
Fast Scalable Reverse Time Migration Seismic Imaging on
Blue Gene/P

Michael Perrone, Lurng-Kuo Liu, Ligang Lu,
Karen Magerlein, Changhoan Kim

IBM TJ Watson Research Center
1101 Kitchawan Rd. Yorktown Heights, NY 10598

{mpp,lkliu,lul,kmager,kimchang}@us.ibm.com

Irina Fedulova, Artyom Semenikhin
IBM Russia Systems and Technology Lab

30 Obrucheva St., Moscow

{irina,artyom}@ru.ibm.com

ABSTRACT
We present an optimized Blue Gene implementation of Reverse
Time Migration, a seismic imaging algorithm widely used in the
petroleum industry today. Our implementation is novel in that it
uses large communication bandwidth and low latency to convert
an embarrassingly parallel problem into one that can be efficiently
solved using massive domain partitioning. The success of this
seemingly counterintuitive approach is the result of several key
aspects of the imaging problem, including very regular and local
communication patterns, balanced compute and communication
requirements, scratch data handling, multiple-pass approaches,
and most importantly, the fact that partitioning the problem allows
each sub-problem to fit in cache, dramatically increasing locality
and bandwidth and reducing latency. This approach can be easily
extended to next-generation imaging algorithms currently being
developed. In this paper we present details of our
implementation, including application-scaling results on Blue
Gene/P.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization. D.2.8 [Software
Engineering]: Metrics – performance measures. J.2 [Physical
Sciences and Engineering]: Earth and atmospheric sciences.
G.1.8 [Numerical Analysis]: Partial Differential Equations –
Finite difference methods.

Keywords
Seismic Imaging, Reverse Time Migration.

1. Introduction
This paper represents a dramatic departure from common high
performance computing practice: we show that in certain
circumstances, recasting embarrassingly parallel problems as
domain partitioned ones can dramatically improve performance.
This statement might border on sacrilege for some because of the
many advantages embarrassing parallelism has to offer, including
better Amdahl’s Law scaling, minimal inter-process
communication and synchronization, freedom from frequent
checkpointing and ease of recovery from the loss of individual

processes. These advantages make embarrassingly parallel
implementations extremely compelling when possible. Why then
would we choose to go against this received wisdom? The answer
is that, due to various architectural constraints, the benefits of data
locality and massive local bandwidth can sometimes be crafted to
outweigh the benefits of embarrassing parallelism.
In this paper, we explore these ideas in the context of production
seismic imaging: physics-based signal processing used by the
energy industry to find oil and gas reservoirs. We begin with an
introduction to the problem of seismic imaging and a description
of the widely used Reverse Time Migration (RTM) method,
comparing and contrasting our approach to the one commonly
used in the industry. We then describe our implementation of
RTM, the optimizations that were performed, the experimental
setup and the performance results, comparing where appropriate
to other RTM implementations.

2. Seismic Imaging
Seismic imaging is the process of converting acoustic
measurements of the Earth into images of the Earth’s interior,
much like ultrasound for medical imaging. It is widely used in oil
and gas exploration and production to identify regions that are
likely to contain hydrocarbon reservoirs and to help characterize
known reservoirs to maximize production. These methods have
become critical to the energy industry as known reserves are used
up and new reserves become increasingly difficult (and
expensive) to find and are increasingly in technically challenging
areas, like the deep sea.
For the past several decades, the energy industry has tried to
balance the need to image quickly and the need to image
accurately. The need for accuracy is driven by the high cost of
drilling a “dry” well due to poor imaging (a deep sea well can cost
over $100 million) and the need for quick imaging is driven by the
cost of not finding new reserves (i.e., bankruptcy). To minimize
these costs, the industry relies on supercomputing clusters and
regularly increases compute power, enabling both faster imaging
on existing algorithms and the practical implementation of more
accurate imaging. Thus, the development of fast, efficient
methods for imaging is of high importance to the industry.

2.1 Seismic Data
Seismic imaging data varies widely depending on how and where
the data is collected (e.g., on land, at sea, at the ocean surface, at
the ocean floor, below ground, electromagnetically, etc). We
focus here on the data collection method that is most relevant to
the RTM algorithm analyzed in this paper: towed hydrophone
receiver arrays for ocean seismic data collection. The basic idea
is shown in Figure 1. A ship is shown towing a 2D array of
hydrophones spaced about every 25m on 1 to 16 trailed streamers.
Every 15 or so seconds, an air cannon is fired into the water,

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC’11, Nov. 12-18, 2011, Seattle, WA, USA.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

creating an acoustic wave that propagates through the water and
into the Earth. Reflections from various surface and subsurface
boundaries cause echoes that reflect back and are recorded by
each hydrophone in the array. The recording of a single
hydrophone in time as a trace and the collection of traces for a
single firing of the air cannon is called a common shot gather, or
shot. As the ship moves, a large set of spatially overlapping shots
is recorded. Depending on the size of the survey region to be
imaged, this data collection can take a month or more and is
designed to get the maximal coverage of the area to be imaged.
For our purposes, we need to know that we have lots of shots,
potentially hundreds of thousands, and that the receiver data
collected is the result of some source data at a particular location.
A sample of artificial shot data is shown in Figure 2.

