
IBM Rational Developer for System z

Host Configuration Guide

Version 7.1

SC23-7658-00

���

IBM Rational Developer for System z

Host Configuration Guide

Version 7.1

SC23-7658-00

���

Note

Before using this document, read the general information under “Notices” on page 119.

First edition (September 2007)

This edition applies to IBM Rational Developer for System z Version 7.1 (program number 5724-T07) and to all

subsequent releases and modifications until otherwise indicated in new editions.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30

a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)

445-9269. Faxes should be sent Attn: Publications, 3rd floor.

You can also order publications through your IBM representative or the IBM branch office serving your locality.

Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments by mail to the following address:

IBM Corporation

Attn: Information Development Department 53NA

Building 501 P.O. Box 12195

Research Triangle Park NC 27709-2195

USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule

Contract with IBM Corp.

© Copyright International Business Machines Corporation 2005, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures v

Tables vii

About this book ix

Who should read this book ix

Chapter 1. Installing and configuring the

host components 1

Pre-installation considerations 2

Pre-configuration considerations 2

Required configuration of requisite products and

software 3

User ID considerations 4

Server considerations 4

Required permissions to implement the

configuration tasks 5

Pre-deployment considerations 6

IBM Rational Developer for System z, FMID

HHOP710 6

IBM Common Access Repository Manager

(CARMA), FMID HCMA710 6

Chapter 2. Installation and configuration

changes 7

Changes between version 7.0 and version 7.1 . . . 7

IBM Rational Developer for System z, FMID

HHOP710 7

IBM Common Access Repository Manager

(CARMA), FMID HCMA710 7

Changes between version 6.0.1 and version 7.0 . . . 8

IBM WebSphere Developer for System z, FMID

HHOP700 8

IBM Common Access Repository Manager

(CARMA), FMID HCMA700 8

Backing up previously configured files 9

Chapter 3. Activating Developer for

System z MVS components 13

Set MAXASSIZE in SYS1.PARMLIB(BPXPRMxx) . . 13

APF authorize hlq.SFEKLOAD 13

Customize FEJJCNFG, the JES Job Monitor

configuration file 14

Customize the JES Job Monitor startup JCL 16

JES Job Monitor tracing 16

Run JES Job Monitor as an STC 16

Server permissions 18

Verification of JES Job Monitor startup JCL . . . 18

JES spool access and security 18

Conditional spool access 18

Available commands 19

Limiting access to spool files 19

Customize ELAXF*, remote build procedures . . . 19

(Optional) Define an APPC transaction for the TSO

Commands service 21

Preparation 21

Implementation 23

(Optional) Customize ELAXM*, DB2 stored

procedure members 24

(Optional) Customize CICS Bidirectional language

support (bidi) 24

(Optional) Customize Application Deployment

Manager (ADM) 25

CRD repository 27

CICS primary connection region 27

Pipeline Message Handler 27

(Optional) CICS non-primary connection regions 28

Chapter 4. Activating Developer for

System z z/OS UNIX components . . . 29

Saving the rsed.envvars configuration file in another

directory 30

Customize rsed.envvars, the configuration file for

RSE 31

(Optional) Defining the PORTRANGE available

for RSE 36

(Optional) Defining extra Java startup parameters

with _RSE_*OPTS 36

INETD daemon and RSE REXEC/SSH setup . . . 38

INETD RSE daemon set up 38

INETD REXEC (or SSH) set up 40

Customize ISPF.conf, ISPF configuration file . . . 40

Verify RSE server set up 41

Port availability 42

REXEC connection 42

REXEC/SSH shell script 43

RSE daemon connection 44

JES Job Monitor connection 44

TSO Commands service connection (using

SCLMDT) 44

TSO Commands service connection (using APPC) 45

(Optional) Customize ssl.properties, RSE SSL

configuration 46

(Optional) Customize rsecomm.properties, RSE trace

configuration 47

(Optional) Customize projectcfg.properties, host

projects configuration 48

(Optional) Customize FMIEXT.properties, File

Manager integration 48

Chapter 5. (Optional) Activating IBM

Common Access Repository Manager

(CARMA) 51

Customizing the CARMA MVS components . . . 51

Customizing the CARMA z/OS UNIX components 52

(Optional) Activating the sample Repository Access

Managers (RAMs) 54

Activating the SCLM RAM 54

© Copyright IBM Corp. 2005, 2007 iii

Activating the PDS RAM 54

Chapter 6. (Optional) Activating IBM

Software Configuration and Library

Manager (SCLM) Developer Toolkit . . 55

Chapter 7. Developer for System z

client considerations 57

Chapter 8. Performance considerations 59

Avoid use of STEPLIB 59

Improve access to system libraries 59

Language Environment (LE) runtime libraries . . 59

Application development 60

Improving performance of security checking . . . 60

Class sharing between JVMs 60

Enable class sharing 61

Cache size limits 61

Cache security 61

SYS1.PARMLIB(BPXPRMxx) 61

Disk space 62

Cache management utilities 62

Fixed Java heap size 63

Workload management 63

Appendix A. Running multiple

instances of Developer for System z . . 65

Identical software level, different configuration files 65

All other situations 65

Appendix B. Troubleshooting

configuration problems 69

Location of log files 69

JES Job Monitor logging 70

APPC transaction (TSO Commands service)

logging 70

RSE logging 70

fekfivpc IVP test logging 71

Fault Analyzer Integration logging 71

File Manager Integration logging 71

CARMA logging 71

Dump files 72

MVS dumps 72

Java dumps 72

z/OS UNIX dump locations 73

Program Control authorization for RSE programs . . 73

Reserved TCP/IP ports 74

Address Space size 75

INETD requirements 75

Limitations set in SYS1.PARMLIB(BPXPRMxx) . . 75

Limitations stored in the security profile 76

Limitations enforced by system exits 76

Error feedback tracing 76

APPC transaction and TSO Commands service . . 77

Miscellaneous information 78

System limits 78

Known Issues 79

Host Connect Emulator 79

Contacting IBM support 80

Appendix C. Setting up TCP/IP 83

Hostname dependency 83

Understanding resolvers 83

Understanding search orders of configuration

information 84

Search orders used in the z/OS UNIX environment 84

Base resolver configuration files: 84

Translate tables: 85

Local host tables: 85

Applying this to Developer for System z 86

Appendix D. Setting up INETD 89

inetd.conf 89

ETC.SERVICES 90

Search order used in the z/OS UNIX

environment 91

Search order used in the native MVS

environment 91

PROFILE.TCPIP port definitions 91

/etc/inetd.pid 92

Startup 92

/etc/rc 93

/etc/inittab 93

BPXBATCH 93

Shell session 94

Security 94

Developer for System z requirements 95

INETD 95

RSE daemon 95

Appendix E. Setting up SSL 97

Clone the existing RSE setup 98

Determine which key file(s) to use 98

Create a key store with keytool 99

Create a key database (daemon only) 100

Create a key ring with RACF 100

Create a key database with gskkyman 101

Activate SSL by updating ssl.properties 105

Test the connection 105

Appendix F. Setting up APPC 109

VSAM 109

VTAM 110

SYS1.PARMLIB(APPCPMxx) 111

SYS1.PARMLIB(ASCHPMxx) 112

Activating APPC changes 113

Defining the TSO Commands service transaction 113

Glossary 115

Notices 119

Trademarks and service marks 121

iv IBM Rational Developer for System z: Host Configuration Guide

Figures

 1. FEJJCNFG, JES Job Monitor configuration file 14

 2. JES Job Monitor JCL 17

 3. REXX for APPC ISPF panels 22

 4. rsed.envvars – RSE configuration file 32

 5. ISPF.conf - ISPF configuration file 41

 6. ssl.properties – SSL configuration file 47

 7. rsecomm.properties – Logging configuration

file 47

 8. projectcfg.properties – Host based projects

configuration file 48

 9. FMIEXT.properties – File Manager

configuration file 49

10. CRASRV.properties – CARMA configuration

file 53

11. INETD startup JCL 93

12. Import Host Certificate 106

13. Preferences 107

14. JCL to create APPC VSAMs 110

15. SYS1.SAMPLIB(ATBAPPL) 111

16. SYS1.PARMLIB(APPCPMxx) 111

17. SYS1.PARMLIB(ASCHPMxx) 112

© Copyright IBM Corp. 2005, 2007 v

vi IBM Rational Developer for System z: Host Configuration Guide

Tables

 1. Developer for System z installation and

configuration matrix 1

 2. Customized MVS members overview 9

 3. Customized z/OS UNIX files overview 11

 4. Customization in non Developer for System z

libraries 12

 5. JES Job Monitor console commands 19

 6. Sample ELAXF* procedures 20

 7. APPC transaction checklist 22

 8. Sample ELAXM* DB2 stored procedure

members 24

 9. Optional configuration files 30

10. Developer for System z client checklist 57

11. Local definitions available to resolver 88

© Copyright IBM Corp. 2005, 2007 vii

viii IBM Rational Developer for System z: Host Configuration Guide

About this book

This book discusses the configuration of the IBM Rational Developer for System z

functions. It includes instructions on how to configure IBM Rational Developer for

System z servers on your z/OS® host system.

From here on, the following names are used in this manual:

v IBM Rational Developer for System z is called Developer for System z

v IBM Rational Developer for System z Common Access Repository Manager is called

Common Access Repository Manager, sometimes abbreviated to CARMA

v IBM® Software Configuration and Library Manager (SCLM) Developer Toolkit is called

SCLM Developer Toolkit, sometimes abbreviated to SCLMDT

Note: The configuration information found in this document is for IBM Rational

Developer for System z Version 7.1.

For IBM WebSphere Developer for System z, IBM WebSphere Developer for

zSeries and WebSphere Studio Enterprise Developer, use the configuration

information found in the Host Configuration Guide and Program Directories

for those releases.

Who should read this book

This book is intended for system programmers installing and configuring IBM

Rational Developer for System z Version 7.1 on their z/OS host system. To use this

book, you need to be familiar with the z/OS UNIX® and MVS™ host systems.

© Copyright IBM Corp. 2005, 2007 ix

x IBM Rational Developer for System z: Host Configuration Guide

Chapter 1. Installing and configuring the host components

For each of the following functions, install the required FMIDs. For installation

information about the various FMIDs, please refer to the corresponding program

directory for the FMID you are installing.

 Table 1. Developer for System z installation and configuration matrix

If you require this IBM

Rational Developer for

System z function

You must

install these

FMIDs

And you will find installation and

configuration information here

v Host Connectivity

v JES Connectivity

v Remote Compile

v Error Feedback for Remote

Compile

v Remote Debugging

v DB2® Stored Procedures

v IMS™ MFS Screen Support

v CICS® BMS Map Support

v CICS Bidirectional language

support (bidi)

v Application Deployment

Manager (ADM)

v File Manager integration

v Fault Analyzer integration

HHOP710,

HSD3310*

v Program Directory for IBM Rational Developer

for System z (GI11-8298-00)

v IBM Rational Developer for System z Host

Configuration Guide (SC31-6930)

v IBM Rational Developer for System z Host

Planning Guide (GI11-8296-00)

optional

v Program Directory for IBM Software

Configuration and Library Manager (SCLM)

Developer Toolkit (GI11-8302-00)

v SCLM Developer Toolkit Installation and

Customization Guide (SC23-8504)

v Common Software

Configuration Management

Access (CARMA)

HCMA710,

HHOP710**

v Program Directory for IBM Rational Developer

for System z Common Access Repository

Manager (GI11-8299-00)

optional

v Program Directory for IBM Rational Developer

for System z (GI11-8299-00)

v IBM Rational Developer for System z Host

Configuration Guide (SC31-6930)

v IBM Rational Developer for System z Host

Planning Guide (GI11-8296-00)

v Software Configuration and

Library Manager (SCLM)

Developer Toolkit

HSD3310 v Program Directory for IBM Software

Configuration and Library Manager (SCLM)

Developer Toolkit (GI11-8302-00)

v SCLM Developer Toolkit Installation and

Customization Guide (SC23-8504)

(*) Developer for System z requires a connection to the TSO Commands service on

z/OS. This connection is provided by one of the following:

1. Installing and configuring SCLM Developer Toolkit, FMID HSD3310 (the

default)

2. Installing and configuring an APPC transaction

© Copyright IBM Corp. 2005, 2007 1

(**) CARMA requires a host based interface. HHOP710 provides this function, or

you may use a custom built, host based, interface and omit installing HHOP710

Pre-installation considerations

v If you are a previous user of IBM WebSphere Developer for System z, IBM

WebSphere Developer for zSeries or WebSphere Studio Enterprise Developer, it

is recommended that you save the related customized files before installing the

upgrade to IBM Rational Developer for System z Version 7.1. Refer to “Backing

up previously configured files” on page 9 for an overview of files that required

customization.

v Read Appendix A, “Running multiple instances of Developer for System z,” on

page 65 if you plan on running multiple instances of Developer for System z.

v In version 7.1, Developer for System z provides two access methods for the TSO

Commands service, which executes TSO/ISPF commands, either implicitly by

the product, or explicitly by the user.

– Calling a SCLM Developer Toolkit function. This method requires the

installation and configuration of SCLMDT, FMID HSD3310, which is shipped

with Developer for System z. This method is the default used in the sample

members.

The following SCLMDT customization steps must be performed, which are

described in the SCLM Developer Toolkit Installation and Customization Guide

(SC23-8504):

- Create the directory structure and configuration files

- Customize ISPF.conf

Note:

v The Eclipse Based client is not required to support this function of

SCLMDT

v The SCLM product is not required to support this function of

SCLMDT
– An APPC transaction (as in pre version 7.1 releases). This method requires the

setup and configuration of APPC, which is part of z/OS.
v The bidi load module changed in version 7.0 (name and coding), requiring the

removal of the older modules and configuration of the new one.

v Bidi code that has been created with previous releases (pre version 7.0) must be

RECOMPILED in order to use the new FEJBDTRX module.

For detailed instructions on the SMP/E installation for each of the FMIDs, refer to

the appropriate program directory, as listed in Table 1 on page 1.

Pre-configuration considerations

Developer for System z has a list of prerequisite software that must be installed

and operational before the product will work. There is also a list of corequisite

software to support specific features of Developer for System z. These requisites

must be installed and operational at runtime for the corresponding feature to work

as designed.

Refer to IBM Rational Developer for System z Host Planning Guide (GI11-8296-00) to

get a list of prerequisites and corequisites for your version of Developer for System

z.

2 IBM Rational Developer for System z: Host Configuration Guide

Attention: 64-bit Java™ is NOT supported.

Required configuration of requisite products and software

Consult your MVS system programmer, security administrator and TCP/IP

administrator to check if the requisite products and software are installed, tested,

and working.

v In version 7.1, Developer for System z provides two methods for executing

TSO/ISPF commands, either implicitly by the product, or explicitly by the user.

– Calling a SCLM Developer Toolkit function. This method requires the

installation and configuration of SCLMDT, FMID HSD3310, which is shipped

with Developer for System z. This method is the default used in the sample

members.

The following SCLMDT customization steps must be performed, which are

described in the SCLM Developer Toolkit Installation and Customization Guide

(SC23-8504):

- Create the directory structure and configuration files

- Customize ISPF.conf

Note:

v The Eclipse Based client is not required to support this function of

SCLMDT

v The SCLM product is not required to support this function of

SCLMDT
– An APPC transaction (as in pre version 7.1 releases). This method requires the

installation and configuration of APPC, which is part of z/OS.
v The C/C++ DLL class library CBC.SCLBDLL and the Language Environment® (LE)

runtime libraries CEE.SCEERUN and CEE.SCEERUN2 must be in LINKLIST.

v All z/OS UNIX users must have READ and EXECUTE access to the Java

directories.

v Developer for System z is dependant upon INETD for setting up the client-host

connection. Refer to Appendix D, “Setting up INETD,” on page 89 for more

information on REXEC and SSH.

v Remote (host based) actions for z/OS UNIX subprojects require that REXEC or

SSH is active on the host.

v Developer for System z is dependant upon TCP/IP having the correct hostname

when it is initialized. This implies that the different TCP/IP and Resolver

configuration files must be set up correctly. For TCP/IP and Resolver

customization information, see Appendix C, “Setting up TCP/IP,” on page 83

and "TCPIP.DATA configuration statements" in the Communications Server: IP

Configuration Reference (SC31-8776).

You can test your TCP/IP configuration with the TSO command HOMETEST.

Refer to "TSO Commands" in the Communications Server: IP System Administrator’s

Commands (SC31-8781) for more information on this command.

Example output of the HOMETEST command:

Running IBM MVS TCP/IP CS V1R7 TCP/IP Configuration Tester

The FTP configuration parameter file used will be "SYS1.TCPPARMS(FTPDATA)"

TCP Host Name is: CDFMVS08

Using Name Server to Resolve CDFMVS08

The following IP addresses correspond to TCP Host Name: CDFMVS08

9.42.112.75

Chapter 1. Installing and configuring the host components 3

The following IP addresses are the HOME IP addresses defined in PROFILE.TCPIP:

9.42.112.75

127.0.0.1

All IP addresses for CDFMVS08 are in the HOME list!

Hometest was successful - all Tests Passed!

User ID considerations

The user ID of a Developer for System z user must have (at least) the following

attributes:

v TSO access (with a normal region size).

v An OMVS segment defined to the security system (e.g. RACF®), both for the

user ID and its default group. This OMVS segment can be either an individual

or a system wide default one. See Security Server RACF Security Administrator’s

Guide (SA22-7683) for more information on the default OMVS segment.

– A home directory (with WRITE, READ and EXECUTE access) allocated for

the user and identified in the OMVS segment.

– The PROGRAM field in the OMVS segment should be /bin/sh or other valid

z/OS UNIX shell such as /bin/tcsh.

– The ASSIZEMAX field should not be set, so that system defaults will be used.

– The user ID does not require UID 0.

Example (command LISTUSER userid NORACF OMVS):

USER=userid

OMVS INFORMATION

UID= 0000003200

HOME= /u/userid

PROGRAM= /bin/sh

CPUTIMEMAX= NONE

ASSIZEMAX= NONE

FILEPROCMAX= NONE

PROCUSERMAX= NONE

THREADSMAX= NONE

MMAPAREAMAX= NONE

– The user ID’s default group requires a GID.

Example (command LISTGRP group NORACF OMVS):

GROUP group

OMVS INFORMATION

GID= 0000003243

v READ and EXECUTE access to the Developer for System z installation and

configuration directories, default /usr/lpp/wd4z/*.

Server considerations

The following host services, and thus their ports, must be available for the client to

connect to. All other ports used by Developer for System z have host-only traffic.

This means that, for Developer for System z, only the listed ports must be defined

to your firewall protecting the host.

v INETD service to start the RSE server. Developer for System z supports multiple

ways to do this:

– RSE daemon, default port 4035

– REXEC, default port 512

4 IBM Rational Developer for System z: Host Configuration Guide

– SSH, default port 22
v RSE server for client-host communication. Uses any available port by default,

but can be limited to a specified range. Communication on this port can be

encrypted using SSL.

v TN3270 Telnet service for the Host Connect Emulator, default port 23.

Communication on this port can be encrypted using SSL (default port 992).

Note: Previous clients (version 7.0 and older) communicate directly with JES Job

Monitor, default port 6715.

INETD is a z/OS UNIX server process that is required for setting up Developer for

System z client-host connections. INETD’s environmental settings, which are

passed on when starting a process, and the permissions for INETD’s user ID must

be set properly in order for INETD to start the RSE server.

v If INETD is started by JCL using BPXBATCH, the region size must be 0.

v If INETD is started from a TSO/OMVS session, the TSO region size must be

2096128 or larger.

v READ and EXECUTE access to the Developer for System z installation

directories, default /usr/lpp/wd4z/*.

v BPX.DAEMON and possibly UID 0 permission.

See Appendix D, “Setting up INETD,” on page 89 for more information on INETD

permissions.

Remote Systems Explorer (RSE) is the Developer for System z component that

provides core services like connecting the client to the host.

v Each client–host connection has a private RSE server.

v Besides the ports documented in this book for communicating with other

Developer for System z servers, RSE server requires multiple ports for internal

use.

Required permissions to implement the configuration tasks

The configuration of Developer for System z requires more than the typical system

programmer permissions, so minimal assistance from others is to be expected. The

following list highlights the most important areas:

v Update permission for system data sets (like SYS1.PARMLIB)

v Permission to issue console commands

v Permission to create z/OS UNIX directories

v Permission to update z/OS UNIX /etc directory

v Permission to set the z/OS UNIX program control bit

v Permission to define new TCP/IP ports

v BPX.DAEMON permission and possibly UID 0 to (re)start INETD

v WLM/RSM management permissions

v APPC management permissions to create a transaction program

v Security administrator permissions to query and create security profiles

v (optional) DB2 administrator permissions to create a stored procedure

v (optional) CICS administrator permissions to define programs to CICS

Chapter 1. Installing and configuring the host components 5

Pre-deployment considerations

Developer for System z and Common Access Repository Manager (CARMA)

support cloning an installation to a different system, avoiding the need for a

SMP/E install on each system.

The following data sets, directories and files are mandatory for deployment to

other systems. If you copied a file to a different location for customization, then

this file must replace its counterpart in the lists below.

Note: The lists below do not cover the deployment needs of the pre and co

requisite software.

IBM Rational Developer for System z, FMID HHOP710

v hlq.SFEKLOAD(*)

v hlq.SFEKPROC(*)

v hlq.SFEKSAMP(FEJJCNFG)

v hlq.SFEKSAMP(FEJJJCL)

v hlq.SFEKSAMP(ELAXF*)

v /usr/lpp/wd4z/*

v optional parts

– hlq.SFEKSAMP(FEJTSO) - TSO submit

– hlq.SFEKSAMP(ELAXM*) - DB2 stored procedure

– CICS definitions created by hlq.SFEKSAMP(ADNPCCSD) - ADM primary

connection

– CICS definitions created by hlq.SFEKSAMP(ADNARCSD) - ADM

non-primary connection

– VSAM created by hlq.SFEKSAMP(ADNVSAM) - ADM CRD server

– load module created by hlq.SFEKSAMP(ADNCMSGH) - ADM Pipeline

Handler

– APPC transaction created by hlq.SFEKSAMP(FEKAPPCC) - APPC based TSO

Commands service

– /etc/SCLMDT/CONFIG/ISPF.conf - add the TSO Commands Server to the

ISPF environment of SCLM Developer Toolkit

Note: hlq and /usr/lpp/wd4z are the high level qualifier (default FEK) and path

used during the installation of the product.

IBM Common Access Repository Manager (CARMA), FMID

HCMA710

v hlq.SCRALOAD(*)

v hlq.SCRACLIST(CRASUBMT)

v VSAMs created by the following hlq.SCRASAMP members

– hlq.SCRASAMP(CRA$VMSG) message VSAM

– hlq.SCRASAMP(CRA$VDEF) configuration VSAM

– hlq.SCRASAMP(CRA$SVSTR) custom information VSAM

Note: hlq is the high level qualifier (default CRA) used during the installation of

the product.

6 IBM Rational Developer for System z: Host Configuration Guide

Chapter 2. Installation and configuration changes

This section highlights installation and configuration changes from previous

releases of the product.

Changes between version 7.0 and version 7.1

IBM Rational Developer for System z, FMID HHOP710

v Added: Setup choice - TSO/ISPF commands via an APPC transaction or via

SCLM Developer Toolkit

v Added: The following customizable members are new

– samplib ELAXFADT

– samplib ADNCMSGH

– /usr/lpp/wd4z/rse/lib/FMIEXT.properties
v Changed: The following members have moved

– SFEKDLL(FEJBDTRX) -> SFEKLOAD(FEJBDTRX)
v Changed: The following customizable members have changed

– samplib FEKFAPPCC

– /usr/lpp/wd4z/rse/lib/rsed.envvars

– /usr/lpp/wd4z/rse/lib/setup.env.zseries

– /usr/lpp/wd4z/rse/lib/server.zseries

IBM Common Access Repository Manager (CARMA), FMID

HCMA710

v Changed: Logging is written to CARMALOG DD statement

v Added: The following customizable members are new

– samplib CRA#ECOB

– samplib CRA#EPDS

– samplib CRA#ERAM

– samplib CRA#ESLM
v Renamed: The following customizable members are renamed

– samplib CRAREPR -> CRA$VDEF

– samplib CRAMREPR -> CRA$VMSG

– samplib CRASREPR -> CRA$VSTR

– samplib CRASALX -> CRA#ASLM

– samplib CRACOBJ1 -> CRA#CCB1

– samplib CRACOBJ2 -> CRA#CCB2

– samplib CRACLICM -> CRA#CCLT

– samplib CRARAMCS -> CRA#CPDS

– samplib CRARAMCM -> CRA#CRAM

– samplib CRATREPR -> CRA#VPDS

– samplib CRALREPR -> CRA#VSLM

– samplib CRACLIRN -> CRA#XCLT

© Copyright IBM Corp. 2005, 2007 7

v Changed: The following customizable members have changed

– clist CRASUBMT

Changes between version 6.0.1 and version 7.0

IBM WebSphere Developer for System z, FMID HHOP700

v Changed: IBM WebSphere Developer for System z, FMID HHOP700, now

combines the functions of 5 separate products into 1 to reduce the installation

work

– v601 FMID H001600, IBM WebSphere Developer for zSeries RSE + ICU

– v601 FMID H002600, IBM WebSphere Developer for zSeries JES Job Monitor

– v601 FMID HEDS500, IBM WebSphere Developer for zSeries Options for

z/OS (not all functions are included in HHOP700)

– v601 FMID HBDI601, IBM WebSphere Developer for zSeries bidi support

– (new) version 700, IBM Application Deployment Manager
v Changed: Installation jobs are renamed so that the steps to be performed are in

alphabetical order

v Changed: SMP/E install now sets program control bits in z/OS UNIX

v Changed: REXX server coding is moved out of samplib to a new data set,

SFEKPROC

v Changed: Bidi uses a new load module, all references to the old ones must be

removed

v Changed: The JESNAME parameter is no longer used in the JES Job Monitor

configuration file (samplib FEJJCNFG)

v Changed: The following members no longer need customization

/usr/lpp/wd4z/rse/lib/setup.env.zseries

v Added: The following members are new

– samplib ELAXFCPC

– samplib ELAXFCPP

– samplib ELAXFMFS

– /usr/lpp/wd4z/rse/lib/projectcfg.properties
v Renamed: The following customizable members are renamed

– samplib FEKFRDIS -> FEKAPPCL

– samplib FEKFRDEL -> FEKAPPCX

– samplib FEKFRTAD -> FEKAPPCC
v Removed: The following members are no longer shipped

– samplib ELAXFLNK

– samplib FEJIVJCL

– loadlib FEJBDTRN

– loadlib FEJBDTRE

IBM Common Access Repository Manager (CARMA), FMID

HCMA700

v Changed: Installation jobs are renamed so that the steps to be performed are in

alphabetical order

v Changed: The following members no longer need customization

8 IBM Rational Developer for System z: Host Configuration Guide

– /usr/lpp/wd4z/rse/lib/rsed.envvars

– /usr/lpp/wd4z/rse/lib/rexxsub

Backing up previously configured files

Before installing Developer for System z version 7.1, if you are a previous user of

Developer for System z, it is recommended that you save the related customized

files. Read Appendix A, “Running multiple instances of Developer for System z,”

on page 65 before starting the customization if you plan on running multiple

instances of Developer for System z.

Table 2 and Table 3 on page 11 give an overview of files that may have been

customized for Developer for System z and CARMA version 6.0.1 and higher.

Table 4 on page 12 lists customizations to data sets, prerequisite and corequisite

products and software that occur during a Developer for System z and CARMA

version 6.0.1 (and higher) installation.

 Table 2. Customized MVS members overview

Member

Default location

v6.0.1 Default location v7.0/v7.1 Purpose

FEJJCNFG hlq.SFEJSAMP

(hlq = FEJ)

hlq.SFEKSAMP

(hlq = FEK)

Configuration

file for JES Job

Monitor

FEJJJCL hlq.SFEJSAMP

(hlq = FEJ)

hlq.SFEKSAMP

(hlq = FEK)

JCL for JES Job

Monitor

FEJTSO hlq.SFEJSAMP

(hlq = FEJ)

hlq.SFEKSAMP

(hlq = FEK)

JCL for TSO

submits

FEKAPPCC doesn’t exist hlq.SFEKSAMP

(hlq = FEK)

JCL to create

an APPC

transaction

FEKAPPCL doesn’t exist hlq.SFEKSAMP

(hlq = FEK)

JCL to display

an APPC

transaction

FEKAPPCX doesn’t exist hlq.SFEKSAMP

(hlq = FEK)

JCL to delete

an APPC

transaction

FEKFRTAD hlq.SFEKSAMP

(hlq = FEK)

(new member name

FEKAPPCC)

JCL to create

an APPC

transaction

FEKFRDIS hlq.SFEKSAMP

(hlq = FEK)

(new member name

FEKAPPCL)

JCL to display

an APPC

transaction

FEKFRDEL hlq.SFEKSAMP

(hlq =FEK)

(new member name

FEKAPPLX)

JCL to delete

an APPC

transaction

ELAXF* hlq.SCCUSAMP

(hlq = CCU)

hlq.SFEKSAMP

(hlq = FEK)

JCL for remote

project builds,

etc.

Chapter 2. Installation and configuration changes 9

Table 2. Customized MVS members overview (continued)

Member

Default location

v6.0.1 Default location v7.0/v7.1 Purpose

ELAXMSAM hlq.SCCUSAMP

(hlq = CCU)

hlq.SFEKSAMP

(hlq = FEK)

JCL procedure

of the WLM

address space

for the PL/I

and COBOL

Stored

Procedure

Builder

ELAXMJCL hlq.SCCUSAMP

(hlq = CCU)

hlq.SFEKSAMP

(hlq = FEK)

JCL for

defining the

PL/I and

COBOL Stored

Procedure

Builder to DB2

ADNVSAM doesn’t exist hlq.SFEKSAMP

(hlq = FEK)

JCL for

defining the

ADM CRD

repository

ADNPCCSD doesn’t exist

hlq.SFEKSAMP

(hlq = FEK)

JCL for

activating the

CRD server in

the primary

CICS region

ADNCMSGH doesn’t exist hlq.SFEKSAMP

(hlq = FEK)

(doesn’t exist in version 7.0)

JCL for

compiling the

Pipeline

Message

Handler

ADNTMSGH doesn’t exist hlq.SFEKSAMP

(hlq = FEK)

Sample source

code for the

Pipeline

Message

Handler

ADNARCSD doesn’t exist hlq.SFEKSAMP

(hlq = FEK)

JCL for

activating the

CRD server in

non-primary

CICS regions

CRASUBMT hlq.SCRACLST

(hlq = CRA)

hlq.SCRACLST

(help = CRA)

CLIST to

submit JCL for

a CARMA

server

CRAMREPR hlq.SCRASAM

(hlq = CRA)

hlq.SCRASAMP

(hlq = CRA)

(new member name in

version 7.1 CRA$VMSG)

JCL to create

the CARMA

message VSAM

CRAREPR hlq.SCRASAM

(hlq = CRA)

hlq.SCRASAMP

(hlq = CRA)

(new member name in

version 7.1 CRA$VDEF)

JCL to create

the CARMA

configuration

VSAM

10 IBM Rational Developer for System z: Host Configuration Guide

Table 2. Customized MVS members overview (continued)

Member

Default location

v6.0.1 Default location v7.0/v7.1 Purpose

CRASREPR hlq.SCRASAM

(hlq = CRA)

hlq.SCRASAMP

(hlq = CRA)

(new member name in

version 7.1 CRA$VSTR)

JCL to create

the CARMA

custom

information

VSAM

CRALREPR hlq.SCRASAM

(hlq = CRA)

hlq.SCRASAMP

(hlq = CRA)

(new member name in

version 7.1 CRA#VSLM)

JCL to create

the SCLM

RAM’s

message VSAM

CRASALX hlq.SCRASAM

(hlq = CRA)

hlq.SCRASAMP

(hlq = CRA)

(new member name in

version 7.1 CRA#ASLM)

JCL to create

the SCLM

RAM’s data

sets

CRATREPR hlq.SCRASAM

(hlq = CRA)

hlq.SCRASAMP

(hlq = CRA)

(new member name in

version 7.1 CRA#VPDS)

JCL to create

the PDS RAM’s

message VSAM

Note: hlq is the high level qualifier used during the installation of the product.

