POWER9 Scale-Out \& Scale-Up

 Performance Review v18b- New rPerfs, Spectre/Meltdown, SMT - Threads, Processor modes, Heat v GHz

Nigel Griffiths
IBM Power Systems: EMEA Advanced Technology Support

This is not an IBM Announcement, not an Official IBM Statement, not a Legal Document It is Nigel's Personal Deck \& Nigel's Opinions

Please note

IBM's statements regarding its plans, directions, and intent are subject to change or withdrawal without notice and at IBM's sole discretion.
Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Information about potential future products may not be incorporated into any contract.
The development, release, and timing of any future features or functionality described for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user will experience will vary depending upon many factors, including considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve results similar to those stated here.

Summary

Nigel is to look at the recently POWER9 rPerf numbers \& compare with the updated POWER8 rPerf.

The new rPerf ranges for different over-clocking modes and threading levels - How do they work?

What to expect, if you upgrade POWER8 to POWER9?

Plus tuning the VP count to maximise efficiency and free up processors for other workloads.

POWER9 Performance Review

 - or - What IBM forgot to tell clients about POWER9 !1. Detailed look at the "POWER9 Performance Report"
2. Comments on the Spectre/Meltdown numbers for POWER8
3. Explain the rPerf Ranges and the SMT1 to 8 numbers
4. Single threaded application are dead! RIP
5. Setting the POWER9 performance modes plus EnergyScale balancing heat and GHz
6. The "o" word
7. Getting your Server to over heat!
8. How is the POWER9 delivering better performance
9. What to do as you migrate POWER7or POWER8 to POWER9
10.Monitoring the GHz, plus Temperature and Watts

Feb, April \& August 2018

The Must Have Document

Google:
ibm power systems
performance report

New version of S914 numbers

If you switch from default Dynamic Mode to Maximum Mode an extra 9\%
[for reduced noise levels] [for high performance]

Section 2a - AIX Multiuser Performance (rPerf : POWER9) - Non-default Processor Power Mode Setting
All POWER8 and POWER9 results in this table reflect performance with firmware and Operating System updates to mitigate Common

Model	Processor / \# Cores	Freq. GHz*	Cache L1 (KB) Per core	Cache L2/L3/L4 (MB)/ System	LPAR Size\# cores	$\begin{gathered} \text { rPerf } \\ \text { ST } \\ \hline \end{gathered}$	rPerf SMT2	rPerf SMT4	rPerf SMT8	Non-default EnergyScale Power Mode Setting
S914	p9/4	2.3 to 3.8	64/64	2/40/-		32.3	54.9	75.7	95.4	Max performance*
S914	p9/6	2.3 to 3.8	64/64	3/60/-		47.3	80.4	110.9	139.8	Max performance*
S914	p9/8	2.8 to 3.8	64/64	4/80/-		68.3	116.1	160.2	201.8	Max performance*

*S914 systems running in maximum performance mode may observe measurably higher sound levels under high utilization.

Actual percentage is application dependant
Warning: one average number can't represent every workload
Your application could be better or worse.

Nigel's comments \& not official IBM wording
IBM's official web page: https://www.ibm.com/blogs/psirt/ibm-storage-meltdownspectre/

All POWER9 Scale-Out \& Enterprise server firmware has Spectre/Meltdown protection

- POWER Users responsibility to check your operating systems version also has the fixes installed
- If you switch off firmware protection then the OS protection is also off

For client cases where top performance regardless of protection is demanded

1. Power off the server
2. Use ASMI to disable protection Also means OS protection is off
3. Restart the server

Now

Lets focus on Performance

This is doing my head in!!

Every one converted this to a spreadsheet to analyse the numbers

P8 single GHz	So24	Fow	$\rightarrow 3.8$	32
P9 GHz Ran	S824	P8/8	4.1	32
有z	S824	P8/12	3.8	32
	S824	P8/16	4.1	32
	S824	P8/24	3.5	
Eh!	5924	p9/8	3.8 to 4.0	
	5924	p9/16	3.8 to 4.0	8
	S924	p9/20	3.5103 .9	64
	5924	p9/24	3.4 to 3.9	
What settings decide the top or bottom GHz and so the rPerf?				

Model	Processor /\# Cores	Freq. GHz^{*}	Cache L1 (KB)	$\begin{gathered} \text { Cache } \\ \mathrm{L} 2 / \mathrm{L} 3 / \mathrm{L} 4 \\ \text { (MB) } \end{gathered}$	LPAR Size\# cores	rPerf ST	$\begin{aligned} & \text { rPerf } \\ & \text { SMT2 } \end{aligned}$	rPerf SMT4	rPerf SMT8
S924	p9/8	3.8 to 4.0	64/64	4/80/-		74.2	126.2	174.1	219.4
S924	p9/16	3.8 to 4.0	64/64	8/160/-		144.7	246.0	339.5	427.8
S924	p9/10	3.5 to 3.9	64/64	5/100/-		86.6	147.3	203.3	256.1
S924	р9120	3.5 to 3.9	64/64	10/200/-		169.0	287.2	396.4	499.5
S924	p9/24	3.4 to 3.9	64/64	12/240/-		197.2	335.3	462.7	583.1

*POWER9 frequency is expressed from Typical to Max GHz

This End of Table comment is not actually explained any where! What decides the GHz that your server is running at?

"ST" means Single Threaded

Now we get rPerf's for different threading levels (SMT=1, 2, 4 or 8)

- This is new and frankly confusing

IBM had rPerfs for different SMT setting for many years for older HW but did not generally share them
The low thread count = low rPerf numbers are fairly normal.
Hopefully, avoid some tricky situations.

Analogy

Take out all but one spark-plug on your:

- BMW Mini \&
- BMW 7 series

Then compare the car?

Analogy

Take out all but one spark-plug on your:

- BMW Mini \&
- BMW 7 series

Then compare them?

Yes, both cars are terrible!!!

The same with single-threaded workloads

1. These are also terrible workloads
2. We have known this for 25 years

Mr Pessimistic

rPerf prediction single threaded

POWER8 S824 16 core $4.1 \mathrm{GHz}=151 \mathrm{rPerf}(\mathrm{SMT} 8=304.8)$
POWER9 S924 16 core $4.0 \mathrm{GHz}=144$ rPerf (SMT8=427.8)
\rightarrow 5\% down

5

LPM POWER8 to POWER9

Results on beta HW
May differ in the GA releases

LPM POWER8 to POWER9

LPM POWER8 to POWER9

Don't Panic!

