
WebSphere® Business Modeler Advanced

Using Loops in a Process

Version 6.1.1

���

Note:

Before using this information and the product it supports, be sure to read the general information under “Notices and

Trademarks” on page 33.

Seventh Edition (March 2008)

This edition applies to Version 6, Release 1, Modification 1 of IBM® WebSphere® Business Modeler Advanced) and to

all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can send them to the following address:

IBM Canada Ltd. Laboratory

Information Development

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

Include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Using loops in processes 1

For loops 3

Adding a for loop to a process 3

Adding activities to a for loop 4

Passing data to a for loop 7

Setting a condition on a for loop 9

Simulating a process containing a for loop 11

Do-while loops 15

Adding a do-while loop to a process 15

Adding activities to a do-while loop 16

Passing data to a do-while loop 19

Setting a condition on a do-while loop 20

Simulating a process containing a do-while loop . . 22

While loops 25

Adding a while loop to a process 25

Adding activities to a while loop 26

Passing data to a while loop 27

Setting a condition on a while loop 27

Simulating a process containing a while loop . . . 29

Summary 31

Notices and Trademarks 33

Notices 33

Trademarks and service marks 35

© Copyright IBM Corp. 2006, 2008 iii

iv Using Loops

Using loops in processes

Loops are repeating sequences of activities within a process. They enable you to

repeat an exact sequence of activities as many times as you require within a

process.

Loops are typically used to indicate a sequence of tasks or activities that must be

performed a certain number of times before the process as a whole can continue.

Many business processes require an action or sequence of actions to be repeated a

number of times. A payment process will continue issuing checks as long as there

are invoices in a particular database; a shipping process will add boxes to a

shipping container until the container is full; a packaging process will add a

specific number of items to a carton. Any activity that requires an exact repetition

of activities can be modeled as a loop.

You can choose from three types of loops in WebSphere® Business Modeler:

For loop

For loops repeat the same sequence of activities a specified number of

times.

While loop

While loops repeat the same sequence of activities as long as a certain

condition is satisfied. While loops will never run if the specified condition

is false from the start. The while loop is the only type of loop supported in

WebSphere Process Server and WebSphere Business Integration Server

Foundation.

Do-while loop

Like while loops, do-while loops repeat the same sequence of activities as

long as a certain condition is satisfied. Do-while loops are guaranteed to

run at least once. The do-while loop is the only type of loop supported in

WebSphere MQ Workflow.

In this tutorial, you will add an instance of each type of loop to a process. You will

learn how to add conditions to your loops, and you will set up and run

simulations based on the expressions and values that you specify.

Note: This tutorial is accompanied by a sample project that you can import into

WebSphere Business Modeler. The sample contains final versions of each of

the processes and loops described in the individual exercises. You can

choose to complete each exercise, or you can review the sample to see the

results of completing the exercise steps.

Before you begin

This tutorial does not provide instruction on the basic functions of WebSphere

Business Modeler. It is assumed that you are familiar with the product and can

complete basic tasks, such as adding modeling elements to the to the drawing area.

For instructions on basic WebSphere Business Modeler functions, see the help

topics in the information center included with the product.

Before completing the exercises in this tutorial, you must import the Loops sample

into your WebSphere Business Modeler workspace. Download the sample from the

WebSphere Business Modeler Advanced tutorials Web page (www.ibm.com/

© Copyright IBM Corp. 2006, 2008 1

http://www-306.ibm.com/software/integration/wbimodeler/library/tutorials.html

software/integration/wbimodeler/library/tutorials.html), and then follow the

instructions in product’s information center for importing a project.

Ensure that your modeling mode is set to Advanced before beginning the first

exercise. To set your modeling mode, click Modeling → Mode → Advanced.

This tutorial should take a maximum of 30 minutes to complete.

2 Using Loops

http://www-306.ibm.com/software/integration/wbimodeler/library/tutorials.html

For loops

A for loop is a loop that repeats a specific number of times. To use a for loop, you

must set a counter (sometimes called an iterator) to tell the loop how many times

to run the same sequence of activities. The counter has the following three numeric

values:

v Initial counter value

v Increment (the amount to add to the counter each time the loop runs)

v Final counter value

The for loop ends when the counter reaches the final counter value, or, if there is

an associated test condition, when the test condition is false.

Although the for loop is the simplest type of loop, you must be careful to use it

only when you are repeating the exact same set of activities for a specified number of

instances. You must know the number of times you need to repeat the activities,

otherwise a for loop is not appropriate for your process. Business analysts need to

avoid the common error of using a loop when what they are actually modeling is

rework of a task, or a different set of tasks.

In this tutorial, you will add a for loop to handle some of the activities in a

telemarketing company’s call procedure. In the call procedure, the telemarketer

contacts a particular customer 4 different times. When the telemarketer has

attempted to reach the customer 4 times, no further attempts are made. The

for-loop keeps a counter that records how many iterations have been performed. In

this example, each iteration represents a call to the customer. The initial value of

the counter is 0, indicating that the customer has not yet been called. The counter

increment is 1, and the task is repeated until the total number of attempts equals 4.

For loops also support a test condition. In this same telemarketing scenario, you

can add a condition so that when the customer answers one of the calls, no further

calls will be made. When the test condition becomes true—that is, the customer

answers—the loop stops. You can model the for loop as follows:

v Initial counter value: 0 calls

v For as long as the counter is not at the final value (3 calls)

– Check that the customer has not answered a call

– Make a call

– Increment the counter (add 1)

The sequence of activities in the loop repeat until the customer has been called a

total of 4 times, except that if the customer responds to any of the calls, the

condition (″the customer has responded″) becomes true and the loop stops.

Adding a for loop to a process

Before you can complete this exercise, you need to import the Loop sample from

the WebSphere Business Modeler Web site. Remember to set your business

modeling mode to Advanced by click Modeling → Mode → Advanced.

In the telemarketing scenario, a telemarketer attempts to contact a customer 4

times before removing that customer from the call list. The telemarketer repeats the

© Copyright IBM Corp. 2006, 2008 3

same activities each time she calls the customer. In the Call Procedure process

included in the Loop sample, the basic activities that the telemarketer must repeat

are modeled, but no provision has been made to show that they must repeat a

specified number of times.

It is a good practice for business analysts to make copies of their processes as they

work, ensuring that they can refer to an earlier version if necessary. You will use

that method in this tutorial. To show that part of this process must repeat before

the process as a whole can complete, you will first make a copy of the Call

Procedure process. In the new copy of the process, you will use a for loop to

indicate the repeating activities.

To add a for loop to the Call Procedure process, complete the following steps:

1. If it is not already open, double-click the Call Procedure process. Notice that

there is a Contact Customer task included in the process, but no provision has

been made to repeat the task 3 times before moving to the next task in the

process.

2. Make a copy of the Call Procedure process:

a. In the Project Tree, right-click the Call Procedure process and select Copy.

b. Right-click the Processes folder and select Paste. Rename the copy of the

process to Call Procedure - For Loop.
3. Open the Call Procedure - For Loop process.

4. Delete the Contact Customer task.

5. In the palette, select the For Loop

icon. Alternatively, you can right-click

on the drawing area of the diagram and select New → For Loop.

