
PL/I

for

Windows

Programming

Guide

Version

2.1

GC26-9177-01

���

PL/I

for

Windows

Programming

Guide

Version

2.1

GC26-9177-01

���

Second

Edition

(July

2004)

This

edition

applies

to

VisualAge

PL/I

for

Windows

2.1.12,

5639-D65,

and

to

any

subsequent

releases

until

otherwise

indicated

in

new

editions

or

technical

newsletters.

Make

sure

you

are

using

the

correct

edition

for

the

level

of

the

product.

Order

publications

through

your

IBM

representative

or

the

IBM

branch

office

serving

your

locality.

Publications

are

not

stocked

at

the

address

below.

A

form

for

readers’

comments

is

provided

at

the

back

of

this

publication.

If

the

form

has

been

removed,

address

your

comments

to:

IBM

Corporation,

Department

HHX/H1

555

Bailey

Ave

San

Jose,

CA,

95141-1099

United

States

of

America

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©International

Business

Machines

Corporation

1998,2004.

All

rights

reserved.

Note!

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

415.

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Part

1.

Introducing

PL/I

on

your

workstation

.

.

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

About

this

book

.

.

.

.

.

. 3

What’s

new?

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Chapter

2.

How

to

read

the

syntax

diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Chapter

3.

Porting

applications

between

platforms

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Getting

mainframe

applications

to

compile

on

the

workstation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Choosing

the

right

compile-time

options

.

.

. 10

Language

restricted

.

.

.

.

.

.

.

.

.

.

. 10

Using

the

macro

facility

to

help

port

programs

13

Getting

mainframe

applications

to

run

on

the

workstation

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Linking

differences

.

.

.

.

.

.

.

.

.

.

. 13

Data

representations

causing

run-time

differences

14

Environment

differences

affecting

portability

.

. 16

Language

elements

causing

run-time

differences

17

Part

2.

Compiling

and

linking

your

program

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Chapter

4.

Compiling

your

program

.

. 21

A

short

practice

exercise

.

.

.

.

.

.

.

.

.

. 21

The

HELLO

program

.

.

.

.

.

.

.

.

.

. 21

Using

compile-time

options

.

.

.

.

.

.

.

. 22

Using

the

sample

programs

provided

with

the

product

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Preparing

to

compile

source

programs

.

.

.

.

. 22

Program

file

structure

.

.

.

.

.

.

.

.

.

. 22

Program

file

format

.

.

.

.

.

.

.

.

.

.

. 25

Setting

compile-time

environment

variables

.

.

. 25

IBM.OPTIONS

.

.

.

.

.

.

.

.

.

.

.

. 26

IBM.PPINCLUDE

.

.

.

.

.

.

.

.

.

.

. 26

IBM.PPMACRO

.

.

.

.

.

.

.

.

.

.

.

. 26

IBM.PPSQL

.

.

.

.

.

.

.

.

.

.

.

.

. 27

IBM.PPCICS

.

.

.

.

.

.

.

.

.

.

.

.

. 27

IBM.SOURCE

.

.

.

.

.

.

.

.

.

.

.

.

. 27

IBM.SYSLIB

.

.

.

.

.

.

.

.

.

.

.

.

. 27

IBM.PRINT

.

.

.

.

.

.

.

.

.

.

.

.

. 28

IBM.OBJECT

.

.

.

.

.

.

.

.

.

.

.

.

. 28

IBM.DECK

.

.

.

.

.

.

.

.

.

.

.

.

. 28

INCLUDE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

TMP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Using

the

PLI

command

to

invoke

the

compiler

.

. 28

Where

to

specify

compile-time

options

.

.

.

.

. 29

IBM.OPTIONS

and

IBM.PPxxx

environment

variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

PLI

command

.

.

.

.

.

.

.

.

.

.

.

. 29

%PROCESS

statement

.

.

.

.

.

.

.

.

.

. 29

Chapter

5.

Compile-time

option

descriptions

.

.

.

.

.

.

.

.

.

.

.

. 31

Compile-time

option

descriptions

.

.

.

.

.

.

. 31

Rules

for

using

compile-time

options

.

.

.

.

.

. 33

AGGREGATE

.

.

.

.

.

.

.

.

.

.

.

. 33

ADDEXT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

ATTRIBUTES

.

.

.

.

.

.

.

.

.

.

.

.

. 34

BIFPREC

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

BLANK

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

CHECK

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

CMPAT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

CODEPAGE

.

.

.

.

.

.

.

.

.

.

.

.

. 36

COMPILE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

COPYRIGHT

.

.

.

.

.

.

.

.

.

.

.

.

. 37

CURRENCY

.

.

.

.

.

.

.

.

.

.

.

.

. 38

DEFAULT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

DLLINIT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

EXIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

EXTRN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

FLAG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

FLOATINMATH

.

.

.

.

.

.

.

.

.

.

.

. 46

GONUMBER

.

.

.

.

.

.

.

.

.

.

.

.

. 46

GRAPHIC

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

IMPRECISE

.

.

.

.

.

.

.

.

.

.

.

.

. 47

INCAFTER

.

.

.

.

.

.

.

.

.

.

.

.

. 47

INITAUTO

.

.

.

.

.

.

.

.

.

.

.

.

. 48

INITBASED

.

.

.

.

.

.

.

.

.

.

.

.

. 48

INITCTL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

INITSTATIC

.

.

.

.

.

.

.

.

.

.

.

.

. 49

INCLUDE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

INSOURCE

.

.

.

.

.

.

.

.

.

.

.

.

. 50

LANGLVL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

LIBS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

LIMITS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

LINECOUNT

.

.

.

.

.

.

.

.

.

.

.

.

. 52

LIST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

MACRO

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

MARGINI

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

MARGINS

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

MAXMSG

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

MAXSTMT

.

.

.

.

.

.

.

.

.

.

.

.

. 55

MAXTEMP

.

.

.

.

.

.

.

.

.

.

.

.

. 55

MDECK

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

MSG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

NAMES

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

NATLANG

.

.

.

.

.

.

.

.

.

.

.

.

. 56

NEST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

NOT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

NUMBER

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

OBJECT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

iii

OFFSET

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

OPTIMIZE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

OPTIONS

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

OR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

PP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

PPTRACE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

PRECTYPE

.

.

.

.

.

.

.

.

.

.

.

.

. 60

PREFIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

PROBE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

PROCEED

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

REDUCE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

RESEXP

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

RESPECT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

RULES

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

SEMANTIC

.

.

.

.

.

.

.

.

.

.

.

.

. 67

SNAP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

SOURCE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

STATIC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

STMT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

STORAGE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

SYNTAX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

SYSPARM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

SYSTEM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

TERMINAL

.

.

.

.

.

.

.

.

.

.

.

.

. 70

TEST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

USAGE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

WIDECHAR

.

.

.

.

.

.

.

.

.

.

.

.

. 71

WINDOW

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

XINFO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

XREF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Chapter

6.

PL/I

preprocessors

.

.

.

.

. 75

Include

preprocessor

.

.

.

.

.

.

.

.

.

.

. 76

Examples:

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Include

preprocessor

options

environment

variable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Macro

preprocessor

.

.

.

.

.

.

.

.

.

.

.

. 77

Macro

preprocessor

options

.

.

.

.

.

.

.

. 77

Macro

facility

options

environment

variables

.

. 78

SQL

support

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Programming

and

compilation

considerations

.

. 79

SQL

preprocessor

options

.

.

.

.

.

.

.

.

. 80

Abbreviations:

.

.

.

.

.

.

.

.

.

.

.

. 81

SQL

preprocessor

options

environment

variable

84

SQL

preprocessor

BIND

environment

variables

84

Coding

SQL

statements

in

PL/I

applications

.

. 85

Large

Object

(LOB)

support

.

.

.

.

.

.

.

. 90

User

defined

functions

sample

programs

.

.

. 92

CICS

support

.

.

.

.

.

.

.

.

.

.

.

.

. 100

Programming

and

compilation

considerations

100

CICS

preprocessor

options

.

.

.

.

.

.

.

. 102

Abbreviations:

.

.

.

.

.

.

.

.

.

.

.

. 102

CICS

preprocessor

options

environment

variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Coding

CICS

statements

in

PL/I

applications

103

Writing

CICS

transactions

in

PL/I

.

.

.

.

. 103

CICS

abends

used

for

PL/I

programs

.

.

.

. 104

CICS

run-time

user

exit

.

.

.

.

.

.

.

.

. 104

Chapter

7.

Compilation

output

.

.

.

. 105

Using

the

compiler

listing

.

.

.

.

.

.

.

.

. 105

Compiler

output

files

.

.

.

.

.

.

.

.

.

.

. 112

Chapter

8.

Linking

your

program

.

.

. 113

Starting

the

linker

.

.

.

.

.

.

.

.

.

.

.

. 113

Statically

linking

.

.

.

.

.

.

.

.

.

.

. 113

Linking

from

the

command

line

.

.

.

.

.

. 113

Linking

from

a

make

file

.

.

.

.

.

.

.

. 114

Input

and

output

.

.

.

.

.

.

.

.

.

.

.

. 115

Search

rules

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Specifying

directories

.

.

.

.

.

.

.

.

.

. 116

Filename

defaults

.

.

.

.

.

.

.

.

.

.

. 116

Specifying

object

files

.

.

.

.

.

.

.

.

.

.

. 116

Using

response

files

.

.

.

.

.

.

.

.

.

.

. 117

Specifying

executable

output

type

.

.

.

.

.

. 117

Producing

an

.EXE

file

.

.

.

.

.

.

.

.

. 118

Producing

a

dynamic

link

library

.

.

.

.

.

. 118

Packing

executables

.

.

.

.

.

.

.

.

.

.

. 119

Generating

a

map

file

.

.

.

.

.

.

.

.

.

. 119

Linker

return

codes

.

.

.

.

.

.

.

.

.

.

. 119

Chapter

9.

Setting

linker

options

.

.

. 121

Setting

options

on

the

command

line

.

.

.

.

. 121

Setting

options

in

the

ILINK

environment

variable

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

Using

the

linker

.

.

.

.

.

.

.

.

.

.

. 122

Specifying

numeric

arguments

.

.

.

.

.

.

. 122

Summary

of

Windows

linker

options

.

.

.

.

. 123

Windows

linker

options

.

.

.

.

.

.

.

.

.

. 123

/?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

/ALIGNADDR

.

.

.

.

.

.

.

.

.

.

.

. 124

/ALIGNFILE

.

.

.

.

.

.

.

.

.

.

.

. 124

/BASE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

/CODE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

/DATA

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

/DBGPACK,

/NODBGPACK

.

.

.

.

.

.

. 125

/DEBUG,

/NODEBUG

.

.

.

.

.

.

.

.

. 125

/DEFAULTLIBRARYSEARCH

.

.

.

.

.

.

. 126

/DLL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

/ENTRY

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

/EXECUTABLE

.

.

.

.

.

.

.

.

.

.

. 127

/EXTDICTIONARY,

/NOEXTDICTIONARY

127

/FIXED,

/NOFIXED

.

.

.

.

.

.

.

.

.

. 127

/FORCE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

/HEAP

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

/HELP

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

/INCLUDE

.

.

.

.

.

.

.

.

.

.

.

.

. 128

/INFORMATION,

/NOINFORMATION

.

.

. 128

/LINENUMBERS,

/NOLINENUMBERS

.

.

. 128

/LOGO,

/NOLOGO

.

.

.

.

.

.

.

.

.

. 129

/MAP,

/NOMAP

.

.

.

.

.

.

.

.

.

.

. 129

/OUT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

/PMTYPE

.

.

.

.

.

.

.

.

.

.

.

.

. 129

/SECTION

.

.

.

.

.

.

.

.

.

.

.

.

. 130

/SEGMENTS

.

.

.

.

.

.

.

.

.

.

.

. 130

/STACK

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

/STUB

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

/SUBSYSTEM

.

.

.

.

.

.

.

.

.

.

.

. 131

/VERBOSE

.

.

.

.

.

.

.

.

.

.

.

.

. 131

/VERSION

.

.

.

.

.

.

.

.

.

.

.

.

. 132

iv

PL/I

for

Windows:

Programming

Guide

Part

3.

Running

and

debugging

your

program

.

.

.

.

.

.

.

.

.

. 133

Chapter

10.

Using

run-time

options

135

Setting

run-time

environment

variables

.

.

.

.

. 135

PATH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

DPATH

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Specifying

run-time

options

.

.

.

.

.

.

.

. 135

Where

to

specify

run-time

options

.

.

.

.

. 135

Specifying

multiple

run-time

options

or

suboptions

.

.

.

.

.

.

.

.

.

.

.

.

. 136

Run-time

options

.

.

.

.

.

.

.

.

.

.

.

. 136

NATLANG

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Shipping

run-time

DLLs

.

.

.

.

.

.

.

.

.

. 137

Chapter

11.

Testing

and

debugging

your

programs

.

.

.

.

.

.

.

.

.

.

. 139

Testing

your

programs

.

.

.

.

.

.

.

.

.

. 139

General

debugging

tips

.

.

.

.

.

.

.

.

.

. 140

PL/I

debugging

techniques

.

.

.

.

.

.

.

.

. 141

Using

compile-time

options

for

debugging

.

. 141

Using

footprints

for

debugging

.

.

.

.

.

. 142

Using

dumps

for

debugging

.

.

.

.

.

.

. 143

Using

error

and

condition

handling

for

debugging

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Error

handling

concepts

.

.

.

.

.

.

.

.

. 148

Common

programming

errors

.

.

.

.

.

.

.

. 150

Logical

errors

in

your

source

programs

.

.

.

. 150

Invalid

use

of

PL/I

.

.

.

.

.

.

.

.

.

. 151

Calling

uninitialized

entry

variables

.

.

.

.

. 151

Loops

and

other

unforeseen

errors

.

.

.

.

. 151

Unexpected

input/output

data

.

.

.

.

.

. 152

Unexpected

program

termination

.

.

.

.

.

. 152

Other

unexpected

program

results

.

.

.

.

. 153

Compiler

or

library

subroutine

failure

.

.

.

. 153

System

failure

.

.

.

.

.

.

.

.

.

.

.

. 154

Poor

performance

.

.

.

.

.

.

.

.

.

.

. 154

Part

4.

Input

and

output

.

.

.

.

.

. 155

Chapter

12.

Using

data

sets

and

files

157

Types

of

data

sets

.

.

.

.

.

.

.

.

.

.

.

. 157

Native

data

sets

.

.

.

.

.

.

.

.

.

.

. 158

Additional

data

sets

.

.

.

.

.

.

.

.

.

. 159

Establishing

data

set

characteristics

.

.

.

.

.

. 160

Records

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

Record

formats

.

.

.

.

.

.

.

.

.

.

.

. 161

Data

set

organizations

.

.

.

.

.

.

.

.

. 161

Specifying

characteristics

using

the

PL/I

ENVIRONMENT

attribute

.

.

.

.

.

.

.

. 162

Specifying

characteristics

using

DD:ddname

environment

variables

.

.

.

.

.

.

.

.

. 168

Associating

a

PL/I

file

with

a

data

set

.

.

.

.

. 176

Using

environment

variables

.

.

.

.

.

.

. 176

Using

the

TITLE

option

of

the

OPEN

statement

177

Attempting

to

use

files

not

associated

with

data

sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

How

PL/I

finds

data

sets

.

.

.

.

.

.

.

. 178

Opening

and

closing

PL/I

files

.

.

.

.

.

.

. 178

Opening

a

file

.

.

.

.

.

.

.

.

.

.

.

. 178

Closing

a

file

.

.

.

.

.

.

.

.

.

.

.

. 178

Associating

several

data

sets

with

one

file

.

.

.

. 178

Combinations

of

I/O

statements,

attributes,

and

options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

DISPLAY

statement

input

and

output

.

.

.

.

. 181

PL/I

standard

files

(SYSPRINT

and

SYSIN)

.

.

. 182

Redirecting

standard

input,

output,

and

error

devices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Chapter

13.

Defining

and

using

consecutive

data

sets

.

.

.

.

.

.

.

. 183

Printer-destined

files

.

.

.

.

.

.

.

.

.

.

. 183

Using

stream-oriented

data

transmission

.

.

.

. 184

Defining

files

using

stream

I/O

.

.

.

.

.

. 185

ENVIRONMENT

options

for

stream-oriented

data

transmission

.

.

.

.

.

.

.

.

.

.

. 185

Creating

a

data

set

with

stream

I/O

.

.

.

.

. 185

Accessing

a

data

set

with

stream

I/O

.

.

.

. 187

Using

PRINT

files

.

.

.

.

.

.

.

.

.

.

. 189

Using

SYSIN

and

SYSPRINT

files

.

.

.

.

. 194

Controlling

input

from

the

console

.

.

.

.

.

. 194

Using

files

conversationally

.

.

.

.

.

.

. 195

Format

of

data

.

.

.

.

.

.

.

.

.

.

.

. 195

Stream

and

record

files

.

.

.

.

.

.

.

.

. 195

Capital

and

lowercase

letters

.

.

.

.

.

.

. 196

End

of

file

.

.

.

.

.

.

.

.

.

.

.

.

. 196

Controlling

output

to

the

console

.

.

.

.

.

.

. 196

Format

of

PRINT

files

.

.

.

.

.

.

.

.

. 196

Stream

and

record

files

.

.

.

.

.

.

.

.

. 196

Example

of

an

interactive

program

.

.

.

.

. 196

Using

record-oriented

I/O

.

.

.

.

.

.

.

.

. 197

Defining

files

using

record

I/O

.

.

.

.

.

. 198

ENVIRONMENT

options

for

record-oriented

data

transmission

.

.

.

.

.

.

.

.

.

.

. 199

Creating

a

data

set

with

record

I/O

.

.

.

.

. 199

Accessing

and

updating

a

data

set

with

record

I/O

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Chapter

14.

Defining

and

using

regional

data

sets

.

.

.

.

.

.

.

.

. 205

Defining

files

for

a

regional

data

set

.

.

.

.

.

. 207

Specifying

ENVIRONMENT

options

.

.

.

. 207

Essential

information

for

creating

and

accessing

regional

data

sets

.

.

.

.

.

.

.

.

.

.

. 208

Using

keys

with

regional

data

sets

.

.

.

.

. 208

Using

REGIONAL(1)

data

sets

.

.

.

.

.

.

. 208

Dummy

records

.

.

.

.

.

.

.

.

.

.

. 208

Creating

a

REGIONAL(1)

data

set

.

.

.

.

. 209

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Accessing

and

updating

a

REGIONAL(1)

data

set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Sequential

access

.

.

.

.

.

.

.

.

.

.

. 211

Direct

access

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Chapter

15.

Defining

and

using

workstation

VSAM

data

sets

.

.

.

.

. 215

Moving

data

between

the

workstation

and

mainframe

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

Contents

v

Workstation

VSAM

organization

.

.

.

.

.

.

. 216

Creating

and

accessing

workstation

VSAM

data

sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

Determining

which

type

of

workstation

VSAM

data

set

you

need

.

.

.

.

.

.

.

.

.

.

. 216

Accessing

records

in

workstation

VSAM

data

sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Using

keys

for

workstation

VSAM

data

sets

.

. 218

Choosing

a

data

set

type

.

.

.

.

.

.

.

.

. 218

Defining

files

for

workstation

VSAM

data

sets

.

. 219

Specifying

options

of

the

PL/I

ENVIRONMENT

attribute

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Adapting

existing

programs

for

workstation

VSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Using

workstation

VSAM

sequential

data

sets

.

. 222

Using

a

sequential

file

to

access

a

workstation

VSAM

sequential

data

set

.

.

.

.

.

.

.

. 223

Defining

and

loading

a

workstation

VSAM

sequential

data

set

.

.

.

.

.

.

.

.

.

.

. 223

Workstation

VSAM

keyed

data

sets

.

.

.

.

.

. 225

Loading

a

workstation

VSAM

keyed

data

set

227

Using

a

SEQUENTIAL

file

to

access

a

workstation

VSAM

keyed

data

set

.

.

.

.

. 229

Using

a

DIRECT

file

to

access

a

workstation

VSAM

keyed

data

set

.

.

.

.

.

.

.

.

. 229

Workstation

VSAM

direct

data

sets

.

.

.

.

.

. 232

Loading

a

workstation

VSAM

direct

data

set

234

Using

a

SEQUENTIAL

file

to

access

a

workstation

VSAM

direct

data

set

.

.

.

.

. 236

Using

a

DIRECT

file

to

access

a

workstation

VSAM

direct

data

set

.

.

.

.

.

.

.

.

.

. 237

Part

5.

Using

PL/I

with

databases

241

Chapter

16.

Open

Database

Connectivity

.

.

.

.

.

.

.

.

.

.

.

. 243

Introducing

ODBC

.

.

.

.

.

.

.

.

.

.

. 243

Background

.

.

.

.

.

.

.

.

.

.

.

.

. 243

ODBC

Driver

Manager

.

.

.

.

.

.

.

.

. 244

Choosing

embedded

SQL

or

ODBC

.

.

.

.

. 244

Using

the

ODBC

drivers

.

.

.

.

.

.

.

.

.

. 244

Online

help

.

.

.

.

.

.

.

.

.

.

.

.

. 244

Environment-specific

information

.

.

.

.

.

. 244

Connecting

to

a

data

source

.

.

.

.

.

.

. 245

Error

messages

.

.

.

.

.

.

.

.

.

.

.

. 246

ODBC

APIs

from

PL/I

.

.

.

.

.

.

.

.

.

. 246

CALL

interface

convention

.

.

.

.

.

.

.

. 247

Using

the

supplied

include

files

.

.

.

.

.

. 247

Mapping

of

ODBC

C

types

.

.

.

.

.

.

.

. 248

Setting

licensing

information

for

ODBC

Driver

Manager/driver

.

.

.

.

.

.

.

.

.

.

. 249

Sample

program

using

supplied

include

files

.

.

. 249

Chapter

17.

Using

java

Dclgen

.

.

.

. 251

Understanding

java

Dclgen

terminology

.

.

.

. 251

PL/I

java

Dclgen

support

.

.

.

.

.

.

.

.

. 252

Creating

a

table

declaration

and

host

structure

.

. 253

Selecting

a

database

.

.

.

.

.

.

.

.

.

. 253

Selecting

a

table

and

generation

a

PL/I

declaration

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Modifying

and

saving

the

generated

PL/I

declaration

.

.

.

.

.

.

.

.

.

.

.

.

. 254

Exiting

java

Dclgen

.

.

.

.

.

.

.

.

.

. 255

Including

data

declarations

in

your

program

255

Part

6.

Advanced

topics

.

.

.

.

.

. 257

Chapter

18.

Using

the

Program

Maintenance

Utility,

NMAKE

.

.

.

.

. 259

Why

use

NMAKE?

.

.

.

.

.

.

.

.

.

.

. 259

Running

NMAKE

.

.

.

.

.

.

.

.

.

.

.

. 260

Using

the

command

line

.

.

.

.

.

.

.

. 260

Using

NMAKE

command

files

.

.

.

.

.

. 261

NMAKE

options

.

.

.

.

.

.

.

.

.

.

.

. 262

Produce

error

file

(/X)

.

.

.

.

.

.

.

.

. 262

Build

all

targets

(/A)

.

.

.

.

.

.

.

.

.

. 262

Suppress

messages

(/C)

.

.

.

.

.

.

.

.

. 262

Display

modification

dates

(/D)

.

.

.

.

.

. 262

Override

environment

variables

(/E)

.

.

.

. 262

Specify

description

file

(/F)

.

.

.

.

.

.

. 262

Display

help

(/HELP

or

/?)

.

.

.

.

.

.

. 263

Ignore

exit

codes

(/I)

.

.

.

.

.

.

.

.

.

. 263

Display

commands

(/N)

.

.

.

.

.

.

.

.

. 263

Suppress

sign-on

banner

(/NOLOGO)

.

.

.

. 263

Print

macro

and

target

definitions

(/P)

.

.

.

. 263

Return

exit

code

(/Q)

.

.

.

.

.

.

.

.

. 263

Ignore

TOOLS.INI

file

(/R)

.

.

.

.

.

.

.

. 263

Suppress

command

display

(/S)

.

.

.

.

.

. 264

Change

target

modification

dates

(/T)

.

.

.

. 264

Description

files

.

.

.

.

.

.

.

.

.

.

.

. 264

Description

blocks

.

.

.

.

.

.

.

.

.

.

. 264

Special

features

.

.

.

.

.

.

.

.

.

.

.

. 264

Targets

in

several

description

blocks

.

.

.

.

. 265

Using

macros

.

.

.

.

.

.

.

.

.

.

.

.

. 266

Macros

example

.

.

.

.

.

.

.

.

.

.

. 266

Special

features

.

.

.

.

.

.

.

.

.

.

.

. 267

Macros

in

a

description

file

.

.

.

.

.

.

.

. 267

Macros

on

the

command

line

.

.

.

.

.

.

. 267

Inherited

macros

.

.

.

.

.

.

.

.

.

.

. 267

Defined

macros

.

.

.

.

.

.

.

.

.

.

.

. 268

Macro

substitutions

.

.

.

.

.

.

.

.

.

. 268

Special

macros

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Special

macros

examples

.

.

.

.

.

.

.

. 269

File-specification

parts

.

.

.

.

.

.

.

.

. 270

Characters

that

modify

special

macros

.

.

.

. 270

Modified

special

macros

example

.

.

.

.

.

. 271

Macro

precedence

rules

.

.

.

.

.

.

.

.

. 271

Inference

rules

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Special

features

.

.

.

.

.

.

.

.

.

.

.

. 272

Inference

rules

example

.

.

.

.

.

.

.

.

. 272

Inference-rule

path

specifications

.

.

.

.

.

. 273

Predefined

inference

rules

.

.

.

.

.

.

.

. 273

Directives

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Directives

example

.

.

.

.

.

.

.

.

.

. 275

Pseudotargets

.

.

.

.

.

.

.

.

.

.

.

. 275

Predefined

pseudotargets

.

.

.

.

.

.

.

. 276

Inline

files

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Inline

files

example

.

.

.

.

.

.

.

.

.

. 277

Escape

characters

.

.

.

.

.

.

.

.

.

.

. 278

Characters

that

modify

commands

.

.

.

.

.

. 278

vi

PL/I

for

Windows:

Programming

Guide

Turn

error

checking

off

(-)

.

.

.

.

.

.

.

. 279

Dash

command

modifier

examples

.

.

.

.

. 279

Suppress

command

display

(@)

.

.

.

.

.

. 279

At

sign

(@)

command

modifier

example

.

.

. 279

Execute

command

for

dependents

(!)

.

.

.

. 280

Exclamation

point

(!)

command

modifier

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

EXTMAKE

Syntax

.

.

.

.

.

.

.

.

.

.

. 280

Macros

and

inference

rules

in

TOOLS.INI

.

.

.

. 281

TOOLS.INI

example

.

.

.

.

.

.

.

.

.

. 281

Chapter

19.

Improving

performance

283

Selecting

compile-time

options

for

optimal

performance

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

OPTIMIZE

.

.

.

.

.

.

.

.

.

.

.

.

. 283

IMPRECISE

.

.

.

.

.

.

.

.

.

.

.

.

. 284

GONUMBER

.

.

.

.

.

.

.

.

.

.

.

. 284

SNAP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

RULES

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

PREFIX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

DEFAULT

.

.

.

.

.

.

.

.

.

.

.

.

. 286

Summary

of

compile-time

options

that

improve

performance

.

.

.

.

.

.

.

.

.

.

.

.

. 289

Coding

for

better

performance

.

.

.

.

.

.

. 289

DATA-directed

input

and

output

.

.

.

.

.

. 289

Input-only

parameters

.

.

.

.

.

.

.

.

. 290

String

assignments

.

.

.

.

.

.

.

.

.

. 290

Loop

control

variables

.

.

.

.

.

.

.

.

. 291

PACKAGEs

versus

nested

PROCEDUREs

.

.

. 291

REDUCIBLE

functions

.

.

.

.

.

.

.

.

. 292

DEFINED

versus

UNION

.

.

.

.

.

.

.

. 293

Named

constants

versus

static

variables

.

.

. 293

Avoiding

calls

to

library

routines

.

.

.

.

.

. 294

Chapter

20.

Using

user

exits

.

.

.

.

. 297

Using

the

compiler

user

exit

.

.

.

.

.

.

.

. 297

Procedures

performed

by

the

compiler

user

exit

297

Activating

the

compiler

user

exit

.

.

.

.

.

. 298

The

IBM-supplied

compiler

exit,

IBMUEXIT

.

. 298

Customizing

the

compiler

user

exit

.

.

.

.

. 299

Using

the

CICS

run-time

user

exit

.

.

.

.

.

. 303

Prior

to

program

invocation

.

.

.

.

.

.

. 303

After

program

termination

.

.

.

.

.

.

.

. 303

Modifying

CEEFXITA

.

.

.

.

.

.

.

.

. 303

Using

data

conversion

tables

.

.

.

.

.

.

.

. 304

Chapter

21.

Building

dynamic

link

libraries

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

Creating

DLL

source

files

.

.

.

.

.

.

.

.

. 305

Compiling

your

DLL

source

.

.

.

.

.

.

.

. 305

Preparing

to

link

your

DLL

.

.

.

.

.

.

.

.

. 306

Specifying

exported

names

under

Windows

.

. 306

Linking

your

DLL

.

.

.

.

.

.

.

.

.

.

.

. 306

Using

your

DLL

.

.

.

.

.

.

.

.

.

.

. 306

Sample

program

to

build

a

DLL

.

.

.

.

.

.

. 307

Using

FETCH

and

RELEASE

in

your

main

program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

Exporting

data

from

a

DLL

.

.

.

.

.

.

.

.

. 308

Chapter

22.

Using

IBM

Library

Manager

on

Windows

.

.

.

.

.

.

.

. 309

Running

ILIB

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Using

the

command

line

.

.

.

.

.

.

.

. 310

Using

the

ILIB

environment

variable

.

.

.

. 310

Using

an

ILIB

response

file

.

.

.

.

.

.

.

. 311

Examples

specifying

ILIB

parameters

.

.

.

. 312

Controlling

ILIB

input

.

.

.

.

.

.

.

.

.

. 312

Controlling

ILIB

output

.

.

.

.

.

.

.

.

.

. 312

Controlling

ILIB

output

.

.

.

.

.

.

.

.

. 313

ILIB

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

. 314

Summary

of

ILIB

objects

.

.

.

.

.

.

.

. 314

Add/Replace

.

.

.

.

.

.

.

.

.

.

.

. 315

/EXTRACT

.

.

.

.

.

.

.

.

.

.

.

.

. 315

/REMOVE

.

.

.

.

.

.

.

.

.

.

.

.

. 316

ILIB

options

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

Summary

of

ILIB

options

.

.

.

.

.

.

.

. 316

/?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

/BACKUP

.

.

.

.

.

.

.

.

.

.

.

.

. 317

/DEF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

/FREEFORMAT

.

.

.

.

.

.

.

.

.

.

. 318

/GENDEF

.

.

.

.

.

.

.

.

.

.

.

.

. 318

/GI

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

/HELP

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

/LIST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

/NOEXT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

/OUT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

/QUIET

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

/WARN

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

Chapter

23.

Calling

conventions

.

.

. 321

Understanding

linkage

considerations

.

.

.

.

. 321

OPTLINK

linkage

.

.

.

.

.

.

.

.

.

.

.

. 322

Features

of

OPTLINK

.

.

.

.

.

.

.

.

. 323

Tips

for

using

OPTLINK

.

.

.

.

.

.

.

. 323

General-purpose

register

implications

.

.

.

.

. 324

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

. 324

Examples

of

passing

parameters

.

.

.

.

.

. 324

SYSTEM

linkage

.

.

.

.

.

.

.

.

.

.

.

. 329

Features

of

SYSTEM

.

.

.

.

.

.

.

.

.

. 329

Example

using

SYSTEM

linkage

.

.

.

.

.

. 330

STDCALL

linkage

(Windows

only)

.

.

.

.

.

. 331

Features

of

STDCALL

.

.

.

.

.

.

.

.

. 331

Examples

using

the

STDCALL

convention

.

.

. 332

Using

WinMain

(Windows

only)

.

.

.

.

.

.

. 334

CDECL

linkage

.

.

.

.

.

.

.

.

.

.

.

.

. 334

Features

of

CDECL

.

.

.

.

.

.

.

.

.

. 334

Examples

using

the

CDECL

convention

.

.

. 335

Chapter

24.

Using

PL/I

in

mixed-language

applications

.

.

.

.

. 337

Matching

data

and

linkages

.

.

.

.

.

.

.

. 337

What

data

is

passed

.

.

.

.

.

.

.

.

.

. 337

How

data

is

passed

.

.

.

.

.

.

.

.

.

. 339

Where

data

is

passed

.

.

.

.

.

.

.

.

.

. 341

Maintaining

your

environment

.

.

.

.

.

.

. 341

Invoking

non-PL/I

routines

from

a

PL/I

MAIN

341

Invoking

PL/I

routines

from

a

non-PL/I

main

.

. 342

Using

ON

ANYCONDITION

.

.

.

.

.

.

. 342

Contents

vii

Chapter

25.

Interfacing

with

Java

.

.

. 345

What

is

the

Java

Native

Interface

(JNI)?

.

.

.

. 345

JNI

Sample

Program

#1

-

″Hello

World″

.

.

.

. 346

Writing

Java

Sample

Program

#1

.

.

.

.

.

.

. 346

Step

1:

Writing

the

Java

Program

.

.

.

.

.

. 346

Step

2:

Compiling

the

Java

Program

.

.

.

.

. 347

Step

3:

Writing

the

PL/I

Program

.

.

.

.

. 347

Step

4:

Compiling

and

Linking

the

PL/I

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

Step

5:

Running

the

Sample

Program

.

.

.

. 349

JNI

Sample

Program

#2

-

Passing

a

String

.

.

.

. 349

Writing

Java

Sample

Program

#2

.

.

.

.

.

.

. 349

Step

1:

Writing

the

Java

Program

.

.

.

.

.

. 349

Step

2:

Compiling

the

Java

Program

.

.

.

.

. 350

Step

3:

Writing

the

PL/I

Program

.

.

.

.

. 351

Step

4:

Compiling

and

Linking

the

PL/I

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

. 352

Step

5:

Running

the

Sample

Program

.

.

.

. 353

JNI

Sample

Program

#3

-

Passing

an

Integer

.

.

. 353

Writing

Java

Sample

Program

#3

.

.

.

.

.

.

. 353

Step

1:

Writing

the

Java

Program

.

.

.

.

.

. 353

Step

2:

Compiling

the

Java

Program

.

.

.

.

. 354

Step

3:

Writing

the

PL/I

Program

.

.

.

.

. 354

Step

4:

Compiling

and

Linking

the

PL/I

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

. 356

Step

5:

Running

the

Sample

Program

.

.

.

. 357

Determining

equivalent

Java

and

PL/I

data

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 357

Chapter

26.

Using

sort

routines

.

.

. 359

Comparing

S/390

and

workstation

sort

programs

359

Preparing

to

use

sort

.

.

.

.

.

.

.

.

.

.

. 360

Choosing

the

type

of

sort

.

.

.

.

.

.

.

. 361

Specifying

the

sorting

field

.

.

.

.

.

.

.

. 363

Specifying

the

records

to

be

sorted

.

.

.

.

. 364

Calling

the

sort

program

.

.

.

.

.

.

.

.

. 364

PLISRT

examples

.

.

.

.

.

.

.

.

.

.

. 364

Determining

whether

the

sort

was

successful

365

Sort

data

input

and

output

.

.

.

.

.

.

.

.

. 366

Sort

data

handling

routines

.

.

.

.

.

.

.

.

. 366

E15

—

input-handling

routine

(sort

exit

E15)

367

E35

—

output-handling

routine

(sort

exit

E35)

369

Calling

PLISRTA

.

.

.

.

.

.

.

.

.

.

. 371

Calling

PLISRTB

.

.

.

.

.

.

.

.

.

.

. 372

Calling

PLISRTC

.

.

.

.

.

.

.

.

.

.

. 374

Calling

PLISRTD,

example

1

.

.

.

.

.

.

. 375

Calling

PLISRTD,

example

2

.

.

.

.

.

.

. 376

Chapter

27.

Using

the

SAX

parser

.

. 377

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

The

PLISAXA

built-in

subroutine

.

.

.

.

.

.

. 378

The

PLISAXB

built-in

subroutine

.

.

.

.

.

.

. 378

The

SAX

event

structure

.

.

.

.

.

.

.

.

.

. 378

start_of_document

.

.

.

.

.

.

.

.

.

.

. 379

version_information

.

.

.

.

.

.

.

.

.

. 379

encoding_declaration

.

.

.

.

.

.

.

.

.

. 379

standalone_declaration

.

.

.

.

.

.

.

.

. 379

document_type_declaration

.

.

.

.

.

.

.

. 379

end_of_document

.

.

.

.

.

.

.

.

.

.

. 379

start_of_element

.

.

.

.

.

.

.

.

.

.

. 380

attribute_name

.

.

.

.

.

.

.

.

.

.

.

. 380

attribute_characters

.

.

.

.

.

.

.

.

.

. 380

attribute_predefined_reference

.

.

.

.

.

.

. 380

attribute_character_reference

.

.

.

.

.

.

. 380

end_of_element

.

.

.

.

.

.

.

.

.

.

.

. 380

start_of_CDATA_section

.

.

.

.

.

.

.

.

. 380

end_of_CDATA_section

.

.

.

.

.

.

.

.

. 381

content_characters

.

.

.

.

.

.

.

.

.

.

. 381

content_predefined_reference

.

.

.

.

.

.

. 381

content_character_reference

.

.

.

.

.

.

.

. 381

processing_instruction

.

.

.

.

.

.

.

.

. 381

comment

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

unknown_attribute_reference

.

.

.

.

.

.

. 382

unknown_content_reference

.

.

.

.

.

.

. 382

start_of_prefix_mapping

.

.

.

.

.

.

.

.

. 382

end_of_prefix_mapping

.

.

.

.

.

.

.

.

. 382

exception

.

.

.

.

.

.

.

.

.

.

.

.

.

. 382

Parameters

to

the

event

functions

.

.

.

.

. 382

Coded

character

sets

for

XML

documents

.

.

.

. 383

Supported

EBCDIC

code

pages

.

.

.

.

.

. 383

Supported

ASCII

code

pages

.

.

.

.

.

.

. 384

Specifying

the

code

page

.

.

.

.

.

.

.

. 384

Exceptions

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

Continuable

exception

codes

.

.

.

.

.

.

.

. 397

Terminating

exception

codes

.

.

.

.

.

.

.

. 401

Chapter

28.

Using

PL/I

MLE

in

your

applications

.

.

.

.

.

.

.

.

.

.

.

. 405

Applying

attributes

and

options

.

.

.

.

.

.

. 405

DATE

attribute

.

.

.

.

.

.

.

.

.

.

.

. 405

RESPECT

compile-time

option

.

.

.

.

.

.

. 406

WINDOW

compile-time

option

.

.

.

.

.

. 406

RULES

compile-time

option

.

.

.

.

.

.

. 407

Understanding

date

patterns

.

.

.

.

.

.

.

. 407

Patterns

and

windowing

.

.

.

.

.

.

.

. 408

Using

built-in

functions

with

MLE

.

.

.

.

.

. 408

DAYS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 408

DAYSTODATE

.

.

.

.

.

.

.

.

.

.

.

. 409

Performing

date

calculations

and

comparisons

.

. 409

Explicit

date

calculations

.

.

.

.

.

.

.

. 410

Implicit

date

calculations

.

.

.

.

.

.

.

. 410

Implicit

date

comparisons

.

.

.

.

.

.

.

. 410

Implicit

DATE

assignments

.

.

.

.

.

.

.

. 411

Using

MLE

with

the

SQL

preprocessor

.

.

.

.

. 412

Part

7.

Appendixes

.

.

.

.

.

.

.

. 413

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 415

Programming

interface

information

.

.

.

.

.

. 416

Macros

for

customer

use

.

.

.

.

.

.

.

. 416

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

Bibliography

.

.

.

.

.

.

.

.

.

.

.

. 419

Enterprise

PL/I

publications

.

.

.

.

.

.

.

. 419

DB2

UDB

for

OS/390

and

z/OS

.

.

.

.

.

.

. 419

CICS

Transaction

Server

.

.

.

.

.

.

.

.

.

. 419

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

. 421

viii

PL/I

for

Windows:

Programming

Guide

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

Contents

ix

x

PL/I

for

Windows:

Programming

Guide

Figures

1.

The

PL/I

declaration

of

SQLCA

.

.

.

.

.

. 85

2.

The

PL/I

declaration

of

an

SQL

descriptor

area

86

3.

CHIMES

program

compiler

listing

.

.

.

. 105

4.

Make

file

example

.

.

.

.

.

.

.

.

.

. 115

5.

PL/I

code

that

produces

a

formatted

dump

145

6.

Example

of

PLIDUMP

output

.

.

.

.

.

. 146

7.

Static

and

dynamic

descendant

procedures

148

8.

Creating

a

data

set

with

stream-oriented

data

transmission

.

.

.

.

.

.

.

.

.

.

.

. 187

9.

Accessing

a

data

set

with

stream-oriented

data

transmission

.

.

.

.

.

.

.

.

.

. 189

10.

Creating

a

print

file

via

stream

data

transmission

.

.

.

.

.

.

.

.

.

.

.

. 191

11.

Declaration

of

PLITABS

.

.

.

.

.

.

.

. 192

12.

PL/I

structure

PLITABS

for

modifying

the

preset

tab

settings

.

.

.

.

.

.

.

.

.

. 193

13.

A

sample

interactive

program

.

.

.

.

.

. 197

14.

Merge

Sort—Creating

and

accessing

a

consecutive

data

set

.

.

.

.

.

.

.

.

. 201

15.

Printing

record-oriented

data

transmission

204

16.

Creating

a

REGIONAL(1)

data

set

.

.

.

. 210

17.

Updating

a

REGIONAL(1)

data

set

.

.

.

. 213

18.

Creating

a

workstation

VSAM

keyed

data

set

221

19.

Defining

and

loading

a

workstation

VSAM

sequential

data

set

.

.

.

.

.

.

.

.

.

. 224

20.

Defining

and

loading

a

workstation

VSAM

keyed

data

set

.

.

.

.

.

.

.

.

.

.

. 228

21.

Updating

a

workstation

VSAM

keyed

data

set

230

22.

Loading

a

workstation

VSAM

direct

data

set

235

23.

Updating

a

workstation

VSAM

direct

data

set

by

key

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

24.

Selecting

a

database

.

.

.

.

.

.

.

.

. 253

25.

Display

of

tables

created

by

the

qualifier

254

26.

Generated

PL/I

declarations

.

.

.

.

.

. 255

27.

PL/I

compiler

user

exit

procedures

.

.

.

. 298

28.

Example

of

an

IBMUEXIT.INF

file

.

.

.

. 299

29.

Java

Sample

Program

#2

-

Passing

a

String

350

30.

PL/I

Sample

Program

#2

-

Passing

a

String

352

31.

Java

Sample

Program

#3

-

Passing

an

Integer

354

32.

PL/I

Sample

Program

#3

-

Passing

an

Integer

356

33.

Flow

of

control

for

the

sort

program

.

.

.

. 362

34.

Skeletal

code

for

an

input

procedure

368

35.

When

E15

is

external

to

the

procedure

calling

PLISRTx

.

.

.

.

.

.

.

.

.

.

.

.

. 369

36.

Skeletal

code

for

an

output-handling

procedure

.

.

.

.

.

.

.

.

.

.

.

.

. 370

37.

PLISRTA—Sorting

from

input

data

set

to

output

data

set

.

.

.

.

.

.

.

.

.

.

. 371

38.

PLISRTB—Sorting

from

input-handling

routine

to

output

data

set

.

.

.

.

.

.

. 372

39.

PLISRTC—Sorting

from

input

data

set

to

output-handling

routine

.

.

.

.

.

.

.

. 374

40.

PLISRTD—Sorting

input-handling

routine

to

output-handling

routine

.

.

.

.

.

.

.

. 375

41.

PLISRTD—Sorting

input-handling

routine

to

output-handling

routine

.

.

.

.

.

.

.

. 376

42.

Sample

XML

document

.

.

.

.

.

.

.

. 379

43.

PLISAXA

coding

example

-

type

declarations

386

44.

PLISAXA

coding

example

-

event

structure

387

45.

PLISAXA

coding

example

-

main

routine

388

46.

PLISAXA

coding

example

-

event

routines

389

47.

PLISAXA

coding

example

-

program

output

397

xi

xii

PL/I

for

Windows:

Programming

Guide

Part

1.

Introducing

PL/I

on

your

workstation

1

2

PL/I

for

Windows:

Programming

Guide

Chapter

1.

About

this

book

What’s

new?

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

This

Programming

Guide

is

designed

to

help

use

the

PL/I

for

Windows

compilers

to

code

and

compile

PL/I

programs.

If

you

have

typically

used

mainframe

PL/I

and

are

interested

in

moving

your

programs

to

the

Windows

platform,

Chapter

3,

“Porting

applications

between

platforms,”

on

page

9

should

be

particularly

useful.

Other

information

in

this

guide

will

help

you

understand

some

basic

Windows

features

as

well

as

give

instructions

on

how

to

compile,

link,

and

run

a

PL/I

program.

What’s

new?

Some

of

the

most

recent

additions

to

the

PL/I

workstation

compilers

include:

v

Some

tips

on

how

to

use

PL/I

and

Java

together

v

How

to

use

dclgen

in

the

Windows

environment

v

Help

with

using

the

Open

Database

Connectivity

3

4

PL/I

for

Windows:

Programming

Guide

Chapter

2.

How

to

read

the

syntax

diagrams

The

following

rules

apply

to

the

syntax

diagrams

used

in

this

book:

Arrow

symbols

Read

the

syntax

diagrams

from

left

to

right,

from

top

to

bottom,

following

the

path

of

the

line.

��───

Indicates

the

beginning

of

a

statement.

───�

Indicates

that

the

statement

syntax

is

continued

on

the

next

line.

�───

Indicates

that

a

statement

is

continued

from

the

previous

line.

───��

Indicates

the

end

of

a

statement.

Diagrams

of

syntactical

units

other

than

complete

statements

start

with

the

�───

symbol

and

end

with

the

───�

symbol.

Diagrams

of

syntactical

units

other

than

complete

statements

start

with

the

>---

symbol

and

end

with

the

--->

Conventions

v

Keywords,

their

allowable

synonyms,

and

reserved

parameters

appear

in

uppercase.

These

items

must

be

entered

exactly

as

shown.

v

Variables

appear

in

lowercase

italics

(for

example,

column-name).

They

represent

user-defined

parameters

or

suboptions.

v

When

entering

commands,

separate

parameters

and

keywords

by

at

least

one

blank

if

there

is

no

intervening

punctuation.

v

Enter

punctuation

marks

(slashes,

commas,

periods,

parentheses,

quotation

marks,

equal

signs)

and

numbers

exactly

as

given.

v

Footnotes

are

shown

by

a

number

in

parentheses,

for

example,

(1).

v

A

�

symbol

indicates

one

blank

position.

Required

items

Required

items

appear

on

the

horizontal

line

(the

main

path).

��

REQUIRED_ITEM

��

Optional

Items

Optional

items

appear

below

the

main

path.

��

REQUIRED_ITEM

optional_item

��

If

an

optional

item

appears

above

the

main

path,

that

item

has

no

effect

on

the

execution

of

the

statement

and

is

used

only

for

readability.

5

��

REQUIRED_ITEM

optional_item

��

Multiple

required

or

optional

items

If

you

can

choose

from

two

or

more

items,

they

appear

vertically

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path.

��

REQUIRED_ITEM

required_choice1

required_choice2

��

If

choosing

one

of

the

items

is

optional,

the

entire

stack

appears

below

the

main

path.

��

REQUIRED_ITEM

optional_choice1

optional_choice2

��

Repeatable

items

An

arrow

returning

to

the

left

above

the

main

line

indicates

that

an

item

can

be

repeated.

��

REQUIRED_ITEM

�

repeatable_item

��

If

the

repeat

arrow

contains

a

comma,

you

must

separate

repeated

items

with

a

comma.

��

REQUIRED_ITEM

�

,

repeatable_item

��

A

repeat

arrow

above

a

stack

indicates

that

you

can

specify

more

than

one

of

the

choices

in

the

stack.

Default

keywords

Default

keywords

appear

above

the

main

path,

and

the

remaining

choices

are

shown

below

the

main

path.

How

to

read

syntax

diagrams

6

PL/I

for

Windows:

Programming

Guide

��

REQUIRED_ITEM

default_choice

optional_choice

optional_choice

��

Fragments

Sometimes

a

diagram

must

be

split

into

fragments.

The

fragments

are

represented

by

a

letter

or

fragment

name,

set

off

like

this:

|

A

|.

The

fragment

follows

the

end

of

the

main

diagram.

The

following

example

shows

the

use

of

a

fragment.

��

STATEMENT

item

1

item

2

A

��

A:

item

3

item

4

KEYWORD

item

5

item

6

How

to

read

syntax

diagrams

Chapter

2.

How

to

read

the

syntax

diagrams

7

How

to

read

syntax

diagrams

8

PL/I

for

Windows:

Programming

Guide

Chapter

3.

Porting

applications

between

platforms

Getting

mainframe

applications

to

compile

on

the

workstation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Choosing

the

right

compile-time

options

.

.

. 10

Language

restricted

.

.

.

.

.

.

.

.

.

.

. 10

RECORD

I/O

.

.

.

.

.

.

.

.

.

.

. 10

STREAM

I/O

.

.

.

.

.

.

.

.

.

.

.

. 11

Structure

expressions

.

.

.

.

.

.

.

.

. 11

Array

expressions

.

.

.

.

.

.

.

.

.

. 11

DEFAULT

statement

.

.

.

.

.

.

.

.

. 11

Extents

of

automatic

variables

.

.

.

.

.

. 12

Built-in

functions

.

.

.

.

.

.

.

.

.

. 12

iSUB

defining

.

.

.

.

.

.

.

.

.

.

. 12

DBCS

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Macro

preprocessor

.

.

.

.

.

.

.

.

.

. 12

Using

the

macro

facility

to

help

port

programs

13

Getting

mainframe

applications

to

run

on

the

workstation

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Linking

differences

.

.

.

.

.

.

.

.

.

.

. 13

Data

representations

causing

run-time

differences

14

Environment

differences

affecting

portability

.

. 16

Language

elements

causing

run-time

differences

17

The

IBM

mainframe

environment

has

a

different

hardware

and

operating

system

architecture

than

your

AIX

system

or

your

personal

computer

(PC).

Operating

systems

other

than

the

mainframe

are

sometimes

referred

to

as

workstation

platforms.

In

this

book,

we

use

the

term

workstation

to

refer

to

the

AIX

and

Windows

operating

systems.

Because

of

fundamental

platform

differences

as

well

as

difference

the

OS

PL/I

compiler

and

the

PL/I

for

Windows

compilers,

some

problems

can

arise

as

you

move

PL/I

programs

between

the

mainframe

and

workstation

environments.

This

chapter

describes

some

of

these

differences

between

development

platforms,

and

then

provides

instructions

that

minimize

problems

in

the

following

areas:

v

Compiling

mainframe

applications

without

error

on

the

workstation.

v

Running

mainframe

applications

on

the

workstation

(and

getting

the

same

results).

v

Writing,

compiling,

and

testing

applications

on

the

workstation

that

are

later

run

in

production

mode

on

the

mainframe.

Getting

mainframe

applications

to

compile

on

the

workstation

As

you

move

programs

to

your

workstation

from

the

mainframe,

one

of

your

first

goals

is

to

get

the

applications

you

have

already

been

using

to

compile

in

the

new

environment

without

errors.

The

character

sets

used

on

the

mainframe

and

workstation

are

different

and

can

cause

some

compile

problems:

Embedded

control

characters

If

a

source

file

contains

characters

with

hex

values

less

than

'20'x,

the

workstation

compiler

might

misinterpret

the

size

of

a

line

in

that

file,

or

even

the

size

of

the

file

itself.

You

should

use

hex

character

constants

to

encode

these

values.

If

you

are

downloading

a

source

file

from

the

host

that

has

variables

initialized

to

values

entered

with

a

hex

editor,

some

of

those

values

might

have

a

hex

value

less

than

'20'x

even

though

they

have

greater

values

on

the

host.

National

characters

and

other

symbols

Transferring

programs

between

platforms

can

cause

errors

if

you

use

national

characters

and

other

symbols

(in

PL/I

context)

in

certain

code

pages.

This

is

true

of

the

logical

“not”

(¬)

and

“or”

(|)

signs,

the

currency

symbol,

and

use

of

the

following

alphabetic

extenders

in

PL/I

identifiers:

9

$

#

@

To

avoid

potential

problems

involving

“not”,

“or”

and

the

currency

symbol,

use

the

NOT

(see

“NOT”

on

page

57),

OR

(see

“OR”

on

page

59),

and

CURRENCY

(see

“CURRENCY”

on

page

38)

compile-time

options

on

the

*PROCESS

statement.

Avoid

potential

problems

involving

other

characters

by

using

the

NAMES

(see

“NAMES”

on

page

56)

compile-time

option

to

define

extramural

characters

and

symbols.

Choosing

the

right

compile-time

options

By

selecting

certain

compile

time

options,

you

can

make

your

source

code

more

portable

across

compilers

and

platforms.

For

instance,

if

you

select

LANGLVL(SAA),

the

compiler

flags

any

keywords

not

supported

by

pre-Enterprise

PL/I

and

does

not

recognize

any

built-in

functions

not

supported

by

pre-Enterprise

PL/I.

If

you

want

to

improve

compatibility

with

pre-Enterprise

PL/I,

you

could

specify

the

following

options:

v

DEFAULT(

DESCLOCATOR

EVENDEC

NULL370

RETURNS(BYADDR)

)

v

LIMITS(

EXTNAME(7)

NAME(31)

)

Note

that

the

option

DEFAULT(RETURNS(BAYDDR))

will

make

the

invocation

of

a

non-PL/I

function

on

the

workstation

fail

unless

the

BYVALUE

attribute

is

specified

in

the

RETURNS

description.

These

(and

all

the

other

compiler)

options

are

listed

alphabetically

in

Chapter

5,

“Compile-time

option

descriptions,”

on

page

31

where

they

are

also

described

in

detail.

Language

restricted

Except

where

indicated,

the

compiler

will

flag

the

use

of

any

language

that

is

restricted.

RECORD

I/O

RECORD

I/O

is

supported,

but

with

the

following

restrictions:

v

The

EVENT

clause

on

READ/WRITE

statements

is

not

supported.

v

The

UNLOCK

statement

is

not

supported.

v

The

following

file

attributes

are

not

supported:

–

BACKWARDS

–

EXCLUSIVE

–

TRANSIENT
v

The

following

options

of

the

ENVIRONMENT

attribute

are

not

supported,

but

their

use

is

flagged

only

under

LANGLVL(NOEXT):

–

ADDBUFF

–

ASCII

–

BUFFERS

–

BUFND

–

BUFNI

–

BUFOFF

–

INDEXAREA

–

LEAVE

–

NCP

–

NOWRITE

Getting

mainframe

applications

to

compile

on

the

workstation

10

PL/I

for

Windows:

Programming

Guide

–

REGIONAL(2)

–

REGIONAL(3)

–

REREAD

–

SIS

–

SKIP

–

TOTAL

–

TP

–

TRKOFL

STREAM

I/O

STREAM

I/O

is

supported,

but

the

following

restrictions

apply

to

PUT/GET

DATA

statements:

v

DEFINED

is

not

supported

if

the

DEFINED

variable

is

BIT

or

GRAPHIC

or

has

a

POSITION

attribute.

v

DEFINED

is

not

supported

if

its

base

variable

is

an

array

slice

or

an

array

with

a

different

number

of

dimensions

than

the

defined

variable.

Structure

expressions

Structure

expressions

as

arguments

are

not

supported

unless

both

of

the

following

conditions

are

true:

v

There

is

a

parameter

description.

v

The

parameter

description

specifies

all

constant

extents.

Array

expressions

An

array

expression

is

not

allowed

as

an

argument

to

a

user

function

unless

it

is

an

array

of

scalars

of

known

size.

Consequently,

any

array

of

scalars

of

arithmetic

type

may

be

passed

to

a

user

function,

but

there

may

be

problems

with

arrays

of

varying-length

strings.

The

following

example

shows

a

numeric

array

expression

supported

in

a

call:

dcl

x

entry,

(y(10),z(10))

fixed

bin(31);

call

x(y

+

z);

The

following

unprototyped

call

would

be

flagged

since

it

requires

a

string

expression

of

unknown

size:

dcl

a1

entry;

dcl

(b(10),c(10))

char(20)

var;

call

a1(b

||

c);

However,

the

following

prototyped

call

would

not

be

flagged:

dcl

a2

entry(char(30)

var);

dcl

(b(10),c(10))

char(20)

var;

call

a2(b

||

c);

DEFAULT

statement

Factored

default

specifications

are

not

supported.

For

example,

a

statement

such

as

the

following

is

not

supported:

default

(

range(a:h),

range(p:z)

)

fixed

bin;

But

you

could

change

the

above

statement

to

the

following

equivalent

and

supported

statement:

default

range(a:h)

fixed

bin,

range(p:z)

fixed

bin;

Getting

mainframe

applications

to

compile

on

the

workstation

Chapter

3.

Porting

applications

between

platforms

11

The

use

of

a

″(″

after

the

DEFAULT

keyword

is

reserved

for

the

same

purpose

as

under

the

ANSI

standard:

after

the

DEFAULT

keyword,

the

standard

allows

a

parenthesized

logical

predicate

in

attributes.

Extents

of

automatic

variables

An

extent

of

an

automatic

variable

cannot

be

set

by

a

function

nested

in

the

procedure

where

the

automatic

variable

is

declared

or

by

an

entry

variable

unless

the

entry

variable

is

declared

before

the

automatic

variable.

Built-in

functions

Built-in

functions

are

supported

with

the

following

exceptions/restrictions:

v

The

PLITEST

built-in

function

is

not

supported.

v

Pseudovariables

are

not

supported

in:

–

The

STRING

option

of

PUT

statements
v

Pseudovariables

permitted

in

DO

loops

are

restricted

to:

–

IMAG

–

REAL

–

SUBSTR

–

UNSPEC
v

The

POLY

built-in

function

has

the

following

restrictions:

–

The

first

argument

must

be

REAL

FLOAT.

–

The

second

argument

must

be

scalar.
v

The

COMPLEX

pseudovariable

is

not

supported.

v

The

IMS

built-in

subroutines

PLICANC,

PLICKPT,

and

PLIREST

are

not

supported.

iSUB

defining

Support

for

iSUB

defining

is

limited

to

arrays

of

scalars.

DBCS

DBCS

can

be

used

only

in

the

following:

v

G

and

M

constants

v

Identifiers

v

Comments

G

literals

can

start

and

end

with

a

DBCS

quote

followed

by

either

a

DBCS

G

or

an

SBCS

G.

Macro

preprocessor

Suffixes

that

follow

string

constants

are

not

replaced

by

the

macro

preprocessor—whether

or

not

these

are

legal

OS

PL/I

Version

2

suffixes—unless

you

insert

a

delimiter

between

the

ending

quotation

mark

of

the

string

and

the

first

letter

of

the

suffix.

Note

that

the

OS

PL/I

V2R1

compiler

introduced

this

change,

and

so

this

is

not

a

difference

between

the

PL/I

for

MVS

&

VM

compiler

and

either

the

PL/I

for

MVS

&

VM

compiler

or

the

OS

PL/I

V2Rx

compilers.

This

restriction

is

consequently

not

flagged.

As

an

example,

consider:

%DCL

(GX,

XX)

CHAR;

%GX='||FX';

%XX='||ZZ';

Getting

mainframe

applications

to

compile

on

the

workstation

12

PL/I

for

Windows:

Programming

Guide

DATA

=

'STRING'GX;

DATA

=

'STRING'XX;

DATA

=

'STRING'

GX;

DATA

=

'STRING'

XX;

Under

OS

PL/I

V1,

this

produces

the

source:

DATA

=

'STRING'||FX;

DATA

=

'STRING'||ZZ;

DATA

=

'STRING'

||FX;

DATA

=

'STRING'

||ZZ;

whereas,

under

PL/I

for

MVS

&

VM

it

produces:

DATA

=

'STRING'GX;

DATA

=

'STRING'XX;

DATA

=

'STRING'

||FX;

DATA

=

'STRING'

||ZZ;

Using

the

macro

facility

to

help

port

programs

In

many

cases,

potential

portability

problems

can

be

avoided

by

using

the

macro

facility

because

it

has

the

capability

of

isolating

platform-specific

code.

For

example,

you

can

include

platform-specific

code

in

a

compilation

for

a

given

platform

and

exclude

it

from

compilation

for

a

different

platform.

The

PL/I

for

Windows

macro

facility

COMPILETIME

built-in

function

returns

the

date

using

the

format

’DD.MMM.YY’,

while

the

OS

PL/I

macro

facility

COMPILETIME

built-in

function

returns

the

date

using

the

format

’DD

MMM

YY’.

This

allows

you

to

write

code

that

can

contain

conditional

system-dependent

code

that

compiles

correctly

under

PL/I

for

Windows

and

all

versions

of

the

mainframe

PL/I

compiler,

for

example:

%dcl

compiletime

builtin;

%if

substr(compiletime,3,1)

=

’.’

%then

%do;

/*

Windows

PL/I

code

*/

%end;

%else

%do;

/*

OS

PL/I

code

*/

%end;

For

information

about

the

macro

facility,

see

the

PL/I

Language

Reference.

Getting

mainframe

applications

to

run

on

the

workstation

Once

you

have

downloaded

your

source

program

from

the

mainframe

and

compiled

it

using

the

workstation

compiler

without

errors,

the

next

step

is

to

run

the

program.

If

you

want

to

get

the

same

results

on

the

workstation

as

you

do

on

the

mainframe,

you

need

to

know

about

elements

and

behavior

of

the

PL/I

language

that

vary

due

to

the

underlying

hardware

or

software

architecture.

Linking

differences

Every

.EXE

that

you

build

must

contain

exactly

one

main

routine,

that

is,

exactly

one

procedure

containing

OPTIONS(MAIN).

If

no

main

routine

exists,

the

linker

complains

that

your

program

has

no

starting

address.

If

more

than

one

main

routine

exists,

the

linker

complains

that

there

are

duplicate

references

to

the

name

main.

Getting

mainframe

applications

to

compile

on

the

workstation

Chapter

3.

Porting

applications

between

platforms

13

Every

.DLL

that

you

build

must

have

at

least

one

module

compiled

with

the

DLLINIT

compile-time

option

(see

“DLLINIT”

on

page

45).

Data

representations

causing

run-time

differences

Most

programs

act

the

same

without

regard

to

data

representation,

but

to

ensure

that

this

is

true

for

your

programs,

you

need

to

understand

the

differences

described

in

the

following

sections.

The

workstation

compilers

support

options

that

instruct

the

operating

system

to

treat

data

and

floating-point

operations

the

same

way

that

the

mainframe

does.

There

are

suboptions

of

the

DEFAULT

compile-time

option

that

you

should

specify

for

all

mainframe

applications

that

might

need

to

be

changed

when

moving

code

to

the

workstation:

v

DEFAULT(EBCDIC)

instead

of

ASCII

v

DEFAULT(HEXADEC)

instead

of

IEEE

v

DEFAULT(E(HEXADEC))

instead

of

DFT(E(IEEE))

v

DEFAULT

(NONNATIVE)

instead

of

NATIVE

v

DEFAULT

(NONNATIVEADDR)

instead

of

NATIVEADDR

For

more

information

on

these

compile-time

options,

see

“DEFAULT”

on

page

38.

ASCII

vs.

EBCDIC

Workstation

operating

systems

use

the

ASCII

character

set

while

the

mainframe

uses

the

EBCDIC

character

set.

This

means

that

most

characters

have

a

different

hexadecimal

value.

For

example,

the

hexadecimal

value

for

a

blank

is

'20'x

in

the

ASCII

character

set

and

'40'x

in

the

EBCDIC

character

set.

This

means

that

code

dependent

on

the

EBCDIC

hexadecimal

values

of

character

data

can

logically

fail

when

run

using

ASCII.

For

example,

code

that

tests

whether

or

not

a

character

is

a

blank

by

comparing

it

with

'40'x

fails

when

run

using

ASCII.

Similarly,

code

that

changes

letters

to

uppercase

by

using

'OR'

and

'80'b4

fails

when

run

using

ASCII.

(Code

that

uses

the

TRANSLATE

built-in

function

to

change

to

uppercase

letters,

however,

does

not

fail.)

In

the

ASCII

character

set,

digits

have

the

hexadecimal

values

'30'x

through

'39'x.

The

ASCII

lowercase

letter

'a'

has

the

hexadecimal

value

'61'x,

and

the

uppercase

letter

'A'

has

the

hexadecimal

value

'41'x.

In

the

EBCDIC

character

set,

digits

have

the

hexadecimal

values

'F0'x

through

'F9'x.

In

EBCDIC,

the

lowercase

letter

'a'

has

the

hexadecimal

value

'81'x,

and

the

uppercase

letter

'A'

has

the

hexadecimal

value

'C1'x.

These

differences

have

some

interesting

consequences:

While

'a'

<

'A'

is

true

for

EBCDIC,

it

is

false

for

ASCII.

While

'A'

<

'1'

is

true

for

EBCDIC,

it

is

false

for

ASCII.

While

x

>=

'0'

almost

always

means

that

x

is

a

digit

in

EBCDIC,

this

is

not

true

for

ASCII.

Because

of

the

differences

described,

the

results

of

sorting

character

strings

are

different

under

EBCDIC

and

ASCII.

For

many

programs,

this

has

no

effect,

but

you

should

be

aware

of

potential

logic

errors

if

your

program

depends

on

the

exact

sequence

in

which

some

character

strings

are

sorted.

For

information

on

converting

from

ASCII

to

EBCDIC,

see

“Using

data

conversion

tables”

on

page

304.

NATIVE

vs.

NONNATIVE

The

personal

computer

(PC)

holds

integers

in

a

form

that

is

byte-reversed

Getting

mainframe

applications

to

run

on

the

workstation

14

PL/I

for

Windows:

Programming

Guide

when

compared

to

the

form

in

which

they

are

held

on

the

mainframe

or

AIX.

This

means,

for

example,

that

a

FIXED

BIN(15)

variable

holding

the

value

258,

which

equals

256+2,

is

held

in

storage

on

Windows

as

'0201'x

and

on

AIX

or

the

mainframe

as

'0102'x.

A

FIXED

BIN(31)

variable

with

the

same

value

would

be

held

as

'02010000'x

on

Windows

and

as

'00000102'x

on

AIX

or

the

mainframe.

The

AIX

and

mainframe

representation

is

known

as

Big

Endian

(Big

End

In).

The

Windows

representation

is

known,

conversely,

as

Little

Endian

(Little

End

In)

This

difference

in

internal

representations

affects:

v

FIXED

BIN

variables

requiring

two

or

more

bytes

v

OFFSET

variables

v

The

length

prefix

of

VARYING

strings

v

Ordinal

and

area

data

For

most

programs,

this

difference

should

not

create

any

problems.

If

your

program

depends

on

the

hexadecimal

value

of

an

integer,

however,

you

should

be

aware

of

potential

logic

errors.

Such

a

dependency

might

exist

if

you

use

the

UNSPEC

built-in

function

with

a

FIXED

BINARY

argument,

or

if

a

BIT

variable

is

based

on

the

address

of

a

FIXED

BINARY

variable.

If

your

program

manipulates

pointers

as

if

they

were

integers,

the

difference

in

data

representation

can

cause

problems.

If

you

specify

DEFAULT(NONNATIVE),

you

probably

also

need

to

specify

DEFAULT(NONNATIVEADDR).

You

can

specify

the

NONNATIVE

attribute

on

selected

declarations.

For

example,

the

assignment

in

the

following

statement

converts

all

the

FIXED

BIN

values

in

the

structure

from

nonnative

to

native:

dcl

1

a1

native,

2

b

fixed

bin(31),

2

c

fixed

dec(8,4),

2

d

fixed

bin(31),

2

e

bit(32),

2

f

fixed

bin(31);

dcl

1

a2

nonnative,

2

b

fixed

bin(31),

2

c

fixed

dec(8,4),

2

d

fixed

bin(31),

2

e

bit(32),

2

f

fixed

bin(31);

a1

=

a2;

IEEE

vs.

HEXADEC

Workstation

operating

systems

represent

floating-point

data

using

the

IEEE

format

while

the

mainframe

traditionally

uses

the

hexadecimal

format.

Table

1

summarizes

the

differences

between

normalized

floating-point

IEEE

and

hexadecimal:

Table

1.

Normalized

IEEE

vs.

normalized

hexadecimal

Specification

IEEE

(AIX)

IEEE

(PC)

Hexadecimal

Approximate

range

of

values

±10E-308

to

±10E+308

±3.30E-4932

to

±1.21E+4932

±10E-78

to

±10E+75

Getting

mainframe

applications

to

run

on

the

workstation

Chapter

3.

Porting

applications

between

platforms

15

Table

1.

Normalized

IEEE

vs.

normalized

hexadecimal

(continued)

Maximum

precision

for

FLOAT

DECIMAL

32

18

33

Maximum

precision

for

FLOAT

BINARY

106

64

109

Maximum

number

of

digits

in

FLOAT

DECIMAL

exponent

4

4

2

Maximum

number

of

digits

in

FLOAT

BINARY

exponent

5

5

3

Hexadecimal

float

has

the

same

maximum

and

minimum

exponent

values

for

short,

long,

and

extended

floating-point,

but

IEEE

float

has

differing

maximum

and

minimum

exponent

values

for

short,

long,

and

extended

floating-point.

This

means

that

while

1E74,

which

in

PL/I

should

have

the

attributes

FLOAT

DEC(1),

is

a

valid

hexadecimal

short

float,

it

is

not

a

valid

IEEE

short

float.

For

most

programs

these

differences

should

create

no

problems,

just

as

the

different

representations

of

FIXED

BIN

variables

should

create

no

problems.

However,

use

caution

in

coding

if

your

program

depends

on

the

hexadecimal

value

of

a

float

value.

Also,

while

FIXED

BIN

calculations

produce

the

same

result

independent

of

the

internal

representations

described

above,

floating-point

calculations

do

not

necessarily

produce

the

same

result

because

of

the

differences

in

how

the

floating-point

values

are

represented.

This

is

particularly

true

for

short

and

extended

floating-point.

EBCDIC

DBCS

vs.

ASCII

DBCS

EBCDIC

DBCS

strings

are

enclosed

in

shift

codes,

while

ASCII

DBCS

strings

are

not

enclosed

in

shift

codes.

The

hexadecimal

values

used

to

represent

the

same

characters

are

also

different.

Again,

for

most

programs

this

should

make

no

difference.

If

your

program

depends

on

the

hexadecimal

value

of

a

graphic

string

or

on

a

character

string

containing

mixed

character

and

graphic

data,

use

caution

in

your

coding

practices.

Environment

differences

affecting

portability

There

are

some

differences,

other

than

data

representation,

between

the

workstation

and

mainframe

platforms

that

can

also

affect

the

portability

of

your

programs.

This

section

describes

some

of

these

differences.

File

names

File

naming

conventions

on

the

PC

are

very

different

from

those

on

the

mainframe.

The

following

file

name,

for

example,

is

valid

on

the

PC,

but

not

on

the

mainframe:

d:\programs\data\myfile.dat

This

can

affect

portability

if

you

use

file

names

in

your

PL/I

source

as

part

of

the

TITLE

option

of

the

OPEN

and

FETCH

statements.

File

attributes

PL/I

allows

many

file

attributes

to

be

specified

as

part

of

the

ENVIRONMENT

attribute

in

a

file

declaration.

Many

of

these

attributes

have

no

meaning

on

the

workstation,

in

which

case

the

compiler

ignores

them.

If

your

program

depends

on

these

attributes

being

respected,

your

program

is

not

likely

to

port

successfully.

Getting

mainframe

applications

to

run

on

the

workstation

16

PL/I

for

Windows:

Programming

Guide

Control

codes

Some

characters

that

have

no

particular

meaning

on

the

mainframe

are

interpreted

as

control

characters

by

the

workstation

and

can

lead

to

incorrect

processing

of

data

files

having

a

TYPE

of

either

LF,

LFEOF,

CRLF,

or

CRLFEOF.

Such

files

should

not

contain

any

of

the

following

characters:

'0A'x

(“LF

-

line

feed”)

'0D'x

(“CR

-

carriage

return”)

'1A'x

(“EOF

-

end

of

file”)

For

example,

if

the

file

in

the

code

below

has

TYPE(CRLF),

the

WRITE

statement

raises

the

ERROR

condition

with

oncode

1041

because

2573

has

the

hexadecimal

value

'0D0A'x.

This

would

not

occur

if

the

file

had

TYPE

of

either

FIXED,

VARLS,

or

VARMS.

dcl

1

a

native,

2

b

char(10),

2

c

fixed

bin(15),

2

d

char(10);

dcl

f

file

output;

a.b

=

’alpha’;

a.c

=

2573;

a.d

=

’omega’;

write

file(f)

from(a);

Device-dependent

control

codes

Use

of

device-dependent

(platform-specific)

control

codes

in

your

programs

or

files

can

cause

problems

when

trying

to

port

them

to

other

platforms

that

do

not

necessarily

support

the

control

codes.

As

with

all

other

very

platform-specific

code,

it

is

best

to

isolate

such

code

as

much

as

possible

so

that

it

can

be

replaced

easily

when

you

move

the

application

to

another

platform.

Language

elements

causing

run-time

differences

There

are

also

some

language

elements

that

can

cause

your

program

to

run

differently

under

PL/I

for

Windows.

than

it

does

under

OS

PL/I,

due

to

differences

in

the

implementation

of

the

language

by

the

compiler.

Each

of

the

following

items

is

described

in

terms

of

its

PL/I

for

Windows

behavior.

FIXED

BIN(p)

maps

to

one

byte

if

p

<=

7

If

you

have

any

variables

declared

as

FIXED

BIN

with

a

precision

of

7

or

less,

they

occupy

one

byte

of

storage

under

PL/I

for

Windows.

instead

of

two

as

under

OS

PL/I.

If

the

variable

is

part

of

a

structure,

this

usually

changes

how

the

structure

is

mapped,

and

that

could

affect

how

your

program

runs.

For

example,

if

the

structure

were

read

in

from

a

file

created

on

the

mainframe,

fewer

bytes

would

be

read

in.

To

avoid

this

difference,

you

could

change

the

precision

of

the

variable

to

a

value

between

8

and

15

(inclusive).

INITIAL

attribute

for

AREAs

is

ignored

To

keep

PL/I

for

Windows

product

from

ignoring

the

INITIAL

attribute

for

AREAs,

convert

INITIAL

clauses

into

assignment

statements.

For

example,

in

the

following

code

fragment,

the

elements

of

the

array

are

not

initialized

to

a1,

a2,

a3,

and

a4.

dcl

(a1,a2,a3,a4)

area;

dcl

a(4)

area

init(

a1,

a2,

a3,

a4

);

Getting

mainframe

applications

to

run

on

the

workstation

Chapter

3.

Porting

applications

between

platforms

17

However,

you

can

rewrite

the

code

as

follows

so

that

the

array

is

initialized

as

desired.

dcl

(a1,a2,a3,a4)

area;

dcl

a(4)

area;

a(1)

=

a1;

a(2)

=

a2;

a(3)

=

a3;

a(4)

=

a4;

Issuing

of

ERROR

messages

When

the

ERROR

condition

is

raised,

no

ERROR

message

is

issued

under

PL/I

for

Windows

if

the

following

two

conditions

are

met:

v

There

is

an

ERROR

ON-unit

established.

v

The

ERROR

ON-unit

recovers

from

the

condition

by

using

a

GOTO

to

transfer

control

out

of

the

block.

ERROR

messages

are

directed

to

STDERR

rather

than

to

the

SYSPRINT

data

set.

By

default,

this

is

the

terminal.

If

SYSPRINT

is

directed

to

the

terminal,

any

output

in

the

SYSPRINT

buffer

(not

yet

written

to

SYSPRINT)

is

written

before

any

ERROR

message

is

written.

ADD,

DIVIDE,

and

MULTIPLY

do

not

return

scaled

FIXED

BIN

Under

the

RULES(IBM)

compile-time

option,

which

is

the

default,

variables

can

be

declared

as

FIXED

BIN

with

a

nonzero

scale

factor.

Infix,

prefix,

and

comparison

operations

are

performed

on

scaled

FIXED

BIN

as

with

the

mainframe.

However,

when

the

ADD,

DIVIDE,

or

MULTIPLY

built-in

functions

have

arguments

with

nonzero

factors

or

specify

a

result

with

a

nonzero

scale

factor,

the

PL/I

for

Windows

compilers

evaluate

the

built-in

function

as

FIXED

DEC

rather

as

FIXED

BIN

as

the

mainframe

compiler.

For

example,

the

PL/I

for

Windows

compilers

would

evaluate

the

DIVIDE

built-in

function

in

the

assignment

statement

below

as

a

FIXED

DEC

expression:

dcl

(i,j)

fixed

bin(15);

dcl

x

fixed

bin(15,2);

.

.

.

x

=

divide(i,j,15,2)

Enablement

of

OVERFLOW

and

ZERODIVIDE

For

OVERFLOW

and

ZERODIVIDE,

the

ERROR

condition

is

raised

under

the

following

conditions:

v

OVERFLOW

or

ZERODIVIDE

is

raised

and

the

corresponding

ON-unit

is

entered.

v

Control

does

not

leave

the

ON-unit

through

a

GOTO

statement.

Getting

mainframe

applications

to

run

on

the

workstation

18

PL/I

for

Windows:

Programming

Guide

Part

2.

Compiling

and

linking

your

program

19

20

PL/I

for

Windows:

Programming

Guide

Chapter

4.

Compiling

your

program

A

short

practice

exercise

.

.

.

.

.

.

.

.

.

. 21

The

HELLO

program

.

.

.

.

.

.

.

.

.

. 21

Using

compile-time

options

.

.

.

.

.

.

.

. 22

Using

the

sample

programs

provided

with

the

product

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Preparing

to

compile

source

programs

.

.

.

.

. 22

Program

file

structure

.

.

.

.

.

.

.

.

.

. 22

Using

a

PROCEDURE

statement

with

PROCESS:

.

.

.

.

.

.

.

.

.

.

.

.

. 23

INCLUDE

processing

.

.

.

.

.

.

.

.

. 23

%OPTION

directive

.

.

.

.

.

.

.

.

. 24

%LINE

directive

.

.

.

.

.

.

.

.

.

.

. 24

Margins

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Program

file

format

.

.

.

.

.

.

.

.

.

.

. 25

Line

continuation

.

.

.

.

.

.

.

.

.

. 25

Setting

compile-time

environment

variables

.

.

. 25

IBM.OPTIONS

.

.

.

.

.

.

.

.

.

.

.

. 26

IBM.PPINCLUDE

.

.

.

.

.

.

.

.

.

.

. 26

IBM.PPMACRO

.

.

.

.

.

.

.

.

.

.

.

. 26

IBM.PPSQL

.

.

.

.

.

.

.

.

.

.

.

.

. 27

IBM.PPCICS

.

.

.

.

.

.

.

.

.

.

.

.

. 27

IBM.SOURCE

.

.

.

.

.

.

.

.

.

.

.

.

. 27

IBM.SYSLIB

.

.

.

.

.

.

.

.

.

.

.

.

. 27

IBM.PRINT

.

.

.

.

.

.

.

.

.

.

.

.

. 28

IBM.OBJECT

.

.

.

.

.

.

.

.

.

.

.

.

. 28

IBM.DECK

.

.

.

.

.

.

.

.

.

.

.

.

. 28

INCLUDE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

TMP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Using

the

PLI

command

to

invoke

the

compiler

.

. 28

Where

to

specify

compile-time

options

.

.

.

.

. 29

IBM.OPTIONS

and

IBM.PPxxx

environment

variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

PLI

command

.

.

.

.

.

.

.

.

.

.

.

. 29

%PROCESS

statement

.

.

.

.

.

.

.

.

.

. 29

This

first

part

of

this

chapter

describes

how

to

compile,

link,

and

run

a

simple

Pl/I

program.

The

remainder

of

the

chapter

is

dedicated

to

a

more

detailed

description

of

setting

up

your

compilation

environment.

A

short

practice

exercise

Try

compiling,

linking,

and

running

a

simple

program

to

get

an

idea

of

how

to

use

PL/I

in

the

Windows

environment.

The

HELLO

program

Here

are

the

steps

to

make

a

program

that

displays

the

character

string

“Hello!”

on

your

computer

screen.

1.

Create

the

source

program

Create

a

file,

HELLO.PLI,

with

the

following

PL/I

statements.

Hello:

proc

options(main);

display(’Hello!’);

end

Hello;

Leave

the

first

space

of

every

line

blank:

by

default,

the

compiler

only

recognizes

characters

in

columns

2-72.

(For

additional

information,

see

“MARGINS”

on

page

53.)

Save

the

file

to

disk.

2.

Compile

the

program

In

a

window

or

full-screen

session,

go

to

the

directory

that

contains

the

HELLO.PLI

file

and

enter

the

following

command:

pli

hello

The

compiler

displays

information

about

the

compilation

on

your

screen,

and

creates

the

object

file

(HELLO.OBJ)

in

the

current

directory.

3.

Link

the

program

Without

changing

directories,

enter

the

following

command:

ilink

hello.obj

21

This

combines

the

file

HELLO.OBJ

with

needed

library

files

(as

specified

by

the

LIBS

compile-time

option),

producing

the

file

HELLO.EXE

(the

executable

program)

in

the

same

directory.

Since

no

parameters

are

specified

with

the

link

command,

the

defaults

are

used.

(The

options

available

with

the

link

command

are

described

in

Chapter

8,

“Linking

your

program,”

on

page

113.)

4.

Run

the

program

Without

changing

directories,

enter

the

following

command:

hello

This

invokes

the

HELLO.EXE

program,

which

displays

Hello!

on

your

monitor.

To

make

things

easier,

programmers

often

put

the

commands

for

compile,

link,

and

run

together

in

a

command

(CMD)

file.

Using

compile-time

options

As

you

prepare

to

compile

programs,

consider

using

a

subset

of

the

available

compile-time

options.

For

a

complete

description

of

the

compile-time

options,

including

their

optional

abbreviated

forms,

see

Chapter

5,

“Compile-time

option

descriptions,”

on

page

31.

The

following

example

illustrates

how

to

specify

options

as

part

of

the

compilation

command:

pli

filename

(source

attributes(full)

source

This

option

causes

your

source

code

and

compiler

messages

to

be

saved

in

a

compiler

listing

file

(for

example,

HELLO.LST).

attributes(full)

This

option

causes

a

listing

of

all

the

attributes

in

effect

for

each

programmer-defined

identifier

to

be

included

in

the

compiler

listing.

Using

the

sample

programs

provided

with

the

product

Several

sample

programs

have

been

included

with

the

product,

some

of

which

appear

in

different

parts

of

this

book.

For

Windows,

the

sample

programs

are

installed

in

the

..\SAMPLES

directory.

A

readme

file

smwread.me.

is

provided

for

the

sample

programs.

Preparing

to

compile

source

programs

Before

compiling

your

source

program,

you

should

know

what

structure

and

format

the

compiler

expects

from

your

source

program

files.

Program

file

structure

A

PL/I

application

can

consist

of

several

compilation

units.

You

must

compile

each

compilation

unit

separately

and

then

build

the

complete

application

by

linking

the

resulting

object

files

together.

A

short

practice

exercise

22

PL/I

for

Windows:

Programming

Guide

A

compilation

unit

consists

of

a

main

source

file

and

any

number

of

include

files.

You

do

not

compile

the

include

files

separately

because

they

actually

become

part

of

the

main

program

during

compilation.

The

compiler

does

not

allow

DBCS

to

be

used

in

source

file

or

include

file

names

If

your

program

requires

%PROCESS

or

*PROCESS

statements,

they

must

be

the

first

lines

in

your

source

file.

The

first

line

after

them

that

does

not

consist

entirely

of

blanks

or

comments

must

be

a

PACKAGE

or

PROCEDURE

statement.

The

last

line

of

your

source

file

that

does

not

consist

entirely

of

blanks

or

comments

must

be

an

END

statement

matching

the

PACKAGE

or

PROCEDURE

statement.

The

following

examples

show

the

correct

way

to

format

source

files.

Using

a

PROCEDURE

statement

with

PROCESS:

%PROCESS

;

%PROCESS

;

%PROCESS

;

/*

optional

comments

*/

procedure_Name:

proc(

...

)

options(

...

);

...

end

procedure_Name;

Using

a

PACKAGE

statement

with

PROCESS::

*PROCESS

;

*PROCESS

;

*PROCESS

;

/*

optional

comments

*/

package_Name:

package

exports(

...

)

options(

...

);

...

end

package_Name;

The

source

file

in

a

compilation

can

contain

several

programs

separated

by

*PROCESS

statements.

All

but

the

first

set

of

*PROCESS

statements

are

ignored,

and

the

compiler

assumes

a

PACKAGE

EXPORTS(*)

statement

before

the

first

procedure.

INCLUDE

processing

You

can

include

additional

PL/I

files

at

specified

points

in

a

compilation

unit

by

using

%INCLUDE

statements.

For

the

%INCLUDE

statement

syntax,

see

PL/I

Language

Reference.

If

you

specify

the

file

to

be

included

using

a

string,

the

compiler

searches

for

the

file

exactly

as

named

in

that

string.

If

you

specify

an

include

file

using

one

of

the

more

traditional

PL/I

methods,

however,

by

either

using

a

ddname

and

member

name

or

just

a

member

name,

the

compiler

appends

a

file

extension

to

the

member

name.

You

can

specify

which

file

extensions

are

appended

to

the

member

name

by

using

the

INCLUDE

compiler

option.

For

example,

if

you

specify

the

INCLUDE

option

as

INCLUDE(EXT(CPY)),

when

the

compiler

sees

either

of

the

following

statements,

it

tries

to

include

the

file

member.cpy.

%include

member;

%include

ddname(member);

The

compiler

searches

for

this

file

in

the

following

order:

Preparing

to

compile

source

programs

Chapter

4.

Compiling

your

program

23

1.

The

directories

specified

in

the

environment

variable

IBM.DDNAME,

if

the

%include

statement

specified

a

ddname

2.

The

directories

specified

in

the

environment

variable

IBM.SYSLIB

3.

The

directories

specified

in

the

environment

variable

INCLUDE

4.

The

current

directory.

If

you

specify

more

than

one

extension

in

the

INCLUDE

compiler

option,

the

compiler

searches

all

the

directories

above

using

the

first

extension;

then

does

another

pass

through

all

the

same

directories

using

the

second

extension,

and

so

on.

%OPTION

directive

The

%OPTION

directive

is

used

to

specify

one

of

a

selected

subset

of

compile-time

options

for

a

segment

of

source

code.

The

specified

option

is

then

in

effect

until

one

of

the

following

occurs:

v

Another

%OPTION

directive

specifies

a

complementary

compile-time

option

which

overrides

the

first.

v

A

compile-time

option

saved

using

the

%PUSH

directive

is

restored

using

the

%POP

directive.

The

compile-time

options

or

directives

that

can

be

used

with

the

%OPTION

directive

include:

v

LANGLVL(SAA)

v

LANGLVL(SAA2)

See

Chapter

5,

“Compile-time

option

descriptions,”

on

page

31

for

option

descriptions.

%LINE

directive

The

%LINE

directive

specifies

that

the

next

line

should

be

treated

in

messages

and

in

information

generated

for

debugging

as

if

it

came

from

the

specified

line

and

file.

The

characters

'%LINE'

must

be

in

columns

1

through

5

of

the

input

line

for

the

directive

to

be

recognized

(and

conversely,

any

line

starting

with

these

five

characters

is

treated

as

a

%LINE

directive).

The

line-number

must

be

an

integral

value

of

seven

digits

or

less

and

the

file-specification

must

not

be

enclosed

in

quotes.

Any

characters

specified

after

the

semicolon

are

ignored.

An

example

of

what

these

lines

should

look

like

can

be

obtained

by

compiling

a

program

with

the

options

PPTRACE

MACRO

and

MDECK.

Margins

By

default,

the

compiler

ignores

any

data

in

the

first

column

of

your

source

program

file

and

sets

the

right

margin

72

spaces

from

the

left.

You

can

change

the

default

margin

setting

(see

“MARGINS”

on

page

53).

If

you

choose

to

keep

the

default

setting,

your

source

code

should

begin

in

column

2.

Note:

The

%PROCESS

(or

*PROCESS)

statement

is

an

exception

to

the

margin

rule

and

must

start

in

the

first

column.

For

more

information

about

the

%PROCESS

statement,

see

“%PROCESS

statement”

on

page

29.

Preparing

to

compile

source

programs

24

PL/I

for

Windows:

Programming

Guide

Program

file

format

The

compiler,

running

under

the

Windows

operating

systems,

expects

the

contents

of

your

source

file

to

consist

of

ASCII

format

and

CR-LF

type1.

If

you

created

your

file

on

a

workstation,

the

format

should

be

correct;

however,

if

you

transfer

a

file

from

another

machine

environment,

make

sure

that

the

file

transfer

utility

does

any

needed

translation

(to

ASCII

and

CR-LF).

The

compiler

can

interpret

characters

that

are

in

the

range

X’00’

to

X’1F’

as

control

codes.

If

you

use

characters

in

this

range

in

your

program,

the

results

are

unpredictable.

Line

continuation

During

compilation,

any

source

line

that

is

shorter

than

the

value

of

the

right-hand

margin

setting

as

defined

by

the

MARGINS

option

is

padded

on

the

right

with

blank

characters

to

make

the

line

as

long

as

the

right-hand

margin

setting.

For

example,

if

you

use

the

IBM-default

MARGINS

(2,72),

any

line

less

than

72

characters

long

is

padded

on

the

right

to

make

the

line

72

characters

long.

If

long

identifier

names

extend

beyond

the

right

margin,

you

should

put

the

entire

name

on

the

next

line

rather

than

try

to

split

it

between

two

lines.

If

a

line

of

your

program

exactly

reaches

the

right-hand

margin,

the

last

character

of

that

line

is

concatenated

with

the

first

character

within

the

margins

of

the

next

line

with

no

blank

characters

in

between.

If

you

have

a

string

that

reaches

beyond

the

right-hand

margin

setting,

you

can

carry

the

text

of

the

string

on

to

the

following

line

(or

lines).

It

is

recommended

that

long

strings

be

split

into

a

series

of

shorter

strings

(each

of

which

fits

on

a

line)

that

are

concatenated

together.

For

example,

instead

of

coding

this:

do;

if

x

>

200

then

display

(’This

is

a

long

string

and

requires

more

than

one

line

to

type

it

into

my

program’);

else

display

(’This

is

a

short

string’);

end;

You

should

use

the

following

sequence

of

statements:

do;

if

x

>

200

then

display

(’This

is

a

long

string

and

requires

more

than

’

\’one

line

to

type

it

into

my

program’);

else

display

(’This

is

a

short

string’);

end;

Setting

compile-time

environment

variables

The

way

you

set

compile-time

environment

variables

depends

on

your

operating

system.

