EC	Delta	
LPAR	Current	Proposed	Current	Proposed	Current	Proposed	EC	VCPU
aaron_client1	0.3	0.1	1	1	3.3	10.0	-0.2	0
aaron_client2	0.3	0.1	2	1	6.7	10.0	-0.2	-1
bb1vios1	4.0	0.8	4	2	1.0	2.5	-3.2	-2
bb1vios2	4.0	0.8	4	2	1.0	2.5	-3.2	-2
thanh_client01	0.3	0.1	2	1	6.7	10.0	-0.2	-1
thanh_client02	0.3	0.1	2	1	6.7	10.0	-0.2	-1
thanh_client03	0.3	0.1	2	1	6.7	10.0	-0.2	-1
thanh_client04	0.3	0.1	2	1	6.7	10.0	-0.2	-1
viren 1	0.2	0.8	2	2	10.0	2.5	0.6	0
TOTAL	10.0	3.0	21	12	2.1	4.0	-7.0	-9
						CORES available	3.2	


Analyze data from a variety of sources including NMON, LPAR2RRD / HMC LPARUTIL, ITM, BMC Patrol/Perceiver, HP Openview or Custom Right-sizing recommendations backed by core Power performance team

Target specific frame utilizations

Incorporate specific business rules and SLAs with multiple rules based on service tiering

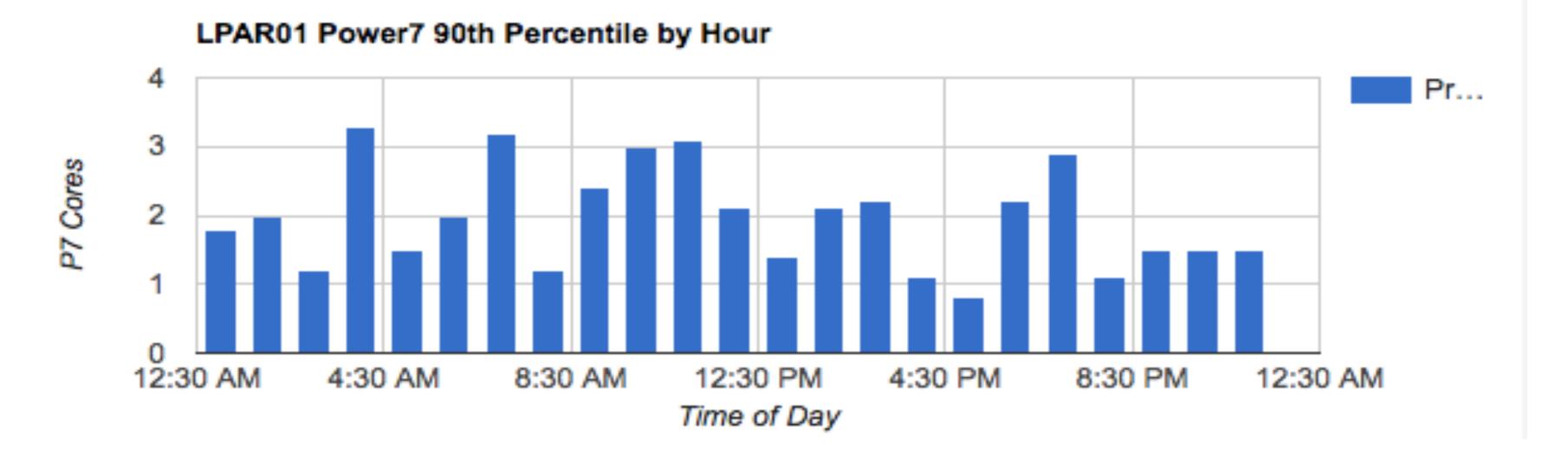
HA awareness, including failover capacity in sizing and Active/Active or Active/Standby

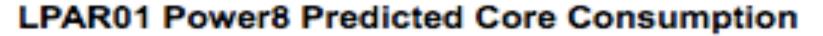
Averaging – In Graphic Detail

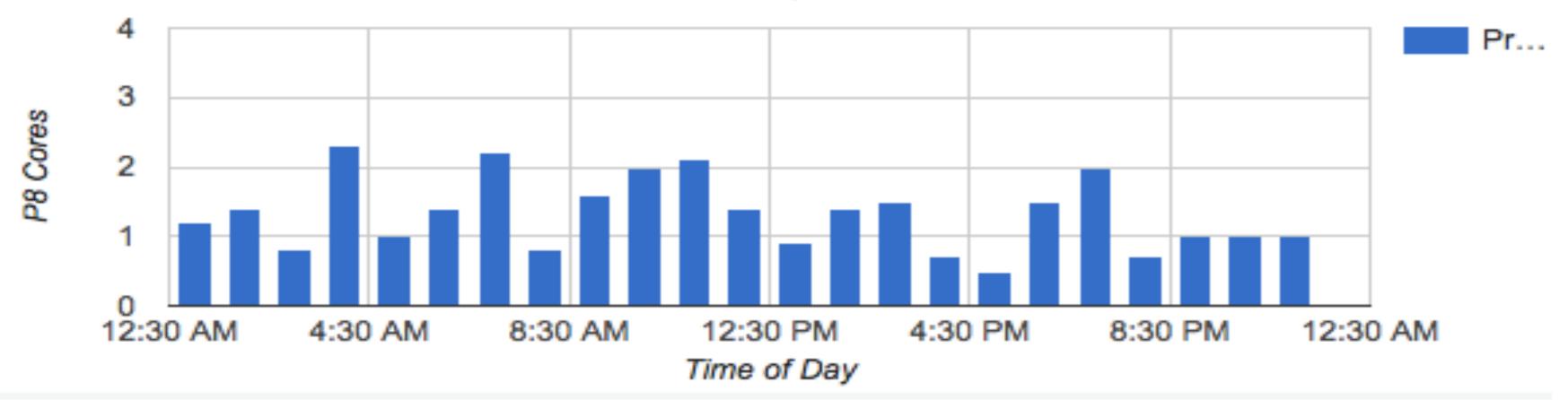
LPAR with EC=1.0

CPT – sampling and duration:

- **Prefer frequent sampling**
 - Minutes or seconds not hours or days
- Want a duration that spans significant times in your business
- **Calculate consumption by percentile**
 - Look at the frequency physical consumption exceeds certain values