6. Move your cursor to the point where the Contact Customer task was located

and click to add a for loop to the diagram.

7. Rename the for loop to Contact Customer.

8. Connect the available Choose Script output to the Contact Customer for loop

input. Similarly, connect the Contact Customer output to the available Update

Information input.

9. Click File → Save to save the process.

By replacing the Contact Customer task with the Contact Customer for loop, you

will be able to model the individual tasks that must be completed by the

telemarketer when she contacts a customer. Note that you could also show these

tasks with a local or global process, but the for loop gives you the capability of

repeating these activities a predetermined number of times before the process

moves on to the next activity.

Adding activities to a for loop

The for loop that you have added to the Call Procedure process replaces the single

Contact Customer task. However, there is more than one activity involved in

contacting a customer, and these activities must be repeated each time that the

telemarketer attempts to reach the customer until the customer answers.

In the telemarketing procedure, the telemarketer first dials the customer number

and waits for the customer to answer. If the customer answers, the telemarketer

reads her marketing script; if the customer does not answer, the telemarketer

indicates the time that she called, waits at least four business hours, and then

attempts to contact the customer again. If the telemarketer is unable to make

4 Using Loops

contact with the customer after 4 attempts, she updates the customer information

to indicate that the customer is unreachable.

To add the individual tasks and activities that make up the for loop, complete the

following steps:

1. In the Contact Customer for loop, click the plus sign (″+″) to expand the for

loop.

2. Add the activities that must be completed when contacting a customer, as

follows:

a. Dial Customer Number task

b. Did Customer Answer simple decision

c. Read Marketing Script task

d. Wait 4 Hours task. (Select the Wait 4 Hours task, click the Inputs tab, and

set the task duration to 4 hours.)

e. Two stop nodes, one for each possible path
3. Connect the activities as follows:

a. Connect the start node to the input of the Dial Customer Number task

b. Connect the output of the Dial Customer Number task to the input of the

Did Customer Answer simple decision.

c. Connect the Yes branch of the Did Customer Answer decision to the input

of the Read Marketing Script task.

d. Connect the output of the Read Marketing Script task to the first stop node.

e. Connect the No branch of the Did Customer Answer decision to the input

of the Wait 4 Hours task.

f. Connect the output of the Wait 4 Hours task to the second stop node.
4. Associate the Customer Response business item with connections in the loop:

a. Right-click the connection between the Dial Customer Number task and the

decision and select Associate data.

b. Select the Complex type radio button and then select the Customer

Response business item. Click OK.

c. Using the same method, associate the Customer Response business item

with the connection between the Yes decision output and the Read

Marketing Script task, and the No decision output and the Wait 4 Hours

task. In the telemarketing scenario, this data association simply means that

the customer response, or lack of customer response, will determine which

subsequent task is performed. In technical terms, you are now able to access

and use the Customer Response business item attributes in any expression

that you create on the decision when you simulate the process.
The for loop should now look like the one in the following image:

For loops 5

5. Add an expression to the decision:

a. Click the Did Customer Answer decision to select it.

b. Click the Output branches tab.

c. In the table, click the row which contains the Yes output branch.

d. In the Decision Branch Condition section, locate the Expression field and

click Edit. Note that the Decision Branch Condition section is at the bottom

of the page; you might have to scroll to locate it.

e. In the Expression Builder, ensure the simple expression toggle button

is

pressed.

f. In the Simple binary expression section, click Add.

g. In the First term list, ensure that Modeling artifact is selected.

h. In the Modeling artifact tree, click Processes → Call Procedure-For Loop →

Contact Customer → Did Customer Answer? → Input → Has Responded.

This attribute has been predefined in the Customer Response business item.

i. In the Operator list, select is equal to.

j. In the Second term list, select Boolean. The Has Responded attribute has

Boolean as its type, and so you must select a Boolean value to associate with

the Yes branch of the decision.

k. In the Boolean value field, select true.

l. Click Apply. The Expression Builder should look like the following image:

6. Click OK to close the Expression Builder. Note that when you add an

expression to one branch of a simple decision, the opposite expression is

automatically added to the other branch. If you click the table row containing

the No decision output, you will notice that the Expression field has been

automatically updated to include an expression where the Has Responded

attribute is not equal to true. This saves you having to use the Expression

Builder to compose an expression for the No output.

7. Click File → Save to save the process.

6 Using Loops

Review the activities that you have added to the Contact Customer for loop. First,

the telemarketer dials the customer’s number. If the customer does not answer, the

Wait 4 Hours task indicates when the telemarketer can call the same customer

again. The sequence of tasks will repeat until the customer answers, or until the

maximum number of attempts is reached. If the customer answers before the

maximum number of attempts, the telemarketer reads the marketing script, and

the loop ends.

You also added an expression to the decision within the loop. You can use this

expression to run a simulation of the Call Procedure-For Loop process later in this

tutorial.

Now that you have added the required elements and expression to the Contact

Customer for loop, you need to enable the loop to accept data and to pass data

back to the parent process.

Passing data to a for loop

In the previous exercise, you added the required activities to your Contact

Customer for loop. However, you still need to enable the for loop to receive

incoming data, and to produce corresponding outgoing data. Remember that the

Contact Customer for loop is one activity in a larger parent process, and it needs

to be able to pass data and control on to the next activity so that the larger process

can finish.

You need to take note of one other important characteristic of the Call

Procedure-For Loop process. The process contains two local repositories: Customer

Record Database and Customer Response Database. These local repositories

contain the data that is passed into and out of the Contact Customer for loop. A

local repository is required any time that you want to pass data from a parent

process to a loop. Similarly, if you want to pass data out of a loop to the parent

process, you need to pass that data to a local repository in the parent process. In

the telemarketing example, the Customer Record Database local repository holds

the Customer Record that the activities within the loop will be working with. The

first task in the for loop, Dial Customer Number, retrieves the Customer Record

from the repository and passes it to the other activities that need it. You can model

this by adding an input to the Dial Customer Number task and associating that

input with the Customer Record Database. To pass data to that repository from the

loop, you need to add an output to the final task in the loop, Read Marketing

Script.

This concept can be confusing to anyone new to loops because a local repository is

not directly connected to a loop in the parent process diagram. Instead, there is a

virtual connection between the repository and the specified task input or output

inside the loop. You need a repository in the process because it allows one iteration

of the loop to store information in a shared location that a subsequent iteration can

access. To run an expression-based simulation of this process, you must use a local

repository to pass data to tasks within the loop (and pass data out of a loop). Later

in this tutorial, you will set the loop condition by using the Expression Builder.

Because the Expression Builder cannot access a global repository, a loop condition

always relies on a local repository that is changed from within the loop. Any loop

inputs with associated data can be used only in the loop condition.

