
Ansible on IBM Power
and

IBM PowerVC Updates

Stuart Cunliffe
CTO Systems Lab Services Europe (Power and Cognitive)
email: s_cunliffe@uk.ibm.com
Twitter: @StuCunliffe
slack: @Stu Cunliffe

Agenda

Ø Ansible Overview
• Architecture
• Engine, Tower

Ø Terminology
• Inventory
• Configuration file
• Modules
• Playbooks and Roles

Ø Provisioning via PowerVC
• Upgrading AIX LPARs using Ansible and NIM

Ø Managing clients
• Simple Playbooks
• Advanced Playbooks

Ø Ansible Tower

Ø PowerVC Updates

Stuart Cunliffe
email: s_cunliffe@uk.ibm.com
Twitter: @StuCunliffe
slack: @Stu Cunliffe

Ansible Overview

“Ansible is an open source automation tool for provisioning,
orchestration, system configuration and patching”

First developed by Michael DeHaan and acquired by Red Hat in 2015.

Ansible Overview

Ansible Overview

Ansible Overview – key points

1. The Ansible Engine Controller runs on RHEL or Ubuntu
2. The Engine can manage a large number of clients (via an inventory)
3. It does not require an agent on the clients
4. Uses SSH to communicate with the clients
5. The clients can be AIX, IBM i, RHEL, Ubuntu, SLES, Centos, Fedora,

network switches, storage controllers etc.….
6. Human readable automation
7. No special coding skills needed
8. Uses modules to perform tasks, these tasks can be called from the

command line or playbooks
9. It is idempotent
10. Simple to get started

Architecture

1. Ansible Engine

2. Inventory

3. Modules

4. Playbooks

5. Client hosts

How Ansible works

1. Ansible Engine

2. Inventory

3. Modules

4. Playbooks

5. Client hosts

The Inventory (and
configuration file)

How Ansible works – The Inventory

1. The client inventory file is a configurable list of VMs/clients that ansible can control.
2. It is written in an INI or YAML format, lists host and groups.
3. Can be static of dynamic.

cat /etc/ansible/hosts
[managedClients]
[RHEL_Dev]
lab-rhel-1
lab-rhel-2

[AIX_Dev]
lab-aix-1
lab-aix-2

[Dev:children]
RHEL_Dev
AIX_Dev

Group Name
Client Name

Collection of groups

Static Inventory example

How Ansible works – The Inventory

So we can list the files in the inventory by using ‘ansible-inventory’
ansible-inventory --graph
@all:

|--@Dev:
| |--@AIX_Dev:
| | |--lab-aix-1
| | |--lab-aix-2
| |--@RHEL_Dev:
| | |--lab-rhel-1
| | |--lab-rhel-2
|--@local:
| |--localhost

Group Name
Client Name

Collection of groups

How Ansible works – The Inventory

We can use the inventory file to configure some connection options to the clients.

cat /etc/ansible/hosts
[managedClients]
[RHEL_Dev]
lab-rhel-1 ansible_user=ansible
lab-rhel-2 ansible_port=222

[AIX_Dev]
lab-aix-1 ansible_host=10.1.1.1
lab-aix-2

[Dev:children]
RHEL_Dev
AIX_Dev

Client unique variables

Static Inventory example with connection variables

How Ansible works – The Inventory

We can use the inventory file to configure some connection options to the clients.

ansible-inventory –list
….
"hostvars": {

"lab-aix-1": {
"ansible_host": "10.1.1.1"

},
"lab-rhel-1": {

"ansible_user": "ansible"
},
"lab-rhel-2": {

"ansible_port": 222
}

….

How Ansible works – The Inventory

We can use the inventory file to configure group connection options to the clients.

cat /etc/ansible/hosts
[managedClients]
[RHEL_Dev]
lab-rhel-1 ansible_user=ansible
lab-rhel-2 ansible_port=222

[AIX_Dev]
lab-aix-1 ansible_host=10.1.1.1
lab-aix-2

[Dev:children]
RHEL_Dev
AIX_Dev

[AIX_Dev:vars]
proxy=proxy.labs.uk.ibm.com

Variable applies to whole group

Static Inventory example with group connection variables

How Ansible works – The Inventory

We can use the inventory file to configure group connection options to the clients.

ansible-inventory –list
….
"hostvars": {

"lab-aix-1": {
"ansible_host": "10.1.1.1",
"proxy": "proxy.labs.uk.ibm.com"

},
"lab-aix-2": {

"proxy": "proxy.labs.uk.ibm.com"
},
"lab-rhel-1": {

"ansible_user": "ansible"
},
"lab-rhel-2": {

"ansible_port": 222
}

….