In

Windows,

environment

variables

are

set

in

the

System

window

(to

get

there,

double-click

on

Main

and

then

on

Control

Panel).

In

the

System

window,

click

on

1. A

CR-LF

type

file

is

composed

of

lines

of

variable

lengths,

each

delimited

by

the

CR-LF

characters.

CR

and

LF

are

special

ASCII

characters

that

signify

“Carriage

Return”

and

“Line

Feed”—hexadecimal

values

0D

and

0A,

respectively.

The

compiler

interprets

CR-LF,

LF-CR,

CR,

or

LF

as

a

record

delimiter.

The

hexadecimal

value

1A

signifies

the

end

of

the

file.

Preparing

to

compile

source

programs

Chapter

4.

Compiling

your

program

25

Set

to

add

a

new

item

to

the

list

of

User

Environment

Variables.

Options

set

in

the

Windows

System

window

are

in

effect

when

you

boot

your

computer

unless

you

override

them

using

a

.CMD

file

or

by

specifying

options

on

the

command

line.

For

more

information

on

environment

variables

and

how

they

are

used,

refer

to

your

system

documentation.

The

compiler

provides

several

environment

variables.

They

allow

you

to

customize

the

defaults

for:

v

Location

of

compiler

input

and

output

v

Compile-time

options.

The

default

location

for

compiler

input

and

output

is

the

current

directory;

the

IBM-supplied

default

for

each

compile-time

option

is

specified

in

Chapter

5,

“Compile-time

option

descriptions,”

on

page

31.

Some

of

the

compiler

environment

variables

specify

a

directory

path—this

should

not

include

a

file

name

or

extension.

If

the

path

is

for

compiler

input,

each

individual

path

(except

the

last)

must

be

delimited

by

a

semicolon.

If

the

path

is

for

compiler

output,

only

the

path

to

a

specific

directory

is

allowed.

IBM.OPTIONS

The

IBM.OPTIONS

environment

variable

specifies

compiler

option

settings.

For

example:

set

ibm.options=xref

attributes

The

syntax

of

the

character

string

you

assign

to

the

IBM.OPTIONS

environment

variable

is

the

same

as

that

required

for

the

compile-time

options

specified

on

the

PLI

command

(see

“Using

the

PLI

command

to

invoke

the

compiler”

on

page

28).

The

defaults

together

with

the

changes

you

apply

using

this

environment

variable

become

the

new

defaults.

Any

options

you

specify

on

the

PLI

command

or

in

your

source

program

override

these

defaults.

IBM.PPINCLUDE

The

IBM.PPINCLUDE

environment

variable

specifies

the

include

preprocessor

option

settings.

For

example:

set

ibm.ppinclude=id(++include)

The

syntax

of

the

character

string

you

assign

to

the

IBM.PPINCLUDE

environment

variable

is

the

same

as

that

required

for

the

compile-time

options

specified

on

the

PLI

command

(see

“Using

the

PLI

command

to

invoke

the

compiler”

on

page

28).

The

defaults

together

with

the

changes

you

apply

using

this

environment

variable

become

the

new

defaults.

Any

options

you

specify

on

the

PP(INCLUDE)

option

in

the

IBM.OPTIONS

environment

variable

or

the

PLI

command

or

in

your

source

program

override

these

defaults.

IBM.PPMACRO

The

IBM.PPMACRO

environment

variable

specifies

the

macro

facility

option

settings.

For

example:

set

ibm.ppmacro=xref

print

Setting

compile-time

environment

variables

26

PL/I

for

Windows:

Programming

Guide

The

syntax

of

the

character

string

you

assign

to

the

IBM.PPMACRO

environment

variable

is

the

same

as

that

required

for

the

compile-time

options

specified

on

the

PLI

command

(see

“Using

the

PLI

command

to

invoke

the

compiler”

on

page

28).

The

defaults

together

with

the

changes

you

apply

using

this

environment

variable

become

the

new

defaults.

Any

options

you

specify

on

the

PP(MACRO)

option

in

the

IBM.OPTIONS

environment

variable

or

the

PLI

command

or

in

your

source

program

override

these

defaults.

IBM.PPSQL

The

IBM.PPSQL

environment

variable

specifies

the

SQL

preprocessor

option

settings.

For

example:

set

ibm.ppsql=dbname(employee)

The

syntax

of

the

character

string

you

assign

to

the

IBM.PPSQL

environment

variable

is

the

same

as

that

required

for

the

compile-time

options

specified

on

the

PLI

command

(see

“Using

the

PLI

command

to

invoke

the

compiler”

on

page

28).

The

defaults

together

with

the

changes

you

apply

using

this

environment

variable

become

the

new

defaults.

Any

options

you

specify

on

the

PP(SQL)

option

in

the

IBM.OPTIONS

environment

variable

or

the

PLI

command

or

in

your

source

program

override

these

defaults.

IBM.PPCICS

The

IBM.PPCICS

environment

variable

specifies

the

CICS

preprocessor

option

settings.

For

example:

set

ibm.ppcics=source

edf

The

syntax

of

the

character

string

you

assign

to

the

IBM.PPCICS

environment

variable

is

the

same

as

that

required

for

the

compile-time

options

specified

on

the

PLI

command

(see

“Using

the

PLI

command

to

invoke

the

compiler”

on

page

28).

The

defaults

together

with

the

changes

you

apply

using

this

environment

variable

become

the

new

defaults.

Any

options

you

specify

on

the

PP(CICS)

option

in

the

IBM.OPTIONS

environment

variable

or

the

PLI

command

or

in

your

source

program

override

these

defaults.

IBM.SOURCE

The

IBM.SOURCE

environment

variable

specifies

the

paths

for

your

source

program

files.

For

example:

set

ibm.source=c:\pli\project\updates;\pli\system

IBM.SYSLIB

The

IBM.SYSLIB

environment

variable

specifies

the

primary

input

directory

search

path

for

include

files

identified

by

%INCLUDE

statements

in

your

source

program.

For

example:

set

ibm.syslib=c:\pli\project\updates;\pli\system

These

directories

are

searched

before

any

directories

specified

in

the

INCLUDE

environment

variable.

Setting

compile-time

environment

variables

Chapter

4.

Compiling

your

program

27

IBM.PRINT

The

IBM.PRINT

environment

variable

specifies

the

path

where

listing

files

are

written.

For

example:

set

ibm.print=c:\pli\project\updates

Listing

files

have

the

same

name

as

your

source

program

file,

with

an

extension

of

ASM

for

the

assembler

listing

and

LST

for

the

other

listing

information.

By

default,

diagnostic

messages

and

a

return

code

are

displayed

on

your

screen.

IBM.OBJECT

The

IBM.OBJECT

environment

variable

specifies

the

output

directory

for

object

and

definition

files

which

have

the

same

name

as

your

source

program

file,

with

an

extension

of

OBJ

or

DEF.

For

example:

set

ibm.object=c:\pli\project\updates

An

object

file

contains

the

machine

code

translation

of

your

PL/I

source

statements.

To

make

it

executable,

you

must

link

it

with

any

other

OBJ

files

that

comprise

your

program,

and

with

appropriate

library

files.

For

a

summary

of

how

to

link

your

program,

see

Chapter

8,

“Linking

your

program,”

on

page

113.

IBM.DECK

The

IBM.DECK

environment

variable

specifies

the

output

directory

for

the

modified

source

file

produced

by

the

macro

facility.

This

file

is

only

produced

when

the

MDECK

compile-time

option

is

in

effect.

For

example:

set

ibm.deck=c:\pli\project\updates

The

output

file

has

the

same

name

as

your

primary

source

program

file,

with

an

extension

of

DEK.

You

can

use

it

as

input

to

a

later

compilation.

INCLUDE

The

INCLUDE

environment

variable

specifies

the

secondary

input

directory

search

path

for

include

files

identified

by

%INCLUDE

statements

in

your

source

program.

For

example:

set

include=c:\pli\program

These

directories

are

searched

after

any

specified

in

the

IBM.SYSLIB

environment

variable.

TMP

The

TMP

environment

variable

specifies

the

input

and

output

directory

for

any

temporary

work

files

that

the

compiler

needs.

For

example:

set

tmp=c:\pli\project\updates

Do

not

specify

a

directory

that

resides

on

a

Local

Area

Network

(LAN).

If

you

are

working

with

large

programs,

make

sure

you

set

this

variable

to

a

location

with

sufficient

free

space.

Using

the

PLI

command

to

invoke

the

compiler

Use

the

PLI

command

to

invoke

the

compiler.

You

can

enter

it

on

the

command

line

or

in

a

CMD

file.

Setting

compile-time

environment

variables

28

PL/I

for

Windows:

Programming

Guide

pli_program_file_specification

The

Windows

file

specification

for

your

primary

source

program

file.

If

you

omit

the

extension

from

your

file

specification,

the

compiler

assumes

an

extension

of

PLI.

If

you

omit

the

complete

path,

the

current

directory

is

assumed,

unless

you

specify

otherwise

using

IBM.SOURCE.

compiler_option

One

or

more

compile-time

options,

described

in

Chapter

5,

“Compile-time

option

descriptions,”

on

page

31.

The

following

is

an

example

of

the

PLI

command:

pli

hello

(source

You

can

use

a

response

file

to

put

common

options

into

a

file

and

then

use

that

file

to

compile

various

programs.

For

example,

if

the

file

pli.opt

contained

a

list

of

options,

then

you

could

compile

the

towers

sample

program

as

follows:

pli

towers.pli

(

@pli.opt

When

using

response

files,

remember

these

guidelines:

v

The

name

of

the

source

file

and

options

can

come

before

the

name

of

the

response

file,

but

nothing

should

follow

it.

v

A

response

file

can

point

to

another

response

file.

Where

to

specify

compile-time

options

You

can

specify

compile-time

options

in

the

three

places

described

in

the

following

sections.

Each

successive

place

overrides

the

options

specified

in

the

previous

place,

starting

with

the

defaults

as

a

base.

Note:

After

PL/I

determines

the

compile-time

option

settings

to

use

in

compilation,

individual

source

statements

in

your

program

might

further

modify

the

effect

of

various

compile-time

options.

For

example,

specifying

OPTION(BYVALUE)

in

the

program

takes

precedence

over

the

DEFAULT(BYVALUE)

compile-time

option.

IBM.OPTIONS

and

IBM.PPxxx

environment

variables

The

first

way

you

can

specify

options

is

to

set

the

IBM.OPTIONS

environment

variable

for

compile-time

options

and

IBM.PPxxx

environent

variables

for

preprocessor

options.

See

“Setting

compile-time

environment

variables”

on

page

25.

Controlling

compile-time

options

with

these

environment

variables

overrides

the

normal

option

defaults.

PLI

command

The

second

way

to

specify

compile-time

options—overriding

option

defaults

and

IBM.OPTIONS

and

IBM.PPxxx—is

on

the

PLI

command

when

you

invoke

the

compiler

(see

“Using

the

PLI

command

to

invoke

the

compiler”

on

page

28).

The

options

apply

only

to

the

current

compilation.

%PROCESS

statement

The

third

and

final

way

to

specify

compile-time

options—overriding

option

defaults,

IBM.OPTIONS

and

IBM.PPxxx

and

the

PLI

command—is

to

use

the

%PROCESS

(or

*PROCESS)

statement

in

your

PL/I

source

program.

The

options

apply

only

to

the

current

compilation.

Using

the

PLI

command

to

invoke

the

compiler

Chapter

4.

Compiling

your

program

29

The

following

example

illustrates

the

use

of

the

%PROCESS

statement:

%process

source

margins(1,80);

Hello:

proc

options(main);

display(’Hello!’);

end

Hello;

You

can

specify

one

or

more

%PROCESS

statements,

but

they

must

precede

all

other

PL/I

source

statements,

including

blank

lines.

You

must

code

the

percent

sign

(or

the

asterisk)

of

the

PROCESS

statement

in

the

first

column

of

your

source

file.

The

keyword

PROCESS

can

follow

in

the

next

column

or

after

any

number

of

blanks.

The

list

of

compile-time

options

on

the

%PROCESS

statement

must

not

extend

beyond

the

default

right-hand

margin.

You

can

continue

the

%PROCESS

statement

onto

the

next

line,

but

make

sure

that

in

doing

so

you

do

not

split

a

keyword

or

value.

It

is

recommended

that,

instead

of

wrapping

the

statement,

you

code

multiple

%PROCESS

statements,

one

per

line.

Once

all

%PROCESS

statements

are

interpreted,

the

rest

of

the

program

is

read

using

the

margin

settings

determined

after

considering

the

PLI

command

and

the

%PROCESS

statements.

This

means

that

the

sample

%PROCESS

statement

shown

previously

would

be

processed

correctly

assuming

that

the

default,

MARGINS(2,72),

was

in

effect

at

compile

time.

Where

to

specify

compile-time

options

30

PL/I

for

Windows:

Programming

Guide

Chapter

5.

Compile-time

option

descriptions

This

chapter

contains

detailed

compile-time

options

descriptions,

including

abbreviations,

defaults,

and

code

samples

where

applicable.

Compile-time

option

descriptions

There

are

three

types

of

compiler

options;

however,

most

compiler

options

have

a

positive

and

negative

form.

The

negative

form

is

the

positive

with

'NO'

added

at

the

beginning

(as

in

TEST

and

NOTEST).

Some

options

have

only

a

positive

form

(as

in

SYSTEM).

The

three

types

of

compiler

options

are:

1.

Simple

pairs

of

keywords:

a

positive

form

that

requests

a

facility,

and

an

alternative

negative

form

that

inhibits

that

facility

(for

example,

NEST

and

NONEST).

2.

Keywords

that

allow

you

to

provide

a

value

list

that

qualifies

the

option

(for

example,

FLAG(W)).

3.

A

combination

of

1

and

2

above

(for

example,

NOCOMPILE(E)).

lists

all

the

compiler

options

with

their

abbreviations

(if

any)

and

their

IBM-supplied

default

values.

If

an

option

has

any

suboptions

which

may

be

abbreviated,

those

abbreviations

are

described

in

the

full

description

of

the

option.

For

the

sake

of

brevity,

some

of

the

options

are

described

loosely

in

the

table

(for

example,

only

one

suboption

of

LANGLVL

is

mandatory,

and

similarly,

if

you

specify

one

suboption

of

TEST,

you

do

not

have

to

specify

the

other).

The

full

and

completely

accurate

syntax

is

described

in

the

pages

that

follow.

The

paragraphs

following

describe

the

options

in

alphabetical

order.

For

those

options

specifying

that

the

compiler

is

to

list

information,

only

a

brief

description

is

included;

the

generated

listing

is

described

under

“Using

the

compiler

listing”

on

page

105.

Table

2.

Compile-time

options,

abbreviations,

and

IBM-supplied

defaults

Compile-Time

Option

Abbreviated

Name

Windows

Default

AGGREGATE

(

DECIMAL

|

HEXADEC

)|

NOAGGREGATE

AG

|

NAG

NOAGGREGATE

ATTRIBUTES[(FULL|SHORT)]

|

NOATTRIBUTES

A

|

NA

NA

[(FULL)]

BIFPREC(

15

|

31

)

−

BIFPREC(31)

BLANK('c')

−

BLANK('t')

CHECK(STORAGE

|

NOSTORAGE)

−

CHECK(NSTG)

CMPAT(LE

|

V1

|

V2)

−

CMPAT(V2)

CODEPAGE(n)

CP

CODEPAGE(00819)

COMPILE

|

NOCOMPILE[(W

|

E

|

S)]

C

|

NC

NOCOMPILE(S)

COPYRIGHT(’string’

)

|

NOCOPYRIGHT

−

NOCOPYRIGHT

CURRENCY('c')

CURR

CURRENCY($)

DEFAULT(attribute

|

option)

DFT

See

page

38

DLLINIT

|

NODLLINIT

−

NODLLINIT

EXIT

|

NOEXIT

−

NOEXIT

EXTRN(FULL

|

SHORT)

−

EXTRN(FULL)

FLAG[(I

|

W

|

E

|

S)]

F

FLAG(W)

FLOATINMATH(

ASIS

|

LONG

|

EXTENDED

)

−

FLOATINMATH(

ASIS

)

31

Table

2.

Compile-time

options,

abbreviations,

and

IBM-supplied

defaults

(continued)

Compile-Time

Option

Abbreviated

Name

Windows

Default

GONUMBER

|

NOGONUMBER

GN

|

NGN

NOGONUMBER

GRAPHIC

|

NOGRAPHIC

GR

|

NGR

NOGRAPHIC

IMPRECISE

|

NOIMPRECISE

−

IMPRECISE

INCAFTER([PROCESS(filename)])

−

INCAFTER()

INCDIR('directory

name')

−

INCDIR()

INCLUDE[(EXT('include

extension'))]

INC

INC(EXT(’inc’))

INITAUTO

|

NOINITAUTO

−

NOINITAUTO

INITBASED

|

NOINITBASED

−

NOINITBASED

INITCTL

|

NOINITCTL

−

NOINITCTL

INITSTATIC

|

NOINITSTATIC

−

NOINITSTATIC

INSOURCE[(FULL|SHORT)]

|

NOINSOURCE

IS

|

NIS

NOINSOURCE

INTERRUPT

|

NOINTERRUPT

INT

|

NINT

NOINTERRUPT

LANGLVL(SAA

|

SAA2[,NOEXT

|

OS])

−

LANGLVL(SAA2,OS)

LIBS

−

See

page

51

LIMITS(options)

−

See

page

52

LINECOUNT(n)

LC

LINECOUNT(60)

LIST

|

NOLIST

−

NOLIST

MACRO

|

NOMACRO

M

|

NM

NOMACRO

MARGINI('c')

|

NOMARGINI

MI

|

NMI

NOMARGINI

MARGINS(m,n[,c])|

NOMARGINS

MAR(m,n)

MARGINS

F-format:

(2,72)

V-format:

(10,100)

MAXMEM(n)

−

MAXMEM(2048)

MAXMSG(I

|

W

|

E

|

S,n)

−

MAXMSG(W,250)

MAXSTMT(n)

−

MAXSTMT(4096)

MAXTEMP(n)

−

MAXTEMP(1000)

MDECK

|

NOMDECK

MD

|

NMD

NOMDECK

NAMES('lower'[,upper])

−

NAMES(’#@$’,’#@$’)

NATLANG(ENU

|

JPN)

−

NATLANG(ENU)

NEST

|

NONEST

−

NONEST

NOT

−

NOT('¬')

NUMBER

|

NONUMBER

NUM

|

NNUM

NUMBER

OBJECT

|

NOOBJECT

OBJ

|

NOBJ

OBJECT

OFFSET

|

NOOFFSET

OF

|

NOF

NOOFFSET

OPTIMIZE(

0

|

2

|

3

)

|

NOOPTIMIZE

OPT

|

NOPT

OPT(0)

OPTIONS

|

NOOPTIONS

OP

|

NOP

NOOPTIONS

OR('c')

−

OR('

|

')

PP(pp-name)

|

NOPP

−

NOPP

PPTRACE

|

NOPPTRACE

−

NOPPTRACE

PRECTYPE

(

ANS

|

DECDIGIT

|

DECRESULT

)

−

PRECTYPE(ANS)

PREFIX(condition)

−

See

page

61

PROCEED

|

NOPROCEED[(W

|

E

|

S)]

PRO

|

NPRO

NOPROCEED(S)

REDUCE

|

NOREDUCE

−

REDUCE

RESEXP

|

NORESEXP

−

RESEXP

RESPECT([DATE])

−

RESPECT()

RULES(options)

LAXCOM

|

NOLAXCOM

See

page

63

SEMANTIC

|

NOSEMANTIC[(W

|

E

|

S)]

SEM

|

NSEM

NOSEMANTIC(S)

SNAP

−

NOSNAP

SOURCE

|

NOSOURCE

S

|

NS

NOSOURCE

STATIC(FULL

|

SHORT)

−

STATIC(SHORT)

STMT

|

NOSTMT

−

NOSTMT

Compile-time

options

32

PL/I

for

Windows:

Programming

Guide

Table

2.

Compile-time

options,

abbreviations,

and

IBM-supplied

defaults

(continued)

Compile-Time

Option

Abbreviated

Name

Windows

Default

STORAGE

|

NOSTORAGE

STG

|

NSTG

NOSTORAGE

SYNTAX

|

NOSYNTAX[(W

|

E

|

S)]

SYN

|

NSYN

NOSYNTAX(S)

SYSPARM('string')

−

SYSPARM('')

SYSTEM(

WINDOWS

|

CICS

|

IMS

|

PENTIUM

|

S486

)

−

SYSTEM(

WINDOWS

)

TERMINAL

|

NOTERMINAL

TERM

|

NTERM

TEST(ALL

|

NONE

|

STMT,SYM

|

,NOSYM)

|

NOTEST

−

NOTEST(ALL,SYM)

USAGE(options)

−

See

page

71

WIDECHAR(BIGENDIAN

|

LITTLEENDIAN)

WCHAR

WIDECHAR(BIGENDIAN)

WINDOW(w)

−

WINDOW(1950)

XINFO(options)

−

XINFO(NODEF,NOXML)

XREF[(FULL

|

SHORT)]

|

NOXREF

X

|

NX

NX

[(FULL)]

Notes:

1.

FULL

is

the

default

suboption

if

the

suboption

is

omitted

with

ATTRIBUTES

or

XREF.

2.

The

default

value

for

the

BLANK

character

is

the

tab

character

with

value

’05’x.

3.

(ALL,SYM)

is

the

default

suboption

if

the

suboption

is

omitted

with

TEST.

Rules

for

using

compile-time

options

1.

If

you

specify

mutually

exclusive

compile-time

options

or

suboptions,

the

last

one

you

specify

takes

effect.

2.

If

required

strings

conform

to

PL/I

identifier

rules,

you

do

not

need

to

enclose

them

in

quotes.

The

compiler

folds

these

strings

to

uppercase.

The

following

options

should

have

their

string

specifications

enclosed

in

quotes,

because

the

string

specifies

either

special

characters

or

run-time

options:

v

CURRENCY

v

DEFAULT(INITFILL)

v

MARGINI

v

NAMES

v

NOT

v

OR
3.

If

an

option

has

a

string

enclosed

in

quotes,

the

string

itself

cannot

contain

any

quotes.

4.

If

an

option

has

a

string

enclosed

in

quotes,

the

string

can

be

specified

as

a

hex

string,

for

example

NOT(’aa’x).

5.

If

you

incorrectly

specify

any

compile-time

options—for

example,

if

you

specify

NEXT

instead

of

NEST—the

OPTIONS

compile-time

option

is

automatically

set

to

OPTIONS.

This

provides

you

with

a

listing

of

all

compile-time

options

in

effect

for

the

compilation.

AGGREGATE

The

AGGREGATE

option

creates

an

Aggregate

Length

Table

that

gives

the

lengths

of

arrays

and

major

structures

in

the

source

program

in

the

compiler

listing.

ABBREVIATIONS:

NAG,

AG

DECIMAL

All

offsets

in

the

aggregate

listing

will

be

displayed

in

decimal.

HEXADEC

All

offsets

in

the

aggregate

listing

will

be

displayed

in

hexadecimal.

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

33

The

Aggregate

Length

Table

includes

structures

but

not

arrays

that

have

non-constant

extents.

However,

the

sizes

and

offsets

of

elements

within

structures

with

non-constant

extents

may

be

inaccurate

or

specified

as

*.

A

sample

listing

is

shown

in

“Using

the

compiler

listing”

on

page

105.

ADDEXT

This

option

specifies

whether

file

extensions

(.pli,

.cpy)

are

added

by

the

compiler

to

source

and

include

file

names

that

have

no

extensions.

��

ADDEXT

NOADDEXT

��

NOADDEXT

File

extensions

are

not

added

by

the

compiler.

You

must

specify

NOADDEXT

when

you

do

a

checkout

compile

on

the

workstation

from

within

the

remote

edit/compile

environment

because

no

mapping

takes

place.

ADDEXT

File

extensions

are

added

by

the

compiler.

If

you

specify

ADDEXT,

the

compiler

would

interpret

the

command

“pli

hello”

as

“pli

hello.pli”.

ADDEXT

and

NOADDEXT

only

affect

whether

file

extensions

are

added

to

filenames

when

the

compiler

is

searching

for

a

file.

Compiler

output

files

have

file

extensions

regardless

of

the

setting

of

this

option.

ATTRIBUTES

This

option

specifies

that

a

table

of

source-program

identifiers

and

their

attributes

is

included

in

the

compiler

listing.

��

NOATTRIBUTES

ATTRIBUTES

FULL

(

SHORT

)

��

ABBREVIATIONS:

NA,

A

FULL

List

all

identifiers

and

attributes.

For

an

example

of

the

table

produced

when

you

select

ATTRIBUTES(FULL),

see

“Using

the

compiler

listing”

on

page

105.

SHORT

Omit

unreferenced

identifiers.

BIFPREC

The

BIFPREC

option

controls

the

precision

of

the

FIXED

BIN

result

returned

by

various

built-in

functions.

��

31

BIFPREC

(

15

)

��

For

best

compatibility

with

PL/I

for

MVS

&

VM,

OS

PL/I

V2R3

and

earlier

compilers,

BIFPREC(15)

should

be

used.

Compile-time

options

34

PL/I

for

Windows:

Programming

Guide

BIFPREC

affects

the

following

built-in

functions:

v

COUNT

v

INDEX

v

LENGTH

v

LINENO

v

ONCOUNT

v

PAGENO

v

SEARCH

v

SEARCHR

v

SIGN

v

VERIFY

v

VERIFYR

The

effect

of

the

BIFPREC

compiler

option

is

most

visible

when

the

result

of

one

of

the

above

built-in

functions

is

passed

to

an

external

function

that

has

been

declared

without

a

parameter

list.

For

example,

consider

the

following

code

fragment:

dcl

parm

char(40)

var;

dcl

funky

ext

entry(

pointer,

fixed

bin(15)

);

dcl

beans

ext

entry;

call

beans(

addr(parm),

verify(parm),’

’)

);

If

the

function

beans

actually

declares

its

parameters

as

POINTER

and

FIXED

BIN(15),

then

if

the

code

above

were

compiled

with

the

option

BIFPREC(31)

and

if

it

were

run

on

a

big-endian

system

such

as

z/OS,

the

compiler

would

pass

a

four-byte

integer

as

the

second

argument

and

the

second

parameter

would

appear

to

be

zero.

Note

that

the

function

funky

would

work

on

all

systems

with

either

option.

The

BIFPREC

option

does

not

affect

the

built-in

functions

DIM,

HBOUND

and

LBOUND.

The

CMPAT

option

determines

the

precision

of

the

FIXED

BIN

result

returned

these

three

functions:

under

CMPAT(V1),

these

array-handling

functions

return

a

FIXED

BIN(15)

result,

while

under

CMPAT(V2)

and

CMPAT(LE),

they

return

a

FIXED

BIN(31)

result.

BLANK

The

BLANK

option

specifies

up

to

ten

alternate

symbols

for

the

blank

character.

��

BLANK

�

(

’

char

’

)

��

Note:

Do

not

code

any

blanks

between

the

quotes.

The

IBM-supplied

default

code

point

for

the

BLANK

symbol

is

'09'X.

char

A

single

SBCS

character.

You

cannot

specify

any

of

the

alphabetic

characters,

digits,

and

special

characters

defined

in

the

PL/I

Language

Reference.

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

35

If

you

specify

the

BLANK

option,

the

standard

blank

symbol

is

still

recognized

as

a

blank.

DEFAULT:

BLANK('09'x)

CHECK

This

option

causes

the

compiler

to

monitor

ALLOCATE

and

FREE

statments.

��

CHECK

(

NOSTORAGE

STORAGE

)

��

ABBREVIATIONS:

STG,

NSTG

When

you

specify

CHECK(STORAGE),

the

compiler

calls

slightly

different

library

routines

for

ALLOCATE

and

FREE

statements

(except

when

these

statements

occur

within

an

AREA).

The

following

built-in

functions,

described

in

the

PL/I

Language

Reference,

can

be

used

only

when

CHECK(STORAGE)

has

been

specified:

v

ALLOCSIZE

v

CHECKSTG

v

UNALLOCATED

CMPAT

The

CMPAT

option

specifies

the

format

used

for

descriptors

generated

by

the

compiler.

��

LE

CMPAT

(

V2

)

V1

��

LE

Under

CMPAT(LE),

the

compiler

generates

descriptors

in

the

format

defined

by

the

Language

Environment

product.

V1

Under

CMPAT(V1),

the

compiler

generates

the

same

descriptors

as

would

be

generated

by

the

OS

PL/I

Version

1

compiler.

V2

Under

CMPAT(V2),

the

compiler

generates

the

same

descriptors

as

would

be

generated

by

the

OS

PL/I

Version

2

compiler

when

the

CMPAT(V2)

option

was

specified.

All

the

modules

in

an

application

must

be

compiled

with

the

same

CMPAT

option.

The

DFT(DESCLIST)

option

conflicts

with

the

CMPAT(V1)

or

CMPAT(V2)

option,

and

if

it

is

specified

with

either

the

CMPAT(V1)

or

the

CMPAT(V2)

option,

a

message

will

be

issued

and

the

DFT(DESCLOCATOR)

option

assumed.

CODEPAGE

The

CODEPAGE

option

specifies

the

code

page

used

for:

v

conversions

between

CHARACTER

and

WIDECHAR

v

the

default

code

page

used

by

the

PLISAX

built-in

subroutines

Compile-time

options

36

PL/I

for

Windows:

Programming

Guide

��

CODEPAGE

(ccsid)

��

The

supported

CCSID’s

are:

01047

01140

01141

01142

01143

01144

01145

01146

01147

01148

01149

00037

00273

00277

00278

00280

00284

00285

00297

00500

00871

00819

00813

00920

The

default

CCSID

00819

is

the

Latin-1

ASCII

codepage.

COMPILE

This

option

specifies

that

execution

of

the

code

generation

stage

depends

on

the

severity

of

messages

issued

prior

to

this

stage

of

processing.

��

COMPILE

NOCOMPILE

S

(

E

)

W

��

ABBREVIATIONS:

NC,

C

NOCOMPILE

Compilation

halts

unconditionally

after

semantic

checking.

NOCOMPILE(S)

Compilation

halts

if

a

severe

or

unrecoverable

error

is

detected.

NOCOMPILE(E)

Compilation

halts

if

an

error,

severe

error,

or

unrecoverable

error

is

detected.

NOCOMPILE(W)

Compilation

halts

if

a

warning,

error,

severe

error,

or

unrecoverable

error

is

detected.

COMPILE

Equivalent

to

NOCOMPILE(S).

If

the

compilation

is

terminated

by

the

NOCOMPILE

option,

whether

or

not

listings

are

produced

depends

on

when

the

compilation

stopped.

For

example,

cross-reference

and

attribute

listings

should

be

produced

with

the

NOCOMPILE

option,

but

an

error

might

occur

during

semantic

checking

that

stops

those

listings

from

being

produced.

COPYRIGHT

The

COPYRIGHT

option

places

a

string

in

the

object

module,

if

generated.

This

string

is

loaded

into

memory

with

any

load

module

into

which

this

object

is

linked.

��

NOCOPYRIGHT

COPYRIGHT

(

‘copyright

string’

)

��

The

string

is

limited

to

1000

characters

in

length.

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

37

To

ensure

that

the

string

remains

readable

across

locales,

only

characters

from

the

invariant

character

set

should

be

used.

CURRENCY

This

option

allows

you

to

specify

a

unique

character

for

the

dollar

sign.

��

CURRENCY

(

x

)

��

x

Character

that

you

want

the

compiler

and

runtime

to

recognize

and

accept

as

the

dollar

sign

in

picture

strings.

DEFAULT:

CURRENCY('$')

DEFAULT

This

option

specifies

defaults

for

attributes

and

options.

These

defaults

are

applied

only

when

the

attributes

or

options

are

not

specified

or

implied

in

the

source.

Compile-time

options

38

PL/I

for

Windows:

Programming

Guide

��

DEFAULT

(

�

,

IBM

ANS

ASCII

EBCDIC

ASSIGNABLE

NONASSIGNABLE

BYADDR

BYVALUE

NONCONNECTED

CONNECTED

DESCRIPTOR

NODESCRIPTOR

NATIVE

NONNATIVE

NATIVEADDR

NONNATIVEADDR

NOINLINE

INLINE

ORDER

REORDER

OPTLINK

LINKAGE

(

)

SYSTEM

CDECL

STDCALL

IEEE

HEXADEC

EVENDEC

NOEVENDEC

INITFILL

(

'nn'x

)

NOINITFILL

NULLSYS

NULL370

NONRECURSIVE

RECURSIVE

NOOVERLAP

OVERLAP

DESCLIST

DESCLOCATOR

BYVALUE

RETURNS

(

)

BYADDR

HEXADEC

SHORT

(

)

IEEE

ALIGNED

DUMMY

(

)

UNALIGNED

LOWERINC

UPPERINC

NORETCODE

RETCODE

MIN

ORDINAL

(

)

MAX

IEEE

E

(

)

HEXADEC

NORETCODE

RETCODE

ALIGNED

UNALIGNED

)

��

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

39

ABBREVIATIONS:

DFT,

ASGN,

NONASGN,

CONN,

NONCONN

IBM

or

ANS

Use

IBM

or

ANS

SYSTEM

defaults.

The

arithmetic

defaults

for

IBM

and

ANS

are

the

following:

Attributes

DEFAULT(IBM)

DEFAULT(ANS)

FIXED

DECIMAL

(5,0)

(10,0)

FIXED

BINARY

(15,0)

(31,0)

FLOAT

DECIMAL

(6)

(6)

FLOAT

BINARY

(21)

(21)

Under

the

IBM

suboption,

variables

with

names

beginning

from

I

to

N

default

to

FIXED

BINARY

and

any

other

variables

default

to

FLOAT

DECIMAL.

If

you

select

the

ANS

suboption,

the

default

for

all

variables

is

FIXED

BINARY.

ASCII

or

EBCDIC

Use

this

option

to

set

the

default

for

the

character

set

used

for

the

internal

representation

of

character

problem

program

data.

Specify

EBCDIC

only

when

compiling

programs

that

depend

on

the

EBCDIC

character

set

collating

sequence.

Such

a

dependency

exists,

for

example,

if

your

program

relies

on

the

sorting

sequence

of

digits

or

on

lowercase

and

uppercase

alphabetics.

This

dependency

also

exists

in

programs

that

create

an

uppercase

alphabetic

character

by

changing

the

state

of

the

high-order

bit.

Note:

The

compiler

supports

A

and

E

as

suffixes

on

character

strings.

The

A

suffix

indicates

that

the

string

is

meant

to

represent

ASCII

data,

even

if

the

EBCDIC

compiler

option

is

in

effect.

Alternately,

the

E

suffix

indicates

that

the

string

is

EBCDIC,

even

when

you

select

DEFAULT(ASCII).

’123’A

is

the

same

as

’313133’X

’123’E

is

the

same

as

’F1F1F3’X

ASSIGNABLE

or

NONASSIGNABLE

This

option

applies

only

to

static

variables.

The

compiler

flags

statements

in

which

NONASSIGNABLE

variables

are

the

targets

of

assignments.

If

you

are

porting

code

to

the

mainframe,

this

option

flags

statements

that

would

otherwise

raise

a

protection

exception

(if

your

program

is

reentrant).

BYADDR

or

BYVALUE

Set

the

default

for

whether

arguments

or

parameters

are

passed

by

address

or

by

value.

BYVALUE

applies

only

to

certain

arguments

and

parameters.

See

the

PL/I

Language

Reference

for

more

information.

CONNECTED

or

NONCONNECTED

Set

the

default

for

whether

parameters

are

connected

or

nonconnected.

CONNECTED

allows

the

parameter

to

be

used

as

a

target

or

source

in

record-oriented

I/O

or

as

a

base

in

string

overlay

defining.

DESCRIPTOR

or

NODESCRIPTOR

Using

DESCRIPTOR

with

a

PROCEDURE

indicates

that

a

descriptor

list

was

passed,

while

DESCRIPTOR

with

ENTRY

indicates

that

a

descriptor

list

should

be

passed.

NODESCRIPTOR

results

in

more

efficient

code,

but

yields

errors

under

the

following

conditions:

Compile-time

options

40

PL/I

for

Windows:

Programming

Guide

v

For

PROCEDURE

statements,

NODESCRIPTOR

is

invalid

if

any

of

the

parameters

have:

–

An

asterisk

(*)

specified

for

the

bound

of

an

array,

the

length

of

a

string,

or

the

size

of

an

area

–

The

NONCONNECTED

attribute

–

The

UNALIGNED

BIT

attribute
v

For

ENTRY

declarations,

NODESCRIPTOR

is

invalid

if

an

asterisk

(*)

is

specified

for

the

bound

of

an

array,

the

length

of

a

string,

or

the

size

of

an

area

in

the

ENTRY

description

list.

NATIVE

or

NONNATIVE

This

option

affects

only

the

internal

representation

of

fixed

binary,

ordinal,

offset,

area,

and

varying

string

data.

When

the

NONATIVE

suboption

is

in

effect,

the

NONNATIVE

attribute

is

applied

to

all

such

variables

not

declared

with

the

NATIVE

attribute.

You

should

specify

NONNATIVE

only

to

compile

programs

that

depend

on

the

non-native

format

for

holding

these

kind

of

variables.

If

your

program

bases

fixed

binary

variables

on

pointer

or

offset

variables

(or

conversely,

pointer

or

offset

variables

on

fixed

binary

variables),

specify

either:

v

Both

the

NATIVE

and

NATIVEADDR

suboptions

v

Both

the

NONNATIVE

and

NONNATIVEADDR

suboptions.

Other

combinations

produce

unpredictable

results.

NATIVEADDR

or

NONNATIVEADDR

This

option

affects

only

the

internal

representation

of

pointers.

When

the

NONNATIVEADDR

suboption

is

in

effect,

the

NONNATIVE

attribute

is

applied

to

all

pointer

variables

not

declared

with

the

NATIVE

attribute.

If

your

program

bases

fixed

binary

variables

on

pointer

or

offset

variables

(or

conversely,

pointer

or

offset

variables

on

fixed

binary

variables),

specify

either:

v

Both

the

NATIVE

and

NATIVEADDR

suboptions

v

Both

the

NONNATIVE

and

NONNATIVEADDR

suboptions.

Other

combinations

produce

unpredictable

results.

INLINE

or

NOINLINE

This

option

sets

the

default

for

the

inline

procedure

option.

Specifying

INLINE

allows

your

code

to

run

faster

but,

in

some

cases,

also

creates

a

larger

executable

file.

For

more

information

on

how

inlining

can

improve

the

performance

of

your

application,

see

Chapter

19,

“Improving

performance,”

on

page

283.

ORDER

or

REORDER

Affects

optimization

of

the

source

code.

Specifying

REORDER

allows

optimization

of

your

source

code,

seeChapter

19,

“Improving

performance,”

on

page

283

ORDINAL

(MAX

or

MIN)

If

you

specify

ORDINAL(MAX),

all

ordinals

whose

definition

does

not

include

a

PRECISION

attribute

are

given

the

attribute

PREC(31).

Otherwise,

they

are

given

the

smallest

precision

that

covers

their

range

of

values.

OVERLAP

or

NOOVERLAP

If

you

specify

OVERLAP,

the

compiler

presumes

the

source

and

target

in

an

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

41

assignment

can

overlap

and

generates,

as

needed,

extra

code

in

order

to

ensure

that

the

result

of

the

assignment

is

okay.

Chapter

19,

“Improving

performance,”

on

page

283.

LINKAGE

The

linkage

convention

for

procedure

invocations

is:

OPTLINK

The

default

linkage

convention

for

PL/I

for

Windows.

This

linkage

provides

the

best

performance.

SYSTEM

All

parameters

are

passed

on

the

stack,

but

the

calling

function

cleans

up

the

stack.

STDCALL

The

standard

linking

convention

for

Windows

APIs.

This

linkage

convention

is

used

under

Windows

and

passes

all

parameters

on

the

stack.

The

called

function

cleans

up

the

stack.

CDECL

All

parameters

are

passed

on

the

stack,

but

the

calling

function

cleans

up

the

stack.

External

names

have

_

applied

as

a

prefix.

OPTIONS(COBOL)

implies

LINKAGE(SYSTEM)

unless

a

linkage

is

specified

on

the

entry

DCL

or

PROC

statement.

For

more

detailed

information

on

linkage

conventions,

see

Chapter

23,

“Calling

conventions,”

on

page

321.

IEEE

or

HEXADEC

IEEE

specifies

that

floating-point

data

is

held

in

storage

using

native

IEEE

format.

HEXADEC

indicates

that

storage

of

floating-point

data

is

identical

to

the

mainframe

environment.

EVENDEC

or

NOEVENDEC

This

suboption

controls

the

compiler’s

tolerance

of

fixed

decimal

variables

declared

with

an

even

precision.

Under

NOEVENDEC,

the

precision

for

any

fixed

decimal

variable

is

rounded

up

to

the

next

highest

odd

number.

If

you

specify

EVENDEC

and

then

assign

123

to

a

FIXED

DEC(2)

variable,

the

SIZE

condition

is

raised.

If

you

specify

NOEVENDEC,

the

SIZE

condition

is

not

raised

(just

as

it

would

not

be

raised

of

you

were

using

mainframe

PL/I).

EVENDEC

is

the

default.

INITFILL

or

NOINITFILL

This

suboption

controls

the

default

initialization

of

automatic

variables.

If

you

specify

INITFILL

with

a

hex

value

(nn),

that

value

is

replicated

and

fills

storage

for

all

automatic

variables.

If

you

do

not

enter

a

hex

value,

the

default

is

'00'x.

NOINITFILL

does

no

initialization

of

these

variables.

INITIFILL

can

cause

programs

to

run

significantly

slower

and

should

not

be

specified

in

production

programs.

During

program

development,

however,

it

is

useful

for

detecting

uninitialized

automatic

variables.

NOINITIFILL

is

the

default.

Compile-time

options

42

PL/I

for

Windows:

Programming

Guide

LOWERINC

or

UPPERINC

If

you

specify

LOWERINC,

the

compiler

accepts

lowercase

filenames

for

INCLUDE

files.

If

you

specify

UPPERINC,

the

compiler

accepts

uppercase

filenames

for

INCLUDE

files.

LOWERINC

is

the

default.

NULLSYS

or

NULL370

This

suboption

determines

which

value

is

returned

by

the

NULL

built-in

function.

If

you

specify

NULLSYS,

binvalue(null())

is

equal

to

0.

If

you

want

binvalue(null())

to

equal

'ff_00_00_00'xn

as

is

true

with

mainframe

PL/I,

specify

NULL370.

NULLSYS

is

the

default.

RECURSIVE

or

NONRECURSIVE

When

you

specify

DEFAULT(RECURSIVE),

the

compiler

applies

the

RECURSIVE

attribute

to

all

procedures.

If

you

specify

DEFAULT(NONRECURSIVE),

all

procedures

are

nonrecursive

except

procedures

with

the

RECURSIVE

attribute.

NONRECURSIVE

is

the

default.

DESCLIST

or

DESCLOCATOR

When

you

specify

DEFAULT(DESCLIST),

the

compiler

generates

code

in

the

same

way

as

previous

workstation

product

releases

(all

descriptors

are

passed

in

a

list

as

a

’hidden’

last

parameter).

If

you

specify

DEFAULT(DESCLOCATOR),

parameters

requiring

descriptors

are

passed

using

a

locator

or

descriptor

in

the

same

way

as

mainframe

PL/I.

This

allows

old

code

to

continue

to

work

even

if

it

passed

a

structure

from

one

routine

to

a

routine

that

was

expecting

to

receive

a

pointer.

DESCLIST

is

the

default.

RETURNS

(BYVALUE

or

BYADDR)

Sets

the

default

for

how

values

are

returned

by

functions.

See

the

PL/I

Language

Reference

for

more

information.

RETURNS(BYVALUE)

is

the

default.

You

should

specify

RETURNS(BYADDR)

if

your

application

contains

ENTRY

statements

and

the

ENTRY

statements

or

the

containing

procedure

statement

have

the

RETURNS

option.

You

must

also

specify

RETURNS(BYADDR)

on

the

entry

declarations

for

such

entries.

SHORT

(HEXADEC

or

IEEE)

This

suboption

improves

compatibility

with

other

unix

PL/I

compilers.

SHORT

(HEXADEC)

indicates

that

FLOAT

BIN

(p)

is

to

be

mapped

to

a

short

(4-byte)

floating

point

number

for

p

<=

21.

SHORT

(IEEE)

indicates

that

FLOAT

BIN

(p)

is

to

be

mapped

to

a

short

(4-byte)

floating

point

number

for

p

<=

24.

SHORT

(HEXADEC)

is

the

default.

DUMMY

(ALIGNED

or

UNALIGNED)

This

suboption

reduces

the

number

of

situations

in

which

dummy

arguments

get

created.

DUMMY(ALIGNED)

indicates

that

a

dummy

argument

should

be

created

even

if

an

argument

differs

from

a

parameter

only

in

its

alignment.

DUMMY(UNALIGNED)

indicates

that

no

dummy

argument

should

be

created

for

a

scalar

(except

a

nonvarying

bit)

or

an

array

of

such

scalars

if

it

differs

from

a

parameter

only

in

its

alignment.

Consider

the

following

example:

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

43

dcl

1

a1

unaligned,

2

b1

fixed

bin(31),

2

b2

fixed

bin(15),

2

b3

fixed

bin(31),

2

b4

fixed

bin(15);

dcl

x

entry(

fixed

bin(31)

);

call

x(

b3

);

If

you

specified

DEFAULT(DUMMY(ALIGNED)),

a

dummy

argument

would

be

created,

while

if

you

specified

DEFAULT(DUMMY(UNALIGNED)),

no

dummy

argument

would

be

created.

DUMMY(ALIGNED)

is

the

default.

RETCODE

or

NORETCODE

If

you

specify

RETCODE,

any

external

procedure

that

does

not

have

the

RETURNS

attribute

returns

an

integer

value

obtained

by

invoking

the

PLIRETV

built-in

function

just

prior

to

returning

from

that

procedure.

This

makes

such

procedures

behave

like

similar

procedures

invoked

from

COBOL

on

the

mainframe.

If

you

specify

NORETCODE,

no

special

code

is

generated

from

procedures

that

did

not

have

the

RETURNS

attribute.

ALIGNED

or

UNALIGNED

This

suboption

allows

you

to

force

byte-alignment

on

all

of

your

variables.

If

you

specify

ALIGNED,

all

variables

other

than

character,

bit,

graphic,

and

picture

are

given

the

ALIGNED

attribute

unless

the

UNALIGNED

attribute

is

explicitly

specified

(possibly

on

a

parent

structure)

or

implied

by

a

DEFAULT

statement.

If

you

specify

UNALIGNED,

all

variables

are

given

the

UNALIGNED

attribute

unless

the

ALIGNED

attribute

is

explicitly

specified

(possibly

on

a

parent

structure)

or

implied

by

a

DEFAULT

statement.

ALIGNED

is

the

default.

E(

IEEE

or

HEXADEC

)

The

E

suboption

determines

how

many

digits

will

be

used

for

the

exponent

in

E-format

items.

If

you

specify

E(IEEE),

4

digits

will

be

used

for

the

exponent

in

E-format

items.

If

you

specify

E(HEXADEC),

2

digits

will

be

used

for

the

exponent

in

E-format

items.

If

DFT(

E(HEXADEC)

)

is

specified,

an

attempt

to

use

an

expression

whose

exponent

has

an

absolute

value

greater

than

99

will

cause

the

SIZE

condition

to

be

raised.

DFT(

E(HEXADEC)

)

is

useful

in

developing

and

testing

390

applications

on

the

workstation.

The

statement

″put

skip

edit(x)

(

e(15,8));″

would

produce

no

messages

on

390,

but,

by

default,

it

would

be

flagged

under

Intel

and

AIX.

Specifying

DFT(E(HEXADEC))

would

fix

this.

IEEE

is

the

default.

DEFAULT

(IBM

ASCII

ASSIGNABLE

BYADDR

NONCONNECTED

DESCRIPTOR

NATIVE

NATIVEADDR

NOINLINE

ORDER

LINKAGE(OPTLINK)

IEEE

EVENDEC

NOINITFILL

ORDINAL(MIN)

NOOVERLAP

NULLSYS

Compile-time

options

44

PL/I

for

Windows:

Programming

Guide

NONRECURSIVE

DESCLIST

RETURNS(BYVALUE)

SHORT(HEXADEC)

DUMMY(ALIGNED)

LOWERINC

NORETCODE

ALIGNED

E(IEEE)).

DLLINIT

This

option

is

used

to

identify

whether

the

resulting

object

files

are

to

be

used

in

executable(.EXE)

or

dynamic

link

library

files(.DLL).

��

NODLLINIT

DLLINIT

��

NODLLINIT

This

option

must

be

in

effect

for

all

compilations

used

to

build

an

.EXE

file.

DLLINIT

This

option

must

be

specified

in

at

least

one

of

your

compilations

when

you

use

the

object

files

produced

by

those

compilations

to

build

a

.DLL.

EXIT

The

EXIT

option

enables

the

compiler

user

exit

to

be

invoked.

��

NOEXIT

EXIT

(

inparm_string

)

��

inparm_string

A

string

that

is

passed

to

the

compiler

user

exit

routine

during

initialization.

The

string

can

be

up

to

31

characters

long.

For

more

information,

see

Chapter

20,

“Using

user

exits,”

on

page

297.

EXTRN

The

EXTRN

option

controls

when

EXTRNs

are

emitted

for

external

entry

constants.

��

SHORT

EXTRN

(

FULL

)

��

FULL

EXTRNs

are

emitted

for

all

declared

external

entry

constants.

SHORT

EXTRNs

are

emitted

only

for

those

constants

that

are

referenced.

This

is

the

default.

FLAG

The

FLAG

option

specifies

the

minimum

severity

of

error

that

requires

a

message

to

be

listed

in

the

compiler

listing.

��

FLAG

W

(

I

)

E

S

��

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

45

ABBREVIATIONS:

F

I

List

all

messages.

W

List

all

except

information

messages.

E

List

all

except

warning

and

information

messages.

S

List

only

severe

error

and

unrecoverable

error

messages.

If

messages

are

below

the

specified

severity

or

are

filtered

out

by

a

compiler

exit

routine,

they

are

not

listed.

FLOATINMATH

The

FLOATINMATH

option

specifies

that

the

precision

that

the

compiler

should

use

when

invoking

the

mathematical

built-in

functions.

��

ASIS

FLOATINMATH

(

LONG

)

EXTENDED

��

ASIS

Arguments

to

the

mathematical

built-in

functions

will

not

be

forced

to

have

long

or

extended

floating-point

precision.

LONG

Any

argument

to

a

mathematical

built-in

function

with

short

floating-point

precision

will

be

converted

to

the

maximum

long

floating-point

precision

to

yield

a

result

with

the

same

maximum

long

floating-point

precision.

EXTENDED

Any

argument

to

a

mathematical

built-in

function

with

short

or

long

floating-point

precision

will

be

converted

to

the

maximum

extended

floating-point

precision

to

yield

a

result

with

the

same

maximum

extended

floating-point

precision.

A

FLOAT

DEC

expression

with

precision

p

has

short

floating-point

precision

if

p

<=

6,

long

floating-point

precision

if

6

<

p

<=

16

and

extended

floating-point

precision

if

p

>

16.

A

FLOAT

BIN

expression

with

precision

p

has

short

floating-point

precision

if

p

<=

21,

long

floating-point

precision

if

21

<p

<=

53

and

extended

floating-point

precision

if

p

>

53.

GONUMBER

This

option

creates

a

statement

number

table

as

part

of

the

object

file.

This

table

is

useful

for

debugging

purposes.

��

NOGONUMBER

GONUMBER

��

ABBREVIATIONS:

NGN,

GN

Compile-time

options

46

PL/I

for

Windows:

Programming

Guide

GRAPHIC

This

option

specifies

that

double-byte

characters

in

the

source

program

are

present.

��

NOGRAPHIC

GRAPHIC

��

ABBREVIATIONS:

NGR,

GR

You

must

specify

GRAPHIC

if

you

use

any

of

the

following

in

your

source

program:

v

DBCS

identifiers

v

DBCS

in

comments

v

Graphic

string

constants

v

Mixed

string

constants

IMPRECISE

This

option

determines

the

precision

of

floating-point

results

and

the

location

at

which

floating-point

interrupts

are

reported.

��

IMPRECISE

NOIMPRECISE

��

ABBREVIATIONS:

IMP,

NIMP

IMPRECISE

Precision

of

floating-point

results

might

not

be

IEEE

conforming

and

the

location

of

floating-point

interrupts

might

not

be

precise.

The

loss

of

precision

is

negligible

for

most

applications.

The

location

of

interrupt

might

be

close

to

the

interruption

point

or

might

be

far

from

the

interruption

point,

perhaps

in

another

block.

Use

of

this

option

produces

smaller

object

code

that

runs

faster.

It

is

recommended

for

your

production

programs.

NOIMPRECISE

Precision

of

floating-point

results

is

IEEE

conforming

and

the

precise

location

of

floating-point

interrupts

is

required.

This

option

produces

code

that

runs

slower

and

is

recommended

only,

if

at

all,

during

program

development.

Although

NOIMPRECISE

does

provide

better

floating-point

error

detection

than

IMPRECISE,

the

Windows

operating

system

does

not

allow

immediate

detection

of

floating-point

exceptions.

If

you

have

a

statement

in

your

program

that

is

likely

to

raise

a

floating-point

exception,

you

can

avoid

this

detection

problem

by

enclosing

the

statement,

by

itself,

in

a

BEGIN

block.

INCAFTER

This

option

allows

you

to

specify

a

file

to

be

included

after

a

particular

statement

in

your

source

program.

��

INCAFTER

(

)

PROCESS

(

filename

)

��

filename

Name

of

the

file

to

be

included

after

the

last

PROCESS

statement.

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

47

Currently,

PROCESS

is

the

only

suboption

and

requires

the

name

of

a

file

to

be

included

after

the

last

PROCESS

statement.

Consider

the

following

example:

INCAFTER(PROCESS(DFTS))

This

example

is

equivalent

to

having

the

statement

%INCLUDE

DFTS;

after

the

last

PROCESS

statement

in

your

source.

INITAUTO

Under

INITAUTO,

the

compiler

adds

an

INITIAL

attribute

to

an

AUTOMATIC

variable

that

does

not

have

an

INITIAL

attribute.

��

NOINITAUTO

INITAUTO

��

The

compiler

determines

the

INITIAL

values

according

to

the

data

attributes

of

the

variable:

v

INIT(

(

*

)

0

)

if

it

is

FIXED

or

FLOAT

v

INIT(

(

*

)

’’

)

if

it

is

PICTURE,

CHAR,

BIT,

GRAPHIC

or

WIDECHAR

v

INIT(

(

*

)

sysnull()

)

if

it

is

POINTER

or

OFFSET

NOINITAUTO

is

the

default.

INITAUTO

will

cause

more

code

to

be

generated

in

the

prologue

for

each

block

containing

any

AUTOMATIC

variables

that

are

not

fully

initialized

(but

unlike

the

DFT(

INITFILL

)

option,

those

variables

will

now

have

meaningful

initial

values)

and

will

have

a

negative

impact

on

performance.

INITBASED

This

option

performs

the

same

function

as

INITAUTO

except

for

BASED

variables.

��

NOINITBASED

INITBASED

��

NOINITBASED

is

the

default.

INITBASED

will

cause

more

code

to

be

generated

for

any

ALLOCATE

of

a

BASED

variable

that

is

not

fully

initialized

and

will

have

a

negative

impact

on

performance.

INITCTL

This

option

performs

the

same

function

as

INITAUTO

except

for

CONTROLLED

variables.

��

NOINITCTL

INITCTL

��

NOINITCTL

is

the

default.

Compile-time

options

48

PL/I

for

Windows:

Programming

Guide

INITCTL

will

cause

more

code

to

be

generated

for

any

ALLOCATE

of

a

CONTROLLED

variable

that

is

not

fully

initialized

and

will

have

a

negative

impact

on

performance.

INITSTATIC

This

option

performs

the

same

function

as

INITAUTO

except

for

STATIC

variables.

��

NOINITSTATIC

INITSTATIC

��

NOINITSTATIC

is

the

default.

The

INITSTATIC

option

could

cause

some

objects

larger

and

some

compilations

to

consume

more

time,

but

should

otherwise

have

no

impact

on

performance.

INCLUDE

This

option

specifies

the

file

name

extensions

under

which

include

files

are

searched.

You

specify

the

file

name

on

the

%INCLUDE

statement

and

the

directory

search

path

on

the

IBM.SYSLIB

or

INCLUDE

environment

variables.

��

INCLUDE

�

(

)

,

EXT

(

ext_string

)

��

ABBREVIATIONS:

INC

The

extension

string

(see

the

note

on

strings

in

step

2

on

page

33

under

“Rules

for

using

compile-time

options”)

can

be

up

to

31

characters

long,

but

it

is

truncated

to

the

first

three

characters.

If

you

specify

more

than

one

file

name

extension,

the

compiler

searches

for

include

files

with

the

left

most

extension

you

specify

first.

It

then

searches

for

extensions

which

you

specified

from

left

to

right.

You

can

specify

a

maximum

of

7

extensions.

DEFAULT:

INCLUDE(EXT('INC'

'CPY'

'MAC')).

Do

not

use

'PLI'

as

an

extension

for

include

files.

Examples:

In

this

first

example,

the

compiler

searches

for

include

files

with

file

name

extensions

of

COP,

INC,

2++,

and

MAC

in

that

order.

include

(

ext(Cop

Inc

’2++’

Mac)

)

In

the

following

example,

the

compiler

searches

for

include

files

without

file

name

extensions

first,

and

then

for

those

with

file

name

extensions

of

INC,

CPY,

and

MAC.

include

(ext(’

’,Inc,Cpy,Mac))

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

49

INSOURCE

The

INSOURCE

option

specifies

that

the

compiler

should

include

a

listing

of

the

source

program

before

the

macro

preprocessor

translates

it.

��

NOINSOURCE

INSOURCE

��

ABBREVIATIONS:

NIS,

IS

FULL

The

INSOURCE

listing

will

ignore

%NOPRINT

statements

and

will

contain

all

the

source

before

the

preprocessor

translates

it.

FULL

is

the

default.

SHORT

The

INSOURCE

listing

will

heed

%PRINT

and

%NOPRINT

statements.

The

INSOURCE

listing

has

no

effect

unless

the

MACRO

option

is

in

effect.

Under

the

INSOURCE

option,

text

is

included

in

the

listing

not

according

to

the

logic

of

the

program,

but

as

each

file

is

read.

So,

for

example,

consider

the

following

simple

program

which

has

a

%INCLUDE

statement

between

its

PROC

and

END

statements.

insource:

proc

options(main);

%include

member;

end;

The

INSOURCE

listing

will

contain

all

of

the

main

program

before

any

of

the

included

text

from

the

file

″member″

(and

it

would

contain

all

of

that

file

before

any

text

included

by

it

-

and

so

on).

Under

the

INSOURCE(SHORT)

option,

text

included

by

a

%INCLUDE

statement

inherits

the

print/noprint

status

that

was

in

effect

when

the

%INCLUDE

statement

was

executed,

but

that

print/noprint

status

is

restored

at

the

end

of

the

included

text

(however,

in

the

SOURCE

listing,

the

print/noprint

status

is

not

restored

at

the

end

of

the

included

text).

LANGLVL

This

option

specifies

the

level

of

the

PL/I

language

definition

that

you

want

the

compiler

to

accept.

The

compiler

flags

any

violations

of

the

specified

language

definition.

��

LANGLVL

(

�

,

SAA2

SAA

NOEXT

OS

)

��

SAA

The

compiler

flags

keywords

that

are

not

supported

by

OS

PL/I

Version

2

Release

3

and

does

not

recognize

any

built-in

functions

not

supported

by

OS

PL/I

Version

2

Release

3.

Compile-time

options

50

PL/I

for

Windows:

Programming

Guide

SAA2

The

compiler

accepts

the

PL/I

language

definition

contained

in

the

PL/I

Language

Reference.

NOEXT

No

extensions

beyond

the

language

level

specified

are

allowed.

Windows

The

ENVIRONMENT

options

unique

to

the

Windows

environment

are

allowed.

LIBS

This

option

specifies

whether

or

not

the

compiler

should

generate

information

in

the

object

file

that

names

the

default

libraries

that

are

to

be

searched

at

link

time

in

order

to

resolve

references

to

external

entries

and

data.

��

LIBS

SINGLE

DYNAMIC

(

)

MULTI

STATIC

NOLIBS

��

LIBS

Same

as

specifying

LIBS(SINGLE

DYNAMIC)

LIBS(SINGLE

DYNAMIC)

Specifies

that

default

libraries

searched

at

link

time

are

the

single-threading

PL/I

libraries:

v

On

Windows,

these

are

ibmws20i.lib,

ibmwstbi.lib,

hepws20i.lib,

and

kernel32.lib.

LIBS(MULTI

DYNAMIC)

Specifies

that

default

libraries

searched

at

link

time

are

the

multi-threaded

PL/I

libraries:

v

On

Windows,

these

are

ibmwm20i.lib,

ibmwmtbi.lib,

hepwm20i.lib,

and

kernel32.lib.

LIBS(SINGLE

STATIC)

Specifies

that

default

libraries

searched

at

link

time

are

the

static,

non-multithreading

libraries:

v

On

Windows,

these

are

ibmws20.lib,

ibmws35.lib

ibmwstb.lib,

hepws20.lib,

and

kernel32.lib.

LIBS(MULTI

STATIC)

Specifies

that

default

libraries

searched

at

link

time

are

the

static,

multi-threaded

libraries.

This

means

the

library

will

be

statically

linkied

into

the

user

module.

v

On

Windows,

these

are

ibmwm20.lib,

ibmwm35.lib

ibmwmtb.lib,

hepwm20.lib,

and

kernel32.lib.

You

should

specify

the

SINGLE

suboption

only

if

your

application

uses

no

multithreading

language

and

specify

the

MULTI

suboption

when

your

application

contains

any

PL/I

multithreading

language.

You

can

specify

LIBS(MULTI)

when

no

multithreading

language

is

used,

however,

this

causes

your

application

to

run

more

slowly

than

it

would

with

LIBS(SINGLE).

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

51

LIMITS

This

option

specifies

various

implementation

limits.

EXTNAME

Specifies

the

maximum

length

for

EXTERNAL

name.

The

maximum

value

for

n

is

100;

the

minimum

value

is

7.

FIXEDDEC

Specifies

the

maximum

precision

for

FIXED

DECIMAL

to

be

either

15

or

31.

Under

FIXEDDEC(15,31),

the

attribute

of

an

operation

will

have

a

precision

greater

than

15

only

if

one

of

the

operands

does.

The

default

is

FIXEDDEC(15,31).

FIXEDBIN

Specifies

the

maximum

precision

for

SIGNED

FIXED

BINARY

to

be

either

31

or

63.

The

default

is

31.

If

FIXEDBIN(31,63)

is

specified,

then

you

may

declare

8-byte

integers,

but

unless

an

expression

contains

an

8-byte

integer,

all

arithmetic

will

done

using

4-byte

integers.

FIXEDBIN(63,31)

is

not

allowed.

The

maximum

precision

for

UNSIGNED

FIXED

BINARY

is

one

greater,

that

is,

32

and

64.

NAME

Specifies

the

maximum

length

of

variable

names

in

your

program.

The

maximum

value

for

n

is

100;

the

minimum

value

is

7.

DEFAULT:

LIMITS(EXTNAME(100)

FIXEDBIN(31,31)

FIXEDDEC(15)

NAME(100))

LINECOUNT

This

option

specifies

the

number

of

lines

per

page

for

compiler

listings,

including

blank

and

heading

lines.

��

LINECOUNT

(n)

��

ABBREVIATIONS:

LC

The

value

of

n

can

be

from

1

to

32,767.

DEFAULT:

LINECOUNT(60)

LIST

This

option

causes

an

object

module

listing

to

be

produced.

This

listing

is

in

a

form

similar

to

assembler

language

instructions.

��

NOLIST

LIST

��

The

object

listing

is

produced

in

a

separate

file

with

an

extension

of

.asm.

Assembler

listings

do

not

always

compile.

A

sample

listing

is

shown

in

“Using

the

compiler

listing”

on

page

105.

Compile-time

options

52

PL/I

for

Windows:

Programming

Guide

MACRO

The

MACRO

option

causes

the

macro

facility

to

be

invoked

prior

to

compilation.

If

both

MACRO

and

PP(MACRO)

are

specified,

the

macro

facility

is

invoked

twice.

When

the

MACRO

option

is

used,

MACRO(’macro-options’)

is

inserted

into

the

PP

option.

��

NOMACRO

MACRO

��

ABBREVIATIONS:

NM,

M

For

example,

if

the

following

compile-time

options

are

specified:

MDECK

NOINSOURCE

MACRO

PP(MACRO

SQL)

The

PP

option

is

modified

and

effectively

becomes:

PP

(MACRO

MACRO

SQL)

See

also

“PP”

on

page

59.

MARGINI

This

option

specifies

the

margin

indicator

used

in

the

source

listing

produced.

��

MARGINI

(

'char'

)

��

ABBREVIATIONS:

MI(’char’)

The

character,

char,

is

inserted

in

the

positions

immediately

to

the

left

and

right

of

both

side

margins,

making

any

source

code

outside

of

the

margins

easily

detected.

DEFAULT:

MARGINI('

')

Using

the

default

specifies

that

left

and

right

source

margins

are

shown

in

the

listing

by

blank

columns.

For

a

sample

listing,

see

“Using

the

compiler

listing”

on

page

105.

MARGINS

This

option

sets

the

margins

within

which

the

compiler

interprets

the

source

code

in

your

program

file.

Data

outside

these

margins

is

not

interpreted

as

source

code,

though

it

is

included

in

your

source

listing

if

you

request

one.

��

2

72

MARGINS

(

m

,

n

)

,

c

��

ABBREVIATIONS:

MAR

m

The

column

number

of

the

leftmost

character

(first

data

byte)

that

is

processed

by

the

compiler.

It

must

not

exceed

100.

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

53

n

The

column

number

of

the

rightmost

character

(last

data

byte)

that

is

processed

by

the

compiler.

It

should

be

greater

than

m,

but

must

not

exceed

200.

Variable-length

records

are

effectively

padded

with

blanks

to

give

them

the

maximum

record

length.

c

The

column

number

of

the

ANS

printer

control

character.

It

must

not

exceed

200

and

should

be

outside

the

values

specified

for

m

and

n.

A

value

of

0

for

c

indicates

that

no

ANS

control

character

is

present.

Only

the

following

control

characters

can

be

used:

(blank)

Skip

one

line

before

printing

0

Skip

two

lines

before

printing

–

Skip

three

lines

before

printing

+

No

skip

before

printing

1

Start

new

page

Any

other

character

is

an

error

and

is

replaced

by

a

blank.

Do

not

use

a

value

of

c

that

is

greater

than

the

maximum

length

of

a

source

record,

because

this

causes

the

format

of

the

listing

to

be

unpredictable.

To

avoid

this

problem,

put

the

carriage

control

characters

to

the

left

of

the

source

margins

for

variable-length

records.

Specifying

MARGINS(,,c)

is

an

alternative

to

using

%PAGE

and

%SKIP

statements

(described

in

OS

PL/I

Version

2

Language

Reference).

DEFAULT:

MARGINS

(2

72)

MAXMSG

The

MAXMSG

option

specifies

the

maximum

number

of

messages

with

a

given

severity

(or

higher)

that

the

compilation

should

produce.

��

MAXMSG

�

,

W

(

I

)

E

S

250

n

��

I

Count

all

messages.

W

Count

all

except

information

messages.

E

Count

all

except

warning

and

information

messages.

S

Count

only

severe

error

and

unrecoverable

error

messages.

n

Terminate

the

compilation

if

the

number

of

messages

exceeds

this

value.

If

messages

are

below

the

specified

severity

or

are

filtered

out

by

a

compiler

exit

routine,

they

are

not

counted

in

the

number.

The

value

of

n

can

range

from

0

to

32767.

If

you

specify

0,

the

compilation

terminates

when

the

first

error

of

the

specified

severity

is

encountered.

Compile-time

options

54

PL/I

for

Windows:

Programming

Guide

DEFAULT:

MAXMSG(

W

250

)

MAXSTMT

Under

the

MAXSTMT

option,

if

the

MSG(390)

option

is

also

in

effect,

the

compiler

will

flag

any

block

that

has

more

than

the

specified

number

of

statements.

On

Windows,

however,

optimization

of

such

a

block

will

not

be

turned

off.

��

MAXSTMT

(size)

��

DEFAULT:

MAXSTMT(

4096

)

MAXTEMP

The

MAXTEMP

option

determines

when

the

compiler

flags

statements

using

an

excessive

amount

of

storage

for

compiler-generated

temporaries.

��

MAXTEMP

(

max

)

��

max

The

limit

for

the

number

of

bytes

that

can

be

used

for

compiler-generated

temporaries.

The

compiler

flags

any

statement

that

uses

more

bytes

than

those

specified

bymax

.

The

default

for

max

is

50000.

You

should

examine

statements

that

are

flagged

under

this

option

-

if

you

code

them

differently,

you

may

be

able

to

reduce

the

amount

of

stack

storage

required

by

your

code.

MDECK

This

option

specifies

that

the

macro

facility

output

source

is

written

with

the

file

extension

of

.DEK

and

the

file

is

put

in

the

current

directory.

��

NOMDECK

MDECK

��

ABBREVIATIONS:

NMD,

MD

MDECK

is

ignored

if

NOMACRO

is

in

effect.

See

“MACRO”

on

page

53

for

an

example.

MSG

This

option

controls

when

the

compiler

will

issue

messages

for

conversions

that

will

be

done

via

a

library

call.

��

MSG

(

*

390

)

��

*

Causes

the

compiler

to

issue

warning

messages

for

conversions

that

will

be

done

via

a

library

call

if

and

only

if

they

would

be

done

via

a

library

call

on

the

platform

where

the

code

is

compiled.

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

55

390

Causes

the

compiler

to

issue

warning

messages

for

conversions

that

will

be

done

via

a

library

call

if

and

only

if

they

would

be

done

via

a

library

call

on

390.

NAMES

This

option

specifies

the

extralingual

characters

that

are

allowed

in

identifiers.

Extralingual

characters

are

those

characters

other

than

the

26

alphabetic,

10

digit,

and

special

characters

defined

in

the

PL/I

Language

Reference.

��

NAMES

(

�

’

extraling_char

’

�

’

upp_extraling_char

’

,

)

��

extraling_char

An

extralingual

character.

upp_extraling_char

The

extralingual

character

that

you

want

interpreted

as

the

uppercase

version

of

the

corresponding

character

in

the

first

suboption.

If

you

omit

the

second

suboption,

PL/I

uses

the

characters

specified

in

the

first

suboption

as

both

the

lowercase

and

the

uppercase

values.

If

you

specify

the

second

suboption,

you

must

specify

the

same

number

of

characters

as

you

specify

in

the

first

suboption.

DEFAULT:

NAMES('#@$'

'#@$')

Examples:

names(’äöüß’

’ÄÖÜß’)

NATLANG

This

option

sets

the

national

language

to

be

used

for

compiler

messages

and

listings.

��

NATLANG

(

ENU

JPN

)

��

ENU

US

English,

mixed

case.

JPN

Japanese

DEFAULT:

NATLANG(ENU)

NEST

The

NEST

option

specifies

that

the

listing

resulting

from

the

SOURCE

option

indicates

the

block

level

and

the

do-group

level

for

each

statement.

Compile-time

options

56

PL/I

for

Windows:

Programming

Guide

��

NONEST

NEST

��

For

an

example

of

the

source

listing,

see

“Using

the

compiler

listing”

on

page

105.

NOT

This

option

specifies

up

to

seven

symbols,

any

one

of

which

is

interpreted

as

the

logical

NOT

sign.

��

NOT

(

�

’

char

’

)

��

char

A

single

character

symbol.

You

must

not

specify

any

of

the

26

alphabetic,

10

digit,

and

special

characters

defined

in

the

PL/I

Language

Reference,

except

for

the

logical

NOT

sign

(^).

DEFAULT:

NOT

('^')

The

PL/I

default

code

point

for

the

NOT

symbol

has

the

hexadecimal

value

5E,

which

on

many

terminals

will

appear

as

the

logical

NOT

symbol

(^).

If

you

are

invoking

the

compiler

from

the

commandline

and

specifying

a

caret

(^)

as

part

of

the

NOT

option,

you

must

precede

the

caret

with

another

caret.

Examples:

not(’\}’)

not(’^\}’)

If

you

are

invoking

the

compiler

and

specifying

any

compile-time

options

that

use

vertical

bars

(|)

or

a

caret

(^)

on

the

command

line,

use

double

quotes

around

the

character.

NUMBER

The

number

option

specifies

that

statements

in

the

source

program

are

to

be

identified

by

the

line

and

file

number

of

the

file

from

which

they

derived

and

that

this

pair

of

numbers

is

used

to

identify

statements

in

the

compiler

listings

resulting

from

the

AGGREGATE,

ATTRIBUTES,

LIST,

SOURCE

and

XREF

options.

The

File

Reference

Table

at

the

end

of

the

listing

shows

the

number

assigned

to

each

of

the

input

files

read

during

the

compilation.

��

NUMBER

NONUMBER

��

Note

that

if

a

preprocessor

has

been

used,

more

than

one

line

in

the

source

listing

may

be

identified

by

the

same

line

and

file

numbers.

For

example,

almost

every

EXEC

CICS

statement

generates

several

lines

of

code

in

the

source

listing,

but

these

would

all

be

identified

by

one

line

and

file

number.

NUMBER

and

STMT

are

mutually

exclusive.

Specifying

NONUMBER

implies

STMT.

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

57

ABBREVIATIONS:

NUM,

NNUM

OBJECT

This

option

specifies

whether

object

code

is

produced.

��

OBJECT

NOOBJECT

��

ABBREVIATIONS:

OBJ,

NOBJ

The

module

is

saved

in

the

current

directory.

OFFSET

This

option

specifies

whether

or

not

the

compiler

produces

an

assembler-like

listing

file

with

the

extension

.cod.

��

NOOFFSET

OFFSET

��

ABBREVIATIONS:

OF,

NOF

The

.cod

file

contains

the

offset

and

machine

code

for

every

instruction

generated.

Use

the

sample

program

cod2off

to

reduce

the

size

of

this

file

to

a

listing

of

the

offset

for

the

start

of

each

statement

in

every

block

of

the

compilation.

OPTIMIZE

This

option

specifies

the

type

of

optimization

required.

��

NOOPTIMIZE

OPTIMIZE

(

TIME

)

0

2

��

ABBREVIATIONS:

NOPT,

OPT

NOOPTIMIZE

or

OPTIMIZE(0)

Use

either

of

these

options

to

produce

standard

optimization

of

the

object

code,

allowing

compilation

to

proceed

as

quickly

as

possible.

OPTIMIZE(TIME)

or

OPTIMIZE(2)

Use

either

of

these

options

to

cause

extended

optimizations

of

the

object

code

and

produce

faster

running

object

code.

Optimization

requires

additional

compile

time,

but

usually

results

in

reduced

run

time.

Inlining

occurs

only

under

optimization.

See

Chapter

19,

“Improving

performance,”

on

page

283

for

a

full

discussion

of

optimization.

OPTIONS

This

option

produces

a

listing

of

all

compile-time

options

in

effect

for

the

compilation

(see

Chapter

7,

“Compilation

output,”

on

page

105

for

an

example).

Compile-time

options

58

PL/I

for

Windows:

Programming

Guide

��

NOOPTIONS

OPTIONS

��

ABBREVIATIONS:

NOP,

OP

OR

This

option

specifies

up

to

seven

symbols,

any

one

of

which

is

interpreted

as

the

logical

OR

sign

(|).

These

symbols

are

also

used

as

the

concatenation

symbol

(when

paired).

��

OR

(

’

�

char

’

)

��

char

A

single

character

symbol.

You

must

not

specify

any

of

the

26

alphabetic,

10

digit,

and

special

characters

defined

in

the

PL/I

Language

Reference,

except

for

the

logical

OR

sign

(|).

If

you

are

invoking

the

compiler

and

specifying

a

vertical

bar

(|)

on

the

command

line

as

part

of

the

OR

option,

you

must

precede

the

vertical

bar

with

a

caret

(^).

DEFAULT:

OR

('|')

The

PL/I

default

code

point

for

the

OR

symbol

(|)

is

hexadecimal

7C.

Examples:

or(’\}’)

or(’|\}’)

If

you

are

invoking

the

compiler

and

specifying

any

compile-time

options

that

use

vertical

bars

(|)

or

a

caret

(^)

on

the

command

line,

use

double

quotes

around

the

character.

PP

This

option

specifies

which

(and

in

what

order)

preprocessors

are

invoked

prior

to

compilation.

The

MACRO

option

and

the

PP(MACRO)

option

both

cause

the

macro

facility

to

be

invoked

prior

to

compilation.

If

both

MACRO

and

PP(MACRO)

are

specified,

the

macro

facility

is

invoked

twice.

The

same

preprocessor

can

be

specified

multiple

times.

��

�

�

NOPP

,

PP

(

pp-name

)

,

(

pp-string

)

��

pp-name

The

name

given

to

a

particular

preprocessor.

INCLUDE,

MACRO,

SQL,

and

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

59

CICS

are

the

defined

names

for

the

preprocessors

presently

available.

Using

an

undefined

name

causes

a

diagnostic

error.

pp-string

A

string

of

up

to

100

characters

representing

the

options

for

the

corresponding

preprocessor.

If

more

than

one

pp-string

is

specified,

they

are

concatenated

with

a

blank

separating

each

string.

Preprocessor

options

are

processed

from

left

to

right.

If

two

conflicting

options

are

used,

the

last

one

specified

is

used.

DEFAULT:

NOPP

You

can

specify

a

maximum

of

31

preprocessors.

Examples:

The

following

example

invokes

the

PL/I

macro

facility,

the

SQL

preprocessor,

and

then

the

PL/I

macro

facility

a

second

time.

pp(macro(’x’)

sql(’dbname(sample)’)

macro)

PPTRACE

This

option

specifies

that

when

a

DECK

file

is

written

for

a

preprocessor,

every

non-blank

line

in

that

file

is

preceded

by

a

line

containing

a

%LINE

directive.

The

directive

indicates

the

original

source

file

and

line

to

which

the

non-blank

line

should

be

attributed.

��

NOPPTRACE

PPTRACE

��

PPTRACE

should

be

used

only

with

preprocessors

other

than

those

that

are

integrated

with

the

PL/I

compiler.

PRECTYPE

The

PRECTYPE

option

determines

how

the

compiler

derives

the

attributes

for

the

MULTIPLY,

DIVIDE,

ADD

and

SUBTRACT

built-in

functions

when

the

operands

are

FIXED

BIN

and

only

a

precision

has

been

specified.

��

ANS

DECDIGIT

DECRESULT

��

The

PRECTYPE

option

has

three

suboptions:

ANS

Under

PRECTYPE(ANS),

the

value

p

in

BIF(

x,y,p

)

is

interpreted

as

specifying

a

binary

number

of

digits,

the

operation

is

performed

as

a

binary

operation

and

the

result

has

the

attributes

FIXED

BIN(

p,0

).

DECDIGIT

Under

PRECTYPE(DECDIGIT),

the

value

p

in

BIF(

x,y,p

)

is

interpreted

as

specifying

a

decimal

number

of

digits,

the

operation

is

performed

as

a

binary

operation

and

the

result

has

the

attributes

FIXED

BIN(

s

)

where

s

is

the

corresponding

binary

equivalent

to

p

(namely

s

=

ceil(3.32*p)).

Compile-time

options

60

PL/I

for

Windows:

Programming

Guide

DECRESULT

Under

PRECTYPE(DECRESULT),

the

value

p

in

BIF(

x,y,p

)

is

interpreted,

as

also

true

for

DECDIGIT,

as

specifying

a

decimal

number

of

digits,

but

the

operation

is

performed

as

a

decimal

operation

and

the

result

has

the

attributes

FIXED

DEC(

p,0

).

PRECTYPE(

ANS

)

is

the

default.

PREFIX

This

option

enables

or

disables

the

specified

PL/I

conditions

in

the

compilation

unit

being

compiled

without

you

having

to

change

the

source

program.

The

specified

condition

prefixes

are

logically

prefixed

to

the

beginning

of

the

first

PACKAGE

or

PROCEDURE

statement.

��

PREFIX

(

�

,

condition

)

��

condition

Any

condition

that

can

be

enabled/disabled

in

a

PL/I

program,

as

explained

in

the

PL/I

Language

Reference.

DEFAULT:

PREFIX(CONVERSION

FIXEDOVERFLOW

INVALIDOP

OVERFLOW

NOSIZE

NOSTRINGRANGE

NOSTRINGSIZE

NOSUBSCRIPTRANGE

UNDERFLOW

ZERODIVIDE)

Examples:

Given

the

following

source:

(stringsize):

name:

proc

options

(reentrant

reorder);

end;

The

option

prefix

(size

nounderflow)

logically

changes

the

program

to

the

following:

(size

nounderflow):

(stringsize):

name:

proc

options

(reentrant

reorder);

end;

PROBE

This

option

controls

the

generation

of

stack

probes

which

are

extra

instructions

generated

by

the

compiler

whenever

the

stack

can

be

extended

by

more

than

2K

bytes.

This

extra

code

causes

a

protection

exception

if

there

is

not

enough

storage

available

on

the

stack.

��

PROBE

NOPROBE

��

PROBE

Specifies

that

stack

probes

are

generated.

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

61

NOPROBE

No

generation

of

stack

probes.

A

program

that

requires

considerable

automatic

storage,

but

is

linked

with

an

insufficient

stack

size,

produces

exceptions

and

might

go

into

an

infinite

loop

unless

stack

probes

are

generated.

The

presence

of

stack

probes

decreases

performance

in

non-multithreading

programs

that

are

properly

linked.

PROCEED

This

option

determines

whether

or

not

processing

(by

a

preprocessor

or

the

compiler)

continues

depending

on

the

severity

of

messages

issued

by

previous

preprocessors.

��

S

NOPROCEED

(

E

)

W

PROCEED

��

ABBREVIATIONS:

PRO,

NPRO

PROCEED

The

invocation

of

preprocessors

and

the

compiler

continue

despite

any

messages

issued

by

preprocessors

prior

to

this

stage.

NOPROCEED(S)

The

invocation

of

preprocessors

and

the

compiler

does

not

continue

if

a

severe

or

unrecoverable

error

is

detected

in

this

stage

of

preprocessing.

NOPROCEED(E)

The

invocation

of

preprocessors

and

the

compiler

does

not

continue

if

an

error,

severe

error,

or

unrecoverable

error

is

detected

in

this

stage

of

preprocessing.

NOPROCEED(W)

The

invocation

of

preprocessors

and

the

compiler

does

not

continue

if

a

warning,

error,

severe

error,

or

unrecoverable

error

is

detected

in

this

stage

of

preprocessing.

REDUCE

The

REDUCE

option

specifies

that

the

compiler

is

permitted

to

reduce

an

assignment

of

a

null

string

to

a

structure

into

a

simple

copy

operation

-

even

if

that

means

padding

bytes

might

be

overwritten.

��

REDUCE

NOREDUCE

��

The

NOREDUCE

option

specifies

that

the

compiler

must

decompose

an

assignment

of

a

null

string

to

a

structure

into

a

series

of

assignments

of

the

null

string

to

the

base

members

of

the

structure.

The

REDUCE

option

will

cause

fewer

lines

of

code

to

be

generated

for

an

assignment

of

a

null

string

to

a

structure,

and

that

will

usually

mean

your

compilation

will

be

quicker

and

your

code

will

run

much

faster.

However,

padding

bytes

may

be

zeroed

out.

Compile-time

options

62

PL/I

for

Windows:

Programming

Guide

For

instance,

in

the

following

structure,

there

is

one

byte

of

padding

between

field11

and

field12.

dcl

1

sample

ext,

5

field10

bin

fixed(31),

5

field11

dec

fixed(13),

5

field12

bin

fixed(31),

5

field13

bin

fixed(31),

5

field14

bit(32),

5

field15

bin

fixed(31),

5

field16

bit(32),

5

field17

bin

fixed(31);

Now

consider

the

assignment

sample

=

’’;

Under

the

NOREDUCE

option,

it

will

cause

eight

assignments

to

be

generated,

but

the

padding

byte

will

be

unchanged.

However,

under

REDUCE,

the

assigment

would

be

reduced

to

three

operations.

RESEXP

The

RESEXP

option

specifies

that

the

compiler

is

permitted

to

evaluate

all

restricted

expressions

at

compile

time

even

if

this

would

cause

a

condition

to

be

raised

and

the

compilation

to

end

with

S-level

messages.

��

RESEXP

NORESEXP

��

Under

the

NORESEXP

compiler

option,

the

compiler

will

still

evaluate

all

restricted

expression

occurring

in

declarations,

including

those

in

INITIAL

value

clauses.

For

example,

under

the

NORESEXP

option,

the

compiler

would

not

flag

the

following

statement

(and

the

ZERODIVIDE

exception

would

be

raised

at

run-time)

if

preconditions_not_met

then

x

=

1

/

0;

RESPECT

Causes

the

compiler

to

honor

any

specification

of

the

DATE

attribute

and

to

apply

the

DATE

attribute

to

the

result

of

the

DATE

built-in

function.

��

RESPECT

(

)

DATE

��

Using

the

default

causes

the

compiler

to

ignore

any

specification

of

the

DATE

attribute

and

the

DATE

attribute,

therefore,

would

not

be

applied

to

the

result

of

the

DATE

built-in

function.

RULES

This

option

allows

or

disallows

certain

language

capabilities

and

allows

you

to

choose

semantics

when

alternatives

are

available.

It

can

help

you

diagnose

common

programming

errors.

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

63

��

RULES

(

�

,

IBM

ANS

BYNAME

NOBYNAME

EVENDEC

NOEVENDEC

GOTO

NOGOTO

NOLAXBIF

LAXBIF

LAXCTL

NOLAXCTL

NOLAXDCL

LAXDCL

NOLAXDEF

LAXDEF

NOLAXIF

LAXIF

LAXLINK

NOLAXLINK

LAXMARGINS

NOLAXMARGINS

LAXQUAL

NOLAXQUAL

LAXPUNC

NOLAXPUNC

NOLAXSTRZ

LAXSTRZ

MULTICLOSE

NOMULTICLOSE

)

��

ABBREVIATIONS:

LAXCOM,

NOLAXCOM

IBM

or

ANS

Under

the

IBM

suboption:

v

For

operations

requiring

string

data,

data

with

the

BINARY

attribute

is

converted

to

BIT.

v

Conversions

in

arithmetic

operations

or

comparisons

occur

as

described

in

the

pre-Enterprise

PL/I

Language

Reference.

v

Conversions

for

the

ADD,

DIVIDE,

MULTIPLY,

and

SUBTRACT

built-in

functions

occur

as

described

in

the

pre-Enterprise

PL/I

Language

Reference

except

that

operations

specified

as

scaled

fixed

binary

are

evaluated

as

scaled

fixed

decimal.

v

Nonzero

scale

factors

are

permitted

in

FIXED

BIN

declares.

v

If

the

result

of

any

precision-handling

built-in

function

(ADD,

BINARY,

etc.)

has

FIXED

BIN

attributes,

the

specified

or

implied

scale

factor

can

be

nonzero.

Under

the

ANS

suboption:

v

For

operations

requiring

string

data,

data

with

the

BINARY

attribute

is

converted

to

CHARACTER.

v

Conversions

in

arithmetic

operations

or

comparisons

occur

as

described

in

the

PL/I

Language

Reference.

v

Conversions

for

the

ADD,

DIVIDE,

MULTIPLY,

and

SUBTRACT

built-in

functions

occur

as

described

in

the

PL/I

Language

Reference.

Compile-time

options

64

PL/I

for

Windows:

Programming

Guide

v

Nonzero

scale

factors

are

not

permitted

in

FIXED

BIN

declares.

v

If

the

result

of

any

precision-handling

built-in

function

(ADD,

BINARY,

etc.)

has

FIXED

BIN

attributes,

the

specified

or

implied

scale

factor

must

be

zero.

v

If

all

arguments

to

the

MAX

or

MIN

built-in

functions

are

UNSIGNED

FIXED

BIN,

then

the

result

is

also

UNSIGNED.

v

When

you

ADD,

MULTIPLY,

or

DIVIDE

two

UNSIGNED

FIXED

BIN

operands,

the

result

has

the

UNSIGNED

attribute.

v

When

you

apply

the

MOD

or

REM

built-in

functions

to

two

UNSIGNED

FIXED

BIN

operands,

the

result

has

the

UNSIGNED

attribute.

BYNAME

or

NOBYNAME

Specifying

NOBYNAME

causes

the

compiler

to

flag

all

BYNAME

assignments

with

an

E-level

message.

EVENDEC

or

NOEVENDEC

Specifying

NOEVENDEC

causes

the

compiler

to

flag

all

FIXED

DECIMAL

variables

with

an

even

precision

with

an

E-level

message.

GOTO

or

NOGOTO

GOTO

causes

the

compiler

to

ignore

all

GOTO

statements.

GOTO

is

the

default.

Use

NOGOTO

to

have

all

GOTO

statements

flagged.

LAXBIF

or

NOLAXBIF

LAXBIF

causes

the

compiler

to

build

contextual

declares

for

all

built-in

functions,

including

built-in

functions

that

do

not

have

an

argument

list.

NOLAXBIF

is

the

default.

LAXCOMMENT

or

NOLAXCOMMENT

If

you

specify

RULES(LAXCOMMENT),

the

compiler

ignores

the

special

characters

/*/.

Whatever

comes

between

sets

of

these

characters,

then,

is

interpreted

as

part

of

the

syntax

rather

than

as

a

comment.

If

you

specify

RULES(NOLAXCOMMENT),

the

compiler

treats

/*/

as

the

start

of

a

comment

which

continues

until

a

closing

*/

is

found.

The

SQL

preprocessor

objects

to

the

DATE

attribute.

However,

if

you

enclose

the

attribute

between

/*/

and

/*/,

the

SQL

preprocessor

ignores

it

(as

part

of

a

comment

that

stretches

from

the

first

/*

to

the

last

*/).

Enclosing

the

date

attribute

as

described

allows

the

host

compiler

to

accept

it

as

well.

LAXCTL

or

NOLAXCTL

Specifying

LAXCTL

allows

a

CONTROLLED

variable

to

be

declared

with

a

constant

extent

and

yet

to

be

allocated

with

a

differing

extent.

NOLAXCTL

requires

that

if

a

CONTROLLED

variable

is

to

be

allocated

with

a

varying

extent,

then

that

extent

must

be

specified

as

an

asterisk

or

as

a

non-constant

expression.

The

following

is

illegal

under

NOLAXCTL:

dcl

a

bit(8)

ctl;

alloc

a

bit(16);

LAXDCL

or

NOLAXDCL

Specifying

LAXDCL

allows

implicit

declarations.

NOLAXDCL

disallows

all

implicit

and

contextual

declarations

except

for

BUILTINs

and

for

files

SYSIN

and

SYSPRINT.

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

65

LAXDEF

|

NOLAXDEF

Specifying

LAXDEF

allows

so-called

illegal

defining

to

be

accepted

without

any

compiler

messages

(rather

than

the

E-level

messages

that

the

compiler

would

usually

produce).