CPT Strategy - Percentiles


Size partitions to some percentile of physe – e.g. 80th Percentile

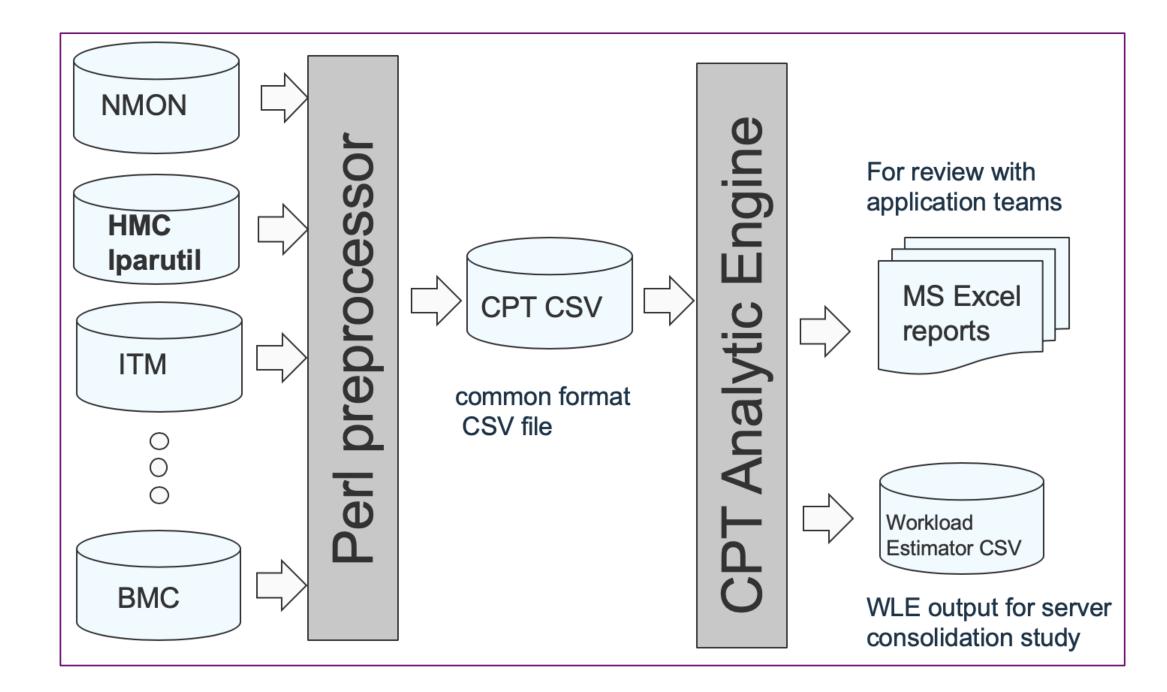

- i.e. partition uses shared pool resources 20% of the time

"A percentile is a measure used in statistics indicating the value below which a given percentage of observations in a group of observations fall."

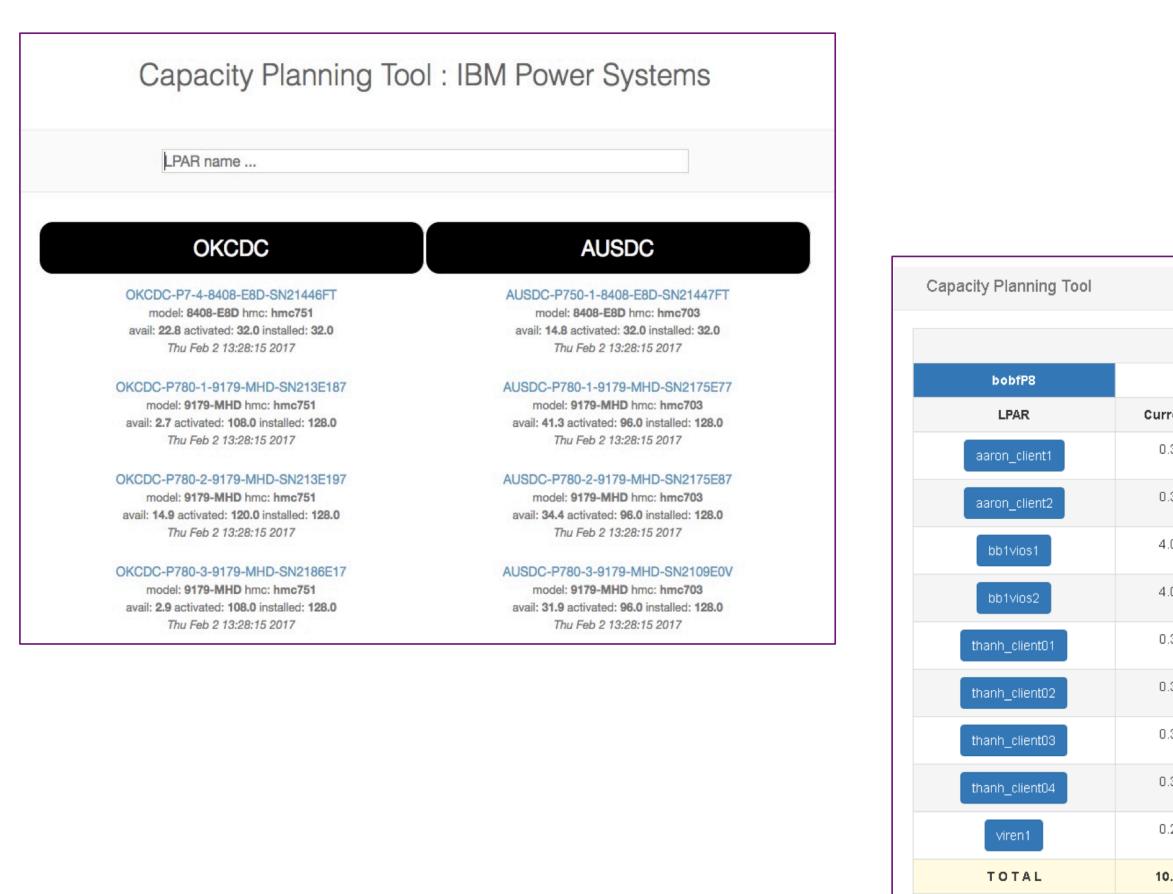
Are you (and your customers) comfortable with sharing 20% of the time?

