

Installation, Service, and User Guide

Service information: 2499-192

Read Before Using

This product contains software that is licensed under written license agreements. Your use of such software is subject to the license agreements under which they are provided.

Installation, Service, and User Guide

 $Service\ information: 2499-192$

following paragraph does not apply to any country (or region) where such provisions are inconsistent wit law.

Copyright © 2009 Brocade Communications Systems, Inc. All Rights Reserved.

© Copyright International Business Machines Corporation 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states (or regions) do not allow disclaimer of express or implied warranties in certain transactions; therefore, this statement may not apply to you.

Read this first

Summary of changes

This is the second edition of the *IBM System Storage SAN384B Installation, Service, and User Guide*. The content changes since the last edition of this publication are noted by a vertical line placed in the left margin beside each change. Minor edits are not identified by this mark. A summary of the changes for each edition are listed below.

Second edition

The following changes were made in the second edition:

- The addition of the CEE 10GbE 24-port blade (FCOE10-24)
- The addition of the 8 Gbps routing blade (FX8-24)
- 3-way ICL connection configuration was added
- · An update of how to submit comments on this publication
- Battery removal and disposal instructions were added

Getting help

For the latest version of your product documentation, visit the web at www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi. Search by form number or title.

For more information about ${\rm IBM}^{\rm @}$ SAN products, see the following Web site: www.ibm.com/servers/storage/san/

For support information for this product and other SAN products, see the following Web site: www.ibm.com/systems/support/, select **System Storage**, then select **Storage Area Network (SAN)** from the linked page.

For Fabric OS Release Notes and access to Fabric OS firmware downloads, go to www.ibm.com/systems/support/, select **System Storage**, then select **Storage Area Network (SAN)** from the linked page. From the displayed page, select your product, then select **Download**. From the displayed page, click the **release notes** or **firmware** links.

You can also contact IBM within the United States at 1-800-IBMSERV (1-800-426-7378). For support outside the United States, you can find the service number at: http://www.ibm.com/planetwide/.

Visit www.ibm.com/contact for the contact information for your country or region.

For detailed information about the Fibre Channel standards, see the Fibre Channel Industry Association (FCIA) Web site at: www.fibrechannel.org/

For information about storage industry standards, see the Storage Networking Industry Association (SNIA) Web site at: www.snia.org/

© Copyright IBM Corp. 2009

Taiwan Contact Information

IBM Taiwan Product Service Contact Info: IBM Taiwan Corporation 3F, No 7, Song Ren Rd., Taipei Taiwan Tel: 0800-016-888

台灣IBM產品服務聯絡方式: 台灣國際商業機器股份有限公司 台北市松仁路7號3樓 電話:0800-016-888

How to send your comments

Your feedback is important in helping us provide the most accurate and high-quality information. If you have comments or suggestions for improving this document, send us your comments by e-mail to starpubs@us.ibm.com . Be sure to include the following:

- Exact publication title
- Publication form number (for example, GC26-1234-02)
- Page, table, or illustration numbers
- A detailed description of any information that should be changed

Contents

Read this first	Unpacking the SAN384B 16
Summary of changes iii	Installing the port-side exhaust kit 18
Second edition iii	Torque requirements
Getting help iii	Installing the exhaust kit hardware 20
Taiwan Contact Information iv	Installing the SAN384B into the cabinet 24
How to send your comments iv	Removing a SAN384B from the cabinet 28
y	-
Figures ix	Chapter 3. Starting and configuring the
	SAN384B
Tables xi	Providing power to the SAN384B
TUDICO XI	Connecting the SAN384B and host with a serial
O-f-ttl	cable and logging in
Safety notices xiii	Setting the SAN384B IP addresses
Safety notices and labels xiii	Logging off the serial console port and
Danger notices xiii	disconnecting the serial cable
Caution notices xvi	Establishing an Ethernet connection
Safety labels xvii	Customizing the switch name
Attention notices xviii	Customizing a chassis name
Rack safety xix	Setting the Domain ID
Rack installation xix	Setting the date and time
Rack relocation (19" rack) xx	Setting the date
Safety inspections xxi	Setting the time zone
Removing AC power xxi	Synchronizing local time
External machine checks xxi	
Internal machine checks xxi	Software licenses
Product recycling and disposal xxi	Installing SFPs, XFPs, and attaching cables 39
, 0 1	Managing cables
About this document xxiii	Verifying correct operation and backing up the
Who should read this document xxiii	configuration
Product documents	Powering off the SAN384B
Brocade documents	Fabric OS firmware updates
IBM and Brocade product matrix xxiv	Downloading and installing firmware 43
Accessibility features for SAN384B xxiv	
Accessibility leatures for SAIN364b xxiv	Chapter 4. Monitoring system
Chapter 1 Introduction 1	components 45
Chapter 1. Introduction	Port or routing blade status 45
Overview of the SAN384B	Control processor blade (CP8) status 51
Hardware components 2	Core switch blade (CR4S-8) status
SAN384B blades 5	Power supply status
High availability 6	Blower assembly status
Reliability	WWN card status
Serviceability	
Software features	Chapter 5. Removing and installing
Security 8	-
Network Manageability 9	components
Port numbering	Removing and installing the chassis door 59
	Time and items required
Chapter 2. Installing and removing a	Removing the chassis door
SAN384B	Removing and installing cable management finger
Ordering the lift tool	assemblies 60
World trade locations	Time and items required 60
United States locations	Removing a cable management finger assembly 60
	Installing a cable management finger assembly 61
Installation guidelines	Removing and installing port, application, and
Installing a SAN384B in a 2109 C36 cabinet 14	router blades 62
Time required	Time and items required 62
Undacking and assembling the lift tool 15	

© Copyright IBM Corp. 2009

Removing a blade 62	Items required	. 103
Installing a blade	Procedures	. 104
Removing and installing blade filler panels 64	FC3850 - Installing an FR4-18i routing blade	
Removing a filler panel 65	Time required	
Installing a filler panel 65	Items required	
Removing and installing a CP8 control processor	Procedures	
blade	FC3870 - Installing an FC10-6 10 Gb blade	
Time and items required 66	Time required	
Verifying the need for replacement 66	Items required	
Recording critical SAN384B information 66	Procedures	
Removing a control processor blade (CP8) 68	FC3880 - Installing an FCOE10-24 blade	
Installing a control processor blade (CP8) 69	Time required	
Verifying operation of the new CP blade 69	I Items required	. 108
Removing and installing a CR4S-8 core switch blade 71	Procedures	
Time and items required	FC3890 - Installing an FX8-24 extension blade .	
Verifying the necessity of installation	Time required	
Removing a CR4S-8 core switch blade	I Items required	. 109
Installing a CR4S-8 core switch blade	Procedures	
Removing and installing a power supply	FC7870 - Installing an inter-chassis cable kit	
Time and items required	Time required	
Removing a power supply	Items required	
Removing and installing a blower assembly	riocedules	. 110
Time and items required	Appendix A. Dreduct execitions	440
Removing a blower assembly	Appendix A. Product specifications	113
Installing a blower assembly	General specifications	
Removing and installing a WWN bezel and WWN	System architecture	
card	System size and weights	
Time and items required	System blade and FRU weights	. 110
Verifying necessity of installation	Facility requirements	. 117
Determining the status of a WWN card	Environmental requirements	
Removing the WWN bezel and WWN card 78	Fibre channel port specifications	
Installing the WWN bezel and WWN card 79	Power specifications	
Removing and installing SFPs and XFPs 80	Data transmission ranges	
Removing and installing inter-chassis link (ICL)	FR4-18i routing blade port specifications Fibre Channel port specifications	
cables	GbE port specifications	
Time and items required 82	Power cords	
Removing an ICL cable 82	Tower colus	. 120
Installing an ICL cable 82	Annondix B. Application blades	121
Removing and replacing a SAN384B chassis 88	Appendix B. Application blades	
Time required	FR4-18i blade	
Items required	FX8-24 blade	
Verifying need for replacement 88	FCOE10-24 blade	. 123
Recording critical SAN384B and SAN	Annondix C. Diagnostics and	
information	Appendix C. Diagnostics and	
Disconnecting from the network and fabric 92	troubleshooting	
Removing components from the chassis 93	Obtaining chassis and component status	
Installing the replacement chassis 94	Interpreting POST and boot results	
Installing components into the new chassis 94	POST	
Downloading the configuration 95	Boot	
Verifying correct operation of system 95	Diagnostics	
Reconnecting the system to the network and	Troubleshooting	. 127
fabric		
Verifying correct configuration of the fabric 97	Appendix D. Sample configurations	131
Cable routing table template		
Removing the battery	Notices	135
	Trademarks	
Chapter 6. Installing new features 103	Electronic emission notices	
FC3816, FC3832, FC3848 - Installing a 8-Gb port	Federal Communications Commission (FCC)	
blade (16, 32, or 48 ports)	Class A Statement	. 138
Time required		

Ι

Industry Canada Class A Emission Compliance	Japan VCCI Class A ITE Electronic Emission
Statement	Statement
Avis de conformité à la réglementation	People's Republic of China Class A Electronic
d'Industrie Canada	Emission Statement
European Union (EU) Electromagnetic	Korea Class A Electronic Emission Statement 140
Compatibility Directive	
Germany Electromagnetic Compatibility	Index
Directive 120	

Figures

1.	Port side of the SAN384B (sample		28.	Blower assembly LEDs
	configuration)		29.	WWN bezel
2.	Port side of the SAN384B with the exhaust kit		30.	Chassis door
	installed (sample configuration) 4		31.	Cable management finger assemblies 61
3.	Blower (non-port) side of the SAN384B 4		32.	Port blade removal and installation (48-port
4.	Assembled lift tool with 24-inch load plate 16			blade shown as example)
5.	Lift tool positioned next to the chassis on the		33.	Filler panel removal and installation 65
	shipping tray		34.	Removing the control processor (CP8) blade 69
6.	Port-side exhaust kit assembly for 27 to 31 in.		35.	Removing the core switch blade
	(68.58 to 78.74 cm) cabinets		36.	Location of the two power supplies 74
7.	Clip and retainer nut locations on exhaust side		37.	Removing and installing a power supply 75
	cabinet rails (example showing relative		38.	Blower assembly removal
	positions)		39.	WWN bezel and card removal and installation 79
8.	Shelf installed in cabinet		40.	SFP extraction tool 81
9.	Air duct installed into side slot in shelf 22		41.	ICL cable
0.	Installing the top rail assembly to the duct		42.	ICL cable connections between two SAN384B
	assembly and cabinet rails			chassis
1.	Lift tool and chassis positioned at rear of		43.	ICL cable connections between a SAN384B
	cabinet			chassis and a SAN768B chassis 85
2.	Load plate extended inside the cabinet to the		44.	3-way ICL cable connections between a
	exhaust kit shelf			SAN384B chassis and two SAN768B chassis 86
13.	Chassis half way into cabinet on load plate 26		45.	3-way ICL cable connections between a
4.	Location of screws to attach the chassis to the			SAN768B chassis and two SAN384B chassis 87
	cabinet rails		46.	Battery locations on the SAN384B 101
15.	Attaching the vertical cable management		47.	Port side populated with four FC8-48 port
	finger assemblies to the cabinet rails 28			blades, two CR4S-8 blades, and two CP8
6.	Flow of configuration tasks for the SAN384B 32			blades
7.	Vertical cable management finger assemblies 41		48.	Port side populated with four FC8-32 port
8.	FC8-16 port blade 46			blades, two CR4S-8 blades, and two CP8
9.	FC8-32 port blade			blades
20.	FC8-48 port blade		49.	Port side populated with four FC8-16 port
21.	FC10-6 port blade			blades, two CR4S-8 blades, and two CP8
22.	FR4-18i routing blade 48			blades
<u>2</u> 3.	FX8-24 extension blade 48		50.	Two FC10-6 port blades
24.	FCOE10-24 blade		51.	Two FR4-18i routing blades
<u>2</u> 5.	Control processor blade (CP8) LEDs 52	-	52.	FX8-24 extension blade
26.	Core switch blade (CR4S-8)		53.	FCOE10-24 blade
7	Power supply 55			

© Copyright IBM Corp. 2009 ix

Tables

1.	Brocade and IBM product and model	16.	Commands identifying the WWN card status 78
	number matrix xxiv	17.	WWN card related system log messages 78
2.	Blades available for the SAN384B 5	18.	ICL connector port LEDs 81
3.	Security features	19.	Configuration and SAN profile worksheet 90
4.	Port blades available on the SAN384B 9	20.	Cable routing table for SAN384B (48 ports
5.	Installation tasks, time, and items required 14		shown)
6.	Parts list for port-side exhaust kit for C36	21.	General product specifications
	cabinets	22.	System architecture
7.	Torque requirements for mounting screws 20	23.	System sizes and weights
8.	Configuration parameters	24.	System FRU weights
9.	Example login without changing the password 34	25.	Environmental requirements
10.	Port and routing blade LED descriptions 50	26.	Power specifications
11.	CP blade LED descriptions 52	27.	Supported optics, speeds, cables, and
12.	CR4S-8 blade LED descriptions 54		distances
13.	Power supply LED descriptions 55	28.	Environmental status and maintenance
14.	Blower assembly LED descriptions 56		commands
15.	Messages that may indicate WWN card failure 57	29.	Troubleshooting

© Copyright IBM Corp. 2009

Safety notices

This section contains information about:

- "Safety notices and labels"
- "Rack safety" on page xix
- "Safety inspections" on page xxi

Safety notices and labels

When using this product, observe the danger, caution, and attention notices contained in this guide. The notices are accompanied by symbols that represent the severity of the safety condition. The danger and caution notices are listed in numerical order based on their IDs, which are displayed in parentheses, for example (D004), at the end of each notice. Use this ID to locate the translation of these danger and caution notices in the *IBM Systems Safety Notices* (G229–9054) publication, which is on the CD-ROM that accompanies this product.

The following notices and statements are used in IBM documents. They are listed below in order of increasing severity of potential hazards. Follow the links for more detailed descriptions and examples of the danger, caution, and attention notices in the sections that follow.

- **Note:** These notices provide important tips, guidance, or advice.
- "Attention notices" on page xviii: These notices indicate potential damage to programs, devices, or data.
- "Caution notices" on page xvi: These statements indicate situations that can be potentially hazardous to you.
- "Danger notices": These statements indicate situations that can be potentially lethal or extremely hazardous to you. Safety labels are also attached directly to products to warn of these situations.
- In addition to these notices, "Safety labels" on page xvii may be attached to the product to warn of potential hazards.

Danger notices

A danger notice calls attention to a situation that is potentially lethal or extremely hazardous to people. A lightning bolt symbol accompanies a danger notice to represent a dangerous electrical condition. Read and comply with the following danger notices before installing or servicing this device.

DANGER

To prevent a possible shock from touching two surfaces with different protective ground (earth), use one hand, when possible, to connect or disconnect signal cables. (D001)

© Copyright IBM Corp. 2009 xiii

DANGER

Overloading a branch circuit is potentially a fire hazard and a shock hazard under certain conditions. To avoid these hazards, ensure that your system electrical requirements do not exceed branch circuit protection requirements. Refer to the information that is provided with your device or the power rating label for electrical specifications. (D002)

DANGER

If the receptacle has a metal shell, do not touch the shell until you have completed the voltage and grounding checks. Improper wiring or grounding could place dangerous voltage on the metal shell. If any of the conditions are not as described, STOP. Ensure the improper voltage or impedance conditions are corrected before proceeding. (D003)

DANGER

An electrical outlet that is not correctly wired could place hazardous voltage on metal parts of the system or the devices that attach to the system. It is the responsibility of the customer to ensure that the outlet is correctly wired and grounded to prevent an electrical shock. (D004)

A general electrical danger notice provides instructions on how to avoid shock hazards when servicing equipment. Unless instructed otherwise, follow the procedures in the following danger notice.

DANGER

When working on or around the system, observe the following precautions:

Electrical voltage and current from power, telephone, and communication cables are hazardous. To avoid a shock hazard:

- Connect power to this unit only with the IBM provided power cord. Do not use the IBM provided power cord for any other product.
- · Do not open or service any power supply assembly.
- · Do not connect or disconnect any cables or perform installation, maintenance, or reconfiguration of this product during an electrical storm.
- The product might be equipped with multiple power cords. To remove all hazardous voltages, disconnect all power cords.
- · Connect all power cords to a properly wired and grounded electrical outlet. Ensure that the outlet supplies proper voltage and phase rotation according to the system rating plate.
- · Connect any equipment that will be attached to this product to properly wired outlets.
- When possible, use one hand only to connect or disconnect signal cables.
- Never turn on any equipment when there is evidence of fire, water, or structural damage.
- Disconnect the attached power cords, telecommunications systems, networks, and modems before you open the device covers, unless instructed otherwise in the installation and configuration procedures.
- Connect and disconnect cables as described below when installing, moving, or opening covers on this product or attached devices.

To Disconnect:

- 1. Turn off everything (unless instructed otherwise).
- 2. Remove the power cords from the outlets.
- 3. Remove the signal cables from the connectors.
- 4. Remove all cables from the devices.

To Connect:

- 1. Turn off everything (unless instructed otherwise).
- 2. Attach all cables to the devices.
- 3. Attach the signal cables to the connectors.
- 4. Attach the power cords to the outlets.
- 5. Turn on the devices.

(D005)

The weight of the SAN cabinet (2109-C36) with two SAN384Bs is greater than 227 kg (500 lb), and has a fully loaded capacity of 816 kg (1795 lb). Under these conditions, the following statement and notice apply.

Delivery and subsequent transportation of the equipment

The customer should prepare his environment to accept the new product based on the installation planning information provided, with assistance from an IBM Installation Planning Representative (IPR) or IBM authorized service provider. In anticipation of the equipment delivery, the final installation site should be prepared in advance such that professional movers/riggers can transport the equipment to the final installation site within the computer room. If for some reason, this is not possible at the time of delivery, the customer will need to make arrangements to have professional movers/riggers return to finish the transportation at a later date. Only professional movers/riggers should transport the equipment. The IBM authorized service provider will only perform minimal frame repositioning within the computer room, as needed, to perform required service actions. The customer is also responsible for using professional movers/riggers in the case of equipment relocation or disposal.

Heavy equipment—personal injury or equipment damage might result if mishandled. (D006)

Caution notices

A caution notice calls attention to a situation that is potentially hazardous to people because of some existing condition. A caution notice can be accompanied by different symbols, as in the examples below:

If the symbol	
is	It means
4	A hazardous electrical condition with less severity than electrical danger.
<u>^</u>	A generally hazardous condition not represented by other safety symbols.
255 kg (>121.2 lbs)	A specification of product weight that requires safe lifting practices. The weight range of the product is listed below the graphic, and the wording of the caution varies, depending on the weight of the device.
>55kg (121.2 lb)	
PAI SUPPRISO D.	A potential hazard of pinching the hand or other body parts between parts.
	A hazardous condition due to moving parts nearby.
Class I	A hazardous condition due to the use of a laser in the product. Laser symbols are always accompanied by the classification of the laser as defined by the U.S. Department of Health and Human Services (for example, Class I, Class II, and so forth).

CAUTION:

Energy hazard present. Shorting may result in system outage and possible physical injury. Remove all metallic jewelry before servicing.

CAUTION:

The weight of this part or unit is more than 55 kg (121.2 lb). It takes specially trained persons, a lifting device, or both to safely lift this part or unit. (C011)

>55kg (121.2 lb)

CAUTION:

This product is equipped with a 3-wire (two conductors and ground) power cable and plug. Use this power cable with a properly grounded electrical outlet to avoid electrical shock. (C018)

CAUTION:

Servicing of this product or unit is to be performed by trained service personnel only. (C032)

CAUTION:

For CA residents only: IBM recommends installing this product in a room size of 62 cubic meters (2190 cubic feet) or larger at 0.4 ACH ventilation rate to reduce the concentrations of any chemicals emitted by the product.

Safety labels

As an added precaution, safety labels are often installed directly on products or product components to warn of potential hazards. These can be either danger or caution notices, depending upon the level of the hazard.

The actual product safety labels may differ from these sample safety labels:

DANGER

Hazardous voltage, current, or energy levels are present inside any component that has this label attached. Do not open any cover or barrier that contains this label. (L001)

DANGER

Rack-mounted devices are not to be used as a shelf or work space. (L002)

DANGER

Multiple power cords. The product might be equipped with multiple power cords. To remove all hazardous voltages, disconnect all power cords. (L003)

DANGER

Hazardous voltage present. Voltages present constitute a shock hazard, which can cause severe injury or death. (L004)

CAUTION:

Hazardous energy present. Voltages with hazardous energy might cause heating when shorted with metal, which might result in splattered metal, burns, or both. (L005)

CAUTION:

Hazardous moving parts nearby (L008)

CAUTION:

Pinch hazard. (L012)

Attention notices

An attention notice indicates the possibility of damage to a program, device, or system, or to data. An exclamation point symbol may accompany an attention notice, but is not required. A sample attention notice follows:

Attention: Do not bend a fibre cable to a radius less than 5 cm (2 in.); you can damage the cable. Tie wraps are not recommended for optical cables because they can be easily overtightened, causing damage to the cable.

ESD precautions

Attention: Many of the field replaceable units (FRUs) are sensitive to electrostatic discharge (ESD), and can potentially be damaged by improper handling. Wear a wrist grounding strap connected to chassis ground (if the SAN384B is plugged in) or a bench ground. Store all ESD-sensitive components in antistatic packaging.

Rack safety

Rack installation

DANGER

Observe the following precautions when working on or around your IT rack system:

- Heavy equipment—personal injury or equipment damage might result if mishandled.
- · Always lower the leveling pads on the rack cabinet.
- · Always install stabilizer brackets on the rack cabinet.
- To avoid hazardous conditions due to uneven mechanical loading, always install the heaviest devices in the bottom of the rack cabinet. Always install servers and optional devices starting from the bottom of the rack cabinet.
- Rack-mounted devices are not to be used as shelves or work spaces. Do not place objects on top of rack-mounted devices.

- Each rack cabinet might have more than one power cord. Be sure to disconnect all
 power cords in the rack cabinet when directed to disconnect power during servicing.
- Connect all devices installed in a rack cabinet to power devices installed in the same rack cabinet. Do not plug a power cord from a device installed in one rack cabinet into a power device installed in a different rack cabinet.
- An electrical outlet that is not correctly wired could place hazardous voltage on the
 metal parts of the system or the devices that attach to the system. It is the
 responsibility of the customer to ensure that the outlet is correctly wired and
 grounded to prevent an electrical shock.

(R001 part 1 of 2)

CAUTION:

- Do not install a unit in a rack where the internal rack ambient temperatures will exceed the manufacturer's recommended ambient temperature for all your rack-mounted devices.
- Do not install a unit in a rack where the air flow is compromised. Ensure that air flow
 is not blocked or reduced on any side, front, or back of a unit used for air flow
 through the unit.
- Consideration should be given to the connection of the equipment to the supply circuit
 so that overloading of the circuits does not compromise the supply wiring or
 overcurrent protection. To provide the correct power connection to a rack, refer to the
 rating labels located on the equipment in the rack to determine the total power
 requirement of the supply circuit.
- (For sliding drawers) Do not pull out or install any drawer or feature if the rack stabilizer brackets are not attached to the rack. Do not pull out more than one drawer at a time. The rack might become unstable if you pull out more than one drawer at a time.
- (For fixed drawers) This drawer is a fixed drawer and must not be moved for servicing unless specified by the manufacturer. Attempting to move the drawer partially or completely out of the rack might cause the rack to become unstable or cause the drawer to fall out of the rack.

(R001 part 2 of 2)

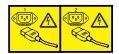
Rack relocation (19" rack)

CAUTION:

Removing components from the upper positions in the rack cabinet improves rack stability during relocation. Follow these general guidelines whenever you relocate a populated rack cabinet within a room or building:

- Reduce the weight of the rack cabinet by removing equipment starting at the top of the rack cabinet. When possible, restore the rack cabinet to the configuration of the rack cabinet as you received it. If this configuration is not known, you must do the following:
 - Remove all devices in the 32U position and above.
 - Ensure that the heaviest devices are installed in the bottom of the rack cabinet.
 - Ensure that there are no empty U-levels between devices installed in the rack cabinet below the 32U level.
 - If the rack cabinet you are relocating is part of a suite of rack cabinets, detach the rack cabinet from the suite.
 - Inspect the route that you plan to take when moving the rack to eliminate potential hazards.
 - Verify that the route that you choose can support the weight of the loaded rack cabinet. Refer to the documentation that came with your rack cabinet for the weight of a loaded rack cabinet.
 - Verify that all door openings are at least 760 x 2030 mm (30 x 80 in.).
 - Ensure that all devices, shelves, drawers, doors, and cables are secure.
 - Ensure that the four leveling pads are raised to their highest position.
 - Ensure that there is no stabilizer bracket installed on the rack cabinet during movement.
 - Do not use a ramp inclined at more than 10 degrees.
 - Once the rack cabinet is in the new location, do the following:
 - Lower the four leveling pads.
 - Install stabilizer brackets on the rack cabinet.
 - If you removed any devices from the rack cabinet, repopulate the rack cabinet from the lowest position to the highest position.
 - If a long distance relocation is required, restore the rack cabinet to the configuration of the rack cabinet as you received it. Pack the rack cabinet in the original packaging material, or equivalent. Also, lower the leveling pads to raise the casters off of the pallet and bolt the rack cabinet to the pallet.

(R002)


Safety inspections

Perform the following safety checks to identify unsafe conditions. Be cautious of potential safety hazards that are not covered in the safety checks. If unsafe conditions are present, determine how serious the hazards are and whether you should continue before you correct the problem.

Removing AC power

Perform the following steps to remove the alternating current (ac) power:

- 1. Perform a controlled system shutdown.
- 2. Set the power switch on the product to the off position.
- 3. Disconnect the power cables from the power source.

DANGER

Multiple power cords. (L003)

External machine checks

Perform the following external machine checks:

- 1. Verify that all external covers are present and are not damaged.
- 2. Ensure that all latches and hinges are in correct operating condition.
- 3. Check the power cable for damage.
- 4. Check the external signal cable for damage.
- 5. Check the cover for sharp edges, damage, or alterations that expose the internal parts of the device.
- 6. Check that any unused serial ports are covered for dust and ESD protection. The cover should be kept on the serial port whenever it is not being used.
- 7. Correct any problems that you find.

Internal machine checks

Perform the following internal machine checks:

- 1. Check for any non-IBM changes that might have been made to the machine. If any are present, obtain the "Non-IBM Alteration Attachment Survey" form, number R009, from the IBM branch office. Complete the form and return it to the branch office.
- 2. Check the condition of the inside of the machine for:
 - · Metal or other contaminants
 - · Indications of water or other fluid
 - Fire or smoke damage
- 3. Check for any obvious mechanical problems, such as loose components.
- 4. Check any exposed cables and connectors for wear, cracks, or pinching.

Product recycling and disposal

ı

Refer to the *IBM Systems Environmental Notices and User Guide* (Z125-5823) on the product documentation CD for translated environmental statements and information regarding product recycling and disposal. This document may be provided either in printed version or on the product documentation CD. See

"Removing the battery" on page 100 for battery removal instructions, if needed to meet environmental regulations.

About this document

This document describes how to install and service the IBM System Storage $^{\text{\tiny TM}}$ SAN384B fabric backbone product.

The sections that follow provide information about:

- · "Who should read this document"
- "Product documents"
- "Brocade documents"
- "Accessibility features for SAN384B" on page xxiv

Who should read this document

This document is intended for trained service representatives who are responsible for installing and servicing the SAN384B, and for network administrators responsible for maintaining and using the SAN384B.

Product documents

The following documents contain information related to this product. The documentation may be printed material or may be on the documentation CD that is shipped with the product.

- *IBM System Storage SAN384B Installation, Service, and User Guide,* GC52-1333 (this document, which is also available in accessible HTML format on the documentation CD)
- IBM Systems Safety Notices, G229–9054
- IBM Systems Environmental Notices and User Guide, Z125-5823
- Warranty information (45W5818)

Brocade documents

IBM switches use software licensed from Brocade Communications Systems, Inc. You can find information related to the software that supports the SAN384B in the following documents on the CD-ROM supplied with this product:

Brocade Fabric OS

- Fabric OS Administrator's Guide
- Fabric OS Command Reference Manual
- Fabric OS MIB Reference
- Fabric OS Message Reference
- Fabric OS Troubleshooting and Diagnostics Guide
- Fabric OS FCIP Administrator's Guide
- FICON Administrator's Guide
- SAN Glossary

Brocade Fabric OS optional features

- Fabric Watch Administrator's Guide
- Web Tools Administrator's Guide

© Copyright IBM Corp. 2009 xxiii

IBM and Brocade product matrix

When you use any of the Brocade documents, you will notice that the model numbers reflect the original Brocade products. Table 1 provides a product matrix for you to use to correlate the Brocade products and models to the IBM product names and machine types and model numbers. Products withdrawn from marketing are not listed.

Table 1. Brocade and IBM product and model number matrix

Brocade product name	IBM product name	IBM machine type and model number
Brocade DCX-4S	SAN384B	2499 Model 192
Brocade DCX	SAN768B	2499 Model 384
Brocade 48000	SAN256B Director	2109 Model M48
Brocade 8000	IBM Converged Switch B32	3758 Model B32
Brocade 7800	SAN06B-R	2498 Model R06
Brocade 7500E	SAN04B-R	2005 Model R04
Brocade 5300	SAN80B-4	2498 Model B80
Brocade 5100	SAN40B-4	2498 Models B40 and 40E
Brocade 300	SAN24B-4	2498 Models B24 and 24E

Accessibility features for SAN384B

Accessibility features help users who have a disability, such as restricted mobility or limited vision, to use information technology products successfully.

Accessibility features

Use and operation of this device is accomplished primarily through external devices which may provide different accessibility features.

The following list includes the major accessibility features in the SAN384B either directly or through external devices or interfaces:

- Keyboard-only operation
- Interfaces that are commonly used by screen readers
- · Keys that are discernible by touch but do not activate just by touching them
- Industry-standard devices for ports and connectors
- The attachment of alternative input and output devices

Keyboard navigation

This product uses standard Microsoft® Windows® navigation keys.

Vendor software

The SAN384B includes certain vendor software that is not covered under the IBM license agreement. IBM makes no representation about the accessibility features of these products. Contact the vendor for the accessibility information about its products.

Related accessibility information

You can view the publications for the SAN384B in Adobe Portable Document Format (PDF) using the Adobe Acrobat Reader. The PDFs are provided on a CD that is packaged with the product. An accessible HTML version of this document is also included on the documentation CD for this product.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about the commitment that IBM has to accessibility: www.ibm.com/able.

Chapter 1. Introduction

This chapter introduces the features and components of the IBM System Storage SAN384B fabric backbone. Throughout this document, the product is referred to as the *SAN384B*, or more generically as *system*, *device*, or *chassis*, where appropriate. This chapter contains the following information:

- "Overview of the SAN384B"
- "Hardware components" on page 2
- "High availability" on page 6
- "Reliability" on page 7
- "Serviceability" on page 7
- "Software features" on page 7

Overview of the SAN384B

The SAN384B is part of IBM's industry-leading backbone-class product line, a highly robust class of network switching platform that combines breakthrough performance, scalability, and energy efficiency with long-term investment. Supporting open systems and System z^{\otimes} , SAN backbones are designed to address the data growth and application demands of evolving enterprise data centers, achieve server, SAN, and data center consolidation, and reduce infrastructure and administrative costs.

