IBM TotalStorage SAN Switch

3534 Model F08 Installation Guide

[^0]
3534 Model F08 Installation Guide

```
Note:
Before using this information and the product it supports, read the information in "Safety and environmental notices" on page ix and "Notices" on page 45
```


Second Edition (February 2003)

Contents

Figures V
Tables vii
Safety and environmental notices ix
Safety notices and their translations ix
Safety inspection ix
Checking the machine ix
Checking the safety labels x
Checking ac grounding xi
Environmental notices and statements xii
Battery notice xii
Laser safety xii
Fire suppression systems xii
Product recycling xii
Product disposal xiii
About this document XV
Who should read this document. XV
Additional information xv
3534 Model F08 library xv
Related documents xv
Web sites xvi
Getting help xvi
Getting software updates xvii
How to send your comments xvii
Chapter 1. Introduction 1
Overview of the 3534 Model F08. 1
System components 2
Front panel 2
Back panel 2
Managing the 3534 Model F08 3
Chapter 2. Planning the installation 5
Chapter 3. Installing and configuring the $\mathbf{3 5 3 4}$ Model F08 9
Installation and safety considerations 9
Installing the 3534 Model F08 as a stand-alone unit 10
Time required 10
Installation instructions 10
Installing the 3534 Model F08 in an EIA rack 10
Time required 10
Items required 11
Installation instructions 11
Configuring, connecting, and accessing the 3534 Model F08 15
Time required 15
Items required 16
Configuring the switch 16
Connecting and accessing the switch 17
Chapter 4. Operating the 3534 Model F08 19
Turning the 3534 Model F08 on and off 19
Interpreting LED activity 19
LEDs on the front panel 19
LEDs on the back panel 22
Interpreting POST 22
Maintaining the switch 23
Chapter 5. Replacing an SFP 25
Time required 25
Items required 25
Removing an SFP 25
Installing an SFP 26
Appendix A. Product specifications 27
Switch components 27
Facility specifications. 27
General specifications 28
Physical specifications 29
Environmental specifications 29
Power supply specifications 30
Memory specifications 30
Optical port specifications 30
Serial port specifications 30
Regulatory specifications 31
Appendix B. Blank planning worksheets 33
Planning worksheet 34
Port configuration worksheet 35
Zone definition worksheet 36
Zone configuration worksheet 37
Appendix C. Power cables 39
Notices 45
Trademarks 46
Electronic emission notices 46
Federal Communications Commission (FCC) statement 46
Industry Canada compliance statement 46
European Community compliance statement 47
Germany compliance statement 47
Japanese Voluntary Control Council for Interference (VCCI) class 1 statement 48
Korean Government Ministry of Communication (MOC) statement 48
Taiwan class A compliance statement 48
Glossary 49
Index 59

Figures

1. Power supply cover caution label X
2. SFP label (front view) X
3. SFP label (back view) xi
4. Safety label on the 3534 Model F08 xi
5. Front panel of the 3534 Model F08 2
6. Back panel of the 3534 Model F08. 3
7. Moving slide 12
8. Mounting the moving portion of the slide and the mounting brackets to the switch 13
9. Mounting the fixed portion of the rail and the locking ears to the rack 14
10. Inserting slides into the rack rails 15
11. Front panel LEDs 20
12. Back panel LED 22
13. IBM SFP 25
14. Power cable for Australia 39
15. Power cable for Canada and United States 40
16. Power cable for China 40
17. Power cable for Denmark. 40
18. Power cable for France 41
19. Power cable for Israel 41
20. Power cable for Italy 41
21. Power cable for South Africa 42
22. Power cable for Switzerland 42
23. Power cable for Thailand 42
24. Power cable for United Kingdom 43
25. Power cable for Chicago 43
26. Power cable for Uraguay 43
27. PDU cable that is shipped with the 3534 Model F08 44

Tables

| 1. Brocade and IBM product and model number matrix. xvi
2. Management interfaces compatible with the 3534 Model F08 3
3. Example of a completed planning worksheet 5
4. Example of a completed port configuration worksheet 7
5. Example of a completed zone definition worksheet 7
6. Example of a completed zone configuration worksheet 8
7. Parts supplied with the rack mount kit 11
8. Configuration parameters. 16
9. Front panel LED patterns during normal operation 20
10. Back panel LED patterns during normal operation 22
11. General specifications 28
12. Physical specifications 29
13. Environmental specifications 29
14. Power supply specifications 30
15. Memory specifications 30
16. Cabling pinouts if pin 7 is used 31
17. Regulatory specifications 31
18. Planning worksheet 34
19. Port configuration worksheet 35
20. Zone definition worksheet 36
21. Zone configuration worksheet 37
22. Power cables 39

Safety and environmental notices

This section contains information about:

- Safety notices used in this book
- Safety inspection for this product
- Environmental guidelines for this product

Safety notices and their translations

Safety notices are printed in English throughout this book.

- A Danger notice warns you of conditions or procedures that can result in death or severe personal injury.
- A Caution notice warns you of conditions or procedures that can cause personal injury that is neither lethal nor extremely hazardous.
- An Attention notice warns you of conditions or procedures that can cause damage to machines, equipment, or programs.

For translations of danger and caution notices, see IBM TotalStorage SAN Fibre Channel Switch 3534 Model F08 Translated Safety Notices, GC26-7459-00. The notices are listed in numeric order based on their IDs, which are displayed in parentheses at the end of each notice. See the following examples for the location of the ID numbers.

DANGER

An electrical outlet that is not correctly wired could place a hazardous voltage on metal parts of the system or the products that attach to the system. It is the customer's responsibility to ensure that the outlet is correctly wired and grounded to prevent an electrical shock. (1)

CAUTION:

The 3534 Model F08 switch is designed to be installed by the customer, and is certified as "customer setup". Make sure that the system or rack into which the switch will be installed is also designed and certified for customer setup; if it is not, then the switch must be installed by a CE. (1)

Safety inspection

Perform the following safety checks to identify unsafe conditions. Be cautious of potential safety hazards that are not covered in the safety checks. If unsafe conditions are present, determine how serious the hazards are and whether you should continue before correcting the problem.

CAUTION:

The 3534 Model F08 switch is designed to be installed by the customer, and is certified as "customer setup". Make sure that the system or rack into which the switch will be installed is also designed and certified for customer setup; if it is not, then the switch must be installed by a CE. (1)

Checking the machine

Perform the following external machine checks:

1. Verify that all external covers are present and are not damaged.
2. Ensure that all latches and hinges are in correct operating condition.
3. If the 3534 Model F08 is not installed in a rack cabinet, check for loose or broken feet.
4. Check the power cord for damage.
5. Check the external signal cable for damage.
6. Check the cover for sharp edges, damage, or alterations that expose the internal parts of the device.
7. Correct any problems that you find.

Checking the safety labels

Perform the following safety label checks:

1. Verify that the power supply cover caution label shown in Figure 1 is installed on the power supply of the 3534 Model F08.
CAUTION:
Do not remove cover, do not service, no serviceable parts. (2)

Figure 1. Power supply cover caution label
2. Verify that the small form-factor pluggable device (SFP) label shown in Figure 2 and Figure 3 on page xi is installed on the 3534 Model F08.

Figure 2. SFP label (front view)

Figure 3. SFP label (back view)
3. Verify that the safety label shown in Figure 4 is installed on the 3534 Model F08, and that the voltage specified on the label matches the voltage at the power source.

Figure 4. Safety label on the 3534 Model F08

Checking ac grounding

DANGER

An electrical outlet that is not correctly wired could place a hazardous voltage on the metal parts of the system or the products that attach to the system. It is the customer's responsibility to ensure that the outlet is correctly wired and grounded to prevent an electrical shock. (1)

Environmental notices and statements

This section describes the environmental notices and statements.

Battery notice

CAUTION:

A lithium battery can cause fire, explosion, or a severe burn. Do not recharge, disassemble, heat above $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$, solder directly to the cell, incinerate, or expose cell contents to water. Keep away from children. Replace only with the part number specified for your system. Use of another battery may present a risk of fire or explosion. The battery connector is polarized; do not attempt to reverse the polarity. Dispose of the battery according to local regulations. (3)

Laser safety

CAUTION:

In the United States use only GBIC units or Fibre-Optic products that comply with FDA radiation performance standards, 21 CFR Subchapter J. Internationally use only GBIC units or Fibre-Optic products that comply with IEC standard 825-1. Optical products that do not comply with these standards may produce light that is hazardous to the eyes.

SJ000338

This unit might contain a single-mode or a multimode transceiver Class 1 laser product. The transceiver complies with IEC 825-1 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated under the recommended operating conditions.

This equipment contains Class 1 laser products, and complies with FDA radiation Performance Standards, 21 CFR Subchapter J and the international laser safety standard IEC 825-2.

Usage restrictions

The optical ports of the modules must be terminated with an optical connector or with a dust plug.

Fire suppression systems

A fire suppression system is the responsibility of the customer. The customer's own insurance underwriter, local fire marshal, or a local building inspector, or both, should be consulted in selecting a fire suppression system that provides the correct level of coverage and protection. IBM designs and manufactures equipment to internal and external standards that require certain environments for reliable operation. Because IBM does not test any equipment for compatibility with fire suppression systems, IBM does not make compatibility claims of any kind nor does IBM provide recommendations on fire suppression systems.

Product recycling

This unit contains recyclable materials. These materials should be recycled where processing sites are available and according to local regulations. In some areas,

IBM provides a product take-back program that ensures proper handling of the product. Contact your IBM representative for more information.

Product disposal

This unit might contain batteries. Remove and discard these batteries, or recycle them, according to local regulations.

About this document

This document describes how to plan for and install the IBM TotalStorage ${ }^{\text {TM }}$ SAN Switch 3534 Model F08, hereafter referred to as the 3534 Model F08.

Who should read this document

This document is intended for hardware service personnel who are responsible for installing the 3534 Model F08 in a SAN fabric.

Throughout this document, the term switch applies to any IBM 3534 switch, unless the reference is to a specific model.

Additional information

This section contains the following information:

- A list of the documents in the 3534 Model F08 library
- A list of the related documents
- The available Web sites
- Instructions on how to get help
- Instructions on how to get software updates
- Information about how to send your comments

3534 Model F08 library

The following documents contain information related to this product:

- IBM TotalStorage SAN Switch 3534 Model F08 Installation Guide, SY27-7631
- IBM TotalStorage SAN Switch 3534 Model F08 User's Guide, GC26-7454
- IBM TotalStorage SAN Fibre Channel Switch 3534 Model F08 Translated Safety Notices, GC26-7459

Related documents

Information related to the 3534 Model F08 software can be found in the following documents:

- Brocade Advanced Performance Monitoring User's Guide
- Brocade Advanced Web Tools User's Guide
- Brocade Advanced Zoning User's Guide
- Brocade Diagnostic and System Error Message Reference
- Brocade Distributed Fabric User's Guide
- Brocade Fabric Manager User's Guide
- Brocade Fabric OS Procedures Guide
- Brocade Fabric OS Reference
- Brocade Fabric Watch User's Guide
- Brocade ISL Trunking User's Guide
- Brocade MIB Reference
- Brocade QuickLoop User's Guide
- Brocade SES User's Guide
- Building and Scaling Brocade SAN Fabrics: Design and Best Practices Guide

When you use any of the Brocade documents, you will notice that the model numbers reflect the original Brocade switches. Table 1 provides a product matrix for you to use to correlate the Brocade model numbers to the IBM product and model numbers.

Table 1. Brocade and IBM product and model number matrix

Brocade model number	IBM product and model number
Silkworm 2010	3534 Model 1RU
Silkworm 2400	2109 Model S08
Silkworm 2800	2109 Model S16
Silkworm 3200	3534 Model F08
Silkworm 3800	2109 Model F16
Silkworm 3900	2109 Model F32
Silkworm 12000	2109 Model M12

Web sites

For detailed information about models and firmware that the switch supports, see the following Web site:
www.ibm.com/storage/fcswitch/
For detailed information about fibre-channel standards, see the fibre-channel Association Web site at:
www.fibrechannel.com/
For a directory of worldwide contact information, including technical support, see the following Web site:
www.ibm.com/contact/

Getting help

Contact your switch supplier for technical support. This includes support of hardware and of software, all product repairs, and ordering of spare components.

Be prepared to provide the following information to the support personnel:

- The switch serial number
- The switch worldwide name
- The topology configuration
- Any output from the supportShow Telnet command
- A detailed description of the problem
- Any troubleshooting steps that were already performed

Getting software updates

Contact your switch supplier for software updates and maintenance releases.
For utility programs to facilitate loading firmware, sample Fabric Watch configurations, and management information base (MIB) files for switch management by simple network management protocol (SNMP), see the following Web site:
www.storage.ibm.com/ibmsan/products/sanfabric.htm

How to send your comments

Your feedback is important to help us provide the highest quality of information. If you have any comments about this document, you can submit them in one of the following ways:

- E-mail

Submit your comments electronically to:
starpubs@us.ibm.com
Be sure to include the name and order number of the document and, if applicable, the specific location of the text that you are commenting on, such as a page number or table number.

- Mail or fax

Fill out the Readers' Comments form (RCF) at the back of this document and return it by mail or fax (1-800-426-6209) or give it to an IBM representative. If the RCF has been removed, you can address your comments to:

International Business Machines Corporation
RCF Processing Department
Dept. M86/Bldg. 050-3
5600 Cottle Road
San Jose, CA 95193-0001
U.S.A.

Chapter 1. Introduction

This chapter introduces the 3534 Model F08 and includes the following information:

- Overview of the 3534 Model F08
- System components
- Managing the 3534 Model F08

Overview of the 3534 Model F08

The 3534 Model F08 is an 8-port, dual-speed, auto-sensing fibre-channel switch. It supports link speeds up to 2 Gbps, includes the Fabric Operating System (Fabric OS), and is compatible and interoperable with the current series of 2109 and 3534 switches. It can operate as the only switch in the fabric or in a fabric that contains multiple switches.