Both clients in the group have
picked up the new connection
variable

How Ansible works – The Inventory

We can configure a dynamic inventory (on-prem or public cloud).

ansible-inventory -i ./openstack.yml --graph
@all:
|--@meta-original_host_828422A_2177C0W:

| |--Lab-Ansible-64
| |--Lab-Chef-65
| |--Lab-DNS1-52
| |--Lab-GDR-51
| |--Lab-NIM-26
| |--Lab-PowerVC-57
| |--Lab-Proxy1-29
| |--Lab-RM-GUI-31
| |--Lab-VMRM-50

….

PowerVC/OpenStack Dynamic Inventory example

How Ansible works – The Inventory

We have a number of ways to tell Ansible which inventory file to use, in precedence:
1. the ‘-i’ flag on the command line (you can call more than one inventory file if needed)
2. The ANSIBLE_INVENTORY environment variable
3. Using “inventory=xxx” in the ansible configuration file
4. If all else fails, the default is /etc/ansible/hosts

ansible -v -a "echo Inventory File is {{ inventory_file }}" localhost
Using /etc/ansible/ansible.cfg as config file
….
- Inventory

- File
- is
- /etc/ansible/hosts

….

Method to check which inventory file you are using

How Ansible works – The ansible config file

Ansible looks for a configuration file to determine a number of parameters. As with the
inventory file, a number of configuration files can be defined for different projects.

Nearly all parameters in ansible.cfg can be overwritten in playbooks or during ansible calls.

cat /etc/ansible/ansible.cfg
[defaults]
inventory = /etc/ansible/hosts
library = /usr/share/ansible/plugins/modules
module_utils = /usr/share/my_module_utils/
remote_tmp = ~/.ansible/tmp
local_tmp = ~/.ansible/tmp
sudo_user = root
ask_sudo_pass = True
ask_pass = True
remote_port = 22
…..

Example ansible.cfg fie

How Ansible works – The ansible config file

The active configuration files uses the following locations, in precedence:
1. The ANSIBLE_CONFIG environment variable
2. ./ansible.cfg - within the current directory
3. ~/.ansible.cfg. - home directory
4. If all else fails, the default is /etc/ansible/ansible.cfg

ansible --version
ansible 2.9.6

config file = /etc/ansible/ansible.cfg
configured module search path = [u'/root/.ansible/plugins/modules', u'/usr/share/ansible/plugins/modules']
ansible python module location = /usr/lib/python2.7/site-packages/ansible
executable location = /usr/bin/ansible
python version = 2.7.5 (default, Jun 11 2019, 14:33:56) [GCC 4.8.5 20150623 (Red Hat 4.8.5-39)]

Method to check which configuration file you are using

How Ansible works – The ansible config file

We can display all the current Ansible values. There are approx. 190 configuration options:

ansible-config dump
ACTION_WARNINGS(default) = True
AGNOSTIC_BECOME_PROMPT(default) = True
ALLOW_WORLD_READABLE_TMPFILES(default) = False
ANSIBLE_CONNECTION_PATH(default) = None
ANSIBLE_COW_PATH(default) = None
ANSIBLE_COW_SELECTION(default) = default
ANSIBLE_COW_WHITELIST(default) = ['bud-frogs', 'bunny', 'cheese', 'daemon', 'default', 'dragon', 'elephant-in-
snake', 'elephant', 'ey
ANSIBLE_FORCE_COLOR(default) = False
ANSIBLE_SSH_CONTROL_PATH(default) = None
ANSIBLE_SSH_CONTROL_PATH_DIR(default) = ~/.ansible/cp
ANSIBLE_SSH_EXECUTABLE(default) = ssh
….