Key features of the SAN384B include:

- A horizontal chassis with up to 192 ports through four port blades (in addition to two core switching and two core processing blades).
- Support for all of the application, port blade, and control processor (CP) blades supported in the SAN768B, providing flexible system configurations and fewer types of new blades. (SAN768B CR8 core switch blades are not supported in the SAN384B chassis.)
- Up to 384 ports can connect with the use of inter-chassis links (ICLs).
- Support for high-performance port blades running at 1-, 2-, 4-, 8-, or 10-Gbps, enabling flexible system configuration.
- Supports 1-, 2-, 4-, and 8-Gbps auto-sensing Fibre Channel ports. Trunking technology groups up to eight ports to create high performance 64-Gbps ISL trunks between switches. (10 Gbps ports (FC10-6) are 10 Gbps only.)
- Dual-redundant control processor blades (CP8) and core switch blades (CR4S-8) provide high availability and enable nondisruptive software upgrades.
- Redundant and hot-swappable CP8 and CR4S-8 blades, power supplies, blower assemblies, and WWN cards enable a high availability platform for mission critical SAN applications.
- Universal ports that self-configure as E_ports, F_ports, FL_ports, Ex_ports, and M_ports (mirror ports). 10 Gbps ports (FC10-6) are E-Ports only.
- Fibre Channel over IP (FCIP) functionality through the FX8-24 blade.
- Fibre Channel over Ethernet (FCoE) capability through the FCOE10-24 blade.

© Copyright IBM Corp. 2009

Hardware components

The SAN384B features a modular and scalable mechanical construction that allows a wide range of flexibility in installation, fabric design, and maintenance. The chassis may be mounted with the cables facing the front of the equipment rack or to the rear, and consists of the following:

- Up to four hot-swappable port blade assemblies can be configured in a single chassis, delivering up to 192 Fibre Channel ports
- Two slots for control processor blades (CP8):
 - A single active CP8 blade can control all 192 ports in the chassis
 - The standby CP8 blade assumes control of the SAN384B if the active CP fails
- Two slots for core switch blades (CR4S-8):
 - CR4S-8 blade interconnects all port blades
 - Two inter-chassis link (ICL) connectors per blade to connect to another chassis
 - Both CR4S-8 blades are active
- Modular hot-swappable port blades:
 - 16-port, 8-Gbps blades (FC8-16)
 - 32-port, 8-Gbps blades (FC8-32)
 - 48-port, 8-Gbps blades (FC8-48)
 - 6-port, 10-Gbps blades (FC10-6)
- Modular hot-swappable application blades:
 - FR4-18i: 18-port (16 FC + 2 GbE), up to 4 blades per chassis, supporting Fibre Channel Routing Services and FCIP
 - FX8-24: 24-port (12 FC, 10 GbE, 2 10GbE) FCIP extension blade enabling long distance communication over existing IP infrastructure
 - FCOE10-24: 24-port (24 10GbE) CEE-based FCoE blade enabling enhanced connectivity using existing Ethernet infrastructure.
- Modular hot-swappable field replaceable units (FRUs):
 - Two blower assemblies
 - Two 100 to 240 VAC power supplies. 240 VAC is recommended for efficiency and high availability.
 - Two WWN cards
 - Small Form-factor Pluggable (SFP) optical transceivers (4- and 8-Gbps)

Note: The 8-Gbps SFPs auto-negotiate at 2, 4, and 8 Gbps. The 4-Gbps SFPs autonegotiate at 1, 2, and 4 Gbps.

- Extended Form-factor Pluggable (XFP) optical transceivers (10-Gbps)
- 1 GbE copper SFP transceivers for the IP ports on the routing blade
- Port-side exhaust kit (standard), which directs the exhaust airflow to the cabinet service aisle
- All blades are serviced from the port side of the SAN384B. Blowers, power supplies, and power cables are serviced from the nonport side
- World Wide Name (WWN) cards on the nonport side, with WWN status LEDs located under the bezel
- Improved cable management using two vertical cable management finger assemblies
- Constant intake and FRU temperature monitoring

• Redundant AC primary power connections to ensure high availability. Each power supply has its own connector

Note: Airflow in the SAN384B is from the non-port (non-cable) side to the left side of the chassis. With the port-side exhaust kit (see Figure 2 on page 4, the air flows out the vent on the port side of the chassis.

Figure 1 shows a sample configuration of the port side of the SAN384B with four FC8-48 port blades installed.

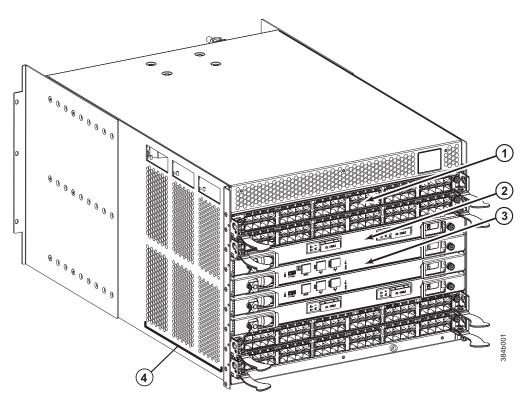


Figure 1. Port side of the SAN384B (sample configuration)

1	FC8-48 port blade (example, 4x)	3	Control processor blade (CP8) (2x)
2	Core switch blade (CR4S-8) (2x)	4	Exhaust vent

Figure 2 on page 4 shows the SAN384B with the port-side exhaust kit installed over the chassis exhaust vent (sample configuration). The exhaust is routed from the chassis exhaust vent through the port-side exhaust kit. The exhaust exits through the vent grill below the chassis.

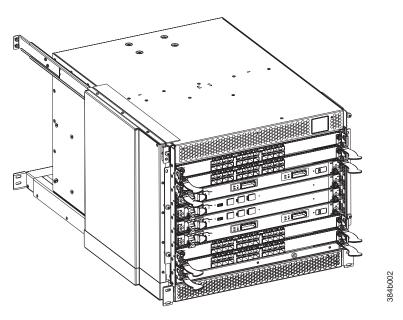


Figure 2. Port side of the SAN384B with the exhaust kit installed (sample configuration)

Figure 3 shows the non-port side of the SAN384B.

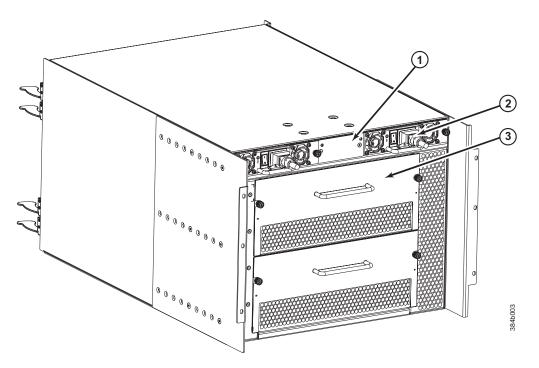


Figure 3. Blower (non-port) side of the SAN384B

- 1 WWN bezel 3 Blower assembly (2x)
- 2 Power supply (2x)

SAN384B blades

Table 2 summarizes the port, application, control processor, and core switch blades that are available for the SAN384B.

Table 2. Blades available for the SAN384B

Description	Feature Code	Name	Function
Control processor blade	N/A	CP8	The CP8 blade contains the control plane for the chassis. There are two CP8 blades for redundancy. This control processor blade is compatible with the SAN768B and SAN384B.
Core switch blade	N/A	CR4S-8	The CR4S-8 blade contains the ASICs for switching between port blades. Core switch blades have additional front port connectivity to connect multiple chassis and backplane connections for the storage server blade. This core switch blade is compatible only with the SAN384B.
16-port 8-Gbps port blade	FC3816	FC8-16	A 16-port blade supporting 1–, 2–, 4–, and 8–Gbps port speeds.
32-port 8-Gbps port blade	FC3832	FC8-32	A 32-port blade supporting 1-, 2-, 4-, and 8-Gbps port speeds.
48-port 8-Gbps port blade	FC3848	FC8-48	A 48-port blade supporting 1-, 2-, 4-, and 8-Gbps port speeds.
6-port 10-Gbps port blade	FC3870	FC10-6	A 6-port blade supporting 10-Gbps port speed. Blade provides 10-Gbps ISLs.

Table 2. Blades available for the SAN384B (continued)

Description	Feature Code	Name	Function
Fibre Channel router blade	FC3850	FR4-18i	The FR4-18i blade has 16 4-Gbps physical Fibre Channel SFP ports supporting Fibre Channel Routing Services and two physical Gigabit Ethernet (GbE) SFP ports supporting Fibre Channel Over IP (FCIP). The two physical GbE ports can support up to 16 virtual E_ports.
FCIP extension blade	FC3890	FX8-24	The FX8-24 blade enables FCIP functionality over existing IP infrastructure. It has twelve FC ports, ten 1 GbE ports, and two 10 GbE ports available.
Fibre Channel over Ethernet blade	FC3880	FCOE10-24	The FCOE10-24 blade enables FCoE functionality over existing Ethernet infrastructure utilizing CEE protocols. It has twenty-four 10 GbE ports available.

High availability

The following features contribute to the SAN384B's high-availability design:

- Redundant, hot-swappable blades and FRUs
- Enhanced data integrity on all data paths
- Fabric Shortest Path First (FSPF) rerouting around failed links
- Integration with Simple Network Management Protocol (SNMP) managers
- Automatic control processor failover
- Nondisruptive "hot" software code loads and activation
- Easy configuration, save, and restore
- Hot-swappable World Wide Name (WWN) cards

The high-availability software architecture of the SAN384B provides a common framework for all applications that reside on the system, allowing global and local status to be maintained through any component failure. High-availability elements consist of the High Availability Manager, the heartbeat, the fault/health framework, the replicated database, initialization, and software upgrade.

The High Availability Manager controls access to the standby control processor, facilitates software upgrades, prevents extraneous switchover activity, closes and flushes streams, provides flow control and message buffering, and supports a centralized active and standby state.

Reliability

The SAN384B uses the following error detection and correction mechanisms to ensure reliability of data:

- · Error Detection and Correction mechanism, which checks for encoder errors and fault isolation (EDFI), such as cyclic redundancy checking (CRC), parity checking, checksum, and illegal address checking
- Power-on self test (POST)
- Dual control processors that enable hot, nondisruptive fast firmware upgrades
- Each control processor contains one serial port and two Ethernet ports, for management and for service. Offline control processor diagnostics and remote diagnostics simplify troubleshooting. The standby control processor monitors diagnostics to ensure it is operational, should a failover be necessary
- Bus monitoring and control of blades and other field-replaceable units (FRUs).

Serviceability

The SAN384B provides the following features to enhance and ensure serviceability:

- Modular design with hot-swappable components
- · Flash memory that stores two firmware images per control processor
- · Vertical cable management finger assemblies to accommodate the horizontal orientation of the blades
- Nonvolatile random-access memory (NVRAM), containing the OEM serial number, IBM serial number, revision information, and part number information
- Background health-check daemon
- Memory scrubber, self test, and bus ping to determine if a bus is not functioning
- RASlog messages
- SMI-S compliant
- Watchdog timers
- Status LEDs
- Predictive diagnostics analysis through Fabric Watch
- SNMP (including version 3) integration with higher-layer managers

Software features

The Fabric OS allows any Fibre Channel-compliant device to attach to the switches as long as it conforms to the device login, name service, and related Fibre Channel standards. Each operating environment requires that a Fibre Channel host bus adapter (HBA) be available with a standards-compliant driver for correct interface to the fabric.

Fabric OS consists of a set of embedded applications running on top of an embedded Linux[®] operating system kernel. These applications include:

- · Name server
- · Alias server
- · Zone server

- Simple Network Management Protocol (SNMP) agent
- SMI-S compliant API
- · Syslog auditing
- RCS (Reliable Commit Service)
- NTP
- Tasks to manage address assignment, routing, link initialization, fabric initialization, link shutdown, SAN384B shutdown, and the user interface.
- Integrated Routing (optional feature)—This feature allows any port in a SAN384B, SAN80B-4, and SAN40B-4 to be configured as an EX_port supporting Fibre Channel (FC) routing. This eliminates the need to add a routing blade or use of the SAN18B-R for FC routing (FCR) purposes, and this also provides double the bandwidth for each FC router connection when connected to another 8 Gbps-capable port.
- FICON® Accelerator (optional feature), which is designed to support secure high-speed data movement between multiple locations

Security

Table 3 highlights some of the key security features available for the SAN384B and for other switches running Fabric OS 5.2.0 or later.

Table 3. Security features

Security Feature	Description
DH-CHAP	Login banner
SSHv2 (using AES, 3DES, RSA)	Monitoring of attempted security breaches (through audit logging)
HTTPS (using AES)	Monitoring of attempted security breaches (through Fabric Watch Security Class)
SNPMv3	Fibre Channel security policies: DCC and SCC
FC-SP	Trusted Switch (FCS) for central security management
Secure RPC	Management access controls (SNMPv3, Telnet, FTP, serial port, front panel)
Secure file copy (SCP)	Hardware-enforced zoning by WWN and/or domain/port ID
Telnet disable	Default zoning
Telnet timeout	RSCN suppression and aggregation
IP filters (block listeners)	Configurable RSCN suppression by port
Secure passwords (centralized control via RADIUS/CHAP)	NTPv3 (to synchronize timestamps)
Multiple user accounts (MUAs). Up to 255.	Event auditing
Role-based access controls (RBACs)	Change tracking
Administrative domains/Virtual fabrics	Firmware change alerts in Fabric Manager
Boot PROM password reset	Persistent port disable
Password hardening policies	Persistent domain ID
Upfront login in Web Tools	E_port disable

Network Manageability

The SAN384B has a single domain and is managed as a single element with the Data Center Fabric Manager or Web Tools. The SAN384B responds to its own IP address and appears as a separate entity to the Telnet protocol and SNMP.

All management interfaces, such as Telnet, Web Tools, standards compliant SMI-S, and Management Server, support a "port N within blade M" naming scheme.

The SAN384B supports SNMPv1 and SNPMv3. When SNMP devices send SNMP messages to a management console running SAN management software, the information is stored in a management information base (MIB). Fabric OS v6.2 and later supports the latest Fibre Alliance Fibre Channel Management (FCMGMT) and Storage Management Initiative (SMI) MIBs, which allow common information necessary for management software to provide information to a SAN administrator.

Note: Refer to the Fabric OS MIB Reference for additional MIB information.

Port numbering

Table 4 provides a list of available port blades for the SAN384B.

Table 4. Port blades available on the SAN384B

Blade label	IBM blade name	Feature code
FC8-16	16 port 8Gb Switch Blade	3816
FC8-32	32 port 8Gb Switch Blade	3832
FC8-48	48 port 8Gb Switch Blade	3848
FC10-6	10Gb Fibre Channel Blade	3870
FR4-18i	FC Routing Blade	3850
FX8-24	FCIP extension blade	3890
FCoE10-24	Fibre Channel over Ethernet blade	3880

The SAN384B uses the following port numbering for each of the blades that can be installed in the chassis.

Note: Blades are installed in a horizontal orientation in the SAN384B chassis, so the normal top of the blade is oriented to the left, and the normal bottom of the blade is oriented to the right when the blades are installed in the chassis.

- FC8-16 port blade Ports are numbered from 0 through 15 from right to left.
- FC8-32 port blade Ports are numbered from 0 through 15 from right to left on the lower row of ports and 16 through 31 from right to left on the upper row of ports.
- FC8-48 port blade Ports are numbered from 0 through 23 from right to left on the lower row of ports and 24 through 47 from right to left on the upper row of ports.
- FC10-6 port blade Ports are numbered from 0 through 5 from right to left.
- FR4-18i router blade The 16 physical Fibre Channel ports are numbered from 0 through 15 from right to left. The two GbE ports, numbered GE0 and GE1, are located to the right of the Fibre Channel ports. These ports, when fully configured, enable 16 VE_ports or VEX_ports and appear in the **switchShow** command as ports 16 through 31.

- FX8-24 FCIP extension blade The port numbering scheme is fairly complex for this blade, but is displayed for reference on the blade itself in a diagram towards the right end of the blade. There are twenty-four physical ports. Twelve FC ports are located towards the right end of the blade, with ports 0 through 5 in the lower row, and ports 6 through 11 in the upper row. Two 10 Gigabit Ethernet (10GbE or XGE) ports are located in the lower row of ports and are numbered 0 and 1, from right to left. Ten GbE ports are located towards the left end of the blade, with eight clustered to the far left, and the remaining two located above the two 10GbE ports. The GbE ports 0 through 3, numbered from right to left are located in the lower row to the far left side of the blade. Ports 4 and 5 are located above the two 10GbE ports, and ports 6 through 9 (numbered right to left) are in the top row above ports 0 through 3.
- FCoE10-24 FC over Ethernet blade The 24 physical ports are numbered 0 through 11 from right to left on the lower row of ports and 12 through 23 from right to left on the upper row of ports.

Slots are numbered 1 through 8, from bottom to top of the chassis when facing the port side of the SAN384B. Control processor blades (CP8) can be installed only in slots 4 and 5. Core switch blades (CR4S-8) can be installed only in slots 3 and 6. Port blades can be installed only in slots 1, 2, 7, and 8.

See Appendix D, "Sample configurations," on page 131 for different SAN384B configurations and optional blades.

Chapter 2. Installing and removing a SAN384B

The SAN384B is only available for installation in the IBM TotalStorage[®] 2109 SAN Switch Cabinet C36. This product is to be installed and serviced only by qualified IBM service representatives. The SAN384B can be ordered pre-installed in the cabinet, or it can be added to an existing C36 cabinet. The cabinet is designed to support a total of three SAN384Bs. Each installation of the SAN384B requires the port-side exhaust vent kit, which directs the exhaust to the service aisle and also serves as the rack installation kit. If three SAN384B products are ordered, two will be pre-installed in the C36 cabinet, and the third will be installed in the cabinet at the customer site.

This chapter describes how to install a SAN384B into a C36 cabinet, and how to remove the SAN384B from the cabinet in the event you need to move or replace the SAN384B. If all SAN384B units are already installed in the cabinet, continue on to Chapter 3, "Starting and configuring the SAN384B," on page 31. The installation requires a minimum of two people for a safe installation.

Attention: Refer to "Safety notices" on page xiii for general safety instructions "Safety notices and labels" on page xiii, and "Rack safety" on page xix before performing any installation or service procedures.

CAUTION:

The weight of this part or unit is more than 55 kg (121.2 lb). It takes specially trained persons with a lifting device to safely lift this part or unit. (C011)

CAUTION:

A fully populated SAN384B weighs approximately 68 kg (150 lb). Before you install it, verify that the additional weight of the chassis does not exceed the cabinet's weight limit or unbalance the cabinet. When you calculate the additional weight, include the weights of all components that can potentially be added, to avoid overloading in the future.

CAUTION:

For CA residents only: IBM recommends installing this product in a room size of 62 cubic meters (2190 cubic feet) or larger at 0.4 ACH ventilation rate to reduce the concentrations of any chemicals emitted by the product.

Ordering the lift tool

Important

The lift tool is required only when you install an additional SAN384B or when you install or remove the SAN384B from the cabinet. Ensure that the lift tool will be available on location at the time of the installation.

The ordering procedures for the lift tool vary depending on your location. You should direct questions about these procedures to your regional representative.

© Copyright IBM Corp. 2009

World trade locations

The following ordering procedures are for world trade locations:

- Order the lift tool by using the parts order system, like any other part.
- Use the following part numbers when you order:
 - Lift tool: PN 09P2481
 - 24-inch load plate: PN 11P4369
- You do not record parts usage.
- Return the lift tool and the 24-inch load plate to the parts center after you complete the installation or removal of the SAN384B.

United States locations

In the United States, call UPS Logistics at 800-528-6070 to order the lift tool and the 24-inch load plate.

Note: For the SSR branch and territory, the United States cannot order the lift tool or 24-inch load plate through the parts order system. UPS Logistics are used to ship and return the lift tool and 24-inch load plate.

Use the following part numbers when you order:

- Lift tool: PN 09P2481
- 24-inch load plate: PN 11P4369

Attention: When you order the lift tool, you will receive an 18-inch load plate. Do not use the 18-inch load plate. You must order and use a 24-inch load plate when you install the SAN384B to be able to safely install this product. The 24-inch load plate includes a platform with a middle section that can slide out to extend across the gap between the lift tool and the mounting position inside the C36 cabinet.

You must provide the following information when you order the lift tool. This information is necessary to ensure that the lift tool is delivered when you need it. Failure to provide this information might delay the completion of the order request and the shipping request. It might also result in a time and date to return the tool that is different from what you need.

- Phone number and customer contact
- Account code: 98577
- Time and date of delivery
- · Accurate destination address with zip code
- Time and date of return pickup

You must return the lift tool at the time that was scheduled with UPS Logistics. If you need to change the scheduled return time or date, contact UPS Logistics.

You are responsible for ensuring that all of the paperwork and components are packed and restored in the arbocrate (shipping container) of the lift tool. Ensure that the lift tool is functioning properly before you release the tool to UPS Logistics for return. You are accountable for the lift tool until UPS Logistics picks up the lift tool for return delivery to their parts storage facility.

Contact your branch office tools coordinator or your region specialist if you have any questions or concerns.

Installation guidelines

Follow these general installation guidelines:

- 1. Provide a space that is 9 rack units (9U) high, 61.19 cm (24.09 in.) deep, and 43.74 cm (17.22 in.) wide. 1U is equal to 4.45 cm (1.75 in.).
- 2. Ensure that dedicated electrical branch circuits with the following requirements are met:
 - 200 240 VAC, 50–60 Hz (two branch circuits)
 - Two cables for the 200 240 VAC service
 - Power supply standards ("Power specifications") are met
 - · Protected by a circuit breaker in accordance with local electrical codes
 - Supply circuit, line fusing, and wire size adequate to the electrical rating on the chassis nameplate
 - Location close to the chassis and easily accessible
 - Grounded outlets installed by a licensed electrician and compatible with the power cords

Attention: To maximize fault tolerance, connect each power cord to a separate power source.

- 3. To ensure adequate cooling, plan to install the chassis with the port side facing the aisle where exhaust air is released (usually called the service aisle). This prevents the fans from pulling in heated exhaust air.
- 4. Plan for managing the cables before you install the chassis. A fully populated SAN384B will have a large number of cables that must be carefully routed to minimize problems with installation and replacement of components, and in order to maintain the minimum bend radius required for optical cables. Due to port density and the potentially large number of cables, if cables are not routed to the sides, then removal and replacement of blades and other components may be difficult to accomplish. Refer to "Managing cables" on page 40 for more specific information. You can manage the cables in a variety of ways, such as:
 - Routing the cables through the vertical cable management finger assemblies installed on either side of the chassis
 - Routing the cables out to either side of the chassis
 - Routing the cables through the cable channels on the sides of the cabinet
 - Using patch panels
- 5. Ensure that the following are available for configuration:
 - Workstation with an installed terminal emulator, such as HyperTerminal
 - Serial cable (provided)
 - Three Ethernet cables (including one spare)
 - Access to an FTP server for backing up the switch configuration or collecting supportsave output data (optional)
 - SFPs and compatible cables
- 6. Ensure that the air intake vents have a minimum of 2 inches of airspace.
- 7. Ensure that the air temperature on the air intake side is less than 40° C (104° F) during operation.

Installing a SAN384B in a 2109 C36 cabinet

This section describes how to install the SAN384B in the Model C36 cabinet. These procedures use parts that are included in the hardware accessory kit and the port-side exhaust kit, which also functions as a lower supporting shelf. No rack-mount rail kit is required for this installation.

To safely complete the installation, a minimum of two people are required.

Time required

Allow approximately 3 hours to complete this entire procedure. This total includes unpacking, assembling, disassembling, and repacking the lift tool. The time estimate is for the physical installation of the SAN384B only. It does not include installing Ethernet cables, SFPs, attaching and routing the fiber optic cables, or completing the initial configuration.

The SAN384B and the lift tool should be delivered to a location near to the final installation, with clear aisles for maneuvering the lift tool loaded with the chassis. Since the lift tool can be used to move the chassis the short distance from the delivery location to the installation, it is recommended that you assemble the lift tool before starting the installation steps.

Note: Brief assembly instructions for the lift tool are attached to the back of the lift tool. Additional instructions are included below in "Unpacking and assembling the lift tool" on page 15.

Table 5 provides a summary of time estimates for the different installation tasks and the tools required for each task.

Table 5. Installation tasks, time, and items required

Installation task	Time estimate	Items required
Unpacking and assembling the lift tool	15 minutes	No special tools required.
Site preparation and unpacking the SAN384B	30 minutes	#2 Phillips screwdriver (for cable management comb) Pallet jack (if the shipment has not been positioned near the installation site)
Installing the port-side exhaust kit	15 minutes	Torque wrench with #2 Phillips screwdriver tip Flathead screwdriver
Mounting and securing the SAN384B in the rack	15 minutes	Torque wrench with #2 Phillips screwdriver tip Lift tool and load plate
Installing power cables and powering on the SAN384B	10 minutes	Power cables
Establishing serial connection, logging on to the SAN384B, and configuring IP addresses.	20 minutes	Serial cable (provided in the accessory kit). Workstation computer with a serial port or terminal server port and a terminal emulator application (such as HyperTerminal). Ethernet IP addresses for the switch.

Table 5. Installation tasks, time, and items required (continued)

Installation task	Time estimate	Items required
Installing an Ethernet cable, opening a Telnet session, and configuring the SAN384 B domain ID, date and time, and additional system parameters. Verifying and backing up the configuration.	20 minutes	Ethernet cable for Telnet access. Refer to the <i>Fabric OS Administrator's Guide</i> .
Installing SFPs. Attaching and managing fiber optic cables.	15 minutes	SFP optical transceivers. Fiber optic cables and cable wraps.
Disassembling and packing the lift tool	20 minutes	No special tools required.

Unpacking and assembling the lift tool

Assembling the lift tool before starting the installation will simplify the installation.

The lift tool consists of several parts, including:

- The fully assembled main vertical section of the lift tool with wheels, wheel lock, cables and winch attached
- · Attachable lift forks, which slide onto the front of the lift tool and are secured in place by spring-loaded pins and ring pins
- · 24-inch load plate with sliding middle section (ordered separately to use in place of the 18-inch solid single-piece load plate)
- Anti-tip bars
- Retention straps
- Wheel chocks

Assembly instructions are attached to the back of the main vertical section of the lift tool. The following supplemental information may help with the assembly.

- 1. With one person at either end, lift the main section of the lift tool out of the shipping crate.
- 2. Review the assembly instructions attached to the back of the lift tool, if necessary.
- 3. With the lift tool still horizontal, insert the two legs with caster wheels into the holes in the front of the lift tool.
- 4. Pull up on the spring-loaded leg lock pins, sliding the legs in until the pins snap into place through the holes in the legs, securing them in place.
- 5. Tilt the lift tool upright, resting on all four wheels. Set the wheel brake, if desired, by stepping down on the brake pedal. (Note the brake release on the left side of the brake pedal.)
- 6. Attach the two forks to the lift tool, sliding the two holes in each over the ends of the two bars. If the winch is in the lowest position, you may need to raise it to provide enough clearance to slide the forks into position. Secure each lifting fork in place with two ring-pins.
- 7. Attach the 24-inch load plate, by slipping the top curved portion under the horizontal bar, and resting the load plate on the forks.
- 8. Attach the anti-tip bars (recommended to provide additional stability when the loaded lift tool is raised more than 45 cm (18 in) high). Install these from

- the rear of the lift tool, by sliding them inside the horizontal legs, pulling up on the leg lock pins to allow the pins to engage the holes in the legs and the anti-tip bars.
- 9. Secure the anti-tip brackets to the lift tool with the supplied brackets and bolts.
- 10. The lift plate has a middle section that can be extended to the right (when viewed from the back of the lift tool). This middle section is secured in place by two spring-loaded pins. Familiarize yourself with releasing the pins and sliding this section. There are two stops: half-way extended and fully extended. This middle section will need to be fully extended during the installation to safely span the gap between the lift tool and the cabinet mounting position.
- 11. Move the assembled lift tool and retention straps near the equipment to be installed. Figure 4 shows the assembled lift tool with the 24-inch load plate installed.

Figure 4. Assembled lift tool with 24-inch load plate

Unpacking the SAN384B

CAUTION:

The weight of this part or unit is more than 55 kg (121.2 lb). It takes specially trained persons with a lifting device to safely lift this part or unit. (C011)

To unpack the SAN384B, follow these steps:

1. If the product needs to be transported a long distance, or if there are uneven floors to cross, keep the product in its original packaging, and relocate the entire shipment close to the installation location, using a pallet jack to lift and move it.

Note: The standard packaging does not incorporate a wood pallet and pallet brackets. The chassis sits on top of a plastic shipping tray.

- 2. Once the shipment is in a location close to the installation, cut the bands that encircle the packaging.
- 3. Lift the cardboard box off the chassis. Installation kits are packed within this outer carton, so you may need to open the top of the box to remove the kits or to press down on them as you lift the outer carton. Save the packing materials if you are returning an old chassis.
- 4. Remove the port side exhaust kit, hardware accessory kit, chassis door, cable management finger assemblies, and foam from the top of the chassis. Remove the loose foam blocks from the corners of the chassis. Remove the anti-static plastic from the chassis.
- 5. Place the kits and other installation pieces near the installation.
- 6. Move the lift tool next to the plastic shipping tray at the blower and power supply end of the chassis. Position the lift tool with its left side next to the shipping tray (see Figure 5).

Figure 5. Lift tool positioned next to the chassis on the shipping tray

- 7. Using the lift tool winch mechanism, adjust the height of top of the load plate to slightly below the bottom surface of the chassis.
- 8. Set the lift tool brake.
- 9. Carefully slide the chassis across the foam blocking in the shipping tray and onto the center of the load plate. Do not use any of the handles on the blowers or power supplies to move the chassis.
- 10. Attach the lift tool retention straps to secure the chassis to the load plate. This is particularly important if you will be moving the chassis across any uneven floor, or will be raising the chassis more than 45 cm (18 inches).
- 11. For safety considerations during moving, lower the load platform to its lowest position.

12. Release the lift tool brake, and carefully move the chassis near the cabinet for installation.

Installing the port-side exhaust kit

Complete the following instructions to install the port-side exhaust kit in a 2109-C36 cabinet before installing the SAN384B chassis.

Exhaust kit parts list

Table 6 lists items illustrated in Figure 6 on page 19.

Table 6. Parts list for port-side exhaust kit for C36 cabinets

Item	Description	Quantity
A	Top rail	1
В	Duct	1
С	Shelf	1
D	10-32 x .5 in. (1.27 cm) Phillips screw (blue Loctite on threads)	12
Е	10-32 x .63 in.(1.60 cm) Phillips screw with square cone washer	12
F	10-32 clip nut for cabinets that have rails with round holes	8
G	10-32 retainer nut for cabinets that have rails with square holes	8
Н	Alignment washer for cabinets that have rails with square holes	12
I	6-32 x .25 in. (.635 cm) Phillips screw	2

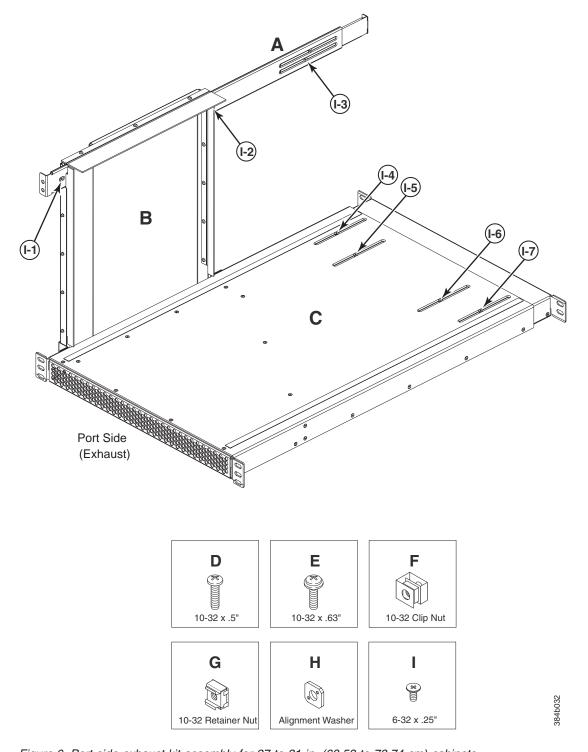


Figure 6. Port-side exhaust kit assembly for 27 to 31 in. (68.58 to 78.74 cm) cabinets

Torque requirements

Use the following torque settings when tightening screws that secure the port-side exhaust kit and SAN384B to the equipment cabinet.