POWER9 is a BIG performance jump

For Multi-threaded applications as promised

Even at slightly reduced GHz for these initial models

Mr Optimistic

S 824	$\mathrm{P} 8 / 6$	113.8
S 824	$\mathrm{P} 8 / 8$	156.4
S 824	$\mathrm{P} 8 / 12$	221.9
S 824	$\mathrm{P} 8 / 16$	304.8
S 824	$\mathrm{P} 8 / 24$	397.3
S 924	$\mathrm{p} 9 / 8$	219.4
S 924	$\mathrm{p} 9 / 16$	427.8
S 924	$\mathrm{p} 9 / 10$	256.1
S 924	$\mathrm{p} 9 / 20$	499.5
S 924	$\mathrm{p} 9 / 24$	583.1

(583.1-397.3)/397.3*100
+46.7656\% scientific
$+47 \% \quad$ Techie
$+50 \% \quad$ Marketing

Don't Panic!

$$
+47 \%
$$

EnergyScale
balancing:
GHz and Heat

Next we explain the Performance mode and the GHz

Energy \& CPU GHz Balance

Important Frequencies
Max
Nominal - Fixed normal GHz Power Saver - Fixed reduce GHz

- Reduces electrical power use = saves money

Nominal - Fixed normal GHz
Power Saver - Fixed reduce GHz

- Reduces electrical power use = saves mo

With POWER7 and POWER8

Disabled All Mode \rightarrow "variable GHz" disabled *

- Most servers ran at Nominal GHz

Static Power Saver Mode .

- Rarely used - it reduces electricity use = reduced costs

Some used Dynamic Favour Performance Mode

- Which allows variable GHz

POWER9 Energy \& CPU GHz Balance

POWER9 Energy \& CPU GHz Balance

POWER9 Energy \& CPU GHz Balance

Note: If room temperature $>27 \mathrm{C}$ then the GHz is reduced, as necessary to Nominal

POWER9 Energy \& CPU GHz Balance

Idle Power Save = on / off

Different setting on the HMC ASMI Menu*
When sure CPUs are "idle" - it lower CPU GHz to save electricity
Static Power Saver Mode

- Already at lower GHz

Disabled All Mode \rightarrow "variable frequency" disabled

- Lower GHz when System Idle (after many seconds)

Dynamic Performance Mode

- Lower GHz when Socket Idle (for fraction of a second)

Maximum Performance Mode

- Lower GHz when System Idle (after many seconds)

Don't fiddle with the other "Idle Power Save settings" unless told to by IBM Support

POWER9 EnergyScale
CPU Frequency depends on Utilisation Workload

POWER9

Not to scale
Graph lines are

How to set the

 Performance Modes?Setting the Performance mode on the HMC

Setting the Performance mode (alternative)

Setting the Performance mode

Setting the Performance mode

Disable all modes
 The processor clock frequency will be set to its fixed, nominal value.

Enable Static Power Saver mode
Enabling this feature reduces power consumption by lowering the processor clock frequency and voltage to fixed values. This reduces the power consumption of the system while delivering predictable performance.

Enable Dynamic Performance mode

Enabling this feature causes the processor frequency to vary based on workload and active core count. As the workload/active core count decreases, the processor uses less power, which enables the frequency to be increased above nominal. During periods of very low utilization, the processor frequency will be reduced in order to save energy. This mode provides consistent performance across all environmental operating conditions.

Enable Maximum Performance mode

Enabling this feature causes the processor frequency to vary based on workload and active core count. As the workload/active core count decreases, the processor uses less power, which enables the frequency to be increased above nominal. In this mode, the allowed socket power is increased to the maximum value, which results in top performance along with increased fan noise and higher power consumption. In more stressful environmental conditions, performance may vary.

Lets talk about CPU thread strength

POWER9 thread strength is a primary benefit for higher performance

POWER9 thread strength is a primary benefit for higher performance

POWER9

POWER9 thread strength is a primary benefit for higher performance

POWER7/POWER8

WOW!! How did IBM developers do that?

POWER9 Fused core STRENGTH

POWER8 SMT8 Core Resources

What does this mean?
Moving P7 or P8 \rightarrow P9
REDUCE VP to
RAISE the use of those powerful threads
"Thread Harvesting"

In Practice
When sizing an upgraded or using Live Partition Mobility between POWER8 \& POWER9

What does this mean?
Moving P7 or P8 \rightarrow P9
Recalculate
Entitlement as P9 has higher rPerfs
"POWER9 Harvesting"

Section 2 - AIX Multiuser Performance (rPerf : POWER8 and up)
All POWER8 and POWER9 results in this table reflect performance with firmware and Operating System updates to mitigate Common

Model	Processor /\# Cores	Freq. GHz*	Cache L1 (KB)	$\begin{gathered} \text { Cache } \\ \text { L2/L3/L4 } \\ \text { (MB) } \end{gathered}$	LPAR Size\# cores	$\begin{array}{\|c} \text { rPerf } \\ \text { ST } \end{array}$	rPerf SMT2	rPerf SMT4	rPerf SMT8
S812	P8/4	3.00	32/64	2/32/128		31.3	45.3	58.9	63.0
S822	P8/4	3.00	32/64	2/32/128		31.3	45.3	58.9	63.0
S822	P8/6	3.80	32/64	3/48/128		56.4	81.9	106.4	113.8
S822	P8/8	4.15	32/64	4/64/128		77.5	112.4	146.1	NA
S822	P8/10	3.4	32/64	5/80/128		83.1	120.4	156.6	167.5
S822	P8/8	3.00	32/64	4/64/128		60.9	88.4	114.8	122.9
S822	P8/12	3.8	32/64	6/96/256		110.0	159.6	207.4	221.9
S822	P8/16	4.15	32/64	8/128/256		151.1	219.2	284.9	NA
S822	P8/20	3.4	32/64	10/160/256		161.9	234.8	305.2	326.6
S922	p9/4	2.8 to 3.8	64/64	2/40/-		30.4	51.6	71.2	89.8
S922	p9/8	3.4 to 3.9	64/64	4/80/-		68.4	116.3	160.5	202.3
S922	p9/16	3.4 to 3.9	64/64	8/160/-		133.4	226.9	313.1	394.5
S922	p9/10	2.9 to 3.8	64/64	5/100/-		74.0	125.7	173.5	218.6
S922	p9/20	2.9 to 3.8	64/64	10/200/-		144.2	245.2	338.4	426.4
S814	P8/4	3	32/64	2/32/128		31.3	45.3	58.9	63.0
S814	P8/6	3	32/64	3/48/128		45.5	66.0	85.8	91.8
S814	P8/8	3.7	32/64	4/64/128		67.3	97.5	126.7	135.6
S914	p9/4	2.3 to 3.8	64/64	2/40/-		25.8	43.8	60.4	76.1
S914	p9/6	2.3 to 3.8	64/64	3/60/-		37.7	64.1	88.5	111.5
S914	p9/8	2.8 to 3.8	64/64	4/800/-		58.2	98.9	1365	172.0
S824	P8/6	3.8	32/64	3/48/128		56.4	81.9	106.4	113.8
S824	P8/8	4.1	32/64	4/64/128		77.5	112.4	146.1	156.4
S824	P8/12	3.8	32/64	6/96/256		110.0	159.6	207.4	221.9
S824	P8/16	4.1	32/64	8/128/256		151.1	219.2	284.9	304.8
S824	P8/24	3.5	32/64	12/192/256		197.0	285.6	371.3	397.3
S924	p9/8	3.8 to 4.0	64/64	4/80/-		74.2	126.2	174.1	219.4
S924	p9/16	3.8 to 4.0	64/64	8/160/-		144.7	246.0	339.5	427.8
S924	p9/10	3.5 to 3.9	64/64	5/100/-		86.6	147.3	203.3	256.1
S924	p9/20	3.5 to 3.9	64/64	10/200/-		169.0	287.2	396.4	499.5
S924	p9/24	3.4 to 3.9	64/64	12/240/-		197.2	335.3	462.7	583.1

