
SCLM Developer Toolkit

Installation and Customization Guide

Version 3.1

SC23-8504-00

���

SCLM Developer Toolkit

Installation and Customization Guide

Version 3.1

SC23-8504-00

���

Second Edition (August 2007)

This edition applies to IBM SCLM Developer Toolkit, Version 3 Release 1, Program Number 5655-S72 and to any

subsequent releases until otherwise indicated in new editions. Make sure you are using the correct edition for the

level of the product.

The IBM SCLM Developer Toolkit Web site is at

http://www.ibm.com/software/awdtools/sclmsuite/devtoolkit/

The latest edition of this document is always available from the Web site.

© Copyright International Business Machines Corporation 2005, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Note!

Before using this information and the product it supports, be sure to read the general

information under “Notices” on page 103.

|

|
|
|

|
|

|

Contents

Figures v

Tables vii

About this document ix

Who should use this document ix

Changes from the previous edition ix

Where to find more information x

Publications x

Softcopy publications x

IBM Systems Center publications xi

Installation overview xiii

TCP/IP considerations xiii

SMP/E installation xiv

Batch job considerations xiv

Separate SCLM installation xiv

Part 1. Installing SCLM Developer

Toolkit 1

Chapter 1. Installing and customizing

SCLM Developer Toolkit on z/OS 3

Step 1: Check z/OS software requirements 4

Step 2: Configuration considerations 4

Step 3: Run the setup JCL 6

Step 4: Customize the SCLM Developer Toolkit

configuration files 8

Customize the ISPF configuration file 8

Customize the TRANSLATE configuration file . . 9

Override settings in the TRANSLATE.conf file . . 13

Step 5a: Configure the SCLM Developer Toolkit

HTTP Server 13

HTTP server configuration file customization . . 14

HTTP server environment file customization . . 15

HTTP server JCL/STARTED TASK customization 15

Step 5b: Configure Remote Systems Explorer . . . 18

Customizing the RSE Environment file 18

Customizing the RSE environment setup script 20

Activating the RSE Environment file 20

Step 6: Configure long/short name table VSAM file 21

Step 7: Install and customize Ant 23

Step 8a: Run the IVP to check correct HTTP

installation and customization 25

Testing connection to the HTTP server 29

Step 8b: Run the IVP to check correct RSE

installation and customization 30

Chapter 2. Installing the Eclipse-based

client onto the PC 33

Preparing for installation 33

Media requirements 33

Hardware and software requirements 33

Installing SCLM Developer Toolkit 34

Step 1. Install from CD or electronic image . . . 34

Step 2. Install SCLM Developer Toolkit 35

Part 2. Customizing SCLM

Developer Toolkit 37

Chapter 3. SCLM customization for the

SCLM administrator 39

Language translators for JAVA/J2EE support . . . 39

JAVA/J2EE build summary 40

JAVA/J2EE build objects generated 41

SCLM language definitions 42

SCLM types 43

SCLM member formats 45

JAVA/J2EE Ant XML build skeletons 53

Mapping J2EE projects to SCLM 54

Recommendations for mapping J2EE projects to

SCLM 57

SCLM Developer Toolkit deployment 58

WebSphere Application Server (WAS)

deployment 59

SCLM to Unix System Services deployment . . 59

Secure deployment 60

Other deployment options 60

ASCII or EBCDIC storage options 61

ASCII/EBCDIC language translators 61

$GLOBAL member 62

SITE and project-specific options 63

Example of using combinations of the

TRANSLATE.conf overrides 69

Example of using combinations of the BIDIPROP

overrides 71

Chapter 4. SCLM security 73

Build/Promote/Deploy security flag and process

flow 73

Security rules and surrogate user ID 73

Build rule format 74

Promote rule format 74

Deploy rule format 74

SAF/RACF BUILD, PROMOTE, DEPLOY, and

PROFILE rules 75

Chapter 5. CRON-initiated Builds and

Promotes 77

STEPLIB and PATH requirements 77

CRON Build job execution 78

CRON Build job samples 78

Appendix A. SCLM overview 81

SCLM Concepts 81

File naming 81

© Copyright IBM Corp. 2005, 2007 iii

||

Type 81

Language 82

SCLM properties 82

SCLM project structure 82

ARCHDEF 83

JAVA/J2EE concepts 83

Appendix B. SQLJ Support 85

What is SQL? 85

What is DB2? 85

What is JDBC? 85

What is SQLJ? 85

Comparing JDBC and SQLJ 86

What is a Serialized Profile? 87

What is a DBRM? 87

SQLJ Program Preparation 88

Translation 88

Example: 89

Customization 89

Binding 89

SCLM DT types and translators 90

Tailoring the build process 90

Tailoring the Build Script 91

Appendix C. Long/short name

translation table 97

Technical summary of the SCLM Translate program 97

Single long/short name record processing 98

FINDLONG Processing 98

FINDSHORT Processing 98

TRANSLATE Processing 99

Multiple long/short name record processing . . . 99

IMPORT processing 99

MIGRATE processing 100

Bibliography 101

Notices 103

Trademarks 104

Glossary 107

Index 111

iv SCLM Developer Toolkit V3R1: Installation and Customization Guide

Figures

 1. Sample ISPF.conf 9

 2. User of TRANSLATE.conf keywords 12

 3. Pass and exec directives 16

 4. Sample rsed.envars 20

 5. Sample Long/Short Translate VSAM file JCL 21

 6. HTTP server logon prompt 26

 7. Host installation and customization welcome

screen 26

 8. An example of validation responses (part 1) 27

 9. An example of validation responses (part 2) 28

10. An example of validation responses (part 3) 28

11. Server Connection successful message 29

12. Change directory command 30

13. IVP validation responses 31

14. Sample translators 39

15. Sample Jar application (JAR) ARCHDEF 41

16. J2EE Build script JAR sample 41

17. Sample Jar application (JAR) ARCHDEF 47

18. Sample Web application (WAR) ARCHDEF 47

19. Sample EJB Application (EJB) ARCHDEF 48

20. Sample EAR Application (EAR) ARCHDEF 49

21. J2EE Ant build script 49

22. J2EE Build script JAR sample 52

23. J2EE Build script WAR sample 52

24. J2EE Build script EJB sample 53

25. J2EE Build script EAR sample 53

26. Multiple types 56

27. SCLM build hierarchy 57

28. SCLM Language Translators and

ASCII/EBCDIC 61

29. Sample SITE specific SCLM project setting 66

30. Sample PROJECT specific SCLM project setting 67

31. Sample CRON members 77

32. Sample CRON Build Exec 79

33. Sample Build parameter file 80

34. Multiple types 82

35. Sample REXX for Translate module

invocation 100

© Copyright IBM Corp. 2005, 2007 v

||

 | |

vi SCLM Developer Toolkit V3R1: Installation and Customization Guide

Tables

 1. Publications x

 2. IBM Systems Center Publications xii

 3. httpd.conf customization 14

 4. httpd.env customization 15

 5. RSE Environment file customization 18

 6. Required hardware 34

 7. Required operating systems 34

 8. Customer-defined variables 50

 9. $GLOBAL variables 62

10. SITE/Project options 67

11. Long/Short name translation parameters 98

© Copyright IBM Corp. 2005, 2007 vii

||

 | |

viii SCLM Developer Toolkit V3R1: Installation and Customization Guide

About this document

This document contains the configuration procedure for the IBM® SCLM Developer

Toolkit product, which combines standard z/OS® installation procedures with

z/OS UNIX® System Services and IBM z/OS HTTP server configuration. It also

describes the Eclipse client installation on Windows®.

Hereafter, the following names will be used in this manual:

v The IBM z/OS HTTP server is called the “HTTP server.”

v Rational® Developer for System z is called “Rational Developer.”

Sometimes, “IBM SCLM Developer Toolkit” is shortened to “Developer Toolkit” or

“SCLMDT.”

Who should use this document

Part 1 of this document is written for system programmers who are installing,

configuring and administering the IBM SCLM Developer Toolkit. Readers should

be familiar with the z/OS UNIX System Services environment (z/OS UNIX System

Services file system), structure, security software (for example, Resource Access

Control Facility [RACF®]) profiles needed to support z/OS UNIX System Services,

started tasks (or the equivalent for the installed security product), and, if used, the

HTTP server.

Additionally, a chapter is provided in Part 1 if you are installing the client

component on Windows.

Part 2 of this document contains information for the administrator of any SCLM

projects that will be used with the SCLM Developer Toolkit. This includes projects

that use Java® and z/OS UNIX System Services component languages, as well as

traditional SCLM projects. These administrators should also be familiar with the

z/OS UNIX System Services environment and z/OS UNIX System Services file

system structures, REXX Script, and the Java Compiler and SCLM project and

language definitions.

Changes from the previous edition

Third edition

v SQLJ support has been added to allow SQLJ source code to be stored in SCLM

and built. This provides the ability to include .sqlj source files within existing

J2EE archdefs (mixed with existing Java source if required) when building and

creating project JAR files.

v Additional changes to clarify the steps required for installation.

v Messages appendix has been removed.

v Other minor changes to the documentation.

The changes are marked with revision bars.

© Copyright IBM Corp. 2005, 2007 ix

|

Where to find more information

Where necessary, this document references information in other books, using

shortened versions of the book title. For complete titles and order numbers of the

books for all products that are part of z/OS, see the z/OS Information Roadmap.

Direct your request for copies of any IBM publication to your IBM representative

or to the IBM branch office serving your locality.

There is also a (U.S.) toll-free customer support number (1-800-879-2755) available

Monday through Friday from 6:30 a.m. through 5:00 p.m. mountain time. You can

use this number to:

v Order or inquire about IBM publications

v Resolve any software manufacturing or delivery concerns

v Activate the program reorder form for faster and more convenient ordering of

software updates.

Publications

 Table 1. Publications

Short Title Used in This

Document

Title of Publication Order Number

HTTP Server Guide HTTP Server Planning, Installing and

Using

SC31-8690

Rational Developer for

System z Host

Configuration Guide

Rational Developer for System z Host

Configuration Guide

SC31-6930

Communications Server

for z/OS V1R2 TCP/IP

Implementation Guide

Communications Server for z/OS V1R2

TCP/IP Implementation Guide

SG24-5227

z/OS UNIX System

Services Planning

z/OS UNIX System Services Planning GA22-7800

z/OS UNIX System

Services Messages

z/OS UNIX System Services Messages

and Codes

GA22-7807

z/OS UNIX System

Services Commands

z/OS UNIX System Services Command

Reference

GA22-7802

IBM Ported Tools for

z/OS User’ Guide

IBM Ported Tools for z/OS User’ Guide SA22-7985

SCLM Project Manager’s

Guide

z/OS ISPF Software Configuration and

Library Manager Project Manager’s and

Developer’s Guide

SC34-4817

SCLM Developer Toolkit:

Program Directory

(GI10-3352-00)

SCLM Developer Toolkit: Program

Directory

GI10-3352

SCLM Reference z/OS ISPF Software Configuration and

Library Manager Reference

SC34-4818

Softcopy publications

The z/OS library is available on the z/OS Collection Kit, SK2T-6700. This softcopy

collection contains a set of z/OS and related unlicensed product books. The

CD-ROM collection includes the IBM Library Reader™, a program that you can use

to read the softcopy books.

Where to find more information

x SCLM Developer Toolkit V3R1: Installation and Customization Guide

Softcopy z/OS publications are also available for Web browsing. PDF versions of

the z/OS publications for viewing or printing using Adobe Acrobat Reader are

available at this URL:

v http://www.ibm.com/servers/eserver/zseries/zos

Select “Library”.

You can also find Rational Developer for System z, Eclipse, and SCLM Advanced

Edition information at the following URLs:

v http://www.ibm.com/software/awdtools/devzseries – Rational Developer for

System z Web site

v http://www.eclipse.org – Eclipse home page

v http://www.ibm.com/software/awdtools/sclmsuite

IBM Systems Center publications

IBM Systems Center produces Redbooks™ that can be helpful in setting up and

using z/OS UNIX System Services. You can order these publications through the

usual channels, or you can view them with a Web browser from this URL:

http://www.redbooks.ibm.com

These books have not been subjected to any formal review, nor have they been

checked for technical accuracy, but they represent current product understanding

(at the time of their publication) and provide valuable information about a wide

range of z/OS topics. You must order them separately.

Where to find more information

About this document xi

A selected list of these books follows:

 Table 2. IBM Systems Center Publications

Title of Publication Order Number Comments

P/390, R/390, S/390

Integrated Server: OS/390

New User’s Cookbook

SG24-4757-01 Despite the title, it is oriented toward

the system programmer, and

describes considerations for the z/OS

UNIX System Services environment.

Debugging UNIX System

Services, Lotus Domino,

Novell Network Services

SG24-5613-00 Provides an overview of the z/OS

UNIX System Services environment

along with tips and suggestions for

setup and problem analysis.

OS/390 e-business

Infrastructure: IBM HTTP

Server V5.1 for OS/390

SG24-5603-00 Provides an overview of Web servers

in general with specific details for the

OS/390® server along with hints and

tips for setup and customization.

ABCs of z/OS System

Programming Vol 9

SG24-6989-00 Describes UNIX System Services for

system programmers.

e-business Enablement

Cookbook for OS/390

Volumes 1, 2, and 3

SG24-5664-00
SG24-5981-00
SG24-5980-00

Where to find more information

xii SCLM Developer Toolkit V3R1: Installation and Customization Guide

Installation overview

This manual contains the installation procedure for all components of SCLM

Developer Toolkit. There are two installation components to SCLM Developer

Toolkit; the z/OS host component and the client component. The client component

is an Eclipse plug-in that can be installed into an existing Eclipse, installed with

the Eclipse that is shipped with the standalone SCLM Developer Toolkit

installation, or if Rational Developer for System z has been installed, the plug-in is

an installable part of that installation. Eclipse is an open extensible Integrated

Development Environment (IDE), which will be referred through this document as

the Eclipse IDE.

The installation procedure is a combination of standard z/OS installation

procedures, z/OS UNIX System Services file set up, HTTP server configuration,

and, if installed as a plug-in with Rational Developer for System z, RSE

configuration.

The manual is structured into the following chapters:

v Chapter 1, “Installing and customizing SCLM Developer Toolkit on z/OS,” on

page 3

v Chapter 3, “SCLM customization for the SCLM administrator,” on page 39

v Chapter 4, “SCLM security,” on page 73

v Chapter 5, “CRON-initiated Builds and Promotes,” on page 77

The appendixes, starting on page 81

For a high-level description of SCLM and JAVA/J2EE concepts, see Appendix A,

“SCLM overview,” on page 81.

TCP/IP considerations

When you are setting up the SCLM Developer Toolkit server, you also need to

consider your site’s installation of TCP/IP. SCLM Developer Toolkit can use an

HTTP server or, if it is installed as a plug-in in Rational Developer for System z, an

RSE connection.

If the SCLM Developer Toolkit is configured to use an HTTP server, then the

TCPIP.DATA file must be available. The z/OS UNIX System Services Planning

guide documents where the system finds this file.

However, if you use another method of defining the location of this file (such as

the System Resolver), you must add a //SYSTCPD DD card to your SCLM Developer

Toolkit server job. A TCP port must be available and it is recommended to reserve

the port number. To understand more about the System Resolver and TCPIP.DATA,

see the following publications:

v z/OS UNIX System Services Planning

v Communications Server for z/OS V1R2 TCP/IP Implementation Guide

© Copyright IBM Corp. 2005, 2007 xiii

SMP/E installation

This manual does not cover the implementation aspects of the SCLM Developer

Toolkit. Rather, it is intended to guide you through a successful configuration of

the product. The manual assumes that the System Modification Program/Extended

(SMP/E) installation of the SCLM Developer Toolkit is complete. The SMP/E

instructions for the SCLM Developer Toolkit are in the IBM SCLM Developer

Toolkit Program Directory. Before you begin the SCLM Developer Toolkit

installation, note that the following actions are recommended for the SMP/E

installation:

v The root z/OS UNIX System Services file system is read-only

v The SCLM Developer Toolkit directory is set up as a separate file system,

mounted onto the root file system at /usr/lpp/SCLMDT (or whatever name you

choose for your SCLM Developer Toolkit root directory).

These recommendations conform with those specified in the z/OS UNIX System

Services Planning guide. See the section called “Deciding How to Mount Your Root

z/OS UNIX System Services file system for Execution” for details.

Upon successful completion of the SMP/E installation, follow the directions in the

subsequent chapters to complete the installation and customization on z/OS, and

to install the Eclipse-based client on the PC.

Batch job considerations

The SCLM Developer Toolkit uses SDSF to retrieve job completion status and job

output. Because not all customers have JES2 or SDSF, additional support has been

added to the SCLM Developer Toolkit to use the OUTPUT command. Shipped

with z/OS, the OUTPUT command only lets you retrieve job output that begins

with the logged on user ID. If you want to use the OUTPUT facility fully, then the

supplied TSO/E exit IKJEFF53 might need to be modified so that you can retrieve

job output you own, but that does not begin with your user ID. For more

information about this exit, see the z/OS TSO/E Customization Guide.

Separate SCLM installation

This manual does not cover the implementation and loading of the SCLM product.

SMP/E installation

xiv SCLM Developer Toolkit V3R1: Installation and Customization Guide

Part 1. Installing SCLM Developer Toolkit

Chapter 1. Installing and customizing SCLM

Developer Toolkit on z/OS 3

Step 1: Check z/OS software requirements 4

Step 2: Configuration considerations 4

Step 3: Run the setup JCL 6

Step 4: Customize the SCLM Developer Toolkit

configuration files 8

Customize the ISPF configuration file 8

Customize the TRANSLATE configuration file . . 9

Example of the TRANSLATE configuration file 13

Override settings in the TRANSLATE.conf file . . 13

Step 5a: Configure the SCLM Developer Toolkit

HTTP Server 13

HTTP server configuration file customization . . 14

HTTP server environment file customization . . 15

HTTP server JCL/STARTED TASK customization 15

Customizing an existing HTTP server for

SCLM support 16

Start the SCLM Developer Toolkit HTTP

server 16

Enabling trace on the HTTP server 16

Step 5b: Configure Remote Systems Explorer . . . 18

Customizing the RSE Environment file 18

Customizing the RSE environment setup script 20

Activating the RSE Environment file 20

Step 6: Configure long/short name table VSAM file 21

Step 7: Install and customize Ant 23

Step 8a: Run the IVP to check correct HTTP

installation and customization 25

Testing connection to the HTTP server 29

Step 8b: Run the IVP to check correct RSE

installation and customization 30

Chapter 2. Installing the Eclipse-based client

onto the PC 33

Preparing for installation 33

Media requirements 33

Hardware and software requirements 33

Prerequisites for SCLM Developer Toolkit . . 33

Installing SCLM Developer Toolkit 34

Step 1. Install from CD or electronic image . . . 34

Step 2. Install SCLM Developer Toolkit 35

© Copyright IBM Corp. 2005, 2007 1

||

2 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Chapter 1. Installing and customizing SCLM Developer Toolkit

on z/OS

This chapter provides a list of the tasks required to install SCLM Developer Toolkit

on your host z/OS system and the tasks involved in installing the Eclipse client

plug-in of the SCLM Developer Toolkit.

To install the SCLM Developer Toolkit on your host z/OS system, use the

following steps:

v “Step 1: Check z/OS software requirements” on page 4

v “Step 2: Configuration considerations” on page 4

v “Step 3: Run the setup JCL” on page 6

v “Step 4: Customize the SCLM Developer Toolkit configuration files” on page 8

v “Step 5a: Configure the SCLM Developer Toolkit HTTP Server” on page 13, or

v “Step 5b: Configure Remote Systems Explorer” on page 18

v “Step 6: Configure long/short name table VSAM file” on page 21

v “Step 7: Install and customize Ant” on page 23

v “Step 8a: Run the IVP to check correct HTTP installation and customization” on

page 25, or

v “Step 8b: Run the IVP to check correct RSE installation and customization” on

page 30

These steps must be implemented by the z/OS Systems Programmer.

The SCLM Developer Toolkit can connect to the z/OS host either by using an

HTTP server or by using an RSE (Remote Systems Explorer) connection. If the

SCLM Developer Toolkit is running under Rational Developer for System z, then

the communication mechanism is RSE. Configuring SCLM Developer Toolkit for

RSE communication is covered in “Step 5b: Configure Remote Systems Explorer”

on page 18. If SCLM Developer Toolkit is running under any other installation of

Eclipse, such as Rational® Application Developer (RAD), then the communication

mechanism is HTTP. This is described in “Step 5a: Configure the SCLM Developer

Toolkit HTTP Server” on page 13.

For additional information about configuring SCLM Developer Toolkit for specific

SCLM projects, see Chapter 3, “SCLM customization for the SCLM administrator,”

on page 39. This chapter contains additional customization for:

v Site or SCLM project-specific settings

v JAVA/J2EE language support

© Copyright IBM Corp. 2005, 2007 3

Step 1: Check z/OS software requirements

To successfully install the SCLM Developer Toolkit, the following system

requirements must be in place when you begin your installation:

v z/OS V1.7 or above with the following PTFs applied:

– ISPF PTF that addresses APAR OA20345 to enable correct log output

messaging and to provide additional BUILD service processing information.

– ISPF/SCLM PTF that addresses APAR OA21104 with SCLMINFO

enhancements and build mode information for syntax checking.

– ISPF PTF that addresses APAR OA16924, which enhances the SCLMINFO

service.

– If you want to store files with long filenames in SCLM, the PTF that

addresses ISPF APAR OA11426 and provides support for long/short filename

(long/short-name) translation. This is not required on z/OS V1.8.

– If you want to use secure build, promote, and deploy (see Chapter 4, “SCLM

security,” on page 73): the ISPF/SCLM PTF that addresses APAR OA16804.
v z/OS UNIX System Services (and TCP/IP)

v REXX runtime or REXX alternate libraries (REXX.**.SEAGLPA, or

REXX.**.SEAGALT). If you do not have either the REXX Library or the REXX

Alternate Library installed, you can install the REXX Alternate Library to fulfill

the REXX Library requirement. The REXX Alternate Library is available as a free

download from: http://www-1.ibm.com/support/.

The REXX runtime library REXX.**.SEAGLPA (or if not installed, the alternate

library REXX.**.SEAGALT) must be added to the STEPLIB in the HTTP server’s

JCL if they are not already defined as LINKLIST data sets. Your site might use a

different high-level qualifier to REXX.

These data sets must be APF authorized.

v Ant runtime installed in UNIX System Services, if performing JAVA/J2EE builds.

(Download available from http://Ant.apache.org/).

See “Step 7: Install and customize Ant” on page 23.

v One of the following versions of z/OS Java:

– Java V1.4.0 (5655-I56) or later.

– Java V1.4.2 (5655-M30) or later.

– Java V5 – 31bit (5655-N98) or later.

– Java V5 – 64bit (5655-N99) or later.

Setting MEMLIMIT

z/OS uses region sizes to determine the amount of storage available

to running programs. For the 64-bit product, allow 256 MB or greater

to a running SDK. Use the MEMLIMIT parameter for this setting. For

information about the MEMLIMIT parameter, see Limiting Storage

use above the bar in z/Architecture.

Step 2: Configuration considerations

Consider the following points before you configure your system.

1. Each user of the SCLM Developer Toolkit must define a RACF OMVS segment

(or equivalent) that specifies a valid non-zero uid, home directory, and shell

command.

If this is not specified, you can not log on to the SCLM Developer Toolkit

through the Eclipse IDE.

Check z/OS software requirements

4 SCLM Developer Toolkit V3R1: Installation and Customization Guide

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

http://www-1.ibm.com/support/docview.wss?rs=960&uid=swg24006107
http://ant.apache.org/

2. Set MAXPROCUSER in BPXPRMxx parmlib member to a minimum of 50. This

can be checked and set dynamically (until the next IPL) with the following

commands (as described in z/OS MVS System Commands SA22-7627):

 DISPLAY OMVS,O

 SETOMVS MAXPROCUSER=50.

Setting a value that is too low can cause SCLM translations and possibly other

activities to fail.

Configuration considerations

Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS 5

3. It is recommended that you have the BWB* modules saved in a data set that is

part of the LINKLIST. Alternatively, this data set can be added:

v to the STEPLIB in the HTTP server (see “Step 5a: Configure the SCLM

Developer Toolkit HTTP Server” on page 13), or

v in the STEPLIB statement in the rsed.envvars of the RSE server (see “Step 5b:

Configure Remote Systems Explorer” on page 18).
4. The 64 bit versions of Java can use the storage available above the 2GB bar.

However, this storage is unavailable by default. Set MEMLIMIT in the

SMFPRMxx parmlib member to NOLIMIT, or any valid value greater than the

default, 0M. Refer to the z/OS MVS Initialization and Tuning Reference

(SA22-7592) for more information.

Step 3: Run the setup JCL

1. Customize and run BWBINST1, which is stored in the SBWBSAMP data set.

Follow the customization instructions within the member.

This job performs the following tasks:

v Creates CONFIG, LOGS, and WORKAREA directories in the z/OS UNIX

System Services file system at the directory you specify.

v Creates the PROJECT directory in the z/OS UNIX System Services file

system under the CONFIG directory. For more information about the use of

the PROJECT directory, see “SITE and project-specific options” on page 63.

v Copies the sample HTTP server configuration files from members BWBHTTPC

and BWBHTTPE in the SBWBSAMP library to files httpd.conf and httpd.env in

the CONFIG directory. These two files require customization. See “Step 5a:

Configure the SCLM Developer Toolkit HTTP Server” on page 13.

v Copies the Sample ISPF configuration table from member BWBISPFC in the

SBWBSAMP library to file ISPF.conf in the CONFIG directory. This file

requires customization. See “Step 4: Customize the SCLM Developer Toolkit

configuration files” on page 8.

v Copies the sample Translation configuration table from member BWBTRANC in

the SBWBSAMP library to file TRANSLATE.conf in the CONFIG directory. This

file requires customization. See “Step 4: Customize the SCLM Developer

Toolkit configuration files” on page 8.
The recommended base directory for the configuration files is /etc/SCLMDT. The

part of the directory up to SCLMDT must exist before running this job.

You must have read and write access to the WORKAREA and LOGS

directories. By default you must have read and write access to

/var/SCLMDT/WORKAREA and /var/SCLMDT/LOGS. The WORKAREA is

used for transfer of files, ASCII/EBCDIC conversions, and for JAVA/J2EE

builds.

Temporary directories of format /var/SCLMDT/WORKAREA/userid/* are created

during use of the Developer Toolkit. The following directories can be created

under a directory of your user ID in the WORKAREA directory, depending on

the type of functions you are performing:

v /EDIT

v /JobOutput

v /TRANSFER

v /VERSION

Note:

Configuration considerations

6 SCLM Developer Toolkit V3R1: Installation and Customization Guide

|
|
|
|
|

Some temporary session files might be created in the /tmp directory. Ensure all

users have write access to the /tmp directory.