Figure 1: A ship collecting seismic data using a towed

hydrophone receiver array

Figure 2: Sample shot data for a 1D array of hydrophones
showing time on the Y-axis and spatial offset on the X-axis.

The direct source signal propagates out linearly in time (from
the center of the array) and appears as straight lines. The

recorded reflections appear as curved lines.

2.2 The RTM Algorithm
The Reverse Time Migration (RTM) algorithm is widely used in
the industry because of its superior imaging accuracy for difficult
subsurface structures like salt domes which are poorly imaged by
other algorithms but which are very effective at trapping oil and
gas. Several variants of RTM exist with differing degrees of

approximation to reality, all of which use single-precision
arithmetic. For this paper we implemented isotropic, acoustic
RTM which assumes the wave velocity is independent of wave
direction and that no energy is absorbed by the medium.
The RTM algorithm arises from the observation that pressure
waves should be correlated at reflection boundaries; so RTM
proceeds by correlating two pressure waves (called the forward
and backward waves) to find those boundaries. To generate the
waves for correlation, RTM simulates wave propagation using the
wave equation below for a wave U(x,y,z,t) with a source term
S(x,y,z,t):

(1)

€

1
c 2
∂ 2U
∂t 2

=
∂ 2U
∂x 2

+
∂ 2U
∂y 2

+
∂ 2U
∂z2

+ S

The forward wave is the wave generated from the air cannon
firing and propagating forward in time using a “velocity model”
represented by C(x,y,z), which specifies the wave velocity at each
point in space and represents the various material properties and
boundaries of the volume being imaged. The air cannon firing is
treated as a wavelet impulse localized in time and space. The
backward wave is generated by using the shot data recorded by
the hydrophone array as the source term for the wave equation
and propagating that backward in time. These two waves are then
multiplied point-wise at each time step to generate an image,
using the following “imaging condition”:

(2)

This process is repeated for all shots in the seismic survey and the
images generated are summed to create a final image of the
reflecting boundaries, which represent the subsurface structure. It
is important to note that the time summation in the imaging
condition implies that the first time step of the forward wave
needs to be correlated with the last time step of the backward
wave. This constraint is typically handled in one of two ways:
either the forward wave is saved to disk (called a “snapshot”)
every several time steps and read in for imaging when the
backward wave is computed, or the forward propagation is run
twice – once forward in time and once in reverse time using
boundary data saved from the forward pass to recreate the forward
pass in reverse – and then imaging proceeds with the backward
wave and the reverse forward wave. The first method requires
significant disk storage and can be bottlenecked on disk I/O, while
the second requires 50% more computation and additional
memory space to save the boundary data.
Following standard practice in the industry [2], we simulate the
wave propagation of Equation (1) using the finite difference
approximation in Equation (3) where we select the coefficients to
implement 2nd order accuracy in time and 8th order accuracy in
space. These coefficients are scaled to satisfy the CFL condition
[5]. This approach gives rise to the 25-point stencil shown in
Figure 3.

(3)

€

Ui, j ,k,t+1 = 2Ui, j ,k,t −Ui, j,k,t−1 +

i , j ,k

2c (AxnUi+n, j,k,t + Ayn
n=−4

n=4

∑ Ui, j+n,k,t + AznUi, j ,k+n,t)

In practice, the size of production RTM models varies widely, but
the universal desire is to grow models larger to get more
resolution and to run the models longer to enable deeper imaging
since echoes take longer to reflect from deeper structures.

Typically, velocity models for individual shots are 5123 to 10243
elements or larger and the number of time steps can be 10,000 or
more in both the forward and backward propagation phases.

Seismic imaging is typically computed using single precision
arithmetic and we take that approach here. Some practitioners
believe that the RTM method described above, that avoids the
need to save snapshots, must be run in double precision; however,
we do not implement that version here.