| Model | Processor
 /\# Cores |
| :---: | :---: | | Freq. |
| :---: |
| GHz^{*} |

rPerf	rPerf	rPerf	rPerf
ST	SMT2	SMT4	SMT8

S824	P8/6	3.8
S824	$\mathrm{P} / 8$	4.1
S824	$\mathrm{P} 8 / 12$	3.8
S824	$\mathrm{P} 8 / 16$	4.1
S824	$\mathrm{P} 8 / 24$	3.5
S924	$\mathrm{p} 9 / 8$	3.8 to 4.0
S924	$\mathrm{p} 9 / 16$	3.8 to 4.0
S924	$\mathrm{p} 9 / 10$	3.5 to 3.9
S924	$\mathrm{p} 9 / 20$	3.5 to 3.9
S924	$\mathrm{p} 9 / 24$	3.4 to 3.9

56.4	81.9	106.4	113.8
77.5	112.4	146.1	156.4
110.0	159.6	207.4	221.9
151.1	219.2	284.9	304.8
197.0	285.6	371.3	397.3
74.2	126.2	174.1	219.4
144.7	246.0	339.5	427.8
86.6	147.3	203.3	256.1
169.0	287.2	396.4	499.5
197.2	335.3	462.7	583.1

S924

Example LPAR:

POWER8 24 cores but mostly SMT=2 use, 80\% Util

Model	Processor /\# Cores	Freq. GHz^{*}	$\begin{array}{\|c} \text { rPerf } \\ \text { ST } \end{array}$	rPerf SMT2	rPerf SMT4	rPerf SMT8
S824	P8/6	3.8	56.4	81.9	106.4	113.8
S824	P8/8	4.1	77.5	112.4	146.1	156.4
S824	P8/12	3.8	110.0	159.6	207.4	221.9
S824	P8/16	4.1	151.1	219.2	284.9	304.8
S824	P8/24	3.5	197.0	285.6	371.3	397.3
S924	p9/8	3.8 to 4.0	74.2	126.2	174.1	219.4
S924	p9/16	3.8 to 4.0	144.7	246.0	339.5	427.8
S924	p9/10	3.5 to 3.9	86.6	147.3	203.3	256.1
S924	p9/20	3.5 to 3.9	169.0	287.2	396.4	499.5
S924	p9/24	3.4 to 3.9	197.2	335.3	462.7	583.1

Example LPAR:

POWER8 24 cores but mostly SMT=2 use, 75\% Util

Model	Processor /\# Cores	Freq. GHz^{*}	$\begin{array}{\|c} \hline \text { rPerf } \\ \hline \text { ST } \\ \hline \end{array}$	rPerf SMT2	rPerf SMT4	rPerf SMT8
S824	P8/6	3.8	56.4	81.9	106.4	113.8
S824	P8/8	4.1	77.5	112.4	146.1	156.4
S824	P8/12	3.8	110.0	159.6	207.4	221.9
S824	P8/16	4.1	151.1	219.2	284.9	304.8
S824	P8/24	3.5	197.0	285.6	371.3	397.3
S924	p9/8	3.8 to 4.0	74.2	126.2	174.1	219.4
S924	p9/16	3.8 to 4.0	144.7	246.0	339.5	427.8
S924	p9/10	3.5 to 3.9	86.6	147.3	203.3	256.1
S924	p9/20	3.5 to3.	169.0	287.2	396.4	499.5
S924	p9/24	3.4 to 3.9	197.2	335.3	462.7	583.1

Solution:
POWER9 20 cores but mostly SMT=2 use, 75\% Util

S924

Example LPAR:

POWER8 24 cores but mostly SMT=2 use, 75\% Util

Model	Processor /\# Cores	Freq. GHz	$\begin{array}{\|c} \text { rPerf } \\ \text { ST } \end{array}$	$\begin{aligned} & \text { rPerf } \\ & \text { SMT2 } \end{aligned}$	rPerf SMT4	rPerf SMT8
S824	P8/6	3.8	56.4	81.9	106.4	113.8
S824	P8/8	4.1	77.5	112.4	146.1	156.4
S824	P8/12	3.8	110.0	159.6	207.4	221.9
S824	P8/16	4.1	151.1	219.2	284.9	304.8
S824	P8/24	3.5	197.0	285.6	371.3	397.3
S924	p9/8	3.8 to 4.0	74.2	126.2	174.1	219.4
S924	p9/16	3.8 to 4.0	144.7	246.0	339.5	427.8
S924	p9/10	3.5103 .9	80.0	147.3	205.3	256.1
S924	p9/20	3.5 to 3.9	169.0	287.2	396.4	499.5
S924	p9/24	3.4 to 3.9	197.2	335.3	462.7	583.1

Solution:
1 POWER9 20 cores but mostly SMT=2 use, 75\% Util 2 POWER9 10 cores but mostly SMT=8 use, 85\% Util