The IBM supplied defaults for hlq are listed, but may not apply to your site.

 Table 3. Customized z/OS UNIX files overview

File Default location v6.0.1

Default location

version 7.0/version

7.1 Purpose

rsed.envvars /usr/lpp/wd4z/rse/
lib/

/usr/lpp/wd4z/rse/
lib/

RSE configuration file

rsecomm.properties /usr/lpp/wd4z/rse/
lib/

/usr/lpp/wd4z/rse/
lib/

RSE trace

configuration file

ssl.properties /usr/lpp/wd4z/rse/
lib/

/usr/lpp/wd4z/rse/
lib/

RSE SSL

configuration file

setup.env.zseries /usr/lpp/wd4z/rse/
lib/

(no longer

customized)

Export RSE

environment variables

projectcfg.properties (doesn’t exist) /usr/lpp/wd4z/rse/
lib/

Host projects

configuration file

FMIEXT.properties (doesn’t exist) /usr/lpp/wd4z/rse/
lib/ (doesn’t exist in

version 7.0)

File Manager

configuration file

CRASRV.properties /usr/lpp/wd4z/rse/
lib/

/usr/lpp/wd4z/rse/
lib/

CARMA

configuration file

rexxsub /usr/lpp/wd4z/rse/
lib/

(no longer

customized)

CARMA z/OS UNIX

REXX to execute MVS

CRASUBMT CLIST

Note: /usr/lpp/rd4z is the path used during the installation of the products. The

IBM supplied default is shown, but might not apply to your site.

Chapter 2. Installation and configuration changes 11

Table 4. Customization in non Developer for System z libraries

Member/
File Default location Required customization

BPXPRMxx SYS1.PARMLIB Set MAXASSIZE to 2147483647 or larger

PROGxx SYS1.PARMLIB APF authorize hlq.SFEKLOAD

ASCHPMxx SYS1.PARMLIB Define an APPC transaction class for the TSO

Commands service

services /etc/ Define RSE daemon

inetd.conf /etc/ Define RSE daemon

ISPF.conf /etc/SCLMDT/
CONFIG/

Define location of the TSO Commands Server

/ APPC Define an APPC transaction for the TSO Commands

service

/ WLM Associate APPC transaction program with a TSO

performance group

/ WLM Assign an application environment for the DB2 stored

procedure

12 IBM Rational Developer for System z: Host Configuration Guide

Chapter 3. Activating Developer for System z MVS

components

Before installing the 7.1 version, if you are a previous user of WebSphere

Developer for System z (FMID: HHOP700), it is recommended that you save the

related customization as described in “Backing up previously configured files” on

page 9.

All references to hlq in this chapter refer to the high level qualifier used during

installation of Developer for System z. The installation default is FEK, but this

might not apply to your site.

Note: The C/C++ DLL class library CBC.SCLBDLL and the Language Environment

(LE) runtime libraries CEE.SCEERUN and CEE.SCEERUN2 must be in LINKLIST.

The LINKLIST requirement can be bypassed by adding a STEPLIB statement

to rsed.envvars, see “Customize rsed.envvars, the configuration file for

RSE” on page 31.

Set MAXASSIZE in SYS1.PARMLIB(BPXPRMxx)

MAXASSIZE defines the address space (process) region size. Set MAXASSIZE in

SYS1.PARMLIB(BPXPRMxx) to 2147483647 or larger.

This value can be checked and set dynamically (until the next IPL) with the

following console commands, as described in MVS System Commands (GC28-1781).

1. DISPLAY OMVS,O

2. SETOMVS MAXASSIZE=2147483647

Refer to “Address Space size” on page 75 for more information on other locations

where address space sizes can be set or limited.

APF authorize hlq.SFEKLOAD

In order for JES Job Monitor to access JES spool files, the hlq.SFEKLOAD load library

must be APF authorized.

APF authorizations are defined in SYS1.PARMLIB(PROGxx), if your site followed IBM

recommendations. Refer to MVS Initialization and Tuning Reference (SC28-1752) for

more information on defining APF authorizations.

For testing purposes, APF authorizations can also be given dynamically. These will

last until the next IPL of the system. The console command needed will look like

this:

SETPROG APF,ADD,DSN=hlq.SFEKLOAD,SMS

Refer to MVS System Commands (GC28-1781) for more information on the

SETPROG command.

© Copyright IBM Corp. 2005, 2007 13

Customize FEJJCNFG, the JES Job Monitor configuration file

JES Job Monitor is the Developer for System z component that handles all JES

connectivity. A configuration file is used to customize certain aspects to meet your

site standards.

Note: It is recommended that you copy the sample configuration file to a new data

set and customize this copy to avoid overwriting it when applying

maintenance.

The sample configuration file is located in:

hlq.SFEKSAMP(FEJJCNFG)

The file consists of a set of environment variable definitions. Comment lines start

with the pound sign (#). The sample configuration file is listed in Figure 1.

The following definitions are required:

SERV_PORT

The port number for JES Job Monitor host server. The default port is 6715.

Change as desired, however BOTH the client and the server must be

configured with the same port number. If you change the server port

number, all Developer for System z client users must also change the JES

Job Monitor port for this system in Remote Systems View.

Note: Before selecting a port, verify that the port is available on your

system with the TSO commands NETSTAT and NETSTAT PORTL.

See “Reserved TCP/IP ports” on page 74 for more information.

Note: When using a version 7.1 or higher client, all communication on this

port is confined to your host machine.

CODEPAGE

The workstation codepage. The default is UTF-8. The workstation codepage

is set to UTF-8 and generally should not be changed. You might need to

change UTF-8 to match the workstation’s codepage if you have difficulty

with NLS characters, such as the currency symbol.

HOST_CODEPAGE

The host codepage. The default is IBM-1047. Change as needed.

TZ Time zone selector. The default is EST5EDT. The default time zone is UTC

+5 hours (Eastern Standard Time (EST) Eastern Daylight Savings Time

SERV_PORT=6715

CODEPAGE=UTF-8

HOST_CODEPAGE=IBM-1047

TZ=EST5EDT

#LIMIT_VIEW=USERID

LISTEN_QUEUE_LENGTH=5

MAX_DATASETS=32

MAX_THREADS=200

TIMEOUT_INTERVAL=1200

TIMEOUT=3600

AUTHMETHOD=RACF

Figure 1. FEJJCNFG, JES Job Monitor configuration file

14 IBM Rational Developer for System z: Host Configuration Guide

(EDT)). Change this to represent your time zone. Additional information

can be found in the UNIX System Services File System Interface Reference

(SA22-7808).

LISTEN_QUEUE_LENGTH

The TCP/IP listen queue length. The default is 5. Do not change unless

directed to do so by the IBM support center.

MAX_DATASETS

The default is 32. This is the maximum number of spooled output data sets

that JES Job Monitor will return to the client (for example, SYSOUT,

SYSPRINT, SYS00001, etc.).

MAX_THREADS

The default is 200. Maximum number of users that can be using one JES

Job Monitor at a time. Increasing this number may require you to increase

the size of the JES Job Monitor address space.

TIMEOUT_INTERVAL

The default is 1200. Controls how often the server checks for and kills

threads which have timed out (see TIMEOUT). The value of

TIMEOUT_INTERVAL specifies the number of seconds between checks.

TIMEOUT

The default is 3600. The length of time, in seconds, before a thread is killed

due to lack of interaction with the client. The maximum value is

2147483647.

AUTHMETHOD

The default is RACF, which means that the standard security interface is

used. This should not be changed, even if you use a product other than

RACF.

The following definitions are optional. If omitted, default values will be used as

specified below:

LIMIT_VIEW=USERID

Defines what output the user can view. The default (LIMIT_VIEW=NOLIMIT)

allows the user to view all JES output. Specifying USERID limits the view to

output owned by the user.

Note: The only valid settings are USERID and NOLIMIT.

CONCHAR

Specifies the JES console command character. CONCHAR defaults to CONCHAR=$

for JES2, or CONCHAR=* for JES3. If your installation has defined a different

command character, specify it as the value for CONCHAR.

SUBMITMETHOD=TSO

Submit through TSO. The default (SUBMITMETHOD=JES) submits jobs directly

into JES. Specifying SUBMITMETHOD=TSO causes the job to be submitted via

TSO’s SUBMIT command. This method allows TSO exits to be invoked;

however it has a performance drawback and for that reason it is not

recommended.

Note: The only valid settings are TSO and JES.

Note: If SUBMITMETHOD=TSO is specified, then TSO_TEMPLATE must also be

defined.

Chapter 3. Activating Developer for System z MVS components 15

TSO_TEMPLATE=hlq.SFEKSAMP(FEJTSO)

Wrapper JCL for submitting the job via TSO. There is no default value.

This statement references the fully qualified member name of the JCL to be

used as a wrapper for the TSO submit. See the SUBMITMETHOD statement for

more information.

Note: A sample wrapper job is provided in hlq.SFEKSAMP(FEJTSO). Refer to

this member for more information on the customization needed.

Note: TSO_TEMPLATE has no effect unless SUBMITMETHOD=TSO is also specified.

Note: The JESNAME definition is no longer required. Since version 7.0, JES Job

Monitor automatically detects if your primary JES is JES2 or JES3.

Customize the JES Job Monitor startup JCL

JES Job Monitor is the Developer for System z component that handles all JES

connectivity. To do this, a server must be active on the system (either as user job or

STC). Follow the JCL customization steps located in hlq.SFEKSAMP(FEJJJCL) to

create the JES Job Monitor server according to your site standards.

Note: It is recommended that you copy the sample JCL to a new data set and

customize the copy to avoid overwriting it when applying maintenance.

JES Job Monitor tracing

If you need to turn on JES Job Monitor tracing for diagnostic purposes, add “-TV”

to the PARM line. Tracing will cause performance degradations and should only be

done under the direction of the IBM support center.

//JMONITOR EXEC PGM=FEJJMON,TIME=1440,REGION=0M,

// PARM=(’POSIX(ON),ENVAR("_CEE_ENVFILE=DD:ENVIRON")/ -TV’)

Tracing can also be controlled by console commands. Assuming that JMON is the

job name used, then the first console command listed below will activate tracing

and the second one will deactivate it.

 1. F JMON,APPL=-TV

 2. F JMON,APPL=-TN

Run JES Job Monitor as an STC

JES Job Monitor can run as a user job or started task (STC). The following tasks

need to be implemented to define JMON as an STC:

1. The JCL is not required to have a JOB card (preferably not). Most STCs start

with a PROC card like the example in Figure 2 on page 17.

16 IBM Rational Developer for System z: Host Configuration Guide

2. The JCL must reside in a system procedure library (SYS1.PROCLIB is the IBM

default).

For easy reference it is recommended that the member name matches the

procedure name (JMON in the sample above).

3. It is recommended that STCs have a dedicated user ID. For safety reasons, this

user ID should be ‘protected’, by defining the NOPASSWORD keyword (in RACF).

This means that RACF will fail any logon attempt that requires a password, but

without revoking the user ID.

Use the following sample command to create such a user ID, where userid is

the user ID in question, groupid is its default group and uid is the UNIX ID.

ADDUSER userid DFLTGRP(groupid) NOPASSWORD OMVS(UID(uid) HOME(/tmp) PROGRAM(/bin/sh))

4. STCs must be defined to the security software (e.g. RACF). There are different

ways of defining an STC, but using the STARTED class is recommended. To

define the STARTED class, your security administrator would issue the following

RACF commands;

a. SETROPTS GENERIC(STARTED)

b. RDEFINE STARTED ** STDATA(USER(=MEMBER))

c. SETROPTS CLASSACT(STARTED)

d. SETROPTS RACLIST(STARTED)

To add JES Job Monitor as an STC, following RACF commands are needed,

where jmon is the name of the JCL member and userid is the user ID whose

authorities are to be used.

a. RDEFINE STARTED jmon.* STDATA(USER(userid))

b. SETROPTS RACLIST(STARTED) REFRESH

Note: By adding the TRUSTED(YES) keyword to the STDATA field [

STDATA(USER(userid) TRUSTED(YES)] you can avoid defining the

necessary individual permissions for the STC user ID. RACF skips data

set security checks for trusted STCs. However, before doing so, ensure

that this user ID cannot be abused, by making it protected as described

above.

Refer to Security Server RACF Security Administrator’s Guide (SA22-7683) for

more information on started tasks and security.

5. Once previous tasks are completed, JES Job Monitor can be started and stopped

as an STC.

//JMON PROC HLQ=FEK,

// PRM=

//*

//* WD/Z JES JOB MONITOR

//*

//JMONITOR EXEC PGM=FEJJMON,TIME=1440,REGION=0M,

// PARM=(’POSIX(ON),ENVAR("_CEE_ENVFILE=DD:ENVIRON")/&PRM’)

//STEPLIB DD DISP=SHR,DSN=&HLQ..SFEKLOAD

//ENVIRON DD DISP=SHR,DSN=&HLQ..SFEKSAMP(FEJJCNFG)

//SYSPRINT DD SYSOUT=*

//SYSABEND DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSIN DD DUMMY

//*SYSTCPD DD DISP=SHR,DSN=SYS1.TCPIP.DATA

Figure 2. JES Job Monitor JCL

Chapter 3. Activating Developer for System z MVS components 17

The system operator can issue following commands on the console (where JMON

is the JES Job Monitor STC name):

a. Start JMON

b. stoP JMON

c. Display A,JMON

If you have the proper authority, you can give these commands from within

SDSF, but then the commands must be preceded by a slash (’/’). Refer to MVS

System Commands (SA22-7627) for more information on console commands.

Server permissions

The user ID assigned to the JES Job Monitor server needs READ access to the

Developer for System z load library, hlq.SFEKLOAD.

Verification of JES Job Monitor startup JCL

Start the user job or STC defined in the steps above. If the job ends with return

code 66, then hlq.SFEKLOAD is not APF authorized.

JES spool access and security

Conditional spool access

In order to allow users to execute operations via the JES Job Monitor, they must be

given access authority to the OPERCMDS class. This can be done conditionally, so the

users’ access rights are only in effect when they are using the JES Job Monitor. To

use this conditional access checking, you must have the CONSOLE class active and a

console defined named JMON (JMON is the only valid name).

For example, your security administrator would issue the following RACF

commands:

1. SETROPTS CLASSACT(CONSOLE)

2. RDEFINE CONSOLE JMON UACC(READ)

3. SETROPTS RACLIST(CONSOLE) REFRESH

Use the following RACF commands to permit users to issue JES2 commands only

through the JES Job Monitor, where id is the user ID or group ID of Developer for

System z users:

1. RDEFINE OPERCMDS JES2.** UACC(NONE)

2. PERMIT JES2.** CLASS(OPERCMDS) ID(id) ACCESS(CONTROL) WHEN(CONSOLE(JMON))

3. SETROPTS RACLIST(OPERCMDS) REFRESH

4. SETROPTS GENERIC(OPERCMDS) REFRESH

CAUTION:

Defining JES commands with universal access NONE in your security software

might impact other applications and operations. Test this before activating it on

a production system.

18 IBM Rational Developer for System z: Host Configuration Guide

Available commands

JES Job Monitor does not provide Developer for System z users full access to the

JES spool. Only the commands listed in Table 5 are available. The commands are

issued by selecting the appropriate option in the client menu structure (no

command prompt). The scope of the commands is further limited by techniques

described below.

 Table 5. JES Job Monitor console commands

Command JES2 JES3

Hold $Hjobid *F,J=jobid,H

Release $Ajobid *F,J=jobid,R

Cancel $Cjobid *F,J=jobid,C

Purge $Cjobid,P *F,J=jobid,C

Without being authorized for these console commands, users will still be able to

submit jobs and read job output, if they are given access authorization to spool

files.

Limiting access to spool files

To limit users to their own jobs on the JES spool, define the “LIMIT_VIEW=USERID”

statement in the JES Job Monitor configuration file (FEJJCNFG). If they need access

to a wider range of jobs, but not all, use the standard spool file protection features

of your security product, like the JESSPOOL class in RACF.

When defining further protection, keep in mind that JES Job Monitor uses SAPI

(SYSOUT application program interface) to access the spool. This implies that the

user needs at least UPDATE access to the spool files, even for browse functionality.

This requisite does not apply if you run z/OS v1.7 (z/OS 1.8 for JES3) or higher.

Here READ permission is sufficient for browse functionality.

Refer to Security Server RACF Security Administrator’s Guide (SA22-7683) for more

information on JES spool file protection.

Customize ELAXF*, remote build procedures

Developer for System z provides sample JCL procedures that can be used for the

JCL generation, remote project builds and remote syntax check features of CICS

BMS maps, IMS MFS screens and COBOL, PL/I, Assembler and C/C++ programs.

These procedures allow installations to apply their own standards. This will also

ensure that developers use the same procedures with the same compiler options

and compiler levels.

SMP/E installs these sample JCL procedures into hlq.SFEKSAMP. If you plan to use

these procedures you must:

1. Copy all procedures named ELAXF* into a system procedure library (like

SYS1.PROCLIB) that is available to the users.

2. The copied procedures must be customized to reflect naming conventions used

on the target system. The required customization is documented within each

JCL procedure.

Chapter 3. Activating Developer for System z MVS components 19

The sample procedures to be copied and customized are listed in Table 6.

If the ELAXF* procedures cannot be copied into a system procedure library, copy

them into a private library and ask the Developer for System z users to add a

JCLLIB card (right after the JOB card) to the job properties on the client. Do not

customize the sample JCL in the installation data set since maintenance might

replace these members and undo your customizations.

//MYJOB JOB <job parameters>

//PROCS JCLLIB ORDER=(hlq.SFEKSAMP)

Note: The JCL Generation/Remote project builds and Remote Syntax Check

Operations done from a Developer for System z client assume that these

procedures are customized and available to the user.

The names of the procedures and the names of the steps in the procedures match

the default properties that are shipped with the client. If you decide to change the

name of the procedure or the name of a step in a procedure, the corresponding

properties file on the client should also be updated. We recommend that you do

not change the procedure and step names.

Note: The IBM Debug Tool will need to be ordered, installed and configured to

support remote debug of assembler, COBOL and PL/I programs. Refer to

the IBM Rational Developer for System z Host Planning Guide (GI11-8296-00) to

know which level of Debug Tool is required for your version of Developer

for System z. The installation and customization of this product is not

described in this manual.

 Table 6. Sample ELAXF* procedures

Member Purpose

ELAXFADT Sample procedure for assembling and debugging High Level assembler

programs.

ELAXFASM Sample procedure for assembling High Level assembler programs.

ELAXFBMS Sample procedure for creating CICS BMS object and corresponding

copy, dsect, or include member.

ELAXFCOC Sample procedure for doing COBOL Compiles, Integrated CICS

translate and integrated DB2 translate.

ELAXFCOP Sample procedure for doing DB2 preprocess of EXEC SQL statements

embedded in COBOL programs.

ELAXFCOT Sample procedure for doing CICS translation for EXEC CICS

statements embedded in COBOL programs.

ELAXFCPC Sample procedure for doing C compiles.

ELAXFCPP Sample procedure for doing C++ compiles.

ELAXFGO Sample procedure for the GO step.

ELAXFLNK Sample procedure for linking C/C++, COBOL. PLI and High Level

Assembler programs.

ELAXFMFS Sample procedure for creating IMS MFS screens.

ELAXFPLP Sample procedure for doing DB2 preprocess of EXEC SQL statements

embedded in PLI programs.

ELAXFPLT Sample procedure for doing CICS translation of EXEC CICS statements

embedded in PLI programs.

ELAXFPL1 Sample procedure for doing PL/I compiles, integrated CICS translate

and integrated DB2 translate.

20 IBM Rational Developer for System z: Host Configuration Guide

Table 6. Sample ELAXF* procedures (continued)

Member Purpose

ELAXFUOP Sample procedure for generating the UOPT step when building

programs that run in CICS or IMS subsystems.

(Optional) Define an APPC transaction for the TSO Commands service

Defining the APPC transaction has become optional in version 7.1. By default,

Developer for System z now uses SCLM Developer Toolkit to provide the TSO

Commands service. The configuration of this is done in rsed.envvars, which is

described in “Customize rsed.envvars, the configuration file for RSE” on page 31.

Note: The Transaction Program JCL that is used by APPC to start the TSO

Commands service has changed in version 7.1. If you previously defined the

TSO Commands service for capturing ISPEXEC output, you must either

define a new APPC transaction, or add the NESTMACS keyword to the PARM

line, e.g.:

 // PARM=’ISPSTART CMD(%FEKFRSRV TIMEOUT=60) NEWAPPL(ISR) NESTMACS’

The TSO Commands service is implemented as an APPC transaction program,

FEKFRSRV and must be active for Developer for System z connections to succeed

between the host and the client. FEKFRSRV acts as a host server to execute TSO

commands that are issued from the workstation through TCP/IP. APPC is not

required on the workstation because the workstation communicates with FEKFRSRV

through TCP/IP. Each workstation can have an active connection to multiple hosts

at the same time.

Note: If you are unfamiliar with APPC, read Appendix F, “Setting up APPC,” on

page 109 before continuing with this section.

Preparation

v The following tasks are a prerequisite and must be completed before configuring

the TSO Commands Server. The mentioned manuals describe these tasks.

1. Install, configure, and start VTAM® on your z/OS system. Refer to the

Communications Server bookshelf (F1A1BK61 for z/OS 1.7) for more information.

2. Install, configure, and start TCP/IP on your z/OS system. Refer to

Appendix C, “Setting up TCP/IP,” on page 83 and the Communications Server

bookshelf (F1A1BK61 for z/OS 1.7) for more information.

3. Configure and start APPC and the APPC transaction scheduler (ASCH)

subsystem. Refer to Appendix F, “Setting up APPC,” on page 109 and the

MVS bookshelf (IEA2BK60 for z/OS 1.7) for more information.
v The REXX in Figure 3 on page 22 can be used to manage APPC through ISPF

panels.

Chapter 3. Activating Developer for System z MVS components 21

Note: Be aware that you can deactivate the APPC transaction with this tool; the

transaction is still there but won’t accept any connections.

v The definition of the APPC transaction requires skills in various fields of the

MVS operating system. Consult with experienced administrators using following

checklist before continuing.

 Table 7. APPC transaction checklist

Expertise

Required information:

v Default value

v Where to find the answer Value

APPC Data set name of TPDATA

v Default: SYS1.APPCTP

v Value is listed in SYS1.PARMLIB(APPCPMxx)

APPC Transaction name to be used (may not exist)

v Default: FEKFRSRV

v Existing transactions can be queried by selecting ″TP

Profile Administration″ in the APPC ISPF menu

APPC APPC transaction class to be used

v Default: A

v APPC classes are defined in SYS1.PARMLIB(ASCHPMxx)

WLM/
SRM

TSO performance group and domain

v No IBM default (site dependant)

RACF Every Developer for System z user has access to an

OMVS segment (this is required)

v No IBM default (site dependant)

v TSO RACF command LU userid OMVS will display an

existing personal OMVS segment

RACF Every Developer for System z user must have READ

access to hlq.SFEKPROC(FEKFRSRV)

v No IBM default (site dependant)

v TSO RACF command LD AUTHUSER

DATASET(’hlq.SFEKPROC.**’) will display users and

groups and their access level for the data sets covered

by the data set profile

/* REXX –- APPC administration using ISPF panels */

address ISPEXEC

"LIBDEF ISPMLIB DATASET ID(’ICQ.ICQMLIB’) STACK"

"LIBDEF ISPPLIB DATASET ID(’ICQ.ICQPLIB’) STACK"

"LIBDEF ISPSLIB DATASET ID(’ICQ.ICQSLIB’) STACK"

"LIBDEF ISPTLIB DATASET ID(’ICQ.ICQTLIB’) STACK"

address TSO "ALTLIB ACT APPLICATION(CLIST)",

 "DSN(’ICQ.ICQCCLIB’) UNCOND QUIET"

"SELECT CMD(%ICQASRM0) NEWAPPL(ICQ) PASSLIB"

address TSO "ALTLIB DEACT APPLICATION(CLIST) QUIET"

"LIBDEF ISPMLIB"

"LIBDEF ISPPLIB"

"LIBDEF ISPSLIB"

"LIBDEF ISPTLIB"

exit

Figure 3. REXX for APPC ISPF panels

22 IBM Rational Developer for System z: Host Configuration Guide

Refer to MVS Planning: Workload Management (SA22-7602) for more information on

WLM/SRM management. Refer to Security Server RACF Security Administrator’s

Guide (SA22-7683) for more information on OMVS segments and data set

protection profiles.

Note: The APPC transaction class used must have enough APPC initiators to allow

one initiator for each user of remote edit-compile-debug.

Note: The APPC transaction uses the REXX exec FEKFRSRV, located in

hlq.SFEKPROC. Do not change this location if you want possible SMP/E

maintenance to be activated automatically.

Implementation

The system programmer or APPC administrator needs to complete the following

steps to configure the command facility:

1. Define the scheduling information (class) for the APPC transaction scheduler if

you are not using an existing transaction class. Include a definition in

SYS1.PARMLIB(ASCHPMxx) for the class to be used by the transaction program

FEKFRSRV. This class is used in sample JCL hlq.SFEKSAMP(FEKAPPCC). Therefore

the class in FEKAPPCC must match the class defined in SYS1.PARMLIB(ASCHPMxx).

For example:

CLASSADD

 CLASSNAME(A)

 MAX(20)

 MIN(1)

 MSGLIMIT(200)

Note: The TSO Commands service needs the default specifications to be

specified in the OPTIONS and TPDEFAULT sections of

SYS1.PARMLIB(ASCHPMxx). Refer to Appendix F, “Setting up APPC,” on

page 109 for more information.

2. Define the APPC transaction that will act as a command server. You can use the

sample JCL hlq.SFEKSAMP(FEKAPPCC) to define this transaction. Instructions on

how to customize this JCL are located within the JCL. Sample JCL is also

provided to display, hlq.SFEKSAMP(FEKAPPCL), or delete,

hlq.SFEKSAMP(FEKAPPCX), the transaction.

Note: If you changed the transaction program name (default FEKFRSRV), the

new name must be assigned to _FEKFSCMD_TP_NAME_ in rsed.envvars, as

described in “Customize rsed.envvars, the configuration file for RSE” on

page 31.

3. Control the dispatching priority of the hlq.SFEKPROC(FEKFRSRV) transaction

program by associating FEKFRSRV with a domain and performance group in

Workload Manager (WLM). Because FEKFRSRV issues TSO commands, it should

be assigned to a TSO performance group.

4. Define a default OMVS segment for the system or an individual one for each

user who needs to use remote edit-compile-debug.

5. Give Developer for System z users READ access to hlq.SFEKPROC(FEKFSERV),

the TSO Command server.

Note: Setup verification will be done later during the RSE verification. This

because RSE implements the TCP/IP connection to the TSO Commands

server.

Chapter 3. Activating Developer for System z MVS components 23

(Optional) Customize ELAXM*, DB2 stored procedure members

The following customization is needed to incorporate the sample DB2 stored

procedure (PL/I and COBOL Stored Procedure Builder) into your system. You will

need assistance of a WLM administrator and a DB2 administrator to complete

these tasks.

After the SMP/E apply, the sample library hlq.SFEKSAMP and procedure library

hlq.SFEKPROC contains the DB2 stored procedure members listed in Table 8.

 Table 8. Sample ELAXM* DB2 stored procedure members

Member Purpose

hlq.SFEKSAMP(ELAXMJCL) Sample JCL for defining the PL/I and COBOL Stored

Procedure Builder to DB2.

hlq.SFEKSAMP(ELAXMSAM) Sample JCL procedure of the WLM address space for the

PL/I and COBOL Stored Procedure Builder.

hlq.SFEKPROC(ELAXMREX) REXX code for the PL/I and COBOL Stored Procedure

Builder.

Note: The DB2 stored procedure uses REXX exec ELAXMREX, located in

hlq.SFEKPROC. Do not change this location if you want possible SMP/E

maintenance to be activated automatically.

Note: See Appendix A, “Running multiple instances of Developer for System z,”

on page 65 if you want to rename members ELAXMSAM and ELAXMREX.

1. Copy ELAXMSAM to a procedure library (like SYS1.PROCLIB) available to the DB2

stored procedure users and customize the JCL as described in its comments.

Make sure that the SYSEXEC DD card points to the library where member

ELAXMREX resides (default hlq.SFEKPROC).

2. Use the workload management (WLM) panels to associate an application

environment with the JCL procedure of the WLM address space for the PL/I

and COBOL Stored Procedure Builder. See MVS Planning: Workload Management

(SA22-7602) for information on how to do this.

Note: You can create a new application environment in WLM for the PL/I and

COBOL Stored Procedure Builder, or you can add the necessary

definitions to an existing one.

3. Copy ELAXMJCL to a private JCL library, customize the copy as described in its

comments and ask a DB2 administrator to submit the job. Make sure the WLM

ENVIRONMENT clause in the CREATE PROCEDURE statement specifies the name of the

WLM environment procedure which has been defined for the PL/I and COBOL

Stored Procedure Builder (default ELAXMSAM).

(Optional) Customize CICS Bidirectional language support (bidi)

The Developer for System z Enterprise Service Tools (EST) component supports

different formats of Arabic and Hebrew interface messages, as well as bidirectional

data presentation and editing in all editors and views. In terminal applications,

both left-to-right and right-to-left screens are supported, as well as numeric fields

and fields with opposite-to-screen orientation.

Additional bidirectional features and functionality include the following:

24 IBM Rational Developer for System z: Host Configuration Guide

v The EST service requestor dynamically specifies bidirectional attributes of

interface messages.

v Bidirectional data processing in service flows is based on bidirectional attributes

(text type, text orientation, numeric swapping, and symmetric swapping). These

attributes can be specified in different stages of flow creation for both interface

and terminal flows.

v EST-generated runtime code includes conversion of data between fields in

messages that have different bidirectional attributes.

Attention: The load module (both name and coding) has changed compared to

previous releases (pre version 7.0). If you have activated a previous bidi release,

the old load module(s) must be removed from the CICS RPL concatenation. The

default location(s) is/are:

v FEJ.SFEJDLL(FEJBDTRN)

v FEJ.SFEJLMD(FEJBDTRE) (optional, non-PDSE version of FEJBDTRN for

Hebrew)

You will need assistance of your CICS administrator to perform following tasks:

1. Place the hlq.SFEKLOAD(FEJBDTRX) program in the CICS RPL concatenation (DD

statement DFHRPL). It is recommended that you do this by adding the

installation data set to the concatenation so that applied maintenance is

automatically available to CICS.

EST bidirectional transformations are performed in the CICS Service Flow

Runtime (SFR) environment by the FEJBDTRX module. The FEJBDTRX module is

called when bidirectional conversions are needed in EST-generated code (when

mapping is generated between fields in messages that have different

bidirectional attributes.)

Note: If you do not concatenate the installation directory but copy the FEJBDTRX

module into a new/existing data set, keep in mind that this module is a

DLL and MUST reside in a PDSE library.

Note: In version 7.1, the hlq.SFEKDLL(FEJBDTRX) program moved to a new load

library, hlq.SFEKLOAD(FEJBDTRX).

2. Ask the CICS administrator to set autoinstall to autoactive.

If autoinstall is set to autoINactive, define the program FEJBDTRX to CICS

using the CEDA command, for example:

CEDA DEF PROG(FEJBDTRX) LANG(LE) G(xxx)

Additionally, EST-generated code can support bidi transformation in environments

other than CICS SFR (for example, batch applications). You can make the EST

generators to include calls to the bidirectional conversion routines by specifying

the appropriate bidi transformation options in the EST generation wizards and

linking the generated programs with the appropriate bidirectional conversion

library, hlq.SFEKLOAD.

 Attention: Bidi code that has been created with previous releases (pre version 7.0)

must be RECOMPILED in order to use the new FEJBDTRX module.

(Optional) Customize Application Deployment Manager (ADM)

The Application Deployment Manager (ADM) provides a common deployment

approach and deployment API for all Developer for System z components.