SCLM Developer Toolkit removes any temporary files it creates in the

WORKAREA directory. However, temporary output is sometimes left over, for

example, if there is a communication error while processing. For this reason, it is

recommended that you clear out the WORKAREA and LOGS directories from time

to time.

Run the setup JCL

Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS 7

|
|

To do this, use the following commands in OMVS:

cd /var/SCLMDT/WORKAREA

rm -r *

Where /var/SCLMDT/WORKAREA is saved depends on where you create the

WORKAREA directory.

This removes all entries and the same process can be used on the LOGS directory.

Step 4: Customize the SCLM Developer Toolkit configuration files

The files ISPF.conf and TRANSLATE.conf are saved at the default directory location

/etc/SCLMDT/CONFIG and might require further customization.

Customize the ISPF configuration file

For the SCLM Developer Toolkit to run ISPF and SCLM services, a valid ISPF

environment must be established. The ISPF configuration contains the required

allocations for SCLM Developer Toolkit to establish a TSO/ISPF environment

session for the user.

You must customize the ISPF configuration file ISPF.conf that is stored in the

CONFIG directory to host site requirements for ISPF data set allocation. The

provided sample ISPF.conf has instructions to complete customization so your

user site can:

v Include the minimum ISPF data set allocations for SCLM Developer Toolkit

operation. This means allocating the minimum ISPF data sets that bring ISPF up

in a 3270 emulator. In the sample provided, these are specified as the isp.sisp*

data sets. You might need to change these for your site-specified data set names.

v Add additional DDNAME file allocations or concatenate additional ISPF data

sets.

v Launch a customer defined allocation executable (exec) to provide further data

set allocation by project or user ID. A sample exec is provided in member

BWBISPF2 in the SBWBSAMP library.

v SCLM Developer Toolkit uses the standard allocated ISPF/SCLM skeletons, for

example, FLMLIBS, so ensure that required skeleton libraries are allocated to the

ISPSLIB DD in ISPF.conf.

The allocations for each of the ISPF DDs must be specified on a single line with

each data set separated by a comma. Comment lines can be added by beginning

the line with an asterisk (*). See the sample ISPF.conf below for an example.

Run the setup JCL

8 SCLM Developer Toolkit V3R1: Installation and Customization Guide

|
|
|
|

Customize the TRANSLATE configuration file

Review the TRANSLATE configuration file TRANSLATE.conf that is stored in the

CONFIG directory. Follow the instructions contained within the sample if different

ASCII/EBCDIC conversion codepages are required, other than the default of

ASCII=ISO8859-1 and EBCDIC=IBM-1047.

The TRANSLATE.conf file provides keywords to determine how code is stored

within SCLM. The configuration file contains keywords that determine how files

are transferred to the host depending on their language definition. Specific

keywords determine if files of a certain language type are binary, transferred, and

stored or whether the text based source remains in ASCII format rather than the

default translation from ASCII to EBCDIC.

Additionally SCLM language definitions control whether long name files are

converted to suitable valid short hostnames to store in SCLM. This long-to-short

name mapping is controlled by the SCLM long/short name translate file.

Note: Default language definitions have been provided as a guide for determining

long-to-short name conversions, and/or BINARY transferred language definitions.

The following keywords are valid within the TRANSLATE.conf file:

Keyword Description

CODEPAGE Determines the ASCII and EBCDIC codepages to use in translation

 Format:

v CODEPAGE ASCII = ISO8859-1

v CODEPAGE EBCDIC = IBM-1047

There must be a CODEPAGE keyword for both ASCII and EBCDIC

for SCLM Developer Toolkit to determine how to convert files

being transferred.

TRANVRLS Indicates whether SCLM should allow the Translate table VSAM

* REQUIRED:

* Below is the minimum requirements for ISPF allocation.

* Change the default ISPF data set names below to match your host site.

* Add additional dsn concatenations on same line and separate by comma.

* Order of data sets listed is search order in concatenation.

* The sclmdt loadlib data set is required to be added to the ISPLLIB

* concatenation to access the JAVA/J2EE SCLM Language translators.

* Change BWB.SBWBLOAD to the appropriate data set where the

* BWBxxx load modules are stored.

*

* The libraries beginning BZZ.* are for the Breeze product and are

* included to show how multiple data sets are added to the concatenations.

* These should be removed if the Breeze product is not installed.

sysproc=ISP.SISPCLIB,BZZ.SBZZCLIB

ispmlib=ISP.SISPMENU

isptlib=ISP.SISPTENU

ispplib=ISP.SISPPENU

ispslib=BZZ.SBZZSENU,ISP.SISPSLIB

ispllib=BWB.SBWBLOAD,BZZ.SBZZLOAD

Figure 1. Sample ISPF.conf

Customize the SCLMDT configuration files

Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS 9

|
|
|
|
|
|

||

data set to be shared across systems when the level of DFSMS

installed is 1.3 or later. The default is NO.

 SCLM uses VSAM Record Level Sharing (RLS) to allow the sharing

of the VSAM data sets. To maintain the integrity of the VSAM data

sets in a shared environment, the VSAM data sets must be

allocated for RLS and all hardware and software to support RLS

must be in place for the system. The Translate table must be

defined with the correct STORAGECLASS for RLS use. (See the

DFSMS documentation for hardware and software requirements.)

 TRANVRLS = YES

Specifies that the shortname longname translate table is

defined for cross system sharing using VSAM record level

sharing.

TRANVRLS =NO

Specifies that the shortname longname translate table is not

defined for cross system sharing using VSAM record level

sharing. This is the default.

TRANLANG Determines which SCLM language types require no

ASCII/EBCDIC translation to the host (file will be binary

transferred).

Customize the SCLMDT configuration files

10 SCLM Developer Toolkit V3R1: Installation and Customization Guide

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

If files were ASCII text in the eclipse client then when added to

SCLM, they will remain in that ASCII codepage.

 Format:

v TRANLANG JAVABIN

v TRANLANG DOC

v TRANLANG JPEG

 In the above examples dummy Language Translators would be set

up in SCLM for these languages. See Chapter 3, “SCLM

customization for the SCLM administrator,” on page 39 for more

information about SCLM Language translators.

LONGLANG Determines which SCLM language types require long name to

short name conversion. Long name to short name translation

implies the long name file on the Client (including directory

package structure) will be mapped to a valid host member name of

8 characters and stored in SCLM using this translated host short

name.

 Format:

v LONGLANG JAVA

v LONGLANG J2EEPART

v LONGLANG DOC

v LONGLANG SQLJ

If the SCLM language is not specified in the LONGLANG

keyword, the client file is assumed to be already in host short

name format (8 characters or less) and is stored as is.

Note: Comment lines can be added by beginning the line with an asterisk (*).

Customize the SCLMDT configuration files

Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS 11

|

*

* -------------------- CODEPAGE SECTION ----------------------

*

CODEPAGE ASCII = ISO8859-1

CODEPAGE EBCDIC = IBM-1047

*

* ------------ ASCII to EBCDIC TRANSLATION SECTION -----------

*

TRANLANG JAVABIN

TRANLANG J2EEBIN

TRANLANG J2EEOBJ

TRANLANG TEXTBIN

TRANLANG BINARY

TRANLANG DOC

TRANLANG XLS

*

* ------------ LONG/SHORT NAME TRANSLATION SECTION -----------

*

LONGLANG JAVA

LONGLANG SQLJ

LONGLANG J2EEPART

LONGLANG JAVABIN

LONGLANG J2EEBIN

LONGLANG J2EEOBJ

LONGLANG DOC

LONGLANG XLS

*

Figure 2. User of TRANSLATE.conf keywords

Customize the SCLMDT configuration files

12 SCLM Developer Toolkit V3R1: Installation and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

See “Example of the TRANSLATE configuration file” for an example including the

Figure 2 on page 12.

Example of the TRANSLATE configuration file

As stated above, the TRANSLATE configuration files control a number of things.

Two of these are:

v Whether or not a part is translated from ASCII to EBCDIC.

v Whether or not a part has its name translated from a long name to an 8

character short name.

To show how these two settings could be used to help in deciding how to initially

set up this config file here is an example.

Example: You have a number of Word documents that you want to store in

SCLM. In this case files of this type cannot be edited on the mainframe. So there is

no point in translating them to EBCDIC and they should just be stored in ASCII.

v Create an SCLM Language translator based on the sample BWBTRANJ in the

SBWBSAMP library. You could call it BINARY (as this is how it will be stored),

or if you want to be specific, call it DOC.

v As this file has a long name on the workstation, such as InstallGuide.doc, you

need to make sure this is mapped to a generated short name in the SCLM PDS

where you will store it. Therefore create a LONGLANG entry for the BINARY or

DOC language, whatever you have called it. For example, LONGLANG BINARY.

v Add a TRANLANG entry for the BINARY or DOC language, whatever you have

called it. For example, TRANLANG BINARY.

v When the Word document is checked out in SCLM, it is transferred down to the

Eclipse workspace without any EBCDIC to ASCII conversion. After it is checked

out, Word is started allowing you to work on the file. When changes are

complete the Word document is checked back into SCLM and again no ASCII to

EBCDIC translation takes place.

Override settings in the TRANSLATE.conf file

It is possible to override values set in the TRANSLATE.conf file at a SITE and

SCLM Project level. For an explanation of this feature, see “SITE and

project-specific options” on page 63.

Step 5a: Configure the SCLM Developer Toolkit HTTP Server

This section describes the setup and customization of an HTTP server if you are

planning on configuring SCLM Developer Toolkit to communicate with the z/OS

host via an HTTP server. An HTTP server is used when the SCLM Developer

Toolkit is not installed with Rational Developer for System z, but under any other

installation of Eclipse, such as Rational Application Developer (RAD).

Alternatively if you plan to use SCLM Developer Toolkit with Rational Developer

for System z, then RSE (Remote Systems Explorer) is used as the communication

mechanism. This is covered in “Step 5b: Configure Remote Systems Explorer” on

page 18.

It is recommended that the HTTP server is a dedicated Web server to support this

interface, though you can optionally incorporate the required SCLM/HTTP

configuration directives into an existing HTTP server. See “Customizing an existing

HTTP server for SCLM support” on page 16.

Customize the SCLMDT configuration files

Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS 13

By default the SCLM/HTTP server is configured to use port 80 though you can

choose another suitable dedicated port during customization (1024 or higher as

port numbers lower than this are reserved for internal systems use).

If you change the default port number it must be changed in the HTTP server JCL.

The sample setup requires the end user to supply a valid z/OS user ID and

password when accessing the host system using this interface.

Note: For additional information about configuring IBM HTTP Web servers,

review these IBM manuals:

v HTTP Server Planning, Installing and Using (SC31-8690)

v OS/390 e-business Infrastructure: IBM HTTP Server V5.1 for OS/390

(SG24-5603-00)

The following sections outline the steps for customizing the supplied samples and

starting the HTTP server.

By default the HTTP server configuration file and the environment file are stored

in the SCLM Developer Toolkit CONFIG directory. Optionally these files can be

copied to another user directory or existing server configuration and environment

files. In all cases the HTTP server started task must be customized to reflect the

appropriate directory.

HTTP server configuration file customization

Customize the sample HTTP configuration file httpd.conf (which is stored in the

CONFIG directory specified by setup job BWBINST1) by following the instructions in

the configuration file for the changes that are needed. The following directives

need to be reviewed:

 Table 3. httpd.conf customization

Directive Description of change

Port Leave as port 80 or change to a valid port number as

specified in the HTTP server JCL. It is recommended to

reserve the port number.

Protection Change SCLMDTWB to the name of the HTTP server job. For

information about using the Protection directive, see the

HTTP Server Guide.

PidFile
AccessLog
ErrorLog

Change /var/SCLMDT to the appropriate path if a different

path to the default was selected.

Pass and Exec Directives Change /var/SCLMDT to the appropriate path if a different

path to the default was selected.

Change /usr/lpp/SCLMDT to the appropriate path of the bin

installation directory if a different path to the default was

selected.

Configure the SCLMDT HTTP Server

14 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Table 3. httpd.conf customization (continued)

Directive Description of change

Non-standard codepage

translation in SCLM

Developer Toolkit

If you require different ASCII/EBCDIC codepage

translation other than standard default

(IBM-1047/ISO8859-1) the following parameters must be

coded in the httpd.conf file for the HTTP server:

 DefaultFsCp ebcdic-codepage

 DefaultNetCp ascii-codepage

For example, for Japanese translation the required

codepages would be:

 DefaultFsCp IBM-939

 DefaultNetCp IBM-932C

HTTP server environment file customization

Customize the sample HTTP environment variables file httpd.env (which is stored

in the installation directory specified by install job BWBINST1) by following the

instructions in the environment file for the changes that are needed.

 Table 4. httpd.env customization

Directive Description of change

PATH Ensure the PATH directive has the correct Java path

directory. Also ensure the current directory indicated by a

’.’ is included in the PATH (for example,

/bin:.:/usr/sbin:/usr/lpp/internet/bin:/usr/lpp/internet/
sbin:/usr/lpp/java/J1.4/bin).

CGI_DTWORK This directive determines the WORKAREA directory path

that is used for temporary files. The default is:

 CGI_DTWORK=/var/SCLMDT

CGI_DTCONF This directive determines the CONFIG directory path

where the configuration files are stored. The default is:

 CGI_DTCONF=/etc/SCLMDT

CGI_TRANTABLE This directive determines the name of the translate table

used in short to long name translation. This VSAM file is

discussed in “Step 6: Configure long/short name table

VSAM file” on page 21. The default is:

 CGI_TRANTABLE=BWB.LSTRANS.FILE

HTTP server JCL/STARTED TASK customization

Before the HTTP server can be submitted, the following tasks must be performed.

1. Copy the sample batch job BWBSRVR from the installed sample library,

SBWBSAMP, to a JCL Library or PROCLIB data set and customize to your

site-specific standards by following the instructions in the sample.

2. Issue the CAPS OFF command to ensure that case sensitive values do not get

changed to upper case.

3. It is recommended to make this HTTP server job a started task, but it can also

be run as a standalone job to test the HTTP server JCL.

4. If performing foreground Java builds it is recommended to use a region size of

512M in the HTTP server job.

5. RACF considerations:

v Create a RACF OMVS segment for the user ID assigned to the HTTP server.

Configure the SCLMDT HTTP Server

Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS 15

|
|
|
|
|

v The HTTP server owning user ID requires execute access to the

/usr/lpp/internet/sbin files and read/write access to the LOGS directory

referenced in the httpd.conf file. This is defaulted to /var/SCLMDT/LOGS.

6. The default port to be used is 80. If you change this to a specific dedicated port

you must also change the port number in the httpd.conf configuration file to

match the port number in the started task JCL.

7. If the BWB* modules are not stored in the LINKLIST then edit the STEPLIB to

specify the load library containing these modules. By default these are in the

SBWBLOAD library.

8. Module BWBTSOW must be stored in an APF authorized load library.

9. Ensure a REXX/370 runtime environment on the host exists or alternatively use

the REXX/370 Alternate Library.

Note: The user ID assigned to the HTTP server must have READ authority to the

BPX.SERVER resource in the FACILITY class. If this resource is not defined, UID 0

is required.

Customizing an existing HTTP server for SCLM support

Follow the instructions below if you optionally choose to incorporate the SCLM

Developer Toolkit support into an existing HTTP server.

Add the following pass/exec directives in the httpd.conf configuration file:

Note: You should customize the example as follows:

v Replace /usr/lpp/SCLMDT with your bin installation directory.

v Replace /var with your WORKAREA directory.

Start the SCLM Developer Toolkit HTTP server

Start the Web server by submitting the job or if it is a started task procedure enter

the following command from the z/OS console:

 Start server_proc_name

where server_proc_name is the STC name.

(Ensure the procedure is a member in a PROCLIB data set.)

Check the HTTP server successfully initialized: The server JOBLOG should

contain the following messages:

 IMW0234I Starting.. httpd

 IMW0235I Server is ready.

Enabling trace on the HTTP server

To enable trace on the HTTP server, modify the server JCL PARM statement to

include one of the tracing levels. For example:

Pass /J2EEPUT/ /var/SCLMDT/WORKAREA/*

Pass /DWGET/ /var/SCLMDT/WORKAREA/*

Pass /DWTRANSFER/ /var/SCLMDT/WORKAREA/*

Pass /BWBIVP.html /usr/lpp/SCLMDT/bin/BWBIVP.html

Pass /SCLMDW.html /usr/lpp/SCLMDT/bin/SCLMDW.html

Pass /DT* /usr/lpp/SCLMDT/bin/DT*

Exec /BWBCALL /usr/lpp/SCLMDT/bin/BWBCALL

Exec /BWBIVP.cgi /usr/lpp/SCLMDT/bin/BWBIVP.cgi

Figure 3. Pass and exec directives

Configure the SCLMDT HTTP Server

16 SCLM Developer Toolkit V3R1: Installation and Customization Guide

PARM=(’ENVAR("_CEE_ENVFILE=//DD:ENV")/-vv -r //DD:CONF -B -p 80’)

Enabling trace on the HTTP server

Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS 17

The level of tracing provided is:

-v trace for first level

-vv trace for second level

-mtv for third level

-debug for maximum tracing.

For more information about tracing see the “HTTP Server Planning, Installing and

Using” manual.

Note: Trace has an impact on performance and should only be carried out if

advised by an IBM representative.

Step 5b: Configure Remote Systems Explorer

This section describes the setup and customization of Remote Systems Explorer

(RSE) that can be used by the client to access SCLM on a z/OS host. RSE is used

when the SCLM Developer Toolkit is installed with Rational Developer for System

z.

If you are not using SCLM Developer Toolkit with Rational Developer for System

z, then the mechanism used to communicate with the z/OS host is HTTP. This is

described in “Step 5a: Configure the SCLM Developer Toolkit HTTP Server” on

page 13.

The installation and configuration of the RSE component of Rational Developer for

System z is covered in the Program Directory for IBM Rational Developer for System z

(GI11-8298-00) and IBM Ratioanl Developer for System z Host Configuration Guide

(SC31-6930-02). This section guides you through the steps to add SCLM Developer

Toolkit specific settings to enable it to work through an RSE connection.

You need to know the customization directory of the RSE component of Rational

Developer for System z before you begin as modifications will need to be made to

files contained there.

Customizing the RSE Environment file

Locate the rsed.envvars file that your RSE connection will be using, by default in

/usr/lpp/wd4z/rse/lib. At the bottom of the file, copy in the SCLM Developer

Toolkit member containing the RSE environment variables. This member is

BWBRSED and can be found in the installed sample library SBWBSAMP.

The following environment variables used by SCLM Developer Toolkit should

already have been defined in rsed.envvars during base RSE customization:

 _CMDSERV_BASE_HOME

 _CMDSERV_CONF_HOME

 _CMDSERV_WORK_HOME

Customize the variables by following the instructions in the table below:

 Table 5. RSE Environment file customization

Directive Description of change

CGI_DTCONF Determines the base path of the /CONFIG directory

(configuration files are stored here). The default is:

CGI_DTCONF=$_CMDSERV_CONF_HOME

Enabling trace on the HTTP server

18 SCLM Developer Toolkit V3R1: Installation and Customization Guide

|
|
|
|
|

|

|
|
|
|

|
|

|

|

|

|

||

||

||
|

|

Table 5. RSE Environment file customization (continued)

Directive Description of change

CGI_DTWORK Determines the base path of the /WORKAREA directory

(workarea files are stored here). The default is:

CGI_DTWORK=$_CMDSERV_WORK_HOME

CGI_TRANTABLE Determines the name of the translate table used in short to

long name translation. This VSAM file is discussed in “Step

6: Configure long/short name table VSAM file” on page 21.

The default is:

CGI_TRANTABLE=BWB.LSTRANS.FILE

STEPLIB Determines where MVS load modules are run from, linklist

or steplib. If SCLMDT’s BWB load modules must be located

through steplib, ensure that the following directives, which

are part of your default rsed. envvars file, are set up

correctly:

v $_CMDSERV_BASE_LOAD=BWB.SBWBLOAD

v STEPLIB=$_CMDSERV_BASE_LOAD

If other load modules, like those for Bizz, must be accessed

through steplib, add the following line to the end of

rsed.envvars:

v if the last steplib directive defined earlier in rsed.envvars

equals STEPLIB=NONE

 STEPLIB=BZZ.SBZZLOAD

v if the last steplib directive defined earlier in rsed.envvars

does not equal STEPLIB=NONE

STEPLIB=$STEPLIB:BZZ.SBZZLOAD

Additional data sets are separated by a colon (:).

_SCLM_DT Determines the path of the /bin installation directory. The

default is:

$_CMDSERV_BASE_HOME

_SCLM_J2EEPUT Determines the path of the /WORKAREA directory for put

requests. The default is:

$CGI_DTWORK/WORKAREA

Using the default value for CGI_DTWORK this resolves to

/var/SCLMDT/WORKAREA.

_SCLM_DWGET Determines the path of the /WORKAREA directory for get

requests. The default is:

$CGI_DTWORK/WORKAREA

Using the default value for CGI_DTWORK this resolves to

/var/SCLMDT/WORKAREA.

_SCLM_DWTRANSFER Determines the path of the /WORKAREA directory for

transfer requests. The default is:

$CGI_DTWORK/WORKAREA

Using the default value for CGI_DTWORK this resolves to

/var/SCLMDT/WORKAREA.

RSE Environment file customization

Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS 19

|

||

||
|

|

||
|
|
|

|

||
|
|
|
|

|

|

|
|
|

|
|

|

|
|

|

|

||
|

|

||
|

|

|
|

||
|

|

|
|

||
|

|

|
|

Table 5. RSE Environment file customization (continued)

Directive Description of change

_SCLM_BASE Determines the path of the /WORKAREA directory for all

other requests. The default is:

$CGI_DTWORK/WORKAREA

Using the default value for CGI_DTWORK this resolves to

/var/SCLMDT/WORKAREA.

_SCLM_BWBCALL Determines the location of BWBCALL and BWBCALLR

scripts. The default is:

$_SCLM_DT/bin/BWBCALL

Using the default value for _SCLM_DT this resolves to

/usr/lpp/SCLMDT/bin/BWBCALL.

Comment lines can be added by beginning the line with a hash (#). See the sample

rsed.envvars additions below.

Customizing the RSE environment setup script

RSE itself has multiple connection methods, directly via a daemon or using a script

started by REXEC or SSH. If you use the REXEC/SSH connection method, changes

have to be made to setup.env.zseries, the script that sets up the RSE environment

variables. This script is stored in the same location as rsed.envvars (default

/usr/lpp/wd4z/rse/lib). At the bottom of the file, copy in the SCLMDT member

containing the RSE environment export statements. This member is BWBREXEC

and can be found in the installed sample library SBWBSAMP.

Activating the RSE Environment file

In order to pick up the SCLM Developer Toolkit variables it is recommended to:

v Disconnect any RSE connections on client machines

v Close Rational Developer for System z on any client machines

v Stop and Start INETD. This requires UID 0 and BPX.DAEMON permission.

Note: If the new variables are not used after disconnecting all clients, stop and

start INETD with an authorized userid. This requires BPX.DAEMON and

possibly UID 0 permission, as described in IBM Rational Developer for System z

Host Configuration Guide (SC31-6930-02).

#ANT_HOME=/u/antdirectory/Ant/apache-Ant.1.6.2

CGI_TRANTABLE=BWB.LSTRANS.FILE

#CGI_DTCONF=$_CMDSERV_CONF_HOME

#CGI_DTWORK=$_CMDSERV_WORK_HOME

#_SCLM_DT=$_CMDSERV_BASE_HOME

#_SCLM_J2EEPUT=$CGI_DTWORK/WORKAREA

#_SCLM_DWGET=$CGI_DTWORK/WORKAREA

#_SCLM_DWTRANSFER=$CGI_DTWORK/WORKAREA

#_SCLM_BASE=$CGI_DTWORK/WORKAREA

#_SCLM_BWBCALL=$_SCLM_DT/bin/BWBCALL

#STEPLIB=$STEPLIB:BZZ.SBZZLOAD

Figure 4. Sample rsed.envars

RSE Environment file customization

20 SCLM Developer Toolkit V3R1: Installation and Customization Guide

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

||

||
|

|

|
|

||
|

|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

Step 6: Configure long/short name table VSAM file

SCLM Developer Toolkit provides the ability to store long name files (which are

files with names greater than 8 characters or in mixed case) into SCLM. This is

achieved through the use of a VSAM file that contains the mapping of the long file

name to the 8 character member name used in SCLM.

For versions previous to z/OS V1.8, this facility is provided via a base ISPF/SCLM

PTF that addresses APAR OA11426. This PTF must be applied before the

long-to-short name translation can be used. If you are on z/OS V1.8 (or higher),

you do not need this PTF.

If this installation of SCLM Developer Toolkit is going to use this facility then the

PTF providing the facility must be installed and the VSAM file containing the

mapping from long-to-short name can then be allocated. To do so, the following

sample JCL, found in member FLM02LST in the ISPF sample library

ISP.SISPSAMP, can be modified and submitted.

You need update authority on this file.

//FLM02LST JOB ←JOB PARAMETERS→

//* --

//* ALLOCATION OF LONGNAME/SHORTNAME VSAM FILE

//*

//* THIS JOB ALLOCATES THE LONGNAME TO SHORTNAME TRANSLATE FILE.

//* THIS TRANSLATE FILE IS REQUIRED FOR THE FOLLOWING SCLM SUITE

//* PRODUCTS - SCLM DEVELOPER TOOLKIT AND SCLM ADMIN TOOLKIT.

//* THE ONE TRANSLATE FILE IS RECOMMENDED TO BE DEFINED AND USED

//* FOR ALL SCLM PROJECTS.

//*

//*

//* CAUTION: THIS IS NEITHER A JCL PROCEDURE NOR A COMPLETE JOB.

//* BEFORE USING THIS SAMPLE, YOU WILL HAVE TO MAKE THE

//* FOLLOWING MODIFICATIONS:

//*

//* 1) ADD THE JOB PARAMETERS TO MEET YOUR SYSTEM REQUIREMENTS

//*

//* 2) CHANGE ALL REFERENCES OF HLQ.LSTRANS.FILE BELOW TO YOUR

//* REQUIRED NAMING CONVENTION FOR THE SCLM TRANSLATE FILE.

//*

//* 3) MODIFY CYLINDERS (PRIMARY SECONDARY)

//*

//* 4) SPECIFY THE VOLUME VVVVVV ON WHICH IT WILL BE ALLOCATED

//* --

Figure 5. Sample Long/Short Translate VSAM file JCL (Part 1 of 2)

Configure long/short name table VSAM file

Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS 21

For more information about the Long to Short name translation process see

Appendix C, “Long/short name translation table,” on page 97.