11 cores
$=281$ rPerf

Model	Processor / \# Cores	Freq. GHz	Inst/Data Cache L1 (KB) Per core	Cache L2/L3/L4 (MB)/ System	LPAR Size\# cores	$\begin{array}{r} \text { rPerf } \\ \text { ST } \\ \hline \end{array}$	rPerf SMT2	$\begin{gathered} \text { rPerf } \\ \text { SMT4 } \end{gathered}$	rPerf SMT8
E850C	p8/16	4.22	32/64	8/128/256	16	156.3	226.6	294.7	315.3
E850C	p8/24	4.22	32/64	12/192/384	24	230.6	334.3	434.6	465.1
E850C	p8/32	4.22	32/64	16/256/512	32	304.8	442.0	574.6	614.8
E850C	p8/20	3.95	32/64	10/160/256	20	183.6	266.2	346.1	370.3
E850C	p8/30	3.95	32/64	15/240/384	30	270.8	392.6	510.5	546.2
E850C	p8/40	3.95	32/64	20/320/512	40	358.0	519.1	674.8	722.0
E850C	p8/24	3.65	32/64	12/192/256	24	205.8	298.4	388.0	415.1
E850C	p8/36	3.65	32/64	18/288/384	36	303.6	440.2	572.3	612.3
E850C	p8/48	3.65	32/64	24/384/512	48	401.4	582.0	756.5	809.5
E950	P9/16	3.6-3.8	64/64	8/160/256	16	151.0	256.7	354.2	446.3
E950	P9/20	3.4-3.8	64/64	10/200/256	20	179.4	304.9	420.8	530.2
E950	P9/22	3.2-3.8	64/64	11/220/256	22	185.9	316.1	436.2	549.6
E950	P9/24	3.15-3.8	64/64	12/240/256	24	198.9	338.1	466.5	587.8
E950	P9/32	3.6-3.8	64/64	16/320/512	32	294.4	500.6	200.8	870.4
E950	P9/40	3.4-3.8	64/64	20/400/512	40	349.8	594.7	820.7	1,034.1
E950	P9/44	3.2-3.8	64/64	22/440/512	44	362.6	616.4	850.7	1,071.9
E950	P9/48	3.15-3.8	64/64	24/480/512	48	387.8	659.3	909.9	1,146.4

POWER8 Cores=48 SMT=2 ~580 rPerf
POWER9 Cores=40 SMT=2
POWER9 Cores=24 SMT=8 Squeeze VP and E

Model	Processor /\# Cores	Freq. GHz	Inst/Data Cache L1 (KB) Per core	Cache L2/L3/L4 (MB)/ System	LPAR Size\# cores	$\begin{array}{r} \text { rPerf } \\ \mathrm{ST} \\ \hline \end{array}$	$\begin{array}{r} \text { rPerf } \\ \text { SMT2 } \end{array}$	$\begin{array}{r} \text { rPerf } \\ \text { SMT4 } \end{array}$	rPerf SMT8
E850C	p8/16	4.22	32/64	8/128/256	16	156.3	226.6	294.7	315.3
E850C	p8/24	4.22	32/64	12/192/384	24	230.6	334.3	434.6	465.1
E850C	p8/32	4.22	32/64	16/256/512	32	304.8	442.0	574.6	614.8
E850C	p8/20	3.95	32/64	10/160/256	20	183.6	266.2	346.1	370.3
E850C	p8/30	3.95	32/64	15/240/384	30	270.8	392.6	510.5	546.2
E850C	p8/40	3.95	32/64	20/320/512	40	358.0	519.1	674.8	722.0
E850C	p8/24	3.65	32/64	12/192/256	24	205.8	298.4	388.0	415.1
E850C	p8/36	3.65	32/64	18/288/384	36	303.6	440.2	572.3	612.3
E850C	p8/48	3.65	32/64	24/384/512	48	401.4	582.0	756.5	809.5
E950	P9/16	3.6-3.8	64/64	8/160/256	16	151.0	256.7	354.2	446.3
E950	P9/20	3.4-3.8	64/64	10/200/256	20	179.4	304.9	420.8	530.2
E950	P9/22	3.2-3.8	64/64	11/220/256	22	185.9	316.1	436.2	549.6
E950	P9/24	3.15-3.8	64/64	12/240/256	24	198.9	338.1	466.5	587.8
E950	P9/32	3.6-3.8	64/64	16/320/512	32	294.4	500.6	690.8	870,4
E950	P9/40	3.4-3.8	64/64	20/400/512	40	349.8	594.7	820.7	1,034.1
E950	P9/44	3.2-3.8	64/64	22/440/512	44	362.6	616.4	850.7	1,071.9
E950	P9/48	3.15-3.8	64/64	24/480/512	48	387.8	659.3	909.9	1,146.4

POWER8 Cores $=48$ SMT=4 ~750 rPerf
POWER9 Cores= ~ 36 SMT=4
POWER9 Cores= ~ 28 SMT=8 Squeeze VP and E

E950

Model	Processor / \# Cores	Freq. GHz	Inst/Data Cache L1 (KB) Per core	Cache L2/L3/L4 (MB)/ System	LPAR Size\# cores	$\begin{array}{r} \text { rPerf } \\ \mathrm{ST} \\ \hline \end{array}$	rPerf SMT2	rPerf SMT4	$\begin{array}{r} \text { rPerf } \\ \text { SMT8 } \\ \hline \end{array}$
E850C	p8/16	4.22	32/64	8/128/256	16	156.3	226.6	294.7	315.3
E850C	p8/24	4.22	32/64	12/192/384	24	230.6	334.3	434.6	465.1
E850C	p8/32	4.22	32/64	16/256/512	32	304.8	442.0	574.6	614.8
E850C	p8/20	3.95	32/64	10/160/256	20	183.6	266.2	346.1	370.3
E850C	p8/30	3.95	32/64	15/240/384	30	270.8	392.6	510.5	546.2
E850C	p8/40	3.95	32/64	20/320/512	40	358.0	519.1	674.8	722.0
E850C	p8/24	3.65	32/64	12/192/256	24	205.8	298.4	388.0	415.1
E850C	p8/36	3.65	32/64	18/288/384	36	303.6	440.2	572.3	612.3
E850C	p8/48	3.65	32/64	24/384/512	48	401.4	582.0	756.5	809.5
E950	P9/16	3.6-3.8	64/64	8/160/256	16	151.0	256.7	354.2	446.3
E950	P9/20	$3.4-3.8$	64/64	10/200/256	20	179.4	304.9	420.8	530.2
E950	P9/22	3.2-3.8	64/64	11/220/256	22	185.9	316.1	436.2	549.6
E950	P9/24	3.15-3.8	64/64	12/240/256	24	198.9	338.1	466.5	587.8
E950	P9/32	3.6-3.8	64/64	16/320/512	32	294.4	500.6	690.8	870.4
E950	P9/40	3.4-3.8	64/64	20/400/512	40	349.8	594.7	820.7	1,034.1
E950	P9/44	3.2-3.8	64/64	22/440/512	44	362.6	616.4	850.7	1,071.9
E950	P9/48	3.15-3.8	64/64	24/480/512	48	387.8	659.3	909.9	1,146.4