Figure 3: 25-Point spatial stencil with 8th order accuracy

shown in isolation on the left and as it moves along the stride-1
dimension of the model

2.3 Embarrassingly Parallel RTM
Industrial implementations of RTM are embarrassingly parallel.
They typically run individual shots on one to two nodes of a
compute cluster and run many shots in parallel (see Figure 4).
These clusters have minimal network connectivity because it is
not needed: the individual shots run independently and
asynchronously. A simple work queue is used to manage runs and
if a run for a shot fails, it is simply re-run, as it doesn’t impact any
of the other runs. A master process of some kind is needed to
manage the work queue and to merge the partial images that are
generated from each shot. Additionally, other image processing
might be included in this process, but for our purposes here we
ignore these details as the RTM calculation is the main
computational workload.

Figure 4: Embarrassingly parallel RTM implementation
RTM compute clusters have significant per-node scratch disk
requirements for saving snapshot data, which for a 10243 model
and 10,000 time steps would require 40TB of snapshot storage –
per shot! In practice, snapshot subsampling is used to reduce both
disk requirements and disk I/O bottlenecks; however subsampling
results in image degradation and must be balanced with
performance. Compression can be used to trade computation for
disk I/O, but if lossy, compression can also degrade image quality.

As FLOPS per processor increase, the embarrassingly parallel
implementations become disk I/O bound [2]. It is possible to
improve performance by partitioning single shot gathers over
multiple nodes; however, such implementations typically use only
a handful of nodes. We have developed an RTM implementation
that extends domain partitioning over thousands of nodes on a
Blue Gene/P supercomputer and results in dramatic performance
improvements.

2.4 Domain-Partitioned RTM
We have developed, implemented and tested a 3D isotropic RTM
code that uniformly partitions the wave equation domain in blocks
over thousands of nodes (see Figure 5). The partitioning over so
many nodes means that the size of the model on each node is
about 1000 times smaller than for standard RTM on a handful of
nodes and provides five main benefits: (1) all forward wave
snapshots can be stored in main memory, removing the need for
disk and thereby improving per-node data bandwidth from
hundreds of MB/s (for disk) to tens of GB/s (for main memory),
effectively removing the disk I/O performance bottleneck; (2) the
partitioned models can fit in processor cache, allowing processing
to proceed at the speed of the cache memory bandwidth instead of
main memory bandwidth which can be an order of magnitude
larger on some systems; (3) we can load entire 3D seismic surveys
into memory on one or more racks, enabling “in-memory”
processing of algorithms that require multiple passes through the
data set, such as Full Waveform Inversion (FWI), and thereby
avoiding additional disk I/O bottlenecks and enabling better
performance; (4) keeping the models in the processor’s cache
means that snapshot reading/writing has full access to main
memory bandwidth and is not a bottleneck; and (5) this method
can run an entire velocity model instead of a subset, as is typically
done in standard RTM, allowing us to easily extend this method to
include multisource processing with minimal code changes and
significant potential performance gains [4].

Figure 5: Domain-partitioned RTM Implementation
A critical aspect of domain-partitioned RTM is that current wave
data from neighboring sub-domain boundaries is required for
stencil calculations at each time step. Since this boundary data
transfer grows with the amount of partitioning and with the size of
the stencil used, it can easily become a performance bottleneck.
To avoid communication bottlenecks, we implemented our
partitioned RTM on a Blue Gene/P supercomputer, which is
designed specifically for extremely efficient inter-node
communication.

3. Blue Gene Architecture
Our performance measurements were all performed on subsets of
two racks of Blue Gene/P. It is beyond the scope of this paper to
give a full description of these machines. Instead we focus on
those features that are relevant. More details can be found
elsewhere [1].
The Blue Gene/P (BGP) supercomputer has 1024 nodes per rack
running at 0.85GHz. Each node has 4 single-threaded cores, 4GB
of RAM per node (4TB per rack) and an extremely high-
bandwidth, low-latency, nearest-neighbor 3D torus topology
network in which each node is connected to each of its 6 nearest
neighbor nodes by 850MB/s of send+receive bandwidth (i.e.,
5.1GB/s per node and 5.22TB/s of communication bandwidth per
rack). Because of this massive bandwidth, BGP is ideally suited
for physical modelling involving extensive nearest-neighbor
communication and synchronization – like RTM. The nearest
neighbor latency for 32B data transfers is about 0.1 microseconds
and is essentially amortized away for larger block transfers
required by RTM. Each compute node core has a 32KB L1 cache
with a 32B cacheline and a shared 8MB L3 cache with a 128B
cacheline. Each node has two memory channels with an
aggregate bandwidth of 13.6 GB/sec to main memory. BGP
compute notes are connected via dedicated I/O nodes to a GPFS
file system based on three DDN S2A9900 couplets attached to the
BGP I/O nodes via 10 Gigabit Ethernet connections, providing
~16GB/s of disk I/O bandwidth per rack. Each node can operate
in SMP mode as a unit, or as four “virtual” nodes. The Virtual
Node (VN) model avoids the need to explicitly use multithreading
at the node level and thereby eases programmability. Each core
has a 2-way SIMD unit.