Table 7. Torque requirements for mounting screws

Screw size	Torque	
6-32 x .25 in. (.635 cm) Phillips screw	8.75 inlbs (10 cm-kg)	
10-32 x .63 in.(1.60 cm) Phillips screw	32 inlbs (36.86 cm-kg)	

Installing the exhaust kit hardware

- 1. Remove the rear door (exhaust side) from the C36 cabinet. Set the door aside, away from the installation.
- 2. The exhaust side of the port side exhaust kit will be installed facing the rear of the C36 cabinet, and the port side of the SAN384B chassis will also face this direction.
- 3. Install 10 clip nuts (F in Figure 6 on page 19) or retainer nuts (G) in the rear vertical cabinet rail locations shown in Figure 7 on page 21, and 4 clip nuts or retainer nuts in the front vertical cabinet rails. Eight clip nuts and retainer nuts are provided with the exhaust kit, and six are provided with the hardware accessory kit. Install the lower two nuts at the same relative locations on all four cabinet vertical rails, to provide a level mounting of the shelf. The fourteen nuts will secure the eight 10-32 screws that mount the port side exhaust kit shelf (position 23 in Figure 7 on page 21) and the six that are used to attach the SAN384B chassis to the cabinet (positions 25, 28, and 30 in Figure 7 on page 21).

Note: For rails with round holes, use clip nuts. For rails with square holes, use retainer nuts. Figure 7 on page 21 is only an example showing relative positions for these nuts in the cabinet rails to mount the shelf and chassis. You can mount the shelf and chassis in 9 U of cabinet space higher or lower in the cabinet than shown.

Note: Screws, clip nuts, and retainer nuts for attaching the SAN384B to the cabinet are provided in the SAN384B hardware accessory kit.

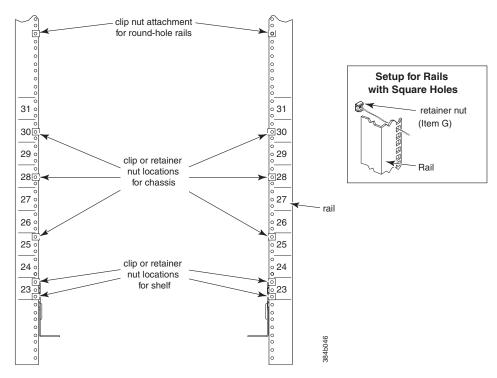


Figure 7. Clip and retainer nut locations on exhaust side cabinet rails (example showing relative positions)

- 4. Install the shelf (C in Figure 6 on page 19), using these steps:
 - a. The shelf can be adjusted to a length of between 27 and 31 inches (68.58 and 78.74 cm) to match the cabinet size. To lengthen or shorten the shelf, loosen by approximately 1/2 turn the four 6-32 screws in the four slots on the shelf (I-4 through I-7 Figure 6 on page 19) and adjust the shelf to the desired length.

Note: We recommend two people for the installation of the shelf, one at either end of the cabinet to support and align it correctly while attaching it to the cabinet.

- b. Tilt the shelf at an angle to fit it between the rails, and then position it horizontally and level with the shelf mounting tabs on the outside of the cabinet vertical rails, and aligned with the clip nuts you installed earlier.
- c. Secure the shelf to the cabinet with eight 10-32 screws with washers (E in Figure 6 on page 19), two screws in each corner of the shelf (see Figure 8 on page 22). Tighten screws according to specifications under "Torque requirements" on page 20.

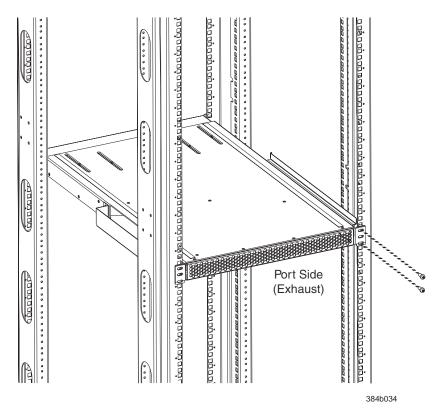


Figure 8. Shelf installed in cabinet

- d. Tighten the four 6-32 screws on the top of the shelf, which were loosened to adjust the shelf length.
- 5. Install the air-duct assembly (B in Figure 6 on page 19) by inserting it down into the side slot on left side of the shelf (see Figure 9). Ensure that the tabs of the duct align and engage with the slots in the shelf, with the open side of the duct facing towards the center of the cabinet.

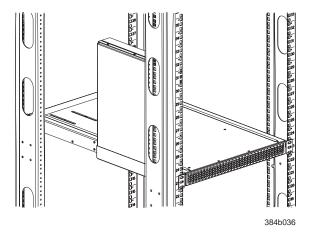


Figure 9. Air duct installed into side slot in shelf

- 6. Attach the top-rail assembly (A in Figure 6 on page 19) to the air-duct assembly.
 - a. The top-rail assembly can be adjusted to a length of between 27 and 31 inches (68.58 to 78.74 cm) to fit on the *inside* of the cabinet rails. To lengthen or shorten the top-rail assembly, loosen, by approximately 1/2 turn, the two

- 6-32 screws (I-3 in Figure 6 on page 19) and adjust the top-rail assembly to the desired length. The length will be approximately the length of the adjustable shelf.
- b. Insert the top-rail assembly down into the air-duct assembly and then secure the top-rail assembly to the air-duct assembly with two 6-32 screws, one screw on each side of the air-duct assembly (I-1 and I-2 in Figure 6 on page 19). Tighten screws according to specifications under "Torque requirements" on page 20.
- 7. Secure the top-rail assembly to the cabinet with four 10-32 screws, two screws on each end of the top-rail assembly (see Figure 10).

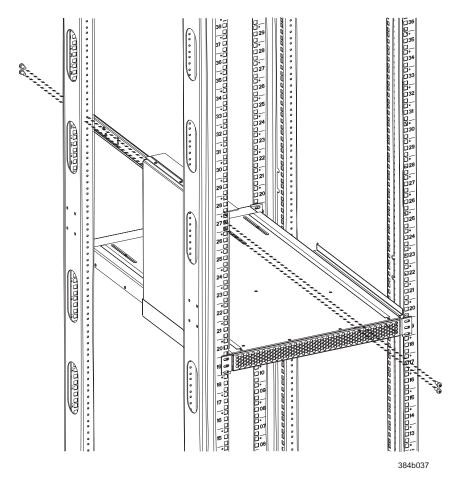


Figure 10. Installing the top rail assembly to the duct assembly and cabinet rails

- a. For rails with round holes: Use two 10-32 screws with washers (E in Figure 6 on page 19) on each end of the top rail assembly. Tighten screws according to specifications under "Torque requirements" on page 20.
- b. For rails with square holes:
 Use the two standard 10-32 screws (D in Figure 6 on page 19) with blue
 Loctite on the threads and alignment washers (H in Figure 6 on page 19) on
 each end of the top rail assembly. Tighten screws according to specifications
 under "Torque requirements" on page 20.
- 8. Tighten the two 6-32 screws (I-3 in Figure 6 on page 19) that were loosened in step 6a to adjust the top rail length.

Installing the SAN384B into the cabinet

CAUTION:

A fully populated SAN384B weighs approximately 68 kg (150 lb) and requires a minimum of two people and a lift tool to install it. (C011)

Now that the port-side exhaust kit is securely installed, the SAN384B chassis can be safely installed into the C36 cabinet. Perform the following steps to install the chassis.

Note: The cabinet should already be fully installed, with leveling legs lowered to prevent it from moving during the chassis installation.

1. Move the lift tool to a position as close as possible to the rear of the cabinet. Position the lift tool so that the blower assemblies are facing towards the inside of the cabinet and the port side of the chassis facing away from the cabinet (see Figure 11).

Figure 11. Lift tool and chassis positioned at rear of cabinet

- 2. Set the wheel brake by pressing down on the wheel brake pedal.
- 3. Remove the lift tool retention straps from the chassis and the lift tool.
- 4. Carefully center the chassis over the middle section of the lift tool load plate.
- 5. Turn the lift tool winch handle clockwise to raise the load plate and chassis to approximately 2 cm (3/4 in.) above the height of the port side exhaust kit
- 6. Rotate the winch handle 1/4 turn counter clockwise to lock the winch.

- 7. Release the two spring-loaded pins on the under side of the load plate and slide the middle section as far as possible into the cabinet until it stops. The chassis should not move with the middle section.
 - **Note:** If the chassis is not carefully centered over the middle section, the weight of the chassis may prevent the middle section from sliding. Adjust the alignment if needed.
- 8. Release the spring-loaded pin closest to the cabinet one more time, and slide the middle section to its full extension. Make sure the spring-loaded pin snaps back into place. The gap between the end of the load plate middle section and the port side exhaust kit shelf should be no more than 2.5 cm (1 in.). If the gap is larger than this, either the lift tool is not positioned close enough to the cabinet, or the load plate middle section is not fully extended. Adjust as needed. Figure 12 shows a view from inside the cabinet, with the middle section of the lift tool load plate extended, and the chassis centered on the load plate.

Figure 12. Load plate extended inside the cabinet to the exhaust kit shelf

9. Carefully slide the chassis into the cabinet between the shelf and the upper edge of the exhaust kit duct assembly until the chassis rests securely on the shelf. Figure 13 on page 26 shows a view from outside the cabinet with the middle of the load plate fully extended and the chassis pushed approximately half way into the cabinet. Reposition the nut clips installed earlier if necessary. Push the chassis all the way into the cabinet until the flanges on the port side of the chassis are firmly against the cabinet vertical rails.

Note: If necessary, adjust the height of the load plate to allow a smooth transfer of the chassis from the extended load plate to the top of the shelf.

Figure 13. Chassis half way into cabinet on load plate

Note: For rails with round holes, use the clip nuts (F in Figure 6 on page 19) on the rails for securing the 10-32 screws. For rails with square holes, use the retainer nuts (G Figure 6 on page 19). Also refer to Figure 7 on page 21.

- 10. Release the spring-loaded pins under the load plate, and slide the middle section of the load plate back into load plate.
- 11. Lower the lift plate to its lowest position, release the wheel brake on the lift tool, and move the lift tool away from the cabinet.
- 12. If necessary, adjust the rubber strips on the exhaust kit duct to ensure a good seal against the chassis.
- 13. The chassis will be secured to the cabinet with six 10-32 screws with washers (see Figure 14 on page 27). Four of these screws will also be used to attach the cable management finger assemblies. Do not install the screws until you determine the position of the cable management fingers.

Note: Screws, clip nuts, and retainer nuts to secure the chassis to the cabinet are provided in the SAN384B hardware accessory kit.

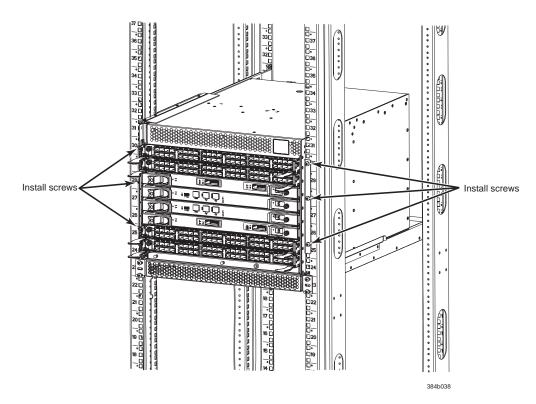


Figure 14. Location of screws to attach the chassis to the cabinet rails

14. Attach the two cable management finger assemblies to the cabinet vertical rails, using two screws each. The two assemblies are identical and can be installed on either side. The screws will extend through the chassis flange used to attach the chassis to the cabinet rails, and into the clip nuts you have installed. Select the holes on the cable management assemblies that match two of the holes on the chassis flange. You will be able to position the cable management finger assemblies either towards the top of the chassis or towards the bottom of the chassis, depending on your requirements for routing cables. The third screw for each side is used to secure the chassis to the rails, directly through the chassis flange into the clip nuts. These screws do not attach the cable management assemblies to the chassis or rack. Figure 15 on page 28 shows the cable management fingers positioned towards the top of the chassis.

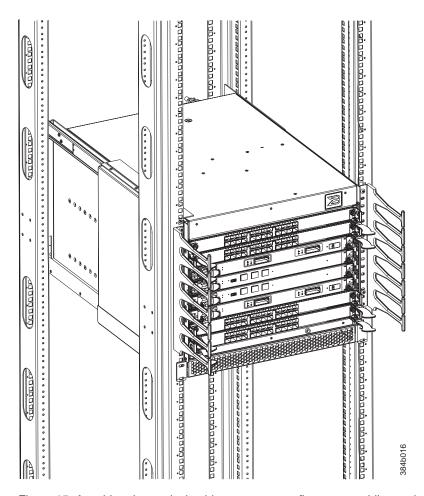


Figure 15. Attaching the vertical cable management finger assemblies to the cabinet rails

15. Disassemble and pack the lift tool into the shipping crate. Follow the return instructions provided.

Note: For turning on the power and for the configuration instructions, see Chapter 3, "Starting and configuring the SAN384B," on page 31.

Attention: Do not connect the SAN384B to the network until the IP addresses are correctly set.

Removing a SAN384B from the cabinet

These instructions describe how to use the lift tool (PN 09P2481) and the 24–inch load plate (PN 11P4369) to remove a SAN384B from the cabinet. These instructions are only for the actual physical removal of a chassis from a 2109-C36 cabinet. These instructions assume that the SAN384B you are removing is fully shut down and not connected to the fabric. The instructions can be used for moving a SAN384B to a new location, or when replacing a defective chassis. See "Removing and replacing a SAN384B chassis" on page 88 for complete steps required for shutting down the system and removing components before removing the chassis from the cabinet. If you are only relocating the chassis, you can skip the steps for removing components.

1. Assemble the lift tool if it is not assembled. The assembly and disassembly instructions are included with the lift tool. Additional instructions are also in "Unpacking and assembling the lift tool" on page 15.

- 2. Remove the two screws holding each vertical cable management finger assembly from the cabinet vertical rails, and remove the additional screw securing the chassis to the cabinet rails.
- 3. Remove the chassis door from the chassis by grasping the door on both edges and pulling straight out.
- 4. If any cables remain attached to the chassis, disconnect them.
- 5. If the chassis was factory installed in the cabinet, there may be additional shipping brackets attached to the non-port (blower assembly) side of the chassis, connecting the chassis to the cabinet rails. Remove the screws attaching the L-brackets to the cabinet rails, and the screws attaching the L-brackets to flat mounting plates that are connected to the sides of the chassis.
- 6. Disconnect both power cords from the SAN384B if they are still attached.
- 7. Move the lift tool to a position near the rear of the cabinet.
- 8. Turn the winch crank clockwise to raise the load plate to a height slightly below the exhaust kit shelf.
- 9. Turn the winch crank counterclockwise 1/4 turn to set the winch brake.
- 10. Set the lift tool wheel brake.

CAUTION:

A fully populated SAN384B weighs approximately 68 kg (150 lb) and requires a minimum of two people and a lift tool to install it. (C011)

- 11. Release the spring-loaded pins under the load plate, and pull the middle section of the load plate to the full extension. You may need to release the pin closest to the cabinet to allow the middle section to fully extend. Make sure the spring-loaded pin snaps back into place. The gap between the end of the load plate middle section and the port side exhaust kit shelf should be no more than 2.5 cm (1 in.). If the gap is larger than this, either the lift tool is not positioned close enough to the cabinet, or the load plate middle section is not fully extended. Adjust as needed.
- 12. Carefully slide the chassis from the cabinet onto the 24–inch load plate. Center the chassis on the platform.
- 13. Release the spring-loaded pins under the load plate, and pull the middle section of the load plate back into the load plate.
- 14. Install the retention straps to secure the chassis to the lift tool.
- 15. Release the lift tool wheel brake, and move the lift tool away from the cabinet.
- 16. Lower the load platform to its lowest position.
- 17. Use the lift tool to relocate the chassis to the desired location.

Chapter 3. Starting and configuring the SAN384B

Attention: Refer to the latest Fabric OS Release Notes or Interoperability Matrix for information regarding Fabric OS compatibility. This is particularly important for fabrics with 1-Gbps switches using earlier Fabric OS versions. To access the appropriate matrix:

- Go to the IBM SAN web page http://www.ibm.com/systems/storage/san
- Select the SAN384B product link
- On the SAN384B product page, click the **Interoperability Matrix** link.

The SAN384B must be configured before it is connected to the fabric, and all of the configuration commands must be entered through the active CP blade. The SAN384B configuration includes the following parameters:

- IP address and subnet mask for the SAN384B
- IP addresses, host names, subnet masks, and gateway addresses for both CP blades
- Switch name
- Domain ID (optional)
- WWN (optional)

Note: The SAN384B WWN is initially set by the factory to match the license ID (which is based on the chassis serial number). The WWN can be changed, but the license ID cannot be modified.

The configuration information is mirrored to the standby CP blade, which allows the most current configuration to remain available even if the active CP blade fails. The configuration information for the SAN384B is stored in the WWN cards and the flash memory of the CP blades. The configuration can be backed up to a workstation (uploaded) and then downloaded to the active CP blade if necessary.

Figure 16 on page 32 provides an overview of the sequence of tasks to configure the SAN384B.

© Copyright IBM Corp. 2009

Configuration Tasks

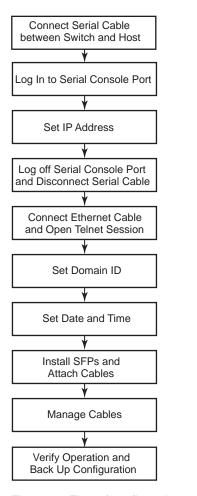


Figure 16. Flow of configuration tasks for the SAN384B

The initial physical hardware installation continues with the following steps:

- "Providing power to the SAN384B" on page 33
- "Connecting the SAN384B and host with a serial cable and logging in" on page
- "Setting the SAN384B IP addresses" on page 34
- Installing SFPs, XFPs, and cables (see "Removing and installing SFPs and XFPs" on page 80 and "Managing cables" on page 40)

The following additional steps are customer responsibilities required for the initial configuration:

- 1. Establish an Ethernet connection. See "Establishing an Ethernet connection" on page 36.
- 2. Specify a switch name. See "Customizing the switch name" on page 36.
- 3. Specify a domain ID for the SAN384B. See "Setting the Domain ID" on page 37.
- 4. Set the date and time. See "Setting the date and time" on page 37.
- 5. Enable software licenses. See "Software licenses" on page 39.
- 6. Back up the configuration. See "Verifying correct operation and backing up the configuration" on page 41.

Providing power to the SAN384B

DANGER

An electrical outlet that is not correctly wired could place hazardous voltage on the metal parts of the system or the devices that attach to the system. It is the responsibility of the customer to ensure that the outlet is correctly wired and grounded to prevent an electrical shock. (D004)

Attention: Use only the supplied power cords.

To provide power to the SAN384B:

- 1. Connect the two AC power cords to each of the two power supplies.
- 2. Connect the power cords to a power source with a voltage of 200 to 240 VAC, 47 to 63 Hz..
- 3. Turn the AC power switches on the power supplies to ON (1). The AC power switches light green when switched on and power is supplied.
- 4. The SAN384B performs a power-on self-test (POST) each time it is powered on. POST takes approximately 10 minutes and is complete when indicator light activity displays the operational state. For information about LED patterns, see Chapter 4, "Monitoring system components," on page 45.

You can bypass POST by using the **fastBoot** command. You can also disable POST for successive reboots on the SAN384B using the **diagDisablePost** command.

Attention: To prevent a potential IP address conflict, do not connect the SAN384B to the network until the IP addresses are configured.

Note: To power off the SAN384B, see "Powering off the SAN384B" on page 42.

Connecting the SAN384B and host with a serial cable and logging in

Follow these steps to connect a serial cable.

- 1. Verify that the SAN384B is powered on and that POST is complete by confirming that all power LED indicators on the port, control processor, and core switch blades display a steady green light.
- 2. Remove the shipping cap from the CONSOLE port on the active CP. Use the serial cable provided with the product to connect the CONSOLE port on the active CP to a computer workstation. The active CP blade is indicated by an illuminated (blue) LED.
 - **Attention:** The CONSOLE port is intended primarily for the initial setting of the IP address and for service purposes.
- 3. Access the SAN384B using a terminal emulator application (such as HyperTerminal in a Windows environment or TIP in a UNIX environment).
- 4. Disable any serial communication programs running on the workstation (such as synchronization programs).

- 5. Open the terminal emulator application and configure as follows:
 - In a Windows environment:

Table 8. Configuration parameters

Parameter	Value
Bits per second	9600
Data bits	8
Parity	None
Stop bits	1
Flow control	None

• In a UNIX® environment, enter the string at the prompt:

term /dev/ttyb -9600

If ttyb is already in use, use ttya instead and enter the following string at the

term /dev/ttya -9600

When the terminal emulator application stops reporting information, press **Enter**. You will receive the following login prompt:

CPO Console Login:

6. Log in to the SAN384B as admin, using the default password, password. At the initial login, you will be prompted to change the default password.

Table 9. Example login without changing the password

```
swDir login: admin
Password:
Please change your passwords now.
Use Control-C to exit or press 'Enter' key to proceed.
Password was not changed. Will prompt again at next login
until password is changed.
swDir:admin>
```

Note: Passwords can be 8 to 40 characters long. They must begin with an alphabetic character. They can include numeric characters, the dot (.), and the underscore (_). Passwords are case-sensitive, and they are not displayed when you enter them on the command line.

Setting the SAN384B IP addresses

The SAN384B requires three IP addresses, which are configured using the ipAddrSet command. IP addresses are required for both CP blades (CP0 and CP1) and for the single logical switch (shown as SWITCH under the ipAddrShow command) in the

Note: The default IP addresses and host names for the SAN384B are as follows:

- 10.77.77.75 for CP0 (the CP blade in slot 4 at the time of configuration)
- 10.77.77.74 for CP1 (the CP blade in slot 5 at the time of configuration)

Attention: Resetting an IP address while the SAN384B has active IP traffic such as Fabric Manager, Fabric Watch, SNMP, or other applications can cause traffic to be interrupted or stopped. Changing the IP address causes a domain address format RSCN to be issued.

Follow these steps to configure the IP addresses for both CP blades (from the active CP blade):

- 1. Log in to the active CP as admin using the serial cable connection.
- **2.** Set up the SAN384B IP address by entering the **ipaddrset -chassis** command at the prompt.

```
swDir:admin> ipAddrSet -chassis
```

Enter the information at the prompts. Specify the **-chassis IP** address. The **-sw 0** IP address is no longer valid on this chassis.

Note: The addresses 10.0.0.0 through 10.0.0.255 are reserved and used internally by the SAN384B. External IPs cannot use these addresses.

3. Set up the CP0 blade IP address by entering the **ipaddrset -cp 0** command at the prompt.

```
swDir:admin> ipAddrSet -cp 0
```

Enter the requested information at the prompts.

4. Set up the CP1 IP address by entering the **ipaddrset -cp 1** command:swDir:admin> **ipAddrSet -cp 1**

Enter the requested information at the prompts.

The following is a sample IP configuration, for the SAN384B (sw -0) and the two CP blades (cp0 and cp1):

```
swDir:admin> ipaddrset -chassis
Ethernet IP Address [0.0.0.0]: 123.123.123.120
Ethernet Subnetmask [0.0.0.0]: 123.123.123.123
Fibre Channel IP Address [0.0.0.0]:
Fibre Channel Subnetmask [0.0.0.0]:
Issuing gratuitous ARP...Done.
Committing configuration...Done.
swDir:admin> ipaddrset -cp 0
Host Name [cp0]:
Ethernet IP Address [10.77.77.75]: 123.123.121
Ethernet Subnetmask [0.0.0.0]: 123.123.123.123
Gateway IP Address [0.0.0.0]: 123.123.124
IP address is being changed...Done.
Committing configuration...Done.
swDir:admin> ipaddrset -cp 1
Host Name [cp1]:
Ethernet IP Address [10.77.77.74]: 123.123.123.122
Ethernet Subnetmask [0.0.0.0]: 123.123.123.123
Gateway IP Address [0.0.0.0]: 123.123.123.124
IP address of remote CP is being changed...Done.
Committing configuration...Done.
swDir:admin> reboot
```

5. Enter reboot to reboot the SAN384B.

Logging off the serial console port and disconnecting the serial cable

You can use the serial port to monitor error messages through the serial connection, however it is generally used for initial configuration and service purposes. If the serial port is no longer required, use the **logout** command to log out of the serial console, remove the serial cable, and replace the plug in the serial port.

Establishing an Ethernet connection

After using a serial connection to configure the IP addresses for the SAN384B, you can connect the active CP blade to the local area network (LAN).

Note: Connecting the CP blades to a private network/VLAN is recommended.

By establishing an Ethernet connection, you can complete the SAN384B configuration using either the serial session, Telnet , or through a management application such as Web Tools or DCFM.

To establish an Ethernet connection to the SAN384B, follow these steps:

- 1. Remove the shipping plug from the Ethernet port on the active CP blade.
- 2. Insert one end of an Ethernet cable into the Ethernet port.
- 3. Connect the other end to an Ethernet 10/100/1000 BaseT LAN.

 The SAN384B can now be accessed by remote connection using any of the available management tools, such as Telnet, Web Tools, or DCFM.
- 4. To complete any additional SAN384B configuration procedures through a Telnet session, log in to the SAN384B by Telnet, using the admin login. The default password is password.

Customizing the switch name

The *switch* name of the SAN384B can be up to 15 characters long; it can include alpha, numeric, and underscore characters; and must begin with an alpha character.

Note: Changing the name causes a domain address format RSCN to be issued.

To customize the name, follow these steps:

1. Enter the **switchName** command with the new name in quotes.

```
swDir:admin> switchName "ModularSwitch5"
Committing configuration...
Done.
ModularSwitch5:admin
```

2. Record the new name for future reference.

Customizing a chassis name

For Fabric OS 6.2.0 and later, the chassis name of the SAN384B can be up to 15 characters long; can include alpha, numeric, and underscore characters; and must begin with an alpha character.

- Enter chassisName followed by the new name in double quotes. switch:admin> chassisname "SAN384B chassis 1"
 - Committing configuration...

 Done.
- 2. Display the new chassis name. switch:admin> chassisname SAN384B chassis 1
- 3. Record the new name for reference.

Setting the Domain ID

Each switch in the fabric must have a unique Domain ID. The Domain ID can be set using the **configure** command or can be automatically set. The default Domain ID for the SAN384B is "1". Use the **fabricShow** command to view the already assigned domain IDs.

To set the Domain ID, follow these steps:

- 1. Enter the switchDisable command to disable the SAN384B.
- 2. Enter the **configure** command.
- 3. Enter y at the "Fabric parameters" prompt:

```
Fabric parameters (yes, y, no, n): [no] y
```

4. Enter a unique Domain ID:

```
Domain: (1.239) [1] 3
```

- Complete the remaining prompts or press Ctrl+D to accept the settings and to exit.
- 6. Enter the switchEnable command to re-enable the SAN384B.

Setting the date and time

The date and time settings are used for logging events. Switch operation does not depend on the date and time; a switch with an incorrect date and time value still functions properly. However, because the date and time are used for logging, error detection, and troubleshooting, they should be set correctly.

Setting the date

To set the date, follow these steps.

- 1. If necessary, log on to the SAN384B by Telnet, using the admin account.
- 2. Enter the **date** command, using the following syntax:date "mmddHHMMyy" Where:
 - mm is the month; valid values are 01 through 12.
 - dd is the date; valid values are 01 through 31.
 - HH is the hour; valid values are 00 through 23
 - MM is minutes; valid values are 00 through 59.
 - yy is the year; valid values are 00 through 99 (values greater than 69 are interpreted as 1970 through 1999, and values less than 70 are interpreted as 2000-2069).

```
switch:admin> date
Fri Sep 26 17:01:48 UTC 2008
switch:admin> date "0926123008"
Fri Sep 26 12:30:00 UTC 2008
switch:admin>
```

Setting the time zone

To set the time zone, follow these steps.

- 1. If necessary, log on to the switch by Telnet, using the admin account.
- 2. Enter the tsTimeZone command as follows:

```
switch:admin> tstimezone [--interactive]/ [, timezone fmt]
```

Use timezone_fmt to set the time zone by Country/City or by time zone ID, such as MST.

The following example shows how to change the time zone to US/Mountain.

switch:admin> tstimezone
Time Zone : US/Pacific
switch:admin> tstimezone US/Mountain
switch:admin> tstimezone
Time Zone : US/Mountain

The following procedure describes how to set the current time zone using interactive mode.

1. Enter the **tsTimeZone** command as follows:

```
switch:admin> tstimezone --interactive
```

You are prompted to select a general location.

Please identify a location so that time zone rules can be set correctly.

- 2. Enter the appropriate number or Ctrl-D to quit.
- 3. At the prompt, select a country location.
- 4. At the prompt, enter the appropriate number to specify the time zone region or **Ctrl-D** to quit.

Synchronizing local time

To synchronize the local time of the principal or primary switch with that of an external NTP server, follow these steps.

- 1. If necessary, log on to the switch by Telnet, using the admin account.
- 2. switch:admin> tsclockserver "<ntp1;ntp2>"

where ntp1 is the IP address or DNS name of the first NTP server, which the switch must be able to access. The variable ntp2 is the second NTP server and is optional. The operand "<ntp1;ntp2>" is optional; by default, this value is LOCL, which uses the local clock of the principal or primary switch as the clock server.

The tsClockServer command accepts multiple server addresses in either IPv4, IPv6, or DNS name formats. When multiple NTP server addresses are passed, tsclockserver sets the first obtainable address as the active NTP server. The rest will be stored as backup servers that can take over if the active NTP server fails. The principal or primary FCS switch synchronizes its time with the NTP server every 64 seconds.

```
switch:admin> tsclockserverLOCL
switch:admin> tsclockserver "132.163.135.131"
switch:admin> tsclockserver
132.163.135.131
switch:admin>
```

The following example shows how to set up more than one NTP server using a DNS name:

```
switch:admin> tsclockserver "10.32.170.1;10.32.170.2;ntp.localdomain.net"
Updating Clock Server configuration...done.
Updated with the NTP servers
```

Changes to the clock server value on the principal or primary FCS switch are propagated to all switches in the fabric

Software licenses

Certain licenses may be factory installed on the SAN384B. To determine which licenses are currently enabled, use the **licenseShow** command.

swDir:admin> licenseshow

AAbbccDDeeFFeeGG:
 Web license
 Zoning license
 Extended Fabric license
 Fabric Watch license
 Performance Monitor license
 Trunking license
 Security license

In the example above, the license key is AAbbccDDeeFFeeGG. Keep a copy of the license key for reference.

The 64-bit chassis ID is required to obtain and activate licenses for the SAN384B. The chassis ID is available through the **licenseIdShow** command.

The **licenseShow** and **licenseIdShow** commands must be entered on the active CP blade.

Refer to the Fabric OS Administrator's Guide for more information.

Installing SFPs, XFPs, and attaching cables

Follow these steps to install SFPs (or XFPs with an FC10-6 port blade installed) and cables to the SAN384B.

Note: For a listing of SFPs and XFPs compatible with this product:

- Go to the IBM SAN web page http://www.ibm.com/systems/storage/san
- Select the SAN384B product link
- On the SAN384B product page, click the **Interoperability Matrix** link.
- In the Interoperability matrix, click the **Transceivers** link.