LAXIF

or

NOLAXIF

Specifying

LAXIF

allows

IF,

WHILE,

UNTIL,

and

WHEN

clauses

to

evaluate

to

other

than

BIT(1)

NONVARYING.

NOLAXIF

allows

IF,

WHILE,

UNTIL,

and

WHEN

clauses

to

evaluate

to

only

BIT(1)

NONVARYING.

The

following

are

illegal

under

NOLAXIF:

dcl

i

fixed

bin;

dcl

b

bit(8);

...

if

i

then

...

if

b

then

...

LAXLINK

or

NOLAXLINK

LAXLINK

causes

the

compiler

to

ignore

entry

assignments

where

the

source

and

target

have

either

different

linkages

or

different

specifications

of

the

options

DESCRIPTOR,

NODESCRIPTOR,

ASM,

COBOL

or

FORTRAN.

NOLAXLINK

is

recommended.

NOLAXLINK

is

not

the

default

to

decrease

the

number

of

new

error

message

that

appear

when

you

compile

370

code.

LAXMARGINS

or

NOLAXMARGINS

Specifying

NOLAXMARGINS

causes

the

compiler

to

flag

any

line

containing

non-blank

characters

after

the

right

margin.

This

can

be

useful

in

detecing

code,

such

as

a

closing

comment,

that

has

accidentally

been

pushed

out

into

the

right

margin.

LAXPUNC

|

NOLAXPUNC

Specifying

NOLAXPUNC

causes

the

compiler

to

flag

with

an

E-level

message

any

place

where

it

assumes

punctuation

that

is

missing.

For

instance,

given

the

statement

″I

=

(1

*

(2);″,

the

compiler

assumes

that

a

closing

right

parenthesis

was

meant

before

the

semicolon.

Under

RULES(NOLAXPUNC),

this

statement

would

be

flagged

with

an

E-level

message;

otherwise

it

would

be

flagged

with

a

W-level

message.

LAXQUAL

or

NOLAXQUAL

Specifying

NOLAXQUAL

causes

the

compiler

to

flag

any

reference

to

structure

members

that

are

not

level

1

and

are

not

dot

qualified.

Consider

the

following

example:

dcl

1

a,

2

b

fixed

bin,

2

c

fixed

bin;

c

=

15;

/*

would

be

flagged

*/

a.c

=

15;

/*

would

not

be

flagged

*/

LAXSTRZ

or

NOLAXSTRZ

Specifying

LAXSTRZ

causes

the

compiler

not

to

flag

any

bit

or

character

variable

that

is

initialized

to

or

assigned

a

constant

value

that

is

too

long

if

the

excess

bits

are

all

zeros

(or

if

the

excess

characters

are

all

blank).

MULTICLOSE

or

NOMULTICLOSE

NOMULTICLOSE

causes

the

compiler

to

flag

all

statements

that

force

the

closure

of

multiple

groups

of

statement

with

an

E-level

message.

Compile-time

options

66

PL/I

for

Windows:

Programming

Guide

SEMANTIC

This

option

specifies

that

the

execution

of

the

compiler’s

semantic

checking

stage

depends

on

the

severity

of

messages

issued

prior

to

this

stage

of

processing.

��

SEMANTIC

NOSEMANTIC

(

S

)

E

W

��

ABBREVIATIONS:

SEM,

NSEM

SEMANTIC

Equivalent

to

NOSEMANTIC(S).

NOSEMANTIC

Processing

stops

after

syntax

checking.

No

semantic

checking

is

performed.

NOSEMANTIC

(S)

No

semantic

checking

is

performed

if

a

severe

error

or

an

unrecoverable

error

has

been

encountered.

NOSEMANTIC

(E)

No

semantic

checking

is

performed

if

an

error,

a

severe

error,

or

an

unrecoverable

error

has

been

encountered.

NOSEMANTIC

(W)

No

semantic

checking

is

performed

if

a

warning,

an

error,

a

severe

error,

or

an

unrecoverable

error

has

been

encountered.

Semantic

checking

is

not

performed

if

certain

kinds

of

severe

errors

are

found.

If

the

compiler

cannot

validate

that

all

references

resolve

correctly

(for

example,

if

built-in

function

or

entry

references

are

found

with

too

few

arguments)

the

suitability

of

any

arguments

in

any

built-in

function

or

entry

reference

is

not

checked.

SNAP

This

option

specifies

whether

SNAP

and

PLIDUMP

traceback

output

must

be

complete

if

an

exception

occurs.

��

NOSNAP

SNAP

��

SNAP

SNAP

and

PLIDUMP

traceback

output

always

includes

all

PL/I

routines

on

the

call

stack.

SNAP

can

significantly

increase

the

size

and

reduce

the

performance

of

your

programs.

It

is

not

recommended

for

production

programs.

NOSNAP

SNAP

and

PLIDUMP

traceback

output

may

not

be

complete.

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

67

SOURCE

The

SOURCE

option

specifies

that

a

listing

of

the

source

input

to

the

compiler

be

created.

��

NOSOURCE

SOURCE

��

ABBREVIATIONS:

S,

NS

SOURCE

The

complier

produces

a

listing

of

the

source.

NOSOURCE

The

compiler

does

not

produce

a

source

listing.

A

source

listing

is

not

produced

unless

syntax

checking

is

performed.

STATIC

The

STATIC

option

controls

whether

INTERNAL

STATIC

variables

are

retained

in

the

object

module

even

if

unreferenced.

��

SHORT

STATIC

(

FULL

)

��

SHORT

INTERNAL

STATIC

will

be

retained

in

the

object

module

only

if

used.

FULL

All

INTERNAL

STATIC

with

INITIAL

will

be

retained

in

the

object

module.

If

INTERNAL

STATIC

variables

are

used

as

″eyecatchers″,

you

should

specify

the

STATIC(FULL)

option

to

insure

that

they

will

be

in

the

generated

object

module.

STMT

The

STMT

option

specifies

that

statements

in

the

source

program

are

to

be

counted

and

that

this

″statement

number″

is

used

to

identify

statements

in

the

compiler

listings

resulting

from

the

AGGREGATE,

ATTRIBUTES,

SOURCE

and

XREF

options.

��

NOSTMT

STMT

��

Specifying

NOSTMT

implies

NUMBER.

When

the

STMT

option

is

specified,

the

source

listing

will

include

both

the

logical

statement

numbers

and

the

source

file

numbers.

STORAGE

The

STORAGE

option

directs

the

compiler

to

produce

as

part

of

the

listing

a

summary

of

the

storage

used

by

each

procedure

and

begin-block.

Compile-time

options

68

PL/I

for

Windows:

Programming

Guide

��

NOSTORAGE

STORAGE

��

ABBREVIATIONS:

STG,

NSTG

SYNTAX

This

option

specifies

that

the

execution

of

the

compiler’s

syntax

checking

stage

depends

on

the

severity

of

messages

issued

prior

to

this

stage

of

processing.

��

SYNTAX

NOSYNTAX

(

S

)

E

W

��

ABBREVIATIONS:

SYN,

NSYN

SYNTAX

Equivalent

to

NOSYNTAX(S).

NOSYNTAX

No

syntax

checking

is

performed.

NOSYNTAX(S)

No

syntax

checking

is

performed

if

a

severe

error

or

unrecoverable

error

has

been

detected.

NOSYNTAX(E)

No

syntax

checking

is

performed

if

an

error,

severe

error,

or

unrecoverable

error

has

been

detected.

NOSYNTAX(W)

No

syntax

checking

is

performed

if

a

warning,

error,

severe

error,

or

unrecoverable

error

has

been

detected.

If

the

NOSYNTAX

option

terminates

the

compilation,

the

cross-reference

listing,

attribute

listing,

source

listing,

and

other

listings

that

follow

the

source

program

are

not

produced.

SYSPARM

This

option

allows

you

to

specify

the

value

of

the

string

that

is

returned

by

the

macro

facility

built-in

function

SYSPARM.

��

SYSPARM

(

’string’

)

��

string

This

string

can

be

up

to

64

characters

long.

A

null

string

is

the

default,

however,

if

you

choose

to

specify

a

string

value,

see

the

note

on

strings

in

step

2

on

page

33

under

“Rules

for

using

compile-time

options”.

For

more

information

about

the

macro

facility,

see

the

PL/I

Language

Reference.

DEFAULT:

SYSPARM('')

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

69

SYSTEM

This

option

specifies

the

operating

system

and

hardware

platform

under

which

the

PL/I

program

will

run.

It

also

enforces

the

parameters

that

can

be

received

by

a

MAIN

procedure.

In

addition,

a

suboption

allows

you

to

exploit

the

hardware

platform

on

which

the

object

code

will

run.

��

SYSTEM

(

WINDOWS

CICS

IMS

)

��

WINDOWS

Specifies

that

the

program

runs

under

WINDOWS.

CICS

Specifies

that

the

program

runs

under

CICS.

IMS

Specifies

that

the

program

will

run

under

IMS.

S486

The

object

code

is

intended

to

run

on

a

machine

which

has

an

80486

or

compatible

chip.

The

code

runs

on

machines

with

a

Pentium

chip,

but

not

a

386

chip.

Pentium

The

object

code

is

intended

to

run

on

a

machine

with

a

Pentium

chip.

The

code

does

not

run

on

machines

without

a

Pentium

chip.

For

MAIN

procedures

compiled

with

SYSTEM(CICS),

OPTIONS

(BYVALUE)

is

assumed

and

PROCEDURE

OPTIONS(BYADDR),

if

specified,

is

diagnosed.

TERMINAL

This

option

determines

whether

or

not

diagnostic

and

information

messages

produced

during

compilation

are

displayed

on

the

terminal.

��

TERMINAL

NOTERMINAL

��

ABBREVIATIONS:

TERM,

NTERM

TERMINAL

Messages

are

displayed

on

the

terminal.

NOTERMINAL

No

information

or

diagnostic

compiler

messages

are

displayed

on

the

terminal.

TEST

The

TEST

option

specifies

the

level

of

testing

capability

generated

as

part

of

the

object

code.

It

allows

you

to

control

the

location

of

test

hooks

and

to

control

whether

or

not

the

symbol

table

is

generated.

Compile-time

options

70

PL/I

for

Windows:

Programming

Guide

��

NOTEST

TEST

��

The

TEST

option

implies

GONUMBER.

Because

the

TEST

option

can

increase

the

size

of

the

object

code

and

can

affect

performance,

you

might

want

to

limit

the

number

and

placement

of

hooks.

NOTEST

Suppresses

the

generation

of

all

testing

information.

TEST

Specifies

that

testing

information

should

be

included

in

the

object

code.

USAGE

The

USAGE

option

lets

you

choose

IBM

or

ANS

semantics

for

selected

built-in

functions.

��

USAGE

(

�

,

IBM

ROUND

(

ANS

)

IBM

UNSPEC

(

ANS

)

)

��

ROUND(

IBM

|

ANS

)

Under

the

ROUND(IBM)

suboption,

the

second

argument

to

the

ROUND

built-in

function

is

ignored

if

the

first

argument

has

the

FLOAT

attribute.

Under

the

ROUND(ANS)

suboption,

the

ROUND

built-in

function

is

implemented

as

described

in

the

OS

PL/I

Version

2

Language

Reference.

UNSPEC(

IBM

|

ANS

)

Under

the

UNSPEC(IBM)

suboption,

UNSPEC

cannot

be

applied

to

a

structure

and,

if

applied

to

an

array,

returns

an

array

of

bit

strings.

Under

the

UNSPEC(ANS)

suboption,

UNSPEC

can

be

applied

to

structures

and,

when

applied

to

a

structure

or

an

array,

UNSPEC

returns

a

single

bit

string.

WIDECHAR

The

WIDECHAR

option

specifies

the

format

in

which

WIDECHAR

data

will

be

stored.

��

WIDECHAR

(

BIGENDIAN

LITTLEENDIAN

)

��

BIGENDIAN

Indicates

that

WIDECHAR

data

will

be

stored

in

bigendian

format.

For

instance,

the

WIDECHAR

value

for

the

UTF-16

character

’1’

will

be

stored

as

’0031’x.

LITTLEENDIAN

Indicates

that

WIDECHAR

data

will

be

stored

in

littleendian

format.

For

instance,

the

WIDECHAR

value

for

the

UTF-16

character

’1’

will

be

stored

as

’3100’x.

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

71

WX

constants

should

always

be

specified

in

bigendian

format.

Thus

the

value

’1’

should

always

be

specified

as

’0031’wx,

even

if

under

the

WIDECHAR(LITTLEENDIAN)

option,

it

is

stored

as

’3100’x.

DEFAULT:

WIDECHAR(

LITTLEENDIAN

)

WINDOW

The

WINDOW

option

sets

the

value

for

the

w

window

argument

used

in

various

date-related

built-in

functions.

��

WINDOW

(

w

)

��

The

value

for

w

is

either

an

unsigned

integer

that

represents

the

start

of

a

fixed

window

or

a

negative

integer

that

specifies

a

″sliding″

window.

For

example,

Window(-20)

indicates

a

window

that

starts

20

years

prior

to

the

year

when

the

program

runs.

DEFAULT:

WINDOW(1950)

XINFO

The

XINFO

option

specifies

that

the

compiler

should

generate

additional

files

with

extra

information

about

the

current

compilation

unit.

DEF

A

definition

side-deck

file

is

created.

This

file

lists,

for

the

compilation

unit,

all:

v

defined

EXTERNAL

procedures

v

defined

EXTERNAL

variables

v

statically

referenced

EXTERNAL

routines

and

variables

v

dynamically

called

FETCHED

modules

Under

batch,

this

file

is

written

to

the

file

specified

by

the

SYSDEFSD

DD

statement.

Under

Unix

Systems

Services,

this

file

is

written

to

the

same

directory

as

the

object

deck

and

has

the

extension

″def″.

For

instance,

given

the

program:

defs:

proc;

dcl

(b,c)

ext

entry;

dcl

x

ext

fixed

bin(31)

init(1729);

dcl

y

ext

fixed

bin(31)

reserved;

call

b(y);

fetch

c;

call

c;

end;

The

following

def

file

would

be

produced:

EXPORTS

CODE

DEFS

EXPORTS

DATA

X

IMPORTS

B

Y

FETCH

C

The

def

file

can

be

used

to

be

build

a

dependency

graph

or

cross-reference

analysis

of

your

application.

Compile-time

options

72

PL/I

for

Windows:

Programming

Guide

NODEF

No

definition

side-deck

file

is

created.

XML

An

XML

side-file

is

created.

This

XML

file

includes:

v

the

file

reference

table

for

the

compilation

v

the

block

structure

of

the

program

compiled

v

the

messages

produced

during

the

compilation

Under

batch,

this

file

is

written

to

the

file

specified

by

the

SYSXMLSD

DD

statement.

Under

Unix

Systems

Services,

this

file

is

written

to

the

same

directory

as

the

object

deck

and

has

the

extension

″xml″.

The

DTD

file

for

the

XML

produced

is:

<?xml

encoding="UTF-8"?>

<!ELEMENT

PACKAGE

((PROCEDURE)*,(MESSAGE)*,FILEREFERNCETABLE)>

<!ELEMENT

PROCEDURE

(BLOCKFILE,BLOCKLINE,(PROCEDURE)*,(BEGINBLOCK)*)>

<!ELEMENT

BEGINBLOCK

(BLOCKFILE,BLOCKLINE,(PROCEDURE)*,(BEGINBLOCK)*)>

<!ELEMENT

MESSAGE

(MSGNUMBER,MSGLINE?,MSGFILE?,MSGTEXT)>

<!ELEMENT

FILE

(FILENUMBER,INCLUDEDFROMFILE?,INCLUDEDONLINE?,FILENAME)>

<!ELEMENT

FILEREFERENCETABLE

(FILECOUNT,FILE+)>

<!ELEMENT

BLOCKFILE

(#PCDATA)>

<!ELEMENT

BLOCKLINE

(#PCDATA)>

<!ELEMENT

MSGNUMBER

(#PCDATA)>

<!ELEMENT

MSGLINE

(#PCDATA)>

<!ELEMENT

MSGFILE

(#PCDATA)>

<!ELEMENT

MSGTEXT

(#PCDATA)>

<!ELEMENT

FILECOUNT

(#PCDATA)>

<!ELEMENT

FILENUMBER

(#PCDATA)>

<!ELEMENT

FILENAME

(#PCDATA)>

<!ELEMENT

INCLUDEFROMFILE

(#PCDATA)>

<!ELEMENT

INCLUDEDONLINE

(#PCDATA)>

NOXML

No

XML

side-file

is

created.

XREF

The

XREF

option

provides

a

cross-reference

table

of

names

used

in

the

program

together

with

the

numbers

of

the

statements

in

which

they

are

declared

or

referenced

in

the

compiler

listing.

��

NOXREF

XREF

��

ABBREVIATIONS:

X,

NX

NOXREF

Indicates

that

the

compiler

should

not

produce

this

information

as

part

of

the

listing.

XREF

Specifies

that

the

compiler

should

produce

a

cross-reference

list.

In

addition

to

the

cross-reference

list,

the

compiler

produces

a

listing

of

unreferenced

identifiers.

In

this

list,

variables

do

not

appear

if

they

are

named

constants

or

static

nonassignable

variables.

If

any

field

in

a

union

or

structure

Compile-time

options

Chapter

5.

Compile-time

option

descriptions

73

is

referenced,

the

name

of

the

union

or

structure

does

not

appear.

Level

1

names

for

unions

or

structures

appear

only

if

none

of

the

members

are

referenced.

For

an

example

and

description

of

the

content

of

the

cross-reference

table,

see

“Using

the

compiler

listing”

on

page

105.

If

both

XREF

and

ATTRIBUTES

are

specified,

the

two

listings

are

combined.

Compile-time

options

74

PL/I

for

Windows:

Programming

Guide

Chapter

6.

PL/I

preprocessors

Include

preprocessor

.

.

.

.

.

.

.

.

.

.

. 76

Examples:

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Include

preprocessor

options

environment

variable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Macro

preprocessor

.

.

.

.

.

.

.

.

.

.

.

. 77

Macro

preprocessor

options

.

.

.

.

.

.

.

. 77

Macro

facility

options

environment

variables

.

. 78

SQL

support

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Programming

and

compilation

considerations

.

. 79

SQL

preprocessor

options

.

.

.

.

.

.

.

.

. 80

Abbreviations:

.

.

.

.

.

.

.

.

.

.

.

. 81

SQL

preprocessor

options

environment

variable

84

SQL

preprocessor

BIND

environment

variables

84

Coding

SQL

statements

in

PL/I

applications

.

. 85

Defining

the

SQL

communications

area

.

.

. 85

Defining

SQL

descriptor

areas

.

.

.

.

.

. 85

Embedding

SQL

statements

.

.

.

.

.

.

. 86

Using

host

variables

.

.

.

.

.

.

.

.

. 87

Determining

equivalent

SQL

and

PL/I

data

types

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Large

Object

(LOB)

support

.

.

.

.

.

.

.

. 90

General

information

on

LOBs

.

.

.

.

.

. 90

PL/I

variable

declarations

for

LOB

Support

. 91

Sample

programs

for

LOB

support

.

.

.

. 92

User

defined

functions

sample

programs

.

.

. 92

Determining

compatibility

of

SQL

and

PL/I

data

types

.

.

.

.

.

.

.

.

.

.

.

.

. 94

Using

host

structures

.

.

.

.

.

.

.

.

. 94

Using

indicator

variables

.

.

.

.

.

.

.

. 95

Host

structure

example

.

.

.

.

.

.

.

. 96

CONNECT

TO

statement

.

.

.

.

.

.

.

. 96

DECLARE

TABLE

statement

.

.

.

.

.

.

. 97

DECLARE

STATEMENT

statement

.

.

.

. 97

Logical

NOT

sign

(¬)

.

.

.

.

.

.

.

.

. 97

Handling

SQL

error

return

codes

.

.

.

.

. 97

Use

of

varying

strings

under

DFT(EBCDIC

NONNATIVE)

.

.

.

.

.

.

.

.

.

.

. 98

Using

the

DEFAULT(EBCDIC)

compile-time

option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

SQL

compatibility

and

migration

considerations

.

.

.

.

.

.

.

.

.

.

. 99

CICS

support

.

.

.

.

.

.

.

.

.

.

.

.

. 100

Programming

and

compilation

considerations

100

CICS

preprocessor

options

.

.

.

.

.

.

.

. 102

Abbreviations:

.

.

.

.

.

.

.

.

.

.

.

. 102

CICS

preprocessor

options

environment

variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Coding

CICS

statements

in

PL/I

applications

103

Embedding

CICS

statements

.

.

.

.

.

. 103

Writing

CICS

transactions

in

PL/I

.

.

.

.

. 103

CICS

abends

used

for

PL/I

programs

.

.

.

. 104

CICS

run-time

user

exit

.

.

.

.

.

.

.

.

. 104

The

PL/I

compiler

allows

you

to

select

one

or

more

of

the

integrated

preprocessors

as

required

for

use

in

your

program.

You

can

select

the

include

preprocessor,

macro

facility,

the

SQL

preprocessor,

or

the

CICS

preprocessor

and

the

order

in

which

you

would

like

them

to

be

called.

v

The

include

preprocessor

processes

special

include

directives

and

incorporates

external

source

files.

v

The

macro

facility,

based

on

%statements

and

macros,

modifies

your

source

program.

v

The

SQL

preprocessor

modifies

your

source

program

and

translates

EXEC

SQL

statements

into

PL/I

statements.

v

The

CICS

preprocessor

modifies

your

source

program

and

translates

EXEC

CICS

statements

into

PL/I

statements.

Each

preprocessor

supports

a

number

of

options

to

allow

you

to

tailor

the

processing

to

your

needs.

You

can

set

the

default

options

for

each

of

the

preprocessors

by

using

the

corresponding

attributes

in

the

configuration

file.

75

Include

preprocessor

The

include

preprocessor

allows

you

to

incorporate

external

source

files

into

your

programs

by

using

include

directives

other

than

the

PL/I

directive

%INCLUDE.

The

following

syntax

diagram

illustrates

the

options

supported

by

the

INCLUDE

preprocessor:

��

PP

(

INCLUDE

(

'

ID(<directive>)

'

)

)

��

ID

Specifies

the

name

of

the

include

directive.

Any

line

that

starts

with

this

directive

as

the

first

set

of

nonblank

characters

is

treated

as

an

include

directive.

The

specified

directive

must

be

followed

by

one

or

more

blanks,

an

include

member

name,

and

finally

an

optional

semicolon.

Syntax

for

ddname(membername)

is

not

supported.

In

the

following

example,

the

first

include

directive

is

valid

and

the

second

one

is

not:

++include

payroll

++include

syslib(payroll)

Examples:

This

first

example

causes

all

lines

that

start

with

-INC

(and

possibly

preceding

blanks)

to

be

treated

as

include

directives:

pp(

include(

’id(-inc)’))

This

second

example

causes

all

lines

that

start

with

++INCLUDE

(and

possibly

preceding

blanks)

to

be

treated

as

include

directives:

pp(

include(

’id(++include)’))

Include

preprocessor

options

environment

variable

You

can

set

the

default

options

for

the

include

preprocessor

by

using

the

IBM.PPINCLUDE

environment

variable.

See

“IBM.PPINCLUDE”

on

page

26.

Include

preprocessor

76

PL/I

for

Windows:

Programming

Guide

Macro

preprocessor

Macros

allow

you

to

write

commonly

used

PL/I

code

in

a

way

that

hides

implementation

details

and

the

data

that

is

manipulated,

and

exposes

only

the

operations.

In

contrast

with

a

generalized

subroutine,

macros

allow

generation

of

only

the

code

that

is

needed

for

each

individual

use.

The

macro

preprocessing

facilities

of

the

compiler

are

described

in

the

PL/I

Language

Reference

manual.

You

can

invoke

the

macro

preprocessor

by

specifying

either

the

MACRO

option

or

the

PP(MACRO)

option.

You

can

specify

PP(MACRO)

without

any

options

or

with

options

from

the

list

below.

The

defaults

for

all

these

options

cause

the

macro

preprocessor

to

behave

the

same

as

the

OS

PL/I

V2R3

macro

preprocessor.

If

options

are

specified,

the

list

must

be

enclosed

in

quotes

(single

or

double,

as

long

as

they

match)

;

for

example,

to

specify

the

FIXED(BINARY)

option,

you

must

specify

PP(MACRO(’FIXED(BINARY)’)).

If

you

want

to

specify

more

than

one

option,

you

must

separate

them

with

a

comma

and/or

one

or

more

blanks.

For

example,

to

specify

the

CASE(ASIS)

and

RESCAN(UPPER)

options,

you

can

specify

PP(MACRO(’CASE(ASIS)

RESCAN(UPPER)’))

or

PP(MACRO(″CASE(ASIS),RESCAN(UPPER)″)).

You

may

specify

the

options

in

any

order.

Macro

preprocessor

options

The

macro

preprocessor

supports

the

following

options:

FIXED

This

option

specifies

the

default

base

for

FIXED

variables.

��

DECIMAL

FIXED

(

BINARY

)

��

DECIMAL

FIXED

variables

will

have

the

attributes

REAL

FIXED

DEC(5).

BINARY

FIXED

variables

will

have

the

attributes

REAL

SIGNED

FIXED

BIN(31).

CASE

This

option

specifies

if

the

preprocessor

should

convert

the

input

text

to

uppercase.

��

UPPER

CASE

(

ASIS

)

��

ASIS

the

input

text

is

left

″as

is″.

UPPER

the

input

text

is

to

be

converted

to

upper

case.

Macro

facility

Chapter

6.

PL/I

preprocessors

77

RESCAN

This

option

specifies

how

the

preprocessor

should

handle

the

case

of

identifiers

when

rescanning

text.

��

ASIS

RESCAN

(

UPPER

)

��

UPPER

rescans

will

not

be

case-sensitive.

ASIS

rescans

will

be

case-sensitive.

To

see

the

effect

of

this

option,

consider

the

following

code

fragment

%dcl

eins

char

ext;

%dcl

text

char

ext;

%eins

=

’zwei’;

%text

=

’EINS’;

display(

text

);

%text

=

’eins’;

display(

text

);

When

compiled

with

PP(MACRO(’RESCAN(ASIS)’)),

in

the

second

display

statement,

the

value

of

text

is

replaced

by

eins,

but

no

further

replacement

occurs

since

under

RESCAN(ASIS),

eins

does

not

match

the

macro

variable

eins

since

the

former

is

left

asis

while

the

latter

is

uppercased.

Hence

the

following

text

would

be

generated

DISPLAY(

zwei

);

DISPLAY(

eins

);

But

when

compiled

with

PP(MACRO(’RESCAN(UPPER)’)),

in

the

second

display

statement,

the

value

of

text

is

replaced

by

eins,

but

further

replacement

does

occur

since

under

RESCAN(UPPER),

eins

does

match

the

macro

variable

eins

since

both

are

uppercased.

Hence

the

following

text

would

be

generated

DISPLAY(

zwei

);

DISPLAY(

zwei

);

In

short:

RESCAN(UPPER)

ignores

case

while

RESCAN(ASIS)

does

not.

You

can

set

the

default

options

for

the

macro

preprocessor

by

using

the

set

IBM.PPMACRO

command.

Macro

facility

options

environment

variables

You

can

set

the

default

options

for

the

macro

facility

by

using

the

IBM.PPMACRO

environment

variable.

See

“IBM.PPMACRO”

on

page

26.

Macro

facility

78

PL/I

for

Windows:

Programming

Guide

SQL

support

You

can

use

dynamic

and

static

EXEC

SQL

statements

in

PL/I

applications.

Before

you

can

take

advantage

of

EXEC

SQL

support,

you

must

have

installed

IBM

DB2

Universal

Database

(herinafter

referred

to

as

DB2)

for

Windows.

Workstation

PL/I

products

support

most

of

the

function

in

DB2

and

increased

function

will

be

added

in

each

successive

release.

If

you

specify

newer

DB2

functions

while

using

a

downlevel

DB2

product,

warning

messages

are

generated

and

those

newer

options

are

ignored.

Programming

and

compilation

considerations

You

need

to

consider

specific

options

when

using

PL/I

SQL

support.

The

following

table

describes

these

considerations.

Table

3.

Considerations

for

EXEC

SQL

support

If

the

target

system

is...

Use

this

compile-time

option...

Windows

using

DB2

for

Windows

in

native

mode

DEFAULT

(ASCII

NATIVE

IEEE)

CICS

using

DB2

for

Windows

in

native

mode

DEFAULT

(ASCII

NATIVE

IEEE)

CICS

VS/86

using

DB2

for

Windows

in

S/390

emulation

mode

DEFAULT

(EBCDIC

NONNATIVE

HEXADEC)

IMS

using

DB2

for

Windows

in

S/390

emulation

mode

DEFAULT

(EBCDIC

NONNATIVE

HEXADEC)

ISPF

dialog

manager

using

DB2

for

Windows

in

S/390

emulation

mode

DEFAULT

(EBCDIC

NONNATIVE)

When

you

have

EXEC

SQL

statements

in

your

PL/I

source

program,

use

the

PP(SQL)

option

to

process

those

statements:

pp(sql(option-string))

In

the

preceding

example,

option-string

is

a

character

string

enclosed

in

quotes.

For

example,

pp(sql('dbname(Sample)')

tells

the

preprocessor

to

work

with

the

SAMPLE

database.

If

you

are

using

EXEC

SQL

statements

in

your

program,

you

must

specify

the

SQL

library

in

addition

to

the

other

link

libraries

in

the

linking

command,

for

example:

ilink

myprog.obj

db2api.lib

SQL

Users

You

must

have

DB2

for

Windows

installed

and

started

before

you

can

compile

a

program

containing

EXEC

SQL

statements.

To

find

out

how

to

install

DB2,

refer

to

database

installation

guide

for

the

platform

you

are

using.

You

can

start

the

database

manager

by

issuing

the

following

at

a

command

prompt:

db2start

SQL

support

Chapter

6.

PL/I

preprocessors

79

SQL

preprocessor

options

The

following

syntax

diagram

illustrates

all

of

the

options

supported

by

the

SQL

preprocessor.

��

PP

(

SQL

(

'

DBNAME

(dbname)

BLOCK

UNAMBIG

(

)

ALL

NO

�

�

NOBIND

BIND

(

)

bindname

DATETIME

DEF

(

)

USA

EUR

ISO

JIS

LOC

�

�

ISOLATION

CS

(

)

RR

UR

ONEPASS

TWOPASS

PLAN

(

)

planname

NOPLAN

NOPLANSYNTAX

�

�

NOPRINT

PRINT

NOSOURCE

SOURCE

NODECK

DECK

NOOPTIMIZE

OPTIMIZE

�

�

INSERT

DEF

(

)

BUF

SQLFLAG

MVSDB2V23

(

)

MVSDB2V31

MVSDB2V41

�

�

COLLECTION

(

)

schema-name

CONNECT

1

(

)

2

�

�

DISCONNECT

EXPLICIT

(

)

AUTOMATIC

CONDITIONAL

SQLRULES

DB2

(

)

STD

�

SQL

support

80

PL/I

for

Windows:

Programming

Guide

�

SYNCPOINT

ONEPHASE

(

)

TWOPHASE

NONE

DBUID(userid)

DBPWD(password)

�

�

'

)

)

��

Abbreviations:

DB,

BLK,

DT,

ISOL,

ON,

TW,

S,

NS,

D,

ND,

OPT,

NOPT,

INS,

COL,

CON,

DISC,

SQLR,

SYNC

DBNAME

Specifies

the

original

or

alias

name

of

a

database.

This

option

directs

the

preprocessor

to

process

the

SQL

statements

against

the

specified

database.

If

you

omit

this

option

or

do

not

specify

a

database

name,

the

preprocessor

uses

the

default

database

if

an

implicit

connect

is

enabled.

The

default

database

is

specified

by

the

environment

variable

DB2DBDFT.

Further

information

is

available

in

your

DB2

documentation.

The

preprocessor

must

have

a

database

to

work

with

or

an

error

occurs.

BLOCK

Specifies

the

type

of

record

blocking

to

be

used

and

how

ambiguous

cursors

are

to

be

treated.

The

valid

values

for

this

option

are:

UNAMBIG

Blocking

occurs

for

read-only

cursors,

those

that

are

not

specified

as

FOR

UPDATE

OF,

have

no

static

DELETE

WHERE

CURRENT

OF

statements,

and

have

no

dynamic

statements.

Ambiguous

cursors

can

be

updated.

ALL

Blocking

occurs

for

read-only

cursors,

those

that

are

not

specified

as

FOR

UPDATE

OF,

and

for

which

no

static

DELETE

WHERE

CURRENT

OF

statements

are

executed.

Ambiguous

and

dynamic

cursors

are

treated

as

read-only.

NO

No

blocking

is

done

on

any

cursors

in

the

package.

Ambiguous

cursors

can

be

updated.

BIND

or

NOBIND

Determines

whether

or

not

a

bind

file

bindname

is

created.

The

bind

file

has

an

extension

.BND

and

is

saved

either

in

the

current

directory

or

the

directory

specified

by

the

IBM_BIND

environment

variable.

If

you

do

not

specify

a

bindname,

the

name

defaults

to

the

name

of

the

input

source

file.

DATETIME

Determines

the

date

and

time

format

used

when

date

and

time

fields

are

assigned

to

string

representations

in

host

variables.

The

following

three-letter

abbreviations

are

valid

for

the

variable

location:

DEF

Use

the

date/time

format

associated

with

the

country

code

of

the

database.

This

is

also

the

default

if

DATETIME

is

not

specified.

USA

IBM

standard

for

U.S.

form.

Date

format:

mm/dd/yyyy

Time

format:

hh:mm

xM

(AM

or

PM)
EUR

IBM

standard

for

European

form.

Date

format:

dd.mm.yyyy

SQL

support

Chapter

6.

PL/I

preprocessors

81

Time

format:

hh.mm.ss
ISO

International

Standards

Organization.

Date

format:

yyyy-mm-dd

Time

format:

hh.mm.ss
JIS

Japanese

Industrial

Standards.

Date

format:

yyyy-mm-dd

Time

format:

hh:mm:ss
LOC

Local

form,

not

necessarily

equal

to

DEF

ISOLATION

Specifies

the

isolation

level

at

which

your

program

runs.

CS

Cursor

stability

RR

Repeatable

read

UR

Uncommitted

read

ONEPASS

or

TWOPASS

ONEPASS

is

the

default

and

indicates

that

host

variables

must

be

declared

before

use.

Use

of

TWOPASS

indicates

that

host

variables

do

not

need

to

be

declared

before

use.

PLAN,

NOPLAN,

or

NOPLANSYNTAX

Determines

whether

or

not

an

access

plan

planname

is

created.

If

you

do

not

specify

a

planname,

the

name

defaults

to

the

name

of

the

input

source

file.

If

you

specify

NOPLANSYNTAX,

no

plan

is

created

and

a

syntax

check

is

performed

against

DB2

Version

2.1

syntax.

PRINT

or

NOPRINT

Specifies

whether

or

not

the

source

code

generated

by

the

SQL

preprocessor

is

printed

in

the

source

listing(s)

produced

by

subsequent

preprocessors

or

the

compiler.

SOURCE

or

NOSOURCE

Specifies

whether

or

not

the

source

input

to

the

SQL

preprocessor

is

printed.

DECK

or

NODECK

This

option

specifies

that

the

SQL

preprocessor

output

source

is

written

to

a

file

with

the

extension

.DEK

and

the

file

is

put

the

current

directory.

OPTIMIZE

or

NOOPTIMIZE

If

you

specify

OPTIMIZE,

SQLDA

initialization

is

optimized

for

SQL

statements

that

use

host

variables.

Do

not

specify

this

option

when

using

AUTOMATIC

host

variables

or

in

other

situations

when

the

address

of

the

host

variable

might

change

during

the

execution

of

the

program.

(NOOPTIMIZE)

is

the

default.

INSERT

Requests

that

the

data

inserts

be

buffered

to

increase

performance

on

the

DB2/6000

Parallel

Edition

server.

DEF

Use

standard

INSERT

with

VALUES

execution.

This

is

the

default

setting.

BUF

Use

buffering

when

executing

INSERTs

with

VALUES.

Note:

This

option

can

only

be

used

when

precompiling

against

a

DB2

Parallel

Edition

server.

If

INSERT

is

used

against

a

DB2

V1.x

server,

it

is

ignored

and

a

warning

message

is

issued.

If

INSERT

is

used

against

a

DB2

V2.x

server,

it

is

ignored,

a

warning

message

is

issued,

and

the

option

is

added

to

the

bind

file.

SQL

support

82

PL/I

for

Windows:

Programming

Guide

SQLFLAG

Identifies

and

reports

on

deviations

from

SQL

language

syntax

specified

in

this

option.

If

this

option

is

not

specified,

the

flagger

function

is

not

invoked.

Further

information

is

available

in

your

DB2

documentation.

MVSDB2V23

SQL

statements

are

checked

against

the

MVS

DB2

V2.3

SQL

language

syntax.

This

is

the

default

setting.

MVSDB2V31

SQL

statements

are

checked

against

the

MVS

DB2

V3.1

SQL

language

syntax.

MVSDB2V41

SQL

statements

are

checked

against

the

MVS

DB2

V4.1

SQL

language

syntax.

COLLECTION

Specifies

an

eight

character

collection

identifier

for

the

package.

schema-name

Eight

character

identifier.

There

is

no

default

value

for

the

COLLECTION

option.

If

the

COLLECTION

is

specified,

a

schema-name

must

also

be

provided.

CONNECT

Specifies

the

type

of

CONNECT

that

is

made

to

the

database.

1

Specifies

that

a

CONNECT

command

is

processed

as

a

type

1

CONNECT.

This

is

the

default

setting.

2

Specifies

that

a

CONNECT

command

is

processed

as

a

type

2

CONNECT.

The

default

option

value

is

CONNECT(1).

The

following

option

strings

evaluate

to

CONNECT(1):

CON,

CONNECT,

CON(),

and

CONNECT().

DISCONNECT

Specifies

the

type

of

DISCONNECT

that

is

made

to

the

database.

EXPLICIT

Specifies

that

only

database

connections

that

have

been

explicitly

marked

for

release

by

the

RELEASE

statement

are

disconnected

at

commit.

This

is

the

default

setting.

AUTOMATIC

Specifies

that

all

database

connections

are

disconnected

at

commit.

CONDITIONAL

Specifies

that

the

database

connections

that

have

been

marked

RELEASE

or

have

no

open

WITH

HOLD

cursors

are

disconnected

at

commit.

The

default

option

value

is

DISCONNECT(EXPLICIT).

The

following

option

strings

evaluate

to

DISCONNECT(EXPLICIT):

DISC,

DISCONNECT,

DISC(),

DISCONNECT().

SQLRULES

Specifies

whether

type

2

CONNECTs

should

be

processed

according

to

the

DB2

rules

or

the

Standard

(STD)

rules

based

on

ISO/ANS

SQL92.

SQL

support

Chapter

6.

PL/I

preprocessors

83

DB2

Allows

the

use

of

the

SQL

CONNECT

statement

to

switch

the

current

connection

to

another

established

(dormant)

connection.

This

is

the

default

setting.

STD

Allows

the

use

of

the

SQL

CONNECT

statement

to

establish

a

new

connection

only.

The

SQL

SET

CONNECTION

must

be

used

to

switch

to

a

dormant

connection.

The

default

option

value

is

SQLRULES(DB2).

The

following

option

strings

evaluate

to

SQLRULES(DB2):

SQLR,

SQLRULES,

SQLR(),

SQLRULES().

SYNCPOINT

Specifies

how

commits

or

rollbacks

are

coordinated

among

multiple

database

connections.

ONEPHASE

Specifies

that

no

Transaction

Manager

(TM)

is

used

to

perform

a

two-phase

commit.

A

one-phase

commit

is

used

to

commit

the

work

done

by

each

database

in

multiple

database

transactions.

This

is

the

default

setting.

TWOPHASE

Specifies

that

the

TM

is

required

to

coordinate

two-phase

commits

among

those

databases

that

support

this

protocol.

NONE

Specifies

that

no

TM

is

used

to

perform

a

two-phase

commit,

and

does

not

enforce

single

updater,

multiple

reader.

A

COMMIT

is

sent

to

each

participating

database.

The

application

is

responsible

for

recovery

if

any

of

the

commits

fail.

The

default

option

value

is

SYNCPOINT(ONEPHASE).

The

following

option

strings

evaluate

to

SYNCPOINT(ONEPHASE):

SYNC,

SYNCPOINT,

SYNC(),

SYNCPOINT().

DBUID

and

DBPWD

Allows

you

to

specify

a

userid

and

password

for

those

database

managers

which

require

that

these

values

be

supplied

when

a

remote

connection

is

attempted.

For

example,

these

values

might

be

required

during

a

compile

against

a

remote

database

resident

on

a

Windows

server.

The

options

DBUID

and

DBPWD

can

be

in

either

case,

but

the

values

of

userid

(maximum

length

is

8

characters)

and

password

(maximum

length

is

18

characters)

are

case

sensitive.

The

userid

and

password

are

only

used

by

the

SQL

preprocessor

to

connect

to

the

database

manager

during

the

compile

process.

When

the

application

connects

during

execution,

the

userid

and

password

for

that

connect

must

be

provided

on

the

EXEC

SQL

CONNECT

statement

in

the

program.

SQL

preprocessor

options

environment

variable

You

can

set

the

default

options

for

the

SQL

Preprocessor

by

using

the

IBM.PPSQL

environment

variable.

See

“IBM.PPSQL”

on

page

27.

SQL

preprocessor

BIND

environment

variables

If

the

BIND

option

is

specified,

the

SQL

preprocessor

creates

a

bind

file

in

the

current

directory

for

the

program

you

compile.

You

can

change

the

destination

of

the

output

file

by

setting

the

IBM.BIND

environment

variable,

for

example:

SQL

support

84

PL/I

for

Windows:

Programming

Guide

set

ibm.bind=C:\bindlib

The

SQL

bind

output

file

has

the

same

name

as

the

primary

input

file,

unless

otherwise

specified,

and

an

extension

of

BND.

Coding

SQL

statements

in

PL/I

applications

You

can

code

SQL

statements

in

your

PL/I

applications

using

the

language

defined

in

SQL

Reference,

Volume

1

and

Volume

2

(SBOF-8923).

Specific

requirements

for

your

SQL

code

are

described

in

the

sections

that

follow.

Defining

the

SQL

communications

area

A

PL/I

program

that

contains

SQL

statements

must

include

an

SQL

communications

area

(SQLCA)

As

shown

in

Figure

1

part

of

an

SQLCA

consists

of

an

SQLCODE

variable

and

an

SQLSTATE

variable.

v

The

SQLCODE

value

is

set

by

the

Database

Manager

after

each

SQL

statement

is

executed.

An

application

can

check

the

SQLCODE

value

to

determine

whether

the

last

SQL

statement

was

successful.

v

The

SQLSTATE

variable

can

be

used

as

an

alternative

to

the

SQLCODE

variable

when

analyzing

the

result

of

an

SQL

statement.

Like

the

SQLCODE

variable,

the

SQLSTATE

variable

is

set

by

the

Database

Manager

after

each

SQL

statement

is

executed.

The

SQLCA

should

be

included

by

using

the

SQL

INCLUDE

statement:

exec

sql

include

sqlca;

The

SQLCA

must

not

be

defined

within

an

SQL

declare

section.

The

scope

of

the

SQLCODE

and

SQLSTATE

declaration

must

include

the

scope

of

all

SQL

statements

in

the

program.

Defining

SQL

descriptor

areas

The

following

statements

require

an

SQLDA:

PREPARE

statement-name

INTO

descriptor-name

FROM

host-variable

EXECUTE...USING

DESCRIPTOR

descriptor-name

Dcl

1

Sqlca,

2

sqlcaid

char(8),

/*

Eyecatcher

=

’SQLCA

’*/

2

sqlcabc

fixed

binary(31),

/*

SQLCA

size

in

bytes

=

136

*/

2

sqlcode

fixed

binary(31),

/*

SQL

return

code

*/

2

sqlerrm

char(70)

var,

/*

Error

message

tokens

*/

2

sqlerrp

char(8),

/*

Diagnostic

information

*/

2

sqlerrd(6)

fixed

binary(31),

/*

Diagnostic

information

*/

2

sqlwarn,

/*

Warning

flags

*/

3

sqlwarn0

char(1),

3

sqlwarn1

char(1),

3

sqlwarn2

char(1),

3

sqlwarn3

char(1),

3

sqlwarn4

char(1),

3

sqlwarn5

char(1),

3

sqlwarn6

char(1),

3

sqlwarn7

char(1),

2

sqlext,

3

sqlwarn8

char(1),

3

sqlwarn9

char(1),

3

sqlwarna

char(1),

3

sqlstate

char(5);

/*

State

corresponding

to

SQLCODE

*/

Figure

1.

The

PL/I

declaration

of

SQLCA

SQL

support

Chapter

6.

PL/I

preprocessors

85

FETCH...USING

DESCRIPTOR

descriptor-name

OPEN...USING

DESCRIPTOR

descriptor-name

DESCRIBE

statement-name

INTO

descriptor-name

Unlike

the

SQLCA,

there

can

be

more

than

one

SQLDA

in

a

program,

and

an

SQLDA

can

have

any

valid

name.

An

SQLDA

should

be

included

by

using

the

SQL

INCLUDE

statement:

exec

sql

include

sqlda;

The

SQLDA

must

not

be

defined

within

an

SQL

declare

section.

Embedding

SQL

statements

The

first

statement

of

your

PL/I

program

must

be

a

PROCEDURE

or

a

PACKAGE

statement.

You

can

add

SQL

statements

to

your

program

wherever

executable

statements

can

appear.

Each

SQL

statement

must

begin

with

EXEC

(or

EXECUTE)

SQL

and

end

with

a

semicolon

(;).

For

example,

an

UPDATE

statement

might

be

coded

as

follows:

exec

sql

update

Department

export

Mgrno

=

:Mgr_Num

where

Deptno

=

:Int_Dept;

Comments:

In

addition

to

SQL

statements,

PL/I

comments

can

be

included

in

embedded

SQL

statements

wherever

a

blank

is

allowed.

Continuation

for

SQL

statements:

The

line

continuation

rules

for

SQL

statements

are

the

same

as

those

for

other

PL/I

statements.

Including

code:

SQL

statements

or

PL/I

host

variable

declaration

statements

can

be

included

by

placing

the

following

SQL

statement

at

the

point

in

the

source

code

where

the

statements

are

to

be

embedded:

exec

sql

include

member;

Margins:

SQL

statements

must

be

coded

in

columns

m

through

n

where

m

and

n

are

specified

in

the

MARGINS(m,n)

compile-time

option.

Names:

Any

valid

PL/I

variable

name

can

be

used

for

a

host

variable

and

is

subject

to

the

following

restriction:

Do

not

use

host

variable

names,

external

entry

names,

or

access

plan

names

that

begin

with

'SQL',

'DSN',

or

'IBM'.

These

names

are

reserved

for

the

database

manager

or

PL/I.

The

length

of

a

host

variable

name

must

not

exceed

100

characters.

Dcl

1

Sqlda

based(Sqldaptr),

2

sqldaid

char(8),

/*

Eye

catcher

=

’SQLDA

’

*/

2

sqldabc

fixed

binary(31),

/*

SQLDA

size

in

bytes=16+44*SQLN*/

2

sqln

fixed

binary(15),

/*

Number

of

SQLVAR

elements*/

2

sqld

fixed

binary(15),

/*

#

of

used

SQLVAR

elements*/

2

sqlvar(Sqlsize

refer(sqln)),

/*

Variable

Description

*/

3

sqltype

fixed

binary(15),

/*

Variable

data

type

*/

3

sqllen

fixed

binary(15),

/*

Variable

data

length

*/

3

sqldata

pointer,

/*

Pointer

to

variable

data

value*/

3

sqlind

pointer,

/*

Pointer

to

Null

indicator*/

3

sqlname

char(30)

var

;

/*

Variable

Name

*/

dcl

Sqlsize

fixed

binary(15);

/*

number

of

sqlvars

(sqln)

*/

dcl

Sqldaptr

pointer;

Figure

2.

The

PL/I

declaration

of

an

SQL

descriptor

area

SQL

support

86

PL/I

for

Windows:

Programming

Guide

Statement

labels:

With

the

exception

of

the

END

DECLARE

SECTION

statement,

and

the

INCLUDE

text-file-name

statement,

executable

SQL

statements,

like

PL/I

statements,

can

have

a

label

prefix.

WHENEVER

statement:

The

target

for

the

GOTO

clause

in

an

SQL

WHENEVER

statement

must

be

a

label

in

the

PL/I

source

code

and

must

be

within

the

scope

of

any

SQL

statements

affected

by

the

WHENEVER

statement.

Using

host

variables

All

host

variables

used

in

SQL

statements

must

be

explicitly

declared.

If

ONEPASS

is

in

effect,

a

host

variable

used

in

an

SQL

statement

must

be

declared

prior

to

the

first

use

of

the

host

variable

in

an

SQL

statement.

In

addition:

v

All

host

variables

within

an

SQL

statement

must

be

preceded

by

a

colon

(:).

v

The

names

of

host

variables

must

be

unique

within

the

program,

even

if

the

host

variables

are

in

different

blocks

or

procedures.

v

An

SQL

statement

that

uses

a

host

variable

must

be

within

the

scope

of

the

statement

in

which

the

variable

was

declared.

v

Host

variables

cannot

be

declared

as

an

array,

although

an

array

of

indicator

variables

is

allowed

when

the

array

is

associated

with

a

host

structure.

Declaring

host

variables:

Host

variable

declarations

can

be

made

at

the

same

place

as

regular

PL/I

variable

declarations.

Only

a

subset

of

valid

PL/I

declarations

are

recognized

as

valid

host

variable

declarations.

The

preprocessor

does

not

use

the

data

attribute

defaults

specified

in

the

PL/I

DEFAULT

statement.

If

the

declaration

for

a

variable

is

not

recognized,

any

statement

that

references

the

variable

might

result

in

the

message

“The

host

variable

token

ID

is

not

valid”.

Only

the

names

and

data

attributes

of

the

variables

are

used

by

the

preprocessor;

the

alignment,

scope,

and

storage

attributes

are

ignored.

Numeric

host

variables:

The

following

figure

shows

the

syntax

for

valid

numeric

host

variable

declarations.

��

DECLARE

DCL

�

variable-name

,

(

variable-name

)

�

�

FIXED

BINARY

(precision

)

BIN

,scale

DECIMAL

FLOAT

DEC

(

precision

)

�

�

Alignment

and/or

Scope

and/or

Storage

;

��

Notes

v

BINARY/DECIMAL

and

FIXED/FLOAT

can

be

specified

in

either

order.

v

The

precision

and

scale

attributes

can

follow

BINARY/DECIMAL.

v

A

value

for

scale

can

only

be

specified

for

DECIMAL

FIXED.

SQL

support

Chapter

6.

PL/I

preprocessors

87

Character

host

variables:

The

following

figure

shows

the

syntax

for

valid

character

host

variables.

��

DECLARE

DCL

�

variable-name

,

(

variable-name

)

�

�

CHARACTER

CHAR

(length)

VARYING

VAR

�

�

Alignment

and/or

Scope

and/or

Storage

;

��

Notes

v

For

non-varying

character

host

variables,

length

must

be

a

constant

no

greater

than

the

maximum

length

of

SQL

CHAR

data.

v

For

varying-length

character

host

variables,

length

must

be

a

constant

no

greater

than

the

maximum

length

of

SQL

LONG

VARCHAR

data.

Graphic

host

variables:

The

following

figure

shows

the

syntax

for

valid

graphic

host

variables.

��

DECLARE

DCL

�

variable-name

,

(

variable-name

)

GRAPHIC

(length)

VARYING

VAR

�

�

Alignment

and/or

Scope

and/or

Storage

;

��

Notes

v

For

non-varying

graphic

host

variables,

length

must

be

a

constant

no

greater

than

the

maximum

length

of

SQL

GRAPHIC

data.

v

For

varying-length

graphic

host

variables,

length

must

be

a

constant

no

greater

than

the

maximum

length

of

SQL

LONG

VARGRAPHIC

data.

Determining

equivalent

SQL

and

PL/I

data

types

The

base

SQLTYPE

and

SQLLEN

of

host

variables

are

determined

according

to

the

following

table.

If

a

host

variable

appears

with

an

indicator

variable,

the

SQLTYPE

is

the

base

SQLTYPE

plus

one.

Table

4.

SQL

data

types

generated

from

PL/I

declarations

PL/I

Data

Type

SQLTYPE

of

Host

Variable

SQLLEN

of

Host

Variable

SQL

Data

Type

BIN

FIXED(n),

n

<

16

500

2

SMALLINT

BIN

FIXED(n),

n

ranges

from

16

to

31

496

4

INTEGER

DEC

FIXED(p,s)

484

p

(byte

1)

s

(byte

2)

DECIMAL(p,s)

BIN

FLOAT(p),

22

≤

p

≤

53

480

8

FLOAT

DEC

FLOAT(m),

7

≤

m

≤

16

480

8

FLOAT

SQL

support

88

PL/I

for

Windows:

Programming

Guide

Table

4.

SQL

data

types

generated

from

PL/I

declarations

(continued)

PL/I

Data

Type

SQLTYPE

of

Host

Variable

SQLLEN

of

Host

Variable

SQL

Data

Type

CHAR(n),

1

≤

n

≤

254

452

n

CHAR(n)

CHAR(n)

VARYING,

1

≤

n

≤

4000

448

n

VARCHAR(n)

CHAR(n)

VARYING,

n

>

4000

456

n

LONG

VARCHAR

GRAPHIC(n),

1

≤

n

≤

127

468

n

GRAPHIC(n)

GRAPHIC(n)

VARYING,

1

≤

n

≤

2000

464

n

VARGRAPHIC(n)

GRAPHIC(n)

VARYING,

n

>

2000

472

n

LONG

VARGRAPHIC

Since

SQL

does

not

have

single

or

extended

precision

floating-point

data

type,

if

a

single

or

extended

precision

floating-point

host

variable

is

used

to

insert

data,

it

is

converted

to

a

double

precision

floating-point

temporary

and

the

value

in

the

temporary

is

inserted

into

the

database.

If

the

single

or

extended

precision

floating-point

host

variable

is

used

to

retrieve

data,

a

double

precision

floating-point

temporary

is

used

to

retrieve

data

from

the

database

and

the

result

in

the

temporary

variable

is

assigned

to

the

host

variable.

The

following

table

can

be

used

to

determine

the

PL/I

data

type

that

is

equivalent

to

a

given

SQL

data

type.

Table

5.

SQL

data

types

mapped

to

PL/I

declarations

SQL

Data

Type

PL/I

Equivalent

Notes

SMALLINT

BIN

FIXED(15)

INTEGER

BIN

FIXED(31)

DECIMAL(p,s)

DEC

FIXED(p)

or

DEC

FIXED(p,s)

p

=

precision

and

s

=

scale;

1

≤

p

≤

31

and

0

≤

s

≤

p

FLOAT

BIN

FLOAT(p)

or

DEC

FLOAT(m)

22

≤

p

≤

53

7

≤

m

≤

16

CHAR(n)

CHAR(n)

1

≤

n

≤

254

VARCHAR(n)

CHAR(n)

VAR

1

≤

n

≤

4000

LONG

VARCHAR

CHAR(n)

VAR

n

>

4000

GRAPHIC(n)

GRAPHIC(n)

n

is

a

positive

integer

from

1

to

127

that

refers

to

the

number

of

double-byte

characters,

not

to

the

number

of

bytes

VARGRAPHIC(n)

GRAPHIC(n)

VAR

n

is

a

positive

integer

that

refers

to

the

number

of

double-byte

characters,

not

to

the

number

of

bytes;

1

≤

n

≤

2000

LONG

VARGRAPHIC

GRAPHIC(n)

VAR

n

>

2000

DATE

CHAR(n)

n

must

be

at

least

10

TIME

CHAR(n)

n

must

be

at

least

8

TIMESTAMP

CHAR(n)

n

must

be

at

least

26

SQL

support

Chapter

6.

PL/I

preprocessors

89

Large

Object

(LOB)

support

Binary

Large

Objects

(BLOBs),

Character

Large

Objects

(CLOBs),

and

Double

Byte

Character

Large

Objects

(DBCLOBs),

along

with

the

concepts

of

LOB

LOCATORS

and

LOB

FILES

are

now

recognized

by

the

preprocessor.

Refer

to

the

DB2

manuals

for

more

information

on

these

subjects,

General

information

on

LOBs

LOBS,

CLOBS,

and

BLOBS

can

be

as

large

as

2,147,483,640

bytes

long

(2

Gigabytes

-

8

bytes

for

PL/I

overhead).

Double

Byte

CLOBS

can

be

1,073,741,820

characters

long

(1

Gigabyte

-

4

characters

for

PL/I

overhead).

BLOBS,

CLOBS,

AND

DBCLOBS

can

be

declared

in

PL/I

programs

with

the

following

syntax

(PL/I

variables

for

Large

Object

columns,

locators,

and

files):

��

Declare

Dcl

PL/I

host

identifier

SQL

TYPE

IS

PL/I

LOB

type

�

�

PL/I

LOB

type:

Binary

Large

Object

(

length

)

BLOB

K

Character

Large

Object

M

Char

Large

Object

G

CLOB

DBCLOB

BLOB

as

locator

CLOB

as

locator

DBCLOB

as

locator

BLOB

as

file

CLOB

as

file

DBCLOB

as

file

��

BLOB,

CLOB,

and

DBCLOB

data

types

The

variable

declarations

for

BLOBs,

CLOBs,

and

DBCLOBs

are

transformed

by

the

PL/I

SQL

preprocessor.

For

example,

consider

the

following

declare:

Dcl

my-identifier-name

SQL

TYPE

IS

lob-type-name

(length);

The

SQL

preprocessor

would

transform

the

declare

into

this

structure:

Define

structure

1

lob-type-name_length,

2

Length

unsigned

fixed

bin(31),

2

Data(length)

char(1);

Dcl

my-identifier-name

TYPE

lob-type-name_length;

In

this

structure,

my-identifier-name

is

the

name

of

your

PL/I

host

identifier

and

lob-type-name_length

is

a

name

generated

by

the

preprocessor

consisting

of

the

LOB

type

and

the

length.

For

DBCLOB

data

types,

the

generated

structure

looks

a

little

different:

Define

structure

1

lob-type-name_length,

2

Length

unsigned

fixed

bin(31),

2

Data(length)

type

wchar_t;

In

this

case,

type

wchar_t

is

defined

in

the

include

member

sqlsystm.cpy.

This

member

must

be

included

to

use

the

DBCLOB

data

type.

length

The

length

field

is

an

unsigned

integer

that

maps

to

a

fixed

binary.

The

values

of

the

length

field

can

range

from

0

to

(2**32)-8.

If

the

length

field

is

appended

by

a

K,

M,

or

G,

then

the

length

is

calculated

by

the

preprocessor.

SQL

support

90

PL/I

for

Windows:

Programming

Guide

BLOB,

CLOB,

and

DBCLOB

LOCATOR

data

types

The

variable

declarations

for

BLOB,

CLOB,

and

DBCLOB

locators

are

also

transformed

by

the

PL/I

SQL

preprocessor.

For

example,

consider

the

following

declare:

Dcl

my-identifier-name

SQL

TYPE

IS

lob-type

AS

LOCATOR;

The

SQL

preprocessor

would

transform

this

declare

into

the

following

code:

Define

alias

lob-type_LOCATOR

fixed

bin(31)

unsigned;

Dcl

my-identifier-name

TYPE

lob-type_LOCATOR;

In

this

case,

my-identifier-name

is

your

PL/I

host

identifier

and

lob-type_LOCATOR

is

a

name

generated

by

the

preprocessor

consisting

of

the

LOB

type

and

the

string

LOCATOR.

BLOB,

CLOB,

and

DBCLOB

FILE

data

types

The

variable

declarations

for

BLOB,

CLOB,

and

DBCLOB

files

are

also

transformed

by

the

PL/I

SQL

preprocessor.

For

example,

consider

this

declare:

Dcl

my-identifier-name

SQL

TYPE

IS

lob-type

AS

FILE;

The

SQL

preprocessor

transforms

the

declare

as

follows:

Define

structure

1

lob-type_FILE,

2

Name_Length

unsigned

fixed

bin(31),

2

Data_Length

unsigned

fixed

bin(31),

2

File_Options

unsigned

fixed

bin(31),

2

Name

char(255);

Dcl

my-identifier-name

TYPE

lob-type_FILE;

Again,

my-identifier-name

is

your

PL/I

host

identifier

and

lob-type_FILE

is

a

name

generated

by

the

preprocessor

consisting

of

the

LOB

type

and

the

string

FILE.

PL/I

variable

declarations

for

LOB

Support

The

following

examples

provide

sample

PL/I

variable

declarations

and

their

corresponding

transformations

for

LOB

support.

Example

1:

Dcl

my_blob

SQL

TYPE

IS

blob(2000);

After

transform:

Define

structure

1

blob_2000,

2

Length

unsigned

fixed

bin(31),

2

Data(2000)

char(1);

Dcl

my_blob

type

blob_2000;

Example

2:

Dcl

my_dbclob

SQL

TYPE

IS

DBCLOB(1M);

After

transform:

SQL

support

Chapter

6.

PL/I

preprocessors

91

Define

structure

1

dbclob_1m,

2

Length

unsigned

fixed

bin(31),

2

Data(1048576)

type

wchar_t;

Dcl

my_dbclob

type

dbclob_1m

;

Example

3:

Dcl

my_clob_locator

SQL

TYPE

IS

clob

as

locator;

After

transform:

Define

alias

clob_locator

fixed

bin(31)

unsigned;

Dcl

my_clob_locator

type

clob_locator;

Example

4:

Dcl

my_blob_file

SQL

TYPE

IS

blob

as

file;

After

transform:

Define

structure

1

blob_FILE,

2

Name_Length

unsigned

fixed

bin(31),

2

Data_Length

unsigned

fixed

bin(31),

2

File_Options

unsigned

fixed

bin(31),

2

Name

char(255);

Dcl

my_blob_file

type

blob_file;

Example

5:

Dcl

my_dbclob_file

SQL

TYPE

IS

dbclob

as

file;

After

transform:

Define

structure

1

dbclob_FILE,

2

Name_Length

unsigned

fixed

bin(31),

2

Data_Length

unsigned

fixed

bin(31),

2

File_Options

unsigned

fixed

bin(31),

2

Name

char(255);

Dcl

my_dbclob_file

type

dbclob_file;

Sample

programs

for

LOB

support

Three

sample

programs

are

provided

to

show

how

LOB

types

can

be

used

in

PL/I

programs:

SQLLOB1.PLI

Shows

how

to

fetch

a

BLOB

from

the

database

into

a

file.

SQLLOB2A.PLI

Shows

how

to

use

LOCATOR

variables

to

modify

a

LOB

without

any

movement

of

bytes

until

the

final

assignment

of

the

LOB

expression.

SQLLOB2B.PLI

Fetches

the

CLOB

created

in

SQLLOB2A.PLI

into

a

file

for

viewing.

User

defined

functions

sample

programs

You

must

install

the

following

items

to

access

the

User

Defined

Function

(UDF)

sample

programs:

v

DB2

V2.1

or

later

v

Sample

database

SQL

support

92

PL/I

for

Windows:

Programming

Guide

Several

PL/I

programs

have

been

included

to

show

how

to

code

and

use

UDFs.

Here

is

a

short

description

of

how

to

use

them.

The

file

UDFDLL.PLI

contains

five

sample

UDFs.

While

these

are

simple

in

nature,

they

show

basic

concepts

of

UDFs.

MyAdd

Adds

two

integers

and

returns

the

result

in

a

third

integer.

MyDiv

Divides

two

integers

and

returns

the

result

in

a

third

integer.

MyUpper

Changes

all

lowercase

occurrences

of

a,e,i,o,u

to

uppercase.

MyCount

Simple

implementation

of

counter

function

using

a

scratchpad.

ClobUpper

Changes

all

lowercase

occurrences

of

a,e,i,o,u

in

a

CLOB

to

uppercase

then

writes

them

out

to

a

file.

Use

the

command

file

bldudfdll

to

compile

and

link

it

into

the

udfdll

library.

After

the

udfdll

library

has

been

compiled

and

linked,

copy

it

to

the

user

defined

function

directory

for

your

database

instance.

If

you

are

using

PL/I

for

AIX,

for

example,

you

would

copy

udfdll

to

/u/inst1/sqllib/function

if

that

were

the

user

defined

function

directory

on

your

AIX

machine

for

your

database

instance.

Before

the

functions

can

be

used

they

must

be

defined

to

DB2.

This

is

done

using

the

CREATE

FUNCTION

command.

The

sample

program,

addudf.pli,

has

been

provided

to

perform

the

CREATE

FUNCTION

calls

for

each

UDF.

CREATE

FUNCTION

calls

would

look

something

like

the

following:

CREATE

FUNCTION

MyAdd

(

INT,

INT

)

RETURNS

INT

NO

SQL

LANGUAGE

C

FENCED

VARIANT

NO

EXTERNAL

ACTION

PARAMETER

STYLE

DB2SQL

EXTERNAL

NAME

’udfdll!MyAdd’

CREATE

FUNCTION

MyDiv

(

INT,

INT

)

RETURNS

INT

NO

SQL

LANGUAGE

C

FENCED

VARIANT

NO

EXTERNAL

ACTION

PARAMETER

STYLE

DB2SQL

EXTERNAL

NAME

’udfdll!MyDiv’

CREATE

FUNCTION

MyUpper

(

VARCHAR(61)

)

RETURNS

VARCHAR(61)

NO

SQL

LANGUAGE

C

FENCED

VARIANT

NO

EXTERNAL

ACTION

PARAMETER

STYLE

DB2SQL

EXTERNAL

NAME

’udfdll!MyUpper’

CREATE

FUNCTION

MyCount

(

)

RETURNS

INT

NO

SQL

LANGUAGE

C

FENCED

VARIANT

NO

EXTERNAL

ACTION

PARAMETER

STYLE

DB2SQL

EXTERNAL

NAME

’udfdll!MyCount’

SCRATCHPAD

CREATE

FUNCTION

ClobUpper

(

CLOB(5K)

)

RETURNS

CLOB(5K)

NO

SQL

LANGUAGE

C

FENCED

VARIANT

NO

EXTERNAL

ACTION

PARAMETER

STYLE

DB2SQL

EXTERNAL

NAME

’udfdll!ClobUpper’

These

are

just

sample

CREATE

FUNCTION

commands.

Consult

your

DB2

manuals

for

more

information

or

refinement.

Use

the

command

file

bldaddudf

to

compile

and

link

the

addudf.pli

program.

After

it

is

compiled

and

linked,

run

it

to

define

the

user

defined

functions

to

your

database.

SQL

support

Chapter

6.

PL/I

preprocessors

93

Several

sample

PL/I

programs

are

provided

that

call

the

user

defined

functions

you

have

just

created

and

added

to

the

database:

UDFMYADD.PLI

Fetches

ID

and

Dept

from

the

STAFF

table

then

adds

them

together

by

calling

MyAdd

UDF.

Use

the

command

file

bldmyadd

to

compile

and

link

it.

UDFMYDIV.PLI

Fetches

ID

and

Dept

from

the

STAFF

table

then

divides

them

by

calling

MyDiv

UDF.

Use

the

command

file

bldmydiv

to

compile

and

link

it.

UDFMYUP.PLI

Fetches

Name

from

the

STAFF

table

then

calls

MyUpper

to

change

the

vowels

to

uppercase.

Use

the

command

file

bldmyup

to

compile

and

link

it.

UDFMYCNT.PLI

Fetches

ID

from

the

STAFF

table,

outputs

the

count

of

the

call,

then

divides

ID

by

the

count.

Use

the

command

file

bldmycnt

to

compile

and

link

it.

UDFCLOB.PLI

Fetches

the

resume

for

employee

’000150’

then

calls

ClobUpper

to

change

the

vowels

to

uppercase.

Use

the

command

file

bldclobu

to

compile

and

link

it.

After

this

program

is

run,

look

in

the

file

udfclob.txt

for

the

results.

Once

these

sample

programs

are

compiled,

linked,

and

the

UDFs

defined

to

DB2,

the

PL/I

programs

can

be

run

from

the

command

line.

These

UDFs

may

also

be

called

from

the

DB2

Command

Line

just

line

any

other

builtin

DB2

function.

For

further

information

on

how

to

customize

and

get

the

most

out

of

your

UDFs,

please

refer

to

your

DB2

manuals.

Determining

compatibility

of

SQL

and

PL/I

data

types

PL/I

host

variables

in

SQL

statements

must

be

type

compatible

with

the

columns

which

use

them:

v

Numeric

data

types

are

compatible

with

each

other.

A

SMALLINT,

INTEGER,

DECIMAL,

or

FLOAT

column

is

compatible

with

a

PL/I

host

variable

of

BIN

FIXED(15),

BIN

FIXED(31),

DECIMAL(p,s),

BIN

FLOAT(n)

where

n

is

from

22

to

53,

or

DEC

FLOAT(m)

where

m

is

from

7

to

16.

v

Character

data

types

are

compatible

with

each

other.

A

CHAR

or

VARCHAR

column

is

compatible

with

a

fixed-length

or

varying-length

PL/I

character

host

variable.

Graphic

data

types

are

compatible

with

each

other.

A

GRAPHIC

or

VARGRAPHIC

column

is

compatible

with

a

fixed-length

or

varying-length

PL/I

graphic

character

host

variable.

v

Datetime

data

types

are

compatible

with

character

host

variables.

A

DATE,

TIME,

or

TIMESTAMP

column

is

compatible

with

a

fixed-length

or

varying-length

PL/I

character

host

variable.

When

necessary,

the

Database

Manager

automatically

converts

a

fixed-length

character

string

to

a

varying-length

string

or

a

varying-length

string

to

a

fixed-length

character

string.

Using

host

structures

A

PL/I

host

structure

name

can

be

a

structure

name

with

members

that

are

not

structures

or

unions.

For

example:

SQL

support

94

PL/I

for

Windows:

Programming

Guide

dcl

1

A,

2

B,

3

C1

char(...),

3

C2

char(...);

In

this

example,

B

is

the

name

of

a

host

structure

consisting

of

the

scalars

C1

and

C2.

Host

structures

are

limited

to

two

levels.

A

host

structure

can

be

thought

of

as

a

named

collection

of

host

variables.

You

must

terminate

the

host

structure

variable

by

ending

the

declaration

with

a

semicolon.

For

example:

dcl

1

A,

2

B

char,

2

(C,

D)

char;

dcl

(E,

F)

char;

Host

variable

attributes

can

be

specified

in

any

order

acceptable

to

PL/I.

For

example,

BIN

FIXED(31),

BINARY

FIXED(31),

BIN(31)

FIXED,

and

FIXED

BIN(31)

are

all

acceptable.

The

following

diagram

shows

the

syntax

for

valid

host

structures.

��

DECLARE

DCL

level

variable-name

Scope

and/or

storage

,

�

�

�

�

,

level

var-1

Attributes

,

(

var-2

)

;

�

�

Attributes:

BINARY

FIXED

BIN

(

precision

)

DECIMAL

,scale

DEC

FLOAT

(

precision

)

CHARACTER

CHAR

(

integer

)

VARYING

VAR

GRAPHIC

(

integer

)

VARYING

VAR

��

Using

indicator

variables

An

indicator

variable

is

a

two-byte

integer

(BIN

FIXED(15)).

On

retrieval,

an

indicator

variable

is

used

to

show

whether

its

associated

host

variable

has

been

assigned

a

null

value.

On

assignment

to

a

column,

a

negative

indicator

variable

is

used

to

indicate

that

a

null

value

should

be

assigned.

Indicator

variables

are

declared

in

the

same

way

as

host

variables

and

the

declarations

of

the

two

can

be

mixed

in

any

way

that

seems

appropriate

to

the

programmer.

Given

the

statement:

SQL

support

Chapter

6.

PL/I

preprocessors

95

exec

sql

fetch

Cls_Cursor

into

:Cls_Cd,

:Day

:Day_Ind,

:Bgn

:Bgn_Ind,

:End

:End_Ind;

Variables

can

be

declared

as

follows:

exec

sql

begin

declare

section;

dcl

Cls_Cd

char(7);

dcl

Day

bin

fixed(15);

dcl

Bgn

char(8);

dcl

End

char(8);

dcl

(Day_Ind,

Bgn_Ind,

End_Ind)

bin

fixed(15);

exec

sql

end

declare

section;

The

following

diagram

shows

the

syntax

for

a

valid

indicator

variable.

��

DECLARE

DCL

variable-name

BINARY

BIN

FIXED(15)

;

��

The

following

diagram

shows

the

syntax

for

a

valid

indicator

array.

��

DECLARE

DCL

�

variable-name

(

dimension

)

,

(

variable-name

(

dimension

)

)

BINARY

BIN

�

�

FIXED(15)

;

��

Host

structure

example

The

following

example

shows

the

declaration

of

a

host

structure

and

an

indicator

array

followed

by

two

SQL

statements

that

are

equivalent,

either

of

which

could

be

used

to

retrieve

the

data

into

the

host

structure.

dcl

1

games,

5

sunday,

10

opponents

char(30),

10

gtime

char(10),

10

tv

char(6),

10

comments

char(120)

var;

dcl

indicator(4)

fixed

bin

(15);

exec

sql

fetch

cursor_a

into

:games.sunday.opponents:indicator(1),

:games.sunday.gtime:indicator(2),

:games.sunday.tv:indicator(3),

:games.sunday.comments:indicator(4);

exec

sql

fetch

cursor_a

into

:games.sunday:indicator;

CONNECT

TO

statement

You

can

use

a

host

variable

to

represent

the

database

name

you

want

your

application

to

connect

to,

for

example:

exec

sql

connect

to

:dbase;

If

a

host

variable

is

specified:

SQL

support

96

PL/I

for

Windows:

Programming

Guide

v

It

must

be

a

character

or

a

character

varying

variable.

v

It

must

be

preceded

by

a

colon

and

must

not

be

followed

by

an

indicator

variable.

v

The

server-name

that

is

contained

within

the

host

variable

must

be

left-justified.

v

If

the

length

of

the

server

name

is

less

than

the

length

of

the

fixed-length

character

host

variable,

it

must

be

padded

on

the

right

with

blanks.

dcl

dbase

char

(10);

dbase

=

’SAMPLE’;

/*

blanks

are

padded

automatically

*/

exec

sql

connect

to

:dbase;

v

If

a

varying

character

host

variable

is

used,

you

may

receive

the

following

warning

from

the

compiler.

You

can

ignore

this

message.

IBM1214I

W

xxx.x

A

dummy

argument

is

created

for

argument

number

6

in

entry

reference

SQLESTRD_API

DECLARE

TABLE

statement

The

preprocessor

ignores

all

DECLARE

TABLE

statements.

DECLARE

STATEMENT

statement

The

preprocessor

ignores

all

DECLARE

STATEMENT

statements.

Logical

NOT

sign

(¬)

The

preprocessor

performs

the

following

translations

within

SQL

statements:

¬=

is

translated

to

<>

¬<

is

translated

to

>=

¬>

is

translated

to

<=

Handling

SQL

error

return

codes

PL/I

provides

a

sample

program

DSNTIAR.PLI

that

you

can

use

to

translate

an

SQLCODE

into

a

multi-line

message

for

display

purposes.

This

PL/I

program

provides

the

same

function

as

the

DSNTIAR

program

on

mainframe

DB2*.

You

must

compile

DSNTIAR

with

the

same

DEFAULT

and

SYSTEM

compile-time

options

that

are

used

to

compile

the

programs

that

use

DSNTIAR.

v

If

you

are

using

DSNTIAR

in

Windows

PL/I

programs,

DSNTIAR

must

be

compiled

with

following

compile-time

options:

–

DEFAULT(ASCII

NATIVE

LINKAGE(OPTLINK))

–

SYSTEM(WINDOWS)

if

you

using

Windows
v

If

you

are

using

DSNTIAR

in

host

emulation

PL/I

programs,

DSNTIAR

must

be

compiled

with

DEFAULT(EBCDIC

NONNATIVE

LINKAGE(SYSTEM))

and

SYSTEM(MVS)

compile-time

options.

The

caller

must

declare

the

entry

and

conform

to

the

interface

as

described

in

the

mainframe

DB2

publications.

For

your

information,

the

declaration

is

of

the

following

form:

dcl

dsntiar

entry

options(asm

inter

retcode);

Three

arguments

are

always

passed:

arg

1

This

input

argument

must

be

the

SQLCA.

arg

2

This

input/output

argument

is

a

structure

of

the

form:

SQL

support

Chapter

6.

PL/I

preprocessors

97

dcl

1

Message,

2

Buffer_length

fixed

bin(15)

init(n),

/*

input

*/

2

User_buffer

char(n);

/*

output

*/

You

must

fill

in

the

appropriate

value

for

n.

arg

3

This

input

argument

is

a

FIXED

BIN(31)

value

that

specifies

logical

record

length.

Use

of

varying

strings

under

DFT(EBCDIC

NONNATIVE)

If

you

specify

the

compile-time

option

DFT(EBCDIC

NONNATIVE)

and

you

use

a

varying

string

host

variable

as

input

to

the

database,

you

must

initialize

the

host

variable

or

you

might

get

a

protection

exception

during

the

execution

of

your

program.

If

you

use

an

uninitialized

varying

string

on

mainframe

DB2,

your

program

would

be

in

error

and

might

also

get

a

protection

exception.

Using

the

DEFAULT(EBCDIC)

compile-time

option

When

you

use

the

compile-time

option

DEFAULT(EBCDIC)

with

SQL

statements

that

contain

input

or

output

character

host

variables,

the

SQL

preprocessor

inserts

extra

code

in

the

expansion

for

the

SQL

statements

to

convert

character

data

between

ASCII

and

EBCDIC

unless

the

character

data

has

the

FOR

BIT

DATA

column

attribute.

Avoiding

automatic

conversion

for

specific

character

data:

If

you

do

not

want

data

to

be

converted,

you

have

to

give

explicit

instructions

to

the

preprocessor.

For

example,

if

you

did

not

want

conversion

to

occur

between

a

CHARACTER

variable

and

a

FOR

BIT

DATA

column,

you

could

include

a

PL/I

comment

as

shown

in

the

following

example:

dcl

SL1

/*

%ATTR

FOR

BIT

DATA

*/

char(9);

The

first

nonblank

character

in

the

comment

must

be

a

percent

(%)

sign

followed

by

the

keywords

ATTR

FOR

BIT

DATA.

You

can

put

this

comment

anywhere

after

the

variable

name

as

long

as

it

appears

before

the

end

of

the

declaration

for

that

variable.

Neither

SL2

nor

SL4

are

converted

in

the

following

example:

Dcl

SL2

/*

%ATTR

FOR

BIT

DATA

*/

char(9),

SL3

char

(20);

/*

%ATTR

FOR

BIT

DATA

*/

Dcl

(SL4

/*

%ATTR

FOR

BIT

DATA

*/,

SL5)

char

(9);

Avoiding

automatic

conversion

using

DCLGEN:

Another

way

to

avoid

the

conversion

caused

by

using

DEFAULT(EBCDIC)

is

to

use

the

DCLGEN

utility

that

is

provided

with

PL/I

for

Windows

to

create

the

declares

for

database

tables.

DCLGEN

automatically

generates

the

comment

directive

required

in

the

output

when

it

recognizes

that

a

column

is

defined

with

the

FOR

BIT

DATA

attribute.

Using

the

DEFAULT(NONNATIVE)

compile-time

option:

When

you

use

the

compile-time

option

DEFAULT(NONNATIVE)

with

an

SQLDA

that

describes

a

decimal

field,

you

must

re-reverse

the

SQLLEN

field

after

the

conversion

done

by

the

SQL

preprocessor.

SQL

support

98

PL/I

for

Windows:

Programming

Guide

SQL

compatibility

and

migration

considerations

The

workstation

compilers

tolerate

the

following

statement:

’

EXEC

SQL

CONNECT

:userid

IDENTIFIED

BY

:passwd’

The

preceding

statement

is

translated

by

the

PL/I

SQL

preprocessor

and

sent

to

the

database

precompiler

services

as:

’

EXEC

SQL

CONNECT’

The

allows

VM

SQL/DS

users

to

compile

their

programs

without

making

significant

changes.

SQL

support

Chapter

6.

PL/I

preprocessors

99

CICS

support

If

you

do

not

specify

the

PP(CICS)

option,

EXEC

CICS

statements

are

parsed

and

variable

references

in

them

are

validated.

If

they

are

correct,

no

messages

are

issued

as

long

as

the

NOCOMPILE

option

is

in

effect.

Without

invoking

the

CICS

preprocessor,

real

code

cannot

be

generated.

You

can

use

EXEC

CICS

statements

in

PL/I

applications

that

run

as

transactions

under

CICS.

You

can

develop

these

applications

under

CICS

on

Windows

for

eventual

execution

under

CICS

that

particular

development

platform

or

under

CICS/ESA,

CICS/MVS,

or

CICS/VSE

systems

on

S/390.

Make

sure

that

the

CICS

installation

adds

all

the

\OPT\...

settings

to

your

system

environment

variables

for

Windows

support.

It

is

not

necessary

that

the

CICS

system

be

operational

when

you

are

compiling

your

programs.

Programming

and

compilation

considerations

When

you

are

developing

programs

for

execution

under

CICS:

v

You

must

use

the

SYSTEM(CICS)

compile-time

option.

v

You

must

use

the

PP(CICS(options)

MACRO)

compile-time

option.

The

MACRO

option

must

follow

the

CICS

option

of

PP.

If

your

CICS

programs

include

files

or

use

macros

that

contain

EXEC

CICS

statements,

you

must

also

use

either

the

MACRO

compile-time

option

or

the

MACRO

option

of

PP

before

the

CICS

option

of

the

PP

option

as

shown

in

the

following

example:

pp

(macro(...)

cics(...)

macro(...)

)

If

you

want

to

compile

a

CICS

and

DB2

PL/I

program

named

cicsdb2.pli,

you

would

use

the

following

command:

pli

-l/usr/lpp/cics/include

-qsystem=CICS

-qpp=CICS=noedf:nodebug:nosource:noprint:MACRO

-o

cicsdb2.ibmpli

-bl:/usr/lpp/cics/lib/cicsprIBMPLI.exp

-eplicics

-L/usr/lib/dce

-ldcelibc_r

-ldcepthreads

-ldb2

-lplishr_r

-lc_r

cicsdb2.pli

Make

sure

that

INC

is

specified

as

an

extension

on

the

INCLUDE(EXT)

compile-time

option,

see

“INCLUDE”

on

page

49.

The

IBM.SYSLIB

or

INCLUDE

environment

variable

must

specify

the

CICS

include

file

directories,

for

example:

set

include=d:\cicsnnn\plihdr;

CICS

support

100

PL/I

for

Windows:

Programming

Guide

The

PL/I

declarations

generated

by

the

CICSMAP,

the

Basic

Mapping

Support

(BMS)

utility,

are

placed

in

the

first

directory

specified

in

the

INCLUDE

environment

variable.

For

more

information,

see

“Setting

compile-time

environment

variables”

on

page

25.

Output

produced

in

one

of

the

following

ways

is

written

to

the

CPLI

transient

data

queue

(TDQ):

v

PUT

statements

to

SYSPRINT

v

Messages

written

to

the

MSGFILE

v

DISPLAY

statements

Output

produced

by

PLIDUMP

is

always

written

to

the

CPLD

transient

data

queue.

The

full

workstation

CICS

API

is

supported

for

PL/I

programs.

Support

is

also

provided

for

PL/I

progams

to

use:

v

External

Presentation

Interface

(EPI)

v

External

Call

Interface

(ECI)

v

External

Transaction

Initiation

(ETI)

Other

PL/I

considerations

that

apply

on

S/390

CICS

apply

to

CICS

on

the

workstation

also.

The

program

behaves

as

though

the

STAE

option

is

always

in

effect.

The

NOSTAE

option

is

not

supported.

If

you

are

developing

applications

for

eventual

execution

on

S/390

CICS

subsystems,

you

can

check

your

PL/I

programs

for

reentrancy

violations

with

the

DEFAULT(NONASSIGNABLE)

compile-time

option.

For

compatibility

with

CICS/ESA,

CICS/MVS,

and

CICS/VSE,

make

sure

that

the

EXEC

CICS

commands

are

in

upper

case.

You

can

use

PL/I

FETCH

and

RELEASE

under

CICS.

A

CICS

program

must

not

have

more

than

one

procedure

that

has

OPTIONS(MAIN).

The

EXEC

CICS

ADDRESS

and

other

similar

commands

that

return

a

pointer

to

a

CICS

control

block

(such

as

the

TWA

COMMAREA,

and

ACEE)

might

return

a

SYSNULL()

pointer

if

the

control

block

does

not

exist.

(For

example,

'00000000'x

not

'FF000000'x)

Your

programs

must

use

the

SYSNULL

built-in

function

to

test

such

pointers.

Each

PL/I

compilation

unit

processed

by

the

CICS

preprocessor

generates

the

following:

dcl

IBMMCICS_ID

char(n)

static

init('cics-id-and-version');

The

name,

version,

and

release

level

of

the

CICS

system

for

which

your

program

was

compiled

are

indicated.

You

also

need

to

consider

options

depending

on

the

nature

of

your

program

and

which

CICS

system

is

used

for

executing

the

program.

Table

6.

Considerations

for

EXEC

CICS

support

If

you

are

using

...

Use

compile-time

option(s)...

CICS

for

Windows

PP(CICS

MACRO)

CICS

support

Chapter

6.

PL/I

preprocessors

101

Table

6.

Considerations

for

EXEC

CICS

support

(continued)

If

you

are

using

...

Use

compile-time

option(s)...

CICS

Files

containing

native

data

DEFAULT

(ASCII

NATIVE

IEEE)

as

appropriate

DB2/2

in

native

mode

DEFAULT

(ASCII

NATIVE

IEEE)

as

appropriate

CICS

Files

containing

host

S/390

data

DEFAULT

(EBCDIC

NONNATIVE

HEXADEC)

as

appropriate

DB2/2

in

host

S/390

mode

DEFAULT

(EBCDIC

NONNATIVE

HEXADEC)

as

appropriate

Table

7.

Considerations

for

EXEC

CICS

support

If

you

are

using

...

Use

compile-time

option(s)...

CICS

for

Windows

PP(CICS

MACRO)

CICS

Files

containing

native

data

DEFAULT

(ASCII

NATIVE

IEEE)

as

appropriate

UDB

in

native

mode

DEFAULT

(ASCII

NATIVE

IEEE)

as

appropriate

You

must

have

CICS

installed

before

you

can

compile

a

program

containing

EXEC

CICS

statements.

To

find

out

how

to

install

CICS

on

your

workstation,

refer

to

the

installation

instructions

for

that

product.

CICS

preprocessor

options

The

following

syntax

diagram

show

options

supported

by

the

CICS

preprocessor.

��

PP

(

CICS

(

'

NOSOURCE

SOURCE

NOPRINT

PRINT

NODECK

DECK

EDF

NOEDF

�

�

DEBUG

NODEBUG

'

)

)

��

Abbreviations:

S,

NS,

D,

ND

SOURCE

or

NOSOURCE

Specifies

whether

or

not

the

source

input

to

the

CICS

preprocessor

is

printed.

PRINT

or

NOPRINT

Specifies

whether

or

not

the

source

code

generated

by

the

CICS

preprocessor

is

printed

in

the

source

listing(s)

produced

by

subsequent

preprocessors

or

the

compiler.

DECK

or

NODECK

Specifies

that

the

CICS

preprocessor

output

source

is

written

to

a

file

with

the

extension

.DEK.

The

file

is

in

the

current

directory.

EDF

or

NOEDF

Specifies

whether

or

not

the

CICS

Execution

Diagnostic

Facility

(EDF)

is

to

be

enabled

for

the

PL/I

program.

There

is

no

performance

advantage

in

CICS

support

102

PL/I

for

Windows:

Programming

Guide

specifying

NOEDF,

but

the

option

can

be

useful

in

preventing

CICS

commands

from

appearing

on

EDF

displays

in

well

tested

programs.

DEBUG

or

NODEBUG

Specifies

whether

or

not

the

CICS

preprocessor

is

to

pass

source

program

line

numbers

to

CICS

for

use

by

the

CICS

Execution

Diagnostic

Facility

(EDF).

CICS

preprocessor

options

environment

variables

You

can

set

the

default

options

for

the

CICS

preprocessor

by

using

the

IBM.PPCICS

environment

variable.

See

“IBM.PPCICS”

on

page

27.

Coding

CICS

statements

in

PL/I

applications

You

can

code

CICS

statements

in

your

PL/I

applications

using

the

language

defined

in

TXseries

for

Multiplatforms,

CICS

Application

Programming

Guide,

SC09-4460.

Specific

requirements

for

your

CICS

code

are

described

in

the

sections

that

follow.

Embedding

CICS

statements

The

first

statement

of

your

PL/I

program

must

be

a

PROCEDURE

statement.

You

can

add

CICS

statements

to

your

program

wherever

executable

statements

can

appear.

Each

CICS

statement

must

begin

with

EXEC

(or

EXECUTE)

CICS

and

end

with

a

semicolon

(;).

For

example,

the

GETMAIN

statement

might

be

coded

as

follows:

exec

cics

getmain

set(blk_ptr)

length(stg(blk));

Comments:

In

addition

to

the

CICS

statements,

PL/I

comments

can

be

included

in

embedded

CICS

statements

wherever

a

blank

is

allowed.

Continuation

for

CICS

statements:

Line

continuation

rules

for

CICS

statements

are

the

same

as

those

for

other

PL/I

statements.

Including

code:

If

included

code

contains

EXEC

CICS

statements

or

your

program

uses

PL/I

macros

that

generate

EXEC

CICS

statements,

you

must

use

one

of

the

following:

v

The

MACRO

compile-time

option

v

The

MACRO

option

of

the

PP

option

(before

the

CICS

option

of

the

PP

option)

Margins:

CICS

statements

must

be

coded

within

the

columns

specified

in

the

MARGINS

compile-time

option.

Statement

labels:

EXEC

CICS

statements,

like

PL/I

statements,

can

have

a

label

prefix.

Writing

CICS

transactions

in

PL/I

This

section

describes

the

rules

and

guidelines

that

apply

to

PL/I

support

of

CICS

on

the

workstation.

You

can

use

PL/I

with

CICS

facilities

to

write

application

programs

(transactions)

for

CICS

subsystems.

If

you

do

this,

CICS

provides

facilities

to

the

PL/I

program

that

would

normally

be

provided

directly

by

the

operating

system.

These

facilities

include

most

data

management

facilities

and

all

job

and

task

management

facilities.

CICS

support

Chapter

6.

PL/I

preprocessors

103

You

should

observe

the

following

rules

to

ensure

compatibility

with

S/390

PL/I

CICS

support.

v

Do

not

use

macro

level

support,

only

command

level

support

is

provided.

v

Do

not

use

any

PL/I

input

or

output

except:

Stream

output

for

SYSPRINT

PLIDUMP

Since

these

are

intended

for

debugging

purposes

only,

you

should

not

include

them

in

production

programs

for

performance

reasons.

v

Do

not

use

the

following

statements:

DELAY

WAIT
v

You

should

not

communicate

with

FORTRAN,

COBOL,

or

C,

using

PL/I

interlanguage

facilities.