The 3534 Model F08 has an air-cooled chassis and can be installed either as a stand-alone unit or mounted in a 1 U 48.26 cm (19 in.) rack. It includes the following features:

- Eight optical ports, each with two light-emitting diodes (LEDs). One LED indicates port status and the other indicates link speed.
- Automatic negotiation to the highest common speed of all devices that are connected to a particular port. The ports are:
- Compatible with small form-factor pluggable media (SFP)
- Universal and self-configuring
- Capable of individually becoming a fabric enabled port (F_port), a fabric loop enabled port (FL_port), or an expansion port (E_port)
- One serial port with an RS-232 connector.
- One 10 Mbps or 100 Mbps Ethernet port with an RJ-45 connector and two LEDs. One LED indicates port status and the other indicates link speed.
- Two switch status LEDs, one on the front panel and one on the back, which indicate the overall status of the switch.
- One power supply without an ac switch.
- Five fan assemblies.

Note: The 3534 Model F08 contains no serviceable parts except the SFPs. See Chapter 5, "Replacing an SFP", on page 25

In addition, each 3534 Model F08 package includes:

- One 3.048 m (10 ft) RS-232 serial cable, which you can convert to an RJ-45 connector by removing the adapter on the end of the cable.
- One $1.8288 \mathrm{~m}(6 \mathrm{ft})$ power cable.
- Four rubber-mounting feet, which you can use if you are installing the switch as a stand-alone unit.
- One power-cable extender.
- One rack-mount kit, which you can use if you are installing the switch in a rack. See Table 7 on page 11 for a list of the parts included in the kit.
- One documentation CD-ROM.
- One copy of this book, the IBM TotalStorage SAN Switch 3534 Model F08 Installation Guide.

See Appendix A, "Product specifications", on page 27 for the 3534 Model F08 specifications.

System components

This section describes the front and back panels of the 3534 Model F08.

Front panel

Figure 5 shows the front panel of the 3534 Model F08. The front panel contains the following components:

- Power connector
- IP address label
- Serial port
- Switch status LED
- Fiber optic ports and their corresponding LEDs
- Ethernet port and its corresponding LEDs

SJ000334
Figure 5. Front panel of the 3534 Model F08
The ports on the front panel are color-coded in groups, indicating which ports can be used in the same inter-switch link (ISL) Trunking group.

Note: ISL Trunking enables traffic to be distributed over the combined bandwidth of up to four ISLs between two adjacent switches, while preserving in-order delivery. It is managed through the software. For information about ISL Trunking, see the Brocade ISL Trunking User's Guide.

Back panel

Figure 6 on page 3 shows the back panel of the 3534 Model F08. The back panel contains fans and the switch status LED.

SJ000336
Figure 6. Back panel of the 3534 Model F08

Managing the 3534 Model F08

For system debugging and performance analysis, you can manage the 3534 Model F08 using either the in-band or the out-of-band management method. In-band uses fibre-channel protocol and out-of-band connects to the Ethernet port. You can monitor attributes such as the following:

- Fabric topology
- Port status
- Physical status

Note: The switch automatically performs power-on self-test (POST) diagnostics each time it is turned on and records any detected errors in the error log. For more information about POST, see "Interpreting POST" on page 22 .

Table 2 shows the management interfaces that are compatible with the 3534 Model F08 and whether those interfaces can be used in-band, out-of-band, or both.

Table 2. Management interfaces compatible with the 3534 Model F08

Management interface	In-band	Out-of-band
Command-line interface through a Telnet connection	X	X
Web Tools	X	X
Standard simple network management protocol (SNMP) applications	X	X
SCSI Enclosure Services (SES)	X	

For more information about these management interfaces, see the following documents.

- Brocade Advanced Performance Monitoring User's Guide
- Brocade Advanced Web Tools User's Guide
- Brocade Advanced Zoning User's Guide
- Brocade Diagnostic and System Error Message Reference
- Brocade Distributed Fabric User's Guide
- Brocade Fabric Manager User's Guide
- Brocade Fabric OS Procedures Guide
- Brocade Fabric OS Reference
- Brocade Fabric Watch User's Guide
- Brocade ISL Trunking User's Guide
- Brocade MIB Reference
- Brocade Silkworm 12000 Core Migration User's Guide
- Building and Scaling Brocade SAN Fabrics: Design and Best Practices Guide

In addition, the 3534 Model F08 supports the following applications:

- Zoning
- QuickLoop
- Fabric Watch
- Performance Monitoring
- Extended Fabrics
- Remote Switch
- ISL Trunking

Note: An additional license may be required.

For more information about these applications, see the following documents:

- Brocade Advanced Performance Monitoring User's Guide
- Brocade Advanced Zoning User's Guide
- Brocade Distributed Fabric User's Guide
- Brocade Fabric Watch User's Guide
- Brocade ISL Trunking User's Guide
- Brocade QuickLoop User's Guide

Chapter 2. Planning the installation

This chapter describes how to plan the installation of the 3534 Model F08 in an operational environment and provides examples of completed planning worksheets. For your convenience, blank planning worksheets have been provided for your use in Appendix B, "Blank planning worksheets", on page 33 Make as many copies of the blank worksheets as you need to plan the installation of your switches. Give your system administrator copies of the completed worksheets.

Table 3 shows an example of a completed planning worksheet for an installed switch. An explanation of each item in the worksheet follows the table.

Table 3. Example of a completed planning worksheet

Item	Description
Firmware level	V 3.1.0
Firmware location:	C02STOR01
Server name	sanman
Username	G:Isanmanl3534\firmwarelv3.1
Directory	3534SW1
Switch name	1
Domain ID	
FCnetID (Fibre-channel IP address)	Supplied when the box is turned on
FC netmask	Principal switch
WWN	192.20 .236 .4
Role	admin - admin, petuser - none
Syslog daemon IP address	
Users defined - access level	TestSANlet1_3534SW1
SNMP information:	(Contact name)
System description	B/003-3 Col C-4
System contacts	5
System location	No
Event trap level 0 - 5	dingo
Enable authentication traps	pet
RW community string	192.20 .236 .3
RO community string	Required for optional features
Trap recipients IP address	
License keys	

The following is a description of the items in the planning worksheet.

Firmware level

The firmware levels for the 3534 and the required code for installation on a Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ NT Web Tools workstation.

Firmware location

The directory on the Web Tools server where the firmware for the 3534 is located. Use a different directory for each level of firmware that is loaded.

Server name

The network name of the server where Web Tools is run.

Username

The username on the Web Tools server that owns the firmware for the 3534. Do not use a username with administrative or security privileges on the server.

Directory

The location where the firmware files are located.

Switch name

The name of this particular fibre-channel switch.

Domain ID

The domain ID that identifies this switch in the SAN configuration.

FCnetID

The fibre-channel IP address for this switch.

FC netmask

The netmask for the fibre-channel IP network.
WWN The worldwide name of the switch that is assigned by the manufacturer.
Role The role this switch is assigned (principal switch, subordinate switch, or disabled switch).

Syslog daemon IP address

The IP address of the host to which the syslog daemon messages are forwarded.

Users defined - access level

A list of users in SAN administration network and their roles.
SNMP The SNMP information that is supplied by the network administrator.

License keys

The required license keys for optional features.
See the IBM TotalStorage SAN Switch 3534 Model F08 User's Guide for information about trap levels.

Table 4 shows an example of a completed port configuration worksheet.
Table 4. Example of a completed port configuration worksheet

Port number	Device name	Device port	Cable length	Port type	Notes	Cable number
0	$2108-1$	PMC1-1	$2 \mathrm{~m}(6 \mathrm{ft})$	SW		200
1	$2108-1$	PMC2-2	$2 \mathrm{~m}(6 \mathrm{ft})$	SW		201
2	$2108-1$	PMC3-3	$2 \mathrm{~m} \mathrm{(6ft)}$	SW		202
3	$3534-4$	Port 5	$2 \mathrm{~m} \mathrm{(6ft)}$	SW		203
4	$3534-4$	Port 4	$2 \mathrm{~m} \mathrm{(6ft)}$	SW		204
5	Open		$2 \mathrm{~m} \mathrm{(6ft)}$	SW		205
6	s1411201e0	P2-I3	$25 \mathrm{~m} \mathrm{(82} \mathrm{ft)}$	SW		206
7	s1411203e0	P2-13	$25 \mathrm{~m}(82 \mathrm{ft)})$	SW		207

Table 5 shows an example of a completed zone definition worksheet.
Table 5. Example of a completed zone definition worksheet

Zone member type (switch, port, WWN)	Zone member	Zone configuration name	Comments
Port (ID, P)	1,5	Test_Zone_Config_1	K38 node 1
Port (ID, P)	1,0	Same	$2108-1$ PMC1-1
Port (ID, P)	3,3	Same	$2108-2$ PMC1-4
Port (ID, P)	3,4	Same	K38 node 2
Port (ID, P)	1,7	Same	EMC-1 dir 5 port 0
Port (ID, P)	3,7	Same	EMC-1 dir 5 port 0

Table 6shows an example of a completed zone configuration worksheet.
Table 6. Example of a completed zone configuration worksheet

Zone member type (switch, port, WWN)	Zone member	Zone configuration name	Connects to
Port (ID, P)	1,1	Test_Zone_Config_1	$2108-1$ PMC2-2
Port (ID, P)	1,2	Same	$2108-1$ PMC3-3
Port (ID, P)	1,3	Same	$2108-1$ PMC1-1
Port (ID, P)	1,4	Same	$2108-2$ PMC2-2
Port (ID, P)	1,5	Same	$2108-2$ PMC3-3
Port (ID, P)	1,6	Same	s1411201e0 P2-I3
Port (ID, P)	1,7	Same	s1411203e0 P2-I3
Port (ID, P)	15,0	Same	$2108-1$ PMC2-5
Port (ID, P)	15,1	Same	$2108-1$ PMC1-4
Port (ID, P)	15,2	Same	$3534-7$ port 6
Port (ID, P)	15,3	Same	$2108-1$ PMC3-6
Port (ID, P)	15,4	Same	$2108-2$ PMC2-5
Port (ID, P)	15,5	Same	$2108-2$ PMC3-6
Port (ID, P)	15,6	Same	s1411201e0 P3-I3

Chapter 3. Installing and configuring the $\mathbf{3 5 3 4}$ Model F08

You can install the 3534 Model F08 as a stand-alone unit or in a rack that meets Electronic Industries Association (EIA) standards.

This chapter describes how to install and configure the 3534 Model F08 and includes the following information:

- Installation and safety considerations
- Installing the 3534 Model F08 as a stand-alone unit
- Installing the 3534 Model F08 in an EIA rack
- Configuring, connecting, and accessing the 3534 Model F08

For information about the features of the 3534 Model F08 and what is included in each 3534 Model F08 package, see "Overview of the 3534 Model F08" on page 1.

Installation and safety considerations

The following guidelines must be followed when installing the switch:

- Verify that the supply circuit, line fusing, and wire size that will be used are adequate according to the electrical rating on the switch nameplate.
- The switch is designed for an internet protocol (IT) power system with phase-to-phase 230 V . The power supply might still be energized, even if internal power supply over current protection devices have opened.
DANGER
When powering the unit with a line-to-line connection greater than 200 V ac, a potential shock hazard can arise during a fault condition. Therefore, double-pole protection is required. (5)
- Ensure the ambient air temperature does not exceed $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$. This is particularly important if the switch is to be installed in a closed or multirack assembly.
- Ensure the volume of air flow available to the switch is at least 300 cubic feet per minute, and that the front and rear air vents are not blocked.

If the switch is being installed in a rack:

- Ensure the ambient air temperature does not exceed $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$. This is particularly important if the switch is to be installed in a closed or multirack assembly.
- Ensure the volume of air flow available to the switch is at least 300 cubic feet per minute, and that the front and rear air vents are not blocked.
- The switch requires a rack space that is 1 unit high, 48.26 cm (19 in.) wide, and 60.96 cm (24 in.) deep.
- Verify that all equipment installed in the rack has a reliable branch circuit ground connection. Do not rely on a connection to a branch circuit, such as a power strip.
- Verify that the additional weight of the switch does not unbalance the rack or exceed the weight limits of the rack.
- Secure the rack to ensure stability in the event of an earthquake.

Installing the 3534 Model F08 as a stand-alone unit

Follow this procedure to install the switch as a stand-alone unit on a flat surface.

Time required

Approximately 10 minutes.

Installation instructions

Complete the following steps to install the switch as a stand-alone unit:

1. Unpack the 3534 Model F08. Verify that all ordered items are present.
2. Turn the switch upside down. Lay it on its top.
3. Apply the adhesive rubber feet.

Attention: Install the rubber feet on the switch to minimize the chance of the switch sliding off the supporting surface.
a. Clean the four depressions on the chassis bottom to ensure that they are free of dust.
b. Place one rubber foot in each depression with the adhesive side against the chassis.
c. Press the rubber feet firmly into place.
4. Return the switch to its normal upright position. Place it on a sturdy flat surface.
5. When you are ready to supply power to the switch, connect the power cable to the 3534 Model F08 power supply and to a power outlet. (The power supply does not have an ac switch.)
The 3534 Model F08 automatically runs a POST each time power is supplied to it.

DANGER

An electrical outlet that is not correctly wired could place a hazardous voltage on metal parts of the system or the products that attach to the system. It is the customer's responsibility to ensure that the outlet is correctly wired and grounded to prevent an electrical shock. (1)

Attention: Ensure that the power cable is routed so that it is not pinched or exposed to stress.

Note: Do not connect the switch to the network until the internet protocol (IP) address is correctly set. For more information, see"Configuring, connecting, and accessing the 3534 Model F08" on page 15 .

Installing the 3534 Model F08 in an EIA rack

Follow this procedure to install the 3534 Model F08 in a rack that meets EIA standards.

CAUTION:

The 3534 Model F08 switch is designed to be installed by the customer, and is certified as "customer setup". Make sure that the system or rack into which the switch will be installed is also designed and certified for customer setup; if it is not, then the switch must be installed by a CE. (1)

Time required

Approximately 30 minutes.