4. Implementation Details
In this section we describe various implementation details that
were important to our performance optimization.

4.1 Ping-Pong Buffering
Equation (3) uses four 3D data objects: the past, present and
future waves and the velocity model. To increase the locality of
our model, we use a ping-pong buffer pair, holding the current
wave in one buffer and the future and past waves in the second
buffer. This buffering is possible because once the future wave
point is calculated, the past wave point is no longer needed and
can be overwritten with the future value. This buffering reduces
RTM’s cache size requirements by 25% and thereby allows for
processing larger models more efficiently.

4.2 Trade-Off Analysis
An analysis of the various trade-offs made in this implementation
of RTM is helpful in guiding the choice of operational parameters.
This analysis shows that various system constraints prevent us
from running at the theoretically optimal operational parameters.
Consider a cubic velocity model of size N3 elements which is
uniformly partitioned over K3 nodes such that each node is
responsible for processing a sub-volume of size V=N3/K3. For
any sub-volume, we can estimate the time required to compute the
stencil over all the elements of the corresponding sub-volume and
the time required to communicate boundary data to and from its
nearest neighbors. An ideal balanced implementation would have
equal time for these tasks so as to efficiently utilize all the
machine’s resources. In practice this is not possible for a variety
of reasons; however we can still use this goal to guide our system
design.

The 2nd order in time and 8th order in space finite difference
method used in Equation (3) to approximate wave propagation
gives rise to ~32 floating-point operations for each stencil
calculation (depending on the details of the assembly
implementation), if one precomputes the spatial and temporal
deltas into the stencil parameters. This precomputation is possible
here since the deltas are constant for RTM. If we let F be the peak
number of FLOPS per node, then the total time to compute each
sub-volume is bounded below by TCompute = 32(N/K)3/F.
For each pass of the stencil over a wave sub-volume, the boundary
regions need to be communicated between nearest neighbor
nodes. Since the Blue Gene torus network allows nodes to send
and receive simultaneously, and since it has independent paths for
each of the spatial dimensions, we can assume that these transfers
all happen at approximately the same time for each node. Further,
since the algorithm sends the same amount of data between all
nearest-neighbor nodes, we only need to consider the time of a
single boundary transfer to characterize the communication
behavior of the node.
The amount of data transferred for each finite difference time step
is 4 bytes per element, 4 elements per stencil calculation and one
stencil calculation for each element on a face of the sub-volume.
Dividing this data by the peak torus send bandwidth, D, between
each node gives a total time of TData = 16(N/K)2/D.
This analysis shows that TCompute /TData = 2N/KFD. For an ideal
balanced system, this ratio would be one, and getting there would
simply be a matter of choosing appropriate N and K. However,
we have additional constraints that prevent us from choosing N
and K arbitrarily. In particular, we would like to store all of the
RTM models (velocity and two time steps of wave volume) in
cache because complete cache locality gives a dramatic
performance advantage over systems that need to use main
memory. This means that for this RTM implementation, we need
to fix 3 sub-volumes of size V in cache. This means V<8/3
Mbytes for BGP. Since V=N3/K3, we see that N/K<89 which
implies N/K<56 per core. For a rack, this means a model of size
8803 fits in cache.
In practice, there are several additional constraints on the block
dimensions. The L1 cache line length imposes a preferred
granularity in the stride-one (z) dimension of 8 floats (32B). The
cache can be used more effectively if the number of cache lines in
the z dimension is not a factor or multiple of the number of sets in
the set-associative cache (16 for BGP), since otherwise memory
accesses will be concentrated in some portions of the cache while
other portions remain unused. Cache tiling, described below,
makes it convenient to have each dimension of the block be a
multiple of the corresponding tile dimension. Such considerations
suggest that better performance may be achieved with a block size
of 54x54x56 rather than 553. Choices of this nature trade kernel
performance and MPI performance since asymmetry to favor
stride-one dimension efficiency leads to higher communication
requirements. We can use this choice to help balance our
implementation.
Additionally, we have designed our RTM implementation to save
snapshots to main memory to avoid disk I/O bottlenecks. This
choice imposes another constraint on the data: the model in cache
has to be small enough to allow a sufficient number of snapshots
to be saved. Typically production RTM runs can be on the order
of five to ten thousand forward iterations, however due to disk
storage and bandwidth constraints, practitioners typically
subsample the data in time, saving only a fraction of the wave
fields according to a pre-specified “snapshot” frequency.