However,

CICS

programs

written

in

different

languages

can

communicate

with

each

other

using

EXEC

CICS

LINK

or

XCTL

commands.

Subroutines

written

in

a

language

other

than

PL/I

can

be

called

using

PL/I

interlanguage

facilities

providing

those

subroutines

do

not

contain

any

EXEC

CICS

code.

If

you

want

to

communicate

with

a

non-PL/I

program

that

contains

EXEC

CICS

code,

you

must

use

EXEC

CICS

LINK

or

EXEC

CICS

XCTL

as

stated.

COBOL

and

C

are

supported

under

CICS

by

the

following

IBM

PL/I

products:

IBM

Enterprise

PL/I

for

z/OS

IBM

PL/I

for

AIX

IBM

VisualAge

PL/I

for

Windows

IBM

PL/I

MVS

and

VM
v

Do

not

use

the

PLISRTx

built-in

subroutines.

v

Do

not

make

calls

to

IMS

using

the

PLITDLI,

ASMTDLI,

or

EXEC

DLI.

CICS

abends

used

for

PL/I

programs

APLS

This

abend

is

issued

on

termination,

if

termination

is

caused

by

the

ERROR

condition,

and

the

ERROR

condition

was

not

caused

by

an

abend

(other

than

an

ASRA

abend).

This

is

the

abend

code

issued

by

PL/I

when

either:

1.

A

transaction

terminates

in

error

due

to

a

PL/I

software

interrupt

(CONVERSION,

for

example),

and

there

is

no

ERROR

ON-unit

2.

The

program

takes

normal

return

from

the

ERROR

ON-unit.

Because

the

program

failed,

the

failure

must

be

reflected

to

CICS

on

your

workstation

as

an

abend

so

that

DTB,

and

so

on,

can

occur

if

necessary.

APLT

An

error

was

detected

in

the

user

exit.

CICS

run-time

user

exit

It

is

strongly

recommended

that

you

review

and

modify

(if

necessary)

the

IBM-supplied

CICS

user

exit,

CEEFXITA.

See

“Using

the

CICS

run-time

user

exit”

on

page

303.

CICS

support

104

PL/I

for

Windows:

Programming

Guide

Chapter

7.

Compilation

output

Using

the

compiler

listing

.

.

.

.

.

.

.

.

. 105

Compiler

output

files

.

.

.

.

.

.

.

.

.

.

. 112

The

results

of

compilation

depend

on

how

error-free

your

source

program

is

and

on

the

compile-time

options

you

specify.

Results

can

include

diagnostic

messages,

a

return

code,

and

other

output

saved

to

disk

(for

example,

an

object

module

and

a

listing).

The

following

section

describes

a

sample

compiler

listing.

“Compiler

output

files”

on

page

112

describes

other

kinds

of

output

files

you

can

request

from

the

compiler.

Using

the

compiler

listing

During

compilation,

the

compiler

generates

listings

that

contain

information

about

the

source

program,

the

compilation,

and

the

object

module.

The

TERMINAL

option

sends

diagnostics

and

statistics

to

your

terminal.

The

IBM.PRINT

environment

variable

specifies

the

output

directory

for

printable

listing

files

(see

“IBM.PRINT”

on

page

28

for

more

information

on

the

IBM.PRINT

environment

variable).

The

following

description

of

the

listing

refers

to

its

appearance

on

a

printed

page.

This

listing

for

CHIMES

program

highlights

some

of

the

more

useful

parts

of

the

compiler

listing.

Figure

3

is

similar

to

the

compiler

listing

for

that

program.

5639-D65

IBM(R)

VisualAge(TM)

PL/I

for

Windows(R)

V2.R1.12

(Built:20040702)

2004.07.08

11:41:55

Page

1

Options

Specified

�1�

Environment:

Command:

number

options

a(s)

x

nest

gonumber

lc(55)

Line.File

Process

Statements

1.1

*PROCESS

MACRO

S

A(F)

X

AG;

2.1

*PROCESS

LANGLVL(SAA2);

3.1

*PROCESS

NOT(’^’)

OR(’|’);

Figure

3.

CHIMES

program

compiler

listing

(Part

1

of

5)

105

5639-D65

IBM(R)

VisualAge(TM)

PL/I

for

Windows(R)

V2.R1.12

(Built:20040702)

2004.07.08

11:41:55

Page

2

Options

Used

�2�

+

AGGREGATE

+

ATTRIBUTES(FULL)

BIFPREC(31)

BLANK(’09’x)

CHECK(

NOSTORAGE

)

CMPAT(LE)

CODEPAGE(00819)

NOCOMPILE(S)

CURRENCY(’$’)

DEFAULT(IBM

ASSIGNABLE

NOINITFILL

NONCONNECTED

LOWERINC

DESCRIPTOR

DESCLIST

DUMMY(ALIGNED)

ORDINAL(MIN)

BYADDR

RETURNS(BYVALUE)

LINKAGE(OPTLINK)

NORETCODE

NOINLINE

ORDER

NOOVERLAP

NONRECURSIVE

ALIGNED

NULLSYS

EVENDEC

SHORT(HEXADEC)

ASCII

IEEE

NATIVE

NATIVEADDR

E(IEEE))

NODLLINIT

NOEXIT

EXTRN(SHORT)

FLAG(W)

FLOATINMATH(ASIS)

+

GONUMBER

NOGRAPHIC

IMPRECISE

INCAFTER(PROCESS(""))

INCLUDE(EXT(’inc’

’cpy’

’mac’))

NOINSOURCE

NOINTERRUPT

LANGLVL(SAA2

NOEXT)

LIBS(

SINGLE

DYNAMIC

)

LIMITS(

EXTNAME(100)

FIXEDBIN(31,31)

FIXEDDEC(15)

NAME(100)

)

+

LINECOUNT(55)

NOLIST

+

MACRO

MARGINI(’

’)

MARGINS(2,72)

MAXMSG(W

250)

MAXSTMT(4096)

MAXTEMP(50000)

NOMDECK

MSG(*)

NAMES(’@#$’

’@#$’)

NATLANG(ENU)

+

NEST

+

NOT(’^’)

NUMBER

OBJECT

NOOFFSET

OPTIMIZE(0)

+

OPTIONS

OR(’|’)

+

PP(

MACRO

)

NOPPTRACE

PREFIX(CONVERSION

FIXEDOVERFLOW

INVALIDOP

OVERFLOW

NOSIZE

NOSTRINGRANGE

NOSTRINGSIZE

NOSUBSCRIPTRANGE

UNDERFLOW

ZERODIVIDE)

PROBE

NOPROCEED(S)

REDUCE

RESEXP

RESPECT()

Figure

3.

CHIMES

program

compiler

listing

(Part

2

of

5)

Using

the

compiler

listing

106

PL/I

for

Windows:

Programming

Guide

5639-D65

IBM(R)

VisualAge(TM)

PL/I

for

Windows(R)

V2.R1.12

(Built:20040702)

2004.07.08

11:41:55

Page

3

RULES(IBM

BYNAME

GOTO

NOLAXBIF

NOLAXCTL

LAXDCL

NOLAXDEF

LAXIF

LAXLINK

LAXMARGINS

LAXPUNC

LAXQUAL

NOLAXSTRZ

MULTICLOSE)

NOSEMANTIC(S)

NOSNAP

+

SOURCE

STATIC(SHORT)

NOSTMT

NOSTORAGE

NOSYNTAX(S)

SYSPARM(’’)

SYSTEM(WINDOWS

PENTIUM)

TERMINAL

NOTEST

USAGE(

ROUND(IBM)

UNSPEC(IBM)

)

WIDECHAR(LITTLEENDIAN)

WINDOW(1950)

XINFO(NODEF

NOSYNTAX

NOXML)

+

XREF(FULL)

5639-D65

IBM(R)

VisualAge(TM)

PL/I

for

Windows(R)

V2.R1.12

(Built:20040702)

2004.07.08

11:41:55

Page

4

Compiler

Source

Line.File

LV

NT

29.1

30.1

CHIMES:

PROC

OPTIONS(MAIN);

/*

Play

a

tune

using

DOSBEEP

tones

*/

31.1

32.1

1

DCL

(

REST

VALUE(

0

),

/*

Declare

Named

Constants

*/

33.1

G4

VALUE(

392

),

/*

for

note

and

rest

tone

*/

34.1

C5

VALUE(

523

),

/*

values

and

timings.

*/

35.1

D5

VALUE(

587

),

36.1

E5

VALUE(

657

),

37.1

WHOLE

VALUE(

800

)

)

FIXED

BIN(31);

38.1

Figure

3.

CHIMES

program

compiler

listing

(Part

3

of

5)

Using

the

compiler

listing

Chapter

7.

Compilation

output

107

39.1

1

DCL

NOTES(19,2)

STATIC

NONASGN

FIXED

BIN(31)

40.1

�3�

INIT(

E5,

(WHOLE/2),

/*

Declare

tone

and

timing

*/

41.1

C5,

(WHOLE/2),

/*

for

each

note

of

tune.

*/

42.1

D5,

(WHOLE/2),

43.1

G4,

(WHOLE),

/*

Initial

values

may

be

*/

44.1

REST,

(WHOLE/2),

/*

restricted

expressions

*/

45.1

G4,

(WHOLE/2),

/*

using

Named

Constants

*/

46.1

D5,

(WHOLE/2),

/*

previously

defined

in

*/

47.1

E5,

(WHOLE/2),

/*

this

program.

*/

48.1

C5,

(WHOLE),

49.1

REST,

(WHOLE/2),

50.1

E5,

(WHOLE/2),

51.1

C5,

(WHOLE/2),

52.1

D5,

(WHOLE/2),

53.1

G4,

(WHOLE),

54.1

REST,

(WHOLE/2),

55.1

G4,

(WHOLE/2),

56.1

D5,

(WHOLE/2),

57.1

E5,

(WHOLE/2),

58.1

C5,

(WHOLE)

);

59.1

60.1

1

DCL

I

FIXED

BIN(31);

61.1

62.1

/*

Declare

external

APIs

called

by

chimes.

*/

63.1

65.1

1

DCL

BEEP

ENTRY(

FIXED

BIN(31),

FIXED

BIN(31)

/*

tone,

time

*/

66.1

EXT(

’Beep’

)

/*

External

name

of

function*/

67.1

OPTIONS(

BYVALUE

/*

Pass

parameters

by

value

*/

68.1

LINKAGE(STDCALL));

69.1

70.1

71.1

1

DCL

SLEEP

ENTRY(

FIXED

BIN(31)

)

/*

Time

duration

only*/

72.1

EXT(

’Sleep’

)

73.1

OPTIONS(

BYVALUE

74.1

LINKAGE(STDCALL)

);

89.1

90.1

/*

Play

all

of

the

notes

and

rests

of

the

tune

using

a

do

loop.*/

91.1

92.1

1

DO

I

=

LBOUND(NOTES,1)

TO

HBOUND(NOTES,1);

93.1

1

1

IF

NOTES(I,1)

^=

0

/*

Note

the

use

of

^

for

logical

NOT*/

94.1

1

1

THEN

CALL

BEEP(

NOTES(I,1),

NOTES(I,2)

);

95.1

1

1

ELSE

CALL

SLEEP(

NOTES(I,2)

);

96.1

1

1

END;

97.1

98.1

1

END;

Figure

3.

CHIMES

program

compiler

listing

(Part

4

of

5)

Using

the

compiler

listing

108

PL/I

for

Windows:

Programming

Guide

�1�

Options

specified

This

section

of

the

compiler

listing

shows

any

compile-time

options

you

specified.

Options

shown

under

Install:

are

specified

in

your

IBM.OPTIONS

environment

variable.

Options

shown

under

Command:

indicate

that

these

options

were

specified

on

the

command

line

when

you

invoked

the

compiler

(there

are

no

command

options

in

this

example).

Options

specified

with

the

*PROCESS

or

%PROCESS

statement

are

shown

below

the

command

options.

�2�

Options

used

The

compiler

listing

includes

a

list

of

all

compile-time

options

used,

including

the

default

options.

If

an

option

is

marked

with

a

plus

sign

(+),

the

default

has

5639-D65

IBM(R)

VisualAge(TM)

PL/I

for

Windows(R)

V2.R1.12

(Built:20040702)

2004.07.08

11:41:55

Page

5

Attribute/Xref

Line.File

Identifier

Attributes

65.1

BEEP

CONSTANT

EXTERNAL(’Beep’)

ENTRY(

BYVALUE

FIXED

BIN(31,0),

BYVALUE

FIXED

BIN(31,0)

)

Refs:

94.1

34.1

C5

CONSTANT

FIXED

BIN(31,0)

Refs:

39.1

39.1

39.1

39.1

30.1

CHIMES

CONSTANT

EXTERNAL

ENTRY()

35.1

D5

CONSTANT

FIXED

BIN(31,0)

Refs:

39.1

39.1

39.1

39.1

36.1

E5

CONSTANT

FIXED

BIN(31,0)

Refs:

39.1

39.1

39.1

39.1

33.1

G4

CONSTANT

FIXED

BIN(31,0)

Refs:

39.1

39.1

39.1

39.1

+++++++

HBOUND

BUILTIN

Refs:

92.1

60.1

I

AUTOMATIC

FIXED

BIN(31,0)

Refs:

93.1

94.1

94.1

95.1

Sets:

92.1

+++++++

LBOUND

BUILTIN

Refs:

92.1

39.1

NOTES

STATIC

NONASSIGNABLE

DIM(1:19,1:2)

FIXED

BIN(31,0)

INITIAL

Refs:

92.1

92.1

93.1

94.1

94.1

95.1

32.1

REST

CONSTANT

FIXED

BIN(31,0)

Refs:

39.1

39.1

39.1

71.1

SLEEP

CONSTANT

EXTERNAL(’Sleep’)

ENTRY(

BYVALUE

FIXED

BIN(31,0)

)

Refs:

95.1

37.1

WHOLE

CONSTANT

FIXED

BIN(31,0)

Refs:

39.1

39.1

39.1

39.1

39.1

39.1

39.1

39.1

39.1

39.1

39.1

39.1

39.1

39.1

39.1

39.1

39.1

39.1

39.1

5639-D65

IBM(R)

VisualAge(TM)

PL/I

for

Windows(R)

V2.R1.12

(Built:20040702)

2004.07.08

11:41:55

Page

6

Aggregate

Length

Table

�5�

Line.File

Dims

Offset

Size

Size

Identifier

39.1

2

0

152

4

NOTES

5639-D65

IBM(R)

VisualAge(TM)

PL/I

for

Windows(R)

V2.R1.12

(Built:20040702)

2004.07.08

11:41:55

Page

7

File

Reference

Table

�6�

File

Included

From

Name

1

C:\ibmpliw\samples\chimes.pli

�3�

Component

Return

Code

Messages

(Total/Suppressed)

Time

�7�

MACRO

0

0

/

0

0

secs

Compiler

0

0

/

0

1

secs

End

of

compilation

of

CHIMES

Figure

3.

CHIMES

program

compiler

listing

(Part

5

of

5)

Using

the

compiler

listing

Chapter

7.

Compilation

output

109

been

changed.

If

any

compile-time

options

contradict

each

other,

the

compiler

uses

the

one

with

the

highest

priority.

The

following

list

shows

which

options

the

compiler

uses,

beginning

with

the

highest

priority:

v

Options

specified

with

the

*PROCESS

or

%PROCESS

statement.

v

Options

specified

when

you

invoked

the

compiler

with

the

PLI

command.

v

Install

options

installed

either

at

installation

time

or

by

the

IBM.OPTIONS

environment

variable

(see

“IBM.OPTIONS”

on

page

26

for

more

information

on

the

IBM.OPTIONS

environment

variable).

�3�

Using

the

NUMBER

option

The

statement

numbers

shown

are

generated

by

the

NUMBER

option.

In

this

case,

the

statement

begins

on

the

14th

line

in

file

1.

The

File

Reference

Table

at

the

bottom

of

the

listing

also

shows

that

file

1

refers

to

D:\ibmpli\samples\chimes.pli.

By

generating

these

statement

numbers

during

compilation,

you

can

locate

lines

that

need

editing

(indicated

in

messages,

for

example)

without

having

to

refer

to

the

listing.

�4�

Attribute

and

cross-reference

table

If

you

specify

the

ATTRIBUTES

option,

the

compiler

provides

an

attribute

table

containing

a

list

of

the

identifiers

in

the

source

program

together

with

their

declared

and

default

attributes

in

the

compiler

listing.

The

FULL

attribute

lists

all

identifiers

and

attributes.

If

you

specify

the

SHORT

suboption

for

ATTRIBUTES,

unreferenced

identifiers

are

not

listed.

If

you

specify

the

XREF

option,

the

compiler

prints

a

cross-reference

table

containing

a

list

of

the

identifiers

in

the

source

program

together

with

the

Line.File

number

(the

statement

number

inside

the

file

and

the

file

number,

respectively)

in

which

they

appear

in

the

compiler

listing.

An

identifier

appears

in

the

Sets:

part

of

the

cross-reference

table

if

it

is:

v

The

target

of

an

assignment

statement.

v

Used

as

a

loop

control

variable

in

DO

loops.

v

Used

in

the

SET

option

of

an

ALLOCATE

or

LOCATE

statement.

v

Used

in

the

REPLY

option

of

a

DISPLAY

statement.

If

there

are

unreferenced

identifiers,

they

are

displayed

in

a

separate

table

(not

shown

in

this

example).

If

you

specify

ATTRIBUTES

and

XREF

(as

in

this

example),

the

two

tables

are

combined.

Explicitly-declared

variables

are

listed

with

the

number

of

the

DECLARE

statement

in

which

they

appear.

Implicitly-declared

variables

are

indicated

by

asterisks

and

contextually

declared

variables

(HBOUND

and

LBOUND

in

this

example)

are

indicated

by

plus

(+)

signs.

(Undeclared

variables

are

also

listed

in

a

diagnostic

message.)

The

attributes

INTERNAL

and

REAL

are

never

included;

they

can

be

assumed

unless

the

respective

conflicting

attributes,

EXTERNAL

and

COMPLEX,

are

listed.

For

a

file

identifier,

the

attribute

FILE

always

appears,

and

the

attribute

EXTERNAL

appears

if

it

applies;

otherwise,

only

explicitly

declared

attributes

are

listed.

Using

the

compiler

listing

110

PL/I

for

Windows:

Programming

Guide

For

an

array,

the

dimension

attribute

is

printed

first.

If

the

bound

of

an

array

is

a

restricted

expression,

the

value

of

that

expression

is

shown

for

the

bound;

otherwise

an

asterisk

is

shown.

If

the

length

of

a

bit

string

or

character

string

is

a

restricted

expression,

that

value

is

shown,

otherwise

an

asterisk

is

shown.

�5�

Aggregate

length

table

If

you

specified

the

AGGREGATE

option,

the

compiler

provides

an

aggregate

length

table

in

the

compiler

listing.

The

table

shows

how

each

aggregate

in

the

program

is

mapped.

Table

8

shows

the

headings

for

the

aggregate

length

table

columns

and

the

description

of

each.

Table

8.

Aggregate

length

table

headings

and

description

Heading

Description

Line.File

The

statement

number

and

file

number

in

which

the

aggregate

is

declared

Offset

The

byte

offset

of

each

element

from

the

beginning

of

the

aggregate

Total

Size

The

total

size

in

bytes

of

the

aggregate

Base

Size

The

size

in

bytes

of

the

data

type

Identifier

The

name

of

the

aggregate

and

the

element

within

the

aggregate

�6�

File

reference

table

The

Included

From

column

of

the

File

reference

table

indicates

where

the

corresponding

file

from

the

Name

column

was

included.

The

first

entry

in

this

column

is

blank

because

the

first

file

listed

is

the

source

file.

Entries

in

the

Included

From

column

show

the

line

number

of

the

include

statement

followed

by

a

period

and

the

file

number

of

the

source

file

containing

the

include.

�7�

Component,

return

code,

diagnostic

messages,

time

The

last

part

of

the

compiler

listing

consists

of

the

following

headings:

Component

Shows

you

which

component

or

processor

is

providing

the

information.

Either

the

macro

facility,

if

invoked,

or

the

compiler

itself

can

provide

you

with

informational

messages.

Return

code

Shows

you

the

highest

return

code

generated

by

the

component,

issued

upon

completion

of

compilation.

Possible

return

codes

are:

0

(Informational)

No

warning

messages

detected

(as

in

this

example).

The

compiled

program

should

run

correctly.

The

compiler

might

inform

you

of

a

possible

inefficiency

in

your

code

or

some

other

condition

of

interest.

4

(Warning)

Indicates

that

the

compiler

found

minor

errors,

but

the

compiler

could

correct

them.

The

compiled

program

should

run

correctly,

but

might

produce

different

results

than

expected

or

be

significantly

inefficient.

8

(Error)

Indicates

that

the

compiler

found

significant

errors,

but

the

compiler

could

correct

them.

The

compiled

program

should

run

correctly,

but

might

produce

different

results

than

expected.

Using

the

compiler

listing

Chapter

7.

Compilation

output

111

12

(Severe

error)

Indicates

that

the

compiler

found

errors

that

it

could

not

correct.

If

the

program

was

compiled

and

an

object

module

produced,

it

should

not

be

used.

16

(Unrecoverable

error)

Indicates

an

error-forced

termination

of

the

compilation.

An

object

module

was

not

successfully

created.

Note:

When

coding

CMD

files

for

PL/I,

you

can

use

the

return

code

to

decide

whether

or

not

post-compilation

procedures

are

performed.

Messages

Indicates:

v

The

number

of

messages

issued,

if

any

v

The

number

of

messages

suppressed,

if

any,

because

they

were

equal

to

or

below

the

severity

level

set

by

the

FLAG

compile-time

option.

Messages

for

the

compiler,

macro

facility,

SQL

preprocessor,

and

run-time

environment

are

listed

and

explained

in

Messages

and

Codes.

Only

messages

of

the

severity

above

that

specified

by

the

FLAG

option

are

issued.

The

messages,

statements,

and

return

code

appear

on

your

screen

unless

you

specify

the

NOTERMINAL

compile-time

option.

Time

Shows

you

the

total

time

the

component

took

to

process

your

program.

Compiler

output

files

If

you

compile

a

program

using

default

options,

an

object

module

is

created

in

the

current

directory.

By

altering

compile-time

options,

you

can

request

other

output

to

be

created

in

addition

to

the

object

module.

Table

9

lists

other

possible

compilation

outputs

which

are

also

located

in

the

current

directory

by

default.

All

compiler

output

files

use

the

same

file

name

as

the

main

program

file.

The

file

extensions

are

specified

in

the

following

table.

Table

9.

Possible

compilation

disk

outputs

Output

File

extension

How

requested

(compile-time

option)

How

relocated

(environment

variable)

Preprocessed

source

text

DEK

DECK

option

of

appropriate

preprocessor

IBM.DECK

Object

module

OBJ

OBJECT

IBM.OBJECT

Object

listing

ASM

LIST

IBM.PRINT

Template

.DEF

file

DEF

XINFO(DEF)

IBM.OBJECT

Message

listing

XML

XINFO(XML)

IBM.OBJECT

Note:

You

always

receive

a

.LST

file

containing

the

program

listing.

Using

the

compiler

listing

112

PL/I

for

Windows:

Programming

Guide

Chapter

8.

Linking

your

program

Starting

the

linker

.

.

.

.

.

.

.

.

.

.

.

. 113

Statically

linking

.

.

.

.

.

.

.

.

.

.

. 113

Linking

from

the

command

line

.

.

.

.

.

. 113

Linking

from

a

make

file

.

.

.

.

.

.

.

. 114

Input

and

output

.

.

.

.

.

.

.

.

.

.

.

. 115

Search

rules

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Specifying

directories

.

.

.

.

.

.

.

.

.

. 116

Filename

defaults

.

.

.

.

.

.

.

.

.

.

. 116

Specifying

object

files

.

.

.

.

.

.

.

.

.

.

. 116

Using

response

files

.

.

.

.

.

.

.

.

.

.

. 117

Specifying

executable

output

type

.

.

.

.

.

. 117

Producing

an

.EXE

file

.

.

.

.

.

.

.

.

. 118

Producing

a

dynamic

link

library

.

.

.

.

.

. 118

Packing

executables

.

.

.

.

.

.

.

.

.

.

. 119

Generating

a

map

file

.

.

.

.

.

.

.

.

.

. 119

Linker

return

codes

.

.

.

.

.

.

.

.

.

.

. 119

The

following

sections

describe

how

to

link

object

files

produced

by

the

compiler

into

either

an

executable

program

file

(.EXE)

or

dynamic

link

library

(.DLL).

Every

.EXE

that

you

build

must

contain

exactly

one

main

routine,

that

is,

exactly

one

procedure

containing

OPTIONS(MAIN).

If

no

main

routine

exists,

the

linker

complains

that

your

program

has

no

starting

address.

If

more

than

one

main

routine

exists,

the

linker

complains

that

there

are

duplicate

references

to

the

name

main.

Every

.DLL

that

you

build

must

have

at

least

one

module

compiled

with

the

DLLINIT

compile-time

option

(see

“DLLINIT”

on

page

45).

Starting

the

linker

Once

the

compiler

has

created

object

modules

out

of

your

source

files,

use

the

linker

to

link

them

together

with

the

PL/I

runtime

libraries

to

create

an

EXE

or

DLL

file.

Statically

linking

To

statically

link

the

library

into

your

.EXE,

specify

the

LIBS(SINGLE

STATIC)

or

LIBS(MULTI

STATIC)

compile-time

option

(see

“LIBS”

on

page

51).

You

must

also

link

with

the

/NOE

linker

option.

Linking

from

the

command

line

Specify

the

ILINK

command

followed

by

any

sequence

of

options,

file

names,

or

directories,

separated

by

space

or

tab

characters.

options

One

or

more

ILINK

options.

ILINK

options

start

with

a

/

or

-

character.

filename

The

names

of

one

or

more

of

the

following

kinds

of

files:

v

Object

files—have

an

.OBJ

filename

extension

v

Library

files—have

an

.LIB

filename

extension

v

Definition

files—have

a

.DEF

filename

extension

v

Export

files—have

an

.EXP

filename

extension

v

Resource

files—have

an

.RES

filename

extension

You

must

specify

at

least

one

object

file

to

use

ILINK

correctly.

directories

One

or

more

directory

locations

which

end

with

a

/

or

\

character.

113

responsefile

The

name

of

a

response

file.

The

file

name

should

immediately

follow

the

@

character.

Linking

considerations

You

can

specify

the

name

of

the

output

file

with

the

/OUT

option.

You

can

specify

the

name

of

a

map

file

with

the

/MAP

option.

In

addition

to

the

libraries

you

specify,

by

default

the

linker

searches

the

PL/I

runtime

libraries

defined

in

your

object

files

at

compile

time

(see

“LIBS”

on

page

51).

The

directories

you

specify

become

part

of

the

linker’s

search

path,

before

any

directories

set

in

the

LIB

environment

variable.

See

“Search

rules”

on

page

115

and

“Specifying

directories”

on

page

116

for

more

information.

You

can

use

wildcard

characters

to

specify

multiple

object

files.

For

example,

use

*.OBJ

to

specify

all

the

object

files

in

a

directory.

Filename

extensions

are

not

assumed

The

linker

does

not

assume

extensions

for

files.

If

you

specify

a

filename

with

no

extension,

then

the

linker

looks

for

the

file

with

that

name

and

no

extension.

If

the

linker

cannot

find

a

file,

it

stops

linking.

Examples

The

following

command

links

the

object

files

FUN.OBJ,

TEXT.OBJ,

TABLE.OBJ,

and

CARE.OBJ.

The

linker

searches

for

unresolved

external

references

in

the

library

file

XLIB.LIB

and

in

the

default

libraries.

Since

there

is

no

name

provided

for

the

executable

file,

it

is

named

FUN.EXE,

taking

the

filename

of

the

first

object

file

and

the

default

extension

.EXE.

The

linker

also

produces

a

map

file,

FUNLIST.MAP.

ilink

/MAP:funlist

fun.obj

text.obj

table.obj

care.obj

xlib.lib

The

following

command

links

the

files

MAIN.OBJ,

GETDATA.OBJ,

and

PRINTIT.OBJ

into

an

executable

file

named

MAIN.EXE,

and

produces

a

map

file

named

MAIN.MAP.

ilink

/MAP

main.obj

getdata.obj

printit.obj

In

Windows,

the

same

command

changes

slightly

by

adding

an

export

file,

GETDATA.EXP,

which

specifies

the

functions

that

are

exported

from

GETDATA.DLL.

ilink

getdata.obj

printit.obj

/OUT:getdata.dll

/DLL

getdata.exp

Linking

from

a

make

file

Use

a

make

file

to

organize

the

sequence

of

actions

(such

as

compiling

and

linking)

required

to

build

your

project.

You

can

then

invoke

all

the

actions

in

one

step.

The

NMAKE

utility

saves

you

time

by

performing

actions

on

only

the

files

that

have

changed,

and

on

the

files

that

incorporate

or

depend

on

the

changed

files.

The

following

figure

contains

a

basic

make

file

example.

Starting

the

linker

114

PL/I

for

Windows:

Programming

Guide

Input

and

output

The

linker

is

designed

to

link

object

files

with

other

library

files

you

specify

to

produce

either

an

executable

program

file

(.EXE)

or

a

dynamic

link

library

(.DLL).

The

linker

optionally

produces

a

map

file,

which

provides

information

about

the

contents

of

the

executable

output.

Input

Output

options

executable

file

(.EXE

or

.DLL)

object

files

(*.OBJ)

map

file

(.MAP)

library

files

(*.LIB)

return

code

module

definition

file

(.DEF)

(Windows)export

files

(*.EXP)

(Windows)resource

files

(*.RES)

Search

rules

When

searching

for

an

object

(.OBJ),

library

(.LIB),

or

module

definition

(.DEF)

file,

the

linker

looks

in

the

following

locations

in

this

order:

1.

The

directory

you

specified

for

the

file

or

the

current

directory

if

you

did

not

give

a

path.

Default

libraries

do

not

include

path

specifications.

#--

#

#

fun.mak

-

sample

makefile

#

#

Usage:

nmake

fun.mak

#

#

The

following

commands

are

done

only

when

needed:

#

#

-

Compiles

fun,

text,

table,

care,

#

xlib1,

and

xlib2

#

-

Adds

xlib1

and

xlib2

to

library

xlib

#

-

Links

fun,

text,

table,

care,

and

xlib

#

to

build

fun.exe

#

#

Each

block

is

as

follows:

#

<target>:

<list

of

dependencies

for

target>

#

<action(s)

required

to

build

target>

#

#--

OBJS

=

fun.obj

text.obj

table.obj

care.obj

LIBS

=

xlib.lib

fun.exe:

$(OBJS)

$(LIBS)

ilink

/MAP:funlist

$(OBJS)

$(LIBS)

xlib.lib:

xlib1.obj

xlib2.obj

ilib

/OUT:xlib.lib

xlib1.obj

xlib2.obj

fun.obj:

fun.pli

pli

fun.pli

text.obj:

text.pli

pli

text.pli

table.obj:

table.pli

pli

table.pli

care.obj:

care.pli

pli

care.pli

xlib1.obj:

xlib1.pli

pli

xlib1.pli

xlib2.obj:

xlib2.pli

pli

xlib2.pli

Figure

4.

Make

file

example

Linker

input

and

output

Chapter

8.

Linking

your

program

115

Note:

If

you

specify

a

path

with

the

file,

the

linker

searches

only

that

path.

2.

Any

directories

entered

by

themselves

on

the

command

line

(they

must

end

with

a

slash

(/)

or

backslash

(\)

character).

See

the

section

on

“Specifying

directories”

for

more

information.

3.

Any

directories

listed

in

the

LIB

environment

variable.

If

the

linker

cannot

locate

a

file,

it

generates

an

error

message

and

stops

linking.

Example

A

response

file

could

contain

the

following

information:

FUN.OBJ

TEXT.OBJ

TABLE.OBJ

CARE.OBJ

NEWLIBV3.LIB

C:\TESTLIB\

The

linker

links

four

object

files

to

create

an

executable

file

named

FUN.EXE.

The

linker

searches

NEWLIBV3.LIB

before

searching

the

default

libraries

to

resolve

references.

To

locate

NEWLIBV3.LIB

and

the

default

libraries,

the

linker

searches

the

following

locations

in

this

order:

1.

The

current

directory

(because

NEWLIBV3.LIB

was

entered

without

a

path)

2.

The

C:\TESTLIB\

directory

3.

The

directories

listed

in

the

LIB

environment

variable

Specifying

directories

To

have

the

linker

search

additional

directories

for

input

files,

specify

a

drive

or

directory

by

itself

on

the

command

line.

Specify

the

drive

or

directory

with

a

slash

(/)

or

backslash

(\)

character

at

the

end

so

the

linker

will

recognize

it

as

a

path.

The

linker

searches

the

paths

you

specify

before

it

searches

the

paths

in

the

LIB

environment

variable.

See

the

section

on

“Search

rules”

on

page

115

for

more

information.

Filename

defaults

If

you

do

not

enter

a

file

name,

the

linker

assumes

the

following

defaults:

Table

10.

Linker

filename

defaults

File

Default

Filename

Object

files

None.

You

must

enter

at

least

one

object

file

name.

Output

file

The

base

name

of

the

first

object

file.

Map

file

The

base

name

of

the

output

file.

Library

files

The

default

libraries

defined

in

the

object

files.

Use

the

LIBS

compile-time

option

to

define

the

default

libraries.

Any

additional

libraries

you

specify

are

searched

before

the

default

libraries.

Module

definition

file

None.

The

linker

assumes

you

accept

the

default

for

all

module

statements.

Specifying

object

files

When

you

invoke

the

linker

from

the

command

line,

the

linker

assumes

that

any

input

it

cannot

recognize

as

other

files,

options,

or

directories

must

be

an

object

file.

Use

a

space

or

tab

character

to

separate

files.

See

“Linking

from

the

command

line”

on

page

113

for

more

information

on

how

the

linker

interprets

input.

Linker

input

and

output

116

PL/I

for

Windows:

Programming

Guide

You

can

also

use

wildcard

characters

to

specify

multiple

object

files.

For

example,

use

*.OBJ

to

specify

all

the

object

files

in

a

directory.

Using

response

files

Instead

of

specifying

linker

input

on

the

command

line,

you

can

put

options

and

filename

parameters

in

a

response

file.

You

can

combine

the

response

file

with

options

and

parameters

on

the

command

line.

When

you

invoke

the

linker,

use

the

following

syntax:

ilink

@responsefile

The

value

for

responsefile

is

the

name

of

the

response

file.

The

@

symbol

indicates

that

the

file

is

a

response

file.

If

the

file

is

not

in

the

working

directory,

specify

the

path

for

the

file

as

well

as

the

file

name.

You

can

begin

using

a

response

file

at

any

point

on

the

linker

command

line.

Although

multiple

response

files

can

be

specified

on

the

command

line,

they

cannot

be

nested.

Options

can

appear

anywhere

in

the

response

file.

If

an

option

is

not

valid,

the

linker

generates

an

error

message

and

stops

linking.

Specify

the

contents

of

the

response

file

just

as

you

would

on

the

command

line.

Because

the

default

syntax

identifies

input

by

file

extension

rather

than

by

position

on

the

command

line,

it

does

not

matter

how

many

lines

there

are,

or

whether

there

are

blank

lines

in

the

file.

Example

The

response

file

named

FUN.LNK

contains

the

following:

/DEBUG

/MAP

fun.obj

text.obj

table.obj

care.obj

/exec

/map:funlist

graf.lib

When

you

enter

ilink

@fun.lnk,

the

linker

does

the

following:

v

Links

the

four

object

modules

fun.obj,

text.obj,

table.obj,

and

care.obj

into

an

.EXE

file

named

fun.exe.

Because

no

output

type

is

specified,

the

linker

defaults

to

.exe.

v

Generates

the

map

file

funlist.map

(assuming

the

extension

.map).

v

Preserves

debugging

information

(because

of

the

/DEBUG

option).

v

Links

any

needed

routines

from

the

library

file

graf.lib,

and

from

the

default

PL/I

libraries

specified

in

the

object

files.

Specifying

executable

output

type

You

can

use

the

linker

to

produce

executable

modules

(.EXE)

and

dynamic

link

libraries

(.DLL).

The

linker

produces

.EXE

files

by

default.

Use

options

to

specify

what

kind

of

output

you

want:

v

To

produce

a

.DLL,

specify

the

/DLL

option.

Or,

include

the

module

statement

LIBRARY.

Specifying

object

files

Chapter

8.

Linking

your

program

117

Producing

an

.EXE

file

The

linker

produces

.EXE

files

by

default.

Use

the

/EXEC

option,

to

explicitly

identify

the

output

file

as

an

.EXE

file.

An

.EXE

file

is

one

that

can

be

executed

directly.

You

can

run

the

program

by

typing

the

name

of

the

file.

In

contrast,

DLL

and

device

driver

programs

execute

when

they

are

called

by

other

processes,

and

cannot

be

run

independently.

To

reduce

the

size

of

the

.EXE

file

and

improve

its

performance,

use

the

following

options:

v

/ALIGNFILE:n

to

set

the

file

alignment

for

sections

in

the

output

file.

Set

n

to

smaller

factors

to

reduce

the

size

of

the

executable,

and

to

larger

factors

to

reduce

load

time

for

the

executable.

By

default,

the

alignment

is

set

to

512.

v

/BASE:n

to

specify

the

load

address

for

the

executable.

For

example,

if

several

DLLs

are

loaded

at

base

addresses

that

ensure

that

the

DLLs

do

not

overlap,

the

linker

does

not

have

to

reapply

the

relocation

records.

n

(the

load

address)

must

be

a

multiple

of

0x10000,

and

it

cannot

be

0.

If

you

do

not

specify

an

extension

for

the

output

file

name,

the

linker

automatically

adds

the

extension

.EXE

to

the

name

you

provide.

If

you

do

not

specify

an

output

filename

at

all,

the

linker

generates

an

.EXE

file

with

the

same

filename

as

the

first

.OBJ

file

it

linked.

Producing

a

dynamic

link

library

A

dynamic

link

library

(.DLL)

file

contains

executable

code

for

common

functions,

just

as

a

library

(.LIB)

file

does.

When

you

link

with

a

DLL

(using

an

import

library),

the

code

in

the

DLL

is

not

copied

into

the

executable

file.

Instead,

only

the

import

definitions

for

DLL

functions

are

copied,

resulting

in

a

smaller

executable.

At

run

time,

the

dynamic

link

library

is

loaded

into

memory,

along

with

the

.EXE

file.

To

produce

a

DLL

as

output,

compile

at

least

one

object

file

with

the

DLLINIT

compiler

option,

and

link

it

with

the

/DLL

linker

option.

You

must

include

an

export

definition

(.EXP)

file

that

specifies

which

functions

are

to

be

included

in

the

DLL.

You

can

find

more

information

in

Chapter

21,

“Building

dynamic

link

libraries,”

on

page

305.

To

reduce

the

size

of

the

DLL

and

improve

its

performance,

use

the

following

options:

v

/ALIGNFILE:value

to

set

the

alignment

factor

in

the

output

file.

Set

value

to

smaller

factors

to

reduce

the

size

of

the

DLL,

and

to

larger

factors

to

reduce

load

time

for

the

DLL.

By

default,

the

alignment

is

set

to

512.

For

DLLs,

setting

a

/BASE

value

can

save

load

time

when

the

given

load

address

is

available.

If

the

load

address

is

not

available,

the

/BASE

value

is

ignored,

and

there

is

no

load

time

benefit.

Once

you

have

produced

the

DLL,

you

can

produce

an

executable

that

links

to

the

DLL.

The

linker

determines

which

functions

your

object

files

need

during

the

linking

process.

Use

the

ILIB

utility

to

create

an

import

library,

and

then

use

the

.LIB

file

as

input

to

the

linker.

Specifying

executable

output

type

118

PL/I

for

Windows:

Programming

Guide

Packing

executables

Specify

/DBGPACK

when

you

are

debugging,

to

reduce

the

size

of

the

executable

file

and

potentially

improve

debugger

performance.

Generating

a

map

file

Specify

/MAP

to

generate

a

map

file,

which

lists

the

object

modules

in

your

output

file;

section

names,

addresses,

and

sizes;

and

symbol

information.

If

you

do

not

specify

a

name

for

the

map

file,

the

map

file

takes

the

name

of

the

executable

output

file,

with

the

extension

.MAP.

To

prevent

the

map

file

from

being

generated,

use

the

default,

/NOMAP.

Specify

/LINENUMBERS

to

include

source

file

line

numbers

and

associated

addresses

in

the

map

file.

Linker

return

codes

The

linker

has

the

following

return

codes:

Code

Meaning

0

The

link

was

completed

successfully.

The

linker

detected

no

errors,

and

issued

no

warnings.

4

Warnings

issued.

There

may

be

problems

with

the

output

file.

8

Errors

detected.

The

linking

might

have

completed,

but

the

output

file

cannot

be

run

successfully.

12

Both

warnings

issued

and

errors

detected

(see

return

codes

4

and

8)

16

Severe

errors

detected.

Linking

ended

abnormally,

and

the

output

file

cannot

be

run

successfully.

20

Both

warnings

issued

and

severe

errors

detected

(see

return

codes

4

and

16)

24

Both

errors

and

severe

errors

issued

(see

return

codes

8

and

16)

28

The

linker

issued

warnings,

detected

errors,

and

detected

severe

errors

(see

return

codes

4,

8,

and

16)

If

you

invoke

the

linker

through

a

makefile,

you

can

force

NMAKE

to

ignore

warnings

by

putting

-7

before

the

ILINK

command.

Packing

executables

Chapter

8.

Linking

your

program

119

Linker

return

codes

120

PL/I

for

Windows:

Programming

Guide

Chapter

9.

Setting

linker

options

Setting

options

on

the

command

line

.

.

.

.

. 121

Setting

options

in

the

ILINK

environment

variable

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

Using

the

linker

.

.

.

.

.

.

.

.

.

.

. 122

Specifying

numeric

arguments

.

.

.

.

.

.

. 122

Summary

of

Windows

linker

options

.

.

.

.

. 123

Windows

linker

options

.

.

.

.

.

.

.

.

.

. 123

/?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

/ALIGNADDR

.

.

.

.

.

.

.

.

.

.

.

. 124

/ALIGNFILE

.

.

.

.

.

.

.

.

.

.

.

. 124

/BASE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

/CODE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

/DATA

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

/DBGPACK,

/NODBGPACK

.

.

.

.

.

.

. 125

/DEBUG,

/NODEBUG

.

.

.

.

.

.

.

.

. 125

/DEFAULTLIBRARYSEARCH

.

.

.

.

.

.

. 126

/DLL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

/ENTRY

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

/EXECUTABLE

.

.

.

.

.

.

.

.

.

.

. 127

/EXTDICTIONARY,

/NOEXTDICTIONARY

127

/FIXED,

/NOFIXED

.

.

.

.

.

.

.

.

.

. 127

/FORCE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

/HEAP

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

/HELP

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

/INCLUDE

.

.

.

.

.

.

.

.

.

.

.

.

. 128

/INFORMATION,

/NOINFORMATION

.

.

. 128

/LINENUMBERS,

/NOLINENUMBERS

.

.

. 128

/LOGO,

/NOLOGO

.

.

.

.

.

.

.

.

.

. 129

/MAP,

/NOMAP

.

.

.

.

.

.

.

.

.

.

. 129

/OUT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

/PMTYPE

.

.

.

.

.

.

.

.

.

.

.

.

. 129

/SECTION

.

.

.

.

.

.

.

.

.

.

.

.

. 130

/SEGMENTS

.

.

.

.

.

.

.

.

.

.

.

. 130

/STACK

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

/STUB

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

/SUBSYSTEM

.

.

.

.

.

.

.

.

.

.

.

. 131

/VERBOSE

.

.

.

.

.

.

.

.

.

.

.

.

. 131

/VERSION

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Linker

options

are

not

case

sensitive,

so

you

can

specify

them

in

lower-,

upper-,

or

mixed

case.

You

can

also

substitute

a

dash

(-)

for

the

slash

(/)

preceding

the

option.

For

example,

-DEBUG

is

equivalent

to

/DEBUG.

You

can

specify

options

in

either

a

short

or

long

form.

For

example,

/DE,

/DEB,

and

/DEBU

are

all

equivalent

to

/DEBUG.

See

“Summary

of

Windows

linker

options”

on

page

123

for

the

shortest

acceptable

form

for

each

option.

Lower-

and

uppercase,

short

and

long

forms,

dashes,

and

slashes

can

all

be

used

on

one

command

line,

as

in:

ilink

/de

-DBGPACK

-Map

/NOI

prog.obj

Separate

options

with

a

space

or

tab

character.

You

can

specify

linker

options

in

the

following

ways:

v

On

the

command

line

v

In

the

ILINK

environment

variable

Options

specified

on

the

command

line

override

the

options

in

the

ILINK

environment

variable.

Some

linker

options

take

numeric

arguments.

You

can

enter

numbers

in

decimal,

octal,

or

hexadecimal

format.

See

“Specifying

numeric

arguments”

on

page

122

for

more

information.

Setting

options

on

the

command

line

Linker

options

specified

on

the

command

line

override

any

previously

specified

in

the

ILINK

environment

variable

(as

described

in

“Setting

options

in

the

ILINK

environment

variable”

on

page

122).

You

can

specify

options

anywhere

on

the

command

line.

Separate

options

with

a

space

or

tab

character.

For

example,

to

link

an

object

file

with

the

/MAP

option,

enter:

ilink

/M

myprog.obj

121

Setting

options

in

the

ILINK

environment

variable

Store

frequently

used

options

in

the

ILINK

environment

variable.

This

method

is

useful

if

you

find

yourself

repeating

the

same

command-line

options

every

time

you

link.

You

cannot

specify

file

names

in

the

environment

variable,

only

linker

options.

The

ILINK

environment

variable

can

be

set

either

from

the

command

line,

in

a

command

(.CMD)

file,

or

in

the

System

Properties.

If

it

is

set

on

the

command

line

or

by

running

a

command

file,

the

options

will

only

be

in

effect

for

the

current

session

(until

you

reboot

your

computer).

If

it

is

set

in

the

System

Properties,

the

options

are

set

when

you

boot

your

computer,

and

are

in

effect

every

time

you

use

the

linker

unless

you

override

them

using

a

.CMD

file

or

by

specifying

options

on

the

command

line.

Using

the

linker

In

the

following

example,

options

on

the

command

line

override

options

in

the

environment

variable.

If

you

enter

the

following

commands:

SET

ILINK=/NOI

/AL:256

/DE

ILINK

test

ILINK

/NODEF

/NODEB

prog

The

first

command

sets

the

environment

variable

to

the

options

/NOIGNORECASE,

/ALIGNMENT:256,

and

/DEBUG

The

second

command

links

the

file

test.obj,

using

the

options

specified

in

the

environment

variable,

to

produce

test.exe

The

last

command

links

the

file

prog.obj

to

produce

prog.exe,

using

the

option

/NODEFAULTLIBRARYSEARCH,

in

addition

to

the

options

/NOIGNORECASE

and

/ALIGNMENT:256.

The

/NODEBUG

option

on

the

command

line

overrides

the

/DEBUG

option

in

the

environment

variable,

and

the

linker

links

without

the

/DEBUG

option.

Specifying

numeric

arguments

Some

linker

options

and

module

statements

take

numeric

arguments.

You

can

specify

numbers

in

any

of

the

following

forms:

Decimal

Any

number

not

prefixed

with

0

or

0x

is

a

decimal

number.

For

example,

1234

is

a

decimal

number.

Octal

Any

number

prefixed

with

0

(but

not

0x)

is

an

octal

number.

For

example,

01234

is

an

octal

number.

Hexadecimal

Any

number

prefixed

with

0x

is

a

hexadecimal

number.

For

example,

0x1234

is

a

hexadecimal

number.

The

ILINK

environment

variable

122

PL/I

for

Windows:

Programming

Guide

Summary

of

Windows

linker

options

Table

11.

Windows

linker

options

summary

Option

Description

Default

/?

Display

help

None

/ALIGNADDR

Set

address

alignment

/A:0x00010000

/ALIGNFILE

Set

file

alignment

/A:512

/BASE

Set

preferred

loading

address

/BAS:0x00400000

/CODE

Set

section

attributes

for

executable

/CODE:RX

/DATA

Set

section

attributes

for

data

/DATA:RW

/DBGPACK,

/NODBGPACK

Pack

debugging

information

/NODB

/DEBUG,

/NODEBUG

Include

debugging

information

/NODEB

/DEFAULTLIBRARYSEARCH

Search

default

libraries

/DEF

/DLL

Generate

DLL

/EXEC

/DLL

Specify

an

entry

point

in

an

executable

file

None

/EXECUTABLE

Generate

.EXE

file

/EXEC

/EXTDICTIONARY,

/NOEXTDICTIONARY

Use

extended

dictionary

to

search

libraries

/EXT

/EXTDICTIONARY,

/NOEXTDICTIONARY

Do

not

relocate

the

file

in

memory

/NOFI

/FORCE

Create

executable

output

file

even

if

errors

are

detected

/NOFO

/HEAP

Set

the

size

of

the

program

heap

/HEAP:0x100000,0x1000

/HELP

Display

help

None

/INCLUDE

Forces

a

reference

to

a

symbol

None

/INFORMATION,

/NOINFORMATION

Display

status

of

linking

process

/NOIN

/LINENUMBERS,

/NOLINENUMBERS

Include

line

numbers

in

map

file

/NOLI

/LOGO,

/NOLOGO

Display

logo,

echo

response

file

/LO

/MAP,

/NOMAP

Generate

map

file

/NOM

/OUT

Name

output

file

Name

of

first

.obj

file

/PMTYPE

Specify

application

type

/PMTYPE:VIO

/SECTION

Set

attributes

for

section

Set

by

/CODE

and

/DATA

/SEGMENTS

Set

maximum

number

of

segments

/SE:256

/STACK

Set

stack

size

of

application

/STACK:

0x100000,0x1000

/STUB

Specify

the

name

of

the

DOS

stub

file

None

/SUBSYSTEM

Specify

the

required

subsystem

and

version

/SUBSYSTEM:

WINDOWS,4.0

/VERBOSE

Display

status

of

linking

process

/NOV

/VERSION

Write

a

version

number

in

the

run

file

/VERSION:0.0

Windows

linker

options

This

section

describes

the

linker

options

in

alphabetical

order.

For

each

option,

the

description

includes:

v

The

syntax

for

specifying

the

option.

v

The

default

setting.

v

Any

accepted

abbreviations.

Windows

linker

options

Chapter

9.

Setting

linker

options

123

v

A

description

of

the

option

and

its

parameters,

and

any

interaction

it

may

have

with

other

options.

/?

Use

/?

to

display

a

list

of

valid

linker

options.

This

option

is

equivalent

to

/HELP.

/ALIGNADDR

Use

/ALIGNADDR

to

set

the

address

alignment

for

segments.

The

alignment

factor

determines

where

segments

in

the

.EXE

or

.DLL

file

start.

From

the

beginning

of

the

file,

the

start

of

each

segment

is

aligned

at

a

multiple

(in

bytes)

of

the

alignment

factor.

The

alignment

factor

must

be

a

power

of

2,

from

512

to

256M.

Default:

/ALIGNADDR:0x00010000

Abbreviation:

/ALIGN

/ALIGNFILE

Use

/ALIGNFILE

to

set

the

file

alignment

for

segments.

The

alignment

factor

determines

where

segments

in

the

.EXE

or

.DLL

file

start.

From

the

beginning

of

the

file,

the

start

of

each

segment

is

aligned

at

a

multiple

(in

bytes)

of

the

alignment

factor.

The

alignment

factor

must

be

a

power

of

2,

from

512

to

64K.

Default:

/ALIGNFILE:512

Abbreviation:

/A

/BASE

Use

/BASE

to

specify

the

preferred

load

address

for

the

first

load

segment

of

a

.DLL

file.

Specifying

@filename,

key,

in

place

of

address,

bases

a

set

of

programs

(usually

a

set

of

DLLs)

so

they

do

not

overlap

in

memory.

filename

is

the

name

of

a

text

file

that

defines

the

memory

map

for

a

set

of

files.

key

is

a

reference

to

a

line

in

filename

beginning

with

the

specified

key.

Each

line

in

the

memory-map

file

has

the

syntax:

key

address

maxsize

Separate

the

elements

with

one

or

more

spaces

or

tabs.

The

key

is

a

unique

name

in

the

file.

The

address

is

the

location

of

the

memory

image

in

the

virtual

address

space.

The

maxsize

is

an

amount

of

memory

within

which

the

image

must

fit.

The

linker

will

issue

a

warning

when

the

memory

image

of

the

program

exceeds

the

specified

size.

A

comment

in

the

memory-map

file

begins

with

a

semicolon

(;)

and

runs

to

the

end

of

the

line.

Default:

/BASE:0x00400000

Abbreviations:

/BAS

Windows

linker

options

124

PL/I

for

Windows:

Programming

Guide

/CODE

Use

/CODE

to

specify

the

default

attributes

for

all

code

sections.

Letters

can

be

specified

in

any

order.

Letter

Attribute

E

or

X

EXECUTE

R

READ

S

SHARED

W

WRITE

Default:

/CODE:RX

CODE

description

abbreviations:

None

/DATA

Use

/DATA

to

specify

the

default

attributes

for

all

data

sections.

Letters

can

be

specified

in

any

order.

Letter

Attribute

E

or

X

EXECUTE

R

READ

S

SHARED

W

WRITE

Default:

/DATA:RW

Abbreviations:

None

/DBGPACK,

/NODBGPACK

Use

/DBGPACK

to

eliminate

redundant

debug

type

information.

The

linker

takes

the

debug

type

information

from

all

object

files

and

needed

library

components,

and

reduces

the

information

to

one

entry

per

type.

This

results

in

a

smaller

executable

output

file,

and

can

improve

debugger

performance.

Performance

Consideration:

Generally,

linking

with

/DBGPACK

slows

the

linking

process,

because

it

takes

time

to

pack

the

information.

However,

if

there

is

enough

redundant

debug

type

information,

/DBGPACK

can

actually

speed

up

your

linking,

because

there

is

less

information

to

write

to

file.

When

you

specify

/DBGPACK,

/DEBUG

is

turned

on

by

default.

Default:

/NODBGPACK

Abbreviations:

/DB|/NODB

/DEBUG,

/NODEBUG

Use

/DEBUG

to

include

debug

information

in

the

output

file,

so

you

can

debug

the

file

with

the

debugger,

or

analyze

its

performance

with

Performance

Analyzer.

The

linker

will

embed

symbolic

data

and

line

number

information

in

the

output

file.

Windows

linker

options

Chapter

9.

Setting

linker

options

125

For

debugging,

compile

the

object

files

with

TEST.

For

the

Performance

Analyzer,

compile

the

object

files

with

PROFILE

and

GONUMBER.

Linking

with

/DEBUG

increases

the

size

of

the

executable

output

file.

Default:

/NODEBUG

Abbreviations:

/D|/NODEB

/DEFAULTLIBRARYSEARCH

Use

/DEFAULTLIBRARYSEARCH

to

have

the

linker

search

the

default

libraries

of

object

files

when

resolving

references.

If

you

specify

a

library

with

the

option,

the

linker

adds

the

library

name

to

the

list

of

default

libraries.

The

default

libraries

for

an

object

file

are

defined

at

compile

time,

and

embedded

in

the

object

file.

The

linker

searches

the

default

libraries

by

default.

Use

/NODEFAULTLIBRARYSEARCH

to

tell

the

linker

to

ignore

default

libraries

when

it

resolves

external

references.

If

you

specify

a

library

with

the

option,

the

linker

ignores

that

default

library,

but

searches

the

rest

of

the

default

libraries

(and

any

others

that

are

defined

in

the

object

files).

If

you

specify

/NODEFAULTLIBRARYSEARCH

without

specifying

library,

then

you

must

explicitly

specify

all

the

libraries

you

want

to

use,

including

VA

PL/I

runtime

libraries.

Default:

/DEFAULTLIBRARYSEARCH

Abbreviations:

/DEF|/NOD

/DLL

Use

/DLL

to

identify

the

output

file

as

a

dynamic

link

library

(.DLL

file).

The

object

files

should

be

compiled

with

the

PL/I

option

DLLINIT.

If

you

specify

/DLL

with

/EXEC,

only

the

last

specified

of

the

options

takes

effect.

If

you

do

not

specify

/DLL,

or

any

of

the

other

options,

then

by

default

the

linker

produces

an

.EXE

file

(/EXEC).

Default:

/EXECUTABLE

Abbreviation:

/EXEC

/ENTRY

Use

/ENTRY

to

specify

an

entry

point

(name

of

a

routine

or

function)

in

an

executable.

Default:

None

Abbreviation:

/EN

Windows

linker

options

126

PL/I

for

Windows:

Programming

Guide

/EXECUTABLE

Use

/EXEC

to

identify

the

output

file

as

an

executable

program

(.EXE

file).

The

linker

generates

.EXE

files

by

default.

If

you

specify

/EXEC

with

/DLL,

only

the

last

specified

of

the

options

takes

effect.

If

you

do

not

specify

/EXEC

or

/DLL,

then

by

default

the

linker

produces

an

.EXE

file.

Default:

/EXECUTABLE

Abbreviation:

/EXEC

/EXTDICTIONARY,

/NOEXTDICTIONARY

Use

/EXTDICTIONARY

to

have

the

linker

search

the

extended

dictionaries

of

libraries

when

it

resolves

external

references.

The

extended

dictionary

is

a

list

of

module

relationships

within

a

library.

When

the

linker

pulls

in

a

module

from

the

library,

it

checks

the

extended

dictionary

to

see

if

that

module

requires

other

modules

in

the

library,

and

then

pulls

in

the

additional

modules

automatically.

The

linker

searches

the

extended

dictionary

by

default,

to

speed

up

the

linking

process.

Use

/NOEXTDICTIONARY

if

you

are

defining

a

symbol

in

your

object

code

that

is

also

defined

in

one

of

the

libraries

to

which

you

are

linking.

Otherwise

the

linker

issues

an

error

because

you

have

defined

the

same

symbol

in

two

different

places.

When

you

link

with

/NOEXTDICTIONARY,

the

linker

searches

the

dictionary

directly,

instead

of

searching

the

extended

dictionary.

This

results

in

slower

linking,

because

references

must

be

resolved

individually.

Default:

/EXTDICTIONARY

Abbreviations:

/EXT|/NOE

/FIXED,

/NOFIXED

Use

/FIXED

to

tell

the

loader

not

to

relocate

a

file

in

memory

when

the

specified

base

address

is

not

available.

For

more

information

on

base

addresses,

see

the

/BASE

linker

option.

Default:

/NOFIXED

Abbreviations:

/FI|/NOFI

/FORCE

Use

/FORCE

to

produce

an

executable

output

file

even

if

there

are

errors

during

the

linking

process.

Default:

/NOFORCE

Abbreviations:

/FO|/NOFO

Windows

linker

options

Chapter

9.

Setting

linker

options

127

/HEAP

Use

/HEAP

to

set

the

size

of

the

program

heap

in

bytes.

The

reserve

argument

sets

the

total

virtual

address

space

reserved.

The

commit

sets

the

amount

of

physical

memory

to

allocate

initially.

When

commit

is

less

than

reserve,

memory

demands

are

reduced,

but

execution

time

can

be

slower.

Default:

/HEAP:0x100000,0x1000

Abbreviation:

/HEA

/HELP

Use

/HELP

to

display

a

list

of

valid

linker

options.

This

option

is

equivalent

to

/?.

Default:

None

Abbreviation:

/H

/INCLUDE

Use

/INCLUDE

to

force

a

reference

to

a

symbol.

The

linker

searches

for

an

object

module

that

defines

the

symbol.

Default:

None

Abbreviation:

/INC

/INFORMATION,

/NOINFORMATION

See

the

description

of

the

/VERBOSE

linker

option.

Default:

/NOINFORMATION

Abbreviations:

/I|/NOIN

/LINENUMBERS,

/NOLINENUMBERS

Use

/LINENUMBERS

to

include

source

file

line

numbers

and

associated

addresses

in

the

map

file.

For

this

option

to

take

effect,

there

must

already

be

line

number

information

in

the

object

files

you

are

linking.

When

you

compile,

use

the

GONUMBER

option

to

include

line

numbers

in

the

object

file

(or

the

TEST

option

to

include

all

debugging

information).

If

you

give

the

linker

an

object

file

without

line

number

information,

the

/LINENUMBERS

option

has

no

effect.

The

/LINENUMBERS

option

forces

the

linker

to

create

a

map

file,

even

if

you

specified

/NOMAP.

By

default,

the

map

file

is

given

the

same

name

as

the

output

file,

plus

the

extension

.map.

You

can

override

the

default

name

by

specifying

a

map

filename.

Default:

/NOLINENUMBERS

Abbreviations:

/L|/NOLI

Windows

linker

options

128

PL/I

for

Windows:

Programming

Guide

/LOGO,

/NOLOGO

Use

/NOLOGO

to

suppress

the

product

information

that

appears

when

the

linker

starts.

Specify

/NOLOGO

before

the

response

file

on

the

command

line,

or

in

the

ILINK

environment

variable.

If

the

option

appears

in

or

after

the

response

file,

it

is

ignored.

Default:

/LOGO

Abbreviations:

/LO|/NOL

/MAP,

/NOMAP

Use

/MAP

to

generate

a

map

file

called

name.

The

file

lists

the

composition

of

each

segment,

and

the

public

(global)

symbols

defined

in

the

object

files.

The

symbols

are

listed

twice:

in

order

of

name

and

in

order

of

address.

If

you

do

not

specify

a

directory,

the

map

file

is

generated

into

the

current

working

directory.

If

you

do

not

specify

name,

the

map

file

has

the

same

name

as

the

executable

output

file,

with

the

extension

.map.

Default:

/NOMAP

Abbreviations:

/M|/NOM

/OUT

Use

/OUT

to

specify

a

name

for

the

executable

output

file.

If

you

do

not

provide

an

extension

with

name,

then

the

linker

provides

an

extension

based

on

the

type

of

file

you

are

producing:

File

produced

Default

extension

Executable

program

.EXE

Dynamic

link

library

.DLL

If

you

do

not

use

the

/OUT

option,

then

the

linker

uses

the

filename

of

the

first

object

file

you

specified,

with

the

appropriate

extension.

Default:

Name

of

first

.OBJ

file

with

appropriate

extension.

Abbreviation:

/O

/PMTYPE

Use

/PMTYPE

to

specify

the

type

of

.EXE

file

that

the

linker

generates.

Do

not

use

this

option

when

generating

dynamic

link

libraries

(DLLs).

One

of

the

following

types

must

be

specified:

PM

The

executable

must

be

run

in

a

window.

VIO

The

executable

can

be

run

either

in

a

window

or

in

a

full

screen.

Windows

linker

options

Chapter

9.

Setting

linker

options

129

NOVIO

The

executable

must

not

be

run

in

a

window;

it

must

use

a

full

screen.

Default:

/PMTYPE:VIO

Abbreviation:

/PM

/SECTION

Use

/SECTION

to

specify

memory-protection

attributes

for

the

name

section.

name

is

case

sensitive.

You

can

specify

the

following

attributes:

Letter

Sets

Attribute

E

or

X

EXECUTE

R

READ

S

SHARED

W

WRITE

The

following

example

sets

the

READ

and

SHARED

attributes,

but

not

the

EXECUTE,

or

WRITE

attributes,

for

the

section

dseg1

in

an

.EXE

file.

/SEC:dseg1,RS

Defaults

Sections

are

assigned

attributes

by

default,

as

follows:

Segment

Default

Attributes

Code

sections

EXECUTE,

READ

(ER)

Data

sections

(in

.EXE

file)

READ,

WRITE

(RW),

not

shared

Data

sections

(in

.DLL

file)

READ,

WRITE,

not

shared

CONST32_RO

section

READ,

SHARED

(RS)

Default:

Depends

on

segment

type

Abbreviation:

/SEC

/SEGMENTS

Use

/SEGMENTS

to

set

the

number

of

logical

segments

a

program

can

have.

You

can

set

number

to

any

value

in

the

range

1

to

16375.

See

“Specifying

numeric

arguments”

on

page

122.

For

each

logical

segment,

the

linker

must

allocate

space

to

keep

track

of

segment

information.

By

using

a

relatively

low

segment

limit

as

a

default

(256),

the

linker

is

able

to

link

faster

and

allocate

less

storage

space.

When

you

set

the

segment

limit

higher

than

256,

the

linker

allocates

more

space

for

segment

information.

This

results

in

slower

linking,

but

allows

you

to

link

programs

with

a

large

number

of

segments.

Windows

linker

options

130

PL/I

for

Windows:

Programming

Guide

For

programs

with

fewer

than

256

segments,

you

can

improve

link

time

and

reduce

linker

storage

requirements

by

setting

number

to

the

actual

number

of

segments

in

the

program.

Default:

/SEGMENTS:256

Abbreviation:

/SE

/STACK

Use

/STACK

to

set

the

stack

size

(in

bytes)

of

your

program.

The

size

must

be

an

even

number

from

0

to

0xFfffFffe.

If

you

specify

an

odd

number,

it

is

rounded

up

to

the

next

even

number.

reserve

indicates

the

total

virtual

address

space

reserved.

commit

sets

the

amount

of

physical

memory

to

allocate

initially.

When

commit

is

less

than

reserve,

memory

demands

are

reduced,

although

execution

time

may

be

slower.

Default:

/STACK:0x100000,0x1000

Abbreviation:

/ST

/STUB

Use

/STUB

to

specify

the

name

of

the

DOS

executable

at

the

beginning

of

the

output

file

created.

Default:

None

Abbreviation:

/STU

/SUBSYSTEM

Use

/SUBSYSTEM

to

specify

the

subsystem

and

version

required

to

run

the

program.

The

major

and

minor

arguments

are

optional

and

specify

the

minimum

required

version

of

the

subsystem.

The

major

and

minor

arguments

are

integers

in

the

range

0

to

65535.

Subsystem

Major.Minor

Description

WINDOWS

3.10

A

graphical

application

that

uses

the

Graphical

Device

Interface

(GDI)

API.

CONSOLE

3.10

A

character-mode

application

that

uses

the

Console

API.

Default:

/SUBSYSTEM:WINDOWS,4.0

Abbreviation:

/SU

/VERBOSE

Use

/VERBOSE

to

have

the

linker

display

information

about

the

linking

process

as

it

occurs,

including

the

phase

of

linking

and

the

names

and

paths

of

the

object

files

being

linked.

If

you

are

having

trouble

linking

because

the

linker

is

finding

the

wrong

files

or

finding

them

in

the

wrong

order,

use

/VERBOSE

to

determine

the

locations

of

the

object

files

being

linked

and

the

order

in

which

they

are

linked.

Windows

linker

options

Chapter

9.

Setting

linker

options

131

The

output

from

this

option

is

sent

to

stdout.

You

can

redirect

the

output

to

a

file

using

Windows

redirection

symbols.

/VERBOSE

is

the

same

as

/INFORMATION.

Default:

/NOVERBOSE

Abbreviations:

/VERB|/NOV

/VERSION

Use

/VERSION

to

write

a

version

number

in

the

header

of

the

run

file.

The

major

and

minor

arguments

are

integers

in

the

range

0

to

65535.

Default:

/VERSION:0.0

Abbreviation:

/VER

Windows

linker

options

132

PL/I

for

Windows:

Programming

Guide

Part

3.

Running

and

debugging

your

program

133

134

PL/I

for

Windows:

Programming

Guide

Chapter

10.

Using

run-time

options

Setting

run-time

environment

variables

.

.

.

.

. 135

PATH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

DPATH

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Specifying

run-time

options

.

.

.

.

.

.

.

. 135

Where

to

specify

run-time

options

.

.

.

.

. 135

Specifying

multiple

run-time

options

or

suboptions

.

.

.

.

.

.

.

.

.

.

.

.

. 136

Run-time

options

.

.

.

.

.

.

.

.

.

.

.

. 136

NATLANG

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Shipping

run-time

DLLs

.

.

.

.

.

.

.

.

.

. 137

Once

you

have

prepared

the

executable

form

of

your

PL/I

program,

you

need

to

test

its

execution

behavior.

The

first

step

is

to

run

the

program

and

see

what

happens.

Depending

on

the

nature

of

your

application,

you

might

need

to

do

some

input

and

output

setup

(SET

statements)

before

invoking

the

program.

Setting

run-time

environment

variables

You

can

set

the

run-time

environment

for

your

program

by

using

environment

variables.

PATH

Use

the

PATH

environment

variable

to

specify

the

search

path

for

EXE

and

CMD

files

not

in

the

current

directory.

set

path=c:\ibm;d:\project

You

can

specify

one

or

more

directories

with

this

variable.

Given

the

preceding

example,

the

current

directory

is

searched

first,

followed

by

c:\ibm

and

then

d:\project.

DPATH

Use

DPATH

to

specify

the

search

path

for

run-time

messages.

The

program

searches

for

them

first

in

the

current

directory,

then

in

the

directory

or

directories

specified

by

the

DPATH

variable.

The

following

example

would

cause

the

program

to

search

the

current

directory

followed

by

c:\set1

and

d:\set2

in

that

order.

set

dpath=c:\set1;d:\set2

Specifying

run-time

options

Each

time

your

application

executes,

a

set

of

run-time

options

is

established.

These

options

determine

some

of

the

properties

of

the

application’s

execution,

such

as

allocation

of

storage

and

production

of

reports.

IBM

supplies

defaults

for

each

of

the

run-time

options;

however,

you

can

change

them

as

needed

prior

to

running

your

application.

Where

to

specify

run-time

options

You

can

alter

the

default

settings

for

run-time

options

in

an

environment

variable

and

in

the

application

source

code.

Alternatives,

from

lowest

priority

to

highest

priority,

are:

v

Using

the

IBM

defaults

v

Setting

run-time

options

in

the

CEE.OPTIONS

environment

variable

Use

the

SET

command

on

the

command

line

or

define

them

in

System

Properties

to

specify

run-time

options

by

means

of

the

CEE.OPTIONS

environment

variable.

For

example:

135

set

cee.options=natlang(enu)

As

mentioned

above,

there

are

two

methods

for

setting

options

in

the

CEE.OPTIONS

environment

variable.

The

first

method,

setting

CEE.OPTIONS

in

System

Properties

has

lower

priority

than

the

second,

using

the

SET

command.

1.

Setting

CEE.OPTIONS

in

System

Properties

Run-time

options

specified

in

System

Properties

are

the

options

in

effect

for

every

session

you

start.

This

is

a

good

place

to

specify

run-time

options

that

you

want

to

have

in

effect

for

every

application

you

run.

If

CEE.OPTIONS

already

exists

in

the

System

Properties,

change

or

add

to

the

existing

variable.

2.

Run-time

options

specified

in

a

SET

command

on

the

command

line

are

in

effect

only

for

that

session

or

window

and

override

any

run-time

options

specified

in

System

Properties.

This

is

the

recommended

method.

To

change

run-time

option

settings,

use

a

SET

command

with

the

desired

settings.

Each

SET

command

completely

replaces

any

previous

SET

commands,

including

the

definition

in

System

Properties.

Therefore,

you

must

include

the

settings

of

all

run-time

options

from

any

previous

SET

command

if

you

still

want

them

in

effect

in

each

subsequent

SET

command.

For

example,

assume

you

have

the

following

in

your

System

Properties:

cee.options=natlang(jpn)

and

later

enter

this

command

from

the

command

line:

set

cee.options=natlang(enu)

This

means

that

NATLANG

has

returned

to

its

default

value,

which

is

NATLANG(ENU).

To

return

all

run-time

options

to

the

IBM-supplied

defaults,

set

CEE.OPTIONS

to

a

null

argument:

set

cee.options=

With

Windows,

you

can

group

several

commands,

including

a

SET

command

for

CEE.OPTIONS,

in

a

command

file.

Running

such

a

command

file

is

equivalent

to

issuing

each

of

the

commands

individually

on

the

command

line.

Specifying

multiple

run-time

options

or

suboptions

When

specifying

a

string

of

run-time

options,

you

must

separate

each

option

with

a

comma

without

any

embedded

spaces.

Use

commas

to

separate

suboptions

of

run-time

options.

If

you

do

not

specify

a

suboption,

you

must

still

specify

the

comma

to

indicate

its

omission.

Trailing

commas

are

not

required.

If

you

do

not

specify

any

suboptions,

the

defaults

are

used.

For

example,

NATLANG()

is

valid

syntax.

Default

settings

for

the

options

are

indicated

in

the

options

syntax

diagrams

or

in

the

descriptions

of

suboptions,

where

applicable.

Run-time

options

This

section

describes

the

run-time

option

NATLANG.

Specifying

run-time

options

136

PL/I

for

Windows:

Programming

Guide

NATLANG

The

NATLANG

option

specifies

the

national

language

to

be

used

for

run-time

messages.

Message

translations

are

provided

for

Japanese

and

mixed-case

U.S.

English.

NATLANG

also

determines

how

the

message

facility

formats

messages.

��

NATLANG

ENU

(

JPN

)

��

JPN

This

is

a

3-character

id

specifying

Japanese.

Message

text

can

be

a

mixture

of

SBCS

(single-byte

character

set)

and

DBCS

(double-byte

character

set)

characters.

ENU

This

is

a

3-character

id

specifying

mixed-case

U.S.

English.

Message

text

is

made

up

of

SBCS

characters

and

consists

of

both

upper

and

lowercase

letters.

USAGE:

NATLANG(ENU)

Run-time

option

and

storage

reports,

as

well

as

dump

output,

are

written

only

in

mixed-case

U.S.

English.

If

you

specify

a

national

language

that

is

unavailable

on

your

system,

the

default

is

used.

Shipping

run-time

DLLs

If

you

are

shipping

DLLs

with

your

application,

this

list

should

help

you

determine

which

ones

you

need

based

on

your

application.

For

Windows,

the

following

files

are

needed

for

a

non-multithreading

application:

v

BIN\HEPWS20.DLL

v

BIN\IBMWS20.DLL

v

BIN\IBMWSTB.DLL

v

BIN\IBMWS20F.DLL

v

BIN\IBMWS20G.DLL

v

BIN\IBMRTENU.DLL

These

files

are

needed

for

multithreading

applications

on

Windows:

v

BIN\HEPWM20.DLL

v

BIN\IBMWM20.DLL

v

BIN\IBMWMTB.DLL

v

BIN\IBMWM20F.DLL

v

BIN\IBMWM20G.DLL

v

BIN\IBMRTENU.DLL

In

addition

to

those

listed

previously,

if

your

Windows

application

uses

BTRIEVE,

you

must

also

ship

BIN\IBMPBTRV.DLL.

Your

application

containing

a

copy

of

any

of

these

files

or

modules

must

be

labeled

as

follows:

CONTAINS

IBM

VisualAge

PL/I

for

Windows

Version

2.1.12

Run-time

options

Chapter

10.

Using

run-time

options

137

Runtime

Modules

(c)

Copyright

IBM

Corporation

2004

All

Rights

Reserved

Shipping

run-time

DLLs

138

PL/I

for

Windows:

Programming

Guide

Chapter

11.

Testing

and

debugging

your

programs

Testing

your

programs

.

.

.

.

.

.

.

.

.

. 139

General

debugging

tips

.

.

.

.

.

.

.

.

.

. 140

PL/I

debugging

techniques

.

.

.

.

.

.

.

.

. 141

Using

compile-time

options

for

debugging

.

. 141

Using

footprints

for

debugging

.

.

.

.

.

. 142

Using

dumps

for

debugging

.

.

.

.

.

.

. 143

Formatted

PL/I

dumps—PLIDUMP

.

.

.

. 143

SNAP

dumps

for

trace

information

.

.

.

. 147

Using

error

and

condition

handling

for

debugging

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Error

and

condition

handling

terminology

147

Error

handling

concepts

.

.

.

.

.

.

.

.

. 148

System

facilities

.

.

.

.

.

.

.

.

.

. 148

Language

facilities

.

.

.

.

.

.

.

.

.

. 149

ON-units

for

qualified

and

unqualified

conditions

.

.

.

.

.

.

.

.

.

.

.

. 150

Conditions

used

for

testing

and

debugging

150

Common

programming

errors

.

.

.

.

.

.

.

. 150

Logical

errors

in

your

source

programs

.

.

.

. 150

Invalid

use

of

PL/I

.

.

.

.

.

.

.

.

.

. 151

Calling

uninitialized

entry

variables

.

.

.

.

. 151

Loops

and

other

unforeseen

errors

.

.

.

.

. 151

Tips

for

dealing

with

loops

.

.

.

.

.

.

. 152

Unexpected

input/output

data

.

.

.

.

.

. 152

Unexpected

program

termination

.

.

.

.

.

. 152

Other

unexpected

program

results

.

.

.

.

. 153

Compiler

or

library

subroutine

failure

.

.

.

. 153

System

failure

.

.

.

.

.

.

.

.

.

.

.

. 154

Poor

performance

.

.

.

.

.

.

.

.

.

.

. 154

Effective

design

and

coding

practices

help

you

create

quality

programs

and

should

be

followed

by

thorough

testing

of

those

programs.

You

should

give

adequate

attention

to

the

testing

phase

of

development

so

that:

v

Your

program

becomes

fully

operational

after

the

fewest

possible

test

runs,

thereby

minimizing

the

time

and

cost

of

program

development.

v

Your

program

is

proven

to

have

fulfilled

all

of

its

design

objectives

before

it

is

released

for

production

work.

v

Your

program

contains

sufficient

comments

to

enable

those

who

use

and

maintain

the

program

to

do

so

without

additional

assistance.

The

process

of

testing

usually

uncovers

bugs,

a

generic

term

that

encompasses

anything

that

your

program

does

that

you

did

not

expect

it

to

do.

The

process

of

removing

these

bugs

from

your

program

is

called

debugging.

While

this

chapter

does

not

attempt

to

provide

an

exhaustive

coverage

of

testing

and

debugging,

it

does

provide

useful

tips

and

techniques

to

help

you

produce

top-quality,

error-free

PL/I

programs.

Both

general

and

PL/I-specific

testing

and

debugging

information

follow.

Testing

your

programs

Testing

your

PL/I

programs

can

be

difficult,

especially

if

the

programs

are

logically

complex

or

involve

numerous

modules.

Do

not

skip

this

step,

though,

because

it

is

important

to

detect

and

remove

bugs

from

a

program

before

it

moves

into

a

production

environment.

Here

are

three

testing

approaches

that

you

can

apply

to

all

of

your

PL/I

programs:

Code

inspection

Also

called

desk

checking,

code

inspection

involves

selecting

a

piece

of

code

and

reading

it

from

the

viewpoint

of

the

computer.

With

either

a

printed

copy

of

the

source

program

or

an

online

view

of

the

source

file,

follow

the

flow

of

the

program.

Where

there

is

input

data,

guess

at

some

likely

data

and

substitute

it

for

variable

values.

When

there

is

a

calculation,

do

the

calculation

manually

or

with

a

calculator,

and

so

on.

Code

139

inspection

often

reveals

logic

problems,

syntax

errors,

and

bugs

that

the

compiler

misses

(for

example,

“n

+

2”

instead

of

“n*2”).

Data

testing

You

provide

a

program

with

test

data

to

verify

that

it

runs

as

designed.

The

purpose

of

data

testing

is

to

see

if

the

program

takes

exception

(for

example,

a

run-time

error)

to

any

possible

data

that

it

might

have

to

handle

in

a

production

environment.

Therefore,

you

need

to

use

a

wide

variety

of

data

to

test

your

program.

For

example,

have

your

program

process

extremes

of

data

that

you

know

lead

to

errors

(such

as

the

OVERFLOW

condition)

and

see

how

the

program

responds.

Your

program

should

incorporate

error

checking

(such

as

ERROR

ON-units)

to

accommodate

any

possible

data.

Attention:

You

should

never

test

with

irreplaceable

data,

nor

should

you

store

irreplaceable

data

within

access

of

a

program

being

tested!

Path

testing

The

data

that

you

use

for

testing

a

program

should

be

selected

to

test

all

parts

of

the

program.

In

other

words,

if

your

program

consists

of

a

number

of

modules,

the

data

that

you

test

the

program

with

should

require

the

use

of

all

of

the

modules.

If

your

program

can

take

five

possible

paths

at

a

given

point,

you

should

provide

sets

of

data

that

take

the

program

down

each

of

the

five

paths.

As

your

program

becomes

more

and

more

complex,

providing

the

program

with

data

to

accommodate

every

possible

path

combination

might

become

practically

impossible.

However,

it

is

important

that

you

select

test

cases

that

check

a

representative

range

of

paths.

For

example,

rather

than

check

every

possible

iteration

of

a

DO-loop,

test

the

first,

last,

and

one

intermediate

case.

Bugs

are

discovered

as

you

test

your

programs

and

removing

those

bugs

sometimes

requires

being

able

to

reproduce

them.

Therefore,

when

you

test

programs,

always

begin

from

a

known

state.

For

example,

when

a

bug

is

encountered

you

should

know

the

values

of

variables,

the

compile-time

options

used,

the

contents

of

memory,

and

so

on.

PL/I

provides

features

such

as

SNAP

and

PLIDUMP

that

help

you

do

this.

As

a

rule,

a

program

that

ran

perfectly

well

yesterday

but

reveals

a

bug

today

does

so

because

of

one

or

more

changes

to

the

state

of

the

machine.

Therefore,

when

testing

your

PL/I

programs

be

sure

to

know,

in

detail,

the

state

of

the

machine

at

compile

time

and

at

run

time.

General

debugging

tips

Debugging

is

a

process

of

letting

your

program

run

until

it

does

something

that

you

did

not

expect

it

to

do.

After

finding

a

bug,

you

modify

the

program

so

that

it

does

not

encounter

the

bug

when

the

program

is

in

the

exact

machine

state

that

initially

produced

the

bug.

This

is

accomplished

by

a

combination

of

back-tracking,

intuition,

and

trial

and

error.

The

major

obstacle

to

effective

debugging

is

that

removing

one

bug

can

introduce

new

bugs

into

your

program.

You

should

consider

general

debugging

tips

as

well

as

some

debugging

techniques

specific

to

PL/I.

Consider

the

following

tips

when

debugging

your

programs:

Testing

your

programs

140

PL/I

for

Windows:

Programming

Guide

Make

one

change

at

a

time

When

attempting

to

remedy

a

bug,

introduce

only

one

change

into

the

source

code

of

your

program

at

a

time.

By

introducing

a

single

change,

you

can

compare

the

program

behavior

before

and

after

the

change

to

accurately

measure

the

effect

of

the

change.

Follow

program

logic

sequence

Fix

your

program’s

bugs

in

the

order

in

which

they

are

encountered

when

the

program

is

run.

Watch

for

unexpected

results

Locate

a

given

bug

in

the

program

source

code

at

a

point

that

corresponds

to

an

unexpected

change

in

the

state

of

program

execution.

For

example,

the

undesired

change

in

the

state

of

program

execution

might

be

the

unintended

assignment

of

the

decimal

value

“100”

to

the

character

variable

“z”.

In

this

case,

you

might

find

that

the

source

code

has

an

error

that

assigns

the

wrong

variable

in

an

assignment

statement.

PL/I

debugging

techniques

PL/I

provides

you

with

a

number

of

methods

for

program

debugging

which

are

described

in

the

following

sections:

Compile-time

options

Footprints

Dumps

Error

and

condition

handling

Using

compile-time

options

for

debugging

The

PL/I

workstation

products

are

designed

to

diagnose

many

of

the

bugs

in

your

programs

at

compile

time,

and

provides

you

with

a

compiler

listing

that

explains

what

mistakes

you

made

and

where

you

made

them.

In

addition,

you

can

use

compile-time

options

to

make

the

compiler

listing

even

more

useful.

The

following

compile-time

options

are

useful

for

debugging

your

PL/I

programs:

FLAG

Suppresses

the

listing

of

diagnostic

messages

below

a

certain

severity

and

terminates

compilation

if

a

specified

number

of

messages

is

reached.

If

your

program

is

not

behaving

as

expected

and

the

compiler

messages

do

not

explain

the

problem,

you

might

want

to

use

FLAG

to

include

informational

messages

in

the

compiler

listing.

These

messages

(otherwise

suppressed

by

default)

might

help

explain

problems

in

your

program.

For

additional

information

on

using

FLAG,

see

“FLAG”

on

page

45.

GONUMBER

Creates

a

statement

number

table

that

is

needed

for

debugging.

PREFIX

Enables

or

disables

specified

PL/I

conditions.

Because

you

can

specify

the

conditions

with

a

compile-time

option,

you

do

not

need

to

change

your

source

program.

Compiling

with

PREFIX(

SUBRG

STRZ

STRG)

can

be

very

helpful

in

debugging.

For

more

information

on

using

PREFIX,

see

“PREFIX”

on

page

61.

RULES

Specifies

the

strictness

with

which

various

language

rules

are

enforced

by

the

compiler.

You

can

use

it

to

flag

common

programming

errors.

General

debugging

tips

Chapter

11.

Testing

and

debugging

your

programs

141

You

might

find

the

following

suboptions

for

RULES

particularly

useful

for

debugging:

NOLAXIF

Disallows

IF,

WHILE,

UNTIL,

and

WHEN

clauses

to

evaluate

to

other

than

BIT(1)

NONVARYING.

NOLAXDCL

Disallows

all

implicit

and

contextual

declarations

except

for

built-ins

and

the

files

SYSIN

and

SYSPRINT.

NOLAXQUAL

The

compiler

flags

any

reference

to

structure

members

that

are

not

level

1

and

are

not

dot

qualified.

For

example,

consider

the

program:

program:

proc(

ax1xcb,

ak2xcb

);

dcl

(ax1xcb,

ax2xcb

)

pointer;

dcl

1

xcb

based,

2

xcba13

fixed

bin,...

ak1xcb->xcba13

=

ax2xcb->xcba13;

With

RULES(NOLAXDCL)

in

effect,

the

two

typographical

errors

above

are

considered

implicit

declarations

by

the

compiler

and

are

flagged

as

errors.

For

more

information

on

using

RULES,

see

“RULES”

on

page

63.

SNAP

Specifies

that

the

compiler

produces

a

listing

of

trace

information

that

is

useful

for

locating

errors

in

your

program.

For

detailed

information

on

using

SNAP

for

debugging,

see

“SNAP

dumps

for

trace

information”

on

page

147.

For

more

information

on

SNAP

syntax,

see

“SNAP”

on

page

67.

XREF

Specifies

that

the

compiler

listing

includes

a

table

of

names

used

in

the

program

together

with

the

numbers

of

the

statements

in

which

they

are

referenced

or

set.

This

allows

you

to

easily

track

where

names

are

used

in

your

source

program.

For

more

information

on

using

XREF,

see

“XREF”

on

page

73.

Using

footprints

for

debugging

When

debugging,

it

is

useful

to

periodically

check:

v

Where

your

program

is

in

its

execution

flow

(for

example,

which

module

is

being

run).

v

The

value

of

identifiers

so

that

you

can

see

when

they

change

and

what

values

they

are

assigned.

To

accomplish

these

tasks,

you

can

use

built-in

functions,

PUT

DATA

and

PUT

LIST

statements,

and

display

statements.

These

approaches

are

described

in

more

detail

in

the

following

sections.

Built-in

functions

The

built-in

functions

PROCNAME,

PACKAGENAME,

and

SOURCELINE

are

useful

in

following

the

execution

of

your

program

when

you

are

trying

to

track

the

location

of

a

problem

and

the

sequence

of

events

that

caused

it.

The

following

statement

can

be

inserted

wherever

you

want

to

display

the

procedure

name

and

line

number

of

the

statement

currently

being

executed.

PL/I

debugging

techniques

142

PL/I

for

Windows:

Programming

Guide

display

(procname()

\

sourceline());

PUT

LIST

Allows

you

to

transmit

strings

and

data

items

to

the

data

stream

(for

example,

to

a

printer-destined

output

file).

For

example,

the

following

procedure

lets

you

know

if

the

FIXEDOVERFLOW

condition

is

raised,

and

prints

out

the

value

of

the

variable

that

led

to

the

condition

(in

this

case,

z):

Debug:

Proc(x);

dcl

x

fixed

bin(31);

on

fixedoverflow

begin;

put

skip

list(’Fixedoverflow

raised

because

z

=

’\z);

end;

end;

get

list(z);

x

=

8

*

z;

If

z

is

too

large,

multiplying

it

by

8

produces

a

value

that

is

too

large

for

any

FIXED

BIN(31)

variable

and

would

therefore

raise

the

FIXEDOVERFLOW

condition.

PUT

SKIP

LIST

transmits

the

data

(in

this

case,

the

string

“Fixedoverflow

raised

because

z

=

...”)

to

the

default

file

SYSPRINT.

You

can

define

SYSPRINT

using

export

DD=

statements.

For

more

information

on

using

SYSPRINT,

see

“Using

SYSIN

and

SYSPRINT

files”

on

page

194.

PUT

DATA

Allows

you

to

transmit

the

value

of

data

items

to

the

output

stream.

For

example,

if

you

specified

the

following

line

in

your

program,

it

would

transmit

the

values

of

string1

and

string2

to

the

output

stream

(for

example,

to

SYSPRINT):

put

data

(string1,

string2);

DISPLAY

You

can

use

DISPLAY

to

transmit

information

to

your

monitor.

This

can

be

useful

to

let

you

know

how

far

a

program

has

progressed,

what

procedure

a

program

is

running,

and

so

on.

For

example:

Display

(’End

of

job!’);

Display

(’Reached

the

MATH

procedure’);

Display

(’Hurrah!

Got

past

the

string

manipulation

stuff...’);

Using

DISPLAY

with

PUT

statements

results

in

output

appearing

in

unpredictable

order.

For

more

information

on

using

the

DISPLAY

statement,

see

“DISPLAY

statement

input

and

output”

on

page

181.

Using

dumps

for

debugging

When

you

are

debugging

your

programs,

it

is

often

useful

to

obtain

a

printout

(a

dump)

of

all

or

part

of

the

storage

used

by

your

program.

You

can

also

use

a

dump

to

provide

trace

information.

Trace

information

helps

you

locate

the

sources

of

errors

in

your

program.

Two

types

of

dumps

are

useful:

PLIDUMP

SNAP

Use

of

the

IMPRECISE

compile-time

option

might

lead

to

incomplete

trace

information.

For

additional

information

on

the

IMPRECISE

option,

see

“IMPRECISE”

on

page

47.

Formatted

PL/I

dumps—PLIDUMP

You

use

PLIDUMP

to

obtain:

PL/I

debugging

techniques

Chapter

11.

Testing

and

debugging

your

programs

143

v

Trace

information

that

allows

you

to

locate

the

point-of-origin

of

a

condition

in

your

source

program.

v

File

information,

including:

the

attributes

of

the

files

open

at

the

time

of

the

dump,

the

values

of

certain

file-handling

built-in

functions,

and

the

contents

of

the

I/O

storage

buffer.

To

get

a

formatted

PL/I

dump,

you

must

include

a

call

to

PLIDUMP

in

your

program.

The

statement

CALL

PLIDUMP

can

appear

wherever

a

CALL

statement

appears.

It

has

the

following

form:

call

plidump(’dump

options

string’,

’dump

title

string’);

dump

options

string

An

expression

specifying

a

string

consisting

of

any

of

the

following

dump

option

characters:

T–Trace

PL/I

generates

a

calling

trace.