You will add inputs and outputs that read from or write to a database in the same

way that you add inputs and outputs to any task, but you must specify the local

For loops 7

repositories that will send and receive the data. To enable the Contact Customer

for loop to receive and output data, complete the following steps:

1. In the Contact Customer for loop, click the Dial Customer Number task.

2. In the Attributes view, click the Inputs tab.

3. Add an input to the task and set the attributes:

a. Click Add next to the Input table.

b. In the Associated data column, select Customer Record. The Customer

Record business item contains the customer’s telephone number, which is

required to complete the Dial Customer Number task.

c. Leave the Minimum and Maximum columns with the default values.

d. In the Input source column, select Repository.

e. Press Enter on your keyboard. More settings are displayed in the Details

section below the Input table.

f. Click Browse next to the Repository value field.

g. Select the Local repository radio button, and then select Call Procedure -

For Loop/Customer Record Database from the menu.

h. Click OK.

i. Ensure that the Read radio button is selected. By selecting this button, you

are indicating that the customer record will be removed from the Customer

Record Database after it is received by the Contact Customer for loop.

You have now added an input that will enable your Contact Customer for loop

to receive a Customer Record.

4. In the diagram, click the Read Marketing Script task.

5. In the Attributes view, click the Outputs tab.

6. Add an output to the task and set the attributes:

a. Click Add next to the Output table.

b. In the Associated data column, select Customer Response. The Customer

Response business item indicates that required to complete the activities in

the Contact Customer for loop.

c. Leave the Minimum and Maximum columns with the default values.

d. In the Input source column, select Repository.

e. Press Enter on your keyboard. More settings are displayed in the Details

section below the Input table.

f. Click Browse next to the Repository value field.

g. Select the Local repository radio button, and then select Call Procedure -

For Loop/Customer Response Database from the menu.

h. Click OK.

i. Leave the Overwrite radio button selected. By selecting this button, you are

indicating that the customer record will be added to the Customer Response

Database after it is received from the Contact Customer for loop.

You have now added an output that will enable your Contact Customer for

loop to pass on a Customer Response business item.

You have now added an output that will enable your Contact Customer for loop to

pass on a Customer Response business item. The Contact Customer for loop

should now look like the one in the following image:

8 Using Loops

Before moving on to the next exercise, be sure that you understand the exercise

that you have just completed. Although there is no direct connection line in the

diagram from the two local repositories in the parent process, data can be passed

between the repositories and the loop because of the input and output that you

have just added. Without the local repositories, you would not be able to run an

expression-based simulation of the Call Procedure-For Loop process.

Setting a condition on a for loop

Before you can run a simulation of the Call Procedure-For Loop process, you must

first set the loop condition. The loop condition includes the initial setting, which is

normally 0 or 1; the final counter, which is the total number of times that you want

to perform the activities in the loop, and the counter increment, which is the

number added to the counter each time the loop runs. You might assume that the

counter increment would always be 1, but consider the example of a packager who

loads cartons onto a truck. The packager might load the cartons two at a time, or

he might first put the cartons onto a pallet and load them 10 at a time. In these

cases, the counter increment would be set to a number other than 1.

In the telemarketing scenario, the telemarketer makes 1 call to the customer at a

time (the counter increment) and will call that single customer a maximum of 4

times. If the customer answers before the fourth call, that customer is not called

again (an additional condition).

To set the loop condition for the Contact Customer for loop, complete the

following steps:

1. Ensure that no activity is selected in the process diagram. In the Attributes

view, click the Loop Condition tab.

2. Enter the values for the loop counter:

v Initial counter: 0

v Final counter: 3

v Counter increment: 1
3. Click the Additional condition check box.

4. In the Name field, type the following: Has the Customer Responded? This is the

name of the expression that you will create to define the condition.

5. Optionally, you can add a description of the condition; for example, ″Check to

determine if the customer has already responded to a marketing call″, or

whatever is appropriate.

6. Click Edit below the Expression field. The Expression Builder opens.

For loops 9

7. Use the Expression Builder to define the additional condition that, if met, will

end the loop:

a. In the Expression Builder, ensure the simple expression toggle button

is

pressed.

b. In the Simple binary expression section, click Add.

c. In the First term list, ensure that Modeling artifact is selected.

d. In the Modeling artifact tree, click Processes → Call Procedure-For Loop →

Customer Response Database → Has Responded. This attribute has been

predefined in the Customer Response business item, and will be used to

indicate whether the customer has responded to a telemarketing call.

e. In the Operator list, select is not equal to.

f. In the Second term list, select Boolean. The Has Responded attribute has

Boolean as its type, and so you must select a Boolean value to correctly

compose your expression.

g. In the Boolean value field, select true.

h. Click Apply. Notice that the Expression Tree and Expression Text panes are

automatically populated with the expression that you have just created. The

Expression Builder should look like the following image:

8. Click OK to close the Expression Builder.

By creating this expression, you have added a condition to the Contact Customer

for loop: As long as the Has Responded attribute on the Customer Response

business item is not equal to ″true″, the loop will continue until it reaches its final

counter value. In terms of the telemarketing scenario, as long as the customer has

not answered the telemarketer’s call, the telemarketer will continue to call until she

has made a total of 4 attempts.

10 Using Loops

Now that you have set the loop condition and enabled your loop to receive data,

you are ready to set up and run an expression-based simulation of the Call

Procedure-For Loop process.

Simulating a process containing a for loop

You can use different methods to simulate a process. Probability-based simulation

enables you to set up and run a simulation more quickly. Probabilities require

relatively little data setup in a model and are sufficient to perform most

simulations, except when very detailed low-level analysis is required. Typically,

you can use probability-based simulation for current state modeling and “what if?”

analysis.

Alternatively, you can use expressions for low-level future state business models

and for models that clearly define the interfaces in and out of tasks and other

elements, such as decisions. When you set up an expression-based simulation, you

model how specific data will be treated as it passes through the process. For

example, an order may be handled differently depending on the customer type, or

on the total cost of the order. In an expression-based simulation, you define

business item creation rules that determine the specifics of each order that the

process handles, and you set expressions on decisions and on activities that

evaluate the incoming order and handle it according to the specific details it

contains. Expressions are also a good way to document in precise structured

language what you know about conditions, or business rules in the model.

For the purposes of this tutorial, expression-based simulations are also a

convenient way to observe how a loop functions. To run an expression-based

simulation for the Call Procedure-For Loop process, you must first set an

expression on a business item attribute. In the telemarketing scenario, the

Customer Response business item contains a Has Responded attribute. This

attribute is a Boolean, meaning that it is either true or false. The telemarketing

company can simulate the loop by defining the percentages of true and false

responses resulting from their marketing calls.

Note: The objective of this tutorial is not to produce an elaborate set of simulation

preferences and conditions, but rather to provide an understanding of how

loops function. There are many modeling elements that you could add to

the Loops Sample to make the simulation more complex: resources, costs,

timetables, and durations can all be modeled to produce detailed results,

and various types of static and dynamic analysis could subsequently be

performed to examine the model in detail. If you want to create more

complex simulations, use the Loops Sample as a starting point and add as

many other modeling elements as you want. After you have a good

understanding of how loops work, you are encouraged to use them in more

detailed scenarios.

To create an expression-based simulation for the Call Procedure-For Loop process,

complete the following steps:

 1. In the Project Tree, right-click the Call Procedure-For Loop process and select

Simulate. The Add Elements to the Simulation Snapshot window opens.