The ports are color-coded to indicate which can be used in the same port group for trunking (trunking port groups can be up to eight ports). The ports and cables used in trunking groups must meet specific requirements. Refer to the *Fabric OS Administrator's Guide* for more information.

- 1. Position one of the SFP transceivers so that the key is oriented correctly to the port. Insert the transceiver into the port until it is firmly seated and the latching mechanism clicks.
 - Transceivers are keyed so that they can only be inserted with the correct orientation. If a transceiver does not slide in easily, ensure that it is correctly oriented
- 2. Position a cable so that the key (the ridge on one side of the cable connector) is aligned with the slot in the transceiver; then, insert the cable into the transceiver until the latching mechanism clicks.
 - Cables are keyed so that they can only be inserted with the correct orientation. If a cable does not slide in easily, ensure that it is correctly oriented.
- 3. Repeat steps 1 and 2 for the remaining ports.

- 4. Organize the cables as required. For recommendations regarding cable management, refer to "Managing cables."
- 5. Verify the SAN384B for switch and port status by entering the **switchshow** command.
 - The **switchshow** command provides detailed information about the SAN384B.
- 6. Verify fabric connectivity by entering the **fabricshow** command. The **fabricshow** command provides general information about the fabric.

Managing cables

Attention: The minimum bend radius for a 50 micron cable is 5 cm (2 in.) under full tensile load and 3 cm (1.2 in.) with no tensile load.

Two vertical cable management finger assemblies (shown in Figure 17 on page 41) are attached to the rack vertical rails. They are not attached directly to the SAN384B chassis. This pair of cable management finger assemblies can be used to keep the cables from hanging down in front of other blades, and to route them away from the exhaust vent of the port-side exhaust kit, which is located below the SAN384B chassis.

Cable management recommendations:

- Leave at least 1 m (3.28 ft) of slack for each port cable. This provides room to remove and replace the SAN384B, allows for inadvertent movement of the rack, and helps prevent the cables from being bent to less than the minimum bend radius.
- If ISL Trunking is in use, group the cables by trunking group. The ports are color-coded to indicate which ports can be used in the same ISL Trunking group: eight ports marked with solid black ovals alternate with eight ports marked with oval outlines.
- Use only hook-and-loop fasteners for securing cables. Do not use cable ties. They can be easily overtightened and can break the optical cables.
- For easier maintenance, label the fiber optic cables and record the devices to which they are connected.
- Route the cables to both the left and right sides of the chassis through the cable management fingers.
- Keep LEDs visible by routing port cables and other cables to either side and away from the LEDs.

For the procedure to install the ICL cables see "Removing and installing inter-chassis link (ICL) cables" on page 81.

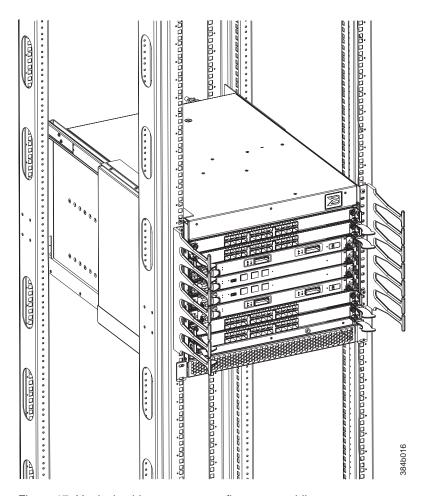


Figure 17. Vertical cable management finger assemblies

Verifying correct operation and backing up the configuration

To verify correct operation and to back up the SAN384B, follow these steps.

- 1. Check the LEDs to verify that all components are functional. For information about LED patterns, see Chapter 4, "Monitoring system components," on page 45.
- 2. If necessary, log on to the switch by Telnet, using the admin account.
- 3. Run the **portCfgPersistentEnable** command to activate the FC ports for FC operation.
- 4. Verify the correct operation of the SAN384B by entering the **switchShow** command from the workstation. This command provides information about switch and port status.
- 5. Verify the correct operation of the SAN384B in the fabric by entering the **fabricShow** command from the workstation. This command provides general information about the fabric.
- **6.** To back up the configuration, enter the **configUpload** command. This command uploads the SAN384B configuration to the server so that it is available for downloading to a replacement SAN384B, if necessary.
- 7. Run the following commands to save the configuration to a file on a secure host.

- configShow
- ipAddrShow
- · licenseShow
- switchShow

Note: Passwords are not saved in the configuration file, and are not uploaded during a **configUpload**. Password information should be saved in hardcopy in a secure location for emergency reference, subject to your security and password management policy.

Note: It is recommended that the configuration be backed up on a regular basis to ensure that a complete configuration is available for downloading to a replacement device.

Powering off the SAN384B

If you need to power off the SAN384B, follow these steps to avoid loss of data.

1. Shut down the SAN384B using the sysShutdown command.

```
switch::admin> sysshutdown
This command will shutdown the operating systems on your switch.
You are required to power-cycle the switch in order to restore operation.
Are you sure you want to shutdown the switch [y/n]? y
HA is disabled
Stopping blade 1
Shutting down the blade....
Stopping blade 2
Shutting down the blade....
Stopping blade 8
Shutting down the blade....
Broadcast message from root (pts/1) Tue Aug 23 14:23:06 2008...
The system is going down for system halt NOW !!
```

Power off the chassis by flipping the AC power switches on the power supplies
to "O". The LEDs inside AC power switches should turn off. To maintain the
ground connections, leave the power cords connected to the power supplies
and to the electrical outlets.

Fabric OS firmware updates

To ensure optimum functioning of your system, IBM recommends operating your system with the latest Fabric OS version and firmware updates. Refer to the latest Fabric OS Release Notes and Interoperability Matrix for information regarding Fabric OS compatibility. This is particularly important for fabrics with 1-Gbps switches using earlier Fabric OS versions. Detailed information on downloading and installing firmware are provided in the *Fabric OS Administrator's Guide*.

To access the appropriate matrix:

- Go to the IBM SAN web page http://www.ibm.com/systems/storage/san
- Select the SAN384B product link
- On the SAN384B product page, click the **Interoperability Matrix** link.

Firmware release notes and download files are available through the IBM SAN Support web pages.

To view release notes and to download firmware:

Go to http://www.ibm.com/systems/support.

- Select System Storage.
- On the next page that is displayed, select **Download**, and then select **Storage** area network (SAN).
- Select your product, then in the **Recommended fix** section, select the appropriate firmware version release notes. Review the release notes before installing the firmware update.
- Select the firmware download version and follow the online prompts.

Downloading and installing firmware

- 1. The firmware version on both the active and backup CP blade should match, and should be at the latest level. If High Availability is enabled (haEnable), the system will automatically update the firmware level on both CP blades.
 - **Attention:** Firmware downloads require Ethernet connections to both CP blades. Procedures for loading downloading and installing firmware are fully described in the *Fabric OS Administrator's Guide*.
- 2. When you have navigated to the appropriate download site, follow the online instructions on the displayed Fabric OS download pages, referring to the *Fabric OS Administrator's Guide* as needed.
- **3**. Enter **firmwareDownload -s** on your to download the firmware to one of the CP blades from your server.

Chapter 4. Monitoring system components

The SAN384B is engineered for reliability and requires no routine operational steps or maintenance. This chapter provides information about determining the status of the following components using LEDs and CLI commands. Refer to the *Fabric OS Administrator's Guide* and the *Web Tools Administrator's Guide* for more information on monitoring component status.

- "Port or routing blade status"
- "Control processor blade (CP8) status" on page 51
- "Core switch blade (CR4S-8) status" on page 53
- "Power supply status" on page 54
- "Blower assembly status" on page 55
- "WWN card status" on page 57

Port or routing blade status

To determine the status of a port or routing blade:

- 1. Check the LEDs on the blade. The illustrations show the blades oriented horizontally, as they are installed in the SAN384B chassis.
 - Figure 18 on page 46 illustrates the FC8-16 port blade
 - Figure 19 on page 46 illustrates the FC8-32 port blade
 - Figure 20 on page 47 illustrates the FC8-48 port blade
 - Figure 21 on page 47 illustrates the FC10-6 port blade
 - Figure 22 on page 48 illustrates the FR4-18i routing blade
 - Figure 23 on page 48 illustrates the FX8-24 extension blade
 - Figure 24 on page 48 illustrates the FCOE10-24 Fibre Channel over Ethernet blade

The LED patterns may temporarily change during POST and other diagnostic tests. For information about how to interpret the LED patterns, see Table 10 on page 50.

2. Check the blade status by typing **slotShow**.

Table 10 on page 50 describes the port and routing blade LED patterns and the recommended actions for those patterns.

© Copyright IBM Corp. 2009 45

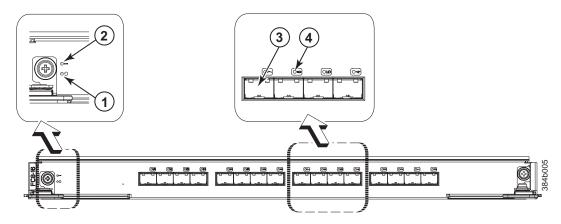


Figure 18. FC8-16 port blade

Power LED
 Status LED

Fibre Channel port

4 Port Status LED

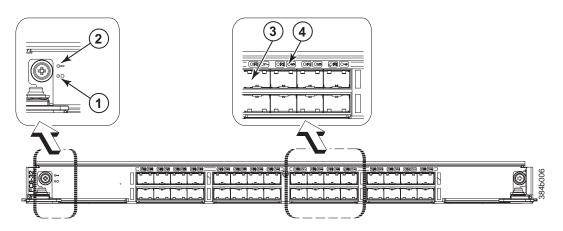


Figure 19. FC8-32 port blade

Power LED
 Status LED

3 Fibre Channel port

Status LED 4 Port Status LED

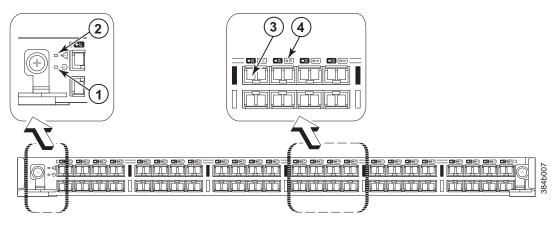


Figure 20. FC8-48 port blade

Power LED
 Status LED

- 3 Fibre Channel port
- 4 Port Status LED

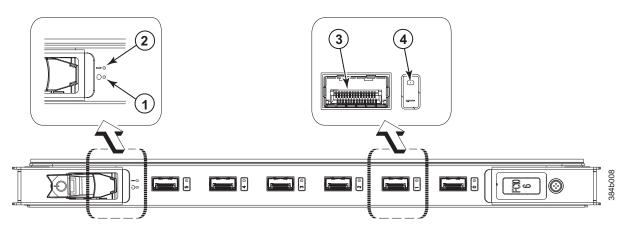


Figure 21. FC10-6 port blade

1 Power LED

3 Fibre Channel Port

2 Status LED

4 Port Status LED

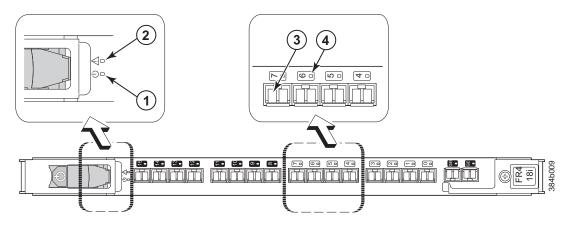


Figure 22. FR4-18i routing blade

1 Power LED

3 Fibre Channel Port

2 Status LED

4 Port Status LED

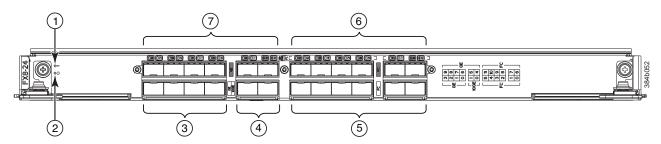


Figure 23. FX8-24 extension blade

1 Status LED

5 FC ports 0-5 (numbered right to left)

2 Power LED

FC ports 6-11 (numbered right to left)

1 GbE ports 4-9 (numbered right to left)

- 3 1 GbE ports 0-3 (numbered right to left)
 - oorts 0-1 (numbered right

7

4 10 GbE ports 0-1 (numbered right to left)

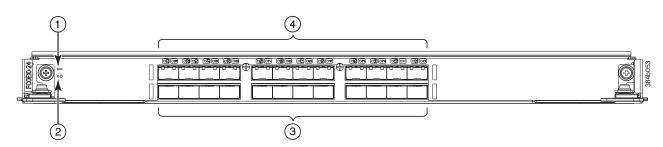


Figure 24. FCOE10-24 blade

1 Status LED

3 10 GbE FCoE ports 0-11 (numbered right to left)

2 Power LED

10 GbE FCoE ports 12-23 (numbered right to left)

Table 10. Port and routing blade LED descriptions

LED purpose	Color	Status	Recommended Action
Power LED	Steady green	Blade is enabled.	No action required.
	No light (LED is off)	Blade is not powered on.	Ensure that the blade is firmly seated and either the thumbscrew is fully engaged or the slider is pushed up and the ejectors are fully engaged.
Status LED	No light (LED is off)	Blade is either healthy or does not have power.	Verify that the power LED is on.
	Steady amber	Blade is faulty.	Ensure blade is firmly seated and check the status with the slotShow command. If LED remains amber, contact IBM.
	Slow-flashing amber (on 2 seconds, then off 2 seconds)	Blade is not seated correctly or is faulty.	Pull blade out and reseat it. If the LED continues to flash, replace the blade.
	Fast-flashing amber (on 1/2 second, then off 1/2 second)	Environmental range exceeded.	Check for out-of-bounds environmental condition and correct it.
FCPort Status	No light (LED is off)	Port has no incoming power, or there is no light or signal carrier detected.	Verify that the power LED is on, check the transceiver and cable.
		Polling is in progress.	Allow 60 seconds for polling to complete.
		Connected device is configured in an offline state.	Verify the status of the connected device.
	Steady green	Port is online (connected to an external device) but has no traffic.	No action required.
	Slow-flashing green (on 1 second, then off 1 second)	Port is online but segmented, indicating a loopback plug or cable or an incompatible switch.	Verify that the correct device is attached to the SAN384B.
	Fast-flashing green (on 1/4 second, then off 1/4 second	Port is in internal loopback (diagnostic).	No action required.
	Flickering green	Port is online, with traffic flowing through port.	No action required.
	Steady amber	Port is receiving light or signal carrier, but it is not online yet.	Reset the port from the workstation using the portEnable or portCfgPersistentEnable command.
	Slow-flashing amber (on 2 seconds, then off 2 seconds)	Port is disabled due to diagnostic tests or portDisable or portCfgPersistentEnable command.	Reset the port from the workstation using the portEnable or portCfgPersistentEnable command.
	Fast-flashing amber (on 1/2 second, then off 1/2 second)	Transceiver or port is faulty.	Change the transceiver or reset the switch from the workstation.
	Alternating green/amber	Port is bypassed	Reset the port from the workstation using the portEnable or portCfgPersistentEnable command.

Table 10. Port and routing blade LED descriptions (continued)

	LED purpose	Color	Status	Recommended Action
	GbE Port Status (FX8-24) - both 1 GbE and 10 GbE ports	No light (LED is off)	Port has no incoming power, or there is no light or signal carrier detected.	Verify that the power LED is on, check the transceiver and cable.
		Steady green	Port is online but has no traffic.	No action required.
		Slow-flashing green (on 1 second, then off 1 second)	Beacon. Used to identify specific ports.	No action required.
		Flickering green	Port is online, with traffic flowing through port.	No action required.
		Fast-flashing amber (on 1/4 second, then off 1/4 second)	Transceiver or port is faulty.	Change the transceiver or reset the switch from the workstation.
	10GbE Port Status (FCOE10-24)	No light (LED is off)	Port is offline.	Verify that the power LED is on, check the transceiver and cable.
		Steady green	Port is online but has no traffic.	No action required.
		Flickering green	Port is online, with traffic flowing through port.	No action required.
		Steady amber	Port is receiving light but it is not online yet.	Reset the port by doing a "shutdown" and "no shutdown" sequence from a cmsh session.
		Slow-flashing amber (on 2 seconds, then off 2 seconds)	Port is disabled.	Enable the port by using the "no shutdown" command from a cmsh session.
		Fast-flashing amber (on 1/4 second, then off 1/4 second)	Transceiver or port is faulty.	Change the transceiver or reset the port by doing a "shutdown" and "no shutdown" sequence from a cmsh session.

For more information on the CEE Management Shell (cmsh), see the *Fabric OS Command Reference Manual* or the *Converged Enhanced Ethernet Command Reference*.

Control processor blade (CP8) status

To determine the status of a CP blade:

- 1. Check the LED indicators on the CP blade (see Figure 25 on page 52). The LED patterns may temporarily change during POST and other diagnostic tests. For information about how to interpret the LED patterns, see Table 11 on page 52.
- 2. Check port blade status by typing slotShow and haShow.

Figure 25 on page 52 identifies the control processor blade (CP8).

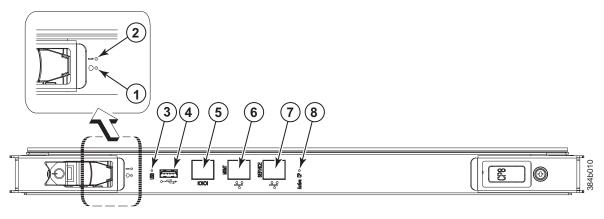


Figure 25. Control processor blade (CP8) LEDs

1	Status LED	5	Console port (IOIOI)
2	Power LED	6	Ethernet port (MGMT)
3	USB LED	7	Ethernet port (SERVICE)
4	USB port	8	Active CP LED

Table 11. CP blade LED descriptions

LED purpose	Color	Status	Recommended Action
Power	Steady green	CP blade has is on.	No action required.
	No light (LED is off)	CP blade does not on.	Ensure that the blade is firmly seated and has power.
Status	No light (LED is off)	CP blade is either healthy or does not have power.	Verify that the power LED is on.
	Steady amber	CP blade is faulty or the switch is still booting.	Ensure that the blade is firmly seated and the switch has completed booting. If the LED remains amber, contact IBM.
	Slow-flashing amber (on 2 seconds; then off 2 seconds)	CP blade is not seated correctly or is faulty.	Pull the blade out and reseat it. If the LED continues to flash, replace blade.
	Fast-flashing amber (on 1/2 second; then off 1/2 second)	Environmental range exceeded.	Check for out-of-bounds environmental condition and correct it.

Table 11. CP blade LED descriptions (continued)

LED purpose	Color	Status	Recommended Action
Ethernet Link Status	No light (LED is off)	Either an Ethernet link is not detected, or it does not have incoming power.	Ensure that the blade has power, the Ethernet cable is firmly seated, and the connected device is functioning.
	Flickering green/amber	Ethernet link is healthy and traffic is flowing through port.	No action required.
Ethernet Link Speed	No light (LED is off)	Ethernet link speed is 10 Mbps or CP blade does not have incoming power.	Ensure that the CP has power. Note: To force a persistent Ethernet link speed, type the ifModeSet command.
	Steady green	Ethernet link speed is 100/1000 Mbps.	No action required.
Active CP	Steady blue	Active CP blade.	No action required.
	No light (LED is off)	Standby CP blade.	No action required.

Core switch blade (CR4S-8) status

To determine the status of a CR4S-8 core switch blade:

- 1. Check the LED indicators on the core switch blade (Figure 26). The LED patterns may temporarily change during POST and other diagnostic tests; for information about how to interpret the LED patterns, see Table 12 on page 54.
- 2. Check core switch blade status by typing slotShow and haShow.

Figure 26 shows the CR4S-8 core switch blade and its components.

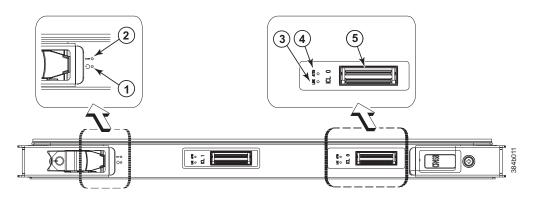


Figure 26. Core switch blade (CR4S-8)

Status LED
 Power LED
 LINK LED
 ATTN LED
 ICL Connector

Table 12. CR4S-8 blade LED descriptions

LED purpose	Color	Status	Recommended Action
Power	Steady green	CR4S-8 blade is on.	No action required.
	No light (LED is off)	CR4S-8 blade is not on.	Ensure blade is firmly seated and has power.
Status	No light (LED is off)	CR4S-8 is either healthy or does not have power.	Verify that the power LED is on.
	Steady amber	CR4S-8 blade is faulty or the switch is still booting.	Ensure that the blade is firmly seated and the switch has completed booting. If the LED remains amber, contact IBM
	Slow-flashing amber (on 2 seconds; then off 2 seconds)	CR4S-8 blade is not seated correctly or is faulty.	Pull the blade out and reset it. If the LED continues to flash, replace the blade.
	Fast-flashing amber (on 1/2 second; then off 1/2 second)	Environmental range exceeded.	Check for out-of-bounds environmental condition and correct it.
LINK LED	No light (LED is off)	No ICL or ICL cable present, but no connection.	Ensure that the ICL cable is correctly installed.
	Steady green	ICL connected	No action required.
ATTN LED	No light (LED is off)	ICL is operational	No action required.
	Blinking amber	Attention required	Ensure that the ICL cable is correctly installed.

Power supply status

To determine the status of a power supply:

- 1. Check the LED indicator on the power supply (see Figure 27 on page 55). The LED patterns may temporarily change during POST and other diagnostic tests; for information about how to interpret the LED patterns, see Table 13 on page 55.
- 2. Check the power supply status by entering **psShow**. The power supply status displays **OK**, **Absent**, or **Faulty**. If a power supply is absent or faulty, contact IBM.

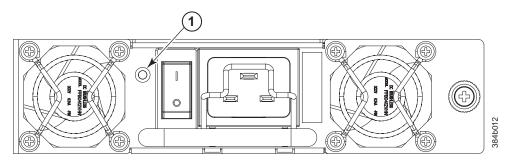


Figure 27. Power supply

1 Power LED

Table 13. Power supply LED descriptions

LED purpose	Color	Status	Recommended Action
Power	No light (LED is off)	Power supply does not have incoming power and is not providing power to the SAN384B.	Ensure that the power supply is firmly seated, the SAN384B has incoming power, both power cables are connected, and AC power switches are on.
	Steady green	Power supply has incoming power and is providing power to the SAN384B.	No action required.
	Flashing green	Power supply is about to fail.	Replace the power supply.

Blower assembly status

To determine the status of a blower assembly:

- 1. Check the LED indicators on the blower assembly (see Figure 28 on page 56). The LED patterns may temporarily change during POST and other diagnostic tests; for information about how to interpret the LED patterns, see Table 14 on page 56.
- 2. Check the blower assembly status using the **fanShow** command. The status for each blower assembly displays **OK**, **Absent**, or **Faulty**. The RPM of each fan in the assembly is also provided. If a blower assembly is absent or faulty, contact IBM.

Figure 28 on page 56 displays the blower assembly.

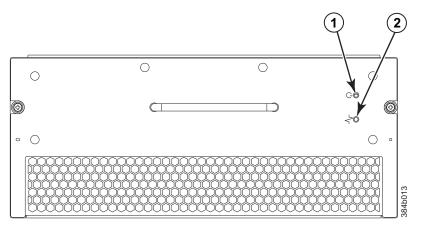


Figure 28. Blower assembly LEDs

1 Power LED2 Fault LED

Table 14. Blower assembly LED descriptions

LED purpose	Color	Status	Recommended action
Power	No Light (LED is off)	Blower assembly does not have power.	Ensure that the blower assembly is firmly seated and has power.
	Steady green	Blower assembly has power.	No action required.
Fault	No Light (LED is off)	Blower assembly is either healthy or does not have power.	Ensure that the blower assembly has power.
	Steady amber	Blower assembly has a failure (full or partial).	Replace the blower assembly.
	Slow-flashing amber (on 2 sec, then off 2 sec)	Blower assembly is not seated correctly or is faulty.	Pull the unit out and reseat it. If the LED continues to flash, replace the unit.
	Flashing amber (on 1/2 sec, then off 3.5 sec)	Fan is disabled.	Run fanEnable to enable the fan.
	Fast-flashing amber (on 1/2 sec, then off 1/2 sec)	Environmental range exceeded.	Check for out-of-bounds environmental condition, resolve any problems, and reseat the unit. If the LED continues to flash, replace the unit.

WWN card status

Note: The WWN bezel (see Figure 29) covers the WWN cards. The LEDs on the WWN cards are not visible unless the bezel is removed.

To determine the status of the WWN card, enter the **chassisShow** command to display information about the WWN card. (WWN units correspond to information specific to the WWN card.) Error messages that may indicate problems with a WWN card are summarized in Table 15.

Table 15. Messages that may indicate WWN card failure

Type of Message	Sample error message
WWN unit fails its FRU (field replaceable unit) header access.	0x24c (fabos): Switch: switchname, error EM-I2C_TIMEOUT, 2, WWN 1 I2C timed out: state 0x4
WWN unit is being faulted.	0x24c (fabos): Switch: switchname, Critical EM-WWN_UNKNOWN, 1, Unknown WWN #2 is being faulted
WWN unit is not present or is not accessible.	0x24c (fabos): Switch: switchname, Error EM-WWN_ABSENT, 2, WWN #1 not present
Writing to the FRU history log (hilSetFruHistory) has failed.	0x24c (fabos): Switch: switchname, Error EM-HIL_FAIL, 2, HIL Error: hilSetFruHistory failed, rc=-3 for SLOT 3

Figure 29 displays the WWN bezel. The WWN bezel must be removed to reveal the WWN cards and LEDs. See "Removing and installing a WWN bezel and WWN card" on page 77 for removal instructions.

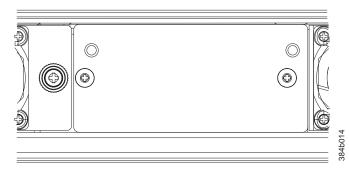


Figure 29. WWN bezel

Chapter 5. Removing and installing components

Note: Read the safety notices before servicing (see "Safety notices" on page xiii).

The field replaceable units (FRUs) in the SAN384B can be removed and installed without special tools. The SAN384B can continue operating during many of the FRU replacements if the conditions specified in the procedure are followed.

The following sections contain FRU removal and installation procedures.

- · "Removing and installing the chassis door"
- "Removing and installing cable management finger assemblies" on page 60
- "Removing and installing port, application, and router blades" on page 62
- "Removing and installing blade filler panels" on page 64
- "Removing and installing a CP8 control processor blade" on page 65
- "Removing and installing a CR4S-8 core switch blade" on page 71
- "Removing and installing a power supply" on page 74
- "Removing and installing a blower assembly" on page 76
- "Removing and installing a WWN bezel and WWN card" on page 77
- "Removing and installing SFPs and XFPs" on page 80
- "Removing and installing inter-chassis link (ICL) cables" on page 81
- "Removing and replacing a SAN384B chassis" on page 88

Removing and installing the chassis door

Note: The chassis door must be installed to ensure the SAN384B meets EMI and other regulatory certifications. Additionally, if ICL cables are not used, EMI plugs must be inserted in the ICL cable ports to meet certification standards.

Time and items required

The replacement procedure for the chassis door takes less than 5 minutes.

Removing the chassis door

To remove a chassis door:

- 1. Support the door to prevent it from falling.
- 2. Pull and remove the door.

To install a chassis door, align the door and push it into place. See Figure 30 on page 60.

© Copyright IBM Corp. 2009 59

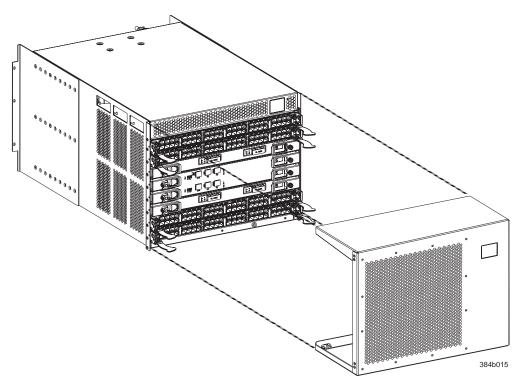


Figure 30. Chassis door

Removing and installing cable management finger assemblies

The SAN384B comes equipped with two vertical cable management finger assemblies. It can continue to operate during the replacement of the cable management assemblies. Due to the horizontal orientation of the blades, the cable management assemblies are attached to the uprights of the mounting rack.

Time and items required

The replacement procedure for the cable management fingers takes less than five minutes. A #1 Phillips screwdriver is required.

Removing a cable management finger assembly

To remove the cable management finger assembly:

- 1. Rearrange the cables around the cable management assembly so that no cables are running between the fingers of the assembly.
- 2. Unscrew and save the two screws that attach the cable management assembly to the rack upright (see Figure 31 on page 61). Support the assembly to prevent it from falling.
- 3. Remove the cable management assembly.
- 4. If necessary, repeat steps 1-3 for the other cable management assembly.

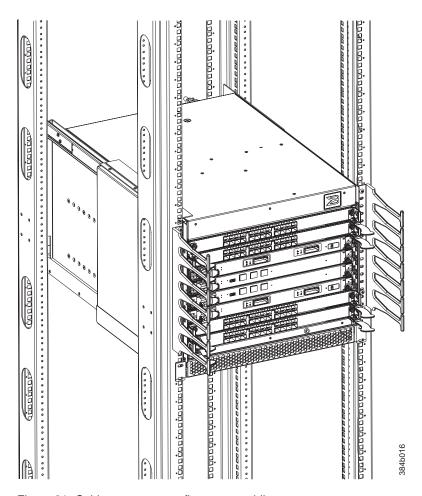


Figure 31. Cable management finger assemblies

Installing a cable management finger assembly

To install a cable management finger assembly:

- Position the vertical cable management finger assembly along the upright rails
 of the rack, aligning the holes on the assembly with the holes in the SAN384B
 chassis.
- 2. Insert and tighten the two screws to secure the cable management assembly to the rack's vertical rails.

Note: Three screws secure the chassis to the cabinet vertical rails, two of which are also used to secure the cable management assembly. The holes on the assembly will only match two of the holes on the chassis at a time. This will allow the cable management assemblies to be mounted either towards the top or towards the bottom of the chassis, depending on cable density and desired cable routing.

- 3. Arrange the cables through the fingers of the cable management assembly.
- 4. Repeat steps 1-3 for the other cable management assembly

Removing and installing port, application, and router blades

This section describes how to remove and install port and router blades.

Attention: A blade should be removed only when being replaced with another blade or a filler panel. Any slot that is not occupied by a blade should be occupied by a filler panel to ensure correct cooling of the chassis and protection from dust.

Slots are numbered from 1 through 8, from bottom to top when facing the port side of the SAN384B. Port, application, and router blades can be installed in slots 1–2 and 7–8.

Attention: Follow ESD precautions (see "ESD precautions" on page xviii) for removal or replacement of any blades.

Time and items required

The replacement procedure for each blade takes less than 10 minutes. The following items are required for the blade and filler panel replacement:

- ESD (electrostatic discharge) grounding strap
- Workstation computer
- · Replacement blade or filler panel
- Phillips screwdriver
- Small form-factor pluggable (SFP) or extended form-factor pluggable (XFP, FC10-6 blade only) transceivers (as needed)
- Optical cables (as needed)

Removing a blade

To remove a port or router blade, do the following:

Attention: Follow ESD precautions (see "ESD precautions" on page xviii) for removal or replacement of any blade.