NT–No

trace

The

dump

does

not

give

a

calling

trace.

F–File

information

The

dump

gives

a

complete

set

of

attributes

for

all

open

files,

plus

the

contents

of

all

accessible

I/O

buffers.

NF–No

file

information

The

dump

does

not

give

file

information.

S–Stop

The

program

ends

after

the

dump.

E–Exit

The

current

thread

or

the

program

(if

it

is

the

main

thread)

ends

after

the

dump.

K

Ignored.

NK

Ignored.

C–Continue

The

program

continues

after

the

dump.

PL/I

reads

options

from

left

to

right.

It

ignores

invalid

options

and,

if

contradictory

options

exist,

takes

the

rightmost

options.

dump

title

string

An

expression

that

is

converted

to

character

if

necessary

and

printed

as

a

header

on

the

dump.

The

string

has

no

practical

length

limit.

PL/I

prints

this

string

as

a

header

to

the

dump.

If

the

character

string

is

omitted,

PL/I

does

not

print

a

header.

If

the

program

calls

PLIDUMP

a

number

of

times,

the

program

should

use

a

different

user-identifier

character

string

on

each

occasion.

This

simplifies

identifying

the

point

at

which

each

dump

occurs.

In

addition

to

this

header,

each

new

invocation

of

PLIDUMP

prints

another

heading

above

the

user-identifier

showing

the

date,

time,

and

page

number

1.

PLIDUMP

defaults:

The

default

dump

options

are

T,

F,

and

C

with

a

null

dump

title

string:

plidump(’TFC’,

’

’);

PL/I

debugging

techniques

144

PL/I

for

Windows:

Programming

Guide

Suggested

PLIDUMP

coding:

A

program

can

call

PLIDUMP

from

anywhere

in

the

program,

but

the

normal

method

of

debugging

is

to

call

PLIDUMP

from

an

ON-unit.

Because

continuation

after

the

dump

is

optional,

the

program

can

use

PLIDUMP

to

get

a

series

of

dumps

while

the

program

is

running.

You

can

use

the

DD:plidump

environment

variable

to

specify

where

the

PLIDUMP

output

should

be

located,

for

example:

set

dd:plidump

=

d:\mydump;

In

your

PLIDUMP

specification,

you

cannot

override

other

options

such

as

RECSIZE.

The

default

device

association

for

the

file

is

stderr:.

PLIDUMP

example:

When

you

run

the

program

shown

in

Figure

5,

a

formatted

dump

is

produced

as

shown

in

Figure

6

on

page

146.

The

call

to

PLIDUMP

in

the

IssueDump

procedure

does

not

specify

any

PLIDUMP

options

(they

appear

as

the

first

of

the

two

character

strings),

so

the

defaults

are

used.

Also

note

that

the

PL/I

default

files

SYSIN

and

SYSPRINT

have

been

explicitly

opened

so

that

the

formatted

dump

displays

the

contents

of

their

portions

of

the

I/O

buffer.

TestDump:

proc

options(main);

declare

Sysin

input

file,

Sysprint

stream

print

file;

open

file(Sysprint);

open

file(Sysin);

put

skip

list(’AbCdEfGhIjKlMnOpQrStUvWxYz’);

call

IssueDump;

IssueDump:

proc;

call

plidump(

’

’,

’Testing

PLIDUMP’);

end

IssueDump;

end

TestDump;

Figure

5.

PL/I

code

that

produces

a

formatted

dump

PL/I

debugging

techniques

Chapter

11.

Testing

and

debugging

your

programs

145

�1�

Time

and

date

when

PLIDUMP

is

called.

Each

separate

PLIDUMP

call

has

this

information.

�2�

Character

string

specified

in

the

PLIDUMP

call

(the

second

of

the

two

strings

provided

to

PLIDUMP)

that

is

useful

in

helping

to

identify

the

dump

if

a

number

of

dumps

are

produced.

�3�

Trace

information,

delineated

by

*

*

*

Calling

trace

*

*

*

and

*

*

*

End

of

calling

trace

*

*

*.

This

information

allows

you

to

trace

back

through

the

procedures

from

which

PLIDUMP

was

called.

In

the

example

above,

PLIDUMP

was

called

from

the

procedure

ISSUEDUMP

which

is

nested

in

the

TESTDUMP

procedure.

The

hexadecimal

offsets

of

each

procedure

are

also

provided

in

the

trace

information.

The

trace

information

is

provided

by

default

as

the

T

option

and

can

be

suppressed

by

specifying

the

NT

option

for

PLIDUMP.

�4�

File

attributes

of

SYSIN

(opened

explicitly

in

the

program).

�5�

ENVIRONMENT

options

for

the

file

SYSIN.

�6�

Values

of

relevant

I/O

built-in

functions

for

the

file

SYSIN.

�1�

*

*

*

PLIDUMP

*

*

*

Date

=

910623

Time

=

142249090

Page

0001

�2�

User

identifier:

Testing

PLIDUMP

�3�

*

*

*

Calling

trace

*

*

*

IBM0092I

The

PL/I

PLIDUMP

Service

was

called

with

Traceback

(T)

option

At

offset

+00000024

in

procedure

with

entry

ISSUEDUMP

From

offset

+0000010B

in

procedure

with

entry

TESTDUMP

*

*

*

End

of

calling

trace

*

*

*

*

*

*

File

Information

*

*

*

Attributes

of

file

SYSIN

�4�

STREAM

INPUT

EXTERNAL

�5�

ENVIRONMENT(

CONSECUTIVE

RECSIZE(80)

LINESIZE(0)

)

�6�

I/O

Built-in

functions:

COUNT(0)

ENDFILE(0)

�7�

I/O

Buffer:

000D9008

00000000

00000000

00000000

00000000

’................’

000D9018

00000000

00000000

00000000

00000000

’................’

000D9028

00000000

00000000

00000000

00000000

’................’

000D9038

00000000

00000000

00000000

00000000

’................’

000D9048

00000000

00000000

00000000

00000000

’................’

000D9058

0000

’..’

Attributes

of

file

SYSPRINT

STREAM

OUTPUT

PRINT

EXTERNAL

ENVIRONMENT(

CONSECUTIVE

RECSIZE(124)

LINESIZE(120)

PAGESIZE(60)

)

I/O

Built-in

functions:

PAGENO(1)

COUNT(1)

LINENO(1)

�8�

I/O

Buffer:

000D8008

20416243

64456647

68496A4B

6C4D6E4F

’

AbCdEfGhIjKlMnO’

000D8018

70517253

74557657

78597A20

0D0A0000

’pQrStUvWxYz

....’

000D8028

00000000

00000000

00000000

00000000

’................’

000D8038

00000000

00000000

00000000

00000000

’................’

000D8048

00000000

00000000

00000000

00000000

’................’

000D8058

00000000

00000000

00000000

00000000

’................’

000D8068

00000000

00000000

00000000

00000000

’................’

000D8078

00000000

00000000

00000000

’............’

*

*

*

End

of

File

Information

*

*

*

*

*

*

End

of

Dump

*

*

*

*

*

*

Figure

6.

Example

of

PLIDUMP

output

PL/I

debugging

techniques

146

PL/I

for

Windows:

Programming

Guide

�7�

Contents

of

the

I/O

buffer

for

the

SYSIN

file.

The

first

column

is

the

hexadecimal

address,

the

following

columns

are

the

hexadecimal

contents

of

memory.

�8�

Contents

of

the

I/O

buffer

for

SYSPRINT.

Notice

that

the

second

character

string

supplied

to

PLIDUMP

(AbCd...)

is

contained

in

the

I/O

buffer,

as

seen

by

the

text

representation

of

the

I/O

buffer

at

the

right-hand

side

of

the

row.

SNAP

dumps

for

trace

information

While

not

a

“dump”

in

the

strictest

sense,

the

SNAP

compile-time

option

is

used

to

find

out

what

error

conditions

are

raised

in

your

program

and

where

they

are

raised.

SNAP

provides

the

same

trace

information

provided

by

PLIDUMP

“T”

option

(see

“Formatted

PL/I

dumps—PLIDUMP”

on

page

143).

Like

PLIDUMP,

SNAP

can

be

issued

multiple

times

throughout

one

run

of

a

program.

An

example

of

a

call

for

a

SNAP

dump

is:

on

attention

snap;

This

statement

calls

for

a

SNAP

dump

if

the

ATTENTION

condition

is

raised.

Using

error

and

condition

handling

for

debugging

PL/I

condition

handling

is

a

powerful

tool

for

debugging

programs.

All

errors

detected

at

run-time

are

associated

with

conditions.

You

can

handle

these

conditions

in

one

of

the

following

ways:

v

Writing

ON-units

that

specify

what

your

program

should

do

if

a

given

condition

is

raised

v

Accepting

the

standard

system

action

Error

and

condition

handling

terminology

You

should

be

familiar

with

several

terms

used

in

discussions

of

PL/I

error

and

condition

handling.

The

terms

are

listed

below:

Established

An

ON-unit

becomes

established

when

the

ON

statement

is

executed.

It

ceases

to

be

established

when

an

ON

or

REVERT

statement

referring

to

the

same

condition

is

executed,

or

when

the

associated

block

is

terminated.

Enabled

A

condition

is

enabled

when

the

occurrence

of

the

condition

results

in

the

execution

of

an

ON-unit

or

standard

action.

Interrupts

and

PL/I

conditions

Certain

PL/I

conditions

are

detected

by

machine

interrupts.

Others

have

to

be

detected

by

special

testing

code

either

in

the

run-time

library

modules

or

in

the

compiled

program.

Statically

and

dynamically

descendant

Static

and

dynamic

descendant

are

terms

used

to

define

the

scope

of

error-handling

features.

ON-units

are

dynamically

descendant;

that

is,

they

are

inherited

from

the

calling

procedure

in

all

circumstances.

Condition

enablement

is

statically

descendant;

that

is,

it

is

inherited

from

the

containing

block

in

the

source

program.

Statically

descendant

procedures

can

be

determined

during

compilation.

Dynamically

descendant

procedures

might

not

be

known

until

run-time.

Figure

7

on

page

148

shows

an

example

of

statically

and

dynamically

descendant

procedures.

PL/I

debugging

techniques

Chapter

11.

Testing

and

debugging

your

programs

147

Normal

return

A

normal

return

is

a

return

from

a

called

block

after

reaching

the

END

or

RETURN

statement,

rather

than

reaching

a

GOTO

statement

out

of

a

block.

In

an

error-handling

context,

normal

return

is

taken

to

mean

normal

return

from

the

ON-unit.

The

action

taken

after

normal

return

from

an

ON-unit

is

specified

in

the

PL/I

Language

Reference.

Standard

system

action

Standard

system

action

refers

to

the

default

PL/I-defined

action

taken

when

a

condition

occurs

for

which

there

is

no

established

ON-unit.

Error

handling

concepts

You

should

be

familiar

with

the

following

error

handling

concepts

when

you

attempt

to

debug

your

PL/I

programs.

For

details

on

condition

handling,

see

the

PL/I

Language

Reference.

System

facilities

The

operating

system

offers

error-handling

facilities.

Various

situations

can

cause

a

machine

interrupt,

resulting

in

an

entry

to

the

system

supervisor.

The

PL/I

control

program

can

use

specified

routines

to

define

the

action

that

is

taken

after

any

of

these

interrupts.

Alternatively,

the

PL/I

control

program

passes

control

to

ON-units

specified

by

the

PL/I

programmer.

┌─────────────────

│

(SIZE):B:PROC;

│

ON

ERROR

SNAP;

│

.

│

.

│

│

CALL

C;

│

┌────────

│

│

C:PROC;

│

│

│

│

END

C;

│

└────────

│

CALL

D;

│

END

B;

└──────────────────

┌─────────

┌─────────

│

D:PROC;

│

E:PROC;

│

.

│

│

.

│

│

│

│

CALL

E;

│

│

END

D;

│

END

E;

└─────────

└─────────

Statically

descendant:

The

enablement

prefix

SIZE

in

procedure

B

is

inherited

only

by

the

contained

procedure

C,

regardless

of

which

procedure

calls

which.

Dynamically

descendant:

The

ON-unit

ON

ERROR

SNAP

is

inherited

by

any

procedure

called

by

B

and

any

subsequently

called

procedures.

Thus,

if

B

calls

D,

which

calls

E,

the

ON-unit

is

established

in

procedure

E.

Figure

7.

Static

and

dynamic

descendant

procedures

PL/I

debugging

techniques

148

PL/I

for

Windows:

Programming

Guide

Language

facilities

The

PL/I

language

and

its

execution

environment

extend

the

error-handling

facilities

offered

by

the

operating

system.

Numerous

situations

can

cause

interrupts

for

PL/I,

and

some

situations

(such

as

ENDFILE)

can

be

used

to

control

normal

program

flow

rather

than

to

handle

errors.

ON-units

allow

you

to

obtain

control

after

most

interrupts.

If

you

do

not

write

ON-units

to

obtain

control

after

interrupts,

you

can:

v

Accept

standard

system

action

v

Choose

whether

certain

conditions

cause

interrupts

or

not

by

enabling

or

disabling

those

conditions.

If

the

condition

is

disabled,

neither

ON-unit

nor

standard

system

action

is

taken

when

the

condition

occurs.

The

majority

of

PL/I

conditions

occur

because

of

errors

in

program

logic

or

the

data

supplied.

Some,

however,

are

not

connected

with

errors.

These

are

conditions

such

as

ENDFILE,

which

are

difficult

to

anticipate

because

they

can

occur

at

any

time

during

program

execution.

PL/I

has

both

system

messages

and

snap

messages:

System

messages

If

an

ON-unit

contains

both

SNAP

and

SYSTEM,

the

resulting

PL/I

message

is

essentially

the

PL/I

SYSTEM

message

followed

by

any

(or

a

combination)

of

the

following

three

lines:

From

offset

xxx

in

a

BEGIN

block

From

offset

xxx

in

procedure

xxx

From

offset

xxx

in

a

condition_name

ON-unit

These

messages

are

repeated

as

often

as

necessary

to

trace

back

to

the

main

procedure.

SNAP

messages

If

an

ON-unit

contains

only

SNAP,

the

resulting

PL/I

message

begins:

Condition_name

condition

was

raised

at

offset

xxx

in

procedure

xxx.

The

messages

then

continue

as

for

SNAP

SYSTEM

messages.

Determining

statement

numbers

from

offsets:

If

you

want

to

translate

offset

numbers

into

statement

numbers,

use

the

following

steps:

v

Use

the

OFFSET

compile-time

option

during

compilation

v

Open

the

resulting

object

(.cod)

listing

file

v

Search

for

and

locate

the

offset

in

the

first

column

and

find

the

statement

number

from

the

last

source

statement

included

in

the

listing.

Built-ins

for

condition

handling:

PL/I

also

provides

condition-handling

built-in

functions

and

pseudovariables.

These

allow

you

to

inspect

various

fields

associated

with

the

interrupt

and,

in

certain

cases,

to

correct

the

contents

of

fields

causing

the

error.

PL/I

debugging

techniques

Chapter

11.

Testing

and

debugging

your

programs

149

These

built-in

functions

include:

DATAFIELD

ONCHAR

ONCODE

ONCONDCOND

ONCONDID

ONCOUNT

ONFILE

ONGSOURCE

ONKEY

ONLOC

ONSOURCE

ONWCHAR

ONWSOURCE

For

detailed

information

on

these

condition-handling

built-in

functions

and

pseudovariables,

consult

the

PL/I

Language

Reference.

ON-units

for

qualified

and

unqualified

conditions

There

can

only

be

one

established

ON-unit

for

an

unqualified

condition

at

any

given

point

in

a

program,

but

there

can

be

more

than

one

established

ON-unit

for

qualified

conditions.

For

example,

in

handling

the

ENDFILE

condition

as

qualified

for

different

files,

you

can

have

an

ON-unit

established

to

uniquely

handle

the

occurrence

of

ENDFILE

for

any

one

of

the

files.

Conditions

used

for

testing

and

debugging

The

following

conditions

are

useful

in

testing

and

debugging

your

programs:

v

SUBSCRIPTRANGE

v

STRINGSIZE

v

STRINGRANGE

Running

your

program

with

these

conditions

decreases

performance,

but

ON-units

for

these

conditions

can

serve

as

powerful

tools

for

finding

out

the

sources

of

errors

in

your

program.

You

can

enable

any

of

these

conditions

by

writing

an

ON-unit

for

them.

Then,

if

the

condition

is

raised,

your

ON-unit

can

define

an

action

that

tells

you

the

cause

of

the

error.

For

example,

if

your

program

raises

FIXEDOVERFLOW,

it

is

useful

to

issue

PUT

DATA

to

discover

the

values

of

your

data

that

led

to

the

condition

being

raised.

In

addition,

the

PREFIX

option

is

useful

because

you

can

enable

conditions

without

having

to

edit

your

program.

Common

programming

errors

A

failure

in

running

a

PL/I

program

can

be

caused

by:

v

Logical

errors

in

a

source

program

v

Invalid

use

of

PL/I

(for

example,

uninitialized

variables)

v

Calling

uninitialized

entry

variables

v

Loops

and

other

unforeseen

errors

v

Unexpected

input/output

data

v

Unexpected

program

termination

v

Other

unexpected

program

results

v

System

failure

v

Poor

performance

Logical

errors

in

your

source

programs

Logical

errors

in

a

source

program

are

often

difficult

to

detect

and

sometimes

can

make

it

appear

as

though

there

are

compiler

or

library

failures.

Some

common

errors

in

source

programs

are:

v

Failure

to

convert

correctly

from

arithmetic

data

v

Incorrect

arithmetic

and

string-manipulation

operations

PL/I

debugging

techniques

150

PL/I

for

Windows:

Programming

Guide

v

Failure

to

match

data

lists

with

their

format

lists

Invalid

use

of

PL/I

A

misunderstanding

of

the

language

can

result

in

an

apparent

program

failure.

For

example,

any

of

the

following

programming

errors

can

cause

a

program

to

fail:

v

Using

uninitialized

variables

v

Using

controlled

variables

that

have

not

been

allocated

v

Reading

records

into

incorrect

structures

v

Misusing

array

subscripts

v

Misusing

pointer

variables

v

Incorrect

conversion

v

Incorrect

arithmetic

operations

v

Incorrect

string-manipulation

operations

v

Freeing

or

using

storage

that

was

never

allocated

or

already

free

Calling

uninitialized

entry

variables

If

you

call

an

entry

variable

that

is

uninitialized:

v

Windows

will

raise

a

protection

exception

almost

immediately.

v

Windows

98,

however,

does

not

raise

an

immediate

protection

exception

and

allows

you

to

execute

instructions

in

low

memory

which

can

cause

unpredictable

program

behavior.

Loops

and

other

unforeseen

errors

If

an

error

is

detected

during

execution

of

a

PL/I

program,

and

no

ON-unit

is

provided

in

the

program

to

terminate

execution

or

attempt

recovery,

the

job

terminates

abnormally.

However,

you

can

record

the

status

of

your

program

at

the

point

where

the

error

occurred

by

using

an

ERROR

ON-unit

that

contains

the

statements:

on

error

begin;

on

error

system;

call

plidump

(’TFBS’,’This

is

a

dump’);

end;

The

statement

ON

ERROR

SYSTEM;

contained

in

the

ON-unit

ensures

that

further

errors

caused

by

attempting

to

transmit

uninitialized

variables

do

not

result

in

an

endless

loop.

If

you

want

to

take

action

based

on

the

specific

type

of

condition

being

handled,

use

the

ONCONDID

function

(for

more

information

on

this

function,

see

the

PL/I

Language

Reference):

on

anycondition

begin;

on

anycondition

system;

select(

oncondid()

);

when(

condid_ofl

)

.

.

.

when(

condid_ufl

)

.

.

.

when(

condid_zdiv

)

.

.

.

Common

programming

errors

Chapter

11.

Testing

and

debugging

your

programs

151

otherwise

resignal;

end;

end;

Tips

for

dealing

with

loops

To

prevent

a

permanent

loop

from

occurring

within

an

ON-unit,

use

the

following

code

segment:

on

Error

begin;

on

Error

System;

.

.

.

end;

If

your

program

is

caught

in

an

endless

loop,

your

primary

concern

is

to

be

able

to

get

out

of

the

loop

without

shutting

down

your

machine.

The

following

solution

is

recommended

for

handling

endless

loops:

v

When

the

loop

is

entered,

hit

Ctrl-Break

to

end

your

program.

No

ATTENTION

ON-unit

is

driven

in

this

environment.

Unexpected

input/output

data

A

program

should

contain

checks

to

ensure

that

any

incorrect

input

and

output

data

is

detected

before

it

can

cause

the

program

to

fail.

Use

the

COPY

option

of

the

GET

and

PUT

statements

if

you

want

to

check

values

obtained

by

stream-oriented

input

and

output.

The

values

are

listed

on

the

file

named

in

the

COPY

option.

If

no

file

name

is

given,

SYSPRINT

is

assumed.

Use

the

VALID

built-in

function

to

check

the

validity

of

PICTURE

and

FIXED

DECIMAL

identifiers.

For

additional

information

on

features

that

can

lead

to

unexpected

I/O,

see

Chapter

3,

“Porting

applications

between

platforms,”

on

page

9.

Many

of

the

features

that

can

lead

to

portability

problems

(such

as

differences

in

ASCII

and

EBCDIC

collating

sequences)

can

also

lead

to

unexpected

I/O

for

your

PL/I

programs.

Unexpected

program

termination

If

your

program

terminates

abnormally

without

an

accompanying

run-time

diagnostic

message,

the

error

that

caused

the

failure

probably

also

prevented

the

message

from

being

displayed.

Possible

causes

of

this

type

of

behavior

are:

v

Trying

to

run

modules

that

were

not

compiled

by

this

version

of

the

compiler.

v

Incorrect

export

DD=

statements.

v

Overwriting

storage

areas

that

contain

executable

instructions,

particularly

the

PL/I

communications

area.

Any

of

the

following

could

cause

overwriting

of

storage

areas:

–

Assigning

a

value

to

a

nonexistent

array

element.

For

example:

dcl

array(10);

.

.

.

do

I

=

1

to

100;

array(I)

=

value;

Common

programming

errors

152

PL/I

for

Windows:

Programming

Guide

You

can

detect

this

type

of

error

in

a

compile

module

by

enabling

the

SUBSCRIPTRANGE

condition.

Each

attempt

to

access

an

element

outside

the

declared

range

of

subscript

values

should

raise

the

SUBSCRIPTRANGE

condition.

If

there

is

no

ON-unit

for

this

condition,

a

diagnostic

message

prints

and

the

ERROR

condition

is

raised.

Though

this

method

is

costly

in

terms

of

execution

time

and

storage

space,

it

is

a

valuable

program

testing

aid.

For

more

information

on

error

handling,

see

“Using

error

and

condition

handling

for

debugging”

on

page

147.

–

Using

an

incorrect

locator

value

for

a

locator

(pointer

or

offset)

variable.

This

type

of

error

is

possible

if

a

locator

value

is

obtained

using

a

record-oriented

transmission.

Make

sure

that

locator

values

created

in

one

program,

transmitted

to

a

data

set,

and

subsequently

retrieved

for

use

in

another

program,

are

valid

for

use

in

the

second

program.

–

Attempting

to

free

a

non-BASED

variable.

This

can

happen

when

you

free

a

BASED

variable

after

its

qualifying

pointer

value

has

been

changed.

For

example:

dcl

a

static,b

based

(p);

allocate

b;

p

=

addr(a);

free

b;

–

Using

an

incorrect

value

for

a

label,

entry,

or

file

variable.

Label,

entry,

and

file

values

that

are

transmitted

and

subsequently

retrieved

are

subject

to

the

same

kind

of

errors

as

those

described

previously

for

locator

values.

–

Using

the

SUBSTR

pseudovariable

to

assign

a

string

to

a

location

beyond

the

end

of

the

target

string.

For

example:

dcl

x

char(3);

i

=

3

substr(x,2,i)

=

’ABC’;

To

detect

this

type

of

error

in

a

compiled

module,

use

the

STRINGRANGE

condition

(for

more

information,

see

“Conditions

used

for

testing

and

debugging”

on

page

150).

Other

unexpected

program

results

Due

to

a

difference

in

the

way

Windows

responds

to

floating-point

conditions,

you

might

experience

altered

program

flow.

One

consequence

of

altered

program

flow

is

conditions

that

do

not

get

raised

because

they

have

become

disabled.

For

example,

although

using

the

NOIMPRECISE

compile-time

option

does

provide

better

floating-point

error

detection

than

IMPRECISE,

the

Windows

operating

system

does

not

always

detect

floating-point

exceptions

immediately.

If

you

have

a

statement

in

your

program

that

is

likely

to

raise

a

floating-point

exception,

you

can

avoid

this

detection

problem

by

enclosing

the

statement,

by

itself,

in

a

BEGIN

block.

Compiler

or

library

subroutine

failure

If

you

are

convinced

that

the

failure

is

caused

by

a

compiler

failure

or

a

library

subroutine

failure,

you

should

contact

IBM.

Meanwhile,

you

can

attempt

to

find

an

alternative

way

to

perform

the

operation

that

is

causing

the

trouble.

A

bypass

is

often

possible

because

the

PL/I

language

frequently

provides

an

alternative

method

of

performing

a

given

operation.

Common

programming

errors

Chapter

11.

Testing

and

debugging

your

programs

153

System

failure

System

failures

include

machine

malfunctions

and

operating

system

errors.

System

messages

identify

these

failures

to

the

operator.

Poor

performance

While

not

necessarily

caused

by

bugs,

poor

performance

is

associated

with

excessive

run-time

and

memory

requirements.

One

thing

to

keep

in

mind

is

that

many

debugging

techniques

(such

as

enabling

SUBSCRIPTRANGE)

tend

to

decrease

performance.

One

feature

that

can

increase

performance

is

the

OPTIMIZE

compile-time

option

(see

“OPTIMIZE”

on

page

58).

For

additional

information

on

improving

program

performance,

see

Chapter

19,

“Improving

performance,”

on

page

283.

Common

programming

errors

154

PL/I

for

Windows:

Programming

Guide

Part

4.

Input

and

output

155

156

PL/I

for

Windows:

Programming

Guide

Chapter

12.

Using

data

sets

and

files

Types

of

data

sets

.

.

.

.

.

.

.

.

.

.

.

. 157

Native

data

sets

.

.

.

.

.

.

.

.

.

.

. 158

Conventional

text

files

and

devices

.

.

.

. 159

Fixed-length

data

sets

.

.

.

.

.

.

.

. 159

Additional

data

sets

.

.

.

.

.

.

.

.

.

. 159

Varying-length

data

sets

.

.

.

.

.

.

.

. 159

Regional

data

sets

.

.

.

.

.

.

.

.

.

. 159

Workstation

VSAM

data

sets

.

.

.

.

.

. 159

Establishing

data

set

characteristics

.

.

.

.

.

. 160

Records

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

Record

formats

.

.

.

.

.

.

.

.

.

.

.

. 161

Data

set

organizations

.

.

.

.

.

.

.

.

. 161

Specifying

characteristics

using

the

PL/I

ENVIRONMENT

attribute

.

.

.

.

.

.

.

. 162

BKWD

.

.

.

.

.

.

.

.

.

.

.

.

. 162

CONSECUTIVE

.

.

.

.

.

.

.

.

.

. 162

CTLASA

.

.

.

.

.

.

.

.

.

.

.

.

. 163

GENKEY

.

.

.

.

.

.

.

.

.

.

.

.

. 163

GRAPHIC

.

.

.

.

.

.

.

.

.

.

.

. 165

KEYLENGTH

.

.

.

.

.

.

.

.

.

.

. 165

KEYLOC

.

.

.

.

.

.

.

.

.

.

.

.

. 165

ORGANIZATION

.

.

.

.

.

.

.

.

.

. 166

RECSIZE

.

.

.

.

.

.

.

.

.

.

.

.

. 166

REGIONAL(1)

.

.

.

.

.

.

.

.

.

.

. 167

SCALARVARYING

.

.

.

.

.

.

.

.

. 167

VSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

Specifying

characteristics

using

DD:ddname

environment

variables

.

.

.

.

.

.

.

.

. 168

AMTHD

.

.

.

.

.

.

.

.

.

.

.

.

. 168

APPEND

.

.

.

.

.

.

.

.

.

.

.

.

. 169

ASA

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

BUFSIZE

.

.

.

.

.

.

.

.

.

.

.

.

. 169

CHARSET

for

record

I/O

.

.

.

.

.

.

. 170

CHARSET

for

stream

I/O

.

.

.

.

.

.

. 170

DELAY

.

.

.

.

.

.

.

.

.

.

.

.

. 170

DELIMIT

.

.

.

.

.

.

.

.

.

.

.

.

. 171

LRECL

.

.

.

.

.

.

.

.

.

.

.

.

. 171

LRMSKIP

.

.

.

.

.

.

.

.

.

.

.

.

. 171

PROMPT

.

.

.

.

.

.

.

.

.

.

.

.

. 171

PUTPAGE

.

.

.

.

.

.

.

.

.

.

.

. 171

RECCOUNT

.

.

.

.

.

.

.

.

.

.

.

. 172

RECSIZE

.

.

.

.

.

.

.

.

.

.

.

.

. 172

RETRY

.

.

.

.

.

.

.

.

.

.

.

.

. 172

SAMELINE

.

.

.

.

.

.

.

.

.

.

.

. 172

SHARE

.

.

.

.

.

.

.

.

.

.

.

.

. 173

SKIP0

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

TERMLBUF

.

.

.

.

.

.

.

.

.

.

.

. 174

TYPE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Associating

a

PL/I

file

with

a

data

set

.

.

.

.

. 176

Using

environment

variables

.

.

.

.

.

.

. 176

Using

the

TITLE

option

of

the

OPEN

statement

177

Attempting

to

use

files

not

associated

with

data

sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

How

PL/I

finds

data

sets

.

.

.

.

.

.

.

. 178

Opening

and

closing

PL/I

files

.

.

.

.

.

.

. 178

Opening

a

file

.

.

.

.

.

.

.

.

.

.

.

. 178

Closing

a

file

.

.

.

.

.

.

.

.

.

.

.

. 178

Associating

several

data

sets

with

one

file

.

.

.

. 178

Combinations

of

I/O

statements,

attributes,

and

options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

DISPLAY

statement

input

and

output

.

.

.

.

. 181

PL/I

standard

files

(SYSPRINT

and

SYSIN)

.

.

. 182

Redirecting

standard

input,

output,

and

error

devices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Your

PL/I

programs

can

process

and

transmit

units

of

information

called

records.

A

collection

of

records

is

called

a

data

set,

but

for

PL/I

workstation

products,

a

data

set

can

be

either

a

file

or

a

device.

Data

sets

are

logical

collections

of

information

external

to

PL/I

programs;

they

can

be

created,

accessed,

or

modified

by

programs

written

in

PL/I.

Your

PL/I

program

recognizes

and

processes

information

in

a

data

set

by

associating

it

with

a

symbolic

representation

of

the

data

set

called

a

PL/I

file.

This

PL/I

file

represents

the

environment

independent

characteristics

of

a

set

of

input

and

output

operations.

In

order

to

minimize

confusion,

this

book

uses

the

term

PL/I

file

to

refer

to

the

file

declared

and

used

in

a

PL/I

program.

The

terms

data

set

and

workstation

file

(or

workstation

device)

are

used

to

refer

to

the

collection

of

data

on

an

external

I/O

device.

In

some

cases

the

data

sets

have

no

name;

they

are

known

to

the

system

by

the

device

on

which

they

exist.

Types

of

data

sets

PL/I

defines

two

types

of

data

sets—native

data

sets

and

workstation

VSAM

data

sets.

157

v

The

term

native

data

set

is

a

PL/I

term

used

to

define

conventional

text

files

and

devices

associated

with

the

platform

in

use.

v

The

term

workstation

VSAM

data

set

is

used

to

refer

to

files

that

are

similar

to

mainframe

VSAM

data

sets.

PL/I

uses

either

the

DDM,

ISAM,

or

BTRIEVE

access

method

to

create

and

access

these

types

of

data

sets.

Platform

distinctions

This

chapter

refers

to

the

access

methods

available

on

PL/I

workstation

products;

however,

all

methods

are

not

available

on

all

platforms.

As

you

refer

to

information

in

this

chapter,

use

the

following

guideline:

v

DDM—supported

on

AIX

only

v

ISAM—supported

on

AIX

and

Windows

v

BTRIEVE—supported

on

Windows

only

v

REMOTE—supported

on

Windows

to

access

mainframe

data

files

To

convert

mainframe

VSAM

files

to

the

corresponding

DDM,

ISAM,

or

BTRIEVE

files,

follow

the

procedure

documented

in

the

prolog

for

the

LODVSAM

utility

(not

yet

supported

on

AIX).

Make

sure

you

specify

the

appropriate

access

method

AMTHD(DDM|ISAM|BTRIEVE).

To

convert

DDM,

ISAM,

or

BTRIEVE

files

to

corresponding

mainframe

VSAM

files,

follow

the

procedure

documented

in

the

prolog

for

the

RELOAD

utility

(not

yet

supported

on

AIX).

These

utilities

should

be

in

the

samples

directory

for

PL/I

for

Windows.

Data

sets

that

reside

on

the

mainframe

can

be

accessed

remotely

by

your

PL/I

program

using

the

Distributed

FileManager

product

that

comes

with

SMARTdata

Utilities

(SdU),

one

of

the

PL/I

for

Windows

components.

You

can

find

information

about

using

SdU

in

the

online

books

for

that

product.

The

online

books

for

SdU

are

installed

only

if

you

select

that

component.

For

Windows,

refer

to

the

Distributed

FileManager

User’s

Guide.

There

are

several

types

of

native

data

sets:

v

Conventional

text

files

v

Character

devices

v

Fixed-length

data

sets

Both

record

and

stream

I/O

can

be

used

to

access

these

types

of

data

sets,

which

can

be

accessed

only

in

a

sequential

manner.

Additional

types

of

PL/I-defined

data

sets

include:

v

Varying-length

v

Regional

v

Workstation

VSAM

data

sets

Only

record

I/O

can

be

used

to

access

regional

data

sets.

Access

can

be

either

sequential

or

direct.

Native

data

sets

A

native

data

set

in

PL/I

terms

defines

conventional

text

files

and

devices

associated

with

the

platform

you

are

using.

Types

of

data

sets

158

PL/I

for

Windows:

Programming

Guide

Conventional

text

files

and

devices

A

conventional

text

file

has

logical

records

delimited

by

the

CR

-

LF

(carriage

return

and

line

feed)

character

sequence.

Most

text

editor

programs

create,

and

allow

you

to

alter,

conventional

text

files.

Your

PL/I

programs

can

create

conventional

text

files,

or

they

can

access

text

files

that

were

created

by

other

programs.

Devices

for

workstation

products

are

the

keyboard,

screen,

and

printer.

The

names

you

use

to

refer

to

them

in

PL/I

are:

NUL:

(or

NUL)

Null

output

device

(for

discarding

output)

STDIN:

Standard

input

file

(defaults

to

CON)

STDOUT:

Standard

output

file

(defaults

to

CON)

STDERR:

Standard

error

message

file

(defaults

to

CON)

Note:

STDIN:,

STDOUT:,

and

STDERR:

can

be

redirected,

whereas

the

other

device

names

cannot.

Fixed-length

data

sets

PL/I

also

allows

you

to

treat

a

file

as

a

set

of

fixed-length

records.

Your

PL/I

programs

can

create

fixed-length

data

sets,

or

access

existing

files

as

fixed-length

data

sets.

The

data

access

does

not

treat

Carriage

Return(CR)

or

Line

Feed

(LF)

as

characters

with

special

meaning.

In

particular,

the

CR

-

LF

sequence

does

not

delimit

records,

although

these

characters

can

be

contained

in

the

data

set.

It

is

the

length

you

specify

that

determines

what

PL/I

considers

to

be

a

record

within

the

data

set.

This

type

of

data

set

has

the

restriction

that

the

total

number

of

characters

in

the

data

set

must

be

evenly

divisible

by

the

length

you

specify.

Fixed-length

data

sets

can

be

accessed

only

in

a

sequential

manner.

Additional

data

sets

Other

types

of

data

sets

include

varying-length,

regional,

and

workstation

VSAM

data

sets.

Varying-length

data

sets

Your

PL/I

program

can

also

create

and

access

data

sets

where

each

record

has

a

two-byte

prefix

that

specifies

the

number

of

bytes

in

the

rest

of

the

record.

Unlike

files

with

records

delimited

by

CR

-

LF,

these

varying-length

files

can

have

records

that

possibly

contain

arbitrary

bit

patterns.

Regional

data

sets

A

description

of

regional

data

sets

and

how

you

can

use

them

is

presented

in

Chapter

14,

“Defining

and

using

regional

data

sets,”

on

page

205.

Note:

Regional

in

this

context

means

the

same

thing

as

REGIONAL(1)

does

in

OS

PL/I.

Workstation

VSAM

data

sets

The

PL/I

workstation

products

support

VSAM

file

organization.

There

are

three

types

of

VSAM

data

sets

on

the

workstation:

v

Consecutive,

similar

to

a

VSAM

entry-sequenced

data

set

(ESDS)

Types

of

data

sets

Chapter

12.

Using

data

sets

and

files

159

v

Relative,

similar

to

a

VSAM

relative

record

data

set

(RRDS)

v

Indexed,

similar

to

a

VSAM

key-sequenced

data

set

(KSDS)

The

PL/I

workstation

products

currently

support

the

following

methods

for

accessing

VSAM

data

sets:

v

DDM

(AIX

only)

v

ISAM

(AIX

and

Windows)

v

BTRIEVE

(Windows

only)

v

REMOTE

to

access

mainframe

data

files

on

Windows
v

DDM

v

ISAM

DDM

access

method

DDM

data

sets

are

record-oriented

files

as

defined

by

the

Distributed

Data

Management

Architecture.

Workstation

VSAM

data

sets

that

use

the

DDM

access

method

can

exist

on

local

systems.

You

can

compile

and

run

most

existing

mainframe

programs

that

reference

mainframe

VSAM

data

sets.

A

DDM

keyed

data

set

is

represented

by

two

files—one

called

the

base,

and

the

other

called

the

prime

index.

The

records

of

the

data

set

are

kept

in

the

base;

the

prime

index

contains

information

about

the

primary

keys

of

the

data

set.

When

you

create

a

DDM

keyed

data

set,

you

specify

the

name

of

the

base;

DDM

generates

a

name

for

the

prime

index,

which

it

derives

from

the

name

of

the

base.

When

you

use

DDM

data

sets,

you

do

not

need

to

be

concerned

about

record

length,

except

that

your

records

cannot

exceed

the

maximum

specified

length.

You

can

compile

and

run

most

existing

mainframe

programs

that

reference

mainframe

VSAM

data

sets

by

creating

the

appropriate

workstation

VSAM

data

set

on

your

PC

before

running

the

program.

ISAM

access

method

Unless

otherwise

specified,

the

term

ISAM

in

this

chapter

refers

to

the

ISAM

local

access

method

and

not

mainframe

ISAM.

ISAM

data

sets

are

stored

in

one

file

and

can

exist

on

local

file

systems

only.

BTRIEVE

access

method

(Windows

only)

The

BTRIEVE

access

method

is

provided

to

allow

you

to

use

PL/I

input

and

output

statements

to

access

files

created

under

CICS.

There

is

currently

no

PL/I

support

for

BTRIEVE

segmented

and

multiple

keys.

BTRIEVE

data

sets

are

stored

in

one

file

and

can

exist

on

local

file

systems

only.

REMOTE

access

method

on

Windows

The

REMOTE

access

method

is

provided

to

allow

you

to

remotely

access

data

files

on

the

mainframe.

Detailed

information

on

workstation

VSAM

is

found

in

Chapter

15,

“Defining

and

using

workstation

VSAM

data

sets,”

on

page

215.

Establishing

data

set

characteristics

When

you

declare

or

open

a

file

in

your

program,

you

are

describing

to

PL/I

the

characteristics

of

the

file.

You

can

also

use

a

DD:ddname

environment

variable

or

an

expression

in

the

TITLE

option

of

the

OPEN

statement

to

describe

to

PL/I

the

characteristics

of

the

data

in

data

sets

or

in

PL/I

files

associated

with

them.

See

“Associating

a

PL/I

file

with

a

data

set”

on

page

176

for

more

information.

Types

of

data

sets

160

PL/I

for

Windows:

Programming

Guide

You

do

not

always

need

to

describe

your

data

both

within

the

program

and

outside

it;

often

one

description

serves

for

both

data

sets

and

their

associated

PL/I

files.

There

are,

in

fact,

advantages

to

describing

your

data’s

characteristics

in

only

one

place.

These

are

described

later

in

this

chapter

and

in

following

chapters.

To

effectively

describe

your

program

data

and

the

data

sets

you

are

using,

you

need

to

understand

something

about

how

PL/I

moves

and

stores

data.

Records

A

record

is

the

unit

of

data

transmitted

to

and

from

a

program.

You

can

specify

the

length

of

records

in

the

RECSIZE

option

for

any

of

the

following:

DD

information

PL/I

ENVIRONMENT

attribute

TITLE

option

of

the

OPEN

statement

Except

for

certain

stream

files,

where

defaults

are

applied,

you

must

specify

the

RECSIZE

option

when

your

PL/I

program

creates

a

data

set.

For

more

information

about

stream

files,

see

Chapter

13,

“Defining

and

using

consecutive

data

sets,”

on

page

183.

You

must

also

specify

the

RECSIZE

option

when

your

program

accesses

a

data

set

that

was

not

created

by

PL/I.

Please

note

that

an

editor

might

alter

a

data

set

implicitly.

You

should

use

special

caution

if

you

examine

a

non

CR

-

LF

file

using

an

editor,

because

most

editors

automatically

insert

CR

-

LF

or

similar

character

sequences.

Record

formats

The

records

in

a

data

set

can

have

one

of

the

following

formats:

Undefined-length

Fixed-length

Varying-length

For

a

native

file,

you

specify

either

undefined-length

or

fixed-length

record

format

in

the

TYPE

option

of

the

DD

information.

You

do

not

need

to

specify

a

record

format

for

workstation

VSAM

data

sets;

they

implicitly

consist

of

varying-length

records.

Data

set

organizations

The

options

of

the

PL/I

ENVIRONMENT

attribute

that

specify

data

set

organization

are:

CONSECUTIVE

ORGANIZATION(CONSECUTIVE)

ORGANIZATION(INDEXED)

ORGANIZATION(RELATIVE)

REGIONAL(1)

VSAM

Each

is

described

in

“Specifying

characteristics

using

the

PL/I

ENVIRONMENT

attribute”

on

page

162.

If

you

do

not

specify

the

data

set

organization

option

in

the

ENVIRONMENT

attribute,

it

defaults

to

CONSECUTIVE.

Establishing

data

set

characteristics

Chapter

12.

Using

data

sets

and

files

161

Specifying

characteristics

using

the

PL/I

ENVIRONMENT

attribute

The

ENVIRONMENT

attribute

of

the

DECLARE

statement

allows

you

to

specify

certain

data

set

characteristics

within

your

programs.

These

characteristics

are

not

part

of

the

PL/I

language;

hence,

using

them

in

a

file

declaration

might

make

your

program

non-portable

to

other

PL/I

implementations.

Here

is

an

example

of

how

to

specify

environment

options

for

a

file

in

your

program:

declare

Invoices

file

environment(regional(1),

recsize(64));

The

options

you

can

specify

in

the

ENVIRONMENT

attribute

are

defined

in

the

following

sections.

BKWD

The

BKWD

option

specifies

backward

processing

for

a

SEQUENTIAL

INPUT

or

SEQUENTIAL

UPDATE

file

that

is

associated

with

a

DDM

data

set.

��

BKWD

��

Sequential

reads

(that

is,

reads

without

the

KEY

option)

retrieve

the

previous

record

in

sequence.

For

indexed

data

sets,

the

previous

record

is

the

record

with

the

next

lower

key.

When

a

file

with

the

BKWD

option

is

opened,

the

data

set

is

positioned

at

the

last

record.

ENDFILE

is

raised

in

the

normal

way

when

the

start

of

the

data

set

is

reached.

The

BKWD

option

must

not

be

specified

with

the

GENKEY

option.

The

WRITE

statement

is

not

allowed

for

files

declared

with

the

BKWD

option.

CONSECUTIVE

The

CONSECUTIVE

option

defines

a

file

with

consecutive

data

set

organization.

In

a

data

set

with

CONSECUTIVE

organization,

records

are

placed

in

physical

sequence.

Given

one

record,

the

location

of

the

next

record

is

determined

by

its

physical

position

in

the

data

set.

��

CONSECUTIVE

��

You

use

the

CONSECUTIVE

option

to

access

native

data

sets

using

either

stream-oriented

or

record-oriented

data

transmission.

You

also

use

it

for

input

files

declared

with

the

SEQUENTIAL

attribute

and

associated

with

a

workstation

VSAM

data

set.

In

this

case,

records

in

a

workstation

VSAM

keyed

data

set

are

presented

in

key

sequence.

CONSECUTIVE

is

the

default

data

set

organization.

Establishing

data

set

characteristics

162

PL/I

for

Windows:

Programming

Guide

CTLASA

The

CTLASA

option

specifies

that

the

first

character

of

a

record

is

to

be

interpreted

as

an

American

National

Standard

(ANS)

print

control

character.

The

option

applies

only

to

RECORD

OUTPUT

files

associated

with

consecutive

data

sets.

��

CTLASA

��

The

ANS

print

control

characters,

listed

in

Table

14

on

page

184,

cause

the

specified

action

to

occur

before

the

associated

record

is

printed.

For

information

about

how

you

use

the

CTLASA

option,

see

“Printer-destined

files”

on

page

183.

The

IBM

Proprinter

control

characters

require

up

to

3

bytes

more

than

the

single

byte

required

by

an

ANS

printer

control

character.

However,

do

not

adjust

your

logical

record

length

specification

(see

the

RECSIZE

environment

option)

because

PL/I

automatically

adds

3

to

the

logical

record

length

when

you

specify

CTLASA.

You

can

modify

the

effect

of

CTLASA

so

that

the

first

character

of

records

is

left

untranslated

to

IBM

Proprinter

control

characters.

See

the

ASA

environment

option

under

“ASA”

on

page

169.

Do

not

specify

the

SCALARVARYING

environment

option

for

printer-destined

output

operations,

as

PL/I

does

not

know

how

to

interpret

the

first

data

byte

of

records.

GENKEY

The

GENKEY

(generic

key)

option

applies

only

to

workstation

VSAM

indexed

data

sets.

It

enables

you

to

classify

keys

recorded

in

the

data

set

and

to

use

a

SEQUENTIAL

KEYED

INPUT

or

SEQUENTIAL

KEYED

UPDATE

file

to

access

records

according

to

their

key

class.

��

GENKEY

��

A

generic

key

is

a

character

string

that

identifies

a

class

of

keys;

all

keys

that

begin

with

the

string

are

members

of

that

class.

For

example,

the

recorded

keys

“ABCD”,

“ABCE”,

and

“ABDF”

are

all

members

of

the

classes

identified

by

the

generic

keys

“A”

and

“AB”,

and

the

first

two

are

also

members

of

the

class

“ABC”;

and

the

three

recorded

keys

can

be

considered

to

be

unique

members

of

the

classes

“ABCD”,

“ABCE”,

and

“ABDF”,

respectively.

The

GENKEY

option

allows

you

to

start

sequential

reading

or

updating

of

a

VSAM

data

set

from

the

first

record

that

has

a

key

in

a

particular

class,

and

for

an

INDEXED

data

set

from

the

first

nondummy

record

that

has

a

key

in

a

particular

class.

You

identify

the

class

by

including

its

generic

key

in

the

KEY

option

of

a

READ

statement.

Subsequent

records

can

be

read

by

READ

statements

without

the

KEY

option.

No

indication

is

given

when

the

end

of

a

key

class

is

reached.

Establishing

data

set

characteristics

Chapter

12.

Using

data

sets

and

files

163

Although

you

can

retrieve

the

first

record

having

a

key

in

a

particular

class

by

using

a

READ

with

the

KEY

option,

you

cannot

obtain

the

actual

key

unless

the

records

have

embedded

keys,

since

the

KEYTO

option

cannot

be

used

in

the

same

statement

as

the

KEY

option.

In

the

following

example,

a

key

length

of

more

than

three

bytes

is

assumed:

dcl

ind

file

record

sequential

keyed

update

env

(indexed

genkey);

.

.

.

read

file

(ind)

into

(infield)

key

(’ABC’);

.

.

.

next:

read

file

(ind)

into

(infield);

.

.

.

go

to

next;

The

first

READ

statement

causes

the

first

nondummy

record

in

the

data

set

with

a

key

beginning

'ABC'

to

be

read

into

INFIELD.

Each

time

the

second

READ

statement

is

executed,

the

nondummy

record

with

the

next

higher

key

is

retrieved.

Repeated

execution

of

the

second

READ

statement

could

result

in

reading

records

from

higher

key

classes,

since

no

indication

is

given

when

the

end

of

a

key

class

is

reached.

It

is

your

responsibility

to

check

each

key

if

you

do

not

wish

to

read

beyond

the

key

class.

Any

subsequent

execution

of

the

first

READ

statement

would

reposition

the

file

to

the

first

record

of

the

key

class

'ABC'.

If

the

data

set

contains

no

records

with

keys

in

the

specified

class,

or

if

all

the

records

with

keys

in

the

specified

class

are

dummy

records,

the

KEY

condition

is

raised.

The

data

set

is

then

positioned

either

at

the

next

record

that

has

a

higher

key

or

at

the

end

of

the

file.

The

presence

or

absence

of

the

GENKEY

option

affects

the

execution

of

a

READ

statement

which

supplies

a

source

key

that

is

shorter

than

the

key

length

specified

in

the

KEYLENGTH

subparameter.

The

KEYLENGTH

subparameter

is

found

in

the

DD

statement

that

defines

the

indexed

data

set.

If

you

specify

the

GENKEY

option,

it

causes

the

source

key

to

be

interpreted

as

a

generic

key,

and

the

data

set

is

positioned

to

the

first

nondummy

record

in

the

data

set

whose

key

begins

with

the

source

key.

If

you

do

not

specify

the

GENKEY

option,

a

READ

statement’s

short

source

key

is

padded

on

the

right

with

blanks

to

the

specified

key

length,

and

the

data

set

is

positioned

to

the

record

that

has

this

padded

key

(if

such

a

record

exists).

For

a

WRITE

statement,

a

short

source

key

is

always

padded

with

blanks.

Use

of

the

GENKEY

option

does

not

affect

the

result

of

supplying

a

source

key

whose

length

is

greater

than

or

equal

to

the

specified

key

length.

The

source

key,

truncated

on

the

right

if

necessary,

identifies

a

specific

record

(whose

key

can

be

considered

the

only

member

of

its

class).

Establishing

data

set

characteristics

164

PL/I

for

Windows:

Programming

Guide

GRAPHIC

You

must

specify

the

GRAPHIC

option

if

you

use

DBCS

variables

or

DBCS

constants

in

GET

and

PUT

statements

for

list-directed

and

data-directed

I/O.

You

can

also

specify

the

GRAPHIC

option

for

edit-directed

I/O.

��

GRAPHIC

��

PL/I

raises

the

ERROR

condition

for

list-directed

and

data-directed

I/O

if

you

have

graphics

in

input

or

output

data

and

you

do

not

specify

the

GRAPHIC

option.

For

information

on

the

graphic

data

type,

and

on

the

G-format

item

for

edit-directed

I/O,

see

the

PL/I

Language

Reference.

KEYLENGTH

The

KEYLENGTH

option

specifies

the

length,

n,

of

the

recorded

key

for

a

KEYED

file.

You

can

specify

KEYLENGTH

only

for

INDEXED

files

(see

ORGANIZATION

later

in

this

section).

��

KEYLENGTH

(n)

��

If

you

include

the

KEYLENGTH

option

in

a

file

declaration,

and

the

associated

data

set

already

exists,

the

value

is

used

for

checking

purposes.

If

the

key

length

you

specify

in

the

option

conflicts

with

the

value

defined

for

the

data

set,

the

UNDEFINEDFILE

condition

is

raised.

ISAM

and

BTRIEVE

Keys

are

kept

in

the

index

pages

of

an

ISAM

or

BTRIEVE

file.

The

length

of

the

key

needs

to

be

defined

to

PL/I

when

the

file

is

created.

KEYLOC

The

KEYLOC

option

specifies

the

starting

position,

n,

of

the

embedded

key

in

records

of

a

KEYED

file.

You

can

specify

KEYLOC

only

for

INDEXED

files

(see

ORGANIZATION

later

in

this

section).

��

KEYLOC

(n)

��

The

position,

n,

must

be

within

the

limits:

1

≤

n

≤

recordsize

-

keylength

+

1

That

is,

the

key

cannot

be

larger

than

the

record

and

must

be

contained

completely

within

the

record.

This

means

that

if

you

specify

the

SCALARVARYING

option,

the

embedded

key

must

not

overlap

the

first

two

bytes

of

the

record;

hence,

the

value

you

specify

for

KEYLOC

must

be

greater

than

2.

Establishing

data

set

characteristics

Chapter

12.

Using

data

sets

and

files

165

If

you

do

not

specify

KEYLOC

when

creating

an

indexed

data

set,

the

key

is

assumed

to

start

with

the

first

byte

of

the

record.

If

you

include

the

KEYLOC

option

in

a

file

declaration,

and

the

associated

data

set

already

exists,

the

value

is

used

for

checking

purposes.

If

the

key

position

you

specify

in

the

option

conflicts

with

the

value

defined

for

the

data

set,

the

UNDEFINEDFILE

condition

is

raised.

ISAM

and

BTRIEVE

Keys

are

kept

in

the

index

pages

of

an

ISAM

or

BTRIEVE

file.

The

location

of

the

key

needs

to

be

defined

to

PL/I

when

the

file

is

created.

ORGANIZATION

The

ORGANIZATION

option

specifies

the

organization

of

the

data

set

associated

with

the

PL/I

file.

��

ORGANIZATION

CONSECUTIVE

(

INDEXED

)

RELATIVE

��

CONSECUTIVE

Specifies

that

the

file

is

associated

with

a

consecutive

data

set.

A

consecutive

file

may

be

either

a

native

data

set

or

a

workstation

VSAM

sequential,

direct,

or

keyed

data

set.

INDEXED

Specifies

that

the

file

is

associated

with

an

indexed

data

set.

INDEXED

specifies

that

the

data

set

contains

records

arranged

in

a

logical

sequence,

according

to

keys

embedded

in

each

record.

Logical

records

are

arranged

in

the

data

set

in

ascending

key

sequence

according

to

the

ASCII

collating

sequence.

An

indexed

file

is

a

workstation

VSAM

keyed

data

set.

RELATIVE

Specifies

that

the

file

is

associated

with

a

relative

data

set.

RELATIVE

specifies

that

the

data

set

contains

records

that

do

not

have

recorded

keys.

A

relative

file

is

a

workstation

VSAM

direct

data

set.

Relative

keys

range

from

1

to

nnnn.

RECSIZE

The

RECSIZE

option

specifies

the

length,

n,

of

records

in

a

data

set.

��

RECSIZE

(n)

��

For

regional

and

fixed-length

data

sets,

RECSIZE

specifies

the

length

of

each

record

in

the

data

set;

for

all

other

data

set

types,

RECSIZE

specifies

the

maximum

length

records

can

have.

If

you

include

the

RECSIZE

option

in

a

file

declaration,

and

the

file

is

associated

with

a

workstation

VSAM

data

set

that

already

exists,

the

value

is

used

for

checking

purposes.

If

the

record

length

you

specify

in

the

option

conflicts

with

the

value

defined

for

the

data

set,

the

UNDEFINEDFILE

condition

is

raised.

Specify

the

RECSIZE

option

when

you

access

data

sets

created

by

non-PL/I

programs

such

as

text

editors.

Establishing

data

set

characteristics

166

PL/I

for

Windows:

Programming

Guide

ISAM

and

BTRIEVE

You

must

specify

RECSIZE

when

using

the

BTRIEVE

or

ISAM

access

method.

REGIONAL(1)

The

REGIONAL(1)

option

defines

a

file

with

the

regional

organization.

��

REGIONAL(1)

��

A

data

set

with

regional

organization

contains

fixed-length

records

that

do

not

have

recorded

keys.

Each

region

in

the

data

set

contains

only

one

record;

therefore,

each

region

number

corresponds

to

a

relative

record

within

the

data

set

(that

is,

region

numbers

start

with

0

at

the

beginning

of

the

data

set).

For

information

about

how

you

use

regional

data

sets,

see

Chapter

14,

“Defining

and

using

regional

data

sets,”

on

page

205.

SCALARVARYING

The

SCALARVARYING

option

is

used

in

the

input

and

output

of

VARYING

strings.

��

SCALARVARYING

��

When

storage

is

allocated

for

a

VARYING

string,

the

compiler

includes

a

2-byte

prefix

that

specifies

the

current

length

of

the

string.

For

an

element

varying-length

string,

this

prefix

is

included

on

output,

or

recognized

on

input,

only

if

you

specify

SCALARVARYING

for

the

file.

When

you

use

locate

mode

statements

(LOCATE

and

READ

SET)

to

create

and

read

a

data

set

with

element

VARYING

strings,

you

must

specify

SCALARVARYING

to

indicate

that

a

length

prefix

is

present,

since

the

pointer

that

locates

the

buffer

is

always

assumed

to

point

to

the

start

of

the

length

prefix.

When

you

specify

this

option

and

element

VARYING

strings

are

transmitted,

you

must

allow

two

bytes

in

the

record

length

to

include

the

length

prefix.

A

data

set

created

using

SCALARVARYING

should

be

accessed

only

by

a

file

that

also

specifies

SCALARVARYING.

SCALARVARYING

and

CTLASA

must

not

be

specified

for

the

same

file,

as

this

causes

the

first

data

byte

to

be

ambiguous.

VSAM

The

VSAM

option

is

provided

for

compatibility

with

OS

PL/I.

Establishing

data

set

characteristics

Chapter

12.

Using

data

sets

and

files

167

��

VSAM

��

Specifying

characteristics

using

DD:ddname

environment

variables

You

use

the

SET

command

to

establish

an

environment

variable

that

identifies

the

data

set

to

be

associated

with

a

PL/I

file,

and,

optionally,

provide

additional

characteristics

of

that

data

set.

This

information

provided

by

the

environment

variable

is

called

data

definition

(or

DD)

information.

The

syntax

of

the

DD:ddname

environment

variable

is:

��

DD:ddname=filespec

,

option

��

Blanks

are

acceptable

within

the

syntax.

In

addition,

the

syntax

of

the

statement

is

not

checked

at

the

time

the

command

is

entered.

It

is

verified

when

the

data

set

is

opened.

If

the

syntax

is

wrong,

UNDEFINEDFILE

is

raised

with

the

oncode

96.

DD:ddname

Specifies

the

name

of

the

environment

variable.

The

ddname

can

be

either

the

name

of

a

file

constant

or

an

alternate

ddname

that

you

specify

in

the

TITLE

option

of

your

OPEN

statement.

The

TITLE

option

is

described

in

“Using

the

TITLE

option

of

the

OPEN

statement”

on

page

177.

If

you

use

an

alternate

ddname,

and

it

is

longer

than

31

characters,

only

the

first

31

characters

are

used

in

forming

the

environment

variable

name.

option

The

options

that

you

can

specify

as

DD

information

are

described

in

the

pages

that

follow,

beginning

with

“AMTHD”

and

ending

with

“TYPE”

on

page

174.

AMTHD

The

AMTHD

option

specifies

the

access

method

that

is

to

be

used

to

access

the

data

set.

��

AMTHD

FSYS

(

DDM

)

ISAM

BTRIEVE

REMOTE

��

FSYS

Specifies

that

PL/I

is

to

use

its

native

access

methods

to

access

a

native

file.

This

is

the

default.

ISAM

Specifies

that

the

ISAM

access

method

is

to

be

used

to

access

an

ISAM

file.

BTRIEVE

(Windows)

Specifies

that

the

BTRIEVE

access

method

is

to

be

used

to

access

a

BTRIEVE

file.

Establishing

data

set

characteristics

168

PL/I

for

Windows:

Programming

Guide

REMOTE

(Windows)

Specifies

that

the

file

resides

on

a

remote

DDM

target

system

(such

as

MVS).

For

Windows,

the

name

of

the

file

needs

to

be

qualified

by

the

LU

alias

or

the

fully-qualified

SNA

network

name

FSYS

is

used

by

default

if

you

do

not

specify

the

AMTHD

option

and

if

you

do

not

apply

one

of

the

following

ENVIRONMENT

options:

ORGANIZATION(INDEXED)

ORGANIZATION(RELATIVE)

VSAM

If

you

specify

any

of

the

above

options,

AMTHD(ISAM)is

the

default

on

Windows

while

AMTHD(DDM)

is

the

default

on

AIX.

APPEND

The

APPEND

option

specifies

whether

an

existing

data

set

is

to

be

extended

or

re-created.

��

APPEND

Y

(

N

)

��

Y

Specifies

that

new

records

are

to

be

added

to

the

end

of

a

sequential

data

set,

or

inserted

in

a

relative

or

indexed

data

set.

This

is

the

default.

N

Specifies

that,

if

the

file

exists,

it

is

to

be

re-created.

The

APPEND

option

applies

only

to

OUTPUT

files.

APPEND

is

ignored

if:

v

The

file

does

not

exist

v

The

file

does

not

have

the

OUTPUT

attribute

v

The

organization

is

REGIONAL(1)

ASA

The

ASA

option

applies

to

printer-destined

files.

This

option

specifies

when

the

ANS

control

character

in

each

record

is

to

be

interpreted.

��

ASA

N

(

Y

)

��

N

Specifies

that

the

ANS

print

control

characters

are

to

be

translated

to

IBM

Proprinter

control

characters

as

records

are

written

to

the

data

set.

This

is

the

default.

Y

Specifies

that

the

ANS

print

control

characters

are

not

to

be

translated;

instead

they

are

to

be

left

as

is

for

subsequent

translation

by

a

process

you

determine.

If

the

file

is

not

a

printer-destined

file,

the

option

is

ignored.

Printer-destined

files

are

described

in

“Printer-destined

files”

on

page

183.

BUFSIZE

The

BUFSIZE

option

specifies

the

number

of

bytes

for

a

buffer.

Establishing

data

set

characteristics

Chapter

12.

Using

data

sets

and

files

169

��

BUFSIZE

(n)

��

RECORD

output

is

buffered

by

default

and

has

a

default

value

for

BUFSIZE

of

64k.

STREAM

output

is

buffered,

but

not

by

default,

and

has

a

default

value

for

BUFSIZE

of

zero.

If

the

value

of

zero

is

given

to

BUFSIZE,

the

number

of

bytes

for

buffering

is

equal

to

the

value

specified

in

the

RECSIZE

or

LRECL

option.

The

BUFSIZE

option

is

valid

only

for

a

consecutive

binary

file.

If

the

file

is

used

for

terminal

input,

you

should

assign

the

value

of

zero

to

BUFSIZE

for

increased

efficiency.

CHARSET

for

record

I/O

This

version

of

the

CHARSET

option

applies

only

to

consecutive

files

using

record

I/O.

It

gives

the

user

the

capability

of

using

EBCDIC

data

files

as

input

files,

and

specifying

the

character

set

of

output

files.

��

CHARSET

ASIS

(

EBCDIC

)

ASCII

��

Choose

a

suboption

of

CHARSET

based

on

what

form

the

file

has

(input)

or

what

form

you

want

the

file

have

(output).

CHARSET(ASIS)

is

the

default.

CHARSET

for

stream

I/O

This

version

of

the

CHARSET

option

applies

for

stream

input

and

output

files.

It

gives

the

user

the

capability

of

using

EBCDIC

data

files

as

input

files,

and

specifying

the

character

set

of

output

files.

If

you

attempt

to

specify

ASIS

when

using

stream

I/O,

no

error

is

issued

and

character

sets

are

treated

as

ASCII.

��

CHARSET

ASCII

(

EBCDIC

)

��

Choose

a

suboption

of

CHARSET

based

on

what

form

the

file

has

(input)

or

what

form

you

want

the

file

to

have

(output).

CHARSET(ASCII)

is

the

default.

DELAY

The

DELAY

option

specifies

the

number

of

milliseconds

to

delay

before

retrying

an

operation

that

fails

when

a

file

or

record

lock

cannot

be

obtained

by

the

system.

��

DELAY

(n)

��

The

default

value

for

DELAY

is

0.

.

Establishing

data

set

characteristics

170

PL/I

for

Windows:

Programming

Guide

DELIMIT

The

DELIMIT

option

specifies

whether

the

input

file

contains

field

delimiters

or

not.

A

field

delimiter

is

a

blank

or

a

user-defined

character

that

separates

the

fields

in

a

record.

This

is

applicable

for

sort

input

files

only.

��

DELIMIT

N

(

Y

)

��

The

sort

utility

distinguishes

text

files

from

binary

files

with

the

presence

of

field

delimiters.

Input

files

that

contain

field

delimiters

are

processed

as

text

files;

otherwise,

they

are

considered

to

be

binary

files.

The

library

needs

this

information

in

order

to

pass

the

correct

parameters

to

the

sort

utility.

LRECL

The

LRECL

option

is

the

same

as

the

RECSIZE

option.

��

LRECL

(n)

��

If

LRECL

is

not

specified

and

not

implied

by

a

LINESIZE

value

(except

for

TYPE(FIXED)

files,

the

default

is

1024.

LRMSKIP

The

LRMSKIP

option

allows

output

to

commence

on

the

nth

(n

refers

to

the

value

specified

with

the

SKIP

option

of

the

PUT

or

GET

statement)

line

of

the

first

page

for

the

first

SKIP

format

item

to

be

executed

after

a

file

is

opened.

��

LRMSKIP

N

(

Y

)

��

If

n

is

zero

or

1,

output

commences

on

the

first

line

of

the

first

page.

PROMPT

The

PROMPT

option

specifies

whether

or

not

colons

should

be

visible

as

prompts

for

stream

input

from

the

terminal.

��

PROMPT

N

(

Y

)

��

PROMPT(N)

is

the

default.

PUTPAGE

The

PUTPAGE

option

specifies

whether

or

not

the

form

feed

character

should

be

followed

by

a

carriage

return

character.

This

option

only

applies

to

printer-destined

files.

Printer-destined

files

are

stream

output

files

declared

with

the

PRINT

attribute,

or

record

output

files

declared

with

the

CTLASA

environment

option.

Establishing

data

set

characteristics

Chapter

12.

Using

data

sets

and

files

171

��

PUTPAGE

NOCR

(

CR

)

��

NOCR

Indicates

that

the

form

feed

character

('0C'x)

is

not

followed

by

a

carriage

return

character

('0D'x).

This

is

the

default.

CR

Indicates

that

the

carriage

return

character

is

appended

to

the

form

feed

character.

This

option

should

be

specified

if

output

is

sent

to

non-IBM

printers.

RECCOUNT

The

RECCOUNT

option

specifies

the

maximum

number

of

records

that

can

be

loaded

into

a

relative

or

regional

data

set

that

is

created

during

the

PL/I

file

opening

process.

��

RECCOUNT

(n)

��

The

RECCOUNT

option

is

ignored

if

PL/I

does

not

create,

or

re-create,

the

data

set.

If

the

RECCOUNT

option

applies

and

is

omitted,

the

default

is

50

for

regional

and

relative

files.

RECSIZE

The

RECSIZE

option

specifies

the

length,

n,

of

records

in

the

data

set.

��

RECSIZE

(n)

��

For

regional

and

fixed-length

data

sets,

RECSIZE

specifies

the

length

of

each

record

in

the

data

set;

for

all

other

data

set

types,

RECSIZE

specifies

the

maximum

length

records

may

have.

The

default

for

n

is

512.

RETRY

The

RETRY

option

specifies

the

number

of

times

an

operation

should

be

retried

when

a

file

or

record

lock

cannot

be

obtained

by

the

system.

��

RETRY

(n)

��

The

default

value

for

RETRY

is

10.

This

option

is

applicable

only

to

DDM

files.

SAMELINE

The

SAMELINE

option

specifies

whether

the

system

prompt

occurs

on

the

same

line

as

the

statement

that

prompts

for

input.

Establishing

data

set

characteristics

172

PL/I

for

Windows:

Programming

Guide

��

SAMELINE

N

(

Y

)

��

The

following

examples

show

the

results

of

certain

combinations

of

the

PROMPT

and

SAMELINE

options:

Example

1

Given

the

statement

PUT

SKIP

LIST(’ENTER:’);,

output

is

as

follows:

prompt(y),

sameline(y)

prompt(n),

sameline(y)

prompt(y),

sameline(n)

prompt(n),

sameline(n)

ENTER:

(cursor)

ENTER:

(cursor)

ENTER:

(cursor)

ENTER:

(cursor)

Example

2

Given

the

statement

PUT

SKIP

LIST(’ENTER’);,

output

is

as

follows:

prompt(y),

sameline(y)

prompt(n),

sameline(y)

prompt(y),

sameline(n)

prompt(n),

sameline(n)

ENTER:

(cursor)

ENTER

(cursor)

ENTER

:

(cursor)

ENTER

(cursor)

SHARE

The

SHARE

option

specifies

the

level

of

file

sharing

to

be

allowed.

��

SHARE

NONE

(

READ

)

ALL

��

NONE

Specifies

that

the

file

is

not

to

be

shared

with

other

processes.

This

is

the

default.

READ

Specifies

that

other

processes

can

read

the

file.

ALL

Specifies

that

other

processes

can

read

or

write

the

file.

Data

integrity

is

the

user’s

responsibility,

and

PL/I

provides

no

assistance

in

maintaining

it.

This

option

is

valid

only

with

DDM

files.

To

enable

record-level

locking,

specify

SHARE(ALL)

and

declare

the

file

as

an

update

file.

This

is

recommended

when

running

CICS

applications.

The

UNDEFINEDFILE

condition

is

raised

if

the

requested

or

default

level

of

file

sharing

cannot

be

obtained.

Establishing

data

set

characteristics

Chapter

12.

Using

data

sets

and

files

173

SKIP0

The

SKIP0

option

specifies

where

the

line

cursor

moves

when

SKIP(0)

statement

is

coded

in

the

source

program.

SKIP0

applies

to

terminal

files

that

are

not

linked

as

PM

applications.

��

SKIP0

N

(

Y

)

��

SKIP0(N)

Specifies

that

the

cursor

is

to

be

moved

to

the

beginning

of

the

next

line.

This

is

the

default.

SKIP0(Y)

Specifies

that

the

cursor

to

be

moved

to

the

beginning

of

the

current

line.

The

following

example

shows

how

you

could

make

the

output

to

the

terminal

skip

zero

lines

so

that

the

cursor

moves

to

the

beginning

of

the

current

output

line:

set

dd:sysprint=stdout:,SKIP0(Y)

set

dd:sysprint=con,SKIP0(Y)

TERMLBUF

The

TERMLBUF

option

specifies

the

maximum

number

of

lines

in

the

window

of

a

PL/I

Presentation

Manager

(PM)

terminal.

��

TERMLBUF

(n)

��

If

the

file

is

not

associated

with

a

PM

terminal,

the

option

is

ignored.

The

default

is

512

lines.

TYPE

The

TYPE

option

specifies

the

format

of

records

in

a

native

file.

��

TYPE

CRLF

(

LF

)

TEXT

FIXED

VARLS

VARLS4X4

VARMS

LL

LLZZ

CRLFEOF

U

��

CRLF

Specifies

that

records

are

delimited

by

the

CR

-

LF

character

combination.

('CR'

and

'LF'

represent

the

ASCII

values

of

carriage

return

and

line

feed,

'0D'x

and

'0A'x,

respectively.

See

restrictions

on

16)

For

an

output

file,

PL/I

places

the

characters

at

the

end

of

each

record;

for

an

input

file,

PL/I

discards

the

characters.

For

both

input

and

output,

the

characters

are

not

counted

in

consideration

for

RECSIZE.

Establishing

data

set

characteristics

174

PL/I

for

Windows:

Programming

Guide

The

data

set

must

not

contain

any

record

that

is

longer

than

the

value

determined

for

the

record

length

of

the

data

set.

This

is

the

default

for

ISAM

and

BTRIEVE.

LF

Specifies

that

records

are

delimited

by

the

LF

character

combination.

('LF'

represents

the

ASCII

values

of

feed

or

'0A'x.

See

restrictions

on

16)

For

an

output

file,

PL/I

places

the

characters

at

the

end

of

each

record;

for

an

input

file,

PL/I

discards

the

characters.

For

both

input

and

output,

the

characters

are

not

counted

in

consideration

for

RECSIZE.

The

data

set

must

not

contain

any

record

that

is

longer

than

the

value

determined

for

the

record

length

of

the

data

set.

TEXT

Equivalent

to

CRLF.

FIXED

Specifies

that

each

record

in

the

data

set

has

the

same

length.

The

length

determined

for

records

in

the

data

set

is

used

to

recognize

record

boundaries.

All

characters

in

a

TYPE(FIXED)

file

are

considered

as

data,

including

control

characters

if

they

exist.

Make

sure

the

record

length

you

specify

reflects

the

presence

of

these

characters

or

make

sure

the

record

length

you

specify

accounts

for

all

characters

in

the

record.

VARLS

Indicates

that

records

have

a

two-byte

prefix

that

specifies

the

number

of

bytes

in

the

rest

of

the

record

and

that

the

length

prefix

is

held

in

NATIVE

format.

These

records

look

like

NATIVE

CHAR

VARYING

strings.

TYPE(VARLS)

datasets

provide

the

fastest

way

to

use

PL/I

to

read

and

write

data

sets

containing

records

of

variable

length

and

arbitrary

byte

patterns.

This

is

not

possible

with

TYPE(CRLF)

data

sets

because

when

a

record

is

read

that

was

written

containing

the

bit

string

'0d0a'b4,

a

misinterpretation

occurs.

VARLS4X4

Indicates

that

records

have

a

four-byte

prefix

and

a

four-byte

suffix.

The

prefix

and

suffix

each

contain

the

number

of

bytes

in

the

rest

of

the

record.

This

number

is

in

NATIVE

format

and

does

not

include

either

the

four

bytes

used

by

the

prefix

or

the

four

bytes

used

by

the

suffix.

Type(VARLS4X4)

data

sets

provide

a

way

to

handle

FORTRAN

sequential

unformatted

files.

VARMS

Indicates

that

records

have

a

two-byte

prefix

that

specifies

the

number

of

bytes

in

the

rest

of

the

record

and

that

the

length

prefix

is

held

in

NONNATIVE

format.

These

records

look

like

NONNATIVE

CHAR

VARYING

strings.

TYPE(VARMS)

data

sets

provide

a

way

to

read

SCALARVARYING

files

downloaded

from

the

mainframe.

LL

Indicates

that

records

have

a

two-byte

prefix

that

specifies

the

total

number

of

bytes

in

the

record

(including

the

prefix).

The

length

is

held

in

NONNATIVE

format.

TYPE(LL)

data

sets

provide

a

way

to

read

files

downloaded

from

the

mainframe

with

a

tool

(see

VRECGEN.PLI

sample

program)

that

appends

two

bytes.

Establishing

data

set

characteristics

Chapter

12.

Using

data

sets

and

files

175

LLZZ

Specifies

that

records

have

a

4-byte

prefix

held

the

same

way

as

varying

records

on

S/390.

The

LLZZ

suboption

provides

a

way

to

read

and

write

data

sets

which

contain

records

of

variable

length

and

arbitrary

byte

patterns

which

cannot

be

done

with

TYPE(CRLF)

data

sets.

Under

CRLF,

a

written

record

containing

the

bit

string

'0d0a'b4

is

misinterpreted

when

it

is

read.

A

TYPE(LLZZ)

data

set

must

not

contain

any

record

that

is

longer

than

the

value

determined

for

the

record

length

of

the

data

set.

CRLFEOF

Except

for

output

files,

this

suboption

specifies

the

same

information

as

CRLF.

When

one

of

these

files

is

closed

for

output,

an

end-of-file

marker

is

appended

to

the

last

record.

U

Indicates

that

records

are

unformatted.

These

unformatted

files

cannot

be

used

by

any

record

or

stream

I/O

statements

except

OPEN

and

CLOSE.

You

can

read

from

a

TYPE(U)

file

only

by

using

the

FILEREAD

built-in

function.

You

can

write

to

a

TYPE(U)

file

only

by

using

the

FILEWRITE

built-in

function.

The

TYPE

option

applies

only

to

CONSECUTIVE

files,

except

that

it

is

ignored

for

printer-destined

files

with

ASA(N)

applied.

If

your

program

attempts

to

access

an

existing

data

set

with

TYPE(FIXED)

in

effect

and

the

length

of

the

data

set

is

not

a

multiple

of

the

logical

record

length

you

specify,

PL/I

raises

the

UNDEFINEDFILE

condition.

When

using

non-print

files

with

the

TYPE(FIXED)

attribute,

SKIP

is

replaced

by

trailing

blanks

to

the

end

of

the

line.

If

TYPE(CRLF)

is

being

used,

SKIP

is

replaced

by

CRLF

with

no

trailing

blanks.

Associating

a

PL/I

file

with

a

data

set

A

file

used

within

a

PL/I

program

has

a

PL/I

file

name.

A

data

set

also

has

a

name

by

which

it

is

known

to

the

operating

system.

PL/I

needs

a

way

to

recognize

the

data

set(s)

to

which

the

PL/I

files

in

your

program

refer,

so

you

must

provide

an

identification

of

the

data

set

to

be

used,

or

allow

PL/I

to

use

a

default

identification.

You

can

identify

the

data

set

explicitly

using

either

an

environment

variable

or

the

TITLE

option

of

the

OPEN

statement.

Using

environment

variables

You

use

the

SET

command

to

establish

an

environment

variable

that

identifies

the

data

set

to

be

associated

with

a

PL/I

file,

and,

optionally,

to

specify

the

characteristics

of

that

data

set.

The

information

provided

by

the

environment

variable

is

called

data

definition

(or

DD)

information.

These

environment

variable

names

have

the

form

DD:ddname

where

the

ddname

is

the

name

of

a

PL/I

file

constant

(or

an

alternate

ddname,

as

defined

below),

for

example:

declare

MyFile

stream

output;

Establishing

data

set

characteristics

176

PL/I

for

Windows:

Programming

Guide

You

can

specify

options

for

the

SET

command

by

including

them

on

the

command

line.

set

dd:myfile=c:\datapath\mydata.dat,APPEND(N)

If

you

are

familiar

with

the

IBM

mainframe

environment,

you

can

think

of

the

environment

variable

much

like

you

do

the:

DD

statement

in

MVS

ALLOCATE

statement

in

TSO

FILEDEF

command

in

CMS

For

more

about

the

syntax

and

options

you

can

use

with

the

DD:ddname

environment

variable,

see

“Specifying

characteristics

using

DD:ddname

environment

variables”

on

page

168.

Using

the

TITLE

option

of

the

OPEN

statement

You

can

use

the

TITLE

option

of

the

OPEN

statement

to

identify

the

data

set

to

be

associated

with

a

PL/I

file,

and,

optionally,

to

provide

additional

characteristics

of

that

data

set.

alternate_ddname

The

name

of

an

alternate

DD:ddname

environment

variable.

An

alternate

DD:ddname

environment

variable

is

one

not

named

after

a

file

constant.

For

example,

if

you

had

a

file

named

INVENTRY

in

your

program,

and

you

establish

two

DD:ddname

environment

variables—the

first

named

INVENTRY

and

the

second

named

PARTS—you

could

associate

the

file

with

the

second

one

using

this

statement:

open

file(Inventry)

title(’PARTS’);

filespec

Any

valid

file

specification

on

the

system

you

are

using.

dd_option

“Specifying

characteristics

using

DD:ddname

environment

variables”

on

page

168

One

or

more

options

allowed

in

a

DD:ddname

environment

variable.

For

more

about

options

of

the

DD:ddname

environment

variable,

see

“Specifying

characteristics

using

DD:ddname

environment

variables”

on

page

168.

Here

is

an

example

of

using

the

OPEN

statement

in

this

manner:

open

file(Payroll)

title('/June.Dat,append(n),recsize(52)');

With

this

form,

PL/I

obtains

all

DD

information

either

from

the

TITLE

expression

or

from

the

ENVIRONMENT

attribute

of

a

file

declaration.

A

DD:ddname

environment

variable

is

not

referenced.

��

TITLE

(expression)

��

The

expression

must

yield

a

character

string

with

the

following

syntax:

��

alternate_ddname

/filespec

,

dd_option

��

Associating

a

PL/I

file

with

a

data

set

Chapter

12.

Using

data

sets

and

files

177

Attempting

to

use

files

not

associated

with

data

sets

If

you

attempt

to

use

a

file

that

has

not

been

associated

with

a

data

set,

(either

through

the

use

of

the

TITLE

option

of

the

OPEN

statement

or

by

establishing

a

DD:ddname

environment

variable),

the

UNDEFINEDFILE

condition

is

raised.

The

only

exceptions

are

the

files

SYSIN

and

SYSPRINT;

these

default

to

the

CON

device.

How

PL/I

finds

data

sets

PL/I

establishes

the

path

for

creating

new

data

sets

or

accessing

existing

data

sets

in

one

of

the

following

ways:

v

The

current

directory.

v

The

paths

as

defined

in

the

DPATH

environment

variable.

Opening

and

closing

PL/I

files

This

topic

summarizes

what

PL/I

does

when

your

application

executes

the

OPEN

and

CLOSE

statements.

Opening

a

file

The

execution

of

a

PL/I

OPEN

statement

associates

a

file

with

a

data

set.

This

requires

merging

of

the

information

describing

the

file

and

the

data

set.

The

information

is

merged

using

the

following

order

of

precedence:

1.

Attributes

on

the

OPEN

statement

2.

ENVIRONMENT

options

on

a

file

declaration

3.

Values

in

TITLE

option

of

the

OPEN

statement

when

'/'

is

used

4.

Values

in

the

DD:ddname

environment

variable

5.

IBM

defaults.

When

the

data

set

being

opened

is

not

a

workstation

device,

the

paths

specified

in

the

DPATH

environment

variable

are

searched

for

the

data

set.

If

the

data

set

is

not

found,

and

the

file

has

the

OUTPUT

attribute,

the

data

set

is

created

in

the

current

directory.

If

any

conflict

is

detected

between

file

attributes

and

data

set

characteristics,

the

UNDEFINEDFILE

condition

is

raised.

Closing

a

file

The

execution

of

a

PL/I

CLOSE

statement

dissociates

a

file

from

the

data

set

with

which

it

was

associated.

Associating

several

data

sets

with

one

file

A

PL/I

file

can,

at

different

times,

represent

entirely

different

data

sets.

The

TITLE

option

allows

you

to

choose

dynamically,

at

open

time,

among

several

data

sets

to

be

associated

with

a

particular

PL/I

file.

Consider

the

following

example:

do

Ident=’A’,’B’,’C’;

open

file(Master)

title(’/MASTER1’\Ident\’.DAT’);

.

.

.

close

file(Master);

end;

In

this

example,

when

Master

is

opened

during

the

first

iteration

of

the

do-group,

the

file

is

associated

with

the

data

set

named

MASTER1A.DAT.

After

processing,

Associating

a

PL/I

file

with

a

data

set

178

PL/I

for

Windows:

Programming

Guide

the

file

is

closed,

dissociating

the

PL/I

file

MASTER

from

the

MASTER1A.DAT

data

set.

During

the

second

iteration

of

the

do-group,

MASTER

is

opened

again.

This

time,

MASTER

is

associated

with

the

data

set

named

MASTER1B.DAT.

Similarly,

during

the

final

iteration

of

the

do-group,

MASTER

is

associated

with

the

data

set

MASTER1C.DAT.

Combinations

of

I/O

statements,

attributes,

and

options

The

figures

that

follow

list

the

I/O

statements,

file

attributes,

ENVIRONMENT

options,

and

DD:ddname

environment

variable

options

you

can

use

for

the

various

PL/I

file

operations.

Table

12

on

page

180

lists

those

for

native

data

sets

and

Table

13

on

page

180

lists

those

for

workstation

VSAM

data

sets.

Associating

data

sets

Chapter

12.

Using

data

sets

and

files

179

Table

12.

Statements,

attributes,

and

options

for

native

data

sets

Statements

File

attributes

ENVIRONMENT

options

DD_DDNAME

options

PUT

ENVIRONMENT

FILE

OUTPUT

PRINT

STREAM

CONSECUTIVE

GRAPHIC

RECSIZE(n)

AMTHD(FSYS)

APPEND(Y|N)

ASA(Y|N)

file_spec

RECSIZE(n)

SHARE(NONE|READ|ALL)

TERMLBUF(n)

TYPE(CRLF|TEXT|FIXED)

GET

ENVIRONMENT

FILE

STREAM

INPUT

CONSECUTIVE

GRAPHIC

RECSIZE(n)

AMTHD(FSYS)

file_spec

RECSIZE(n)

SHARE(NONE|READ|ALL)

TERMLBUF(n)

TYPE(CRLF|TEXT|FIXED)

WRITE

BUFFERED|UNBUFFERED

DIRECT|SEQUENTIAL

ENVIRONMENT

FILE

KEYED

RECORD

OUTPUT|UPDATE

CONSECUTIVE|REGIONAL(1)

CTLASA

RECSIZE(n)

SCALARVARYING

AMTHD(FSYS)

APPEND(Y|N)

file_spec

RECSIZE(n)

SHARE(NONE|READ|ALL)

TERMLBUF(n)

TYPE(CRLF|TEXT|FIXED)

LOCATE

BUFFERED

ENVIRONMENT

FILE

KEYED

RECORD

OUTPUT

SEQUENTIAL

CONSECUTIVE|REGIONAL(1)

CTLASA

RECSIZE(n)

AMTHD(FSYS)

APPEND(Y|N)

file_spec

RECSIZE(n)

SHARE(NONE|READ|ALL)

TYPE(CRLF|TEXT|FIXED)

READ

BUFFERED|UNBUFFERED

DIRECT|SEQUENTIAL

ENVIRONMENT

FILE

INPUT|UPDATE

KEYED

RECORD

CONSECUTIVE|REGIONAL(1)

RECSIZE(n)

SCALARVARYING

AMTHD(FSYS)

file_spec

RECSIZE(n)

SHARE(NONE|READ|ALL)

TERMLBUF(n)

TYPE(CRLF|TEXT|FIXED)

REWRITE

BUFFERED|UNBUFFERED

DIRECT|SEQUENTIAL

ENVIRONMENT

FILE

UPDATE

KEYED

RECORD

CONSECUTIVE|REGIONAL(1)

RECSIZE(n)

SCALARVARYING

AMTHD(FSYS)

file_spec

RECSIZE(n)

SHARE(NONE|READ|ALL)

TYPE(CRLF|TEXT|FIXED)

DELETE

BUFFERED|UNBUFFERED

DIRECT|SEQUENTIAL

ENVIRONMENT

FILE

UPDATE

KEYED

RECORD

REGIONAL(1)

RECSIZE(n)

SCALARVARYING

AMTHD(FSYS)

file_spec

RECSIZE(n)

SHARE(NONE|READ|ALL)

Notes:

1

When

creating

a

new

data

set

2

When

printer-destined

PL/I

file

3

When

associated

with

a

PM

terminal

4

When

data

set

was

not

created

by

PL/I

program

5

DIRECT

applicable

only

to

REGIONAL(1)

6

For

REGIONAL(1)

7

Not

applicable

to

REGIONAL(1)

Table

13.

Statements,

attributes,

and

options

for

workstation

VSAM

data

sets

Statements

File

attributes

ENVIRONMENT

options

DD_DDNAME

options

PUT

ENVIRONMENT

FILE

OUTPUT

PRINT

STREAM

ORGANIZATION(CONSECUTIVE)

GRAPHIC

RECSIZE(n)

AMTHD(DDM|ISAM|BTRIEVE)

APPEND(Y|N)

ASA(Y|N)

file_spec

RECSIZE(n)

SHARE(NONE|READ|ALL)

Statements,

attributes,

options

180

PL/I

for

Windows:

Programming

Guide

Table

13.

Statements,

attributes,

and

options

for

workstation

VSAM

data

sets

(continued)

Statements

File

attributes

ENVIRONMENT

options

DD_DDNAME

options

GET

ENVIRONMENT

FILE

STREAM

INPUT

ORGANIZATION(CONSECUTIVE)

GRAPHIC

RECSIZE(n)

AMTHD(DDM|ISAM|BTRIEVE)

file_spec

RECSIZE(n)

SHARE(NONE|READ|ALL)

WRITE

BUFFERED|UNBUFFERED

DIRECT|SEQUENTIAL

ENVIRONMENT

FILE

KEYED

RECORD

OUTPUT|UPDATE

ORGANIZATION|VSAM

CTLASA

RECSIZE(n)

SCALARVARYING

AMTHD(DDM|ISAM|BTRIEVE)

ASA(Y|N)

APPEND(Y|N)

file_spec

RECSIZE(n)

SHARE(NONE|READ|ALL)

LOCATE

BUFFERED

ENVIRONMENT

FILE

KEYED

RECORD

OUTPUT

SEQUENTIAL

ORGANIZATION|VSAM

CTLASA

RECSIZE(n)

SCALARVARYING

AMTHD(DDM|ISAM|BTRIEVE)

APPEND(Y|N)

file_spec

RECSIZE(n)

SHARE(NONE|READ|ALL)

READ

BUFFERED|UNBUFFERED

DIRECT|SEQUENTIAL

ENVIRONMENT

FILE

INPUT|UPDATE

KEYED

RECORD

ORGANIZATION|VSAM

RECSIZE(n)

SCALARVARYING

AMTHD(DDM|ISAM|BTRIEVE)

file_spec

RECSIZE(n)

SHARE(NONE|READ|ALL)

REWRITE

BUFFERED|UNBUFFERED

DIRECT|SEQUENTIAL

ENVIRONMENT

FILE

UPDATE

KEYED

RECORD

ORGANIZATION|VSAM

RECSIZE(n)

SCALARVARYING

AMTHD(DDM|ISAM|BTRIEVE)

file_spec

RECSIZE(n)

SHARE(NONE|READ|ALL)

DELETE

BUFFERED|UNBUFFERED

DIRECT|SEQUENTIAL

ENVIRONMENT

FILE

UPDATE

KEYED

RECORD

ORGANIZATION|VSAM

RECSIZE(n)

SCALARVARYING

AMTHD(DDM|ISAM|BTRIEVE)

file_spec

RECSIZE(n)

SHARE(NONE|READ|ALL)

Notes:

1

When

creating

a

new

data

set

2

When

printer-destined

PL/I

file

3

Does

not

apply

to

VSAM

data

sets

DISPLAY

statement

input

and

output

The

REPLY

in

DISPLAY

is

read

from

stdin.

Output

from

the

DISPLAY

statement

is

directed

to

stdout

by

default.

The

syntax

of

the

IBM.DISPLAY

environment

variable

is:

��

std

IBM.DISPLAY=

con

��

std

Specifies

that

the

DISPLAY

statement

is

to

be

associated

with

the

standard

output

device.

This

is

the

default.

con

Specifies

that

the

DISPLAY

statement

is

to

be

associated

with

the

CON

device.

Statements,

attributes,

options

Chapter

12.