//IDCAMS EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DELETE HLQ.LSTRANS.FILE

 SET MAXCC=0

 DEFINE CLUSTER(NAME(HLQ.LSTRANS.FILE) -

 RECSZ(58 2048) -

 INDEXED -

 CYLINDERS(1 1) -

 VOLUMES(VVVVVV) -

 SHR(3,3) -

 KEYS (8 0)) -

 DATA(NAME(HLQ.LSTRANS.FILE.DATA)) -

 INDEX(NAME(HLQ.LSTRANS.FILE.INDEX))

 /* DEFINE ALTERNATE INDEX WITH NONUNIQUE KEYS -> ESDS */

 DEFINE ALTERNATEINDEX (-

 NAME(HLQ.LSTRANS.FILE.AIX) -

 RELATE(HLQ.LSTRANS.FILE) -

 RECORDSIZE(58 2048) -

 CYLINDERS(1 1) -

 VOLUMES(VVVVVV) -

 KEYS(50 8) -

 NONUNIQUEKEY -

 UPGRADE) -

 DATA (-

 NAME(HLQ.LSTRANS.FILE.AIX.DATA)) -

 INDEX (-

 NAME(HLQ.LSTRANS.FILE.AIX.INDEX))

//*

//* --

//* NOTE: THE FOLLOWING STEP WILL GET RC=4 DUE TO THE ALTERNATE

//* INDEX BEING EMPTY. THE MESSAGES RETURNED ARE AS FOLLOWS.

//*

//* IDC3300I ERROR OPENING HLQ.LSTRANS.FILE

//* IDC3351I ** VSAM OPEN RETURN CODE IS 100

//* IDC0005I NUMBER OF RECORDS PROCESSED WAS 1

//* IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 4

//*

//* --

//IDCAM2 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//INITREC DD *

INITREC1

/*

//SYSIN DD *

 REPRO INFILE(INITREC) -

 OUTDATA

Figure 5. Sample Long/Short Translate VSAM file JCL (Part 2 of 2)

Configure long/short name table VSAM file

22 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Step 7: Install and customize Ant

This step is required if you plan to use the JAVA/J2EE build support in SCLM.

Ant is freely available and can be downloaded from http://ant.apache.org/. Ant

text files and scripts are distributed in ASCII format and require an ASCII/EBCDIC

translation to run on z/OS in UNIX System Services. A sample translate script has

been supplied in the SCLM Developer Toolkit SBWBSAMP library in sample

member BWBTRANT and a sample copy job to copy the translate script into the

appropriate Ant directory in sample member BWBCPANT. Follow the steps below to

implement Ant on z/OS:

1. Download in binary format, the latest Ant compressed file into the z/OS UNIX

System Services file system and unzip into the appropriate directory. It is

recommended that you download the .zip version of ANT due to problems that

might be encountered on z/OS when unzipping versions of suffix format tar.gz

or tar.bz2. Use the JAR extract command jar -xf ANTfile.zip to unzip on z/OS .

A Java bin directory must be in your local z/OS USS PATH to use the JAR

command. Otherwise, fully qualify the command with the java bin location (for

example, /usr/lpp/java/J1.4/bin/jar -xf ANTfile.zip).

2. Customize the install copy member BWBCPANT to include the Ant installation

directory and run the job to copy the translate script into the directory (review

the instructions contained within the sample member BWBCPANT).

3. Using whatever tool you use to list files in z/OS Unix Systems Services (OMVS

or ISHELL, for example), to check for successful translation, locate a text file,

such as the file README, within the ANT directory. Then browse to this file using

your preferred browsing method, such as OBROWSE or OMVS. If the file is

readable, then the translation was successful.

4. Change file permissions for all files under the Ant installation directory to

enable all users to read and execute.

For example

 cd /u/antdirectory/Ant/apache-Ant.1.6.2; chmod -R 755 *

5. Before using Ant, set the z/OS UNIX System Services environment variables

JAVA_HOME and ANT_HOME.

Note: The JAVA_HOME specified in ANT will be the Java version used at

compile time for Java/J2EE projects and will override the JAVA_BIN variable

set in the $GLOBAL file.

a. JAVA_HOME is required to point to the Java home directory, for example:

JAVA_HOME=/usr/lpp/java/IBM/J1.4

b. ANT_HOME is required to point to the Ant installation directory, for example:

ANT_HOME=/u/antdirectory/Ant/apache-Ant.1.6.2

6. Ant will look for an Ant configuration file in the directory /etc, so we

recommend creating an Ant configuration file named ant.conf and adding the

variables JAVA_HOME and ANT_HOME. That is, in file /etc/ant.conf set:

JAVA_HOME=/usr/lpp/java/IBM/J1.4

ANT_HOME=/u/antdirectory/Ant/apache-Ant.1.6.2

A sample ant.conf file is provided in member BWBANTC in the installed

sample library SBWBSAMP. This can be copied to the /etc/ directory as file

ant.conf and the JAVA_HOME and ANT_HOME variables modified to the

correct value for your installation.

Install and customize Ant

Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS 23

|
|
|
|
|
|
|
|

|
|
|

http://ant.apache.org/

Note: The above directory paths are only sample directory paths. Ensure the

correct directory paths are used.

Install and customize Ant

24 SCLM Developer Toolkit V3R1: Installation and Customization Guide

These variables can also be set in other ways:

v Add them to the rsed.envvars to expose them to Rational Developer for System

z. This applies if you have configured RSE.

v Define them in the system wide profile (/etc/profile).

v Modify the /bin/Ant file in the ANT_HOME directory to have an export

statement at the top of the file. For example:

export JAVA_HOME=/usr/lpp/java/IBM/J1.4

To test that the Ant initialization has been successful:

1. Add the Ant and Java bin directories to the environment variable PATH. This

PATH variable can be added to your .profile or you can enter the following

PATH definition below at the UNIX System Services command line.

Example:

 export PATH=/u/antdirectory/Ant/apache-Ant.1.6.2/bin:/usr/lpp/java/IBM/J1.4/bin:$PATH

2. Run Ant to display the version.

Example:

 Ant -version

This displays the Ant version if Ant is successfully installed.

Note: Setting the PATH statement in this way is necessary for testing, not for

operational use. During normal SCLM Developer Toolkit build processing, the

ANT_HOME and JAVA_HOME environment variables are set dynamically from

the values set in the $GLOBAL member. For a detailed description of the

$GLOBAL member parameters, see “$GLOBAL member” on page 62.

Step 8a: Run the IVP to check correct HTTP installation and

customization

This Installation Verification Process (IVP) applies if you have configured the HTTP

server. The HTTP server must be running and the IVP pass/exec directives

configured in the httpd.conf file for successful verification processing.

From a browser, type the location URL address:

 http://hostname:portnumber/BWBIVP.html

Where:

hostname Is the TCP/IP host name the HTTP server is running on.

port number Is the port used in the job and the httpd.conf file (default port 80).

 If the HTTP server is running you will be prompted for a valid TSO user ID and

password for the system the Web server is started on (Figure 6 on page 26).

Install and customize Ant

Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS 25

After you have entered your TSO user ID and password the browser will initially

display the html welcome screen (Figure 7).

Figure 6. HTTP server logon prompt

Figure 7. Host installation and customization welcome screen

Run the IVP to check correct HTTP installation and customization

26 SCLM Developer Toolkit V3R1: Installation and Customization Guide

If you fail to connect then check that:

v The HTTP server has successfully initialized.

v The z/OS UNIX System Services file system mount point containing the SCLM

Developer Toolkit installation is mounted.

v The hostname:port are correct (try pinging the Hostname).

v There are no firewall restrictions.

v The PASS directive in the httpd.conf file is set correctly:

 Pass /BWBIVP.html /usr/lpp/SCLMDT/bin/BWBIVP.html

After you receive the welcome screen, continue with the IVP, which checks and

validates your installation and customization process.

The sample screens (Figure 8 through to Figure 10 on page 28) give an example of

possible validation responses.

Figure 8. An example of validation responses (part 1)

Run the IVP to check correct HTTP installation and customization

Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS 27

Figure 9. An example of validation responses (part 2)

Figure 10. An example of validation responses (part 3)

Run the IVP to check correct HTTP installation and customization

28 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Testing connection to the HTTP server

At any time the server connection can be tested without running the full IVP

check.

From a browser, type the location URL address:

 http://hostname:portnumber/SCLMDW.html

Where:

hostname Is the TCP/IP host name the HTTP server is running on.

port number Is the port used in the job and the httpd.conf file (default port 80).

 You are prompted for a valid user ID and password for the system the Web server

is started on.

The browser then displays the message shown in Figure 11.

Figure 11. Server Connection successful message

Run the IVP to check correct HTTP installation and customization

Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS 29

Step 8b: Run the IVP to check correct RSE installation and

customization

This Installation Verification Process (IVP) applies if you have configured the RSE

connection. This connection is used when Developer Toolkit is installed as a

Rational Developer for System z plug-in. A z/OS RSE connection must be

configured and running. The SCLM Developer Toolkit directives must be

configured in the rsed.envvars file for successful verification processing. For more

information about this, see “Step 5b: Configure Remote Systems Explorer” on page

18.

Note: Rational Developer for System z also provides several IVP tests for the RSE

component. Refer to the IBM Rational Developer for System z Host Configuration guide

(SC31-6930-02) for more information on these.

Follow these steps to invoke the SCLM Developer Toolkit IVP:

1. In Rational Developer for System z, ensure the Remote Systems Explorer

perspective is open. For the z/OS connection that will be connecting to SCLM,

right click on the USS Shells node and then select Launch Shell.

2. In the command line in the shell, change directory to the installation directory

of the SCLM Developer Toolkit z/OS UNIX System Services file system

modules. By default this will be /usr/lpp/SCLMDT/bin. To do this use the cd

command as shown in Figure 12.

Figure 12. Change directory command

Run the IVP to check correct RSE installation and customization

30 SCLM Developer Toolkit V3R1: Installation and Customization Guide

|
|
|

3. In the command line enter BWBIVPR.cgi to run the IVP script. The script will

run in the shell and will give you a number of validation responses as it steps

through the different tests in the IVP. After this completes, you can scroll back

up to examine all of the responses to ensure that the IVP worked successfully.

4. An example of the IVP validation responses is shown in Figure 13.

Figure 13. IVP validation responses

Run the IVP to check correct RSE installation and customization

Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS 31

32 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Chapter 2. Installing the Eclipse-based client onto the PC

If you have already installed Rational Developer for System z onto your PC, you

do not need to install the client because the SCLM Developer Toolkit plug-in must

already be installed. However if you have not installed SCLM Developer Toolkit as

part of your Rational Developer for System z installation, then you can install just

the SCLM Developer Toolkit plug-in into an existing Eclipse by following the

instructions contained in this chapter.

Note: SCLM Developer Toolkit only supports the IBM Java Runtime Environment

(JRE) Version 1.5.

Furthermore, if you want to install the SCLM Developer Toolkit into a different

Eclipse other than Rational Developer for System z, you must carry out the

installation steps that follow.

Preparing for installation

To prepare for installation, you need to meet the following media requirements

and hardware and software requirements.

Media requirements

To install SCLM Developer Toolkit onto your workstation, you must have access to

the SCLM Developer Toolkit installation CD or electronic images.

Hardware and software requirements

The following information gives hardware and software requirements for SCLM

Developer Toolkit.

Prerequisites for SCLM Developer Toolkit

IBM SCLM Developer Toolkit is a licensed program to support users who want to

store and build distributed code in SCLM on z/OS, as well as work with

traditional z/OS artefacts through an IDE.

Hardware requirements: SCLM Developer Toolkit requires the hardware as

shown in Table 6 on page 34.

© Copyright IBM Corp. 2005, 2007 33

Table 6. Required hardware

Processor Intel Pentium III 800 MHz or higher is required

Memory 768MB RAM is required, though 1GB RAM or higher is

recommended

Disk space 250 MB minimum disk space is required to install SCLM

Developer Toolkit. This is assuming you are installing the

complete Eclipse installation along with the SCLM

Developer Toolkit plug-in. You will be installing SCLMDT

using IBM Installation manager so you will need an

additional 120 MB minimum disk space to install this (if

you do not already have it installed). Installation also

requires an additional 700MB of temporary space for

product update installation files and other files.

Monitor and video card A VGA display of 1024x768 or higher is required

Supported operating systems: SCLM Developer Toolkit requires any of the

following operating systems:

 Table 7. Required operating systems

Windows XP Professional with Service Pack 2

Windows Server 2003 Standard or Enterprise Edition with Service Pack 1

Windows Vista Business Edition

Installing SCLM Developer Toolkit

Install SCLM Developer Toolkit using IBM Installation Manager. If you do not

have IBM Installation Manager, it is provided on the SCLM Developer Toolkit CD.

The following steps work you through installing the IBM Installation Manager and

then installing the SCLM Developer Toolkit.

Step 1. Install from CD or electronic image

You can install SCLM Developer Toolkit directly from CD or electronic image.

After the electronic image has been extracted, the image will contain the same

contents as the CD. Installation is performed by IBM Installation Manager and this

is installed if necessary.

v Insert the installation CD and run install.exe (if it hasn’t auto-started for you

already). Or if you are installing from an extracted electronic image, go to the

directory where the image is extracted and run install.exe.

– If you do not have IBM Installation Manager installed on your system, you

will be prompted to install this first. This is used to install the Eclipse

workbench and all future updates. Follow the on-screen instructions to install

the IBM Installation Manager.

1. Accept the license agreement and click Next.

2. Change the default installation location if required and Click Next.

3. Click Install to begin the installation.

4. When the installation completes, click OK to continue with the SCLM

Developer Toolkit client installation.

5. The Installation Manager starts up automatically and is already set up to

install the SCLM Developer Toolkit. Proceed to Step 2.

Installing the Eclipse-based client onto the PC

34 SCLM Developer Toolkit V3R1: Installation and Customization Guide

||

||

||

||
|

– If you do have IBM Installation Manager installed it starts up automatically

and is already set up to install the SCLM Developer Toolkit.

IBM Installation Manager is installed and you can proceed to Step 2.

v Alternatively if you have IBM Installation Manager installed you can start it and

point to a CD or extracted electronic image to install SCLM Developer Toolkit.

1. Start the IBM Installation Manager (Start > All Programs > IBM Installation

Manager > IBM Installation Manager).

2. In the Installation Manager window, go to File > Preferences > Repositories

and click the Add Repository button.

3. Click the Browse button and select the disk1 directory on the CD or from the

extracted image.

4. Click OK to save the repository.

5. Click OK to save your changes and close the Preferences Window.

6. Click the Install Packages button on the Quick Start panel. Proceed to Step 2.

Step 2. Install SCLM Developer Toolkit

From the Install Packages screen of the IBM Installation Manager:

1. On the Install panel, select the SCLM Developer Toolkit V3.1 from the list of

available offerings if it is not already selected and click Next.

2. On the License panel, accept the license agreement and click Next.

3. On the Location panel:

a. Specify the Shared Resources Directory: Assuming you have not installed

any other offerings yet using the IBM Installation Manager, specify the

directory you want to use as your Common Component Directory.

Note: This directory is used by all offerings installed by the Installation

Manager, and is the directory where the majority of files (for example, all

Eclipse features and plug-ins) are installed, so make sure you have plenty of

disk space here.

After this location has been specified you will not be able to change it on

the Location panel for other offerings you install later.

Click Next.

b. Specify the Installation Directory: On the next screen specify the

installation directory where you want to install the offering.

Note: Only certain files specific to this offering are installed to this location.

The majority of the offering (for example, all of the Eclipse plug-ins and

features) is installed to the Common Component Directory which was

specified previously.

Click Next.

c. Extend an Existing Eclipse Installation: On the next screen you can choose

to install the SCLM Developer Toolkit plug-in into an existing Eclipse. By

default SCLM Developer Toolkit is installed into its own installation of

Eclipse. If you want to add the plug-in to an existing Eclipse specify the

installation location of the Eclipse IDE.

Note: SCLM Developer Toolkit only supports the IBM Java Runtime

Environment (JRE) Version 1.5. Installing into an existing Eclipse

environment that uses an unsupported JRE will cause problems running

SCLM Developer Toolkit.

Click Next.

Installing the Eclipse-based client onto the PC

Chapter 2. Installing the Eclipse-based client onto the PC 35

|
|

4. On the Features panel:

a. Select required languages: Select any offered language packs you want to

install. Click Next.

b. Select additional features: On the next screen select any additional features

that are offered that you might require. The SCLM Developer Toolkit is the

default feature and is selected by default.
5. Review the Summary panel and click Install to begin the install.

6. When the Installation completed panel appears, click Finish. This exits the

Installation Manager.

IBM SCLM Developer Toolkit is installed.

To launch the workbench from the Windows Start menu, select Start > All

Programs > IBM SCLM Developer Toolkit > IBM SCLM Developer Toolkit >

IBM SCLM Developer Toolkit.

Installing the Eclipse-based client onto the PC

36 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Part 2. Customizing SCLM Developer Toolkit

Chapter 3. SCLM customization for the SCLM

administrator 39

Language translators for JAVA/J2EE support . . . 39

JAVA/J2EE build summary 40

JAVA/J2EE build objects generated 41

SCLM language definitions 42

SCLM types 43

SCLM member formats 45

$GLOBAL 45

J2EE ARCHDEF 46

J2EE Ant build script 49

JAVA/J2EE Ant XML build skeletons 53

Mapping J2EE projects to SCLM 54

Recommendations for mapping J2EE projects to

SCLM 57

SCLM Developer Toolkit deployment 58

WebSphere Application Server (WAS)

deployment 59

SCLM to Unix System Services deployment . . 59

Secure deployment 60

Public key authentication 60

Other deployment options 60

ASCII or EBCDIC storage options 61

ASCII/EBCDIC language translators 61

$GLOBAL member 62

SITE and project-specific options 63

Options Definition 67

Example of using combinations of the

TRANSLATE.conf overrides 69

Example of using combinations of the BIDIPROP

overrides 71

Chapter 4. SCLM security 73

Build/Promote/Deploy security flag and process

flow 73

Security rules and surrogate user ID 73

Build rule format 74

Promote rule format 74

Deploy rule format 74

SAF/RACF BUILD, PROMOTE, DEPLOY, and

PROFILE rules 75

Chapter 5. CRON-initiated Builds and Promotes 77

STEPLIB and PATH requirements 77

CRON Build job execution 78

CRON Build job samples 78

© Copyright IBM Corp. 2005, 2007 37

38 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Chapter 3. SCLM customization for the SCLM administrator

This chapter looks at how the SCLM administrator can customize SCLM. It

contains the following sections:

v “Language translators for JAVA/J2EE support.”

v “JAVA/J2EE build summary” on page 40.

v “JAVA/J2EE Ant XML build skeletons” on page 53.

v “Mapping J2EE projects to SCLM” on page 54.

v “SCLM Developer Toolkit deployment” on page 58.

v “ASCII or EBCDIC storage options” on page 61.

Language translators for JAVA/J2EE support

SCLM Developer Toolkit requires five new language translators defined in SCLM

for JAVA/J2EE support. These language translators are shipped in the SBWBSAMP

members as shown below:

 The SCLM administrator will need to copy these samples, rename if required, and

then generate them into the PROJDEFS.LOAD library for each SCLM project where

Java support is required. These translators are required to be added/compiled in

the Project Definition.

A sample project definition for JAVA/J2EE projects and host components is

provided in sample BWBSCLM.

The LOADLIB data set containing the BWB* modules must be included in the ISPF

ISPLLIB concatenation to access the JAVA/J2EE language translator modules. The

ISPLLIB concatenation is customized in the configuration file ISPF.conf.

SCLM DATASETS for JAVA/J2EE:

It is recommended that you create SCLM target source data sets of RECFM=VB,

LRECL=1024 for any JAVA/J2EE source that is to be stored in SCLM from the

Toolkit client to allow long record types. The editors on the Eclipse-based client

create files of variable record length, and to maintain integrity the Host target data

Sample
Translator Description

BWBTRANJ Sample default member translator. No parsing. Similar to SCLM

FLM@TEXT. This translator can be customized to create language

definitions J2EEPART, J2EEBIN, BINARY, and TEXT.

BWBTRANS Sample SQLJ language translator. LANG=SQLJ

BWBTRAN1 Sample Java language translator. LANG=JAVA.

BWBTRAN2 Sample JAVA/J2EE language translator incorporating Ant (for multiple

Java compiles and JAR, WAR, and EAR builds).

BWBTRAN3 Sample J2EE language translator for SCLM ARCHDEF J2EE support.

LANG=J2EEOBJ.

Figure 14. Sample translators

© Copyright IBM Corp. 2005, 2007 39

||

|
|
|

sets in SCLM should also be of RECFM=VB. Using Fixed record length data sets

(RECFM=FB) will result in imported members having white spaces appended to

end of record.

JAVA/J2EE build summary

Here is a summary of the process that occurs for Java and J2EE builds using the

supplied translators.

Note: You can build JAVA/J2EE members or ARCHDEFS directly in TSO/ISPF on

the host as well as via the Developer Toolkit Client.

The ARCHDEF contains the members that make up the JAVA/J2EE project and are

a short-name representation of how the project exists in an Eclipse workspace.

The ARCHDEF itself is built which invokes a pre-build verify language translator

(J2EEANT). The translator reads the J2EE build script, which is referenced in the

ARCHDEF by the SINC keyword, and overlays the properties specified into the

skeleton Ant XML referenced by properties SCLM–ANTXML �A�. The build script,

when generated by the SCLM Developer Toolkit, is stored in SCLM with a

language of J2EEANT �1�.

An ARCHDEF generates Java Classes for Java source identified with the INCLD

keyword in the ARCHDEF �2�, and each ARCHDEF can also generate a J2EE

archive file such as a JAR, WAR, or EAR file. The J2EE object created is dependent

on the appropriate build script referenced and use of the ARCHDEF keyword

OUT1 �3�, �B�.

When the ARCHDEF is built the pre-build verify language translator associated

with the build script (in SCLM type J2EEBLD) runs and determines what parts of

the ARCHDEF are required to be rebuilt (including nested ARCHDEFs �4�

identified through the use of the INCL keyword in the ARCHDEF). Those parts are

then copied into the z/OS UNIX System Services file system workarea and Ant

compiles and generates the required JAVA/J2EE objects specified by the build

script and ARCHDEF. Any external jar or class references that your IDE project

needs to resolve are done so from the path defined in the CLASSPATH_JARS

property �C�.

SCLM then processes each individual ARCHDEF component running each

language translator associated with the component. The Language translator JAVA,

associated with Java source, copies the class files created back into SCLM.

Finally, the ARCHDEF translator determines what J2EE objects have been

generated (JAR, WAR, EAR) and copies these parts back into SCLM.

It is essential to create a separate ARCHDEF for each application component that

might make up an enterprise application (EAR). That is, an EAR which contains a

WAR which contains an EJB JAR should have an ARCHDEF for the JAR, an

ARCHDEF for the WAR with an INCL of the EJB JAR ARCHDEF. The EAR

ARCHDEF then should include an INCL of the WAR ARCHDEF.

Figure 15 on page 41 shows the corresponding JAR sample.

Language translators for JAVA/J2EE support

40 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Figure 16 shows the corresponding JAR script.

JAVA/J2EE build objects generated

The following objects are generated:

v Compilation of all Java Source into output classes, stored in SCLM type

JAVACLAS.

v Classes stored in SCLM and long/short name stored in Translate tables.

v Optional Jar created (contains classes and might contain other Java project

components such as XML/HTML etc in a packaged structure).

v Jar objects stored in SCLM and long/short name stored in Translate table.

v Jar structure determined by the ARCHDEF used. The long names associated

with the members in the ARCHDEF determine the Jar packaging format.

v Optional EJB JAR (contains Classes and might contain other Java project

components such as XML/HTML/JSP etc in a packaged structure).

v Optional Web WAR file based on J2EE web.xml file in J2EE project and stored in

SCLM as above.

v Optional EAR file for deployment based on application.xml in J2EE project and

stored in SCLM as above.

v All listing outputs are stored in SCLM type J2EELIST.

*

* Initially generated on 10/05/2006 by SCLM DT V2

*

 LKED J2EEOBJ * J2EE Build translator

*

* Source to include in build

*

 INCLD AN000002 V2TEST * com/Angelina.java *

 INCLD V2000002 V2TEST * com/V2Java1.java �2� *

 INCLD V2000003 V2TEST * V2InnerClass.java *

*

* Nested SCLM controlled jars to include *

*

 INCL V2JART1 ARCHDEF * DateService.jar �4� *

*

* Build script and generated outputs

*

 SINC V2JARB1�1� J2EEBLD * J2EE JAR Build script *

 OUT1 * J2EEJAR * V2TEST.jar �3� *

 LIST * J2EELIST

Figure 15. Sample Jar application (JAR) ARCHDEF

<ANTXML>

<project name="JAVA Project" default="jar" basedir=".">

<property name="env" environment="env" value="env"/>

<property name="SCLM_ARCHDEF" value="V2JAR1"/>

<property name="SCLM_ANTXML" value="BWBJAVAA"/> �A�

<property name="SCLM_BLDMAP" value="YES"/>

<property name="JAR_FILE_NAME" value="V2TEST.jar"/> �B�

<property name="CLASSPATH_JARS" value="/var/SCLMDT/CLASSPATH"/> �C�

<property name="ENCODING" value="IBM-1047"/>

</ANTXML>

Figure 16. J2EE Build script JAR sample

JAVA/J2EE build summary

Chapter 3. SCLM customization for the SCLM administrator 41

SCLM language definitions

The sample translators define the following languages:

Translator Description

J2EEPART Language type that specifies a JAVA/J2EE component and defined

by sample BWBTRANJ. No particular parsing occurs on build of

this language definition. Non-Java source or J2EE components that

require ASCII/EBCDIC language conversion can be generically

slotted under this language definition if no particular build parsing

is required (for example html, XML, .classpath, .project, definition

tables). Optionally language definition of TEXT can be used.

J2EEBIN Language type that specifies JAVA/J2EE Binary or ASCII stored

component and defined by sample BWBTRANJ. No particular

parsing occurs on build of this language definition. JAVA/J2EE

binary files and text files that you want to be stored as ASCII can

be generically slotted under this language definition if no

particular build parsing is required.

JAVA Language type for Java source and defined by sample BWBTRAN1.

The Java translator determines what type of build has been issued

against Java source.

Note: This language definition must be assigned to Java programs

if you want to store the Java source in EBCDIC on the host (that is,

the source might be viewed and edited directly on the host

through ISPF). The advantage of defining programs with this

language definition is being able to edit and view the source

directly on the z/OS host. The disadvantages are that codepage

conversions need to take place when migrating or importing

projects from the client to the host.

v Scenario 1: Build issued against individual Java program.

The Java translator compiles source into output classes. Class is

stored in SCLM in type JAVACLAS. Javac compile output is

stored in type JAVALIST.