Chapter 3. Activating Developer for System z MVS components 25

In addition, ADM provides a CICS Resource Definition (CRD) client and (host

based) server, which provide the following functions:

1. Allow application developers to define CICS resources in a limited, controlled,

and secure fashion.

v CICS resource definition defaults are supplied by the CICS administrator and

stored in the CRD server repository on the host.

v The Resource Attribute Update Ability is controlled by the CICS

administrator (update, protect, hidden).

v CRD is limited to a small set of resources typically needed by application

developers. These include DB2Tran, Doctemplate, File, Mapset, Processtype,

Program, TDQ, and Transaction.

v Authorization to create CICS resource definitions is controlled by RACF or

other external security manager.
2. Prevent CICS development access to unauthorized or incorrect VSAM data sets

by providing the CICS administrator control over the physical data set name

attribute in File definitions. This binding information is stored in the CRD

repository on the host.

3. Miscellaneous CRD server development aids.

v New copy for programs and mapsets

v List CICS regions

v DFHRPL list
4. Miscellaneous CRD server Web Service development aids.

v Perform Pipeline scan to autoinstall URIMAP and WEBSERVICE definitions

v Provide Pipeline and WSBind pickup directory list

v Provide WSDL file directory list

v Provide End Point URI list

Developer for System z supplies three transactions that are used by the CRD server

when defining and inquiring CICS resources. Sample COBOL source code is

provided to allow site specific customizations.

ADMD

For requests that set Web Service and CICS resource defaults. Typically,

this is intended for CICS administrators.

ADMI For requests that define, install or uninstall CICS resources.

ADMR

For all other requests that retrieve CICS environmental or resource

information.

Refer to IBM Rational Developer for System z Application Deployment Manger User’s

Guide (SC31-6972) for more information on ADM.

The following customization steps are required to activate the CRD server.

Note: You will need the assistance of your CICS administrator to perform some of

the following tasks.

Before installing the 7.1 version, if you are a previous user of the CRD server, it is

recommended that you save the related customization as described in “Backing up

previously configured files” on page 9.

26 IBM Rational Developer for System z: Host Configuration Guide

Copy the members to be customized from the installation directory to a personal

library and customize these copies to avoid overwriting them when applying

maintenance:

v hlq.SFEKSAMP(ADNVSAM)

v hlq.SFEKSAMP(ADNPCCSD)

optional (Pipeline Message Handler)

v hlq.SFEKSAMP(ADNCMSGH)

v hlq.SFEKSAMP(ADNTMSGH)

optional (CSD update for non-primary regions)

v hlq.SFEKSAMP(ADNARCSD)

CRD repository

Customize and submit job ADNVSAM to allocate and initialize the CRD server

repository VSAM file. Refer to the documentation within ADNVSAM for customization

instructions.

It is advised to create a separate repository for each CICS primary connection

region. Sharing the repository implies that all related CICS regions will use the

same values stored in the repository, and that multiple address spaces will be

writing to the VSAM, which must be set up correctly to handle this.

Note: Unless notified otherwise, your current CRD server repository (holding your

customized values) can be reused across Developer for System z releases.

CICS primary connection region

The CRD server must be defined to the primary connection region. This is the

region that will process Web Service requests from Developer for System z.

v Place the ADM load modules hlq.SFEKLOAD(ADNCRDS) and

hlq.SFEKLOAD(ADNCRDR) in the CICS RPL concatenation (DD statement DFHRPL)

of the CICS primary connection region. It is recommended that you do this by

adding the installation data set to the concatenation so that applied maintenance

is automatically available to CICS

v Customize and submit job ADNPCCSD to update the CICS System Definition (CSD)

for the CICS primary connection region. Refer to the documentation within

ADNPCCSD for customization instructions

v Use the appropriate CEDA command to install the ADM group for this region,

for example:

CEDA INSTALL GROUP(ADNPCRGP)

Pipeline Message Handler

The pipeline message handler (ADNTMSGH) is used for security by processing the

user ID and password in the SOAP header. ADNTMSGH is referenced by the

pipeline configuration file and must therefore be placed into the CICS RPL

concatenation. ADNTMSGH is also used to set the transaction ID to ADMD,

ADMR, or ADMI depending on the requested operation. You may wish to

customize ADNTMSGH to use different transaction ID’s.

Using the default:

v Place the hlq.SFEKLOAD(ADNTMSGH) load module in the CICS RPL concatenation

(DD statement DFHRPL) of the CICS primary connection region. It is

Chapter 3. Activating Developer for System z MVS components 27

recommended that you do this by adding the installation data set to the

concatenation so that applied maintenance is automatically available to CICS.

Customizing ADNTMSGH:

v Customize the sample ADNTMSGH source code (COBOL) for the Pipeline Message

Handler.

v Customize and submit job ADNCMSGH to compile the customized ADNTMSGH source.

Refer to the documentation within ADNCMSGH for customization instructions.

v Place the resulting ADNTMSGH load module in the CICS RPL concatenation (DD

statement DFHRPL) of the CICS primary connection region.

Note: Ensure that the customized ADNTMSGH load module is located before any

reference to hlq.SFEKLOAD, otherwise the default one will be used.

(Optional) CICS non-primary connection regions

The CRD server can also be used with one or more non-primary connection

regions, which are usually Application Owning Regions (AOR).

Note: It is not necessary to perform these steps if CICSPlex® SM is used to manage

your CICS environment.

v Place the ADM load module hlq.SFEKLOAD(ADNCRDS) in the CICS RPL

concatenation (DD statement DFHRPL) of these non-primary connection regions.

It is recommended that you do this by adding the installation data set to the

concatenation so that applied maintenance is automatically available to CICS.

v Customize and submit job ADNARCSD to update the CSD for other, non-primary,

connection regions. Refer to the documentation within ADNARCSD for

customization instructions

v Use the appropriate CEDA command to install the ADM group for these regions,

for example:

CEDA INSTALL GROUP(ADNARRGP)

28 IBM Rational Developer for System z: Host Configuration Guide

Chapter 4. Activating Developer for System z z/OS UNIX

components

Before installing the 7.1 version, if you are a previous user of WebSphere

Developer for System z (FMID: HHOP700), it is recommended that you save the

related customization described in “Backing up previously configured files” on

page 9.

If you are unfamiliar with z/OS UNIX, it is advised to ask assistance from an

experienced z/OS UNIX or other UNIX administrator to perform the tasks listed in

this chapter.

The z/OS UNIX commands needed to perform the listed tasks are described

briefly for your convenience. Unless noted otherwise, refer to UNIX System Services

Command Reference (SA22-7802) for more information on these commands.

The tasks described below expect you to be active in z/OS UNIX. This can be done

by issuing the TSO command OMVS. Use the exit command to return to TSO.

MVS provides the possibility to edit z/OS UNIX files using ISPF through the

OEDIT command. This command can be used both in TSO and OMVS.

Most z/OS UNIX files have the write permission restricted to the owner of the file.

This restriction can by bypassed in multiple ways.

v UID 0

This is not recommended for ″human″ user IDs since there are no z/OS UNIX

related restrictions.

v READ access to the BPX.SUPERUSER profile in the FACILITY class

Allows the user to become UID 0 through the su command. This is the

recommended setup.

v UPDATE access to the SUPERUSER.FILESYS profile in the UNIXPRIV class

Allows user to read/write any file, and to read or search any directory.

CONTROL (or higher) access to this security profile adds writing to any

directory to the list of permissions.

Refer to UNIX System Services Planning (GA22-7800) to learn more about z/OS

UNIX security.

All /usr/lpp/wd4z/ path statements in this chapter refer to the path used during

installation of Developer for System z. The default is /usr/lpp/wd4z/, but this

might not apply to your site.

Note: Developer for System z is dependant upon TCP/IP having the correct

hostname when it is initialized. This implies that the different TCP/IP and

Resolver configuration files must be set up correctly. Refer to Appendix C,

“Setting up TCP/IP,” on page 83 for more information on the customization

necessary.

You can test your TCP/IP configuration with the TSO command

HOMETEST. Communications Server: IP System Administrator’s Commands

(SC31-8781) for more information on this command.

© Copyright IBM Corp. 2005, 2007 29

Note: Developer for System z is dependant upon INETD for setting up the

client-host connection. Refer to Appendix D, “Setting up INETD,” on page

89 for more information on INETD.

Note: Remote (host based) actions for z/OS UNIX subprojects require that REXEC

or SSH is active on the host.

Note: 31-bit Java is required and all z/OS UNIX users must have EXECUTE and

READ access to the Java HFS directories.

 Attention: 64-bit Java is NOT supported.

You may find the following publications helpful on understanding z/OS UNIX:

v ABCs of z/OS System Programming Volume 9 (Redbook SG24-6989)

v UNIX System Services Planning (GA22-7800)

v UNIX System Services User’s Guide (SA22-7801)

Saving the rsed.envvars configuration file in another directory

It is recommended that you copy the /usr/lpp/wd4z/rse/lib/rsed.envvars file to

a new directory (like /etc/wd4z/) and customize the copy to avoid overwriting

your customization when applying maintenance. However, when you do this, you

must also copy the following files from the installation directory (default

/usr/lpp/wd4z/rse/lib/) to the new location:

1. rsed.envvars

2. rsecomm.properties

3. ssl.properties

4. setup.env.zseries

5. server.zseries

Note: Although there is no customization required for the *.zseries files, it is

important that you replace previous versions with the current ones. This to

keep them in sync with the current rsed.envvars.

The files listed in Table 8 on page 24 must be copied also if you plan on using the

optional features that they are part of:

 Table 9. Optional configuration files

file function

projectcfg.properties Host based projects

See “(Optional) Customize projectcfg.properties, host

projects configuration” on page 48

FMIEXT.properties File Manager integration

See “(Optional) Customize FMIEXT.properties, File

Manager integration” on page 48

CRASRV.properties CARMA

See Chapter 5, “(Optional) Activating IBM Common

Access Repository Manager (CARMA),” on page 51

The following sample commands,

30 IBM Rational Developer for System z: Host Configuration Guide

1. mkdir /etc/wd4z

2. cd /usr/lpp/wd4z/rse/lib

3. cp rsed.envvars /etc/wd4z

create a directory named /etc/rd4z and copy rsed.envvars from the current

directory to /etc/rd4z. Repeat the copy command for the remaining files.

The result of the copy can be verified with the command ls /etc/wd4z, which

should give an output similar to this ($ is the z/OS UNIX prompt):

$ ls /etc/wd4z

/etc/wd4z

rsecomm.properties server.zseries ssl.properties

rsed.envvars setup.env.zseries

Note: If you want to keep all Developer for System z files in the same (private)

HFS, but also want the configuration files placed in /etc/wd4z, you can use

symbolic links to solve this problem. The following sample commands

create a new directory (/usr/lpp/wd4z/rse/lib/cust) in the installation HFS

and define a symbolic link (/etc/wd4z) to it:

1. mkdir /usr/lpp/wd4z/rse/lib/cust

2. ln –s /usr/lpp/wd4z/rse/lib/cust /etc/wd4z

Customize rsed.envvars, the configuration file for RSE

All Developer for System z client connection methods use the variables set in the

rsed.envvars file, which is located by default in the installation directory,

/usr/lpp/wd4z/rse/lib/, but could be copied to another directory in the previous

step. The sample file provided has the statements listed in Figure 4 on page 32,

where comment lines start with a pound sign (#).

Chapter 4. Activating Developer for System z z/OS UNIX components 31

The following definitions are required:

#===

(1) required customizations

JAVA_HOME=/usr/lpp/java/J1.4

RSE_HOME=/usr/lpp/wd4z

TZ=EST5EDT

LANG=C

PATH=/bin:/usr/sbin:.

_RSE_CLASS_OPTS=""

_RSE_JAVAOPTS=""

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS –DTSO_SERVER=APPC"

#===

(2) required customizations if SCLMDT is used

_CMDSERV_BASE_HOME=/usr/lpp/SCLMDT

_CMDSERV_BASE_LOAD=BWB.SBWBLOAD

_CMDSERV_CONF_HOME=/etc/SCLMDT

_CMDSERV_WORK_HOME=/var/SCLMDT

STEPLIB=NONE

#STEPLIB=$_CMDSERV_BASE_LOAD

_RSE_CMDSERV_OPTS=""

#===

(3) optional customizations

#_RSE_PORTRANGE=8108-8118

#_FEKFLOCK_USERID_=user_id

#_FEKFLOCK_JOBNAME_=job_name

#_FEKFSCMD_TP_NAME_=tp_name

#_FEKFSCMD_PARTNER_LU_=lu_name

#===

(4) do not change unless directed by IBM support center

RSE_LIB=$RSE_HOME/rse/lib

ICU_LIB=$RSE_HOME/icuc/lib

_CEE_RUNOPTS="ALL31(ON) HEAP(32M,32K,ANYWHERE,KEEP,,) TRAP(ON)"

_CEE_DMPTARG=$HOME/.eclipse/RSE/$RSE_USER_ID

_BPX_SHAREAS=YES

_BPX_SPAWN_SCRIPT=YES

PATH=$JAVA_HOME/bin:$RSE_LIB:$_CMDSERV_BASE_HOME/bin:$PATH

LIBPATH=$JAVA_HOME/bin:$JAVA_HOME/bin/classic:$ICU_LIB:$RSE_LIB:.

CLASSPATH=$RSE_LIB:$RSE_LIB/dstore_core.jar:$RSE_LIB/clientserver.jar

CLASSPATH=$CLASSPATH:$RSE_LIB/dstore_extra_server.jar

CLASSPATH=$CLASSPATH:$RSE_LIB/dstore_miners.jar

CLASSPATH=$CLASSPATH:$RSE_LIB/universalminers.jar:$RSE_LIB/mvsminers.jar

CLASSPATH=$CLASSPATH:$RSE_LIB/carma.jar:$RSE_LIB/luceneminer.jar

CLASSPATH=$CLASSPATH:$RSE_LIB/mvsluceneminer.jar:$RSE_LIB/cdzminer.jar

CLASSPATH=$CLASSPATH:$RSE_LIB/mvscdzminer.jar:$RSE_LIB/jesminers.jar

CLASSPATH=$CLASSPATH:$RSE_LIB/FAMiner.jar

CLASSPATH=$CLASSPATH:$RSE_LIB/mvsutil.jar:$RSE_LIB/jesutils.jar

CLASSPATH=$CLASSPATH:$RSE_LIB/lucene-1.4.3.jar:$RSE_LIB/cdtparser.jar

CLASSPATH=$CLASSPATH:$RSE_LIB/wdzBidi.jar:$RSE_LIB/fmiExtensions.jar

CLASSPATH=.:$CLASSPATH

_RSE_CMDSERV_OPTS="&SESSION=SPAWN$_RSE_CMDSERV_OPTS"

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DSCLMDT_OPTS=’$_RSE_CMDSERV_OPTS’"

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DA_PLUGIN_PATH=$RSE_LIB"

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Xbootclasspath/p:$RSE_LIB/bidiTools.jar"

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dcom.ibm.cacheLocalHost=true"

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -showversion"

_RSE_JAVAOPTS="$_RSE_JAVAOPTS –Duser.home=$HOME"

_RSE_JAVAOPTS="$_RSE_JAVAOPTS –Dclient.username=$RSE_USER_ID"

_RSE_JAVAOPTS="$_RSE_JAVAOPTS $_RSE_CLASS_OPTS"

_RSE_SERVER_CLASS=com.ibm.etools.systems.dstore.core.server.Server

_RSE_SERVER_TIMEOUT=120000

#===

(5) additional environment variables

Figure 4. rsed.envvars – RSE configuration file

32 IBM Rational Developer for System z: Host Configuration Guide

JAVA_HOME

Java home directory. The default is /usr/lpp/java/J1.4. Change to match

your Java installation.

RSE_HOME

RSE home directory. The default is /usr/lpp/wd4z. Change to match your

Developer for System z installation.

TZ Time zone selector. The default is EST5EDT. The default time zone is UTC

+5 hours (Eastern Standard Time (EST) Eastern Daylight Savings Time

(EDT)). Change to match your time zone. Additional information can be

found in the UNIX System Services File System Interface Reference

(SA22-7808).

LANG

Specifies the name of the default locale. The default is C. C specifies the

POSIX locale and Ja_JP specifies the Japanese locale. Change to match

your locale.

PATH Command path. The default is /bin:/usr/sbin:.. Can be changed if

necessary.

_RSE_CLASS_OPTS

Additional Java options for class sharing. The default is ″″. See “(Optional)

Defining extra Java startup parameters with _RSE_*OPTS” on page 36 for

more information on this definition.

_RSE_JAVAOPTS

Additional RSE specific Java options. The default is ””. See “(Optional)

Defining extra Java startup parameters with _RSE_*OPTS” on page 36 for

more information on this definition.

 Developer for System z uses SCLM Developer Toolkit by default for the

TSO Commands service. APPC is used when the following _RSE_JAVAOPTS

option is uncommented:

_RSE_JAVAOPTS="$_RSE_JAVAOPTS –DTSO_SERVER=APPC"

Note: Both TSO Commands service methods require more customizations

than just the ones in rsed.envvars. The required customizations for

the APPC setup are described in “(Optional) Define an APPC

transaction for the TSO Commands service” on page 21, those for

SCLMDT are described in “Customize ISPF.conf, ISPF configuration

file” on page 40.

The following definitions are required if SCLM Developer Toolkit is used, either

for the TSO Commands service or when the SCLMDT plug-in is installed in the

Developer for System z client.

_CMDSERV_BASE_HOME

SCLM Developer Toolkit home directory. The default is /usr/lpp/SCLMDT.

Change to match your SCLM Developer Toolkit installation. This directive

is only required when SCLM Developer Toolkit is used (TSO Commands

service or client plug-in).

_CMDSERV_BASE_LOAD

SCLM Developer Toolkit load library. The default is BWB.SBWBLOAD.

Change to match your SCLM Developer Toolkit installation. This directive

is only required when SCLM Developer Toolkit is used (TSO Commands

service or client plug-in).

Chapter 4. Activating Developer for System z z/OS UNIX components 33

_CMDSERV_CONF_HOME

SCLM Developer Toolkit base configuration directory. The default is

/etc/SCLMDT. Change to match your SCLM Developer Toolkit

customization. This directive is only required when SCLM Developer

Toolkit is used (TSO Commands service or client plug-in).

_CMDSERV_WORK_HOME

SCLM Developer Toolkit base work directory. The default is /var/SCLMDT.

Change to match your SCLM Developer Toolkit customization. This

directive is only required when SCLM Developer Toolkit is used (TSO

Commands service or client plug-in).

STEPLIB

STEPLIB for the RSE server. The default is NONE. Do not change this line, as

it acts as a default value.

 Developer for System z uses the LINKLIST by default to access the SCLM

Developer Toolkit load library. STEPLIB is used when the following

STEPLIB directive is uncommented:

STEPLIB=$_CMDSERV_BASE_LOAD

Note: Using STEPLIB in z/OS UNIX has a negative performance impact,

as described in “Avoid use of STEPLIB” on page 59.

_RSE_CMDSERV_OPTS

Additional TSO Commands service specific Java options. The default is ″″.

See “(Optional) Defining extra Java startup parameters with _RSE_*OPTS”

on page 36 for more information on this definition. This directive is only

required when SCLM Developer Toolkit is used (TSO Commands service

or client plug-in).

The following definitions are optional. If omitted, default values will be used.

_RSE_PORTRANGE

Specifies the port range that the RSE server can open for communication

with a client. Any port can be used by default. See “(Optional) Defining

the PORTRANGE available for RSE” on page 36 for more information on

this definition.

_FEKFLOCK_USERID_

User ID to be used by the lock manager. The default is the logon user ID.

_FEKFLOCK_JOBNAME_

Job name to be used by the lock manager. The default is FEKFLK00.

_FEKFSCMD_TP_NAME_

APPC transaction program name. The default value is FEKFRSRV.

Uncomment and change this definition if you did not use the default

transaction program name when defining the APPC transaction. See

“(Optional) Define an APPC transaction for the TSO Commands service”

on page 21 for more information on the APPC transaction.

_FEKFSCMD_PARTNER_LU_

Force RSE to use this APPC base LU. See Appendix F, “Setting up APPC,”

on page 109 for more information on this definition.

The following definitions are required, and should not be changed unless directed

by the IBM support center.

RSE_LIB

RSE library path. The default is $RSE_HOME/rse/lib. Do not modify.

34 IBM Rational Developer for System z: Host Configuration Guide

ICU_LIB

International Components for Unicode (ICU) library path. The default is

$RSE_HOME/icuc/lib. Do not modify.

_CEE_RUNOPTS

Language Environment (LE) runtime options used by the started processes.

The default is ″ALL31(ON) HEAP(32M,32K,ANYWHERE,KEEP,,) TRAP(ON)″. Do

not modify.

_CEE_DMPTARG

Language Environment (LE) z/OS UNIX dump location used by the Java

virtual Machine (JVM). The default is $HOME/.eclipse/RSE/$RSE_USER_ID.

Do not modify.

_BPX_SHAREAS

Run foreground processes in the same address space as the shell. The

default is YES. Do not modify.

_BPX_SPAWN_SCRIPT

Run shell scripts directly from the spawn() function. The default is YES. Do

not modify.

PATH Command path. The default is $JAVA_HOME/
bin:$RSE_LIB:$_CMDSERV_BASE_HOME/lib:$PATH. Do not modify.

LIBPATH

Library path. The default is $JAVA_HOME/bin:$JAVA_HOME/bin/
classic:$ICU_LIB:$RSE_LIB:.. Do not modify.

CLASSPATH

Class path. The default is too long to repeat. Do not modify.

_RSE_CMDSERV_OPTS

Additional TSO Command service specific Java options. The default is

″&SESSION=SPAWN$_RSE_CMDSERV_OPTS″. Do not modify.

_RSE_JAVAOPTS

Additional RSE specific Java options. The default is too long to repeat. Do

not modify.

_RSE_SERVER_CLASS

Java class for the RSE server. The default is

com.ibm.etools.systems.dstore.core.server.Server. Do not modify.

_RSE_SERVER_TIMEOUT

Time out value for the RSE server (waiting on the client) in milliseconds.

The default is 120000 (2 minutes). Do not modify.

Note: You can bypass the need of having C/C++ and Language Environment (LE)

libraries in LINKLIST by adding the following STEPLIB statement to the

END of rsed.envvars (data set names may vary at your site). Be aware

however that using STEPLIB in z/OS UNIX has a negative performance

impact, as described in “Avoid use of STEPLIB” on page 59.

v If the last STEPLIB directive defined earlier in rsed.envvars equals

STEPLIB=NONE

STEPLIB=CEE.SCEERUN:CEE.SCEERUN2:CBC.SCLBDLL

v If the last STEPLIB directive defined earlier in rsed.envvars does not

equal STEPLIB=NONE

STEPLIB=$STEPLIB:CEE.SCEERUN:CEE.SCEERUN2:CBC.SCLBDLL

Note: Symbolic links are allowed when specifying directories in rsed.envvars.

Chapter 4. Activating Developer for System z z/OS UNIX components 35

(Optional) Defining the PORTRANGE available for RSE

This is a part of rsed.envvars customization that specifies the ports on which the

RSE server can communicate with the client. This range of ports has no connection

with the RSE daemon or REXEC/SSH ports.

To help understand the port usage, a brief description of RSE’s connection process

follows:

1. The client connects to host port 4035, INETD RSE daemon service, or host port

512, INETD REXEC service, or host port 22, INETD SSH service.

2. The chosen INETD service creates an RSE process.

3. The RSE process opens a host port for the client to connect. The selection of

this port can be configured by the user, either on the client in the subsystem

properties tab (this is not recommended) or through the _RSE_PORTRANGE

definition in rsed.envvars.

4. The INETD service returns the port number to the client.

5. The client connects to the host port.

To specify the port range, for the client to communicate with z/OS, uncomment

and change the following line in rsed.envvars:

#_RSE_PORTRANGE=8108-8118

Note: Before selecting a port range, verify that the range is available on your

system with the NETSTAT and NETSTAT PORTL commands. See

“Reserved TCP/IP ports” on page 74 for more information.

The format of PORTRANGE is: _RSE_PORTRANGE=min-max (max is non-inclusive; e.g.

_RSE_PORTRANGE=8108-8118 means port numbers from 8108 up to 8117 are usable).

The port number used by the RSE server is determined in the following order:

1. If a nonzero port number is specified in the subsystem properties on the client,

that the port number is used. If the port is not available connect will fail. This

setup is not recommended.

2. If a port number in the subsystem properties is 0, and if _RSE_PORTRANGE is

specified in rsed.envvars, the port range specified by _RSE_PORTRANGE is used.

If no port in the range is available, connect will fail.

3. If a port number in the subsystem properties is 0, and _RSE_PORTRANGE is not

specified in rsed.envvars, any available port is used.

Note: When a server opens a port and is listening, the port number cannot be

used by another server, but once it is connected, the same port number can

be used again. This means that the number of ports in the range does not

limit the number of users connected concurrently.

(Optional) Defining extra Java startup parameters with

RSE*OPTS

With the different _RSE_*OPTS directives, rsed.envvars provides the possibility to

give extra parameters to Java when it starts the RSE server.

The sample options included in rsed.envvars can be activated by uncommenting

them.

_RSE_JAVAOPTS

_RSE_JAVAOPTS defines standard and RSE specific Java options.

36 IBM Rational Developer for System z: Host Configuration Guide

_RSE_JAVAOPTS=″″

Variable initialization. Do not modify.

#_RSE_JAVAOPTS=″$_RSE_JAVAOPTS -Xms128m -Xmx128m″

Set initial (Xms) and maximum (Xmx) heap size. System defaults are

1M and 64M respectively. Uncomment and change to enforce the

specified heap size values.

#_RSE_JAVAOPTS=″$_RSE_JAVAOPTS -Dfile.encoding=Cp424″

Host codepage selection. Uncomment and change to enforce to use

of the specified codepage.

#_RSE_JAVAOPTS=″$_RSE_JAVAOPTS

-DDSTORE_TRACING_ON=true″

Start dstore tracing. Use only when directed by the IBM support

center.

#_RSE_JAVAOPTS=″$_RSE_JAVAOPTS

-DDSTORE_MEMLOGGING_ON=true″

Start dstore memory tracing. Use only when directed by the IBM

support center.

#_RSE_JAVAOPTS=″$_RSE_JAVAOPTS -DTSO_SERVER=APPC″

Use APPC for the TSO Commands service. See “(Optional) Define

an APPC transaction for the TSO Commands service” on page 21

for more information.

_RSE_CLASS_OPTS

The _RSE_CLASS_OPTS directive defines Java 5.0 (and higher) options needed

to share classes between multiple RSE servers. See “Class sharing between

JVMs” on page 60 for more information.

_RSE_CLASS_OPTS=″″

Variable initialization. Do not modify.

#_RSE_CLASS_OPTS=-Xshareclasses:name=RSE,groupAccess,nonFatal

Java 5.0 and higher only. Enable class sharing. Uncomment to share

classes between multiple RSE servers.

#_RSE_CLASS_OPTS=″$_RSE_CLASS_OPTS -Xscmx6m″

Java 5.0 and higher only. Set the size of the shared class cache.

System default is 16M.

_RSE_CMDSERV_OPTS

The _RSE_CMDSERV_OPTS directives are RSE specific Java options and are

only in effect when SCLM Developer Toolkit is used as TSO Commands

Server.

_RSE_CMDSERV_OPTS=″″

Variable initialization. Do not modify.

#_RSE_CMDSERV_OPTS=″$_RSE_CMDSERV_OPTS&ISPPROF=
&SYSUID..ISPPROF″

Use an existing ISPF profile for the TSO Commands Server.

Uncomment and change the data set name to use the specified

ISPF profile. &SYSUID. can be used as a substitution for the

developer’s user ID.

Chapter 4. Activating Developer for System z z/OS UNIX components 37

INETD daemon and RSE REXEC/SSH setup

Developer for System z relies on the INETD service to start the Remote Systems

Explorer (RSE) Server when a client requests a connection. INETD is a standard

z/OS UNIX daemon, who manages other daemons that do the actual work (in this

case, starting the RSE server). The configuration of INETD is not a part of

Developer for System z customization, but valuable information can be found in

Appendix D, “Setting up INETD,” on page 89.

Developer for System z supports multiple ways to start the RSE server.

You need to customize at least one way, depending on how your users plan to

operate.

v RSE daemon, started by connecting to INETD on port 4035 (default). This is the

recommended method because it gives the user more control and security than

REXEC.

v REXEC (Remote Execution) Command Server, default port 512, executes a shell

script that calls RSE. This method of connecting is usable for proof of concept,

but not for long term use. The advantage of using this method is that it requires

less installation and configuration work, if REXEC has been setup before

(normally done during TCP/IP setup).

v SSH (Secure Shell) Command Server, default port 22, executes a shell script that

calls RSE. This method is comparable to REXEC, but SSH uses secure

(encrypted) communication with the client.

Note: Remote (host based) actions for z/OS UNIX subprojects require that REXEC

or SSH is active on the host.

You can verify that INETD is active with the ps -e command (given by an

authorized user). The output must contain a reference to INETD, for example (# is

the z/OS UNIX prompt):

ps -e

PID TTY TIME CMD

 7 ? 0:00 /usr/sbin/inetd

Note: In order for z/OS UNIX servers (like RSE daemon, REXEC and SSH) to

support IPv6 connections, tcp6 must be specified for the protocol of the

service name in the inetd.conf file. When tcp6 is defined, IPv4 clients are

also supported.

INETD RSE daemon set up

1. Modify /etc/services by adding this line:

rse 4035/tcp #Developer for System z RSE

rse Service name of the daemon, default is rse (lowercase). The name must

match the name that will be used in /etc/inetd.conf

4035/tcp

port and protocol used, the default port is 4035, the protocol must be

tcp.

 The port used must match the port defined on the client, which is set

during the creation of a new z/OS connection.

38 IBM Rational Developer for System z: Host Configuration Guide

Note: Before selecting a port, verify that the port is available on your

system with the NETSTAT and NETSTAT PORTL commands.

See “Reserved TCP/IP ports” on page 74 for more information.

#Developer for System z RSE

comment
2. Modify /etc/inetd.conf by adding these two lines. See Appendix D, “Setting

up INETD,” on page 89 for continuation rules.

rse stream tcp nowait OMVSKERN /usr/lpp/wd4z/rse/lib/fekfrsed

 rsed -d /usr/lpp/wd4z/rse/lib -t 60

rse Service name of the daemon. Default is rse (lowercase). The name must

match the name used in /etc/services

stream tcp nowait

INETD specific configuration statements (socket type, protocol, wait

flag). Do not modify.

OMVSKERN

User ID for the RSE daemon process. The default is OMVSKERN. This user

ID must be a user ID with a valid OMVS security segment, BPX.DAEMON

permission and READ and EXECUCTE permission to the Developer for

System z installation and configuration directories. Refer to

Appendix D, “Setting up INETD,” on page 89 for more details on the

requirements for user IDs used for system services.

/usr/lpp/wd4z/rse/lib/fekfrsed

Server program (absolute location of fekfrsed). Default is

/usr/lpp/wd4z/rse/lib/fekfrsed

 Everything after this INETD argument are server arguments, starting

with the server name.

rsed Server name. Do not modify.

-d /usr/lpp/wd4z/rse/lib

Working directory (location of RSE server configuration files). The

default is /usr/lpp/wd4z/rse/lib

Note: It is recommended that you copy the customized RSE configuration files

to a new directory (like /etc/wd4z/) to avoid overwriting them when

applying maintenance. The working directory defined here must reflect

this change. For example:

rse stream tcp nowait OMVSKERN /usr/lpp/wd4z/rse/lib/fekfrsed rsed -d /etc/wd4z

The following definitions are optional. If omitted, default values will be used.

-t 60 Timeout option to specify how many seconds the RSE daemon waits

for the RSE server to respond. The default is 60 seconds. The time out

for the RSE server waiting on the client is set in rsed.envvars and is 2

minutes by default.
3. INETD must be restarted by an authorized user to activate the changes made to

the /etc files, as described in Appendix D, “Setting up INETD,” on page 89. See

the following sample commands (# is the z/OS UNIX prompt):

a. # ps -e | grep inetd

 50331687 ? 0:00 /usr/sbin/inetd

b. # kill 50331687

c. # _BPX_JOBNAME=’INETD’ /usr/sbin/inetd

d. # netstat | grep 4035

 INETD4 00000B6A 0.0.0.0..4035 0.0.0.0..0 Listen

Chapter 4. Activating Developer for System z z/OS UNIX components 39

Note: If the BPX.DAEMON profile is defined in the FACILITY class of your security

product, and the user (re)starting INETD does not have access to this

resource, then the following security warning can be expected for each

client connecting to RSE, where IBMUSER is the user ID used to start

INETD.