- 1. Remove the chassis door. (See "Removing and installing the chassis door" on page 59.)
- 2. Check the power LED, status LED, and port status LEDs to identify any possible problems. A failed port or router blade can be identified by inspecting the LEDs on the front panel of each blade. See Figure 18 on page 46 to Figure 22 on page 48 for LED locations.
- 3. Establish a Telnet or console session.
 - Before installing a blade, establish a Telnet or console connection to determine a failure and verify operation after installation. Use the **switchShow** command to view the status of blades.
- 4. Check for adequate cable slack. Ensure there is plenty of cable slack to remove a blade without cable obstruction.
- 5. Ensure that the part number on the unit being installed matches the replacement part number. The **chassisShow** command displays information about the blades, including part numbers, serial numbers, and additional status.
- 6. Ensure that traffic is not flowing through the blade (port status LED should be off) prior to disconnecting cables.

Note: Before removing any cables from a blade, note the cable order (identify each cable by its physical port). If multiple blades are being installed, install one blade at a time. Labeling the cables before removal is recommended.

- 7. Disconnect all cables and SFP or XFP transceivers from the blade.
- 8. Perform the appropriate action based on the type of blade:
 - For FC8-16, FC8-32, and FC8-48, port blades and FX8-24 and FCOE10-24 application blades: Unscrew the two thumb screws from the left and right ejectors on the blade using the Phillips screwdriver. Unscrew the left thumb screw until it pops out. This initiates a hot-swap request. Adjust the ejectors to the open position (see Figure 32).
 - For FC10-6 port blade and FR4-18i router blades: Turn the blade off by sliding the slider switch in the left ejector to the right, to the off position. This initiates a hot-swap request.

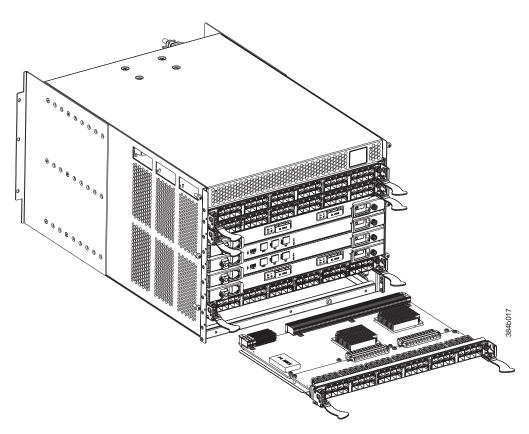


Figure 32. Port blade removal and installation (48-port blade shown as example)

- 9. Wait for the power LED to turn off in response to the hot-swap request before removing the blade.
- 10. Perform the appropriate action based on the type of blade:
 - For FC8-16, FC8-32, and FC8-48 port blades, FX8-24, FCOE10-24 application blades, and FS8-18 encryption blade: Open the ejectors. Pull the blade out of the chassis using the ejectors (see Figure 32).
 - For FC10-6 port blade and FR4-18i blades: Unscrew the two thumb screws from the left and right ejectors on the blade using the Phillips screwdriver. Lever both ejectors open simultaneously to approximately 45 degrees and pull the blade out of the chassis.

11. If the blade is not being replaced by another blade, install a filler panel. See "Installing a filler panel" on page 65.

Installing a blade

To install a port blade, do the following:

Attention: Follow ESD precautions (see "ESD precautions" on page xviii).

Note: An FA4-18i routing blade and the SAN384B must have the same version of firmware. To upgrade firmware versions, refer to the *Fabric OS Administrator's Guide*. See also "Fabric OS firmware updates" on page 42.

- 1. Orient the blade so that the ports are at the front of the chassis and the flat side of the blade is on the bottom.
- 2. Perform the appropriate following action based on the type of blade:
 - For FC8-16, FC8-32, and FC8-48, port blades and FX8-24, FCOE10-24 application blades: Adjust the ejectors to the open position, align the flat side of the blade inside the left and right rail guides in the slot, and slide the blade into the slot until it is firmly seated.
 - For FC10-6 port blade and FR4-18i router blades: Open the ejectors to approximately 45 degrees, align the flat side of the port blade inside the left and right rail guides in the slot, and slide the blade into the slot until it is firmly seated.
- 3. Perform the appropriate following action based on the type of blade:
 - For FC8-16, FC8-32, and FC8-48, port blades and FX8-24, FCOE10-24 application blades: Adjust the ejectors to the closed position by pulling them away from the center of the blade.
 - For FC10-6 port blade and FR4-18i router blades: Close the ejectors by pushing the handles toward the center of the blade until the ejectors lock. The levering action of the handles seats the blade in the slot.
- 4. Perform the appropriate following action based on the type of blade:
 - For FC8-16, FC8-32, and FC8-48, port blades and FX8-24, FCOE10-24 application blades: Tighten the upper and lower thumb screws using the Phillips screwdriver.
 - For FC10-6 port blade and FR4-18i router blades: Tighten the thumb screw inside each handle using the Phillips screwdriver.
- 5. Perform the appropriate following action based on the type of blade:
 - For FC8-16, FC8-32, and FC8-48, port blades and FX8-24, FCOE10-24 application blades: Skip to step 6.
 - For FC10-6 port blade and FR4-18i router blades: Turn the blade on by sliding the slider switch in the left ejector to the left, covering the thumb screw.
- 6. Verify that the power LED on the blade displays a steady green light (it might require a few seconds to turn on). If it does not turn on, ensure that the blade is firmly seated.
- 7. Install SFP or XFP (FC10-6 only) transceivers and cables in the blade.
- 8. Group and route the cables through the cable management assembly.
- 9. Install the chassis door.

Removing and installing blade filler panels

This section describes how to remove and install port blade filler panels.

Removing a filler panel

Attention: A filler panel should be removed only when being replaced with a port blade or new filler panel. Any slot that is not occupied by a blade should be occupied by a filler panel to ensure correct cooling of the chassis and protection from dust.

To remove a filler panel, do the following:

- 1. Remove the chassis door (see "Removing and installing the chassis door" on page 59).
- 2. Unscrew the thumb screws at the left and right ends of the panel using the Phillips screwdriver.
- 3. Pull the filler panel out of the chassis, using the handles on the filler panel. (See Figure 33.)

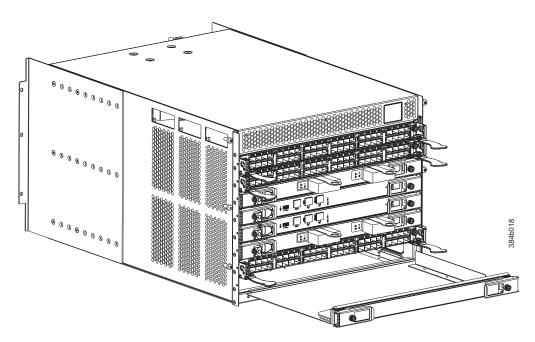


Figure 33. Filler panel removal and installation

Installing a filler panel

To install a filler panel, do the following:

- 1. Orient the filler panel in front of the empty slot (see Figure 33).
- 2. Slide the filler panel into the slot until it is firmly seated.
- 3. Tighten the thumb screws at the left and right ends of the panel.
- 4. Install the chassis door (see "Removing and installing the chassis door" on page 59).

Removing and installing a CP8 control processor blade

This section describes how to remove and install a control processor (CP8) blade. Each SAN384B has two CP8 blades located in slot 4 and slot 5.

Note: If the new CP blade does not have the same firmware as the active CP blade, the new blade must be upgraded to the same firmware version. Refer to the *Fabric OS Administrator's Guide* for information. Also see "Fabric OS firmware updates" on page 42.

Time and items required

The installation procedure for the CP blade takes approximately 30 minutes. The following items are required for the CP blade installation:

- ESD (electrostatic discharge) grounding strap
- Workstation computer
- · Serial cable
- IP address of an FTP server for backing up the SAN384B configuration
- Phillips #2 screwdriver
- Replacement CP blade. The SAN384B requires the CP8 blade.

Verifying the need for replacement

Confirm that you need to install the CP blade. The following events might indicate that a CP blade is faulty:

- The status LED on the CP blade is lit amber, or the power LED is not lit.
- The CP blade does not respond to Fabric OS commands, or the serial console is not available.
- The **slotShow** command does not show that the CP blade is enabled.
- · The haShow command indicates an error.
- The clock is inaccurate, or the CP blade does not boot up or shut down normally.
- Any of the following messages display in the error log:
 - "Slot unknown" message relating to a CP slot
 - CP blade errors or I²C timeouts
 - FRU: FRU_FAULTY messages for a CP blade
 - Configuration loader messages or "Sys PCI config" messages
 - Generic system driver messages ("FABSYS")
 - Platform system driver messages ("Platform")
 - EM messages that indicate a problem with a CP blade
 - Function fail messages for the CP master

For more information about error messages, refer to the *Fabric OS Message Reference*.

Recording critical SAN384B information

Back up the SAN384B configuration before you replace a CP blade. Refer to the *Fabric OS Administrator's Guide* for backup information.

- 1. Connect to the SAN384B and log in as admin, using either a Telnet or a serial console connection.
- 2. Enter haShow to determine which CP blade is active:

```
switch:admin> haShow
Local CP (Slot 5, CP1) : Active
Remote CP (Slot 4, CP0) : Standby, Healthy
HA Enabled, Heartbeat Up, HA State Synchronized
```

- 3. Enter all remaining commands from the serial console for the active CP blade, unless otherwise indicated. For more information about commands, refer to the *Fabric OS Command Reference*.
- 4. If the functioning CP blade is performing as the active CP blade, go to step 5. If the faulty CP blade is performing as the active CP blade, failover the blades:
 - a. Login to the faulty CP blade as admin, using either a Telnet or a serial console connection.

If you connect successfully to the faulty CP, continue to step 5. If you cannot connect to the faulty CP, remove the faulty CP blade for repair as follows:

- Turn the CP blade off and notify the chassis of a hot swap request by sliding the slider switch in the left ejector to the right, to the off position.
- Wait until the active CP LED on the functioning CP blade is lit. Remove the CP blade (see Figure 34 on page 69).
- b. Enter haFailover. The functioning CP blade becomes the active CP blade.
- c. Wait until the status LED on the functioning CP blade is no longer lit.
- d. Enter **haShow** from the functioning CP blade (the new active CP blade) to verify the failover.

This is an example of failing over a CP blade. Note that both blades in this example are healthy.

Fabric OS (cp1)

cp1 login: admin
Password:
switch:admin> hashow
Local CP (Slot 5, CP1): Active
Remote CP (Slot 4, CP0): Standby, Healthy
HA enabled, Heartbeat Up, HA State synchronized
switch:admin> hafailover
Local CP (Slot 5, CP1): Active
Remote CP (Slot 4, CP0): Standby, Healthy
HA enabled, Heartbeat Up, HA State synchronized

Warning: This command is being run on a redundant control processor(CP) system. If the above status does not indicate 'HA State synchronized', then the CPs are not synchronized and this operation will cause the active CP to reset. This will cause disruption to devices attached to both switch 0 and switch 1 and will require that existing Telnet sessions be restarted. To reboot a single logical switch on this system, use the switchreboot command while logged in to that logical switch.

Are you sure you want to fail over to the standby CP [y/n]? y switch:admin> haShow
Local CP (Slot 5, CP1) : Standby, Healthy
Remote CP (Slot 4, CP0) : Active
HA Enabled, Heartbeat Up, HA State Synchronized

- 5. Enter **firmwareShow** to note the firmware version of the active CP blade.
- 6. Enter **haDisable** from the active CP blade to prevent failover or communication between the CP blades during the replacement.
- 7. Back up the configuration by using the **configUpload** command to upload the SAN384B configuration to a specified FTP server. Enter information at the prompts.

This is a sample of backing up the configuration files:

swDir:admin> configUpload
Protocol (scp or ftp) [ftp]: ftp
Server Name or IP Address [host]: 123.456.78.90
User Name [None]: user
File Name [config.txt]: config.txt
Password: xxxxxxxx
upload complete

Removing a control processor blade (CP8)

The SAN384B continues to operate while a CP blade is being installed if the redundant CP blade is active and a failover does not occur. You can prevent failover by entering the **haDisable** command.

Attention: Follow ESD precautions (see "ESD precautions" on page xviii) when handling any blades.

Note: The CP8 blade is compatible only with the SAN384B and SAN786B products.

To remove a CP blade, do the following:

- 1. Remove the chassis door. (See "Removing and installing the chassis door" on page 59.)
- 2. Log in to the active CP as the admin, using either a Telnet or a serial console connection.
- 3. If the faulty CP is the active CP, issue the **haFailover** command. Wait until the failover has completed. Use the **haShow** command to verify the CPs are synchronized and the failover is complete.
- 4. Power off the blade by sliding the slider switch in the left ejector to the right, to the off position.
- 5. Disconnect all cables from the faulty (standby) CP.
- 6. Unscrew the thumb screws from both ejectors using the Phillips screwdriver.
- 7. Lever open both ejector handles simultaneously to approximately 45 degrees and pull the CP blade out of the chassis (see Figure 34 on page 69).

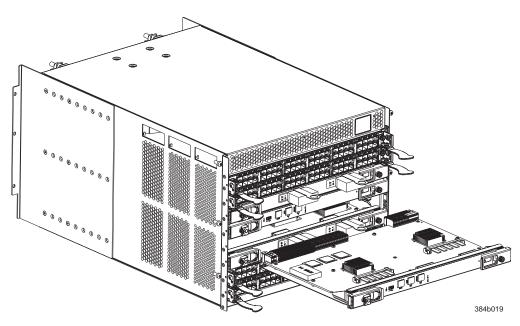


Figure 34. Removing the control processor (CP8) blade

Installing a control processor blade (CP8)

Attention: Follow ESD precautions (see "ESD precautions" on page xviii) whenever handling a blade.

To install a CP blade (slot 4 or 5):

- 1. Open the ejector handles to approximately 45 degrees. Orient the CP blade so that the handles are toward you and the flat metal side is on the bottom.
- 2. Align the flat metal side of the CP blade inside the left and right blade guides in the slot. Slide the CP blade into the slot until it is firmly seated.
- 3. Tighten the thumb screw inside each handle using the Phillips screwdriver.
- 4. Turn the CP blade on by sliding the ON/OFF switch in the left handle to the left, to cover the thumb screw.
- 5. Verify that the power LED is green. If not, ensure that the CP blade has power and is firmly seated and that the ejectors are in the locked position.
- 6. Connect the cables to the new CP blade.
- 7. Verify the installation. (See "Verifying operation of the new CP blade.")
- 8. Install the chassis door. (See "Removing and installing the chassis door" on page 59.)

Verifying operation of the new CP blade

Perform the following steps to verify that boot and POST are complete on the new CP blade and that the CP blade has achieved failover redundancy.

- 1. Log into the active CP as admin.
- 2. Enable the redundancy feature using the haEnable command.
- 3. Verify HA is enabled using the **haShow** command. The command output includes "HA Enabled Heartbeat Up" and "HA-state in sync."

If HA is not enabled, POST is not complete or the CP blades have not achieved redundancy. Wait one or two minutes and re-enter the command until you can verify that redundancy has been achieved.

4. Enter **slotShow**. The command output shows the new CP blade as "enabled":

switch Slot	:admin> slot : BladeType	Show ID	Status
1	UNKNOWN		VACANT
2	SWBLADE	55	ENABLED
3	CORE BLADE	52	ENABLED
4	CP BLADE	50	ENABLED
5	CP BLADE	50	ENABLED
6	CORE BLADE	52	ENABLED
7	UNKNOWN		VACANT
8	SW BLADE	51	ENABLED
<pre>switch:admin></pre>			

5. Determine the version by entering **firmwareShow**.

This example shows sample output for the **firmwareShow** command:

```
switch:admin> firmwareShow
Local CP (Slot 4, CP1): Active
Primary partition: v6.2.0
Secondary Partition: v6.2.0
Remote CP (Slot 5, CP0): Standby
Primary partition: v6.2.0
Secondary Partition: v6.2.0
```

Note: If Local CP and Remote CP have different versions of firmware, please retry firmwaredownload command.

switch:admin>

6. If the firmware version on the replacement blade does not match that on the active CP blade, bring the replacement blade to the same firmware level as the active blade.

Note: Firmware downloads require that Ethernet connections be made to both CP blades. Procedures for downloading and installing firmware are described in the *Fabric OS Administrator's Guide*.

Enter firmwareDownload -s to download the firmware to one of the CP blades

To download firmware, go to http://www.ibm.com/systems/support. Select **System Storage**. On the next page that is displayed, select **Download**, and then select **Storage area network (SAN)**. Select your product, then select the appropriate firmware version and release notes version. See "Fabric OS firmware updates" on page 42 for additional information. Refer to the detailed procedures for downloading and installing firmware in the *Fabric OS Administrator's Guide*.

- 8. When you have navigated to the appropriate download site, download the firmware to your CP blade.
- 9. Enter **firmwareDownload -s** to download the firmware to one of the CP blades. Enter all requested information (use default values):

```
switch:admin> firmwaredownload -s
Server Name or IP Address: 192.168.100.1
User Name: user
File Name: /software/v6.2.0/release.plist
Password: *******
Do Auto-Commit after Reboot [Y]:
Reboot system after download [N]:
Firmwaredownload has started.
```

```
2008/07/03-14:59:21, [SULB-1001], 923,, WARNING, SAN384B, Firmwaredownload
command has started.
Start to install packages.....
         dir
         ldconfig
glibc
        bash
        readline
        terminfo
termcap
         setup
         <output truncated>
         mtracer-tool
        1kcd
         sysstat
Removing unneeded files, please wait ...
Finished removing unneeded files.
All packages have been downloaded successfully.
Firmwaredownload has completed successfully.
2008/07/03-15:05:56, [SULB-1002], 924,, INFO, SAN384B, Firmwaredownload
command has completed successfully.
```

- 10. Enter firmwareDownloadStatus to verify that the firmware has been updated.
- 11. Enter **haEnable** to re-enable HA again on the active CP blade.
- **12**. Enter **reboot** if you did not previously select to automatically reboot the system.
- **13**. Verify that the reboot is complete and the CP blades have achieved failover redundancy:
 - a. Wait until the status LEDs on both CP blades are not lit.
 - b. Enter **haShow** and verify that the command output includes "HA Enabled Heartbeat Up". If not, reenter the command until you have verified that redundancy is achieved.
- 14. Enter firmwareShow to verify that the firmware version has been updated.
- 15. Pack the faulty CP blade in the packaging provided with the new CP blade for return to IBM, following local procedures.
- 16. Install the chassis door. (See "Removing and installing the chassis door" on page 59.)

Removing and installing a CR4S-8 core switch blade

This section describes how to remove and install a core switch blade. The SAN384B has two core switch blades: one in slot 3 and one in slot 6. Note that the blade shown in Figure 35 on page 73 is shown with EMI plugs installed.

Time and items required

The installation procedure for the core switch blade takes approximately 30 minutes. The following items are required for the core switch blade replacement:

- ESD (electrostatic discharge) grounding strap
- Phillips #2 screwdriver
- Replacement core switch blade. The SAN384B requires the CR4S-8 core switch blade.

Verifying the necessity of installation

Confirm that you need to replace the core switch blade before continuing. The following events might indicate that a core switch blade is faulty:

- The status LED on the core switch blade is lit amber, or the power LED is not lit.
- The slotShow command does not show that the core switch blade is enabled.
- · The haShow command indicates an error.
- Any of the following messages display in the error log:
 - "Slot unknown" message relating to a core switch blade slot
 - core switch blade errors or I²C timeouts
 - FRU: FRU_FAULTY messages for a core switch blade
 - Configuration loader messages or "Sys PCI config" messages
 - Generic system driver messages ("FABSYS")
 - Platform system driver messages ("Platform")
 - EM messages that indicate a problem with a core switch blade
 - Function fail messages for the core switch blade master

For more information about error messages, refer to the *Fabric OS Message Reference*.

Removing a CR4S-8 core switch blade

The SAN384B continues to operate while a core switch blade is being replaced.

Attention: Follow ESD precautions (see "ESD precautions" on page xviii) whenever handling blades.

Note: The CR4S-8 blade is compatible only with the SAN384B.

- 1. Remove the chassis door (see "Removing and installing the chassis door" on page 59).
- 2. Power off the blade by sliding the slider switch in the left ejector to the right, to the off position.
- 3. Disconnect all cables from the faulty core switch blade. If ICL cables are not used, remove the EMI plugs from the cable sockets.
- 4. Unscrew the thumb screw from both ejectors using the Phillips screwdriver.
- 5. Lever open both ejector handles simultaneously to approximately 45 degrees and pull the core switch blade out of the chassis (see Figure 35 on page 73).

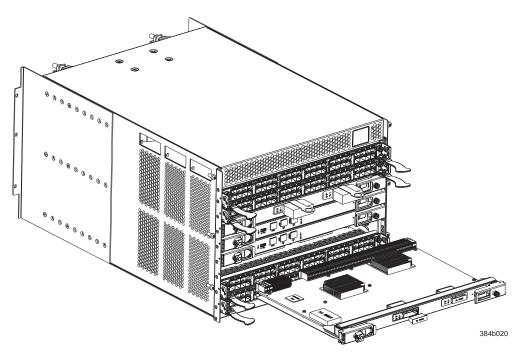


Figure 35. Removing the core switch blade

Installing a CR4S-8 core switch blade

Attention: Follow ESD precautions (see "ESD precautions" on page xviii) whenever handling blades.

To install a CR blade (slot 3 or 6), do the following:

- 1. Open the ejector handles to approximately 45 degrees; then, orient the CR blade so that the handles are toward you and the flat metal side is on the bottom.
- 2. Align the flat metal side of the core switch blade inside the left and right blade guides in the slot; then, slide the core switch blade into the slot until it is firmly seated.
- 3. Tighten the thumb screw inside each handle using the Phillips screwdriver.
- 4. Turn the core switch blade on by sliding the ON/OFF switch in the left handle to the left, to cover the thumb screw.
- 5. Verify that the power LED is green (this might require a few seconds). If not, ensure that the core switch blade has power and is firmly seated and that the ejectors are in the locked position.
- 6. Connect the cables to the new core switch blade. If ICL cables are not used, insert EMI plugs into the cable sockets.
- 7. Pack the faulty core switch blade in the packaging provided with the new core switch blade for return to IBM, following local procedures.
- 8. Install the chassis door. (See "Removing and installing the chassis door" on page 59.)

Removing and installing a power supply

Use this procedure to remove and replace a power supply. The SAN384B can continue operating during the replacement if the other power supply is operating.

Note: The SAN384B base configuration includes two power supplies for full redundancy. Operating the system with a single functioning power supply runs the risk of data loss in the event of a second power supply failure. Both power supply slots should remain filled to ensure proper air circulation for system cooling.

Time and items required

The installation procedure for each power supply takes less than 5 minutes. A power supply unit or filler panel is required for the power supply installation.

Removing a power supply

Figure 36 shows the location of the two power supplies, which are located at the top of the non-port side of the SAN384B.

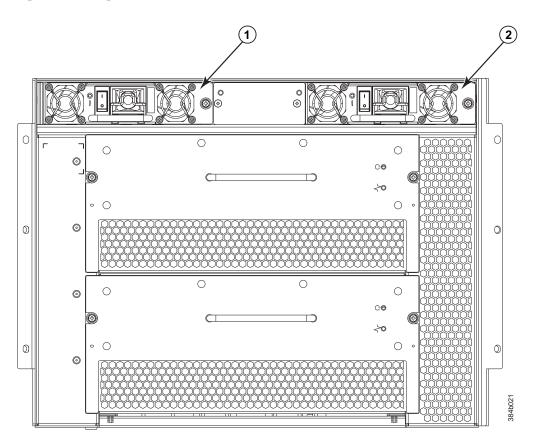


Figure 36. Location of the two power supplies

- 1. Perform the appropriate following action based on whether the SAN384B is operating:
 - If the SAN384B is not operating during the replacement procedure, go to step 2.

- If the SAN384B is going to continue operating during the replacement, check the power LEDs to verify that the remaining power supply is functioning. The SAN384B requires a minimum of one power supply at all times to function.
- 2. Turn off the power switch on the power supply you are replacing.
- 3. Disconnect the power cord.
- 4. Loosen the thumbscrew, using a Phillips screwdriver if necessary.
- 5. Grasp the handle and pull, sliding the power supply from the chassis (see Figure 37). Support the power supply from beneath as you remove it.
- 6. If you are not immediately replacing the power supply, insert and attach a power supply filler panel into the slot.

Note: Two power supplies are required to provide redundancy, protecting against potential data loss.

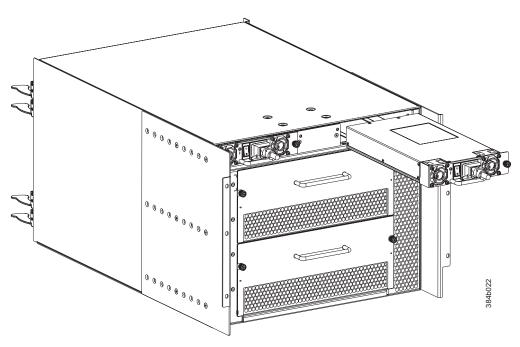


Figure 37. Removing and installing a power supply

Installing a power supply

To install a power supply, do the following:

- 1. Remove any filler panels that were temporarily installed.
- 2. Insert the power supply into the slot. Verify that the power supply is seated by gently pulling on the handle. The power supply should resist movement as you pull.
- 3. Tighten the thumbscrew.
- 4. Connect the power cord.
- 5. Move the power supply switch to the on position.
- 6. Verify that the power LED on the power supply displays a steady green light.

Removing and installing a blower assembly

This procedure provides instructions for removing and installing a blower assembly.

Attention: The system can continue operating during the replacement if the second blower assembly is operating, To ensure continuous adequate cooling, maintain both blower assemblies except for the brief period during replacement.

Time and items required

The installation procedure for each blower assembly takes less than 5 minutes. The following items are required for the blower assembly installation:

- Replacement blower assembly
- Phillips #2 screwdriver

Removing a blower assembly

To remove a blower assembly, do the following:

- 1. Before removing a blower assembly, verify that the other blower assembly is functioning correctly. The power LEDs should be steady green.
- 2. Use the screwdriver to loosen the captive screws at the left and right of the blower assembly.
- 3. Grasp the handle and pull, sliding the blower assembly from the chassis and supporting the blower assembly from beneath as you remove it (see Figure 38 on page 77).

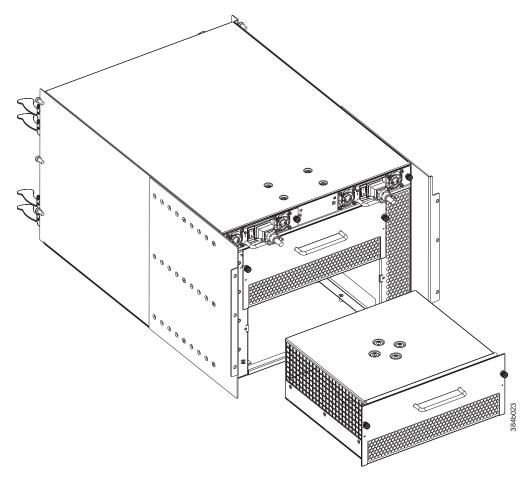


Figure 38. Blower assembly removal

Installing a blower assembly

To install a blower assembly, do the following:

- 1. Orient the blower assembly and slide it into the chassis, pushing firmly to ensure that it is seated.
- 2. Verify that the power LED displays a green light.
- 3. Use the screwdriver or your fingers to tighten the captive screws.

Removing and installing a WWN bezel and WWN card

Note: The World Wide Name (WWN) cards contain fully redundant circuits and normally do not require replacement. Two WWN cards are located beneath the WWN bezel.

Time and items required

Allow approximately 20 minutes to install a WWN card. The following items are needed to install a WWN card:

- Electrostatic discharge (ESD) grounding strap
- #2 Phillips screwdriver (required only for some versions of the WWN card)

 If a serial console session is used: serial cable and a workstation computer with a terminal emulator application (such as HyperTerminal for Windows systems or TIP for UNIX systems)

Verifying necessity of installation

Before installing a WWN card, verify that the installation is necessary. Any of the following events can indicate that the card requires installation:

- Status LED on WWN card (beneath the bezel) indicates a problem
- Problems viewing or modifying the data stored on the WWN card (see Table 16).
- Error messages regarding WWN units #1 or #2 (see Table 17).

Note: Power and status LEDs for the blades are not on the WWN card. Those LEDs can be viewed directly on the blades themselves.

Determining the status of a WWN card

To determine the status of a WWN card, do the following:

1. Check the WWN card status using the commands listed in Table 16. Difficulty retrieving or modifying this data could indicate a WWN card failure.

Table 16. Commands identifying the WWN card status

Data	Related commands
WWN values	wwn, chassisShow
Data about the chassis and WWN card	chassisShow
Ethernet and Fibre Channel IP address information for the CP blades	ipAddrShow, ipAddrSet
History log information	historyShow, historyLastShow
Name of switch	switchName
Name of chassis	chassisName

2. Enter the **chassisShow** command to display information about the WWN card. WWN units correspond to information specific to the WWN card. An error message is logged that indicates the status of the WWN unit (see Table 17).

Table 17. WWN card related system log messages

Type of message	System message (errshow or errdump)
WWN unit removal was detected	<timestamp>, [EM-1050], <sequence-number>,, INFO, <system-name>, FRU WWN # removal detected.</system-name></sequence-number></timestamp>
WWN unit insertion was detected	<timestamp>, [EM-1049], <sequence-number>,, INFO, <system-name>, FRU WWN # insertion detected.</system-name></sequence-number></timestamp>
WWN unit fails to power on	<timestamp>, [EM-1004], <sequence-number>,, CRITICAL, <system-name>, WWN # failed to power on</system-name></sequence-number></timestamp>
WWN unit is being faulted	<timestamp>, [EM-1034], <sequence-number>,, ERROR, <system-name>, WWN # set to faulty, rc=<return code=""></return></system-name></sequence-number></timestamp>

Removing the WWN bezel and WWN card

Attention: Follow ESD precautions (see "ESD precautions" on page xviii) whenever handling cards or blades.

1. Open a Telnet session to the SAN384B and log in to the active CP as admin. The default password is password.

- 2. Verify you are logged into the active CP. Run the **haShow** command to determine the active CP.
- 3. Remove the two screws from the WWN bezel . Pull the bezel away from the chassis and set it aside (see Figure 39). The WWN cards and their status LEDs are visible.
- 4. Enter **fruReplace wwn** from the active CP blade and wait for the phrase, "Do you wish to continue [y/n]?" to display; then enter **y**.
- 5. Wait until the WWN card data is backed up. *Do not* enter **continue** until the mechanical replacement is complete.

switch:admin> frureplace wwn
This is the WWN card hot swap interface.
Continuing from this point will require
the whole process to be completed.
If this process is not complete due to a
power cycle, or CP failover, please follow
the recovery procedure in
Core Switch WWN Card Removal and
Replacement document.
Do you wish to continue [y/n]? y
Backing up WWN card data, please wait about 25 seconds for further instruction.
Please install the new FRU now.

If this session lost for any reason, please re-enter the frureplace command and follow the instructions to complete the operation.

Please enter the word `continue' after the new WWN card has been installed:

- 6. Wait until all the LEDs on the WWN bezel turn off.
- 7. Use a Phillips screwdriver to unscrew the screw that secures the WWN card to the chassis. Use the pull tab to remove the card.
- 8. Disconnect the WWN cable by depressing the cable connector latch and pulling the connector from the WWN module.
- 9. Set the WWN card on a static-free surface, such as a grounding pad.

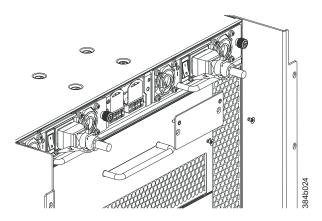


Figure 39. WWN bezel and card removal and installation

Installing the WWN bezel and WWN card

To install the WWN bezel and WWN card, do the following:

Attention: Follow ESD precautions (see "ESD precautions" on page xviii) whenever handling cards or blades.