Physical CPU Consumption (a look under the hood)

hscroot@mghmc:~> lslparutil -m Server-9117-MMC-SN105C627 -s s
-r lpar --filter lpar_names=tk_client4 -n 5
-F time,lpar_name,time_cycles,capped_cycles,uncapped_cycles


08/19/2014 00:00:01,tk_client4,57128844165869583,2101580556690666,65134521038724200
08/19/2014 00:01:01,tk_client4,57084606898946411,2099830346976073,65078043365245131
08/19/2014 00:02:01,tk_client4,57040369581440206,2098041394103272,65019310570401523
08/19/2014 00:03:01,tk_client4,56996132201262607,2096247138018427,64961064623230901
08/19/2014 00:04:01,tk_client4,56951895572644835,2094502335264528,64905048528493313

PHYSC = (2096247138018427-2094502335264528) + (64961064623230901-64905048528493313) (56996132201262607 - 56951895572644835)


CPT – Capacity Planning Toolkit

Designed to be flexible, and handle a number of different input formats:

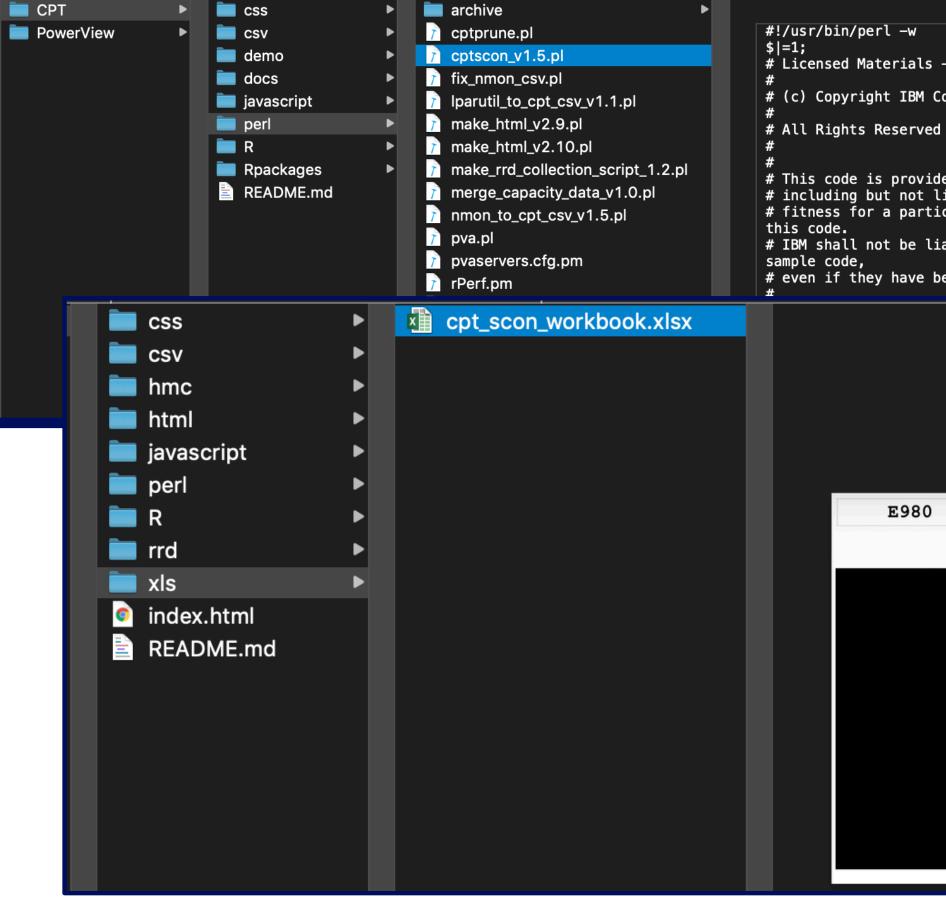
- NMON
- ITM
- BMC
- LPAR2RRD \bullet
- HMC LPARUTIL
- HMC PCM \bullet
- AIX VMSTAT ullet
- CUSTOM \bullet


CPT – Capacity Planning Toolkit

		POWER SYSTEM	S SUMMARY				
	EC	v	(CPU	VC	Delta		
urrent	Proposed	Current	Proposed	Current	Proposed	EC	VCPU
0.3	0.1	1	1	3.3	10.0	-0.2	0
0.3	0.1	2	1	6.7	10.0	-0.2	-1
4.0	0.8	4	2	1.0	2.5	-3.2	-2
4.0	0.8	4	2	1.0	2.5	-3.2	-2
0.3	0.1	2	1	6.7	10.0	-0.2	-1
0.3	0.1	2	1	6.7	10.0	-0.2	-1
0.3	0.1	2	1	6.7	10.0	-0.2	-1
0.3	0.1	2	1	6.7	10.0	-0.2	-1
0.2	0.8	2	2	10.0	2.5	0.6	0
10.0	3.0	21	12	2.1	4.0	-7.0	-9
					CORES available	3.2	

CPT – SCONN Server Consolidation

CPT - Server Consolidation



Give accurate sizing for migration of legacy hardware to Power9

Consolidate legacy Power systems using Rperf scaling

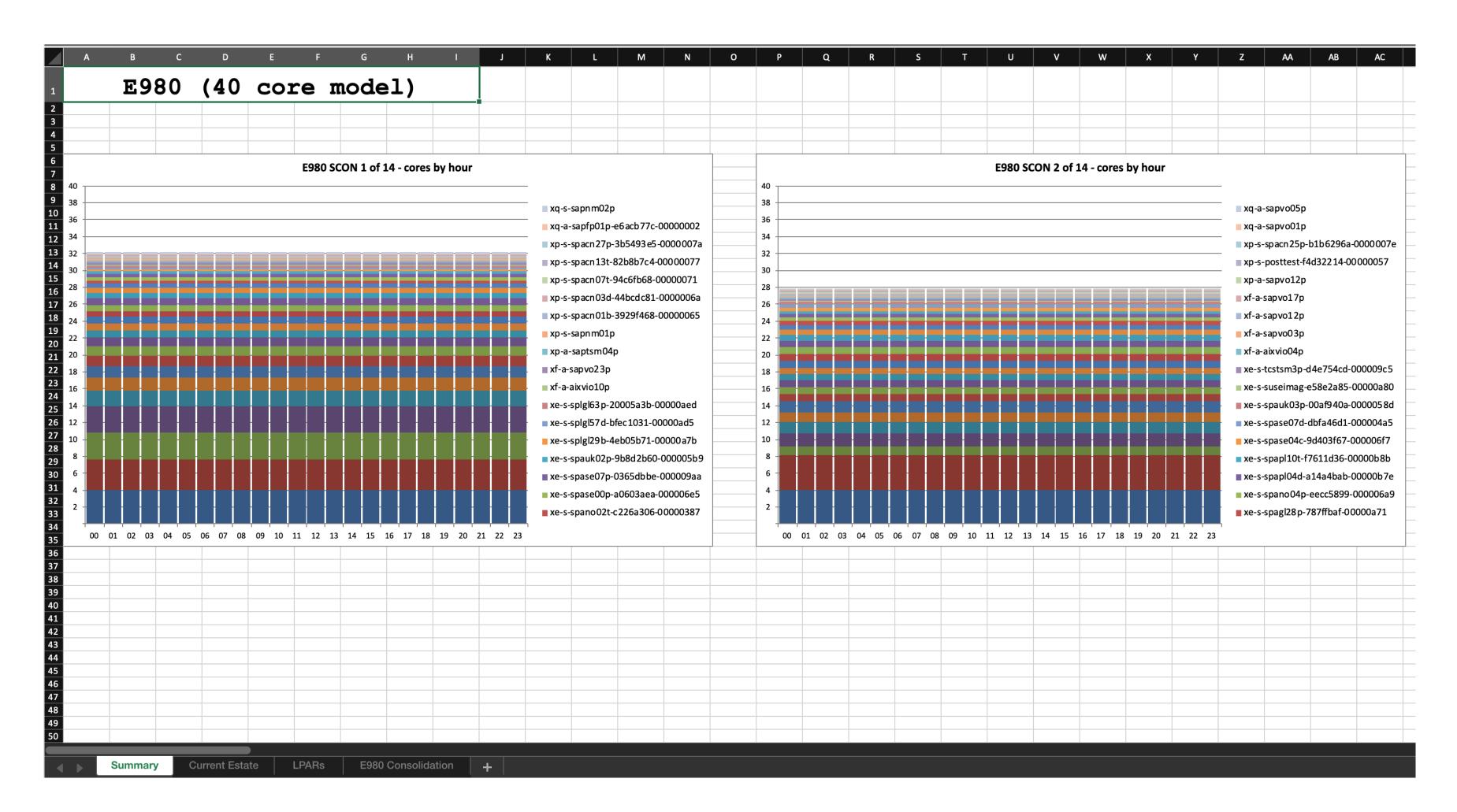
Typically used in a Migration Planning and Server Consolidation studies