Items required

The following items are required to install the 3534 Model F08 in an EIA rack:

- Straight slot screwdriver
- Rack space: 1 rack unit high, 48.26 cm (19 in.) wide, and 60.96 cm (24 in .) deep
- Rack mount kit; see Table 7 for a list of the parts that are included in the kit
- Power cable, provided with the switch
- Power outlet

Attention: Use the exact screws specified in the procedure for use with the switch chassis. Using screws longer than $3 / 16$ in. can damage the switch. The different types of screws are listed in Table 7.

Note: Firmly tighten all the screws that are used in this procedure.

Installation instructions

This section describes the basic procedure of installing the 3534 Model F08 in an EIA rack, and then provides detailed steps.

Note: To ensure that the switch is adequately cooled, install it with the port side (the side with the SFP) facing the aisle where exhaust air is released (usually referred to as the service aisle). This prevents the fans from pulling in heated exhaust air.

Basic procedure

The basic rack-mount installation procedure consists of the following four steps:

1. Mount the moving slide and the lock mounting ears to the switch.
2. Mount the fixed portion of the slide in the rack.
3. Insert the switch and move a portion of the slide into the fixed portion on the rack.
4. Lock the switch in the rack using the mounting ears installed in step 1.

Detailed steps

To complete the rack-mount installation procedure, follow these detailed steps:

1. Unpack the 3534 Model F08. Verify that all ordered items and parts are present. See Table 7 for a list of parts and the quantities supplied in each rack mount kit.

Table 7. Parts supplied with the rack mount kit

Item	Description	Quantity
$\mathbf{1}$	Rack mount slide (inner and outer slide)	2
$\mathbf{2}$	Right rack mount bracket (optional bracket for the front of the switch)	1
$\mathbf{3}$	Left rack mount bracket (optional bracket for the front of the switch)	1
$\mathbf{4}$	Rack mounting bracket (3-hole)	4
$\mathbf{5}$	Nut clip, M5	11
$\mathbf{6}$	Screw, 8-32 x 3/16 in., zinc	11
$\mathbf{7}$	Screw, M5 $\times 12$	11
$\mathbf{8}$	Bracket to slide rack kit (contains items 9-12)	1
$\mathbf{9}$	Screw, 8-32 $\times 3 / 8$ in., zinc	5

Table 7. Parts supplied with the rack mount kit (continued)

Item	Description	Quantity
$\mathbf{1 0}$	Washer, flat, No. 8	5
$\mathbf{1 1}$	Washer, lock, No. 8	5
$\mathbf{1 2}$	Nut, hex, 8-32	5

Note: Because this rack mount kit is distributed with various switches, you might end up with extra parts that are not needed for the installation of your switch into your rack assembly.
2. Separate the inner and outer slides.
a. Open one of the slides until the lock engages.
b. Press the lock release lever, and remove the inner rail from the outer rail, as shown in Figure 7

Figure 7. Moving slide
c. Repeat steps $2 \mathrm{a}-2 \mathrm{~b}$ for the other rail.

Note: For racks with flush-mount doors such as the 9306 Netfinity ${ }^{\circledR}$ racks, you can eliminate the installation of the ears. Instead, use the rack-mount slides by attaching the 3534 Model F08 to the set of mounting holes, which are offset 2.62 cm (3 in.) into the rack.
3. Install the inner (smaller) slide on the 3534 Model F08 chassis.
a. Position the flat side of the inner rail along one side of the switch, aligning the holes in the rail with the threaded holes in the side of the switch chassis. The chamfered end of the inner rail should face toward the rear of the switch (away from the ports) as shown in Figure 8 on page 13 .
b. Attach the inner rail using two of the $8-32 \times 3 / 16 \mathrm{in}$. zinc screws $\mathbf{6}$.

Attention: Using screws longer than $3 / 16$ in. can damage the switch.
c. Repeat steps $3 \mathrm{a}-3 \mathrm{~b}$ for the second inner rail on the other side of the switch chassis.
4. Optional step: If desired, install the right rack mount bracket 2 and the left rack mount bracket 3 on the switch chassis. These brackets secure the switch to the rack as shown in Figure 8 on page 13.

Figure 8. Mounting the moving portion of the slide and the mounting brackets to the switch
a. Position the left rack mount bracket at the left front corner of the switch chassis, so that the two holes in the bracket align with the two threaded holes in the switch chassis.
b. Attach the bracket using two of the $8-32 \times 3 / 16$ in. zinc screws $\mathbf{6}$.

Attention: Using screws longer than $3 / 16 \mathrm{in}$. can damage the switch.
c. Repeat steps $4 \mathrm{a}-4 \mathrm{~b}$ for the right rack mount bracket on the right front corner of the switch chassis.
5. Attach all four of the 3 -hole rack mounting brackets 4 as shown in Figure 9 on page 14.

Figure 9. Mounting the fixed portion of the rail and the locking ears to the rack
a. Position a 3 -hole bracket 4 at the end of one of the outer slides.
b. Attach the bracket using the $8-32 \times 3 / 8 \mathrm{in}$. zinc screws 9 . Make sure that the screw heads are inside the slides.
c. Place one of each of the following items on the outer end of the screw in the order listed:

1) Washer flat No. $8 \mathbf{1 0}$
2) Washer, lock No. 811
3) Nut, hex, 8-32 12
d. Repeat steps $5 \mathrm{a}-5 \mathrm{~b}$ for the three remaining rail ends.
6. Install the outer (larger) slides in the rack, as shown in Figure 9 .
a. At the desired height, install the five M5 nut clips $\mathbf{5}$; put three in the front of the rack and two in the back. The middle clip in the front of the rack is for the locking ears.
b. Attach the slides using four M5 $\times 12$ screws 7 .
c. Repeat steps 6a-6b for the other rail.
7. Install the switch in the rack.
a. Position the switch in front of the rack. Insert it into the rack by sliding the inner slides on the switch into the outer slides on the rack. See Figure 10 on page 15

Figure 10. Inserting slides into the rack rails
b. Verify the alignment of the slides by sliding the switch in and out of the rack. Any difficulty moving the switch indicates lateral stress or misalignment. If this occurs, adjust the slide positions until the movement is smooth.
8. Optional step: If the right rack mount bracket and the left rack mount bracket were installed on the front corners of the switch (see step 4 on page 12), attach both brackets to the cabinet rack using M5 x 12 screws 7 .

DANGER

An electrical outlet that is not correctly wired could place a hazardous voltage on metal parts of the system or the products that attach to the system. It is the customer's responsibility to ensure that the outlet is correctly wired and grounded to prevent an electrical shock. (1)
9. When you are ready to supply power to the switch, connect the power cable to the 3534 Model F08 power supply and to a power outlet. The power supply does not have an ac switch.
The 3534 Model F08 automatically runs a POST each time power is supplied to it.
Attention: Ensure that the power cable is routed so that it is not pinched or exposed to stress when the switch is moved on the slides.

Note: Do not connect the switch to the network until the IP address is correctly set or the default IP address is verified as not conflicting with the existing IP addresses in the same network. For more information, see "Configuring, connecting, and accessing the 3534 Model F08"

Configuring, connecting, and accessing the 3534 Model F08

Follow this procedure to configure, connect, and access the 3534 Model F08 for use in a network fabric.

Time required

Items required

The following items are required to configure, connect, and access the 3534 Model F08:

- A 3534 Model F08 that is installed and connected to a power source
- A workstation that has a terminal emulator application (such as HyperTerminal)
- A serial cable that is provided with the switch, for connecting the switch to the workstation
- An unassigned IP address
- An Ethernet cable for connecting the switch to the workstation or to a network containing the workstation
- Short wavelength (SWL) or long wavelength (LWL) SFPs and fiber optic cables, as required

Configuring the switch

To configure the 3534 Model F08, replace the factory IP address and related information with the IP information that is provided by your network administrator. Perform the following steps:

1. Remove the shipping plug from the serial port. Insert the serial cable that is provided with the 3534 Model F08.
2. Connect the other end of the serial cable to an RS-232 serial port on the workstation. If no RS-232 serial port is available on the workstation, you can remove the adapter that is on the end of the serial cable. This enables you to use the RJ-45 connector to create a serial connection.
3. Verify that the switch is on and that a POST has completed.
4. Disable any serial communication programs that are running on the workstation.
5. Open a terminal emulator application, such as HyperTerminal on a PC or TERM in a UNIX ${ }^{\circledR}$ environment. Configure the switch. For a Windows ${ }^{\circledR} 95,98$, 2000, or NT environment, use the configuration parameters shown in Table 8

Table 8. Configuration parameters

Parameter	Value
Bits per second	9600
Databits	8
Parity	None
Stop bits	1
Flow control	None

In a UNIX environment, type the following command:
tip /dev/ttyb -9600
6. From the terminal emulator application, log on to the switch through the serial connection. The default administrative logon is admin, and the default password is password.
7. Type the following command:
ipAddrSet
8. Type the appropriate information at the following prompts:

Note: The variables within brackets represent the default settings that your information replaces.

- Ethernet IP Address [10.77.77.77]:

Type the new Ethernet IP address.

- Ethernet Subnetmask [0.0.0.0]:

Type the new Ethernet subnetmask.

- Fibre Channel IP Address [none]:

Type the new fibre-channel IP address, if desired.

- Fibre Channel Subnetmask [none]:

Type the new fibre-channel subnetmask if desired.

- Gateway Address [172.17.1.1]:

Type the new gateway address.

- Set IP address now? [y = set now, $n=$ next reboot]:

Type y to set the IP address now.
9. Type the following command to verify that the address was set correctly:
ipAddrShow
10. After you verify the IP address, remove the serial cable and replace the shipping plug in the serial port.

Note: Use the serial port only during the initial setting of the IP address and for service purposes. Do not use the serial port during normal switch operation or for regular maintenance.
11. Record the IP address for future reference.

Connecting and accessing the switch

Complete the following steps to connect the switch to the workstation using an Ethernet cable (this can be a direct connection or through a network), and to access the switch:

1. Remove the shipping plug from the Ethernet port.
2. Insert one end of an Ethernet cable in the Ethernet port.
3. Connect the other end of the Ethernet cable to the workstation or to an Ethernet network that contains the workstation.

Note: You can now access the switch remotely, using Telnet or Web Tools. Ensure that the switch is not being modified simultaneously from any other connections during the remaining steps.
4. Log on to the switch using Telnet. The default administrative logon is admin, and the default password is password.
5. Modify the domain IDs if desired.

Note: The default domain ID is 1 . If the domain ID is already in use when the switch is connected to the fabric, the domain ID for the new switch is automatically reset to a unique value. You can determine the domain IDs that are currently in use by issuing the Telnet fabricShow command. For more information about Telnet commands, see the Brocade Fabric OS Reference.
a. Type the following command to disable the switch: switchDisable
b. Type the following command: configure
c. Type y at the Fabric parameters prompt. For example:

Fabric parameters (yes, y, no, n): [no] y
d. Type a unique domain ID (such as the domain ID used by the previous switch, if still available) at the Domain prompt. For example:
Domain: (1..239) [1] 3
e. Complete the remaining prompts, or press CTRL+D to accept the remaining settings without completing all the prompts.
f. Type the following command to enable the switch: switchEnable
6. Optional step: Specify any custom status policies for the fabric.
a. Type the following command at the prompt:

```
switchStatusPolicySet
```

b. Specify the desired status policies. To completely deactivate the alarm for a particular condition, type 0 at the prompt for that condition.
7. Add SFPs and fiber optic cables to the ports as required.

Note: The ports and cables that are used in trunking groups must meet specific requirements. For information about these requirements, see the Brocade ISL Trunking User's Guide.
a. Remove the shipping plug from the ports to be used.
b. Position the SFP so that the key (the tab near the cable end of the SFP) is on top. Insert the SFP into the port until it is firmly seated and the latching mechanism makes a clicking sound.

Note: The SFP is keyed so that it can only be correctly inserted into the port. If the module does not slide in easily, try turning it over. Do not force the module.
c. Connect the fiber-optic cables to the SFPs as appropriate to the fabric topology. Position each cable so that the key (the ridge on one side of the cable connector) is aligned with the slot in the SFP. Insert the cable into the SFP until it is firmly seated, and the latching mechanism makes a clicking sound.

Note: The cable is keyed so that it can only be correctly inserted into the SFP. If the cable does not slide in easily, try turning it over. Do not force the cable.
8. Verify the correct operation of the 3534 Model F08. Type the following command at the Telnet prompt:
switchShow
This command provides information about the status of the switch and the ports. For more information about this and other commands, see the Brocade Fabric OS Reference.

Note: Back up the configuration after any initial changes and periodically thereafter. This ensures that a complete configuration is available if you need to install a replacement switch. For information about backing up the configuration, see the Brocade Fabric OS Procedures Guide.

Chapter 4. Operating the 3534 Model F08

This chapter describes how to operate the 3534 Model F08 and includes the following information:

- Turning the 3534 Model F08 on and off
- Interpreting LED activity
- Interpreting POST
- Maintaining the switch

Turning the 3534 Model F08 on and off

To turn the 3534 Model F08 on, plug it into a power outlet. The power supply does not have an ac switch. To turn the switch off, unplug it from the power outlet.

Note: Unplugging the switch triggers a system reset. When the switch is plugged in, all devices are returned to the initial state and the switch runs a POST. For information about the POST, see "Interpreting POST" on page 22.

Interpreting LED activity

You can determine system activity and status by monitoring the activity of the LEDs on the switch.

Note: The LEDs might flash yellow during diagnostic tests and green, orange, or yellow during a POST. This is normal. This does not indicate that there is a problem unless the LEDs do not return to a normal pattern after the POST is complete.

The 3534 Model F08 has the following LEDs:

Port status LED

These LEDs indicate the status of each port. There are eight port status LEDs that are located above and to the left of each port on the front panel.
Port speed LED
These LEDs indicate the speed of each port. There are eight port speed LEDs that are located above and to the right of each port on the front panel.