Using

data

sets

and

files

181

You

can

redirect

display

statements

to

a

file,

for

example:

set

ibm.display=std

Hello:

proc

options(main);

display(’Hello!’);

end;

After

compiling

and

linking

the

program,

you

could

invoke

it

from

the

command

line

by

entering:

hello

>

hello1.out

The

greater

than

sign

redirects

the

output

to

the

file

that

is

specified

after

it,

in

this

case

HELLO1.OUT.

This

means

that

the

word

'HELLO'

is

written

in

the

file

HELLO1.OUT.

PL/I

standard

files

(SYSPRINT

and

SYSIN)

SYSIN

is

read

from

stdin

and

SYSPRINT

is

directed

to

stdout

by

default.

If

you

want

either

to

be

associated

differently,

you

must

use

the

TITLE

option

of

the

OPEN

statement,

or

establish

a

DD:ddname

environment

variable

naming

a

data

set

or

another

device.

Redirecting

standard

input,

output,

and

error

devices

You

can

also

redirect

standard

input,

standard

output,

and

standard

error

devices

to

a

file.

You

could

use

redirection

in

the

following

program,

but

you

would

first

need

to

issue

two

SET

DD:

statements

to

allow

the

redirection

to

work.

They

are:

set

dd:sysprint=stdout:

set

dd:sysin=stdin:

Hello:

proc

options(main);

put

list(’Hello!’);

end;

After

compiling

and

linking

the

program,

you

could

invoke

it

from

the

command

line

by

entering:

hello2

>

hello

>

hello2.out

As

is

true

with

display

statements,

the

greater

than

sign

redirects

the

output

to

the

file

that

is

specified

after

it,

in

this

case

HELLO2.OUT.

This

means

that

the

word

'HELLO'

is

written

in

the

file

HELLO2.OUT.

Note

also

that

the

output

includes

printer

control

characters

since

the

PRINT

attribute

is

applied

to

SYSPRINT

by

default.

READ

statements

can

access

data

from

stdin,

however,

they

must

specify

an

LRECL

equal

to

1.

DISPLAY

I/O

182

PL/I

for

Windows:

Programming

Guide

Chapter

13.

Defining

and

using

consecutive

data

sets

Printer-destined

files

.

.

.

.

.

.

.

.

.

.

. 183

Using

stream-oriented

data

transmission

.

.

.

. 184

Defining

files

using

stream

I/O

.

.

.

.

.

. 185

ENVIRONMENT

options

for

stream-oriented

data

transmission

.

.

.

.

.

.

.

.

.

.

. 185

Creating

a

data

set

with

stream

I/O

.

.

.

.

. 185

Essential

information

.

.

.

.

.

.

.

.

. 185

Example

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Accessing

a

data

set

with

stream

I/O

.

.

.

. 187

Essential

information

.

.

.

.

.

.

.

.

. 188

Example

.

.

.

.

.

.

.

.

.

.

.

.

. 188

Using

PRINT

files

.

.

.

.

.

.

.

.

.

.

. 189

Controlling

printed

line

length

.

.

.

.

. 190

Overriding

the

tab

control

table

.

.

.

.

. 192

Using

SYSIN

and

SYSPRINT

files

.

.

.

.

. 194

Controlling

input

from

the

console

.

.

.

.

.

. 194

Using

files

conversationally

.

.

.

.

.

.

. 195

Format

of

data

.

.

.

.

.

.

.

.

.

.

.

. 195

Stream

and

record

files

.

.

.

.

.

.

.

.

. 195

Capital

and

lowercase

letters

.

.

.

.

.

.

. 196

End

of

file

.

.

.

.

.

.

.

.

.

.

.

.

. 196

Controlling

output

to

the

console

.

.

.

.

.

.

. 196

Format

of

PRINT

files

.

.

.

.

.

.

.

.

. 196

Stream

and

record

files

.

.

.

.

.

.

.

.

. 196

Example

of

an

interactive

program

.

.

.

.

. 196

Using

record-oriented

I/O

.

.

.

.

.

.

.

.

. 197

Defining

files

using

record

I/O

.

.

.

.

.

. 198

ENVIRONMENT

options

for

record-oriented

data

transmission

.

.

.

.

.

.

.

.

.

.

. 199

Creating

a

data

set

with

record

I/O

.

.

.

.

. 199

Essential

information

.

.

.

.

.

.

.

.

. 199

Accessing

and

updating

a

data

set

with

record

I/O

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Essential

information

.

.

.

.

.

.

.

.

. 200

Examples

of

consecutive

data

sets

.

.

.

. 200

The

sections

that

follow

describe

consecutive

data

set

organization

and

explain

how

to

create,

access,

and

update

consecutive

data

sets.

In

a

data

set

with

consecutive

organization,

records

are

organized

solely

on

the

basis

of

their

successive

physical

positions.

In

other

words,

when

the

data

set

is

created,

records

are

written

consecutively

in

the

order

in

which

they

are

presented.

You

can

retrieve

the

records

only

in

the

order

in

which

they

were

written.

The

information

in

this

chapter

applies

to

files

using

the

CONSECUTIVE

option

of

the

ENVIRONMENT

attribute

that

are

associated

with

either

a

native

or

DDM

data

set.

PL/I

Presentation

Manager

supports

only

native

data

sets.

Printer-destined

files

Printer-destined

files

are

PL/I

files

with

the

PRINT

attribute

and

record

files

declared

with

the

CTLASA

option

of

the

ENVIRONMENT

attribute.

You

can

either

print

these

files

at

your

workstation

or

upload

them

to

your

mainframe.

The

first

character

of

each

record

is

an

American

National

Standard

(ANS)

carriage

control

character

(see

Table

14

on

page

184).

For

STREAM

files,

PL/I

inserts

the

character,

based

on

the

SKIP,

LINE,

or

PAGE

option

(or

control

format

item)

of

the

PUT

statement.

For

RECORD

files

with

CTLASA,

your

program

must

insert

the

control

characters

in

the

first

byte

of

each

record.

If

you

want

to

print

the

data

set

from

your

workstation,

select

the

ASA(N)

option

(it

is

the

default).

To

keep

the

format

for

printing

at

the

mainframe,

select

ASA(Y),

which

causes

the

control

characters

to

be

left

untranslated.

183

Table

14.

ANS

print

control

characters

Character

Meaning

(blank)

0

hyphen

(-)

+

1

2

3

4

5

6

7

8

9

A

B

C

Skip

1

line

before

printing

Skip

2

lines

before

printing

Skip

3

lines

before

printing

Do

not

skip

any

lines

before

printing

Skip

to

next

page

before

printing

Skip

3

lines

before

printing

Skip

3

lines

before

printing

Skip

3

lines

before

printing

Skip

3

lines

before

printing

Skip

3

lines

before

printing

Skip

3

lines

before

printing

Skip

3

lines

before

printing

Skip

3

lines

before

printing

Skip

3

lines

before

printing

Skip

3

lines

before

printing

Skip

3

lines

before

printing

The

translation

to

IBM

Proprinter

control

characters

is

as

follows:

Table

15.

IBM

Proprinter

equivalents

to

ANS

control

characters

ANS

Character

Proprinter

Characters

(in

hexadecimal)

(blank)

0

-

+

1

2

to

9,

A

to

C

0A

0A

0A

0A

0A

0A

0D

0C

0A

0A

0A

Note:

Where:

0A

=

Line

feed

0C

=

Form

feed

0D

=

Carriage

return

Only

the

first

five

characters

listed

are

translated

by

PL/I;

the

others

are

treated

as

hyphens

(-).

Using

stream-oriented

data

transmission

This

section

covers

how

to

define

data

sets

for

use

with

PL/I

files

that

have

the

STREAM

attribute.

The

essential

parameters

you

use

in

the

DD:ddname

environment

variable

for

creating

and

accessing

these

data

sets

are

summarized,

and

several

examples

of

PL/I

programs

are

included.

Data

sets

with

the

STREAM

attribute

are

processed

by

stream-oriented

data

transmission,

which

allows

your

PL/I

program

to

ignore

record

boundaries

and

to

treat

a

data

set

as

a

continuous

stream

of

data

values.

Data

values

are

either

in

character

format

or

graphic

format—that

is,

in

DBCS

(double

byte

character

set)

form.

You

create

and

access

data

sets

for

stream-oriented

data

transmission

using

the

list-,

data-,

and

edit-directed

input

and

output

statements

described

in

the

PL/I

Language

Reference.

For

output,

PL/I

converts

the

data

items

from

program

variables

into

character

format

if

necessary,

and

builds

the

stream

of

characters

or

DBCS

characters

into

records

for

transmission

to

the

data

set.

For

input,

PL/I

takes

records

from

the

Printer-destined

files

184

PL/I

for

Windows:

Programming

Guide

data

set

and

separates

them

into

the

data

items

requested

by

your

program,

converting

them

into

the

appropriate

form

for

assignment

to

program

variables.

You

can

use

stream-oriented

data

transmission

to

read

or

write

DBCS

data

(graphics).

DBCS

data

can

be

entered,

displayed

and

printed

if

the

appropriate

devices

have

DBCS

support.

You

must

be

sure

that

your

data

is

in

a

format

acceptable

for

the

intended

device

or

for

a

print

utility

program.

Defining

files

using

stream

I/O

You

define

files

for

stream-oriented

data

transmission

by

a

file

declaration

with

the

following

attributes:

declare

Filename

file

stream

input

|

{output

[print]}

environment(options);

The

FILE

attribute

is

described

in

the

PL/I

Language

Reference.

The

PRINT

attribute

is

described

further

in

“Using

PRINT

files”

on

page

189.

ENVIRONMENT

options

for

stream-oriented

data

transmission

The

ENVIRONMENT

options

you

can

use

with

stream-oriented

data

transmission

are:

v

CONSECUTIVE

v

RECSIZE

v

GRAPHIC

v

ORGANIZATION(CONSECUTIVE).

You

can

find

a

description

of

these

options

and

of

their

syntax

in

“Specifying

characteristics

using

the

PL/I

ENVIRONMENT

attribute”

on

page

162.

Creating

a

data

set

with

stream

I/O

To

create

a

data

set,

use

one

of

the

following:

v

ENVIRONMENT

attribute

v

DD:ddname

environment

variable

v

TITLE

option

of

the

OPEN

statement

Refer

to

“Using

the

TITLE

option

of

the

OPEN

statement”

on

page

177

for

more

information

on

the

TITLE

option.

Essential

information

When

your

application

creates

a

STREAM

file,

it

must

supply

a

line

size

value

for

that

file

from

one

of

the

following

sources:

v

LINESIZE

option

of

the

OPEN

statement

v

RECSIZE

option

of

the

ENVIRONMENT

attribute

v

RECSIZE

option

of

the

TITLE

option

of

the

OPEN

statement

v

RECSIZE

option

of

the

DD:ddname

environment

variable

v

PL/I-supplied

default

value

The

PL/I

default

is

used

when

you

do

not

supply

any

value.

If

you

choose

the

LINESIZE

option,

it

overrides

all

other

sources.

The

RECSIZE

option

of

the

ENVIRONMENT

attribute

overrides

the

other

RECSIZE

options.

RECSIZE

specified

in

the

TITLE

option

of

the

OPEN

statement

has

precedence

over

the

RECSIZE

option

of

the

DD:ddname

environment

variable.

If

LINESIZE

is

not

supplied,

but

a

RECSIZE

value

is,

PL/I

derives

line

size

value

from

RECSIZE

as

follows:

Stream-oriented

transmission

Chapter

13.

Defining

and

using

consecutive

data

sets

185

v

A

PRINT

file

with

the

ASA(N)

option

applied

has

a

RECSIZE

value

of

4

v

A

PRINT

file

with

the

ASA(Y)

option

applied

has

the

RECSIZE

value

of

1

v

Otherwise,

the

value

of

RECSIZE

is

assigned

to

the

line

size

value.

PL/I

determines

a

default

line

size

value

based

on

attributes

of

the

file

and

the

type

of

associated

data

set.

In

cases

where

PL/I

cannot

supply

an

appropriate

default

line

size,

the

UNDEFINEDFILE

condition

is

raised.

A

default

line

size

value

is

supplied

for

an

OUTPUT

file

when:

v

The

file

has

the

PRINT

attribute.

In

this

case,

the

value

is

obtained

from

the

tab

control

table

(see

Figure

11

on

page

192).

v

The

associated

data

set

is

the

terminal

(CON:,

STDOUT:,

or

STDERR:).

In

this

case

the

value

is

120.

PL/I

always

derives

the

record

length

of

the

data

set

from

the

line

size

value.

A

record

length

value

is

derived

from

the

line

size

value

as

follows:

v

For

a

PRINT

file,

with

the

ASA(N)

option

applied,

the

value

is

line

size

+

4

v

For

a

PRINT

file,

with

the

ASA(Y)

option

applied,

the

value

is

line

size

+

1

v

Otherwise,

the

line

size

value

is

assigned

to

the

record

length

value.

Example

Figure

8

on

page

187

shows

the

use

of

stream-oriented

data

transmission

to

create

a

consecutive

data

set.

The

data

is

first

read

from

the

data

set

BDAY.INP

that

contains

a

list

of

names

and

birthdays

of

several

people.

Then

a

consecutive

data

set

BDAY.OCT

is

written

that

contains

the

names

and

birthdays

of

people

whose

birthdays

are

in

October.

The

command

SET

DD:SYSIN=BDAY.INP

should

be

used

to

associate

the

disk

file

BDAY.INP

with

the

input

data

set.

If

this

file

was

not

created

by

a

PL/I

program,

the

RECSIZE

option

must

also

be

specified.

The

command

SET

DD:WORK=BDAY.OCT

should

be

used

to

associate

the

consecutive

output

file

WORK

with

the

disk

data

set

BDAY.OCT.

Stream-oriented

transmission

186

PL/I

for

Windows:

Programming

Guide

Accessing

a

data

set

with

stream

I/O

It

is

not

necessary

that

a

data

set

accessed

using

stream-oriented

data

transmission

was

created

by

stream-oriented

data

transmission.

However,

it

must

have

CONSECUTIVE

organization,

and

all

the

data

in

it

must

be

in

character

or

graphic

form.

You

can

open

the

associated

file

for

input,

and

read

the

items

the

data

set

contains;

or

you

can

open

the

file

for

output,

and

extend

the

data

set

by

adding

items

at

the

end.

/**/

/*

*/

/*

DESCRIPTION

*/

/*

Create

a

CONSECUTIVE

data

set

with

30-byte

records

containing

*/

/*

names

and

birthdays

of

people

whose

birthdays

are

in

October.

*/

/*

*/

/*

USAGE

*/

/*

The

following

commands

are

required

to

establish

*/

/*

the

environment

variables

to

run

this

program:

*/

/*

*/

/*

SET

DD:WORK=BDAY.OCT

*/

/*

SET

DD:SYSIN=BDAY.INP,RECSIZE(80)

*/

/**/

BDAY:

proc

options(main);

dcl

Work

file

stream

output,

1

Rec,

3

Name

char(19),

3

BMonth

char(3),

3

Pad1

char(1),

3

BDate

char(2),

3

Pad2

char(1),

3

BYear

char(4);

dcl

Eof

bit(1)

init(’0’b);

dcl

In

char(30)

def

Rec;

on

endfile(sysin)

Eof=’1’b;

open

file(Work)

linesize(400);

get

file(sysin)

edit(In)(a(30));

do

while

(¬Eof);

if

BMonth

=

’OCT’

then

put

file(Work)

edit(In)(a(30));

else;

get

file(sysin)

edit(In)(a(30));

end;

close

file(Work);

end

BDAY;

BDAY.INP

contains

the

input

data

used

at

execution

time:

LUCY

D.

MAR

15

1950

REGINA

W.

OCT

09

1971

GARY

M.

DEC

01

1964

PETER

T.

MAY

03

1948

JANE

K.

OCT

24

1939

Figure

8.

Creating

a

data

set

with

stream-oriented

data

transmission

Stream-oriented

transmission

Chapter

13.

Defining

and

using

consecutive

data

sets

187

To

access

a

data

set,

you

must

use

one

of

the

following

to

identify

it:

v

ENVIRONMENT

attribute

v

DD:ddname

environment

variable

v

TITLE

option

of

the

OPEN

statement

Essential

information

When

your

application

accesses

an

existing

STREAM

file,

PL/I

must

obtain

a

record

length

value

for

that

file.

The

value

can

come

from

one

of

the

following

sources:

v

The

LINESIZE

option

of

the

OPEN

statement

v

The

RECSIZE

option

of

the

ENVIRONMENT

attribute

v

The

RECSIZE

option

of

the

DD:ddname

environment

variable

v

The

RECSIZE

option

of

the

TITLE

option

of

the

OPEN

statement

v

An

extended

attribute

of

the

data

set

v

PL/I-supplied

default

value.

If

you

are

using

an

existing

OUTPUT

file,

or

if

you

supply

a

RECSIZE

value,

PL/I

determines

the

record

length

value

as

described

in

“Creating

a

data

set

with

stream

I/O”

on

page

185.

PL/I

uses

a

default

record

length

value

for

an

INPUT

file

when:

v

The

file

is

SYSIN,

value

=

80

v

The

file

is

associated

with

the

terminal

(CON:,

SCREEN$:,

STDOUT:,

or

STDERR:),

value

=

120.

Example

The

program

in

Figure

9

on

page

189

reads

the

data

created

by

the

program

in

Figure

8

on

page

187

and

uses

the

data

set

SYSPRINT

to

display

that

data.

The

SYSPRINT

data

set

is

associated

with

the

CON

device,

so

if

no

dissociation

is

made

prior

to

executing

the

program,

the

output

is

displayed

on

the

screen.

(For

details

on

SYSPRINT,

see

“Using

SYSIN

and

SYSPRINT

files”

on

page

194.)

Stream-oriented

transmission

188

PL/I

for

Windows:

Programming

Guide

Using

PRINT

files

In

a

PL/I

program,

using

a

PRINT

file

provides

a

convenient

means

of

controlling

the

layout

of

printed

output

from

stream-oriented

data

transmission.

PL/I

automatically

inserts

print

control

characters

in

response

to

the

PAGE,

SKIP,

and

LINE

options

and

format

items.

You

can

apply

the

PRINT

attribute

to

any

STREAM

OUTPUT

file,

even

if

you

do

not

intend

to

print

the

associated

data

set

directly.

When

a

PRINT

file

is

associated

with

a

direct-access

data

set,

the

print

control

characters

have

no

effect

on

the

layout

of

the

data

set,

but

appear

as

part

of

the

data

in

the

records.

PL/I

reserves

the

first

byte

of

each

record

transmitted

by

a

PRINT

file

for

an

American

National

Standard

print

control

character,

and

inserts

the

appropriate

characters

automatically

(see

“Printer-destined

files”

on

page

183).

PL/I

handles

the

PAGE,

SKIP,

and

LINE

options

or

format

items

by

inserting

the

appropriate

control

character

in

the

records.

If

the

SKIP

or

the

LINE

option

specifies

more

than

a

3-line

space,

PL/I

inserts

sufficient

blank

records

with

appropriate

control

characters

to

accomplish

the

required

spacing.

/**/

/*

*/

/*

DESCRIPTION

*/

/*

Read

a

CONSECUTIVE

data

set

and

print

the

30-byte

records

*/

/*

to

the

screen.

*/

/*

*/

/*

USAGE

*/

/*

The

following

command

is

required

to

establish

*/

/*

the

environment

variable

to

run

this

program:

*/

/*

*/

/*

SET

DD:WORK=BDAY.OCT

*/

/*

*/

/*

Note:

This

sample

program

uses

the

CONSECUTIVE

data

set

*/

/*

created

by

the

previous

sample

program

BDAY.

*/

/*

*/

/**/

BDAY1:

proc

options(main);

dcl

Work

file

stream

input;

dcl

Eof

bit(1)

init(’0’b);

dcl

In

char(30);

on

endfile(Work)

Eof=’1’b;

open

file(Work);

get

file(Work)

edit(In)(a(30));

do

while

(¬Eof);

put

file(sysprint)

skip

edit(In)(a);

get

file(Work)

edit(In)(a(30));

end;

close

file(Work);

end

BDAY1;

Figure

9.

Accessing

a

data

set

with

stream-oriented

data

transmission

Stream-oriented

transmission

Chapter

13.

Defining

and

using

consecutive

data

sets

189

If

a

PRINT

file

is

being

transmitted

to

a

terminal

device,

the

PAGE,

SKIP,

and

LINE

options

never

cause

more

than

3

lines

to

be

skipped,

unless

formatted

output

is

specified.

Controlling

printed

line

length

You

can

limit

the

length

of

the

printed

line

produced

by

a

PRINT

file

by

either:

v

Specifying

record

length

in

your

PL/I

program

using

the

RECSIZE

option

of

the

ENVIRONMENT

attribute.

v

Specifying

line

size

in

an

OPEN

statement

using

the

LINESIZE

option.

v

Specifying

record

length

in

the

TITLE

option

of

the

OPEN

statement

using

the

RECSIZE

option.

RECSIZE

must

include

the

extra

byte

for

the

print

control

character;

it

must

be

1

byte

larger

than

the

length

of

the

printed

line.

LINESIZE

refers

to

the

number

of

characters

in

the

printed

line;

PL/I

adds

the

print

control

character.

Do

not

vary

the

line

size

for

a

file

during

execution

by

closing

the

file

and

opening

it

again

with

a

new

line

size.

Since

PRINT

files

have

a

default

line

size

of

120

characters,

you

need

not

give

any

record

length

information

for

them.

Example:

Figure

10

on

page

191

illustrates

the

use

of

a

PRINT

file

and

the

printing

options

of

stream-oriented

data

transmission

statements

to

format

a

table

and

write

it

onto

a

direct-access

device

for

printing

on

a

later

occasion.

The

table

Stream-oriented

transmission

190

PL/I

for

Windows:

Programming

Guide

comprises

the

natural

sines

of

the

angles

from

0°

to

359°

54’

in

steps

of

6’.

/**/

/*

*/

/*

DESCRIPTION

*/

/*

Create

a

SEQUENTIAL

data

set.

*/

/*

*/

/*

USAGE

*/

/*

The

following

command

is

required

to

establish

*/

/*

the

environment

variable

to

run

this

program:

*/

/*

*/

/*

SET

DD:TABLE=MYTAB.DAT,ASA(Y)

*/

/*

*/

/**/

SINE:

proc

options(main);

/*

Build

a

table

of

SINE

values.

*/

dcl

Table

file

stream

output

print;

dcl

Deg

fixed

dec(5,1)

init(0);

/*

init(0)

for

endpage

*/

dcl

Min

fixed

dec(3,1);

dcl

PgNo

fixed

dec(2)

init(0);

dcl

Oncode

builtin;

dcl

I

fixed

dec(2);

on

error

begin;

on

error

system;

display

(’oncode

=

’||

Oncode);

end;

Figure

10.

Creating

a

print

file

via

stream

data

transmission

(Part

1

of

2).

(The

example

in

Figure

15

on

page

204

prints

this

file)

Stream-oriented

transmission

Chapter

13.

Defining

and

using

consecutive

data

sets

191

The

statements

in

the

ENDPAGE

ON-unit

insert

a

page

number

at

the

bottom

of

each

page,

and

set

up

the

headings

for

the

following

page.

The

program

in

Figure

15

on

page

204

uses

record-oriented

data

transmission

to

print

the

table

created

by

the

program

in

Figure

10.

Overriding

the

tab

control

table

Data-directed

and

list-directed

output

to

a

PRINT

file

are

aligned

on

preset

tabulator

positions,

which

are

defined

in

the

PL/I-defined

tab

control

table.

The

tab

control

table

is

an

external

structure

named

PLITABS.

Figure

11

shows

its

declaration.

on

endpage(Table)

begin;

if

PgNo

¬=

0

then

put

file(Table)

edit

(’page’,PgNo)

(line(55),col(80),a,f(3));

if

Deg

¬=

360

then

do;

put

file(Table)

page

edit

(’Natural

Sines’)

(a);

put

file(Table)

edit

((I

do

I

=

0

to

54

by

6))

(skip(3),10

f(9));

PgNo

=

PgNo

+

1;

end;

else

put

file(Table)

page;

end;

open

file(Table)

pagesize(52)

linesize(102);

signal

endpage(Table);

put

file(Table)

edit

((Deg,(sind(Deg+Min)

do

Min

=

0

to

.9

by

.1)

do

Deg

=

0

to

359))

(skip(2),

5

(col(1),

f(3),

10

f(9,4)

));

put

file(Table)

skip(52);

end

SINE;

Figure

10.

Creating

a

print

file

via

stream

data

transmission

(Part

2

of

2).

(The

example

in

Figure

15

on

page

204

prints

this

file)

dcl

1

PLITABS

static

external,

(

2

Offset

init

(14),

2

Pagesize

init

(60),

2

Linesize

init

(120),

2

Pagelength

init

(64),

2

Fill1

init

(0),

2

Fill2

init

(0),

2

Fill3

init

(0),

2

Number_of_tabs

init

(5),

2

Tab1

init

(25),

2

Tab2

init

(49),

2

Tab3

init

(73),

2

Tab4

init

(97),

2

Tab5

init

(121))

fixed

bin

(15,0);

Figure

11.

Declaration

of

PLITABS.

(Gives

standard

page

size,

line

size

and

tabulating

positions)

Stream-oriented

transmission

192

PL/I

for

Windows:

Programming

Guide

The

definitions

of

the

fields

in

the

table

are

as

follows:

Offset

Binary

integer

that

gives

the

offset

of

Number_of_tabs,

the

field

that

indicates

the

number

of

tabs

to

be

used,

from

the

top

of

PLITABS.

Pagesize

Binary

integer

that

defines

the

default

page

size.

This

page

size

is

used

for

dump

output

to

the

PLIDUMP

data

set

as

well

as

for

stream

output.

Linesize

Binary

integer

that

defines

the

default

line

size.

Pagelength

Binary

integer

that

defines

the

default

page

length

for

printing

at

a

terminal.

The

value

0

indicates

unformatted

output.

Fill1,

Fill2,

Fill3

Three

binary

integers;

reserved

for

future

use.

Number_of_tabs

Binary

integer

that

defines

the

number

of

tab

position

entries

in

the

table

(maximum

255).

If

tab

count

=

0,

any

specified

tab

positions

are

ignored.

Tab1—Tabn:

Binary

integers

that

define

the

tab

positions

within

the

print

line.

The

first

position

is

numbered

1,

and

the

highest

position

is

numbered

255.

The

value

of

each

tab

should

be

greater

than

that

of

the

tab

preceding

it

in

the

table;

otherwise,

it

is

ignored.

The

first

data

field

in

the

printed

output

begins

at

the

next

available

tab

position.

You

can

override

the

default

PL/I

tab

settings

for

your

program

by

causing

the

linker

to

resolve

an

external

reference

to

PLITABS.

You

do

this

by

including

a

PL/I

structure

with

the

name

PLITABS

and

the

attributes

EXTERNAL

STATIC

in

the

source

program

containing

your

main

routine.

An

example

of

the

PL/I

structure

is

shown

in

Figure

12.

This

example

creates

three

tab

settings,

in

positions

30,

60,

and

90,

and

uses

the

defaults

for

page

size

and

line

size.

Note

that

TAB1

identifies

the

position

of

the

second

item

printed

on

a

line;

the

first

item

on

a

line

always

starts

at

the

left

margin.

The

first

item

in

the

structure

is

the

offset

to

the

NO_OF_TABS

field;

FILL1,

FILL2,

and

FILL3

can

be

omitted

by

adjusting

the

offset

value

by

–6.

dcl

1

PLITABS

static

ext,

2

(Offset

init(14),

Pagesize

init(60),

Linesize

init(120),

Pagelength

init(0),

Fill1

init(0),

Fill2

init(0),

Fill3

init(0),

No_of_tabs

init(3),

Tab1

init(30),

Tab2

init(60),

Tab3

init(90))

fixed

bin(15,0);

Figure

12.

PL/I

structure

PLITABS

for

modifying

the

preset

tab

settings

Stream-oriented

transmission

Chapter

13.

Defining

and

using

consecutive

data

sets

193

Using

SYSIN

and

SYSPRINT

files

If

you

code

GET

or

PUT

statements

without

the

FILE

option,

PL/I

contextually

assumes

file

SYSIN

and

SYSPRINT,

respectively.

If

you

do

not

declare

SYSPRINT,

PL/I

gives

the

file

the

attribute

PRINT

in

addition

to

the

normal

default

attributes;

the

complete

set

of

attributes

is:

file

stream

print

external

Since

SYSPRINT

is

a

PRINT

file,

a

default

line

size

of

120

characters

is

applied

when

the

file

is

opened.

You

can

override

the

attributes

given

to

SYSPRINT

by

PL/I

by

explicitly

declaring

or

opening

the

file.

However,

when

SYSPRINT

is

declared

or

opened

as

a

STREAM

OUTPUT

file,

the

PRINT

attribute

is

applied

by

default

unless

the

INTERNAL

attribute

is

also

declared.

PL/I

does

not

supply

any

special

attributes

for

the

input

file

SYSIN;

if

you

do

not

declare

it,

it

receives

only

the

default

attributes.

Controlling

input

from

the

console

To

enter

data

for

an

input

file,

do

both

of

the

following:

v

Declare

the

input

file

explicitly

or

implicitly

with

the

CONSECUTIVE

environment

option

(all

stream

files

meet

this

condition)

v

Allocate

the

input

file

to

the

terminal

You

can

usually

use

the

standard

default

input

file

SYSIN

because

it

is

a

stream

file

and

can

be

allocated

to

the

console

device.

You

can

be

prompted

for

input

to

stream

files

by

a

colon

(:)

if

you

specify

PROMPT(Y),

see

“PROMPT”

on

page

171.

The

colon

is

visible

each

time

a

GET

statement

is

executed

in

the

program.

If

you

enter

a

line

that

does

not

contain

enough

data

to

complete

execution

of

the

GET

statement,

a

further

prompt

is

displayed.

The

GET

statement

causes

the

system

to

go

to

the

next

line.

You

can

then

enter

the

required

data.

If

you

do

not

specify

PROMPT(Y),

the

default

is

to

have

no

colon

visible

at

the

beginning

of

the

line.

By

adding

a

hyphen

to

the

end

of

any

line

that

is

to

continue,

you

can

delay

transmission

of

the

data

to

your

program

until

you

enter

another

line.

The

hyphen

is

an

explicit

continuation

character.

If

your

program

includes

output

statements

that

prompt

for

input,

you

can

inhibit

the

initial

system

prompt

by

ending

your

own

prompt

with

a

colon.

For

example,

the

GET

statement

could

be

preceded

by

a

PUT

statement:

put

skip

list(’Enter

next

item:’);

To

inhibit

the

system

prompt

for

the

next

GET

statement,

your

own

prompt

must

meet

the

following

conditions:

v

It

must

be

either

list-directed

or

edit-directed,

and

if

list-directed,

must

be

to

a

PRINT

file.

v

The

file

transmitting

the

prompt

must

be

allocated

to

the

terminal.

If

you

are

using

the

COPY

option

to

copy

the

file

at

the

terminal,

the

system

prompt

is

not

inhibited.

Stream-oriented

transmission

194

PL/I

for

Windows:

Programming

Guide

Using

files

conversationally

To

have

your

programs

interact

with

a

user

conversationally,

use

the

console

as

an

input

and

output

device

for

consecutive

files

in

the

program.

Any

stream

file

can

be

used

conversationally,

because

conversational

I/O

needs

no

special

PL/I

code.

Format

of

data

The

data

you

enter

on

the

terminal

should

have

exactly

the

same

format

as

stream

input

data

in

batch

mode,

except

for

the

following

variations:

v

Simplified

punctuation

for

input:

If

you

enter

separate

items

of

input

on

separate

lines,

there

is

no

need

to

enter

intervening

blanks

or

commas;

PL/I

inserts

a

comma

at

the

end

of

each

line.

As

an

example,

consider

the

following

statement:

get

list(I,J,K);

You

could

give

the

following

response

pressing

the

ENTER

key

after

each

item.

(The

colons

only

appear

if

you

specify

PROMPT(Y).

:

1

:

2

:

3

Entering

the

data

on

separate

lines

is

equivalent

to

specifying:

:

1,2,3

If

you

wish

to

continue

an

item

on

another

line,

you

must

end

the

first

line

with

a

continuation

character

(the

hyphen).

Otherwise,

for

a

GET

LIST

or

GET

DATA

statement,

a

comma

is

inserted.

For

a

GET

EDIT

statement,

the

item

is

padded.

v

Automatic

padding

for

GET

EDIT:

There

is

no

need

to

enter

blanks

at

the

end

of

a

line

of

input

for

a

GET

EDIT

statement.

The

item

you

enter

is

padded

to

the

correct

length.

Consider

the

following

PL/I

statement:

get

edit(Name)(a(15));

You

could

enter

these

five

characters

followed

immediately

by

the

ENTER.

SMITH

The

item

is

padded

with

10

blanks,

so

that

the

program

receives

a

string

15

characters

long.

If

you

wish

to

continue

an

item

on

a

second

or

subsequent

line,

you

must

add

a

continuation

character

to

the

end

of

every

line

except

the

last.

Otherwise,

the

first

line

transmitted

would

be

padded

and

treated

as

the

complete

data

item.

v

SKIP

option

or

format

item:

A

SKIP

in

a

GET

statement

ignores

the

data

not

yet

entered.

All

uses

of

SKIP(n)

where

n

is

greater

than

one

are

taken

to

mean

SKIP(1).

SKIP(1)

is

taken

to

mean

that

all

unused

data

on

the

current

line

is

ignored.

Stream

and

record

files

You

can

allocate

both

stream

and

record

files

to

the

terminal.

However,

no

prompting

is

provided

for

record

files.

If

you

allocate

more

than

one

file

to

the

terminal,

and

one

or

more

of

them

is

a

record

file,

the

output

of

the

files

is

not

Controlling

input

from

the

console

Chapter

13.

Defining

and

using

consecutive

data

sets

195

necessarily

synchronized.

The

order

in

which

data

is

transmitted

to

and

from

the

terminal

is

not

guaranteed

to

be

the

same

order

in

which

the

corresponding

PL/I

I/O

statements

are

executed.

Capital

and

lowercase

letters

For

both

stream

and

record

files,

character

strings

are

transmitted

to

the

program

as

entered

in

lowercase

or

uppercase.

End

of

file

The

characters

/*

in

positions

one

and

two

of

a

line

that

contains

no

other

characters

are

treated

as

an

end-of-file

mark

and

raise

the

ENDFILE

condition.

Controlling

output

to

the

console

At

your

screen,

you

can

display

data

from

a

PL/I

file

that

has

been

both:

v

Declared

explicitly

or

implicitly

with

the

CONSECUTIVE

environment

option.

All

stream

files

meet

this

condition.

v

Allocated

to

the

terminal

device

(CON:,

STDOUT:,

SCREEN$:,

or

STDERR:).

The

standard

output

file

SYSPRINT

generally

meets

both

these

conditions.

Format

of

PRINT

files

Data

from

SYSPRINT

or

other

PRINT

files

is

not

normally

formatted

into

columns

and

pages

at

the

terminal.

Three

lines

are

always

skipped

for

PAGE

and

LINE

options

and

format

items.

The

ENDPAGE

condition

is

normally

never

raised.

SKIP(n),

where

n

is

greater

than

three,

causes

only

three

lines

to

be

skipped.

SKIP(0)

is

implemented

by

carriage

return.

You

can

cause

a

PRINT

file

to

be

formatted

into

pages

by

inserting

a

tab

control

table

in

your

program.

The

table

must

be

called

PLITABS,

and

its

contents

are

explained

in

“Overriding

the

tab

control

table”

on

page

192.

For

other

than

standard

layout,

use

the

information

about

PLITABS

provided

in

Figure

11

on

page

192.

You

can

also

use

PLITABS

to

alter

the

tabulating

positions

of

list-directed

and

data-directed

output.

Tabulating

of

list-directed

and

data-directed

output

is

achieved

by

transmission

of

blank

(space)

characters.

Stream

and

record

files

You

can

allocate

both

stream

and

record

files

to

the

terminal.

However,

if

you

allocate

more

than

one

file

to

the

terminal

and

one

or

more

is

a

record

file,

the

file

output

is

not

necessarily

synchronized.

There

is

no

guarantee

that

the

order

in

which

data

is

transmitted

between

the

program

and

the

terminal

is

the

same

as

the

order

in

which

the

corresponding

PL/I

input

and

output

statements

are

executed.

For

stream

and

record

files,

characters

are

displayed

on

the

terminal

as

they

are

held

in

the

program.

Both

capital

and

lowercase

characters

can

be

displayed.

Example

of

an

interactive

program

The

example

program

in

Figure

13

on

page

197

creates

a

consecutive

data

set

PHONES

using

a

dialog

with

the

user.

By

default,

SYSIN

is

associated

with

the

CON

device.

You

can

override

this

association

by

setting

an

environment

variable

for

the

SYSIN

file

or

by

using

the

TITLE

option

on

the

OPEN

statement.

The

Controlling

input

from

the

console

196

PL/I

for

Windows:

Programming

Guide

output

data

set

is

associated

with

a

disk

file

INT1.DAT

and

contains

names

and

phone

numbers

that

the

user

enters

from

the

keyboard.

Using

record-oriented

I/O

PL/I

supports

various

types

of

data

sets

with

the

RECORD

attribute.

This

section

covers

how

to

use

record-oriented

I/O

with

consecutive

data

sets.

Table

16

on

page

198

lists

the

data

transmission

statements

and

options

that

you

can

use

to

create

and

access

a

consecutive

data

set

using

record-oriented

I/O.

/**/

/*

*/

/*

DESCRIPTION

*/

/*

Create

a

SEQUENTIAL

data

set

using

a

console

dialog.

*/

/*

*/

/*

USAGE

*/

/*

The

following

command

is

required

to

establish

*/

/*

the

environment

variable

to

run

this

program:

*/

/*

*/

/*

SET

DD:PHONES=INT1.DAT,APPEND(Y)

*/

/*

*/

/**/

INT1:

proc

options(main);

dcl

Phones

stream

env(recsize(40));

dcl

Eof

bit(1)

init(’0’b);

dcl

1

PhoneBookEntry,

3

NameField

char(19),

3

PhoneNumber

char(21);

dcl

InArea

char(40);

open

file

(Phones)

output;

on

endfile(sysin)

Eof=’1’b;

/*

start

creating

phone

book

*/

put

list(’Please

enter

name:’);

get

edit(NameField)(a(19));

if

¬Eof

then

do;

put

list(’Please

enter

number:’);

get

edit(PhoneNumber)(a(21));

end;

do

while

(¬Eof);

put

file(Phones)

edit(PhoneBookEntry)(a(40));

put

list(’Please

enter

name:’);

get

edit(NameField)(a(19));

if

¬Eof

then

do;

put

list(’Please

enter

number:’);

get

edit(PhoneNumber)(a(21));

end;

end;

close

file(Phones);

end

INT1;

Figure

13.

A

sample

interactive

program

Controlling

output

to

the

console

Chapter

13.

Defining

and

using

consecutive

data

sets

197

A

CONSECUTIVE

file

that

is

associated

with

a

DDM

direct

or

keyed

data

set

can

be

opened

only

for

INPUT.

PL/I

raises

UNDEFINEDFILE

if

an

attempt

is

made

to

open

such

a

file

for

OUTPUT

or

UPDATE.

Table

16.

Statements

and

options

allowed

for

creating

and

accessing

consecutive

data

sets

File

Declaration1

Valid

Statements,2

with

Options

You

Must

Specify

Other

Options

you

can

Specify

SEQUENTIAL

OUTPUT

BUFFERED

WRITE

FILE(file-reference)

FROM(reference);

LOCATE

based-variable

FILE(file-reference);

SET(pointer

reference)

SEQUENTIAL

OUTPUT

UNBUFFERED

WRITE

FILE(file-reference)

FROM(reference);

SEQUENTIAL

INPUT

BUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference)

SET(pointer-reference);

READ

FILE(file-reference)

IGNORE(expression);

SEQUENTIAL

INPUT

UNBUFFERED

READ

FILE(file-reference)

INPUT(reference);

READ

FILE(file-reference)

IGNORE(expression);

SEQUENTIAL

UPDATE

BUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference)

SET(pointer-reference);

READ

FILE(file-reference)

IGNORE(expression);

REWRITE

FILE(file-reference);

FROM(reference)

SEQUENTIAL

UPDATE

UNBUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference)

IGNORE(expression);

REWRITE

FILE(file-reference)

FROM(reference);

Notes:

1

The

complete

file

declaration

would

include

the

attributes

FILE,

RECORD,

and

ENVIRONMENT

2

The

statement

READ

FILE

(file-reference);

is

a

valid

statement

and

is

equivalent

to

READ

FILE(file-reference)

IGNORE

(1);

Defining

files

using

record

I/O

You

define

files

for

record-oriented

data

transmission

by

using

a

file

declaration

with

the

following

attributes:

Using

record-oriented

I/O

198

PL/I

for

Windows:

Programming

Guide

declare

Filename

file

record

input

|

output

|

update

sequential

buffered

|

unbuffered

environment(options);

The

file

attributes

are

described

in

the

PL/I

Language

Reference.

ENVIRONMENT

options

for

record-oriented

data

transmission

The

ENVIRONMENT

options

applicable

to

consecutive

data

sets

for

record-oriented

data

transmission

are:

v

CONSECUTIVE

v

CTLASA

v

ORGANIZATION(CONSECUTIVE)

v

RECSIZE

v

SCALARVARYING

You

can

find

a

description

of

these

options

and

of

their

syntax

in

“Specifying

characteristics

using

the

PL/I

ENVIRONMENT

attribute”

on

page

162.

Creating

a

data

set

with

record

I/O

When

you

create

a

consecutive

data

set,

you

must

open

the

associated

file

for

SEQUENTIAL

OUTPUT.

You

can

use

either

the

WRITE

or

LOCATE

statement

to

write

records.

Table

16

on

page

198

shows

the

statements

and

options

for

creating

a

consecutive

data

set.

To

create

a

data

set,

you

must

give

PL/I

certain

information

either

in

the

ENVIRONMENT

attribute,

in

a

DD:ddname

environment

variable,

or

in

the

TITLE

option

of

the

OPEN

statement.

Essential

information

When

you

create

a

consecutive

data

set

you

must

specify:

v

The

name

of

data

set

to

be

associated

with

your

PL/I

file.

A

data

set

with

consecutive

organization

can

exist

on

any

type

of

device

(see

“Attempting

to

use

files

not

associated

with

data

sets”

on

page

178).

v

The

record

length.

You

can

specify

the

record

length

using

the

RECSIZE

option

of

the

ENVIRONMENT

attribute,

of

the

DD:ddname

environment

variable,

or

of

the

TITLE

option

of

the

OPEN

statement.

For

files

associated

with

the

terminal

device

(CON:,

STDOUT:,

or

STDERR:),

PL/I

uses

a

default

record

length

of

120

when

the

RECSIZE

option

is

not

specified.

Accessing

and

updating

a

data

set

with

record

I/O

Once

you

create

a

consecutive

data

set,

you

can

open

the

file

that

accesses

it

for

sequential

input,

for

sequential

output,

or,

for

data

sets

on

direct-access

devices,

for

updating.

For

an

example

of

a

program

that

accesses

and

updates

a

consecutive

data

set,

see

Figure

14

on

page

201.

If

you

open

the

file

for

output,

and

wish

to

extend

the

data

set

by

adding

records

at

the

end,

you

need

not

specify

APPEND(Y)

in

the

DD:ddname

environment

variable,

since

this

is

the

default.

If

you

specify

APPEND(N),

the

data

set

is

overwritten.

If

you

open

a

file

for

updating,

you

can

only

update

records

in

their

existing

sequence,

and

if

you

want

to

insert

records,

you

must

create

a

new

data

set.

You

cannot

change

the

record

length

of

an

existing

data

set.

Using

record-oriented

I/O

Chapter

13.

Defining

and

using

consecutive

data

sets

199

When

you

access

a

consecutive

data

set

by

a

SEQUENTIAL

UPDATE

file,

you

must

retrieve

a

record

with

a

READ

statement

before

you

can

update

it

with

a

REWRITE

statement.

Every

record

that

is

retrieved,

however,

need

not

be

rewritten.

A

REWRITE

statement

always

updates

the

last

record

read.

Consider

the

following:

read

file(F)

into(A);

.

.

.

read

file(F)

into(B);

.

.

.

rewrite

file(F)

from(A);

The

REWRITE

statement

updates

the

record

that

was

read

by

the

second

READ

statement.

The

record

that

was

read

by

the

first

statement

cannot

be

rewritten

after

the

second

READ

statement

has

been

executed.

To

access

a

data

set,

you

must

identify

it

to

PL/I

using

the

TITLE

option

of

the

OPEN

statement

or

a

DD:ddname

environment

variable.

Table

16

on

page

198

shows

the

statements

and

options

for

accessing

and

updating

a

consecutive

data

set.

Essential

information

When

your

application

accesses

an

existing

RECORD

file,

PL/I

must

obtain

a

record

length

value

for

that

file.

The

value

can

come

from

one

of

the

following

sources:

v

The

RECSIZE

option

of

the

ENVIRONMENT

attribute

v

The

RECSIZE

option

of

the

DD:ddname

environment

variable

v

The

RECSIZE

option

of

the

TITLE

option

of

the

OPEN

statement

v

PL/I-supplied

default

value.

PL/I

uses

a

default

record

length

value

for

an

INPUT

file

when:

v

The

file

is

SYSIN.

In

this

case,

the

value

used

is

80.

v

The

file

is

associated

with

the

terminal.

In

this

case,

the

value

used

is

120.

Examples

of

consecutive

data

sets

Creating

and

accessing

consecutive

data

sets

are

illustrated

in

the

program

in

Figure

14

on

page

201.

The

program

merges

the

contents

of

two

PL/I

files

INPUT1

and

INPUT2,

and

writes

them

onto

a

new

PL/I

file,

OUT.

INPUT1

and

INPUT2

are

associated

with

the

disk

files

EVENS.INP

and

ODDS.INP,

respectively,

and

contain

6-byte

records

arranged

in

ASCII

collating

sequence.

Using

record-oriented

I/O

200

PL/I

for

Windows:

Programming

Guide

/**/

/*

*/

/*

DESCRIPTION

*/

/*

Merge

2

data

sets

creating

a

CONSECUTIVE

data

set.

*/

/*

*/

/*

USAGE

*/

/*

The

following

commands

are

required

to

establish

*/

/*

the

environment

variables

to

run

this

program:

*/

/*

*/

/*

SET

DD:OUT=CON4.DAT

*/

/*

SET

DD:INPUT1=EVENS.INP

*/

/*

SET

DD:INPUT2=ODDS.INP

*/

/*

*/

/**/

MERGE:

proc

options(main);

dcl

Input1

file

record

sequential

input

env(recsize(6));

dcl

Input2

file

record

sequential

input

env(recsize(6));

dcl

Out

file

record

sequential

env(recsize(15));

dcl

Sysprint

file

print;

/*

normal

print

file

*/

dcl

Input1_Eof

bit(1)

init(’0’b);

/*

eof

flag

for

Input1

*/

dcl

Input2_Eof

bit(1)

init(’0’b);

/*

eof

flag

for

Input2

*/

dcl

Out_Eof

bit(1)

init(’0’b);

/*

eof

flag

for

Out

*/

dcl

True

bit(1)

init(’1’b);

/*

constant

True

*/

dcl

False

bit(1)

init(’0’b);

/*

constant

False

*/

dcl

Item1

char(6)

based(a);

/*

item

from

Input1

*/

dcl

Item2

char(6)

based(b);

/*

item

from

Input2

*/

dcl

A

pointer;

/*

pointer

var

*/

dcl

B

pointer;

/*

pointer

var

*/

on

endfile(Input1)

Input1_Eof

=

True;

on

endfile(Input2)

Input2_Eof

=

True;

on

endfile(Out)

Out_Eof

=

True;

open

file(Input1),

file(Input2),

file(Out)

output;

read

file(Input1)

set(A);

/*

priming

read

*/

read

file(Input2)

set(B);

Figure

14.

Merge

Sort—Creating

and

accessing

a

consecutive

data

set

(Part

1

of

3)

Using

record-oriented

I/O

Chapter

13.

Defining

and

using

consecutive

data

sets

201

do

while

((Input1_Eof

=

False)

&

(Input2_Eof

=

False));

if

Item1

>

Item2

then

do;

write

file(Out)

from(Item2);

put

file(Sysprint)

skip

edit(’1>2’,

Item1,

Item2)

(a(5),a,a);

read

file(Input2)

set(B);

end;

else

do;

write

file(Out)

from(Item1);

put

file(Sysprint)

skip

edit(’1<2’,

Item1,

Item2)

(a(5),a,a);

read

file(Input1)

set(A);

end;

end;

do

while

(Input1_Eof

=

False);

/*

Input2

is

exhausted

*/

write

file(Out)

from(Item1);

put

file(Sysprint)

skip

edit(’1’,

Item1)

(a(2),a);

read

file(Input1)

set(A);

end;

do

while

(Input2_Eof

=

False);

/*

Input1

is

exhausted

*/

write

file(Out)

from(Item2);

put

file(Sysprint)

skip

edit(’2’,

Item2)

(a(2),a);

read

file(Input2)

set(B);

end;

close

file(Input1),

file(Input2),

file(Out);

put

file(Sysprint)

page;

open

file(Out)

sequential

input;

read

file(Out)

into(Item1);

/*

display

Out

file

*/

do

while

(Out_Eof

=

False);

put

file(Sysprint)

skip

edit(Item1)

(a);

read

file(Out)

into(Item1);

end;

close

file(Out);

end

MERGE;

Figure

14.

Merge

Sort—Creating

and

accessing

a

consecutive

data

set

(Part

2

of

3)

Using

record-oriented

I/O

202

PL/I

for

Windows:

Programming

Guide

Here

is

a

sample

of

EVENS.INP:

BBBBBB

DDDDDD

FFFFFF

HHHHHH

JJJJJJ

Here

is

a

sample

of

ODDS.INP:

AAAAAA

CCCCCC

EEEEEE

GGGGGG

IIIIII

KKKKKK

Figure

14.

Merge

Sort—Creating

and

accessing

a

consecutive

data

set

(Part

3

of

3)

Using

record-oriented

I/O

Chapter

13.

Defining

and

using

consecutive

data

sets

203

The

program

in

Figure

15

uses

record-oriented

data

transmission

to

print

the

table

created

by

the

program

in

Figure

10

on

page

191.

/**/

/*

*/

/*

DESCRIPTION

*/

/*

Print

a

SEQUENTIAL

data

set

created

by

the

SINE

program.

*/

/*

*/

/*

USAGE

*/

/*

The

following

commands

are

required

to

establish

*/

/*

the

environment

variables

to

run

this

program:

*/

/*

*/

/*

SET

DD:TABLE=MYTAB.DAT

*/

/*

SET

DD:PRINTER=PRN

*/

/*

*/

/**/

PRT:

proc

options(main);

dcl

Table

file

record

input

sequential;

dcl

Printer

file

record

output

seql

env(recsize(200)

ctlasa);

dcl

Line

char(102)

var;

dcl

Table_Eof

bit(1)

init(’0’b);

/*

Eof

flag

for

Table

*/

dcl

True

bit(1)

init(’1’b);

/*

constant

True

*/

dcl

False

bit(1)

init(’0’b);

/*

constant

False

*/

on

endfile(Table)

Table_Eof

=

True;

open

file(Table),

file(Printer);

read

file(Table)

into(Line);

/*

priming

read

*/

do

while

(Table_Eof

=

False);

if

Line=’’

then

/*

insert

blank

lines

*/

Line=

’

’;

write

file(Printer)

from(Line);

read

file(Table)

into(Line);

end;

close

file(Table),

file(Printer);

end

PRT;

Figure

15.

Printing

record-oriented

data

transmission

Using

record-oriented

I/O

204

PL/I

for

Windows:

Programming

Guide

Chapter

14.

Defining

and

using

regional

data

sets

Defining

files

for

a

regional

data

set

.

.

.

.

.

. 207

Specifying

ENVIRONMENT

options

.

.

.

. 207

Essential

information

for

creating

and

accessing

regional

data

sets

.

.

.

.

.

.

.

.

.

.

. 208

Using

keys

with

regional

data

sets

.

.

.

.

. 208

Using

REGIONAL(1)

data

sets

.

.

.

.

.

.

. 208

Dummy

records

.

.

.

.

.

.

.

.

.

.

. 208

Creating

a

REGIONAL(1)

data

set

.

.

.

.

. 209

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Accessing

and

updating

a

REGIONAL(1)

data

set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Sequential

access

.

.

.

.

.

.

.

.

.

.

. 211

Direct

access

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

This

chapter

covers

regional

data

set

organization,

data

transmission

statements,

and

ENVIRONMENT

options

that

define

regional

data

sets.

Creating

and

accessing

regional

data

sets

are

also

discussed.

A

data

set

with

regional

organization

is

divided

into

regions,

each

of

which

is

identified

by

a

region

number,

and

each

of

which

can

contain

one

record.

The

regions

are

numbered

in

succession,

beginning

with

zero,

and

a

record

can

be

accessed

by

specifying

its

region

number

in

a

data

transmission

statement.

Regional

data

sets

are

confined

to

direct-access

devices.

Regional

organization

of

a

data

set

allows

you

to

control

the

physical

placement

of

records

in

the

data

set

and

to

optimize

the

data

access

time.

This

type

of

optimization

is

not

available

with

consecutive

organization,

in

which

successive

records

are

written

in

strict

physical

sequence.

You

can

create

a

regional

data

set

in

a

manner

similar

to

a

consecutive

data

set,

presenting

records

in

the

order

of

ascending

region

numbers;

alternatively,

you

can

use

direct-access,

in

which

you

present

records

in

random

sequence

and

insert

them

directly

into

preformatted

regions.

Once

you

create

a

regional

data

set,

you

can

access

it

by

using

a

file

with

the

attributes

SEQUENTIAL

or

DIRECT

as

well

as

INPUT

or

UPDATE.

You

do

not

need

to

specify

either

a

region

number

or

a

key

if

the

data

set

is

associated

with

a

SEQUENTIAL

INPUT

or

SEQUENTIAL

UPDATE

file.

When

the

file

has

the

DIRECT

attribute,

you

can

retrieve,

add,

delete,

and

replace

records

at

random.

Records

within

a

regional

data

set

are

either

actual

records

containing

valid

data

or

dummy

records.

PL/I

supports

REGIONAL(1)

data

sets.

See

Table

17

for

a

list

of

the

data

transmission

statements

and

options

that

you

can

use

to

create

and

access

a

REGIONAL(1)

data

set.

Table

17.

Statements

and

options

allowed

for

creating

and

accessing

regional

data

sets

File

Declaration1

Valid

Statements,2

With

Options

You

Must

Include

Other

Options

You

Can

Also

Include

SEQUENTIAL

OUTPUT

BUFFERED

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

LOCATE

based-variable

FROM(file-reference)

KEYFROM(expression);

SET(pointer-reference)

205

Table

17.

Statements

and

options

allowed

for

creating

and

accessing

regional

data

sets

(continued)

File

Declaration1

Valid

Statements,2

With

Options

You

Must

Include

Other

Options

You

Can

Also

Include

SEQUENTIAL

OUTPUT

UNBUFFERED

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

SEQUENTIAL

INPUT

BUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference)

SET(pointer-reference);

READ

FILE(file-reference)

IGNORE(expression);

KEYTO(reference)

KEYTO(reference)

SEQUENTIAL

INPUT

UNBUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference)

IGNORE(expression);

KEYTO(reference)

SEQUENTIAL

UPDATE3

BUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference)

SET(pointer-reference);

READ

FILE(file-reference)

IGNORE(expression);

REWRITE

FILE(file-reference);

KEYTO(reference)

KEYTO(reference)

FROM(reference)

SEQUENTIAL

UPDATE

UNBUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference)

IGNORE(expression);

REWRITE

FILE(file-reference)

FROM(reference);

KEYTO(reference)

DIRECT

OUTPUT

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

DIRECT

INPUT

READ

FILE(file-reference)

INTO(reference)

KEY(expression);

Regional

data

sets

206

PL/I

for

Windows:

Programming

Guide

Table

17.

Statements

and

options

allowed

for

creating

and

accessing

regional

data

sets

(continued)

File

Declaration1

Valid

Statements,2

With

Options

You

Must

Include

Other

Options

You

Can

Also

Include

DIRECT

UPDATE

READ

FILE(file-reference)

INTO(reference)

KEY(expression);

REWRITE

FILE(file-reference)

FROM(reference)

KEY(expression);

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

DELETE

FILE(file-reference)

KEY(expression);

Notes:

1

The

complete

file

declaration

would

include

the

attributes

FILE,

RECORD,

and

ENVIRONMENT;

if

you

use

any

of

the

options

KEY,

KEYFROM,

or

KEYTO,

you

must

also

include

the

attribute

KEYED.

2

The

statement

READ

FILE(file-reference);

is

equivalent

to

the

statement

READ

FILE(file-reference)

IGNORE(1);

3

The

file

cannot

have

the

UPDATE

attribute

when

creating

new

data

sets.

Defining

files

for

a

regional

data

set

Use

a

file

declaration

with

the

following

attributes

to

define

a

sequential

regional

data

set:

declare

Filename

file

record

input

|

output

|

update

sequential

buffered

|

unbuffered

[keyed]

environment(options);

To

define

a

direct

regional

data

set,

use

a

file

declaration

with

the

following

attributes:

declare

Filename

file

record

input

|

output

|

update

direct

unbuffered

[keyed]

environment(options);

File

attributes

are

described

in

the

PL/I

Language

Reference.

Specifying

ENVIRONMENT

options

The

ENVIRONMENT

options

applicable

to

regional

data

sets

are:

REGIONAL(1)

RECSIZE

Regional

data

sets

Chapter

14.

Defining

and

using

regional

data

sets

207

SCALARVARYING

These

options

are

described

in

“Specifying

characteristics

using

the

PL/I

ENVIRONMENT

attribute”

on

page

162.

Essential

information

for

creating

and

accessing

regional

data

sets

To

create

a

regional

data

set,

you

must

give

PL/I

certain

information,

either

in

the

ENVIRONMENT

attribute

or

in

the

DD:ddname

environment

variable.

You

must

supply

the

following

information

when

creating

a

regional

data

set:

v

The

name

of

the

data

set

associated

with

your

PL/I

file.

A

data

set

with

REGIONAL(1)

organization

can

exist

only

on

a

direct-access

storage

device

(see

“Attempting

to

use

files

not

associated

with

data

sets”

on

page

178).

v

The

record

length.

You

can

specify

the

record

length

using

the

RECSIZE

option

of

the

ENVIRONMENT

attribute

or

of

the

DD:ddname

environment

variable

or

in

the

TITLE

option

of

the

OPEN

statement.

v

The

extent

(the

number

of

regions)

of

the

data

set.

You

specify

this

with

the

RECCOUNT

option

of

the

DD:ddname

environment

variable.

The

default

for

RECCOUNT

is

50.

Using

keys

with

regional

data

sets

Source

keys

are

used

to

access

REGIONAL(1)

data

sets.

A

source

key

is

the

character

value

of

the

expression

that

appears

in

the

KEY

or

KEYFROM

option

of

a

data

transmission

statement

to

identify

the

record

to

which

the

statement

refers.

When

you

access

a

record

in

a

regional

data

set,

the

source

key

is

the

region

number.

Using

REGIONAL(1)

data

sets

In

a

REGIONAL(1)

data

set,

the

region

number

serves

as

the

sole

identification

of

a

particular

record.

The

character

value

of

the

source

key

should

represent

an

unsigned

decimal

integer

that

should

not

exceed

2147483647.

If

the

region

number

exceeds

this

figure,

it

is

treated

as

modulo

2147483648;

for

instance,

2147483658

is

treated

as

10.

Only

the

characters

0

through

9

and

the

blank

character

are

valid

in

the

source

key;

leading

blanks

are

interpreted

as

zeros.

Embedded

blanks

are

not

allowed

in

the

region

number;

the

first

embedded

blank,

if

any,

terminates

the

region

number.

If

more

than

10

characters

appear

in

the

source

key,

only

the

rightmost

10

are

used

as

the

region

number;

if

there

are

fewer

than

10

characters,

blanks

(interpreted

as

zeros)

are

inserted

on

the

left.

Dummy

records

Records

in

a

REGIONAL(1)

data

set

are

either

actual

records

containing

valid

data

or

dummy

records.

A

dummy

record

in

a

REGIONAL(1)

data

set

is

identified

by

the

constant

X’FF’

in

its

first

byte.

Although

such

dummy

records

are

inserted

in

the

data

set

either

when

it

is

created

or

when

a

record

is

deleted,

they

are

not

ignored

when

the

data

set

is

read.

Your

PL/I

program

must

be

prepared

to

recognize

them.

You

can

replace

dummy

records

with

valid

data.

Defining

files

for

a

regional

data

set

208

PL/I

for

Windows:

Programming

Guide

Creating

a

REGIONAL(1)

data

set

You

can

create

a

REGIONAL(1)

data

set

either

sequentially

or

by

direct-access.

Table

17

on

page

205

shows

the

statements

and

options

for

creating

a

regional

data

set.

When

you

create

the

data

set,

opening

the

file

causes

the

data

set

to

be

filled

with

dummy

records.

You

must

present

records

in

ascending

order

of

region

numbers

for

a

SEQUENTIAL

OUTPUT

file.

If

there

is

an

error

in

the

sequence,

or

if

you

present

a

duplicate

key,

the

KEY

condition

is

raised.

If

you

use

a

DIRECT

OUTPUT

file

to

create

the

data

set,

you

can

present

records

in

random

order.

If

you

present

a

duplicate

region

number,

the

existing

record

is

overwritten.

If

you

create

a

data

set

using

a

buffered

file,

and

the

last

WRITE

or

LOCATE

statement

before

the

file

is

closed

attempts

to

transmit

a

record

beyond

the

limits

of

the

data

set,

the

CLOSE

statement

might

raise

the

ERROR

condition.

Example

Creating

a

REGIONAL(1)

data

set

is

illustrated

in

Figure

16

on

page

210.

The

data

set

is

a

list

of

telephone

extensions

with

the

names

of

the

subscribers

to

whom

they

are

allocated.

The

telephone

extensions

correspond

with

the

region

numbers

in

the

data

set;

the

data

in

each

occupied

region

being

a

subscriber’s

name.

Using

REGIONAL(1)

data

sets

Chapter

14.

Defining

and

using

regional

data

sets

209

/**/

/*

*/

/*

DESCRIPTION

*/

/*

Create

a

REGIONAL(1)

data

set.

*/

/*

*/

/*

USAGE

*/

/*

The

following

commands

are

required

to

establish

*/

/*

the

environment

variables

to

run

this

program:

*/

/*

*/

/*

SET

DD:SYSIN=CRG.INP,RECSIZE(30)

*/

/*

SET

DD:NOS=NOS.DAT,RECCOUNT(100)

*/

/*

*/

/**/

CRR1:

proc

options(main);

dcl

Nos

file

record

output

direct

keyed

env(regional(1)

recsize(20));

dcl

Sysin

file

input

record;

dcl

1

In_Area,

2

Name

char(20),

2

Number

char(

2);

dcl

IoField

char(20);

dcl

Sysin_Eof

bit

(1)

init(’0’b);

dcl

Ntemp

fixed(15);

on

endfile

(Sysin)

Sysin_Eof

=

’1’b;

open

file(Nos);

read

file(Sysin)

into(In_Area);

do

while(¬Sysin_Eof);

IoField

=

Name;

Ntemp

=

Number;

write

file(Nos)

from(IoField)

keyfrom(Ntemp);

put

file(sysprint)

skip

edit

(In_Area)

(a);

read

file(Sysin)

into(In_Area);

end;

close

file(Nos);

end

CRR1;

Figure

16.

Creating

a

REGIONAL(1)

data

set

(Part

1

of

2)

Using

REGIONAL(1)

data

sets

210

PL/I

for

Windows:

Programming

Guide

Accessing

and

updating

a

REGIONAL(1)

data

set

Once

you

create

a

REGIONAL(1)

data

set,

you

can

open

the

file

that

accesses

it

for

SEQUENTIAL

INPUT

or

UPDATE,

or

for

DIRECT

INPUT

or

UPDATE.

You

can

open

it

for

OUTPUT

only

if

the

existing

data

set

is

to

be

overwritten.

Table

17

on

page

205

shows

the

statements

and

options

for

accessing

a

regional

data

set.

Sequential

access

To

open

a

SEQUENTIAL

file

that

is

used

to

process

a

REGIONAL(1)

data

set,

use

either

the

INPUT

or

UPDATE

attribute.

You

must

not

include

the

KEY

option

in

data

transmission

statements,

but

the

file

can

have

the

KEYED

attribute,

since

you

can

use

the

KEYTO

option.

If

the

target

character

string

referenced

in

the

KEYTO

option

has

more

than

10

characters,

the

value

returned

(the

10-character

region

number)

is

padded

on

the

left

with

blanks.

If

the

target

string

has

fewer

than

10

characters,

the

value

returned

is

truncated

on

the

left.

Sequential

access

is

in

the

order

of

ascending

region

numbers.

All

records

are

retrieved,

whether

dummy

or

actual,

and

you

must

ensure

that

your

PL/I

program

recognizes

dummy

records.

Using

sequential

input

with

a

REGIONAL(1)

data

set,

you

can

read

all

the

records

in

ascending

region-number

sequence,

and

in

sequential

update

you

can

read

and

rewrite

each

record

in

turn.

The

rules

governing

the

relationship

between

READ

and

REWRITE

statements

for

a

SEQUENTIAL

UPDATE

file

that

accesses

a

REGIONAL(1)

data

set

are

identical

to

those

for

a

consecutive

data

set.

A

discussion

of

using

READ

and

REWRITE

statements

can

be

found

in

“Accessing

and

updating

a

data

set

with

record

I/O”

on

page

199.

The

execution

time

input

file,

CRG.INP,

might

look

like

this:

ACTION,G.

12

BAKER,R.

13

BRAMLEY,O.H.

28

CHEESNAME,L.

11

CORY,G.

36

ELLIOTT,D.

85

FIGGINS,E.S.

43

HARVEY,C.D.W.

25

HASTINGS,G.M.

31

KENDALL,J.G.

24

LANCASTER,W.R.

64

MILES,R.

23

NEWMAN,M.W.

40

PITT,W.H.

55

ROLF,D.E.

14

SHEERS,C.D.

21

SURCLIFFE,M.

42

TAYLOR,G.C.

47

WILTON,L.W.

44

WINSTONE,E.M.

37

Figure

16.

Creating

a

REGIONAL(1)

data

set

(Part

2

of

2)

Using

REGIONAL(1)

data

sets

Chapter

14.

Defining

and

using

regional

data

sets

211

Direct

access

To

open

a

DIRECT

file

that

is

used

to

process

a

REGIONAL(1)

data

set

you

can

use

either

the

INPUT

or

the

UPDATE

attribute.

All

data

transmission

statements

must

include

source

keys;

the

DIRECT

attribute

implies

the

KEYED

attribute.

Use

DIRECT

UPDATE

files

to

retrieve,

add,

delete,

or

replace

records

in

a

REGIONAL(1)

data

set

according

to

the

following

conventions:

Retrieval

All

records,

whether

dummy

or

actual,

are

retrieved.

Your

program

must

recognize

dummy

records.

Addition

A

WRITE

statement

substitutes

a

new

record

for

the

existing

record

(actual

or

dummy)

in

the

region

specified

by

the

source

key.

Deletion

The

record

you

specify

by

the

source

key

in

a

DELETE

statement

is

turned

into

a

dummy

record.

Replacement

The

record

you

specify

by

the

source

key

in

a

REWRITE

statement,

whether

dummy

or

actual,

is

replaced.

Example

Updating

a

REGIONAL(1)

data

set

is

illustrated

in

Figure

17

on

page

213.

This

program

updates

the

data

set

and

lists

its

contents.

Before

each

new

or

updated

record

is

written,

the

existing

record

in

the

region

is

tested

to

ensure

that

it

is

a

dummy.

This

is

necessary

because

a

WRITE

statement

can

overwrite

an

existing

record

in

a

REGIONAL(1)

data

set

even

if

it

is

not

a

dummy.

Similarly,

during

the

sequential

reading

and

printing

of

the

contents

of

the

data

set,

each

record

is

tested

and

dummy

records

are

not

printed.

Using

REGIONAL(1)

data

sets

212

PL/I

for

Windows:

Programming

Guide

/**/

/*

*/

/*

DESCRIPTION

*/

/*

Update

a

REGIONAL(1)

data

set.

*/

/*

*/

/*

USAGE

*/

/*

The

following

commands

are

required

to

establish

*/

/*

the

environment

variables

to

run

this

program:

*/

/*

*/

/*

SET

DD:SYSIN=ACR.INP,RECSIZE(30)

*/

/*

SET

DD:NOS=NOS.DAT,APPEND(Y)

*/

/*

*/

/*

Note:

This

sample

program

is

using

the

regional

dataset,

*/

/*

NOS.DAT,

created

by

the

previous

sample

program

CRR1.

*/

/*

*/

/**/

ACR1:

proc

options(main);

dcl

Nos

file

record

keyed

env(regional(1));

dcl

Sysin

file

input

record;

dcl

Sysin_Eof

bit

(1)

init(’0’b);

dcl

Nos_Eof

bit

(1)

init(’0’b);

dcl

1

In_Area,

2

Name

char(20),

2

(CNewNo,COldNo)

char(

2),

2

In_Area_1

char(

1),

2

Code

char(

1);

dcl

IoField

char(20);

dcl

Byte

char(1)

def

IoField;

dcl

NewNo

fixed(15);

dcl

OldNo

fixed(15);

on

endfile

(Sysin)

Sysin_Eof

=

’1’b;

open

file

(Nos)

direct

update;

read

file(Sysin)

into(In_Area);

Figure

17.

Updating

a

REGIONAL(1)

data

set

(Part

1

of

3)

Using

REGIONAL(1)

data

sets

Chapter

14.

Defining

and

using

regional

data

sets

213

do

while(¬Sysin_Eof);

if

CNewNo

¬=’

’

then

NewNo

=

CNewNo;

else

NewNo

=

0;

if

COldNo

¬=’

’

then

OldNo

=

COldNo;

else

OldNo

=

0;

select(Code);

when(’A’,’C’)

do;

if

Code

=

’C’

then

delete

file(Nos)

key(OldNo);

read

file(Nos)

key(NewNo)

into(IoField);

/*

we

must

test

to

see

if

the

record

exists

*/

/*

if

it

doesn’t

exist

we

create

a

record

there

*/

if

unspec(Byte)

=

(8)’1’b

then

write

file(Nos)

keyfrom(NewNo)

from(Name);

else

put

file(sysprint)

skip

list

(’duplicate:’,Name);

end;

when(’D’)

delete

file(Nos)

key(OldNo);

otherwise

put

file(sysprint)

skip

list

(’invalid

code:’,Name);

end;

read

file(Sysin)

into(In_Area);

close

file(Sysin),file(Nos);

put

file(sysprint)

page;

open

file(Nos)

sequential

input;

on

endfile

(Nos)

nos_Eof

=

’1’b;

read

file(Nos)

into(IoField)

keyto(CNewNo);

do

while(¬Nos_Eof);

if

unspec(Byte)

¬=

(8)’1’b

then

put

file(sysprint)

skip

edit

(CNewNo,’

’,IoField)(a(2),a(1),a);

read

file(Nos)

into(IoField)

keyto(CNewNo);

end;

close

file(Nos);

end

ACR1;

end;

Figure

17.

Updating

a

REGIONAL(1)

data

set

(Part

2

of

3)

At

execution

time,

the

input

file,

ACR.INP,

could

look

like

this:

NEWMAN,M.W.

5640

C

GOODFELLOW,D.T.

89

A

MILES,R.

23

D

HARVEY,C.D.W.

29

A

BARTLETT,S.G.

13

A

CORY,G.

36

D

READ,K.M.

01

A

PITT,W.H.

55

X

ROLF,D.F.

14

D

ELLIOTT,D.

4285

C

HASTINGS,G.M.

31

D

BRAMLEY,O.H.

4928

C

Figure

17.

Updating

a

REGIONAL(1)

data

set

(Part

3

of

3)

Using

REGIONAL(1)

data

sets

214

PL/I

for

Windows:

Programming

Guide

Chapter

15.

Defining

and

using

workstation

VSAM

data

sets

Moving

data

between

the

workstation

and

mainframe

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

Workstation

VSAM

organization

.

.

.

.

.

.

. 216

Creating

and

accessing

workstation

VSAM

data

sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

Determining

which

type

of

workstation

VSAM

data

set

you

need

.

.

.

.

.

.

.

.

.

.

. 216

Accessing

records

in

workstation

VSAM

data

sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Using

keys

for

workstation

VSAM

data

sets

.

. 218

Using

keys

for

workstation

VSAM

keyed

data

sets

.

.

.

.

.

.

.

.

.

.

.

.

. 218

Using

sequential

record

values

.

.

.

.

. 218

Using

relative

record

numbers

.

.

.

.

.

. 218

Choosing

a

data

set

type

.

.

.

.

.

.

.

.

. 218

Defining

files

for

workstation

VSAM

data

sets

.

. 219

Specifying

options

of

the

PL/I

ENVIRONMENT

attribute

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Adapting

existing

programs

for

workstation

VSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Adapting

programs

using

CONSECUTIVE

files

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Adapting

programs

using

INDEXED

files

220

Adapting

programs

using

REGIONAL(1)

files

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Adapting

programs

using

VSAM

files

.

.

. 221

Using

workstation

VSAM

sequential

data

sets

.

. 222

Using

a

sequential

file

to

access

a

workstation

VSAM

sequential

data

set

.

.

.

.

.

.

.

. 223

Defining

and

loading

a

workstation

VSAM

sequential

data

set

.

.

.

.

.

.

.

.

.

.

. 223

Updating

a

sequential

data

set

.

.

.

.

. 224

Workstation

VSAM

keyed

data

sets

.

.

.

.

.

. 225

Loading

a

workstation

VSAM

keyed

data

set

227

Using

a

SEQUENTIAL

file

to

access

a

workstation

VSAM

keyed

data

set

.

.

.

.

. 229

Using

a

DIRECT

file

to

access

a

workstation

VSAM

keyed

data

set

.

.

.

.

.

.

.

.

. 229

Workstation

VSAM

direct

data

sets

.

.

.

.

.

. 232

Loading

a

workstation

VSAM

direct

data

set

234

Using

a

SEQUENTIAL

file

to

access

a

workstation

VSAM

direct

data

set

.

.

.

.

. 236

Using

READ

statements

.

.

.

.

.

.

.

. 236

Using

WRITE

statements

.

.

.

.

.

.

. 236

Using

the

REWRITE

or

DELETE

statements

237

Using

a

DIRECT

file

to

access

a

workstation

VSAM

direct

data

set

.

.

.

.

.

.

.

.

.

. 237

This

chapter

describes

how

you

use

Virtual

Storage

Access

Method

(VSAM)

data

sets

on

your

workstation—including

Distributed

Data

Management

(DDM),

ISAM,

and

BTRIEVE

data

sets—for

record-oriented

data

transmission.

Platform

distinction

Three

access

methods

are

discussed

in

connection

with

the

PL/I

workstation

products;

however,

not

all

three

methods

are

supported

on

every

platform.

Use

the

following

as

a

guideline:

v

DDM—supported

on

AIX

only

v

ISAM—supported

on

AIX

and

Windows

v

BTRIEVE—supported

on

Windows

only

This

chapter

also

describes

the

statements

you

use

to

access

the

three

types

of

VSAM

data

sets—sequential,

keyed,

and

direct.

In

many

ways,

workstation

VSAM

is

similar

to

the

VSAM

on

the

mainframe.

On

the

workstation,

the

terms

sequential,

keyed

and

direct

are

similar

to

the

VSAM

entry-sequenced

data

set,

key-sequenced

data

set,

and

relative

record

data

set.

The

chapter

concludes

with

a

series

of

examples

showing

the

PL/I

statements

and

DD:ddname

environment

variables

necessary

to

create

and

access

workstation

VSAM

data

sets.

215

Moving

data

between

the

workstation

and

mainframe

To

convert

mainframe

VSAM

files

to

the

corresponding

DDM,

ISAM,

or

BTRIEVE

files,

follow

the

procedure

documented

in

the

prolog

for

the

LODVSAM

utility.

Make

sure

you

specify

the

appropriate

access

method

AMTHD(DDM|ISAM|BTRIEVE).

To

convert

DDM,

ISAM,

or

BTRIEVE

files

to

corresponding

mainframe

VSAM

files,

follow

the

procedure

documented

in

the

prolog

for

the

RELOAD

utility.

These

utilities

are

supported

on

PL/I

for

Windows,

but

are

not

currently

available

on

PL/I

for

AIX.

Workstation

VSAM

organization

PL/I

supports

workstation

VSAM

sequential,

keyed,

and

direct

data

sets.

These

correspond

to

PL/I

consecutive,

indexed,

and

relative

data

set

organizations,

respectively.

Both

sequential

and

keyed

access

are

possible

with

all

three

types

of

data

sets.

With

keyed

data

sets,

the

key,

which

is

part

of

the

logical

record,

is

used

for

keyed

access;

keyed

access

is

possible

for

direct

data

sets

using

relative

record

numbers.

Keyed

access

is

also

possible

for

sequential

data

sets

using

the

sequential

record

value

as

a

key.

All

workstation

VSAM

data

sets

are

stored

on

direct-access

storage

devices.

The

physical

organization

of

workstation

VSAM

data

sets

differs

from

those

used

by

other

access

methods.

Creating

and

accessing

workstation

VSAM

data

sets

Your

PL/I

application

can

create

workstation

VSAM

data

sets,

or

it

can

access

VSAM

data

sets

created

by

other

programs.

When

you

open

a

file

to

be

associated

with

a

workstation

VSAM

data

set,

and

that

data

set

does

not

exist,

PL/I

creates

it

using

the

attributes

and

options

you

specify

in

the

DECLARE

statement

or

in

a

DD:ddname

environment

variable.

When

your

application

accesses

an

existing

VSAM

data

set,

PL/I

determines

its

type—sequential,

direct,

or

keyed.

The

operation

of

writing

the

initial

data

into

a

newly-created

VSAM

data

set

is

referred

to

as

loading

in

this

publication.

Are

you

using

the

right

access

method?

Use

each

of

the

access

methods,

DDM|ISAM|BTRIEVE,

to

access

data

sets

that

were

created

with

that

particular

access

method.

For

example,

you

cannot

use

the

ISAM

access

method

to

access

data

sets

you

created

with

the

BTRIEVE

access

method.

Determining

which

type

of

workstation

VSAM

data

set

you

need

Use

the

three

different

types

of

data

sets

according

to

the

following

purposes:

v

Use

sequential

data

sets

for

data

that

you

access

primarily

in

the

order

in

which

the

records

were

created

(or

the

reverse

order).

Moving

data

between

the

workstation

and

mainframe

216

PL/I

for

Windows:

Programming

Guide

v

Use

keyed

data

sets

when

you

normally

access

records

through

keys

within

the

records

(for

example,

a

stock-control

file

where

the

part

number

is

used

to

access

a

record).

v

Use

direct

data

sets

for

data

in

which

each

item

has

a

particular

number,

and

you

normally

access

the

relevant

record

by

that

number

(for

example,

a

telephone

system

with

a

record

associated

with

each

number).

Accessing

records

in

workstation

VSAM

data

sets

You

can

access

records

in

all

types

of

workstation

VSAM

data

sets

either

directly

by

means

of

a

key

or

sequentially

(backward

or

forward).

You

can

also

use

a

combination

of

the

two

ways,

in

which

you

select

a

starting

point

with

a

key

and

then

read

forward

or

backward

from

that

point.

Table

18

shows

how

data

could

be

stored

in

the

three

different

types

of

workstation

VSAM

data

sets

and

illustrates

their

respective

advantages

and

disadvantages.

Table

18.

Types

and

advantages

of

workstation

VSAM

data

sets

Data

Set

Type

Method

of

Loading

Method

of

Reading

Method

of

Updating

Pros

and

Cons

Sequential

Sequentially

(forward

only)

The

sequential

record

value

of

each

record

can

be

obtained

and

used

as

a

key

SEQUENTIAL

backward

or

forward

KEYED

using

the

sequential

record

value

Positioning

by

key

followed

by

sequential

either

backward

or

forward

New

records

at

end

only

Access

can

be

sequential

or

KEYED

Record

deletion

allowed

Advantages

Simple

fast

creation

Uses

For

uses

where

data

is

primarily

accessed

sequentially

Keyed

Either

sequentially

or

randomly

by

key

KEYED

by

specifying

key

of

record

SEQUENTIAL

backward

or

forward

in

order

of

any

index

Positioning

by

key

followed

by

sequential

reading

either

backward

or

forward

KEYED

specifying

a

key

SEQUENTIAL

following

positioning

by

key

Record

deletion

allowed

Record

insertion

allowed

Advantages

Complete

access

and

updating

Uses

For

uses

where

access

is

related

to

key

Direct

Sequentially

starting

from

slot

1

KEYED

specifying

number

of

slot

Positioning

by

key

followed

by

sequential

writes

KEYED

specifying

numbers

as

key

Sequential

forward

or

backward

omitting

empty

records

Sequentially

starting

at

a

specified

slot

and

continuing

with

next

slot

Keyed

specifying

numbers

as

key

Record

deletion

allowed

Record

insertion

into

empty

slots

allowed

Advantages

Speedy

access

to

record

by

number

Disadvantages

Structure

tied

to

numbering

sequences

Uses

For

use

where

records

are

accessed

by

number

Workstation

VSAM

organization

Chapter

15.

Defining

and

using

workstation

VSAM

data

sets

217

Using

keys

for

workstation

VSAM

data

sets

All

workstation

VSAM

data

sets

can

have

keys

associated

with

their

records.

For

keyed

data

sets,

the

key

is

a

defined

field

within

the

logical

record.

For

sequential

data

sets,

the

key

is

the

sequential

record

value

of

the

record.

For

relative

record

data

sets,

the

key

is

a

relative

record

number.

Using

keys

for

workstation

VSAM

keyed

data

sets

Keys

for

keyed

data

sets

are

part

of

the

logical

records

recorded

on

the

data

set.

You

define

the

length

and

location

of

the

keys

when

you

create

the

data

set.

The

ways

you

can

reference

the

keys

in

the

KEY,

KEYFROM,

and

KEYTO

options

are

as

described

under

“KEY(expression)

Option,”

“KEYFROM(expression)

Option,”

and

“KEYTO(reference)

Option”

in

the

PL/I

Language

Reference.

Using

sequential

record

values

Sequential

record

values

allow

you

to

use

keyed

access

on

a

sequential

data

set

associated

with

a

KEYED

SEQUENTIAL

file.

BTRIEVE

and

ISAM

The

sequential

record

values,

or

keys,

are

character

strings

of

length

7,

and

their

values

are

defined

by

workstation

VSAM.

You

cannot

construct

or

manipulate

sequential

record

values

in

PL/I;

you

can,

however,

compare

their

values

in

order

to

determine

the

relative

positions

of

records

within

the

data

set.

Sequential

record

values

are

not

normally

printable.

You

can

obtain

the

sequential

record

value

for

a

record

by

using

the

KEYTO

option,

either

on

a

WRITE

statement

when

you

are

loading

or

extending

the

data

set,

or

on

a

READ

statement

when

the

data

set

is

being

read.

You

can

subsequently

use

a

sequential

record

value

obtained

in

either

of

these

ways

in

the

KEY

option

of

a

READ

or

REWRITE

statement.

Using

relative

record

numbers

Records

in

a

direct

data

set

are

identified

by

a

relative

record

number

that

starts

at

1

and

is

incremented

by

1

for

each

succeeding

record.

You

can

use

these

relative

record

numbers

as

keys

for

keyed

access

to

the

data

set.

Keys

used

as

relative

record

numbers

are

character

strings

of

length

10.

The

character

value

of

a

source

key

you

use

in

the

KEY

or

KEYFROM

option

must

represent

an

unsigned

integer.

If

the

source

key

is

not

10

characters

long,

it

is

truncated

or

padded

with

blanks

(interpreted

as

zeros)

on

the

left.

The

value

returned

by

the

KEYTO

option

is

a

character

string

of

length

10,

with

leading

zeros

suppressed.

Choosing

a

data

set

type

When

planning

your

application,

you

must

first

decide

which

type

of

data

set

to

use.

There

are

three

types

of

workstation

VSAM

data

sets

available

to

you.

Workstation

VSAM

data

sets

can

provide

all

the

function

of

the

other

types

of

data

sets,

plus

additional

function

available

only

with

workstation

VSAM.

Workstation

VSAM

can

usually

match,

or

even

improve

upon,

the

performance

of

other

data

set

types.

However,

workstation

VSAM

is

more

subject

to

performance

degradation

through

misuse

of

function.

Workstation

VSAM

organization

218

PL/I

for

Windows:

Programming

Guide

Table

18

on

page

217

shows

you

the

possibilities

available

with

each

type

of

workstation

VSAM

data

set.

When

choosing

between

the

workstation

VSAM

data

set

types,

you

should

base

your

decision

on

the

most

common

sequence

in

which

your

program

accesses

your

data.

Table

19

on

page

222,

Table

20

on

page

225,

and

Table

21

on

page

232

show

the

statements

allowed

for

sequential

data

sets,

keyed

data

sets,

and

direct

data

sets,

respectively.

Defining

files

for

workstation

VSAM

data

sets

You

define

a

workstation

VSAM

sequential

data

set

by

using

a

file

declaration

with

the

following

attributes:

dcl

Filename

file

record

input

|

output

|

update

sequential

buffered

[keyed]

environment(organization(consecutive));

You

define

a

workstation

VSAM

keyed

data

set

by

using

a

file

declaration

with

the

following

attributes:

dcl

Filename

file

record

input

|

output

|

update

sequential

|

direct

buffered

|

unbuffered

[keyed]

environment(organization(indexed));

You

define

a

workstation

VSAM

direct

data

set

by

using

a

file

declaration

with

the

following

attributes:

dcl

Filename

file

record

input

|

output

|

update

direct

|

sequential

unbuffered

|

buffered

[keyed]

environment(organization(relative));

The

file

attributes

are

described

in

the

PL/I

Language

Reference

for

this

product.

Options

of

the

ENVIRONMENT

attribute

are

discussed

below.

Specifying

options

of

the

PL/I

ENVIRONMENT

attribute

Many

of

the

options

of

the

PL/I

ENVIRONMENT

attribute

affecting

data

set

structure

are

not

needed

for

workstation

VSAM

data

sets.

If

you

specify

them,

they

are

either

ignored

or

are

used

for

checking

purposes.

If

those

that

are

checked

conflict

with

the

values

defined

for

the

data

set,

the

UNDEFINEDFILE

condition

is

raised

when

an

attempt

is

made

to

open

the

file.

The

ENVIRONMENT

options

applicable

to

workstation

VSAM

data

sets

are:

BKWD

CONSECUTIVE

CTLASA

GENKEY

GRAPHIC

KEYLENGTH

KEYLOC

Choosing

a

data

set

type

Chapter

15.

Defining

and

using

workstation

VSAM

data

sets

219

ORGANIZATION(CONSECUTIVE|INDEXED|RELATIVE)

RECSIZE

SCALARVARYING

VSAM

For

a

complete

explanation

of

these

ENVIRONMENT

options

and

how

to

use

them,

see

“Specifying

characteristics

using

the

PL/I

ENVIRONMENT

attribute”

on

page

162.

In

addition

to

this

list

of

ENVIRONMENT

options,

there

is

a

set

of

options

that

can

be

used

with

a

DD

statement,

see

“Specifying

characteristics

using

DD:ddname

environment

variables”

on

page

168.

Adapting

existing

programs

for

workstation

VSAM

This

section

is

intended

primarily

for

OS

PL/I

users

who

are

transferring

programs

to

the

workstation.

In

most

cases,

if

your

PL/I

program

uses

files

declared

with

ENVIRONMENT

(CONSECUTIVE)

or

ENVIRONMENT(INDEXED)

or

with

no

PL/I

ENVIRONMENT

attribute,

it

can

access

workstation

VSAM

data

sets

without

alteration.

PL/I

detects

that

a

workstation

VSAM

data

set

is

being

opened

and

can

provide

the

correct

access.

You

can

readily

adapt

existing

programs

with

CONSECUTIVE,

INDEXED,

REGIONAL(1)

or

VSAM

files

for

use

with

workstation

VSAM

data

sets.

Programs

with

consecutive

files

might

not

need

alteration,

and

there

is

never

any

necessity

to

alter

programs

with

indexed

files

unless

the

logic

depends

on

EXCLUSIVE

files.

Programs

with

REGIONAL(1)

data

sets

require

only

minor

revision.

The

following

sections

tell

you

what

modifications

you

might

need

to

make

in

order

to

adapt

files

for

the

workstation.

Adapting

programs

using

CONSECUTIVE

files

There

is

no

concept

of

fixed-length

records

in

DDM,

but

there

is

in

ISAM

and

BTRIEVE.

There

is

no

concept

of

fixed-length

records

in

DDM.If

your

program

relies

on

the

RECORD

condition

to

detect

incorrect

length

records,

it

does

not

function

in

the

same

way

using

workstation

VSAM

data

sets

as

it

does

with

non-workstation

VSAM

data

sets.

If

the

logic

of

the

program

depends

on

raising

the

RECORD

condition

when

a

record

of

an

incorrect

length

is

found,

you

must

write

your

own

code

to

check

for

the

record

length

and

take

the

necessary

action.

This

is

because

records

of

any

length

up

to

the

maximum

specified

are

allowed

in

workstation

VSAM

data

sets.

Adapting

programs

using

INDEXED

files

Compatibility

is

provided

for

INDEXED

files.

For

files

that

you

declare

with

the

INDEXED

ENVIRONMENT

option,

PL/I

associates

the

file

with

a

workstation

VSAM

keyed

data

set.

UNDEFINEDFILE

is

raised

if

the

data

set

is

any

other

type.

Because

mainframe

ISAM

record

handling

differs

in

detail

from

workstation

VSAM

record

handling,

workstation

VSAM

processing

might

not

always

give

the

required

result.

You

should

remove

dependence

on

the

RECORD

condition,

and

insert

your

own

code

to

check

for

record

length

if

this

is

necessary.

You

should

also

remove

any

checking

for

deleted

records.

Defining

files

for

workstation

VSAM

data

sets

220

PL/I

for

Windows:

Programming

Guide

Adapting

programs

using

REGIONAL(1)

files

You

can

alter

programs

using

REGIONAL(1)

data

sets

to

use

workstation

VSAM

direct

data

sets.

Remove

REGIONAL(1)

and

any

other

implementation-dependent

options

from

the

file

declaration

and

replace

them

with

ENV(ORGANIZATION(RELATIVE)).

You

should

also

remove

any

checking

for

deleted

records,

because

workstation

VSAM

deleted

records

are

not

accessible

to

you.

Adapting

programs

using

VSAM

files

If

you

use

the

VSAM

ENVIRONMENT

option,

the

associated

workstation

VSAM

data

set

must

exist

before

the

file

is

opened.

You

can

create

your

data

sets

with

a

simple

program.

Figure

18

is

an

example

of

creating

a

workstation

VSAM

keyed

data

set.