ICH408I USER(IBMUSER) GROUP(SYS1) NAME(IBMUSER)

 BPX.DAEMON CL(FACILITY)

 INSUFFICIENT ACCESS AUTHORITY

 ACCESS INTENT(READ) ACCESS ALLOWED(NONE)

INETD REXEC (or SSH) set up

There is no Developer for System z specific setup for using the INETD REXEC (or

SSH) Command Server. However, the client needs to know 2 values to start a RSE

connection through REXEC/SSH:

v The directory where the server.zseries startup script is located.

By default this is the installation directory (/usr/lpp/wd4z/rse/lib/). However,

server.zseries is one of the files that must be copied also if rsed.envvars is

copied to a different directory, like /etc/wd4z/.

v The port that is being used.

A common port used by REXEC is 512. A quick way to check this is the

NETSTAT command, as shown in the following sample ($ is the z/OS UNIX

prompt):

$ netstat | grep 512

INETD4 0000002E 0.0.0.0..512 0.0.0.0..0 Listen

To verify this, you can check /etc/inetd.conf and /etc/services to find the

port number used.

1. find the service name (1st word, exec in this example) of the rexecd server

(7th word) in /etc/inetd.conf

exec stream tcp nowait OMVSKERN /usr/sbin/orexecd rexecd -LV

2. Find the port (2nd word, 512 in this example) attached to this service name

(1st word) in /etc/services

exec 512/tcp #REXEC Command Server

The same principle applies to SSH. Its common port is 22, and the server name

is sshd.

Note: Remote (host based) actions for z/OS UNIX subprojects require that REXEC

or SSH is active on the host. If REXEC/SSH is not configured to use the

default port, the Developer for System z client must define the correct port

for use by z/OS UNIX subprojects. This can be done by selecting the

Window > Preferences... > z/OS Solutions > USS Subprojects > Remote

Action Options preference page.

Customize ISPF.conf, ISPF configuration file

This step is only required when using SCLM Developer Toolkit for the TSO

Commands service (this is the default). It is not required when using APPC for the

TSO Commands service.

SCLM Developer Toolkit requires the definitions in ISPF.conf to create a valid

environment to run ISPF services. The TSO Commands service must be added to

this ISPF environment.

40 IBM Rational Developer for System z: Host Configuration Guide

ISPF.conf is created during the SCLM Developer Toolkit customization, which is

described in SCLM Developer Toolkit Installation and Customization Guide (SC23-8504).

The default location is /etc/SCLMDT/CONFIG, but this might not apply to your site.

Add the following lines to ISPF.conf, where hlq equals the high level qualifier

used to install Developer for System z (default FEK).

**

* Developer for System z – TSO Commands server

**

sysexec=hlq.SFEKPROC

The result should look like the sample in Figure 5.

Note: If the sysexec statement is already defined, add the hlq.SFEKPROC data set to

the end of it, separating the data set names with a comma (,).

Verify RSE server set up

The Developer for System z installation provides several Installation Verification

Programs (IVP) for the RSE server. The IVP scripts are located in the installation

directory, default /usr/lpp/wd4z/rse/lib/.

v fekfivpa : “TSO Commands service connection (using APPC)” on page 45

v fekfivpc : “TSO Commands service connection (using SCLMDT)” on page 44

v fekfivpd : “RSE daemon connection” on page 44

v fekfivpj : “JES Job Monitor connection” on page 44j

v fekfivpr : “REXEC connection” on page 42

v fekfivps : “REXEC/SSH shell script” on page 43

All sample commands in this section expect that the RSE environment variables

are set. This way, the IVP scripts are available through the PATH statement and the

location of rsed.envvars is known. Use the pwd and cd commands to verify and

change your current directory to the directory with the customized rsed.envvars.

The setup.env.zseries shell script can then be used to set the RSE environment

variables, like in the following sample ($ is the z/OS UNIX prompt):

$ pwd

/etc

$ cd /etc/wd4z

$. ./setup.env.zseries

The . ./setup.env.zseries shell script, which resides in the same directory as

rsed.envvars, exports the environment variables so that other processes can use

them. The first ″.″ (dot) in . ./setup.env.zseries is a z/OS UNIX command to

sysproc=ISP.SISPCLIB

ispmlib=ISP.SISPMENU

isptlib=ISP.SISPTENU

ispplib=ISP.SISPPENU

ispslib=ISP.SISPSLIB

ispllib=BWB.SBWBLOAD

**

* Developer for System z – TSO Commands server

**

sysexec=FEK.SFEKPROC

Figure 5. ISPF.conf - ISPF configuration file

Chapter 4. Activating Developer for System z z/OS UNIX components 41

run the shell in the current environment, so that the environment variables set in

the shell are effective even after exiting the shell. The second one is referring to the

current directory.

Note: If . ./setup.env.zseries is not executed before the fekfivp* scripts, the

path to these scripts must be specified when calling them, like in the

following sample:

/usr/lpp/wd4z/rse/lib/fekfivpr 512 USERID

Note: Some IVP tests use the TCP/IP REXX socket API, which requires that the

TCP/IP load library, default TCPIP.SEZALOAD, is in LINKLIST or STEPLIB.

The following commands might be necessary to be able to execute these IVP

tests ($ is the z/OS UNIX prompt):

$ echo $STEPLIB

none

$ STEPLIB=TCPIP.SEZALOAD

or

$ echo $STEPLIB

SOME.STEPLIB.DATASET

$ STEPLIB=$STEPLIB:TCPIP.SEZALOAD

For information on diagnosing RSE connection problems, see Appendix B,

“Troubleshooting configuration problems,” on page 69 or the technotes on the

Developer for System z Support Page http://www-306.ibm.com/software/
awdtools/devzseries/support/.

Port availability

The JES Job Monitor, REXEC, SSH and RSE daemon port availability can be

verified by issuing the netstat command. The result should show the ports used by

these services, like in the following sample ($ is the z/OS UNIX prompt):

$ netstat

MVS TCP/IP NETSTAT CS V1R7 TCPIP Name: TCPIP 13:57:36

User Id Conn Local Socket Foreign Socket State

------- ---- ------------ -------------- -----

INETD4 00000030 0.0.0.0..22 0.0.0.0..0 Listen

INETD4 00000030 0.0.0.0..512 0.0.0.0..0 Listen

INETD4 00000030 0.0.0.0..4035 0.0.0.0..0 Listen

JMON 00000030 0.0.0.0..6715 0.0.0.0..0 Listen

REXEC connection

Verify the REXEC connection by executing the following command. Replace 512

with the port used by REXEC and USERID by a valid user ID.

fekfivpr 512 USERID

After prompting you for a password, the command should return the REXEC

trace, a timeout warning, the Java version and the RSE server message, like in the

following sample ($ is the z/OS UNIX prompt):

$ fekfivpr 512 USERID

Enter password:

$ EZYRC01I Calling function rexec_af with the following:

EZYRC02I Host: CDFMVS08, user USERID, cmd cd /etc/wd4z;export RSE_USER_ID=USERI

D;./server.zseries -ivp, port 512

EZYRC19I Data socket = 4, Control socket = 6.

expect to see time out messages after a successful IVP test

java version "1.5.0"

42 IBM Rational Developer for System z: Host Configuration Guide

Java(TM) 2 Runtime Environment, Standard Edition (build pmz31dev-20070201 (SR4))

IBM J9 VM (build 2.3, J2RE 1.5.0 IBM J9 2.3 z/OS s390-31 j9vmmz3123-20070201 (JI

T enabled)

J9VM - 20070131_11312_bHdSMr

JIT - 20070109_1805ifx1_r8

GC - 200701_09)

JCL - 20070126

Server Started Successfully

1272

Server running on: CDFMVS08

Note: If you don’t get any Java and RSE server output, the INETD region size is

probably too small (must be 2096128 or larger if started from a TSO/OMVS

shell session, or region size 0 for BPXBATCH).

Note: You can test the shell script used by REXEC separately, as described in the

next IVP test, “REXEC/SSH shell script.”

Note: The server is started without a client trying to connect, so it will time out

(after 5 seconds). This results in a Java stack trace (25+ lines) that looks like

the following sample:

$ java.net.SocketTimeoutException: Accept timed out

 at java.net.PlainSocketImpl.socketAccept(Native Method)

 at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:384)

 at java.net.ServerSocket.implAccept(ServerSocket.java:471)

 at java.net.ServerSocket.accept(ServerSocket.java:442)

 at com.ibm.etools.systems.dstore.core.server.ConnectionEstablisher.

...

REXEC/SSH shell script

This IVP test can be skipped if the previous test outlined in, “REXEC connection”

on page 42, completed successfully.

Verify the shell script used by the REXEC and SSH connection by executing the

following command:

fekfivps

The command should return a timeout warning, the Java version and the RSE

server message, like in the following sample ($ is the z/OS UNIX prompt):

$ fekfivps

$ java version "1.5.0"

expect to see time out messages after a successful IVP test

Java(TM) 2 Runtime Environment, Standard Edition (build pmz31dev-20070201 (SR4))

IBM J9 VM (build 2.3, J2RE 1.5.0 IBM J9 2.3 z/OS s390-31 j9vmmz3123-20070201 (JI

T enabled)

J9VM - 20070131_11312_bHdSMr

JIT - 20070109_1805ifx1_r8

GC - 200701_09)

JCL - 20070126

Server Started Successfully

1751

Server running on: CDFMVS08$

Note: If you don’t get any output, your (TSO) region size is probably too small

(must be 2096128 or larger).

Chapter 4. Activating Developer for System z z/OS UNIX components 43

Note: The server is started without a client trying to connect, so it will time out

(after 5 seconds). This results in a Java stack trace (25+ lines) that looks like

the following sample:
$ java.net.SocketTimeoutException: Accept timed out

 at java.net.PlainSocketImpl.socketAccept(Native Method)

 at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:384)

 at java.net.ServerSocket.implAccept(ServerSocket.java:471)

 at java.net.ServerSocket.accept(ServerSocket.java:442)

 at com.ibm.etools.systems.dstore.core.server.ConnectionEstablisher.

...

RSE daemon connection

Verify the RSE daemon connection by executing the following command. Replace

4035 with the port used by the RSE daemon and USERID by a valid user ID.

fekfivpd 4035 USERID

After prompting you for a password the command should return an output like in

this sample ($ is the z/OS UNIX prompt):

$ fekfivpd 4035 USERID

Password:

SSL is disabled

connected

8108

570655399

Success

Note: When testing an SSL enabled connection, verify that you specified the

correct port if you get this error message: gsk_secure_socket_init()

failed: Socket closed by remote partner

JES Job Monitor connection

Verify the JES Job Monitor connection by executing the following command.

Replace 6715 with the JES Job Monitor port number.

fekfivpj 6715

The command should return the JES Job Monitor acknowledge message, like in the

following sample ($ is the z/OS UNIX prompt):

$ fekfivpj 6715

Waiting for JES Job Monitor response...

ACKNOWLEDGE01v03

Success

TSO Commands service connection (using SCLMDT)

This IVP test is only needed if you use SCLM Developer Toolkit, either for the TSO

Commands service or client plug-in.

Verify the connection to the TSO Commands server using SCLM Developer by

executing the following command.

fekfivpc

The command should return the result of SCLM Developer Toolkit related checks

(variables, HFS modules, REXX runtime, starting and stopping TSO/ISPF session),

like in the following sample ($ is the z/OS UNIX prompt):

$ fekfivpc

Host install verification for RSE

44 IBM Rational Developer for System z: Host Configuration Guide

Review IVP log messages from HOST below :

RSE connection and base TSO/ISPF session initialization check only

*** CHECK : ENVIRONMENT VARIABLES - key variables displayed below :

Server PATH = /usr/lpp/java/J5.0/bin:/usr/lpp/wd4z/rse/lib:/usr/lpp/SCLM

DT/bin:/bin:/usr/sbin:.

STEPLIB = BWB.SBWBLOAD

_CMDSERV_BASE_HOME = /usr/lpp/SCLMDT

_CMDSERV_CONF_HOME = /etc/SCLMDT

_CMDSERV_WORK_HOME = /var/SCLMDT

*** CHECK : HFS MODULES

Checking install Directory : /usr/lpp/SCLMDT

Checking for BWB modules in /bin directory

RC=0

MSG: SUCCESSFUL

*** CHECK : REXX RUNTIME ENVIRONMENT

RC=0

MSG: SUCCESSFUL

*** CHECK : TSO/ISPF INITIALIZATION

(TSO/ISPF session will be initialized)

RC=0

MSG: SUCCESSFUL

*** CHECK: Shutting down TSO/ISPF IVP session

RC=0

MSG: SUCCESSFUL

Host installation verification completed successfully

Note: If any of the SCLMDT checks fail, more detailed information will be shown.

fekfivpc has several optional, non-positional, parameters:

-file fekfivpc can produce large amounts of output (hundreds of lines). The

-file parameter sends this output to a file, home/.eclipse/RSE/USERID/
fekfivpc.log, where home is the home path defined in your OMVS

segment (or the default OMVS segment if you do not have and OMVS

segment) and USERID is your user ID (uppercase).

-plugin

By default, fekfivpc only checks the functions needed for the TSO

Commands service. The -plugin parameter adds extra tests for the

SCLMDT client plug-in.

-debug

The -debug parameter creates detailed test output. Do not use this option

unless directed by the IBM support center.

TSO Commands service connection (using APPC)

Do not execute this procedure if you have not set up APPC for the TSO

Commands service.

Chapter 4. Activating Developer for System z z/OS UNIX components 45

Verify the connection to the TSO Command server (using APPC) by executing the

following command. Replace USERID with a valid user ID.

./fekfivpa USERID

After prompting you for a password, the command should return the APPC

conversation, like in the following sample ($ is the z/OS UNIX prompt):

$ fekfivpa USERID

Enter password:

20070607 13:57:18.584060 /usr/lpp/wd4z/rse/lib/fekfscmd: version=Oct 2003

20070607 13:57:18.584326 Input parms: 1.2.3.4 * NOTRACE USERID ********

20070607 13:57:18.585132 TP_name set via envvar: FEKFRSRV

20070607 13:57:18.586800 APPC: Allocate succeeded

20070607 13:57:18.587022 Conversation id is 0DDBD3F80000000D

20070607 13:57:18.587380 APPC: Set Send Type succeeded

20070607 13:57:26.736674 APPC: Confirm succeeded

20070607 13:57:26.737027 Req to send recd value is 0

20070607 13:57:26.737546 APPC: SEND_DATA return_code = 0

20070607 13:57:26.737726 request_to_send_received = 0

20070607 13:57:26.737893 Send Data succeeded

20070607 13:57:26.738169 APPC: Set Prepare to Receive type succeeded

20070607 13:57:26.738580 APPC: Prepare to Receive succeeded

20070607 13:57:26.808899 APPC: Receive data

20070607 13:57:26.809122 RCV return_code = 0

20070607 13:57:26.809270 RCV data_received= 2

20070607 13:57:26.809415 RCV received_length= 29

20070607 13:57:26.809556 RCV status_received= 4

20070607 13:57:26.809712 RCV req_to_send= 0

20070607 13:57:26.809868 Receive succeeded

:IP: 0 9.42.112.75 1674 50246

20070607 13:57:26.810533 APPC: CONFIRMED succeeded

For information on diagnosing RSE connection problems, see Appendix B,

“Troubleshooting configuration problems,” on page 69 or the technotes on the

Developer for System z Support Page http://www-306.ibm.com/software/
awdtools/devzseries/support/.

(Optional) Customize ssl.properties, RSE SSL configuration

All Developer for System z client connection methods use the Secure Socket Layer

(SSL) variables set in the ssl.properties file, which is located by default in the

installation directory, /usr/lpp/wd4z/rse/lib/. However, ssl.properties is one of

the files that must be copied also if rsed.envvars is copied to a different directory,

like /etc/wd4z/. The sample file provided has the statements listed in Figure 6 on

page 47, where comment lines start with a pound sign (#).

46 IBM Rational Developer for System z: Host Configuration Guide

The daemon and server properties only need to be set if you enable SSL. Refer to

Appendix E, “Setting up SSL,” on page 97 for more information on SSL setup.

(Optional) Customize rsecomm.properties, RSE trace configuration

All Developer for System z client connection methods use the variables set in

the rsecomm.properties file, which is located by default in the installation

directory, /usr/lpp/wd4z/rse/lib/. However, rsecomm.properties is one of the files

that must be copied also if rsed.envvars is copied to a different directory, like

/etc/wd4z/. The sample file provided has the statements, listed in Figure 7, where

comment lines start with a pound sign (#).

When selecting log_location=Log_To_File (the default), the logging is written to

home/.eclipse/RSE/USERID/rsecomm.log, where home is the home path defined in

the user’s OMVS segment (or the default OMVS segment if the user does not have

and OMVS segment) and USERID is the logon user ID (uppercase).

Note: The debug_level definition also controls the logging level of the other log

files that can be found in this directory.

 Attention: Changing these settings can cause performance degradations and

should only be done under the direction of the IBM support center.

Specify this property as true to enable SSL

enable_ssl=false

###################################

Daemon Properties

The key database file and password need to be specified for

daemon to use.

The key label need to be specified if not default key.

#daemon_keydb_file=

#daemon_keydb_password=

#daemon_key_label=

###################################

Server Properties

The keystore file and password need to be specified for the

server to use.

#server_keystore_file=

#server_keystore_password=

Figure 6. ssl.properties – SSL configuration file

server.version - DO NOT MODIFY!

server.version=5.0.0

Logging level

0 - Log error messages

1 - Log error and warning messages

2 - Log error, warning and info messages

3 - Log error, warning, info and debug messages

debug_level=1

Log location

Log_To_StdOut

Log_To_File

log_location=Log_To_File

Figure 7. rsecomm.properties – Logging configuration file

Chapter 4. Activating Developer for System z z/OS UNIX components 47

(Optional) Customize projectcfg.properties, host projects configuration

z/OS Projects can be defined individually through the z/OS Projects perspective

on the client or can be defined centrally on the host and propagated to the client

on a per user basis. These ″host based projects″ look and function exactly like

projects defined on the client except that their structure, members, and properties

cannot be modified by the client and they are only accessible when connected to

the host.

The location of the project definitions is defined in projectcfg.properties, which

is located by default in the installation directory, /usr/lpp/wd4z/rse/lib/.

However, projectcfg.properties is one of the files that must be copied also if

rsed.envvars is copied to a different directory, like /etc/wd4z/.

The sample file provided has the statements listed in Figure 8, where comment

lines start with a pound sign (#).

The only variable to be changed is PROJECT-HOME. Its value, default

/var/wd4z/projects, is the base directory for the project definitions.

Note: In order to activate host based projects, a project.instance file must exist in

/var/wd4z/projects/USERID, where /var/wd4z/projects is the location of the

project definition files and USERID is the user ID with which the developer

logs on.

For more information on host based projects, see the white paper Host Based

Projects in WebSphere Developer for System z version 7.0 in the Developer for System z

internet library, http://www-306.ibm.com/software/awdtools/devzseries/library/

(Optional) Customize FMIEXT.properties, File Manager integration

Developer for System z supports direct access from the client to a limited set of

IBM File Manager for z/OS functions. IBM File Manager for z/OS provides

comprehensive tools for working with MVS data sets, z/OS UNIX files, DB2, IMS

and CICS data. These tools include the familiar browse, edit, copy and print

utilities found in ISPF, enhanced to meet the needs of application developers. In

the current version of Developer for System z, only browse/edit of MVS data sets

(including VSAM KSDS and ESDS) is supported.

Note that IBM File Manager for z/OS product must be ordered, installed and

configured separately. Refer to IBM Rational Developer for System z Host Planning

Guide (GI11-8296-00) to know which level of File Manger is required for your

version of Developer for System z. The installation and customization of this

product is not described in this manual.

The File Manager definitions needed by Developer for System z are stored in

FMIEXT.properties, which is located by default in the installation directory,

host based projects – root configuration file

WSED-VERSION – do not modify !

WSED-VERSION=7.0.0.0

specify the location of the host based project definition files

PROJECT-HOME=/var/wd4z/projects

Figure 8. projectcfg.properties – Host based projects configuration file

48 IBM Rational Developer for System z: Host Configuration Guide

/usr/lpp/wd4z/rse/lib/. However, FMIEXT.properties is one of the files that must

be copied also if rsed.envvars is copied to a different directory, like /etc/wd4z/.

The sample file provided has the statements listed in Figure 9, where comment

lines start with a pound sign (#).

startup.script

Absolute location of fmiSub, the FMI server startup script. The default

value is /usr/lpp/wd4z/rse/lib/fmiSub.

startup.port

First port used for communication between the FMI server and the RSE

server, which relays the information to the client. The default port is 1957.

Communication on this port is confined to your host machine.

Note: Before selecting a port, verify that the port is available on your

system with the NETSTAT and NETSTAT PORTL commands. See

“Reserved TCP/IP ports” on page 74 for more information.

startup.range

Range of ports, starting at startup.port, which will be used for FMI server

communication. The default is 100. For example, when using the defaults,

port 1957 until 2056 (inclusive) can be used by the FMI server.

startup.fmload

Absolute location of the File Manager load library. The default value is

FMN.SFMNMOD1. Do not use quotes (’) to make the data set name absolute, a

prefix is not added.

startup.jobcard1

startup.jobcard2

startup.jobcard3

Jobcard information for the FMI server. The default values are //JOBCARD

JOB <job parameters>, //* and //*. The job name will be replaced with

FEK<port> to ensure uniqueness.

startup.sysout

Sysout class for the FMI server. The default value is *.

File Manager Integration (FMI) Extension properties

startup.script=/usr/lpp/wd4z/rse/lib/fmiSub

startup.port=1957

startup.range=100

startup.fmload=FMN.SFMNMOD1

startup.jobcard1=//JOBCARD JOB <job parameters>

startup.jobcard2=//*

startup.jobcard3=//*

startup.sysout=*

Figure 9. FMIEXT.properties – File Manager configuration file

Chapter 4. Activating Developer for System z z/OS UNIX components 49

50 IBM Rational Developer for System z: Host Configuration Guide

Chapter 5. (Optional) Activating IBM Common Access

Repository Manager (CARMA)

Common Access Repository Manager (CARMA) (FMID: HCMA710) is a

productivity aid for developers who are creating APIs for Software Configuration

Managers (SCM). In turn, these API’s can be used by applications (for example,

Developer for System z) to access the SCMs.

Before installing the 7.1 version, if you are a previous user of CARMA, it is

recommended that you save the related customization as described in “Backing up

previously configured files” on page 9.

After installation, you must configure CARMA by following these steps:

1. Configure the CARMA server on your z/OS host (requires actions in MVS and

z/OS UNIX)

2. (Optional) Configure the sample RAMs

3. (Optional) Restrict access to the initialization files and VSAM clusters. Under

most circumstances, only System Administrators and CARMA RAM developers

will need to write to these files, while other users will only require read access.

Note: Repository Access Managers (RAMs) are user-written API’s to interface

with z/OS Software Configuration Managers (SCMs).

Refer to Table 1 on page 1 for a list of manuals that provide more information on

CARMA and how to use it.

The user can control the amount of trace info CARMA generates by setting Trace

Level in the properties tab of the CARMA connection on the client. The choices

for Trace Level are:

v Disable Logging

v Error Logging

v Warning Logging

v Informational Logging

v Debug Logging

The default value is

Error Logging

. Refer to “Location of log files” on page 69 for more information on log file

locations.

Customizing the CARMA MVS components

All references to hlq in this section refer to the high level qualifier used during

installation of CARMA. The installation default is CRA, but this might not apply to

your site.

Follow these steps to configure your MVS host:

© Copyright IBM Corp. 2005, 2007 51

1. Copy the members to be customized from the installation directory to a

personal library and customize these copies to avoid overwriting them when

applying maintenance.

v hlq.SCRACLST(CRASUBMT)

v hlq.SCRASAMP(CRA$VDEF)

v hlq.SCRASAMP(CRA$VMSG)

v hlq.SCRASAMP(CRA$VSTR)
2. Customize the hlq.SCRACLST(CRASUBMT) CLIST. Refer to the documentation

within CRASUBMT for customization instructions. The CRASUBMT CLIST submits a

CARMA server.

Note: You can optionally change CARMA’s timeout value by modifying the

PROC 1 PORT TIMEOUT(420) line in hlq.SCRACLST(CRASUBMT) CLIST. The

timeout value is the number of seconds CARMA will wait for the next

command from the client. Setting a value of 0 results in the default

timeout value, currently 420 seconds (7 minutes).

3. Customize and submit the hlq.SCRASAMP(CRA$VDEF) JCL. Refer to the

documentation within CRA$VDEF for customization instructions.

Note: You can use the CRA$VDEF JCL to update the CRADEF VSAM cluster

(CARMA configuration) at a later time. To update the cluster, you must

point the INPUT DD statement to your chosen sequential data set

instead of CRAINIT. Refer to the Common Access Repository Manager

Developer’s Guide (SC31-6914) for more information on defining this

sequential data set.

4. Customize and submit the hlq.SCRASAMP(CRA$VMSG) JCL. Refer to the

documentation within CRA$VMSG for customization instructions. CRA$VMSG creates

and primes the CARMA message VSAM, CRAMSG.

5. Customize and submit the hlq.SCRASAMP(CRA$VSTR) JCL. Refer to the

documentation within CRA$VSTR for customization instructions.

Note: You can use the CRA$VSTR JCL to update the CRASTRS VSAM cluster

(CARMA custom information) at a later time. To update the cluster, you

must point the INPUT DD statement to your chosen sequential data set

instead of CRASINIT. Refer to the Common Access Repository Manager

Developer’s Guide (SC31-6914) for more information on defining this

sequential data set.

Customizing the CARMA z/OS UNIX components

If you are unfamiliar with z/OS UNIX, it is advised to ask assistance from an

experienced z/OS UNIX or other UNIX administrator to perform the tasks listed in

this section.

The z/OS UNIX commands needed to perform the listed tasks are described

briefly for your convenience. Unless noted otherwise, refer to UNIX System Services

Command Reference (SA22-7802) for more information on these commands.

v The tasks described below expect you to be active in z/OS UNIX. This can be

done by issuing the TSO command OMVS. Use the exit command to return to

TSO.

v MVS provides the possibility to edit z/OS UNIX files using ISPF through the

OEDIT command. This command can be used both in TSO and OMVS.

52 IBM Rational Developer for System z: Host Configuration Guide

All /usr/lpp/wd4z/ path statements in this chapter refer to the path used during

installation of Developer for System z, not CARMA. The default is /usr/lpp/wd4z/,

but this might not apply to your site.

Follow these steps to configure the z/OS UNIX CARMA components, which are

installed during the IBM Rational Developer for System z installation (FMID:

HHOP710):

1. The CRASRV.properties configuration file must reside in the same directory as

the customized rsed.envvars file. Both files reside by default in the install

directory (default path /usr/lpp/wd4z/rse/lib/). But as described in “Saving

the rsed.envvars configuration file in another directory” on page 30, it is

advised to copy them to another directory to avoid overwriting them when

applying maintenance. In the samples used in this book, this directory is

/etc/wd4z/.

cp /usr/lpp/wd4z/rse/lib/CRASRV.properties /etc/wd4z

2. The sample configuration file CRASRV.properties, consists of a set of

environment variable definitions. The sample configuration file must be

changed to match your site standards and contains the statements listed in

Figure 10, where comment lines start with a pound sign (#).

port.start

First port used for communication between CARMA MVS and z/OS

UNIX components. The default port is 5227. Communication on this

port is confined to your host machine.

Note: Before selecting a port, verify that the port is available on your

system with the NETSTAT and NETSTAT PORTL commands.

See “Reserved TCP/IP ports” on page 74 for more information.

port.range

Range of ports, starting at port.start, which will be used for CARMA

Server communication. The default is 100. For example, when using the

defaults, port 5227 until 5326 (inclusive) can be used by CARMA.

startup.script.name

Defines the absolute path of the REXX submit script rexxsub. The

default is /usr/lpp/wd4z/rse/lib/rexxsub. This REXX exec will trigger

the execution of the CRASUBMT CLIST in MVS.

clist.dsname

Defines the location of the CRASUBMT CLIST, using MVS referencing

conventions. With apostrophes (‘) it is an absolute location, without the

user’s prefix precedes the data set name provided. The default is

’hlq.SCRACLST(CRASUBMT)’. The CARMA SMP/E installation which

creates CRASUBMT, uses CRA as default value for hlq. This CLIST will

start a CARMA server when opening a connection.

CARMA configuration option

port.start=5227

port.range=100

startup.script.name=/usr/lpp/wd4z/rse/lib/rexxsub

clist.dsname=’hlq.SCRACLST(CRASUBMT)’

Figure 10. CRASRV.properties – CARMA configuration file

Chapter 5. (Optional) Activating IBM Common Access Repository Manager (CARMA) 53

Note: In Developer for System z version 7.0, the CLIST data set and member name

has moved from rexxsub (variable DSNAME) into CRASRV.properties,

eliminating the need to customize rexxsub. Leave rexxsub in the install

directory if you want possible SMP/E maintenance to be activated

automatically.

(Optional) Activating the sample Repository Access Managers (RAMs)

Repository Access Managers (RAMs) are user-written API’s to interface with z/OS

Software Configuration Managers (SCMs). Follow the instructions in the sections

below for the sample RAMs you want to activate.

Note: The sample RAMs are provided for the purpose of testing the configuration

of your CARMA environment and as examples for developing your own

RAMs. Do NOT use the provided sample RAMs in a production

environment.

Note: All references to hlq in this section refer to the high level qualifier used

during installation of CARMA. The installation default is CRA, but this

might not apply to your site.

Refer to the IBM Rational Developer for System z Common Access Repository Manager

Developer’s Guide (SC23-7660-00) for more information on the sample RAMs and

sample source code provided.

Activating the SCLM RAM

1. Copy the members to be customized from the installation directory to a

personal library and customize these copies to avoid overwriting them when

applying maintenance.

v hlq.SCRASAMP(CRA#VSLM)

v hlq.SCRASAMP(CRA#ASLM)
2. Customize and submit the hlq.SCRASAMP(CRA#VSLM) JCL. Refer to the

documentation within CRA#VSLM for customization instructions. CRA#VSLM creates

and primes the SCLM RAM message VSAM.

3. Customize the hlq.SCRASAMP(CRA#ASLM) JCL. Refer to the documentation within

CRA#ASLM for customization instructions. CRA#ASLM allocates data sets needed by

SCLM RAM clients.

Note: Each user must submit CRA#ASLM once prior to using CARMA with the

SCLM RAM. Failing to do so will result in an allocation error.

Activating the PDS RAM

1. Copy the members to be customized from the installation directory to a

personal library and customize these copies to avoid overwriting them when

applying maintenance.

v hlq.SCRASAMP(CRA#VPDS)
2. Customize and submit the hlq.SCRASAMP(CRA#VPDS) JCL. Refer to the

documentation within CRA#VPDS for customization instructions. CRA#VPDS creates

and primes the PDS RAM message VSAM.

54 IBM Rational Developer for System z: Host Configuration Guide

Chapter 6. (Optional) Activating IBM Software Configuration

and Library Manager (SCLM) Developer Toolkit

IBM Software Configuration and Library Manager (SCLM) (FMID: HSD3310)

Developer Toolkit provides the tools needed to extend the capabilities of SCLM to

the client. SCLM itself is a host based source code manager that is shipped as part

of ISPF.

The SCLM Developer Toolkit, which is shipped together with Developer for

System z, is an Eclipse based plug-in that interfaces to SCLM and provides for

access to all SCLM processes for legacy code development as well as support for

full Java and J2EE development on the workstation with synchronization to SCLM

on the mainframe including building, assembling and deployment of the J2EE code

from the mainframe.

Refer to Table 1 on page 1 for a list of manuals that provide more information on

SCLM Developers Toolkit and how to use it.

© Copyright IBM Corp. 2005, 2007 55

56 IBM Rational Developer for System z: Host Configuration Guide

Chapter 7. Developer for System z client considerations

Users of the Developer for System z client must know the result of certain host

customizations, like TCP/IP port numbers, for the client to work properly. Use the

checklist in Table 10 to gather the information needed.

 Table 10. Developer for System z client checklist

Customization Value

JES Job Monitor server port number (default 6715):

See SERV_PORT in “Customize FEJJCNFG, the JES Job Monitor

configuration file” on page 14.