1. Unpack the new WWN card and save the packaging for the faulty WWN card.

2. Hold the card by the pull tab and insert the WWN cable onto the WWN module until it is fully seated. Use the Phillips screwdriver and the two screws to attach the WWN card to the chassis.

Note: If a serial console session is active, several "removal detected" and "insertion detected" messages display on the console because of the replacement.

3. In the CLI session, enter **continue** to indicate that the replacement has been completed.

Please enter the word `continue' after the new WWN card has been installed: continue

```
Restoring the information to the replacement FRU now, please
wait about 20 seconds to complete
Verifying the replacement FRU now...
WWN card hot swap is now complete.
FRU replacement completed successfully!
```

4. Verify that the WWN card is correctly connected by checking the LED on the WWN card.

Note: The LED might take up to 2 minutes after WWN card installation to begin functioning.

- 5. Install the WWN bezel. Orient the bezel on the chassis (Figure 39 on page 79). Insert and tighten the two screws.
- 6. Pack the faulty WWN card in the packaging provided with the new card for return to IBM, following local procedures.

Removing and installing SFPs and XFPs

Note: For a listing of SFPs and XFPs compatible with this product:

- Go to the IBM SAN web page http://www.ibm.com/systems/storage/
- Select the SAN384B product link
- On the SAN384B product page, click the **Interoperability Matrix** link.
- In the Interoperability matrix, click the **Transceivers** link.

Note: The 8-Gbps SFPs autonegotiate at 2, 4, and 8 Gbps. The 4-Gbps SFPs autonegotiate at 1, 2, and 4 Gbps.

To remove an SFP or XFP (FC10-6 blade only) transceiver, pull the bale down and out, sliding the transceiver out of the port or router blade.

To install an SFP or XFP, position one of the transceivers so that the key is oriented correctly to the port. Insert the transceiver into the port until it is firmly seated and the latching mechanism clicks. Transceivers are keyed so that they can only be inserted with the correct orientation. If a transceiver does not slide in easily, ensure that it is correctly oriented.

The SAN384B comes with a transceiver extraction tool (see Figure 40 on page 81) and holster. The extraction tool is designed to remove transceivers from blades where the space is limited. To use the extraction tool, slide the tool on to the bale of the transceiver and pull it out.

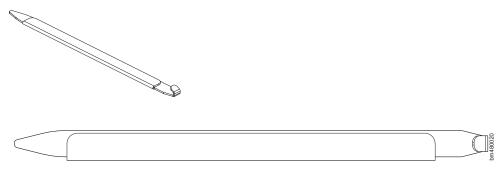


Figure 40. SFP extraction tool

Note: This tool is part of the SAN384B ship group and should be kept with the SAN384B.

Removing and installing inter-chassis link (ICL) cables

Note: ICL ports can be used only with an ICL license. After the addition or removal of a license, the license enforcement is performed on the ICL ports only when the **portDisable** and **portEnable** commands are issued on the ports. An ICL license must be installed on all systems forming the ICL connection. The systems can be any combination of up to three SAN384B and SAN768B chassis.

Attention: If ICL cables are not in use, the ports must have EMI plugs installed to meet EMI and other regulatory certifications.

Table 18 describes the ICL connector port LED patterns and the recommended actions for those patterns.

Table 18. ICL connector port LEDs

LED purpose	Color	Status	Recommended action
LINK LED	No light (LED is off)	No ICL, or ICL cable present but no connection.	Ensure that the ICL cable is correctly installed.
	Steady green	ICL connected.	No action required.
ATTN LED	No light (LED is off)	ICL operational.	No action required.
	Blinking amber	Attention required.	Ensure that the ICL cable is correctly installed.

Follow this procedure to install the ICL cables. Refer to the *Fabric OS Administrator's Guide* for the configuration procedure and requirements.

Figure 41 on page 82 shows the two ends of an ICL cable. The ICL cables (2 meters long) and the ICL connectors are color-coded and labeled for ease of installation. The cables can connect ICL connector ports on the SAN384B core switch blades (CR4S-8) or SAN768B core switch blades (CR8).

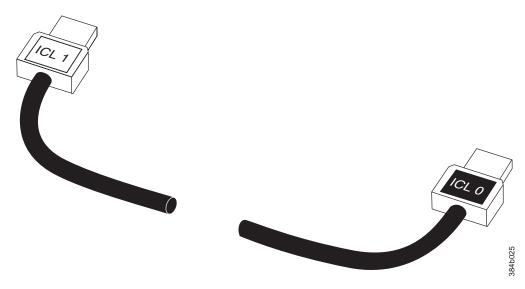


Figure 41. ICL cable

Time and items required

The replacement procedure for an ICL cable takes less than five minutes. A replacement ICL cable is the only item needed.

Removing an ICL cable

Attention: To prevent the latch mechanism from wear, use the color-coded (green) latch-release tab for cable removal. Pull the tab to disengage the retention latch before cable removal.

- 1. Remove the chassis door ("Removing and installing the chassis door" on page 59).
- 2. If you are replacing an ICL cable, note the cable routing, paying attention to which cable end plug into which socket. Replace only one ICL cable at a time to minimize errors.
- 3. Using the latch release tabs, pull each plug on the cable from its respective socket on the SAN384B core switch blades (CR4S-8) or SAN768B core switch blades (CR8).
- 4. Repeat for each cable that requires replacement.
- 5. If you are not replacing the ICL cables, insert the EMI plugs into each ICL socket.

Installing an ICL cable

- 1. Align the color-coded and labeled (ICL 1 and ICL 0) plugs on either end of the ICL cable with their respective connectors on the core switch blades (CR4S-8 or CR8).
- 2. Push each plug in until the latch mechanism clicks into place.
- 3. Repeat for each cable that you are installing.

 If you are installing ICL cables for the first time, pay particular attention to the configuration in which the cables must be installed.

1

Attention: Since the blades in the SAN384B are installed horizontally, the familiar top-to-bottom orientation for other products becomes a left-to-right orientation. Connect the cables from the left (top) connectors (ICL 1) of the CR4S-8 blades in the first chassis to the right (bottom) connectors (ICL 0) of the CR4S-8 blades in the second chassis. Similarly, connect the cables from the right (bottom) connectors (ICL 0) of the CR4S-8 blades in the first chassis to the left (top) connectors (ICL 1) of the CR4S-8 blades in the second chassis. Figure 42 on page 84 and Figure 43 on page 85 show two of the acceptable cabling configurations for the ICL feature between two SAN384B chassis and between a SAN384B and a SAN768B, respectively. The first drawing for two SAN384B systems shows the cables attached between the blades in slot 3 on one chassis and slot 6 on the second chassis. It is also acceptable to attach the cables from slot 3 on one chassis to slot 3 on the second chassis (or slot 6 to slot 6) as long as the left-to-right (top-to-bottom) rule is followed. Figure 44 on page 86 and Figure 45 on page 87 show the arrangement of cables in a 3-way configuration of backbone chassis. Note the relationship of the horizontal SAN384B layout to the vertical layout of the SAN768B in each figure.

Note: The same general configuration applies regardless of which chassis are used. The illustrations for 3-way ICL cable connections are used to show the *ICL cable connections* between the different chassis. They are *not* meant to illustrate installation of multiple chassis in a single cabinet. Because of cabinet installation limits, the chassis for some configurations will be installed in adjacent cabinets.

- 4. Replace the chassis door ("Removing and installing the chassis door" on page 59).
- 5. Once all the cables are attached, see the *Fabric OS Administrator's Guide* for the configuration procedure.

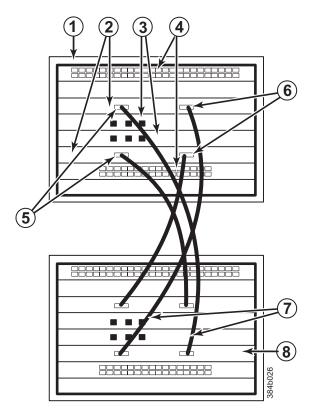


Figure 42. ICL cable connections between two SAN384B chassis

- 1 Chassis 1
- 2 Core switch blades (CR4S-8)
- 3 Control processor blades (CP8)4 Port blades
- 5 ICL connector (ICL 1)6 ICL connector (ICL 0)
- 7 ICL cables
- 8 Chassis 2

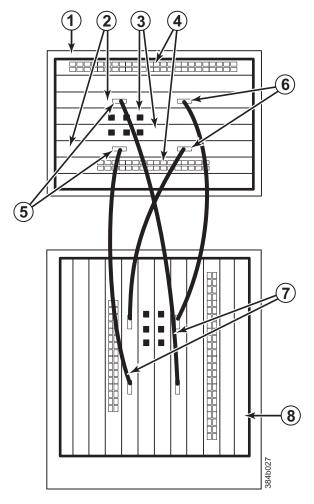


Figure 43. ICL cable connections between a SAN384B chassis and a SAN768B chassis.

- Chassis 1 (SAN384B)
 Core switch blades (CR4S-8)
 Control processor blades (CP8)
 Port blades
- **5** ICL connector (ICL 1)
- **6** ICL connector (ICL 0)
- 7 ICL cables
- 8 Chassis 2 (SAN768B)

Figure 44. 3-way ICL cable connections between a SAN384B chassis and two SAN768B chassis.

- 1 Chassis 1 (SAN384B)
- **2** Core switch blades (CR4S-8)
- 3 Chassis 2 (SAN768B)
- 4 Chassis 3 (SAN768B)
- **5** ICL connector (ICL 1)

Figure 45. 3-way ICL cable connections between a SAN768B chassis and two SAN384B chassis.

- Chassis 1 (SAN384B)
- 1 Chassis 1 (SAN384B)2 Core switch blades (CR4S-8)
- 3 Chassis 2 (SAN768B)
- 4 Chassis 3 (SAN384B)
- 5 ICL connector (ICL 1)
- 6 ICL connector (ICL 0)

Note: For clarity, the two sets of cables are drawn differently (solid and dashed) in Figure 44 on page 86 and Figure 45. Also note that one set is connected to only the blades in the "low order" slots (slot 3 in the SAN384B and slot 5 in

the SAN768B) and the other set is connected to the blades in the "high order" slots (slot 5 in the SAN384B and slot 8 in the SAN768B). Keeping the sets apart in this manner minimizes the cable confusion.

Removing and replacing a SAN384B chassis

This section describes how to remove and replace the SAN384B chassis (with its backplane). The basic steps are:

- "Verifying need for replacement"
- "Recording critical SAN384B and SAN information" on page 89
- "Disconnecting from the network and fabric" on page 92
- "Removing components from the chassis" on page 93
- "Installing the replacement chassis" on page 94
- "Installing components into the new chassis" on page 94
- "Verifying correct operation of system" on page 95
- "Reconnecting the system to the network and fabric" on page 97
- "Verifying correct configuration of the fabric" on page 97

Note: The SAN384B must be removed from the fabric and powered off to perform this procedure. Contact IBM Support if you have any questions about whether the chassis requires replacement.

Time required

The chassis replacement takes approximately 3 hours.

Items required

The following items are required for the chassis replacement:

- Electrostatic discharge (ESD) grounding strap
- ESD grounding pads for protecting all blades and WWN cards
- Serial cable and workstation computer with a terminal emulator application (such as HyperTerminal for Windows systems or TIP for UNIX systems), required only if serial console session used
- Pallet jack or hydraulic or assisted lift (see "Ordering the lift tool" on page 11) that raises a minimum of 140 cm (55 in.) and carries a minimum of 113 kg (250 lb)
- A surface to place the old chassis on, such as a second lift or the pallet originally provided with the old chassis
- #2 Phillips screwdriver

Verifying need for replacement

Verify that replacement of the chassis is necessary. Ensure that the components are firmly seated when troubleshooting, and contact IBM support with any questions about whether the chassis should be replaced. Any of the following events might indicate the need to replace the chassis:

- Visible mechanical damage to the chassis, including damage to sheet metal or card guides that prevents correct installation of a blade.
- Bent or damaged connectors on the backplane (the surface inside the chassis to which the blades connect).

|

- One or more components (such as a power supply, blower assembly, port blade, control processor blade (CP8), core switch blade (CR4S-8), or WWN card) do not function properly even after the component was replaced.
- The **psShow** or **fanShow** commands continue to show a faulty component even though the component was replaced.
- The **slotShow** command continues to show a faulty control processor (CP8), core switch (CR4S-8), or port blade even though the blade was replaced.

Recording critical SAN384B and SAN information

All commands must be entered from a CLI session (Telnet or serial) to the active CP blade unless otherwise indicated.

Note: Run **supportShow** which includes all of the information in Table 19 on page 90 and more. The customer should record the location of the .txt files, which are created by the customer and are not called out in the **supportShow** results.

Configuration information

- 1. Open a Telnet session and log in to the SAN384B as admin. The default password is password. Enable the logging function on your Telnet or serial console connection.
- 2. Back up the current configuration.

Note: If you are using the virtual fabric feature, you should run **configUpload -vf** before running the **configUpload** command in order to save the logical switch configuration.

Enter **configUpload -all**; then enter the requested information at the prompts. This command uploads the configuration to the customer-defined FTP server, making it available for downloading. For more information about this command, refer to the *Fabric OS Command Reference Manual*.

```
switch:admin> configupload -all
Protocol (scp or ftp) [ftp]: ftp
Server Name or IP Address [host]: 123.123.123.123
User Name [user]: Admin24
File Name [config.txt]: config-switch0.txt
Password: xxxxxxxx
Upload complete
switch:admin>
```

- 3. Record the SAN384B values on a workstation (steps 4 through 9)
- 4. Record the WWN value: Enter **wwn**; then, copy the command output into a file named "config-miscinfo.txt".

ı

```
switch:admin> wwn
10:00:00:60:69:00:00:0a
```

5. Record the IP address information.

Enter **ipAddrShow -sw**; then copy the command output into the "config-miscinfo.txt" file.

switch:admin> ipaddrshow SWITCH Ethernet IP Address: 10.32.50.12 Ethernet Subnetmask: 255.55.0.0 Fibre Channel IP Address: 1.2.3.4 Fibre Channel Subnetmask: 255.255.255.0 Ethernet IP Address: 10.32.50.10 Ethernet Subnetmask: 255.55.0.0 HostName : cp0 Gateway Address: 10.32.40.1 Ethernet IP Address: 10.32.50.11 Ethernet Subnetmask: 255.55.0.0 HostName : cp1 Gateway Address: 10.32.40.1 Backplane IP address of CPO: 10.0.0.4 Backplane IP address of CP1 : 10.0.0.5

switch:admin>switch:admin>

switch:admin>

6. Display and record the manufacturer serial numbers.

Enter **chassisShow**; then copy the command output into the "config-miscinfo.txt" file.

"Factory Serial Num" and "Serial Num" are listed under "Chassis/WWN Unit 1." If the current WWN cards are the original cards, the factory serial number listed is the same as the chassis serial number.

switch:admin> chassisshow Chassis Backplane Revision: 1F SW BLADE Slot: 1 Header Version: 2 Power Consume Factor: -50 Factory Part Num: 60-0001532-03
Factory Serial Num: KP000000195 Manufacture: Day: 1 Month: 1 Year: 2007 Update: Day: 14 Month: 3 Year: 2012 Time Alive: 187 days Time Awake: 3 days <output truncated> CHASSIS/WWN Unit: 1 (in same assembly as WWN Unit: 2) Header Version: 2 Power Consume Factor: -3 Factory Part Num: 60-0001501-07 Factory Serial Num: FT02X805BE2 Manufacture: Day: 26 Month: 3 Year: 2007 Update: Day: 14 Month: 3 Year: 2009 Time Alive: 207 days
Time Awake: 3 days <output truncated>

- 7. Create a SAN "profile" by entering and recording the information provided by the following commands:
 - nsShow
 - · nsAllShow
 - switchShow
 - · fabricShow

Copy the command output into a text file named "SANbefor.txt". After the SAN384B is restored to the fabric, this information can be used to verify that no unintentional changes have occurred to the fabric.

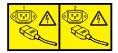
```
switch:admin> nsshow
Enter Pid COS PortName NodeName TTL
<output truncated>
switch:admin> nsallshow
12 Nx Ports in the Fabric
<output truncated>
switch:admin> switchshow
switchName: switch
<output truncated>
switch:admin> fabricshow
Switch ID Worldwide Name Enet IP Addr FC IP Addr Name
<output truncated>
```

8. Enter supportShow; then copy the command output into a text file named "spptshow.txt".

Note: The supportShow command has a very long output and time for completion. It may last 20 minutes or longer depending on the size of the SAN.

This file provides a backup of all the information that might be required by Technical Support. The information can be used after the SAN384B is restored to the fabric, to verify that no unintentional changes have occurred to the fabric.

```
switch:admin> supportshow
version: 6.2.0
<output truncated>
switch:admin>
```


9. Record the cable connections between the SAN384B and the target device and ports, if you have not previously done so. See Table 20 on page 99 for a sample template.

Disconnecting from the network and fabric

1. Shut down the SAN384B using the **sysShutdown** command.

```
switch:admin> sysshutdown
This command will shutdown the operating systems on your switch.
You are required to power-cycle the switch in order to restore operation.
Are you sure you want to shutdown the switch [y/n]? y
HA is disabled
Stopping blade 1
Shutting down the blade....
Stopping blade 2
Shutting down the blade....
Stopping blade 8
Shutting down the blade....
Broadcast message from root (pts/1) Tue Jul 18 14:23:06 2008...
The system is going down for system halt NOW !!
```

2. Power off the chassis by flipping all AC power switches to **O**. (Power supply status LED should turn off.)

DANGER

Multiple power cords. The product is equipped with multiple power cords. To remove all hazardous voltages, disconnect all power cords. (L003)

- 3. Remove the power cords from the power supplies and the power outlets.
- 4. Label the cables connected to all blades and record the connections in Table 20 on page 99.
- 5. Remove the chassis door (see "Removing and installing the chassis door" on page 59).
- 6. Disconnect the cables from the port blades and set them aside. The SFP or XFP transceivers can be left in the port blades or removed.
- 7. Disconnect all cables from the CP8 and CR4S-8 blades.
- 8. Disconnect any ICL cables ("Removing and installing inter-chassis link (ICL) cables" on page 81).

Removing components from the chassis

Attention: Follow ESD precautions (see "ESD precautions" on page xviii) when handling components.

- 1. Remove the cable management fingers ("Removing and installing cable management finger assemblies" on page 60).
- 2. Remove the port and router blades or filler panels ("Removing and installing port, application, and router blades" on page 62 and "Removing and installing blade filler panels" on page 64).
- 3. Remove the core switch blades ("Removing and installing a CR4S-8 core switch blade" on page 71).
- 4. Remove the control processor blades ("Removing and installing a CP8 control processor blade" on page 65).
- 5. Remove the power supplies ("Removing and installing a power supply" on page 74).
- 6. Remove the blower assemblies ("Removing and installing a blower assembly" on page 76).
- 7. Remove the WWN bezel and WWN cards ("Removing and installing a WWN bezel and WWN card" on page 77).
- 8. Remove the chassis from the rack and port side exhaust kit ("Removing a SAN384B from the cabinet" on page 28).

Note: If the chassis being removed was factory installed, additional shipping braces were added for stability during shipment. These consist of L-brackets and flat mounting plates. The mounting plates are attached on either side at the blower end of the chassis. The L-brackets secure the mounting plates to the cabinet vertical rails. Detach the L-brackets from the mounting plates and the cabinet rails before removing the chassis from the cabinet. If you anticipate that the cabinet with an installed chassis may be shipped to another location in the future, it is recommended that you attach these shipping brackets to any

replacement chassis. Take note of how the brackets are assembled and attached when you remove them from the old chassis.

Installing the replacement chassis

Attention: Refer to "Rack safety" on page xix before starting the installation.

≥55 kg (≥121.2 lbs)

CAUTION:

The weight of this part or unit is more than 55 kg (121.2 lb). It takes specially trained persons, a lifting device, or both to safely lift this part or unit. (C011)

>55kg (121.2 lb)

The following instructions require that the port-side exhaust kit is already installed. If the rack does not have this shelf and exhaust duct installed, refer to "Installing the port-side exhaust kit" on page 18 for complete instructions.

- 1. Follow the steps in "Unpacking the SAN384B" on page 16 to unpack the replacement chassis.
- 2. Follow the steps in "Installing the SAN384B into the cabinet" on page 24 to complete the installation of the replacement chassis. You can either install the empty chassis now, or first install the components steps 1-7 ("Installing components into the new chassis") before completing the chassis installation.

Note: If you anticipate that the replacement chassis may be shipped to a new location while installed in the cabinet, it is recommended that you attach the shipping brackets to any replacement chassis. These shipping brackets consist of flat mounting plates that are attached to the sides of the chassis at the blower assembly end, and L-brackets that attach to the mounting plates and the cabinet vertical rails.

Installing components into the new chassis

Attention: Follow ESD precautions ("ESD precautions" on page xviii) whenever handling components.

- 1. Replace the WWN cards and WWN bezel ("Installing the WWN bezel and WWN card" on page 79.
- 2. Replace the blower assemblies ("Installing a blower assembly" on page 77).
- 3. Replace the power supplies ("Installing a power supply" on page 75).
- 4. Replace the control processor blades ("Installing a control processor blade (CP8)" on page 69).
- 5. Replace the core switch blades ("Installing a CR4S-8 core switch blade" on page 73).
- 6. If ICL cables are not used, insert EMI plugs in the ICL sockets in the core switch blades (CR4S-8).
- 7. Replace the port and router blades or filler panels ("Installing a blade" on page 64 and "Installing a filler panel" on page 65).
- 8. If the chassis is not yet installed in the rack, follow the steps in "Installing the SAN384B into the cabinet" on page 24.
- 9. Replace the cable management fingers ("Installing a cable management finger assembly" on page 61).
- 10. Connect the power cords to the power supplies and the power outlets.

- 11. Replace the chassis door ("Removing and installing the chassis door" on page 59)
- 12. Power on the system ("Providing power to the SAN384B" on page 33). The system performs a power-on self-test (POST). The POST takes a minimum of three minutes and is complete when LED activity returns to standard state.
- 13. Verify that the SAN384B is powered on and POST is complete (all power LED indicators on the port, control processor, and core switch blades should be a steady green).
- 14. Verify that all components are functioning correctly by checking their LEDs. If the LEDs do not indicate correct operation, try reinstalling the corresponding component.

Downloading the configuration

1

1

ı

I

Once the chassis and its various components have been reassembled and powered back on, use the **configDownload** command to restore the original configuration. The **configDownload** command can be entered through a Telnet or serial session, but the SAN384B must have an Ethernet connection to the server name or IP of the host for the download process to complete. For more information, refer to the **help configdownload** command or the *Fabric OS Command Reference Manual*.

1. Log in to the SAN384B as admin:

```
switch:admin> login
login: admin
password: xxxxxxx
switch:admin>
```

Note: If you are using the virtual fabric feature, you should run **configdownload -vf** before running the **configdownload** command in order to restore the logical switch configuration.

2. Enter configDownload command.

```
switch:admin> configdownload -all
Server Name or IP Address [host]: 123.123.123.123
User Name [None]: Admin24
File Name [config.txt]: config-switch.txt
Password: xxxxxxxx
download complete
switch:admin>
```

3. Reboot the SAN384B.

Verifying correct operation of system

1. Log in to the SAN384B as **admin**:

```
switch:admin> login
login: admin
password: xxxxxxx
switch:admin>
```

2. Enter the **slotShow -m** command and verify that all the installed cards are detected and that their status is operational (enabled).

```
switch:admin> slotShow -m
```

```
Slot Blade Type ID Model Name Status

1 SW BLADE 51 FC8-48 ENABLED
2 UNKNOWN VACANT
3 CORE BLADE 46 CR4S-8 ENABLED
4 CP BLADE 50 CP8 ENABLED
5 CP BLADE 50 CP8 ENABLED
```

```
6 CORE BLADE 46 CR4S-8 ENABLED 7 AP BLADE 75 FX8-24 ENABLED 8 SW BLADE 51 FC8-48 ENABLED switch:admin>
```

3. Verify that the system is functioning correctly by entering **switchShow** or **switchStatusShow**. The **switchShow** command displays the SAN384B and port status information.

```
switch:admin> switchshow
switchName: switch
switchType: 62.1
switchState: Online
switchMode: Native
switchRole: Subordinate
switchDomain: 11
switchId: fffc0b
switchWwn: 10:00:00:05:1e:39:59:67
zoning: OFF
switchBeacon: OFF
blade3 Beacon: OFF
blade5 Beacon: OFF
blade8 Beacon: OFF
blade10Beacon: OFF
Index Slot Port Address Media Speed State Proto
______
32 3 0 0b2000 id N4 Online L-Port 5 public
36 3 4 0b2400 id N4 Online F-Port
10:00:00:00:c9:51:00:2d
```

switch:admin>

4. Verify that all the IP address information is correct by entering **ipAddrShow** and checking the results against the IP information recorded in the "config-miscinfo.txt" file.

```
switch:admin> ipaddrshow
```

```
SWITCH
Ethernet IP Address: 10.32.50.12
Ethernet Subnetmask: 255.55.0.0
Fibre Channel IP Address: 1.2.3.4
Fibre Channel Subnetmask: 255.255.255.0
Ethernet IP Address: 10.32.50.10
Ethernet Subnetmask: 255.55.0.0
HostName : cp0
Gateway Address: 10.32.40.1
Ethernet IP Address: 10.32.50.11
Ethernet Subnetmask: 255.55.0.0
HostName : cp1
Gateway Address: 10.32.40.1
Backplane IP address of CPO: 10.0.0.4
Backplane IP address of CP1: 10.0.0.5
switch:admin>switch:admin>
```

1

Reconnecting the system to the network and fabric

See the cable routing and port connection information recorded previously in Table 20 on page 99 for the following steps.

- 1. Connect the CP blades to the local area network:
 - a. Connect the appropriate Ethernet cables into each Ethernet port.
 - Connect the other ends to an Ethernet 10/100 Base-T LAN, if not already connected.

Note: The SAN384B can be accessed by remote connection using any of the available management tools, such as Telnet or Web Tools. Ensure that the system is not modified using other connections during the rest of this procedure.

2. Reconnect the transceivers and cables to the port blades:

Note: The ports and cables used in trunking groups must meet specific requirements. For a list of these requirements, refer to the *Fabric OS Administrator's Guide*.

- a. Position one of the transceivers so that the key is oriented correctly to the port and insert the transceiver into the port until it is firmly seated and the latching mechanism clicks.
- b. Select the cable that corresponds to the port and position it so that the key (the ridge on one side of the cable connector) is aligned with the slot in the transceiver; then, insert the cable into the transceiver until the latching mechanism clicks.
- c. Repeat steps a and b for the remaining ports.
 Attention: Do not route cables in front of the air exhaust vent (located on the upper port side of the chassis).
- d. Organize the cables as required (see "Managing cables" on page 40).

Verifying correct configuration of the fabric

Copying the command outputs from this section into a file is recommended.

- 1. Create an "after" SAN profile by entering the following commands and copying the output to a text file named "SANafter.txt":
 - nsShow
 - nsAllShow
 - switchShow
 - · fabricShow

```
switch:admin> nsshow
Type Pid COS PortName NodeName TTL(sec)
N 020f00; 3;10:00:00:01:73:00:29:46;10:00:00:01:73:00:29:46; na
Fabric Port Name: 20:0f:00:60:69:90:03:f0
<output truncated>

switch:admin> nsallshow
{020f00 021fda 021fdc 021fe0 021fe15 Nx_Ports in the Fabric}
<output truncated>

switch:admin> switchshow
switchName: rs18-st03-dcx-01
<output truncated>

switch:admin> fabricshow
Switch ID Worldwide Name Enet IP Addr FC IP Addr Name
<output truncated>
```

```
switch:admin> lscfg --show  
Created switches: 128(ds) 1 2(bs)  
Port 0 1 2 3 4 5 6 7 8 9  
FID 1 | 1 | 1 | 1 | 1 | 128 | 128 | 128 | 128 | 128 |  

output truncated>
```

switch:admin>

- 2. Determine any differences between the information in the "SANafter.txt" file and the information in the "SANbefor.txt" file created earlier. In particular, look for differences in the following:
 - Device types
 - Number of devices
 - ISL and port states
 - Number of switches in the fabric
- 3. Resolve any issues or unintentional changes to the SAN384B or fabric.
 - If there are any mechanical problems, try reseating the associated component.
 - If the configuration information is not correct for the system, modify as required.
 - If other issues exist, contact IBM Support

Cable routing table template

Table 20 is a 48-port template for a cable-routing table. Expand or duplicate the table as needed, for the number of ports in the chassis.

Table 20. Cable routing table for SAN384B (48 ports shown)

Slot/po		Cable labels		Connected device	Slot/port of device
Slot	Port	Switch end	Device end		

Table 20. Cable routing table for SAN384B (48 ports shown) (continued)

ort	Cable labels	3	Connected device	Slot/port of device
Port	Switch end	Device end		

Removing the battery

Local regulations may require removal of the battery before recycling or disposing of the product. Follow these steps to remove the battery from the product:

- 1. Remove any installed modules.
- 2. Remove any installed power supplies.
- 3. Unscrew fasteners and remove any fan trays or fan assemblies.
- 4. Unscrew fasteners, unplug all connectors and remove any Printed Circuit Board Assembly (PCBA) from the fan trays or fan assemblies.
- 5. In the two control processor blade (CP8) assemblies, locate the central processor PCBAs.
- 6. Go to the following locations and remove the two BR1225 batteries from each of the PCBAs (see 1 in Figure 46 on page 101):
 - a. XB1
 - b. XB

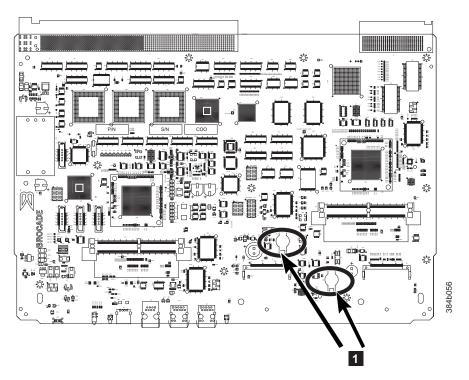


Figure 46. Battery locations on the SAN384B

7. Recycle the four batteries as appropriate.

Refer to the *Environmental Notices and User Guide* shipped with the product for more information on battery recycling and disposal.

Chapter 6. Installing new features

Attention: Refer to "Safety notices and labels" on page xiii before performing any service or installation procedures.

The SAN384B can be upgraded with any of the following hot-pluggable features while the SAN384B is operational. Refer to the individual feature installation instructions for any possible exceptions.

Use this chapter as a starting point when installing new features on an existing SAN384B. Specific installation procedures are linked from each feature code installation on this page to the appropriate sections in the Chapter 5, "Removing and installing components," on page 59 chapter.

- "FC3816, FC3832, FC3848 Installing a 8-Gb port blade (16, 32, or 48 ports)"
- "FC3850 Installing an FR4-18i routing blade" on page 105
- "FC3870 Installing an FC10-6 10 Gb blade" on page 106
- "FC7870 Installing an inter-chassis cable kit" on page 110

FC3816, FC3832, FC3848 - Installing a 8-Gb port blade (16, 32, or 48 ports)

These features can be installed while the SAN384B is operational.