POWER8 Cores $=32$ SMT=4 ~570 rPerf
POWER9 Cores=~28 SMT=4 - SMT4 to SMT4 release 4 cores
POWER9 Cores=~23 SMT=8 - SMT4 to SMT8 release 9 cores

E950

Model	Processor / \# Cores	Freq. GHz	Inst/Data Cache L1 (KB) Per core	Cache L2/L3/L4 (MB)/ System	LPAR Size\# cores	$\begin{array}{r} \text { rPerf } \\ \text { ST } \\ \hline \end{array}$	rPerf SMT2	rPerf SMT4	rPerf SMT8
E850C	p8/16	4.22	32/64	8/128/256	16	156.3	226.6	294.7	315.3
E850C	p8/24	4.22	32/64	12/192/384	24	230.6	334.3	434.6	465.1
E850C	p8/32	4.22	32/64	16/256/512	32	304.8	442.0	574.6	614.8
E850C	p8/20	3.95	32/64	10/160/256	20	183.6	266.2	346.1	370.3
E850C	p8/30	3.95	32/64	15/240/384	30	270.8	392.6	510.5	546.2
E850C	p8/40	3.95	32/64	20/320/512	40	358.0	519.1	674.8	722.0
E850C	p8/24	3.65	32/64	12/192/256	24	205.8	298.4	388.0	415.1
E850C	p8/36	3.65	32/64	18/288/384	36	303.6	440.2	572.3	612.3
E850C	p8/48	3.65	32/64	24/384/512	48	401.4	582.0	756.5	809.5
E950	P9/16	3.6-3.8	64/64	8/160/256	16	151.0	256.7	354.2	446.3
E950	P9/20	3.4-3.8	64/64	10/200/256	20	179.4	304.9	420.8	530.2
E950	P9/22	3.2-3.8	64/64	11/220/256	22	185.9	316.1	436.2	549.6
E950	P9/24	3.15-3.8	64/64	12/240/256	24	198.9	338.1	466.5	587.8
E950	P9/32	3.6-3.8	64/64	16/320/512	32	294.4	500.6	690.8	870.4
E950	P9/40	3.4-3.8	64/64	20/400/512	40	349.8	594.7	820.7	1,034.1
E950	P9/44	3.2-3.8	64/64	22/440/512	44	362.6	616.4	850.7	1,071.9
E950	P9/48	3.15-3.8	64/64	24/480/512	48	387.8	659.3	909.9	1,146.4

POWER8 Cores=30 SMT=8 ~540 rPerf
POWER9 Cores=22 SMT=8 - even with SMT8 we release 8 cores

		E880C	p8/32	4.35	32/64	16/256/512	32	334.5	485.0	630.6	674.8
		E880C	p8/64	4.35	32/64	32/512/1024	32	669.0	970.1	1,261.1	1,349.4
		E880C	p8/96	4.35	32/64	48/768/1536	32	1,003.5	1,455.2	1,891.7	2,024.2
		E880C	p8/128	4.35	32/64	64/1024/2048	32	1,338.1	1,940.2	2,522.3	2,698.8
		E880C	p8/40	4.19	32/64	20/320/512	40	399.8	579.7	753.6	806.4
		E880C	p8/80	4.19	32/64	40/640/1024	40	799.6	1,159.3	1,507.1	1,612.6
		E880C	p8/120	4.19	32/64	60/960/1536	40	1,199.4	1,739.1	2,260.8	2,419.1
		E880C	p8/160	4.19	32/64	80/1280/2048	40	1,599.1	2,318.8	3,014.4	3,225.4
		E880C	p8/48	4.00	32/64	24/384/512	48	456.0	661.3	859.7	919.8
4 node E880C beaten by 3 node E980 = 25% less cores					Inst/Dat	Cache					
					Cache	L2/L3/L4	LPAR				
			roc	rec	L1 (KB)	(MB)/	Size\#	rPerf	rPerf	rPerf	rPerf
		Model	/\#Cor	GHz	erco	sustem	cores	ST	SMT2	SMT4	SMT8
		E880C	p8/96	4.00	32/64	48/768/1024	4	912.0	1,322.6	1,719.2	1,839.6
		80 C	p8/144	4.00	32/64	72/1152/1536	48	1,368.2	0×3	2,578.9	2759
		E8800	p8/192	4.00	32/64	96/1536/2048	48	1,824.2	2,645.0	3,438.0	3,679.3
8 core	1 node	E980	P9/92	3.9-4.0	64/64	16/320/512	32	307.8	523.3	722.2	910.0
	2 node	E980	p9/64	3.9-4.0	64/64	32/640/1024	32	615.7	1,046.7	1,444.4	1,820.0
	3 node	E980	p9/96	3.51 .0	64/64	48/960/1536	32	923.5	1,570.0	2,166.6	2,729.9
	4 node	E980	p9/128	3.9-4.0	64/64	64/1280/2048	32	1,231.4	2,093.4	2,888.8	3,639.9
10 core	1 node	E980	p9/40	3.7-3.9	64,64	20/400/512	40	371.5	631.5	871.5	1,098.1
	2 node	E980	p9/80	3.7-3.9	64/64	-1/800/1024	40	743.0	1,263.1	1,743.0	2,196.2
	3 node	E980	p9/120	3.7-3.9	64/64	60/1200/4536	40	1,114.5	1,894.6	2,614.5	3,294.3
	4 node	E980	p9/160	3.7-3.9	64/64	80/1600/2048	40	1,486.0	2,526.1	3,486.0	4,392.4
11 core	1 node	E980	p9/44	3.58-3.9	64/64	22/440/512	44	399.7	679.5	937.7	1,181.4
	2 node	E980	p9/88	3.58-3.9	64/64	44/880/1024	44	799.4	1,358.9	1,875.3	2,362.9
	3 node	E980	p9/132	3.58-3.9	64/64	66/1320/1536	44	1,19980	2,038.4	2,813.0	3,544.3
12 core	4 node	E980	p9/176	3.58-3.9	64/64	88/1760/2048	44	1,598.7	717.8	3,750.6	4,725.8
	1 node	E980	p9/48	3.55-3.9	64/64	24/480/512	48	429.7	730.5	1,008.1	1,270.2
	2 node	E980	p9/96	3.55-3.9	64/64	48/960/1024	48	859.4	1,461.0	2,046	2,540.4
	3 node	E980	p9/144	3.55-3.9	64/64	72/1440/1536	48	1,289.1	2,191.5	3,024.2	3,810.6
	4 node	E980	p9/192	3.55-3.9	64/64	96/1920/2048	48	1,718.8	2,922.0	4,032.3	5,080.7