 2. Review the required elements display to see the elements that will be included

automatically in the simulation snapshot. You can include additional elements

in the snapshot by specifying them in the Optional Elements tree. For the

purposes of this tutorial, we will use only the required elements.

 3. Click OK to close the Add Elements to the Simulation Snapshot window.

For loops 11

4. The Check Path for Stop Nodes window opens if you have not set the Show

check paths confirmation dialog preference to no. Click yes to check for

missing stop nodes.

 5. If WebSphere Business Modeler finds any path that does not have a stop

node, a window opens showing you which processes or subprocesses contain

the unstopped path. Otherwise, you will receive a notification that no

problems were detected. Click OK to close this window. The simulation

diagram opens.

 6. In the Attributes view, click the General tab.

 7. In the Method of selecting an output path field, select Based on an

expression. This method enables the simulation to evaluate any expression

that it encounters in the process path. Remember that you previously set an

expression on the decision in the Contact Customer for loop.

 8. Click the Inputs tab. In the table, click the row containing the input.

 9. Click Edit beside the Total number of tokens per bundle field.

10. Ensure that the Use a specific number of tokens for all bundles radio button

is selected and type 5 for the value. By setting this value, you are indicating

that 5 customers will be called at least one time.

11. Click OK.

12. Select the Time trigger radio button.

13. Click the Edit button next to the Time between bundles field.

14. Set a value of 1 day and click OK.

15. In the Recurring time interval for bundle creation field, enter a time interval

of 1 day. This delay between tokens will make it easier for you to differentiate

between process runs if one is still progressing through the loop when the

next one begins.

16. Right-click in the diagram and select Expand All from the pop-up menu.

(Ensure that no process activity is selected and that your cursor is over a

blank area in the diagram when you right-click; if it is over a process activity,

you will see a different pop-up menu.) The Contact Customer for loop is

expanded so that its component activities are displayed.

17. In the simulation diagram, click the first task inside the for loop, Dial

Customer Number. This task outputs a Customer Response business item.

18. Create simulation values for the Customer Response business item:

a. Click the Business Item Creation tab.

b. In the table, select the row containing the Output and then click Create

Simulation Values.

c. In the Simulation value creation window, select Define custom rules from

the pull-down menu. The attributes of the Customer Response business

item—which is the output of the Dial Customer Number task—are

displayed.

d. In the Business Item Attributes table, click Has Responded to select the

attribute.

e. In the Attribute value distributions list, select Weighted list, and then

click Add at the bottom of the table.

f. In the New value list, select True and then click OK.

g. In the Probability column, click the cell next to the value that you just

added and type 60.

h. Click Add again, select False as the value, and type 40 for the probability.

i. Press Enter on your keyboard, and then click OK to close the window.

12 Using Loops

19. Click File → Save to save the simulation settings.

You are now ready to simulate the Call Procedure-For Loop process. To be able

observe the behavior within the Contact Customer for loop, adjust the zoom

settings for the simulation diagram and ensure that the simulation is set to display

animation. (To adjust the simulation settings, click the Simulation Control Panel

tab, click the Menu button, and select Setting.) When you have finished updating

the settings, click the Run simulation

button to run the simulation.

As the simulation runs, observe how the loop behaves. The loop runs at least once

for each token; if the decision response is Yes, the token is passed to the Read

Marketing Script task and that instance of the loop ends; if the decision response is

No, the token is passed to the Wait 4 Hours task, and then is sent through the loop

again to repeat the activities. If the loop counter for a particular token reaches 4,

that instance of the loop ends.

You can continue to experiment with the process, increasing the number of tokens,

adding costs to particular tasks, increasing durations, or changing the probabilities

for the True and False attributes. You can also add or remove tasks within the loop

according to your own organization’s processes. Continue adjusting the process

and simulation to become familiar with aspects of the for loop.

For loops 13

14 Using Loops

Do-while loops

A do-while loop is a loop that repeats a set of activities while some condition is

satisfied. A do-while loop differs from a for loop in that you cannot specify the

number of times that the loop will run; the number of times that the loop runs is

determined dynamically when the process is run. A do-while loop contains a

condition, and the loop tests its condition at the end of its component activities.

This means that its sequence of activities will always run at least once.

In the telemarketing example, you have seen how a for loop can be used to model

a situation where a telemarketer contacts a customer a specified number of times.

However, if there is no restriction placed on the number of contact attempts, a

do-while loop is the appropriate type of loop to use in your model. The do-while

loop will repeat as long as a certain condition is satisfied. In the telemarketing

scenario, the condition is that there is a customer record in the call queue. If the

customer does not answer the call, the process waits for a specified amount of time

and then the telemarketer attempts to contact the customer again. The customer

record goes back into the queue continually until the customer responds,

regardless of how many attempts it takes. This process can be modeled as a

do-while loop as follows:

v Do: call the customer

v While: the customer has not responded

– return to Do
v Update the Customer Responses database

The activity following the While condition—that is, ″return to Do″—continues until

the condition is no longer true.

Remember that, as with the for loop, the only information that can both be

accessed within the loop condition and be changed from within the loop is data

stored in a local repository, so a well-formed loop condition always relies on a

local repository.

Adding a do-while loop to a process

Do-while loops are ideal for modeling a repeated set of activities for an unspecified

number of times. You have already used a for loop in the Call Procedure process to

repeat the Contact Customer activities 3 times. But what if the telemarketer has no

restrictions on the number of times that she attempts to contact the customer? If

there is no predetermined number of times that the telemarketer will repeat the

activities, a for loop is not the appropriate model element to use. In this case, a

do-while loop will repeat the Contact Customer activities until the customer

responds.

The do-while loop in the telemarketing scenario is added in the same way as the

for loop. First, you need to make a copy of the process as a whole, and then you

can add the do-while loop and its component tasks.

Tip: The tasks that you will add to the Contact Customer do-while loop are

identical to the ones that you added to the for loop earlier in this tutorial.

Although you are encouraged to complete all the steps of this tutorial in order to

© Copyright IBM Corp. 2006, 2008 15

become more familiar with the components and characteristics of loops, the Call

Procedure-Do While (Working) process included in the Loops Sample already

contains the do-while loop and component model elements. If you choose to do so,

you can open that process and skip ahead to “Setting a condition on a do-while

loop” on page 20

To model the Call Procedure process using a do-while loop, complete the following

steps:

1. Make a copy of the Call Procedure process:

a. In the Project Tree, right-click the Call Procedure process and select Copy.

b. Right-click the Processes folder and select Paste. Rename the copy of the

process to Call Procedure - Do-While Loop.
2. Open the Call Procedure - Do-While Loop process.

3. Delete the Contact Customer task.

4. In the palette, select the Do-While Loop

icon. Alternatively, you can

right-click on the drawing area of the diagram and select New → Do-While

Loop.

5. Move your cursor to the point where the Contact Customer task was located

and click to add a for loop to the diagram.

6. Rename the do-while loop to Contact Customer.

7. Connect the available Choose Script output to the Contact Customer do-while

loop input. Similarly, connect the Contact Customer output to the available

Update Information input.