Switch status LED
These LEDs indicate whether the switch is on and has successfully started. There are two switch status LEDs, one on the front panel and one on the back.

Ethernet port LED

These LEDs indicate the speed and status of the Ethernet link. There are two Ethernet port LEDs that are located to the left of the Ethernet port on the right side of the front panel.

LEDs on the front panel

Figure 11 on page 20 shows the front panel with the different LEDs identified.

Figure 11. Front panel LEDs
Table 9 describes the front panel LEDs and lists:

- Name
- Location
- Colors of each LED
- Status of the switch that is associated with each LED color
- Action that you can take in response to that status

Table 9. Front panel LED patterns during normal operation

Name of LED	Location of LED	Color of LED	Status of hardware	Action
Switch status	To the right of the serial port	No light	Either the switch is off, the startup process is not complete, or the startup has failed.	Verify that the switch has power and that the startup process has had time to complete. If there is still no light, contact IBM.
		Steady green	The switch is on, and startup has successfully completed.	No action is required.
		Slow-flashing green	One or more ports has failed its diagnostic check.	Verify that the correct device is connected to the port.

Table 9. Front panel LED patterns during normal operation (continued)

Name of LED	Location of LED	Color of LED	Status of hardware	Action
Port status	Above and to the left of each port	No light	No light or signal carrier (media or cable) is detected.	Verify that the media and the cable are both firmly seated and functional.
		Steady green	The port is online (it is connected to an external device), but has no traffic.	No action is required.
		Slow-flashing green (on 1 second; off 1 second)	The port is online, but is segmented, which indicates a loopback cable or an incompatible switch.	Verify that the correct device is connected to the port.
		Fast-flashing green (on $1 / 4$ second; off 1/4 second)	The port is in an internal loopback (diagnostic).	No action is required.
		Flickering green	The port is online, and traffic is flowing through it.	No action is required.
		Steady orange	The port is receiving light, or a signal carrier is detected, but it is not yet online.	No action is required.
		Slow-flashing orange (on 1 second; off 1 second)	The port is disabled as a result of diagnostics or a portDisable command.	Reset the port from a management station.
		Fast-flashing orange (on $1 / 4$ second; off 1/4 second)	The port is faulty.	Reset the switch from a management station.
		Alternating green and yellow	The port is bypassed.	Reset the port from a management station.
Port speed	Above and to the right of each port	No light	The port is transmitting or receiving at 1 Gbps.	No action is required.
		Steady green	The port is transmitting or receiving at 2 Gbps.	No action is required.
Ethernet link speed	Leftmost of the two LEDs to the left of the Ethernet port	No light	The port is transmitting or receiving at 10 Mbps .	No action is required.
		Steady green	The port is transmitting or receiving at 100 Mbps.	No action is required.
Ethernet status	Rightmost of the two LEDs to the left of the Ethernet port	No light	No Ethernet traffic is flowing through the RJ-45 port.	Verify that the switch is on and that the Ethernet cable is firmly seated.
		Flickering green	Ethernet traffic is flowing through the RJ-45 port.	No action is required.

LEDs on the back panel

Figure 12 shows the back panel of the switch with the switch status LED identified.

SJ000354
Figure 12. Back panel LED
Table 10 describes the back panel LED and lists:

- Name
- Location
- Colors of the LED
- Status of the switch that is associated with each LED color
- Actions that you can take in response to that status

Table 10. Back panel LED patterns during normal operation

Name of LED	Location of LED	Color of LED	Status of hardware	Action
Switch status	Center of back panel	No light	Either the switch is off, the startup process is not complete, or the startup has failed.	Verify that the switch is on and that the startup process has had time to complete. If there is still no light, contact IBM.
		Steady green	The switch is on, and startup has successfully completed.	No action is required.
		Steady yellow	A diagnostic test is in progress, or one or more ports are faulty.	If no diagnostic tests are running, check the Port Status LEDs for fault indicators (see Table 9 on page 20 .
		Slow-flashing yellow	A diagnostic failure has occurred on one or more ports.	Errors might be listed in the error log. Refer to the Brocade Diagnostic and System Error Message Reference for more information.

Interpreting POST

The 3534 Model F08 automatically performs a POST when the switch is plugged in, restarted, or the system is reset. A POST includes a number of diagnostic tests. Test results can be monitored through the LED activity, error log, Telnet command, from a terminal screen, and so on.

A POST completes in 4.5 minutes. A slightly longer version of the memory test is performed after cold starts. A cold start occurs after a complete power cycle, when
the switch is unplugged, then plugged back in. A warm start is any other type of startup, such as an operating system restart or switch panic.

A POST consists of the following steps:

1. Preliminary POST diagnostics are run.
2. The operating system is initialized.
3. The hardware is initialized.
4. Diagnostic tests are run on a number of functions, including:

- Internal connections and circuitry
- Port functionality
- Ability to send and receive frames
- Ability to implement QuickLoop functionality
- All aspects of memory, parity, statistics counters, and correct serialization

5. A universal port configuration is performed.
6. The links are initialized.
7. The fabric is analyzed. If ports are connected to other fabric elements, the principal switch in the fabric is identified.
8. The port addresses are assigned. The switch attempts to keep any previously assigned port addresses.
9. The unicast routing tables are constructed.
10. The port is enabled.

To determine whether a POST has completed without errors, verify that all LEDs return to a normal state after the POST is complete. If one or more LEDs continue to flash, see "Interpreting LED activity" on page 19 Verify that the flashing is not due to the switch being configured to beacon.

Note: The switchBeacon command sets the switch beaconing mode on or off if the operand is 1 or 0 respectively. When beaconing mode is turned on, the port LEDs flash orange in a running pattern from port 0 - port 7, port 7 - port 0 , and then back to port 7 again.

For more information about beaconing, see the Brocade Fabric OS Procedures Guide.

Note: When POST completes, verify that the switch prompt displays on a computer terminal that is connected to the switch. If the prompt does not display, press the Enter key. If the prompt still does not display, contact IBM.

If errors are detected during a POST, error messages are written to the system error log. You can view this error log by using the errShow command. For information about error messages, see the Brocade Diagnostic and System Error Message Reference.

Maintaining the switch

Diagnostic tests are provided to help you to identify problems in the hardware and the firmware. The diagnostic tests include tests of internal connections and circuitry, fixed media, and any SFP modules and fiber-optic cables that are in use. You can run the tests either using Telnet or through a terminal that is set up for a serial connection to the switch. Some tests require that you connect the ports with
external cables. This enables the diagnostics to verify the serializer or deserializer interface, as well as the attached SFP and cable.

All diagnostic tests are run at link speeds of 1 Gbps and 2 Gbps . As a result, the transmit and receive speed of the links can be temporarily locked at one speed or the other while the diagnostic tests are running. For information about the specific diagnostic tests and how to run them, see the Brocade Diagnostic and System Error Message Reference.

Chapter 5. Replacing an SFP

This chapter contains procedures to replace a small form-factor pluggable (SFP) device.

Note: Simple network management protocol (SNMP) traps are generated when you remove and install an SFP. You do not need to unplug the switch to replace an SFP.

Figure 13 shows an IBM SFP.

SJ000317
Figure 13. IBM SFP

Time required

Approximately 20 seconds to remove and install an SFP.

Items required

None.
Note: This is a hands-only operation.

Removing an SFP

Complete the following steps to remove an SFP:

1. Pull forward on the tab on the front of the SFP.
2. Pull out the SFP.
3. Carefully move the SFP from side to side to unseat it.

Installing an SFP

Complete the following steps to install a new SFP:

1. Insert the SFP into the port.
2. Seat the connector firmly into the appropriate port slot. The latch prong locks and prevents the SFP from being removed accidentally.

Note: The SFP is keyed so that it can only be correctly inserted into the port. If the module does not slide in easily, try turning it over. Do not force the module.

Appendix A. Product specifications

This appendix contains the 3534 Model F08 specifications.

Switch components

The 3534 Model F08 contains the following components:

- A 1 U chassis, designed to be mounted in a 48.26 cm (19 in.) rack, with forced-air cooling that flows from the fan side of the switch to the cable side. You can also install the switch as a stand-alone unit.
- Eight ports, compatible with SFP optical media that are capable of operating at 2.125 Gbps or 1.0625 Gbps. Each port has a serializer/deserializer (SERDES) that accepts 10 -bit wide parallel data and serializes it into a high-speed serial stream. The parallel data must be 8 -bit to 10 -bit encoded data, or the equivalent.
- One RS-232 serial port (DB9 connector) on the front panel.
- One IEEE-compliant RJ-45 connector on the front panel for use with 10 Mbps or 100 Mbps Ethernet or in-band.
- Human-readable and bar code labels on the front and back panels.
- 20 LEDs:
- One LED on the front panel to indicate the overall switch status.
- Two LEDs for each of the eight ports to indicate port status and link speed.
- Two LEDs for the Ethernet port to indicate port status and link speed.
- One LED in the center of the back panel to indicate the overall switch status.
- One universal input power supply without an ac switch.
- Five fans:
- Two to cool the power supply.
- Three to cool the system board.

Air is pulled in through the rear intake and pushed out through the vents in the front panel. The fans are controlled automatically to run at the same speed:

- 5800 RPM for normal operation
- 9700 RPM if the ambient temperature inside the switch exceeds the upper threshold

See "Environmental specifications" on page 29 for the temperature specifications of the 3534 Model F08.

Facility specifications

To ensure correct operation of the switch, ensure that the facility meets the following specifications:

- An adequate supply circuit, line fusing, and wire size, according to the electrical rating on the switch nameplate.
- An air flow of at least 300 cubic feet per minute available to the switch.
- The power specifications listed in "Power supply specifications" on page 30
- The environmental specifications listed in "Environmental specifications" on page 29.
- Interference less than the standard levels listed in Table 11 on page 28, under Immunity.

Additionally, if you are installing the switch in an EIA rack:

- Ensure that all equipment has a reliable branch-circuit ground connection. Do not rely on a connection to a branch circuit, such as a power strip.
- Ensure that the rack is balanced and within the specified weight limits. Secure the rack mechanically to ensure stability in the event of an earthquake.

General specifications

The 3534 Model F08 is an 8-port, dual-speed, auto-sensing fibre-channel switch. It supports multiple F_port and FL_port connections, a single E_port connection, and distributed name server (DNS). It is electro-magnetic compatibility (EMC) compliant.

Table 11 lists the general specifications for the 3534 Model F08.
Table 11. General specifications

Specification	Description
Configured port types	The 3534 Model F08 supports multiple F_port and FL_port connections, and one E_port connection.
EMI rating	An operating 3534 Model F08 that conforms to the EMI radiation levels specified by the following regulations: - FCC Rules and Regulations, Part 15B, Class A level - CISPR22 Class A - EN55022 Class A - VCCI Class A ITE - AS/NZS 3548 Class A
System architecture	Nonblocking shared-memory switch
System processor	Intel ${ }^{\oplus} 80960 \mathrm{VH}, 100 \mathrm{MHz} \mathrm{CPU}$
ANSI fibre-channel protocol	FC-PH (Fibre Channel Physical and Signaling Interface standard)
Modes of operation	Fibre Channel Class 2 and Class 3
Fabric initialization	Complies with FC-SW 5.0
Internet protocol (IP) over fibre-channel (FC-IP)	Complies with FC-IP 2.3 of the FCA profile
Aggregate switch input/output (I/O) bandwidth	32 Gbps if all eight ports are running at 2 Gbps, full duplex
Frame buffers	26 buffers per E_port and 16 buffers per F_port at 2112 bytes per frame
Port-to-port latency	Less than 2 microseconds with no contention (the destination port is free)
Data transmission range	- Up to $13 \mathrm{~m}(42.65 \mathrm{ft})$ for passive copper - Up to $33 \mathrm{~m}(108.27 \mathrm{ft})$ for active copper - Up to $300 \mathrm{~m}(975 \mathrm{ft})$ for short wavelength optical link - Up to 10 km (32 820 ft) for long wavelength optical link

Table 11. General specifications (continued)

Specification	Description
Immunity	- IEC 61000-4-2 Severity Level 3 for Electrostatic Discharge - IEC 61000-4-3 Severity Level 3 for Radiated Fields - IEC 61000-4-4 Severity Level 3 for Fast Transients - IEC 61000-4-5 Severity Level 3 for Surge Voltage - IEC 61000-4-6 Conducted Emissions - IEC 61000-4-11 Voltage Variations

Physical specifications

Table 12 lists the physical specifications for the 3534 Model F08.
Table 12. Physical specifications

Dimension	Value
Height	$4.2 \mathrm{~cm}(1.69 \mathrm{in})$.
Depth	$26.4 \mathrm{~cm}(10.4 \mathrm{in})$.
Width	$42.8 \mathrm{~cm}(16.9 \mathrm{in})$.
Weight	$3.9 \mathrm{~kg}(8.5 \mathrm{lbs})$

Environmental specifications

Table 13 lists the environmental ranges that are acceptable when the 3534 Model F08 is operating and when it is nonoperating.

Table 13. Environmental specifications

Condition	Switch state	Acceptable range
Temperature	Operating	$10^{\circ}-40^{\circ} \mathrm{C}\left(50^{\circ}-104^{\circ} \mathrm{F}\right)$
	Nonoperating	$10^{\circ}-50^{\circ} \mathrm{C}\left(50^{\circ}-126^{\circ} \mathrm{F}\right)$
Humidity	Operating	8\% - 80\% RH noncondensing, at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$
	Nonoperating	8-80\% RH noncondensing, at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$
Altitude	Operating	$0-3 \mathrm{~km}(0-9843 \mathrm{ft})$ above sea level
	Nonoperating	0-12 km (0-39 372 ft) above sea level
Shock	Operating	150G, 2.7 MS duration, half sine
	Nonoperating	60G, 13 MS duration, trapezoid
Vibration	Operating	0.5G, $5-500-5 \mathrm{~Hz}$
	Nonoperating	2G, 5-500-5 Hz

Power supply specifications

The 3534 Model F08 has a universal power supply that is capable of functioning worldwide without voltage jumpers or switches. The power supply:

- Meets IEC 61000-4-5 surge voltage specifications
- Is autoranging, which means that it accommodates different input voltages and line frequencies

Table 14 lists the power supply specifications.
Table 14. Power supply specifications

Specification	Value
Outlet	Correctly wired, earth-grounded
Maximum output	75 watts
Maximum system power consumption	50 watts
Input voltage	$90-264 \mathrm{~V}$ ac
Input line frequency	$47-63 \mathrm{~Hz}$
Harmonic distortion	Active power factor correction per IEC BTU rating$600-3-2$ Inrush current Input line protection

Memory specifications

The 3534 Model F08 contains the types and amounts of memory listed in Table 15.
The centralized memory maximizes switch throughput by guaranteeing full transmit and receive bandwidth to all fibre-channel ports at all times.