Common snapshot frequencies range from 3-10 iterations per
snapshot, depending on the RTM imaging requirements. For Blue
Gene, this implies that one can save at most 1500 snapshots
(=memory size / one-third the cache size), which imposes a
snapshot frequency range of 3-7 iterations per snapshot. If one
wants to save more snapshots (e.g., for higher image quality or
more time iterations) then one can reduce the size of V and run on
more nodes; or reduce the size and/or number of snapshots (e.g.,
by sub-sampling and/or compressing snapshots); or save some of
the snapshots to disk. Our implementation includes all of these
options except compression; however, simple lossy 4x
compression is easy to implement and can provide adequate
image quality [2].
Note that this analysis also shows that for practical values of N
and K, TData is much larger that the MPI latency of both Blue
Gene systems. So we are not MPI latency bound.
Our domain partitioning allows us to partition the domain over
different numbers of computing nodes and thus take advantage of
the cache structure of the platform. When the partitioned sub-
volume can fit in processor cache, it allows processing to proceed
at the speed of the cache memory bandwidth instead of main
memory bandwidth. We evaluate the effect of the sub-volume
sizes on the main memory bandwidth requirement on BGP, which
has 32KB L1 Cache and 8MB L3 Cache. As shown in Figure 6,
the main memory bandwidth requirement is minimized when the
sub-volume is 643 or less in size. With a larger sub-volume size,
data will spill to main memory and thus data access will be
conducted at main memory bandwidth and latency. Note that
Figure 6 is for a single core, assuming linear scaling to 4 cores per
node brings the bandwidth requirement to only ~1GB/s, which is
well within the 13.6GB/s peak bandwidth available. Thus we are
very far from being bandwidth bound. This result implies that we
can easily extend our isotropic model to more accurate RTM
versions which increase the model size by a factor of 4 or more
due to additional auxiliary data volumes.

Figure 6: Effect of sub-volume size on memory bandwidth

requirements
An important implication of the observation in Figure 6 is that we
can extend our isotropic RTM to more sophisticated versions
(e.g., VTI [2] and TTI [8]) which require larger data models
without becoming bandwidth bound.

4.3 Stencil Kernel Analysis
Stencil computation is the core computational kernel in RTM
seismic imaging. As the stencil computation kernel is
computationally expensive, it is important to have a good
understanding of the workload characteristics for performance
optimization. The RTM compute kernel, which is an 8th order in

space and 2nd order in time FDTD for advancing the pressure
wave, was analyzed for various combinations of model size (2563,
5123 and 10243), BGP node count (64 and 128), and operation
mode (VN and SMP). The full application was run but only the
RTM computational kernel was analyzed. We will use the number
of stencils computed per unit time as our RTM application
performance metric because it normalizes for a variety of run-
dependent configuration parameters (e.g., size of the velocity
model, number of time steps, number of shots, etc.) which would
otherwise complicate the comparison of raw run times. As shown
in Figure 7, we find that our RTM application (end-to-end, not
just the stencil kernel) achieves 6-7B stencils/sec on 128 BGP
nodes using virtual node mode, which is ~22% of peak flops on
BGP. Figure 7 shows baseline and optimized performance. Our
optimization techniques are described below.

Figure 7: RTM performance

4.3.1 Cache Tiling
We studied the memory bandwidth requirement and L1 cache
miss ratio from the RTM runs with different configurations. A
cache tiling technique was then used to improve the reuse of data
already available in cache. As shown in Figure 8, we studied the
cache tiling performance using different tile sizes on a 5123 model
using 128 BGP nodes. We see that small tiles, such as 4x4x4,
have a negative impact on performance. There are two major
reasons for this: 1) the cache reuse is not effectively realized in
the stride-one dimension; 2) the overhead added from the
additional tiling for loops diminishes the benefit from a small tile
size. The study also shows that, given a fixed cache tile, it is
better to have a longer tile length on the stride-one dimension in
order to make effective use of the prefetched cacheline, e.g., a tile
of size 8x8x64 is better than 16x16x16. Figures 9 and 10 show
the L1 miss ratio and bandwidth requirement. The kernel requires
less than 10% of peak memory bandwidth and has an L1 miss
ratio of ~9%.

Figure 8: Tiling performance

Figure 9: L1 Miss Ratio

Figure 10: Memory bandwidth requirement

To further analyze the stencil kernel for optimization, we studied
the instruction mix of the stencil kernel, focusing on floating point
operations, as they form the core of the stencil kernel. The study
showed that the stencil kernel employed around 45% of
instructions in load operations, which indicated that data is not
reused effectively at the instruction level. This brings us to the
next level of candidates for performance optimization: instruction
level optimization. We looked into the technique of loop
unrolling as well as the use of SIMD operations to take advantage
of the architecture’s processing power. As shown in Figure 11,
we achieve about 22% of instructions using fused multiply-add
for better processor utilization. The percentage of load operations
also dropped from 45% to 36%, achieving better data reuse.