Any classpath dependencies can be satisfied by storing

dependent JARs in the classpath directory specified in $GLOBAL

member parameter CLASSPATH_JARS. For more information about

this, see “$GLOBAL member” on page 62.

v Scenario 2: Build against ARCHDEF (ARCHDEF calls J2EEANT

build script referenced by the SINC keyword) leaves the Ant

script specified to do the build. The Java translator itself, when

invoked by the ARCHDEF, just copies the output classes into

SCLM. An ANT build summary file is stored in JAVALIST.

Individual Java components have an output table stored in

JAVALIST.

SQLJ Language type for SQLJ source code defined by sample

BWBTRANS. SQLJ Members defined with this language translator

invoke the SQLJ language translator at build time. SQLJ source is

converted to java source, and compiled into classes and serialized

objects (.ser files) in type SQLJSER. Optionally, DBRM members

can also be generated into type DBRMLIB.

JAVABIN Language type that is similar to Java and used when storing Java

source as ASCII in SCLM.

SCLM language definitions

42 SCLM Developer Toolkit V3R1: Installation and Customization Guide

||
|
|
|
|
|

J2EEANT This is the main build translator for JAVA/J2EE builds and this

verify translator is invoked when a J2EE ARCHDEF is built. The

translator gets invoked because the JAVA/J2EE build script, stored

in SCLM type J2EEBLD, is saved in SCLM with a language of

J2EEANT. It is then referenced via the SINC keyword in the

ARCHDEF.

 This verify translator determines what parts are required to be

built (including nested ARCHDEFs) and depending on the build

modes copies these parts into the z/OS UNIX System Services

WORKAREA directory. A skeleton Ant XML is dynamically

customized according to the build script and the parts built in the

workarea using Ant. The class files are passed to the

JAVA/JAVABIN language translators to store the class files back

into SCLM. J2EE objects generated such as a JAR, WAR, or EAR

are passed to the ARCHDEF language translator (J2EEOBJ) to be

stored back into SCLM.

J2EEOBJ This is the final build translator invoked as part of the ARCHDEF

build process. This translator determines what J2EE objects (JAR,

WAR, EAR) were previously built in translator J2EEANT and

copies these objects into SCLM with the generated short name

provided. This translator is referenced by the LKED keyword in

the ARCHDEF itself.

Note: All objects such as JAR, WAR, and EAR have their internal zipped source

parts in ASCII to distribute to all platforms.

SCLM types

There are a number of SCLM types that need to be created for JAVA/J2EE support.

Some of these types are mandatory types and must be created for JAVA/J2EE

support to function.

Recommended data set attributes for some typical types

For the following SCLM TYPES the default data set attributes of

DSORG=PO TRACKS(1,5) DIR=50 BLKSIZE=0 (system determined) are

recommended.

 Also, the following record format and record length attributes are

recommended:

J2EEBLD recfm=FB lrecl=256

JAVALIST recfm=VB lrecl=255

J2EELIST recfm=VB lrecl=255

JAVACLAS recfm=VB lrecl=256

J2EEJAR recfm=VB lrecl=256

J2EEWAR recfm=VB lrecl=256

J2EEEAR recfm=VB lrecl=256

DBRMLIB recfm=VB lrecl=256

SQLJSER recfm=VB lrecl=256

 Additional source dataset types for Java/J2EE recfm=VB lrecl=1024.

Type Description

SCLM language definitions

Chapter 3. SCLM customization for the SCLM administrator 43

J2EEBLD This SCLM Type is required for Java and J2EE build and deploy

processes.

 The J2EEBLD type contains:

v J2EEBLD build scripts used to drive the Ant build and deploy

process.

v Java and J2EE ANTXML scripts to be invoked for builds and

deploys.

Note: Sample Java and J2EE ANTXML scripts are supplied. Generally

these scripts require little or no user customization. Site- and

user-dependent variables are customized in the J2EEBLD scripts

themselves to override default ANTXML variables. (For more

information, see “JAVA/J2EE Ant XML build skeletons” on page

53.)

This contains a $GLOBAL member which is required for both Java

and J2EE builds (see “$GLOBAL member” on page 62).

DBRMLIB Technically a DB2 type.

 DBRMLIB is required for SQLJ support. Must be FB=80. Stores the

Database request modules.

SQLJSER This type is required for the J2EE/SQLJ build process.

 The SQLJSER type stores SQLJ serialized profiles.

ARCHDEF This contains JAVA/J2EE ARCHDEF members.

 The long name parts in each ARCHDEF member outline the

JAVA/J2EE project structure. The ARCHDEF for a given project

can be dynamically created from the client when migrating in new

projects or updated when adding new parts to an existing project.

 The SCLM ARCHDEF is the primary SCLM file for defining the

elements of a JAVA/J2EE project. In regards to JAVA/J2EE

applications the ARCHDEF represents how the J2EE application is

structured in the Client IDE project workspace.

 The Project file structure of the application is replicated in the

ARCHDEF (using the SCLM host short name to map the long

name structure). Additional keywords in the ARCHDEF such as

LINK, SINC, and OUT1 indicate to SCLM the J2EE nature of this

project and source include a JAVA/J2EE build script to facilitate

build processing of this project.

JAVALIST This SCLM type is required for the Java build process.

 The JAVALIST type contains listing outputs from Java builds.

J2EELIST This SCLM type is required for the J2EE build process.

 The J2EELIST type contains listing outputs from J2EE builds.

JAVACLAS This SCLM type is required for both Java and J2EE build processes.

 The JAVACLAS type contains output class files from builds

associated with the JAVA, J2EEANT language definitions.

J2EEJAR This SCLM type is required for JAVA/J2EE builds (language

definition J2EEANT).

 The J2EEJAR type contains JAR output from builds associated with

the J2EEANT language definition.

SCLM types

44 SCLM Developer Toolkit V3R1: Installation and Customization Guide

||

|
|

||

|

J2EEWAR This SCLM type is required for the J2EE build process.

 The J2EEWAR type contains WAR output from builds associated

with the J2EEANT language definition.

J2EEEAR This SCLM type is required for the J2EE build process.

 The J2EEEAR type contains EAR output from builds associated

with the J2EEANT language definition.

<Java/J2EE> types

A separate SCLM type is required for each JAVA/J2EE project to be

stored in SCLM. This is to avoid conflicts in same-named files that

occur with JAVA/J2EE projects. For more information about this,

see “Mapping J2EE projects to SCLM” on page 54.

SCLM member formats

This section describes SCLM member formats:

v “$GLOBAL”

v “J2EE ARCHDEF” on page 46

v “J2EE Ant build script” on page 49

$GLOBAL

The $GLOBAL format is of type J2EEBLD and language J2EEPART. It must use the

name $GLOBAL and variables are defined in tagged language format.

$GLOBAL specifies the default properties for the SCLM project for JAVA/J2EE

build processing. This must be stored in the SCLM type J2EEBLD.

For a detailed description of the $GLOBAL member parameters, see “$GLOBAL

member” on page 62.

SCLM types

Chapter 3. SCLM customization for the SCLM administrator 45

$GLOBAL sample:

<property name="ANT_BIN" value="/usr/lpp/Ant/apache-Ant-1.6.0/bin/Ant"/>

<property name="JAVA_BIN" value="/usr/lpp/java/IBM/J1.4/bin"/>

<property name="CGI_DTCONF" value="/etc/SCLMDT/CONFIG"/>

<property name="CGI_DTWORK" value="/var/SCLMDT/WORKAREA"/>

<property name="CLASSPATH_JARS" value="/var/SCLMDT/CLASSPATH"/>

J2EE ARCHDEF

The J2EE ARCHDEF format is of type ARCHDEF and language ARCHDEF.

LKED J2EEOBJ

INCLD SourceFile SourceType

INCL ArchdefName ArchdefType

SINC BuildScriptname J2EEBLD

OUT1 * J2EEOutputObjectType

LIST * J2EELIST

 The ARCHDEF uses standard SCLM architecture keywords to tell SCLM how to

process the build of the ARCHDEF.

LKED Indicates this is a LEC ARCHDEF and gives the language of the

ARCHDEF translator to be invoked (for J2EE ARCHDEFs, this is always

J2EEOBJ).

INCLD

SCLM include of J2EE component. SourceFile is the name of the source

member (for example, Java source) that is included in this ARCHDEF.

SourceType is the SCLM type that contains the member. In an SCLM

Developer Toolkit generated ARCHDEF there will be a comment that gives

the full file name of the file as it existed in the project on the workbench.

INCL SCLM include of another nested ARCHDEF, such as the ARCHDEF that

contains the manifest for an EJB application.

SINC Source include of the J2EEBLD build script. BuildScriptName is the name of

the build script. The source type is always J2EEBLD.

OUT1 Indicates the J2EE object type created by this ARCHDEF. The member

name is always *. The J2EEOutputObjectType is set to either J2EEEAR,

J2EEWAR, or J2EEJAR. The member created will be given a name of the

generated short name for the JAR, WAR, or EAR file.

LIST Summary component listing and audit of the ARCHDEF built. The

member name is always *. The source type is always J2EELIST. The

member will be given a name of the same value as the ARCHDEF member

name.

$GLOBAL sample

46 SCLM Developer Toolkit V3R1: Installation and Customization Guide

J2EE ARCHDEF samples: This section shows JAR, WAR, EJB, and EAR samples.

*

* Initially generated on 10/05/2006 by SCLM DT V2

*

 LKED J2EEOBJ * J2EE Build translator

*

* Source to include in build

*

 INCLD AN000002 V2TEST * com/Angelina.java *

 INCLD V2000002 V2TEST * com/V2Java1.java *

 INCLD V2000003 V2TEST * V2InnerClass.java *

*

* Build script and generated outputs

*

 SINC V2JARB1 J2EEBLD * J2EE JAR Build script *

 OUT1 * J2EEJAR * V2TEST.jar *

 LIST * J2EELIST

Figure 17. Sample Jar application (JAR) ARCHDEF

*

* Initially generated on 5 Sep 2006 by SCLM DT V2

*

 LKED J2EEOBJ * J2EE Build translator

*

* Source to include in build

*

 INCLD DA000026 SAMPLE5 * JavaSource/service/dateController.java *

 INCLD XX000001 SAMPLE5 * .classpath *

 INCLD XX000002 SAMPLE5 * .project *

 INCLD XX000003 SAMPLE5 * .websettings *

 INCLD XX000004 SAMPLE5 * .website-config *

 INCLD OP000002 SAMPLE5 * WebContent/operations.html *

 INCLD MA000001 SAMPLE5 * WebContent/META-INF/MANIFEST.MF *

 INCLD IB000001 SAMPLE5 * WebContent/WEB-INF/ibm-web-bnd.xmi *

 INCLD IB000002 SAMPLE5 * WebContent/WEB-INF/ibm-web-ext.xmi *

 INCLD WE000001 SAMPLE5 * WebContent/WEB-INF/web.xml *

 INCLD MA000002 SAMPLE5 * WebContent/theme/Master.css *

 INCLD BL000001 SAMPLE5 * WebContent/theme/blue.css *

 INCLD BL000002 SAMPLE5 * WebContent/theme/blue.htpl *

 INCLD LO000013 SAMPLE5 * WebContent/theme/logo_blue.gif *

 *

 * Build script and generated outputs

 *

 SINC SAMPLE5 J2EEBLD * J2EE WAR Build script *

 OUT1 * J2EEWAR * Sample5.war *

 LIST * J2EELIST

Figure 18. Sample Web application (WAR) ARCHDEF

J2EE ARCHDEF

Chapter 3. SCLM customization for the SCLM administrator 47

LKED J2EEOBJ

*

 INCLD XX000001 SAMPLE3 * .classpath *

 INCLD XX000002 SAMPLE3 * .project *

 INCLD MA000004 SAMPLE3 * ejbModule/META-INF/MANIFEST.MF *

 INCLD EJ000004 SAMPLE3 * ejbModule/META-INF/ejb-jar.xml *

 INCLD IB000003 SAMPLE3 * ejbModule/META-INF/ibm-ejb-jar-bnd.xmi *

 INCLD XX000008 SAMPLE3 * ejbModule/com/ibm/ejs/container/_EJSWrapper *

 * _Stub.java *

 INCLD XX000009 SAMPLE3 * ejbModule/com/ibm/ejs/container/_EJSWrapper *

 * _Tie.java *

 INCLD XX000010 SAMPLE3 * ejbModule/com/ibm/websphere/csi/_CSIServant *

 * _Stub.java *

 INCLD XX000011 SAMPLE3 * ejbModule/com/ibm/websphere/csi/_Transactio *

 * nalObject_Stub.java *

 INCLD DA000005 SAMPLE3 * ejbModule/myEJB/DateBean.java *

 INCLD DA000006 SAMPLE3 * ejbModule/myEJB/DateBeanBean.java *

 INCLD DA000007 SAMPLE3 * ejbModule/myEJB/DateBeanHome.java *

 INCLD EJ000001 SAMPLE3 * ejbModule/myEJB/EJSRemoteStatelessDateBeanH *

 * ome_1a4c4c85.java *

 INCLD EJ000002 SAMPLE3 * ejbModule/myEJB/EJSRemoteStatelessDateBean_ *

 * _1a4c4c85.java *

 INCLD EJ000003 SAMPLE3 * ejbModule/myEJB/EJSStatelessDateBeanHomeBea *

 * nHomeBean_1a4c4c85.java *

 INCLD XX000012 SAMPLE3 * ejbModule/myEJB/_DateBeanHome_Stub.java *

 INCLD XX000013 SAMPLE3 * ejbModule/myEJB/_DateBean_Stub.java *

 INCLD XX000014 SAMPLE3 * ejbModule/myEJB/_EJSRemoteStatelessDateBean *

 * Home_1a4c4c85_Tie.java *

 INCLD XX000015 SAMPLE3 * ejbModule/myEJB/_EJSRemoteStatelessDateBean *

 * _1a4c4c85_Tie.java *

 INCLD XX000016 SAMPLE3 * ejbModule/org/omg/stub/javax/ejb/_EJBHome_S *

 * ub.java *

 INCLD XX000017 SAMPLE3 * ejbModule/org/omg/stub/javax/ejb/_EJBObject *

 * _Stub.java *

 INCLD XX000018 SAMPLE3 * ejbModule/org/omg/stub/javax/ejb/_Handle_St *

 * ub.java *

 INCLD XX000019 SAMPLE3 * ejbModule/org/omg/stub/javax/ejb/_HomeHandl *

 * e_Stub.java *

 INCLD DA000008 SAMPLE3 * ejbModule/services/DateBeanServices.java *

 INCLD XX000020 SAMPLE3 * ejbModule/services/_DateBeanServices_Stub.j *

 * ava *

*

 SINC SAMPLE3 J2EEBLD * J2EE EJB JAR Build script *

 OUT1 * J2EEJAR * DateService.jar

*

 LIST * J2EELIST

Figure 19. Sample EJB Application (EJB) ARCHDEF

J2EE ARCHDEF

48 SCLM Developer Toolkit V3R1: Installation and Customization Guide

J2EE Ant build script

The J2EE Ant build Script format is of type J2EEBLD and language J2EEANT. It

can be any name up to 8 characters and variables are defined in tagged language

format. The build scripts are very similar for JAR, WAR and EAR. The syntax

below is shown for a WAR build script. For JAR and EAR, build script variables

are the same except for using EAR_NAME and JAR_NAME instead of

WAR_NAME.

 The SCLM Build scripts overlay customer-defined variables dynamically on build

request when running the Ant build script. These variables are set to values shown

in Table 8 on page 50.

 LKED J2EEOBJ

*

 INCLD XX000001 SAMPLE6 * .classpath *

 INCLD XX000002 SAMPLE6 * .project *

 INCLD AP000001 SAMPLE6 * META-INF/application.xml *

 INCL SAMPLE3 ARCHDEF * DateService.jar *

 INCL SAMPLE5 ARCHDEF * Sample5.war *

*

 SINC SAMPLE6 J2EEBLD * J2EE EAR Build script *

 OUT1 * J2EEEAR * Sample6.ear *

 LIST * J2EELIST

Figure 20. Sample EAR Application (EAR) ARCHDEF

<ANTXML>

<project name="J2EE Project type" default="web-war" basedir=".">

<property name="env" environment="env" value="env"/>

<property name="SCLM_ARCHDEF" value="ARCHDEF name"/>

<property name="SCLM_ANTXML" value="ANTXML name"/>

<property name="SCLM_BLDMAP" value="Include Buildmap"/>

<property name="JAVA_SOURCE" value="Include Java Source"/>

<property name="J2EE_HOME" value="${env.J2EE_HOME}"/>

<property name="JAVA_HOME" value="${env.JAVA_HOME}"/>

<property name="CLASSPATH_JARS" value="Classpath Directory location"/>

<property name="CLASSPATH_JARS_FILES" value="Jar/class filenames"/>

<property name="ENCODING" value="Codepage"/>

<property name="DEBUG_MODE" value="debug_mode"/>

<!-- WAR file name to be created by this build process -->

<!-- include suffix of .war -->

<property name="WAR_NAME" value="War name" />

<path id="build.class.path">

 <pathelement location="."/>

 <pathelement location="${J2EE_HOME}/lib/j2ee.jar"/>

 <pathelement location="${CLASSPATH_JARS}/jdom.jar"/>

 <fileset dir="." includes="**/*.jar"/>

 <fileset dir="${CLASSPATH_JARS}" includes="**/*.jar, **/*.zip"/>

</path>

</ANTXML>

Figure 21. J2EE Ant build script

J2EE Ant

Chapter 3. SCLM customization for the SCLM administrator 49

Table 8. Customer-defined variables

Variable Description

J2EE Project name Java/J2EE project type being built. This is a temporary

project name set in the build script for Ant to use during

the build. The values this will be set to are:

v J2EE EAR Project

v J2EE WAR Project

v J2EE EJB Project

v JAVA Project

This variable does not need to be customized.

SCLM_ARCHDEF ARCHDEF name or the ARCHDEF being built

SCLM_ANTXML Name of skeleton Ant XML to use for build

SCLM_BLDMAP Value of Yes or No. If Yes then include the SCLM build

map in MANIFEST directory in JAR, WAR, or EAR.

Provides audit and build map of parts included.

JAVA_SOURCE Value of Yes or No. If Yes then include Java source in JAR,

WAR, or EAR.

CLASSPATH_JARS z/OS UNIX System Services classpath directory used for

resolving classpath dependencies during build. All jars

located in this directory will be used in the classpath.

CLASSPATH_JARS_FILES Names of individual JAR and Class files to be included in

the build. This can be in the form of a list:

 <property name="CLASSPATH_JARS_FILES"

 value="V2J4.jar,V2J3.jar" />

ENCODING Either ASCII or EBCDIC codepage for JAVA This is the

codepage JAVA source is stored on the z/OS host. For

example:

v For ASCII JAVA standard codepage should be ISO8859-1

v For EBCDIC JAVA standard codepage should be

IBM-1047

JAR_FILE_NAME

EJB_NAME

WAR_NAME

EAR_NAME

Name of JAR, EJB JAR, WAR, or EAR.

DEBUG_MODE Set to ‘on’ to force Developer Toolkit to not remove any

build files from the WORKAREA directory. This is useful if

you need to check the structure of a built Java/J2EE

application.

CLASSPATH dependencies: Java source within an ARCHDEF can have classpath

dependencies upon other Java libraries or classes. If these dependencies are on

Java components contained within the same ARCHDEF structure, then these

classpath dependencies are resolved as part of the ARCHDEF build (whether build

mode is conditional or forced).

However, a J2EE ARCHDEF component might have classpath dependencies on

external JARs or even on members contained in other ARCHDEFs. In this case the

J2EE build script associated with the ARCHDEF can control classpath

dependencies with the following keywords:

CLASSPATH_JARS

This is a directory name in the z/OS UNIX System Services file system

which might include all external dependent JAR files and classes for that

J2EE Ant

50 SCLM Developer Toolkit V3R1: Installation and Customization Guide

particular ARCHDEF build.

CLASSPATH dependencies

Chapter 3. SCLM customization for the SCLM administrator 51

This directory can be updated with CLASSPATH files via the Client Team

function ‘Upload jar files’ to copy JAR files from the client into the

classpath directory. Also available is the function ‘Copy file from SCLM to

classpath’ to copy SCLM stored JAR files into the classpath directory.

CLASSPATH_JARS_FILES

This keyword can be used to selectively choose individual JAR or class

files to be used in the classpath. If this keyword is used, then the listed

JAR/class files are retrieved from SCLM or if not located in SCLM then the

directory referenced by CLASSPATH_JARS is searched for retrieval. If this

keyword is used then only those files listed are used in the classpath.

J2EE sample scripts: The following samples show JAR, WAR, EJB, and EAR

scripts.

<ANTXML>

<project name="JAVA Project" default="jar" basedir=".">

<property name="env" environment="env" value="env"/>

<property name="SCLM_ARCHDEF" value="V2JAR1"/>

<property name="SCLM_ANTXML" value="BWBJAVAA"/>

<property name="SCLM_BLDMAP" value="YES"/>

<property name="JAR_FILE_NAME" value="V2TEST.jar"/>

<property name="CLASSPATH_JARS" value="/var/SCLMDT/CLASSPATH"/>

<property name="ENCODING" value="IBM-1047"/>

</ANTXML>

Figure 22. J2EE Build script JAR sample

<ANTXML>

<project name="J2EE WAR Project" default="web-war" basedir=".">

<property name="env" environment="env" value="env"/>

<property name="SCLM_ARCHDEF" value="SAMPLE5"/>

<property name="SCLM_ANTXML" value="BWBWEBA"/>

<property name="SCLM_BLDMAP" value="YES"/>

<property name="JAVA SOURCE" value="YES"/>

<property name="J2EE_HOME" value="${env.J2EE_HOME}"/>

<property name="JAVA_HOME" value="${env.JAVA_HOME}"/>

<property name="CLASSPATH_JARS" value="/var/SCLMDT/CLASSPATH"/>

<property name="ENCODING" value="IBM-1047"/>

<!-- WAR file name to be created by this build process -->

<property name="WAR_NAME" value="Sample5.war" />

<path id="build.class.path">

 <pathelement location="."/>

 <pathelement location="${J2EE_HOME}/lib/j2ee.jar"/>

 <pathelement location="${CLASSPATH_JARS}/jdom.jar"/>

<fileset dir="${CLASSPATH_JARS}" includes="**/*.jar, **/*.zip"/>

</path>

</ANTXML>

Figure 23. J2EE Build script WAR sample

CLASSPATH dependencies

52 SCLM Developer Toolkit V3R1: Installation and Customization Guide

JAVA/J2EE Ant XML build skeletons

This section lists sample Ant build skeletons which are provided in the

SBWBSAMP library. These sample members can be copied into SCLM type J2EEBLD

in the SCLM hierarchy to be referenced and used by the JAVA/J2EE build scripts.

The JAVA/J2EE build scripts are property variable files that overlay the Ant XML

skeleton files.

<ANTXML>

<project name="J2EE EJB Project" default="EJBBuild" basedir=".">

<property name="env" environment="env" value="env"/>

<property name="SCLM_ARCHDEF" value="SAMPLE3"/>

<property name="SCLM_ANTXML" value="BWBEJBA"/>

<property name="SCLM_BLDMAP" value="NO"/>

<property name="J2EE_HOME" value="${env.J2EE_HOME}"/>

<property name="JAVA_HOME" value="${env.JAVA_HOME}"/>

<property name="CLASSPATH_JARS" value="/var/SCLMDT/CLASSPATH"/>

<property name="ENCODING" value="IBM-1047"/>

<property name="EJB_NAME" value="DateService.jar"/>

<path id="build.class.path">

 <pathelement location="."/>

 <pathelement location="${J2EE_HOME}/lib/j2ee.jar"/>

 <pathelement location="${CLASSPATH_JARS}/jdom.jar"/>

 <fileset dir="${CLASSPATH_JARS}" includes="**/*.jar, **/*.zip"/>

</path>

</ANTXML>

Figure 24. J2EE Build script EJB sample

<ANTXML>

<project name="J2EE EAR Project" default="j2ee-ear" basedir=".">

<property name="env" environment="env" value="env"/>

<property name="SCLM_ARCHDEF" value="SAMPLE6"/>

<property name="EAR_NAME" value="Sample6.ear"/>

<property name="SCLM_ANTXML" value="BWBEARA"/>

<property name="SCLM_BLDMAP" value="NO"/>

<property name="J2EE_HOME" value="${env.J2EE_HOME}"/>

<property name="JAVA_HOME" value="${env.JAVA_HOME}"/>

<property name="CLASSPATH_JARS" value="/var/SCLMDT/CLASSPATH"/>

<path id="build.class.path">

 <pathelement location="."/>

 <pathelement location="${J2EE_HOME}/lib/j2ee.jar"/>

 <pathelement location="${CLASSPATH_JARS}/jdom.jar"/>

 <fileset dir="${CLASSPATH_JARS}" includes="**/*.jar, **/*.zip"/>

</path>

<target name="common">

<echo message="BuildName: ${Ant.project.name}" />

<echo message="BuildHome: ${basedir}" />

<echo message="BuildFile: ${Ant.file}" />

<echo message="BuildJVM: ${Ant.java.version}" />

</target>

</ANTXML>

Figure 25. J2EE Build script EAR sample

J2EE sample scripts

Chapter 3. SCLM customization for the SCLM administrator 53

The supplied sample J2EE build skeletons for building a simple JAR, SQLJ project,

EJB JAR, WAR, EAR or for deployment can generally be used, as is, without user

customization. Be aware however that some J2EE projects might not fit the

standard model and some customization of the supplied Ant XML skeletons may

be required.

Note: JAVA/J2EE build scripts can be generated via the Developer toolkit client

application. These build scripts use a referenced Ant XML skeleton (as below) and

an ARCHDEF in the JAVA/J2EE build process.

A detailed description of build scripts, Ant skeletons and examples on JAVA/J2EE

build processing is contained in the SCLM Developer Toolkit User Guide supplied

with the client plug-in.

BWBJAVAA Sample Ant XML JAVA build skeleton

 This Ant skeleton is used by a Java build script to compile multiple

java programs and optionally create a Java Archive (JAR) file

which has a structure determined by a specified ARCHDEF.

BWBEJBA Sample Ant XML J2EE EJB build skeleton

 This Ant skeleton is used by a J2EE build script to compile/build

an EJB project which would usually create an EJB JAR which has a

structure determined by a specified ARCHDEF.

BWBWEBA Sample Ant XML J2EE WEB build skeleton

 This Ant skeleton is used by a J2EE build script to compile/build a

WEB project which would usually create a WEB Archive (WAR)

file.

BWBEARA Sample Ant XML J2EE EAR assemble skeleton

 This Ant skeleton is used by a J2EE build script as an assemble

process in preparation for J2EE application deployment. The

process produces Enterprise Archive (EAR) files which can be

deployed on to a Web application server such as WebSphere

application server.

BWBSQLB Sample Java/SQLJ build script.

 This Ant Skeleton is used by a J2EE build script to compile/build a

JAR project that uses SQLJ.