Capacity Planning Tool – SCONN

Licensed Materials - Property of IBM

(c) Copyright IBM Corporation 1992, 1993

This code is provided "AS IS." IBM® makes no warranties, express or implied, # including but not limited to the implied warranties of merchantability and # fitness for a particular purpose, regarding the function or performance of


IBM shall not be liable for any damages arising out of your use of the # even if they have been advised of the possibility of such damages.

E980 (40 core model)

Capacity Planning Tool – SCONN Output

Capacity Planning Toolkit - Metered Capacity Modeling

CPT-MCM

Possible configurations:			
EFP1 3.90 - 4.0 G	Hz 32-con		
	12 32-001		
12 CECs, 3	384 cores	. Growth= 3.55%	
36 month	cost per	<pre>static core = \$5000 (activation) + \$1116.67 SW cost annu</pre>	ally* <mark>3</mark> ye
36 month o	cost per	typical PEP1.0 core (10% static, 90% mobile) = \$6800 (ac	tivation
36 month o	cost per	base core = \$8000 (activation) + \$1793.33 SW cost annual	ly*3 yea
1 capacity	v credit	= \$240.00 , utility price per minute: \$0.02	
+-	Base		
	Procs	100% static pep1.0 typ base utility	base+u
+-	96	\$ 3,256,500 \$ 3,765,650 \$ 1,284,480 \$ 2,433,407	\$ 3.717
		\$ 3,256,500 \$ 3,765,650 \$ 1,297,860 \$ 2,401,876	
		\$ 3,256,500 \$ 3,765,650 \$ 1,311,240 \$ 2,370,350	
		\$ 3,256,500 \$ 3,765,650 \$ 1,324,620 \$ 2,338,827	
		\$ 3,256,500 \$ 3,765,650 \$ 1,338,000 \$ 2,307,307	
	150	\$ 3,256,500 \$ 3,765,650 \$ 2,007,000 \$ 899,507	\$ 2,906
		\$ 3,256,500 \$ 3,765,650 \$ 2,207,700 \$ 658,316	
		\$ 3,256,500 \$ 3,765,650 \$ 2,221,080 \$ 644,449	
		\$ 3,256,500 \$ 3,765,650 \$ 2,234,460 \$ 630,781	
i		\$ 3,256,500 \$ 3,765,650 \$ 2,247,840 \$ 617,309	
		\$ 3,256,500 \$ 3,765,650 \$ 2,261,220 \$ 604,025	\$ 2,865
		\$ 3,256,500 \$ 3,765,650 \$ 2,274,600 \$ 590,947	
	171	\$ 3,256,500 \$ 3,765,650 \$ 2,287,980 \$ 578,051	\$ 2,866
	172 I	\$ 3,256,500 \$ 3,765,650 \$ 2,301,360 \$ 565,334	\$ 2,866
	173 I	\$ 3,256,500 \$ 3,765,650 \$ 2,314,740 \$ 552,786	\$ 2,867
		\$ 3,256,500 \$ 3,765,650 \$ 2,328,120 \$ 540,409	
		\$ 3,256,500 \$ 3,765,650 \$ 2,676,000 \$ 264,771	
	250 I	\$ 3,256,500 \$ 3,765,650 \$ 3,345,000 \$ 16,657	\$ 3,361
	300 1	\$ 3,256,500 \$ 3,765,650 \$ 4,014,000 \$ 2,930 \$ 3,256,500 \$ 3,765,650 \$ 4,683,000 \$ 37	\$ 4,016
	350	\$ 3,256,500 \$ 3,765,650 \$ 4,683,000 \$ 37	\$ 4,683

Designed to give customers insight into the potential benefits of the Power Enterprise Pools 2.0 offering. Understand the benefits of PEP 2.0 before making the investment.

Use historical data from legacy systems and see rPerf scaled core utilization relative to E980 systems.

PEP 2.0 value calculated from historical CPU consumption data (one minute samples)

years					
n) +	1116.67	SW	cost	annually*	3 year
ars					
) util					
7,887					
9,736					
1,590					
3,447					
5,307					
6,507					
5,016					
5,529					
5,241					
5,149	Ī				
5,245	-+-				
5,547					
5,031					
5,694					
7,526					
8,529					
0,771					
1,657					
6,930					
3,037					

ightarrow

 \bullet

Model legacy workloads in latest technology using a Metered Capacity model

Cost comparisons with full capacity investment and classic PEP models

Optimize mix of base and metered capacity

Power Systems Private Cloud with Shared Utility Capacity

Cloud-like agility and economics with leadership business continuity and security

* One server machine type per pool. Multiple pools may be managed by a single instance of a Cloud Management Console

Expanded Shared Utility Capacity

- Deploy a Power Private Cloud infrastructure with Shared Utility Capacity across a collection of Power E980, or E950, or S924 and S922 systems*
- New, minimal system purchase/lease option as low as 1 core, 256GB active, with pay-per-use on balance of fully active capacity by the minute
- Industry-leading monitoring and metering via IBM Cloud Management Console with granular, real-time & historical views of consumption by resource by VM & system
- **IBM Proactive Support**
- Private Cloud Capacity Assessment & Implementation Services