Location of the ELAXF* procedures if they are not in a system procedure

library:

See note on JCLLIB in “Customize ELAXF*, remote build procedures” on

page 19.

Procedure and/or step names of the ELAXF* procedures if they were

changed:

See note on changing them in “Customize ELAXF*, remote build

procedures” on page 19.

DB2 stored procedure name (default ELAXMSAM):

See information on DB2 stored procedures in Appendix A, “Running

multiple instances of Developer for System z,” on page 65.

Location of the DB2 stored procedure if it is not in a system procedure

library:

See “(Optional) Customize ELAXM*, DB2 stored procedure members”

on page 24.

Use DAEMON, REXEC or SSH connection method for RSE:

See “INETD daemon and RSE REXEC/SSH setup” on page 38.

RSE daemon TCP/IP port number (default 4035):

See “INETD RSE daemon set up” on page 38.

Path to the server.zseries shell script for REXEC/SSH (default

/usr/lpp/wd4z/rse/lib, advised /etc/wd4z):

See “INETD REXEC (or SSH) set up” on page 40.

REXEC or SSH port number (default 512 or 22, respectively):

See “INETD REXEC (or SSH) set up” on page 40.

Note: Remote (host based) actions for z/OS UNIX subprojects require

that REXEC or SSH is active on the host.

Location of the CRA#ASLM JCL for CARMA SCLM RAM data set

allocations:

See note on CRA#ASLM in “Activating the SCLM RAM” on page 54.

© Copyright IBM Corp. 2005, 2007 57

58 IBM Rational Developer for System z: Host Configuration Guide

Chapter 8. Performance considerations

z/OS is a highly customizable operating system, and (sometimes small) system

changes can have a huge impact on the overall performance. This chapter

highlights some of the changes that can be made to improve the performance of

Developer for System z.

Refer to the MVS Initialization and Tuning Guide (SA22-7591) and UNIX System

Services Planning (GA22-7800) for more information on system tuning.

Avoid use of STEPLIB

Each z/OS UNIX process that has a STEPLIB that is propagated from parent to

child or across an exec will consume about 200 bytes of ECSA (Extended Common

Storage Area). If no STEPLIB environment variable is defined, or when it is defined

as STEPLIB=CURRENT, z/OS UNIX propagates all currently active TASKLIB, STEPLIB

and JOBLIB allocations during a fork(), spawn(), or exec() function. The RSE server

starts several processes, and each client connection has a private RSE server.

Because of this, the numbers can go up quickly.

Developer for System z has a default of STEPLIB=NONE coded in rsed.envvars, as

described in “Customize rsed.envvars, the configuration file for RSE” on page 31.

For the reasons mentioned above, it is advised not to change this directive and

place the targeted data sets in LINKLIST or LPA (Link Pack Area) instead.

If you do use the STEPLIB directive, you must verify the content of rsed.envvars to

see if your STEPLIB statement is the first one or not.

v If the last STEPLIB directive defined earlier in rsed.envvars equals

STEPLIB=NONE

STEPLIB=first.steplib.dataset:second.steplib.dataset

v If the last STEPLIB directive defined earlier in rsed.envvars does not equal

STEPLIB=NONE

STEPLIB=$STEPLIB:first.steplib.dataset:second.steplib.dataset

Improve access to system libraries

Certain system libraries and load modules are heavily used by z/OS UNIX and

application development activities. Improving access to these, like adding them to

the Link Pack Area (LPA) can improve your system performance. Refer to MVS

Initialization and Tuning Reference (SC28-1752) for more information on changing the

SYS1.PARMLIB members described below.

Language Environment (LE) runtime libraries

When C programs (including the z/OS UNIX shell) are run, they frequently use

routines from the Language Environment (LE) runtime library. On average, about 4

MB of the runtime library are loaded into memory for every address space running

a LE-enabled program, and copied on every fork.

The CEE.SCEELPA data set contains a subset of the LE runtime routines, which are

heavily used by z/OS UNIX. It is advised to add this data set to

SYS1.PARMLIB(LPALSTxx) for maximum performance gain. By doing so, the

modules are read from disk only once and are stored in a shared location.

© Copyright IBM Corp. 2005, 2007 59

Note: Add the following statement to SYS1.PARMLIB(PROGxx) if you prefer to add

the load modules into dynamic LPA (Link Pack Area):

LPA ADD MASK(*) DSNAME(CEE.SCEELPA)

It is also advised to place the LE runtime libraries CEE.SCEERUN and CEE.SCEERUN2

in LINKLIST, by adding the data sets to SYS1.PARMLIB(LNKLSTxx) or

SYS1.PARMLIB(PROGxx). This eliminates z/OS UNIX STEPLIB overhead and there is

reduced input/output due to management by LLA and VLF, or similar products.

Note: Add the C/C++ DLL class library CBC.SCLBDLL also to LINKLIST for the

same reasons.

If you decide not to put these libraries in LINKLIST, then you must set up the

appropriate STEPLIB statement in rsed.envvars, as described in “Customize

rsed.envvars, the configuration file for RSE” on page 31. Although this method

always uses additional virtual storage, you can improve performance by defining

the LE runtime libraries to LLA or a similar product. This reduces the I/O that is

needed to load the modules.

Application development

On systems where application development is the primary activity, performance

may also benefit if you put the linkage editor into dynamic LPA, by adding these

lines to SYS1.PARMLIB(PROGxx):

LPA ADD MODNAME(CEEBINIT,CEEBLIBM,CEEEV003,EDCZV) DSNAME(CEE.SCEERUN)

LPA ADD MODNAME(IEFIB600,IEFXB603) DSNAME(SYS1.LINKLIB)

For C/C++ development, you can also add the CBC.SCCNCMP compiler data set to

SYS1.PARMLIB(LPALSTxx).

The statements above are samples of possible LPA candidates, but the needs at

your site may vary. Refer to Language Environment Customization (SA22-7564) for

information on putting other LE load modules into dynamic LPA. Refer to UNIX

System Services Planning (GA22-7800) for more information on putting C/C++

compiler load modules into dynamic LPA.

Improving performance of security checking

To improve the performance of security checking done for z/OS UNIX, define the

BPX.SAFFASTPATH profile in the FACILITY class of your security software. This

reduces overhead when doing z/OS UNIX security checks for a wide variety of

operations. These include file access checking, IPC access checking, and process

ownership checking. Refer to UNIX System Services Planning (GA22-7800) for more

information on this profile.

Note: Users do not need to be permitted to the BPX.SAFFASTPATH profile.

Class sharing between JVMs

The IBM Java Virtual Machine (JVM) version 5 and higher allows you to share

bootstrap and application classes between JVMs by storing them in a cache in

shared memory. Class sharing reduces the overall virtual memory consumption

when more than one JVM shares a cache. Class sharing also reduces the startup

time for a JVM after the cache has been created.

60 IBM Rational Developer for System z: Host Configuration Guide

The shared class cache is independent of any active JVM and persists beyond the

lifetime of the JVM that created the cache. Because the shared class cache persists

beyond the lifetime of any JVM, the cache is updated dynamically to reflect any

modifications that might have been made to JARs or classes on the file system.

The overhead to create and populate a new cache is minimal. The JVM startup cost

in time for a single JVM is typically between 0 and 5% slower compared with a

system not using class sharing, depending on how many classes are loaded. JVM

startup time improvement with a populated cache is typically between 10% and

40% faster compared with a system not using class sharing, depending on the

operating system and the number of classes loaded. Multiple JVMs running

concurrently will show greater overall startup time benefits.

Refer to the SDK and Runtime Environment User Guide to learn more about class

sharing.

Enable class sharing

To enable class sharing for the RSE server, uncomment the following directive in

rsed.envvars, as described in “(Optional) Defining extra Java startup parameters

with _RSE_*OPTS” on page 36. The first statement defines a cache named RSE

with group access and it allows the RSE server to start even if class sharing fails.

The second statement is optional and it sets the cache size to 6 megabytes (system

default is 16 MB).

_RSE_CLASS_OPTS=-Xshareclasses:name=RSE,groupAccess,nonFatal

#_RSE_CLASS_OPTS="$_RSE_CLASS_OPTS -Xscmx6m

Note: As mentioned in “Cache security,” all users using the shared class must

have the same primary group ID (GID). This means that the users must

have the same default group defined in the security software, or that the

different default groups have the same GID in their OMVS segment.

Cache size limits

The maximum theoretical shared cache size is 2 GB. The size of cache you can

specify is limited by the amount of physical memory and swap space available to

the system. Because the virtual address space of a process is shared between the

shared class cache and the Java heap, increasing the maximum size of the Java

heap will reduce the size of the shared class cache you can create.

Cache security

Access to the shared class cache is limited by operating system permissions and

Java security permissions.

By default, class caches are created with user-level security, so only the user that

created the cache can access it. On z/OS UNIX, there is an option, groupAccess,

which gives access to all users in the primary group of the user that created the

cache. However, regardless of the access level used, a cache can only be destroyed

by the user that created it or by a root user (UID 0).

Refer to the SDK and Runtime Environment User Guide to learn more about extra

security options using a Java SecurityManager.

SYS1.PARMLIB(BPXPRMxx)

Some of the SYS1.PARMLIB(BPXPRMxx) settings affect shared classes performance.

Using the wrong settings can stop shared classes from working. These settings

Chapter 8. Performance considerations 61

might also have performance implications. For further information about

performance implications and use of these parameters, refer to the MVS

Initialization and Tuning Reference (SC28-1752) and UNIX System Services Planning

(GA22-7800). The most significant BPXPRMxx parameters that affect the operation of

shared classes are:

v MAXSHAREPAGES, IPCSHMSPAGES, IPCSHMMPAGES and IPCSHMNSEGS

These settings affect the amount of shared memory pages available to the JVM.

The shared page size for a 31-bit z/OS UNIX system service is fixed at 4 KB.

Shared classes try to create a 16 MB cache by default. Therefore set IPCSHMMPAGES

greater than 4096.

If you set a cache size using -Xscmx, the JVM will round up the value to the

nearest megabyte. You must take this into account when setting IPCSHMMPAGES on

your system.

v IPCSEMNIDS and IPCSEMNSEMS

These settings affect the amount of semaphores available to UNIX processes.

Shared classes use IPC semaphores to communicate between the JVMs.

Disk space

The shared class cache requires disk space to store identification information about

the caches that exist on the system. This information is stored in

/tmp/javasharedresources. If the identification information directory is deleted, the

JVM cannot identify the shared classes on the system and must recreate the cache.

Cache management utilities

The Java -Xshareclasses line command can take a number of options, some of

which are cache management utilities. Three of them are shown in the sample

below ($ is the z/OS UNIX prompt). Refer to the SDK and Runtime Environment

User Guide for a complete overview of supported command line options.

$ java -Xshareclasses:listAllCaches

Shared Cache OS shmid in use Last detach time

RSE 401412 0 Mon Jun 18 17:23:16 2007

Could not create the Java virtual machine.

$ java -Xshareclasses:name=RSE,printStats

Current statistics for cache "RSE":

base address = 0x0F300058

end address = 0x0F8FFFF8

allocation pointer = 0x0F4D2E28

cache size = 6291368

free bytes = 4355696

ROMClass bytes = 1912272

Metadata bytes = 23400

Metadata % used = 1%

ROMClasses = 475

Classpaths = 4

URLs = 0

Tokens = 0

Stale classes = 0

% Stale classes = 0%

Cache is 30% full

Could not create the Java virtual machine.

62 IBM Rational Developer for System z: Host Configuration Guide

$ java -Xshareclasses:name=RSE,destroy

JVMSHRC010I Shared Cache "RSE" is destroyed

Could not create the Java virtual machine.

Note: Cache utilities perform the required operation on the specified cache

without starting the JVM, so the “Could not create the Java virtual

machine.” message is normal.

Note: A cache can be destroyed only if all JVMs using it have shut down, and the

user has sufficient permissions.

Fixed Java heap size

With a fixed-size heap, no heap expansion or contraction occurs and this can lead

to significant performance gains in some situations. However, using a fixed-size

heap is usually not a good idea, because it delays the start of garbage collection

until the heap is full, at which point it will be a major task. It also increases the

risk of fragmentation, which requires a heap compaction. Therefore, use fixed-size

heaps only after proper testing or under the direction of the IBM support center.

Refer to the Diagnostics Guide (SC34-6358) for more information on heap sizes and

garbage collection.

By default, the initial heap size of a z/OS Java Virtual Machine (JVM) is 1

megabyte. The maximum size is 64 megabytes. The limits can be set with the -Xms

(initial) and -Xmx (maximum) Java command line options.

In Developer for System z, Java command line options are defined in the

_RSE_JAVAOPTS directive of rsed.envvars, as described in “(Optional) Defining extra

Java startup parameters with _RSE_*OPTS” on page 36.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Xms128m -Xmx128m"

Workload management

Each site has specific needs, and can customize the z/OS operating system to get

the most out of the available resources to meet those needs. With workload

management, you define performance goals and assign a business importance to

each goal. You define the goals for work in business terms, and the system decides

how much resource, such as CPU and storage, should be given to the work to

meet its goal.

Developer for System z performance can be balanced by setting the correct goals

for its processes. Some general guidelines are listed below.

v Assign the APPC transaction to a TSO performance group

v Assign the RSE server to a TSO performance group, or one just below it if you

have significant TSO usage

Refer to MVS Planning: Workload Management (SA22-7602) for more information on

this subject.

Chapter 8. Performance considerations 63

64 IBM Rational Developer for System z: Host Configuration Guide

Appendix A. Running multiple instances of Developer for

System z

There are times that you want multiple instances of Developer for System z active

on the same system, for example, when testing an upgrade. However, some

resources like TCP/IP ports cannot be shared, so the defaults are not always

applicable. Use the information in this appendix to plan the coexistence of the

different instances of Developer for System z, after which you can use this

configuration guide to customize them.

Although it is possible to share certain parts of Developer for System z between 2

(or more) instances, it is advised NOT to do so, unless their software levels are

identical and the only changes are in configuration members. Developer for System

z leaves enough customization room to make multiple instances that do not

overlap and we strongly advise you to use these features.

Identical software level, different configuration files

In a limited set of circumstances, you can share all but (some of) the customizable

parts. An example is providing non-SSL access for on-site usage, and SSL encoded

communication for off-site usage.

 Attention: The shared setup can NOT be used safely to test maintenance, a

technical preview or a new release.

To set up another instance of an active Developer for System z installation, redo

the customization steps for the parts that are different, using different data

sets/directories/ports to avoid overlapping the current setup.

In the SSL sample mentioned above, the current RSE server customizations can be

cloned, after which the cloned ssl.properties can be updated. The MVS

customizations (JES Job Monitor etc.) can be shared between the SSL and non-SSL

instances. This would result in the following actions:

1. Create a new directory to hold the SSL customized configuration members

2. Copy the active configuration members to this directory

3. Update the copied ssl.properties to provide the SSL related information

4. Define a new RSE daemon port number in /etc/services

5. Define a new RSE daemon process in /etc/inetd.conf, using the new directory

for the -d parameter

6. Restart INETD to activate the new RSE daemon

All other situations

When code changes are involved (maintenance, technical previews, new release),

or your changes are fairly complex, it is advised to do another installation of

Developer for System z. This section describes possible points of conflict between

the different installations.

The following list is a brief overview of items that must or are strongly advised to

be different between the instances of Developer for System z:

v Installation libraries

© Copyright IBM Corp. 2005, 2007 65

v JES Job Monitor TCP/IP port, and thus its configuration file FEJJCNFG

v JES Job Monitor startup JCL

v APPC transaction name

v RSE configuration file, rsed.envvars

v RSE daemon TCP/IP port

A more detailed overview is listed below.

v Installation libraries

1. Install each instance of Developer for System z in separate data sets and

directories. Keep in mind that you can only change the z/OS UNIX path by

prefixing the IBM supplied default of /usr/lpp/wd4z. A valid sample would

be /service/usr/lpp/wd4z.
v Mandatory parts

1. JES Job Monitor configuration file hlq.SFEKSAMP(FEJJCNFG) holds the TCP/IP

port number of JES Job Monitor and thus cannot be shared. The member

itself can be renamed (if the JCL is updated also), so you can place all

customized versions of this member in the same data set if you are not doing

the updates in the install data set.

2. JES Job Monitor startup JCL hlq.SFEKSAMP(FEJJJCL) refers to FEJJCNFG and

therefore cannot be shared either. After renaming the member (and the JOB

card) you can place all JCL’s in the same data set.

3. The APPC transaction has a reference to hlq.SFEKPROC(FEKFRSRV), the TSO

Commands server. This is software level specific, so you must create an

APPC transaction per instance.

4. The RSE configuration file /usr/lpp/wd4z/rse/lib/rsed.envvars holds

references to the install path and the APPC transaction name, which requires

it to be unique. The file name is mandatory, so you cannot keep the different

copies in the same directory. Keep in mind that, since the APPC transaction

name has changed, the _FEKFSCMD_TP_NAME_ variable must be defined in

rsed.envvars.

5. All mandatory configuration files and shell scripts that must reside in the

same directory as rsed.envvars cannot be shared, since rsed.envvars must be

in an unshared location.

6. The REXEC and SSH TCP/IP ports can be shared without any restrictions.

7. The RSE daemon cannot be shared since each RSE daemon owns its own

TCP/IP port. A new daemon, with a different service name and port, must

be created.
v Optional parts

1. Some ELAXF* procedures have a reference to hlq.SFEKLOAD, the Developer

for System z load library. See the note on JCLLIB in “Customize ELAXF*,

remote build procedures” on page 19 for a possible solution on making

different sets available to the users.

2. To activate two instances of the DB2 stored procedure, the following tasks

must be completed. Note however that this is a non-supported, as-is

description.

a. Copy hlq.SFEKPROC(ELAXMREX) to a differently named member, for

example, ELAXMRXX

b. Copy sample member hlq.SFEKSAMP(ELAXMSAM) to a differently named

member, for example, ELAXMWDZ

c. Change sample member hlq.SFEKSAMP(ELAXMJCL) to reflect these name

changes, for example:

66 IBM Rational Developer for System z: Host Configuration Guide

//SYSIN DD *

 CREATE PROCEDURE SYSPROC.ELAXMRXX

 (IN FUNCTION_REQUEST VARCHAR(20) CCSID EBCDIC

...

 , OUT RETURN_VALUE VARCHAR(255) CCSID EBCDIC)

 PARAMETER STYLE GENERAL RESULT SETS 1

 LANGUAGE REXX EXTERNAL NAME ELAXMRXX

 COLLID DSNREXCS WLM ENVIRONMENT ELAXMWDZ

 PROGRAM TYPE MAIN MODIFIES SQL DATA

 STAY RESIDENT NO COMMIT ON RETURN NO

 ASUTIME NO LIMIT SECURITY USER;

 COMMENT ON PROCEDURE SYSPROC.ELAXMRXX IS

 ’PLI & COBOL PROCEDURE PROCESSOR (ELAXMRXX), INTERFACE LEVEL 0.01’;

 GRANT EXECUTE ON PROCEDURE SYSPROC.ELAXMRXX TO PUBLIC;

//

d. Proceed with the customization as described in “(Optional) Customize

ELAXM*, DB2 stored procedure members” on page 24, but with the new

members.

e. The new WLM environment name (for example, ELAXMWDZ) must be used

in the DB2 stored procedure wizard on the client.
3. bidi relies on a load library member and thus cannot be shared across

releases. However, if the load module name is identical for all instances, you

can share the most recent version between the instances, even across releases.

Backward compatibility is not available if the load module changed name.

4. The ADM load modules are backwards compatible, and thus the most recent

version can be shared across releases.

5. The ADM CRD VSAM is backwards compatible, and thus the most recent

version can be shared across releases.

6. The ADM CICS resource definitions are backwards compatible, and thus the

most recent version can be shared across releases.

7. All optional configuration files and shell scripts that must reside in the same

directory as rsed.envvars cannot be shared, since rsed.envvars must be in

an unshared location.

8. In rsed.envvars you can activate sharing Java classes between multiple RSE

servers by updating the _RSE_JAVAOPTS directive. The sharing group must

have a unique name (-Xshareclasses:name=RSE).

9. CARMA VSAM’s could change between software levels, thus it is not

advised to share these.

Appendix A. Running multiple instances of Developer for System z 67

68 IBM Rational Developer for System z: Host Configuration Guide

Appendix B. Troubleshooting configuration problems

This appendix is provided to assist you with some common problems that you

may encounter during your configuration of Developer for System z.

More information is available through the Support section of the Developer for

System z website (http://www-306.ibm.com/software/awdtools/devzseries/
support/) where you can find technotes that bring you the latest information from

our support team.

In the Library section of the website you can also find the latest version of the

Developer for System z documentation, including whitepapers.

Valuable information can also be found in the z/OS internet library, available at

http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/

Location of log files

Developer for System z creates log files that can assist you and IBM support center

in identifying and solving problems. The following list is an overview of log files

that can be created. Next to these product specific logs, be sure to check the

SYSLOG for any related messages.

MVS based logs can be located through the appropriate DD statement. z/OS UNIX

based log files are located in the following directories:

v home/.eclipse/RSE/USERID/

Most log files are located in home/.eclipse/RSE/USERID/, where home is the home

path defined in the user’s OMVS segment (or the default OMVS segment if the

user does not have and OMVS segment) and USERID is the logon user ID

(uppercase).

– daemon.log - The log of the daemon

– fa.log - The log of the Fault Analyzer integration

– fekfivpc.log - The log of the fekfivpc IVP test

– ffs.log - The log of the FFS server, that executes native functions

– ffsget.log - The log of the file reader, that reads a sequential data set or a

PDS member

– ffsput.log - The log of the file writer, that writes a sequential data set or a

PDS member

– lock.log - The log of the lock manager, that locks/unlocks a sequential data

set or a PDS member

– rmt_class_loader.cache.jar - The cache of classes loaded by the RSE remote

class loader

– rsecomm.log - The log of the RSE server, that handles commands from the

client (may contain Java exception stack trace)

– stderr.log - The redirected data of stderr, standard error output

– stdout.log - The redirected data of stdout, standard output.
v /tmp/

/tmp/ holds log files created before the user ID has been verified.

– rsedaemon.log - The log of the daemon before login

© Copyright IBM Corp. 2005, 2007 69

JES Job Monitor logging

v SYSOUT DD

Logging of normal operations. The default value in the sample JCL

hlq.SFEKSAMP(FEJJJCL) is SYSOUT=*.

v SYSPRINT DD

Trace logging. The default value in the sample JCL hlq.SFEKSAMP(FEJJJCL) is

SYSOUT=*. Tracing is activated with the –TV parameter, see “Customize the JES

Job Monitor startup JCL” on page 16 for more details.

APPC transaction (TSO Commands service) logging

v SYSPRINT DD

When the APPC administration utility adds and modifies a transaction program

(TP) profile, it checks the TP profile and its JCL for syntax errors. Output from

this phase consists of TP profile syntax error messages, utility processing

messages, and JCL conversion statements. Logging for messages from this phase

is controlled by the SYSPRINT DD statement for the ATBSDFMU utility. The default

value in sample JCL hlq.SFEKSAMP(FEKAPPCC) is SYSOUT=*. See MVS Planning:

APPC/MVS Management (SA22-7599) for more details.

v &SYSUID.FEKFRSRV.&TPDATE.&TPTIME.LOG

When a TP executes, the TP runtime messages, such as allocation and

termination messages, go to a log named by the MESSAGE_DATA_SET keyword in

its TP profile. The default value in sample JCL hlq.SFEKSAMP(FEKAPPCC) is

&SYSUID.FEKFRSRV.&TPDATE.&TPTIME.LOG See MVS Planning: APPC/MVS

Management (SA22-7599) for more details.

Note: Depending on your APPC transaction definitions and site defaults, this

log file might not appear unless the KEEP_MESSAGE_LOG(ALWAYS) keyword

is added to the transaction definitions. Refer to MVS Planning: APPC/MVS

Management (SA22-7599) for more information on this.

RSE logging

v home/.eclipse/RSE/USERID/

There are several log files created by the components related to RSE, most of

them located in home/.eclipse/RSE/USERID/, where home is the home path

defined in the user’s OMVS segment (or the default OMVS segment if the user

does not have and OMVS segment) and USERID is the logon user ID (uppercase).

– daemon.log - The log of the daemon

– ffs.log - The log of the FFS server, that executes native MVS functions

– ffsget.log - The log of the file reader, that reads a sequential data set or a

PDS member

– ffsput.log - The log of the file writer, that writes a sequential data set or a

PDS member

– lock.log - The log of the lock manager, that locks/unlocks a sequential data

set or a PDS member

– rmt_class_loader.cache.jar - The cache of classes loaded by the RSE remote

class loader

– rsecomm.log - The log of the RSE server, that handles commands from the

client (may contain Java exception stack trace)

– stderr.log - The redirected data of stderr, standard error output.

– stdout.log - The redirected data of stdout, standard output.

70 IBM Rational Developer for System z: Host Configuration Guide

The amount of data written to ffs*.log, lock.log and rsecomm.log is controlled

by setting debug_level in rsecomm.properties. See “(Optional) Customize

rsecomm.properties, RSE trace configuration” on page 47 for more details.

v /tmp/rsedaemon.log

This file contains a log of the daemon before login.

fekfivpc IVP test logging

v home/.eclipse/RSE/USERID/fekfivpc.log

Output of the fekfivpc -file command (SCLM Developer Toolkit related IVP test),

where home is the home path defined in the user’s OMVS segment (or the

default OMVS segment if the user does not have and OMVS segment) and

USERID is the logon user ID (uppercase).

Refer to “TSO Commands service connection (using SCLMDT)” on page 44 for

more details.

Fault Analyzer Integration logging

v home/.eclipse/RSE/USERID/fa.log

Fault Analyzer integration logging, where home is the home path defined in the

user’s OMVS segment (or the default OMVS segment if the user does not have

and OMVS segment) and USERID is the logon user ID (uppercase).

File Manager Integration logging

v File Manager Integration server job

When opening a connection with File Manager, a server job will be started, with

the user’s user ID as owner. Its name is FEKport, where port is the TCP/IP port

used.

v SYSPRINT DD

The SYSPRINT of the server job holds the FMI server logging.

v home/.eclipse/RSE/USERID/rsecomm.log

Communication logging of FMI, where home is the home path defined in the

user’s OMVS segment (or the default OMVS segment if the user does not have

and OMVS segment) and USERID is the logon user ID (uppercase).

The amount of data written to this file is controlled by setting debug_level in

rsecomm.properties. See “(Optional) Customize rsecomm.properties, RSE trace

configuration” on page 47 for more details.

CARMA logging

v CARMA server job

When opening a connection with CARMA, hlq.SCRACLST(SCRASUBMT) will start a

server job (with the user's user ID as owner) named CRAport, where port is the

TCP/IP port used.

v CARMALOG DD

If DD statement CARMALOG is specified in hlq.SCRACLST(SCRASUBMT), CARMA

logging is redirected to this DD statement in the server job, otherwise it goes to

SYSPRINT.

The amount of logging is controlled by setting Trace Level on the client. See

Chapter 5, “(Optional) Activating IBM Common Access Repository Manager

(CARMA),” on page 51 for more details on setting Trace Level.

v SYSPRINT DD

Appendix B. Troubleshooting configuration problems 71

The SYSPRINT of the server job holds the CARMA logging, if DD statement

CARMALOG is not defined.

v home/.eclipse/RSE/USERID/rsecomm.log

Communication logging of CARMA, where home is the home path defined in the

user’s OMVS segment (or the default OMVS segment if the user does not have

and OMVS segment) and USERID is the logon user ID (uppercase).

The amount of data written to this file is controlled by setting debug_level in

rsecomm.properties. See “(Optional) Customize rsecomm.properties, RSE trace

configuration” on page 47 for more details.

Dump files

When a product abnormally terminates, a storage dump is created to assist in

problem determination. The availability and location of these dumps depends

heavily on site specific settings. So it could be that they are not created, or created

in different locations than mentioned below.

MVS dumps

When the program is running in MVS, check the system dump files and check

your JCL for the following DD statements (depending on the product):

v SYSABEND

v SYSMDUMP

v SYSUDUMP

v CEEDUMP

v SYSPRINT

v SYSOUT

Refer to the MVS JCL Reference (SA22-7597) and the Language Environment

Debugging Guide (GA22-7560) for more information on these DD statements.

Java dumps

In z/OS UNIX, Developer for System z dumps are controlled by the Java Virtual

Machine (JVM).

The JVM creates a set of dump agents by default during its initialization

(SYSTDUMP and JAVADUMP). You can override this set of dump agents using the

JAVA_DUMP_OPTS environment variable and further override the set by the use of

-Xdump on the command line. JVM command line options are defined in the

_RSE_JAVAOPTS directive of rsed.envvars. Do not change any of the dump settings

unless directed by the IBM support center.

Note: The -Xdump:what option on the command line can be used for determining

which dump agents exist at the completion of startup.

The types of dump that can be produced are:

SYSTDUMP

Java Transaction dump. An unformatted storage dump generated by z/OS.

 The dump is written to a sequential MVS data set, using a default name of

the form &userid.JVM.TDUMP.&jobname.D&date.T&time, or as determined by

the setting of the JAVA_DUMP_TDUMP_PATTERN environment variable. If you do

not want transaction dumps to be created, add environment variable

IBM_JAVA_ZOS_TDUMP=NO to rsed.envvars.

72 IBM Rational Developer for System z: Host Configuration Guide

CEEDUMP

Language Environment (LE) dump. A formatted summary system dump

that shows stack traces for each thread that is in the JVM process, together

with register information and a short dump of storage for each register.

 The dump is written to a z/OS UNIX file named

CEEDUMP.yyyymmdd.hhmmss.pid, where yyyymmdd equals the current date,

hhmmss the current time and pid the current process ID. The possible

locations of this file are described in “z/OS UNIX dump locations.”

HEAPDUMP

A formatted dump (a list) of the objects that are on the Java heap.

 The dump is written to a z/OS UNIX file named

HEAPDUMP.yyyymmdd.hhmmss.pid.TXT, where yyyymmdd equals the current

date, hhmmss the current time and pid the current process ID. The possible

locations of this file are described in “z/OS UNIX dump locations.”

JAVADUMP

A formatted analysis of the JVM. It contains diagnostic information related

to the JVM and the Java application, like the application environment,

threads, native stack, locks, and memory.

 The dump is written to a z/OS UNIX file named

JAVADUMP.yyyymmdd.hhmmss.pid.TXT, where yyyymmdd equals the current

date, hhmmss the current time and pid the current process ID. The possible

locations of this file are described in “z/OS UNIX dump locations.”

Refer to the Java Diagnostic Guide (SC34-6358) for more information on JVM dumps,

and the Language Environment Debugging Guide (GA22-7560) for LE specific

information

z/OS UNIX dump locations

The JVM checks each of the following locations for existence and write-permission,

and stores the CEEDUMP, HEAPDUMP and JAVADUMP files in the first one

available. Note that you must have enough free disk space for the dump file to be

written correctly.

1. The directory in environment variable _CEE_DMPTARG, if found. This variable is

set in rsed.envvars as home/.eclipse/RSE/USERID, where home is the home path

defined in the user’s OMVS segment (or the default OMVS segment if the user

does not have and OMVS segment) and USERID is the logon user ID

(uppercase).

2. The current working directory, if the directory is not the root directory (/), and

the directory is writable.

3. The directory in environment variable TMPDIR (an environment variable that

indicates the location of a temporary directory if it is not /tmp), if found.

4. The /tmp directory.

5. If the dump cannot be stored in any of the above, it is put to stderr.

Program Control authorization for RSE programs

Remote Systems Explorer (RSE) is the Developer for System z component that

provides core services like connecting the client to the host. It must run program

controlled in order to perform tasks like switching to the user ID of the client.

The program control bit is set during SMP/E install where needed.