Display configuration parameters

How Ansible works – The ansible config file

If no config file exists or if a parameter hasn’t been set, Ansible uses all default settings.
We can see which values are not default:

ansible-config dump --only-changed
DEFAULT_HOST_LIST(/etc/ansible/ansible.cfg) = [u'/etc/ansible/hosts']
DEFAULT_LOAD_CALLBACK_PLUGINS(/etc/ansible/ansible.cfg) = True
DEFAULT_STDOUT_CALLBACK(/etc/ansible/ansible.cfg) = yaml
HOST_KEY_CHECKING(/etc/ansible/ansible.cfg) = False
INTERPRETER_PYTHON(/etc/ansible/ansible.cfg) = auto_silent

Display non-default configuration parameters

NOTE: It is very important to ensure you are using the correct configuration and
inventory files. Although when we call modules and playbooks we can specify the
hosts this isn’t mandatory. Calling the wrong inventory could cause significant issues.

How Ansible works

1. Ansible Engine

2. Inventory

3. Modules

4. Playbooks

5. Client hosts

Modules

How Ansible works – Modules
Modules are the core of Ansible

1. They perform the real work by executing on the clients.
ü Ansible engine connects to your clients
ü It pushes out the module along with parameters
ü The module is then executed on the client
ü The module is then removed from the client

2. Ansible comes with thousands of modules covering server, network, storage, files, DB etc.
3. Can be written in Python, Perl, Ruby, Bash, etc. – that return JSON format
4. You can write your own modules
5. Command line syntax: ’ansible –m <module_name> -a <attributes>’
6. They are idempotent (that word again)….
Dictionary definition:
“denoting an element of a set which is unchanged in value when multiplied or otherwise operated on by itself”

“For Ansible it means after 1 run of a playbook to set things to a desired state, further runs of the same playbook
should result in 0 changes. Idempotency means you can be sure of a consistent state in your environment.”

How Ansible works – Modules (idempotency)

ansible lab-aix-1 -m aix_lvol -a "lv=testlv size=10M vg=rootvg"
PLAY [Ansible Ad-Hoc] ***
TASK [aix_lvol] ***
changed: [lab-aix-1]

PLAY RECAP

lab-aix-1 : ok=1 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Add a logical volume – first run

ansible lab-aix-1 -m aix_lvol -a "lv=testlv size=10M vg=rootvg"
PLAY [Ansible Ad-Hoc]***
TASK [aix_lvol] ***
ok: [lab-aix-1]

PLAY RECAP
**
lab-aix-1 : ok=1 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Add a logical volume – second run

During the first run a change
occurs. The LV is created.

During the second run a change does
NOT occur. The LV already exists.

How Ansible works – Modules
Ansible comes with thousands of ‘core’ modules, divided into categories:
https://docs.ansible.com/ansible/latest/modules/modules_by_category.html#modules-by-category

https://docs.ansible.com/ansible/latest/modules/modules_by_category.html

How Ansible works – Modules

Some modules are fairly generic across different architectures/device types:
ü ping module - Try to connect to host, verify a usable python and return “pong” on success

Some modules are specific to OS types e.g. Linux:
ü systemd module – Manage services (uses systemctl command)

Other modules have been written for specific OS distribution e.g. AIX:
ü aix_devices modules – Manage AIX devices (uses chdev, lsdev, etc. commands)

How Ansible works – Modules

As well as Anisble’s website we can also use the Ansible Engine server to show modules, how
they are supported, options available etc.

ansible-doc aix_lvol
> AIX_LVOL (/usr/lib/python2.7/site-packages/ansible/modules/system/aix_lvol.py)
This module creates, removes or resizes AIX logical volumes. Inspired by lvol module.
* This module is maintained by The Ansible Community
OPTIONS (= is mandatory):
- copies

The number of copies of the logical volume.
Maximum copies are 3.
[Default: 1]
type: int

= lv
The name of the logical volume.
type: str

- lv_type
The type of the logical volume.
[Default: jfs2]
type: str

……

Using ‘ansible-doc’ to review a module

The “=“ indicates mandatory
parameters.

Shows the location
of the module and
support level.