Figure 11: Floating point operation usage

4.3.2 Absorbing Boundary Conditions
In production runs, RTM algorithms use various processing
methods to minimize the effect of wave reflection from the (non-
physical) model boundaries. In our study, we employed Higdon’s
absorbing boundary condition [3], which predicts pressure field
values at the absorbing boundaries based on the known pressure
field values from the previous time step. As seen in Equation (4),
these conditions are applied per dimension and can be tuned
absorb plane waves incident with the boundary at various angles,
alpha. These constraints are discretized in the usual way and for
our purposes we used a single angle per dimension chosen to
minimize image noise.

(4)

€

cosα j
∂
∂t
− c ∂

∂x
⎛

⎝
⎜

⎞

⎠
⎟

j=1

p

∏
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
U = 0

These methods add overhead for stencil computations at the
model boundaries, leading to load imbalance between nodes. This
imbalance can be significant, causing the maximum and minimum
kernel time to vary by as much as 1.5x. Future work will attempt
workload balancing with non-uniform partitioning – making
nodes working on the model boundary process less data.

4.3.3 SIMD Considerations
Exploitation of BGP’s 2-way SIMD instructions is a key element
in the efficiency of our code. To use the SIMD instructions
efficiently, the z (stride-one) dimension of each partition must
contain a multiple of 2 elements, with the beginning of each z line
aligned on at least a 8-byte boundary. In preparation for the next
generation of Blue Gene technology, we have designed our
partitioning code to be slightly more restrictive by assuming that
the problem size is a multiple of 4 in the z dimension. The
addition of some special-case code to pad along one edge could
remove this limitation. The stencil-processing loop in the kernel
was then rewritten to use SIMD operations.
For the four-byte-thick boundaries we are using, SIMD can also
be applied to the absorbing boundary condition computations.
Some additional improvement was achieved by pre-calculating
the coefficients used in updating the outer boundary layer. These
are functions of position; they are independent of the time step.
We pre-calculated seven coefficients for each point (the eighth is
a constant). This gives us an improvement in speed at a small cost
in storage. It replaces somewhat scattered references to the
velocity field with sequential reads of a (larger) array of
coefficients, improving storage locality; and it removes
computations and the operands they require from the loop, saving
time and freeing up registers. On BGP, these two changes

combined give a 29% improvement in the time required for
boundary processing in the 256x256x256 case on 64 cores, which
translates into an overall improvement of 5.8% for that case.

4.3.4 Loop Unrolling
In our first attempt of stencil kernel SIMDization, we computed
two elements simultaneously using the BGP two-way SIMD unit
for each inner loop iteration. To effectively use the instruction
pipeline and reduce loop management overhead, we employed
loop unrolling inside the inner loop iterations. In our study, we
unrolled the inner loop so that four elements can be computed in
each inner loop using SIMD operations. Based on the instruction
mix analysis, we were able to increase the fused multiply-add
instructions from 19% to 22% and reduce the other non-
computation-related instructions from 20% to 12%. This enables
better efficiency in stencil kernel computation from instructions.
We optimized our RTM stencil kernel computation using a variety
of techniques, including partitioning, cache tiling, SIMDization,
loop unrolling, etc. Figure 12 shows the contribution of
performance improvement from different optimization techniques.
Overall, these techniques gave a 1.7-1.9x performance gain.

Figure 12: RTM performance improvement from different

techniques

5. Experimental Setup and Results
We implemented a full, 3D isotropic RTM using a 25-point (8th-
order) stencil in the compute kernel. Absorbing boundary
conditions were applied to the model boundaries to reduce
artificial reflections. RTM imaging performance analysis was
conducted on two different velocity model sizes, 5123 and 10243,
using 1408 trace samples in each receiver trace and 1408 time
steps in both the forward and backward passes. The velocity
models were partitioned evenly on the X, Y and Z axes so that
each node processed an equal-size, contiguous, 3D sub-block of
the whole. Due to the 25-point stencil, each node had to read and
write four 2D sheets of data from and to the set of nearest
neighbor sub-block nodes. Our code has been SIMDized, can be
run with one core per node (SMP mode) or four cores per node
(VN mode) and does not overlap MPI with computation.
We demonstrate the performance of our method with emphasis on
scalability. Performance was measured on one and two racks of
BGP varying the number of compute nodes (from 128 to 2048
nodes or, equivalently, 512 to 8196 virtual nodes). We also
compare the performance impact of SIMD versus non-SIMD as
well as one core per node versus virtual node (VN) mode (four
cores per node).
Previously [6], we have shown that storing the snapshots in main
memory provides a significant performance advantage over

storing them to disk. In this paper, we continue to use main
memory storage for snapshots.