If

the

data

set

named

KEYNAMES.DAT

does

not

already

exist,

PL/I

creates

it

with

that

name

when

the

OPEN

statement

is

executed.

/**/

/*

*/

/*

NAME

-

ISAM0.PLI

*/

/*

*/

/*

DESCRIPTION

*/

/*

Create

an

ISAM

Keyed

data

set

*/

/*

*/

/*

*/

/**/

NewVSAM:

proc

options(main);

declare

NewFile

keyed

record

output

file

env(organization(indexed)

recsize(80)

keylength(8)

keyloc(17)

);

open

file(NewFile)

title(’/KEYNAMES.DAT’);

close

file(NewFile);

End

NewVSAM;

Figure

18.

Creating

a

workstation

VSAM

keyed

data

set

Defining

files

for

workstation

VSAM

data

sets

Chapter

15.

Defining

and

using

workstation

VSAM

data

sets

221

Using

workstation

VSAM

sequential

data

sets

The

statements

and

options

allowed

for

files

associated

with

a

workstation

VSAM

sequential

data

set

are

shown

in

Table

19.

Table

19.

Statements

and

options

allowed

for

loading

and

accessing

workstation

VSAM

sequential

data

sets

File

declaration1

Valid

statements,

with

options

you

must

include

Other

options

you

can

also

include

SEQUENTIAL

OUTPUT

BUFFERED

WRITE

FILE(file-reference)

FROM(reference);

LOCATE

based-variable

FILE(file-reference);

KEYTO(reference)

SET(pointer-reference)

SEQUENTIAL

OUTPUT

UNBUFFERED

WRITE

FILE(file-reference)

FROM(reference);

KEYTO(reference)

SEQUENTIAL

INPUT

BUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference)

SET(pointer-reference);

READ

FILE(file-reference);

KEYTO(reference)

or

KEY(expression)3

KEYTO(reference)

or

KEY(expression)3

IGNORE(expression)

SEQUENTIAL

INPUT

UNBUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference);2

KEY(expression)3

or

KEYTO(reference)

IGNORE(expression)

SEQUENTIAL

UPDATE

BUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference)

SET(pointer-reference);

READ

FILE(file-reference)2

WRITE

FILE(file-reference)

FROM(reference);

REWRITE

FILE(file-eference);

DELETE

FILE(file-reference);

KEYTO(reference)

or

KEY(expression)3

KEYTO(reference)

or

KEY(expression)3

IGNORE(expression)

KEYTO(reference)

FROM(reference)

and/or

KEY(expression)3

KEY(expression)

SEQUENTIAL

UPDATE

UNBUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference);

2

WRITE

FILE(file-reference)

FROM(reference);

REWRITE

FILE(file-reference)

FROM(reference);

KEY(expression)3

or

KEYTO(reference)

IGNORE(expression)

KEYTO(reference)

KEY(expression)3

Using

workstation

VSAM

sequential

data

sets

222

PL/I

for

Windows:

Programming

Guide

Table

19.

Statements

and

options

allowed

for

loading

and

accessing

workstation

VSAM

sequential

data

sets

(continued)

File

declaration1

Valid

statements,

with

options

you

must

include

Other

options

you

can

also

include

Notes:

1

The

complete

file

declaration

would

include

the

attributes

FILE,

RECORD,

and

ENVIRONMENT;

if

you

use

either

of

the

options

KEY

or

KEYTO,

it

must

also

include

the

attribute

KEYED.

2

The

statement

“READ

FILE(file-reference);”

is

equivalent

to

the

statement

“READ

FILE(file-reference)

IGNORE

(1);”

3

The

expression

used

in

the

KEY

option

must

be

a

sequential

record

value,

previously

obtained

by

means

of

the

KEYTO

option.

Using

a

sequential

file

to

access

a

workstation

VSAM

sequential

data

set

When

a

sequential

data

set

is

being

loaded,

the

associated

file

must

be

opened

for

SEQUENTIAL

OUTPUT.

The

records

are

stored

in

the

order

in

which

they

are

presented.

You

can

use

the

KEYTO

option

to

obtain

the

sequential

record

value

of

each

record

as

it

is

written.

You

can

subsequently

use

these

keys

to

achieve

keyed

access

to

the

data

set.

You

can

open

a

SEQUENTIAL

file

that

is

used

to

access

a

workstation

VSAM

sequential

data

set

with

either

the

INPUT

or

the

UPDATE

attribute.

If

you

use

either

of

the

options

KEY

or

KEYTO,

the

file

must

also

have

the

KEYED

attribute.

Sequential

access

occurs

in

the

order

that

the

records

were

originally

loaded

into

the

data

set.

You

can

use

the

KEYTO

option

on

the

READ

statements

to

recover

the

sequential

record

value

of

the

records

that

are

read.

If

you

use

the

KEY

option,

the

record

that

is

recovered

is

the

one

with

the

sequential

record

value

you

specify.

Subsequent

sequential

access

continues

from

the

new

position

in

the

data

set.

For

an

UPDATE

file,

the

WRITE

statement

adds

a

new

record

at

the

end

of

the

data

set.

With

a

REWRITE

statement,

the

record

rewritten

is

the

one

with

the

specified

sequential

record

value

if

you

use

the

KEY

option;

otherwise,

it

is

the

record

accessed

on

the

previous

READ.

Defining

and

loading

a

workstation

VSAM

sequential

data

set

Figure

19

on

page

224

is

an

example

of

a

program

that

defines

and

loads

a

workstation

VSAM

sequential

data

set.

The

PL/I

program

writes

the

data

set

using

a

SEQUENTIAL

OUTPUT

file

and

a

WRITE

FROM

statement.

The

sequential

record

values

of

the

records

could

have

been

obtained

during

the

writing

for

subsequent

use

as

keys

in

a

KEYED

file.

To

do

this,

a

suitable

variable

would

have

to

be

declared

to

hold

the

key

and

the

WRITE...KEYTO

statement

used.

For

example:

Using

workstation

VSAM

sequential

data

sets

Chapter

15.

Defining

and

using

workstation

VSAM

data

sets

223

dcl

Chars

char(7);

/*DDM

uses

4;

BTRIEVE

and

ISAM

use

7

as

shown

*/

write

file(Famfile)

from

(String)

keyto(Chars);

dcl

Chars

char(4);

/*

DDM

uses

4

*/

write

file(Famfile)

from

(String)

keyto(Chars);

The

keys

would

not

normally

be

printable,

but

could

be

retained

for

subsequent

use.

Updating

a

sequential

data

set

The

program

illustrated

in

Figure

19

can

be

used

to

update

a

workstation

VSAM

sequential

data

set.

If

it

is

run

again,

new

records

are

added

on

the

end

of

the

data

set.

/**/

/*

*/

/*

*/

/*

DESCRIPTION

*/

/*

Define

and

load

an

ISAM

sequential

data

set.

*/

/*

*/

/*

*/

/*

USAGE

*/

/*

The

following

commands

are

required

to

establish

*/

/*

the

environment

variables

to

run

this

program:

*/

/*

*/

/*

SET

DD:IN=ISAM1.INP,RECSIZE(38)

*/

/*

SET

DD:FAMFILE=ISAM1.OUT,AMTHD(ISAM),RECSIZE(38)

*/

/*

*/

/**/

CREATE:

proc

options(main);

dcl

FamFile

file

sequential

output

env(organization(consecutive)),

In

file

record

input,

Eof

bit(1)

init(’0’b),

i

fixed(15),

String

char(38);

on

endfile(In)

Eof

=

’1’b;

read

file(In)

into

(String);

do

i=1

by

1

while

(¬Eof);

put

file(sysprint)

skip

edit

(String)

(a);

write

file(FamFile)

from

(String);

read

file(In)

into

(String);

end;

put

skip

edit(i-1,’

records

processed

’)(a);

end

CREATE;

The

input

data

for

this

program

might

look

like

this:

Fred

69

M

Andy

70

M

Susan

72

F

Figure

19.

Defining

and

loading

a

workstation

VSAM

sequential

data

set

Using

workstation

VSAM

sequential

data

sets

224

PL/I

for

Windows:

Programming

Guide

You

can

rewrite

existing

records

in

a

sequential

data

set,

provided

that

the

length

of

the

record

is

not

changed.

You

can

use

a

SEQUENTIAL

or

KEYED

SEQUENTIAL

update

file

to

do

this.

If

you

use

keys,

they

must

be

sequential

record

values

from

a

previous

WRITE

or

READ

statement.

Workstation

VSAM

keyed

data

sets

The

statements

and

options

allowed

for

workstation

VSAM

keyed

data

sets

are

shown

in

Table

20.

Table

20.

Statements

and

options

allowed

for

loading

and

accessing

workstation

VSAM

keyed

data

sets

File

declaration1

Valid

statements,

with

options

you

must

include

Other

options

you

can

also

include

SEQUENTIAL

OUTPUT

BUFFERED

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

LOCATE

based-variable

FILE(file-reference)

KEYFROM(expression);

SET(pointer-reference)

SEQUENTIAL

OUTPUT

UNBUFFERED

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

SEQUENTIAL

INPUT

BUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference)

SET(pointer-reference);

READ

FILE(file-reference);

2

KEY(expression)

or

KEYTO(reference)

KEY(expression)

or

KEYTO(reference)

IGNORE(expression)

SEQUENTIAL

INPUT

UNBUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference);

2

KEY(expression)

or

KEYTO(reference)

IGNORE(expression)

SEQUENTIAL

UPDATE

BUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference)

SET(pointer-reference);

READ

FILE(file-reference);

2

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

REWRITE

FILE(file-reference);

DELETE

FILE(file-reference)

KEY(expression)

or

KEYTO(reference)

KEY(expression)

or

KEYTO(reference)

IGNORE(expression)

FROM(reference)

and/or

KEY(expression)

KEY(expression)

Using

workstation

VSAM

sequential

data

sets

Chapter

15.

Defining

and

using

workstation

VSAM

data

sets

225

Table

20.

Statements

and

options

allowed

for

loading

and

accessing

workstation

VSAM

keyed

data

sets

(continued)

File

declaration1

Valid

statements,

with

options

you

must

include

Other

options

you

can

also

include

SEQUENTIAL

UPDATE

UNBUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference);

2

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

REWRITE

FILE(file-reference)

FROM(reference);

DELETE

FILE(file-reference);

KEY(expression)

or

KEYTO(reference)

KEY(expression)

KEY(expression)

DIRECT3

INPUT

BUFFERED

READ

FILE(file-reference)

INTO(reference)

KEY(expression);

READ

FILE(file-reference)

SET(pointer-reference)

KEY(expression);

DIRECT3

INPUT

UNBUFFERED

READ

FILE(file-reference)

INTO(reference)

KEY(expression);

DIRECT

OUTPUT

BUFFERED

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

DIRECT

OUTPUT

UNBUFFERED

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

DIRECT3

UPDATE

BUFFERED

READ

FILE(file-reference)

INTO(reference)

KEY(expression);

READ

FILE(file-reference)

SET(pointer-reference)

KEY(expression);

REWRITE

FILE(file-reference)

FROM(reference)

KEY(expression);

DELETE

FILE(file-reference)

KEY(expression);

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

Workstation

VSAM

keyed

data

sets

226

PL/I

for

Windows:

Programming

Guide

Table

20.

Statements

and

options

allowed

for

loading

and

accessing

workstation

VSAM

keyed

data

sets

(continued)

File

declaration1

Valid

statements,

with

options

you

must

include

Other

options

you

can

also

include

DIRECT3

UPDATE

UNBUFFERED

READ

FILE(file-reference)

INTO(reference)

KEY(expression);

REWRITE

FILE(file-reference)

FROM(reference)

KEY(expression);

DELETE

FILE(file-reference)

KEY(expression);

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

Notes:

1

The

complete

file

declaration

could

include

the

attributes

FILE

and

RECORD.

If

you

use

any

of

the

options

KEY,

KEYFROM,

or

KEYTO,

you

must

also

include

the

attribute

KEYED

in

the

declaration.

2

The

statement

READ

FILE(file-reference);

is

equivalent

to

the

statement

READ

FILE(file-reference)

IGNORE(1);

3

Do

not

associate

a

DIRECT

file

with

a

workstation

VSAM

data

set

that

has

duplicate

key

capability.

Loading

a

workstation

VSAM

keyed

data

set

When

a

keyed

data

set

is

being

loaded,

you

must

open

the

associated

file

for

KEYED

SEQUENTIAL

OUTPUT.

You

must

present

the

records

in

ascending

key

order,

and

you

must

use

the

KEYFROM

option.

If

a

keyed

data

set

already

contains

some

records,

and

you

open

the

associated

file

with

the

SEQUENTIAL

and

OUTPUT

attributes,

you

can

add

records

at

the

end

of

the

data

set

only.

Again,

you

must

present

the

records

in

ascending

key

order,

and

you

must

use

the

KEYFROM

option.

In

addition,

the

first

record

you

present

must

have

a

key

greater

than

the

highest

key

present

on

the

data

set.

Figure

20

on

page

228

is

an

example

of

a

program

that

loads

a

workstation

VSAM

keyed

data

set.

Within

the

PL/I

program,

a

KEYED

SEQUENTIAL

OUTPUT

file

is

used

with

a

WRITE...FROM...KEYFROM

statement.

The

data

is

presented

in

ascending

key

order.

A

keyed

data

set

must

be

loaded

in

this

manner.

Workstation

VSAM

keyed

data

sets

Chapter

15.

Defining

and

using

workstation

VSAM

data

sets

227

/**/

/*

*/

/*

DESCRIPTION

*/

/*

Load

an

ISAM

keyed

data

set.

*/

/*

*/

/*

*/

/*

USAGE

*/

/*

The

following

commands

are

required

to

establish

*/

/*

the

environment

variables

to

run

this

program:

*/

/*

*/

/*

SET

DD:DIREC=ISAM2.OUT,AMTHD(ISAM)

*/

/*

SET

DD:SYSIN=ISAM2.INP,RECSIZE(80)

*/

/*

*/

/**/

NAMELD:

proc

options(main);

dcl

Direc

file

record

keyed

sequential

output

env(organization(indexed)

recsize(23)

keyloc(1)

keylength(20)

);

dcl

Eof

bit(1)

init(’0’b);

dcl

1

IoArea,

5

Name

char(20),

5

Number

char(3);

on

endfile(sysin)

Eof

=

’1’b;

open

file(Direc);

get

file(sysin)

edit(Name,Number)

(a(20),a(3));

do

while

(¬Eof);

write

file(Direc)

from(IoArea)

keyfrom(Name);

get

file(sysin)

edit(Name,Number)

(a(20),a(3));

end;

close

file(Direc);

end

NAMELD;

Figure

20.

Defining

and

loading

a

workstation

VSAM

keyed

data

set

(Part

1

of

2)

Workstation

VSAM

keyed

data

sets

228

PL/I

for

Windows:

Programming

Guide

Using

a

SEQUENTIAL

file

to

access

a

workstation

VSAM

keyed

data

set

You

can

open

a

SEQUENTIAL

file

that

is

used

to

access

a

keyed

data

set

with

either

the

INPUT

or

the

UPDATE

attribute.

For

READ

statements

without

the

KEY

option,

the

records

are

recovered

in

ascending

key

order

(or

in

descending

key

order

if

you

use

the

BKWD

option).

You

can

obtain

the

key

of

a

record

recovered

in

this

way

by

using

the

KEYTO

option.

If

you

use

the

KEY

option,

the

record

recovered

by

a

READ

statement

is

the

one

with

the

specified

key.

This

READ

statement

positions

the

data

set

at

the

specified

record;

subsequent

sequential

reads

recover

the

following

records

in

key

sequence.

WRITE

statements

with

the

KEYFROM

option

are

allowed

for

KEYED

SEQUENTIAL

UPDATE

files.

You

can

make

insertions

anywhere

in

the

data

set,

without

respect

to

the

position

of

any

previous

access.

The

KEY

condition

is

raised

if

an

attempt

is

made

to

insert

a

record

with

the

same

key

as

a

record

that

already

exists

on

the

data

set.

REWRITE

statements

with

or

without

the

KEY

option

are

allowed

for

UPDATE

files.

If

you

use

the

KEY

option,

the

record

that

is

rewritten

is

the

record

with

the

specified

key;

otherwise,

it

is

the

record

that

was

accessed

by

the

previous

READ

statement.

Using

a

DIRECT

file

to

access

a

workstation

VSAM

keyed

data

set

You

can

open

a

DIRECT

file

that

is

used

to

access

a

workstation

VSAM

keyed

data

set

with

the

INPUT,

OUTPUT,

or

UPDATE

attribute.

The

input

file

for

this

program

could

be:

ACTION,G.

162

BAKER,R.

152

BRAMLEY,O.H.

248

CHEESMAN,D.

141

CORY,G.

336

ELLIOTT,D.

875

FIGGINS,S.

413

HARVEY,C.D.W.

205

HASTINGS,G.M.

391

KENDALL,J.G.

294

LANCASTER,W.R.

624

MILES,R.

233

NEWMAN,M.W.

450

PITT,W.H.

515

ROLF,D.E.

114

SHEERS,C.D.

241

SURCLIFFE,M.

472

TAYLOR,G.C.

407

WILTON,L.W.

404

WINSTONE,E.M.

307

Figure

20.

Defining

and

loading

a

workstation

VSAM

keyed

data

set

(Part

2

of

2)

Workstation

VSAM

keyed

data

sets

Chapter

15.

Defining

and

using

workstation

VSAM

data

sets

229

If

you

use

a

DIRECT

OUTPUT

file

to

add

records

to

the

data

set,

and

if

an

attempt

is

made

to

insert

a

record

with

the

same

key

as

a

record

that

already

exists,

the

KEY

condition

is

raised.

If

you

use

a

DIRECT

INPUT

or

DIRECT

UPDATE

file,

you

can

read,

write,

rewrite,

or

delete

records

in

the

same

way

as

for

a

KEYED

SEQUENTIAL

file.

Figure

21

shows

one

method

you

can

use

to

update

a

keyed

data

set.

/**/

/*

*/

/*

*/

/*

DESCRIPTION

*/

/*

Update

an

ISAM

keyed

data

set

by

key.

*/

/*

*/

/*

*/

/*

USAGE

*/

/*

The

following

commands

are

required

to

establish

*/

/*

the

environment

variables

to

run

this

program:

*/

/*

*/

/*

SET

DD:DIREC=ISAM2.OUT,AMTHD(ISAM)

*/

/*

SET

DD:SYSIN=ISAM3.INP,RECSIZE(80)

*/

/*

*/

/*

Note:

This

program

is

using

ISAM2.OUT

file

created

by

the

*/

/*

previous

sample

program

NAMELD.

*/

/*

*/

/**/

DIRUPDT:

proc

options(main);

dcl

Direc

file

record

keyed

update

env(organization(indexed)

recsize(23)

keyloc(1)

keylength(20)

);

dcl

1

IoArea,

5

NewArea,

10

Name

char(20),

10

Number

char(3),

5

Code

char(1);

dcl

oncode

builtin;

dcl

Eof

bit(1)

init(’0’b);

on

endfile(sysin)

Eof

=

’1’b;

on

key(Direc)

begin;

if

oncode=51

then

put

file(sysprint)

skip

edit

(’Not

found:

’,Name)(a(15),a);

if

oncode=52

then

put

file(sysprint)

skip

edit

(’Duplicate:

’,Name)(a(15),a);

end;

open

file(Direc)

direct

update;

Figure

21.

Updating

a

workstation

VSAM

keyed

data

set

(Part

1

of

2)

Workstation

VSAM

keyed

data

sets

230

PL/I

for

Windows:

Programming

Guide

A

DIRECT

update

file

is

used

and

the

data

is

altered

according

to

a

code

that

is

passed

in

the

records

in

the

file

SYSIN:

A

Add

a

new

record

C

Change

the

number

of

an

existing

name

D

Delete

a

record

The

name,

number,

and

code

are

read

in

and

action

taken

according

to

the

value

of

the

code.

A

KEY

ON-unit

is

used

to

handle

any

incorrect

keys.

When

the

updating

is

finished

the

file

DIREC

is

closed

and

reopened

with

the

attributes

SEQUENTIAL

INPUT.

The

file

is

then

read

sequentially

and

printed.

get

file(sysin)

edit

(Name,Number,Code)

(a(20),a(3),a(1));

do

while

(¬Eof);

put

file(sysprint)

skip

edit

(’

’,Name,’#’,Number,’

’,Code)

(a(1),a(20),a(1),a(3),a(1),a(1));

select

(Code);

when(’A’)

write

file(Direc)

from(NewArea)

keyfrom(Name);

when(’C’)

rewrite

file(Direc)

from(NewArea)

key(Name);

when(’D’)

delete

file(Direc)

key(Name);

otherwise

put

file(sysprint)

skip

edit

(’Invalid

code:

’,Name)

(a(15),a);

end;

get

file(sysin)

edit

(Name,Number,Code)

(a(20),a(3),a(1));

end;

close

file(Direc);

put

file(sysprint)

page;

/*

Display

the

updated

file

*/

open

file(Direc)

sequential

input;

Eof

=

’0’b;

on

endfile(Direc)

Eof

=

’1’b;

read

file(Direc)

into(NewArea);

do

while(¬Eof);

put

file(sysprint)

skip

edit(Name,Number)(a,a);

read

file(Direc)

into(NewArea);

end;

close

file(Direc);

end

DIRUPDT;

An

input

file

for

this

program

might

look

like

this

one:

NEWMAN,M.W.

516C

GOODFELLOW,D.T.

889A

MILES,R.

D

HARVEY,C.D.W.

209A

BARTLETT,S.G.

183A

CORY,G.

D

READ,K.M.

001A

PITT,W.H.

X

ROLF,D.E.

D

ELLIOTT,D.

291C

HASTINGS,G.M.

D

BRAMLEY,O.H.

439C

Figure

21.

Updating

a

workstation

VSAM

keyed

data

set

(Part

2

of

2)

Workstation

VSAM

keyed

data

sets

Chapter

15.

Defining

and

using

workstation

VSAM

data

sets

231

Workstation

VSAM

direct

data

sets

The

statements

and

options

allowed

for

workstation

VSAM

direct

data

sets

are:

Table

21.

Statements

and

options

allowed

for

loading

and

accessing

workstation

VSAM

direct

data

sets

File

declaration1

Valid

statements,

with

options

you

must

include

Other

options

you

can

also

include

SEQUENTIAL

OUTPUT

BUFFERED

WRITE

FILE(file-reference)

FROM(reference);

LOCATE

based-variable

FILE(file-reference);

KEYFROM(expression)

or

KEYTO(reference)

SET(pointer-reference)

SEQUENTIAL

OUTPUT

UNBUFFERED

WRITE

FILE(file-reference)

FROM(reference);

KEYFROM(expression)

or

KEYTO(reference)

SEQUENTIAL

INPUT

BUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference)

SET(pointer-reference);

READ

FILE(file-reference);

2

KEY(expression)

or

KEYTO(reference)

KEY(expression)

or

KEYTO(reference)

IGNORE(expression)

SEQUENTIAL

INPUT

UNBUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference);

2

KEY(expression)

or

KEYTO(reference)

IGNORE(expression)

SEQUENTIAL

UPDATE

BUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-reference)

SET(pointer-reference);

READ

FILE(file-reference);

2

WRITE

FILE(file-reference)

FROM(reference);

REWRITE

FILE(file-reference);

DELETE

FILE(file-reference);

KEY(expression)

or

KEYTO(reference)

KEY(expression)

or

KEYTO(reference)

IGNORE(expression)

KEYFROM(expression)

or

KEYTO(reference)

FROM(reference)

and/or

KEY(expression)

KEY(expression)

SEQUENTIAL

UPDATE

UNBUFFERED

READ

FILE(file-reference)

INTO(reference);

READ

FILE(file-expression);

2

WRITE

FILE(file-reference)

FROM(reference);

REWRITE

FILE(file-reference)

FROM(reference);

DELETE

FILE(file-reference);

KEY(expression)

or

KEYTO(reference)

IGNORE(expression)

KEYFROM(expression)

or

KEYTO(reference)

KEY(expression)

KEY(expression)

Workstation

VSAM

direct

data

sets

232

PL/I

for

Windows:

Programming

Guide

Table

21.

Statements

and

options

allowed

for

loading

and

accessing

workstation

VSAM

direct

data

sets

(continued)

File

declaration1

Valid

statements,

with

options

you

must

include

Other

options

you

can

also

include

DIRECT

OUTPUT

BUFFERED

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

DIRECT

OUTPUT

UNBUFFERED

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

DIRECT

INPUT

BUFFERED

READ

FILE(file-reference)

INTO(reference)

KEY(expression);

READ

FILE(file-reference)

SET(pointer-reference)

KEY(expression);

DIRECT

INPUT

UNBUFFERED

READ

FILE(file-reference)

KEY(expression);

DIRECT

UPDATE

BUFFERED

READ

FILE(file-reference)

INTO(reference)

KEY(expression);

READ

FILE(file-reference)

SET(pointer-reference)

KEY(expression);

REWRITE

FILE(file-reference)

FROM(reference)

KEY(expression);

DELETE

FILE(file-reference)

KEY(expression);

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

DIRECT

UPDATE

UNBUFFERED

READ

FILE(file-reference)

INTO(reference)

KEY(expression);

REWRITE

FILE(file-reference)

FROM(reference)

KEY(expression);

DELETE

FILE(file-reference)

KEY(expression);

WRITE

FILE(file-reference)

FROM(reference)

KEYFROM(expression);

Workstation

VSAM

direct

data

sets

Chapter

15.

Defining

and

using

workstation

VSAM

data

sets

233

Table

21.

Statements

and

options

allowed

for

loading

and

accessing

workstation

VSAM

direct

data

sets

(continued)

File

declaration1

Valid

statements,

with

options

you

must

include

Other

options

you

can

also

include

Notes:

1

The

complete

file

declaration

would

include

the

attributes

FILE

and

RECORD.

If

you

use

any

of

the

options

KEY,

KEYFROM,

or

KEYTO,

your

declaration

must

also

include

the

attribute

KEYED.

2

The

statement

READ

FILE(file-reference);

is

equivalent

to

the

statement

READ

FILE(file-reference)

IGNORE(1);

Loading

a

workstation

VSAM

direct

data

set

When

a

direct

data

set

is

being

loaded,

you

must

open

the

associated

file

for

OUTPUT.

Use

either

a

DIRECT

or

a

SEQUENTIAL

file.

For

a

DIRECT

OUTPUT

file,

each

record

is

placed

in

the

position

specified

by

the

relative

record

number

(or

key)

in

the

KEYFROM

option

of

the

WRITE

statement

(see

“Using

keys

for

workstation

VSAM

data

sets”

on

page

218).

For

a

SEQUENTIAL

OUTPUT

file,

use

WRITE

statements

with

or

without

the

KEYFROM

option.

If

you

specify

the

KEYFROM

option,

the

record

is

placed

in

the

specified

slot;

if

you

omit

it,

the

record

is

placed

in

the

slot

following

the

current

position.

There

is

no

requirement

for

the

records

to

be

presented

in

ascending

relative

record

number

order.

If

you

omit

the

KEYFROM

option,

you

can

obtain

the

relative

record

number

of

the

written

record

by

using

the

KEYTO

option.

If

you

want

to

load

a

direct

data

set

sequentially,

without

use

of

the

KEYFROM

or

KEYTO

options,

you

are

not

required

to

use

the

KEYED

attribute.

It

is

an

error

to

attempt

to

load

a

record

into

a

position

that

already

contains

a

record.

If

you

use

the

KEYFROM

option,

the

KEY

condition

is

raised;

if

you

omit

it,

the

ERROR

condition

is

raised.

Figure

22

on

page

235

is

an

example

of

a

program

that

defines

and

loads

a

workstation

VSAM

direct

data

set.

In

the

PL/I

program,

the

data

set

is

loaded

with

a

DIRECT

OUTPUT

file

and

a

WRITE...FROM...KEYFROM

statement

is

used.

If

the

data

were

in

order

and

the

keys

in

sequence,

it

would

be

possible

to

use

a

SEQUENTIAL

file

and

write

into

the

data

set

from

the

start.

The

records

would

then

be

placed

in

the

next

available

slot

and

given

the

appropriate

number.

The

number

of

the

key

for

each

record

could

be

returned

using

the

KEYTO

option.

Workstation

VSAM

direct

data

sets

234

PL/I

for

Windows:

Programming

Guide

/**/

/*

DESCRIPTION

*/

/*

Load

an

ISAM

direct

data

set.

*/

/*

*/

/*

USAGE

*/

/*

The

following

commands

are

required

to

establish

*/

/*

the

environment

variables

to

run

this

program:

*/

/*

*/

/*

SET

DD:SYSIN=ISAM4.INP,RECSIZE(80)

*/

/*

SET

DD:NOS=ISAM4.OUT,AMTHD(ISAM),RECCOUNT(100)

*/

/**/

CREATD:

proc

options(main);

dcl

Nos

file

record

output

direct

keyed

env(organization(relative)

recsize(20)

);

dcl

Sysin

file

input

record;

dcl

1

In_Area,

2

Name

char(20),

2

Number

char(

2);

dcl

Sysin_Eof

bit

(1)

init(’0’b);

dcl

Ntemp

fixed(15);

on

endfile

(Sysin)

Sysin_Eof

=

’1’b;

open

file(Nos);

read

file(Sysin)

into(In_Area);

do

while(¬Sysin_Eof);

Ntemp

=

Number;

write

file(Nos)

from(Name)

keyfrom(Ntemp);

put

file(sysprint)

skip

edit

(In_Area)

(a);

read

file(Sysin)

into(In_Area);

end;

close

file(Nos);

end

CREATD;

Figure

22.

Loading

a

workstation

VSAM

direct

data

set

(Part

1

of

2)

Workstation

VSAM

direct

data

sets

Chapter

15.

Defining

and

using

workstation

VSAM

data

sets

235

Using

a

SEQUENTIAL

file

to

access

a

workstation

VSAM

direct

data

set

You

can

open

a

SEQUENTIAL

file

that

is

used

to

access

a

direct

data

set

with

either

the

INPUT

or

the

UPDATE

attribute.

If

you

use

any

of

the

options

KEY,

KEYTO,

or

KEYFROM,

your

file

must

also

use

the

KEYED

attribute.

Using

READ

statements

For

READ

statements

without

the

KEY

option,

the

records

are

recovered

in

ascending

relative

record

number

order.

Any

empty

slots

in

the

data

set

are

skipped.

If

you

use

the

KEY

option,

the

record

recovered

by

a

READ

statement

is

the

one

with

the

relative

record

number

you

specify.

Such

a

READ

statement

positions

the

data

set

at

the

specified

record;

subsequent

sequential

reads

recover

the

following

records

in

sequence.

Using

WRITE

statements

WRITE

statements

with

or

without

the

KEYFROM

option

are

allowed

for

KEYED

SEQUENTIAL

UPDATE

files.

You

can

make

insertions

anywhere

in

the

data

set,

regardless

of

the

position

of

any

previous

access.

For

WRITE

with

the

KEYFROM

option,

the

KEY

condition

is

raised

if

an

attempt

is

made

to

insert

a

record

with

the

same

relative

record

number

as

a

record

that

already

exists

on

the

data

set.

If

you

omit

the

KEYFROM

option,

an

attempt

is

made

to

write

the

record

in

the

next

slot,

relative

to

the

current

position.

The

ERROR

condition

is

raised

if

this

slot

is

not

empty.

You

can

use

the

KEYTO

option

to

recover

the

key

of

a

record

that

is

added

by

means

of

a

WRITE

statement

without

the

KEYFROM

option.

This

could

be

the

input

file

for

this

program:

ACTION,G.

12

BAKER,R.

13

BRAMLEY,O.H.

28

CHEESNAME,L.

11

CORY,G.

36

ELLIOTT,D.

85

FIGGINS,E.S.

43

HARVEY,C.D.W.

25

HASTINGS,G.M.

31

KENDALL,J.G.

24

LANCASTER,W.R.

64

MILES,R.

23

NEWMAN,M.W.

40

PITT,W.H.

55

ROLF,D.E.

14

SHEERS,C.D.

21

SURCLIFFE,M.

42

TAYLOR,G.C.

47

WILTON,L.W.

44

WINSTONE,E.M.

37

Figure

22.

Loading

a

workstation

VSAM

direct

data

set

(Part

2

of

2)

Workstation

VSAM

direct

data

sets

236

PL/I

for

Windows:

Programming

Guide

Using

the

REWRITE

or

DELETE

statements

REWRITE

statements,

with

or

without

the

KEY

option,

are

allowed

for

UPDATE

files.

If

you

use

the

KEY

option,

the

record

that

is

rewritten

is

the

record

with

the

relative

record

number

you

specify;

otherwise,

it

is

the

record

that

was

accessed

by

the

previous

READ

statement.

You

can

also

use

DELETE

statements,

with

or

without

the

KEY

option,

to

delete

records

from

the

dataset.

Using

a

DIRECT

file

to

access

a

workstation

VSAM

direct

data

set

A

DIRECT

file

used

to

access

a

direct

data

set

can

have

the

OUTPUT,

INPUT,

or

UPDATE

attribute.

You

can

read,

write,

rewrite,

or

delete

records

exactly

as

though

a

you

were

using

a

KEYED

SEQUENTIAL

file.

Figure

23

on

page

238

shows

a

direct

data

set

being

updated.

A

DIRECT

UPDATE

file

is

used

and

new

records

are

written

by

key.

There

is

no

need

to

check

for

the

records

being

empty,

because

the

empty

records

are

not

available

under

workstation

VSAM.

In

the

second

half

of

the

program,

the

updated

file

is

printed.

Again,

there

is

no

need

to

check

for

the

empty

records

as

there

is

in

REGIONAL(1).

Workstation

VSAM

direct

data

sets

Chapter

15.

Defining

and

using

workstation

VSAM

data

sets

237

/**/

/*

*/

/*

*/

/*

DESCRIPTION

*/

/*

Update

an

ISAM

direct

data

set

by

key.

*/

/*

*/

/*

*/

/*

USAGE

*/

/*

The

following

commands

are

required

to

establish

*/

/*

the

environment

variables

to

run

this

program.

*/

/*

*/

/*

SET

DD:SYSIN=ISAM5.INP,RECSIZE(80)

*/

/*

SET

DD:NOS=ISAM4.OUT,AMTHD(ISAM),APPEND(Y)

*/

/*

*/

/*

Note:

This

sample

program

is

using

the

direct

ISAM

dataset

*/

/*

ISAM4.OUT

created

by

the

previous

sample

program

CREATD.

*/

/*

*/

/**/

UPDATD:

proc

options(main);

dcl

Nos

file

record

keyed

env(organization(relative));

dcl

Sysin

file

input

record;

dcl

Sysin_Eof

bit

(1)

init(’0’b);

dcl

Nos_Eof

bit

(1)

init(’0’b);

dcl

1

In_Area,

2

Name

char(20),

2

(CNewNo,COldNo)

char(

2),

2

In_Area_1

char(

1),

2

Code

char(

1);

dcl

IoField

char(20);

dcl

NewNo

fixed(15);

dcl

OldNo

fixed(15);

dcl

oncode

builtin;

on

endfile

(Sysin)

sysin_Eof

=

’1’b;

open

file

(Nos)

direct

update;

Figure

23.

Updating

a

workstation

VSAM

direct

data

set

by

key

(Part

1

of

3)

Workstation

VSAM

direct

data

sets

238

PL/I

for

Windows:

Programming

Guide

/*

trap

errors

*/

on

key(Nos)

begin;

if

oncode=51

then

put

file(sysprint)

skip

edit

(’Not

found:’,

Name)

(a(15),

a);

if

oncode=52

then

put

file(sysprint)

skip

edit

(’Duplicate:’,

Name)

(a(15),

a);

end;

/*

update

the

direct

data

set

*/

read

file(Sysin)

into(In_Area);

do

while(¬Sysin_Eof);

if

CNewNo¬=’

’

then

NewNo

=

CNewNo;

else

NewNo

=

0;

if

COldNo¬=’

’

then

OldNo

=

COldNo;

else

OldNo

=

0;

select(Code);

when

(’A’)

write

file(Nos)

keyfrom(NewNo)

from(Name);

when

(’C’)

do;

delete

file(Nos)

key(OldNo);

write

file(Nos)

keyfrom(NewNo)

from(Name);

end;

when(’D’)

delete

file(Nos)

key(OldNo);

otherwise

put

file(sysprint)

skip

list

(’Invalid

code:’,Name);

end;

read

file(Sysin)

into(In_Area);

end;

close

file(Sysin),file(Nos);

/*

open

and

print

updated

file

*/

open

file(Nos)

sequential

input;

on

endfile

(Nos)

Nos_Eof

=

’1’b;

Figure

23.

Updating

a

workstation

VSAM

direct

data

set

by

key

(Part

2

of

3)

Workstation

VSAM

direct

data

sets

Chapter

15.

Defining

and

using

workstation

VSAM

data

sets

239

Workstation

VSAM

direct

data

sets

240

PL/I

for

Windows:

Programming

Guide

Part

5.

Using

PL/I

with

databases

read

file(Nos)

into(IoField)

keyto(CNewNo);

do

while(¬Nos_Eof);

put

file

(sysprint)

skip

edit

(CNewNo,IoField)(a(5),a);

read

file(Nos)

into(IoField)

keyto(CNewNo);

end;

close

file(Nos);

end

UPDATD;

An

input

file

for

this

program

might

look

like

this:

NEWMAN,M.W.

5640

C

GOODFELLOW,D.T.

89

A

MILES,R.

23

D

HARVEY,C.D.W.

29

A

BARTLETT,S.G.

13

A

CORY,G.

36

D

READ,K.M.

01

A

PITT,W.H.

55

X

ROLF,D.F.

14

D

ELLIOTT,D.

4285

C

HASTINGS,G.M.

31

D

BRAMLEY,O.H.

4928

C

Figure

23.

Updating

a

workstation

VSAM

direct

data

set

by

key

(Part

3

of

3)

241

242

PL/I

for

Windows:

Programming

Guide

Chapter

16.

Open

Database

Connectivity

Introducing

ODBC

.

.

.

.

.

.

.

.

.

.

. 243

Background

.

.

.

.

.

.

.

.

.

.

.

.

. 243

ODBC

Driver

Manager

.

.

.

.

.

.

.

.

. 244

Choosing

embedded

SQL

or

ODBC

.

.

.

.

. 244

Using

the

ODBC

drivers

.

.

.

.

.

.

.

.

.

. 244

Online

help

.

.

.

.

.

.

.

.

.

.

.

.

. 244

Environment-specific

information

.

.

.

.

.

. 244

Driver

names

.

.

.

.

.

.

.

.

.

.

. 245

Configuring

data

sources

.

.

.

.

.

.

. 245

Connecting

to

a

data

source

.

.

.

.

.

.

. 245

Using

a

logon

dialog

box

.

.

.

.

.

.

. 245

Using

a

connection

string

.

.

.

.

.

.

. 245

Error

messages

.

.

.

.

.

.

.

.

.

.

.

. 246

ODBC

APIs

from

PL/I

.

.

.

.

.

.

.

.

.

. 246

CALL

interface

convention

.

.

.

.

.

.

.

. 247

Using

the

supplied

include

files

.

.

.

.

.

. 247

Mapping

of

ODBC

C

types

.

.

.

.

.

.

.

. 248

Setting

licensing

information

for

ODBC

Driver

Manager/driver

.

.

.

.

.

.

.

.

.

.

. 249

Sample

program

using

supplied

include

files

.

.

. 249

This

chapter

contains

information

to

help

you

use

the

Open

Database

Connectivity

(ODBC)

interface

in

your

PL/I

applications.

With

ODBC,

not

only

can

you

access

data

from

a

variety

of

databases

and

file

systems

that

support

the

ODBC

interface,

but

you

can

do

so

dynamically.

Your

PL/I

applications

that

use

embedded

SQL

for

database

access

must

be

processed

by

a

preprocessor

for

a

particular

database

and

have

to

be

recompiled

if

the

target

database

changes.

Because

ODBC

is

a

call

interface,

there

is

no

compile-time

designation

of

the

target

database

as

there

is

with

embedded

SQL.

Not

only

can

you

avoid

having

multiple

versions

of

your

application

for

multiple

databases,

but

your

application

can

dynamically

determine

which

database

to

target.

Introducing

ODBC

ODBC

is

a

specification

for

an

application

program

interface

(API)

that

enables

applications

to

access

multiple

database

management

systems

using

Structured

Query

Language

(SQL).

ODBC

permits

maximum

interoperability:

a

single

application

can

access

many

different

database

management

systems.

This

enables

you

to

develop,

compile,

and

ship

an

application

without

targeting

a

specific

type

of

data

source.

Users

can

then

add

the

database

drivers,

which

link

the

application

to

the

database

management

systems

of

their

choice.

Background

The

X/Open

Company

and

the

SQL

Access

Group

jointly

developed

a

specification

for

a

callable

SQL

interface,

referred

to

as

the

X/Open

Call

Level

Interface.

The

goal

of

this

interface

is

to

increase

portability

of

applications

by

enabling

them

to

become

independent

of

any

one

database

vendor’s

programming

interface.

ODBC

was

originally

developed

by

Microsoft

for

Microsoft

operating

systems

based

on

a

preliminary

draft

of

X/Open

CLI.

Since

this

time,

other

vendors

have

provided

ODBC

drivers

that

run

on

other

platforms,

such

as

OS/2

and

UNIX

systems.

The

descriptions

and

examples

in

this

chapter

apply

to

ODBC

Version

3.0.

For

detailed

information

about

ODBC

include

files,

see

“Using

the

supplied

include

files”

on

page

247.

243

ODBC

Driver

Manager

When

you

use

the

ODBC

interface,

your

application

makes

calls

through

a

Driver

Manager.

The

Driver

Manager

dynamically

loads

the

necessary

driver

for

the

database

server

to

which

the

application

connects.

The

driver,

in

turn,

accepts

the

call,

sends

the

SQL

to

the

specified

data

source

(database),

and

returns

any

result.

Choosing

embedded

SQL

or

ODBC

Embedded

SQL

and

ODBC

have

advantages

particular

to

them.

Some

of

the

advantages

of

embedded

SQL

are:

v

Static

SQL

usually

provides

better

performance

than

dynamic

SQL.

It

does

not

have

to

be

prepared

at

run

time,

thus

reducing

both

processing

and

network

traffic.

v

With

static

SQL,

database

administrators

have

to

grant

users

access

to

a

package

only

rather

than

access

to

each

table

or

view

that

is

used.

Some

of

the

advantages

of

ODBC

are:

v

It

provides

a

consistent

interface

regardless

of

what

kind

of

database

server

is

used.

v

You

can

have

more

than

one

concurrent

connection.

v

Applications

do

not

have

to

be

bound

to

each

database

on

which

they

execute.

Although

PL/I

for

Windows

does

this

bind

for

you

automatically,

it

binds

automatically

to

only

one

database.

If

you

want

to

choose

which

database

to

connect

to

dynamically

at

run

time,

you

must

take

extra

steps

to

bind

to

a

different

database.

Using

the

ODBC

drivers

To

enable

ODBC

for

data

access

in

PL/I,

you

must

install

the

ODBC

Driver

Manager

and

drivers

by

selecting

the

“ODBC

Drivers”

component

during

installation.

Important:

During

the

installation

process,

a

license

file

for

the

ODBC

driver

is

installed

on

your

system.

A

file

named

ivib.lic

is

installed

in

x:\plidir\ODBC,

where

x

and

plidir

are

the

drive

and

directory

respectively,

where

PL/I

for

Windows

is

installed.

You

must

keep

this

file

in

the

install

directory

because

it

is

used

when

you

run

your

application

to

verify

that

you

are

licensed

to

use

the

ODBC

driver.

In

“Setting

licensing

information

for

ODBC

Driver

Manager/driver”

on

page

249

you

learn

how

to

use

a

function

call

to

trigger

the

verification.

Online

help

Online

help

is

available

for

the

ODBC

drivers,

both

as

a

reference

book

and

as

context-sensitive

help.

The

specific

file

names

and

so

on

may

differ;

you

should

note

the

names

given

in

this

section

for

the

file

names

for

PL/I.

Environment-specific

information

The

ODBC

drivers

are

32-bit

drivers.

The

required

network

software

supplied

by

your

database

system

vendors

must

be

32-bit

compliant.

Introducing

ODBC

244

PL/I

for

Windows:

Programming

Guide

Driver

names

The

drivers

for

Windows

should

be

at

the

ODBC

3.0

level

or

higher.

ODBC.INI

is

a

subkey

of

the

HKEY_CURRENT_USER\\SOFTWARE\\ODBC

key

in

the

Windows

registry.

The

ODBC.INI

subkey

is

maintained

by

the

ODBC

Administrator,

which

is

located

in

the

main

PL/I

program

group.

Since

Windows

can

support

multiple

users,

the

ODBC.INI

subkey

is

stored

under

unique

user

keys

in

the

registry.

Configuring

data

sources

A

data

source

consists

of

a

DBMS

and

any

remote

operating

system

and

network

necessary

to

access

it.

After

the

drivers

have

been

installed,

the

data

source

must

be

configured

using

the

ODBC

Administrator

program,

which

is

located

in

the

main

PL/I

program

group.

Because

Windows

can

host

multiple

users,

each

user

must

configure

their

own

data

sources.

For

detailed

configuration

information

for

the

specific

driver

you

wish

to

configure,

refer

to

the

appropriate

section

of

the

on-line

help.

Connecting

to

a

data

source

Your

ODBC

application

needs

to

connect

to

the

data

source

either

using

a

logon

dialog

box

or

a

connection

string,

depending

on

the

data

source.

Using

a

logon

dialog

box

Some

ODBC

applications

display

a

logon

dialog

box

when

you

are

connecting

to

a

data

source.

In

these

cases,

the

data

source

name

has

already

been

specified.

In

the

logon

dialog

box,

do

the

following:

1.

Type

the

name

of

the

remote

database

or

select

the

name

of

the

remote

database

from

the

Database

Name

drop-down

list.

You

must

have

cataloged

any

database

you

want

to

access

from

the

client.

2.

If

required,

type

your

user

name

(authorization

ID).

3.

If

required,

type

your

password.

If

you

leave

your

user

name

and

password

blank,

the

ODBC

application

assumes

you

have

already

logged

on

using

SQLLOGN2

(under

DOS)

or

using

User

Profile

Management.

If

you

have

not,

the

application

returns

an

error.

You

must

either

type

your

user

name

and

password

in

the

dialog

box

or

log

on

using

SQLLOGN2

and

STARTDRQ

(under

DOS)

or

using

User

Profile

Management.

4.

Click

OK

to

complete

the

logon

and

to

update

the

values

in

ODBC.INI.

Using

a

connection

string

If

your

application

requires

a

connection

string

to

connect

to

a

data

source,

you

must

specify

the

data

source

name

that

tells

the

driver

which

ODBC.INI

section

to

use

for

the

default

connection

information.

Optionally,

you

may

specify

attribute=value

pairs

in

the

connection

string

to

override

the

default

values

stored

in

ODBC.INI.

These

values

are

not

written

to

ODBC.INI.

You

can

specify

either

long

or

short

names

in

the

connection

string.

The

connection

string

has

the

form:

DSN=data_source_name[;attribute=value[;attribute=value]...]

An

example

of

a

connection

string

for

INFORMIX

5

is

DSN=INFORMIX

TABLES;DB=PAYROLL

Introducing

ODBC

Chapter

16.

Open

Database

Connectivity

245

Error

messages

Error

messages

can

come

from

the

following

sources:

v

An

ODBC

driver

v

The

database

system

v

The

Driver

Manager.

An

error

reported

on

an

ODBC

driver

has

the

following

format:

[vendor]

[ODBC_component]

message

ODBC_component

is

the

component

in

which

the

error

occurred.

For

example,

an

error

message

from

INTERSOLV’s

SQL

Server

driver

would

look

like

this:

[INTERSOLV]

[ODBC

SQL

Server

driver]

Login

incorrect.

If

you

get

this

type

of

error,

check

the

last

ODBC

call

your

application

made

for

possible

problems

or

contact

your

ODBC

application

vendor.

An

error

that

occurs

in

the

data

source

includes

the

data

source

name,

in

the

following

format:

[vendor]

[ODBC_component]

[data_source]

message

With

this

type

of

message,

ODBC_component

is

the

component

that

received

the

error

from

the

data

source

indicated.

For

example,

you

may

get

the

following

message

from

an

Oracle

data

source:

[INTERSOLV]

[ODBC

Oracle

driver]

[Oracle]

ORA-0919:

specified

length

too

long

for

CHAR

column

If

you

get

this

type

of

error,

you

did

something

incorrectly

with

the

database

system.

Check

your

database

system

documentation

for

more

information

or

consult

your

database

administrator.

In

this

example,

you

would

check

your

Oracle

documentation.

The

Driver

Manager

is

an

application

that

establishes

connections

with

drivers,

submits

requests

to

drivers,

and

returns

results

to

applications.

An

error

that

occurs

in

the

Driver

Manager

has

the

following

format:

[vendor]

[ODBC

DLL]

message

vendor

can

be

Microsoft

or

INTERSOLV.

For

example,

an

error

from

the

Microsoft

Driver

Manager

might

look

like

this:

[Microsoft]

[ODBC

DLL]

Driver

does

not

support

this

function

ODBC

APIs

from

PL/I

Included

with

VA

PL/I

are

ODBC

include

files

that

make

it

easier

for

you

to

access

data

bases

with

ODBC

drivers

using

ODBC

calls

from

your

PL/I

programs.

This

section

describes

the

supplied

ODBC

include

files,

how

ODBC

API

argument

types

map

to

PL/I

data

descriptions,

and

additional

PL/I

functions

and

considerations

applicable

to

ODBC

APIs.

For

details

on

the

ODBC

APIs,

see

the

online

help.

For

specific

information

related

to

an

ODBC

driver,

such

as

the

ODBC

level

or

extensions

supported

by

that

driver,

please

refer

to

the

specifications

available

with

that

driver.

Introducing

ODBC

246

PL/I

for

Windows:

Programming

Guide

The

following

illustrate

how

to

access

ODBC

from

PL/I

programs:

“CALL

interface

convention”

“Using

the

supplied

include

files”

“Mapping

of

ODBC

C

types”

on

page

248

“Setting

licensing

information

for

ODBC

Driver

Manager/driver”

on

page

249

LIB

Files:

When

you

link

your

ODBC

applications,

you

must

include

the

import

library

ODBC32.LIB,

which

is

included

in

the

ODBC

SDK

(from

Microsoft).

CALL

interface

convention

Programs

making

ODBC

calls

must

be

compiled

with

the

DEFAULT(BYVALUE)

and

LIMITS(EXTNAME(31))

compile-time

options.

Using

the

supplied

include

files

The

include

files

described

and

listed

here

are

for

ODBC

Version

3.0.

Table

22.

Supplied

include

files

for

ODBC

File

name

Description

ODBCSQL.CPY

Main

include

for

ODBC

functions

ODBCEXT.CPY

Include

for

Microsoft’s

ODBC

extensions

ODBCTYPE.CPY

Include

for

ODBC

type

definitions

ODBCUCOD.CPY

Include

unicode

ODBCSAMP.PLI

Sample

program

The

supplied

include

files

define

the

symbols

for

constant

values

described

for

ODBC

APIs,

mapping

constants

used

in

calls

to

ODBC

APIs

to

symbols

specified

in

ODBC

guides

so

that

argument

(input

and

output)

and

function

return

values

can

be

specified

and

tested.

These

files

should

be

included

in

your

PL/I

program

in

order

to

use

ODBC

API

calls.

In

PL/I,

names

longer

than

31

characters

are

truncated

or

abbreviated

to

31

characters.

Table

23

on

page

248

shows

the

names

that

are

longer

than

31

characters,

and

their

corresponding

PL/I

names.

ODBC

APIs

from

PL/I

Chapter

16.

Open

Database

Connectivity

247

Table

23.

ODBC

names

truncated

or

abbreviated

for

PL/I

ODBC

C

#define

symbol

>

31

characters

long

Corresponding

PL/I

name

SQL_AD_ADD_CONSTRAINT_DEFERRABLE

SQL_AD_ADD_CONSTR_DEFERRABLE

SQL_AD_ADD_CONSTRAINT_INITIALLY_DEFERRED

SQL_AD_ADD_CONSTR_INITLY_DEFERD

SQL_AD_ADD_CONSTRAINT_INITIALLY_IMMEDIATE

SQL_AD_ADD_CONSTR_INITLY_IMMEDT

SQL_AD_ADD_CONSTRAINT_NON_DEFERRABLE

SQL_AD_ADD_CONSTR_NON_DEFERRABL

SQL_AD_CONSTRAINT_NAME_DEFINITION

SQL_AD_CONSTR_NAME_DEFINITION

SQL_API_ODBC3_ALL_FUNCTIONS_SIZE

SQL_API_ODBC3_ALL_FUNCTIONS_SZ

SQL_AT_CONSTRAINT_INITIALLY_DEFERRED

SQL_AT_CONSTR_INITIALLY_DEFRD

SQL_AT_CONSTRAINT_INITIALLY_IMMEDIATE

SQL_AT_CONSTR_INITIALLY_IMMED

SQL_AT_CONSTRAINT_NAME_DEFINITION

SQL_AT_CONSTR_NAME_DEFINITION

SQL_AT_CONSTRAINT_NON_DEFERRABLE

SQL_AT_CONSTR_NON_DEFERRABLE

SQL_AT_DROP_TABLE_CONSTRAINT_CASCADE

SQL_AT_DROP_TBL_CONSTR_CASCADE

SQL_AT_DROP_TABLE_CONSTRAINT_RESTRICT

SQL_AT_DROP_TBL_CONSTR_RESTRICT

SQL_CA_CONSTRAINT_INITIALLY_DEFERRED

SQL_CA_CONSTR_INITLY_DEFERRED

SQL_CA_CONSTRAINT_INITIALLY_IMMEDIATE

SQL_CA_CONSTR_INITLY_IMMEDIATE

SQL_CA_CONSTRAINT_NON_DEFERRABLE

SQL_CA_CONSTR_NON_DEFERRABLE

SQL_CDO_CONSTRAINT_NAME_DEFINITION

SQL_CDO_CONSTR_NAME_DEFINITION

SQL_CDO_CONSTRAINT_INITIALLY_DEFERRED

SQL_CDO_CONSTR_INITLY_DEFERRED

SQL_CDO_CONSTRAINT_INITIALLY_IMMEDIATE

SQL_CDO_CONSTR_INITLY_IMMEDIAT

SQL_CDO_CONSTRAINT_NON_DEFERRABLE

SQL_CDO_CONSTR_NON_DEFERRABLE

SQL_CT_CONSTRAINT_INITIALLY_DEFERRED

SQL_CT_CONSTR_INITLY_DEFERRED

SQL_CT_CONSTRAINT_INITIALLY_IMMEDIATE

SQL_CT_CONSTR_INITLY_IMMEDIATE

SQL_CT_CONSTRAINT_NON_DEFERRABLE

SQL_CT_CONSTR_NON_DEFERRABLE

SQL_CT_CONSTRAINT_NAME_DEFINITION

SQL_CT_CONSTR_NAME_DEFINITION

SQL_DESC_DATETIME_INTERVAL_PRECISION

SQL_DESC_DATETIME_INTERVAL_PREC

SQL_DL_SQL92_INTERVAL_DAY_TO_HOUR

SQL_DL_SQL92_INTERVAL_DAY_TO_HR

SQL_DL_SQL92_INTERVAL_DAY_TO_MINUTE

SQL_DL_SQL92_INTERVAL_DY_TO_MIN

SQL_DL_SQL92_INTERVAL_DAY_TO_SECOND

SQL_DL_SQL92_INTERVAL_DY_TO_SEC

SQL_DL_SQL92_INTERVAL_HOUR_TO_MINUTE

SQL_DL_SQL92_INTERVAL_HR_TO_MIN

SQL_DL_SQL92_INTERVAL_HOUR_TO_SECOND

SQL_DL_SQL92_INTERVAL_HR_TO_SEC

SQL_DL_SQL92_INTERVAL_MINUTE_TO_SECOND

SQL_DL_SQL92_INTERVAL_MN_TO_SEC

SQL_DL_SQL92_INTERVAL_YEAR_TO_MONTH

SQL_DL_SQL92_INTERVAL_YR_TO_MTH

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1

SQL_FORWARD_ONLY_CURSOR_ATTRIB1

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2

SQL_FORWARD_ONLY_CURSOR_ATTRIB2

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS

SQL_MAX_ASYNC_CONCURRENT_STMTS

SQL_MAXIMUM_CONCURRENT_ACTIVITIES

SQL_MAXIMUM_CONCURRENT_ACTIVITI

SQL_SQL92_FOREIGN_KEY_DELETE_RULE

SQL_SQL92_FOREIGN_KEY_DEL_RULE

SQL_SQL92_FOREIGN_KEY_UPDATE_RULE

SQL_SQL92_FOREIGN_KEY_UPD_RULE

SQL_SQL92_NUMERIC_VALUE_FUNCTIONS

SQL_SQL92_NUMERIC_VALUE_FUNCT

SQL_SQL92_RELATIONAL_JOIN_OPERATORS

SQL_SQL92_RELATIONAL_JOIN_OPER

SQL_TRANSACTION_ISOLATION_OPTION

SQL_TRANSACTION_ISOLATION_OPTN

SQL_TRANSACTION_READ_UNCOMMITTED

SQL_TRANSACTION_READ_UNCOMMITTD

Mapping

of

ODBC

C

types

The

data

types

specified

in

ODBC

APIs

are

defined

in

terms

of

ODBC

C

types

in

the

API

definitions.

The

following

table

shows

corresponding

PL/I

declarations

for

ODBC

APIs

from

PL/I

248

PL/I

for

Windows:

Programming

Guide

the

indicated

ODBC

C

types

of

the

arguments.

Table

24.

Mapping

of

ODBC

C

Type

to

PL/I

Data

Declarations

ODBC

C

type

PL/I

form

Description

SQLSMALLINT

FIXED

BIN(15)

Signed

short

integer

(2

byte

binary)

SQLUSMALLINT

FIXED

BIN(16)

UNSIGNED

Unsigned

short

integer

(2

byte

binary)

SQLINTEGER

FIXED

BIN(31)

Signed

long

integer

(4

byte

binary)

SQLUINTEGER

FIXED

BIN(31)

UNSIGNED

Unsigned

long

integer

(4

byte

binary)

SQLREAL

FLOAT

Floating

point

(4

bytes)

SQLFLOAT

DOUBLE

Floating

point

(8

bytes)

SQLDOUBLE

DOUBLE

Floating

point

(8

bytes)

SQLCHAR

*

CHAR(*)

VARZ

BYADDR

Pointer

to

unsigned

character.

SQLHDBC

POINTER

Connection

handle

SQLHENV

POINTER

Environment

handle

SQLHSTMT

POINTER

Statement

handle

SQLHWND

POINTER

Window

handle

Setting

licensing

information

for

ODBC

Driver

Manager/driver

When

using

the

ODBC

Driver

Manager/drivers

,

you

need

to

call

ibmODBCLicInfo

immediately

following

a

call

to

the

SQLConnect,

SQLDriverConnect,

or

SQLBrowseConnect

functions.

You

need

to

pass

the

argument

’hdbc’

to

ibmODBCLicInfo

like

this:

sql_rc

=

ibmODBCLicInfo(myHDBC);

The

ibmODBCLicInfo

routine

is

included

in

the

ibmodlic.lib

library

which

must

be

included

in

the

link

step

of

your

program.

Refer

to

the

sample

program,

odbcsamp.pli

for

more

information.

Sample

program

using

supplied

include

files

A

sample

PL/I

program

is

supplied

illustrating

the

use

of

some

common

ODBC

functions,

including:

SQLAllocEnv

SQLAllocConnect

SQLAllocStmt

SQLBindCol

SQLBindParameter

SQLConnect

SQLDisconnect

SQLError

SQLExecDirect

SQLExecute

SQLFetch

SQLFreeConnect

SQLFreeEnv

SQLFreeStmt

SQLGetInfo

SQLNativeSQL

SQLPrepare

SQLTransact

Example

Notes:

1.

Use

the

DEFAULT(BYVALUE)

and

LIMITS(EXTNAME(31))

options

to

compile

ODBC

programs.

ODBC

APIs

from

PL/I

Chapter

16.

Open

Database

Connectivity

249

2.

For

Windows,

a

sample

PL/I

program

is

supplied

in

the

..\samples\

directory.

Use

the

command

file

bldodbc.bat

found

in

the

same

directory

to

compile

and

link

the

test

program.

3.

The

ODBC

include

files

are

available

in

the

\include\

subdirectory.

Sample

program

250

PL/I

for

Windows:

Programming

Guide

Chapter

17.

Using

java

Dclgen

Understanding

java

Dclgen

terminology

.

.

.

. 251

PL/I

java

Dclgen

support

.

.

.

.

.

.

.

.

. 252

Creating

a

table

declaration

and

host

structure

.

. 253

Selecting

a

database

.

.

.

.

.

.

.

.

.

. 253

Selecting

a

table

and

generation

a

PL/I

declaration

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Modifying

and

saving

the

generated

PL/I

declaration

.

.

.

.

.

.

.

.

.

.

.

.

. 254

Exiting

java

Dclgen

.

.

.

.

.

.

.

.

.

. 255

Including

data

declarations

in

your

program

255

PL/I

for

Windows

comes

with

a

declarations

generator

(java

Dclgen)

that

produces

DECLARE

statements

you

can

use

in

your

PL/I

applications.

java

Dclgen

users

In

order

to

use

java

Dclgen

in

the

Windows

environment,

you

must

have

the

Java

Developer’s

Toolkit

(V1.3

or

later)

and

DB2

installed

on

your

system.

The

java

Dclgen

tool:

v

Generates

a

table

declaration

and

puts

it

into

a

file

that

you

can

include

in

your

program.

v

Gets

information

about

the

definition

of

the

table

and

each

column

within

the

table

from

the

database

catalog.

v

Uses

the

information

to

produce

a

complete

SQL

DECLARE

statement

for

the

table

(or

view)

and

a

matching

PL/I

structure

declaration.

To

use

the

declarations

in

your

program,

use

the

SQL

INCLUDE

statement.

If

you

wish

to

invoke

java

Dclgen

and

your

table

names

include

DBCS

characters,

you

need

to

use

a

terminal

that

can

input

and

display

double-byte

characters.

Understanding

java

Dclgen

terminology

The

following

information

explains

the

terms

used

in

java

Dclgen

dialog

boxes:

Tables

The

unqualified

table

name

for

which

you

want

java

Dclgen

to

produce

SQL

data

declarations.

Optionally,

you

can

qualify

the

table

name

by

entering

the

table

qualifier

in

the

Table

Qualifier

entry

field.

The

tool

generates

a

two-part

table

name

from

the

table

name

and

table

qualifier.

Table

qualifier

The

table

name

qualifier.

If

you

do

not

specify

this

value,

your

logon

ID

is

assumed

to

be

the

table

qualifier.

Output

Path

for

Save

The

path

targeted

for

the

declarations

that

java

Dclgen

produces.

Output

Filename

for

Save

The

filename

targeted

for

the

declarations

that

java

Dclgen

produces.

Structure

name

Name

of

the

generated

data

structure

which

can

be

up

to

31

characters

in

length.

251

If

you

leave

this

field

blank,

java

Dclgen

generates

a

name

that

contains

the

table

or

view

name

with

a

DCL

prefix.

If

the

table

or

view

name

consists

of

a

DBCS

string,

the

prefix

consists

of

DBCS

characters.

Field

Name

Prefix

Prefix

name

generated

for

fields

in

the

javaDclgen

output.

The

value

you

choose

can

be

up

to

28

characters

in

length

and

is

used

as

the

prefix

for

the

field

name.

For

example,

if

you

choose

ABCDE,

the

field

names

generated

are

ABCDE001,

ABCDE002,

and

so

on.

If

you

leave

this

field

blank,

the

field

names

are

the

same

as

the

column

names

in

the

table

or

view.

If

the

name

is

a

DBCS

string,

DBCS

equivalents

of

the

suffix

numbers

are

generated.

A

table

or

column

name

in

the

DECLARE

statement

is

generated

as

a

non-delimited

identifier

unless

the

name

contains

special

characters

and

is

not

a

DBCS

string.

If

you

are

using

an

SQL

reserved

word

as

an

identifier,

you

must

edit

the

java

Dclgen

output

in

order

to

add

the

appropriate

SQL

delimiters.

PL/I

java

Dclgen

support

Variable

names

and

data

attributes

generated

by

java

Dclgen

are

derived

from

the

information

contained

in

databases.

Table

25.

Declarations

generated

by

java

Dclgen

SQL

Data

Type

PL/I

SMALLINT

BIN

FIXED(15)

INTEGER

BIN

FIXED(31)

DECIMAL(p,s)

or

NUMERIC(p,s)

DEC

FIXED(p,s)

FLOAT

BIN

FLOAT(53)

CHAR(1)

CHAR(1)

CHAR(n)

CHAR(n)

VARCHAR(n)

CHAR(n)

VARYING

LONG

VARCHAR

CHAR(32700)

VARYING

GRAPHIC(n)

GRAPHIC(n)

VARGRAPHIC(n)

GRAPHIC(n)

VARYING

LONG

VARGRAPHIC

GRAPHIC(16350)

VARYING

DATE

CHAR(10)

TIME

CHAR(8)

TIMESTAMP

CHAR(26)

CLOB(nnn)

SQL

TYPE

IS

CLOB(nnn)

BLOB(nnn)

SQL

TYPE

IS

BLOB(nnn)

DBCLOB(nnn)

SQL

TYPE

IS

DBCLOB(nnn)

Understanding

java

Dclgen

terminology

252

PL/I

for

Windows:

Programming

Guide

Creating

a

table

declaration

and

host

structure

You

can

start

java

Dclgen

in

one

of

two

ways:

1.

Enter

'java

javaDclgen'

at

the

MS/DOS

prompt.

2.

Double-click

on

the

java

Dclgen

icon

in

the

main

PL/I

program

group.

Selecting

a

database

A

window

appears

and

gives

you

a

list

of

available

databases

in

the

Databases

list

box.

To

select

a

database,

move

your

mouse

pointer

to

the

database

entry

and

click

your

left

mouse

button

once.

This

should

highlight

your

selection.

Just

below

the

Databases

list

box

is

the

Table

Qualifier

(Required)

entry

field.

This

field

is

filled

in

with

the

current

user’s

ID.

You

can

use

this

default

table

qualifier

or

you

can

replace

it

with

another

valid

table

qualifier.

To

continue,

click

on

the

Get

a

List

of

Tables

for

the

Database

button.

Selecting

a

table

and

generation

a

PL/I

declaration

The

Tables

list

box

should

be

populated

with

the

tables

created

in

the

database

by

the

table

qualifier.

You

can

select

a

table

in

the

database

by

clicking

on

it

with

your

mouse

pointer.

Figure

24.

Selecting

a

database

Creating

a

table

declaration

and

host

structure

Chapter

17.

Using

java

Dclgen

253

You

can

also

choose

to

specify

a

level

1

name

in

the

Structure

Name

field

as

well

as

a

field

name

prefix

to

be

used

in

each

level

2

name

in

the

structure.

For

example,

if

you

specify

MYSTRUCT

as

the

field

name

prefix,

the

level

2

names

are

MYSTRUCT001,

MYSTRUCT002,

and

so

on.

Click

on

the

Generate

Include

Structure

for

Table

button

to

continue.

Modifying

and

saving

the

generated

PL/I

declaration

The

next

window

you

should

see

has

a

text

area

containing

the

generated

PL/I

declaration.

You

can

edit

the

contents

of

this

area

directly

if

needed.

Figure

25.

Display

of

tables

created

by

the

qualifier

Creating

a

table

declaration

and

host

structure

254

PL/I

for

Windows:

Programming

Guide

For

PL/I,

java

Dclgen

saves

the

contents

of

the

text

area

in

a

file

in

the

ibmpliw\include

using

the

table

name

as

the

filename

with

an

extension

of

.CPY.

If

you

decide

to

save

the

generated

declaration

somewhere

other

than

this

directory,

click

on

the

Change

Location

and

Save

button.

You

can

change

the

output

directory

and

filename

using

the

Save

As...

dialog.

You

can

change

the

table

qualifier

or

editor

name

(including

any

extensions)

by

typing

over

the

default

information.

Note:

If

the

table

name

contains

any

special

characters

that

are

not

part

of

a

filename,

you

should

specify

a

new

filename.

Exiting

java

Dclgen

To

exit

or

quit

java

Dclgen,

click

on

the

End

buttons

successively

until

the

application

ends.

Including

data

declarations

in

your

program

Use

the

following

SQL

INCLUDE

statement

to

insert

the

table

declaration

and

PL/I

structure

declaration

produced

by

java

Dclgen

into

your

source

program:

exec

sql

include

name

;

For

example,

to

include

a

description

for

the

table

BALKBJ.ORG,

code:

exec

sql

include

org

;

If

for

some

reason

java

Dclgen

produces

some

unexpected

results,

you

can

use

the

editor

to

tailor

the

output

to

your

specific

needs.

Figure

26.

Generated

PL/I

declarations

Creating

a

table

declaration

and

host

structure

Chapter

17.

Using

java

Dclgen

255

Creating

a

table

declaration

and

host

structure

256

PL/I

for

Windows:

Programming

Guide

Part

6.

Advanced

topics

257

258

PL/I

for

Windows:

Programming

Guide

Chapter

18.

Using

the

Program

Maintenance

Utility,

NMAKE

Why

use

NMAKE?

.

.

.

.

.

.

.

.

.

.

. 259

Running

NMAKE

.

.

.

.

.

.

.

.

.

.

.

. 260

Using

the

command

line

.

.

.

.

.

.

.

. 260

Command-line

syntax

.

.

.

.

.

.

.

. 260

Command-line

help

.

.

.

.

.

.

.

.

. 260

Using

NMAKE

command

files

.

.

.

.

.

. 261

Why

use

a

command

file?

.

.

.

.

.

.

. 261

Command

file

syntax

.

.

.

.

.

.

.

.

. 261

Example

.

.

.

.

.

.

.

.

.

.

.

.

. 261

NMAKE

options

.

.

.

.

.

.

.

.

.

.

.

. 262

Produce

error

file

(/X)

.

.

.

.

.

.

.

.

. 262

Build

all

targets

(/A)

.

.

.

.

.

.

.

.

.

. 262

Suppress

messages

(/C)

.

.

.

.

.

.

.

.

. 262

Display

modification

dates

(/D)

.

.

.

.

.

. 262

Override

environment

variables

(/E)

.

.

.

. 262

Specify

description

file

(/F)

.

.

.

.

.

.

. 262

Display

help

(/HELP

or

/?)

.

.

.

.

.

.

. 263

Ignore

exit

codes

(/I)

.

.

.

.

.

.

.

.

.

. 263

Display

commands

(/N)

.

.

.

.

.

.

.

.

. 263

Suppress

sign-on

banner

(/NOLOGO)

.

.

.

. 263

Print

macro

and

target

definitions

(/P)

.

.

.

. 263

Return

exit

code

(/Q)

.

.

.

.

.

.

.

.

. 263

Ignore

TOOLS.INI

file

(/R)

.

.

.

.

.

.

.

. 263

Suppress

command

display

(/S)

.

.

.

.

.

. 264

Change

target

modification

dates

(/T)

.

.

.

. 264

Description

files

.

.

.

.

.

.

.

.

.

.

.

. 264

Description

blocks

.

.

.

.

.

.

.

.

.

.

. 264

Special

features

.

.

.

.

.

.

.

.

.

.

.

. 264

Targets

in

several

description

blocks

.

.

.

.

. 265

Using

macros

.

.

.

.

.

.

.

.

.

.

.

.

. 266

Macros

example

.

.

.

.

.

.

.

.

.

.

. 266

Special

features

.

.

.

.

.

.

.

.

.

.

.

. 267

Macros

in

a

description

file

.

.

.

.

.

.

.

. 267

Macros

on

the

command

line

.

.

.

.

.

.

. 267

Inherited

macros

.

.

.

.

.

.

.

.

.

.

. 267

Defined

macros

.

.

.

.

.

.

.

.

.

.

.

. 268

Macro

substitutions

.

.

.

.

.

.

.

.

.

. 268

Special

macros

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Special

macros

examples

.

.

.

.

.

.

.

. 269

File-specification

parts

.

.

.

.

.

.

.

.

. 270

Characters

that

modify

special

macros

.

.

.

. 270

Modified

special

macros

example

.

.

.

.

.

. 271

Macro

precedence

rules

.

.

.

.

.

.

.

.

. 271

Inference

rules

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Special

features

.

.

.

.

.

.

.

.

.

.

.

. 272

Inference

rules

example

.

.

.

.

.

.

.

.

. 272

Inference-rule

path

specifications

.

.

.

.

.

. 273

Predefined

inference

rules

.

.

.

.

.

.

.

. 273

Directives

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Directives

example

.

.

.

.

.

.

.

.

.

. 275

Pseudotargets

.

.

.

.

.

.

.

.

.

.

.

. 275

Predefined

pseudotargets

.

.

.

.

.

.

.

. 276

.SILENT

Pseudotarget

.

.

.

.

.

.

.

. 276

.IGNORE

Pseudotarget

.

.

.

.

.

.

.

. 276

.SUFFIXES

Pseudotarget

.

.

.

.

.

.

.

. 276

.PRECIOUS

Pseudotarget

.

.

.

.

.

.

. 277

Inline

files

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Inline

files

example

.

.

.

.

.

.

.

.

.

. 277

Escape

characters

.

.

.

.

.

.

.

.

.

.

. 278

Characters

that

modify

commands

.

.

.

.

.

. 278

Turn

error

checking

off

(-)

.

.

.

.

.

.

.

. 279

Dash

command

modifier

examples

.

.

.

.

. 279

Suppress

command

display

(@)

.

.

.

.

.

. 279

At

sign

(@)

command

modifier

example

.

.

. 279

Execute

command

for

dependents

(!)

.

.

.

. 280

Exclamation

point

(!)

command

modifier

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

EXTMAKE

Syntax

.

.

.

.

.

.

.

.

.

.

. 280

Macros

and

inference

rules

in

TOOLS.INI

.

.

.

. 281

TOOLS.INI

example

.

.

.

.

.

.

.

.

.

. 281

The

Program

Maintenance

Utility

(NMAKE)

automates

the

process

of

updating

project

files.

NMAKE

compares

the

modification

dates

for

one

set

of

files

(the

target

files)

with

those

of

another

set

of

files

(the

dependent

files).

If

any

dependent

files

have

changed

more

recently

than

the

target

files,

NMAKE

executes

a

series

of

commands

to

bring

the

targets

up-to-date.

Why

use

NMAKE?

The

most

common

use

of

NMAKE

is

to

automate

the

process

of

updating

a

project

after

you

make

a

change

to

a

source

file.

Large

projects

tend

to

have

many

source

files.

Often,

only

a

few

of

your

source

files

need

to

be

compiled

when

you

make

a

change.

You

set

up

a

special

text

file,

called

a

description

file

(or

makefile),

that

tells

NMAKE:

v

Which

files

depend

on

others

v

Which

commands,

such

as

compile

and

link

commands,

need

to

be

carried

out

to

bring

your

program

up-to-date.

259

This

use

of

NMAKE

is

only

one

example

of

its

power.

By

building

suitable

description

files,

you

can

use

NMAKE

to:

v

Make

backups

v

Configure

data

files

v

Run

programs

when

data

files

are

modified.

Running

NMAKE

Run

NMAKE

by

typing

nmake

on

the

operating-system

command

line.

Supply

input

to

NMAKE

by

either

of

two

methods:

v

Enter

the

input

directly

on

the

command

line.

v

Put

your

input

into

a

command

file

(a

text

file,

also

called

a

response

file)

and

enter

the

file

name

on

the

command

line.

Press

Ctrl+C

at

any

time

during

an

NMAKE

run

to

return

to

the

operating

system.

Using

the

command

line

When

using

NMAKE

at

the

command

line,

keep

the

following

in

mind:

v

All

fields

are

optional.

v

NMAKE

always

looks

first

in

the

current

directory

for

a

description

file

called

makefile.

If

makefile

does

not

exist,

NMAKE

uses

the

filename

given

with

the

/F

(specify

description

file)

option

(see

“Specify

description

file

(/F)”

on

page

262).

Command-line

syntax

��

nmake

options

macrodefinitions

targets

/F

filename

��

options

Specifies

options

that

modify

NMAKE’s

actions.

macrodefinitions

Lists

macro

definitions

for

NMAKE

to

use.

Macro

definitions

that

contain

spaces

must

be

enclosed

by

double

quotation

marks.

targets

Specifies

the

names

of

one

or

more

target

files

to

build.

If

you

do

not

list

any

targets,

NMAKE

builds

the

first

target

in

the

description

file.

/F

filename

Gives

the

name

of

the

description

file

where

you

specify

file

dependencies

and

which

commands

to

execute

when

a

file

is

out-of-date.

The

following

example:

nmake

/s

"program

=

flash"

sort.exe

search.exe

v

Invokes

NMAKE

with

the

/s

option

v

Defines

a

macro,

assigning

the

string

"flash"

to

the

macro

"program"

v

Specifies

two

targets:

sort.exe

and

search.exe

By

default,

NMAKE

uses

the

file

named

makefile

as

the

description

file.

Command-line

help

To

display

NMAKE

help,

type

nmake

/?

at

the

prompt.

The

appropriate

copyright

statement

appears,

along

with

the

following:

Usage:

NMAKE

@commandfile

NMAKE

/help

Why

use

NMAKE?

260

PL/I

for

Windows:

Programming

Guide

NMAKE

[/nologo]

[/acdeinpqrst?]

[/f

makefile]

[/x

stderrfile]

[macrodefs][targets]

What

the

options

stand

for

/a

Force

all

targets

to

be

built

/c

Cryptic

mode;

suppress

sign-on

banner

&

warning

messages

/d

Display

modification

dates

/e

Environment

variables

override

macros

in

the

makefile

/i

Ignore

exit

codes

of

commands

invoked

/n

No

execute

mode;

display

commands

only

/p

Print

macro

definitions

&

target

descriptions

/q

Query

if

target

is

up

to

date;

for

use

in

batch

files

/r

Inference

Rules

from

’TOOLS.INI’

to

be

ignored

/s

Silent

execution

of

commands

/t

Touch

targets

with

current

date

&

time

/?

Help

message

/help

Help

message

/nologo

Do

not

display

sign-on

banner

Using

NMAKE

command

files

A

command

file

is

a

response

file

used

to

extend

command-line

input

to

NMAKE.

You

can

split

input

to

NMAKE

between

the

command

line

and

a

command

file.

Use

the

name

of

a

command

file

(preceded

by

@)

where

you

normally

type

the

input

information

on

the

command

line.

Why

use

a

command

file?

Use

a

command

file

for:

v

Complex

and

long

commands

you

type

frequently

v

Strings

of

command-line

arguments,

such

as

macro

definitions,

that

exceed

the

limit

for

command-line

length.

A

command

file

is

not

the

same

as

a

description

file.

For

information

about

description

files,

see

“Description

files”

on

page

264.

Command

file

syntax

To

provide

input

to

NMAKE

with

a

command

file,

type

nmake

@commandfile

In

the

commandfile

field,

enter

the

name

of

a

file

containing

the

same

information

as

is

normally

entered

on

the

command

line.

NMAKE

treats

line

breaks

that

occur

between

arguments

as

spaces.

Macro

definitions

can

span

multiple

lines

if

you

end

each

line

except

the

last

with

a

backslash

(\).

Macro

definitions

that

contain

spaces

must

be

enclosed

by

quotation

marks,

just

as

if

they

were

entered

directly

on

the

command

line.

Example

The

following

is

a

command

file

called

update:

/s

"program

\

=

flash"

sort.exe

search.exe

You

can

use

this

command

file

by

typing

the

following

command:

nmake

@update

This

runs

NMAKE

using:

v

The

/s

option

Running

NMAKE

Chapter

18.

Using

the

Program

Maintenance

Utility,

NMAKE

261

v

The

macro

definition

″program

=

flash″

v

The

targets

specified

as

sort.exe

and

search.exe

v

The

description

file

makefile

by

default

The

backslash

allows

the

macro

definition

to

span

two

lines.

NMAKE

options

You

can

use

several

options

with

NMAKE.

Keep

the

following

in

mind

when

using

options:

v

Option

characters

are

not

case

sensitive;

/I

and

/i

are

equivalent.

v

You

can

use

either

a

slash

or

dash

before

the

option

characters;

-a

and

/a

are

equivalent.

Produce

error

file

(/X)

Syntax:/X

stderrfile

This

option

produces

a

standard

error

file.

Build

all

targets

(/A)

Syntax:/A

This

option

builds

all

specified

targets

even

if

they

are

not

out-of-date

with

respect

to

their

dependent

files.

See

“Description

files”

on

page

264.

Suppress

messages

(/C)

Syntax:/C

This

option

suppresses

display

of

the

NMAKE

sign-on

banner,

nonfatal

error

messages,

and

warning

messages.

To

suppress

the

sign-on

banner

without

suppressing

other

messages,

use

the

/NOLOGO

option.

Display

modification

dates

(/D)

Syntax:

/D

This

option

displays

the

modification

date

of

each

file

when

the

dates

of

target

and

dependent

files

are

checked.

See

“Description

files”

on

page

264.

Override

environment

variables

(/E)

Syntax:/E

This

option

disables

inherited

macro

redefinition.

NMAKE

inherits

all

current

environment

variables

as

macros,

which

can

be

redefined

in

a

description

file.

The

/E

option

disables

any

redefinition

—

the

inherited

macro

always

has

the

value

of

the

environment

variable.

Specify

description

file

(/F)

Syntax:/F

filename

Running

NMAKE

262

PL/I

for

Windows:

Programming

Guide

This

option

specifies

filename

as

the

name

of

the

description

file

to

use.

If

a

dash

(-)

is

entered

instead

of

a

file

name,

NMAKE

reads

a

description

file

from

the

standard

input

device,

typically

the

keyboard.

If

a

filename

is

not

specified,

it

defaults

to

makefile.

Display

help

(/HELP

or

/?)

Syntax:

/HELP

or

/?

This

option

displays

a

brief

summary

of

NMAKE

syntax.

Ignore

exit

codes

(/I)

Syntax:/I

This

option

ignores

exit

codes

(also

called

error

level

or

return

codes)

returned

by

programs

such

as

compilers

or

linkers

called

by

NMAKE.

If

this

option

is

not

specified,

NMAKE

ends

when

any

program

returns

a

nonzero

exit

code.

Display

commands

(/N)

Syntax:/N

This

option

causes

NMAKE

commands

to

be

displayed

but

not

executed.

Use

the

/N

option

to:

v

Check

which

targets

are

out-of-date

with

respect

to

their

dependents

v

Debug

description

files

Suppress

sign-on

banner

(/NOLOGO)

Syntax:/NOLOGO

This

option

suppresses

the

sign-on

banner

display

when

NMAKE

is

started.

If

you

want

to

suppress

nonfatal

error

messages

and

warnings

as

well,

use

the

suppress

messages

(/C)

option.

Print

macro

and

target

definitions

(/P)

Syntax:/P

This

option

writes

out

all

macro

definitions

and

target

definitions.

Output

is

sent

to

the

standard

output

device

(typically

the

display).

Return

exit

code

(/Q)

Syntax:/Q

This

option

causes

NMAKE

to

return

either

of

the

following:

v

An

exit

code

of

zero

if

all

targets

built

during

an

NMAKE

run

are

up-to-date

v

An

exit

code

other

than

zero

if

they

are

not

up-to-date

Use

this

option

to

run

NMAKE

from

within

a

batch

file.

Ignore

TOOLS.INI

file

(/R)

Syntax:/R

This

option

ignores

the

following:

v

All

inference

rules

and

macros

contained

in

the

TOOLS.INI

file

NMAKE

options

Chapter

18.

Using

the

Program

Maintenance

Utility,

NMAKE

263

v

All

predefined

inference

rules

and

macros

Suppress

command

display

(/S)

Syntax:/S

This

option

suppresses

the

display

of

commands

as

they

are

executed

by

NMAKE.

It

does

not

suppress

the

display

of

messages

generated

by

the

commands

themselves.

The

/N

command

(Display

Commands)

takes

precedence

over

the

/S

option.

If

you

use

/N

and

/S

together,

commands

are

displayed

but

not

executed.

Change

target

modification

dates

(/T)

Syntax:/T

This

option

changes

or

“touches”

the

modification

dates

for

out-of-date

target

files

to

the

current

date.

No

commands

are

executed,

and

the

target

file

is

left

unchanged.

Description

files

NMAKE

uses

a

description

file

to

determine

what

to

do.

In

its

simplest

form,

a

description

file

tells

NMAKE

which

files

depend

on

others

and

which

commands

need

to

be

executed

if

a

file

changes.

A

description

file

looks

like

this:

targets...:

dependents...

command

:

targets...

:

dependents...

command

Description

blocks

A

dependent

relationship

between

files

is

defined

in

a

description

block.

A

description

block

indicates

the

relationship

among

various

parts

of

the

program.

It

contains

commands

to

bring

all

components

up

to

date.

The

description

file

can

contain

up

to

1048

description

blocks.

Description

File

Description

Block

┌──────────────┐

┌─────────¹

┌───────────────────────────┐

│

Description

│

│

│

│

│

Block

1

│

│

│targets...

:

dependents...

│

├──────────────┼─────┘

│

command

│

│

Descr

Blk

2

│

│

command

│

├──────────────┼─────┐

│

command

│

│

:

│

│

│

:

│

├──────────────┤

│

│

│

│

Descr

Blk

n

│

│

│

│

│

│

│

│

│

└──────────────┘

└─────────¹

└───────────────────────────┘

Special

features

The

following

are

special

features

of

description

files

and

blocks:

v

Description

files

can

contain

macro

definitions

and

use

macros

in

description

blocks.

Macros

allow

easy

substitution

of

one

text

string

for

another.

NMAKE

options

264

PL/I

for

Windows:

Programming

Guide

v

Description

files

can

contain

inference

rules.

Inference

rules

allow

NMAKE

to

infer

which

commands

to

execute

based

on

the

filename

extensions

used

for

targets

and

dependents.

v

You

can

specify

directories

for

NMAKE

to

search

for

dependent

files

by

using

the

following

syntax:

targets

:

{directory1;directory2...}dependents

NMAKE

searches

the

current

directory

first,

then

directory1,

directory2,

and

so

on.

v

A

command

can

be

placed

on

the

same

line

as

the

target

and

dependent

files

by

using

a

semicolon

(;)

as

depicted

below:

targets...

:

dependents...

;

command

v

A

long

command

can

span

several

lines

if

each

line

ends

with

a

backslash

(

\

):

command

\

continuation

of

command

v

The

execution

of

a

command

can

be

modified

if

you

precede

the

command

with

special

characters.

v

If

you

do

not

specify

a

command

in

a

description

block,

NMAKE

looks

for

an

inference

rule

to

build

the

target.

v

Wild

card

characters

(*

and

?)

can

be

used

in

description

blocks.

For

example,

the

following

description

block

compiles

all

source

files

with

the

.PLI

extension:

astro.exe

:

*.pli

pli

$**

v

NMAKE

expands

the

*.pli

specification

into

the

complete

list

of

PL/I

files

in

the

current

directory.

$**

is

a

complete

list

of

dependents

specified

for

the

current

target.

v

NMAKE

uses

several

punctuation

characters

in

its

syntax.

To

use

one

of

these

characters

as

a

literal

character,

place

an

escape

character

(

^

)

in

front

of

it.

For

a

list

of

punctuation

characters,

see

“Escape

characters”

on

page

278.

v

Normally

a

target

file

can

appear

in

only

one

description

block.

A

special

syntax

allows

you

to

use

a

target

in

several

description

blocks.

v

A

special

syntax

allows

you

to

determine

the

drive,

path,

base

name,

and

extension

of

the

first

dependent

file

in

a

description

block.

Targets

in

several

description

blocks

Using

a

file

as

a

target

in

more

than

one

description

block

causes

NMAKE

to

end.

You

can

overcome

this

limitation

by

using

two

colons

(::)

as

the

target/dependent

separator

instead

of

one

colon.

The

following

description

block

is

permissible:

X

::

A

command

X

::

B

command

The

following

causes

NMAKE

to

end:

X

:

A

command

X

:

B

command

It

is

permissible

to

use

single

colons

if

the

target/dependent

lines

are

grouped

above

the

same

commands.

The

following

is

permissible:

Description

files

Chapter

18.

Using

the

Program

Maintenance

Utility,

NMAKE

265

X

:

A

X

:

B

command

Double

colon

(::)

target/dependent

separator

example

target.lib

::

a.asm

b.asm

c.asm

ml

a.asm

b.asm

c.asm

ilib

target

a.obj

b.obj

c.obj

target.lib

::

d.pli

e.pli

pli

d.pli

pli

e.pli

ilib

target

d.obj

e.obj

These

two

description

blocks

both

update

the

library

named

target.lib.

If

any

of

the

assembly-language

files

have

changed

more

recently

than

the

library

file,

NMAKE

executes

the

commands

in

the

first

block

to

assemble

the

source

files

and

update

the

library.

Similarly,

if

any

of

the

PL/I

language

files

have

changed,

NMAKE

executes

the

second

group

of

commands

to

compile

the

PL/I

files

and

update

the

library.

Using

macros

Macros

provide

a

convenient

way

to

replace

one

string

with

another

in

the

description

file.

The

text

is

automatically

replaced

each

time

NMAKE

is

run.

This

feature

makes

it

easy

to

change

text

throughout

the

description

file

without

having

to

edit

every

line

that

uses

the

text.

Two

common

uses

of

macros

are:

v

To

create

a

standard

description

file

for

several

projects.

The

macro

represents

the

file

names

in

commands.

These

file

names

are

defined

when

you

run

NMAKE.

When

you

switch

to

a

different

project,

changing

the

macro

changes

the

file

names

NMAKE

uses

throughout

the

description

file.

v

To

control

the

options

that

NMAKE

passes

to

the

compiler,

assembler,

or

linker.

When

using

a

macro

to

specify

the

options,

you

can

quickly

change

the

options

throughout

the

description

file

in

one

easy

step.

A

macro

can

be

defined:

In

a

description

file

On

the

command

line

In

TOOLS.INI

Through

inheritance

from

environment

variables

Macros

example

program

=

flash

c

=

ilink

options

=

$(program).exe

:

$(program).obj

$c

$(options)

$(program).obj;

The

example

above

defines

three

macros.

The

description

block

executes

the

following

commands:

flash.exe

:

flash.obj

ilink

flash.obj;

Description

files

266

PL/I

for

Windows:

Programming

Guide

Special

features

Macros

have

the

following

special

features:

v

When

using

a

macro,

you

can

substitute

text

in

the

macro

itself.

v

Several

macros

have

been

predefined

for

special

purposes.

v

If

a

macro

is

defined

more

than

once,

precedence

rules

govern

which

definition

is

used.

v

You

can

also

put

macros

into

your

TOOLS.INI

file.

Macros

in

a

description

file

Before

using

a

macro,

you

need

to

define

it,

either

on

the

NMAKE

command

line

or

in

your

description

file.

Description

file

macro

definitions

look

like

this:

macroname

=

macrostring

Macro

names

can

be

any

combination

of

alphanumeric

characters

and

the

underscore

character

(_),

and

they

are

case-sensitive.