E980

		E880C	p8/48	4.00	32/64	24/384/512	48	456.0	6613		919.8
$1 \mathrm{CEC/node/drawer}$											
48 core VM beaten by	$80 C=$	Model	Processor / \# Cores	Freq. GHz	Cache L1 (KB) Per core	L2/L3/L4 (MB)/ System	LPAR Size\# cores	$\begin{array}{r} \text { rPerf } \\ \text { ST } \\ \hline \end{array}$	rPerf SMT2	rPerf SMT4	rPerf SMT8
32 core VM			8/96	4.00	32/64	48/768/1024	48	912.0	1,322.6	1,719.2	1,839.6
= 25\%		E880C	p8/144	4.00	92/64	72/1152/1536	48	1,368.2	1,983.8	2,578.9	2,759.4
- 25\% less		E880C	p8/192	4.00	32/64	96/1536/2048	40	4.2	2,645.0	3,438.6	3,679.3
8 core	1 node	E980	p9/32	3.9-4.0	64/64	16/320/512	32	307.8	523.3	722.2	910.0
	2 node	E980	p9/64	3.9-4.0	64/64	32/640/1024	32	615.7	1,046.7	1,444.4	1,820.0
	3 node	E980	p9/96	3.9-4.0	64/64	48/960/1536	32	923.5	1,570.0	2,166.6	2,729.9
	4 node	E980	p9/128	3.9-4.0	64/64	64/1280/2048	32	1,231.4	2,093.4	2,888.8	3,639.9
10 core	1 node	E980	p9/40	3.7-3.9	64/64	20/400/512	40	371.5	631.5	871.5	1,098.1
	2 node	E980	p9/80	3.7-3.9	64/64	40/800/1024	40	743.0	1,263.1	1,743.0	2,196.2
	3 node	E980	p9/120	3.7-3.9	64/64	60/1200/1536	40	1,114.5	1,894.6	2,614.5	3,294.3
	4 node	E980	p9/160	3.7-3.9	64/64	80/1600/2048	40	1,486.0	2,526.1	3,486.0	4,392.4
11 core	1 node	E980	p9/44	3.58-3.9	64/64	22/440/512	44	399.7	679.5	937.7	1,181.4
	2 node	E980	p9/88	3.58-3.9	64/64	44/880/1024	44	799.4	1,358.9	1,875.3	2,362.9
	3 node	E980	p9/132	3.58-3.9	64/64	66/1320/1536	44	1,199.0	2,038.4	2,813.0	3,544.3
12 core	4 node	E980	p9/176	3.58-3.9	64/64	88/1760/2048	44	1,598.7	2,717.8	3,750.6	4,725.8
	1 node	E980	p9/48	3.55-3.9	64/64	24/480/512	48	429.7	730.5	1,008.1	1,270.2
	2 node	E980	p9/96	3.55-3.9	64/64	48/960/1024	48	859.4	1,461.0	2,016.2	2,540.4
	3 node	E980	p9/144	3.55-3.9	64/64	72/1440/1536	48	1,289.1	2,191.5	3,024.2	3,810.6 6
	4 node	E980	p9/192	3.55-3.9	64/64	96/1920/2048	48	1,718.8	2,922.0	4,032.3	5,080.7

So how does this relate to the System Performance Report: GHz range and rPerfs ?

POWER9 Scale Out Frequencies \& Defaults

Model	Default Mode	Feature Code	Number of Cores	Static Nominal Frequency Disable All mode	Dynamic Performance mode GHz Range	Maximum Performance mode Typical GHz Range
$\begin{aligned} & \text { S924 } \\ & \text { H924 } \end{aligned}$	Maximum Performance	EP1G	12 cores	2.75 GHz	2.75 to $\mathbf{3 . 9}$ GHz (max)	3.4 to 3.9 GHz (max)
		EP1F	10 cores	2.9 GHz	2.9 to 3.9 GHz (max)	3.5 to 3.9 GHz (max)
		EP1E	8 cores	3.3 GHz	3.3 to 4.0 GHz (max)	3.8 to 4.0 GHz (max)
5914	Dynamic Performance	EP12	8 cores	2.8 GHz	2.8 to 3.8 GHz (max)	3.15 to 3.8 GHz (max)
		EP11	6 cores	2.3 GHz	2.3 to $\mathbf{3 . 8} \mathbf{8} \mathrm{GHz}$ (max)	2.8 to 3.8 GHz (max)
		EP10	4 cores	2.3 GHz	2.3 to 3.8 GHz (max)	2.8 to 3.8 GHz (max)
$\begin{aligned} & \text { S922 } \\ & \text { H922 } \end{aligned}$	Maximum Performance	EP19	10 cores	2.5 GHz	2.5 to 3.8 GHz (max)	2.9 to 3.8 GHz (max)
		EP18	8 cores	3.0 GHz	3.0 to 3.9 GHz (max)	3.4 to 3.9 GHz (max)
		EP16	4 cores	2.3 GHz	2.3 to 3.8 GHz (max)	2.8 to 3.8 GHz (max)
1922	Maximum Performance	ELPX	12 cores	2.3 GHz	2.3 to 3.8 GHz (max)	2.7 to 3.8 GHz (max)
		EPPW	10 cores	2.5 GHz	2.5 to 3.8 GHz (max)	2.9 to 3.8 GHz (max)
		ELPV	8 cores	3.0 GHz	3.0 to 3.9 GHz (max)	3.4 to 3.9 GHz (max)

Notes:

1. Frequencies outlined in Red reflect the default mode (i.e. frequency range) for that particular system
2. In order to reach maximum frequency, some cores may need to be turned off

This is from the POWER9 EnergyScale - Configuration \& Management web page
https://www.ibm.com/developerworks/community/wikis/home?lang=en-gb\#!/wiki/Power\ Systems/page/POWER9\ EnergyScale\ -\ Configuration\ \&\ Management

POWER9 Enterprise Frequencies \& Defaults						\qquad
Model	Default Mode	Feature Code	Number of Cores	Static Nominal Frequency Disable All mode	Dynamic Performance mode GHz Range	
E950	Maximum Performance	EPWT	12cores	2.8 GHz	2.8 to 3.8 GHz (max)	3.15 to 3.8 GHz (max)
		EPWY	11 cores	2.85 GHz	2.85 to 3.8 GHz (max)	3.2 to 3.8 GHz (max)
		EPWS	10 cores	3.0 GHz	3.0 to 3.8 GHz (max)	3.4 to 3.8 GHz (max)
		EPWR	8 cores	3.3 GHz	3.3 to 3.8 GHz (max)	3.6 to 3.8 GHz (max)
E980	Maximum Performance	EFB3	12cores	2.9 GHz	2.9 to 3.9 GHz (max)	3.55 to 3.9 GHz (max)
		EFB4	11 cores	3.0 GHz	3.0 to 3.9 GHz (max)	3.58 to 3.9 GHz (max)
		EFB2	10 cores	3.15 GHz	3.15 to 3.9 GHz (max)	3.7 to 3.9 GHz (max)
		EFB1	8 cores	3.4 GHz	3.4 to 4.0 GHz (max)	3.9 to 4.0 GHz (max)

On Twitter?