5.1 Profiling Analysis
For performance profiling purposes, the total run time of the
application falls into several categories: (1) A one-time
initialization phase (which was not optimized) and which in
practice would be amortized over potentially hundreds of
thousands of shots; (2) a per-shot forward processing time
composed of boundary data exchange, core computation and
boundary condition computation; (3) a per-shot backward
processing time which is similar to the forward but with the
addition of an imaging condition computation; and (4) a per-shot
image writing time. Our profiling analysis measured the critical
components of the code, including the forward pass loop, the
backward pass loop, and the final image write. We further break
down the forward pass into forward stencil calculation, boundary
calculation, and boundary exchanges. Likewise, we break down
the backward pass into backward stencil calculation, boundary
calculation, boundary exchanges, and imaging condition
calculation. Figure 14 shows an example of the profiling output,
which is well balanced with the exception of the absorbing
boundary condition calculations (FwdABC and BwdABC).

Figure 14: Per core profiling time (in seconds) for the first 512

cores of a 4096 core RTM run on a 5123 model
Figure 14 shows that compute time and communication time are
well balanced. We are currently working to implement
overlapping between computes and communication. Optimally,
overlapping will result in another performance factor of ~2x.
Note that the code for image writing (to disk) has not been
optimized as it represents a checkpointing operation and can be
amortized over multiple RTM imaging runs. Furthermore, there
is an initialization time (not shown in Figure 14) which grows
with the number of nodes (~12 seconds for 1024 nodes) but which
has not been optimized as it is only invoked once for an entire
RTM survey (hundreds of thousands of shots) and is therefore
negligible.

5.2 Impact of Snapshot Frequency
We have previously shown [6] that relying on disk I/O for RTM
snapshot storage becomes a bottleneck that prevents scaling. For
the purposes of this paper, we therefore consider only snapshot
storage in main memory. Note that our RTM implementation is
largely insensitive to snapshot frequency because BGP has
sufficient main memory bandwidth to save a snapshot every time
step without it becoming a bottleneck even for the largest models
that fit in cache. This fact can be seen by comparing the snapshot
size and compute time for a single iteration with the main memory
bandwidth, and it has been measured experimentally.

5.3 Scaling Performance
To analyze our optimization results and evaluate the performance
of our RTM implementation, we conducted tests varying velocity
model size, number of compute nodes used and the number of
cores per node. We tested our RTM code on two sizes of velocity
models: a 5123 cubic model and a 10243 cubic model. To
evaluate the scaling performance of our RTM implementation, we
conducted the tests on different numbers of computing nodes
ranging from 128 nodes up to 2048 nodes. We also conducted
tests and evaluated corresponding performances on SIMD vs.
non-SIMD on different number of cores per node.
Figures 15 to 18 provide the time performance plots and scaling
performance of test results. For example, our end-to-end RTM
implementation can process about 3000 iteration of a 5123 model
in 9.71 seconds, a 10243 model in 42.97 seconds, achieves 40M
stencils per node per second, and can easily handle models as big
as 20483 or larger. The figures also show that our RTM
implementation scales very well across the number of computing
nodes, especially in the larger model case. Experimentally, on-
node scaling of the RTM computational kernel (with and without
SIMD and 1 to 4 cores) approaches the theoretical maximum of
4x.

Figure 15: RTM performance for a 5123 model

Figure 16: RTM performance for a 10243 model

Figure 17: RTM scaling performance for a 5123 model

Figure 18: RTM scaling performance for a 10243 model

5.4 Performance Comparison
In [7], a rack of 8 Tesla S1070 (32 GPUs) and 16 Harpertown
CPU nodes achieved a processing rate of 232 shots per day per
rack on a velocity model of size 560x560x905 with 22760 time
steps (forward+backward). For comparison, the GPU rate is
equivalent to about 17B stencil calculations per second
(=(232x560x560x905x22760 stencils/day) / (24x60x60 sec/day))
while the equivalent number for BGP is 40B stencils/second
(=1024x1024x1024x2816 stencils / 75 sec, where the 75 sec run
time comes from a one rack BGP measurement). Note that our
implementation includes the additional computation of absorbing
boundary conditions while the GPU implementation does not.
Since we are currently well balanced between computes and
communication on BGP and we have yet to optimize our MPI
implementation, we are optimistic that performance can be
improved further.
In [9], an efficient 25-point, RTM kernel implementation achieved
an impressive 10.8B stencils per second on a Tesla S1070 with
four GPUs. However, this result is not for an end-to-end
application. It has no imaging condition, no snapshot I/O, no
image write, no absorbing boundary condition, no disk I/O and
requires host CPU systems to operate the GPUs. If we assume 1U
for the S1070 server, 1U for the host systems and 1U for the disks
required to keep the process from becoming disk I/O
bottlenecked, then we could put 14 of these in a 42U rack (e.g.,
compare to the 8 S1070’s used in [7]). Such a rack using
embarrassingly parallel scaling might achieve 151G stencils per