How Ansible works – Modules

An example module.
cat /usr/lib/python2.7/site-packages/ansible/modules/system/aix_lvol.py
#!/usr/bin/python
Copyright: (c) 2016, Alain Dejoux <adejoux@djouxtech.net>
GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt)
…
author:

- Alain Dejoux (@adejoux)
module: aix_lvol
short_description: Configure AIX LVM logical volumes
description:
- This module creates, removes or resizes AIX logical volumes. Inspired by lvol module.

…..
if this_lv is None:

if state == 'present':
if lv_size > this_vg['free']:

module.fail_json(msg="Not enough free space in volume group %s: %s MB free." % (this_vg['name'], this_vg['free']))
mklv_cmd = module.get_bin_path("mklv", required=True)
cmd = "%s %s -t %s -y %s -c %s -e %s %s %s %sM %s" % (test_opt, mklv_cmd, lv_type, lv, copies, lv_policy, opts, vg, lv_size,

pv_list)
……

aix_lvol module

We can read the underlying
commands being called

Should include information
about the author

How Ansible works – Modules

What happens if we call an invalid module?
ansible lab-rhel-1 -m aix_lvol -a "lv=testlv size=10M vg=rootvg"
PLAY [Ansible Ad-Hoc]
**

TASK [aix_lvol]
**
fatal: [lab-rhel-1]: FAILED! => changed=false
ansible_facts:
discovered_interpreter_python: /usr/bin/python

msg: 'Failed to find required executable lsvg in paths: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin'

PLAY RECAP

lab-rhel-1 : ok=0 changed=0 unreachable=0 failed=1 skipped=0 rescued=0 ignored=0

Calling an AIX module on a Linux client

The AIX command ‘lsvg’ was
not found on the client.

How Ansible works – Modules
AIX specific modules inc. in Ansible library Other AIX specific modules

e.g. https://github.com/ansible/community/wiki/AIX &
https://github.com/aixoss/ansible-
playbooks/tree/master/library

https://github.com/ansible/community/wiki/AIX
https://github.com/aixoss/ansible-playbooks/tree/master/library

How Ansible works – Modules (IBMi)
IBMi specific modules from GitHub: https://github.com/IBM/ansible-for-i/tree/master/library
IBMi and Ansible: https://mediacenter.ibm.com/media/t/1_fdz7x3vi

https://github.com/IBM/ansible-for-i/tree/master/library
https://mediacenter.ibm.com/media/t/1_fdz7x3vi

How Ansible works – Core Modules & Power
AIX collection modules – due June 2020:

How Ansible works – Modules

What happens if we don’t have OS specific models?

Don’t panic there are a number of ‘command’ modules we can run.

How Ansible works – Modules

ü command module – Execute commands on targets

ansible lab-aix-1 -m command -a "cat /etc/motd"
lab-aix-1 | CHANGED | rc=0 >>

* *
* *
* Welcome to AIX Version 7.2! *
* *
* *
* Please see the README file in /usr/lpp/bos for information pertinent to *
* this release of the AIX Operating System. *
* *
* *

Simple ‘command’ module example

How Ansible works – Modules

ü script module – Runs a local script on a remote node after transferring it

cat ./show_date.sh
#!/bin/sh
date

ansible lab-aix-1 -m script -a "./show_date.sh"
lab-aix-1 | CHANGED => {

"changed": true,
"rc": 0,
"stderr": "Shared connection to lab-aix-1 closed.\r\n",
"stderr_lines": [

"Shared connection to lab-aix-1 closed."
],
"stdout": "Fri May 15 08:31:21 CDT 2020\r\n",
"stdout_lines": [

"Fri May 15 08:31:21 CDT 2020"
]

}

Simple ‘script’ module example

Script on the Ansible Engine

Script is copied over and
executed on the client

How Ansible works – Modules (setup and facts)

ü setup module – Gathers facts about remote hosts (~1000 lines for a AIX LPAR)

ansible lab-aix-1 -m setup
lab-aix-1 | SUCCESS => {

"ansible_facts": {
"ansible_all_ipv4_addresses": [

”10.1.1.10"
…
"fcs0": {

"attributes": {
"max_xfer_size": "0x100000”

"state": "Available",
"type": "C3-T1 Virtual Fibre Channel Client Adapter"

…..
"ansible_nodename": "lab-aix-1",

"ansible_os_family": "AIX",
"ansible_processor": "PowerPC_POWER8",
"ansible_processor_cores": 8,
"ansible_processor_count": 1,
"ansible_product_name": "IBM,9119-MHE",
"ansible_product_serial": "21Cxxxx",

…..