BWBSQLBE Sample EJB/SQLJ build script.

 This Ant Skeleton is used by a J2EE build script to compile/build

an EJB project that uses SQLJ.

Mapping J2EE projects to SCLM

IBM SCLM Developer Toolkit provides the capacity to manage, build, and deploy

projects in SCLM. This section describes how to configure the SCLM project

structure to support distributed application development such as JAVA/J2EE.

Many JAVA/J2EE projects result in the creation of an executable EAR file. This

application is an assembly of projects, typically EJBs and Web applications and,

within the IDE environments, these are generally developed as individual project

structures that are linked to an EAR project.

JAVA/J2EE Ant XML build skeletons

54 SCLM Developer Toolkit V3R1: Installation and Customization Guide

||

|
|

||

|
|

This form of multiple-project structure does not map to SCLM directly. That is, an

SCLM project cannot be linked to another SCLM project to provide some form of

aggregated project structure. However, SCLM does provide a means to support

this multiple project structure within a single SCLM project using types.

Mapping J2EE projects to SCLM

Chapter 3. SCLM customization for the SCLM administrator 55

SCLM projects can be defined with multiple source types. Each type can hold a

single IDE project. If we tried to store multiple Eclipse IDE projects in SCLM

without some form of segregation then each of the project’s .classpath and .project

files would be overwritten as each project was added to SCLM. The use of

different source types enables these files, and all others associated with that

project, to be stored safely within SCLM.

Figure 26 shows how multiple types make it possible to support a multiple-project

structure within a single SCLM project.

 This mapping would result in the IDE projects being stored independently within

SCLM using the type as the principal differentiator. For example, EJB1 is stored in

the SCLM project SCLMPRJ1 under type EJB1. Using this structure, it is possible to

map the IDE project structure to independent types within the SCLM project.

Notes:

1. It is not necessary to map a project name in the IDE to the SCLM type name;

these names exist independently of each other.

2. Type names are restricted to eight characters; therefore an IDE project called

‘ProjectOne’ could not have the corresponding type name of ‘ProjectOne’. You

can use ‘Proj1’ instead.

It is therefore important that the SCLM project structure be planned to

accommodate the mapping of different IDE-based projects into the single SCLM

project structure. This is because, within large SCLM projects, it might be a

non-trivial matter to add additional project types as this requires a change to the

SCLM project definition, a rebuild of the SCLM project definition, and the

allocation of data sets for the new types.

This structure is not restricted to J2EE-style projects but could also apply to any

situation where multiple projects are being developed that provide some form of

dependency upon each other.

Figure 26. Multiple types

Mapping J2EE projects to SCLM

56 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Recommendations for mapping J2EE projects to SCLM

The following list gives recommendations for mapping J2EE projects (and others)

to SCLM:

v Identify the J2EE project composition in terms of EJBs, Web applications, and so

on, so that this can be used to plan the SCLM project structure.

v For each of the J2EE IDE project components, create a corresponding type in the

SCLM project. It is useful to provide some form of meaningful naming

convention to support this. Whilst it is possible to name the IDE projects

independently of the SCLM type, some correlation will make administration

easier.

v As project requirements can change, create additional type definitions to enable

the smooth addition of other components such as additional EJBs. Additional

services can be anticipated through the type structure.

v Mapping multiple IDE projects into a single SCLM project is supported by the

type construct. It is also useful to apply some packaging structure that takes into

account the type definition for that project.

v Java-style packaging conventions can also be defined at the project level so as to

avoid the likelihood of source naming collisions.

v If the IDE is structured with multiple projects it is advisable to replicate this

structure in SCLM using type.

The use of multiple SCLM types to store individual IDE projects also relates to the

operation of the ARCHDEF structure for the building of these IDE projects.

 The ARCHDEF file contains the list of files that make up a build. In a J2EE context

a build can result in an EAR file being composed of a number of WAR and JAR

files. This isolation of projects is similar to the type structure that defines the

project in SCLM. By having a high-level ARCHDEF that references those ‘parts’

that make up the build, it is possible to have a structured build environment. This

relates to the effective definition of project structure when defining the types in

SCLM.

By defining the project in a structured manner this also enables:

v Migration of files from an SCLM project type or ARCHDEF to an IDE project

without the need to know individual parts.

v The ARCHDEF structure based on type definition also enables project

dependencies to be mapped more effectively. It is common for IDE projects to

reference other IDE projects in the workspace. Use of the SCLM INCL keyword

in ARCHDEFs supports this notion as other IDE projects, referenced by other

ARCHDEFS, can be included by nesting the ARCHDEFs within higher level

ARCHDEFS.

Figure 27. SCLM build hierarchy

Recommendations for mapping J2EE projects (and others) to SCLM

Chapter 3. SCLM customization for the SCLM administrator 57

When building applications with references or dependencies on other build objects

such as JARs, other projects or other classes there are multiple approaches:

1. Include the reference to the JAR via the INCLD statement in the ARCHDEF.

This will build the application with the library reference into the final build

package.

2. Include the IDE project as a nested INCL SCLM project ARCHDEF

3. Include the dependent JAR in the CLASSPATH directory

a. Should the IDE project refer to a JAR but it is not expected to be part of the

final build package then the library file can be copied to the system

CLASSPATH using the Upload JARS service in Developer Toolkit. This will

have the effect of making that service available from a different SCLM

project. At build time the IDE project references to the JAR will be resolved.

However at runtime, the JAR must be available in a PATH statement.

b. Reference a JAR that is in the same SCLM project through the use of the

CLASSPATH_JARS_FILES property in the build script.

SCLM Developer Toolkit deployment

SCLM Developer Toolkit provides several deployment features. You can deploy

Enterprise Archive files (EAR) into any WebSphere Application Server (WAS). In

addition, any component built or controlled by the SCLM Developer Toolkit can be

distributed using a customizable deploy script. Sample scripts are provided that

can be used to copy an EAR to a remote host using the secure copy (SCP) and

secure FTP (SFTP) commands.

At the core of deployment there are essentially two scripts. The first type of script,

the one that is modified by the user, is the properties script. It contains a list of

parameters for the deployment operation. The second is the action script that

contains the steps required to run the deployment operation.

Deployment is initiated from the SCLM Developer Toolkit client plug-in and the

type of deployment is chosen by pressing the relevant button on the deployment

screen. Depending on what deployment action is chosen will have an effect on

what is populated in the properties script, For most of the scripts there is a

property named SCLM_ANTXML that contains the member name of the

corresponding action script. Developer Toolkit takes the generated properties script

and overlays it on the action script, before invoking the resultant action script.

Below is a list of sample Ant deployment action scripts which are provided in the

SBWBSAMP library. These sample members can be copied into SCLM type

J2EEBLD in the SCLM hierarchy to be referenced and used by the generated

properties scripts. The generated properties scripts are property variable files that

overlay the Ant XML deployment action scripts referenced below. These scripts

must be stored with a text type language such as TEXT or J2EEPART.

Member Name

Description

BWBDEPLA

WAS EAR Deployment.

BWBRDEPL

Remote WAS EAR Deployment.

BWBSCOPY

Secure copy deployment. Copies a build object from one host to another

using SCP.

Recommendations for mapping J2EE projects (and others) to SCLM

58 SCLM Developer Toolkit V3R1: Installation and Customization Guide

BWBSFTP

Secure FTP deployment. Copies a build object from one host to another

using SFTP.

 In order for these build scripts to be usable from multiple groups, the

administrator must build and promote the scripts to the highest group level

available in the project.

There is slightly different processing depending on the types of scripts being

generated.

WebSphere Application Server (WAS) deployment

For WebSphere Application Server (WAS) deployment the SCLM_ANTXML

property does not point to an Ant action script, but references a JACL action script

instead. Alternatively, you can use the wsadmin tool that is shipped with WAS on

z/OS. The wsadmin tool requires a JACL script to guide the deployment process.

If using this deploy method then the JACL script must be installed under UNIX

Systems Services before the deployment process can be invoked. The JACL script

must be copied into a z/OS UNIX System Services file system directory on z/OS.

It is recommended to store the JACL script as /etc/SCLMDT/CONFIG/scripts/
deploy.jacl (where /etc/SCLMDT is the default etc directory for SCLM Developer

Toolkit). The wsadmin tool expects the JACL script to be in ASCII format.

To copy the sample JACL script BWBJACL (that is stored in the SBWBSAMP sample

library) into a z/OS UNIX System Services file system directory in ASCII format,

follow these steps:

v Review the instructions contained in the sample job BWBJACLJ and customize

accordingly. BWBJACLJ can be found in the SCLM Developer Toolkit SBWBSAMP

library. Additional JACL examples can be found in the WebSphere Application

Server (WAS) documentation.

v Submit the job BWBJACLJ. This will convert into ASCII sample BWBJACL and copy

into the customized directory as file name deploy.jacl.

The client plug-in must be able to communicate with the directory locations where

the wsadmin tool (wsadmin.sh) and the JACL script are installed under Unix

System Services. Both locations can be configured in the preference page under

Team -> SCLM Preferences -> Build Script Options. The client plug-in is used to

generate a deployment script which can then be built against. (The deployment

process is triggered by a deploy function request against the deployment script

which is stored in SCLM type J2EEBLD).

The sample action scripts that need to be stored in SCLM type J2EEBLD for WAS

deployment or remote WAS deployment are BWBDEPLA and BWBRDEPL.

SCLM to Unix System Services deployment

SCLM Developer Toolkit provides a means to deploy any files that are stored in

the SCLM repository to the z/OS UNIX System Services File System on the same

LPAR. This provides a simple means to deploy an object built by SCLM into an

environment where it can be either executed or even deployed to a remote host

using the Secure Deployment described below.

SCLM Developer Toolkit deployment

Chapter 3. SCLM customization for the SCLM administrator 59

There is no sample action script for this action. Select the members from SCLM

and use the Include SCLM members button to generate the required properties

script. This copies the files from the selected SCLM location to a directory specified

on the z/OS UNIX System Services File System. This directory must previously

exist or an error will occur.

Secure deployment

This options provide a means to copy deployable objects to a remote host by

utilizing the secure copy (SCP) and secure FTP (SFTP) commands. By using a

combination of the Secure deploy properties script and the Include SCLM

members, the required files can be selected from the SCLM hierarchy, copied to a

location in the z/OS UNIX System Services File System, and then copied to the

destination machine from that z/OS UNIX System Services File System location

utilizing the secure copy (SCP) and secure FTP (SFTP) commands.

The sample action scripts that need to be stored in SCLM type J2EEBLD for secure

deployment are BWBSCOPY and BWBSFTP.

In order for Developer Toolkit to use SFTP (Secure file transfer protocol) or SCP

(Secure copy protocol) within ANT deploy scripts the IBM Ported Tools for z/OS

(For z/OS V1.4 and above - Program number 5655-M23) product is required to be

installed as a pre-requisite.

IBM Ported Tools for z/OS is a non-priced program product designed to deliver

tools and applications for the z/OS platform. These applications have been

modified to operate within the z/OS environment. IBM Ported Tools for z/OS is

only available if you have a license to z/OS; it is supported on z/OS 1.4 and

above.

It provides:

v scp for copying files between networks. It is an alternative to rcp.

v sftp for file transfers over an encrypted ssh transport. It is an interactive file

transfer program similar to ftp.

Public key authentication

Public key authentication provides an alternative to interactive logon that can be

automated as part of Developer Toolkit’s secure deployment operation.

In order for public key authentication to work as desired, you can either use a

surrogate User ID for deployment or configure each user for whom you wish to

provide deployment capabilities.

For instructions on how to set up automated key-based authentication using

ssh-agent and ssh-add, see the IBM Ported Tools for z/OS User’s Guide. For

information about using SCLM Developer Toolkit surrogate user ID, see Chapter 4,

“SCLM security,” on page 73.

Other deployment options

It is also possible to create your own Ant scripts to perform deployment in a

number of different ways. In your scripts, by using the Ant <exec> tag you can

invoke any program that is available in the z/OS UNIX System Services File

System. Using this method the build scripts can call other programs, such as FTP,

to perform deployment. For more information of creating Ant scripts see the online

Ant documentation at http://ant.apache.org/.

SCLM to Unix System Services deployment

60 SCLM Developer Toolkit V3R1: Installation and Customization Guide

ASCII or EBCDIC storage options

Source files transferred from the SCLM Developer Toolkit plug-in can be stored in

SCLM as either ASCII or EBCDIC.

Generally all source in SCLM is stored in EBCDIC to be viewed and edited directly

from ISPF/SCLM on z/OS. If you do not want to browse or edit code directly

from the host, you might want to store code directly (that is, as binary transferred)

where source will be stored in SCLM using the original client’s ASCII/UNICODE

codepage. This does have some performance benefits for large projects being stored

and imported from SCLM and for JAVA/J2EE builds as an ASCII to EBCDIC

translation will not be performed.

SCLM Developer Toolkit determines if a file is binary transferred or if an ASCII to

EBCDIC conversion takes place by checking the SCLM language associated with

each file/member. Then SCLM Developer Toolkit checks to see if that SCLM

Language has an entry in the TRANSLATE.conf file with a TRANLANG keyword.

ASCII/EBCDIC language translators

 Default usage is assumed to be ASCII/EBCDIC translation. This means that files

browsed and edited in the Eclipse Plug-in can also be browsed and edited directly

on host from ISPF/SCLM.

ASCII usage (binary transferred) is recommended for project migration/import and

build performance, as files require no translation. This is only suitable if editing in

ISPF/SCLM is not required.

SCLM
Language
Translator Description

JAVA Java source members stored as EBCDIC. Created by using sample

BWBTRAN1.

SQLJ SQLJ members stored as EBCDIC. Created by using sample (BWBTRANS)

JAVABIN Java source members stored as ASCII. Created by using sample BWBTRAN1.

J2EEPART Any J2EE files where no parsing is required and stored as EBCDIC.

Created by using sample BWBTRAN1.

J2EEBIN Any J2EE files where no parsing is required and stored as binary or ASCII

files. Created by using sample BWBTRAN1.

SQLJ SQLJ source members stored as EBCDIC. Created by using sample

BWBTRANS.

SQLJBIN SQLJ source members stored as ASCII. Created by using sample

BWBTRANS.

TEXT Default TEXT translator where no parsing is required and stored as

EBCDIC. Created by using sample BWBTRAN1.

BINARY Default binary language translator where no parsing required. Created by

using sample BWBTRAN1.

Figure 28. SCLM Language Translators and ASCII/EBCDIC

ASCII or EBCDIC storage options

Chapter 3. SCLM customization for the SCLM administrator 61

||

||
|

||
|

Depending on the SCLM Language Translator used, source can be built in either

ASCII or EBCDIC.

For cross platform usability, all deployable files such as JAR, WAR and EAR are

built such that all of the contained objects are of type ASCII, regardless of whether

any of the source is stored as EBCDIC.

JAVA/J2EE build note: If Java source is ASCII stored then the Build script must

specify the ASCII codepage using the ENCODING property variable to correctly

compile the Java source.

For example:

 <property name="ENCODING" value="ISO8859-1"/>

The Ant script called will use the Javac command with the ENCODING=ISO8859-1 to

compile the ASCII source. The default ENCODING codepage is the EBCDIC

codepage IBM-1047.

$GLOBAL member

As part of the JAVA/J2EE build process some additional information is required in

order to successfully perform the builds. As the builds are performed in z/OS

UNIX System Services, information such as the Java product location, Ant product

location and the location of the SCLM Developer Toolkit configuration files and

workarea are required.

Additionally it might be required to use different versions of Ant or Java for

different SCLM development groups, so to this end the $GLOBAL member can be

group specific. The environment variables set in $GLOBAL can be overwritten by

specific build script variable settings.

Note: The JAVA_HOME specified in ANT customization will override any

JAVA_BIN specified in $GLOBAL for Java/J2EE project compiles.

A sample member BWBGLOB is provided in the SBWBSAMP library. This sample

member needs to be copied into SCLM type J2EEBLD in the SCLM hierarchy as

member $GLOBAL and saved with a valid non-parsing language, such as TEXT (as

provided in language translator FLM@TEXT in the SISPMACS library).

The $GLOBAL member currently makes available the following information to the

JAVA/J2EE build processes:

 Table 9. $GLOBAL variables

Variable Description

ANT_BIN z/OS UNIX System Services file system directory path of Ant runtime

Example:

 <property name="ANT_BIN" value="/u/antdirectory/Ant/apache-Ant-1.6.0/bin/Ant"/>

JAVA_BIN z/OS UNIX System Services file system directory path of Java compile/runtime

Example:

 <property name="JAVA_BIN" value="/u/javadirectory/IBM/J1.4/bin"/>

ASCII/EBCDIC language translators

62 SCLM Developer Toolkit V3R1: Installation and Customization Guide

|
|

Table 9. $GLOBAL variables (continued)

Variable Description

CGI_DTWORK The location of the SCLM Developer Toolkit WORKAREA directory

Example:

 <property name="CGI_DTWORK" value="/var/SCLMDT"/>

CGI_DTCONF The location of the SCLM Developer Toolkit CONFIG directory

Example:

 <property name="CGI_DTCONF" value="/etc/SCLMDT"/>

CLASSPATH_JARS z/OS UNIX System Services file system classpath directory used for JAVA compiles. All jars

located in this directory will be used in the classpath.

Example:

 <property name="CLASSPATH_JARS" value="/var/SCLMDT/CLASSPATH"/>

TRANTABLE VSAM file containing the long/short name translations

Example:

 <property name="TRANTABLE" value="BWB.LSTRANS.FILE"/>

DEBUG_MODE Set to “on” if you want Developer Toolkit to not remove Java/J2EE build files from the z/OS

UNIX System Services file system.

This is useful if you want to see the structure of the built outputs in the USS file system for

debugging purposes.

If these variables are to be set for the all group levels in the SCLM project then it is

good practice to create a single $GLOBAL member at the highest level in the

hierarchy. When the JAVA/J2EE build translator runs it will look up the hierarchy

from the group level performing the build and use the first $GLOBAL it finds in

the J2EEBLD type.

Note: The $GLOBAL member must be stored as a valid saved SCLM member so

this hierarchy lookup can be performed.

If different settings are required, at different development groups for example, then

a $GLOBAL member can be created in each of the development groups.

SITE and project-specific options

A facility has been provided to allow certain settings to be made at a SITE

installation level or at a specific SCLM project level. The options that can currently

be configured are:

v Mandatory Change Code entry

v Deactivation of foreground Builds and Promotes

v Specification of package approval system. Currently IBM Breeze for SCLM is the

supported approval system.

v Definition of Batch Build, Promote and Migrate job cards

v Override settings in the TRANSLATE.conf configuration file

v Project list filter restriction

v Define default settings for BiDirectional languages

All or none of these options can be set. If they are not set they will be defaulted in

the programs. Some of these options can be set in the SITE file while others can be

set at an SCLM project-specific level. Alternatively there can be no SITE specific file

$GLOBAL member

Chapter 3. SCLM customization for the SCLM administrator 63

|
|

|

and options can be set at an SCLM project level only. For job cards you can

override the job card information by using your own specified job card entered

through the IDE.

This facility is activated by creating certain files in the z/OS UNIX System Services

file system under the /etc/SCLMDT/CONFIG/PROJECT directory, or wherever you

created the /CONFIG/PROJECT directory at installation time. This directory is

created at project initialization time by running job BWBINST1.

SITE and project-specific options

64 SCLM Developer Toolkit V3R1: Installation and Customization Guide

If you want to set SITE specific values then you need to create a file called

SITE.conf in the /PROJECT directory. A sample SITE config file is provided in the

SBWBSAMP library in member BWBSITE. Copy this member to a file named

SITE.conf in this directory and tailor the values accordingly. The following figure

shows the sample SITE configuration file.

SITE and project-specific options

Chapter 3. SCLM customization for the SCLM administrator 65

It is also possible to have project-specific configuration settings that are used to

configure a single SCLM project. These will override the SITE-specific values if a

SITE.conf exists. If you want to set project-specific values then you need to create

a file called project.conf in the /PROJECT directory, where project is the SCLM

project name. A sample project config file is provided in the SBWBSAMP library in

**

* *

* SCLM Developer Toolkit Site Specific option *

* *

**

*

* Below are a number of site specific options used to

* determine the behavior of the Eclipse front-end.

* These can be overridden by creating a project specific

* options file for the SCLM project that overrides some

* or all of these options.

*

* SCM Approver processing applies to this project?

BUILDAPPROVER=NONE

PROMOTEAPPROVER=NONE

*

* Change Code entry on check-in is mandatory?

CCODE=N

*

*

* To allow promotion by architecture definition only,

* set the value of PROMOTEONLYFROMARCHDEF to Y

PROMOTEONLYFROMARCHDEF=N

*

* Foreground or On-line builds/promotes allowed for this project?

FOREGROUNDBUILD=Y

FOREGROUNDPROMOTE=Y

*

* Batch Build default jobcard

BATCHBUILD1=//SCLMBILD JOB (#ACCT),’SCLM BUILD’,CLASS=A,MSGCLASS=X,

BATCHBUILD2=// NOTIFY=,REGION=512M

BATCHBUILD3=//*

BATCHBUILD4=//*

*

* Batch Promote default jobcard

BATCHPROMOTE1=//SCLMPROM JOB (#ACCT),’SCLM PROMOTE’,CLASS=A,MSGCLASS=X,

BATCHPROMOTE2=// NOTIFY=&SYSUID,REGION=128M

BATCHPROMOTE3=//*

BATCHPROMOTE4=//*

*

* Batch Migrate default jobcard

BATCHMIGRATE1=//SCLMMIGR JOB (#ACCT),’SCLM MIGRATE’,CLASS=A,MSGCLASS=X,

BATCHMIGRATE2=// NOTIFY=&SYSUID,REGION=128M

BATCHMIGRATE3=//*

BATCHMIGRATE4=//*

*

* Batch Deployment default jobcard

BATCHDEPLOY1=//SCLMDPLY JOB (#ACCT),’SCLM DEPLOY’,CLASS=A,MSGCLASS=X,

BATCHDEPLOY2=// NOTIFY=&SYSUID,REGION=128M

BATCHDEPLOY3=//*

BATCHDEPLOY4=//*

*

* BUILD Security flag for SAF/RACF security call and possible Surrogate ID switch

BUILDSECURITY=N

*

* Project list flag if set to N will stop users selecting * as project filter

* This may avoid long user catalog searches for all SCLM projects

*

PROJECTLISTALL=Y

Figure 29. Sample SITE specific SCLM project setting

SITE and project-specific options

66 SCLM Developer Toolkit V3R1: Installation and Customization Guide

member BWBPROJ. Copy this member to a file named project.conf in the

/PROJECT directory and tailor the values accordingly. The following figure shows

the sample Project configuration file.

Options Definition

All of the options are optional. They are set to the default values by the product. If

any of the options are specified in the SITE.conf or the project.conf then they

will be used.

 Table 10. SITE/Project options

BUILDAPPROVER=approval product/NONE Specify the name of the approval product

used for the build process. Currently the

only supported product is Breeze for SCLM.

Default is NONE.

PROMOTEAPPROVER=approval product/NONE Specify the name of the approval product

used for the promote process. Currently the

only supported product is Breeze for SCLM.

If the PROMOTEAPPROVER is set to

BREEZE then the Breeze specific fields will

be displayed during a promote. Default is

NONE.

CCODE=N/Y Specify Y to make change code entry on

check-in a mandatory field. Default is N

such that Change Code entry is not

mandatory.

*

* ---------------- PROJECT SPECIFIC OPTIONS ------------------

*

* Below are a number of project specific options used to

* determine the behavior of the Eclipse front-end.

*

* These will override the SITE.CONF file

*

*

* SCM Approver processing applies to this project?

BUILDAPPROVER=BREEZE

PROMOTEAPPROVER=BREEZE

*

* Change Code entry on check-in is mandatory?

CCODE=Y

*

* Foreground or On-line builds/promotes allowed for this project?

FOREGROUNDBUILD=N

FOREGROUNDPROMOTE=N

*

* Batch Build default jobcard

BATCHBUILD1=//SCLMBILD JOB (#ACCT),’SCLM BUILD’,CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID,

BATCHBUILD2=// MSGLEVEL=(1,1)

BATCHBUILD3=//*

BATCHBUILD4=//*

*

* Batch Promote default jobcard

BATCHPROMOTE1=//SCLMPROM JOB (#ACCT),’SCLM PROMOTE’,CLASS=A,MSGCLASS=X,

BATCHPROMOTE2=// MSGLEVEL=(1,1),NOTIFY=&SYSUID

BATCHPROMOTE3=//*

BATCHPROMOTE4=//*

Figure 30. Sample PROJECT specific SCLM project setting

SITE and project-specific options

Chapter 3. SCLM customization for the SCLM administrator 67

Table 10. SITE/Project options (continued)

FOREGROUNDBUILD=Y/N Specify N to restrict foreground builds.

Default is Y such that foreground builds are

allowed.

FOREGROUNDPROMOTE=Y/N Specify N to restrict foreground promotes.

Default is Y such that foreground promotes

are allowed.

BATCHBUILD1=Job card 1

BATCHBUILD2=Job Card 2

BATCHBUILD3=Job Card 3

BATCHBUILD4=Job Card 4

Set a default batch job card for the build

process. Different projects can use different

account codes or Job class so the option of

specifying project specific job cards allows

for this scenario.

BATCHPROMOTE1=Job card 1

BATCHPROMOTE2=Job card 2

BATCHPROMOTE3=Job card 3

BATCHPROMOTE4=Job card 4

Set a default batch job for the Promote

process. Different projects can use different

account codes or Job class so the option of

specifying project specific job cards allows

for this scenario.

BATCHMIGRATE1=Job card 1

BATCHMIGRATE2=Job card 2

BATCHMIGRATE3=Job card 3

BATCHMIGRATE4=Job card 4

Set a default batch job for the Migrate

process. Different projects can use different

account codes or Job class so the option of

specifying project specific job cards allows

for this scenario.

BUILDSECURITY=Y/N Specify Y to invoke SAF/RACF security call

and possible surrogate ID switch. For more

information about this, see Chapter 4,

“SCLM security,” on page 73.

PROMOTESECURITY=Y/N Specify Y to invoke SAF/RACF security call

and possible surrogate ID switch. For more

information about this, see Chapter 4,

“SCLM security,” on page 73.

DEPLOYSECURITY=Y/N Specify Y to invoke SAF/RACF security call

and possible surrogate ID switch. For more

information about this, see Chapter 4,

“SCLM security,” on page 73.