8. Click File → Save to save the process.

By adding a do-while loop to the Call Procedure process, you can model the series

of activities that will be repeated until the customer answers the telemarketer’s

call. Next, you will add the activities for the do-while loop, just as you did with

the for loop.

Adding activities to a do-while loop

Because the do-while loop is similar to the for loop in the telemarketing scenario,

you will use the same activities within the loop. The only difference will be in the

conditions that you set on the loop in the next exercise.

Tip: Although you are encouraged to complete all the steps of this tutorial in order

to become more familiar with the components and characteristics of loops, some of

the steps that you completed when adding activities to the for loop are repeated

here. If you are comfortable with adding activities to a loop and adding inputs and

outputs to the loop’s component activities, the Call Procedure-Do While (Working)

process included in the Loops Sample has been set up so that you do not have to

repeat those steps. If you choose to do so, you can open that process and skip

ahead to “Setting a condition on a do-while loop” on page 20.

To add the individual tasks and activities that make up the do-while loop,

complete the following steps:

1. In the Contact Customer do-while loop, click the plus sign (+) to expand the

do-while loop.

2. Add the activities that must be completed when contacting a customer, as

follows:

a. Dial Customer Number task

16 Using Loops

b. Did Customer Answer simple decision

c. Read Marketing Script task

d. Wait 4 Hours task. (Select the Wait 4 Hours task, click the Duration tab, and

set the processing time to 4 hours.)

e. Two stop nodes, one for each possible path
3. Connect the activities as follows:

a. Connect the start node to the input of the Dial Customer Number task

b. Connect the output of the Dial Customer Number task to the input of the

Did Customer Answer simple decision.

c. Connect the Yes branch of the Did Customer Answer decision to the input

of the Read Marketing Script task.

d. Connect the output of the Read Marketing Script task to the first stop node.

e. Connect the No branch of the Did Customer Answer decision to the input

of the Wait 4 Hours task.

f. Connect the output of the Wait 4 Hours task to the second stop node.
4. Associate the Customer Response business item with connections in the loop:

a. Right-click the connection between the Dial Customer Number task and the

decision and select Associate data.

b. Select the Complex type radio button and then select the Customer

Response business item. Click OK.

c. Using the same method, associate the Customer Response business item

with the connection between the Yes decision output and the Read

Marketing Script task, and the No decision output and the Wait 4 Hours

task. In the telemarketing scenario, this data association simply means that

the customer response, or lack of customer response, will determine which

subsequent task is performed. In technical terms, you are now able to access

and use the Customer Response business item attributes in any expression

that you create when you simulate the process.

The do-while loop should now look like the one in the following image:

5. Add an expression to the decision:

a. Click the Did Customer Answer decision to select it.

b. Click the Output branches tab.

c. In the table, click the row which contains the Yes output branch.

d. In the Decision Branch Condition section, locate the Expression field and

click Edit. Note that the Decision Branch Condition section is at the bottom

of the page; you might have to scroll to locate it.

Do-while loops 17

e. In the Expression Builder, ensure the simple expression toggle button

is

pressed.

f. In the Simple binary expression section, click Add.

g. In the First term list, ensure that Modeling artifact is selected.

h. In the Modeling artifact tree, click Processes → Call Procedure-Do-While

Loop → Contact Customer → Did Customer Answer? → Input → Has

Responded. This attribute has been predefined in the Customer Response

business item.

i. In the Operator list, select is equal to.

j. In the Second term list, select Boolean. The Has Responded attribute has

Boolean as its type, and so you must select a Boolean value to associate with

the Yes branch of the decision.

k. In the Boolean value field, select true.

l. Click Apply. The Expression Builder should look like the following image:

6. Click OK to close the Expression Builder. Note that when you add an

expression to one branch of a simple decision, the opposite expression is

automatically added to the other branch. If you click the table row containing

the No decision output, you will notice that the Expression field has been

automatically updated to include an expression where the Has Responded

attribute is not equal to true. This saves you having to use the Expression

Builder to compose an expression for the No output.

7. Click File → Save to save the process.

Now that you have added the required elements to the do-while loop, you must

add an input to the Dial Customer Number task and an output to the Read

Marketing Script task, just as you did for the for loop earlier in this tutorial. This

will enable the loop to accept and produce data from the local repositories in the

parent process.

18 Using Loops

Passing data to a do-while loop

Remember that if you want to perform an expression-based simulation for your

process, you need to use a local repository to pass data to and from the loop. Just

as you did when you created a for loop, you need to enable your do-while loop to

receive data from and pass data to a local repository. You will then be able to

access this data using the Expression Builder and set the condition for the Contact

Customer do-while loop.

Tip: Although you are encouraged to complete all the steps of this tutorial in order

to become more familiar with the components and characteristics of loops, the Call

Procedure-Do While (Working) process included in the Loops Sample already

contains the do-while loop and component model elements. If you choose to do so,

you can open that process and skip ahead to “Setting a condition on a do-while loop”

on page 20.

To enable the Contact Customer do-while loop to receive and produce data,

complete the following steps:

1. In the Contact Customer do-while loop, click the Dial Customer Number task.

2. In the Attributes view, click the Inputs tab.

3. Add an input to the task and set the attributes:

a. Click Add next to the Input table.

b. In the Associated data column, select Customer Record. The Customer

Record business item contains the customer’s telephone number, which is

required to complete the Dial Customer Number task.

c. Leave the Minimum and Maximum columns with the default values.

d. In the Input source column, select Repository.

e. Press Enter on your keyboard. Additional settings are displayed in the

Details section below the Input table.

f. Click Browse next to the Repository value field.

g. Select the Local repository radio button, and then select Call

Procedure-Do-While Loop/Customer Record Database from the menu.

Click OK.

h. Ensure that the Read radio button is selected. You do not want to remove

the customer record from the database because if the customer does not

answer, the record will have to be accessed again.
4. In the diagram, click the Read Marketing Script task.

5. In the Attributes view, click the Outputs tab.

6. Add an output to the task and set the attributes:

a. Click Add next to the Output table.

b. In the Associated data column, select Customer Response. The Customer

Response business item is required to complete the activities in the Contact

Customer do-while loop.

c. Leave the Minimum and Maximum columns with the default values.

d. In the Input source column, select Repository.

e. Press Enter on your keyboard. More settings are displayed in the Details

section below the Input table.

f. Click Browse next to the Repository value field.

Do-while loops 19

g. Select the Local repository radio button, and then select Call

Procedure-Do-While Loop/Customer Response Database from the menu.

Click OK.

h. Leave the Overwrite radio button selected. By selecting this button, you are

indicating that the customer record will be added to the Customer Response

Database after it is received from the Contact Customer do-while loop.

You have now added an output that will enable your Contact Customer

do-while loop to pass on a Customer Response business item. The Contact

Customer for loop should now look like the one in the following image:

7. Click File → Save to save the process. You have now added an output that will

enable your Contact Customer do-while loop to pass on a Customer Response

business item.

This is the second time that you have added an input and output to enable your

loop to receive and produce data. Just as with the for loop, there is no direct

connection line in the diagram from the two local repositories in the parent

process. Data can be passed between the repositories and the loop only because of

the input and output that you have just added. Without the local repositories, you

would not be able to run an expression-based simulation of the Call

Procedure-Do-While Loop process.