Deploying Shared Utility Capacity

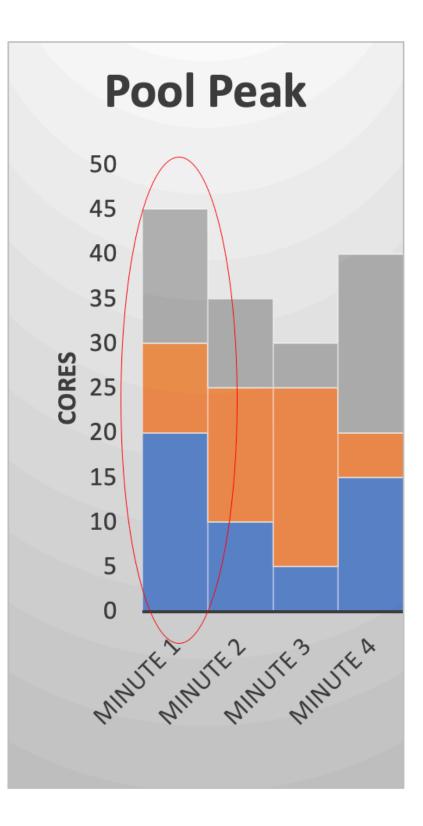
- Purchase servers with Base capacity
- Variable demand addressed by purchasing Capacity Credits for Metered capacity
- IBM Cloud Management Console with HMC automatically monitors and debits against Capacity Credits based on actual usage by the minute

Base and Metered Capacity

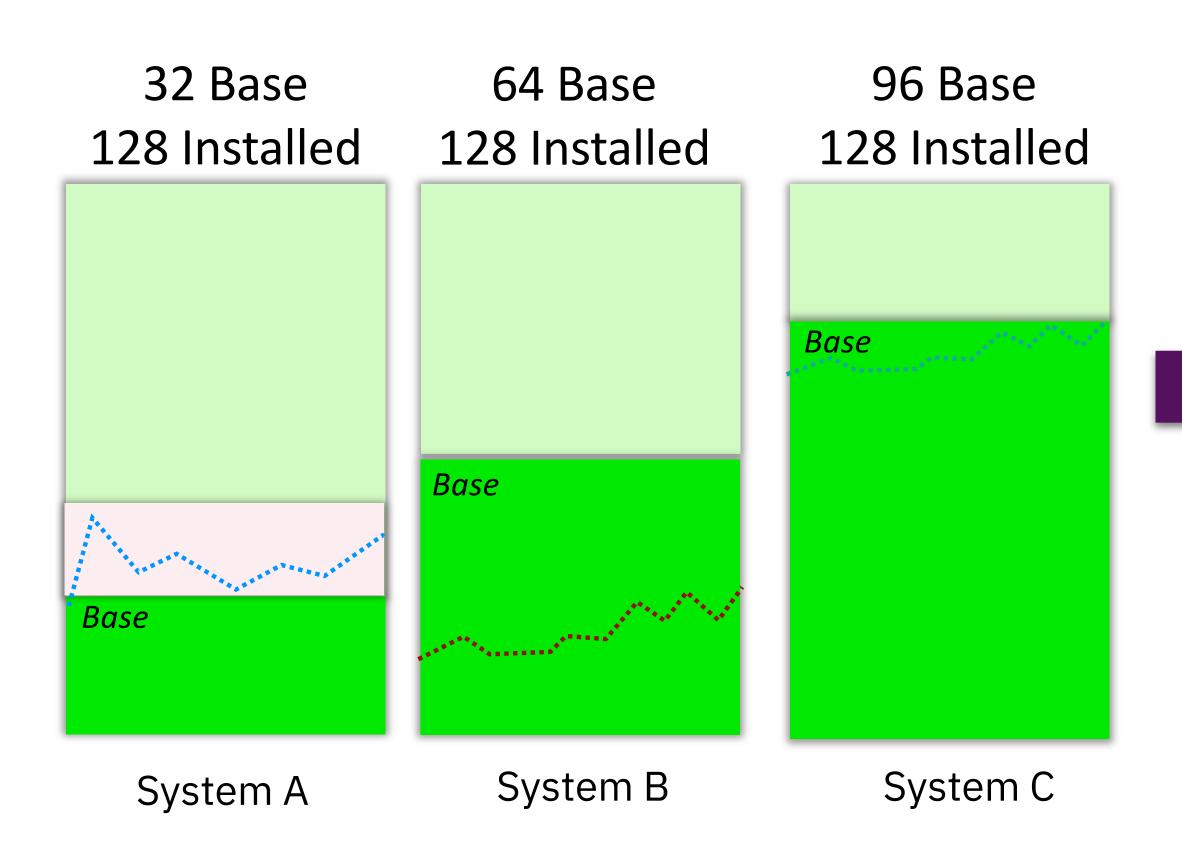

Processor activations AIX and IBM i licenses

Memory activations (E980 and E950 only)

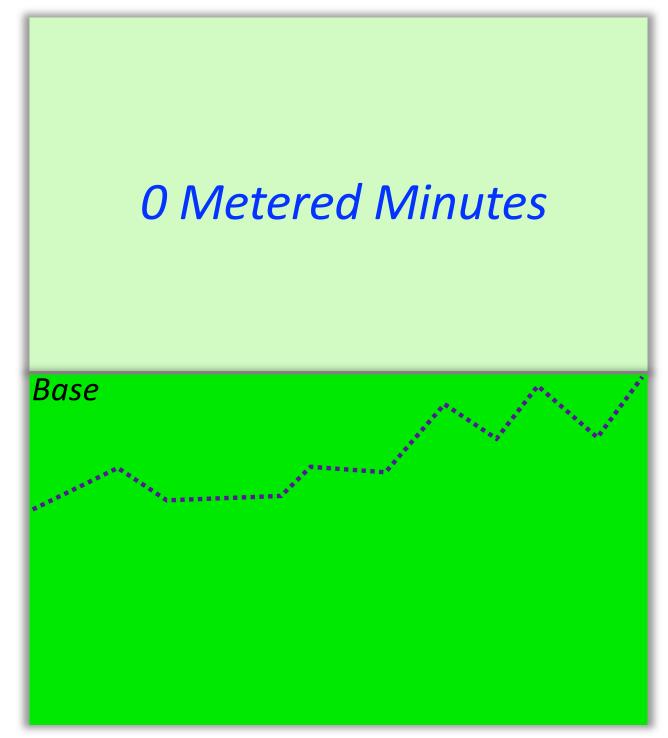
Server Consolidation without Pooling or By-minute Metering