ASCII=ASCII codepage Specify the ASCII codepage to override the

ASCII codepage specified in the

TRANSLATE.conf file. For example:

 ASCII=UTF-8

EBCDIC=EBCDIC codepage Specify the EBCDIC codepage to override

the EBCDIC codepage specified in the

TRANSLATE.conf file. For example:

 EBCDIC=IBM-420

TRANLANG=SCLM Language Specify a TRANLANG parameter to be

added to the list of TRANLANG parameters

specified in the TRANSLATE.conf. For

example:

 TRANLANG=DOC

Options Definition

68 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Table 10. SITE/Project options (continued)

NOTRANLANG=SCLM Language Use the NOTRANLANG keyword to remove

an already specified TRANLANG from the

list allowable for this SCLM project as

specified in the TRANSLATE.conf. For

example:

 NOTRANLANG=JAVA

LONGLANG=SCLM Language Specify a LONGLANG parameter to be

added to the list of LONGLANG parameters

specified in the TRANSLATE.conf. For

example:

 LONGLANG=DOC

NOLONGLANG=SCLM Language Use the NOLONGLANG keyword to

remove an already specified LONGLANG

from the list allowable for this SCLM project

as specified in the TRANSLATE.conf. For

example:

 NOLONGLANG=COBOL

BIDIPROP=LANG=SCLM Language/*

TextOrient=LTR/RTL TextType=Visual/
Logical SymetricSwap=On/Off

NumericSwap=On/Off

Use the BIDIPROP keyword to set

BiDirectional language defaults to SCLM

languages. The LANG= can be set to either

all SCLM languages or to specific SCLM

languages. BiDirectional support is only

supported under Rational Developer for

System z. For more information see the

“Rational Developer for System z Host

Configuration Guide”.

PROJECTLISTALL=Y Project list flag if set to N will stop users

selecting * as project filter. This may avoid

long user catalog searches for all SCLM

projects.

Example of using combinations of the TRANSLATE.conf

overrides

The TRANSLATE.conf file sets up default settings for codepage support and

default SCLM language support to be applied across the installation of SCLM

Developer Toolkit. Below is a sample list of defaults that can be added to or

modified:

CODEPAGE ASCII = ISO8859-1

CODEPAGE EBCDIC = IBM-1047

*

TRANLANG JAVABIN

TRANLANG J2EEBIN

TRANLANG J2EEOBJ

TRANLANG TEXTBIN

TRANLANG BINARY

TRANLANG DOC

TRANLANG XLS

*

LONGLANG JAVA

LONGLANG SQLJ

LONGLANG DOC

LONGLANG XLS

Options Definition

Chapter 3. SCLM customization for the SCLM administrator 69

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

LONGLANG J2EEPART

LONGLANG JAVABIN

LONGLANG J2EEBIN

LONGLANG J2EEOBJ

Example of using combinations of the TRANSLATE.conf overrides

70 SCLM Developer Toolkit V3R1: Installation and Customization Guide

|
|
|
|

It is then possible for different SCLM projects, that are storing different types of

data, maybe in different national languages, to override these default settings. So

the project configuration file for SCLM project SCLMPRJ1 can have the following

TRANSLATE.conf override settings:

* Arabic Codepage overrides

*

ASCII=UTF-8

EBCDIC=IBM-420

*

* Project specific TRANLANG and LONGLANG entries

*

TRANLANG=DOC

LONGLANG=DOC

This sets codepages for source translations to the Arabic codepage pair.

Additionally an SCLM Language of DOC will be added to the defaults from the

TRANSLATE.conf.

SCLM Project SCLMPRJ2 might have some different TRANSLATE.conf settings:

* Hebrew Codepage overrides

*

ASCII=UTF-8

EBCDIC=IBM-424

*

* Project specific TRANLANG and LONGLANG entries

*

TRANLANG=DOC

TRANLANG=XLS

NOTRANLANG=JAVABIN

NOTRANLANG=J2EEBIN

NOTRANLANG=J2EEOBJ

LONGLANG=DOC

LONGLANG=XLS

NOLONGLANG=COBOL

NOLONGLANG=J2EEPART

NOLONGLANG=JAVABIN

NOLONGLANG=J2EEBIN

NOLONGLANG=J2EEOBJ

This sets codepages for source translations to the Hebrew codepage pair.

Additionally SCLM Languages of DOC and XLS are added to the defaults from the

TRANSLATE.conf. In this case, however, the defaults set in TRANSLATE.conf are

then removed. This is not really necessary, as having additional settings is not an

issue, but it demonstrates how a project can be set up to only have the required

SCLM languages for a specific SCLM project.

Example of using combinations of the BIDIPROP overrides

The BIDIPROP values specified in the SITE.conf file can be overridden by any of

the BIDIPROP values specified in the SCLM project-specific project.conf files. For

example the following is set in the SITE.conf:

*

* ---------------- SITE SPECIFIC BIDI OPTIONS ------------------

*

*

* BiDi Language default properties

*

BIDIPROP=LANG=* TextOrient=LTR TextType=Visual SymetricSwap=Off NumericSwap=Off

Example of using combinations of the TRANSLATE.conf overrides

Chapter 3. SCLM customization for the SCLM administrator 71

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

This sets all SCLM languages to the specified settings. Now the following can be

set in the ADMIN10.conf file:

*

* BiDi Language default properties

BIDIPROP=LANG=JAVA TextOrient=RTL TextType=Visual SymetricSwap=On NumericSwap=Off

BIDIPROP=LANG=COBOL TextOrient=RTL TextType=Logical SymetricSwap=Off NumericSwap=Off

These settings will override the settings in the SITE.conf for the JAVA and COBOL

language definitions. All other languages will have the default settings specified in

the SITE.conf.

Example of using combinations of the BIDIPROP overrides

72 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Chapter 4. SCLM security

The SCLM Developer Toolkit offers optional security functionality if required for

the Build, Promote, and Deploy functions.

v Security controlled by security flags set in the SCLM Developer Toolkit

configuration files and by SAF/RACF rules.

v If the security flags are set for a function and the requesting user ID meets the

SAF/RACF authority check then allow the SCLM Build, Promote, or Deploy to

continue under the requesting userid or optionally to run under a surrogate user

ID if defined in that SAF/RACF rule.

Build/Promote/Deploy security flag and process flow

You can set a Build, Promote, Deploy security flag in the SITE/PROJECT

configuration files that specifies additional SAF security checking for that function

and possible processing under a surrogate user ID.

v Read the SITE/Project configuration files to see whether the Build Security

option is set on

 BUILDSECURITY = Y

v Read the SITE/Project configuration files to see whether the Promote Security

option is set on

 PROMOTESECURITY = Y

v Read the SITE/Project configuration files to see whether the DEPLOY Security

option is set on

 DEPLOYSECURITY = Y

If the security flag is set:

v After reading the sub-parameters from the function request, the translator makes

a call to the SCLM security module to check SAF/RACF user authority against a

defined rule.

v If authorised, the SAF/RACF application data associated with the rule is read

for a surrogate user ID (suid=xxxxxxx) and, if a surrogate user ID exists, then

the effective user ID of the current task switches to the new surrogate user ID

otherwise processing continues under the originating user ID.

You have a choice for data set-naming conventions from the Build, Promote

panel.

v If you are not authorized then RC=8 is returned on the build, promote, or

deploy with security error message. Build, promote, or deploy processing is

cancelled.

Security rules and surrogate user ID

The SCLM Build, Promote, and Deploy function security is to be defined using the

SAF/RACROUTE security interface. The following security products are known to

support this interface: RACF, ACF2, and TOP SECRET.

The examples that follow are modelled on RACF using the definition and

permission commands RDEFINE and PERMIT. Other security products supporting

SAF will have their own commands for equivalent definitions. Refer to the

appropriate security product documentation for these definitions.

© Copyright IBM Corp. 2005, 2007 73

v Use the RDEFINE command to define to RACF all resources belonging to classes

specified in the class descriptor table. The RDEFINE command adds a profile for

the resource to the RACF database in order to control access to the resource.

v The PERMIT command is used to maintain the lists of users and groups

authorized to access a particular resource. The standard access list includes user

IDs and group names authorized to access the resource and the level of access

granted to each.

v Define function profiles for SCLM functions against the XFACILIT class.

v The security administrator defines the required RACF profiles using the

RDEFINE command, and allows you to access with the PERMIT command.

Build rule format

Below is the format for the SCLM profile definition for Builds.

SCLM.BUILD.project.projdef.group.type.member

Field sub-parameter details:

v SCLM: Indicates an SCLM function profile

v BUILD: Indicates the BUILD function from SCLM

v Project: The SCLM project or * for all projects

v Projdef: The alternate project definition (default Project) or * for all alternate

projects

v Group: The SCLM group to build at or * for all groups

v Type: The SCLM type or * for all types

v Member: The SCLM member to build or * for all members

Promote rule format

Below is the format for the SCLM profile definition for Promotes.

 SCLM.PROMOTE.project.projdef.group.type.member

Field sub-parameter details:

v SCLM: Indicates an SCLM function profile

v PROMOTE: Indicates the PROMOTE function from SCLM

v Project: The SCLM project or * for all projects

v Projdef: The alternate project definition (default Project) or * for all alternate

projects

v Group: The SCLM group to build at or * for all groups

v Type: The SCLM type or * for all types

v Member: The SCLM member to promote or * for all members

Deploy rule format

Below is the format for the SCLM profile definition for deployment:

 SCLM.DEPLOY.server.application.node.cell.project.projdef.group.type

Field sub-parameter details:

v SCLM: Indicates an SCLM function profile

v DEPLOY: Indicates the DEPLOY function from SCLM

v Server: The target deployment server – SERVER_NAME in deploy Ant script or

* for all servers

v Application: The target WAS application name – APPLICATION_NAME in Ant

script or * for all applications

v Node: The target WAS node name – NODE_NAME in Ant script or * for all

nodes

Security rules and surrogate user ID

74 SCLM Developer Toolkit V3R1: Installation and Customization Guide

v Cell: The target WAS cell name – CELL_NAME in deploy Ant script or * for all

cells

v Project: The SCLM project containing the EAR to be deployed or * for all

projects

v Projdef: The alternate project definition (default Project) or * for all alternate

projects

v Group: the SCLM group the deployable EAR is stored in or * for all groups

v Type: The SCLM type the deployable EAR is stored in or * for all types

SAF/RACF BUILD, PROMOTE, DEPLOY, and PROFILE rules

Below is an example for a Build profile rule using class XFACILIT which would be

defined by the security administrator. The same sample can be used for a

PROMOTE rule by replacing the SCLM.BUILD.* rule with the SCLM.PROMOTE.*

rule.

Note: As with standard RACF rules instead of specific parameters generic ‘*’ fields

can be used. If you match the appropriate SAF/RACF rule, you will be allowed

BUILD access if you have READ access on the rule . The default access for the rule

will be NONE → UACC(NONE). Your access rule is defined by the PERMIT

command.

The following rule secures all members for build in project=TESTPROJ at group

level prod. Also a surrogate user ID is stored in the rule under application data -

APPLDATA(‘SUID=xxxxx’).

RDEFINE XFACILIT SCLM.BUILD.TESTPROJ.TESTPROJ.PROD.*.* UACC(NONE) APPLDATA(‘SUID=PMEANEY’)

This example defines an SCLM build profile where:

v Project = TESTPROJ

v Alternate project definition = TESTPROJ

v SCLM group = PROD

v SCLM type = all types

v Member = all members

Note: A surrogate user ID of PMEANEY is stored in the application data.

The following example shows security permissions defined for individual users

and user groups for the above example. This is also defined by the security

administrator.

PERMIT SCLM.BUILD.TESTPROJ.*.*.*.* CLASS(XFACILIT) ID(HOGES) ACCESS(READ)

Through the use of wildcard characters, the PERMIT matches the original

RDEFINE profile and permits user HOGES to build any member from project

TESTPROJ and group PROD. Since there is a surrogate user ID stored in the

‘APPLICATION DATA’ of the matching rule then the BUILD is processed under

that surrogate user ID (in this case PMEANEY).

Below is an example for a deployment profile using class XFACILIT which would

be defined by the security administrator:

RDEFINE

XFACILIT SCLM.DEPLOY.servery.testapp.node1.cell1.TESTPROJ.TESTPROJ.PROD.J2EEDEP

UACC(NONE)

Deploy rule format

Chapter 4. SCLM security 75

This defines an SCLM deploy profile for WAS:

server name = servery

application name = testapp

node name = node1

Cell name = cell1

 SCLM project details:

Project = TESTPROJ

Alternate project definition = TESTPROJ

Sclm group = PROD

Sclm type = J2EEDEP

 The following two examples show different security permissions defined for

individual users and user groups for the above example. This would also be

defined by the security administrator. UACC authority for the profiles would be

ACCESS(NONE):

PERMIT SCLM.DEPLOY.servery.testapp.*.*.*.*.*.* CLASS(XFACILIT) ID(HOGES) ACCESS(READ)

Through the use of wildcard characters, the PERMIT matches the original

RDEFINE profile and permits user HOGES to deploy on WAS server=servery,

application=testapp, node=node1, cell=cell1, SCLM project=TESTPROJ,

projdef=TESTPROJ, group=PROD, and type=J2EEDEP.

PERMIT SCLM.DEPLOY.*.*.*.*.*.*.*.*. CLASS(XFACILIT) ID(J2EEGRP) ACCESS(read)

This matches the original RDEFINE profile and permits any user who belongs to

the RACF group J2EEGRP to deploy on the above server and from the same SCLM

project details.

SAF/RACF BUILD, PROMOTE, DEPLOY, and PROFILE rules

76 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Chapter 5. CRON-initiated Builds and Promotes

Although most Builds and Promotes are initiated via the Developer Toolkit client,

there is a provision to set up Build and Promote configuration files within the

z/OS UNIX System Services file system and to initiate these builds or promotes

via the CRON (time) service within UNIX System Services. Using this method, the

SCLM Developer Toolkit Client is not required, as the relevant Build and Promote

parameters are read from a z/OS UNIX System Services file system configuration

file and passed to the Developer Toolkit Host component for SCLM processing.

Below is a description of the SCLM Developer Toolkit samples that provide

CRON-initiated Builds and Promotes. These samples are available in the installed

Developer Toolkit SBWBSAMP data set.

STEPLIB and PATH requirements

The PATH and STEPLIB variables in either the system wide profile (/etc/profile)

or user profile (/u/userid/.profile) will need to be set to locate the CRON jobs

($PATH) and locate the SCLM Developer Toolkit modules ($STEPLIB) if the SCLM

Developer Toolkit data set is not in the LINKLIST.

Sample member Description

BWBCRON1 This REXX sample calls the SCLM Developer Toolkit host interface and

passes the function parameters. Output from the function process by

default is displayed to STDOUT but might be re-directed to a z/OS UNIX

System Services file system file or log.

 This sample can be copied into the z/OS UNIX System Services file

system into a directory path of your choice to run. The sample will need

to be customized as detailed within the sample.

 This REXX sample must be run in conjunction with input from sample

BWBCRONB for a build or sample BWBCRONP for a promote.

BWBCRONB This REXX sample sets up the Build parameter input string which is

passed to module BWBCRON1.

 The sample requires user customization to update all required build

parameters.

 This sample must be copied into a user determined z/OS UNIX System

Services file system directory (optionally renamed) to be run with sample

BWBCRON1.

BWBCRONP This REXX sample sets up the Promote parameter input string which will

be passed to module BWBCRON1.

 The sample requires user customization to update all required promote

parameters.

 This sample must be copied into a user determined z/OS UNIX System

Services file system directory (optionally renamed) to be run with sample

BWBCRON1.

Figure 31. Sample CRON members

© Copyright IBM Corp. 2005, 2007 77

Example:

The samples BWBCRON1 and BWBCRONB are copied to a test directory

/var/SCLMDT/CRONJOBS. The following z/OS UNIX System Services file system

PATH and STEPLIB variables are set in /etc/profile:

 PATH=/var/SCLMDT/CRONJOBS:$PATH

 STEPLIB=BWB.SBWBLOAD:$STEPLIB

CRON Build job execution

After the CRON jobs are added to the PATH variable they can be run by piping

the output from the parameter_exec into the processing_exec. The output can then

be directed to an output log file.

Syntax

parameter_exec | processing_exec > output.log

The “|” is the z/OS UNIX System Services pipe symbol.

Invocation Example:

Using the sample names as provided the CRON build exec can be invoked as

follows:

 BWBCRONB | BWBCRON1 >bwbcronb.log

Additionally this sample Build execution can be added to a CRONTAB file to run

at 7.30pm Monday- Friday:

 30 19 * * 1-5 BWBCRONB|BWBCRON1 >bwbcronb.log ;

For further information about the CRON services available and the CRONTAB

format see the following manuals:

v z/OS UNIX System Services Commands

v z/OS UNIX System Services Planning

Alternatively use the online manual help (man) under z/OS UNIX System

Services:

v man cron

v man crontab

v man at

CRON Build job samples

Below are the BWBCRON1 and BWBCRONB job samples as provided in the

SBWBSAMP library.

STEPLIB and PATH requirements

78 SCLM Developer Toolkit V3R1: Installation and Customization Guide

/* REXX */

/* Customize STEPLIB, CGI_DTCONF and CGI_DTWORK BELOW */

/*

The STEPLIB should reflect the install load library for SCLM Developer toolkit.

If this dataset resides in the LINKLIST then set STEPLIB to ’’ .

*/

STEPLIB= ’BWB.SBWBLOAD’

/*

The Environment variable CGI_DTCONF determines the HOME

directory path where the configuration files reside for SCLM Developer Toolkit.

This was determined by the install directory specified in install job BWBINST1.

By default /etc/SCLMDT .

*/

CGI_DTCONF = ’/etc/SCLMDT’

CGI_DTWORK = ’/var/SCLMDT’

/* */

/* SAMPLE USEAGE */

/*

COMMAND : BWBCRONB|BWBCRON1 >BWBCRONB.log (passes

build parameter list to BWBCRON1 & outputs to BWBCRONB.log)

*/

/* DO NOT ALTER BELOW */

CALL ENVIRONMENT ’STEPLIB’,STEPLIB

CALL ENVIRONMENT ’CGI_DTCONF’,CGI_DTCONF

CALL ENVIRONMENT ’CGI_DTWORK’,CGI_DTWORK CALL

BWBINT

EXIT

Figure 32. Sample CRON Build Exec

CRON Build job samples

Chapter 5. CRON-initiated Builds and Promotes 79

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

/* REXX */

/* SAMPLE BUILD PARAMETER FILE USED FOR CRON INITIATED BUILDS */

/* Update Build parameters below */

/* if parameter required as Blank then set as ’’ */

FUNCTION = ’BUILD’

PROJECT = ’PROJ1’ /* SCLM Project */

PROJDEF = ’’ /* Alt proj definition */

TYPE = ’SOURCE’ /* SCLM Type */

MEMBER = ’TESTMEM’ /* SCLM Member name */

GROUP = ’DEV1’ /* SCLM Group */

GROUPBLD = ’’ /* Build at Group */

REPDGRP = ’DEV1’ /* Users Development group */

BLDREPT = ’Y’ /* Generate Build report */

BLDLIST = ’Y’ /* Generate List on error */

BLDMSG = ’Y’ /* Generate Build Messages */

BLDSCOPE = ’N’ /* Build Scope E/L/N/S */

BLDMODE = ’C’ /* Build Mode C/F/R/U */

BLDMSGDS = ’’ /* Message data set */

BLDRPTDS = ’’ /* Report data set */

BLDLSTDS = ’’ /* list data set */

BLDEXTDS = ’’ /* Exit data set */

SUBMIT = ’BATCH’ /* Online or Batch */

/* DO NOT ALTER PARM BUILD VARIABLE BELOW */

PARM1 = ’SCLMFUNC=’FUNCTION’&PROJECT=’PROJECT’&PROJDEF=’PROJDEF||,

’&TYPE=’TYPE’&MEMBER=’MEMBER’&GROUP=’GROUP’&GROUPBLD=’GROUPBLD||,

’&REPDGRP=’REPDGRP’&BLDREPT=’BLDREPT’&BLDLIST=’BLDLIST||,

’&BLDMSG=’BLDMSG’&BLDSCOPE=’BLDSCOPE’&BLDMODE=’BLDMODE||,

’&BLDMSGDS=’BLDMSGDS’&BLDRPTDS=’BLDRPTDS’&BLDLSTDS=’BLDLSTDS||,

’&BLDEXTDS=’BLDEXTDS’&SUBMIT=’SUBMIT

/* outputs parameter string as input to BWBCRON1 */

SAY PARM1

Figure 33. Sample Build parameter file

80 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Appendix A. SCLM overview

IBM SCLM Developer Toolkit provides the means by which distributed

applications written in Eclipse can be managed and built using SCLM, the IBM

z/OS source code management system.

The language and tools used by distributed and mainframe users is as different as

the environments they employ. By identifying and understanding key concepts of

both environments then it is possible to successfully integrate these into a cohesive

structure.

In terms of application structure Developer Toolkit is a series of Eclipse plug-ins

with corresponding z/OS host code that enables both the use of HTTP and RSE

transports. Operationally an Eclipse developer registers a workspace project with

SCLM. Files in the project can be added to an SCLM project, checked in and out,

and optionally built and deployed. All these services are driven via the Team

Actions menu. From the SCLM administrators point of view, they can create

projects, types, languages and associated built translators. Features such as change

and authorization codes are dependent on requirements.

SCLM Concepts

From a Java/J2EE developers perspective, the following concepts help describe

SCLM.

File naming

The z/OS file system only supports file name lengths of eight characters. The

Developer Toolkit interface provides a translation service that enables normal Java

long name conventions to be supported. There are files specific to SCLM that must

comply with the naming restriction. These relate principally to the ARCHDEF

structure described in “J2EE ARCHDEF” on page 46.

Type

Each file (known as a member in SCLM terminology) that is stored in an SCLM

project is stored in a data set. The data set where the file is stored is identified by

SCLM type. The type is part of the data set name, made up as far as SCLM is

concerned by SCLM Project.Group.Type. with a language associated with it. There

can be many types defined in an SCLM project . These types provide a means

whereby two files with the same name can be stored in the same SCLM project.

Each project can contain many types. By applying the use of type it is possible to

store multiple Eclipse projects in the one SCLM project even though each IDE

project potentially has a .project and .classpath file. If we do not segregate these

files using type, then only one copy of these files exists in SCLM.

The SCLM administrator is responsible for the definition of the SCLM types. When

you share a project with SCLM you need to know what type you are to use when

storing objects in SCLM.

© Copyright IBM Corp. 2005, 2007 81

Language

When you add a file to SCLM you must store it with a certain language definition.

Again the SCLM administrator is responsible for the definition of languages. This

definition controls the behavior of SCLM as files are transferred to and from the

host system. Using the language definition it is possible to define whether a certain

file type is long-name translated, stored as a binary object, or translated into ASCII

or EBCDIC (native z/OS encoding). For example a language definition of JAVABIN

might relate to a long name translated binary object. Alternatively, WEBHTML can

be defined as representing a long-name translated, text file to be stored in ASCII.

The number of language definitions is defined per project. Understanding which

language to use is necessary to ensure that the file is stored and can be retrieved

correctly from SCLM. The language also defines how SCLM builds an object.

SCLM properties

Any file that is under SCLM control will have a number of properties associated

with it. These properties are effectively the mapping mechanism between the IDE

file and its corresponding SCLM properties. When service calls are made to SCLM,

this data is read to formulate the appropriate service parameters. You can view

these from the Properties menu when you highlight an SCLM-controlled member

from Eclipse.

SCLM project structure

When you share a project with SCLM you also need to nominate what

development group you belong to. SCLM project structures are hierarchical in

nature. A typical hierarchy can be:

 Code is initially stored at the DEVELOPMENT level. After it has been successfully

built and tested it can be promoted up to TEST. Following successful testing it can

then be promoted to PRODUCTION. This generally represents the developed

product. If a defect is found in the Production level code then those files that must

be edited to fix the defect are copied down to the Development level and the build

process starts again. All the code that makes up the application is not copied down

to the Development level. SCLM keeps track of the elements that make up the

build and at what level they are stored.

Within the Development level there can be multiple groups. This provides a means

of separating out code stored at the development level. SCLM also provides

controls for determining the behavior of code stored in different development

groups in terms of the ability to promote.

Figure 34. Multiple types

Language

82 SCLM Developer Toolkit V3R1: Installation and Customization Guide

ARCHDEF

The structure of the IDE project is generally one composed of one or more IDE

projects. By storing each of these IDE projects in a different SCLM type this

structure is maintained. The ARCHDEF file then effectively defines the files that

make up an IDE project. Each SCLM project can have multiple ARCHDEFs. It is

possible for an ARCHDEF to reference other ARCHDEFs so that this multiple IDE

project structure can be defined to the build process, the ARCHDEF being the

principal means of defining a build list to SCLM. The closest analogy of this is that

of a make process. The ARCHDEF lists the files that make up the build in addition

to specifying a build script that will allow you to specify the location of external

JARs or classes. For more information about this, see the User Manual section of

the Online Help System.

JAVA/J2EE concepts

When an IDE project is created in the workspace, a project description file is

automatically generated and stored under the name .project. This XML document

contains descriptions of any ‘builders’ or ‘natures’ associated with the project.

‘Builders’ are incremental project builders that create some built state based on the

project contents. As the contents of the project changes, this file will be updated.

‘Natures’ define and manage the association between a given project and a

particular plug-in or feature.

The .classpath file is a file that describes the path which is used to find external

jars and classes that are referenced by the source code in your IDE project. The

equivalent function during a build through SCLM Developer is defined with the

CLASSPATH_JARS directive in the Ant build scripts. This directive will describe

the path on the z/OS host that is used to find external jars and classes that are

referenced by the source code in your IDE project.

Both .classpath and .project are used to preserve your IDE project configuration so

that it can be recreated in another workspace. For this reason it is recommended

that both are checked into SCLM as part of the IDE project.

An important aspect of project development, particularly in J2EE projects, is that a

number of different forms of application executables can be created. Java project

executables are often packaged as JAR, WAR, RAR or EAR files.

JAR files typically relate to standard Java applications or Enterprise Java Beans

(EJB).

WAR files are created for Web applications. Typically these are composed of Java

servlets, JSPs, and HTML files. WAR applications are often the front end of

Web-based applications. These applications can reference other JARs such as EJBs

for specific services. Each WAR file contains a web.xml file. This describes the

composition of the WAR application in terms of Java, HTML, and the library

services that it uses.

RAR file development is not currently supported in Developer Toolkit.

ARCHDEF

Appendix A. SCLM overview 83

EAR files represent enterprise applications. These applications are composed of

JAR and WAR files. In J2EE language, the creation of the EAR file is the assembly

of its constituent JAR and WAR files. This method of assembly allows EAR

applications to be created which are in effect made up of specific components

(JAR/WAR). The actual composition of the application is described in the

application.xml file. The EAR file itself is not a standalone executable object. The

EAR file must be installed in a J2EE container such as Websphere Application

Server (WAS). The installation of the EAR file is referred to as deployment. A

deployed EAR application can be accessed via the WAS environment. Deployment

is a separate process from that of the build. Deployment involves the physical

installation of the EAR application.