Table 15. Memory specifications

Memory type	Amount
Main memory	32 MB of SDRAM
Flash memory	Dual 8 MB
Boot flash memory	512 KB of 8-bit wide memory for system startup

Optical port specifications

The optical ports in the 3534 Model F08 are compatible with short wavelength (SWL) and long wavelength (LWL) transceivers and fiber-optic cables. The type of SFP in use determines the strength of the light signal.

The optical ports meet all the required safety standards. For details, see "Regulatory specifications" on page 31 .

Serial port specifications

The serial port is on the front panel of the switch and uses an RS-232 connector.

Note: For dust and electrostatic discharge (ESD) protection, keep the cover on the serial port whenever it is not in use.

You can use the serial port to connect to a terminal to set the switch IP address without connecting to the fabric. You can also use it to reinitialize the switch defaults, which restores the factory configuration and returns the switch passwords to a known state. The serial ports parameters are 9600 baud, 8 data bits, no parity, 1 stop bit, and no flow control.

The switch requires a straight serial cable with a female 9-pin subminiature-D connector. Only pins 2,3 , and 5 are supported. If pin 7 is used, this signal must always be driven high, using the pinouts listed in Table 16.

Table 16. Cabling pinouts if pin 7 is used

Pin	Signal	Description
1		
2	TxData	Transmit data
3	RxData	Receive data
4		
5	GND	Logic ground
6		
7	CTS	Clear to send
8		
9		

Regulatory specifications

The 3534 Model F08 is certified for the regulatory specifications that are listed in Table 17.

Table 17. Regulatory specifications

Country or region	Safety specification	EMC specification
Canada	CSA 22.2 No. 60950 Third Ed.	CSA C108.8 Class A
United States	UL 60950 Third Ed., Info. Tech. Equip.	FCC Part 15, Subpart B, (CFR title 47) Class A
Japan	IEC 60950+A1+A2+A3+A4+A11	VCCI V-3/2000.04, Class A
International	IEC 60950+A1+A2+A3+A4+A11	CISPR22 Class A
Norway	Nemko IEC 60950+A1+A2+A3+A4+A11 (CB Report)	

Table 17. Regulatory specifications (continued)

Country or region	Safety specification	EMC specification
European Union (Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden, United Kingdom)	73/23/EEC based on compliance to EN 60950:92 +A1:93+A2:93+A3:95+ A4:96+A11:97 (CB report inclusive of county deviations); TUV-GS (Germany)	89/336/EEC EN 55022:1998 Class A EN 60825-1:1994/A11, -2 EN 61000-4-2 Severity Level 3 for Electro Static Discharge EN 61000-4-3 Severity Level 3 for Radiated Fields EN 61000-4-4 Severity Level 3 for Electrical Fast Transients EN 61000-4-5 Severity Level 3 for Surge Voltage EN 61000-4-6 Conducted Emissions EN 61000-4-8 Magnetic Fields EN 61000-4-11 Line Interruption
Australia and New Zealand		AS/NZS 3548:1995 Class A (radio interference)

Appendix B. Blank planning worksheets

This appendix contains the following blank worksheets that you can use when you plan the installation of a 3534 Model F08 in an operational environment:

- Planning worksheet
- Port configuration worksheet
- Zone definition worksheet
- Zone configuration worksheet

Make as many copies of the blank worksheets as you need to plan the installation of your switches. Give your system administrator copies of the completed worksheets.

For information about planning your installation, including examples of how to use these worksheets, see Chapter 2, "Planning the installation", on page 5

Planning worksheet

Table 18. Planning worksheet

Item	Description
Firmware level	
Firmware location:	
Server name	
Username	
Directory	
Switch name	
Domain ID	
FCnetID (fibre-channel IP address)	
FC netmask	
WWN	
Role	
Syslog daemon IP address	
Users defined - access level	
SNMP information:	
System description	
System contacts	
System location	
Event trap level 0 - 5	
Enable authentication traps	
RW community string	
RO community string	
Trap recipients IP address	
License keys	

Port configuration worksheet

Table 19. Port configuration worksheet

Port number	Device name	Device port	Cable length	Port type	Notes	Cable number
0						
1						
2						
3						
4						
5						
6						
7						

Zone definition worksheet

Table 20. Zone definition worksheet

Zone member type (switch, port, WWN)	Zone member	Zone configuration name	Comments
Port (ID, P)			

Zone configuration worksheet

Table 21. Zone configuration worksheet

Zone member type (switch, port, WWN)	Zone member	Zone configuration name	Connects to
Port (ID, P)			

Appendix C. Power cables

This appendix contains a list of power cables. Table 22 lists the country or region, feature number, part number, and the type of power cable. Illustrations of the power cables follow Table 22

Table 22. Power cables

Country or region	Feature code	Part number	Power cable
Australia	9831	$13 F 9940$	2.74 m (9 ft), $250 \mathrm{~V}, 10 \mathrm{~A}$
Canada	9800	6952300	$2.74 \mathrm{~m}(9 \mathrm{ft}), 125 \mathrm{~V}, 10 \mathrm{~A}$
Chicago	9986	6952301	$1.83 \mathrm{~m}(6 \mathrm{ft}) 250 \mathrm{~V}, 10 \mathrm{~A}$
China	9840	02 K 0546	2.74 m (9 ft), $250 \mathrm{~V}, 6 \mathrm{~A}$
Denmark	9821	$13 \mathrm{F9997}$	$2.74 \mathrm{~m}(9 \mathrm{ft}), 250 \mathrm{~V}, 10 \mathrm{~A}$
France	9820	$13 \mathrm{F9979}$	2.74 m (9 ft), $250 \mathrm{~V}, 10 \mathrm{~A}$
Israel	9827	14F0087	2.74 m (9 ft), $250 \mathrm{~V}, 10 \mathrm{~A}$
Italy	9830	14F0069	$2.74 \mathrm{~m}(9 \mathrm{ft}), 250 \mathrm{~V}, 10 \mathrm{~A}$
South Africa	9828	14F0015	2.74 m (9 ft), $250 \mathrm{~V}, 10 \mathrm{~A}$
Switzerland	9828	14F0051	$2.74 \mathrm{~m}(9 \mathrm{ft}), 250 \mathrm{~V}, 10 \mathrm{~A}$
Thailand	9833	1838574	$2.74 \mathrm{~m}(9 \mathrm{ft}), 250 \mathrm{~V}, 10 \mathrm{~A}$
United Kingdom	9825	14F0033	2.74 m (9 ft), $250 \mathrm{~V}, 10 \mathrm{~A}$
United States	9800	6952300	$2.74 \mathrm{~m}(9 \mathrm{ft}), 125 \mathrm{~V} 10 \mathrm{~A}$
Uraguay	9834	36 L 8880	$2.74 \mathrm{~m}(9 \mathrm{ft}), 250 \mathrm{~V}, 10 \mathrm{~A}$
The PDU cable that is shipped with the 3534 Model F08	None	36L8886	$2.74 \mathrm{~m}(9 \mathrm{ft}), 125 \mathrm{~V}, 10 \mathrm{~A}$

Figure 14. Power cable for Australia

Figure 15. Power cable for Canada and United States

Figure 16. Power cable for China

Figure 17. Power cable for Denmark

Figure 18. Power cable for France

Figure 19. Power cable for Israel

SJ000782
Figure 20. Power cable for Italy

Figure 21. Power cable for South Africa

Figure 22. Power cable for Switzerland

Figure 23. Power cable for Thailand

Figure 24. Power cable for United Kingdom

Figure 25. Power cable for Chicago

Figure 26. Power cable for Uraguay

Figure 27. PDU cable that is shipped with the 3534 Model F08

This information was developed for products and services offered in the U. S. A.
IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe on any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, N.Y. 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

IBM
Netfinity
TotalStorage
Intel is a registered trademark of Intel Corporation in the United States, other countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Electronic emission notices

This section gives the electronic emission notices or statements for the United States and other countries.

Federal Communications Commission (FCC) statement

This equipment has been tested and found to comply with the limits for a class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Properly shielded and grounded cables and connectors must be used in order to meet FCC emission limits. IBM is not responsible for any radio or television interference caused by using other than recommended cables and connectors or by unauthorized changes or modifications to this equipment. Unauthorized changes or modifications could void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Industry Canada compliance statement

Avis de conformite a la reglementation d'Industrie Canada: Cet appareil numerique de la classe A est conform a la norme NMB-003 du Canada.

European Community compliance statement

This product is in conformity with the protection requirements of EC Council Directive 89/336/EEC on the approximation of the laws of the Member States relating to electromagnetic compatibility. IBM cannot accept responsibility for any failure to satisfy the protection requirements resulting from a non-recommended modification of the product, including the fitting of non-IBM option cards.

This product has been tested and found to comply with the limits for class A Information Technology Equipment according to European Standard EN 55022. The limits for class A equipment were derived for commercial and industrial environments to provide reasonable protection against interference with licensed communication equipment.

Attention: This is a class A product. In a domestic environment, this product may cause radio interference in which case the user may be required to take adequate measures.

The standards compliance label on the 3534 Model F08 contains the CE mark which indicates that this system conforms to the provisions of the following European Council Directives, laws, and standards:

- Electro Magnetic Compatibility (EMC) Directive 89/336/EEC and the Complementary Directives 92/31/EEC and 93/68/EEC.
- Low Voltage Directive (LVD) 73/23/EEC and the Complementary Directive 93/68/EEC.
- EN50082-2/EN55024:1998 (European Immunity Requirements)
- EN61000-3-2
- EN61000-3-3/JEIDA (European and Japanese Harmonics Specification)
- Ring wave test

Where shielded or special cables (for example, cables fitted with ferrites) are used in the test to make the product comply with the limits:

Properly shielded and grounded cables and connectors must be used in order to reduce the potential for causing interference to radio and TV communications and to other electrical or electronic equipment. Such cables and connectors are available from IBM authorized dealers. IBM cannot accept responsibility for any interference caused by using other than recommended cables and connectors.

Germany compliance statement

Zulassungsbescheinigung laut Gesetz ueber die elektromagnetische
Vertraeglichkeit von Geraeten (EMVG) vom 30. August 1995.
Dieses Geraet ist berechtigt, in Uebereinstimmung mit dem deutschen EMVG das
EG-Konformitaetszeichen - CE - zu fuehren.
Der Aussteller der Konformitaetserklaeung ist die IBM Deutschland.
Informationen in Hinsicht EMVG Paragraph 3 Abs. (2) 2:
Das Geraet erfuellt die Schutzanforderungen nach EN 50082-1 und EN 55022 Klasse A.

> Nach dem EMVG:_|t¹|
＂Geraete duerfen an Orten，fuer die sie nicht ausreichend entstoert sind，nur mit besonderer Genehmigung des Bundesministeriums fuer Post und
Telekommunikation oder des Bundesamtes fuer Post und Telekommunikation betrieben werden．Die Genehmigung wird erteilt，wenn keine elektromagnetischen Stoerungen zu erwarten sind．＂（Auszug aus dem EMVG，Paragraph 3，Abs．4）

Dieses Genehmigungsverfahren ist nach Paragraph 9 EMVG in Verbindung mit der entsprechenden

Kostenverordnung（Amtsblatt 14／93）kostenpflichtig．
Nach der EN 55022：
＂Dies ist eine Einrichtung der Klasse A．Diese Einrichtung kann im Wohnbereich Funkstoerungen verursachen．in diesem Fall kann vom Betreiber verlangt werden， angemessene Massnahmen durchzufuehren und dafuer aufzukommen．＂

Anmerkung：
Um die Einhaltung des EMVG sicherzustellen，sind die Geraete wie in den Handbuechern angegeben zu installieren und zu betreiben．

Japanese Voluntary Control Council for Interference（VCCI）class 1 statement

この装置は，情報処理装置等電波障害自主規制協議会（VCCI）の基準
に基づくクラス A 情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ず るよう要求されることがあります。

Korean Government Ministry of Communication（MOC）statement

Please note that this device has been approved for business purposes with regard to electromagnetic interference．If you find that this is not suitable for your use，you may exchange it for one with a non－business use．

Taiwan class A compliance statement

> 警告使用者:
> 這是甲類的資訊崕品, 在居住的環境中使用時, 可能會造成射頻干擾, 在這種情況下,使用者會被要求探取某些適當的封策。

Glossary

This glossary provides definitions for the fibre-channel and switch terminology used for the IBM 3534 Model F08.

This glossary includes selected terms and definitions from:

- Information Technology Vocabulary by Subcommittee 1, Joint Technical Committee 1, of the International Organization for Standardization and the International Electrotechnical Commission (ISO/IEC JTC1/SC1). Definitions are identified by the symbol (I) after the definition; definitions taken from draft international standards, committee drafts, and working papers by ISO/IEC JTC1/SC1 are identified by the symbol (T) after the definition, indicating that final agreement has not yet been reached among the participating National Bodies of SC1.
- The IBM Glossary of Computing Terms, available online at the following Web site: www.ibm.com/ibm/terminology/
- The Storage Networking Dictionary, available online at the Storage Networking Industry Association (SNIA) Web site: www.snia.org/education/dictionary/

The following cross-reference conventions are used in this glossary:

See Refers you to (a) a term that is the expanded form of an abbreviation or acronym, or (b) a synonym or more preferred term.