Setup module

Thousands of facts about h/w, OS,
network and storage devices etc.
can be gathered.

These can be used to filter which
clients to run a task against in a
playbook.

How Ansible works – Basic Demo

How Ansible works

1. Ansible Engine

2. Inventory

3. Modules

4. Playbooks

5. Client hosts

Playbooks

How Ansible works – Playbooks

Modules might be the core, but Playbooks are how we drive Ansible

ü Playbooks are Ansible’s configuration, deployment, and orchestration language.
ü They are the instruction manual describing the configuration you want your remote clients

to enforce.
ü Written in YAML format, so should be readable.

Basic playbooks:
Used to manage configurations of and deployments to remote machines.

Advanced playbooks:
They can sequence multi-tier rollouts involving rolling updates, and can delegate actions to
other hosts, interacting with monitoring servers and load balancers along the way.

How Ansible works – Playbooks

A playbook consists of ‘plays’, which in turn consist of ’tasks’, which contain ’modules’.

cat AIX_LV_backup_playbook.yml

- name: Create backup LV

gather_facts: no
hosts: AIX_Dev

tasks:
- name: Create LV (backuplv) size 10MB

aix_lvol:
vg: rootvg
lv: backuplv
size: 10M
state: present

Simple playbook

PlaybookPlay

Task

How Ansible works – Playbooks

A playbook consists of ‘plays’, which in turn consist of ’tasks’, which contain ’modules’.

cat AIX_LV_backup_playbook.yml

- name: Create backup LV

gather_facts: no
hosts: AIX_Dev

tasks:
- name: Create LV (backuplv) size 10MB

aix_lvol:
vg: rootvg
lv: backuplv
size: 10M
state: present

Simple playbook

Define the ‘play’
Do not gather facts

Which hosts to run the play against. ‘All’ will
run it against all clients in the inventory

Define the ‘task’
The name of the module to call for this task

Module parameters to use for this task

How Ansible works – Playbooks

A playbook consists of ‘plays’, which in turn consist of ’tasks’, which contain ’modules’.

ansible-playbook AIX_LV_backup_playbook.yml

PLAY [Create backup LV]
**

TASK [Create LV (backuplv) size 10MB]
**
changed: [lab-aix-1]
changed: [lab-aix-2]

PLAY RECAP
**
lab-aix-1 : ok=1 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
lab-aix-2 : ok=1 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Simple playbook

The name of the ‘play’

The name of the ‘task’

Completed on 2 clients

How Ansible works – Playbooks (tasks and tags)

We can list the tasks in a playbook without actually running it:

ansible-playbook ./AIX_multiple_task_v4_all_tasks.yml --list-tasks

playbook: ./AIX_multiple_task_v4_all_tasks.yml

play #1 (all): mksysb & expect.man client install TAGS: []
tasks:

Check if installp directory exists TAGS: []
Make /installp directory if missing TAGS: []
Copy installp files into /installp TAGS: []
Create mksysb LV (mksysblv) with 5GB TAGS: []
Create mksysb filesystem using mksysblv TAGS: []
Mount mksysb filesystem /mksysb/images TAGS: []
Install expect.man client from file TAGS: []
Display expect.man LPP install result TAGS: []
Generate a mksysb on /mksysb/images TAGS: []

Task in a playbook

All the tasks are listed
but not executed

How Ansible works – Playbooks (tasks and tags)

We can also ‘tag’ tasks with identifiers :

cat ./AIX_multiple_task_v4_all_tasks.yml
tasks:

- name: Check if installp directory exists
stat:
path: "{{ install_dir_name }}"

register: file_details
tags: install

….

- name: Copy installp files into /installp
copy:
src: '/tmp/{{ install_lpp_name }}'
dest: '{{ install_dir_name }}/{{ install_lpp_name }}’

tags: install, copy
…..