When developing J2EE applications it is therefore possible that it will involve the

development of a number of separate components such as WAR and JAR files.

These files are then assembled together into an EAR file. The EAR file is then

ready for deployment into a J2EE container (for example, WAS) for operation.

Within the Eclipse workspace the projects are effectively proximate, that is within

the IDE environment they can effectively refer to other IDE projects readily in

terms of packaging. Within SCLM, each of these IDE projects (for example, WAR,

JAR and EAR projects) need to be mapped into a single SCLM project, with each

project differentiated through the use of a different SCLM type. The reason for this

is that there are common file names used in many IDE projects such as .project,

.classpath, web.xml and application.xml, so use of separate types allows these

same named parts to exist in the same SCLM project. For more information about

mapping, see “Mapping J2EE projects to SCLM” on page 54.

From an SCLM perspective the development of the EAR application is best

referenced through the use of a high-level ARCHDEF structure. Within SCLM the

high-level ARCHDEFs, in many SCLM projects referred to as a package, are the

apex of the ARCHDEF structure followed by the EAR application and lower level

references (WAR and JAR files) that make up the EAR application. This structure

enables the use of builds at both high and low level and also the use of full or

conditional builds. The ARCHDEFs thus provide a means by which it is also

possible to define the J2EE project elements within the SCLM project.

JAVA/J2EE concepts

84 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Appendix B. SQLJ Support

SQLJ is a language extension for Java. It is one of several technologies that allow

Java programmers to include database communication in their programs. SQLJ

provides a means to produce static, embedded SQL that generally out-performs

dynamic equivalents such as JDBC.

SCLM Developer Toolkit ships with sample scripts allowing you to build SQLJ

enabled Java programs using DB2.

It is hoped that after reading this chapter, you will understand the essentials of

SQLJ, and how to apply this knowledge while using SCLM Developer Toolkit.

What is SQL?

SQL is an acronym for Structured Query Language. It is an open language, used to

query, add to, remove from, and change, data in a Relational Database

Management System (RDMS).

The first implementation of this language was in an early IBM database product in

the 1970’s : System R . Since then, SQL has grown, been standardized (by ANSI

and ISO) and appeared in many flavours on many different database systems.

What is DB2?

DB2 is a popular database system, traditionally for the mainframe platform, that

has since been extended onto many others. It is the defacto standard for relational

database management systems on z/OS.

DB2 UDB Version 8 is the version that SCLM Developer Toolkit s build scripts are

based on. References to DB2 in this chapter refer specifically to DB2 UDB Version

8.

What is JDBC?

JDBC stands for Java Database Connectivity. In Java development, this is a well

known and commonly used technology for implementing database interaction.

JDBC is a call-level API, meaning SQL statements are passed as strings to the API,

which then takes care of executing them on the RDMS. Consequently, the value of

these strings can be changed at runtime, making JDBC dynamic.

While JDBC programs will execute slower than their SQLJ equivalents, one

advantage of this approach is a concept known as Write once, call anywhere. This

means that since no interaction is required until runtime, a JDBC program is very

portable and can be taken between different systems with minimum fuss.

What is SQLJ?

SQLJ is a language extension used for database transactions in Java applications. It

produces static, embedded SQLJ. The term is made up of SQL - Structured Query

Language and J which stands for Java.

© Copyright IBM Corp. 2005, 2007 85

SQLJ is staticbecause the SQL statements that will be executed at runtime are

known when the program is assembled. Contrast this to JDBC, where the queries

that are executed can be changed at any time.

SQLJ is embeddedbecause during binding, a serialized form of the programs SQL

statements is given to the database. The database uses this serialized data to

determine optimized access paths to the tables that are referenced within. In JDBC,

the database has no way to determine which statements will be executed, until it

receives them at runtime from the application. Therefore it must determine access

paths at runtime. This incurs an overhead that is avoided by using SQLJ.

Comparing JDBC and SQLJ

This table is based on material found in section 5.2 the Redbook DB2 UDB for z/OS

Version 8: Everything You Ever Wanted to Know, ... and More, which is recommended

reading.

 SQLJ (static) JDBC (dynamic)

PERFORMANCE Most of the time, static SQL

is faster than dynamic SQL,

because at runtime only the

authorization for packages

and plans must be checked

prior to the execution of the

program.

Dynamic SQL statements

require the SQL statements

to be parsed, table/view

authorization to be checked,

and the optimization path to

be determined.

AUTHORIZATION With SQLJ, the owner of the

application grants EXECUTE

authority on the plan or

package, and the recipient of

that GRANT must run the

application as written.

With JDBC, the owner of the

application grants privileges

on all the underlying tables

that are used by the

application. The recipient of

those privileges can do

anything that is allowed by

those privileges, for example,

using them outside the

application the

authorizations were

originally granted for. The

application cannot control

what the user can do.

DEBUGGING SQLJ is not an API but a

language extension. This

means that the SQLJ tooling

is aware of SQL statements

in your program, and checks

them for correct syntax and

authorization during the

program development

process.

JDBC is a pure call-level API.

This means that the Java

compiler does not know

anything about SQL

statements at all they only

appear as arguments to

method calls. If one of your

statements is in error, you

will not catch that error until

runtime when the database

complains about it.

86 SCLM Developer Toolkit V3R1: Installation and Customization Guide

lMONITORING With SQLJ, you get much

better system monitoring and

performance reporting. Static

SQL packages give you the

names of the programs that

are running at any given

point in time. This is

extremely useful for studying

CPU consumption by the

various applications, locking

issues (such as deadlock or

time-out), etc.

Where in SQLJ you can

determine the name of the

program currently executing,

with JDBC all transactions

occur through the same

program. This makes

monitoring and locating

problem areas more difficult.

VERBOSITY As SQLJ statements are

coded in purely SQL syntax,

without the need to wrap

them in a Java method, the

programs themselves are

easier to read, making them

easier to maintain. Also,

since some of the boilerplate

code which has to be coded

explicitly in JDBC is

generated automatically in

SQLJ, programs written in

SQLJ tend to be shorter than

equivalent JDBC programs.

With JDBC, all SQL

statements must be wrapped

in API calls that generally

make for unclear and

verbose code.

What is a Serialized Profile?

Code that is written in SQLJ is placed in a file with a .sqlj extension. In the first

step of program preparation (that will be discussed in more detail later on), the

.sqlj file is fed into the SQLJ translator.

The translator produces two types of output. The first is Java source code (.java).

This source code is obviously the Java implementation of the code within the .sqlj

file.

The second type of output is a serialized profile (.ser). This file contains all the

SQL statements from the .sqlj file, in a serialized form. This profile must be

available to the program at runtime, and it can also be used to bind to the RDMS.

What is a DBRM?

DBRM stands for Database Request Module. This is the traditional DB2 serialized

representation of the SQL statements in a program. For example, a program may

be written in COBOL. This program will be pre-processed by DB2 to produce a

DBRM that will be used to bind against a particular DB2 subsystem.

With SQLJ, the process is slightly different, and is referred to in DB2 UDB Version

8 terms as compatibility mode. The utility db2sqljcustomize can be provided with

optional command line arguments that cause a DBRM to be generated. This DBRM

can then be bound to DB2 using traditional means, for example, a REXX script

called by a SCLM user exit.

Appendix B. SQLJ Support 87

SQLJ Program Preparation

Before we discuss how to use SCLM Developer Toolkit to build SQLJ programs, let

us first examine the manual process. This process is for the DB2 implementation of

SQLJ, and features 3 commands called sqlj, db2sqljcustomize and db2bind. Note that

the bind step can optionally be performed in db2sqljcustomize, so db2bind is not

always required.

Translation

The SQLJ translator (not to be confused with an SCLM language translator) takes

SQLJ source files as input, and produces Java source code (.java files) and

serialized profiles (.ser files).

The SQLJ language itself is not discussed in this book. Consult

(http://www.sql.org) to find references on developing SQLJ code.

88 SCLM Developer Toolkit V3R1: Installation and Customization Guide

The number of serialized profiles generated per .sqlj file depends upon the number

of connection context classes referenced within the SQLJ code. A serialized profile

will be generated for each one.

Many SQLJ source files will only reference a single connection context class, and

therefore generate a single serialized profile. The serialized profiles are named

according to the order that they are referenced in the source file. The name takes

the following format:

progname_SJProfileX.ser

Where:

 Progname The name of the program. This is

determined by removing the .sqlj extension

from the input source filename.

X An integer representing the index of the

current class. Indexing is zero based. The

first connection context class referenced will

produce profile 0; the second will produce

profile 1, and so on.

Example:

Input: Customer.sqlj (references one connection context class)

Output: Customer.java

 Customer_SJProfile0.ser

And optionally, if the argument –compile=true is supplied to sqlj:

 Customer.class

Customization

Once the serialized profiles are generated, we customize them. The command for

doing so in DB2 Version 8 is db2sqljcustomize; however, in previous versions it was

db2profc. Each invocation of the customizer should match up with an invocation

with the SQLJ translator. In other words, if a single invocation of the translator

generated 5 profiles, then those 5 profiles must be fed as input to a single

invocation of the profile customizer. Another way to think of it is to associate each

individual program name with one invocation of each of the utilities. Remember

that the program name is the same as the input source filename with the .sqlj

extension removed.

Customization adds DB2 specific information to the serialized profile that is used

at runtime. Other options, such as automatic binding, can be configured via

command line switches. If you are using a legacy version of DB2, or you are

specifying the gendbrm and dbrmdir flags for db2sqljcustomize, a DBRM file will be

generated. This file is used later to bind to the database. With the Universal driver

from DB2 UDB 8+, you may forgo the generation of a DBRM, and instead bind

using the serialized profiles generated by the SQLJ translator.

Binding

Binding is the last step in the SQLJ program preparation process. In DB2 version 8,

the command used to bind is db2sqljbind, or you may bind automatically when

running db2sqljcustomize. Binding is the step that builds an access path to DB2

Appendix B. SQLJ Support 89

tables for your serialized SQL statements. These statements are available either in

the form of a DBRM or a serialized profile.

By default, four packages are created, one for each isolation level. You can either

bind using the traditional method, wherein a DBRM is used, or the new Universal

method, where serialized profiles are used instead.

SCLM DT types and translators

Before discussing the SCLM types and translators, an important distinction must

be made between an SCLM language translator, or simply, SCLM translator and the

SQLJ translator sqlj that ships as part of DB2.

In SCLM, any defined language is required to have a translator so it is known how

to deal with that language. This is not the same as the SQLJ translator, sqlj that is a

command line utility that takes a SQLJ source file and produces serialized profiles

and Java source code.

Having made that distinction, we will discuss the SCLM Types and SCLM

Translators associated with the SQLJ build process.

A SCLM translator for SQLJ is provided and should be assigned as the language

type of all SQLJ source code stored in SCLM. This new translator requires

additional SCLM Types to be defined. The SCLM translator for SQLJ is similar to

the JAVA translator but contains additional IOTYPE definitions for SCLM output

types SQLJSER and DBRMLIB. If you do not wish to generate DBRM files as part

of the customization step then this DBRMLIB IOTYPE may be removed from the

SQLJ language definition.

Within the project definition, an administrator must define and generate the new

SCLM translator and the additional types.

 SQLJSER This is required to store the generated

serialized profile files (.ser files)

created/customized in the translation and

customization steps. It is recommended to

define this SCLM type dataset as recfm=VB,

lrecl= 256.

DBRMLIB A type required to contain the generated

DBRM files created in the customization

step. This type is only required for

customers using generated DBRM files as

part of their DB2 bind processing. This

SCLM type dataset must be allocated as

recfm=FB , lrecl= 80.

Tailoring the build process

In order to retain maximum flexibility, the SQLJ build process is highly

customizable, to cater for different site configurations, and any combination of

parameters that must be passed to sqlj and db2sqljcustomize.

This section describes the concepts behind SCLM Developer Toolkit s

implementation of SQLJ. It is hoped that after reading it, you will be able to

customize the build process to match the requirements of your site.

90 SCLM Developer Toolkit V3R1: Installation and Customization Guide

While doing SQLJ translation and profile customization, SCLM Developer Toolkit

directly invokes the same Java classes used by the commands sqlj and

db2sqljcustomize. Be aware that the arguments supplied to the SCLM DT translation

and customization processes will be exactly the same. For an in-depth discussion

of all the command line arguments for each command, please consult the DB2

Universal Database user guide.

Tailoring the Build Script

Assuming you have used the Add to SCLM wizard, the build script for your SQLJ

program will be given the same member name as the Archdef. For example, if the

Archdef for your sqlj project is:

SCLM10.DEV1.ARCHDEF(SQLJ01)

You will locate the build script at:

SCLM10.DEV1.J2EEBLD(SQLJ01)

In that build script will be a reference to the master build script. This can be found

in the property. The build script shipped with Developer Toolkit is BWBSQLB for JAR

projects, and BWBSQLBE for EJB projects. You should not need to change this value.

Most of the configuration listed for the translation and customization steps goes on

in this file.

sqlj properties

Each property listed in the table below appears in the BWBSQLB build script. The

properties are in XML form as follows:

Configuring the script involves changing the value for any relevant properties.

 NAME VALUE DESCRIPTION

sqlj.exec /etc/SCLMDT/bwbsqlc.rex Specifies the location of the

sqlj & db2sqljcustomize exec

routine bwbsqlc.rex. (Sample

BWBSQLC) By default this

sample should be located in

a SCLM DT install directory.

sqlj.class sqlj.tools.Sqlj Specify the sqlj class name.

This is the name of the class

invoked by the sqlj utility. It

is very unlikely you will

need to change this value.

sqlj.bin /db2path/bin Specify the db2 sqlj bin

directory location where the

sqlj script resides

sqlj.cp /db2path/jcc/classes/sqlj.zip Specify the location of

sqlj.zip for inclusion on the

classpath.

sqlj.arg -compile=false status

linemap=NO db2optimize

Specify global property

arguments below for sqlj

processing.

db2sqljcustomize properties

Each property listed in the table below appears in the BWBSQLB build script. The

properties are in XML form as follows:

<property name= NAME value= VALUE />

Appendix B. SQLJ Support 91

Configuring the script involves changing the value for any relevant properties.

 NAME VALUE DESCRIPTION

sqljdb2cust.class com.ibm.db2.jcc.sqlj.Customizer Specify the sqlj db2

customize class name.

It is very unlikely

that you should need

to change this value.

db2sqljcust.cp /db2path/jcc/classes/db2jcc.jar:

./SRC:

/db2path/jcc/classes/
db2jcc_license_cisuz.jar

Classpath settings for

the customize utility.

Fully qualified

pathnames must be

supplied in XML.

db2sqljcust.arg -automaticbind NO -onlinecheck YES

-staticpositioned YES -bindoptions â

ISOLATION(CS)â -genDBRM

General arguments to

supply to the

customization utility.

db2sqljcust.propfile user.properties Temporary property

file name to be

passed to a user

property

determination script

for dynamic property

values. Leave as

default.

db2sqljcust.userpgm NONE if you wish to bypass the script.

Otherwise, specify the fully qualified path

and file name of user script.

This script will be

run immediately

before the

customization utility.

It dynamically

updates a property

file that is used as

input to the

customization utility.

custom user script

The SQLJ build script provided by SCLM Developer Toolkit is designed to work in

DB2 UDB v8 compatibility mode. This mode supports the DB2 concept of DBRM's,

rather than binding via the serialized profiles. In order to use the serialized

profiles, changes must be made to BWBSQLB. This is discussed in the subtopic

Using serialized profiles for binding.

Binding methodology aside, in order to match the build process to your site, you

will probably need to customize the arguments to sqlj and db2sqljcustomize to match

your database environment, isolation policy, and other factors. You may even want

to put your own scripts in to determine dynamic properties for these arguments:

for example you may wish to intelligently create a package name related to the

input file name.

SCLM Developer Toolkit allows you to do this by specifying your own

customization script. Everything in the ANT XML build process works on the

concept of “properties”, XML Property elements specifying a name/value pair. For

example, in the db2sqljcustomize step in build script BWBSQLB, the global

command line arguments to be supplied to db2sqljcustomize are defined in a

property element with the name db2sqljcust.arg and a default value of

92 SCLM Developer Toolkit V3R1: Installation and Customization Guide

-automaticbind NO -onlinecheck YES -staticpositioned YES -bindoptions

“ISOLATION(CS)” genDBRM lang=EN-AU

If you want to change the arguments supplied, you can both edit the build script

to change the value of the property, which would change the settings globally, or

hook your own customization script into the process.

To hook in your own custom property script, place the name of your script in

db2sqljcust.userpgm, and the name of the property file you wish to write to in

db2sqljcust.propfile.

The script specified in db2sqljcust.userpgm will be run immediately before the

db2sqljcustomize process. Your script will dynamically update the property file

specified in db2sqljcust.userpgm. This property file will be used as input to the

db2sqljcustomize process, as the build process concatenates both properties in the

dynamically updated property file, and properties already defined in the build

script.

The script specified in db2sqljcust.userpgm will be supplied the following arguments

when it is executed.

 Argument Description

Basedir Base directory (workspace directory)

Propfile The name of the property file to create and

update. Note: The property file being created

needs to be basedir’/’propfile

Sqljf A list of file names, representing the

serialized profiles (.ser) to be processed by

db2sqljcustomize.

The properties should be set in the file in the following format, with one property

declaration per line:

argument=value

e.g.

singlepkgname= pkgname

For example:

pkgversion=1

url=jdbc:db2://site1.com:80/MVS01

qualifier=DBT

singlepkgname= SQLJ986

The custom routine is called once per file. Finally, the argument properties are

used for building up the required argument string for the db2sqljcustomize call.

For example:

db2sqljcustomize -automaticbind NO -collection ${db2.collid}

-url ${db2.url} -user ${db2.user} -password ???????? -onlinecheck YES

-qualifier ${db2.qual} -staticpositioned YES -pkgversion ${db2.packversion}

-bindoptions "ISOLATION (CS)"

-genDBRM -DBRMDir DBRMLIB

-singlepkgname ${db2.pack}

Binding [DBRM]

Traditional DB2 uses a Database Request Module or DBRM for this purpose. The

DBRM is generated by the db2sqljcustomize command when the flag gendbrm is

Appendix B. SQLJ Support 93

provided. Without this flag, the command will assume you wish to bind via

serialized profiles, and will not generate a DBRM.

If you provide this parameter, SCLM Developer Toolkit will pick up the generated

DBRM s, and store them in SCLM for future use. One advantage of using this

technique is that you can easily perform a DB2 bind in a SCLM user exit, such as

the build/copy exit.

Since the build/copy user exit is automatically provided with a list of updated

objects, you can selectively rebind only the modules that have changed, avoiding

inefficiency through redundant binding.

To configure binding for DBRMs there are four steps.

1. Set the appropriate arguments for sqlj.

<!-- specify global property arguments below for sqlj processing -->

<property name="sqlj.arg"

value="-compile=false -status -linemap=no"/>

 Argument Description

compile=false Setting this option to false prevents the sqlj translator from

automatically compiling the Java source it produces. SCLM

Developer Toolkit uses the generated source in its own

build process, so it is recommended you always set this

option to false.

linemap=no Specifies whether line numbers in Java exceptions match

line numbers in the SQLJ source files (the .sqlj file) or line

numbers in the Java source file that is generated by the

SQLJ translator files (the .java file). This requires a .class

file, so must be set to no when used in conjunction with

compile=false.

status Prints immediate status display of SQLJ processing.

2. Set the appropriate arguments for db2sqljcustomize, including gendbrm.

<property name="db2sqljcust.arg"

 Value=’-automaticbind NO -onlinecheck YES

 -bindoptions "ISOLATION(CS)" -gendbrm’/>

 Argument Description

automaticbind no When set to no , the customizer will not perform a bind

when customization is complete.

onlinecheck yes Perform online checking on the system specified by the url

parameter. Defaults to yes if url is supplied, and no

otherwise.

Bindoptions ISOLATION(CS) Instructs the binder to create a single package (cursor

stability). Used in conjunction with singlepkgname(set

dynamically).

gendbrm Instructs the customizer to generate DBRM files.

3. Configure the user script.

Set the location of your user program in BWBSQLB. This tells the build process

where the find the rex script used to calculate dynamic properties.

The big property we want to configure dynamically is singlepkgname.This is the

name of the package to bind to, and each program is going to have its own

unique package name, which in this simple example, is the first 8 letters of the

program name.

94 SCLM Developer Toolkit V3R1: Installation and Customization Guide

4. Write a build exit to bind the DBRM. The build copy exit is recommended.

Since we are using singlepkgname in the customization step, the name of the

package will be the same as the name of the DBRM.

Binding [Serialized Profile]

The new and recommended approach for binding SQLJ programs is to use the

serialized profiles (.ser files) to bind. This was inevitable since the serialized profile

performs the same function as the DBRM: providing a serialized image of the

statements within the program.

With some small modifications to the build script BWBSQLB, you can configure

SCLM Developer Toolkit to use this method instead. It is simply a matter of

changing the arguments provided to db2sqljcustomize to remove the gendbrm

command line switch, and change automaticbind to YES.

To configure binding for serialized profiles, there are just three steps:

1. Set the appropriate arguments for sqlj.

There are no command line arguments to the sqlj translator that are unique to

serialized profile binding. However, the arguments set for this particular

example are shown.

<!-- specify global property arguments below for sqlj processing -->

<property name="sqlj.arg"

value="-compile=false -status -linemap=no"/>

 Argument Description

compile=false Setting this option to false prevents the sqlj translator from

automatically compiling the Java source it produces. SCLM

Developer Toolkit uses the generated source in its own

build process, so it is recommended you always set this

option to false.

linemap=no Specifies whether line numbers in Java exceptions match

line numbers in the SQLJ source files (the .sqlj file) or line

numbers in the Java source file that is generated by the

SQLJ translator files (the .java file). This requires a .class

file, so must be set to no when used in conjunction with

compile=false.

status Prints immediate status display of SQLJ processing.

2. Set the appropriate arguments for db2sqljcustomize.

<property name="db2sqljcust.arg"

Value=’-automaticbind YES -onlinecheck YES’/>

 Argument Description

automaticbind yes When set to yes , the customizer will also perform a bind

when customization is complete. When set to no the bind

must be performed separately with the command db2bind.

onlinecheck yes Perform online checking on the system specified by the url

parameter. Defaults to yes if url is supplied, and no

otherwise.

3. Configure the user script.

Set the location of your user program in BWBSQLB. This tells the build process

where the find the rex script used to calculate dynamic properties.

<property name="db2sqljcust.userpgm" value="/u/dba/sqljcust.rex"/>

Appendix B. SQLJ Support 95

96 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Appendix C. Long/short name translation table

Currently core SCLM does not support the use of code storage with file (member)

names greater than eight characters.

Code such as Java and other PC client code inherently have much greater name

lengths and even incorporate path information (packaging) as part of the name.

This causes the need for code with named parts greater than eight characters to go

through a long/short name conversion utility to enable these parts to be stored

within SCLM with an eight character (or less) name length.

A long name to short name translation table stores the matching long names (real

name) against the short names (as stored in SCLM). These tables are controlled and

accessed by SCLM and is saved in a VSAM data set. This functionality has been

introduced into SCLM with the PTF that addresses APAR OA11426 for z/OS V1.4

and later. For z/OS V1.8 and later, this PTF is not required.

The conversion algorithm follows these steps:

1. The translate prefix consists of the first two characters (uppercase) of the long

program/file name (that is, the last file name after “/” character in

multi-packaging format). If the first two characters are not valid as a prefix for

a host member name (because they contain invalid special characters) then the

prefix is “XX”. Special cases, such as a single character alphabetic name

(/u/test/A or /u/test/A.java), are also assigned the prefix of “XX”.

2. The last six characters are numerically assigned the next numeric sequential

number available in the translate table.

For example:

 Long name Short name in SCLM PDS or PDSE

com/ibm/workbench/testprogram.java TE000001

source/plugins/Phantom/.classpath XX000001

Technical summary of the SCLM Translate program

SCLM program FLMLSTRN was created to read and update the VSAM translation

table. SCLM Developer Toolkit uses this program to read and update correlating

long names and short names.

The VSAM file used to store the translation table is a variable length KSDS with an

alternative index and path defined. A sample job is provided in SCLM to allocate

this VSAM file.

The internal structure of the VSAM cluster is:

 1 ls_record,

 3 ls_short_name char(08),

 3 ls_lngname_key char(50),

 3 ls_long_name char(1024);

Sample JCL to allocate the Long/Short name translation VSAM file can be seen in

“Step 6: Configure long/short name table VSAM file” on page 21.

© Copyright IBM Corp. 2005, 2007 97

Note: The following technical information about SCLM Translate table function

calls is supplied as information only and is not required to enable any SCLM

Developer Toolkit functionality.

The program FLMLSTRN is invoked with the ISPF SELECT service with one of the

parameters listed in Table 11.

Syntax

 "SELECT PGM(FLMLSTRN) PARM(keyword)"

Invocation example:

 "SELECT PGM(FLMLSTRN) PARM(TRANSLATE)"

 Table 11. Long/Short name translation parameters

Keyword Record Processing Description

FINDLONG Single Find a long name for a given short name

FINDSHORT Single Find a short name for a given long name

TRANSLATE Single Find a short name if it exists or allocate a new

short name if it does not exist

MIGRATE Multiple Search for multiple long names

IMPORT Multiple Search for multiple short names

Single long/short name record processing

FINDLONG Processing

v The VSAM cluster allocated to DD LSTRANS is opened in read mode.

v The short name is retrieved from the ISPF variable FLMLSSHR and this short

name is used to read the VSAM file.

v If the record is not found a message is returned via the ISPF variable

FLMLSERR stating that the long name was not found.

v If the long name was found it is returned in the ISPF variable FLMLSLNG.

v The VSAM cluster is closed.

FINDSHORT Processing

v The VSAM Path allocated to DD LSTRNPTH is opened in read mode.

v The long name is retrieved from the ISPF variable FLMLSLNG.

v The last 50 bytes of the long name is used to read the path.

v If a record is not returned a message is returned via the ISPF variable

FLMLSERR stating that the short name was not found.

v If a record is returned the long name in the VSAM record is checked against the

long name in the ISPF variable FLMLSLNG.

v If it doesn’t match the VSAM records are read and compared until the

ls_lngname_key doesn’t match or the long name is found.

Note: The ls_lngname_key allows duplicates as it is possible to have a VSAM

record with the same ls_lngname_key but different long name.

v If the short name was found it is returned in the ISPF variable FLMLSSHR.

v The VSAM path is closed.