See also

Refers you to a related term.
8B/10B encoding. An algorithm for encoding data for transmission in which each 8 -bit data byte is converted to a 10 -bit transmission character. $8 \mathrm{~B} / 10 \mathrm{~B}$ encoding supports continuous transmission with a balanced number of ones and zeros in the code stream and detects single bit transmission errors.
access control list (ACL). A list that specifies the users and groups allowed to access a particular file or directory.

ACL. See access control list.
address identifier. An address value used to identify the source (S_ID) or destination (D_ID) of a frame.

Address Resolution Protocol (ARP). In the Internet suite of protocols, the protocol that dynamically maps an Internet Protocol (IP) address to an address used by a supporting metropolitan or local area network such as Ethernet or token-ring.
alias address identifier. One or more address identifiers which can be recognized by a node port (N_port) in addition to its N_port identifier. Alias address identifiers are used to form groups of N_ports so that frames can be addressed to a group rather than to individual N_ports.
alias AL_PA. An arbitrated loop physical address (AL_PA) value recognized by a loop port (L_port) in addition to the AL_PA assigned to the port. See also arbitrated loop physical address.
alias server. A fabric software facility that supports multicast group management.

AL_PA. See arbitrated loop physical address.
American National Standards Institute (ANSI). An organization that establishes the procedures by which accredited organizations create and maintain voluntary industry standards in the United States.

ANSI. See American National Standards Institute.
API. See application programming interface.
application programming interface (API). A set of run-time routines or system calls that allows an application program to use a particular service provided by either the operating system or another licensed program.
application-specific integrated circuit (ASIC). In computer chip design, an integrated circuit created by first mounting an array of unconnected logic gates on a substrate and later connecting these gates in a particular configuration for a specific application. This design approach allows chips for a variety of applications to be made from the same generic gate array, thereby reducing production costs.

ARB. See arbitrate primitive signal.
arbitrate primitive signal. A primitive signal that is transmitted as the fill word by a loop port (L_port) to indicate that the L_port is arbitrating to access to the loop. See also arbitrated loop.
arbitrated loop. A shared 100 MBps fibre-channel transport structured as a loop, and supporting up to 126 devices and one fabric attachment. A port must successfully arbitrate before a circuit can be established.
arbitrated loop physical address (AL_PA). An 8-bit value used to identify a participating device in an arbitrated loop.
arbitration wait timeout value (AW_TOV). The minimum time an arbitrating L_port waits for a response before beginning loop initialization.

ARP. See Address Resolution Protocol.

ASIC. See application-specific integrated circuit.
asynchronous transfer mode (ATM). A broadband technology for transmitting data over LANs or WANs, based on relaying cells of fixed size. Provides any-to-any connectivity, and nodes can transmit simultaneously.

ATM. See asynchronous transfer mode.
autoranging. A power supply that accommodates different input voltages and line frequencies.

AW_TOV. See arbitration wait timeout value.
bandwidth. (1) The capacity of a communications line, normally expressed in bits per second (bps). (2) The range of frequencies an electronic system can transmit or receive. The greater the bandwidth of a system, the more information the system can transfer in a given period of time. See also throughput.
basic input/output system (BIOS). The personal computer code that controls basic hardware operations, such as interactions with diskette drives, hard disk drives, and the keyboard.

BB_credit. See buffer-to-buffer credit.

beginning running disparity. The disparity at the transmitter or receiver when the special character associated with an ordered set is encoded or decoded. See also disparity.

BER. See bit error rate.

BIOS. See basic input/output system.
BISR. Built-in self-repair.
bit error rate (BER). The probability that a transmitted bit will be erroneously received. The BER is measured by counting the number of bits in error at the output of a receiver and dividing by the total number of bits in the transmission. BER is typically expressed as a negative power of 10. See also error.
block. A unit of application data from a single information category that is transferred within a single sequence.
bloom. Application-specific integrated circuit (ASIC) technology on which the 3534 Model F08 is based.

British thermal unit (BTU). A measurement of heat produced in one hour.
broadcast. (1) The simultaneous transmission of the same data to all nodes connected to a network. (2) The simultaneous transmission of data to more than one destination. See also multicast and unicast.

BTU. See British thermal unit.
buffer-to-buffer credit (BB_credit). Used to determine how many frames can be sent to a recipient when buffer-to-buffer flow control is in use. See also buffer-to-buffer flow control and end-to-end credit.
buffer-to-buffer flow control. Management of the frame transmission rate in either a point-to-point topology or in an arbitrated loop. See also buffer-to-buffer credit.
cascading. The process of connecting two or more fibre-channel hubs or switches together to increase the number of ports or extend distances. See also fabric and inter-switch link.
cascading switches. Switches that are interconnected to build large fabrics.
central processing unit (CPU). A part of a computer that includes the circuits that control the interpretation and execution of instructions. A CPU in the circuitry and storage that executes instructions. Traditionally, the complete processing unit was often regarded as the CPU, whereas today the CPU is often a microchip. In either case, the centrality of a processor or processing unit depends on the configuration of the system or network in which it is used.
chassis. The metal frame in which the switch and switch components are mounted.
circuit. An established communication path between two ports, which consists of two virtual circuits capable of transmitting in opposite directions. See also link.
class F. Connectionless service for inter-switch control traffic, which provides notification of delivery or nondelivery between two expansion ports (E_ports).
class 1. Service that provides a dedicated connection between two ports (also called connection-oriented service), with notification of delivery or nondelivery.
class 2. Connectionless service between ports with notification of delivery or nondelivery.
class 3. Connectionless service between ports without notification of delivery. Other than notification, the transmission and routing of class 3 frames is identical to that of class 2 frames.
class of service. A specified set of delivery characteristics and attributes for frame delivery.
CMI. See control message interface.
comma. A unique pattern (either 1100000 or 0011111) used in 8B/10B encoding to specify character alignment within a data stream. See also K28.5.
community. The relationship between a Simple Network Management Protocol (SNMP) agent and one or more SNMP managers. The community describes which SNMP manager requests that the SNMP agent should honor.
control message interface (CMI). A set of control signals that are used to pass hardware-level messages between ports.

CPU. See central processing unit.
CRC. See cyclic redundancy check.
credit. The number of receive buffers allocated to a transmitting node port (N_port), node loop port (NL_port), or fabric port (F_port). The credit is the maximum number of outstanding frames that can be transmitted by that N_port, NL_port, or F_port without causing a buffer overrun condition at the receiver.
cut-through. A switching technique that allows a routing decision to be made and acted upon as soon as the destination address of a frame is received. See also route.
cyclic redundancy check (CRC). 1) A redundancy check in which the check key is generated by a cyclic algorithm. 2) An error detection technique performed at both the sending and receiving stations.
data word. A type of transmission word that occurs within frames. The frame header, data field, and CRC all consist of data words. See also frame, ordered set, and transmission word.
defined zone configuration. The complete set of all zone objects that are defined in the fabric. The defined configuration may include multiple zone configurations.
See also enabled zone configuration and zone configuration.
destination ID (DID). The 3-byte destination ID of the destination device, in the 0xDomainAreaALPA format.

DID. See destination ID.
direct memory access (DMA). The transfer of data between memory and an input/output (I/O) device without processor intervention.
disparity. The relationship of ones and zeros in an encoded character. Neutral disparity indicates an equal number of ones and zeros, positive disparity indicates a majority of ones, and negative disparity indicates a majority of zeros.

DLS. See dynamic load sharing.

DMA. See direct memory access.
domain_ID. A unique identifier for the switch in a fabric. The domain_ID is usually automatically assigned by the switch, but can also be assigned manually. The value of domain_ID can be a value between 1-239.

DRAM. See dynamic random access memory.
dynamic load sharing (DLS). A dynamic distribution of traffic over available paths that permits recomputing of routes when an Fx_port or expansion port (E_port) changes status.
dynamic random access memory (DRAM). A storage in which the cells require repetitive application of control signals to retain stored data.

E_D_TOV. See error detect timeout value.
EE_credit. See end-to-end credit.
effective configuration. The particular zone configuration that is currently in effect. Only one configuration can be in effect at once. The effective configuration is built each time a zone configuration is enabled.

EIA. Electronic Industry Association.
EIA rack. A storage rack that meets the standards set by the Electronics Industry Association (EIA).
electromagnetic compatibility (EMC). The design and test of products to meet legal and corporate specifications dealing with the emissions and susceptibility of frequencies in the radio spectrum. Electromagnetic compatibility is the ability of various electronic equipment to operate properly in the intended electromagnetic environment.
electromagnetic interference (EMI). Waves of electromagnetic radiation, including but not limited to radio frequencies, generated by the flow of electric current.
electrostatic discharge (ESD). The flow of current that results when objects having a static charge come into close enough proximity to discharge.

ELP. Extended link parameters.
EMC. See electromagnetic compatibility.
EMI. See electromagnetic interference.
enabled zone configuration. The currently enabled configuration of zones. Only one configuration can be enabled at a time. See also defined zone configuration and zone configuration.
end-to-end credit (EE_credit). A credit scheme used to manage end-to-end flow control during the exchange
of frames between two communicating devices. See also end-to-end flow control and buffer-to-buffer credit.
end-to-end flow control. Flow control that occurs between two connected fibre-channel node ports (N_ports). See also end-to-end credit.

E_port. See expansion port.
error. In fibre-channel technology, a missing or corrupted frame, timeout, loss of synchronization, or loss of signal (link errors). See also loop failure.
error detect timeout value (E_D_TOV). The time that the switch waits for an expected response before declaring an error condition. Adjustable in 1 microsecond increments from 2-10 seconds.

ESD. See electrostatic discharge.
exchange. A set of one or more non-concurrent related sequences passing between a pair of fibre-channel ports. An exchange encapsulates a "conversation" such as a small computer systems interface (SCSI) task or an Internet Protocol (IP) exchange. Exchanges can be bidirectional and can be short or long lived.
expansion port (E_port). In the building of a larger switch fabric, a port is designated an expansion port (E_port) when it is used as an inter-switch expansion port to connect to the E_port of another switch.

Extended Fabrics. A feature that runs on the Fabric operating system (OS) and allows creation of a fibre-channel fabric interconnected over distances of up to $100 \mathrm{~km}(62.14 \mathrm{mi})$.
fabric. A complex network using hubs, switches, and gateways.

Fabric Assist. A feature that enables private and public hosts to access public targets anywhere on the fabric, provided they are in the same Fabric Assist zone. This feature is available only when both QuickLoop and zoning are installed on the switch.
fabric login (FLOGI). The process by which a device gains access to the fabric.
fabric loop port (FL_port). A loop-capable fabric port that is used to connect node loop ports (NL_ports) to the switch in a loop configuration.
fabric name. The unique identifier assigned to a fabric and communicated during login and port discovery.
fabric port (F_port). A port that is part of a fibre-channel fabric. An F_port on a fibre-channel fabric connects to a node's node port (N_port). See also fabric loop port and Fx_port.

Fabric Watch. A feature that runs on the Fabric operating system (OS) and allows monitoring and configuration of fabric and switch elements.

FC. See fibre channel.

FC-AL. See Fibre Channel Arbitrated Loop.

FCP. See fibre-channel protocol.

fibre channel (FC). A technology for transmitting data between computer devices at a data rate of up to 4 Gbps. It is especially suited for attaching computer servers to shared storage devices and for interconnecting storage controllers and drives.

Fibre Channel Arbitrated Loop (FC-AL). A form of fibre-channel network in which up to 126 nodes are connected in a loop topology, with each node's loop port (L_port) transmitter connecting to the L_port receiver of the node to its logical right. Nodes connected to a Fibre Channel Arbitrated Loop arbitrate for the single transmission that can occur on the loop in any instant using a Fibre Channel Arbitrated Loop protocol that is different from fibre-channel switched and point-to-point protocols. An arbitrated loop can be private (no fabric connection) or public (attached to a fabric by a fabric loop port (FL_port)).

Fibre Channel Protocol (FCP). An evolving American National Standards Institute (ANSI) interconnection standard for high-speed data transfer among computers and storage devices defined by the Fibre Channel Protocol (FCP). At the physical level, data is transmitted serially over pairs of point-to-point links between fibre-channel (FC) ports. With appropriate components, data can be transferred at 100 MBps up over a distance of $10 \mathrm{~km}(6.2 \mathrm{mi})$ between FC ports. The ports can be configured in ring and switched interconnect topologies which allow each port to exchange data with any other port that is part of the same fabric.
fibre-channel service (FS). A service that is defined by fibre-channel standards and exists at a well-known address. For example, the Simple Name Server is a fibre-channel service. See also Fibre Channel Service Protocol.

Fibre Channel Service Protocol (FSP). The common protocol for all fabric services, transparent to the fabric type or topology. See also fibre-channel service.
fibre-channel shortest path first (FSPF). A routing protocol used by fibre-channel switches.
fibre-channel transport. A protocol service that supports communication between fibre-channel service providers. See also Fibre Channel Service Protocol.
field replaceable unit (FRU). An assembly that is replaced in its entirety when any one of its components fails. In some cases, a field replaceable unit may contain other field replaceable units.

File Transfer Protocol (FTP). In TCP/IP, an application protocol used for transferring files to and from host computers.
fill word. A transmission word that is an IDLE or an ARBx primitive signal. Fill words are transmitted between frames, primitive signals, and primitive sequences to keep a fibre-channel network active.
firmware. Proprietary code that is usually delivered as microcode as part of an operating system. Firmware is more efficient than software loaded from an alterable medium and more adaptable to change than pure hardware circuitry. An example of firmware is the Basic Input/Output System (BIOS) in read-only memory (ROM) on a PC system board.

FLOGI. See fabric login.
FL_port. See fabric loop port.
F_port. See fabric port.
frame. In fibre-channel technology, the structure used to transmit data between ports. A frame consists of a start-of-frame delimiter, header, any optional headers, the data payload, a cyclic redundancy check (CRC), and an end-of-frame delimiter. There are two types of frames: link control frames (transmission acknowledgements, and so on) and data frames.