Appendix B. Troubleshooting configuration problems 73

This result can be verified with the ls -lE fekf* command, which gives an output

like the following sample ($ is the z/OS UNIX prompt):

$ ls -lE /usr/lpp/wd4z/rse/lib/fekf*

-rwxr-xr-x -ps- 2 user group 94208 Jun 12 16:21 /usr/lpp/wd4z/rse/lib/fekfdir.dll

-rwxr-xr-x -ps- 2 user group 143360 Jun 12 16:21 /usr/lpp/wd4z/rse/lib/fekfdivp

-rwxr-xr-x --s- 2 user group 480 Jun 12 16:21 /usr/lpp/wd4z/rse/lib/fekfivpa

-rwxr-xr-x --s- 2 user group 342 Jun 12 16:21 /usr/lpp/wd4z/rse/lib/fekfivpc

-rwxr-xr-x --s- 2 user group 445 Jun 12 16:21 /usr/lpp/wd4z/rse/lib/fekfivpd

-rwxr-xr-x --s- 2 user group 1491 Jun 12 16:21 /usr/lpp/wd4z/rse/lib/fekfivpj

-rwxr-xr-x --s- 2 user group 883 Jun 12 16:21 /usr/lpp/wd4z/rse/lib/fekfivpr

-rwxr-xr-x --s- 2 user group 307 Jun 12 16:21 /usr/lpp/wd4z/rse/lib/fekfivps

-rwxr-xr-x -ps- 2 user group 139264 Jun 12 16:21 /usr/lpp/wd4z/rse/lib/fekflock

-rwxr-xr-x -ps- 2 user group 196608 Jun 12 16:21 /usr/lpp/wd4z/rse/lib/fekfrsed

-rwxr-xr-x --s- 2 user group 42443 Jun 12 16:21 /usr/lpp/wd4z/rse/lib/fekfscmd

Note: fekfivp* and fekfscmd do not require the +p attribute.

Issue the following commands if the program control bit needs to be set manually,

assuming that the default install directory (/usr/lpp/wd4z/rse/lib/) is used:

1. cd /usr/lpp/wd4z/rse/lib

2. extattr +p fekfdir.dll fekfivp fekflock fekfrsed

Note: To be able to use the extattr +p command, you must have at least READ

access to the BPX.FILEATTR.PROGCTL profile in the FACILITY class of your

security software. For more information, see UNIX System Services Planning

(GA22-7800).

Reserved TCP/IP ports

With the NETSTAT command (TSO or z/OS UNIX) you can get an overview of

the ports currently in use. The output of this command will look similar to the

example below. The ports used are the last number (behind the ‘..’) in the "Local

Socket" column. Since these ports are already in use, they cannot be used for the

Developer for System z configuration.

MVS TCP/IP NETSTAT CS V1R7 TCPIP Name: TCPIP 16:36:42

User Id Conn Local Socket Foreign Socket State

------- ---- ------------ -------------- -----

BPXOINIT 00000014 0.0.0.0..10007 0.0.0.0..0 Listen

INETD4 0000004D 0.0.0.0..512 0.0.0.0..0 Listen

INETD4 0000004B 0.0.0.0..4035 0.0.0.0..0 Listen

JMON 00000038 0.0.0.0..6715 0.0.0.0..0 Listen

Another limitation that can exist is reserved TCP/IP ports. There are 2 common

places to reserve TCP/IP ports:

v PROFILE.TCPIP

This is the data set referred to by the PROFILE DD statement of the TCP/IP

started task, often named SYS1.TCPPARMS(TCPPROF)

– PORT: Reserves a port for specified job names.

– PORTRANGE: Reserves a range of ports for specified job names.

Refer to Communications Server: IP Configuration Guide (SC31-8775) for more

information on these statements.

v SYS1.PARMLIB(BPXPRMxx)

– INADDRANYPORT: Specifies the starting port number for the range of port

numbers that the system reserves for use with PORT 0, INADDR_ANY binds.

This value is only needed for CINET.

74 IBM Rational Developer for System z: Host Configuration Guide

– INADDRANYCOUNT: Specifies the number of ports that the system reserves,

starting with the port number specified in the INADDRANYPORT parameter.

This value is only needed for CINET.

Refer to UNIX System Services Planning (GA22-7800) and MVS Initialization and

Tuning Reference (SA22-7592) for more information on these statements.

These reserved ports can be listed with the NETSTAT PORTL command (TSO or

z/OS UNIX), which creates an output like in the example below:

MVS TCP/IP NETSTAT CS V1R7 TCPIP Name: TCPIP 17:08:32

Port# Prot User Flags Range IP Address

----- ---- ---- ----- ----- ----------

00007 TCP MISCSERV DA

00009 TCP MISCSERV DA

00019 TCP MISCSERV DA

00020 TCP OMVS D

00021 TCP FTPD1 DA

00025 TCP SMTP DA

00053 TCP NAMESRV DA

00080 TCP OMVS DA

03500 TCP OMVS DAR 03500-03519

03501 TCP OMVS DAR 03500-03519

Refer to Communications Server: IP System Administrator’s Commands (SC31-8781) for

more information on the NETSTAT command.

Note: The NETSTAT command only shows the information defined in

PROFILE.TCPIP, which should overlap the BPXPRMxx definitions. In case of

doubt or problems, check the BPXPRMxx parmlib member to verify the ports

being reserved here.

Note: Read “PROFILE.TCPIP port definitions” on page 91 if you have problems

with INETD binding to reserved ports.

Address Space size

The RSE server, which is a Java UNIX process, requires a large region size to

perform its functions. Therefore it is important to set large storage limits for OMVS

address spaces.

INETD requirements

An RSE server is started by INETD when a client connects to the RSE daemon port

or when the client issues the startup script using REXEC/SSH. This is done using

INETD's storage limits, so these must be set large enough.

v If the UNIX server process INETD is started by JCL using BPXBATCH, the region

size must be 0.

v If INETD is started from a TSO/OMVS session, the TSO region size must be

2096128 or larger.

Limitations set in SYS1.PARMLIB(BPXPRMxx)

Set MAXASSIZE in SYS1.PARMLIB(BPXPRMxx), which defines the default OMVS

address space (process) region size, to 2147483647 or larger.

This value can be checked and set dynamically (until the next IPL) with the

following console commands, as described in MVS System Commands (GC28-1781):

1. DISPLAY OMVS,O

Appendix B. Troubleshooting configuration problems 75

2. SETOMVS MAXASSIZE=2147483647

Limitations stored in the security profile

Check ASSIZEMAX in the client’s user ID OMVS segment, and set it to 2147483647 or,

preferably, to NONE to use the SYS1.PARMLIB(BPXPRMxx) value.

Using RACF, this value can be checked and set with the following TSO commands,

as described in Security Server RACF Command Language Reference (SA22-7687):

1. LISTUSER userid NORACF OMVS

2. ALTUSER userid OMVS(NOASSIZEMAX)

Limitations enforced by system exits

Make sure you’re not allowing system exits IEFUSI or IEALIMIT to control OMVS

address space region sizes. A possible way to accomplish this is by coding

SUBSYS(OMVS,NOEXITS) in SYS1.PARMLIB(SMFPRMxx).

SYS1.PARMLIB(SMFPRMxx) values can be checked and activated with the following

console commands, as described in MVS System Commands (GC28-1781):

1. DISPLAY SMF,O

2. SET SMF=xx

Error feedback tracing

The following procedure allows gathering of information needed to diagnosis error

feedback problems with remote build procedures. This tracing will cause

performance degradation and should only be done under the direction of the IBM

support center. All references to hlq in this section refer to the high level qualifier

used during installation of Developer for System z. The installation default is FEK,

but this might not apply to your site.

1. Make a backup copy of your active ELAXFCOC compile procedure. This

procedure is default shipped in data set hlq.SFEKSAMP, but could have been

copied to a different location, like SYS1.PROCLIB, as described in “Customize

ELAXF*, remote build procedures” on page 19.

2. Change the active ELAXFCOC procedure to include the ’MAXTRACE’ string on the

EXIT(ADEXIT(ELAXMGUX)) compile option.

//COBOL EXEC PGM=IGYCRCTL,REGION=2048K,

//* PARM=(’EXIT(ADEXIT(ELAXMGUX))’,

// PARM=(’EXIT(ADEXIT(’’MAXTRACE’’,ELAXMGUX))’,

// ’ADATA’,

// ’LIB’,

// ’TEST(NONE,SYM,SEP)’,

// ’LIST’,

// ’FLAG(I,I)’&CICS &DB2 &COMP)

Note: You have to double the apostrophes around MAXTRACE. The option is

now: EXIT(ADEXIT(’’MAXTRACE’’,ELAXMGUX))

3. Perform a Remote Syntax Check on a COBOL program. Developer for System z

ships a sample COBOL program in hlq.SFEKSAMP(ADNTMSGH).

4. The SYSOUT part of the JES output will start by listing the names of the data sets

for SIDEFILE1, SIDEFILE2, SIDEFILE3 and SIDEFILE4.

ABOUT TOO OPEN SIDEFILE1 - NAME = ’uid.DT021207.TT110823.M0000045.C0000000’

SUCCESSFUL OPEN SIDEFILE1 - NAME = ’uid.DT021207.TT110823.M0000045.C0000000’

ABOUT TOO OPEN SIDEFILE2 - NAME = ’uid.DT021207.TT110823.M0000111.C0000001’

76 IBM Rational Developer for System z: Host Configuration Guide

SUCCESSFUL OPEN SIDEFILE2 - NAME = ’uid.DT021207.TT110823.M0000111.C0000001’

ABOUT TOO OPEN SIDEFILE3 - NAME = ’uid.DT021207.TT110823.M0000174.C0000002’

SUCCESSFUL OPEN SIDEFILE3 - NAME = ’uid.DT021207.TT110823.M0000174.C0000002’

ABOUT TOO OPEN SIDEFILE4 - NAME = ’uid.DT021207.TT110823.M0000236.C0000003’

SUCCESSFUL OPEN SIDEFILE4 - NAME = ’uid.DT021207.TT110823.M0000236.C0000003’

Note: Depending on your settings, SIDEFILE1 and SIDEFILE2 may be pointing

to a DD statement (SUCCESSFUL OPEN SIDEFILE1 - NAME = DD:WSEDSF1).

Refer to the JESJCL part of the output (which is located before the SYSOUT

part) to get the actual data set name.
22 //COBOL.WSEDSF1 DD DISP=MOD,

 // DSN=uid.ERRCOB.member.SF1.Z682746.XML

23 //COBOL.WSEDSF2 DD DISP=MOD,

 // DSN=uid.ERRCOB.member.SF1.Z682747.XML

5. Copy these four data sets to your PC, for example by creating a local COBOL

project in Developer for System z and adding the SIDEFILE1->4 data sets.

6. Copy the complete JES job log to your PC, for example by opening the job

output in Developer for System z and saving it to the local project by selecting

File > Save As

7. Restore procedure ELAXFCOC to the original state, either by undoing the change

(remove the ’’MAXTRACE’’, string in the compile options) or restoring the backup.

8. Send the collected files (SIDEFILE1->4 and job log) to the IBM support center.

APPC transaction and TSO Commands service

If you cannot use the APPC version of the TSO Commands service, there are two

areas where problems may arise: starting the APPC server transaction and

connecting to RSE.

v If you do not see the messages about setting up APPC, check the system log for

RACF messages (message id ICHxxxxx) or other messages related to the

command that was issued or the user ID that issued it. Common causes of

problems include:

– You do not have read authority to the hlq.SFEKPROC data set.

– TCP/IP is not active, has a wrong DNS name attached or the system is

unreachable (not pingable) due to network problems, a bad IP address or

other causes.
v If you see the messages about setting up APPC but do not see the message

confirming that setup succeeded, the APPC server transaction was probably

unable to start. Check the transaction error log (userid.FEKFRSRV.&TPDATE.
&TPTIME.LOG). Some of the likely causes of problems are:

– The TCP/IP stack is not using the default name of TCPIP and the SYSTCPD

DD card has not been set or is pointing to the wrong data set.

– The server was unable to allocate SYSPROC or SYSTSPRT.

– The JCL points to the wrong SYSPROC (SYSPROC must include

hlq.SFEKPROC).

– The server could not open or access the message (log) data set referred to by

MESSAGE_DATA_SET.

– There are not enough APPC scheduler initiators available.

– APPC or ASCH address spaces are not active.

– The class used (default named ″A″) is not defined to the APPC scheduler

ASCH.

– There is no default OMVS segment for the system, and the user does not

have a personal OMVS segment, or there is a definition error in either.

Appendix B. Troubleshooting configuration problems 77

– The default group of the default OMVS segment or the default group of the

user does not have a GID number.

The REXX provided in “(Optional) Define an APPC transaction for the TSO

Commands service” on page 21 can help with solving APPC problems since it

gives you the possibility to manage APPC interactively through ISPF panels. Be

aware however that you can deactivate the transaction with this tool; the

transaction is still there but won’t accept any connections.

The following list is a selection of technotes currently available on the support

website (http://www-306.ibm.com/software/awdtools/devzseries/support/). Please

refer to the support website for additional information:

v APPC verification fails with Return code 2016 - EHOSTNOTFOUND

v APPC verification fails with Return code 1004 - EIBMIUCVERR

v APPC verification fails with Return code 9 - TP Name not recognized

v APPC verification fails with Return code 10 - TP not avail no retry

v APPC verification fails with Return code 19 - Parameter Error

v APPC verification fails with Return code 20 - Product specific error

v APPC verification fails with Return code 26 - Resource failure

v CEE3501S: The module IOSTREAM was not found

v Server Failed to Start: EDC5129I No such file or directory

v exec/tcp: bind: EDC5111I Permission denied, rsn=744C7246

v No response from server, with either one of these messages

– IEA995I SYMPTOM DUMP OUTPUT 473 USER COMPLETION CODE=4093

REASON CODE=0000001C (in SDSF LOG)

– CEE3512S An HFS load of module libicudata32.0.dll failed. The system return

code was 0000000157; the reason code was 0BDF019B. (in CEEDUMP)

– Get Space failed (in client .log)
v Command C_CONNECT is not available

v “FFS server initialization failed” error message when connecting to the host

v “EDC5139I Operation not permitted” when connecting to the host

v ″RSEG1056U FFS server initialization failed″ when opening an MVS file

Note: This list is not definitive, please check the support website for additional

technotes.

Miscellaneous information

System limits

SYS1.PARMLIB(BPXPRMxx) defines many z/OS UNIX related limitations, which

might be reached when several Developer for System z clients are active. Most

BPXPRMxx values can be changed dynamically with the SETOMVS and SET OMVS

console commands.

Connection refused

Each RSE connection starts several processes which are permanently active. New

connections can be refused due to the limit set in SYS1.PARMLIB(BPXPRMxx) on the

amount of processes, especially when users share the same UID (like when using

the default OMVS segment).

78 IBM Rational Developer for System z: Host Configuration Guide

v The limit per UID is set by the MAXPROCUSER keyword and has a default value of

25.

v The system-wide limit is set by the MAXPROCSYS keyword and has a default value

of 200.

Another source of refused connections is the limit on the amount of active z/OS

address spaces and z/OS UNIX users.

v The maximum amount of Address Space ID’s (ASID) is defined in

SYS1.PARMLIB(IEASYSxx) with the MAXUSER keyword, and has a default value of

255.

v The maximum amount of z/OS UNIX user IDs (UID) is defined in

SYS1.PARMLIB(BPXPRMxx) with the MAXUIDS keyword, and has a default value of

200.

Known Issues

Opening MVS data sets fails

Reading and writing a MVS data set requires the use of a socket physical file

system domain. If the file system is not properly defined or it has not enough

sockets, the lock manager (FFS) might fail read/write requests. The ffs*.log files

will show messages like the following:

v Error 127 getting socket pair - setting port to 0.

v Unable to create socket in the UNIX domain. Error is: ″The address family is

not supported″

Verify that the SYS1.PARMLIB(BPXPRMxx) member contains the following statements:

FILESYSTYPE TYPE(UDS) ENTRYPOINT(BPXTUINT)

NETWORK DOMAINNAME(AF_UNIX)

 DOMAINNUMBER(1)

 MAXSOCKETS(200)

 TYPE(UDS)

DVIPA binds fail

When using dynamic VIPA (Virtual IP address) across multiple TCPIP stacks,

sysplex-wide coordination of assignment of ephemeral ports is required so that the

4-tuple (combination of source and destination IP addresses and ports) for each

connection remains unique. This can be done by adding the optional SYSPLEXPORTS

parameter to the first VIPADISTRIBUTE statement, as described in the IP

Configuration Guide (SC31-8775).

When you use this technique, ensure that the EZBEPORT coupling facility structure

(containing sysplex port assignment information) has been defined. Refer to the

SNA Network Implementation Guide (SC31-8777) for information on how to do this.

Host Connect Emulator

v Host Connect Emulator uses TN3270 telnet and not the RSE server to connect to

the host.

v When using secure telnet (SSL) and you are working with certificates that are

not signed by a well-known CA, every client must add the CA certificate to their

Host Connect Emulator list of trusted CA’s.

v The NOSNAEXT option of TCP/IP’s TELNETPARMS might be necessary to disable the

SNA functional extensions. If NOSNAEXT is specified, the TN3270 telnet server

does not negotiate for contention resolution and SNA sense functions.

Appendix B. Troubleshooting configuration problems 79

Contacting IBM support

If you are still experiencing difficulty after reading this manual and checking the

support website (http://www-306.ibm.com/software/awdtools/devzseries/
support/), and assistance is required from IBM support, please gather the

following information and open a problem record with IBM:

v Your current software level, which is documented in:

– hlq.SFEKJCL(FEK#LVL#) for Developer for System z. The default value for hlq

is FEK.

– hlq.SCRAJCL(CRA#LVL#) for CARMA. The default value for hlq is CRA.

The following information is useful for solving connection problems

v The output of the following console command(s):

– D OMVS,O

v The output of the following TSO command(s):

– HOMETEST

– LISTUSER userid NORACF OMVS

– LISTGROUP group NORACF OMVS

v File rsed.envvars, default located in /usr/lpp/wd4z/rse/lib/, but advised to be

customized in /etc/wd4z/

v File /etc/inetd.conf

v All *.log files located in home/.eclipse/RSE/USERID/, where home is the home

path defined in the user’s OMVS segment (or the default OMVS segment if the

user does not have an OMVS segment) and USERID is the logon user ID

(uppercase).

v Related SYSLOG messages

v Complete output of the related IVP test(s), as described in “Verify RSE server set

up” on page 41.

– netstat : “Port availability” on page 42

– fekfivps : “REXEC/SSH shell script” on page 43

– fekfivpr : “REXEC connection” on page 42

– fekfivpd : “RSE daemon connection” on page 44.

– fekfivpj : “JES Job Monitor connection” on page 44.

– fekfivpc : “TSO Commands service connection (using SCLMDT)” on page 44

– fekfivpa : “TSO Commands service connection (using APPC)” on page 45

If you use SCLM Developer Toolkit for the TSO Commands service (default

method)

v Complete output of the SCLMDT IVP test (fekfivpc), as described in “TSO

Commands service connection (using SCLMDT)” on page 44

v File /etc/SCLMDT/CONFIG/ISPF.conf

If you use APPC for the TSO Commands service

v Complete output of the APPC IVP test (fekfivpa), as described in “TSO

Commands service connection (using APPC)” on page 45

v The JCL that defines the APPC server transaction, which is

hlq.SFEKSAMP(FEKAPPCC) if you used the sample job

v Member SYS1.PARMLIB(APPCPMxx)

v Member SYS1.PARMLIB(ASCHPMxx)

80 IBM Rational Developer for System z: Host Configuration Guide

v Data set userid.FEKFSERV.&TPDATE.&TPTIME.LOG

v The output of the following console commands:

– D APPC,TP,ALL

– D APPC,LU,ALL

– D ASCH,ALL

Provide all information that seams relevant for functional problems, like

v Job logging

v Related SYSLOG messages

v Log files located in home/.eclipse/RSE/USERID/, where home is the home path

defined in the user’s OMVS segment (or the default OMVS segment if the user

does not have and OMVS segment) and USERID is the logon user ID (uppercase).

Appendix B. Troubleshooting configuration problems 81

82 IBM Rational Developer for System z: Host Configuration Guide

Appendix C. Setting up TCP/IP

This appendix is provided to assist you with some common problems that you

may encounter when setting up TCP/IP, or during checking and/or modifying an

existing setup.

Refer to Communications Server: IP Configuration Guide (SC31-8775) and

Communications Server: IP Configuration Reference (SC31-8776) for additional

information on TCP/IP configuration.

Hostname dependency

Developer for System z is dependant upon TCP/IP having the correct hostname

when it is initialized. This implies that the different TCP/IP and Resolver

configuration files must be set up correctly.

You can test your TCP/IP configuration with the TSO command HOMETEST.

Refer to Communications Server: IP System Administrator’s Commands (SC31-8781) for

more information on the HOMETEST command.

Example output of the HOMETEST command:

Running IBM MVS TCP/IP CS V1R7 TCP/IP Configuration Tester

The FTP configuration parameter file used will be "SYS1.TCPPARMS(FTPDATA)"

TCP Host Name is: CDFMVS08

Using Name Server to Resolve CDFMVS08

The following IP addresses correspond to TCP Host Name: CDFMVS08

9.42.112.75

The following IP addresses are the HOME IP addresses defined in PROFILE.TCPIP:

9.42.112.75

127.0.0.1

All IP addresses for CDFMVS08 are in the HOME list!

Hometest was successful – all Tests Passed!

Understanding resolvers

The resolver acts on behalf of programs as a client that accesses name servers for

name-to-address or address-to-name resolution. To resolve the query for the

requesting program, the resolver can access available name servers, use local

definitions (for example, /etc/resolv.conf, /etc/hosts, /etc/ipnodes,

HOSTS.SITEINFO, HOSTS.ADDRINFO or ETC.IPNODES), or use a combination of both.

When the resolver address space starts, it reads an optional resolver setup data set

pointed to by the SETUP DD card in the resolver JCL procedure. If the setup

information is not provided, the resolver uses the applicable native MVS or z/OS

UNIX search order without any GLOBALTCPIPDATA, DEFAULTTCPIPDATA,

GLOBALIPNODES, DEFAULTIPNODES or COMMONSEARCH information.

© Copyright IBM Corp. 2005, 2007 83

Understanding search orders of configuration information

It is important to understand the search order for configuration files used by

TCP/IP functions, and when you can override the default search order with

environment variables, JCL, or other variables you provide. This knowledge allows

you to accommodate your local data set and HFS file naming standards, and it is

helpful to know the configuration data set or HFS file in use when diagnosing

problems.

Another important point to note is that when a search order is applied for any

configuration file, the search ends with the first file found. Therefore, unexpected

results are possible if you place configuration information in a file that never gets

found, either because other files exist earlier in the search order, or because the file

is not included in the search order chosen by the application.

When searching for configuration files, you can explicitly tell TCP/IP where most

configuration files are by using DD statements in the JCL procedures or by setting

environment variables. Otherwise, you can let TCP/IP dynamically determine the

location of the configuration files, based on search orders documented in

Communications Server: IP Configuration Guide (SC31-8775).

The TCP/IP stack’s configuration component uses TCPIP.DATA during TCP/IP

stack initialization to determine the stack’s HOSTNAME. To get its value, the z/OS

UNIX environment search order is used.

Note: Use the trace resolver facility to determine what TCPIP.DATA values are

being used by the resolver and where they were read from. For information

on dynamically starting the trace, refer to Communications Server: IP

Diagnosis Guide (GC31-8782). Once the trace is active, issue a TSO NETSTAT

HOME command and a z/OS UNIX shell netstat –h command to display

the values. Issuing a PING of a host name from TSO and from the z/OS

UNIX shell also shows activity to any DNS servers that might be configured.

Search orders used in the z/OS UNIX environment

The particular file or table that is searched for can be either an MVS data set or an

HFS file, depending on the resolver configuration settings and the presence of

given files on the system.

Base resolver configuration files:

The base resolver configuration file contains TCPIP.DATA statements. In addition to

resolver directives, it is referenced to determine, among other things, the data set

prefix (DATASETPREFIX statement’s value) to be used when trying to access some of

the configuration files specified in this section.

The search order used to access the base resolver configuration file is as follows:

1. GLOBALTCPIPDATA

If defined, the resolver GLOBALTCPIPDATA setup statement value is used (see also

“Understanding resolvers” on page 83). The search continues for an additional

configuration file. The search ends with the next file found.

2. The value of the environment variable RESOLVER_CONFIG

The value of the environment variable is used. This search will fail if the file

does not exist or is allocated exclusively elsewhere.

3. /etc/resolv.conf

84 IBM Rational Developer for System z: Host Configuration Guide

4. //SYSTCPD DD card

The data set allocated to the DD name SYSTCPD is used. In the z/OS UNIX

environment, a child process does not have access to the SYSTCPD DD. This is

because the SYSTCPD allocation is not inherited from the parent process over

the fork() or exec function calls.

5. userid.TCPIP.DATA

userid is the user ID that is associated with the current security environment

(address space or task/thread).

6. jobname.TCPIP.DATA

jobname is the name specified on the JOB JCL statement for batch jobs or the

procedure name for a started procedure.

7. SYS1.TCPPARMS(TCPDATA)

8. DEFAULTTCPIPDATA

If defined, the resolver DEFAULTTCPIPDATA setup statement value is used (see

also “Understanding resolvers” on page 83).

9. TCPIP.TCPIP.DATA

Translate tables:

The translate tables (EBCDIC-to-ASCII and ASCII-to-EBCDIC) are referenced to

determine the translate data sets to be used. The search order used to access this

configuration file is as follows. The search order ends at the first file found:

1. The value of the environment variable X_XLATE The value of the environment

variable is the name of the translate table produced by the TSO CONVXLAT

command.

2. userid.STANDARD.TCPXLBIN

userid is the user ID that is associated with the current security environment

(address space or task/thread).

3. jobname.STANDARD.TCPXLBIN

jobname is the name specified on the JOB JCL statement for batch jobs or the

procedure name for a started procedure.

4. hlq.STANDARD.TCPXLBIN

hlq represents the value of the DATASETPREFIX statement specified in the base

resolver configuration file (if found); otherwise, hlq is TCPIP by default.

5. If no table is found, the resolver uses a hard coded default table, identical to

the table listed in data set member SEZATCPX(STANDARD).

Local host tables:

By default, resolver first attempts to use any configured domain name servers for

resolution requests. If the resolution request cannot be satisfied, local host tables

are used. Resolver behavior is controlled by TCPIP.DATA statements.

The TCPIP.DATA resolver statements define if and how domain name servers are to

be used. The LOOKUP TCPIP.DATA statement can also be used to control how domain

name servers and local host tables are used. For more information on TCPIP.DATA

statements, refer to Communications Server: IP Configuration Reference (SC31-8776).

The resolver uses the Ipv4-unique search order for sitename information

unconditionally for getnetbyname API calls. The Ipv4-unique search order for

sitename information is as follows. The search ends at the first file found:

1. The value of the environment variable X_SITE

Appendix C. Setting up TCP/IP 85

The value of the environment variable is the name of the HOSTS.SITEINFO

information file created by the TSO MAKESITE command.

2. The value of the environment variable X_ADDR

The value of the environment variable is the name of the HOSTS.ADDRINFO

information file created by the TSO MAKESITE command.

3. /etc/hosts

4. userid.HOSTS.SITEINFO

userid is the user ID that is associated with the current security environment

(address space or task/thread).

5. jobname.HOSTS.SITEINFO

jobname is the name specified on the JOB JCL statement for batch jobs or the

procedure name for a started procedure.

6. hlq.HOSTS.SITEINFO

hlq represents the value of the DATASETPREFIX statement specified in the base

resolver configuration file (if found); otherwise, hlq is TCPIP by default.

Applying this to Developer for System z

As stated before, Developer for System z is dependant upon TCP/IP having the

correct hostname when it is initialized. This implies that the different TCP/IP and

Resolver configuration files must be set up correctly.

In the example below we will focus on some configuration tasks for TCP/IP and

Resolver. Note that this does not cover a complete set up of TCP/IP or Resolver, it

just highlights some key aspects that might be applicable to your site.

1. In the JCL below we see that TCP/IP will use SYS1.TCPPARMS(TCPDATA) to

determine the stack’s hostname.

//TCPIP PROC PARMS=’CTRACE(CTIEZB00)’,PROF=TCPPROF,DATA=TCPDATA

//*

//* TCP/IP NETWORK

//*

//TCPIP EXEC PGM=EZBTCPIP,REGION=0M,TIME=1440,PARM=&PARMS

//PROFILE DD DISP=SHR,DSN=SYS1.TCPPARMS(&PROF)

//SYSTCPD DD DISP=SHR,DSN=SYS1.TCPPARMS(&DATA)

//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)

//ALGPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)

//CFGPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)

//SYSOUT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)

//CEEDUMP DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)

//SYSERROR DD SYSOUT=*

2. SYS1.TCPPARMS(TCPDATA) tells us that we want the system name to be the

hostname and that we don’t use a domain name server (DNS); all names will

be resolved via site table lookup.

; HOSTNAME specifies the TCP host name of this system. If not

; specified, the default HOSTNAME will be the node name specified

; in the IEFSSNxx PARMLIB member.

;

; HOSTNAME

;

; DOMAINORIGIN specifies the domain origin that will be appended

; to host names passed to the resolver. If a host name contains

; any dots, then the DOMAINORIGIN will not be appended to the

; host name.

;

DOMAINORIGIN RALEIGH.IBM.COM

;

; NSINTERADDR specifies the IP address of the name server.

86 IBM Rational Developer for System z: Host Configuration Guide

; LOOPBACK (14.0.0.0) specifies your local name server. If a name

; server will not be used, then do not code an NSINTERADDR statement.

; (Comment out the NSINTERADDR line below). This will cause all names

; to be resolved via site table lookup.

;

; NSINTERADDR 14.0.0.0

;

; TRACE RESOLVER will cause a complete trace of all queries to and

; responses from the name server or site tables to be written to

; the user’s console. This command is for debugging purposes only.

;

; TRACE RESOLVER

3. In the Resolver JCL we see that the SETUP DD statement is not used. As

mentioned in “Understanding resolvers” on page 83, this means that

GLOBALTCPIPDATA and other variables will not be used.

//RESOLVER PROC PARMS=’CTRACE(CTIRES00)’

//*

//* IP NAME RESOLVER – START WITH SUB=MSTR

//*

//RESOLVER EXEC PGM=EZBREINI,REGION=0M,TIME=1440,PARM=&PARMS

//*SETUP DD DISP=SHR,DSN=USER.PROCLIB(RESSETUP),FREE=CLOSE

4. If we assume that the RESOLVER_CONFIG environment variable is not set, we can

see in Table 9 on page 30 that Resolver will try to use /etc/resolv.conf as base

configuration file.

TCPIPJOBNAME TCPIP

DomainOrigin RALEIGH.IBM.COM

HostName CDFMVS08

As mentioned in “Search orders used in the z/OS UNIX environment” on page

84, the base configuration file contains TCPIP.DATA statements. If the system

name is CDFMVS08 (TCPDATA stated that the system name is used as hostname)

we can see that /etc/resolv.conf is in sync with SYS1.TCPPARMS(TCPDATA).

There are no DNS definitions so site table lookup will be used.

5. Table 11 on page 88 also tells us that if we don’t have to do anything to use the

default ASCII-EBCDIC translation table.

6. Assuming that the TSO MAKESITE command is not used (can create the

X_SITE and X_ADDR variables), /etc/hosts will be the site table used for name

lookup.

Resolver /etc/hosts file cdfmvs08

9.42.112.75 cdfmvs08 # CDFMVS08 Host

9.42.112.75 cdfmvs08.raleigh.ibm.com # CDFMVS08 Host

127.0.0.1 localhost

The minimal content of this file is information about the current system. In the

sample above we define both cdfmvs08 and cdfmvs08.raleigh.ibm.com as a

valid name for the IP address of our z/OS system.

If we were using a domain name server (DNS), the DNS would hold the

/etc/hosts info, and /etc/resolv.conf and SYS1.TCPPARMS(TCPDATA) would

have statements that identify the DNS to our system.

To avoid confusion, it is advised to keep the TCP/IP and Resolver

configuration files in sync with each other.