Attention: Follow these precautions for all procedures in this section to avoid damaging the port blades or chassis:

- Wear a grounded ESD strap when handling a port blade (see "ESD precautions" on page xviii).
- Carefully remove the protective strip (if any) covering the blade connectors before installing any blades.
- Do not force the port blade installation. If the port blade does not slide in easily, ensure that it is correctly aligned inside the rail guides before continuing.
 Installing a port blade with incorrect alignment damages both the chassis and the replacement part.
- Hold the port blade by the edges of the metal pan. Do not use the ejectors to hold a port blade.
- Disassembling any part of a port blade voids the part warranty and regulatory certifications. There are no user-serviceable parts inside the port blade.

These instructions cover installing a new FC3816, FC3832, or FC3848 in the SAN384B chassis.

Time required

10 minutes or less per port blade

Items required

- ESD (electrostatic discharge) grounding strap
- Workstation computer
- Port blade
- Phillips screwdriver

© Copyright IBM Corp. 2009

- Small form factor pluggable (SFP) transceivers (as needed)
- Optical cables (as needed)

Procedures

Follow the links in the steps below to complete this installation:

- 1. Verify that the port blade is the correct part: 21R9996 for the 16-port blade, 21R9997 for the 32-port blade, and 21R9998 for the 48-port blade.
- 2. Verify which slot to install the blade. Slots are numbered from one through eight, from bottom to top, when facing the port side of the SAN384Bs. Port blades can be installed in any of the slots 1, 2, 7, or 8.
- 3. We recommend having the latest firmware version on the CP blade. The firmware version should match on both the active and the backup CP blades. If the firmware is not at the latest level, obtain new code from the code download website, and install it prior to installing the port blade. See "Fabric OS firmware updates" on page 42 for instructions.

Note: Firmware downloads require that Ethernet connections be made to both CP blades. Procedures for downloading and installing firmware are described in the Fabric OS Administrator's Guide.

- 4. Remove the filler panel or port blade. Refer to "Removing a blade" on page 62 or "Removing and installing blade filler panels" on page 64.
 - **Attention:** A filler panel should be removed only when being replaced with a port blade or new filler panel. Any slot that is not occupied by a port blade should be occupied by a filler panel to ensure correct cooling of the chassis and protection from dust.
- 5. Follow the instructions for "Installing a blade" on page 64.
- 6. Follow the instructions for "Removing and installing SFPs and XFPs" on page 80. Because of port density, it may be easier to remove and install the SFPs while the 32-port or 48-port blade is out of the chassis. However, you must handle the blade carefully while it is out of the chassis to avoid damaging it.
- 7. Install, group and route the cables as desired. See "Managing cables" on page 40 for additional cabling instructions.
 - **Attention:** Do not route cables in front of the exhaust vent, which is located at the top on the port side of the chassis.
- 8. Verify the installation. For information about how to check the status of hardware components using the CLI, see the Fabric OS Administrator's Guide, which is located on the product documentation CD.

FC3850 - Installing an FR4-18i routing blade

This feature can be installed while the SAN384B is operational.

Attention: Follow these precautions for all procedures in this section to avoid damaging the blades or chassis:

- Wear a grounded ESD strap when handling a port blade (see "ESD precautions" on page xviii).
- Carefully remove the protective strip (if any) covering the blade connectors before installing any blades.
- Do not force the blade installation. If the blade does not slide in easily, ensure that it is correctly aligned inside the rail guides before continuing. Installing a blade with incorrect alignment can damage both the chassis and the blade.
- Hold the blade by the edges of the metal pan. Do not use the ejectors to hold a blade.
- Disassembling any part of a blade voids the part warranty and regulatory certifications. There are no user-serviceable parts inside the blade.

These instructions cover installing a new FC3850 in the SAN384B chassis.

Time required

Approximately 20 minutes per blade

Items required

- ESD (electrostatic discharge) grounding strap
- Workstation computer
- · Router blade
- Phillips screwdriver
- Small form factor pluggable (SFP) transceivers (as needed)
- Optical cables (as needed)

Procedures

Follow the links in the steps below to complete this installation

- 1. Verify that the routing blade is the correct part: 23R1645.
- 2. Verify which slot to install the blade. Slots are numbered from one through eight, from bottom to top, when facing the port side of the SAN384Bs. Routing blades can be installed in any of the slots 1, 2, 7, or 8.
- 3. We recommend having the latest firmware version on the CP blade. The firmware version should match on both the active and the backup CP blades. If the firmware is not at the latest level, obtain new code from the code download website, and install it prior to installing the port blade. See "Fabric OS firmware updates" on page 42 for instructions.

Note: Firmware downloads require that Ethernet connections be made to both CP blades. Procedures for downloading and installing firmware are described in the *Fabric OS Administrator's Guide*.

4. Remove the filler panel (see "Removing and installing blade filler panels" on page 64). Store the filler panel in a location for possible future use.

Attention: A filler panel should be removed only when being replaced with a blade or new filler panel. Any slot that is not occupied by a blade should be occupied by a filler panel to ensure correct cooling of the chassis and protection from dust.

- 5. Install the routing blade ("Installing a blade" on page 64). Remove the protective strip from the blade contacts (if any) before installing the blade.
- 6. Repeat steps 1-5 for the second routing blade, if any.
- 7. Configure the routing blade. Configuration instructions are provided in the *Fabric OS Administrator's Guide* in the "Using the FC-FC Routing Service" chapter.
- 8. Install SFPs ("Removing and installing SFPs and XFPs" on page 80), and confirm the proper operation of the blade.
- 9. Install, group, and route the cables as desired. See "Managing cables" on page 40 for additional cabling instructions.
 - **Attention:** Do not route cables in front of the exhaust vent, which is located at the top on the port side of the chassis.
- 10. Verify the installation. For information about how to check the status of hardware components using the CLI, see the *Fabric OS Administrator's Guide*, which is located on the product documentation CD.

FC3870 - Installing an FC10-6 10 Gb blade

This feature can be installed while the SAN384B is operational.

Attention: Follow these precautions for all procedures in this section to avoid damaging the port blades or chassis:

- Wear a grounded ESD strap when handling a port blade (see "ESD precautions" on page xviii).
- Carefully remove the protective strip (if any) covering the blade connectors before installing any blades.
- Do not force the port blade installation. If the port blade does not slide in easily, ensure that it is correctly aligned inside the rail guides before continuing. Installing a port blade with incorrect alignment damages both the chassis and the replacement part.
- Hold the port blade by the edges of the metal pan. Do not use the ejectors to hold a port blade.
- Disassembling any part of a port blade voids the part warranty and regulatory certifications. There are no user-serviceable parts inside the port blade.

Time required

Less than 20 minutes.

Items required

- ESD (electrostatic discharge) grounding strap
- Workstation computer
- · Port blade
- Phillips screwdriver
- XFP transceivers (as needed)
- Optical cables (as needed)

Procedures

Follow the links in the steps below to complete this installation.

- 1. Verify that the port blade is the correct part: 17P9637.
- 2. Verify which slot to install the blade. Slots are numbered from one through eight, from bottom to top, when facing the port side of the SAN384Bs. Port blades can be installed in any of the slots 1, 2, 7, or 8.
- 3. We recommend having the latest firmware version on the CP blade. The firmware version should match on both the active and the backup CP blades. If the firmware is not at the latest level, obtain new code from the code download website, and install it prior to installing the port blade. See "Fabric OS firmware updates" on page 42 for instructions.

Note: Firmware downloads require that Ethernet connections be made to both CP blades. Procedures for downloading and installing firmware are described in the *Fabric OS Administrator's Guide*.

- 4. Remove the filler panel or port blade. Refer to "Removing and installing port, application, and router blades" on page 62 and "Removing and installing blade filler panels" on page 64.
 - **Attention:** A filler panel should be removed only when being replaced with a port blade or new filler panel. Any slot that is not occupied by a port blade should be occupied by a filler panel to ensure correct cooling of the chassis and protection from dust.
- 5. Install the port blade ("Installing a blade" on page 64). Remove the protective strip from the blade contacts (if any) before installing the blade.
- 6. Repeat steps 1-5 for additional blades, if any.
- 7. Install XFPs ("Removing and installing SFPs and XFPs" on page 80), and confirm the proper operation of the blade.
- 8. Install, group, and route the cables as desired. See "Managing cables" on page 40 for additional cabling instructions.
 - **Attention:** Do not route cables in front of the exhaust vent, which is located at the top on the port side of the chassis.
- 9. Verify the installation. For information about how to check the status of hardware components using the CLI, see the *Fabric OS Administrator's Guide*, which is located on the product documentation CD.

FC3880 - Installing an FCOE10-24 blade

This feature can be installed while the SAN384B is operational.

Attention: Follow these precautions for all procedures in this section to avoid damaging the port blades or chassis:

- Wear a grounded ESD strap when handling a port blade (see "ESD precautions" on page xviii).
- Carefully remove the protective strip (if any) covering the blade connectors before installing any blades.
- Do not force the port blade installation. If the port blade does not slide in easily, ensure that it is correctly aligned inside the rail guides before continuing. Installing a port blade with incorrect alignment damages both the chassis and the replacement part.
- Hold the port blade by the edges of the metal pan. Do not use the ejectors to hold a port blade.
- Disassembling any part of a port blade voids the part warranty and regulatory certifications. There are no user-serviceable parts inside the port blade.

Time required

Less than 20 minutes.

Items required

- ESD (electrostatic discharge) grounding strap
- Workstation computer
- Port blade
- Phillips screwdriver
- SFP+ transceivers (as needed)
- Optical cables (as needed)

Procedures

Follow the links in the steps below to complete this installation.

- 1. Verify that the blade is the correct part.
- 2. Verify which slot to install the blade. Slots are numbered from one through eight, from bottom to top, when facing the port side of the SAN384Bs. Port blades can be installed in any of the slots 1, 2, 7, or 8.
- 3. We recommend having the latest firmware version on the CP blade. The firmware version should match on both the active and the backup CP blades. If the firmware is not at the latest level, obtain new code from the code download website, and install it prior to installing the port blade. See "Fabric OS firmware updates" on page 42 for instructions.

Note: Firmware downloads require that Ethernet connections be made to both CP blades. Procedures for downloading and installing firmware are described in the *Fabric OS Administrator's Guide*.

4. Remove the filler panel or port blade. Refer to "Removing and installing port, application, and router blades" on page 62 and "Removing and installing blade filler panels" on page 64.

Attention: A filler panel should be removed only when being replaced with a port blade or new filler panel. Any slot that is not occupied by a port blade should be occupied by a filler panel to ensure correct cooling of the chassis and protection from dust.

- 5. Install the port blade ("Installing a blade" on page 64). Remove the protective strip from the blade contacts (if any) before installing the blade.
- 6. Repeat steps 1-5 for additional blades, if any.
- 7. Install the transceivers ("Removing and installing SFPs and XFPs" on page 80), and confirm the proper operation of the blade.
- 8. Install, group, and route the cables as desired. See "Managing cables" on page 40 for additional cabling instructions.
 - **Attention:** Do not route cables in front of the exhaust vent, which is located at the top on the port side of the chassis.
- 9. Verify the installation. For information about how to check the status of hardware components using the CLI, see the *Fabric OS Administrator's Guide*, which is located on the product documentation CD.

FC3890 - Installing an FX8-24 extension blade

This feature can be installed while the SAN384B is operational.

Attention: Follow these precautions for all procedures in this section to avoid damaging the port blades or chassis:

- Wear a grounded ESD strap when handling a port blade (see "ESD precautions" on page xviii).
- Carefully remove the protective strip (if any) covering the blade connectors before installing any blades.
- Do not force the port blade installation. If the port blade does not slide in easily, ensure that it is correctly aligned inside the rail guides before continuing.
 Installing a port blade with incorrect alignment damages both the chassis and the replacement part.
- Hold the port blade by the edges of the metal pan. Do not use the ejectors to hold a port blade.
- Disassembling any part of a port blade voids the part warranty and regulatory certifications. There are no user-serviceable parts inside the port blade.

Time required

Less than 20 minutes.

Items required

- ESD (electrostatic discharge) grounding strap
- Workstation computer
- Port blade
- Phillips screwdriver
- Transceivers (as needed)
- Optical cables (as needed)

Procedures

Follow the links in the steps below to complete this installation.

1. Verify that the blade is the correct part.

- 2. Verify which slot to install the blade. Slots are numbered from one through eight, from bottom to top, when facing the port side of the SAN384Bs. Port blades can be installed in any of the slots 1, 2, 7, or 8.
- 3. We recommend having the latest firmware version on the CP blade. The firmware version should match on both the active and the backup CP blades. If the firmware is not at the latest level, obtain new code from the code download website, and install it prior to installing the port blade. See "Fabric OS firmware updates" on page 42 for instructions.

Note: Firmware downloads require that Ethernet connections be made to both CP blades. Procedures for downloading and installing firmware are described in the Fabric OS Administrator's Guide.

- 4. Remove the filler panel or port blade. Refer to "Removing and installing port, application, and router blades" on page 62 and "Removing and installing blade filler panels" on page 64.
 - Attention: A filler panel should be removed only when being replaced with a port blade or new filler panel. Any slot that is not occupied by a port blade should be occupied by a filler panel to ensure correct cooling of the chassis and protection from dust.
- 5. Install the port blade ("Installing a blade" on page 64). Remove the protective strip from the blade contacts (if any) before installing the blade.
- 6. Repeat steps 1-5 for additional blades, if any.
- 7. Install the transceivers ("Removing and installing SFPs and XFPs" on page 80), and confirm the proper operation of the blade.
- 8. Install, group, and route the cables as desired. See "Managing cables" on page 40 for additional cabling instructions.
 - **Attention:** Do not route cables in front of the exhaust vent, which is located at the top on the port side of the chassis.
- 9. Verify the installation. For information about how to check the status of hardware components using the CLI, see the Fabric OS Administrator's Guide, which is located on the product documentation CD.

FC7870 - Installing an inter-chassis cable kit

This feature can be installed while the SAN384B is operational.

Time required

Less than 10 minutes, not including installation of the ICL license or any needed configuration.

Items required

- Inter-chassis link kit (includes two ICL cables)
- FC 7883 (ICL license) is required for each chassis that you are connecting. Instructions for installation are included with that license feature.

Procedures

Attention: If ICL cables are not in use, the ports must have EMI plugs installed to meet EMI and other regulatory certifications.

Follow the links in the steps below to complete this installation.

1. Verify that the inter-chassis link kit is the correct part: 21R9976. The cable PN is 21R9959.

- 2. Verify with the customer that the ICL license is installed on each chassis to be connected. Enter the **licenseIdShow** command for each chassis. If required, install the ICL license, following the instructions included with the license.
- 3. Remove the chassis door ("Removing and installing the chassis door" on page 59).
- 4. Determine the cable routing and ICL sockets on the core switch blades that you will be using to connect the two chassis. Refer to Figure 42 on page 84 and Figure 43 on page 85 for two possible valid options.
- 5. Remove the EMI plugs from the ICL sockets that you will be connecting. Save the EMI plugs for possible future use.
- 6. Install the two ICL cables ("Installing an ICL cable" on page 82).
- 7. Install the chassis door ("Removing and installing the chassis door" on page 59).
- 8. Enable the inter-chassis links. See the **iclCfg** section in the *Fabric OS Command Reference Manual* for CLI command options.
- 9. Verify the operation of the ICL (see Table 18 on page 81).

Appendix A. Product specifications

This appendix provides product specifications for the SAN384B.

- "General specifications"
- "System architecture"
- "System size and weights" on page 116
- "Facility requirements" on page 117
- "Environmental requirements" on page 117
- "Fibre channel port specifications" on page 118
- "Power specifications" on page 118
- "Data transmission ranges" on page 119
- "FR4-18i routing blade port specifications" on page 119
- "Power cords" on page 120

General specifications

Table 21. General product specifications

Specification	Description
Configurable port types	F_Port, FL_Port, E_Port, VEX_Port, VE_Port, EX_Port, and M_Port
System architecture	Nonblocking shared memory
System processor	FreeScale 8548, 1.2 GHz
ANSI Fibre Channel protocol	FC-PH (Fibre Channel Physical and Signalling Interface standard)
Modes of operation	Fibre Channel Class 2, Class 3, and Class F
Fabric initialization	Complies with FC-SW 5.0
FC-IP (IP over Fibre Channel)	Complies with FC-IP 2.3 of the FCA profile
Aggregate I/O bandwidth	3 Tbps per chassis
Port to port latency	Less than 2 microseconds with no contention (destination port is free)
Routing capacity	A minimum aggregate routing capacity of four million frames per second (for Class 2, Class 3, and Class F frames in a 64-port switch)

System architecture

Table 22 lists the system architecture for the SAN384B.

Table 22. System architecture

Fibre Channel Ports	Up to 192 ports, universal (E_Port, F_Port, FL_port, Ex_Port, and M_Port)
Control Processor	Redundant (active/standby) control processor modules
Scalability	Full fabric architecture: 239 switches maximum

© Copyright IBM Corp. 2009

Table 22. System architecture (continued)

Performance	1.063 Gbps line speed, full duplex
	2.125 Gbps line speed, full duplex
	4.25 Gbps line speed, full duplex
	8.50 Gbps line speed, full duplex
	10.51875 Gbps line speed, full duplex (with FC10-6 blade)
	Autosensing of 1, 2, 4, and 8 Gbps port speeds optionally programmable to fixed port speed, speed matching between 1, 2, 4, and 8 Gbps port speeds. Range depends on use of 4 Gbps or 8 Gbps SFPs.
ISL Trunking	Can use up to 8 ports in a trunk group to form a 64 Gbps trunk
Aggregate bandwidth	3 Tbps per chassis
Switch latency	FC8-16, FC8-32, FC8-48 blades: <2.1 msec any port to any port at 8 Gbps, cut-through routing.
	For the FR4-18i blade: <3.6 msec any port to any port at 4 Gbps, cut-through routing.
	For the FX8-24 blade: <700 ns any port to any port at 8 Gbps, cut-through routing.
	For the FCOE10-24 blade: CEE to CEE - 5 msec any port to any port at 10 Gbps, cut-through routing FCOE to FC - 5 msec any port to any port at 10 Gbps, cut-through routing
Maximum frame size	2112-byte payload
Frame buffers	2048 per ASIC, dynamically allocated.
Classes of service	Class 2, Class 3, Class F (interswitch frames)

Table 22. System architecture (continued)

Port types	FC8-16 and FC8-32 support these port types: FL_Port, F_Port, E_Port, and M_Port
	FC8-48 supports these port types: E_Port, F_Port, and M_Port
	FC10-6 supports these port types: E_Port and M_Port
	FR4-18i supports these port types: FL_Port, F_Port, E_Ports, M_Port, VE_Port, EX_Port, and VEX_Port
	FX8-24 supports these port types: F_Port, FL_Port, E_Port, and Ex_Port on FC VE_Port on GbE
	FCOE10-24 supports these port types: VF_Port Note: Self-discovery is based on switch type (U_Port) with an optional port type control.
Data traffic types	Fabric switches supporting unicast, multicast (255 groups), and broadcast
Media types	Note: Brocade-branded SFPs are required on this product.For a listing of SFPs and XFPs compatible with this product:
	Go to the IBM SAN web page http://www.ibm.com/ systems/storage/san
	Select the SAN384B product link
	On the SAN384B product page, click the Interoperability Matrix link.
	In the Interoperability matrix, click the Transceivers link.
Inter-chassis linking (ICL)	Chassis-to-chassis linkage through connectors on the core switch blade (CR8)

System size and weights

The weight of the SAN384B can vary considerably depending on the combination of blades installed. Use Table 23 and Table 24 to determine the weight of the system with your combination of port and application blades.

Table 23. System sizes and weights

System specification	Size and weight
Width	43.74 cm (17.22 in.)
Height	35.6 cm (14 in., 8U); 40 cm (15.75 in., 9U) with the port-side exhaust kit
Depth	61.29 cm (24.13 in.)
Depth (with door)	73.20 cm (28.82 in.)
SAN384B: 192-port configuration with four FC8-48 port blades	68 kg (150 lb.)
Empty chassis:	25.76 kg (56.8 lb.)
No blades	
• No CPs	
No CRs	
No power supplies	
No fan assemblies	

System blade and FRU weights

Table 24 lists the weights of the compatible blades and other FRUs.

Table 24. System FRU weights

FRU	Weight
CP blade (CP8)	3.0 kg (6.6 lb.)
CR blade (CR4S-8)	3.27 kg (7.2 lb.)
FC8-16 port blade	3.0 kg (6.6 lb.) without media
FC8-32 port blade	3.27 kg (7.2 lb.) without media
FC8-48 port blade	3.36 kg (7.4 lb.) without media
FC10-6 port blade	3.1 kg (6.8 lb) without media
FR4-18i routing blade	3.36 kg (7.4 lb) without media
FX8-24 extension blade	4.2 kg (9.2 lb) without media
FCOE10-24 FCoE blade	3.72 kg (8.2 lb) without media
Port card filler panel	1.5 kg (3.2 lb)
Power supply	2.45 kg (5.4 lb)
Blower assembly	5.73 kg (12.6 lb)
WWN bezel and cards	0.3 kg (0.6 lb)
Vertical cable management finger assembly (2)	0.45 kg (1.0 lb.)
Chassis door	2.09 kg (4.6 lb.)

Facility requirements

The facility where the SAN384B is in use must meet the following requirements to provide for correct operation:

- Adequate supply circuit, line fusing, and wire size, as specified by the electrical rating on the chassis nameplate
- An air flow of at least 425 cubic meters per hour (250 cubic feet per minute), available in the immediate vicinity of the SAN384B
- The power specifications listed in Table 26 on page 118
- The environmental specifications listed in Table 25
- If the SAN384B will be installed in an EIA rack, ensure the following:
 - All equipment installed in the rack has a reliable branch circuit ground connection, and does not rely on a connection to a branch circuit, such as a power strip.
 - The rack is balanced and mechanically secured to provide stability in the event of an earthquake.
 - Additional equipment does not exceed the rack's weight limits.

Environmental requirements

Table 25 lists the environmental operating ranges for the SAN384B. The requirements for non-operating conditions are also provided for acceptable storage and transportation environments.

CAUTION:

For CA residents only: IBM recommends installing this product in a room size of 2190 cubic feet (62 cubic meters) or larger at 0.4 ACH ventilation rate to reduce the concentrations of any chemicals emitted by the product.

Table 25. Environmental requirements

Condition	Acceptable range during operation	Acceptable range during nonoperation
Ambient temperature	10° to 40° C outside switch (50° to 104° F)	-40° to +70° C outside switch (-40° to 158° F)
Humidity	5% to 85% RH noncondensing, at 40° Celsius, with maximum gradient of 10% per hour	10% to 93% RH noncondensing, at 70° Celsius
Altitude	Up to 3 km (10,000 ft.) above sea level	0 to 12 km (40,000 ft.) above sea level
Shock	20G, 6ms duration, half-sine wave	33G, 11ms duration, half-sine wave
Vibration	0.5G p-p, 5-500 Hz at 1.0 octave/minute	2.0G p-p, 5-500 Hz at 1.0 octave/minute
Air flow	425 cu m/hr (250 cu ft/min)	None required
Heat dissipation	841 Watts or 2869 BTU/hr (Four FC8-48 blades, two CP8 blades, and two CR4S-8 blades)	Not applicable.

Note: The 10° to 40° Celsius range applies to the ambient air temperature at the air intake vents on the nonport side of the SAN384B. The temperature inside

the SAN384B can be up to 75° Celsius during SAN384B operation. If the internal temperature range exceeds the operating ranges of the components, the LEDs, error messages, and Fabric Watch alerts will indicate a problem. Use the **tempShow** command or Fabric Watch commands to view temperature status.

Fibre channel port specifications

The Fibre channel ports in the SAN384B support full duplex link speeds at 10.51875, 8.50, 4.25, 2.125, or 1.0625 Gbps inbound and outbound, automatically negotiating to the highest common speed of all devices connected to the port.

The ports are compatible with optical SWL (short wavelength: approximately 850 nm), optical LWL (long wavelength: approximately 1310 nm), and Extended Long Wavelength (ELWL) laser transmitter SFPs and XFPs (FC10-6 only) (approximately 1550 nm). The strength of the signal is determined by the type of SFP or XFP in use.

The ports are universal and self-configuring, capable of becoming F_Ports (fabric ports), FL_Ports (fabric loop enabled), or E_Ports (expansion ports).

The ports meet all required safety standards.

Power specifications

DANGER

Multiple power cords. The product might be equipped with multiple power cords. To remove all hazardous voltages, disconnect all power cords. (L003)

The power subsystem is a redundant +48V DC power distribution system with a provision for up to two 2000-watt, 48V DC bulk power supplies. Two bulk power supplies produce the intermediate distribution voltage in the distributed power system.

The power specifications listed in Table 26 are calculated for fully-loaded systems with two power supplies, four FC8-48 port blades, two CP8 blades, two CR4S-8 blades, and two blower assemblies. The use of application blades will consume additional power.

Table 26. Power specifications

Specification	Value
Voltage	Range: 85 - 264 VAC Auto-volt, Nominal: 100 to 240 VAC (auto-sensing)
Power supply output (each)	Low line (85- 132 VAC), 1000W; High line (180 - 264 VAC), 2000W
Input frequency range	Range: 47-63 Hz; Nominal: 50 - 60 Hz
AC inrush	Maximum 20A peak

Table 26. Power specifications (continued)

Specification	Value
	AC power consumption is configuration-specific. A system with four FC8-48 port blades (loaded with 1W SFPs), two CP8 blades, two CR4S-8 blades, and two blower assemblies consumes 841W.

Data transmission ranges

Table 27 provides the data transmission ranges for different cable types and port speeds.

Note: The full range of 1, 2, 4, 8, and 10 Gbps can only be achieved by a combination of 4 Gbps SFPs (1, 2, and 4 Gbps), 8 Gbps SFP+ (2, 4, and 8 Gbps), and 10 Gbps XFP transceivers.

Table 27. Supported optics, speeds, cables, and distances

			Multi-Mode Media Maximum Distance			Single Mode Media Maximum Distance
Transceiver type Form factor	Speed	62.5 microns (OM1)	50 microns (OM2)	50 microns (OM3)	9 microns	
SW	SFP	1 Gbps	300 m	500 m	860 m	N/A
	SFP/SFP+	2 Gbps	150 m	300 m	500 m	N/A
	SFP/SFP+	4 Gbps	70 m	150 m	380 m	N/A
	SFP+	8Gbps	21 m	50 m	150 m	N/A
	XFP	10Gbps	N/A	N/A	300 m	N/A
LW	SFP	2 Gbps	N/A	N/A	N/A	30 km
	SFP	4 Gbps	N/A	N/A	N/A	30 km
	SFP+	8Gbps	N/A	N/A	N/A	N/A
	XFP	10Gbps	N/A	N/A	N/A	10 km
ELWL	XFP	10Gbps	N/A	N/A	N/A	40 km

Greater distances can be achieved with the addition of the optional Extended Fabrics software.

FR4-18i routing blade port specifications

Fibre Channel port specifications

The Fibre Channel ports in the FR4-18i routing blade are compatible with SWL, LWL, and ELWL SFP transceivers. The strength of the signal is determined by the type of transceiver in use. The ports meet all required safety standards. The ports are capable of operating at 1-, 2-, or 4-Gbps and are able to auto-negotiate to the maximum link speed.

GbE port specifications

The GbE ports in the FR4-18i routing blade are compatible with SWL, LWL, and ELWL SFP transceivers. A copper 1 GbE SFP is also available for this blade. The strength of the signal is determined by the type of transceiver in use. The GbE ports are capable of operating at 1 Gbps. The eight virtual FCIP Fibre Channel links over each physical GbE connection share this bandwidth.

Power cords

Two power cords for connecting between the SAN384B and the power distribution units on the 2109 C36 cabinet are shipped with the product. See the *IBM TotalStorage SAN Cabinet 2109 Model C36 Installation and Service Guide* for information on connecting the cabinet to the facility power source. If the stand-alone feature is ordered for the SAN384B, then you must also order the country-specific power cords.

Appendix B. Application blades

This appendix contains specification information about optional application blades

FR4-18i blade

The FR4-18i blade has 16 physical Fibre Channel SFP ports supporting the Fibre Channel Routing Services, and two physical Gigabit Ethernet (GbE) SFP ports supporting the Fibre Channel Over IP (FCIP) feature. It operates with the Fabric Operating System and can communicate with another FR4-18i or a SAN04B–R for both Fibre Channel Routing services and FCIP.

The FR4-18i blade is intended as a platform for Fibre Channel Routing Services and FCIP. Refer to the *Fabric OS Administrator's Guide* for information on configuring these features.

The FR4-18i blade provides the following features:

- 16 Fibre Channel SFP ports supporting the Fibre Channel Routing Services with link speeds up to 1, 2, or 4 Gbps.
- 2 GbE ports supporting the FCIP and Fibre Channel Routing Services with fixed link speed at 1 Gbps:
 - Each GbE port can support up to eight FCIP tunnels.
 - Each FCIP tunnel is represented and managed as a virtual Fibre Channel E_Port.
 - Fibre Channel Routing Services can be used over the FCIP link.
 - Fabrics connected through FCIP merge if the ports are configured as VE_Ports, and do not merge if they are configured as VEX_Ports. If VE_Ports are used in a Fibre Channel Routing Services backbone fabric configuration, then the backbone fabric merges, but the EX_Port-attached edge fabrics do not merge. For more information refer to the Fabric OS Administrator's Guide.

FX8-24 blade

The FX8-24 blade has 12 external Fibre Channel (FC) SFP ports supporting the Fibre Channel Routing Services and 10 external 1 Gigabit Ethernet (GbE or GE) SFP ports supporting the Fibre Channel Over IP (FCIP) feature. There are also 2 licensable external 10 Gigabit Ethernet (10GbE or 10GE) SFP ports supporting FCIP. It operates with the Fabric Operating System and can communicate with another FX8-24 or a SAN06B-R for both Fibre Channel Routing Services and FCIP. The GbE ports on the FX8-24 are *not* compatible with the GbE ports on the FR4-18i blade or the SAN04B-R switch.

Note: The port diagram on the front panel of the blade uses the abbreviations GE for 1 GbE and 10GE for 10 GbE ports.

The FX8-24 operates in one of three modes: 1) ten 1GbE ports, 2) ten 1GbE ports and one 10 GbE port, or 3) two 10 GbE ports depending on licensing and subsequent configuration of GbE port mode. If operating in 10GbE mode the other end of the circuit must also be an FX8-24 operating in either 10GbE mode or dual mode with the corresponding VE_ports in 10GbE mode.

The FX8-24 blade is intended as a platform for FCIP and Fibre Channel Routing Services. Refer to the Fabric OS Administrator's Guide for information on configuring these features. The FX8-24 blade provides the following hardware features: • 12 autosensing FC ports with link speeds of 1, 2, 4 or 8 Gbps • Ten GbE ports supporting FCIP with fixed link speed at 1 Gbps Two 10GbE ports (licensable) supporting FCIP with fixed link speed at 10 Gbps The FX8-24 blade also provides the following functionality features: FCIP • Compression (on FC frames before FCIP encapsulation) FC Routing (licensable) FCIP Trunking (licensable) with network-based failure recovery (failover only) and load balancing Multiple circuits per trunk Four per trunk through the GbE ports - Ten per trunk through the 10 GbE ports SO-TCP with reorder resistance · FastWrite over FCIP Tape pipelining over FCIP FICON XRC emulation and tape pipelining over FCIP (licensable) FICON CUP (licensable) Virtual E_ports FCIP QoS Support for 200 ms RTT (on a limited number of GbE ports) • Adaptive Rate Limiting (licensable) • TCP performance graphing in Web Tools FCIP Tunnels A maximum of 10 FCIP Tunnels for all GbE ports - Four tunnels maximum per GbE port - Two 10 GbE ports can support up to ten FCIP tunnels each - Each FCIP tunnel is represented and managed as a virtual Fibre Channel E_Port Fibre Channel Routing Services can be used over the FCIP link - Fabrics connected through FCIP merge if the ports are configured as VE_Ports, and do not merge if they are configured as VEX_Ports. If VE_Ports are used in a Fibre Channel Routing Services backbone fabric configuration, then the backbone fabric merges, but the EX_Port-attached edge fabrics do not merge. For more information refer to the Fabric OS Administrator's Guide. • Up to three FC trunking groups. The three groups are defined as: - Trunk group 0: FC ports 0, 1 - Trunk group 1: FC ports 6, 7 - Trunk group 2: FC ports 2, 3, 4, 5, 8, 9, 10, 11

FCOE10-24 blade

The FCOE10-24 blade has 24 Fibre Channel over Ethernet (FCoE) ports that enables the transmission of FC frames over an Ethernet network via encapsulation in standard Ethernet packets. This is enabled by adherence to Converged Enhanced Ethernet (CEE) standards, a low latency, lossless Ethernet standard. This does not require dedicated Ethernet lines, but rather can make use of existing Ethernet infrastructure to reduce costs.