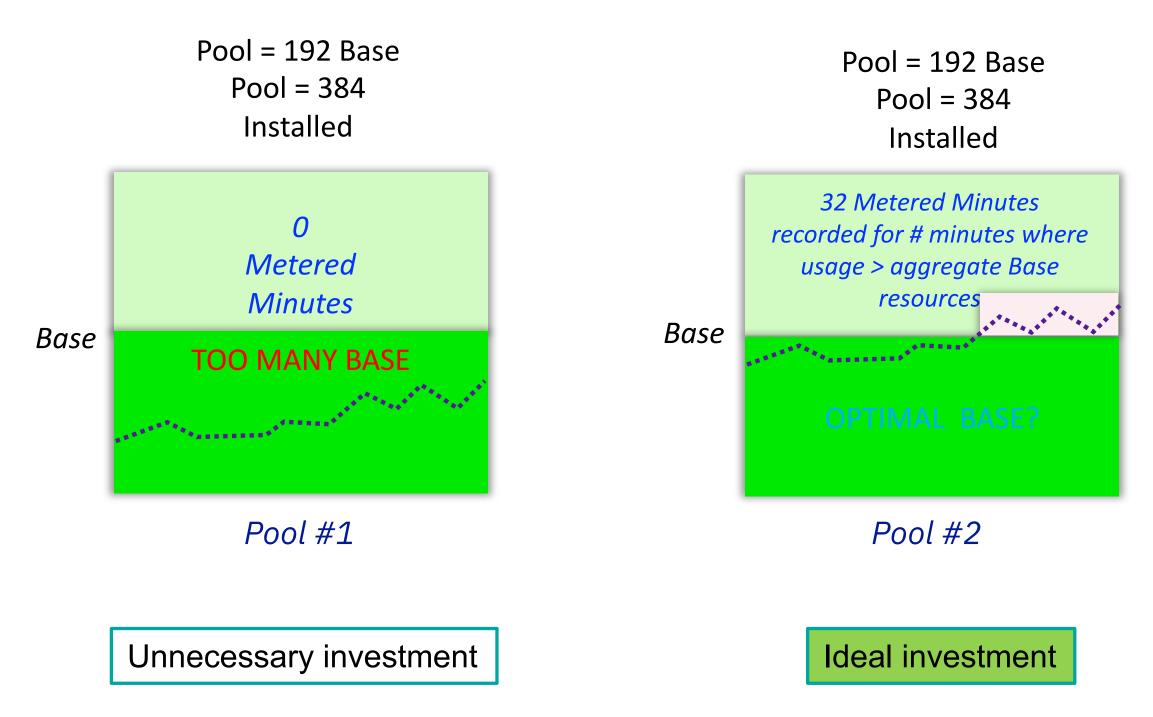
Server Consolidation *with* Pooling and By-minute Metering

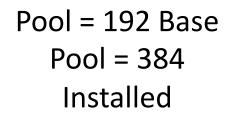


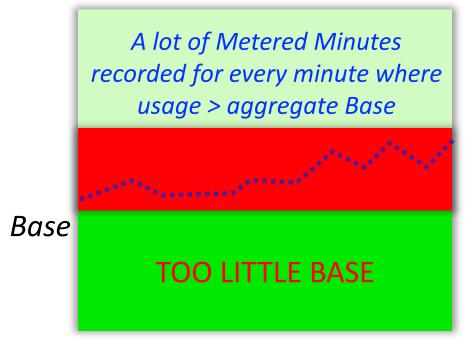
Q


Pool peak is now based on aggregate perminute usage

Processor Example - Pool has 1 system using more than its Base Processor Activations, but another system is idle, using <u>less</u> than its Base Processor resources at the same time, so 0 Metered resource usage is recorded




Pool = 192 Base Pool = 384 Installed



Pool #1

Pool's base resources vs aggregated consumption

Pool #3

Potentially too expensive

CPT-MCM: Example Run

Step	1:	Process server config file	and retrieve r
Step	2:	Process server xml pool da Start time: 1567959360 End time: 1570551240 Total Seconds: 2591880 Total Minutes: 43198 Total Hours: 719 Total Days: 29	09/08/2019 16:1
Step	3:	Process server xml pool da Processing server FL1-9119 Processing server FL2-9119 Processing server FL3-9119 Processing server FL4-9119 Processing server FL5-9119 Processing server GR1-9119 Processing server GR2-9119 Processing server GR3-9119 Processing server GR3-9119 Processing server GR4-9119 Processing server GR4-9119 Processing server GR5-9119	-MHE-SN21C7867 -MHE-SN21C7877 -MHE-SN21C7887 -MHE-SN21C7897 -MHE-SN21C7887 -MHE-SN21C7887 -MHE-SN2198FC7 -MME-SN2198FD7 -MME-SN2198FF7 -MME-SN2198FF7 -MME-SN2198FF7

Perf info... t and stop times.....done. 16:00 14:00

sC data...

CPT-MCM: Example Run

Step	4:	Calculate	per	minute	usag	8								
				FL1-9	9119-1	MHE-SN	21C78	67	(peak=47	.89/36	time=	09/21/2	2019	15:42
				FL2-9	9119-1	MHE-SN	21078		(peak=45					
				FL3-9	9119-1	MHE-SN	21078	87	(peak=56	.13/37	time=	09/09/2	2019	16:38
				FL4-9	9119-	MHE-SN	21078	97	(peak=48	.00/50	time=	10/05/2	2019	02:02
				FL5-9	9119-	MHE-SN	21078		(peak=29					
				FL6-9	9119-1	MHE-SN	21C78		(peak=67					
				GR1-9	9119-1	MME-SN	2198F	C7	(peak=31	.95/28	time=	09/21/2	2019	15:43
				GR2-9	9119-	MME-SN	2198F	D7	(peak=24	.10/23	time=	09/11/2	2019	00:11
				GR3-9	9119-1	MME-SN	2198F	E7	(peak=27	.19/24	time=	09/21/2	2019	15:55
				GR4-9	9119-	MME-SN	2198F	F7	(peak=34	.28/27	time=1	10/05/2	2019	02:32
				GR5-9	9119-1	MME-SN	21990	07	(peak=43	.07/38	time=	09/25/2	2019	23:03
				GR6-9	9119-	MME-SN	21990	27	(peak=40	.23/36	time=	10/05/2	2019	02:32
		Worst cas	e rPe	erf tot	al =	11,08	7 (th	is a	ssumes n	o pool	ing or	optimi	izati	ion vi
			390	cores,	EFP1	3.90	- 4.0	GHz	32-core	proc	(28.44	rPerf	per	core)
			404	cores,	EFP2	3.70	- 3.9	GHz	40-core	proc	(27.45	rPerf	per	core)
			413	cores,	EFP4	3.58	- 3.9	GHz	44-core	proc	(26.85	rPerf	per	core)
			396	cores,	EFP3	3.55	- 3.9	GHz	48-core	proc	(28.01	rPerf	per	core)
		Peak minu	te r	Perf to	tal =	10,54	7 (10	/05/2	2019 02:	02:00)	Best	case is	s per	fectl
									32-core					
									40-core					
									44-core					
			377	cores,	EFP3	3.55	- 3.9	GHz	48-core	proc	(28.01	rPerf	per	core)

```
2:00)
2:00)
8:00)
2:00)
6:00)
8:00)
3:00)
1:00)
5:00)
2:00)
3:00)
2:00)
/ia server consolidation)
a) $5,000/1 core activation for EFP1 $ 1,950,000
a) $5,000/1 core activation for EFP2 $ 2,020,000
a) $6,000/1 core activation for EFP4 $ 2,478,000
e) $6,000/1 core act for EFP3/EHC6 $ 2,376,000
ly managed pool to this peak.
                                    50% static
                                                  10% static
                                     _____
a) $7,000/1 core Mob Act EFP1/EFP5
                                    $ 2,226,000 - $ 2,522,800
a) $7,000/1 core Mob Act EFP2/EFP6
                                    $ 2,310,000 - $ 2,618,000
e) $7,000/1 core Mob Act EFP4/EFP8
                                    $ 2,554,500 - $ 2,711,700
                                    $ 2,450,500 - $ 2,601,300
 $7,000/1 core Mob Act EFP3/EFP7
```