- name: Create mksysb filesystem using mksysblv
aix_filesystem:
device: "{{ filesystem_lv_name }}"
filesystem: "{{ filesystem_fs_name }}"
state: present

register: fs_result
tags: filesystem, backup

….

Task and tags in a playbook

We can add ‘tag’
names to each task.

How Ansible works – Playbooks (tasks and tags)

We can also ‘tag’ tasks with identifiers, and list them:

ansible-playbook AIX_multiple_task_v4_all.yml --list-tasks

playbook: AIX_multiple_task_v4_all.yml

play #1 (all): mksysb & expect.man client install TAGS: []
tasks:

Check if installp directory exists TAGS: [install]
Make /installp directory if missing TAGS: [install]
Copy installp files into /installp TAGS: [copy, install]
Create mksysb LV (mksysblv) with 5GB TAGS: [backup, filesystem]
Create mksysb filesystem using mksysblv TAGS: [backup, filesystem]
Mount mksysb filesystem /mksysb/images TAGS: [backup, filesystem]
Install expect.man client from file TAGS: [install]
Display expect.man LPP install result TAGS: [install]
Generate a mksysb on /mksysb/images TAGS: [backup, mksysb]

Task and tags in a playbook

How Ansible works – Playbooks (tasks and tags)

We can then just run certain tasks, by giving a tag:

ansible-playbook AIX_multiple_task_v4_all.yml --list-task -t copy
playbook: AIX_multiple_task_v4_all.yml

play #1 (all): mksysb & expect.man client install TAGS: []
tasks:

Copy installp files into /installp TAGS: [copy, install]

List copy tasks only

ansible-playbook AIX_multiple_task_v4_all.yml -t copy
PLAY [mksysb & expect.man client install]
**
TASK [Gathering Facts]
**
ok: [lab-aix-1]
TASK [Copy installp files into /installp]
**
changed: [lab-aix-1]
PLAY RECAP **
lab-aix-1 : ok=2 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Run ‘copy’ tasks only

How Ansible works – Playbooks (variables)

We can define variables from within the playbook

cat Install_VMRM_agent_v1.0.yml
……

vars:
source_dir: /root/VMRM_Code
target_dir: /tmp
aix_code: ksys.vmmon.rte
rhel_code: vmagent-1.3.0-1.0.el7.ppc64le.rpm

- name: Copy VM agent code - AIX
copy:

src="{{ source_dir }}/{{ aix_code }}"
dest="{{ target_dir }}/{{ aix_code }}"

- name: Copy VM agent code - RHEL
copy:

src="{{ source_dir }}/{{ rhel_code }}"
dest="{{ target_dir }}/{{ rhel_code }}"

Playbook variables example

Variable defined in the playbook

Different variables used

Copy module called

How Ansible works – Playbooks (variables)

We can ‘include’ variables from an external file. There is a ‘priority’ order of var definition

cat OSlevel_check.yml

- hosts: all

tasks:
- name: Load AIX specific variables

include_vars: AIX.yml

- name: Check OS
command: "{{ os_check_command }}”

Imported variables example

We include an external variables file

The command modules needs a
variable called ‘os_check_command’

cat AIX.yml

variables for script
os_check_command: "oslevel -s"
args_variable_name: "AIX_OS"

The ‘os_check_command’ is defined
in this variable file and passed back
to the main playbook.

How Ansible works – Playbooks (conditions)

We can run tasks against ‘facts’ gathered from the clients, for example OS type

cat OSlevel_check.yml

- hosts: Dev
tasks:
- name: Load AIX specific variables
include_vars: AIX.yml
when: ansible_distribution == "AIX"

- name: Load RHEL specific variables
include_vars: RHEL.yml
when: ansible_distribution == "RedHat”

- name: Load Ubuntu specific variables
include_vars: Ubuntu.yml
when: ansible_distribution == "Ubuntu"

- name: Check OS
command: "{{ os_check_command }}"
register: os_check_result
args:
creates: "{{ args_variable_name }}"

Playbook ‘when’ example

Include a different variable file
depending on the clients OS type

The relevant OS command is passed back

How Ansible works – Playbooks (Roles)

As we start out with Ansible we tend to create one or two large playbooks

Although this is a good start we may want to reuse file and avoid repeating code.