Setting a condition on a do-while loop

A do-while loop has no limit on the number of times it will run. Remember that

when you set the condition for the for loop, you added parameters for a loop

counter. There is no such counter for a do-while loop. To set the loop condition for

the Contact Customer do-while loop, you will not set an initial value or final value

because you are not specifying the number of times that the telemarketer will

contact the customer. Instead, you will simply add an expression that the loop will

check each time it runs.

Important: Remember that a do-while loop checks its condition at the end of the

loop. Because of this behavior, a do-while loop will always run at least once.

To set the loop condition for the Contact Customer do-while loop, complete the

following steps:

1. In the parent process, click the Contact Customer do-while loop to select it. (To

get to the parent process from within the loop, right-click and select Parent.)

2. In the Attributes view, click the Loop Condition tab.

20 Using Loops

3. In the Name field, type the following: Has the Customer Responded? This is the

name of the expression that you will use to define the condition.

4. Optionally, you can add a description of the condition; for example, ″Check to

determine if the customer has already responded to a marketing call″, or

whatever is appropriate.

5. Leave the Probability (%) field blank. You will use an expression to determine

the path flow in your simulation.

6. Click Edit below the Expression field. The Expression Builder opens.

7. Use the Expression Builder to define the condition that will enable the loop to

continue:

a. In the Expression Builder, ensure the simple expression toggle button

is pressed.

b. In the Simple binary expression section, click Add.

c. In the First term list, ensure that Modeling artifact is selected.

d. In the Modeling artifact tree, click Processes → Call Procedure-Do-While

Loop → Customer Response Database → Has Responded. This attribute has

been predefined in the Customer Response business item, and will be used

to indicate whether the customer has responded to a telemarketing call.

e. In the Operator list, select is not equal to.

f. In the Second term list, select Boolean. The Has Responded attribute has

Boolean as its type, and so you must select a Boolean value to correctly

compose your expression.

g. In the Boolean value field, select true.

h. Click Apply. Notice that the Expression Tree and Expression Text panes are

automatically populated with the expression that you have just created. The

Expression Builder should now look like the following image:

8. Click OK to close the Expression Builder.

Do-while loops 21

By creating this expression, you have added a condition to the Contact Customer

do-while loop: As long as the Has Responded attribute on the Customer Response

business item is not equal to ″true″, the loop will continue. In terms of the

telemarketing scenario, as long as the customer has not answered the

telemarketer’s call, the telemarketer will continue to call every 4 hours. Clearly, this

makes for a rather persistent telemarketer, especially if you do not create a

timetable that specifies the times that the telemarketer could call. (Presumably, you

would restrict your telemarketers from calling in the middle of the night, unless

you are really trying to make an impression.) For the purposes of this tutorial, you

do not need to add any more modeling elements to the Loops Sample project.

However, if you were modeling a similar scenario, you might indicate the

resources who would carry out the tasks, their associated costs, and the times that

they are available to work. It should be apparent that do-while loops must be used

carefully in your business models.

Now that you have set the loop condition and enabled your loop to receive data,

you are ready to set up and run an expression-based simulation of the Call

Procedure-Do While Loop process.

Simulating a process containing a do-while loop

Just as you did for the process containing a for loop, you will run an

expression-based simulation for the Call Procedure-Do-While Loop process. You

will set up and run the simulation of your do-while loop the same way that you

ran the for loop simulation, creating an expression based on the Customer

Response business item. Ensure that your simulation settings are set to display

animation so that you can view the inner workings of the do-while loop:

To set up and run the simulation, complete the following steps:

 1. In the Project Tree view, right-click the Call Procedure-Do-While Loop process

and select Simulate. The Add Elements to the Simulation Snapshot window

opens.

 2. Review the required elements display to see the elements that will be included

automatically in the simulation snapshot. You can include additional elements

in the snapshot by specifying them in the Optional Elements tree. For the

purposes of this tutorial, we will use only the required elements.

 3. Click OK to close the Add Elements to the Simulation Snapshot window.

 4. The Check Path for Stop Nodes window opens if you have not set the Show

check paths confirmation dialog preference to no. Click yes to check for

missing stop nodes.

 5. If WebSphere Business Modeler finds any path that does not have a stop

node, a window opens showing you which processes or subprocesses contain

the unstopped path. Otherwise, you will receive a notification that no

problems were detected. Click OK to close this window. The simulation

diagram opens.

 6. In the Attributes view, click the General tab.

 7. In the Method of selecting an output path field, select Based on an

expression. This method enables the simulation to evaluate any expression

that it encounters in the process path. Remember that you previously set an

expression in your loop condition.

 8. Click the Inputs tab.

 9. In the table, click the row containing the input.

10. Click Edit beside the Number of tokens per bundle field.

22 Using Loops

11. Ensure that the Use a specific number of tokens for all bundles radio button

is selected and type 5 for the value. Click OK.

12. Right-click in the diagram and select Expand All from the pop-up menu.

(Ensure that your cursor is over a blank area in the diagram when you

right-click; if it is over a process activity, you will see a different menu.) The

Contact Customer do-while loop is expanded so that its component activities

are displayed.

13. In the process diagram, click the first task inside the do-while loop, Dial

Customer Number. This task outputs a Customer Response business item.

14. Create simulation values for the Customer Response business item:

a. Click the Business Item Creation tab.

b. In the table, select the row containing the Output and then click Create

Simulation Values.

c. In the Simulation value creation window, select Define custom rules from

the pull-down menu. The attributes of the Customer Response business

item—which is the output of the Dial Customer Number task—is

displayed.

d. In the Business Item Attributes table, click Has Responded to select the

attribute.

e. In the Attribute value distributions list, select Weighted list, and then

click Add at the bottom of the table.

f. In the New value list, select True and then click OK.

g. In the Probability column, click the cell next to the value that you just

added and type 60.

h. Click Add again, select False as the value, and type 40 for the probability.

i. Press Enter on your keyboard, and then click OK to close the window.
15. Click File → Save to save the simulation settings.

You are now ready to simulate the Call Procedure-Do-While Loop process. To be

able to observe the behavior within the Contact Customer do-while loop, adjust the

zoom settings for the simulation diagram and ensure that the simulation is set to

display animation. (To adjust the simulation settings, click the Simulation Control

Panel tab, click the Menu button, and select Setting.) When you have finished

updating the settings, click the Run simulation

button to run the simulation.

As the simulation runs, observe how the loop behaves. The loop runs at least once

for each token; if the decision response is Yes, the token is passed to the Read

Marketing Script task and that instance of the loop ends; if the decision response is

No, the token is passed to the Wait 4 Hours task, and then is sent through the loop

again to repeat the activities. Unlike the for loop that you simulated earlier in the

tutorial, there is no limit on the number of times that a telemarketer can attempt to

contact a customer, which means that in the simulation there is no limit on the

number of times that a token can be passed back to the start of the loop. Run the

simulation several times to observe how the number of task activations within the

loop can differ between simulations.