CPT-MCM: Pools Value Assessment Tool

+			SOFTWARE						(based
I	Per-	I	BASE	ST	ATIC	L	MOBILE	I	
			1793.33						
			0.003410						(525966

d on 36 months owned)

50 minutes in a 365.25 day year)

CPT-MCM: Pools Value Assessment Tool

stgturgut:perl turgut\$./pva.pl --dumppricing --country=DE

Pricing for country=DE:

|CEC=EFP1 (3.90 - 4.0 GHz 32-core proc) € IFL ELBK (Linux proc act for EFP1/EFP5) 🤤 base EP90 (1-core Base Act Pools 2 EFP1) € baselinux EP96 (1-core BaseAct Linux EFP1) 🧧 mobile EFPE (1 core Mob Act EFP1/EFP5) 🧧 static EFPA (1 core activation for EFP1) 🧧 CEC=EFP2 (3.70 - 3.9 GHz 40-core proc) 🧧 IFL ELBL (Linux proc act for EFP2/EFP6) € base EP91 (1-core Base Act Pools 2 EFP2) 🗧 baselinux EP97 (1-core BaseAct Linux EFP2) 🧧 mobile EFPF (1 core Mob Act EFP2/EFP6) 🧧 static EFPB (1 core activation for EFP2) 🧧 CEC=EFP4 (3.58 - 3.9 GHz 44-core proc) 🤤 IFL ELBQ (Linux proc act for EFP4/EFP8) € base EP93 (1-core Base Act Pools 2 EFP4) 🗧 baselinux EP99 (1-core BaseAct Linux EFP4) 🧧 mobile EFPN (1 core Mob Act EFP4/EFP8) 🧧 static EFP9 (1 core activation for EFP4) 🧧 CEC=EFP3 (3.55 - 3.9 GHz 48-core proc) € IFL ELBM (Linux proc act for EFP3/EFP7) € base EP92 (1-core Base Act Pools 2 EFP3) € baselinux EP98 (1-core BaseAct Linux EFP3) 🧧) 🧧 mobile EFPG (1 core Mob Act EFP3/EFP7) 🧧 static EFPC (1 core act for EFP3/EHC6 PID=5765-AMT-0001 (AIX 7.2 Standard Edition Monthly Term Offering - Per Processor Core 5771-AMT-2288 (AIX 7.2 Standard Edition Monthly Term Offering - 1 Year SWMA Per P PID=5765-CBA-0001 (Enterprise Cloud Edition AIX - Per Processor Core on Medium Server 5771-CBA-2303 (Enterprise Cloud Edition AIX - 1 Year SWMA Per Processor Core on M PID=5765-CD3-0006 (AIX 7.2 ENTERPRISE EDITION V1 - Per Processor Core on Medium Serve 5771-AEZ-1475 (AIX 7.2 ENTERPRISE EDITION V1 - 1 Year SWMA Per Processor Core on PID=5765-G98-0009 (IBM AIX Standard Edition V7 - Per Processor Core on Medium Server 5771-SWM-1510 (IBM AIX Standard Edition V7 - 1 Year SWMA Per Processor Core on Med

List prices are dynamically fetched by the tool.

Values can be overwritten with provided pricing information.

e on Medium Server rocessor Core on Medium Server) (
edium Server) (
r 1edium Server) (
dium Server) (

CPT-MCM: Pools Value Assessment Tool

Possible configurations:

EFP1 3.90 - 4.0 GHz 32-core proc:

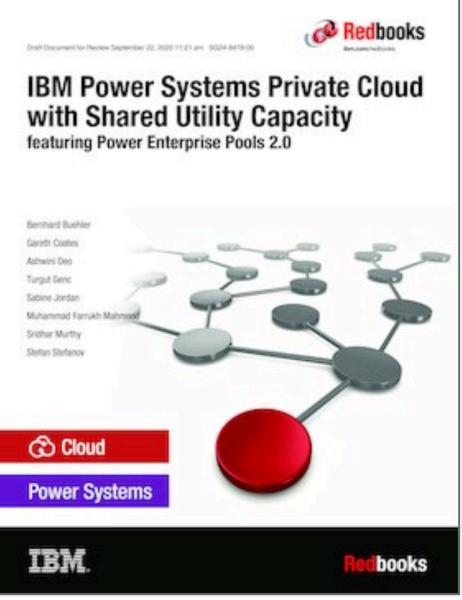
12 CECs, 384 cores. Growth= 3.55%

36 month cost per static core = \$5000 (activation) + \$1116.67 SW cost annually*3 years
36 month cost per typical PEP1.0 core (10% static, 90% mobile) = \$6800 (activation) + \$1116.67 SW cost annually*3 years
36 month cost per base core = \$8000 (activation) + \$1793.33 SW cost annually*3 years
1 capacity credit = \$240.00 , utility price per minute: \$0.02