Roles, import and includes are a good way to do this.

Roles allow us to automatically load certain variables, tasks and handlers based on a know file
structure. These can then be shared amongst other uses and projects.

How Ansible works – Playbooks (Roles)
Creating a role:

ansible-galaxy init db-server-role
- Role db-server-role was created successfully

tree
.
└── db-server-role
├── defaults
│ └── main.yml
├── files
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── README.md
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars

└── main.yml

Directory structure of a role:

If main.yml playbooks exist within the role, the
tasks, handlers, variable etc. listed within will
be added to the play that called it.

How Ansible works – Playbooks (Roles)
Why do we need roles?? If we look at our OpenStack playbook that creates AIX, Linux or IBMi VMs, its complex:
ansible-playbook playbooks/VM_build.yml --list-tasks
play #1 (localhost): Build new VM via PowerVC/OpenStack TAGS: []

tasks:
Prompt for new VM Name TAGS: [VM_Create]
Set VM Variables TAGS: [VM_Create]
Display VM Name TAGS: [VM_Create]
VM_network_list : Retrieve list of all networks TAGS: [VM_Create, VM_Network]
VM_network_list : Generate Network list TAGS: [VM_Create, VM_Network]
VM_network_list : Debug - Output Network list TAGS: [VM_Create, VM_Network]
VM_network_list : Display Network list TAGS: [VM_Create, VM_Network]
……
VM_image_list : Retrieve list of all OS Distributions TAGS: [VM_Create, VM_Images]
VM_image_list : Filter OS Distribution list TAGS: [VM_Create, VM_Images]
…..
VM_flavor_list : Retrieve list of all public flavors TAGS: [VM_Flavor, always, never]
….
VM_name_list : Retrieve list of all VMs TAGS: [VM_Create, VM_List]
VM_name_list : Retrieve VM list TAGS: [VM_Create, VM_List]
….
VM_create_vm : Create a new VM instance TAGS: [VM_Create]
VM_create_vm : Print VM's public IP address TAGS: [VM_Create]

Each group
of tasks is in
its own role

65 tasks in total

How Ansible works – Playbooks (Roles)
These roles can be used multiple times from other playbooks, other users or other projects:
cat playbooks/VM_build.yml

- name: Build new VM via PowerVC/OpenStack

tasks:
- name: List Available Networks

import_role:
name: VM_network_list

tags: VM_Create, VM_Network

- name: Pick Network for VM
import_role:

name: VM_network_pick
tags: VM_Create

- name: List VM images
import_role:

name: VM_image_list
tags: VM_Create, VM_Images

……

Within the tasks we import each role

How Ansible works – Other features

Handlers
Handlers are lists of tasks, that are referenced by a globally unique name, and are notified by notifiers. If nothing notifies a
handler, it will not run. Regardless of how many tasks notify a handler, it will run only once, after all of the tasks complete in
a particular play.

Blocks
Blocks allow for logical grouping of tasks and in play error handling. Most of what you can apply to a single task can be
applied at the block level, which also makes it much easier to set data or directives common to the tasks.

Vaults
Ansible Vault is a feature of ansible that allows you to keep sensitive data such as passwords or keys in encrypted files, rather
than as plaintext in playbooks or roles. These vault files can then be distributed or placed in source control.

Galaxy
Ansible Galaxy refers to the Galaxy website, a free site for finding, downloading, and sharing community developed roles.
https://galaxy.ansible.com/home

Ansible Tower

Ansible Tower is a UI and RESTful API allowing you to scale IT automation, manage complex
deployments and speed productivity.
• Role-based access control
• Deploy entire applications with push-button deployment access
• All automations are centrally logged
• Powerful workflows match your IT processes

Ansible Tower - Projects

Project
A project is a logical collection of Ansible Playbooks, represented in Ansible Tower.

You can manage Ansible Playbooks and playbook
directories by placing them in a source code
management system supported by Ansible Tower,
including Git, Subversion, and Mercurial.

Ansible Tower - Credentials

Credentials
Credentials are utilized by Ansible Tower for authentication with various external resources:

● Connecting to remote machines to run jobs
● Syncing with inventory sources
● Importing project content from version control systems
● Connecting to and managing devices

Ansible Tower - Inventory

Inventory
Inventory is a collection of hosts clients (just like the with the engine) with associated data
and groupings that Ansible Tower can connect to and manage.