FRU. See field replaceable unit.
FS. See fibre-channel service.
FSP. See Fibre Channel Service Protocol.
FSPF. See fibre-channel shortest path first.
FTP. See File Transfer Protocol.
full-duplex. Describing a communications connection over which each device can transmit and receive simultaneously. See also half-duplex.

Fx_port. A fabric port that can operate as either a fabric port (F_port) or fabric loop port (FL_port). See also fabric port and fabric loop port.
gateway. A functional unit that interconnects two computer networks with different network architectures. A gateway connects networks or systems of different architectures. A bridge interconnects networks or systems with the same or similar architecture.

GBIC. See gigabit interface converter.
generic port (G_port). A port on a fibre-channel switch that can function either as a fabric port (F_port) or as an expansion port (E_port). The functionality of a G_port is determined during port login. A G_port functions as an F_port when connected to a node port (N_port), and as an E_port when connected to an E_port.
gigabit interface converter (GBIC). A transceiver that converts between electrical signals used by host bus adapters (and similar fibre-channel and Ethernet devices) and either electrical or optical signals suitable for transmission. Gigabit interface converters allow designers to design one type of device and adapt it for either copper or optical applications. Unlike gigabaud link modules, GBICs can be hot-swapped.
gigabit switch. A 16-port, fibre-channel gigabit switch.
G_port. See generic port.
half-duplex. Describing a communications connection over which only one device at a time can transmit data. See also full-duplex.
hard address. The arbitrated loop physical address (AL_PA) that a node loop port (NL_port) attempts to acquire during loop initialization.
hardware translative mode. A method for achieving address translation. Two hardware translative modes are available to a QuickLoop-enabled switch: Standard Translative Mode, which allows public devices to communicate with private devices across the fabric; and QuickLoop Mode, which allows private devices to communicate with other private devices across the fabric.

HBA. See host bus adapter.
host bus adapter (HBA). The interface card between a server or workstation bus and the fibre-channel network.
hub. A fibre-channel device that connects nodes into a logical loop by using a physical star topology. Hubs will automatically recognize an active node and insert the node into the loop. A node that fails or is powered off is automatically removed from the loop.

ID. See identifier.

identifier (ID). A sequence of bits or characters that identifies a user, program, device, or system to another user, program, device, or system.

IDLE. Continuous transmission of an ordered set over a fibre-channel link when no data is being transmitted for the purpose of keeping the link active and maintaining bit, byte, and word synchronization.

IETF. Internet Engineering Task Force.

information unit (IU). A set of information as defined by either upper-level process protocol definition or upper-lever protocol mapping.
initiator. The system component that originates an input/output (I/O) command over an I/O bus or network. I/O adapters, network interface cards, and intelligent
controller device I/O bus control application-specific integrated circuits (ASICs) are typical initiators. See also target.
in-order delivery (IOD). A parameter that, when set, guarantees that frames are either delivered in order or dropped.
integrated fabric. The fabric created by six switches that are cabled together and are configured to handle traffic as a seamless group.

Internet Protocol (IP). A protocol that routes data through a network or interconnected networks. Internet Protocol (IP) acts as an intermediary between the higher protocol layers and the physical network.
inter-switch link (ISL). A fibre link between two switches.

IOD. See in-order delivery.
IP. See internet protocol.
ISL. See inter-switch link.
ISL Trunking. A feature that enables distribution of traffic over the combined bandwidth of up to four inter-switch links (ISLs) between adjacent switches, while preserving in-order delivery. A set of trunked ISLs is called a trunking group; each port employed in a trunking group is called a trunking port. See also master port.
isolated E_port. An E_port that is online but not operational between switches due to overlapping domain ID or nonidentical parameters such as E_D_TOVs. See also expansion port.

IU. See information unit.
K28.5. A special 10-bit character used to indicate the beginning of a transmission word that performs fibre channel control and signaling functions. The first seven bits of the character are the comma pattern. See also comma.

LAN. See local area network.
latency. The time from the initiation of an operation until something actually starts happening (for example, data transmission begins).

LED. See light-emitting diode.
light-emitting diode (LED). A semiconductor chip that gives off visible or infrared light when activated.
link. In fibre-channel technology, two unidirectional fibers carrying data in opposite directions, along with their associated transmitters and receivers. See also circuit.
link services. A protocol for link-related actions.

LIP. See loop initialization primitive.
LM_TOV. See loop master timeout value.
local area network (LAN). A computer network located on a user's premises within a limited geographical area.
logical unit number (LUN). An identifier used on a small computer systems interface (SCSI) bus to distinguish among up to eight devices (logical units) with the same SCSI ID.
long wavelength (LWL). A type of fiber-optic cabling that is based on $1300-\mathrm{mm}$ lasers and supports link speeds of 1.0625 Gbps . LWL can also refer to the type of gigabit interface converter (GBIC) or small form-factor pluggable (SFP). See also short wavelength.
loop. A configuration of devices connected to the fabric by way of a fabric loop port (FL_port) interface card.
loop failure. Loss of signal within a loop for any period of time, or loss of synchronization for longer than the timeout value.
loop_ID. A hex value representing one of the 127 possible arbitrated loop physical address (AL_PA) values in an arbitrated loop.
loop initialization. The logical procedure used by a loop port (L_port) to discover its environment. Loop initialization can be used to assign arbitrated loop physical addresses (AL_PAs), detect loop failure, or reset a node.
loop initialization primitive (LIP). The signal used to begin initialization in a loop, which indicates either loop failure or resetting of a node.
looplet. A set of devices connected in a loop to a port that is a member of another loop.
loop master timeout value (LM_TOV). The minimum time that the loop master waits for a loop initialization sequence to return.
loop port (L_port). A port used to connect a node to a Fibre Channel Arbitrated Loop (FC-AL). See also non-participating mode and participating mode.
loop port state machine (LPSM). The logical entity that performs arbitrated loop protocols and defines the behavior of loop ports (L_ports) when they require access to an arbitrated loop.

L_port. See loop port.
LPSM. See loop port state machine.
LUN. See logical unit number.
LWL. See long wavelength.

MAC. See media access control.
management information base (MIB). A definition for management information that specifies the information available from a host or gateway and the operations allowed.
master port. As relates to trunking, the port that determines the routing paths for all traffic flowing through the trunking group. One of the ports in the first ISL in the trunking group is designated as the master port for that group. See also ISL Trunking.
media access control (MAC). Algorithms that control access to physical media, especially in shared media networks.

MIB. See management information base.
multicast. Transmission of the same data to a selected group of destinations. See also broadcast and unicast.
multimode. A type of optical fiber which incorporates shortwave lasers and which is used with gigabaud link modules. Typically, it is used for links of up to 500 m (1640.42 ft).
name server. In networking, the server that translates network names to addresses. See also simple name server.

NL_port. See node loop port.
node. A fibre-channel device that contains a node port (N_port) or node loop port (NL_port).
node loop port (NL_port). A port specific to Fibre Channel Arbitrated Loop (FC-AL). An NL_port has the same functional, logical, and message handling capability as a node port ($\mathrm{N} _$port), but connects to an arbitrated loop rather than to a fabric. Some implementations can function either as N_ports or as NL_ports depending on the network to which they are connected. An NL_port must replicate frames and pass then on when in passive loop mode.
node name. The name assigned to a node during network definition.
node port (N_port). A port that connects a node to a fabric or to another node. N_ports connect to fabric ports (F_ports) or to other N_ports of other nodes. N_ports handle creation, detection, and flow of message units to and from the connected systems. N_ports are end points in point-to-point links.
non-participating mode. A mode in which a loop port (L_port) in a loop is inactive and cannot arbitrate or send frames, but can retransmit any received transmissions. This mode is entered if there are more
than 127 devices in a loop and an arbitrated loop physical address (AL_PA) cannot be acquired. See also participating mode.
nonvolatile storage (NVS). A storage device whose contents are not lost when power is cut off.

N_port. See node port.
NVRAM. Nonvolatile storage random access memory. See nonvolatile storage.

NVS. See nonvolatile storage.
Nx_port. A node port that can operate as either a node port (N_port) or node loop port (NL_port). See also node port and node loop port.
ordered set. A transmission word that uses 8B/10B mapping and begins with the K28.5 character. Ordered sets occur outside of frames, and include: frame delimiters, which mark frame boundaries and describe frame contents; primitive signals, which indicate events; and primitive sequences, which indicate or initiate port states. Ordered sets are used to differentiate fibre-channel control information from data frames and to manage the transport of frames.
packet. In networking, a group of bits that has a defined format and fixed maximum size, sent as a unit across a network. See also frame.
participating mode. A mode in which a loop port (L_port) in a loop has a valid arbitrated loop physical address (AL_PA) and can arbitrate, send frames, and retransmit received transmissions. See also non-participating mode.
path selection. The selection of a transmission path through the fabric. Switches use the fibre-channel shortest path first (FSPF) protocol.

Performance Monitoring. A feature that provides error and performance information to the administrator and end user for use in storage management.
phantom address. An arbitrated loop physical address (AL_PA) value that is assigned to a device that is not physically in the loop. Also known as phantom $A L _P A$.
phantom device. A device that is not physically in an arbitrated loop but is logically included through the use of a phantom address.

PLDA. See private loop direct attach.
PLOGI. See port login.
point-to-point. A fibre-channel topology that employs direct links between each pair of communicating entities. See also topology.
port login (PLOGI). The port-to-port login process by which initiators establish sessions with targets. See also fabric login.
port_name. The unique identifier assigned to a fibre-channel port and communicated during login and port discovery.

POST. See power-on self-test.
power-on self-test (POST). A series of internal diagnostic tests that are activated each time the system power is turned on.
private device. A device that supports arbitrated loop protocol and can interpret 8-bit addresses, but cannot log into the fabric.
private loop. A Fibre Channel Arbitrated Loop (FC-AL) with no fabric attachment.
private loop direct attach (PLDA). A subset of fibre channel standards for the operation of peripheral devices.
private NL_port. A node loop port (NL_port) that communicates only with other private NL_ports in the same loop and does not log into the fabric.
protocol. A set of rules controlling the communication and transfer of data between two or more devices or systems in a communications network.
public device. A device that supports arbitrated loop protocol, can interpret 8-bit addresses, and can log into the fabric.
public loop. A Fibre Channel Arbitrated Loop (FC-AL) with an attachment to a fabric.
public NL_port. A node loop port (NL_port) that logs into the fabric, can function within either a public or a private loop, and can communicate with either private or public NL_ports.

QuickLoop. (1) A feature that makes it possible to allow private devices within loops to communicate with public and private devices across the fabric through the creation of a larger loop. (2) The arbitrated loop created using this software. A QuickLoop can contain a number of devices or looplets; all devices in the same QuickLoop share a single arbitrated loop physical address (AL_PA) space.

RAID. See redundant array of independent disks.
RAM. See random access memory.
random access memory (RAM). A temporary storage location in which the central processing unit (CPU) stores and executes its processes.

R_A_TOV. See resource allocation timeout value.
read-only memory (ROM). Memory in which stored data cannot be changed by the user except under special conditions.
reduced instruction set computer (RISC). A computer that uses a small, simplified set of frequently used instructions for rapid processing.

Redundant Array of Independent Disks (RAID). A collection of two or more disk drives that present the image of a single disk drive to the system. In the event of a single device failure, the data can be read or regenerated from the other disk drives in the array.
registered state change notification (RSCN). A switch function that allows notification of fabric changes to be sent from the switch to specified nodes.
remote procedure call (RPC). A facility that a client uses to request the execution of a procedure call from a server.

Remote Switch. A feature that runs on the Fabric operating system (OS) and enables two fabric switches to be connected over an asynchronous transfer mode (ATM) connection. Remote Switch requires a compatible fibre-channel-to-ATM gateway. The distance between each switch and the respective ATM gateway can be up to $10 \mathrm{~km}(6.214 \mathrm{mi})$.
request rate. The rate at which requests arrive at a servicing entity. See also service rate.
resource allocation timeout value (R _A_TOV). A value used to time out operations that depend on the maximum possible time that a frame can be delayed in a fabric and still be delivered. This value is adjustable in one microsecond increments from 10-120 seconds.
resource recovery timeout value (RR_TOV). The minimum time a target device in a loop waits after a loop initialization primitive (LIP) before logging out a small computer systems interface (SCSI) initiator. See also error detect timeout value and resource allocation timeout value.

RISC. See reduced instruction set computer.
ROM. See read-only memory.
route. The path that network traffic follows from its source to its destination. See also fibre-channel shortest path first.
routing. The assignment of the path by which a message is to reach its destination.

RPC. See remote procedure call.
RR_TOV. See resource recovery timeout value.
RSCN. See registered state change notification.
SAN. See storage area network.

SCSI. See small computer systems interface.
SCSI Enclosure Services (SES). A subset of the small computer systems interface (SCSI) protocol used to monitor temperature, power, and fan status for enclosure devices.
sequence. A group of related frames transmitted in the same direction between two node ports (N_ports).
service rate. The rate at which an entity can service requests. See also request rate.

SES. See SCSI Enclosure Services.
SFP. See small form-factor pluggable.
short wavelength (SWL). A type of fiber optic cabling that is based on $850-\mathrm{mm}$ lasers and supports 1.0625 Gbps link speeds. SWL can also refer to the type of gigabit interface converter (GBIC) or small form-factor pluggable (SFP). See also long wavelength.

SID. See source ID.
simple name server (SNS). A switch service that stores names, addresses, and attributes for up to 15 minutes, and provides them as required to other devices in the fabric. SNS is defined by fibre channel standards and exists at a well-known address. See also fibre-channel service.
simple network management protocol (SNMP). In the Internet suite of protocols, a network management protocol that is used to monitor routers and attached networks. SMNP is an application layer protocol. Information on devices managed is defined and stored in the application's Management Information Base (MIB).
single mode. A type of optical fiber, typically used with gigabaud link modules incorporating longwave lasers. Typically used for long-distance links up to 10 km (6.21 mi).
small computer systems interface (SCSI). A standard hardware interface that enables a variety of peripheral devices to communicate with one another.
small form-factor pluggable (SFP). An optical transceiver used to convert signals between optical fiber cables and switches.