P9 GHz part 1: \#POWER9 servers in practice run at (max) ~3.8-4 GHz, other server chips eat our dust! I see: normal GHz + overclocking, I am told to not use the "o" word, oops!
\#EnergyScale guys say run full speed but will lower GHz , if getting hot like your air-conditioning fails!
P9 GHz part 2: \#POWER9 servers How to get too hot! If you don't have: max CPU count + max memory size + max disks + max high-speed adapter AND max server workload + computer room is warm then your server may never get too hot and still be at that (max) GHz. I know as I tried!!!

P9 GHz part 3: One quirk on AIX: commands like Iparstat -E 19 report the varying current GHz but others report the non-overclocking (oops!) GHz value called Nominal So don't worry is you buy 3.9 GHz but nmon or Isattr -El proc0 reports a lower Nominal GHz between 2.3 to 3.3 GHz

On the
 S922/S924/E950/E980:

What can we find out what is happening?

Applies to the other models too.

AIX - POWER9 Nominal Frequency

```
Ksh script:
machine=$(lsattr -El sys0 -a modelname -F value)
cpus=$(lsdev -Cc processor | grep Available | wc -l | sed 's/ //g')
procstr=$(lsdev -Cc processor | grep Available | head -1 | cut -d' ' -f1)
proctype=$(lsattr -El $procstr | awk '/^type/ {print $2}')
Hz=$(lsattr -El ${procstr%% *} -a frequency -F value)
echo $machine cpu=$cpus type=$proctype Hz=$Hz
Output: IBM,9009-42A cpu=8 type=PowerPC_POWER9 Hz=3234000000
                                    3.2 GHz
```

These code lines are from the publicly available rperf korn shell script

```
Or
lsattr -El proc0 < Note: not all LPARs have a proc0!!
frequency 3234000000
smt_enabled true
    Processor Speed False
    Processor SMT enabled False
smt_threads 8 Processor SMT threads False
state enable Processor state False
type PowerPC_POWER9 Processor type False
```


AIX - POWER9 Current Frequency Monitoring
 Usage: Iparstat -E [Interval [Count]]
 - Reports the current CPU frequency averaged for the LPAR

- Iparstat -E 1999

Usage: mpstat -E [Interval [Count]]

- Reports the current CPU frequency per Virtual Processor
- mpstat -E 1999

Without the Interval parameter they report a single statistic since the last LPAR boot

There appears to be no tooling to capture to logs
Nominal GHz, Current GHz or percentage (nsp)
nor the Performance mode (Dynamic mode or Maximum mode)

AIX - POWER9 Current Frequency Monitoring Examples

```
# lparstat -E 1 333
System configuration: type=Shared mode=Uncapped smt=8 lcpu=16 mem=16384MB ent=1.00
Power=Dynamic-Performance
Physical Processor Utilisation:
```



```
# mpstat -E 1 444
System configuration: lcpu=16 ent=1.0 mode=Uncapped
\begin{tabular}{|c|c|c|c|c|}
\hline vcpu & pbusy & physc & freq & scaled physc \\
\hline 0 & \(0.3264[33 \%]\) & 0.9981 [100\%] & 3.9GHz [119\%] & \(1.1906[119 \%\) ] \\
\hline 8 & 0.0000 [ 0\%] & 0.0003 [ 0\%] & 3.9 GHz [119\%] & 0.0003 [ 0\%] \\
\hline ALL & 0.3264 [ 33\%] & 0.9983 [100\%] & 3.9 GHz [119\%] & 1.1909[119\%] \\
\hline
\end{tabular}

\section*{AIX - POWER9 Current Frequency for logging}
1) nmon does not log current CPU MHz/GHz stats only Nominal MHz at the start
- but nor does anything else!
2) Best I could find was: Iparstat -X -o lparstat.xml -E 1999
then grep "<nsp>" |parstat.xml
Output: <nsp>109</nsp>
 <nsp>109</nsp>
<nsp>112</nsp>
nsp \(=\) Nominal Speed Percentage \(\boldsymbol{-}\) multiply by Nominal GHz \(\rightarrow\) current GHz
3) Nigel's new data collector "njmon" that outputs \(\sim 650\) stats in JSON format
\# ./njmon -s2 -c3 । grep -I _mhz
"nominal_mhz": 3234.0,
"current_mhz": 3529.6
"nominal_mhz": 3234.0,
"current_mhz": 3529.2
"nominal_mhz": 3234.0,
"current_mhz": 3528.8

\author{
Gets the GHz from libperfstat library \\ Use Python to load JSON into \\ Python dictionary then \\ inject in to online graphing tools: \\ InfluxDB + Grafana or Splunk \\ http://nmon.sourceforge.net/pmwiki.php?n=Site.Njmon
}

LinuX - POWER9 Frequency Monitoring in Native non-Virtualised AC922/LC922
EnergyScale status can be obtained from dmesg: \# dmesglgrep cpufreq
[ 2.003516] powernv-cpufreq: cpufreq pstate min 91 nominal 55 max 0
[ 2.003597] powernv-cpufreq: Workload Optimized Frequency is enabled in the platform
Nominal frequency range
i.e. not Powervm
\# cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies
3283000 ...
Full Frequency range
\# cat/sys/devices/system/cpu/cpu0/cpufreq/scaling_boost_frequencies
3800000 ..

Current running frequency of any core:
\# cat/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq
2316000

Test max frequency achieved in the system:
\# ppc64_cpu --frequency
min: \(3.776 \mathrm{GHz}(\mathrm{cpu} 143)\)
max: 3.777 GHz (cpu 73)
avg: 3.777 GHz
Use cpupower tool to query and set frequency
available frequency steps from cpupower will list only the nominal range, but user can select full frequency range to set and it will take effect.

\section*{Linux - POWER9 Frequency Monitoring for PowerVM}
```

EnergyScale status can be obtained from dmesg:

\$ dmesg|grep MHz

[0.000000] time_init: decrementer frequency = 512.000000 MHz
[0.000000] time_init: processor frequency = 3234.000000 MHz
\leftarrow \mp@code { N o m i n a l ~ M H z }
Or
grep clock /proc/cpuinfo
clock : 3234.000000MHz
clock : 3234.000000MHz
clock : 3234.000000MHz
nmon for Linux does the best it can from available data

```

\section*{IBM i - POWER9 Frequency Monitoring}

\section*{IBM iDoctor for IBM i}

IBM iDoctor for IBM i displays the CPU rate for the IBM i partition over time on the Collection Overview graph. The CPU rate for the partition is the ratio of scaled to unscaled processor utilized time, expressed as a percentage. The processor utilized time is the accumulation of non-idle virtual processor SPURR and PURR over each time interval.

\section*{WRKSYSACT}

The Work with System Activity (WRKSYSACT) command displays the Average CPU rate since last refresh for the partition in output shown on the display station. The Average CPU rate for the partition is the ratio of scaled to unscaled processor utilized time, expressed as a percentage. The processor utilized time is accumulation of non-idle virtual processor SPURR and PURR for the interval since the last refresh.

\section*{IBM i Collection Services}

Database file QAPMJOBMI contains time series data by task, primary thread, and secondary thread. Scaled and unscaled CPU times, both charged and used, are available to calculate average CPU rate for processing activity of tasks and threads. Database file QAPMSYSTEM contains time series system-wide (i.e. partition) accumulations of performance data. Scaled and unscaled CPU times are accumulated for various categories of processor usage. The ratio of scaled to unscaled time is the average CPU rate for the category of time accumulation. The processor utilized time is accumulation of non-idle virtual processor SPURR and PURR for the time interval.

Note: As of IBM i 7.3, the QAPMCONF database file key "NF" contains the processor nominal frequency in MHz. The processor nominal frequency can be used to convert average CPU rate to average processor frequency.

\section*{In practice}

S924 16 CPU (8 core + 8 core) Room temp=22C
+256 GB RAM + 8 disks + 4 simple adapters
-3.3 GHz nominal, 3.5 GHz unnamed, 4 GHz max
Wow!!! That is a low \(\mathrm{GHz}=\) under-clocking

- I check and Idle-Power-Saver=On !!
- 2 VIOS + 1 LPAR very idle

Start a workload
- Quick rise to 3.9 GHz (nearly max GHz )
- LPAR has VP=2 out of 16 CPU \(19 \%\) overclock Switch off Idle-Power-saving
- Utilisation\% low: Hinting not using SMT=8

Switch off Idle-Power-Saving
- Mode changed (Note: name should be Max.)

Stop workload
- CPU stay at Max GHz=Max mode (no saving)

No matter the workload - server runs at Max GHz = does not clock down because it is not hot


\section*{Why no GHz reduction when 100\% busy?}
1. POWER9 with 8 cores per chip (max is 12 ) \(\rightarrow\) less heat
2. Computer room at 22C \(\rightarrow\) efficient fan cooling
3. Some CPUs might be at \(99 \%\) but
4. Memory size \& load is low \(\quad \rightarrow\) low heat
5. Disks 8 out of \(18+\) not busy \(\rightarrow\) low heat \(=\) using FC SAN disk
6. No high speed adapters (40Gbs + ) \(\rightarrow\) low heat

FSP decides it is safe to run at Max GHz (not need to reduce the GHz )

\section*{Conclusions:}
1. Meltdown/Spectre hit is small for rPerf workloads due to IBM Power System superior engineering ©
2. POWER9 continues EnergyScale variable CPU frequency methods to maximise performance
3. POWER9 big jump in rPerf (CPW) and SMT performance
4. If not a full config, cool room \& less that \(\mathbf{1 0 0 \%}\) busy then you may never detect a reduced GHz
5. Get the best from POWER9 by using SMT=8, if necessary: reducing VP and E to force SMT use
6. Monitor your computer room temperature \& GHz !
- AIXpert blog: HMC REST API or Raspberry pi
- njmon for current MHz
7. We all need to focus on removing those Single Threaded application curse

\section*{POWER9 is rated: ASHRAE A2}

\section*{ASHRAE =}
- The American Society of Heating, Refrigerating and Air-Conditioning Engineers
A2 \(=\)
- 10C-35C (~59 F to 95 F\()\)
- 20-80\% RH (relative humidity)
- 3050m max (above sea level)

Most data centres are A1 or A2
- A1 is 15 C to 32 C ( \(\sim 59 \mathrm{~F}\) to 90 F )

Notices and disclaimers
© 2018 International Business Machines Corporation. No part of this document may be reproduced or transmitted in any form without written permission from IBM
U.S. Government Users Restricted Rights - use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM.

Information in these presentations (including information relating to products that have not yet been announced by IBM) has been reviewed for accuracy as of the date of initial publication and could include unintentional technical or typographical errors. IBM shall have no responsibility to update this information. This document is distributed "as is" without any warranty, either express or implied. In no event,
shall IBM be liable for any damage arising from the use of this shall IBM be liable for any damage arising from the use of this interruption, loss of profit or loss of opportunity. IBM products and services are warranted per the terms and conditions of the agreements under which they are provided.

IBM products are manufactured from new parts or new and used parts. in some cases, a product may not be new and may have been previously installed. Regardless, our warranty terms apply."

Any statements regarding IBM's future direction, intent or product plans are subject to change or withdrawal without notice.

Performance data contained herein was generally obtained in a controlled . Customer examples are presented as illustrations of how those
customers have used IBM products and the results they may have achieved. Actual performance, cost, savings or other results in other operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business.
Workshops, sessions and associated materials may have been prepared by independent session speakers, and do not necessarily reflect the views of IBM. All materials and discussions are provided for informational purpose only, and are neither intended to, nor shall constitute legal or other guidance or advice to any individual participant or their specific situation

It is the customer's responsibility to insure its own compliance with legal requirements and to obtain advice of competent legal counsel as to the identification and interpretation of any relevant laws and regulatory requirements that may affect the customer's business and any actions the legal advice or represent or warrant that its services or pod that the customer follows any law.

Notices and disclaimers continued

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products about this publication and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products. IBM does not warrant the quality of any third-party products, or the ability of any such third-party products to warrant the quality of any third-party products, or the ability of any such third-party products implied, including but not limited to, the implied warranties of merchantability and fitness for a purpose.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents, copyrights, trademarks or other intellectual property right.

IBM, the IBM logo, ibm.com and [names of other referenced IBM products and services used in the presentation] are trademarks of urisdictions worldwide Other product and service name might jurisdictions worldwide. Other product and service names migh trademarks is available on the Web at "Copyright and trademark information" at: www.ibm.com/legal/copytrade.shtml.```