Technical summary of the SCLM Translate program

98 SCLM Developer Toolkit V3R1: Installation and Customization Guide

TRANSLATE Processing

The processing is the same as for FINDSHORT.

v If the short name is found no further processing is performed.

v If the short name is not found the VSAM cluster allocated to DD LSTRANS is

opened in update mode.

v The file name is determined by finding the last ’/’ or ’\’ in the long name.

v The first 2 bytes of the file name are used to look up the VSAM file prefix record

which contains a number.

v The file prefix and number will be used to generate the short name (for

example, PR000123).

v The short name generated (PR000123) is used to check VSAM file to determine if

the short name is being used.

v If it is the prefix number is incremented and short name again checked.

v This process continues until we find a short name that is not being used.

v The prefix record is updated and then the new translate record is added.

v The short name is returned in the ISPF variable FLMLSSHR.

v The VSAM cluster is closed.

Multiple long/short name record processing

MIGRATE and IMPORT are functions that were introduced to improve

performance with large numbers of long names being translated (MIGRATE) or

large numbers of short names being searched for (IMPORT).

Both functions, “MIGRATE” and “IMPORT”, read a variable blocked sequential file

with LRECL=1036 which is allocated as DD LSTRNPRC.

Before invocation this file will contain the short names or long names depending

on the function called and in the correct format and column.

After invocation LSTRNPRC will contain both the short name and correlating long

name.

The format of the file is:

 1 pr_record,

 3 pr_short_name char(08),

 3 pr_long_name char(1024);

IMPORT processing

v The VSAM cluster allocated to DD LSTRANS is opened in read mode and the

processing file allocated to DD LSTRNPRC is opened for update.

v For each of the records on the processing file, the short name is used to read the

VSAM translation file. If a record is found the processing file is updated with

the long name.

v The VSAM cluster/processing files are closed.

TRANSLATE Processing

Appendix C. Long/short name translation table 99

MIGRATE processing

v The VSAM cluster allocated to DD LSTRANS is opened in read mode and the

processing file allocated to DD LSTRNPRC is opened for update.

v For each of the records on the processing file, the long name is used to read the

VSAM file. If a record is found the processing file record is updated with its

corresponding short name otherwise LSTRANS is opened in update mode to

add new long name/short name entries and the new short name generated is

written back to the LSTRNPRC file.

v The VSAM cluster/processing files are closed.

Here is some sample REXX to invoke the long/short name translation process:

/* REXX **/

/* Sample to translate long name to a short name */

/***/

 Address TSO

 "FREE FI(LSTRANS)"

 "FREE FI(LSTRNPTH)"

 "ALLOC DD(LSTRANS) DA(’BWB.LSTRANS.FILE’) SHR REUSE"

 "ALLOC DD(LSTRNPTH) DA(’BWB.LSTRANS.FILE.PATH’) SHR REUSE"

 /* Create short name for long name com/ibm/phantom.txt */

 FLMLSLNG = "com/ibm/phantom.txt"

 Address ISPEXEC "VPUT (FLMLSLNG) PROFILE"

 Address ISPEXEC "SELECT PGM(FLMLSTRN) PARM(TRANSLATE)"

 LSRC=RC

 If LSRC > 0 Then

 Do

 Address ISPEXEC "VGET (FLMLSERR,FLMLSER1) PROFILE"

 Say "LS ERROR LINE 1 ==>" FLMLSERR

 Say "LS ERROR LINE 2 ==>" FLMLSER1

 Return

 End

 Else

 Do

 Address ISPEXEC "VGET (FLMLSSHR,FLMLSLNG) PROFILE"

 Say " Shortname = " FLMLSSHR

 Say " Longname = " FLMLSLNG

 End

 Address TSO

 "FREE FI(LSTRANS)"

 "FREE FI(LSTRNPTH)"

Figure 35. Sample REXX for Translate module invocation

MIGRATE processing

100 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Bibliography

Publications referred to in this document:

 HTTP Server Planning, Installing and Using,

SC31-8690

 P/390, R/390, S/390 Integrated Server: OS/390

New User’s Cookbook, SG24-4757

 z/OS ISPF Software Configuration and Library

Manager Project Manager’s and Developer’s

Guide, SC34-4817

 z/OS ISPF Software Configuration and Library

Manager Reference, SC34-4818

 z/OS Information Roadmap, SA22-7500

 z/OS UNIX System Services Command Reference,

GA22-7802

 z/OS UNIX System Services Messages and Codes,

GA22-7807

 z/OS UNIX System Services Planning,

GA22-7800

© Copyright IBM Corp. 2005, 2007 101

102 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information about the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 U.S.A.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one), and (ii) the mutual use of the

information which has been exchanged, should contact:

 IBM Corporation

 Mail Station P300

 2455 South Road

 Poughkeepsie New York 12601-5400

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

 IBM World Trade Asia Corporation

 Licensing

 2-31 Roppongi 3-chome, Minato-ku

 Tokyo 106-0032, Japan

© Copyright IBM Corp. 2005, 2007 103

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information can include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following are trademarks of International Business Machines Corporation in

the United States, or other countries, or both.

AIX

CICS

DB2

Domino

eServer

IBM

Intel

Library Reader

Lotus

MVS

OS/390

Passport Advantage

RACF

Redbooks

S/390

WebSphere

z/OS

zSeries

 Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Notices

104 SCLM Developer Toolkit V3R1: Installation and Customization Guide

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Windows is a trademark of Microsoft Corporation in the United States, other

countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Trademarks

Notices 105

106 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Glossary

A

accounting record. An SCLM control data record

containing statistical, historical, and dependency

information for a member under SCLM control.

alternate project definition. A project definition that

provides a version of the project environment which

differs from the default project definition.

architecture definition. A means of organizing

components of an application into conceptual units. It

is SCLM’s method of defining an application’s

configuration. It describes how the components of an

application fit together and how they are used to drive

both the build and promote functions. Architecture

definitions are used to group components into

applications, sub-applications, and load modules.

architecture member. Defines an individual software

component, which may be a collection of other

architecture members, by specifying its relationship to

other software components of an application.

authcode. An identifier used by SCLM to control

authority to update and promote members within a

hierarchy. These codes can be used to allow concurrent

development without the risk of module collisions

(overlaid changes).

authorization code. See authcode.

B

bidirectional (bi-di). Pertaining to scripts such as

Arabic and Hebrew that generally run from right to

left, except for numbers, which run from left to right.

bidirectional attribute. Text type, text orientation,

numeric swapping, and symmetric swapping.

build. The process of transforming inputs into outputs

through the invocation of translators specified in the

language definition. Compilers, preprocessors, and

linkage editors are examples of translators that might

be invoked at build time.

build map. Internal data record containing a complete

analysis of the database at the time of the build; it

includes the names of all referenced members and the

last change date and version number of each member.

C

change code. An 8-character identifier used to indicate

the reason for an update or modification to a member

controlled by SCLM.

component. Any input or output member associated

with an application, which together make up all or a

member of the application.

container. In J2EE, an entity that provides life-cycle

management, security, deployment, and runtime

services to components. Each type of container (EJB,

Web, JSP, servlet, applet, and application client) also

provides component-specific services.

D

development group. Groups that are in the lowest

level of the hierarchy. These groups represent

end-nodes with no other lower groups promoting into

them.

E

EAR. See Enterprise Archive.

EJB. See Enterprise Java Beans.

Enterprise Archive. A specialized type of JAR file,

defined by the J2EE standard, used to deploy J2EE

applications to J2EE application servers. An EAR file

contains EJB components, a deployment descriptor, and

Web archive (WAR) files for individual Web

applications.

Enterprise JavaBeans. JavaBeans are reusable objects,

like subroutines. EJBs take this a step further and are

designed to be platform independent.

G

group. A set of project data sets with the same

middle-level qualifier in the SCLM logical naming

convention.

H

hierarchy. The organization of groups in a ranked

order, where each group is subordinate to the one

above it.

© Copyright IBM Corp. 2005, 2007 107

I

IDE project. A project developed in the Eclipse IDE.

J

J2EE. Java 2 Platform, Enterprise Edition. It defines

the standard for developing component-based

multi-tier enterprise applications.

J2EE project. A project developed in the Eclipse IDE

specifically related to Java/J2EE.

JAR. See Java Archive.

Java Enterprise. A file format for storing information

for or about Java programs.

L

language definition. Specifies the set of translators to

be run for SCLM functions PARSE, VERIFY, BUILD,

COPY, and PURGE. A language definition is composed

of one FLMLANGL macro followed by an FLMTRNSL

macro for each translator to be run for members of

SCLM libraries whose language attribute matches the

value of the LANG keyword in the FLMLANGL macro.

level. A given tier of the hierarchy, made up of

groups, of equivalent rank.

library. In z/OS, a partitioned data set.

lock. When a user locks a member, only that user can

change it. All other users are unable to change that

member until the member is promoted or unlocked.

When a member is locked, an authorization code is

specified. If two users need to change a part, two

different authorization codes can be used.

M

member. The discreet element of an SCLM database,

representing a single data type of a software

component.

migrate. Registering software components in SCLM:

this includes identifying the component language, and

possibly the change code and authorization code.

migration. The process of introducing members into

SCLM control. Migration locks the member, parses it

according to the requested language, and stores the

information in the accounting database. The migration

utility can be used to enter a large number of members

into a project’s database, such as during conversion to

SCLM.

P

perspective. A group of views that show various

aspects of the resources in the workbench. The

workbench user can switch perspectives, depending on

the task at hand, and customize the layout of views

and editors within the perspective.

project. A collection of libraries representing an

integrated SCLM database, under a single high-level

qualifier.

project administrator. The person who maintains an

SCLM project.

project definition. Defines the SCLM library structure,

project control information, and language definitions. A

project definition is a load module used by SCLM at

run time. The source code for a project definition is

composed of macros.

project definition data. Project definitions and

language definitions which are used to create and

control an SCLM project.

promote. The process of moving an application or its

components from one level in the project hierarchy to

the next. Promotion out of a development group

removes the lock on editable members that were

successfully promoted.

S

SCLM administrator. The person who maintains an

SCLM project.

scope. The set of members (including architecture

definitions) that will be processed (for example verified,

copied, compiled, or purged) by build or promote.

service. An SCLM function available via a command

or programming interface.

T

translator. A load module, CLIST, or REXX program

that receives control from SCLM for execution. The

name of the translator is specified as the value of the

COMPILE keyword for the FLMTRNSL macro.

Examples of translators are compilers, assemblers,

linkage editors, text processors, DB2® preprocessors,

CICS® preprocessors, utilities, and customer tools.

type. The third qualifier of the SCLM naming

convention for project-partitioned data sets. Typically

identifies the kind of data maintained for a project

hierarchy. Examples of types are SOURCE, OBJECT,

and LOAD.

108 SCLM Developer Toolkit V3R1: Installation and Customization Guide

U

unlock. To make a member (formerly locked out)

available for updating (usually associated with

promote).

unlock service. Removes the restriction (unlocks) on a

member to a development group.

V

version. A copy of a member as it existed at a

previous point in time.

versioning. A function that enables the retrieval of a

version of a member. This is useful for backing out

changes.

W

WAR. See Web Archive.

Web Archive. A file format for storing information for

or about Web type applications.

Glossary 109

110 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Index

Special characters
$GLOBAL member

CLASSPATH_JARS parameter 42

creating different settings 63

providing information to JAVA/J2EE

build processes 62

set at highest level for all groups 63

A
Ant

customizing 23

installing 23

testing initialization 25

translating ASCII to EBCDIC 23

Web address 23

ANT_BIN global variable
z/OS UNIX System Services file

system directory path 62

ARCHDEF 83

ARCHDEF SCLM type 44

ASCII
See ASCII/EBCDIC translation

ASCII codepage 68

ASCII storage options 61

ASCII/EBCDIC conversion
See ASCII/EBCDIC translation

ASCII/EBCDIC translation
See also IBM-1047

See also ISO8859-1

code pages in use 9

converting Ant text files and

scripts 23

files stored in ASCII or EBCDIC 61

language translators 61

non-standard 9

non-standard codepage

translation 15

source or components requiring 42

translation of part 13

translation to host 10

authentication
public key 60

B
BATCHBUILDn option 68

BATCHMIGRATEn option 68

BATCHPROMOTEn option 68

BIDIPROP Language 69

BIDIPROP overrides 71

BINARY language translator 61

build rule format 74

build skeletons 53

Build/Promote/Deploy
process flow 73

security flag 73

BUILDAPPROVER option 67

Builds
configuration files 77

Builds (continued)
CRON-initiated 77

BUILDSECURITY option 68

BWBCPANT
Ant install member 23

BWBCRON1 sample member 77

BWBCRONB sample member 77

BWBCRONP sample member 77

BWBGLOB sample 62

BWBHTTPC member 6

BWBHTTPE member 6

BWBINST1 install JCL
tasks performed by 6

BWBINST1 sample configuration file 14

BWBPROJ member
holding sample Project config file 67

BWBSITE sample 65

BWBTRAN1 language translator 39

BWBTRAN2 language translator 39

BWBTRAN3 language translator 39

BWBTRANJ language translator 39

BWBTRANT
sample translation script 23

C
CCODE option 67

CGI_DTWORK global variable
install home directory 63

classpath dependencies 42

CLASSPATH_JARS global variable
z/OS UNIX System Services file

system classpath directory 63

CODEPAGE keyword 9

codepages
See ASCII/EBCDIC conversion

concepts
ARCHDEF 83

file naming 81

Language 82

project structure 82

properties 82

Type 81

CONFIG directory, creating 6

CONFIG/PROJECT directory
See PROJECT directory

configuration considerations 4

configuration files
customizing 8

HTTP server 14

Project 67

Promotes 77

TRANSLATE 13

conversion
See ASCII/EBCDIC translation

creating project.conf 66

CRON
Build job execution 78

Build job samples 78

CRON-initiated Builds 77

CRON-initiated Promotes 77

CRONTAB file 78

customization
Ant 23

checking 25, 30

ISPF configuration file 8

ISPF.conf 8

D
DEBUG_MODE global variable

VSAM file 63

dependencies
classpath 42

deploy rule format 74

deployment
options 60

SCLM Developer Toolkit 58

SCLM to Unix System Services 59

secure 60

WebSphere Application Server

(WAS) 59

deployment options 60

DEPLOYSECURITY option 68

directives
Exec

in httpd.conf file 14

Pass
in httpd.conf file 14

PASS
check if connection has failed 27

directory 64

CONFIG 6

LOGS 6

PROJECT 6

WORKAREA 6

E
EBCDIC

See ASCII/EBCDIC translation

EBCDIC codepage 68

EBCDIC storage options 61

Eclipse-based client
installing 33

prerequisites 33

Exec directives, in httpd.conf file 14

F
file naming 81

file, CRONTAB 78

FINDLONG processing 98

FINDSHORT processing 98

FLMLSTRN, SCLM translate

program 97

FOREGROUNDBUILD option 68

FOREGROUNDPROMOTE option 68

function
IMPORT 99

MIGRATE 99

© Copyright IBM Corp. 2005, 2007 111

G
global variables

ANT_BIN 62

CGI_DTWORK 63

CLASSPATH_JARS 63

DEBUG_MODE 63

JAVA_BIN 62

TRANTABLE 63

H
Hierarchical File System

See z/OS UNIX System Services file

system

HTTP installation 25

HTTP server
check if connection has failed 27

configuring 13

customizing existing server 16

default port configuration 14

environment file
customization 15

location 14

JCL/STARTED TASK

customization 15

logon prompt 25

owning user ID 16

port 14

sample configuration files 6, 14

starting 16

testing connection to 29

trace 16

httpd.conf
copied into CONFIG directory 6

customizing 14

sample HTTP configuration file 14

httpd.env
copied into CONFIG directory 6

customizing 15

I
IBM z/OS HTTP server

See HTTP server

IBM-1047
default EBCDIC codepage 9

IMPORT function
improve long/short name record

processing 99

IMPORT processing 99

installation
Ant 23

checking 25, 30

overview xiii

installation directory
recommended for configuration

files 6

ISO8859-1
default ASCII codepage 9

ISPF configuration file
customizing 8

ISPF.conf
customizing 8

location 8

IVP
running to check installation and

customization 25, 30

J
J2EE

See also JAVA/J2EE

sample language translator 39

sample scripts 52

J2EE ARCHDEF
samples 47

J2EE projects, mapping 54

J2EEANT SCLM language translator 43

J2EEBIN
language translator 61

SCLM language translator 42

J2EEBLD SCLM type 44

J2EEEAR SCLM type 45

J2EEJAR SCLM type 44

J2EELIST SCLM type 44

J2EEOBJ SCLM language translator 43

J2EEPART language translator 61

J2EEPART SCLM language translator 42

J2EEWAR SCLM type 45

Java
See also JAVA/J2EE

level required 4

JAVA language translator 61

JAVA SCLM language translator 42

JAVA_BIN
z/OS UNIX System Services file

system directory path 62

JAVA_HOME environment variable 23

JAVA/J2EE
accessing language translator

modules 39

Ant installation and

customization 23

Ant XML build skeletons 53

build 41

build summary 40

language translators 39

sample project definition 39

SCLM member formats 45

SCLM types to support 43

use of WORKAREA 6

JAVA/J2EE concepts 83

Java/J2EE SCLM type 45

JAVABIN language translator 61

JAVABIN SCLM language translator 42

JAVACLAS SCLM type 44

JAVALIST SCLM type 44

K
key authentication 60

keyword
LONGLANG 9, 11

TRANLANG 10

L
Language 82

language translators 61

BINARY 61

language translators (continued)
BWBTRAN1 39

BWBTRAN2 39

BWBTRAN3 39

BWBTRANJ 39

J2EEPART 61

JAVA/J2EE support 39

SCLM, J2EEOBJ 43

SCLM, J2EEPART 42

TEXT 61

license inquiry 103

LOGS directory
creating 6

read/write access 16

long name
See long/short name

long/short filename
See long/short name

long/short name
configuring table VSAM file 21

conversion utility 97

multiple record processing 99

single record processing 98

translation parameters 98

translation table 97

long/short name translation
REXX sample 100

LONGLANG keyword 11

LONGLANG=SCLM Language 69

M
Mapping J2EE projects 54

member
BWBHTTPC 6

BWBPROJ
holding sample Project config

file 67

MIGRATE function
improve long/short name record

processing 99

MIGRATE processing 100

N
naming, files 81

NOLONGLANG=SCLM Language 69

NOTRANLANG=SCLM Language 69

O
option

BATCHBUILDn 68

BATCHMIGRATEn 68

BATCHPROMOTEn option 68

BUILDAPPROVER 67

BUILDSECURITY 68

CCODE 67

FOREGROUNDBUILD 68

FOREGROUNDPROMOTE 68

options
ASCII storage 61

definition 67

EBCDIC storage 61

in sample project specific file 67

in sample SITE specific file 65

112 SCLM Developer Toolkit V3R1: Installation and Customization Guide

options (continued)
project 63

PROMOTESECURITY 68

SITE 63

that can be configured 63

overrides, TRANSLATE.conf 69

P
PASS directive, check if connection has

failed 27

Pass directives, in httpd.conf file 14

PATH, requirements 77

port
See port number

port number
changing 14

default HTTP server 14

in httpd.conf file 14

used in location URL 25

used to check connection to HTTP

server 29

process flow
Build/Promote/Deploy 73

processing
FINDLONG 98

FINDSHORT 98

IMPORT 99

MIGRATE 100

TRANSLATE 99

PROJECT 64

Project config file, sample 67

PROJECT directory
creating 6

storage area for options 64

project structure 82

project.conf, creating 66

promote rule format 74

PROMOTEAPPROVER option 67

Promotes
configuration files 77

CRON-initiated 77

PROMOTESECURITY option 68

properties 82

public key authentication 60

R
RACF

considerations 15

create OMVS segment for user ID 15

individual user requirements 4

Recommendations for mapping J2EE

projects (and others) to SCLM 57

Remote Systems Explorer,

configuring 18

requirements
RACF 4

STEPLIB 77

requirements, PATH 77

Resource Access Control Facility
See RACF

REXX
CRON build exec sample 78

host interface call sample 77

REXX (continued)
long/short name translation

sample 100

required software 16

set up Build parameter input string

sample 77

set up Promote parameter input string

sample 77

RSE installation, checking 30

rule format
build 74

deploy 74

promote 74

rules
SAF/RACF

BUILD 75

DEPLOY 75

PROFILE 75

PROMOTE 75

S
sample member

BWBCRON1 77

BWBCRONB 77

BWBCRONP 77

samples
BWBGLOB 62

BWBSITE 65

CRON-initiated Builds and

Promotes 77

SBWBSAMP library
BWBGLOB sample 62

BWBPROJ sample 67

BWBSITE sample 65

contents 77

JAVA/J2EE Ant XML build

skeletons 53

source of sample translators 39

SCLM
concepts 81

overview 81

SCLM administrator
SCLM customization 39

SCLM concepts 81

SCLM customization
by SCLM administrator 39

SCLM Developer Toolkit
customizing 3

installing 3

SCLM file formats
$GLOBAL 45

J2EE Ant 49

J2EE ARCHDEF 46

SCLM language definitions 42

SCLM member formats 45

SCLM overview 81

SCLM security 73

SCLM Translate program
technical summary 97

SCLM type
ARCHDEF 44

J2EEBLD 44

J2EEEAR 45

J2EEJAR 44

J2EELIST 44

J2EEWAR 45

SCLM types 43

security flag 73

security rules
surrogate user ID 73

setup JCL, running 6

short name
See long/short name

SITE.conf
creating 65

site configuration file 65

skeletons, build 53

SMP/E installation xiv

software requirements 4

STEPLIB requirements 77

storage options
See options

surrogate user ID
security rules 73

T
TEXT language translator 61

TRANLANG keyword 10

TRANLANG=SCLM Language 68

TRANSLATE configuration file,

example 13

TRANSLATE processing 99

TRANSLATE.conf
contents 9

creating 6

customizing 9

location 8

overrides 69

translation
code pages in use 9

converting Ant text files and

scripts 23

files stored in ASCII or EBCDIC 61

language translators 61

long/short file name 97

non-standard codepage

translation 15

source or components requiring 42

translation of part 13

translation to host 10

TRANTABLE global variable
VSAM file 63

Type 81

U
UNIX System Services

initiate builds and promotes via

CRON 77

pipe symbol 78

USS
See UNIX System Services

W
WORKAREA directory

creating 6

purpose 6

read/write access 6

Index 113

Z
z/OS

See also UNIX System Services

HTTP server
See HTTP server

software requirements 4

UNIX System Services
JAVA_HOME environment

variable 23

UNIX System Services file system
set up Build and Promote

configuration files 77

variables 78

UNIX System Services file system

mount point
check if connection has failed 27

114 SCLM Developer Toolkit V3R1: Installation and Customization Guide

Readers’ Comments — We’d Like to Hear from You

SCLM Developer Toolkit

Installation and Customization Guide

Version 3.1

 Publication No. SC23-8504-00

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC23-8504-00

SC23-8504-00

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department G7IA / Bldg. 503

555 Bailey Avenue

Research Triangle Park, NC

U.S.A 27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5655-S72

Printed in USA

SC23-8504-00

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Changes from the previous edition
	Where to find more information
	Publications
	Softcopy publications
	IBM Systems Center publications

	Installation overview
	TCP/IP considerations
	SMP/E installation
	Batch job considerations
	Separate SCLM installation

	Part 1. Installing SCLM Developer Toolkit
	Chapter 1. Installing and customizing SCLM Developer Toolkit on z/OS
	Step 1: Check z/OS software requirements
	Step 2: Configuration considerations
	Step 3: Run the setup JCL
	Step 4: Customize the SCLM Developer Toolkit configuration files
	Customize the ISPF configuration file
	Customize the TRANSLATE configuration file
	Example of the TRANSLATE configuration file

	Override settings in the TRANSLATE.conf file

	Step 5a: Configure the SCLM Developer Toolkit HTTP Server
	HTTP server configuration file customization
	HTTP server environment file customization
	HTTP server JCL/STARTED TASK customization
	Customizing an existing HTTP server for SCLM support
	Start the SCLM Developer Toolkit HTTP server
	Enabling trace on the HTTP server

	Step 5b: Configure Remote Systems Explorer
	Customizing the RSE Environment file
	Customizing the RSE environment setup script
	Activating the RSE Environment file

	Step 6: Configure long/short name table VSAM file
	Step 7: Install and customize Ant
	Step 8a: Run the IVP to check correct HTTP installation and customization
	Testing connection to the HTTP server

	Step 8b: Run the IVP to check correct RSE installation and customization

	Chapter 2. Installing the Eclipse-based client onto the PC
	Preparing for installation
	Media requirements
	Hardware and software requirements
	Prerequisites for SCLM Developer Toolkit

	Installing SCLM Developer Toolkit
	Step 1. Install from CD or electronic image
	Step 2. Install SCLM Developer Toolkit

	Part 2. Customizing SCLM Developer Toolkit
	Chapter 3. SCLM customization for the SCLM administrator
	Language translators for JAVA/J2EE support
	JAVA/J2EE build summary
	JAVA/J2EE build objects generated
	SCLM language definitions
	SCLM types
	SCLM member formats
	$GLOBAL
	J2EE ARCHDEF
	J2EE Ant build script

	JAVA/J2EE Ant XML build skeletons
	Mapping J2EE projects to SCLM
	Recommendations for mapping J2EE projects to SCLM

	SCLM Developer Toolkit deployment
	WebSphere Application Server (WAS) deployment
	SCLM to Unix System Services deployment
	Secure deployment
	Public key authentication

	Other deployment options

	ASCII or EBCDIC storage options
	ASCII/EBCDIC language translators
	$GLOBAL member
	SITE and project-specific options
	Options Definition

	Example of using combinations of the TRANSLATE.conf overrides
	Example of using combinations of the BIDIPROP overrides

	Chapter 4. SCLM security
	Build/Promote/Deploy security flag and process flow
	Security rules and surrogate user ID
	Build rule format
	Promote rule format
	Deploy rule format

	SAF/RACF BUILD, PROMOTE, DEPLOY, and PROFILE rules

	Chapter 5. CRON-initiated Builds and Promotes
	STEPLIB and PATH requirements
	CRON Build job execution
	CRON Build job samples

	Appendix A. SCLM overview
	SCLM Concepts
	File naming
	Type
	Language
	SCLM properties
	SCLM project structure
	ARCHDEF

	JAVA/J2EE concepts

	Appendix B. SQLJ Support
	What is SQL?
	What is DB2?
	What is JDBC?
	What is SQLJ?
	Comparing JDBC and SQLJ
	What is a Serialized Profile?
	What is a DBRM?
	SQLJ Program Preparation
	Translation
	Example:
	Customization
	Binding

	SCLM DT types and translators
	Tailoring the build process
	Tailoring the Build Script
	sqlj properties
	db2sqljcustomize properties
	custom user script
	Binding [DBRM]
	Binding [Serialized Profile]

	Appendix C. Long/short name translation table
	Technical summary of the SCLM Translate program
	Single long/short name record processing
	FINDLONG Processing
	FINDSHORT Processing
	TRANSLATE Processing

	Multiple long/short name record processing
	IMPORT processing
	MIGRATE processing

	Bibliography
	Notices
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