	Base	36 M O M 100% static		VATION base	COSTS utility	(US / \$) base+util
i I	96 97	\$ 3,256,500 \$ 3,256,500	\$ 3,765,650 \$ 3,765,650	\$ 1,284,480 \$ 1,297,860	\$ 2,433,407 \$ 2,401,876	\$ 3,717,887 \$ 3,699,736
1	98 99	\$ 3,256,500 \$ 3,256,500	\$ 3,765,650 \$ 3,765,650	\$ 1,311,240 \$ 1,324,620	\$ 2,370,350 \$ 2,338,827	\$ 3,681,590 \$ 3,663,447
	100 150	\$ 3,256,500 \$ 3,256,500	\$ 3,765,650 \$ 3,765,650	\$ 1,338,000	\$ 2,307,307 \$ 899,507	\$ 3,645,307 \$ 2,906,507
	165 166	\$ 3,256,500 \$ 3,256,500	\$ 3,765,650 \$ 3,765,650	\$ 2,207,700 \$ 2,221,080	\$ 658,316 \$ 644,449	\$ 2,866,016 \$ 2,865,529
I	167	\$ 3,256,500	\$ 3,765,650	\$ 2,234,460	\$ 630,781	\$ 2,865,241
i	168	\$ 3,256,500	\$ 3,765,650	\$ 2,247,840	\$ 617,309	\$ 2,865,149
	169	\$ 3,256,500	\$ 3,765,650	\$ 2,261,220	\$ 604,025	\$ 2,865,245
- - -						
	169 170 171 172	\$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500	\$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650	\$ 2,261,220 \$ 2,274,600 \$ 2,287,980 \$ 2,301,360	\$ 604,025 \$ 590,947 \$ 578,051 \$ 565,334	\$ 2,865,245 \$ 2,865,547 \$ 2,866,031 \$ 2,866,694
	169 170 171 172 173 174	\$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500	<pre>\$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650</pre>	<pre>\$ 2,261,220 \$ 2,274,600 \$ 2,287,980 \$ 2,301,360 \$ 2,314,740 \$ 2,328,120</pre>	\$ 604,025 \$ 590,947 \$ 578,051 \$ 565,334 \$ 552,786 \$ 540,409	\$ 2,865,245 \$ 2,865,547 \$ 2,866,031 \$ 2,866,694 \$ 2,867,526 \$ 2,868,529
	169 170 171 172 173	<pre>\$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500</pre>	<pre>\$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650</pre>	<pre>\$ 2,261,220 \$ 2,274,600 \$ 2,287,980 \$ 2,301,360 \$ 2,314,740 \$ 2,328,120 \$ 2,676,000</pre>	\$ 604,025 \$ 590,947 \$ 578,051 \$ 565,334 \$ 552,786 \$ 540,409 \$ 264,771	<pre>\$ 2,865,245 \$ 2,865,547 \$ 2,866,031 \$ 2,866,694 \$ 2,867,526 \$ 2,868,529 \$ 2,940,771</pre>
	169 170 171 172 173 174 200	\$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500 \$ 3,256,500	<pre>\$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650 \$ 3,765,650</pre>	<pre>\$ 2,261,220 \$ 2,274,600 \$ 2,287,980 \$ 2,301,360 \$ 2,314,740 \$ 2,328,120</pre>	\$ 604,025 \$ 590,947 \$ 578,051 \$ 565,334 \$ 552,786 \$ 540,409 \$ 264,771	\$ 2,865,245 \$ 2,865,547 \$ 2,866,031 \$ 2,866,694 \$ 2,867,526 \$ 2,868,529

Power Enterprise Pools 2.0 Redbook!

IBM


IT Infrastructure \checkmark Software \checkmark Storage \checkmark Training \checkmark About Redbooks \checkmark

IBM Redbooks > Power Systems >

IBM Power Systems Private Cloud with Shared Utility Capacity featuring Power Enterprise Pools 2.0

A draft IBM Redbooks publication

Updated 22 September 2020

http://www.redbooks.ibm.com/abstracts/sg248478.html?Open

Q

Contacts for obtaining Tools

- **Contacts and More Information**
- Lab Services UKI Opportunity Manager : John M
- Lab Services Europe Opportunity Manager
- Lab Services EMEA Technical Lead

- : Beatric
- : Turgut
- Other regions: please contact your local Lab Services opportunity manager http://ibm.biz/LabServicesOM
- General Lab Services enquiries <u>ibmsls@us.ibm.com</u>

1arkey	<u>markejoh@ie.ibm.com</u>
ce Luquet	<u>beatrice.luquet@fr.ibm.com</u>
Genc	<u>TurgutGenc@uk.ibm.com</u>

Demos

IBM Systems TechU

Featuring:

- Best practices from expert speakers and leading developers and consultants
- Technical sessions, hands-on labs ulletand discounted certification testing
- Access to key technical decision ulletmakers and influencers
- Solution Centers showcasing the lacksquarelatest IBM and vendor products
- Dedicated time with clients, Business lacksquarePartners, technical experts and developers

ibm.com/training/events

2020

IBM Training > Systems TechU Conferences >

IBM Tech**U**

The premier virtual training event for deep technical content on IBM Systems products and solutions

Register Today!

Let's stay connected all year by using #IBMTECHU.

The virtual edition | 26-29 October 2020

More information

ibm.com/training/events/vtechu2020

Lab Services and Business Partners

IBM Systems Lab Services:

- Helps BPs progress sales and accelerate adoption of IBM Systems ullet
- Engages with and complements the skills of BPs lacksquare
- **Does not compete** with or replace BP services practices lacksquare
- Ensures BPs retain control of their client relationships lacksquare

Working with IBM Systems Lab Services:

- Gives access to expertise of IBM consultants ullet
- Gives access to skills transfer and shadowing lacksquare
- Helps grow sales and extend business scope lacksquare
- Helps reduce risk of working with new technologies lacksquare

ibm.biz/LabServices

IBM Systems Lab Services

Infrastructure expertise to help you build the foundation of a smart enterprise.

IBM Systems Lab Services helps you deploy the building blocks of a next-generation IT infrastructure that empowers your business.

- Solve business challenges
- Gain new skills
- Apply best practices

Contact us today to see how Lab Services can help empower your business.

ibmsls@us.ibm.com

Resources

Visit: Lab Services ibm.com website <u>www.ibm.com/it-infrastructure/services/lab-services</u> Lab Services PartnerWorld website <u>www.ibm.com/partnerworld/systems/services/lab-services</u> Lab Services Events website <u>www.ibm.com/training/events</u> Lab Services developerWorks <u>ibm.biz/LabServicesdW</u> IT Infrastructure blog channel <u>www.ibm.com/blogs/systems/topics/services/ibm-systems-lab-services</u>

Explore: <u>ibm.biz/LabServicesBrochure</u> <u>ibm.biz/LabServicesPowerBrochure</u> <u>ibm.biz/LabServicesStorageBrochure</u> <u>ibm.biz/LabServiceszSystemsBrochure</u> Engage: <u>facebook.com/ibmsystems</u> <u>twitter.com/IBMSystems</u> <u>www.youtube.com/user/IBMSLST</u> <u>linkedin.com/groups/8518569</u> #IBMLabServices #IBMTechU

Email: ibmsls@us.ibm.com

Tank Vou

###