There are no licensing requirements for functionality on this blade. Refer to the *Fabric OS Administrator's Guide* for information on configuring these features.

The FCOE10-24 blade provides the following hardware features:

- 24 FCoE ports operating at 10 Gbps
- 32 FC ports operating at 8-Gbps through the backplane
- Hot pluggable
- I²C Management interface through the backplane
- JTAG support
- Blade power and status LEDs
- Link status LEDs per port

The FX8-24 blade also provides the following functionality features:

- FCoE switching
- CEE switching
- Standard L2 Ethernet features
- Standard Ethernet encapsulation
- End of row deployment

Appendix C. Diagnostics and troubleshooting

For information about troubleshooting the entire fabric, refer to the *Fabric OS Troubleshooting and Diagnostics Guide*.

The SAN384B includes a number of diagnostic tools to assist with troubleshooting, including LEDs on the hardware, commands that display current status, diagnostic tests for hardware and software, and error messages. In addition, a number of managing and monitoring features are available, such as Fabric Manager, Web Tools, Fabric Watch, and Advanced Performance Monitoring.

If the SAN384B does not operate as expected, the following steps can be taken to diagnose the problem:

- Check the LEDs and refer to the LED tables (see Chapter 4, "Monitoring system components," on page 45) for interpretation and recommended actions.
- Review the results of the last POST run by the SAN384B (see "Interpreting POST and boot results" on page 126).
- Review the error logs (refer to the *Fabric OS Messages Reference* and the *Fabric OS Administrator's Guide* for more information).
- Enter the **sensorShow** command to determine the status of the hardware components.
- Run diagnostic tests (see "Diagnostics" on page 127).
- Reboot the SAN384B or power the entire chassis off ("Powering off the SAN384B" on page 42 and then back on ("Providing power to the SAN384B" on page 33).

If the problem is still unresolved after these steps, contact technical support. The information required by technical support in order to provide assistance is listed under "Getting help" on page iii

This appendix provides the following information:

- · "Obtaining chassis and component status"
- "Interpreting POST and boot results" on page 126
- "Diagnostics" on page 127
- "Troubleshooting" on page 127

Obtaining chassis and component status

The CLI commands listed in Table 28 on page 126 provide status and environmental information about the chassis and its components. These commands provide information only, and they do not interrupt traffic flow. For more information about these commands, refer to the *Fabric OS Command Reference*.

Table 28. Environmental status and maintenance commands

Command	Information Displayed
sensorShow	Temperature readings for the port blades
	Temperature readings for the CP blades
	Status and RPM of all operational fans
	Status of all operational power supplies
tempShow	Temperature readings for the port blades
	Temperature readings for the CP blades
psShow	Status of all operational power supplies
fanShow	Status and RPM of all operational fans
chassisShow	Serial number, time awake, and additional information about each component
slotShow	Slot occupancy
errShow, errDump	System error log. Refer to the <i>Fabric OS Message Reference</i> for more information on the messages in this log.

Interpreting POST and boot results

The SAN384B performs power on self test (POST) by default each time the chassis is powered, rebooted, or reset. The SAN384B can be rebooted using the **reboot** (to reboot each CP individually), or **fastBoot** commands. The **fastBoot** command reboots the SAN384B without running POST. If the active CP blade is rebooted, it fails over to the standby CP blade.

POST

To verify that POST has completed without error:

- Verify that all LEDs return to a normal state after POST completes (see Chapter 4, "Monitoring system components," on page 45).
 If one or more LEDs do not return to a normal state, and this is not due to the SAN384B being set to beacon, refer to the relevant LED table to identify and correct the problem. For port blades, router blades, and CP blades, the slotShow command can be used to check the status of the slots. For information about
- Verify that the switch prompt displays when POST completes.
 If it does not display, POST was not successfully completed. Contact IBM for support.
- Review the system error log using the **errShow** or **errDump** commands.

turning beaconing on/off, refer to the Fabric OS Administrator's Guide.

• Any errors detected during POST are written to the system log, which is accessible through the **errShow** command. For information about error messages, refer to the *Fabric OS Message Reference*.

POST includes the following steps:

- 1. Preliminary POST diagnostics are run.
- 2. Operating system is initialized.
- 3. Hardware is initialized.

4. Diagnostic tests are run on several functions, including circuitry, port functionality, ability to send and receive frames, all aspects of memory, parity, statistics counters, and serialization.

Boot

In addition to POST, boot includes the following steps after POST is complete:

- 1. Universal port configuration is performed.
- 2. Links are initialized.
- 3. Fabric is analyzed. If any ports are connected to other switches, the SAN384B participates in a fabric configuration.
- 4. The SAN384B obtains a domain ID and assigns port addresses.
- 5. Unicast routing tables are constructed.
- 6. Normal port operation is enabled.

Diagnostics

Diagnostic tests are automatically run during POST to check the status of the SAN384B. Any error messages generated during POST are sent to the error logs and to the serial console, if connected.

Diagnostic tests can also be run manually to test and troubleshoot the hardware and the firmware, including internal connections and circuitry, transceivers, and port cables. However, diagnostic tests are generally intended for use by support personnel.

Note: Error messages do not necessarily indicate that the SAN384B requires maintenance.

Each diagnostic test can be implemented by entering the related command through a Telnet or serial session. For a list of diagnostic tests and commands, refer to the Fabric OS Command Reference Manual and the Fabric OS Administrator's Guide.

All diagnostic tests are run at link speeds of 1, 2, 4, and 8 Gbps. They might temporarily lock the transmit and receive speeds to a specific speed. Some diagnostic tests require interconnecting the ports to each other or using loopback plugs. If ports are interconnected, the media (cables and transceivers) at each end of the connection must be of the same type. For example, short wavelength media must be connected to short wavelength media, and likewise with long wavelength media and copper media.

For more information about diagnostic tests and how to run them, refer to the Fabric OS Administrator's Guide and the Fabric OS Command Reference Manual. For information about diagnostic error messages (errShow or errDump), refer to the Fabric OS Message Reference Manual.

Troubleshooting

Table 29 provides a list of issues, possible causes, and recommended actions.

Table 29. Troubleshooting

Issue	Possible Cause	Recommended Action
1	Power supplies are inadequate to support the installed components.	Add an additional power supply.

Table 29. Troubleshooting (continued)

Several or all components	One or both power cables may not	Ensure that both power cables are connected to	
are not operating.	be connected to a live source.	live outlets.	
	One or both AC power switches might be off.	Ensure that both AC power switches are on (AC switches light up green when on).	
Serial connection is faulty or serial port logs have	Serial cable is not connected correctly.	Ensure that the cable is firmly connected to workstation computer and to the SAN384B.	
incorrect or missing information.	Terminal emulator application parameters are not set correctly.	Ensure that the terminal emulator application is configured as follows: 9600 bits per second, 8 databits, no parity, 1 stop bit, no flow control.	
	Serial port might be incompatible (only RS–232 is supported).	Ensure that the SAN384B is connected to an RS–232 port. RS–423 serial ports might experience difficulties due to corner-case incompatibilities of the standards.	
	Pins on the serial cable or serial port might be damaged.	Remove the cable and inspect the pins on the cable and in the serial port. Do not reinstall if the pins on either component have any visible damage, as this could damage the pins on the other component. Replace components as required.	
CP Ethernet link speed is different than expected or a link cannot be established.	There might be a conflict with the CP Ethernet link speed negotiation set up by the network.	Specify the CP Ethernet link speed by entering the ifModeSet command.	
Configuration data is inaccurate or cannot be accessed.	Chassis was powered off/on while the WWN card was uninstalled or failed.	Install an operational WWN card and power the system off/on again.	
	The SAN384B was rebooted while the WWN card was uninstalled or failed.		
Initial set up results in IP address/Domain ID conflict.	The SAN384B was connected to the fabric before being configured.	Refer to Chapter 3, "Starting and configuring the SAN384B," on page 31 and the <i>Fabric OS Administrator's Guide</i> for configuration information.	
LEDs on one or more components are changing rapidly or do not indicate	The SAN384B might be booting or running POST.	Verify that boot and POST are complete. The SAN384B requires a minimum of 3 minutes, usually, after power-on to complete POST.	
a healthy state.	Beaconing might be on for the entire SAN384B or for individual components.	Determine whether beaconing is on by entering the switchShow command and reviewing the output for the status of switch beaconing and blade beaconing	
	Individual components might have failed.	Refer to the LED tables in Chapter 4, "Monitoring system components," on page 45 for interpretation and recommended actions.	
	Pins on the components might be damaged.	Remove the component from the chassis and inspect the pins on the component and inside the chassis. Do not reinstall if pins on either component are visibly damaged, as this could damage pins on other component. Replace the parts as required.	

Table 29. Troubleshooting (continued)

None of the LEDs on an	Component might not be seated	Ensure that the SAN384B has power and
individual component are on.	correctly.	component is firmly seated. If problem continues, run the sensorShow command to determine component status. If component is a CP blade or port blade, enter the slotShow command to determine the status.
	Component might have failed.	Replace the component as necessary.
CP blades are failing over frequently.	A third-party application has a memory leak.	Check the application for memory leaks.
	There is excessive serial port activity.	Ensure that the serial port activity remains below the specified amount.
	CP blade is attached to an Ethernet with high traffic loads.	Ensure that Ethernet traffic remains below specified amount.
	Chassis is overheated.	Enter the tempShow and sensorShow commands to check the internal temperature. If components are overheating, shut down port blades as necessary to return the temperature to operating range.
One or more port or router blades have either shut down or failed POST as indicated by the error log.	Blades might be overheated.	Enter the sensorShow command to check the internal temperature readings. If components are overheating, shut down port blades as necessary to return the temperature readings to the operating ranges.
	Blades might be faulty.	Enter the slotShow command to determine status. For more information, enter the diagDisablePost command; then, the slotPowerOff [slot number] and slotPowerOn [slot number] command. Resolve the source of the problem or replace the blade as required.
	Pins on the blade or the backplane might be damaged.	Remove the blade from the chassis and inspect pins on the blade and on the backplane inside the slot. Do not reinstall if pins on either component are visibly damaged, as this could damage pins on other component. Replace the components as required.
An individual component is not operating as	Component may not have power or may not be firmly seated.	Ensure component is receiving power (power LED should be on) and component is firmly seated.
expected.	Pins on the component or the backplane might be damaged.	Remove the component from the chassis and inspect the pins on the component and inside the chassis. Do not reinstall if pins on either component are visibly damaged, as this could damage pins on other component. Replace parts as required.
	The component might have failed.	Enter the tempShow and sensorShow commands to determine component status. If component is a CP blade or port blade, enter the slotShow command to determine the status. Replace the component as necessary.

Appendix D. Sample configurations

You can print or copy the illustrations in this appendix and use them to record the port numbering pattern for your SAN384B. See "Port numbering" on page 9 for details on the port numbering pattern for the different blades.

- Figure 47 shows a SAN384B chassis configuration with four FC8-48 port blades
- Figure 48 on page 132 shows a SAN384B chassis configuration with four FC8-32 port blades
- Figure 49 on page 132 shows a SAN384B chassis configuration with four FC8-16 port blades
- Figure 50 on page 133 shows two FC10-6 port blades (not installed in a chassis)
- Figure 51 on page 133 shows two FR4-18i routing blades (not installed in a chassis)
- Figure 52 on page 133 shows the FX8-24 extension blade (not installed in a chassis)
- Figure 53 on page 133 shows the FCOE10-24 Fibre Channel over Ethernet blade (not installed in a chassis)

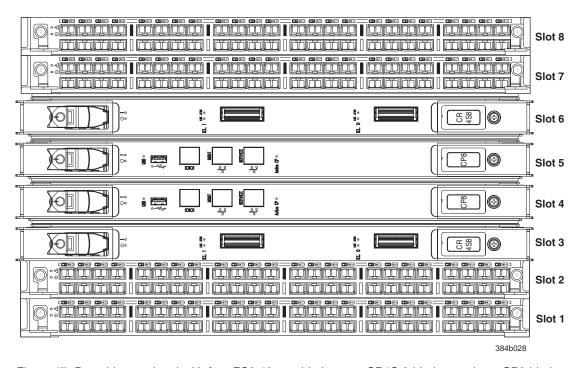


Figure 47. Port side populated with four FC8-48 port blades, two CR4S-8 blades, and two CP8 blades

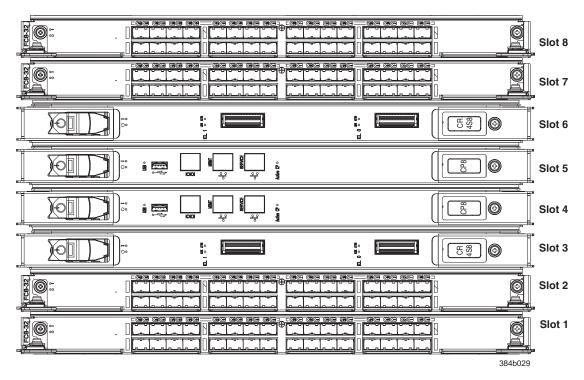


Figure 48. Port side populated with four FC8-32 port blades, two CR4S-8 blades, and two CP8 blades

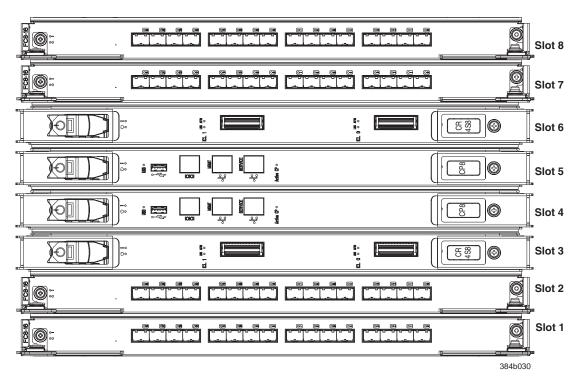


Figure 49. Port side populated with four FC8-16 port blades, two CR4S-8 blades, and two CP8 blades

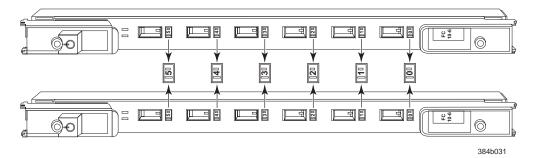


Figure 50. Two FC10-6 port blades

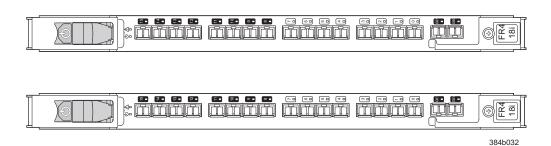


Figure 51. Two FR4-18i routing blades

Figure 52. FX8-24 extension blade

Figure 53. FCOE10-24 blade

Notices

This information was developed for products and services offered in the U. S. A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe on any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing to:

IBM Director of Licensing IBM Corporation North Castle Drive Armonk, N.Y. 10504-1785 U.S.A.

For additional information, visit the web at: http://www.ibm.com/ibm/licensing/contact/

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM web sites are provided for convenience only and do not in any manner serve as an endorsement of those web sites. The materials at those web sites are not part of the materials for this IBM product and use of those web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurement may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

If you are viewing this information in softcopy, the photographs and color illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. A complete and current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

Brocade and Fabric OS are registered trademarks and Silkworm is a trademark of Brocade Communications Systems, Inc. in the United States, other countries or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Electronic emission notices

The following statements apply to this product. The statements for other products intended for use with this product will appear in their accompanying manuals.

Federal Communications Commission (FCC) Class A Statement

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Properly shielded and grounded cables and connectors must be used in order to meet FCC emission limits. IBM is not responsible for any radio or television interference caused by using other than recommended cables and connectors or by unauthorized changes or modifications to this equipment. Unauthorized changes or modifications could void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Industry Canada Class A Emission Compliance Statement

This Class A digital apparatus complies with Canadian ICES-003.

Avis de conformité à la réglementation d'Industrie Canada

Cet appareil numérique de la classe A est conform à la norme NMB-003 du Canada.

European Union (EU) Electromagnetic Compatibility Directive

This product is in conformity with the protection requirements of EU Council Directive 2004/108/EC on the approximation of the laws of the Member States relating to electromagnetic compatibility. IBM cannot accept responsibility for any failure to satisfy the protection requirements resulting from a non-recommended modification of the product, including the fitting of non-IBM option cards.

This product has been tested and found to comply with the limits for Class A Information Technology Equipment according to European Standard EN 55022. The limits for Class A equipment were derived for commercial and industrial environments to provide reasonable protection against interference with licensed communication equipment.

Attention: This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Properly shielded and grounded cables and connectors must be used in order to reduce the potential for causing interference to radio and TV communications and

to other electrical or electronic equipment. Such cables and connectors are available from IBM authorized dealers. IBM cannot accept responsibility for any interference caused by using other than recommended cables and connectors.

European Community contact: IBM Technical Regulations Pascalstr. 100, Stuttgart, Germany 70569 Tele: 0049 (0)711 785 1176

Fax: 0049 (0)711 785 1283 e-mail: tjahn@de.ibm.com

Germany Electromagnetic Compatibility Directive

Deutschsprachiger EU Hinweis:

Hinweis für Geräte der Klasse A EU-Richtlinie zur Elektromagnetischen Verträglichkeit

Dieses Produkt entspricht den Schutzanforderungen der EU-Richtlinie 2004/108/EG zur Angleichung der Rechtsvorschriften über die elektromagnetische Verträglichkeit in den EU-Mitgliedsstaaten und hält die Grenzwerte der EN 55022 Klasse A ein.

Um dieses sicherzustellen, sind die Geräte wie in den Handbüchern beschrieben zu installieren und zu betreiben. Des Weiteren dürfen auch nur von der IBM empfohlene Kabel angeschlossen werden. IBM übernimmt keine Verantwortung für die Einhaltung der Schutzanforderungen, wenn das Produkt ohne Zustimmung der IBM verändert bzw. wenn Erweiterungskomponenten von Fremdherstellern ohne Empfehlung der IBM gesteckt/eingebaut werden.

EN 55022 Klasse A Geräte müssen mit folgendem Warnhinweis versehen werden: "Warnung: Dieses ist eine Einrichtung der Klasse A. Diese Einrichtung kann im Wohnbereich Funk-Störungen verursachen; in diesem Fall kann vom Betreiber verlangt werden, angemessene Maßnahmen zu ergreifen und dafür aufzukommen."

Deutschland: Einhaltung des Gesetzes über die elektromagnetische Verträglichkeit von Geräten

Dieses Produkt entspricht dem "Gesetz über die elektromagnetische Verträglichkeit von Geräten (EMVG)". Dies ist die Umsetzung der EU-Richtlinie 2004/108/EG in der Bundesrepublik Deutschland.

Zulassungsbescheinigung laut dem Deutschen Gesetz über die elektromagnetische Verträglichkeit von Geräten (EMVG) (bzw. der EMC EG Richtlinie 2004/108/EG) für Geräte der Klasse A

Dieses Gerät ist berechtigt, in Übereinstimmung mit dem Deutschen EMVG das EG-Konformitätszeichen - CE - zu führen. Verantwortlich für die Konformitätserklärung des EMVG ist die IBM Deutschland GmbH, 70548 Stuttgart.

Generelle Informationen:

Das Gerät erfüllt die Schutzanforderungen nach EN 55024 und EN 55022 Klasse A.

Japan VCCI Class A ITE Electronic Emission Statement

この装置は、クラス A 情報技術装置です。この装置を家庭環境で使用する と電波妨害を引き起こすことがあります。この場合には使用者が適切な対策 を講ずるよう要求されることがあります。

People's Republic of China Class A Electronic Emission **Statement**

中华人民共和国"A类"警告声明

此为A级产品,在生活环境中,该产品可能会造成无线电干扰。在这种情况下, 可能需要用户对其干扰采取切实可行的措施。

Korea Class A Electronic Emission Statement

이기기는 업무용으로 전자파 적합등록을 받은 기기 이오니, 판매자 또는 사용자는 이점을 주의하시기 바라며, 만약 잘못 구입하셨을 때에는 구입한 곳 서 비업무용으로 교환하시기 바랍니다.

Index

Numerics	cables (continued)	data transmission (continued)
	installing 39	speed 119
24-inch load plate	managing 40	date
part number 12 384B	caution notices xvi	setting 37
	definition xvi	diagnostics 125
unpacking 16	examples xvii	director of licensing
	chassis door 59	address 135
۸	installing 59	disconnecting
A	removing 59	fabric 92
about this document xxiii	comments	network 92
how to send your comments iv	sending iv	documents
ac power	component	Brocade xxiii
removing xxi	status 45	product xxiii
accessibility features for this	components	Domain ID
product xxiv	installing 59	setting 37
attaching	monitoring 45	door, chassis 59
Fibre cables 39	removing 59, 93	download
attention notice	configuration	configuration 95
definition xviii	backing up 41 download 95	
example xviii		E
attention notices xviii	parameters 34	E
	configuration file backup 41	edition notice ii
В	uploading 41	electronic emission notices 138
В	configuring	enabling software licenses 39
backing up the configuration 41	SAN384B 31	environmental notices xiii, xxi
backup	connection	environmental requirements 117
configuration file 41	serial 33	ESD 103, 105
blade	connection, Ethernet 36	ESD strap 105, 106, 108, 109
weights 116	control processor blade	Ethernet connection 36
blade filler panel	components 51	establishing 36
installing 64	LEDs 52	exhaust kit
removing 64	status 51, 52	installing 20
blades	cords, power 120	parts 18
FC8-16 103	core switch blade	extension blade
FC8-32 103	components 53	installing 109
FC8-48 103	LEDs 54	external machine checks xxi
blower assembly	status 53, 54	
installing 76, 77	CP8 blade	_
LEDs 55	components 51	F
removing 76	LEDs 52	fabric
status 55	status 51, 52	reconnecting 97
Brocade	verifying 66	fabric configuration
documents xxiii	CR4S-8 blade	verifying 97
	installing 71, 73	facility requirements 117
	LEDs 54	FC10-6 10 Gb blade
	removing 71, 72	installing 106
C36	status 53, 54	FC10-6 blade 47
cabinet 11	CR4S-S blade	components 47
C8P blade	components 53	installing 64
installing 65, 69	critical information	LEDs 50
removing 65, 68	recording 66	removing 62
verifying operation 69		status 45, 50
cabinet	D	FC3816
C36 11	D	installing 16-port blade 103
SAN384B installation 14	danger notices xiii	FC3832
cable management finger assembly	definitions xiii	installing 32-port blade 103
installing 60	examples xiii	FC3848
removing 60	data transmission	installing 48-port blade 103
cables	distance 119	FC3850
attaching 39	range 119	installing routing blade 105

FC3870	G	inter-chassis link (ICL) cable
FC10-6 10 Gb blade 106	G	installing 81, 82
inter-chassis cable kit 110	getting help iii	removing 81, 82
FC3880		internal machine checks xxi
FCOE10-24 blade 108		introduction 1
FC3890	Н	IP addresses
FX8-24 blade 109		setting 34
FC8-16 blade 45	help iii	setting 54
	high availability 6	
components 46	features 6	1
installing 64	how to send your comments iv	L
LEDs 50		labels, safety xvii
removing 62	_	LEDs
status 45, 50		blower assembly 55
FC8-16 port blades 103	IBM	control processor blade 52
FC8-32 blade 46	notices 135	core switch blade 54
components 46	trademarks 137	CP8 blade 52
installing 64		CR4S-S blade 54
LEDs 50	inspections, safety xxi	port blades 50
removing 62	installation	power supply 54
status 45, 50	planning 11	1 11 7
FC8-32 port blades 103	preparation 11	routing blades 50
FC8-348 port blades 103	installation guidelines 13	WWN card 57
FC8-48 blade 47	installing 81	license, for patents 135
components 47	blade filler panel 64	licenses, software 39
installing 64	blower assembly 76, 77	licensing
LEDs 50	cable management finger	Web address 135
removing 62	assembly 60	lift tool 11
status 45, 50	chassis components 94	24-inch load plate 25
FCIP extension blade	chassis door 59	extension 25
FX8-24 45	components 59	assembly 15
FCOE10-24 blade 48, 123	CP8 blade 65, 69	ordering procedure 11
	CR4S-8 blade 71, 73	part number 12
components 48	exhaust kit 20	positioning 24
installing 64, 108	FC10-6 64	United States ordering procedure 12
removing 62	FC10-6 10 Gb blade 106	world trade ordering procedure 12
status 45	FC3816 103	local time
features	FC3832 103	synchronizing 38
high availability 6	FC3848 103	8
installing 103		
features and components 1	FC3850 105	M
features, software 7	FC3870 106	IVI
Fibre cables	FC3880 108	machine checks
attaching 39	FC3890 109	external xxi
Fibre Channel over Ethernet	FC8-16 blade 64	internal xxi
installing 108	FC8-32 blade 64	modem 31
Fibre Channel over Ethernet blade	FC8-48 blade 64	
FCOE10-24 45	FCOE10-24 blade 64, 108	
FR4-18i blade 121	features 103	N
installing 64	FR4-18i 64	
removing 62	FX8-24 blade 64, 109	network
status 45	inter-chassis cable kit 110	reconnecting 97
FR4-18i routing blade 48	inter-chassis link (ICL) cable 82	network manageability 9
components 48	port blade 62, 103	Network Management System 9
installing 105	port-side exhaust kit 18	notice, edition ii
LEDs 50	power supply 74, 75	notices
port specifications	replacement chassis 94	attention xviii
* .*	routing blade 105	caution xvi
Fibre Channel 119	SAN384B 11, 14, 24	danger xiii
GbE 119	time required 14	environmental xiii, xxi
status 50	SFPs 39, 80	IBM 135
FRU	WWN bezel and card 77	safety xiii
weights 116	XFP 80	safety and environmental xiii
FX8-24 blade 121	XFPs 39	types xiii
installing 64, 109		notices ,danger xiii
removing 62	installing components 59	notices and labels
status 45	intellectual property 135	safety xiii
FX8-24 extension blade	inter-chassis cable kit	•
components 48	installing 110	notices, attention xviii
illustration 48	inter-chassis link (ICL)	notices, caution xvi
	status 81	NTP server 38

0	R	safety, rack installation xix
		safety, rack relocation xx
ordering the lift tool and the 24–inch load plate 11	rack safety xix	SAN Switch Cabinet C36 11
organizing	rack relocation safety xx	SAN384B
cables 40	rack safety xix	configuring 31
overview 1	read this first iii	installation guidelines 13
	reconnecting	installing 11, 24 IP addresses 34
	fabric 97	library xxiii
P	network 97	physical dimensions 116
parameters	system 97	providing power 33
configuration 34	recording	removing 11, 28
part number	critical information 66	size 116
24–inch load plate 12	reliability 7	starting 31
lift tool 12	removing .	switch name 36
parts	ac power xxi	weight 116
power cords 120	blade filler panel 64 blower assembly 76	security 8
password	cable management finger	security features 8
saving 41	assembly 60	security features table 8
patents 135	chassis door 59	serial connection 33
port blade	components 59, 93	serial connection, establishing 33 serviceability 7
FC10-6 45	CP8 blade 65, 68	setting
FC8-16 45 FC8-32 45	CR4S-8 blade 71, 72	date 37
FC8-48 45	FC10-6 62	Domain ID 37
FCOE10-24 45	FC8-16 blade 62	IP addresses 34
FX8-24 45	FC8-32 blade 62	time 37
installing 62, 64, 103, 106	FC8-48 blade 62	timezone 37
monitoring 45	FCOE10-24 blade 62	SFP 39
removing 62	FR4-18i 62	copper 1 GbE 120
status 45	FX8-24 blade 62 inter-chassis link (ICL) cable 81, 82	SFP transceivers 39
port blades	port blade 62	SFPs
FC8-16 103	power supply 74	compatible 39
FC8-32 103	SAN384B 11, 28	installing 39, 80
FC8-48 103	SFPs 80	removing 80 slot numbers 10
port groups	WWN bezel 78	SNMP 9
trunking 39	WWN bezel and card 77	software features 7
port numbering 9 port specifications	WWN card 78	software licenses
FR4-18i routing blade 119	XFP 80	enabling 39
port-side exhaust kit	removing components 59	specifications 113
installing 18	requirements	power 118
power	environmental 117	specifications, product 113
cords 120	facility 117	standard features
off 42	routing blade FR4-18i 45	software
SAN384B 33	installing 64, 105	Advanced Zoning 8
power specifications 118	monitoring 45	Fabric Watch 8
power supply	status 45	ISL Trunking 8 Performance Monitoring 8
components 54		Web Tools 8
installing 74, 75 LEDs 54	_	standard software features 8
removing 74	S	starting
status 54	safety xiii	SAN384B 31
product	inspections xxi	status
components 2	labels xiii, xvii	blower assembly 55
features 2	examples xvii	control processor blade 52
features and components 1	notices xiii	core switch blade 53, 54
hardware components 2	rack xix	CP8 blade 52
introduction 1	rack installation xix	CR4S-8 blade 53
overview 1	rack relocation xx	CR4S-S blade 54
reliability 7	safety inspection	FC10-6 blade 50
serviceability 7	external machine checks xxi	FC8-16 blade 50 FC8-32 blade 50
software features 7	internal machine checks xxi	FC8-32 blade 50 FC8-48 blade 50
specifications 113	safety inspections xxi	FR4-18i routing blade 50
product documents xxiii	safety labels xvii safety notices xiii	inter-chassis link (ICL) 81
product specifications 113	safety rack viv	port blades 50

status (continued)	WWN
power supply 54	bezel 57
routing blades 50	card
WWN card 57	status 57
strap, ESD 105, 106, 108, 109	WWN bezel
switch name	installing 77
changing 36	removing 77, 78
synchronizing	WWN card
time zone 38	failure 57
system architecture 113	removing 78
system architecture 113	removing 70
status 45	
	V
system components	X
monitoring 45	XFP 39
	XFP transceivers 39
-	XFPs
T	compatible 39
time	installing 39, 80
setting 37	removing 80
time required	8
installing a SAN384B 14	
time server	
NTP 38	
time zone	
setting 37	
torque requirements 20	
trademarks 137	
transceivers	
SFP 39	
XFP 39	
transceivers, SFP 39	
transceivers, SXFP 39	
transmission range	
multi-mode media 119	
OM1 119	
OM2 119	
OM3 119	
SFP types 119	
single mode media 119	
transceiver 119	
trunking	
port groups 39	
11	
U	
unpacking	
SAN384B 16	
V	
verifying	
CP8 blade 66	
fabric configuration 97	
system operation 95	
verifying operation	
CP8 blade 69	
۱۸/	
VV	
Web sites iii	
weights	
blade 116	
FRU 116	
who should read this document	xxiii

IBW.

Part Number: 45W6291

Printed in USA

(1P) P/N: 45W6291

GC52-1333-01

Spine information:

SAN384B Installation, Service, and User Guide IBM System Storage SAN384B

Service information: 2499-192