

Active Systems Optimizer (ASO) and Dynamic Systems Optimizer (DSO) for AIX

Nigel Griffiths IBM Power Systems Advanced Technology Support, Europe

© 2013 IBM Corporation

E E M © 2013 IBM

Announcement - 14th October 2011

Enhancements to IBM AIX Version 6 and AIX Version 7 offer improved performance, scalability, availability, security, and manageability

- "Active System Optimizer, a new subsystem designed to autonomically improve the performance of workloads. Performance improvements may vary depending on configuration and workload. Measurements should be taken before running the subsystem in a production environment. Active System Optimizer support is available only on POWER7® systems."
- Other performance tweaks:
 - TCP faster loopback
 - Faster rootvg WPAR Mobility
 - JFS2 dynamic changes, tuning and unmount avoidance
 - JFS2 50% reduced meta data size (AIX7 TL1 only)
- Availability, Security, Manageability, + others

 $http://www-01.ibm.com/common/ssi/rep_ca/1/897/ENUS211-371/ENUS211-371.PDF$

Pre-requisites Check

oslevel -s 7100-01-02-1150 → AIX 7, TL01, Service pack 2, week 50 year 2011

Islpp -L | grep -i optimi

bos.aso 7.1.1.2 C F Active System Optimizer

Isconf | grep ^Processor

Processor Type: PowerPC_POWER7

Processor Implementation Mode: POWER 7

Processor Version: PV_7_Compat Processor Clock Speed: 3108 MHz

Three types of optimisation

- 1. Cache Affinity
 - Reduce chip to chip cache movement
- 2. Aggressive Cache Affinity
 - Reduce chips involved (so less movement)
- 3. Memory Affinity
 - Make memory more local (less near and far access)

Next Dynamic System Optimisation (DSO)

- This is a Licensed Program Product (LPP)
 - This needs to be purchased
- There is an addition package on the DSO Media
 - Look for package dso.aso
- Install this on AIX
 - smitty installp
- Then start ASO and it will also enable DSO features

- Multi-threaded workloads with periods of stability
 - CPU Utilization, Load and Latency must be stable for a period of time
- Minimum utilization = machine must be busy
 - Higher for aggressive cache optimization

- 10 seconds (5 minutes for memory affinity)
- Not manually tuned
 - If too much of the system load is manually tuned, ASO hibernates
- Not explicitly marked as unoptimizable

Active System Optimizer Summary

- 1. "Set & forget"
- 2. Advanced Autonomic Affinity Tuning
 - Low CPU impact with zero negative effects
 - High performance impact
- 3. Particularly good for
 - Complex, multi-threaded, long running processes
 - Large CPU + RAM LPARs on larger machines

Dynamic System Optimizer Summary

- 1. Second phase Optimiser DSO needs a purchase
- 2. Reduced man-power for large RDBMS memory
- 3. ... and boost performance

© 2013 IBM

Supported configurations

- Supported:
 - AIX LPARs running in at least P7 compatibility mode
 - Shared Processor LPARs
 - Minimum entitlement requirement (per core and total)
 - WLM (except tiers, minimum limits)
 - WPARs, AME
- Not Supported:
 - Enhanced affinity disabled / AMS enabled
 - LPAR migration
- ASO hibernates when configuration not support

© 2013 IBM

How AIX schedule & place processes?

- AIX kernel process dispatcher = short term
 - Needs to make high speed decisions (micro seconds)
 - Follows simple priority rules & queues
 - Has limited data for large-scale placement decisions
 - Potentially high cost of poor placement decision
 - Conservative by design

How ASO gets it's Tuning "Actioned"?

- AIX kernel process dispatcher = short term
 - Needs to make high speed decisions (micro seconds)
 - Follows simple priority rules & queues
 - Has limited data for large-scale placement decisions
 - Potentially high cost of poor placement decision
 - Conservative by design
- Active System Optimizer
 - Focused on longer term analysis (minutes)
 - Time + history for better placement decisions
 - Works by setting dispatcher SRAD and RSET rules

ASO - Five things you need to know

- 1. ASO runs as an SRC kernel service: Issrc, startsrc
 - Must be active
- 2. Active System Optimizer Options command: asoo
 - Must be active
- 3. Other asoo Tuning options
- 4. Logging
 - To two simple text files
- 5. Fine Control of aso with Shell Variables
- Don't confuse <u>aso</u> daemon with <u>asoo</u> tuning cmd

```
1) and 2) ASO Start service and Activate
1) Start the service via Systems Resource Controller:
  # Issrc -s aso
  Subsystem
                 Group
                             PID
                                       Status
   aso
                                       inoperative
  # startsrc -s aso
  # Issrc -s aso
                             PID
  Subsystem
                 Group
                                       Status
                             1835474 active
   aso
  ... you may eventually # stopsrc -s aso
2) Then Activate (-o option and -p = permanent):
  # asoo -p -o aso active=1
Active System Optimiser is now working
```


3) asoo to configure ASO - other options

- Standard AIX "o" tuning tool like vmo, schedo, no ...
- Displays current settings (non-restricted tunables):

asoo -a aso_active = 0

- Set a value to a tunable: asoo -o aso_active=1
- Permanently set: asoo -p -o aso_active=1
- Displays help for a tunable:

asoo -h aso active

Help for tunable aso_active:

Purpose: Disables ASO.

Values: Default: 0 Range: 0, 1 Type: Dynamic Unit: boolean Tuning: 0 indicates that the ASO is disabled. 1 indicates enabled.