SNIA. Storage Network Industry Association.
SNMP. See simple network management protocol.
SNMPv1. The original standard for SNMP, now labeled v1.

SNS. See simple name server.
source ID (SID). The 3-byte source ID of the originator device, in the 0xDomainAreaALPA format.
storage area network (SAN). A dedicated storage network tailored to a specific environment, combining servers, storage products, networking products, software, and services. See also fabric.
switch. A network infrastructure component to which multiple nodes attach. Unlike hubs, switches typically have internal bandwidth that is a multiple of link bandwidth, and the ability to rapidly switch node connections from one to another. A typical switch can accommodate several simultaneous full-link bandwidth transmissions between different pairs of nodes.
switch name. The arbitrary name assigned to a switch.
switch port. A port on a switch. Switch ports can be expansion ports (E_ports), fabric ports (F_ports), or fabric loop ports (FL_ports).

SWL. See short wavelength.
target. A storage device on a fibre-channel network. See also initiator.

TCP. See Transmission Control Protocol.

tenancy. The time from when a port wins arbitration in a loop until the same port returns to the monitoring state. Also referred to as loop tenancy.
throughput. A measure of the amount of information transmitted over a network in a given period of time. For example, a network's data transfer rate is measured in bits per second (bps). Throughput is a measure of performance. It is also measured in Kbps or Mbps. See also bandwidth.
topology. In fibre-channel technology, the configuration of the fibre-channel network and the resulting communication paths allowed. There are three possible topologies: point-to-point, which allows a direct link between two communication ports; switched fabric, which allows multiple node ports (N_ports) to be linked to a switch by fabric ports (F_ports); and arbitrated loop, which allows multiple node loop ports (NL_ports) to be connected in a loop.
translative mode. A mode in which private devices can communicate with public devices across the fabric.
transmission character. A 10-bit character encoded according to the rules of the $8 \mathrm{~B} / 10 \mathrm{~B}$ algorithm.

Transmission Control Protocol (TCP). A
communication protocol used in the Internet and in any network that follows the Internet Engineering Task Force (IETF) standards for internetwork protocol. Transmission Control Protocol (TCP) provides a reliable host-to-host protocol between hosts in packed-switched communication networks and in interconnected systems of such networks. It uses the Internet Protocol (IP) as the underlying protocol.
transmission word. A group of four transmission characters.
trap. In the Simple Network Management Protocol (SNMP), a message sent by a managed node (agent function) to a management station to report an exception condition. See also simple network management protocol.
trunking ports. Ports that are in the trunking group.
tunneling. To treat a transport network as though it were a single communication link or local area network (LAN).
U. The unit of measure for rack-mounted equipment.

UDP. See User Datagram Protocol.
ULP. See upper-layer protocol.
ULP_TOV. See upper-layer timeout value.
unicast. Transmission of data to a single destination. See also broadcast and multicast.
universal port (U_port). A switch port that can operate as a generic port (G_port), expansion port (E_port), fabric port (F_port), or fabric loop port (FL_port). A port is defined as a U_port when it is not connected or has not yet assumed a specific function in the fabric.

U_port. See universal port.
upper-layer protocol (ULP). A protocol used on a fibre-channel network at or above the FC-4 level.
upper-layer timeout value (ULP_TOV). The minimum time that a SCSI ULP process waits for SCSI status before initiating ULP recovery.

User Datagram Protocol (UDP). In the Internet suite of protocols, a protocol that provides unreliable, connectionless datagram service. It enables an application program on one machine or process to send a datagram to an application program on another machine or process. UDP uses the Internet Protocol (IP) to deliver datagrams.

WAN. See wide area network.
well-known address. An address used to uniquely identify a particular node in the network to establish connections between nodes.
wide area network (WAN). A network that provides communication services to a geographic area larger than that served by a local area network or a metropolitan network, and that may use or provide public communications facilities. (T)
workstation. A powerful, single-user microcomputer, usually with a high-resolution display. Workstations are
often used in conjunction with networked applications in which programs run on the workstation using data that resides on a server, which is connected to the workstation by a network.
worldwide name (WWN). A unique identifier for a switch on local and global networks.

World Wide Web (WWW). A network of servers that contain programs and files. Many of the files contain hypertext links to other documents available through the network.

WWN. See worldwide name.

WWW. See World Wide Web.

zone. A collection of fibre-channel node ports (N_ports) or node loop ports (NL_ports) (that is, device ports) that are permitted to communicate with each other using the fabric. Any two N_ports or NL_ports that are not members of at least one common zone are not permitted to communicate using the fabric. Zone membership can be specified by: 1) port location on a switch (that is, domain_ID and port number); or, 2) the N_port_name of the device; or, 3) the address identifier of the device; or, 4) the node name of the device. Well-known addresses are implicitly included in every zone. See also zoning.
zone alias. An alias for a set of port numbers or worldwide names (WWNs). Zone aliases can be used to simplify the entry of port numbers and WWNs. For example, "host" could be used as an alias for a WWN of 110:00:00:60:69:00:00:8a.
zone configuration. A set of zones designated as belonging to the same zone configuration. When a zone configuration is in effect, all valid zones in that configuration are also in effect.
zoning. In fibre-channel environments, the grouping of multiple ports to form a virtual, private, storage network. Ports that are members of a zone can communicate with each other, but are isolated from ports in other zones. See also zone.

Index

Numerics

3534 Model F08
components 2
library XV
managing 3
overview 1

A

about this document $x v$
ac grounding check xi
accessing the switch 17
address
IBM xvii
address, IBM 45
air flow 9
ambient air temperature 9
applications supported by the switch 4

B

back panel of switch
description 2
LEDs 2, 22
battery caution notice xii
Brocade
documents $\mathrm{xv}, 3$
IBM product and model number matrix xvi

C

cables, power 39
caution notices
battery xii
customer setup ix, 10
example ix
laser safety xii
power supply cover x
checking
ac grounding xi
safety labels x
the machine ix
Class 1 laser product xii
command-line management interface with Telnet 3
comments, how to send xvii
compliance statements
European Community 47
Federal Communications Commission (FCC) 46
Germany 47
Industry Canada 46
Japanese Voluntary Control Council for Interference (VCCI) class 148
Korean Government Ministry of Communication
(MOC) 48
Taiwan class A 48
components, switch 2,27
conducting
ac grounding checks xi
external machine checks ix
safety inspections ix
safety label checks x , xi
configuration parameters 16
configuring the switch 15,16
connecting the switch 17
customer setup caution notice ix, 10

D

danger notices
electrical outlet ix, xi, 10, 15
example ix
line-to-line connection 9
diagnostic tests 23
director of licensing, address 45
disposal of product xiii
documentation CD 1
domain ID 17

E
edition notice ii
EIA rack
installing the switch in 10
mount kit 11, 12
mount slide $12,13,14,15$
specifications 28
electrical outlet danger notice xi, 10, 15
electronic emission notices 46
environmental
and safety notices ix, xii
specifications 29
Ethernet
port LEDs 21
speed LED 19
status LED 19
European Community compliance statement 47
example worksheets
planning 5
port configuration 7
zone configuration 8
zone definition 7
Extended Fabrics application 4
external machine checks ix

F

Fabric Watch application 4
facility specifications 27
FDA 21 CFR 1040.10 and 1040.11 xii
Federal Communications Commission (FCC)
emission limits 46
rules 46
statement 46

fibre-channel Association Web site xvi	
fire suppression systems xii	Korean Government Ministry of Communication (MOC
form, reader comment, how to send xvii front panel of switch	statement 48
description 2	
LEDs 2, 19	L
	labels
G	power supply cover caution x
general specifications of the switch 28	safety check x , xi
Germany compliance statement 47	SFP x
	laser safety caution notice xii
help xvi	LEDs
software updates xvii	activity, interpreting 19
	back panel 2, 22
	front panel 2, 19
H	patterns 20, 22
	speed
help, getting xvi how to send your comments xvii	Ethernet 19, 21
	port 19, 21
	status
	Ethernet 19, 21
	port 19, 21
IBM	switch 19, 20, 22
address xvii	line-to-line connection danger notice 9
notices 45	lithium battery caution notice xii
product and model number matrix xvitake-back program xii	
trademarks 46	M
IEC 825-1 xii	machine checks, external ix
in-band management method 3	maintaining the switch 23
Industry Canada compliance statement 46 inspections	management interfaces compatible with the switch 3
	managing the switch 3
ac grounding xi	memory specifications 30
external machine ix	
safety labels x, xiinstallation instructions	N
	notices
installation instructions as a stand-alone unit 10	edition ii
installing an SFP 26	electronic emission 46
installing the switch	example of caution ix
	example of danger ix
and configuration 9	IBM 45
in an EIA rack 10	safety and environmental ix, xii
planning 5	translations of safety ix
safety considerations 9	
intellectual property 45	0
interference, radios and televisions 46	
	operating the switch 19
LED activity 19	optical port
POST 22	specifications 30
ISL Trunking 2, 4	terminators xii
	out-of-band management method 3
	outlet danger notice xi, 10, 15
J	overview of the 3534 Model F08 1
Japanese Voluntary Control Council for Interference	
(VCCI) class 1 statement 48	P
	package, switch 1

panel S	
LEDs	
back 22	safety
front 19	and environmental notices ix, xii
switch	and installation considerations 9
back 2, 22	inspections ix
back 2,22 front 2,19	labels check x, xi
parameters, configuration 16	laser caution notice xii
patents 45	notices, translations ix
Performance Monitoring application 4	sending your comments xvii
physical specifications 29	serial port specifications 30
	SES management interface 3
planning	SFP
installation of the switch	installing 26
worksheet 5, 34 ports	label x
ports	removing 25
Ethernet LFDs 19, 21 , 35	replacing 25
of the switch 1	slide, rack mount 12, 13, 14, 15
speed LEDs 19, 21	SNMP management interface 3
status LEDs 19, 21	software, getting updates xvii
switch 27	specifications
POST, interpreting 22	EIA rack 28
power cables 39	environmental 29
power supply	facility 27
cover caution notice	general 28
specifications 30	memory 30
turning on and off 19	optical port 30
turning on and off 19	physical 29
product	power supply 30
disposal xiii	regulatory 31
take-back program xii	serial port 30
publications	speed LEDs
	Ethernet 19
documentation CD 1	port 19, 21
Web sites xvi	stand-alone unit, installing the switch as 10
	statements
	European Community compliance 47
Q	Federal Communications Commission (FCC) 46
QuickLoop application 4	Germany compliance 47
	Industry Canada compliance 46
	Japanese Voluntary Control Council for Interference
\mathbf{R}	(VCCI) class 148
	Korean Government Ministry of Communication
rack	(MOC) 48
installing the switch in 10	safety and environmental notices ix, xii
mount kit 11, 12	Taiwan class A compliance 48
mount slide 12, 13, 14, 15	status LEDs
specifications 28	Ethernet 19, 21
radio interference 46	policies 18
reader comment form processing xviirecycling products	port 19, 21
	switch 19, 20, 22
regulatory specifications 31	switch
related documents xv	accessing 17
Remote Switch application 4	air flow 9
removing an SFP 25	applications supported 4
replacing an SFP 25	back panel 2
restrictions, usage xii	components 2, 27
running a POST 22	configuring 15, 16
	connecting 17
	disposal xiii
	front panel 2

```
switch (continued)
    installing
        as a stand-alone unit 10
        in an EIA rack }1
        planning for 5
    LEDs 1, 2, 27
    maintaining 23
    management interfaces 3
    managing 3
    operating 19
    package 1
    planning for installation 5
    ports 1,27
    POST, interpreting 22
    rack mount kit 11, 12
    recycling xii
    specifications
        EIA rack 28
        environmental }2
        facility 27
        general 28
        memory 30
        optical port 30
        physical 29
        power supply }3
        regulatory 31
        serial port 30
    status LEDs 19, 20, 22
    take-back program, IBM xii
    turning on and off 19
    worksheets
        planning 5, 34
        port configuration 7,35
        zone configuration 8,37
        zone definition 7,36
system
    fire suppression xii
```

```
T
Taiwan class A compliance statement 48
take-back program, IBM products xii
temperature, ambient air 9
terminators for optical ports xii
trademarks 46
translations of safety notices ix
Trunking application 4
turning the switch on and off 19
```


U

```
unauthorized changes or modifications 46
updates, getting software xvii
usage restrictions xii
```


V

```
voltage check xi
```


Readers' comments - we would like to hear from you

IBM TotalStorage SAN Switch
3534 Model F08 Installation Guide

Publication No. SY27-7631-01
Overall, how satisfied are you with the information in this book?

	Very Satisfied	Satisfied	Neutral	Dissatisfied	Very Dissatisfied
Overall satisfaction	\square	\square	\square	\square	\square

How satisfied are you that the information in this book is:

	Very Satisfied	Satisfied	Neutral	Dissatisfied	Very Dissatisfied
Accurate	\square	\square	\square	\square	\square
Complete	\square	\square	\square	\square	\square
Easy to find	\square	\square	\square	\square	\square
Easy to understand	\square	\square	\square	\square	\square
Well organized	\square	\square	\square	\square	\square
Applicable to your tasks	\square	\square	\square	\square	\square

Please tell us how we can improve this book:

Thank you for your responses. May we contact you?YesNo

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

Name

Company or Organization

Phone No.

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK
POSTAGE WILL BE PAID BY ADDRESSEE
International Business Machines Corporation
RCF Processing Department
Dept. M86/Bldg. 050-3
5600 Cottle Road
San Jose, CA 95193-0001
U.S.A.

Part Number: 17P6854

Printed in U.S.A.
\qquad

[^0]: Read Before Using
 This product contains software that is licensed under written license agreements. Your use of such software is subject to the license agreements under which they are provided.