second. An apples-to-oranges comparison of this kernel estimate
to our end-to-end RTM application on a much larger data model
(40B stencils/second) shows a 4x performance advantage. Using
[7] as a guide, it is likely all of this advantage and more
disappears when moving from kernel to full application.
Furthermore, GPU implementations are more limited by their
available memory. This problem becomes especially important
when advancing to VTI and TTI RTM, which require
considerably larger models. The option is to continue scaling to
more GPUs; however this is not easily done. In [9], scaling
stopped at 4 GPUs on a single S1070. In [10], a heroic effort was
made to scale to 120 GPUs using S1070’s and 3D domain
partitioning; however, it was found that communication became a
bottleneck. The 56GF/s measure on 1 GPU scaled to 2.2 TF/s on
120 – equivalent to 30% of theoretical maximum. This compares
poorly to the excellent BGP scaling shown in Figure 18.

6. Conclusions
This paper presents what at first sight might seem like a counter-
intuitive idea: replace a straightforward embarrassingly parallel
implementation of a difficult real-world problem with a more
sophisticated, synchronized, communication intense, massive
domain-partitioned approach. However, we have shown that on
BGP, this new approach can lead to performance that is
competitive with today’s industry standard approach. Clearly, this
is a commentary on the ability of the BGP system, which is over 4
years old; but it is equally a commentary on the risk of leaving
established industrial practices unquestioned. In this case, we
have demonstrated that at some point the advantages of cache and
communication locality can overcome the advantages of
embarrassingly parallel implementations.
The results presented here are especially encouraging when one
considers the potential performance boost possible when moving
to the next generation of Blue Gene technology.

7. Acknowledgements
The Blue Gene/P project has been supported and partially funded
by Argonne National Laboratory and the Lawrence Livermore
National Laboratory on behalf of the U.S. Department of Energy
under Lawrence Livermore National Laboratory subcontract no.
B554331. We also acknowledge the support and collaboration of
Columbia University and Edinburgh University.

8. REFERENCES
[1] Sosa, C. and Knudson, B. 2009. IBM System Blue Gene

Solution: Blue Gene/P Application Development, IBM
Redbooks, DOI=
http://www.redbooks.ibm.com/abstracts/sg247287.html

[2] Zhou, H., Fossum, G., Todd, R. and Perrone, M. 2010.
Practical VTI RTM. In Proceedings of 72nd EAGE
Conference.

[3] Higdon, R. L. 1987. Numerical Absorbing Boundary
Conditions for the Wave Equation. Mathematics of
Computation, Vol. 49:179 July,1987, pps. 65-90.

[4] Boonyasiriwat, B. and Schuster, G. 2010. 3D Multisource
Full-Waveform Inversion using Dynamic Quasi-Monte Carlo
Phase Encoding. Geophysical Research Abstracts, Vol. 12,
EGU2010-7298, 20.

[5] Trefethen, L. and Bau, D. 1997. Numerical Linear Algebra,
SIAM.

[6] Perrone, M., Liu, L., Lu, L. and Magerlein, K. 2010. High
Performance RTM Using Massive Domain Partitioning, In
Proceedings of EAGE’2011 Conference, May, 2010.

[7] Abdelkhalek, R., Calandra, H., Coulaud, O., Roman, J., Latu,
G. 2009. Fast Seismic Modeling and Reverse Time
Migration on a GPU Cluster. In International Conference on
High Performance Computing & Simulation, 2009.
HPCS'09.

[8] Fletcher, R. P., Du, X. and Fowler, P. J. 2009. Reverse time
migration in tilted transversely isotropic (TTI) media.
Geophysics, Vol 74:6, 2009.

[9] Micikevicius, P. 2009. 3D finite difference computation on
GPUs using CUDA. In Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units, Washington,
D.C., 79-84.

[10] Okamoto, T., Takenaka, H., Nakamura, T. and Aoki, T.
2009. Accelerating large-scale simulation of seismic wave
propagation by multi-GPUs and three-dimensional domain
decomposition. In Earth Planets Space, November, 2010.