Reset to default all tunables: asoo -D

For more info: man asoo - - or - - the online manual pages

http://publib.boulder.ibm.com/infocenter/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.cmds%2Fdoc%2Faixcmds1%2Fasoo.htm. And the control of the c

3) asoo List option details # asoo -L NAME CUR DEF BOOT MIN MAX UNIT TYPE DEPENDENCIES aso_active Ω Ω boolean D $\ensuremath{\text{n/a}}$ means parameter not supported by the current platform or kernel Parameter types: S = Static: cannot be changed D = Dynamic: can be freely changed B = Bosboot: can only be changed using bosboot and reboot R = Reboot: can only be changed during reboot C = Connect: changes are only effective for future socket connections M = Mount: changes are only effective for future mountings I = Incremental: can only be incremented d = deprecated: deprecated and cannot be changed Value conventions: K = Kilo: 2^10 M = Mega: 2^20 G = Giga: 2^30 T = Tera: 2^40 P = Peta: 2^50 E = Exa: 2^60

						⁶ Q _{Hehn}	© 2013
Restricted optio	n – (Only	use	it tol	d to	by suppo	rt
# asoo -FL NAME DEPENDENCIES	CUR	DEF	BOOT	MIN	мах	UNIT	TYPE
aso_active	0	0	0	0	1	poolean	Ι
##Restricted tunables					V.		
aggressive_cache_affinity	1	1	1	0	1	boolean	
aggressive_cache_opt_util:	isation 1000	1000	1000	O,	2000	1/1000th cores	г
allow_fp_placement	1	1	X	0	1	boolean	Ι
allow_sub_srad_placement	1	1	1	0	1	boolean	Γ
max_placement_rate_per_sra	ad 25	1	5	0	100	percent	Γ
memory_affinity	1		1	0	1	boolean	Ι
message_facility	12	M	12	0	23	numeric	E
min_utilisation_dedicated	(D)	100	100	1	2000	1/1000th cores	E
min_utilisation_share	00	100	100	1	2000	1/1000th cores	Ε
percent_system_to_optimis	80	80	80	0	100	percent	

4) Active Systems Optimizer Logging

ASO logging found in /var/log/aso/*

- Format is not documented but readable ASCII text
- aso.log
 - On/Off status
 - ASO hibernate reasons like VM not busy!
 - Or tuning made things worse, manual tuning found etc.
- aso process.log
 - Details of actions
 - Processes modified
- Hint:
 - You need to find the interesting processes that you think need tuning
 - Search for the process name to find the PID → in the []
 - Then search for the PID for all the messages

© 2013 IBM

5) aso - Fine Control via Shell Variables

- Warning: aso manual page
 - Says starting aso outside SRC OK but really only for debugging aso
 - But also includes Shell Variables to fine control = Good
- For more information: man aso
- Not normally needed

A bit Catch 22

- Set these before starting important processes
 - Master switch
- a priority to optimise
- ASO_ENABLED=[ALWAYS | NEVER]
- Prioritise or stay clear of process
 - ASO_OPTIONS=ALL=[ON | OFF]
 - ASO_OPTIONS=CACHE_AFFINITY=[ON | OFF]
 - ASO_OPTIONS=MEMORY_AFFINITY=[ON | OFF]

© 2013 IBM

ASO in Practice

```
# startsrc -s aso
# asoo -p -o aso_active=1
# tail -f /var/log/aso/aso_process.log
```

Workloads running

expect ASO to monitor workloads for a few minutes

Note:

Log format is not documented but fairly readable

Some guess work in the following example logs

... your mileages will vary as every workload is different

ASO in Practice

My VM (LPAR) cleverly **badly** laid out on a 2 Drawer Power 770

```
# lssrad -av
REF1 SRAD MEM CPU
0
0 0 6958.40 0-3 8-11 16-19 28-31
3 498.00
1
1 5894.56 4-7 12-15 20-23
2 1992.00 24-27
```

Below are logging extracts

- Please don't embarrass me with ANY questions !!!

ASO in Practice on VM called purple7

Jan 17 11:39:21 purple7 aso:notice aso[4981098]: ASO enabled by tunable
Jan 17 11:39:26 purple7 aso:notice aso[4981098]: [WLM] Is now active.
Jan 17 11:39:46 purple7 aso:notice aso[4981098]: [HIB] SPLPAR local dispatch ratio is below threshold (37%).
Jan 17 11:39:46 purple7 aso:notice aso[4981098]: [HIB] At least 50% of VCPU dispatches must be local to run

Jan 17 11:41:41 purple7 aso:notice aso[4981098]: [HIB] Resuming from hibernation.

Removing the Date Time VM name process for readability

ASO enabled by tunable ← ASO started with asoo [WLM] Is now active.

[HIB] SPLPAR local dispatch ratio is below threshold (37%).

[HIB] At least 50% of VCPU dispatches must be local to run ASO

· ← No work so ASO hibernated

[HIB] Resuming from hibernation. ← Work started

Hibernation event

Performance Benefits Out of box performance boost for many workloads Multi-threaded, memory / cache intensive, poor scaling Example workloads SpecJBB - multi-threaded JVM benchmark From 16 cores (2 sockets) up to 72 cores (9 sockets) Daytrader - Websphere (java) + DB2 16 / 32 cores (2 / 4 sockets) Websphere Message Broker (WMB) 16 cores COPR - large DB2 benchmark 64 cores (8 sockets) **SpecJBB Benchmark WMB** COPR **Daytrader ASO Hand Tuned**

- 1. "Set & forget"
- 2. Advanced Autonomic Affinity Tuning
 - Low CPU impact with zero negative effects
 - High performance impact
- 3. Particularly good for
 - Complex, multi-threaded, long running processes
 - Large CPU + RAM LPARs on larger machines

Dynamic System Optimizer Summary

- 1. Second phase Optimiser DSO needs a purchase
- 2. Reduced man-power for large RDBMS memory
- 3. ... and boost performance