You can continue to experiment with the process, increasing the number of tokens,

adding costs to particular tasks, increasing durations, or changing the probabilities

for the True and False attributes. You can also add or remove tasks within the loop

according to your own organization’s processes. Continue adjusting the process

and simulation to become familiar with aspects of the do-while loop.

Do-while loops 23

24 Using Loops

While loops

A while loop is a type of loop that repeats as long as a specified condition is

satisfied.

The while loop tests its condition at the beginning of every loop. If the condition is

false from the start, the sequence of activities contained in the loop never runs at

all. In the telemarketing example, a telemarketer contacts customers, updates the

customer information if the customer responds, and waits a certain period of time

to call again if the customer does not respond. As long as there are customer

records in the queue, the telemarketer contacts that customer. If there are no

customer records for the telemarketer to access at the beginning of the process, or

if all the customer records have been distributed, the condition is no longer true,

and the telemarketer stops contacting customers. This example can be modeled as

follows:

v While (there is a customer record in the queue) contact the customer

The loop condition is set using the Expression Builder. As with the two other types

of loop you have worked with in this tutorial, the while loop can only have data

passed to it from a local repository, and similarly, can only pass data to a local

repository.

In the telemarketing scenario, customer records need to be allocated so that

telemarketers have the information they need to contact the customer. To model

this process, you will use a while loop, with the condition being that there must be

a customer record in the Customer Record Database. To populate the Customer

Record Database you will use a for loop.

Adding a while loop to a process

In the Loops Sample, the Distribute Call List-While Loop process has already been

set up to populate the Customer Records Database local repository using a for

loop. This approach will enable you to simulate the process without having to

create a large number of Customer Record business item instances. Expand the

Populate Database for loop to see the simple task that is used for populating the

Customer Record Database with business items. The for loop should be familiar to

you after completing the exercises earlier in this tutorial.

Note: This tutorial has been designed to ensure that the while loop will run when

you simulate it. The Populate Database for loop ensures that a business item

instance will be added to the Customer Record Database local repository so that

you can observe the function of the Distribute Customer Records while loop. In a

typical while loop scenario, there will be no guarantee that the while loop will run

even once, which is why this particular type of loop would be used instead of a

for loop or a do-while loop.

To add a while loop to the process, complete the following steps:

1. In the Project Tree, double-click the Distribute Call List-While Loop to open it

in the process editor.

© Copyright IBM Corp. 2006, 2008 25

2. In the palette, select the While Loop

icon and then click in the diagram to

the right of the Populate Database for loop. (Alternatively, you can right-click

on the drawing area of the diagram and select New → While Loop.)

3. Rename the while loop to Distribute Customer Records.

4. Delete the connection between the Populate Database for loop and the stop

node.

5. Connect the Populate Database for loop to the Distribute Customer Records

while loop, and then connect the Distribute Customer Records while loop to

the stop node. The diagram should now look like the one in the following

image:

Now that you have added the Distribute Customer Records while loop to the

process, you need to add the Distribute Customer Records while loop activities.

Adding activities to a while loop

Similar to the two other types of loops, while loops can contain as many activities

as required. In the telemarketing scenario, the Distribute Customer Records while

loop contains just two tasks. First, the customer records are received from the

Customer Records Database, and then the call procedure is performed by any

assigned telemarketer. In this example, the focus is on creating loops. However,

you should keep in mind that you can also model the allocation of resources (for

example, assigning individual telemarketers to one or more tasks), the scheduling

of those resources (using timetables), or any other business situation.

To add the required tasks to the Distribute Customer Records while loop, complete

the following steps:

1. In the Distribute Customer Records while loop, click the plus sign (+) to

expand the loop.

2. Add the following model elements:

a. Get Customer Record task

b. Perform Call Procedure task

c. Stop node
3. Connect the elements of while loop as follows:

a. Connect the start node to the Get Customer Record task.

b. Connect the Get Customer Record task to the Perform Call Procedure task.

c. Connect the Perform Call Procedure task to the stop node.
4. Right-click the connection between the Get Customer Record task and the

Perform Call Procedure task and select Associate data.

26 Using Loops

5. Select the Customer Record complex type and then click OK. The Customer

Record business item is now associated with this connection, and can be passed

between the two tasks. The Distribute Customer Records while loop should

now look like the one in the following image:

Now that you have added the loop activities, you must add an input to the Get

Customer Record task to enable it to receive data from the Customer Record

Database local repository.

Passing data to a while loop

Just as you did for the previous two loops that you have created, you must enable

your while loop to receive data from a local repository, which will in turn enable

you to simulate your process based on an expression. To enable the Distribute

Customer Records while loop to receive data, complete the following steps:

1. In the Distribute Customer Records while loop, click the Get Customer Record

task.

2. In the Attributes view, click the Inputs tab.

3. Add an input to the task and set the attributes:

a. Click Add next to the Input table.

b. In the Associated data column, select Customer Record.

c. Leave the Minimum and Maximum columns with the default values.

d. In the Input source column, select Repository.

e. Press Enter on your keyboard. Additional settings are displayed in the

Details section below the Input table.

f. Click Browse next to the Repository value field.

g. Select the Local repository radio button, and then select Distribute Call

List-While Loop/Customer Record Database from the menu.

h. Click OK.

i. Ensure that the Read and Remove radio button is selected. By selecting this

setting, you are indicating that the customer record will be removed from

the database after it is distributed.

j. Leave the Read from the beginning radio button selected.
4. Click File → Save to save the process.

The Distribute Customer Records while loop is now ready to receive data from the

Customer Records Database local repository.

Setting a condition on a while loop

The do-while and for loops that you created earlier in this tutorial will each run at

least once. In the case of the for loop, it will run a maximum of 4 times for each

process instance. The do-while loop will run until the customer responds, but it too

will run a minimum number of times; that is, once. The while loop differs from the

other two types of loop in that it tests its condition before it runs for the first time.

If the condition is not met, the loop will not run even once.

In the telemarketing example, the Distribute Customer Records while loop will run

as long as there are records in the Customer Record Database. The loop needs to

While loops 27

check the count of the records in the database to determine if it will run. If the

count is greater than 0, the loop will run. To check the database for waiting

records, you will need to create an expression that uses a function.

The while loop must determine if there are any customer records in the database.

To do this, you need to define an expression that uses a function for one of its

terms. To set the condition for the Distribute Customer Records while loop,

complete the following steps:

1. In the parent process diagram, click the Distribute Customer Records while

loop to select it.

2. In the Attributes view, click the Loop condition tab.

3. In the Name field, type the following: Check for Customer Record. This is the

name of the expression that you will create to define the condition.

4. Optionally, you can add a description of the condition; for example, ″Check to

determine if there are any waiting records in the Customer Records Database″,

or whatever is appropriate.

5. Click Edit below the Expression field. The Expression Builder opens.

6. Ensure the

(Full expression) toggle button is pressed.