● Hosts (nodes)
● Groups
● Inventory-specific data (variables)
● Static or dynamic sources

Ansible Tower - Templates

Job Templates
Everything in Ansible Tower revolves around the concept of a Job Template. Job Templates
allow Ansible Playbooks to be controlled, delegated and scaled for an organization.
Job templates also encourage the reuse of Ansible Playbook content and collaboration
between teams.

A Job Template requires:
● An Inventory to run the job against
● A Credential to login to devices.
● A Project which contains Ansible Playbooks

PowerVC Updates – version 1.4.4.1

Ø Active backup of PowerVC using powervc-backup, even when operations are in progress.
Ø Image sharing across projects. Set the image visibility of PowerVC images from private to public.
Ø View user information for operations within a project.
Ø Configuring initiator port groups (IPGs) to define the set of VIOS ports to be used for attachment when using NPIV.
Ø Deploy a virtual machine using existing boot and data volumes.
Ø Change (and retain) the availability priority of a virtual machine.
Ø Pin virtual machines using soft or hard options.
Ø Recall virtual machines to the source host following a maintenance mode activation or automate remote restart.
Ø Pure Storage technical preview as an integrated driver via the CLI.
Ø Infinidat storage as a registered plugable driver.
Ø IBM PowerVC FlexVolume Driver version 1.0.2 is available.
Ø Red Hat® OpenShift Container Platform 4.3 support with PowerVC.

Ø PPC64 support to be be withdrawn – you can migrate to ppc64le or x86_64.
Ø Guest OS support for SLES BE and Ubuntu 14.0.4 has been withdrawn.
Ø Cloud-init versions update to 19.1 to support SLES 15, RHEL 8.0 and 8.1.

PowerVC Updates – sharing images across projects

Image sharing across projects. We can now set the image visibility of PowerVC images from private to public.
Setting the visibility of an image to public makes it available or shareable across the projects.

PowerVC Updates – user information in operation

View user information for operations within a project – The Message tab now lists user information for every
operation along with other details. This helps to understand when a user has performed a specific operation. The
user name is listed as system for operations that are performed by PowerVC services internally.

PowerVC Updates – Initiator Port Groups

With IPG, a subset of ports can be selected for a given volume attachment. The ports in a given IPG should match all of the
VIOS and fabric settings of the storage connectivity group. For example, if you have selected VIOS redundancy of minimum 2
for a storage connectivity group, then the IPG should have ports from 2 Virtual I/O Servers for a host.

PowerVC Updates – Deploy using existing volumes

Create an image with no LUN listed

We can now choose to create an image without any volumes attached. While deploying this image, you can select the
existing volumes in the Deploy template. This prevents cloning of volumes and avoids any data redundancy.

PowerVC Updates – Deploy using existing volumes

Deploy ‘blank’ image and attached the existing LUN. This will create the VM and attach chosen LUNs.

We can now choose to create an image without any volumes attached. While deploying this image, you can select the
existing volumes in the Deploy template. This prevents cloning of volumes and avoids any data redundancy.

PowerVC Updates – Pin VMs
You can choose to soft pin or hard pin a virtual machine to the host where it is currently running. When you 'Soft Pin' a
virtual machine for high availability, PowerVC automatically migrates the virtual machine back to the original host once
the host is back to operating state. The 'Hard Pin' option helps you to restrict the movement of the virtual machine
during remote restart, automated remote restart, DRO and live partition migration.

PowerVC Updates – Migrate inactive VMs
We now have the ability to migrate inactive VMs

PowerVC Updates – Recall VMs
PowerVC automatically recalls virtual machines that were moved during host maintenance mode or automated remote
restart to the source host that has recall option enabled.

PowerVC Updates – Availability Priority
PowerVC allows you to update "Availability Priority" setting of a virtual machine and retains it even after live partition
migration (LPM) or remote restart of virtual machines to a new host.

Stuart Cunliffe
email: s_cunliffe@uk.ibm.com
Twitter: @StuCunliffe
slack: @Stu Cunliffe