Appendix C. Setting up TCP/IP 87

Table 11. Local definitions available to resolver

File type

description APIs affected Candidate files

Base resolver

configuration files

All APIs 1. GLOBALTCPIPDATA

2. RESOLVER_CONFIG environment variable

3. /etc/resolv.conf

4. SYSTCPD DD-name

5. userid.TCPIP.DATA

6. jobname.TCPIP.DATA

7. SYS1.TCPPARMS(TCPDATA)

8. DEFAULTTCPIPDATA

9. TCPIP.TCPIP.DATA

Translate tables All APIs 1. X_XLATE environment variable

2. userid.STANDARD.TCPXLBIN

3. jobname.STANDARD.TCPXLBIN

4. hlq.STANDARD.TCPXLBIN

5. Resolver-provided translate table, member

STANDARD in SEZATCPX

Local host tables endhostent

endnetent

getaddrinfo

gethostbyaddr

gethostbyname

gethostent

GetHostNumber

GetHostResol

GetHostString

getnameinfo

getnetbyaddr

getnetbyname

getnetent

IsLocalHost

Resolve

sethostent

setnetent

IPv4

1. X_SITE environment variable

2. X_ADDR environment variable

3. /etc/hosts

4. userid.HOSTS.xxxxINFO

5. jobname.HOSTS.xxxxINFO

6. hlq.HOSTS.xxxxINFO

IPv6

1. GLOBALIPNODES

2. RESOLVER_IPNODES environment variable

3. userid.ETC.IPNODES

4. jobname.ETC.IPNODES

5. hlq.ETC.IPNODES

6. DEFAULTIPNODES

7. /etc/ipnodes

Note: The table above is a partial copy from a table in Communications Server: IP

Configuration Guide (SC31-8775). See that manual for the full table.

88 IBM Rational Developer for System z: Host Configuration Guide

Appendix D. Setting up INETD

This appendix is provided to assist you with some common problems that you

may encounter when setting up INETD, or during checking and/or modifying an

existing setup.

The INETD daemon provides service management for an IP network. It reduces

system load by invoking other daemons only when they are needed and by

providing several simple internet services (like echo) internally. INETD reads the

inetd.conf configuration file to determine which extra services to provide.

ETC.SERVICES is used to link the services to ports.

inetd.conf

The services that rely on INETD are defined in inetd.conf, which is read by INETD

at startup time. The default location and name of inetd.conf is /etc/inetd.conf. A

sample inetd.conf file can be found at /samples/inetd.conf.

The following syntax rules apply to inetd.conf entries:

v Comments begin with a pound sign (#) or semi-colon (;) and continue until the

end of the line

v Entries are case sensitive

v Entries are field-sensitive, but not column sensitive

v Fields are separated with a space or tab character

v Entries can span multiple lines, following these additional syntax rules

– The split must be in between two separate words (separated by a space or tab

character)

– The continuation line must start with a space or tab character

– No comments may be imbedded in the continuation

Each entry consists of 7 positional fields, corresponding to the form:

service_name socket_type protocol wait_flag userid server_program server_program_arguments

[ip_address:]service_name

ip_address is a local IP, followed by a colon (:). If specified, the address is

used instead of INADDR_ANY or the current default. To specifically

request INADDR_ANY, use ″*:″. If ip_address (or a colon) is specified

without any other entries on the line, it becomes the default for subsequent

lines until a new default is specified. service_name is a well-known or

user-defined service name. The name specified must match one of the

server names defined in ETC.SERVICES.

socket_type

stream or dgram, to indicate that a stream or datagram socket is used for

the service.

protocol[,sndbuf=n[,rcvbuf=n]]

 protocol can be tcp[4|6] or udp[4|6], and is used to further qualify the

service name. Both the service name and the protocol must match an entry

in ETC.SERVICES, except that the “4” or “6” should not be included in the

ETC.SERVICES entry.

© Copyright IBM Corp. 2005, 2007 89

sndbuf and rcvbuf specify the size of the send and receive buffers. The

size, represented by n, may be in bytes, or a ″k″ or ″m″ may be added to

indicate kilobytes or megabytes respectively. sndbug and rcvbuf can be

used in either order.

wait_flag[.max]

 wait or nowait.wait indicates the daemon is single-threaded and another

request will not be serviced until the first one completes. If nowait is

specified, INETD issues an accept when a connect request is received on a

stream socket. If wait is specified, it is the responsibility of the server to

issue the accept if this is a stream socket.

 max is the maximum number of users allowed to request service in a 60

second interval. The default is 40. If exceeded, the service’s port is shut

down.

userid[.group]

 userid is the user ID that the forked daemon is to execute under. This user

ID can be different than the INETD user ID. The permissions assigned to

this user ID depend on the needs of the service. The INETD user ID needs

BPX.DAEMON permission to switch the forked process to this user ID.

 The optional group value, which is separated from userid by a dot (.),

allows the server to run with a different group ID than the default for this

user ID.

server_program

server_program is the full pathname of the service. For example:

 /usr/sbin/rlogind is the full pathname for the rlogind command.

server_program_arguments

Maximum of 20 arguments. The first argument is the server name.

ETC.SERVICES

INETD uses ETC.SERVICES to map port numbers and protocols to the services it

must support. It can be either a MVS data set or z/OS UNIX file. A sample is

shipped in SEZAINST(SERVICES), which is also available as /usr/lpp/tcpip/
samples/services. The search order for ETC.SERVICES depends on INETD’s

startup method; z/OS UNIX or native MVS.

The following syntax rules apply to the services information specification:

v An ETC.SERVICES MVS data set must be fixed or fixed block with an LRECL

between 56 and 256

v An ETC.SERVICES HFS file can have a maximum line length of 256

v Items on a line are separated by spaces or tab characters

v Each service is listed on a single line

v A service name must start in the first position on a line

v The maximum service name and alias name length is 32 characters

v A maximum of 35 aliases will be recognized

v Service and alias names are case sensitive

v Comments begin with a pound sign (#) or semi-colon (;) and continue until the

end of the line

Each entry consists of 4 positional fields, corresponding to the form:

90 IBM Rational Developer for System z: Host Configuration Guide

service_name port_number/protocol aliases

service_name

Specifies a well-known or user-defined service name

port_number

Specifies the socket port number used for the service

protocol

Specifies the transport protocol used for the service. Valid values are tcp

and udp

aliases

Specifies a list of unofficial service names

Search order used in the z/OS UNIX environment

The search order used to access ETC.SERVICES in z/OS UNIX is as follows. The

search ends at the first file found:

1. /etc/services

2. userid.ETC.SERVICES

userid is the user ID that is used to start INETD.

3. hlq.ETC.SERVICES

hlq represents the value of the DATASETPREFIX statement specified in the base

resolver configuration file (if found); otherwise, hlq is TCPIP by default.

Search order used in the native MVS environment

The search order used to access ETC.SERVICES in native MVS is as follows. The

search ends at the first data set found:

1. //SERVICES DD card

The data set allocated to DD statement SERVICES is used.

2. userid.ETC.SERVICES

userid is the user ID that is used to start INETD.

3. jobname.ETC.SERVICES

jobname is the name specified on the JOB JCL statement for batch jobs or the

procedure name for a started procedure.

4. hlq.ETC.SERVICES

hlq represents the value of the DATASETPREFIX statement specified in the base

resolver configuration file (if found); otherwise, hlq is TCPIP by default.

Note: Starting INETD through BPXPATCH does not result in using the native MVS

search order, since BPXBATCH executes the start command in the z/OS UNIX

environment. The native MVS search order is only used when starting a

MVS load module, like SEZALOAD(FTP).

PROFILE.TCPIP port definitions

Do not confuse PORT (or PORTRANGE) definitions in PROFILE.TCPIP with ports

defined in ETC.SERVICES since these definitions serve different purposes. Ports

defined in PROFILE.TCPIP are used by TCPIP to see if the port is reserved for a

certain service. ETC.SERVICES is used by INETD to map a port to a service.

When INETD receives a request on a monitored port, it forks a child process (with

the requested service) called inetdx, where inetd is the job name for INETD

(depends on the startup method) and x is a single digit number.

Appendix D. Setting up INETD 91

This complicates port reservation, so if an INETD monitored port is reserved in

PROFILE.TCPIP, it is advised to use the name of the started JCL procedure for the

z/OS UNIX Kernel Address Space to allow almost any process to bind to the port.

This name is typically OMVS, unless a different name is explicitly specified in the

STARTUP_PROC parameter of the BPXPRMxx parmlib member.

The following list explains how to determine the job name, given the environment

in which the application is run:

v Applications run from batch use the batch job name.

v Applications started from the MVS operator console use the started procedure

(STC) name as the job name.

v Applications run from a TSO user ID use the TSO user ID as the job name.

v Applications run from the z/OS shell normally have a job name that is the

logged on user ID plus a one-character suffix.

v Authorized users can run applications from the z/OS shell and use the

_BPX_JOBNAME environment variable to set the job name. In this case, the value

specified for the environment variable is the job name.

v The name of the started JCL procedure for the UNIX System Services Kernel

Address Space can be used to allow almost any caller of the bind() socket API

(except for users of the Pascal API) to bind to the port. This name is typically

OMVS, unless a different name is explicitly specified in the STARTUP_PROC

parameter of the BPXPRMxx parmlib member.

v z/OS UNIX applications started by INETD use the job name of the INETD

server.

Note: Although it is advised not to do so, ports defined in ETC.SERVICES may

differ from the reserved port number for the service in PROFILE.TCPIP.

/etc/inetd.pid

The INETD process creates a temporary file, /etc/inetd.pid, which contains the

PID (Process ID) of the currently executing INETD daemon. This PID value is used

to identify syslog records that originated from the INETD process, and to provide

the PID value for commands that require one, such as kill. It is also used as a lock

mechanism to prevent more than 1 INETD process being active.

Startup

The z/OS UNIX implementation of INETD is located by default in

/usr/sbin/inetd and supports 2 optional, non-positional, startup parameters:

/usr/sbin/inetd [-d] [inetd.conf]

-d Debug option. Debug output is written to stderr, which can be routed to a

file by the syslogd daemon. Refer to Communications Server IP Configuration

Guide (SC31-8775) for more information on syslogd. Note that when started

this way, INETD will not fork a child process to start a service.

inetd.conf

Configuration file. Default value is /etc/inetd.conf

It is advised to start INETD at IPL time. The most common way to do this is to

start it from /etc/rc or /etc/inittab (z/OS 1.8 and higher only). It can also be

started from a job or started task using BPXBATCH or from a shell session of a user

with appropriate authority.

92 IBM Rational Developer for System z: Host Configuration Guide

/etc/rc

When started from the z/OS UNIX initialization shell script, /etc/rc, INETD uses

the z/OS UNIX search order to find ETC.SERVICES. A sample /etc/rc file is

shipped as /samples/rc. The following sample commands can be used to start

INETD:

Start INETD

_BPX_JOBNAME=’INETD’ /usr/sbin/inetd /etc/inetd.conf &

sleep 5

/etc/inittab

z/OS 1.8 and higher provide an alternative method, /etc/inittab, for issuing

commands during z/OS UNIX initialization. /etc/inittab allows the definition of

the respawn parameter, which restarts the process automatically when it ends (a

WTOR is send to the operator for a second restart within 15 minutes). When

started from /etc/inittab, INETD uses the z/OS UNIX search order to find

ETC.SERVICES. A sample /etc/inittab is shipped as /samples/inittab. The

following sample command can be used to start INETD:

Start INETD

inetd::respfrk:/usr/sbin/inetd /etc/inetd.conf

Note: Be aware that the respfrk parameter used in the sample will transfer the

respawn attribute to all forked processes, including RSE. When the client

closes the connection, respawn will start it up again. The RSE server will

end again later, due to timeout. Refer to UNIX System Services Planning

(GA22-7800) to learn more about inittab.

BPXBATCH

The BPXBATCH startup method works both for STC’s and user jobs. Note that

INETD is a background process, so the BPXBATCH step starting INETD will end

within seconds after startup. When started by BPXBATCH, INETD uses the z/OS

UNIX search order to find ETC.SERVICES. The JCL listed in Figure 11 is a sample

procedure to start INETD (the KILL step removes an active INETD process, if any):

Note: STDIN, STDOUT and STDERR must be z/OS UNIX files when allocated. STDENV

can be either a MVS data set or a z/OS UNIX file. Refer to UNIX System

Services Command Reference (SA22-7802) to learn more about BPXBATCH.

Note: inetd.conf can be a MVS data set or member when INETD is started by

BPXBATCH. To do so, code the PARM statement like the following sample (use

only single quotes (’)):

//INETD PROC PRM=

//*

//KILL EXEC PGM=BPXBATCH,

// PARM=’SH ps -e | grep inetd | cut -c 1-10 | xargs -n 1 kill’

//*

//INETD EXEC PGM=BPXBATCH,TIME=NOLIMIT,REGION=0M,

// PARM=’PGM /usr/sbin/inetd &PRM’

//STDERR DD PATH=’/tmp/bpxbatch.start.inetd.stderr’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU

//* STDIN, STDOUT and STDENV are defaulted to /dev/null

//* INETD daemon output can be controlled by syslogd settings

//*

Figure 11. INETD startup JCL

Appendix D. Setting up INETD 93

// PARM=’PGM /usr/sbin/inetd //’’SYS1.TCPPARMS(INETCONF)’’ &PRM’

Shell session

When started from within a shell session, INETD uses the z/OS UNIX search order

to find ETC.SERVICES. The following sample commands can be used (by a person

with sufficient authority) to stop and start INETD (# is the z/OS UNIX prompt):

1. # ps -e | grep inetd

 7 ? 0:00 /usr/sbin/inetd

2. # kill 7

3. # _BPX_JOBNAME=’INETD’ /usr/sbin/inetd

Note: This method is not advisable for the initial startup, /etc/rc or /etc/inittab

are more appropriate since they are executed when z/OS UNIX initializes.

Security

INETD is a z/OS UNIX process and therefore requires valid OMVS definitions in

the security software for the user ID associated with INETD. UID, HOME and PROGRAM

must be set for the user ID, together with the GID for the user’s default group. If

INETD is started by /etc/rc or /etc/inittab, the user ID is inherited from the

z/OS UNIX kernel, default OMVSKERN.

ADDGROUP OMVSGRP OMVS(GID(1))

ADDUSER OMVSKERN DFLTGRP(OMVSGRP) NOPASSWORD +

 OMVS(UID(0) HOME(’/’) PROGRAM(’/bin/sh’))

INETD is a daemon that requires access to functions like setuid(). Therefore the

user ID used to start INETD requires READ access to the BPX.DAEMON profile in the

FACILITY class. If this profile is not defined, UID 0 is mandatory.

PERMIT BPX.DAEMON CLASS(FACILITY) ACCESS(READ) ID(OMVSKERN)

The INETD user ID also requires EXECUTE permission for the inetd program

(/usr/sbin/inetd), READ access to your inetd.conf and ETC.SERVICES file and

WRITE access to /etc/inetd.pid. If you want to run INETD without UID 0, you

can give CONTROL access to the SUPERUSER.FILESYS profile in the UNIXPRIV class

to provide the necessary permits for z/OS UNIX files.

Programs requiring daemon authority must be program controlled if BPX.DAEMON is

defined in the FACILITY class. This is already done for the default INETD program

(/usr/sbin/inetd), but must be set manually if you use a copy or a custom

version. Use the extattr +p command to make a z/OS UNIX file program

controlled. Use the RACF PROGRAM class to make a MVS load module program

controlled.

System programmers who need to restart INETD from within their shell session

will start INETD using their permits. Therefore, they must have the same list of

permits as the regular INETD user ID. On top of that, they also need permits to

list and stop the INETD process. This can be accomplished in multiple ways.

v UID 0

This is not recommended for “human” user IDs since there are no z/OS UNIX

related restrictions.

v READ access to the BPX.SUPERUSER profile in the FACILITY class

Allows the user can become UID 0 through the su command. This is the

recommended setup.

v access to individual profiles that cover the required permissions

94 IBM Rational Developer for System z: Host Configuration Guide

– READ access to SUPERUSER.PROCESS.GETPSENT in the UNIXPRIV class (for the ps

command)

– READ access to SUPERUSER.PROCESS.KILL in the UNIXPRIV class (for the kill

command)

– READ access to BPX.JOBNAME in the FACILITY class (for the _BPX_JOBNAME

environment variable)

Refer to UNIX System Services Command Reference (SA22-7802) to learn more about

the extattr and su commands. Refer to UNIX System Services Planning (GA22-7800)

to learn more about the UNIXPRIV class and BPX.* profiles in the FACILITY class.

Refer to Security Server RACF Security Administrator’s Guide (SA22-7683) for more

information on the OMVS segment definitions and the PROGRAM class.

Developer for System z requirements

Developer for System z is dependant upon INETD for setting up the client-host

connection. It also imposes extra requirements on top of the INETD setup

described above.

INETD

INETD’s environmental settings, which are passed on when starting a process, and

the permissions for INETD’s user ID must be set properly in order for INETD to

start the RSE server.

v If INETD is started by JCL using BPXBATCH, the region size must be 0.

v If INETD is started from a TSO/OMVS shell session, the TSO region size must

be 2096128 or larger.

v If INETD is started by /etc/rc or /etc/inittab, the region size of

SYS1.PROCLIB(BPXOINIT) is used, which is 0 by default.

v READ and EXECUTE access to the Developer for System z installation

directories, default /usr/lpp/wd4z/*

RSE daemon

The RSE daemon that is started by INETD when a client connects to port 4035 is

used to perform authentication, start the RSE server, and return the port number

for further communication back to the client. In order to do so, the user ID

assigned to the RSE daemon (in inetd.conf) requires the following permissions:

v Valid OMVS definitions in the security software; UID, HOME and PROGRAM must be

set, together with the GID for the user’s default group

v READ access to the BPX.DAEMON profile in the FACILITY class

v READ and EXECUTE access to the Developer for System z installation

directories, default /usr/lpp/wd4z/*

v READ and EXECUTE access to the Developer for System z configuration

directory, default /usr/lpp/wd4z/rse/lib/, but it is advised to use a different

directory, like /etc/wd4z/

Appendix D. Setting up INETD 95

96 IBM Rational Developer for System z: Host Configuration Guide

Appendix E. Setting up SSL

This appendix is provided to assist you with some common problems that you

may encounter when setting up Secure Socket Layer (SSL), or during checking

and/or modifying an existing setup.

Secure communication means ensuring that your communication partner is who he

claims to be, and transmitting information in a manner that makes it difficult for

others to intercept and read the data. Secure Sockets Layer (SSL) provides this

ability in a TCP/IP network. It works by using digital certificates to identify

yourself and a public key protocol to encrypt the communication. Refer to the

Security Server RACF Security Administrator’s Guide (SA22-7683) for more

information on digital certificates and the public key protocol used by SSL.

The actions needed to set up SSL communications for Developer for System z will

vary from site to site, depending on the exact needs, the RSE communication

method used and what’s already available at the site.

In this appendix we will clone the current RSE definitions, so that we have a 2nd

connection that will use SSL. Both REXEC and the daemon connection method will

be set up for SSL. We will also create our own security certificates to be used by

the different parts of the RSE connection. All this will be done in the following

steps:

1. Clone the existing RSE setup

2. Determine which key file(s) to use

3. Create a key store with keytool

4. Create a key database (daemon only), with either RACF or gskkyman

5. Activate SSL by updating ssl.properties

6. Test the connection

Note: Refer to the white paper Setting up SSL for RSE Communication (SC23-5816)

in the Developer for System z internet library, http://www-306.ibm.com/
software/awdtools/devzseries/library/, for more information on using a

certificate signed by a trusted Certificate Authority (CA), or setting up your

own CA.

Throughout this appendix, a uniform naming convention is used:

v Certificate : wd4zrse

v Key and certificate storage : wd4zssl.*

v Password : rsessl

Most tasks described below expect you to be active in z/OS UNIX. This can be

done by issuing the TSO command OMVS. Use the exit command to return to

TSO.

© Copyright IBM Corp. 2005, 2007 97

Clone the existing RSE setup

In this step a new instance of the RSE server and RSE daemon is created to run

parallel with the existing one(s). This way, SSL testing will not hinder normal

operations. As advised in “Saving the rsed.envvars configuration file in another

directory” on page 30, the sample commands below expect the configuration files

to be in /etc/wd4z/

$ cd /etc/wd4z

$ mkdir ssl

$ cp * ssl

cp: FSUM6254 "ssl" is a directory (not copied)

$ ls ssl

rsecomm.properties server.zseries ssl.properties

rsed.envvars setup.env.zseries

$ cd ssl

$ su

oedit /etc/services

rsessl 4047/tcp #Developer for System z RSE using SSL

add rsessl service, using port 4047

oedit /etc/inetd.conf

rsessl stream tcp nowait OMVSKERN /usr/lpp/wd4z/rse/lib/fekfrsed rsed -d /etc/wd4z/ssl

add rsessl daemon, using configuration directory /etc/wd4z/ssl

ps -e | grep inetd

 7 ? 0:00 /usr/sbin/inetd

kill 7

_BPX_JOBNAME=’INETD’ /usr/sbin/inetd

exit

$ netstat | grep 4047

INETD4 00016619 0.0.0.0..4047 0.0.0.0..0 Listen

The commands listed above create a subdirectory called ssl and populate it with

the mandatory configuration files. No configuration changes need to be made (yet).

We can share the installation directory and MVS components since they are not

SSL specific. However, a new daemon (rsessl) must be defined that uses the new

configuration files. Port 4047 is assigned to the new daemon.

Refer to Chapter 4, “Activating Developer for System z z/OS UNIX components,”

on page 29 for more information on the actions shown above.

Determine which key file(s) to use

The identity certificates and the encryption/decryption keys used by SSL are

stored in a key file. Different implementations of this key file exist, depending on

the application type.

The RSE daemon is a System SSL application, and uses a key database file. This

key database can be a physical file created by gskkyman or a key ring managed by

your security software (e.g. RACF). The RSE server (which is started by the

daemon or REXEC) is a Java SSL application, and uses a key store file created by

keytool. Currently, RACF has no out-of-the-box support for Java SSL.

Thus to connect via REXEC, all we need is the key store file:

v key store (keytool)

98 IBM Rational Developer for System z: Host Configuration Guide

To connect via the daemon, we need both the key store and the key database file:

v key store (keytool)

v key database (RACF or gskkyman)

Refer to the Security Server RACF Security Administrator’s Guide (SA22-7683) for

information on RACF and digital certificates. gskkyman documentation can be

found in System SSL Programming (SC24-5901). keytool documentation is available

at http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/keytool.html.

Create a key store with keytool

″keytool -genkey″ Generates a key pair (a public key and associated private key).

It then wraps the public key into an X.509 v1 self-signed certificate, which is stored

as a single-element certificate chain. This certificate chain and the private key are

stored as an entry (identified by an alias) in a (new) key store file.

Note: Java must be included in your command search directories. The following

statement might be necessary to be able to execute keytool

(/usr/lpp/java/J1.4 is the directory where Java is installed):

PATH=$PATH:/usr/lpp/java/J1.4/bin

All information can be passed as a parameter, but due to command line length

limitations some interactivity is required.

$ keytool -genkey -alias wd4zrse -validity 3650 -keystore wd4zssl.jks -storepass

 rsessl -keypass rsessl

What is your first and last name?

 [Unknown]: wd4z rse ssl

What is the name of your organizational unit?

 [Unknown]: wd4z

What is the name of your organization?

 [Unknown]: IBM

What is the name of your City or Locality?

 [Unknown]: Raleigh

What is the name of your State or Province?

 [Unknown]: NC

What is the two-letter country code for this unit?

 [Unknown]: US

Is CN=wd4z rse ssl, OU=wd4z, O=IBM, L=Raleigh, ST=NC, C=US correct? (type "yes"

or "no")

 [no]: yes

$ ls

rsecomm.properties server.zseries ssl.properties

rsed.envvars setup.env.zseries wd4zssl.jks

The self-signed certificate created above is valid for about 10 years (not counting

leap days). It is stored in /etc/wd4z/ssl/wd4zssl.jks using alias wd4zrse. Its

password (rsessl) is identical to the key store password, which is a requisite for

RSE.

The result can be verified with the -list option:

$ keytool -list -alias wd4zrse -keystore wd4zssl.jks -storepass rsessl -v

Alias name: wd4zrse

Creation date: May 24, 2007

Entry type: keyEntry

Certificate chain length: 1

Certificate 1}:

Owner: CN=wd4z rse ssl, OU=wd4z, O=IBM, L=Raleigh, ST=NC, C=US

Issuer: CN=wd4z rse ssl, OU=wd4z, O=IBM, L=Raleigh, ST=NC, C=US

Serial number: 46562b2b

Valid from: 5/24/07 2:17 PM until: 5/21/17 2:17 PM

Appendix E. Setting up SSL 99

Certificate fingerprints:

 MD5: 9D:6D:F1:97:1E:AD:5D:B1:F7:14:16:4D:9B:1D:28:80

 SHA1: B5:E2:31:F5:B0:E8:9D:01:AD:2D:E6:82:4A:E0:B1:5E:12:CB:10:1C

Create a key database (daemon only)

As mentioned before, the daemon is a System SSL application that uses a key

database. This can be either a physical file created by gskkyman or a RACF key

ring. RACF key rings are the preferred method for managing private keys and

certificates for System SSL.

Note: System SSL uses the Integrated Cryptographic Service Facility (ICSF) if it is

available. ICSF provides hardware cryptographic support which will be used

instead of the System SSL software algorithms. See System SSL Programming

(SC24-5901) for more information on this.

Create a key ring with RACF

Do not execute this step if you use gskkyman for System SSL.

The RACDCERT command installs and maintains private keys and certificates in

RACF. RACF supports multiple private keys and certificates to be managed as a

group. These groups are called key rings.

Refer to the Security Server RACF Command Language Reference (SA22-7687) for

details on the RACDCERT command.

RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ACCESS(READ) ID(omvskern)

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ACCESS(READ) ID(omvskern)

SETROPTS RACLIST(FACILITY) REFRESH

RACDCERT ID(omvskern) GENCERT SUBJECTSDN(CN(’wd4z rse ssl’) +

 OU(’wd4z’) O(’IBM’) L(’Raleigh’) SP(’NC’) C(’US’)) +

 NOTAFTER(DATE(2017-05-21)) WITHLABEL(’wd4zrse’) KEYUSAGE(HANDSHAKE)

RACDCERT ID(omvskern) ADDRING(wd4zssl.racf)

RACDCERT ID(omvskern) CONNECT(LABEL(’wd4zrse’) RING(wd4zssl.racf) +

 DEFAULT USAGE(PERSONAL))

The sample above starts by creating the necessary profiles and permitting user ID

OMVSKERN access to key rings. The user ID used must match the user ID coded in

/etc/inetd.conf for the SSL RSE daemon. The next step is creating a new,

self-signed, certificate with label wd4zrse. No password is needed. This certificate is

then added to a newly created key ring (wd4zssl.racf). Just as with the certificate,

no password is needed for the key ring. The lifespan of the certificate matches the

one created with keytool.

The result can be verified with the list option:

RACDCERT ID(omvskern) LIST

Digital certificate information for user OMVSKERN:

 Label: wd4zrse

 Certificate ID: 2QjW1OXi0sXZ1aaEqZmihUBA

 Status: TRUST

 Start Date: 2007/05/24 00:00:00

 End Date: 2017/05/21 23:59:59

 Serial Number:

 >00<

100 IBM Rational Developer for System z: Host Configuration Guide

Issuer’s Name:

 >CN=wd4z rse ssl.OU=wd4z.O=IBM.L=Raleigh.SP=NC.C=US<

 Subject’s Name:

 >CN=wd4z rse ssl.OU=wd4z.O=IBM.L=Raleigh.SP=NC.C=US<

 Private Key Type: Non-ICSF

 Private Key Size: 1024

 Ring Associations:

 Ring Owner: OMVSKERN

 Ring:

 >wd4zssl.racf<

Create a key database with gskkyman

Do not execute this step if you use RACF for System SSL.

gskkyman is a z/OS UNIX shell-based, menu-driven, program that creates,

populates and manages a z/OS UNIX file that contains private keys, certificate

requests and certificates. This z/OS UNIX file is called a key database.

Note: The following statements might be necessary to set up the environment for

gskkyman. See System SSL Programming (SC24-5901) for more information

on this.

PATH=$PATH:/usr/lpp/gskssl/bin

export NLSPATH=/usr/lpp/gskssl/lib/nls/msg/En_US.IBM-1047/%N:$NLSPATH

export STEPLIB=$STEPLIB:SYS1.SIEALNKE

$ gskkyman

 Database Menu

 1 - Create new database

 2 - Open database

 3 - Change database password

 4 - Change database record length

 5 - Delete database

 6 - Create key parameter file

 0 - Exit program

Enter option number: 1

Enter key database name (press ENTER to return to menu): wd4zssl.kdb

Enter database password (press ENTER to return to menu): rsessl

Re-enter database password: rsessl

Enter password expiration in days (press ENTER for no expiration):

Enter database record length (press ENTER to use 2500):

Key database /etc/wd4z/ssl/wd4zssl.kdb created.

Press ENTER to continue.

 Key Management Menu

 Database: /etc/wd4z/ssl/wd4zssl.kdb

 1 - Manage keys and certificates

 2 - Manage certificates

 3 - Manage certificate requests

 4 - Create new certificate request

 5 - Receive requested certificate or a renewal certificate

 6 - Create a self-signed certificate

 7 - Import a certificate

 8 - Import a certificate and a private key

 9 - Show the default key

 10 - Store database password

 11 - Show database record length

Appendix E. Setting up SSL 101

0 - Exit program

Enter option number (press ENTER to return to previous menu): 6

 Certificate Type

 1 - CA certificate with 1024-bit RSA key

 2 - CA certificate with 2048-bit RSA key

 3 - CA certificate with 4096-bit RSA key

 4 - CA certificate with 1024-bit DSA key

 5 - User or server certificate with 1024-bit RSA key

 6 - User or server certificate with 2048-bit RSA key

 7 - User or server certificate with 4096-bit RSA key

 8 - User or server certificate with 1024-bit DSA key

Select certificate type (press ENTER to return to menu): 5

Enter label (press ENTER to return to menu): wd4zrse

Enter subject name for certificate

 Common name (required): wd4z rse ssl

 Organizational unit (optional): wd4z

 Organization (required): IBM

 City/Locality (optional): Raleigh

 State/Province (optional): NC

 Country/Region (2 characters - required): US

Enter number of days certificate will be valid (default 365): 3650

Enter 1 to specify subject alternate names or 0 to continue: 0

Please wait

Certificate created.

Press ENTER to continue.

 Key Management Menu

 Database: /etc/wd4z/ssl/wd4zssl.kdb

 1 - Manage keys and certificates

 2 - Manage certificates

 3 - Manage certificate requests

 4 - Create new certificate request

 5 - Receive requested certificate or a renewal certificate

 6 - Create a self-signed certificate

 7 - Import a certificate

 8 - Import a certificate and a private key

 9 - Show the default key

 10 - Store database password

 11 - Show database record length

 0 - Exit program

Enter option number (press ENTER to return to previous menu): 0

$ ls -l

total 152

-rwxr-xr-x 1 IBMUSER SYS1 333 May 24 13:52 rsecomm.properties

-rwxr-xr-x 1 IBMUSER SYS1 6067 May 24 13:52 rsed.envvars

-rwxr-xr-x 1 IBMUSER SYS1 332 May 24 13:52 server.zseries

-rwxr-xr-x 1 IBMUSER SYS1 645 May 24 13:52 setup.env.zseries

-rwxr-xr-x 1 IBMUSER SYS1 638 May 24 13:52 ssl.properties

-rw-r--r-- 1 IBMUSER SYS1 1224 May 24 14:17 wd4zssl.jks

-rw------- 1 IBMUSER SYS1 35080 May 24 14:24 wd4zssl.kdb

-rw------- 1 IBMUSER SYS1 80 May 24 14:24 wd4zssl.rdb

$ chmod 644 wd4zssl.kdb

$ chmod 644 wd4zssl.rdb

$ ls -l

102 IBM Rational Developer for System z: Host Configuration Guide

total 152

-rwxr-xr-x 1 IBMUSER SYS1 333 May 24 13:52 rsecomm.properties

-rwxr-xr-x 1 IBMUSER SYS1 6067 May 24 13:52 rsed.envvars

-rwxr-xr-x 1 IBMUSER SYS1 332 May 24 13:52 server.zseries

-rwxr-xr-x 1 IBMUSER SYS1 645 May 24 13:52 setup.env.zseries

-rwxr-xr-x 1 IBMUSER SYS1 638 May 24 13:52 ssl.properties

-rw-r--r-- 1 IBMUSER SYS1 1224 May 24 14:17 wd4zssl.jks

-rw-r--r-- 1 IBMUSER SYS1 35080 May 24 14:24 wd4zssl.kdb

-rw-r--r-- 1 IBMUSER SYS1 80 May 24 14:24 wd4zssl.rdb

The sample above starts by creating a key database called wd4zssl.kdb with

password rsessl. Once the database exists, it is populated by creating a new,

self-signed, certificate stored under label wd4zrse and with the same password

(rsessl) as the one used for the key database (this is a RSE requisite).

gskkyman allocates the key database with a (very secure) 600 permission bit mask

(only owner has access). Unless the daemon uses the same user ID as the creator of

the key database, permissions have to be set less restrictive. 640 (owner has

read/write, owner’s group has read) or 644 (owner has read/write, everyone has

read) are usable masks for the chmod command.