7. Use the Expression Builder to define the condition that the loop will check to

determine if it should run:

a. In the First term list, select Function.

b. In the Operator list, select is greater than.

c. In the Second term list, select Number. Leave the number value as 0.0.

d. Now you need to edit the function for the first term of the expression. Click

Edit in the Function expression area of the First term pane.

e. In the Available functions tree, expand the Numeric functions node and

select count. In the Function description pane, click the elements-to-count

link. The Expression Composer area now enables you to select the collection

of elements that you want to count.

f. Ensure that Modeling artifact is selected in the First term field.

g. In the Modeling artifact tree, select the Customer Record Database local

repository.

h. Click Apply. Notice that the Expression Tree and Expression Text panes are

automatically populated with the expression that you have just created. The

Expression Tree and Expression Text panes should look like the following

image:

i. Click OK to complete the expression. The Expression field is populated with

the expression that you just created.
8. Click File → Save to save the process.

It is important that you understand the steps that you have just completed. The

expression that you defined as your loop condition uses a function to determine

the number of customer records in the Customer Record Database local repository.

28 Using Loops

The expression compares that number to the value that you added as the second

term in the expression, 0. If the count is higher than 0, the loop will run. In this

way, the loop determines whether to run before the start of its first component

activity. This behavior distinguishes the while loop from the other two types of

loops.

Now that you have created an expression for your Distribute Customer Records

while loop, you can run an expression-based simulation for the Distribute Call List

process.

Simulating a process containing a while loop

In this exercise, you will set up and run an expression-based simulation, just as

you did previously for the processes containing the for loop and do-while loop.

Remember that this simulation requires business items to be created before they

can be passed to the Distribute Customer Records while loop. Two different

business item instances, Pittsburgh Customers and Hartford Customers, have been

created for you to use in this simulation. A typical organization might have many

more business item instances defined for a business scenario. Remember, too, that

this tutorial uses business item instances in this exercise to demonstrate an

alternative method of providing data to the simulation. You could also use the

business item creation method to generate data for this simulation.

To simulate the Distribute Call List-While Loop process, complete the following

steps:

 1. In the Project Tree view, right-click the Call Procedure-While Loop process and

select Simulate. The Add Elements to the Simulation Snapshot window opens.

 2. In the Optional Elements tree, select the ″Hartford Customers″ and

″Pittsburgh Customers″ business items. These elements will be included in the

simulation snapshot.

 3. Click OK to close the Add Elements to the Simulation Snapshot window.

 4. The Check Path for Stop Nodes window opens if you have not set the Show

check paths confirmation dialog preference to no. Click yes to check for

missing stop nodes.

 5. If WebSphere Business Modeler finds any path that does not have a stop

node, a window opens showing you which processes or subprocesses contain

the unstopped path. Otherwise, you will receive a notification that no

problems were detected. Click OK to close this window. The simulation

diagram opens.

 6. In the Attributes view, click the General tab.

 7. In the Method of selecting an output path field, select Based on an

expression. This method enables the simulation to evaluate any expression

that it encounters in the process path. Remember that you previously set an

expression containing a count function in the Distribute Customer Records

loop condition.

 8. Right-click in the diagram and select Expand All from the pop-up menu.

(Ensure that your cursor is over a blank area in the diagram when you

right-click; if it is over a process activity, you will see a different menu.) The

two loops are expanded so that their component activities are displayed.

 9. Set the business item creation attributes in the for loop so that the local

repository can be populated with data:

a. In the Populate Database for loop, click the Store Customer Record task.

b. Click the Business Item Creation tab.

While loops 29

c. In the table, select the row containing the Output and then click Create

Simulation Values.

d. In the Value creation rule field, select Random List.

e. Click Add. Select the Pittsburgh Customers business item instance, and

then click OK Add the Hartford Customers business item instance using

the same method. For the purposes of this tutorial, only two business item

instances are available. A typical organization would normally have a

larger number of business item instances to distribute.
10. Click File → Save to save the simulation settings.

You are now ready to simulate the Distribute Call List-While Loop process. To be

able to observe the behavior within the two loops, adjust the zoom settings for the

simulation diagram and ensure that the simulation is set to display animation. (To

adjust the simulation settings, click the Simulation Control Panel tab, click the

Menu button, and select Setting.) When you have finished updating the settings,

click the Run simulation button

to run the simulation.

Remember that the Populate Database for loop is a construct specifically for this

simulation. The for loop’s counter has a maximum of 5, and therefore 5 business

item instances are passed to the Distribute Customer Records while loop. The

Distribute Customer Records while loop runs as long as its while condition is true;

that is, as long as there is at least one customer record in the Customer Record

Database local repository.

This is the final exercise of this tutorial.

30 Using Loops

Summary

A loop is a useful modeling element when used correctly to show activities that

are repeated within a larger process. However, it is important to review your

process to ensure that you require an activity to be repeated exactly; it is a

common business modeling error to use a loop to repeat an activity or sequence of

activities when what the process actually requires is a similar but separate task.

In this tutorial, you have learned how to use three different types of loops in your

business models. You should now be familiar with the differences between the

three types of loops, and how to set loop conditions. You should also know how to

use local repositories and task inputs and outputs to pass data between parent

processes and loops. Understanding this repository/loop relationship is crucial if

you want to run an expression-based simulation of a process that contains a loop.

Focus on the following key points when using loops:

v Be sure that a loop is required in the process.

v Choose the right type of loop for your repeated activities.

v Include a local repository in the process if you want to run an expression-based

simulation.

v Add a task input or output for any data that you want to pass between the loop

and the parent process.

v Ensure that you have set an appropriate loop condition.

As you continue to work with loops in your own processes, remember that you

can add various modeling elements to a loop’s component tasks, just as you would

for any task in the parent process. You can add costs, resources, durations, or

timetables, and produce simulations based on any number of business scenarios.

By using loops in your processes, you can model any repeated activity realistically

and accurately.

© Copyright IBM Corp. 2006, 2008 31

32 Using Loops

Notices and Trademarks

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this

documentation in other countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or imply

that only that IBM product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any IBM intellectual

property right may be used instead. However, it is the user’s responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this documentation. The furnishing of this documentation does not

grant you any license to these patents. You can send license inquiries, in writing,

to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006, 2008 33

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM RTP Laboratory

3039 Cornwallis Road

P.O. BOX 12195

Raleigh, NC 27709-2195

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

34 Using Loops

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. (C) Copyright IBM Corp. 20004, 2006. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

 IBM

 IBM (logo)

 AIX

 ClearCase

 Cloudscape

 Cube Views

 DB2

 DB2 Universal Database

 FlowMark

 Notes

 Rational

 Redbooks

 ViaVoice

 WebSphere

 XDE

Microsoft, Windows, Windows XP, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel, Intel Inside (logos), and Pentium are trademarks or registered trademarks of

Intel Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Notices and Trademarks 35

	Contents
	Using loops in processes
	For loops
	Adding a for loop to a process
	Adding activities to a for loop
	Passing data to a for loop
	Setting a condition on a for loop

	Simulating a process containing a for loop

	Do-while loops
	Adding a do-while loop to a process
	Adding activities to a do-while loop
	Passing data to a do-while loop
	Setting a condition on a do-while loop

	Simulating a process containing a do-while loop

	While loops
	Adding a while loop to a process
	Adding activities to a while loop
	Passing data to a while loop
	Setting a condition on a while loop

	Simulating a process containing a while loop

	Summary
	Notices and Trademarks
	Notices
	Trademarks and service marks