The result can be verified by selecting the Show certificate information option in

the Manage keys and certificates submenu:

$ gskkyman

 Database Menu

 1 - Create new database

 2 - Open database

 3 - Change database password

 4 - Change database record length

 5 - Delete database

 6 - Create key parameter file

 0 - Exit program

Enter option number: 2

Enter key database name (press ENTER to return to menu): wd4zssl.kdb

Enter database password (press ENTER to return to menu): rsessl

 Key Management Menu

 Database: /etc/wd4z/ssl/wd4zssl.kdb

 1 - Manage keys and certificates

 2 - Manage certificates

 3 - Manage certificate requests

 4 - Create new certificate request

 5 - Receive requested certificate or a renewal certificate

 6 - Create a self-signed certificate

 7 - Import a certificate

 8 - Import a certificate and a private key

 9 - Show the default key

 10 - Store database password

 11 - Show database record length

 0 - Exit program

Enter option number (press ENTER to return to previous menu): 1

 Key and Certificate List

 Database: /etc/wd4z/ssl/wd4zssl.kdb

Appendix E. Setting up SSL 103

1 - wd4zrse

 0 - Return to selection menu

Enter label number (ENTER to return to selection menu, p for previous list): 1

 Key and Certificate Menu

 Label: wd4zrse

 1 - Show certificate information

 2 - Show key information

 3 - Set key as default

 4 - Set certificate trust status

 5 - Copy certificate and key to another database

 6 - Export certificate to a file

 7 - Export certificate and key to a file

 8 - Delete certificate and key

 9 - Change label

 10 - Create a signed certificate and key

 11 - Create a certificate renewal request

 0 - Exit program

Enter option number (press ENTER to return to previous menu): 1

 Certificate Information

 Label: wd4zrse

 Record ID: 14

 Issuer Record ID: 14

 Trusted: Yes

 Version: 3

 Serial number: 45356379000ac997

 Issuer name: wd4z rse ssl

 wd4z

 IBM

 Raleigh

 NC

 US

 Subject name: wd4z rse ssl

 wd4z

 IBM

 Raleigh

 NC

 US

 Effective date: 2007/05/24

 Expiration date: 2017/05/21

 Public key algorithm: rsaEncryption

 Public key size: 1024

 Signature algorithm: sha1WithRsaEncryption

 Issuer unique ID: None

 Subject unique ID: None

 Number of extensions: 3

Enter 1 to display extensions, 0 to return to menu: 0

 Key and Certificate Menu

 Label: wd4zrse

 1 - Show certificate information

 2 - Show key information

 3 - Set key as default

 4 - Set certificate trust status

 5 - Copy certificate and key to another database

 6 - Export certificate to a file

104 IBM Rational Developer for System z: Host Configuration Guide

7 - Export certificate and key to a file

 8 - Delete certificate and key

 9 - Change label

 10 - Create a signed certificate and key

 11 - Create a certificate renewal request

 0 - Exit program

Enter option number (press ENTER to return to previous menu): 0

Activate SSL by updating ssl.properties

Now that the certificates are in place, RSE can start using SSL. Depending on the

definitions chosen in the steps above, different values must be provided in

ssl.properties.

$ oedit ssl.properties

enable_ssl=true

Valid values are true and false (default).

daemon_keydb_file=wd4zssl.racf

gskkyman key database name or RACF key ring name. Only needed for

daemon usage.

daemon_keydb_password=

gskkyman key database password or blank for RACF key ring. Only needed

for daemon usage.

daemon_key_label=wd4zrse

gskkyman/RACF label used, if it is not defined as the default one. Must be

commented out if the default is used. Only needed for daemon usage.

server_keystore_file=wd4zssl.jks

keytool key store name.

server_keystore_password=rsessl

keytool key store password.

Test the connection

The SSL host setup is now complete and can be tested by connecting with the

Developer for System z client. Since we created a new configuration for use by SSL

(by cloning the existing one), a new connection must be defined, using following

characteristics:

v REXEC: using path /etc/wd4z/ssl

v daemon: using port 4047

Note: In order to run a System SSL application (daemon connection),

SYS1.SIEALNKE must be in LINKLIST or STEPLIB. If you prefer the STEPLIB

method, add the following statement to the end of rsed.envvars. Be aware

however that using STEPLIB in z/OS UNIX has a negative performance

impact, as described in “Avoid use of STEPLIB” on page 59.

v If the last STEPLIB directive defined earlier in rsed.envvars equals

STEPLIB=NONE

STEPLIB=SYS1.SIEALNKE

v If the last STEPLIB directive defined earlier in rsed.envvars does not

equal STEPLIB=NONE

STEPLIB=$STEPLIB:SYS1.SIEALNKE

Appendix E. Setting up SSL 105

Upon connection, the host and client will start with some handshaking in order to

set up a secure path. Part of this handshaking is the exchange of certificates. If the

Developer for System z client does not recognize the host certificate it will prompt

the user asking if this certificate can be trusted.

 By clicking the Finish button the user can accept this certificate as trusted, after

which the connection initialization continues.

Note: The daemon connection uses 2 certificate locations (System SSL and Java

SSL), resulting in 2 different certificates and thus 2 confirmations.

Once a certificate is known to the client, this dialog is not shown again. The list of

trusted certificates can be managed by selecting Window > Preferences... >

Remote Systems > SSL, which shows the following dialog:

Figure 12. Import Host Certificate

106 IBM Rational Developer for System z: Host Configuration Guide

If SSL communication fails, the client will return an error message. More

information is available in the different log files (home/.eclipse/RSE/USERID/* and

/tmp/rsedaemon.log), as described in “RSE logging” on page 70.

Figure 13. Preferences

Appendix E. Setting up SSL 107

108 IBM Rational Developer for System z: Host Configuration Guide

Appendix F. Setting up APPC

This appendix is provided to assist you with some common problems that you

may encounter when setting up APPC (Advanced Program-to-Program

Communication), or during checking and/or modifying an existing setup.

Refer to MVS Planning: APPC/MVS Management (SA22-7599) and MVS Initialization

and Tuning Reference (SA22-7592) for additional information on APPC management

and the parmlib members discussed below.

Note that this does not cover a complete set-up of APPC, it just highlights some

key aspects that might be applicable to your site.

Member SYS1.SAMPLIB(ATBALL) contains a list and descriptions of all APPC related

(sample) members in SYS1.SAMPLIB.

VSAM

APPC/MVS stores its configuration data in SYS1.PARMLIB members and two VSAM

data sets:

v The Transaction Program (TP) VSAM data set (default name SYS1.APPCTP)

contains scheduling and security information for z/OS programs.

v The Side Information (SI) VSAM data set (default name SYS1.APPCSI) contains

the translation of symbolic destination names used by z/OS local TPs and

APPC/MVS servers.

A TP is an application program that uses APPC to communicate with a TP on the

same or another system to access resources. The APPC setup for Developer for

System z activates a new TP called FEKFRSRV, which is referred to as the TSO

Commands service.

The sample job listed in figure 14 is a concatenation of sample members

SYS1.SAMPLIB(ATBTPVSM) and SYS1.SAMPLIB(ATBSIVSM), and can be used to define

the APPC VSAMs.

© Copyright IBM Corp. 2005, 2007 109

VTAM

APPC is an implementation of the Systems Network Architecture (SNA) LU 6.2

protocol. SNA provides formats and protocols that define a variety of physical and

logical SNA components, like the Logical Unit (LU). LU 6.2 is a type of logical unit

that is specifically designed to handle communications between application

programs.

In order to use SNA on MVS, you need to install and configure VTAM (Virtual

Telecommunications Access Method). VTAM must be active before the APPC

system tasks can be used.

The APPC specific part of the VTAM setup consists of three steps:

1. Define the mode-name used (for example APPCHOST) to VTAM by using

SYS1.SAMPLIB(ATBLJOB) to assemble and link-edit SYS1.SAMPLIB(ATBLMODE) into

your SYS1.VTAMLIB. See member SYS1.SAMPLIB(ATBLMODE) for details.

2. Define APPC/MVS as a VTAM application by copying sample member

SYS1.SAMPLIB(ATBAPPL) to a dataset in the SYS1.VTAMLST concatenation. See

member SYS1.SAMPLIB(ATBAPPL) for details.

3. Use console command v net,act,id=atbappl to activate the newly defined

application (where net equals the name of your VTAM STC). Use console

//APPCVSAM JOB <job parameters>

//*

//* CAUTION: This is neither a JCL procedure nor a complete job.

//* Before using this sample, you will have to make the following

//* modifications:

//* 1. Change the job parameters to meet your system requirements.

//* 2. Change ****** to the volume that will hold the APPC VSAMs.

//*

//TP EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DEFINE CLUSTER (NAME(SYS1.APPCTP) -

 VOLUME(******) -

 INDEXED REUSE -

 SHAREOPTIONS(3 3) -

 RECORDSIZE(3824 7024) -

 KEYS(112 0) -

 RECORDS(300 150)) -

 DATA (NAME(SYS1.APPCTP.DATA)) -

 INDEX (NAME(SYS1.APPCTP.INDEX))

//*

//SI EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DEFINE CLUSTER (NAME(SYS1.APPCSI) -

 VOLUME(******) -

 INDEXED REUSE -

 SHAREOPTIONS(3 3) -

 RECORDSIZE(248 248) -

 KEYS(112 0) -

 RECORDS(50 25)) -

 DATA (NAME(SYS1.APPCSI.DATA)) -

 INDEX (NAME(SYS1.APPCSI.INDEX))

//*

Figure 14. JCL to create APPC VSAMs

110 IBM Rational Developer for System z: Host Configuration Guide

command d net,appls to verify that the application is active. Add the member

name to SYS1.VTAMLST(ATCCONxx) if you want it to be activated when VTAM

starts.

The ACBNAME of MVSLU01 used in sample member SYS1.SAMPLIB(ATBAPPL) can

be changed to match site standards, but must match the definitions in the

SYS1.PARMLIB(APPCPMxx) member.

Refer to the Communications Server bookshelf (F1A1BK61 for z/OS 1.7) for more

information on configuring VTAM.

SYS1.PARMLIB(APPCPMxx)

To enable and support the flow of conversations between systems, sites must

define LUs (Logical Units) between which sessions can bind. A site needs to define

at least one LU before APPC/MVS processing can take place, even when APPC

processing remains on a single system. LUs are some of the definitions done in

SYS1.PARMLIB(APPCPMxx).

The TSO Commands service requires that APPC is set up to have a base LU that

can handle both inbound and outbound requests.

The LU definition must be added to the SYS1.PARMLIB(APPCPMxx) member and

needs to include the BASE and SCHED(ASCH) parameters. The APPCPMxx member also

specifies which transaction profile (TP) and side information (SI) VSAM data sets

will be used.

Figure 16 is a sample SYS1.PARMLIB(APPCPMxx) member that can be used for the

TSO Commands service.

MVSLU01 APPL ACBNAME=MVSLU01, C

 APPC=YES, C

 AUTOSES=0, C

 DDRAINL=NALLOW, C

 DLOGMOD=APPCHOST, C

 DMINWNL=5, C

 DMINWNR=5, C

 DRESPL=NALLOW, C

 DSESLIM=10, C

 LMDENT=19, C

 MODETAB=LOGMODES, C

 PARSESS=YES, C

 SECACPT=CONV, C

 SRBEXIT=YES, C

 VPACING=1

Figure 15. SYS1.SAMPLIB(ATBAPPL)

LUADD

 ACBNAME(MVSLU01)

 BASE

 SCHED(ASCH)

 TPDATA(SYS1.APPCTP)

SIDEINFO DATASET(SYS1.APPCSI)

Figure 16. SYS1.PARMLIB(APPCPMxx)

Appendix F. Setting up APPC 111

When a system has multiple LU names, you might have to make changes

depending on which LU the system selects as the BASE LU. The BASE LU for the

system is determined by:

1. The system base LU is represented by the last LUADD statement that contains

both the NOSCHED and BASE parameters. This type of system base LU allows

outbound requests to be processed when no transaction schedulers are active.

2. If no LUADD statements contain both NOSCHED and BASE, the system base LU is

represented by the last LUADD statement that contains the BASE parameter and

specifies ASCH as APPC/MVS transaction scheduler. This can be done by either

coding SCHED(ASCH) or not coding the SCHED parameter at all (ASCH is the default

value for SCHED).

If your system has a LU with BASE and NOSCHED parameters, this LU would be used

as the BASE LU but the TSO Command service will not work because this LU

does not have a transaction scheduler to handle requests to the FEKFRSRV

transaction. If this LU cannot be changed to remove the NOSCHED parameter, the

rsed.envvars environment variable _FEKFSCMD_PARTNER_LU can be set to the LU that

has BASE and SCHED(ASCH), such as:

_FEKFSCMD_PARTNER_LU=MVSLU01

See “Customize rsed.envvars, the configuration file for RSE” on page 31 for more

information on rsed.envvars.

SYS1.PARMLIB(ASCHPMxx)

The APPC/MVS transaction scheduler (default name is ASCH) initiates and

schedules transaction programs in response to inbound requests for conversations.

Member SYS1.PARMLIB(ASCHPMxx) controls its functioning, for example, with

transaction class definitions.

The APPC transaction class used for the TSO Commands service must have

enough APPC initiators to allow one initiator for each user of remote

edit-compile-debug.

The TSO Commands service also needs the default specifications to be specified in

the OPTIONS and TPDEFAULT sections.

Figure 17 is a sample SYS1.PARMLIB(ASCHPMxx) member that can be used for the

TSO Commands service.

CLASSADD

 CLASSNAME(A)

 MAX(20)

 MIN(1)

 MSGLIMIT(200)

OPTIONS

 DEFAULT(A)

TPDEFAULT

 REGION(2M)

 TIME(5)

 MSGLEVEL(1,1)

 OUTCLASS(X)

Figure 17. SYS1.PARMLIB(ASCHPMxx)

112 IBM Rational Developer for System z: Host Configuration Guide

Note: For debugging purposes, the IBM support center might ask you to increase

the value of MSGLIMIT, so that more output is written to the log file.

Activating APPC changes

The configuration changes documented in the steps above can now be activated.

This can be done in various ways, depending on the circumstances:

v APPC isn’t active yet. Enter the following console commands to start

APPC/MVS (where xx equals the last 2 characters of the related SYS1.PARMLIB

members):

1. S APPC,SUB=MSTR,APPC=xx

2. S ASCH,SUB=MSTR,ASCH=xx

Add these commands to SYS1.PARMLIB(COMMNDxx) to start them at system

startup.

v APPC is already active. APPC can dynamically reload the SYS1.PARMLIB

members by using a console SET command (where xx equals the last 2

characters of the related SYS1.PARMLIB members):

1. SET APPC=xx

2. SET ASCH=xx

Console commands D APPC and D ASCH can be used to verify the APPC setup.

Refer to MVS System Commands (GC28-1781) for more information on the

mentioned console commands.

Defining the TSO Commands service transaction

Once APPC/MVS is active, the Developer for System z TSO Commands service

can be defined, as described in “(Optional) Define an APPC transaction for the

TSO Commands service” on page 21.

The documented way to define the APPC transaction is by customizing and

submitting hlq.SFEKSAMP(FEKAPPCC), where hlq equals the high level qualifier used

during the installation of Developer for System z (default FEK).

The APPC transaction can also be defined interactively through the APPC ISPF

interface, which is documented in a whitepaper. This whitepaper also describes

how to set up the APPC transaction to collect user specific accounting information.

The APPC and WebSphere Developer for System z (SC23-5885-00) whitepaper is

available at the Developer for System z internet library, http://www-306.ibm.com/
software/awdtools/devzseries/library/

Note: The Transaction Program (TP) JCL that is used by APPC to start the TSO

Commands service has changed in Developer for System z version 7.1. If

you follow the directions in the whitepaper to define the TP, you must add

the NESTMACS keyword to the PARM line, for example:

// PARM=’ISPSTART CMD(%FEKFRSRV TIMEOUT=60) NEWAPPL(ISR) NESTMACS’

Appendix F. Setting up APPC 113

114 IBM Rational Developer for System z: Host Configuration Guide

Glossary

A

Action ID. A numeric identifier for an action between

0 and 999

Application Server.

1. A program that handles all application operations

between browser-based computers and an

organization’s back-end business applications or

databases. There is a special class of Java-based

appservers that conform to the J2EE standard. J2EE

code can be easily ported between these appservers.

They can support JSPs and servlets for dynamic

Web content and EJBs for transactions and database

access.

2. The target of a request from a remote application. In

the DB2 environment, the application server

function is provided by the distributed data facility

and is used to access DB2 data from remote

applications.

3. A server program in a distributed network that

provides the execution environment for an

application program.

4. The target of a request from an application

requester. The database management system

(DBMS) at the application server site provides the

requested data.

5. Software that handles communication with the

client requesting an asset and queries of the Content

Manager.

B

Bidirectional (bi-di). Pertaining to scripts such as

Arabic and Hebrew that generally run from right to

left, except for numbers, which run from left to right.

This definition is from the Localization Industry

Standards Association (LISA) Glossary.

Bidirectional Attribute. Text type, text orientation,

numeric swapping, and symmetric swapping.

Build Request. A request from the client to perform a

build transaction.

Build Transaction. A job started on MVS to perform

builds after a build request has been received from the

client.

C

Compile.

1. In Integrated Language Environment (ILE)

languages, to translate source statements into

modules that then can be bound into programs or

service programs.

2. To translate all or part of a program expressed in a

high-level language into a computer program

expressed in an intermediate language, an assembly

language, or a machine language.

Container.

1. In CoOperative Development Environment/400, a

system object that contains and organizes source

files. An i5/OS® library or an MVS-partitioned data

set are examples of a container.

2. In J2EE, an entity that provides life-cycle

management, security, deployment, and run-time

services to components. (Sun) Each type of

container (EJB, Web, JSP, servlet, applet, and

application client) also provides component-specific

services

3. In Backup Recovery and Media Services, the

physical object used to store and move media such

as a box, a case, or a rack.

4. In a virtual tape server (VTS), a receptacle in which

one or more exported logical volumes (LVOLs) can

be stored. A stacked volume containing one or more

LVOLs and residing outside a VTS library is

considered to be the container for those volumes.

5. A physical storage location of the data. For

example, a file, directory, or device.

6. A column or row that is used to arrange the layout

of a portlet or other container on a page.

7. An element of the user interface that holds objects.

In the folder manager, an object that can contain

other folders or documents.

D

Database. A collection of interrelated or independent

data items that are stored together to serve one or more

applications.

Data Definition View. Contains a local representation

of databases and their objects and provides features to

manipulate these objects and export them to a remote

database

Data Set. The major unit of data storage and retrieval,

consisting of a collection of data in one of several

prescribed arrangements and described by control

information to which the system has access.

Debug. To detect, diagnose, and eliminate errors in

programs.

© Copyright IBM Corp. 2005, 2007 115

Debugging Session. The debugging activities that

occur between the time that a developer starts a

debugger and the time that the developer exits from it.

E

Error Buffer. A portion of storage used to hold error

output information temporarily.

F

.

G

Gateway.

1. A middleware component that bridges Internet and

intranet environments during Web service

invocations.

2. Software that provides services between the

endpoints and the rest of the Tivoli® environment.

3. A component of a Voice over Internet Protocol that

provides a bridge between VoIP and

circuit-switched environments.

4. A device or program used to connect networks or

systems with different network architectures. The

systems may have different characteristics, such as

different communication protocols, different

network architecture, or different security policies,

in which case the gateway performs a translation

role as well as a connection role.

H

.

I

Interactive System Productivity Facility (ISPF). An

IBM licensed program that serves as a full-screen editor

and dialog manager. Used for writing application

programs, it provides a means of generating standard

screen panels and interactive dialogs between the

application programmer and terminal user. ISPF

consists of four major components: DM, PDF, SCLM,

and C/S. The DM component is the Dialog Manager,

which provides services to dialogs and end-users. The

PDF component is the Program Development Facility,

which provides services to assist the dialog or

application developer. The SCLM component is the

Software Configuration Library Manager, which

provides services to application developers to manage

their application development libraries. The C/S

component is the Client/Server, which allows you to

run ISPF on programmable workstation, to display the

panels using the display function of your workstation

operating system, and to integrate workstation tools

and data with host tools and data.

Interpreter. A program that translates and runs each

instruction of a high-level programming language

before it translates and runs the next instruction.

Isomorphic. Each composed element (in other words,

an element containing other elements) of the XML

instance document starting from the root has one and

only one corresponding COBOL group item whose

nesting depth is identical to the nesting depth of its

XML equivalent. Each non-composed element (in other

words, an element that does not contain other

elements) in the XML instance document starting from

the top has one and only one corresponding COBOL

elementary item whose nesting depth is identical to the

nesting level of its XML equivalent and whose memory

address at runtime can be uniquely identified.

J

.

K

.

L

Linkage Section. The section in the data division of

an activated unit (a called program or an invoked

method) that describes data items available from the

activating unit (a program or a method). These data

items can be referred to by both the activated unit and

the activating unit.

Load Library. A library containing load modules.

Lock Action. Locks a member

M

.

N

Navigator View. Provides a hierarchical view of the

resources in the Workbench.

Non-Isomorphic. a simple mapping of COBOL items

and XML elements belonging to XML documents and

COBOL groups that are not identical in shape

(non-isomorphic). Non-isomorphic mapping can also be

created between non-isomorphic elements of

isomorphic structures.

116 IBM Rational Developer for System z: Host Configuration Guide

O

Output Console View. Displays the output of a

process and allows you to provide keyboard input to a

process.

Output View. Displays messages, parameters, and

results that are related to the objects that you work

with

P

Perspective. A group of views that show various

aspects of the resources in the workbench. The

workbench user can switch perspectives, depending on

the task at hand, and customize the layout of views

and editors within the perspective.

Q

.

R

RAM. Repository Access Manager

Remote File System. A file system residing on a

separate server or operating system.

Remote System. Any other system in the network

with which your system can communicate.

Remote Systems Perspective. Provides an interface for

managing remote systems using conventions that are

similar to ISPF

Repository.

1. A storage area for data. Every repository has a

name and an associated business item type. By

default, the name will be the same as the name of

the business item. For example, a repository for

invoices will be called Invoices. There are two types

of information repositories: local (specific to the

process) and global (reusable).

2. A VSAM data set on which the states of BTS

processes are stored. When a process is not

executing under the control of BTS, its state (and

the states of its constituent activities) are preserved

by being written to a repository data set. The states

of all processes of a particular process-type (and of

their activity instances) are stored on the same

repository data set. Records for multiple

process-types can be written to the same repository.

3. A persistent storage area for source code and other

application resources. In a team programming

environment, a shared repository enables multi-user

access to application resources.

4. A collection of information about the queue

managers that are members of a cluster. This

information includes queue manager names, their

locations, their channels, what queues they host,

and so on.

Repository Instance. A project or component that

exists in an SCM.

Repositories View. Displays the CVS repository

locations that have been added to your Workbench.

Response File.

1. A file that contains a set of predefined answers to

questions asked by a program and that is used

instead of entering those values one at a time.

2. An ASCII file that can be customized with the setup

and configuration data that automates an

installation. The setup and configuration data

would have to be entered during an interactive

install, but with a response file, the installation can

proceed without any intervention.

S

Servers View. Displays a list of all your servers and

the configurations that are associated with them.

Shell. A software interface between users and the

operating system that interprets commands and user

interactions and communicates them to the operating

system. A computer may have several layers of shells

for various levels of user interaction.

Shell Name. The name of the shell interface.

Shell Script. A file containing commands that can be

interpreted by the shell. The user types the name of the

script file at the shell command prompt to make the

shell execute the script commands.

Sidedeck. A library that publishes the functions of a

DLL program. The entry names and module names are

stored in the library after the source code is compiled.

Silent Installation. An installation that does not send

messages to the console but instead stores messages

and errors in log files. Also, a silent installation can use

response files for data input.

Silent Uninstallation. An uninstallation process that

does not send messages to the console but instead

stores messages and errors in log files after the

uninstall command has been invoked.

T

Task List. A list of procedures that can be executed by

a single flow of control.

U

URL. Uniform Resource Locator

Glossary 117

V

.

W

.

X

.

Y

.

Z

.

118 IBM Rational Developer for System z: Host Configuration Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not give you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law:INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 2005, 2007 119

IBM Corporation

P.O. Box 12195, Dept. TL3B/B503/B313

3039 Cornwallis Rd.

Research Triangle Park, NC 27709-2195

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or

any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurement may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates

programming techniques on various operating platforms. You may copy, modify, and distribute these

sample programs in any form without payment to IBM, for the purposes of developing, using, marketing

or distributing application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs. You may copy, modify, and distribute these sample programs in any form

without payment to IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

120 IBM Rational Developer for System z: Host Configuration Guide

Trademarks and service marks

The following terms are trademarks or registered trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

v CICS

v CICSPlex

v DB2

v IBM

v IMS

v MVS

v OS/390®

v RACF

v Rational®

v System z™

v VTAM

v WebSphere®

v z/OS

v zSeries®

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and other countries.

Microsoft®, Windows®, Windows NT®, and the Windows logo are trademarks or registered trademarks of

Microsoft Corporation in the United States, or other countries, or both.

UNIX is a registered trademark of The Open Group.

Other company, product, and service names, which may be denoted by a double asterisk(**), may be

trademarks or service marks of others.

Notices 121

122 IBM Rational Developer for System z: Host Configuration Guide

Readers’ Comments — We’d Like to Hear from You

IBM Rational Developer for System z

Host Configuration Guide

Version 7.1

 Publication No. SC23-7658-00

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send a fax to the following number: 1-800-227-5088 (US and Canada)

v Send your comments via e-mail to: kfrye@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC23-7658-00

SC23-7658-00

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department G7IA / Bldg. 503

P.O. Box 12195

Research Triangle Park, NC

 27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5724-T07

Printed in USA

SC23-7658-00

	Contents
	Figures
	Tables
	About this book
	Who should read this book

	Chapter 1. Installing and configuring the host components
	Pre-installation considerations
	Pre-configuration considerations
	Required configuration of requisite products and software
	User ID considerations
	Server considerations
	Required permissions to implement the configuration tasks

	Pre-deployment considerations
	IBM Rational Developer for System z, FMID HHOP710
	IBM Common Access Repository Manager (CARMA), FMID HCMA710

	Chapter 2. Installation and configuration changes
	Changes between version 7.0 and version 7.1
	IBM Rational Developer for System z, FMID HHOP710
	IBM Common Access Repository Manager (CARMA), FMID HCMA710

	Changes between version 6.0.1 and version 7.0
	IBM WebSphere Developer for System z, FMID HHOP700
	IBM Common Access Repository Manager (CARMA), FMID HCMA700

	Backing up previously configured files

	Chapter 3. Activating Developer for System z MVS components
	Set MAXASSIZE in SYS1.PARMLIB(BPXPRMxx)
	APF authorize hlq.SFEKLOAD
	Customize FEJJCNFG, the JES Job Monitor configuration file
	Customize the JES Job Monitor startup JCL
	JES Job Monitor tracing
	Run JES Job Monitor as an STC
	Server permissions
	Verification of JES Job Monitor startup JCL

	JES spool access and security
	Conditional spool access
	Available commands
	Limiting access to spool files

	Customize ELAXF*, remote build procedures
	(Optional) Define an APPC transaction for the TSO Commands service
	Preparation
	Implementation

	(Optional) Customize ELAXM*, DB2 stored procedure members
	(Optional) Customize CICS Bidirectional language support (bidi)
	(Optional) Customize Application Deployment Manager (ADM)
	CRD repository
	CICS primary connection region
	Pipeline Message Handler
	(Optional) CICS non-primary connection regions

	Chapter 4. Activating Developer for System z z/OS UNIX components
	Saving the rsed.envvars configuration file in another directory
	Customize rsed.envvars, the configuration file for RSE
	(Optional) Defining the PORTRANGE available for RSE
	(Optional) Defining extra Java startup parameters with _RSE_*OPTS

	INETD daemon and RSE REXEC/SSH setup
	INETD RSE daemon set up
	INETD REXEC (or SSH) set up

	Customize ISPF.conf, ISPF configuration file
	Verify RSE server set up
	Port availability
	REXEC connection
	REXEC/SSH shell script
	RSE daemon connection
	JES Job Monitor connection
	TSO Commands service connection (using SCLMDT)
	TSO Commands service connection (using APPC)

	(Optional) Customize ssl.properties, RSE SSL configuration
	(Optional) Customize rsecomm.properties, RSE trace configuration
	(Optional) Customize projectcfg.properties, host projects configuration
	(Optional) Customize FMIEXT.properties, File Manager integration

	Chapter 5. (Optional) Activating IBM Common Access Repository Manager (CARMA)
	Customizing the CARMA MVS components
	Customizing the CARMA z/OS UNIX components
	(Optional) Activating the sample Repository Access Managers (RAMs)
	Activating the SCLM RAM
	Activating the PDS RAM

	Chapter 6. (Optional) Activating IBM Software Configuration and Library Manager (SCLM) Developer Toolkit
	Chapter 7. Developer for System z client considerations
	Chapter 8. Performance considerations
	Avoid use of STEPLIB
	Improve access to system libraries
	Language Environment (LE) runtime libraries
	Application development

	Improving performance of security checking
	Class sharing between JVMs
	Enable class sharing
	Cache size limits
	Cache security
	SYS1.PARMLIB(BPXPRMxx)
	Disk space
	Cache management utilities

	Fixed Java heap size
	Workload management

	Appendix A. Running multiple instances of Developer for System z
	Identical software level, different configuration files
	All other situations

	Appendix B. Troubleshooting configuration problems
	Location of log files
	JES Job Monitor logging
	APPC transaction (TSO Commands service) logging
	RSE logging
	fekfivpc IVP test logging
	Fault Analyzer Integration logging
	File Manager Integration logging
	CARMA logging

	Dump files
	MVS dumps
	Java dumps
	z/OS UNIX dump locations

	Program Control authorization for RSE programs
	Reserved TCP/IP ports
	Address Space size
	INETD requirements
	Limitations set in SYS1.PARMLIB(BPXPRMxx)
	Limitations stored in the security profile
	Limitations enforced by system exits

	Error feedback tracing
	APPC transaction and TSO Commands service
	Miscellaneous information
	System limits
	Connection refused

	Known Issues
	Opening MVS data sets fails
	DVIPA binds fail

	Host Connect Emulator

	Contacting IBM support

	Appendix C. Setting up TCP/IP
	Hostname dependency
	Understanding resolvers
	Understanding search orders of configuration information
	Search orders used in the z/OS UNIX environment
	Base resolver configuration files:
	Translate tables:
	Local host tables:

	Applying this to Developer for System z

	Appendix D. Setting up INETD
	inetd.conf
	ETC.SERVICES
	Search order used in the z/OS UNIX environment
	Search order used in the native MVS environment

	PROFILE.TCPIP port definitions
	/etc/inetd.pid
	Startup
	/etc/rc
	/etc/inittab
	BPXBATCH
	Shell session

	Security
	Developer for System z requirements
	INETD
	RSE daemon

	Appendix E. Setting up SSL
	Clone the existing RSE setup
	Determine which key file(s) to use
	Create a key store with keytool
	Create a key database (daemon only)
	Create a key ring with RACF
	Create a key database with gskkyman

	Activate SSL by updating ssl.properties
	Test the connection

	Appendix F. Setting up APPC
	VSAM
	VTAM
	SYS1.PARMLIB(APPCPMxx)
	SYS1.PARMLIB(ASCHPMxx)
	Activating APPC changes
	Defining the TSO Commands service transaction

	Glossary
	Notices
	Trademarks and service marks

	Readers’ Comments — We'd Like to Hear from You