A

macro

string

can

be

any

string

of

characters.

The

first

character

of

the

macro

name

must

be

the

first

character

on

the

line.

NMAKE

ignores

any

spaces

before

or

after

the

equal

sign

(=).

The

macro

string

can

be

a

null

string

and

can

contain

embedded

spaces.

Do

not

enclose

the

macro

string

in

quotation

marks

in

the

description

file;

quotation

marks

are

used

only

when

you

define

macros

on

the

command

line.

Macros

on

the

command

line

Before

using

a

macro,

you

need

to

define

it,

either

on

the

NMAKE

command

line

or

in

your

description

file.

Command-line

macro

definitions

look

like

this:

macroname=macrostring

No

spaces

can

surround

the

equal

sign.

If

you

embed

spaces,

NMAKE

might

misinterpret

your

macro.

If

your

macro

string

contains

embedded

spaces,

enclose

it

in

double

quotation

marks

(")

like

this:

macroname="macro

string"

You

can

also

enclose

the

entire

macro

definition

in

double

quotation

marks

(")

like

this:

"macroname

=

macro

string"

Macro

names

can

be

any

combination

of

alphanumeric

characters

and

the

underscore

character

(_),

and

they

are

case-sensitive.

A

macro

string

can

be

any

string

of

characters

or

a

null

string.

Inherited

macros

NMAKE

inherits

all

current

environment

variables

as

macros.

For

example,

if

you

have

a

PATH

environment

variable

defined

as

PATH

=

C:\TOOLS\BIN,

the

string

C:\TOOLS\BIN

is

substituted

when

you

use

PATH

in

the

description

file.

You

can

redefine

inherited

macros

by

including

a

line

such

as

the

example

above

in

a

description

file.

While

NMAKE

is

executing,

the

macro

takes

on

the

redefined

definition.

When

NMAKE

terminates,

however,

the

environment

variable

resumes

its

original

value.

Using

macros

Chapter

18.

Using

the

Program

Maintenance

Utility,

NMAKE

267

The

Override

Environment

Variables

(/E)

option

disables

inherited

macro

redefinition.

If

you

use

this

option,

NMAKE

ignores

any

attempt

to

redefine

an

inherited

macro.

The

macro

name,

for

any

macros

that

you

define,

is

case

sensitive.

For

example,

consider

this

macro:

UPPER=UpperCase

In

this

example,

$(UPPER)

returns

the

value,

but

$(upper)

does

not.

Inherited

macro

names

(i.e.

those

created

automatically

from

environment

variables)

must

always

be

UPPERCASE.

Defined

macros

After

you

have

defined

a

macro,

you

can

use

it

anywhere

in

your

description

file

with

the

following

syntax:

$(macroname)

The

parentheses

are

not

required

if

the

macro

name

is

only

one

character

long.

To

use

a

dollar

sign

($)

without

using

a

macro,

enter

two

dollar

signs

($$),

or

use

the

caret

(^)

before

the

dollar

sign

as

an

escape

character.

When

NMAKE

runs,

it

replaces

all

occurrences

of

$(macroname)

with

the

defined

macro

string.

If

the

macro

is

undefined,

nothing

is

substituted.

After

a

macro

is

defined,

you

can

cancel

it

only

with

the

!UNDEF

directive.

Macro

substitutions

Just

as

you

use

macros

to

substitute

text

within

a

description

file,

you

use

the

following

syntax

to

substitute

text

within

a

macro:

$(macroname:

string1

=

string2)

Every

occurrence

of

string1

is

replaced

by

string2

in

macroname.

Spaces

between

the

colon

and

string1

are

considered

part

of

string1.

If

string2

is

a

null

string,

all

occurrences

of

string1

are

deleted

from

the

macro.

The

colon

(:)

must

immediately

follow

macroname.

The

replacement

of

string1

with

string2

in

the

macro

is

not

a

permanent

change.

If

you

use

the

macro

again

without

a

substitution,

you

get

the

original

unchanged

macro.

Example

SOURCES

=

one.pli

two.pli

three.pli

program.exe

:

$(SOURCES:.pli=.obj)

ilink

$**;

The

example

above

defines

a

macro

called

SOURCES,

which

contains

the

names

of

three

PL/I

source

files.

With

this

macro,

the

target/dependent

line

substitutes

the

.obj

extension

for

the

.pli

extension.

Thus,

NMAKE

executes

the

following

command:

ilink

one.obj

two.obj

three.obj;

$**

is

a

special

macro

that

translates

to

all

dependent

files

for

a

given

target.

Using

macros

268

PL/I

for

Windows:

Programming

Guide

Special

macros

NMAKE

predefines

several

macros.

The

first

six

macros

below

return

one

or

more

file

specifications

for

the

files

in

the

target/dependent

line

of

a

description

block.

Except

where

noted,

the

file

specification

includes

the

path

of

the

file,

the

base

filename,

and

the

filename

extension.

Macro

Value

$@

The

specification

of

the

target

file.

$*

The

base

name

(without

extension)

of

the

target

file.

Path

information

is

also

returned

if

the

path

was

specified

as

part

of

the

target

filename.

This

macro

cannot

be

used

in

a

dependent

list.

$**

The

specifications

of

the

dependent

files.

$?

The

specifications

for

only

those

dependent

files

that

are

out-of-date

with

respect

to

the

targets.

$<

The

specification

of

a

single

dependent

file

that

is

out-of-date

with

respect

to

the

targets.

This

macro

is

used

only

in

inference

rules.

$$@

The

file

specification

of

the

target

that

NMAKE

is

currently

evaluating.

This

is

a

dynamic

dependency

parameter,

used

only

in

dependent

lists.

$(AS)

The

string

MASM,

which

is

the

command

to

run

the

Macro

Assembler

(MASM).

You

can

redefine

this

macro

to

use

a

different

command.

$(MAKE)

The

command

name

used

to

run

NMAKE.

This

macro

is

used

to

invoke

NMAKE

recursively.

If

you

redefine

this

macro,

NMAKE

issues

a

warning

message.

NMAKE

executes

the

command

line

in

which

$(MAKE)

appears,

even

if

the

display

commands

(/N)

option

is

on.

$(MAKEFLAGS)

The

NMAKE

options

currently

in

effect.

You

cannot

redefine

this

macro.

The

special

macros

$**

and

$$@

are

the

only

exceptions

to

the

rule

that

macro

names

longer

than

one

character

must

be

enclosed

in

parentheses.

You

can

append

characters

to

any

of

the

first

six

macros

in

this

list

to

modify

the

meaning

of

the

macro.

However,

you

cannot

use

macro

substitutions

in

these

macros.

Special

macros

examples

trig.lib

:

sin.obj

cos.obj

arctan.obj

!ilib

trig.lib

$?

In

this

example,

the

macro

$?

represents

the

names

of

all

dependent

files

that

are

out-of-date

with

respect

to

the

target

file.

The

exclamation

point

(!)

preceding

the

ILIB

command

causes

NMAKE

to

execute

the

ILIB

command

once

for

each

dependent

file

in

the

list.

As

a

result

of

this

description,

the

ILIB

command

causes

NMAKE

to

execute

the

ILIB

command

once

for

each

dependent

file

in

the

list.

As

a

result

of

this

description,

the

ILIB

command

is

executed

up

to

three

times,

each

time

replacing

a

module

with

a

newer

version.

DIR=c:\include

$(DIR)\globals.inc

:

globals.inc

copy

globals.inc

$@

Special

macros

Chapter

18.

Using

the

Program

Maintenance

Utility,

NMAKE

269

$(DIR)\types.inc

:

types.inc

copy

types.inc

$@

$(DIR)\macros.inc

:

macros.inc

copy

macros.inc

$@

This

example

shows

how

to

update

a

group

of

include

files.

Each

of

the

files,

globals.inc,

types.inc,

and

macros.inc,

in

the

directory

c:\include

depends

on

its

counterpart

in

the

current

directory.

If

one

of

the

include

files

is

out-of-date,

NMAKE

replaces

it

with

the

file

of

the

same

name

from

the

current

directory.

The

following

description

file,

which

uses

the

special

macro

$$@,

is

equivalent:

DIR=c:\include

$(DIR)\globals.inc

$(DIR)\types.inc

$(DIR)\macros.inc

:

$$(@F)

!copy

$?

$@

The

special

macro

$$(@F)

signifies

the

file

name

(without

the

path)

of

the

current

target.

When

NMAKE

evaluates

the

description

block,

it

evaluates

the

three

targets,

one

at

a

time,

with

respect

to

their

dependents.

Thus,

NMAKE

first

checks

whether

c:\include\globals.inc

is

out-of-date

compared

with

globals.inc

in

the

current

directory.

If

so,

it

executes

the

command

to

copy

the

dependent

file

globals.inc

to

the

target.

NMAKE

repeats

the

procedure

for

the

other

two

targets.

Note

that

on

the

command

line,

the

macro

$?

refers

to

the

dependent

for

this

target.

The

macro

$@

specifies

the

full

file

specification

of

the

target

file.

File-specification

parts

A

full

file

specification

gives

the

base

name

of

the

file,

the

file-name

extension,

and

the

path.

The

path

provides

the

disk-drive

identifier

and

the

sequence

of

directories

needed

to

locate

the

file

on

the

disk.

For

example,

the

file

specification

c:\source\prog\sort.obj

has

the

following

parts:

Path

Name

c:\source\prog

Base

File

Name

sort

File-Name

Extension

.obj

Characters

that

modify

special

macros

The

following

six

macros

all

resolve

to

a

file

specification

(or

possibly

several

file

specifications

for

$**

and

$?):

$*

$@

$**

$<

$?

$$@

You

can

append

characters

to

any

of

these

macros

to

modify

the

file

name

returned

by

the

macro.

Depending

on

which

character

you

use,

parts

of

the

full

file

specification

are

returned:

Appended

Character

File

Part

Returned

D

F

B

R

File

Path

Yes

No

No

Yes

Base

File

Name

No

Yes

Yes

Yes

File

Name

Extension

No

Yes

No

No

Special

macros

270

PL/I

for

Windows:

Programming

Guide

Modified

special

macros

example

If

the

macro

$@

has

the

value

c:\source\prog\sort.obj

then

the

following

values

are

returned

for

the

modified

macro:

Macro

Value

$(@D)

c:\source\prog

$(@F)

sort.obj

$(@B)

sort

$(@R)

c:\source\prog\sort

Modified

macros

are

always

longer

than

a

single

character

—

they

must

be

enclosed

by

parentheses

when

used.

Macro

precedence

rules

When

the

same

macro

is

defined

in

more

than

one

place,

the

definition

with

the

highest

priority

is

used:

Priority

Definition

1

(Highest)

Command

line

2

Description

file

3

Environment

variables

4

TOOLS.INI

file

5

(Lowest)

Predefined

macros

(such

as

CC

and

AS)

If

you

invoke

NMAKE

with

the

Overriding

Macro

Definitions

(/E)

option,

macros

defined

by

environment

variables

take

precedence

over

those

defined

in

a

description

file.

Inference

rules

Inference

rules

are

templates

from

which

NMAKE

infers

what

to

do

with

a

description

block

when

no

commands

are

given.

Only

those

extensions

defined

in

a

.SUFFIXES

list

can

have

inference

rules.

The

extensions

.c,

.obj,

.asm,

and

.exe

are

automatically

included

in

.SUFFIXES.

PL/I

programmers

You

must

add

PL/I

file

extensions

manually

using

the

.SUFFIXES

pseudotarget.

See

“.SUFFIXES

Pseudotarget”

on

page

276.

When

NMAKE

encounters

a

description

block

with

no

commands,

it

looks

for

an

inference

rule

that

specifies

how

to

create

the

target

from

the

dependent

files,

given

the

two

file

extensions.

Similarly,

if

a

dependent

file

does

not

exist,

NMAKE

looks

for

an

inference

rule

that

specifies

how

to

create

the

dependent

from

another

file

with

the

same

base

name.

NMAKE

applies

an

inference

rule

only

if

the

base

name

of

the

file

it

is

trying

to

create

matches

the

base

name

of

a

file

that

already

exists.

Special

macros

Chapter

18.

Using

the

Program

Maintenance

Utility,

NMAKE

271

In

effect,

inference

rules

are

useful

only

when

there

is

a

one-to-one

correspondence

between

the

files

with

the

″from″

extension

and

the

files

with

the

″to″

extension.

You

cannot,

for

example,

define

an

inference

rule

that

inserts

a

number

of

modules

into

a

library.

The

use

of

inference

rules

eliminates

the

need

to

put

the

same

commands

in

several

description

blocks.

For

example,

you

can

use

inference

rules

to

specify

a

single

pli

command

that

changes

any

PL/I

source

file

(with

a

.pli

extension)

to

an

object

file

(with

a

.obj

extension).

You

define

an

inference

rule

by

including

text

of

the

following

form

in

your

description

file

or

in

your

TOOLS.INI

file

—

see

“Special

Features”.

.fromext.toext:

commands

:

The

elements

of

the

inference

rule

are:

fromext

The

file-name

extension

for

dependent

files

to

build

a

target

toext

The

file-name

extension

for

target

files

to

be

built

commands

The

commands

to

build

the

toext

target

from

the

fromext

dependent.

For

example,

an

inference

rule

to

convert

PL/I

source

files

(with

the

.pli

extension)

to

PL/I

object

files

(with

the

.obj

extension)

is

.pli.obj:

pli

$<

The

special

macro

$<

represents

the

name

of

a

dependent

out-of-date

relative

to

the

target.

Special

features

v

You

can

specify

a

path

where

NMAKE

should

look

for

target

and

dependent

files

used

in

inference

rules.

v

Inference

rules

are

predefined

for

compiling

and

linking

C

programs,

and

for

assembling

programs.

v

NMAKE

looks

for

inference

rules

in

the

TOOLS.INI

file

if

it

cannot

find

a

rule

in

a

description

file.

v

Only

those

extensions

defined

in

a

.SUFFIXES

list

can

have

inference

rules.

The

extensions

.c,

.obj,

.asm,

and

.exe

are

automatically

included

in

.SUFFIXES.

v

You

must

add

PL/I

file

extensions

manually

using

the

.SUFFIXES

pseudotarget.

See

“.SUFFIXES

Pseudotarget”

on

page

276.

Inference

rules

example

.obj.exe:

ilink

$<;

example1.exe:

example1.obj

example2.exe:

example2.obj

ilink

/co

example2,,,libv3.lib

The

first

line

above

defines

an

inference

rule

that

causes

the

ILINK

command

to

create

an

executable

file

whenever

a

change

is

made

in

the

corresponding

object

Inference

rules

272

PL/I

for

Windows:

Programming

Guide

file.

The

file

name

in

the

inference

rule

is

specified

with

the

special

macro

$<

so

that

the

rule

applies

to

any

.obj

file

with

an

out-of-date

executable

file.

When

NMAKE

does

not

find

any

commands

in

the

first

description

block,

it

checks

for

a

rule

that

might

apply

and

finds

the

rule

defined

on

the

first

two

lines

of

the

description

file.

NMAKE

applies

the

rule,

replacing

$<

with

example1.obj

when

it

executes

the

command,

so

that

the

ILINK

command

becomes

ilink

example1.obj;

NMAKE

does

not

search

for

an

inference

rule

when

examining

the

second

description

block,

because

a

command

is

explicitly

given.

Inference-rule

path

specifications

When

defining

an

inference

rule,

you

can

indicate

to

NMAKE

where

to

look

for

target

and

dependent

files.

Use

the

following

syntax:

{frompath}.fromext{topath}.toext

commands

:

NMAKE

looks

in

the

directory

specified

by

frompath

for

files

with

the

fromext

extension.

It

executes

the

commands

to

build

files

with

the

toext

extension

in

the

directory

specified

by

topath.

Predefined

inference

rules

NMAKE

predefines

several

inference

rules:

Table

26.

NMAKE

Predefined

Inference

Rules

Inference

Rule

Command

Action

Default

.c.obj

$(CC)

$(CFLAGS)

/c

$*.c

icc

/c

$*.c

.c.exe

$(CC)

$(CFLAGS)

$*.c

icc

$*.c

.asm.obj

$(AS)

$(AFLAGS)

$*;

masm

$*;

v

The

first

two

rules

automatically

compile

and

link

C

programs.

v

The

last

rule

automatically

assembles

programs.

v

The

above

are

the

most

often

used

predefined

inference

rules.

For

a

complete

list

of

predefined

inference

rules,

execute

a

makefile

and

specify

the

/p

option.

All

available

inference

rules

will

be

displayed.

Directives

Using

directives,

you

can

construct

description

files

similar

to

batch

files.

NMAKE

provides

directives

that:

v

Conditionally

execute

commands

v

Display

error

messages

v

Include

the

contents

of

other

files

v

Turn

some

NMAKE

options

on

or

off

Each

directive

begins

with

an

exclamation

point

(

!

)

in

the

first

column

of

the

description

file.

Spaces

can

be

placed

between

the

exclamation

point

and

the

directive

keyword.

The

list

below

describes

the

directives:

Inference

rules

Chapter

18.

Using

the

Program

Maintenance

Utility,

NMAKE

273

!IF

expression

Executes

the

statements

between

the

!IF

keyword

and

the

next

!ELSE

or

!ENDIF

directive

if

expression

evaluates

to

a

nonzero

value.

The

expression

used

with

the

!IF

directive

can

consist

of

integer

constants,

string

constants,

or

exit

codes

returned

by

programs.

Integer

constants

can

use

the

C

unary

operators

for

numerical

negation

(

-

),

one’s

complement

(

~

),

and

logical

negation

(

!

).

You

can

also

use

any

of

the

C

binary

operators

listed

below:

Operator

Description

+

Addition

-

Subtraction

*

Multiplication

/

Division

%

Modulus

&

Bitwise

AND

|

Bitwise

OR

^^

Bitwise

XOR

&&

Logical

AND

||

Logical

OR

<<

Left

shift

>>

Right

shift

==

Equality

!=

Inequality

<

Less

than

>

Greater

than

<=

Less

than

or

equal

to

>=

Greater

than

or

equal

to
v

You

can

use

parentheses

to

group

expressions.

v

Values

are

assumed

to

be

decimal

values

unless

specified

with

a

leading

0

(octal)

or

leading

0x

(hexadecimal).

v

Strings

are

enclosed

by

quotation

marks

(

″

).

You

can

use

the

equality

(

==

)

and

inequality

(

!=

)

operators

to

compare

two

strings.

v

You

can

invoke

a

program

in

an

expression

by

enclosing

the

program

name

in

square

brackets

(

[

]

).

The

exit

code

returned

by

the

program

is

used

in

the

expression.

!ELSE

Executes

the

statements

between

the

!ELSE

and

!ENDIF

directives

if

the

statements

preceding

the

!ELSE

directive

were

not

executed.

!ENDIF

Marks

the

end

of

the

!IF,

!IFDEF,

or

!IFNDEF

block

of

statements.

!IFDEF

macroname

Executes

the

statements

between

the

!IFDEF

keyword

and

the

next

!ELSE

Directives

274

PL/I

for

Windows:

Programming

Guide

or

!ENDIF

directive

if

macroname

is

defined

in

the

description

file.

If

a

macro

has

been

defined

as

null,

it

is

still

considered

to

be

defined.

!IFNDEF

macroname

Executes

the

statements

between

the

!IFNDEF

keyword

and

the

next

!ELSE

or

!ENDIF

directive

if

macroname

is

not

defined

in

the

description

file.

!UNDEF

macroname

Undefines

a

previously

defined

macro.

!ERROR

text

Prints

text

and

then

stops

execution.

!INCLUDE

filename

Reads

and

evaluates

the

file

filename

before

continuing

with

the

current

description

file.

If

filename

is

enclosed

by

angle

brackets

(<>),

NMAKE

searches

for

the

file

in

the

directories

specified

by

the

INCLUDE

macro;

otherwise,

it

looks

only

in

the

current

directory.

The

INCLUDE

macro

is

initially

set

to

the

value

of

the

INCLUDE

environment

variable.

!CMDSWITCHES

{+|-}opt

Turns

on

or

off

one

of

four

NMAKE

options:

/D,

/I,

/N,

and

/S.

If

no

options

are

specified,

the

options

are

reset

to

the

values

they

had

when

NMAKE

was

started.

To

turn

an

option

on,

precede

it

with

a

plus

sign

(+);

to

turn

it

off,

precede

it

with

a

minus

sign

(-).

This

directive

updates

the

MAKEFLAGS

macro.

See

“Special

macros”

on

page

269.

Directives

example

!INCLUDE

<infrules.txt>

!CMDSWITCHES

+D

winner.exe:winner.obj

!IFDEF

DEBUG

!

IF

"$(DEBUG)"=="y"

ilink

/de

winner.obj;

!

ELSE

ilink

winner.obj;

!

ENDIF

!ELSE

!

ERROR

Macro

named

DEBUG

is

not

defined.

!ENDIF

The

directives

in

this

example

do

the

following:

v

The

!INCLUDE

directive

causes

the

file

infrules.txt

to

be

read

and

evaluated

as

if

it

were

part

of

the

description

file.

v

The

!CMDSWITCHES

directive

turns

on

the

/D

option,

which

displays

the

dates

of

the

files

as

they

are

checked.

v

If

winner.exe

is

out-of-date

with

respect

to

winner.obj,

the

!IFDEF

directive

checks

to

see

whether

the

macro

DEBUG

is

defined.

If

it

is

defined,

the

!IF

directive

checks

to

see

whether

it

is

set

to

y.

If

it

is,

the

linker

is

invoked

with

the

/DE

option;

otherwise,

it

is

invoked

without

the

/DE.

If

the

DEBUG

macro

is

not

defined,

the

!ERROR

directive

prints

the

message

and

NMAKE

stops

executing.

Pseudotargets

A

pseudotarget

is

a

target

in

a

description

block

that

is

not

a

file.

Instead,

it

is

a

name

that

serves

as

a

″handle″

for

building

a

group

of

files

or

executing

a

group

of

commands.

In

the

following

example,

UPDATE

is

a

pseudotarget:

Directives

Chapter

18.

Using

the

Program

Maintenance

Utility,

NMAKE

275

UPDATE:

.

!copy

$**

a:\product

When

NMAKE

evaluates

a

pseudotarget,

it

always

considers

the

dependents

to

be

out-of-date.

In

the

description

above,

NMAKE

copies

each

of

the

dependent

files

to

the

specified

drive

and

directory.

NMAKE

predefines

several

pseudotargets

for

special

purposes.

See

“Predefined

pseudotargets.”

Predefined

pseudotargets

NMAKE

predefines

several

pseudotargets

that

provide

special

rules

within

a

description

file:

.SILENT

Pseudotarget

Syntax:

.SILENT

:

dependents...

This

pseudotarget

suppresses

the

display

of

executed

commands

for

a

single

description

block.

The

/S

option

does

the

same

thing

for

all

description

blocks.

See

“Suppress

command

display

(/S)”

on

page

264.

.IGNORE

Pseudotarget

Syntax:

.IGNORE

:

dependents...

This

pseudotarget

ignores

exit

codes

returned

by

programs

for

a

single

description

block.

The

/I

option

does

the

same

thing

for

all

description

blocks.

See

“Ignore

exit

codes

(/I)”

on

page

263.

.SUFFIXES

Pseudotarget

Syntax:

.SUFFIXES

:

extensions...

This

pseudotarget

defines

file

extensions

to

try

when

NMAKE

needs

to

build

a

target

file

for

which

no

dependents

are

specified.

NMAKE

searches

the

current

directory

for

a

file

with

the

same

name

as

the

target

file

and

an

extension

in

<extensions...>.

If

NMAKE

finds

such

a

file,

and

if

an

inference

rule

applies

to

the

file,

NMAKE

treats

the

file

as

a

dependent

of

the

target.

The

.SUFFIXES

pseudotarget

is

predefined

as

.SUFFIXES

:

.obj

.exe

.c

.asm

To

add

extensions

to

the

list,

specify

.SUFFIXES

:

followed

by

the

new

extensions.

For

example,

the

following

would

enable

you

to

write

interence

rules

for

PL/I

source

files.

.SUFFIXES:

.pli

To

clear

the

list,

specify

.SUFFIXES:

Only

those

extensions

specified

in

.SUFFIXES

can

have

inference

rules.

NMAKE

ignores

inference

rules

unless

the

extensions

have

been

specified

in

a

.SUFFIXES

list.

Directives

276

PL/I

for

Windows:

Programming

Guide

.PRECIOUS

Pseudotarget

Syntax:

.PRECIOUS

:

targets...

This

pseudotarget

tells

NMAKE

not

to

delete

a

target

even

if

the

commands

that

build

it

are

terminated

or

interrupted.

This

pseudotarget

overrides

the

NMAKE

default.

By

default,

NMAKE

deletes

the

target

if

it

cannot

be

sure

that

the

target

was

built

successfully.

For

example,

.PRECIOUS

:

tools.lib

tools.lib

:

a2z.obj

z2a.obj

command

:

If

the

commands

to

build

tools.lib

are

interrupted,

leaving

an

incomplete

file,

NMAKE

does

not

delete

the

partially

built

tools.lib.

The

pseudotarget

.PRECIOUS

is

useful

only

in

limited

circumstances.

Most

professional

development

tools

have

their

own

interrupt

handlers

and

″clean

up″

when

errors

occur.

Inline

files

You

may

need

to

issue

a

command

in

the

description

file

with

a

list

of

arguments

exceeding

the

command-line

limit

of

the

operating

system.

Just

as

NMAKE

supports

the

use

of

command

files,

it

can

also

generate

inline

files

which

are

read

as

response

files

by

other

programs.

To

generate

an

inline

file,

use

the

following

syntax

for

your

description

block:

target

:

dependents

command

@<<[filename]

inline

file

text

<<

[KEEP

|

NOKEEP]

All

of

the

text

between

the

two

sets

of

double

less

than

signs

(<<)

is

placed

into

an

inline

file

and

given

the

name

filename.

You

can

refer

to

the

inline

file

at

a

later

time

by

using

filename.

If

filename

is

not

given,

NMAKE

gives

the

file

a

unique

name

in

the

directory

specified

by

the

TMP

environment

variable

if

it

is

defined.

Otherwise,

NMAKE

creates

a

unique

file

name

in

the

current

directory.

The

inline

file

can

be

temporary

or

permanent.

If

you

do

not

specify

otherwise,

or

if

you

specify

the

keyword

NOKEEP,

the

inline

file

is

temporary.

Specify

KEEP

to

retain

the

file.

The

at

sign

(@)

is

not

part

of

the

NMAKE

syntax

but

is

the

typical

character

used

by

utilities

to

designate

a

file

as

a

response

file.

Inline

files

example

math.lib

:

add.obj

sub.obj

mul.obj

div.obj

ilib

@<<

math.lib

add.obj

sub.obj

mul.obj

div.obj

/L:listing

<<

Directives

Chapter

18.

Using

the

Program

Maintenance

Utility,

NMAKE

277

The

above

example

creates

an

inline

file

and

uses

it

to

invoke

the

Library

Manager

(ILIB).

The

inline

file

is

used

as

a

response

file

by

(ILIB).

It

specifies

which

library

to

use,

the

commands

to

execute,

and

the

listing

file

to

produce.

The

inline

file

contains

the

following:

math.lib

add.obj

sub.obj

mul.obj

div.obj

/L:listing

Because

no

file

name

is

listed

after

the

ILIB

command,

the

inline

file

is

given

a

unique

name

and

placed

into

the

current

directory

(or

the

directory

defined

by

the

TMP

environment

variable).

Escape

characters

NMAKE

uses

the

following

punctuation

characters

in

its

syntax:

(

)

#

$

^

\

{

}

!

@

-

To

use

one

of

these

characters

in

a

command

and

not

have

it

interpreted

by

NMAKE,

use

a

caret

(

^

)

in

front

of

the

character.

For

example,

BIG^#.PLI

is

treated

as

BIG#.PLI

With

the

caret,

you

can

include

a

literal

newline

character

in

a

description

file.

This

capability

is

useful

in

macro

definitions,

as

in

the

following

example:

XYZ=abc^<ENTER>

def

The

effect

is

equivalent

to

the

effect

of

assigning

the

C-style

string

abc\ndef

to

the

XYZ

macro.

Note

that

this

effect

differs

from

the

effect

of

using

the

backslash

(

\

)

to

continue

a

line.

A

newline

character

that

follows

a

backslash

is

replaced

with

a

space.

NMAKE

ignores

a

caret

that

is

not

followed

by

any

of

the

characters

it

uses

in

its

syntax.

A

caret

that

appears

within

quotation

marks

is

not

treated

as

an

escape

character.

The

escape

character

cannot

be

used

in

the

command

portion

of

a

dependency

block.

Characters

that

modify

commands

Any

of

three

characters

can

be

placed

in

front

of

a

command

to

modify

how

the

command

is

run:

—

(dash)

Turns

off

error

checking

for

the

command

@

(at

sign)

Suppresses

display

of

the

command

Inline

files

278

PL/I

for

Windows:

Programming

Guide

!

(exclamation

point)

Executes

the

command

for

each

dependent

file

Spaces

can

separate

the

modifying

character

from

the

command.

Any

command

on

a

separate

line

—

whether

modified

or

not

—

must

be

indented

by

one

or

more

spaces

or

tabs.

You

can

use

more

than

one

character

to

modify

a

single

command.

Turn

error

checking

off

(-)

Syntax:

-[n]

command

The

/I

option

globally

turns

command

error-checking

off.

The

dash

(-)

command

modifier

overrides

the

global

setting

to

turn

error

checking

off

for

commands

individually.

This

modifier

is

used

in

two

ways:

v

A

dash

without

a

number

turns

off

all

error

checking.

v

A

dash

followed

by

a

number

causes

NMAKE

to

abort

only

if

the

exit

code

returned

by

the

command

is

greater

than

the

number.

See

“Ignore

exit

codes

(/I)”

on

page

263.

Dash

command

modifier

examples

light.lst

:

light.txt

-

flash

light.txt

In

the

example

above,

NMAKE

never

ends,

regardless

of

the

exit

code

returned

by

flash.

light.lst

:

light.txt

-1

flash

light.txt

In

the

example

above,

NMAKE

ends

if

the

exit

code

returned

by

flash

is

greater

than

1.

Suppress

command

display

(@)

Syntax:

@

command

The

/S

option

globally

suppresses

the

display

of

commands

while

NMAKE

is

running.

The

at

sign

(@)

modifier

suppresses

the

display

for

individual

commands.

Regardless

of

the

/S

option

or

the

@

modifier,

output

generated

by

the

command

itself

always

appears.

See

“Suppress

command

display

(/S)”

on

page

264.

At

sign

(@)

command

modifier

example

Suppress

Command

Display

(@)

sort.exe:sort.obj

@

echo

sorting

The

command

line

calling

the

echo

command

is

not

displayed.

The

output

of

the

echo

command,

however,

is

displayed.

Characters

that

modify

commands

Chapter

18.

Using

the

Program

Maintenance

Utility,

NMAKE

279

Execute

command

for

dependents

(!)

Syntax:

!

command

The

exclamation-point

command

modifier

causes

the

command

to

be

executed

for

each

dependent

file

if

the

command

uses

one

of

the

special

macros

$?

or

$**.

The

$?

macro

refers

to

all

dependent

files

out-of-date

with

respect

to

the

target.

The

$**

macro

refers

to

all

dependent

files

in

the

description

block.

See

“Special

macros”

on

page

269.

Exclamation

point

(!)

command

modifier

examples

leap.txt

:

hop.asm

skip.c

jump.pli

!

print

$**

lpt1:

The

example

above

executes

the

following

three

commands,

regardless

of

the

modification

dates

of

the

dependent

file:

print

hop.asm

lpt1:

print

skip.c

lpt1:

print

jump.pli

lpt1:

leap.txt

:

hop.asm

skip.c

jump.pli

!

print

$?

lpt1:

The

example

above

executes

the

print

command

only

for

those

dependent

files

with

modification

dates

later

than

that

of

the

leap.txt

file.

If

hop.asm

and

jump.pli

have

modification

dates

later

than

leap.txt,

the

following

two

commands

are

executed:

print

hop.asm

lpt1:

print

jump.pli

lpt1:

EXTMAKE

Syntax

Description

files

can

use

a

special

syntax

to

determine

the

drive,

path,

base

name,

and

extension

of

the

first

dependent

file

in

a

description

block.

This

syntax

is

called

the

extmake

syntax.

The

characters

%s

represent

the

complete

file

specification

of

the

first

dependent

file.

Various

parts

of

the

file

specification

are

represented

using

the

following

syntax:

%<parts>

<parts>

A

combination

of

the

following

letters:

d

Drive

p

Path

f

Base

name

e

Extension

For

example,

to

specify

the

drive

and

path

name

of

the

first

dependent

file

in

a

description

block,

use:

%<dp>

The

percent

symbol

(%)

is

a

replacement

in

DOS

and

Windows

command

lines.

To

use

the

percent

symbol

in

command-line

arguments,

use

a

double

percent

(%%).

Characters

that

modify

commands

280

PL/I

for

Windows:

Programming

Guide

Macros

and

inference

rules

in

TOOLS.INI

You

can

place

either

macros

or

inference

rules

in

your

TOOLS.INI

file.

NMAKE

looks

for

the

TOOLS.INI

file

first

in

the

current

directory

and

then

in

the

directory

indicated

by

the

INIT

environment

variable.

If

NMAKE

finds

a

TOOLS.INI

file,

it

looks

for

the

following

tag:

[nmake]

You

can

place

macros

and

inference

rules

below

this

tag

in

the

same

format

you

would

use

in

a

description

file.

If

a

macro

or

inference

rule

is

defined

in

both

the

TOOLS.INI

file

and

the

description

file,

the

definition

in

the

description

file

takes

precedence.

Also,

if

you

use

the

/R

option,

the

TOOLS.INI

file

is

ignored.

TOOLS.INI

example

[nmake]

.SUFFIXES:

.pli

COMPILE_OPTS

=

gonumber

source

.pli.obj:

PLI

$*.pli

($(COMPILE_OPTS)

These

lines

in

the

TOOLS.INI

file

do

the

following:

v

Add

the

.pli

file

extension

to

the

list

of

extensions

that

can

have

inference

rules.

v

Define

the

COMPILE_OPTS

macro

as

gonumber

source.

v

Define

an

inference

rule

to

build

.obj

files

from

.pli

source

files.

Macros

and

inference

rules

in

TOOLS.INI

Chapter

18.

Using

the

Program

Maintenance

Utility,

NMAKE

281

Macros

and

inference

rules

in

TOOLS.INI

282

PL/I

for

Windows:

Programming

Guide

Chapter

19.

Improving

performance

Selecting

compile-time

options

for

optimal

performance

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

OPTIMIZE

.

.

.

.

.

.

.

.

.

.

.

.

. 283

IMPRECISE

.

.

.

.

.

.

.

.

.

.

.

.

. 284

GONUMBER

.

.

.

.

.

.

.

.

.

.

.

. 284

SNAP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

RULES

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

PREFIX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

CONVERSION

.

.

.

.

.

.

.

.

.

.

. 285

FIXEDOVERFLOW

.

.

.

.

.

.

.

.

. 286

DEFAULT

.

.

.

.

.

.

.

.

.

.

.

.

. 286

BYADDR

or

BYVALUE

.

.

.

.

.

.

.

. 286

(NON)CONNECTED

.

.

.

.

.

.

.

.

. 287

RETURNS(BYVALUE)

or

RETURNS(BYADDR)

.

.

.

.

.

.

.

.

. 287

(NO)DESCRIPTOR

.

.

.

.

.

.

.

.

. 287

(RE)ORDER

.

.

.

.

.

.

.

.

.

.

.

. 288

LINKAGE

.

.

.

.

.

.

.

.

.

.

.

. 288

ASCII

or

EBCDIC

.

.

.

.

.

.

.

.

.

. 288

IEEE

or

HEXADEC

.

.

.

.

.

.

.

.

. 288

(NON)NATIVE

.

.

.

.

.

.

.

.

.

.

. 288

(NO)INLINE

.

.

.

.

.

.

.

.

.

.

. 288

Summary

of

compile-time

options

that

improve

performance

.

.

.

.

.

.

.

.

.

.

.

.

. 289

Coding

for

better

performance

.

.

.

.

.

.

. 289

DATA-directed

input

and

output

.

.

.

.

.

. 289

Input-only

parameters

.

.

.

.

.

.

.

.

. 290

String

assignments

.

.

.

.

.

.

.

.

.

. 290

Loop

control

variables

.

.

.

.

.

.

.

.

. 291

PACKAGEs

versus

nested

PROCEDUREs

.

.

. 291

Example

with

nested

procedures

.

.

.

.

. 291

REDUCIBLE

functions

.

.

.

.

.

.

.

.

. 292

DEFINED

versus

UNION

.

.

.

.

.

.

.

. 293

Named

constants

versus

static

variables

.

.

. 293

Example

with

optimal

code

but

no

meaningful

names

.

.

.

.

.

.

.

.

.

. 293

Avoiding

calls

to

library

routines

.

.

.

.

.

. 294

Many

considerations

for

improving

the

speed

of

your

program

are

independent

of

the

compiler

that

you

use

and

the

platform

on

which

it

runs.

This

chapter,

however,

identifies

those

considerations

that

are

unique

to

the

workstation

PL/IPL/I

for

AIX

compilers

and

the

code

they

generate.

Selecting

compile-time

options

for

optimal

performance

The

compile-time

options

you

choose

can

greatly

improve

the

performance

of

the

code

generated

by

the

compiler.

However,

like

most

performance

considerations,

there

are

trade-offs

associated

with

these

choices.

Fortunately,

you

can

weigh

the

trade-offs

associated

with

compile-time

options

without

editing

your

source

code

because

these

options

can

be

specified

on

the

command

line

or

in

the

environment

variable

IBM.OPTIONS.

If

you

want

to

avoid

details,

the

least

complex

way

to

improve

the

performance

of

generated

code

is

to

specify

the

following

(non-default)

compile-time

options:

PREFIX(NOFOFL)

IMPRECISE

OPT(2)

DFT(REORDER)

The

first

two

options

can

affect

the

semantics

of

your

program,

but

generally

only

do

so

in

unusual

situations.

If

you

specify

the

first

two

options,

your

code

is

improved

even

when

compiled

with

optimization

turned

off.

By

using

these

options,

the

compiler

is

also

less

likely

to

make

errors.

The

following

sections

describe,

in

more

detail,

performance

improvements

and

trade-offs

associated

with

specific

compile-time

options.

OPTIMIZE

You

can

specify

the

OPTIMIZE

option

to

improve

the

speed

of

your

program,

otherwise,

the

compiler

makes

only

basic

optimization

efforts.

283

Choosing

OPTIMIZE(2)

directs

the

compiler

to

generate

code

for

better

performance.

Usually,

the

resultant

code

is

shorter

than

when

the

program

is

compiled

under

NOOPTIMIZE.

Sometimes,

however,

a

longer

sequence

of

instructions

runs

faster

than

a

shorter

sequence.

This

can

occur,

for

instance,

when

a

branch

table

is

created

for

a

SELECT

statement

where

the

values

in

the

WHEN

clauses

contain

gaps.

The

increased

number

of

instructions

generated

in

this

case

is

usually

offset

by

the

execution

of

fewer

instructions

in

other

places.

IMPRECISE

When

you

select

this

option,

the

compiler

generates

smaller

and

faster

sequences

of

instructions

for

floating-point

operations.

This

can

have

a

significant

effect

on

the

performance

of

programs

that

contain

floating-point

expressions,

either

separately

or

in

loops.

However,

when

programs

are

compiled

with

the

IMPRECISE

option,

floating-point

exceptions

might

not

be

reported

at

the

precise

location

where

they

occur.

(This

is

especially

true

when

the

OPTIMIZE

option

is

in

effect.)

In

addition,

floating-point

operations

can

produce

results

that

are

not

precisely

IEEE

conforming.

GONUMBER

Using

this

option

results

in

a

statement

number

table

used

for

debugging.

This

added

information

can

be

extremely

helpful

when

debugging,

but

including

statement

number

tables

increases

the

size

of

your

executable

file.

Larger

executable

files

can

take

longer

to

load.

By

using

one

of

the

linker

options,

you

can

include

the

statement

number

tables

in

your

executable

during

development

to

help

with

debugging.

The

/DEBUG

(/DE)

option

directs

the

linker

to

include

these

tables

in

the

executable

file,

so

by

not

specifying

/DE

with

the

ILINK

command,

you

can

better

control

the

size

of

your

executable

files.

If

the

size

of

your

executable

file

is

a

consideration,

you

can

leave

the

tables

out

during

production

mode.

SNAP

When

you

use

the

SNAP

option,

the

compiler

generates

extra

instructions

in

the

prolog

and

epilog

code

for

every

block.

These

instructions

ensure

that

the

run-time

traceback

messages

(produced

by

PLIDUMP

and

the

SNAP

option

on

an

ON

statement)

include

all

procedures

that

were

active

when

the

traceback

was

requested.

A

trade-off

of

using

the

SNAP

option

and

creating

these

additional

instructions

is

that

it

can

have

a

negative

impact

on

the

performance

of

your

application.

This

is

especially

true

for

procedures

that

are

called

frequently.

RULES

When

you

use

the

RULES(IBM)

option,

the

compiler

supports

scaled

FIXED

BINARY

and,

what

is

more

important

for

performance,

generates

scaled

FIXED

BINARY

results

in

some

operations.

Under

RULES(ANS),

scaled

FIXED

BINARY

is

not

supported

and

scaled

FIXED

BINARY

results

are

never

generated.

This

means

that

the

code

generated

under

RULES(ANS)

always

runs

at

least

as

fast

as

the

code

generated

under

RULES(IBM),

and

sometimes

runs

faster.

For

example,

consider

the

following

code

fragment:

Improving

performance

284

PL/I

for

Windows:

Programming

Guide

dcl

(i,j,k)

fixed

bin(15);

.

.

.

i

=

j

/

k;

Under

RULES(IBM),

the

result

of

the

division

has

the

attributes

FIXED

BIN(31,16).

This

means

that

a

shift

instruction

is

required

before

the

division

and

several

more

instructions

are

needed

to

perform

the

assignment.

Under

RULES(ANS),

the

result

of

the

division

has

the

attributes

FIXED

BIN(15,0).

This

means

that

a

shift

is

not

needed

before

the

division,

and

no

extra

instructions

are

needed

to

perform

the

assignment.

When

you

use

the

RULES(LAXCTL)

option,

the

compiler

allows

you

to

declare

a

CONTROLLED

variable

with

a

constant

extent

and

then

ALLOCATE

it

with

a

different

extent,

as

in

DECLARE

X

BIT(1)

CTL;

ALLOCATE

X

BIT(63);

However,

this

programming

practice

forces

the

compiler

to

assume

that

no

CONTROLLED

variable

has

constant

extents,

and

consequently

it

will

generate

much

less

efficient

code

when

these

variables

are

referenced.

But,

if

you

specify

a

constant

extent

for

a

CONTROLLED

variable

only

when

it

will

always

have

that

length

(or

bound),

then

you

will

get

much

better

performance

if

you

specify

the

option

RULES(NOLAXCTL).

PREFIX

This

option

determines

if

selected

PL/I

conditions

are

enabled

by

default.

The

default

suboptions

for

PREFIX

are

set

to

conform

to

the

PL/I

language

definition.

However,

overriding

the

defaults

can

have

a

significant

effect

on

the

performance

of

your

program.

The

default

suboptions

are:

CONVERSION

INVALIDOP

FIXEDOVERFLOW

OVERFLOW

INVALIDOP

NOSIZE

NOSTRINGRANGE

NOSTRINGSIZE

NOSUBSCRIPTRANGE

UNDERFLOW

ZERODIVIDE

By

specifying

the

SIZE,

STRINGRANGE,

STRINGSIZE,

or

SUBSCRIPTRANGE

suboptions,

the

compiler

generates

extra

code

that

helps

you

pinpoint

various

problem

areas

in

your

source

that

would

otherwise

be

hard

to

find.

This

extra

code,

however,

can

slow

program

performance

significantly.

CONVERSION

When

you

disable

the

CONVERSION

condition,

some

character-to-numeric

conversions

are

done

inline

and

without

checking

the

validity

of

the

source.

Therefore,

specifying

NOCONVERSION

also

affects

program

performance.

Improving

performance

Chapter

19.

Improving

performance

285

FIXEDOVERFLOW

On

some

platforms,

the

FIXEDOVERFLOW

condition

is

raised

by

the

hardware

and

the

compiler

does

not

need

to

generate

any

extra

code

to

detect

it.

With

personal

computers,

however,

the

hardware

does

not

raise

this

condition

so

the

compiler

must

generate

extra

code.

This

extra

code

can

negatively

impact

the

performance

of

your

program;

and

unless

your

program

requires

(or

expects)

this

condition

to

be

raised,

specify

PREFIX(NOFIXEDOVERFLOW)

to

improve

performance.

DEFAULT

Using

the

DEFAULT

option,

you

can

select

attribute

defaults.

As

is

true

with

the

PREFIX

option,

the

suboptions

for

DEFAULT

are

set

to

conform

to

the

PL/I

language

definition.

Changing

the

defaults

in

some

instances

can

affect

performance.

The

default

suboptions

are:

IBM

BYADDR

RETURNS(BYVALUE)

NONCONNECTED

DESCRIPTOR

ORDER

ASSIGNABLE

LINKAGE(OPTLINK)

ASCII

IEEE

NATIVE

NODIRECTED

NOINLINE

The

IBM/ANS,

ASSIGNABLE/NONASSIGNABLE,

and

DIRECTED/NODIRECTED

suboptions

have

no

effect

on

program

performance.

All

of

the

other

suboptions

can

affect

performance

to

varying

degrees

and,

if

applied

inappropriately,

can

make

your

program

invalid.

BYADDR

or

BYVALUE

When

the

DEFAULT(BYADDR)

option

is

in

effect,

arguments

are

passed

by

reference

(as

required

by

PL/I)

unless

an

attribute

in

an

entry

declaration

indicates

otherwise.

As

arguments

are

passed

by

reference,

the

address

of

the

argument

is

passed

from

one

routine

(calling

routine)

to

another

(called

routine)

as

the

variable

itself

is

passed.

Any

change

made

to

the

argument

while

in

the

called

routine

is

reflected

in

the

calling

routine

when

it

resumes

execution.

Program

logic

often

depends

on

passing

variables

by

reference.

However,

passing

a

variable

by

reference

can

hinder

performance

in

two

ways:

1.

Every

reference

to

that

parameter

requires

an

extra

instruction.

2.

Since

the

address

of

the

variable

is

passed

to

another

routine,

the

compiler

is

forced

to

make

assumptions

about

when

that

variable

might

change

and

generate

very

conservative

code

for

any

reference

to

that

variable.

Consequently,

you

should

pass

parameters

by

value

using

the

BYVALUE

suboption

whenever

your

program

logic

allows.

Even

if

you

use

the

BYADDR

attribute

to

indicate

that

one

parameter

should

be

passed

by

reference,

you

can

use

the

DEFAULT(BYVALUE)

option

to

ensure

that

all

other

parameters

are

passed

by

value.

If

a

procedure

receives

and

modifies

only

one

parameter

that

is

passed

by

BYADDR,

consider

converting

the

procedure

to

a

function

that

receives

that

Improving

performance

286

PL/I

for

Windows:

Programming

Guide

parameter

by

value.

The

function

would

then

end

with

a

RETURN

statement

containing

the

updated

value

of

the

parameter.

Procedure

with

BYADDR

parameter::

a:

proc(

parm1,

parm2,

...,

parmN

);

dcl

parm1

byaddr

...;

dcl

parm2

byvalue

...;

.

.

.

dcl

parmN

byvalue

...;

/*

program

logic

*/

end;

Faster,

equivalent

function

with

BYVALUE

parameter::

a:

proc(

parm1,

parm2,

...,

parmN

)

returns(

...

/*

attributes

of

parm1

*/

);

dcl

parm1

byvalue

...;

dcl

parm2

byvalue

...;

.

.

.

dcl

parmN

byvalue

...;

/*

program

logic

*/

return(

parm1

);

end;

(NON)CONNECTED

The

DEFAULT(NONCONNECTED)

option

indicates

that

the

compiler

assumes

that

any

aggregate

parameters

are

NONCONNECTED.

References

to

elements

of

NONCONNECTED

aggregate

parameters

require

the

compiler

to

generate

code

to

access

the

parameter’s

descriptor,

even

if

the

aggregate

is

declared

with

constant

extents.

The

compiler

does

not

generate

these

instructions

if

the

aggregate

parameter

has

constant

extents

and

is

CONNECTED.

Consequently,

if

your

application

never

passes

nonconnected

parameters,

your

code

is

more

optimal

if

you

use

the

DEFAULT(CONNECTED)

option.

RETURNS(BYVALUE)

or

RETURNS(BYADDR)

When

the

DEFAULT(RETURNS(BYVALUE))

option

is

in

effect,

the

BYVALUE

attribute

is

applied

to

all

RETURNS

description

lists

that

do

not

specify

BYADDR.

This

means

that

these

functions

return

values

in

registers,

when

possible,

in

order

to

produce

the

most

optimal

code.

(NO)DESCRIPTOR

The

DEFAULT(DESCRIPTOR)

option

indicates

that,

by

default,

a

descriptor

is

passed

for

any

string,

area,

or

aggregate

parameter.

However,

the

descriptor

is

used

only

if

the

parameter

has

nonconstant

extents

or

if

the

parameter

is

an

array

with

the

NONCONNECTED

attribute.

In

this

case,

the

instructions

and

space

required

to

pass

the

descriptor

provide

no

benefit

and

incur

substantial

cost

(the

size

of

a

structure

descriptor

is

often

greater

Improving

performance

Chapter

19.

Improving

performance

287

than

size

of

the

structure

itself).

Consequently,

by

specifying

DEFAULT(NODESCRIPTOR)

and

using

OPTIONS(DESCRIPTOR)

only

as

needed

on

PROCEDURE

statements

and

ENTRY

declarations,

your

code

runs

more

optimally.

(RE)ORDER

The

DEFAULT(ORDER)

option

indicates

that

the

ORDER

option

is

applied

to

every

block,

meaning

that

variables

in

that

block

referenced

in

ON-units

(or

blocks

dynamically

descendant

from

ON-units)

have

their

latest

values.

This

effectively

prohibits

almost

all

optimizations

on

such

variables.

Consequently,

if

your

program

logic

allows,

use

DEFAULT(REORDER)

to

generate

superior

code.

LINKAGE

This

suboption

tells

the

compiler

the

default

linkage

to

use

when

the

LINKAGE

suboption

of

the

OPTIONS

attribute

or

option

for

an

entry

has

not

been

specified.

The

compiler

supports

various

linkages,

each

with

its

unique

performance

characteristics.

When

you

invoke

an

ENTRY

provided

by

an

external

entity

(such

as

an

operating

system),

you

must

use

the

linkage

previously

defined

for

that

ENTRY.

As

you

create

your

own

applications,

however,

you

can

choose

the

linkage

convention.

The

OPTLINK

linkage

is

strongly

recommended

because

it

provides

significantly

better

performance

than

other

linkage

conventions.

ASCII

or

EBCDIC

The

DEFAULT(ASCII)

option

indicates

that,

by

default,

character

data

is

held

in

native

Intel

style.

When

you

specify

the

EBCDIC

suboption,

the

compiler

must

generate

extra

instructions

for

most

operations

involving

the

input

or

output

of

character

variables.

IEEE

or

HEXADEC

The

DEFAULT(IEEE)

option

indicates

that,

by

default,

float

data

is

to

be

held

in

native

Intel

style.

When

you

specify

the

HEXADEC

suboption,

the

compiler

must

execute

significantly

more

instructions

for

most

operations

involving

floating-point

variables.

(NON)NATIVE

The

DEFAULT(NATIVE)

option

indicates

that,

by

default,

fixed

binary

data,

offset

data,

ordinal

data,

and

the

length

prefix

of

varying

strings

are

held

in

native

Intel

style.

When

you

specify

NONNATIVE,

extra

instructions

are

generated

for

operations

involving

those

data

types

previously

listed.

(NO)INLINE

The

suboption

NOINLINE

indicates

that

procedures

and

begin

blocks

should

not

be

inlined.

Inlining

occurs

only

when

you

specify

optimization.

Inlining

user

code

eliminates

the

overhead

of

the

function

call

and

linkage,

and

also

exposes

the

function’s

code

to

the

optimizer,

resulting

in

faster

code

performance.

Inlining

produces

the

best

results

when

the

overhead

for

the

function

is

nontrivial,

for

example,

when

functions

are

called

within

nested

loops.

Inlining

is

also

beneficial

when

the

inlined

function

provides

additional

opportunities

for

optimization,

such

as

when

constant

arguments

are

used.

Improving

performance

288

PL/I

for

Windows:

Programming

Guide

For

programs

containing

many

procedures

that

are

not

nested:

v

If

the

procedures

are

small

and

only

called

from

a

few

places,

you

can

increase

performance

by

specifying

INLINE.

v

If

the

procedures

are

large

and

called

from

several

places,

inlining

duplicates

code

throughout

the

program.

This

increase

in

the

size

of

the

program

might

offset

any

increase

of

speed.

In

this

case,

you

might

prefer

to

leave

NOINLINE

as

the

default

and

specify

OPTIONS(INLINE)

only

on

individually

selected

procedures.

When

you

use

inlining,

you

need

more

stack

space.

When

a

function

is

called,

its

local

storage

is

allocated

at

the

time

of

the

call

and

freed

when

it

returns

to

the

calling

function.

If

that

same

function

is

inlined,

its

storage

is

allocated

when

the

function

that

calls

it

is

entered,

and

is

not

freed

until

that

calling

function

ends.

Ensure

that

you

have

enough

stack

space

for

the

local

storage

of

the

inlined

functions.

Summary

of

compile-time

options

that

improve

performance

In

summary,

the

following

options

(if

appropriate

for

your

application)

can

improve

performance:

OPTIMIZE(2)

IMPRECISE

NOSNAP

PREFIX(NOFIXEDOVERFLOW)

RULES(

ANS

NOLAXCTL

)

DEFAULT

with

the

following

suboptions

(BYVALUE

RETURNS(BYVALUE)

CONNECTED

NODESCRIPTOR

REORDER

ASCII

IEEE

NATIVE

LINKAGE(OPTLINK)

Coding

for

better

performance

As

you

write

code,

there

is

generally

more

than

one

correct

way

to

accomplish

a

given

task.

Many

important

factors

influence

the

coding

style

you

choose,

including

readability

and

maintainability.

The

following

sections

discuss

choices

that

you

can

make

while

coding

that

potentially

affect

the

performance

of

your

program.

DATA-directed

input

and

output

Using

GET

DATA

and

PUT

DATA

statements

for

debugging

can

prove

very

helpful.

When

you

use

these

statements,

however,

you

generally

pay

the

price

of

decreased

performance.

This

cost

to

performance

is

usually

very

high

when

you

use

either

GET

DATA

or

PUT

DATA

without

a

variable

list.

Many

programmers

use

PUT

DATA

statements

in

their

ON

ERROR

code

as

illustrated

in

the

following

example:

on

error

begin;

on

error

system;

.

Improving

performance

Chapter

19.

Improving

performance

289

.

.

put

data;

.

.

.

end;

In

this

case,

the

program

would

perform

more

optimally

by

including

a

list

of

selected

variables

with

the

PUT

DATA

statement.

The

ON

ERROR

block

in

the

previous

example

contained

an

ON

ERROR

system

statement

before

the

PUT

DATA

statement.

This

prevents

the

program

from

getting

caught

in

an

infinite

loop

if

an

error

occurs

in

the

PUT

DATA

statement

(which

could

occur

if

any

variables

to

be

listed

contained

invalid

FIXED

DECIMAL

values)

or

elsewhere

in

the

ON

ERROR

block.

Input-only

parameters

If

a

procedure

has

a

BYADDR

parameter

which

it

uses

as

input

only,

it

is

best

to

declare

that

parameter

as

NONASSIGNABLE

(rather

than

letting

it

get

the

default

attribute

of

ASSIGNABLE).

If

that

procedure

is

later

called

with

a

constant

for

that

parameter,

the

compiler

can

put

that

constant

in

static

storage

and

pass

the

address

of

that

static

area.

This

practice

is

particularly

useful

for

strings

and

other

parameters

that

cannot

be

passed

in

registers

(input-only

parameters

that

can

be

passed

in

registers

are

best

declared

as

BYVALUE).

In

the

following

declaration,

for

instance,

the

first

parameter

to

dosScanEnv

is

an

input-only

CHAR

VARYINGZ

string:

dcl

dosScanEnv

entry(

char(*)

varyingz

nonasgn

byaddr,

pointer

byaddr

)

returns(

native

fixed

bin(31)

optional

)

options(

nodescriptor

linkage(system)

);

If

this

function

is

invoked

with

the

string

’IBM.OPTIONS’,

the

compiler

can

pass

the

address

of

that

string

rather

than

assigning

it

to

a

compiler-generated

temporary

storage

area

and

passing

the

address

of

that

area.

String

assignments

When

one

string

is

assigned

to

another,

the

compiler

ensures

that:

v

The

target

has

the

correct

value

even

if

the

source

and

target

overlap

v

The

source

string

is

truncated

if

it

is

longer

than

the

target.

This

assurance

comes

at

the

price

of

some

extra

instructions.

The

compiler

attempts

to

generate

these

extra

instructions

only

when

necessary,

but

often

you,

as

the

programmer,

know

they

are

not

necessary

when

the

compiler

cannot

be

sure.

For

instance,

if

the

source

and

target

are

based

character

strings

and

you

know

they

cannot

overlap,

you

could

use

the

PLIMOVE

built-in

function

to

eliminate

the

extra

code

the

compiler

would

otherwise

be

forced

to

generate.

In

the

example

which

follows,

faster

code

is

generated

for

the

second

assignment

statement:

dcl

based_Str

char(64)

based(

null()

);

dcl

target_Addr

pointer;

dcl

source_Addr

pointer;

Coding

for

better

performance

290

PL/I

for

Windows:

Programming

Guide

target_Addr->based_Str

=

source_Addr->based_Str;

call

plimove(

target_Addr,

source_Addr,

stg(based_Str)

);

If

you

have

any

doubts

about

whether

the

source

and

target

might

overlap

or

whether

the

target

is

big

enough

to

hold

the

source,

you

should

not

use

the

PLIMOVE

built-in.

Loop

control

variables

Program

performance

improves

if

your

loop

control

variables

are

one

of

the

types

in

the

following

list.

You

should

rarely,

if

ever,

use

other

types

of

variables.

FIXED

BINARY

with

zero

scale

factor

FLOAT

ORDINAL

HANDLE

POINTER

OFFSET

Performance

also

improves

if

loop

control

variables

are

not

members

of

arrays,

structures,

or

unions.

The

compiler

issues

a

warning

message

when

they

are.

Loop

control

variables

that

are

AUTOMATIC

and

not

used

for

any

other

purpose

give

you

the

optimal

code

generation.

Performance

is

decreased

if

your

program

depends

not

only

on

the

value

of

a

loop

control

variable,

but

also

on

its

address.

For

example,

if

the

ADDR

built-in

function

is

applied

to

the

variable

or

if

the

variable

is

passed

BYADDR

to

another

routine.

PACKAGEs

versus

nested

PROCEDUREs

Calling

nested

procedures

requires

that

an

extra

“hidden

parameter”

(the

backchain

pointer)

is

passed.

As

a

result,

the

fewer

nested

procedures

that

your

application

contains,

the

faster

it

runs.

To

improve

the

performance

of

your

application,

you

can

convert

a

mother-daughter

pair

of

nested

procedures

into

level-1

sister

procedures

inside

of

a

package.

This

conversion

is

possible

if

your

nested

procedure

does

not

rely

on

any

of

the

automatic

and

internal

static

variables

declared

in

its

parent

procedures.

If

procedure

b

in

Example

with

nested

procedures

does

not

use

any

of

the

variables

declared

in

a,

you

can

improve

the

performance

of

both

procedures

by

reorganizing

them

into

the

package

illustrated

in

Example

with

packaged

procedures.

Example

with

nested

procedures

a:

proc;

dcl

(i,j,k)

fixed

bin;

dcl

ib

based

fixed

bin;

.

.

.

call

b(

addr(i)

);

.

.

.

b:

proc(

px

);

Coding

for

better

performance

Chapter

19.

Improving

performance

291

dcl

px

pointer;

display(

px->ib

);

end;

end;

Example

with

packaged

procedures:

p:

package

exports(

a

);

dcl

ib

based

fixed

bin;

a:

proc;

dcl

(i,j,k)

fixed

bin;

.

.

.

call

b(

addr(i)

);

.

.

.

end;

b:

proc(

px

);

dcl

px

pointer;

display(

px->ib

);

end;

end

p;

REDUCIBLE

functions

REDUCIBLE

indicates

that

a

procedure

or

entry

need

not

be

invoked

multiple

times

if

the

argument(s)

stays

unchanged,

and

that

the

invocation

of

the

procedure

has

no

side

effects.

For

example,

a

user-written

function

that

computes

a

result

based

on

unchanging

data

should

be

declared

REDUCIBLE.

A

function

that

computes

a

result

based

on

changing

data,

such

as

a

random

number

or

time

of

day,

should

be

declared

IRREDUCIBLE.

In

the

following

example,

f

is

invoked

only

once

since

REDUCIBLE

is

part

of

the

declaration.

If

IRREDUCIBLE

had

been

used

in

the

declaration,

f

would

be

invoked

twice.

dcl

(f)

entry

options(

reducible

)

returns(

fixed

bin

);

select;

when(

f(x)

<

0

)

.

.

.

when(

f(x)

>

0

)

.

.

.

otherwise

.

.

.

end;

Coding

for

better

performance

292

PL/I

for

Windows:

Programming

Guide

DEFINED

versus

UNION

The

UNION

attribute

is

more

powerful

than

the

DEFINED

attribute

and

provides

more

function.

In

addition,

the

compiler

generates

better

code

for

union

references.

In

the

following

example,

the

pair

of

variables

b3

and

b4

perform

the

same

function

as

b1

and

b2,

but

the

compiler

generates

more

optimal

code

for

the

pair

in

the

union.

dcl

b1

bit(31);

dcl

b2

bit(16)

def

b1;

dcl

1

*

union,

2

b3

bit(32),

2

b4

bit(16);

Code

that

uses

UNIONs

instead

of

the

DEFINED

attribute

is

subject

to

less

misinterpretation.

Variable

declarations

in

unions

are

in

a

single

location

making

it

easy

to

realize

that

when

one

member

of

the

union

changes,

all

of

the

others

change

also.

This

dynamic

change

is

less

obvious

in

declarations

that

use

DEFINED

variables

since

the

declare

statements

can

be

several

lines

apart.

Named

constants

versus

static

variables

You

can

define

named

constants

by

declaring

a

variable

with

the

VALUE

attribute.

If

you

use

static

variables

with

the

INITIAL

attribute

and

you

do

not

alter

the

variable,

you

should

declare

the

variable

a

named

constant

using

the

VALUE

attribute.

However,

the

compiler

does

not

treat

NONASSIGNABLE

scalar

STATIC

variables

as

true

named

constants.

The

compiler

generates

better

code

whenever

expressions

are

evaluated

during

compilation,

so

you

can

use

named

constants

to

produce

efficient

code

with

no

loss

in

readability.

For

example,

identical

object

code

is

produced

for

the

two

usages

of

the

VERIFY

built-in

function

in

the

following

example:

dcl

numeric

char

value(’0123456789’);

jx

=

verify(

string,

numeric

);

jx

=

verify(

string,

’0123456789’

);

The

following

examples

illustrate

how

you

can

use

the

VALUE

attribute

to

get

optimal

code

without

sacrificing

readability.

Example

with

optimal

code

but

no

meaningful

names

dcl

x

bit(8)

aligned;

select(

x

);

when(

’01’b4

)

.

.

.

when(

’02’b4

)

.

.

.

when(

’03’b4

)

.

.

.

end;

Coding

for

better

performance

Chapter

19.

Improving

performance

293

Example

with

meaningful

names

but

not

optimal

code:

dcl

(

a1

init(

’01’b4)

,a2

init(

’02’b4)

,a3

init(

’03’b4)

,a4

init(

’04’b4)

,a5

init(

’05’b4)

)

bit(8)

aligned

static

nonassignable;

dcl

x

bit(8)

aligned;

select(

x

);

when(

a1

)

.

.

.

when(

a2

)

.

.

.

when(

a3

)

.

.

.

end;

Example

with

optimal

code

AND

meaningful

names:

dcl

(

a1

value(

’01’b4)

,a2

value(

’02’b4)

,a3

value(

’03’b4)

,a4

value(

’04’b4)

,a5

value(

’05’b4)

)

bit(8);

dcl

x

bit(8)

aligned;

select(

x

);

when(

a1

)

.

.

.

when(

a2

)

.

.

.

when(

a3

)

.

.

.

end;

Avoiding

calls

to

library

routines

The

bitwise

operations

(prefix

NOT,

infix

AND,

infix

OR,

and

infix

EXCLUSIVE

OR)

are

often

evaluated

by

calls

to

library

routines.

These

operations

are,

however,

handled

without

a

library

call

if

either

of

the

following

conditions

is

true:

v

Both

operands

are

bit(1)

v

Both

operands

are

aligned

bit(8n)

where

n

is

a

constant.

For

certain

assignments,

expressions,

and

built-in

function

references,

the

compiler

generates

calls

to

library

routines.

If

you

avoid

these

calls,

your

code

generally

runs

faster.

To

help

you

determine

when

the

compiler

generates

such

calls,

the

compiler

generates

a

message

whenever

a

conversion

is

done

using

a

library

routine.

The

Coding

for

better

performance

294

PL/I

for

Windows:

Programming

Guide

conversions

done

with

code

generated

inline

are

shown

in

Table

27.

Table

27.

Conditions

under

which

conversions

are

handled

inline

Target

Source

Condition

fixed

bin(p1,q1)

fixed

bin(p2,q2)

float(p2)

bit(1)

bit(n)

aligned

char(1)

pic'(n)9'

pic'(n)Z(m)9'

always

if

SIZE

is

disabled

always

if

n

is

known

and

n

≤

31

if

CONV

is

disabled

if

n

≤

6

if

n

+

m

≤

6

fixed

dec(p1,q1)

fixed

dec(p2,q2)

done

using

an

especially

fast

library

routine

float(p1)

fixed

bin(p2,q2)

float(p2)

bit(1)

bit(n)

aligned

char(1)

pic'(n)9'

pic'(n)Z(m)9'

always

always

always

if

n

is

known

and

n

≤

31

if

CONV

is

disabled

if

n

≤

6

if

n

+

m

≤

6

pictured

fixed

pictured

fixed

if

pictures

match

pictured

float

pictured

float

if

pictures

match

char

char

nonvarying

char

varying

char

varyingz

pictured

fixed

pictured

float

pictured

char

always

always

always

always

always

always

pictured

char

pictured

char

if

pictures

match

bit(1)

nonvarying

bit(1)

nonvarying

always

bit(n)

nonvarying

bit(m)

nonvarying

see

note

Note:

If

all

of

the

following

apply:

1)

source

and

target

are

byte-aligned

2)

n

and

m

are

known

3)

mod(m,8)=0

or

n=m

or

source

is

a

constant

4)

mod(n,8)=0

or

target

is

a

scalar

with

STATIC,

AUTOMATIC,

or

CONTROLLED

attributes

Many

string-handling

built-in

functions

are

evaluated

through

calls

to

library

routines,

but

some

are

handled

without

a

library

call.

Table

28

on

page

296

lists

these

built-in

functions

and

the

conditions

under

which

they

are

handled

inline.

Coding

for

better

performance

Chapter

19.

Improving

performance

295

Table

28.

Conditions

under

which

string

built-in

functions

are

handled

inline

String

function

Comments

and

conditions

BOOL

When

the

third

argument

is

a

constant.

The

first

two

arguments

must

also

be

either

both

bit(1)

or

both

aligned

bit(n)

where

n

is

8,

16

or

32.

The

function

is

also

handled

inline

if

it

can

be

reduced

to

a

bitwise

infix

operation

and

both

arguments

are

aligned

bit.

COPY

When

the

first

argument

has

type

character.

EDIT

When

the

first

argument

is

REAL

FIXED

BIN,

the

SIZE

condition

is

disabled,

and

the

second

argument

is

a

constant

string

consisting

of

all

9’s.

HIGH

Always

INDEX

When

only

two

arguments

are

supplied

and

they

have

type

character.

LENGTH

Always

LOW

Always

MAXLENGTH

Always

SEARCH

When

only

two

arguments

are

supplied

and

they

have

type

character.

SEARCHR

When

only

two

arguments

are

supplied

and

they

have

type

character.

SUBSTR

When

STRINGRANGE

is

disabled.

TRANSLATE

When

the

second

and

third

arguments

are

constant.

TRIM

When

only

one

argument

is

supplied

and

it

has

type

character.

UNSPEC

Always

VERIFY

When

only

two

arguments

are

supplied

and

they

have

type

character.

VERIFYR

When

only

two

arguments

are

supplied

and

they

have

type

character.

Coding

for

better

performance

296

PL/I

for

Windows:

Programming

Guide

Chapter

20.

Using

user

exits

Using

the

compiler

user

exit

.

.

.

.

.

.

.

. 297

Procedures

performed

by

the

compiler

user

exit

297

Activating

the

compiler

user

exit

.

.

.

.

.

. 298

The

IBM-supplied

compiler

exit,

IBMUEXIT

.

. 298

Customizing

the

compiler

user

exit

.

.

.

.

. 299

Modifying

IBMUEXIT.INF

.

.

.

.

.

.

. 299

Writing

your

own

compiler

exit

.

.

.

.

. 300

Structure

of

global

control

blocks

.

.

.

.

. 300

Writing

the

initialization

procedure

.

.

.

. 301

Writing

the

message

filtering

procedure

.

. 301

Writing

the

termination

procedure

.

.

.

. 302

Using

the

CICS

run-time

user

exit

.

.

.

.

.

. 303

Prior

to

program

invocation

.

.

.

.

.

.

. 303

After

program

termination

.

.

.

.

.

.

.

. 303

Modifying

CEEFXITA

.

.

.

.

.

.

.

.

. 303

Using

data

conversion

tables

.

.

.

.

.

.

.

. 304

PL/I

provides

a

number

of

user

exits

that

allow

you

to

customize

the

PL/I

product

to

suit

your

needs.

The

workstation

PL/IPL/I

for

AIX

products

supply

default

exits

and

the

associated

source

files.

If

you

want

the

exits

to

perform

functions

that

are

different

from

those

supplied

by

the

default

exits,

we

recommend

that

you

modify

the

supplied

source

files

as

appropriate.

The

types

of

files

provided

include:

v

PL/I

source

files

with

the

extension

PLI

that

are

located

in

..\samples.

v

PL/I

include

files

with

the

extension

CPY

that

are

located

in

..\include.

When

compiling

the

user

exits,

make

sure

to

set

the

INCLUDE

or

IBM.SYSLIB

environment

variables

so

that

the

CPY

files

can

be

found.

v

Linker

definition

files

with

the

extension

DEF

that

are

located

in

..\samples.

v

Control

files

(if

applicable

to

the

exit)

with

the

extension

INF

that

are

located

in

..\samples.

When

using

the

user

exits,

make

sure

the

directory

containing

the

INF

files

is

specified

using

the

appropriate

environment

variables

(usually

DPATH).

Using

the

compiler

user

exit

At

times,

it

is

useful

to

be

able

to

tailor

the

compiler

to

meet

the

needs

of

your

organization.

For

example,

you

might

want

to

suppress

certain

messages

or

alter

the

severity

of

others.

You

might

want

to

perform

a

specific

function

with

each

compilation,

such

as

logging

statistical

information

about

the

compilation

into

a

file.

A

compiler

user

exit

handles

this

type

of

functions.

With

PL/I,

you

can

write

your

own

user

exit

or

use

the

exit

provided

with

the

product,

either

'as

is'

or

slightly

modified

depending

on

what

you

want

to

do

with

it.

The

purpose

of

this

chapter

is

to

describe:

v

Procedures

that

the

compiler

user

exit

supports

v

How

to

activate

the

compiler

user

exit

v

IBMUEXIT,

the

IBM-supplied

compiler

user

exit

v

Requirements

for

writing

your

own

compiler

user

exit.

Procedures

performed

by

the

compiler

user

exit

The

compiler

user

exit

performs

three

specific

procedures:

v

Initialization

v

Interception

and

filtering

of

compiler

messages

v

Termination

297

As

illustrated

in

Figure

27,

the

compiler

passes

control

to

the

initialization

procedure,

the

message

filter

procedure,

and

the

termination

procedure.

Each

of

these

three

procedures,

in

turn,

passes

control

back

to

the

compiler

when

the

requested

procedure

is

completed.

Each

of

the

three

procedures

is

passed

two

different

control

blocks:

v

A

global

control

block

that

contains

information

about

the

compilation.

This

is

passed

as

the

first

parameter.

For

specific

information

on

the

global

control

block,

see

“Structure

of

global

control

blocks”

on

page

300.

v

A

function-specific

control

block

that

is

passed

as

the

second

parameter.

The

content

of

this

control

block

depends

upon

which

procedure

has

been

invoked.

For

detailed

information,

see

“Writing

the

initialization

procedure”

on

page

301,

“Writing

the

message

filtering

procedure”

on

page

301,

and

“Writing

the

termination

procedure”

on

page

302.

Activating

the

compiler

user

exit

In

order

to

activate

the

compiler

user

exit,

you

must

specify

the

EXIT

compile-time

option.

For

more

information

on

the

EXIT

option,

see

“EXIT”

on

page

45.

The

EXIT

compile-time

option

allows

you

to

specify

a

user-option-string

which

specifies

the

message

control

file.

If

you

do

not

specify

a

string,

IBMUEXIT.INF

is

used

(see

“Modifying

IBMUEXIT.INF”

on

page

299)

but

you

have

to

tell

the

computer

where

to

find

it.

The

default

behavior,

provided

you

do

not

change

the

IBMUEXIT.PLI

sample

program,

is

that

the

compiler

looks

for

IBMUEXIT.INF

in

the

current

directory

first

and

then

in

the

directories

specified

in

DPATH.

The

user-option-string

is

passed

to

the

user

exit

functions

in

the

global

control

block

which

is

discussed

in

“Structure

of

global

control

blocks”

on

page

300.

Please

refer

to

the

field

“Uex_UIB_User_char_str”

in

the

section

“Structure

of

global

control

blocks”

on

page

300

for

additional

information.

The

IBM-supplied

compiler

exit,

IBMUEXIT

IBM

supplies

you

with

the

sample

compiler

user

exit,

IBMUEXIT,

which

filters

messages

for

you.

It

monitors

messages

and,

based

on

the

message

number

that

you

specify,

suppresses

the

message

or

changes

the

severity

of

the

message.

There

are

several

files

that

comprise

IBMUEXIT:

┌────────┐

│

│

│

│

┌───────────────┐

│

├───────�│Initialization

│

│

C

│�───────┤procedure

│

│

O

│

└───────────────┘

│

M

│

┌───────────────┐

│

P

├───────�│Message

filter

│

│

I

│�───────┤procedure

│

│

L

│

└───────────────┘

│

E

│

┌───────────────┐

│

R

├───────�│Termination

│

│

│�───────┤procedure

│

│

│

└───────────────┘

│

│

└────────┘

Figure

27.

PL/I

compiler

user

exit

procedures

Using

the

compiler

user

exit

298

PL/I

for

Windows:

Programming

Guide

IBMUEXIT.PLI

Contains

the

PL/I

source

code.

IBMUEXIT.DLL

Executable

DLL

of

IBMUEXIT.PLI.

In

order

to

build

this

file,

issue

the

following

commands

from

the

command

line:

On

Windows:

pli

ibmuexit

ilib

/geni

ibmuexit.def

ilink

/dll

ibmuexit.obj

ibmuexit.exp

IBMUEXIT.DEF

DEF

file

that

is

used

to

build

IBMUEXIT.DLL.

IBMUEXIT.INF

Control

file

that

specifies

filtering

of

messages.

The

PLI

source

file

is

provided

for

your

information

and

modification.

The

INF

control

file

contains

the

message

numbers

that

should

be

monitored,

and

tells

IBMUEXIT

what

actions

to

take

for

them.

The

executable

module

reads

the

INF

control

file,

and

either

ignores

the

message

or

changes

its

severity.

Customizing

the

compiler

user

exit

As

was

mentioned

earlier,

you

can

write

your

own

compiler

user

exit

or

simply

modify

IBMUEXIT.PLI.

In

either

case,

the

name

of

the

executable

file

for

the

compiler

user

exit

must

be

IBMUEXIT.DLL.

This

section

describes

how

to:

v

Modify

IBMUEXIT.INF

for

customized

message

filtering

v

Create

your

own

compiler

user

exit

Modifying

IBMUEXIT.INF

Rather

than

spending

the

time

to

write

a

completely

new

compiler

user

exit,

you

can

modify

the

sample

program,

IBMUEXIT.INF.

Edit

the

INF

file

to

indicate

which

message

numbers

you

want

to

suppress,

and

which

message

number

severity

levels

you

would

like

changed.

A

sample

IBMUEXIT.INF

file

is

shown

in

Figure

28.

The

first

two

lines

are

header

lines

and

are

ignored

by

IBMUEXIT.

The

remaining

lines

contain

input

separated

by

a

variable

number

of

blanks.

Each

column

of

the

file

is

relevant

to

the

compiler

user

exit:

v

The

first

column

must

contain

the

letters

’IBM’

in

single

quotes,

which

is

the

message

prefix.

Fac

Id

Msg

No

Severity

Suppress

Comment

+--------+--------+----------+----------+--------------------------------

’IBM’

1041

-1

1

Comment

spans

multiple

lines

’IBM’

1044

-1

1

FIXED

BIN

7

mapped

to

1

byte

’IBM’

1172

0

0

Select

without

OTHERWISE

’IBM’

1052

-1

1

Nodescriptor

with

*

extent

args

’IBM’

1047

12

0

Reorder

inhibits

optimization

’IBM’

8009

-1

1

Semicolon

in

string

constant

’IBM’

1107

12

0

Undeclared

ENTRY

’IBM’

1169

0

1

Precision

of

result

determined

by

arg

Figure

28.

Example

of

an

IBMUEXIT.INF

file

Using

the

compiler

user

exit

Chapter

20.

Using

user

exits

299

v

The

second

column

contains

the

four

digit

message

number.

v

The

third

column

shows

the

new

message

severity.

Severity

-1

indicates

that

the

severity

should

be

left

as

the

default

value.

v

The

fourth

column

indicates

whether

or

not

the

message

is

to

be

suppressed.

A

’1’

indicates

the

message

is

to

be

suppressed,

and

a

’0’

indicates

that

it

should

be

printed.

v

The

comment

field,

found

in

the

last

column,

is

for

your

information,

and

is

ignored

by

IBMUEXIT.

Writing

your

own

compiler

exit

To

write

your

own

user

exit,

you

can

use

IBMUEXIT

(provided

as

one

of

the

sample

programs

with

the

product)

as

a

model.

As

you

write

the

exit,

make

sure

it

covers

the

areas

of

initialization,

message

filtering,

and

termination.

Structure

of

global

control

blocks

The

global

control

block

is

passed

to

each

of

the

three

user

exit

procedures

(initialization,

filtering,

and

termination)

whenever

they

are

invoked.

The

following

code

and

accompanying

explanations

describe

the

contents

of

each

field

in

the

global

control

block.

Dcl

1

Uex_UIB

native

based(

null()

),

2

Uex_UIB_Length

fixed

bin(31),

2

Uex_UIB_Exit_token

pointer,

/*

for

user

exit’s

use

*/

2

Uex_UIB_User_char_str

pointer,

/*

to

exit

option

str

*/

2

Uex_UIB_User_char_len

fixed

bin(31),

2

Uex_UIB_Filename_str

pointer,

/*

to

source

filename

*/

2

Uex_UIB_Filename_len

fixed

bin(31),

2

Uex_UIB_return_code

fixed

bin(31),

/*

set

by

exit

procs

*/

2

Uex_UIB_reason_code

fixed

bin(31),

/*

set

by

exit

procs

*/

2

Uex_UIB_Exit_Routs,

/*

exit

entries

set

at

initialization

*/

3

(

Uex_UIB_Termination,

Uex_UIB_Message_Filter,

/*

call

for

each

msg

*/

*,

*,

*,

*

)

limited

entry

(

*,

/*

to

Uex_UIB

*/

*,

/*

to

a

request

area

*/

);

Data

Entry

Fields

v

Uex_UIB_

Length:

Contains

the

length

of

the

control

block

in

bytes.

The

value

is

storage

(Uex_UIB).

v

Uex_UIB_Exit_token:

Used

by

the

user

exit

procedure.

For

example,

the

initialization

may

set

it

to

a

data

structure

which

is

used

by

both

the

message

filter,

and

the

termination

procedures.

v

Uex_UIB_User_char_str:

Points

to

an

optional

character

string,

if

you

specify

it.

For

example,

in

pli

filename

(EXIT

(’string’))...fn

can

be

a

character

string

up

to

thirty-one

characters

in

length.

v

Uex_UIB_char_len:

Contains

the

length

of

the

string

pointed

to

by

the

User_char_str.

The

compiler

sets

this

value.

v

Uex_UIB_Filename_str:

Contains

the

name

of

the

source

file

that

you

are

compiling,

and

includes

the

drive

and

subdirectories

as

well

as

the

filename.

The

compiler

sets

this

value.

Using

the

compiler

user

exit

300

PL/I

for

Windows:

Programming

Guide

v

Uex_UIB_Filename_len:

Contains

the

length

of

the

name

of

the

source

file

pointed

to

by

the

Filename_str.

The

compiler

sets

this

value.

v

Uex_UIB_return_code:

Contains

the

return

code

from

the

user

exit

procedure.

The

user

sets

this

value.

v

Uex__UIB_reason_code:

Contains

the

procedure

reason

code.

The

user

sets

this

value.

v

Uex_UIB_Exit_Routs:

Contains

the

exit

entries

set

up

by

the

initialization

procedure.

v

Uex_UIB_Termination:

Contains

the

entry

that

is

to

be

called

by

the

compiler

at

termination

time.

The

user

sets

this

value.

v

Uex_UIB_Message_Filter:

Contains

the

entry

that

is

to

be

called

by

the

compiler

whenever

a

message

needs

to

be

generated.

The

user

sets

this

value.

Writing

the

initialization

procedure

Your

initialization

procedure

should

perform

any

initialization

required

by

the

exit,

such

as

opening

files

and

allocating

storage.

The

initialization

procedure-specific

control

block

is

coded

as

follows:

Dcl

1

Uex_ISA

native

based(

null()

),

2

Uex_ISA_Length_fixed

bin(31);

/*

storage(Uex_IS

A)

*/

The

global

control

block

syntax

for

the

initialization

procedure

is

discussed

in

the

section

“Structure

of

global

control

blocks”

on

page

300.

Upon

completion

of

the

initialization

procedure,

you

should

set

the

return/reason

codes

to

the

following:

0/0

Continue

compilation

4/n

Reserved

for

future

use

8/n

Reserved

for

future

use

12/n

Reserved

for

future

use

16/n

Abort

compilation

Writing

the

message

filtering

procedure

The

message

filtering

procedure

permits

you

to

either

suppress

messages

or

alter

the

severity

of

messages.

You

can

increase

the

severity

of

any

of

the

messages

but

you

can

only

decrease

the

severity

of

“WARNING”

(severity

code

4)

messages

to

“INFORMATIONAL”

(severity

code

0)

messages.

The

procedure-specific

control

block

contains

information

about

the

messages.

It

is

used

to

pass

information

back

to

the

compiler

indicating

how

a

particular

message

should

be

handled.

The

following

is

an

example

of

a

procedure-specific

message

filter

control

block:

Dcl

1

Uex_MFA

native

based(

null()

),

2

Uex_MFA_Length

fixed

bin(31),

2

Uex_MFA_Facility_Id

char(3),

/*

of

component

writing

message

*/

2

*

char(1),

Using

the

compiler

user

exit

Chapter

20.

Using

user

exits

301

2

Uex_MFA_Message_no

fixed

bin(31),

2

Uex_MFA_Severity

fixed

bin(15),

2

Uex_MFA_New_Severity

fixed

bin(15);

/*

set

by

exit

proc

*/

Data

Entry

Fields

v

Uex_MFA_Length:

Contains

the

length

of

the

control

block

in

bytes.

The

value

is

storage

(Uex_MFA).

v

Uex_MFA_Facility_Id:

Contains

the

ID

of

the

facility;

in

this

case,

the

ID

is

IBM.

The

compiler

sets

this

value.

v

Uex_MFA_Message_no:

Contains

the

message

number

that

the

compiler

is

going

to

generate.

The

compiler

sets

this

value.

v

Uex_MFA_Severity:

Contains

the

severity

level

of

the

message;

it

can

be

from

one

to

fifteen

characters

in

length.

The

compiler

sets

this

value.

v

Uex_MFA_New_Severity:

Contains

the

new

severity

level

of

the

message;

it

can

be

from

one

to

fifteen

characters

in

length.

The

user

sets

this

value.

Upon

completion

of

the

message

filtering

procedure,

set

the

return/reason

codes

to

one

of

the

following:

0/0

Continue

compilation,

output

message

0/1

Continue

compilation,

do

not

output

message

4/n

Reserved

for

future

use

8/n

Reserved

for

future

use

16/n

Abort

compilation

Writing

the

termination

procedure

You

should

use

the

termination

procedure

to

perform

any

cleanup

required,

such

as

closing

files.

You

might

also

want

to

write

out

final

statistical

reports

based

on

information

collected

during

the

error

message

filter

procedures

and

the

initialization

procedures.

The

termination

procedure-specific

control

block

is

coded

as

follows:

Dcl

1

Uex_ISA

native

based,

2

Uex_ISA_Length_fixed

bin(31);

/*

storage(Uex_ISA)

*/

The

global

control

block

syntax

for

the

termination

procedure

is

discussed

in

“Structure

of

global

control

blocks”

on

page

300.

Upon

completion

of

the

termination

procedure,

set

the

return/reason

codes

to

one

of

the

following:

0/0

Continue

compilation

4/n

Reserved

for

future

use

8/n

Reserved

for

future

use

12/n

Reserved

for

future

use

Using

the

compiler

user

exit

302

PL/I

for

Windows:

Programming

Guide

16/n

Abort

compilation

Using

the

CICS

run-time

user

exit

One

of

the

key

functions

of

the

CICS

run-time

exit,

CEEFXITA,

is

to

let

you

control

whether

or

not

the

CICS

Dynamic

Transaction

Backout

(DTB)

occurs

when

PL/I

transactions

fail.

The

CICS

run-time

exit

is

driven

immediately

before

and

immediately

after

the

invocation

of

each

PL/I

program

within

a

transaction

under

CICS.

Each

time

the

exit

is

called,

the

typed

structure

CXIT

(part

of

the

include

file

IBMVCXT.INC)

is

used

for

communication

between

the

PL/I

run-time

and

the

exit.

It

is

strongly

recommended

that

you

review

and

modify

(if

necessary)

the

user

exit.

This

structure

contains

information

pertinent

to

the

PL/I

program,

including:

v

The

reason

for

invocation

(initialization

or

termination)

of

the

exit.

v

A

reason

code

which

indicates

how

the

program

terminated

when

invoked

after

program

termination.

v

Pointers

to

key

CICS

control

blocks.

Prior

to

program

invocation

When

the

exit

is

invoked

before

the

invocation

of

the

PL/I

program,

the

exit

can

tell

the

PL/I

run-time

to

bypass

the

program

invocation.

In

this

case,

DTB

occurs

if

necessary.

During

this

invocation

of

the

exit,

other

functions

(such

as

interrogation

of

or

setting

of

run-time

options)

cannot

be

performed.

The

IBM

supplied

exit

merely

returns

allowing

the

PL/I

program

invocation

to

proceed.

After

program

termination

When

the

exit

is

invoked

after

the

PL/I

program

invocation,

the

exit

can

examine

the

reason

for

program

termination

and

can

request

DTB.

The

termination

reason

code

indicates

why

the

program

ended.

The

file

IBMVCXT.INC

contains

detailed

information.

In

this

case,

the

IBM

supplied

exit

requests

DTB

if:

v

The

PL/I

program

return

code

(set

via

PLIRETC)

is

non-zero

v

The

reason

for

termination

is

anything

other

than

normal

termination

Modifying

CEEFXITA

The

following

source

files

are

supplied:

CEEFXITA.PLI

PL/I

source

code.

To

recompile

the

exit,

set

the

INCDIR

compile-time

option

to

include

the

directory

for

IBMVCXT.INC.

Enter

the

following

command

at

the

command

line:

pli

CEEFXITA

Using

the

compiler

user

exit

Chapter

20.

Using

user

exits

303

IBMVCXT.INC

CXIT

typed

structure

and

other

interface

information.

CEEFXITA.DLL

Executable

DLL.

To

rebuild

this

DLL,

issue

the

following

command

from

the

command

line:

ilink

/dll

ceefxita.obj

ceefxita.def

CEEFXITA.DEF

DEF

file

used

to

build

CEEFXITA.DLL.

Using

data

conversion

tables

The

routines

that

the

compiler,

preprocessor,

library,

and

debugger

use

to

convert

from

ASCII

to

EBCDIC

and

from

EBCDIC

to

ASCII

are

found

in

DLL

files.

For

Windows,

the

routines

are

found

in

these

two

files:

v

ibmwstb.dll

(non-multithreading)

v

ibmwmtb.dll

(multithreading)

The

source

for

these

routines,

including

the

tables

that

they

use,

is

shipped

with

the

product

so

that

you

can

use

different

tables

if

necessary.

You

might

want

to

replace

the

tables

if

files

are

translated

from

EBCDIC

to

ASCII

as

you

download

them

using

a

table

different

than

the

one

we

ship.

The

names

of

the

conversion

routines

are

IBMPBE2A

(EBCDIC

to

ASCII)

and

IBMPBA2E

(ASCII

to

EBCDIC).

Do

not

change

the

names

of

the

files

shipped

with

the

product.

Definition

files

are

also

supplied

with

the

product:

For

Windows,

the

definition

files

are:

v

ibmwstb.def

v

ibmwmtb.def

You

should

use

these

definition

files

when

creating

the

corresponding

DLLs.

Using

the

CICS

run-time

user

exit

304

PL/I

for

Windows:

Programming

Guide

Chapter

21.

Building

dynamic

link

libraries

Creating

DLL

source

files

.

.

.

.

.

.

.

.

. 305

Compiling

your

DLL

source

.

.

.

.

.

.

.

. 305

Preparing

to

link

your

DLL

.

.

.

.

.

.

.

.

. 306

Specifying

exported

names

under

Windows

.

. 306

Linking

your

DLL

.

.

.

.

.

.

.

.

.

.

.

. 306

Using

your

DLL

.

.

.

.

.

.

.

.

.

.

. 306

Sample

program

to

build

a

DLL

.

.

.

.

.

.

. 307

Using

FETCH

and

RELEASE

in

your

main

program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

Exporting

data

from

a

DLL

.

.

.

.

.

.

.

.

. 308

Dynamic

linking

is

the

process

of

resolving

external

references

using

dynamic

link

libraries

(DLLs).

Some

advantages

of

dynamic

linking

are:

v

Reduced

memory

requirements

v

Simplified

application

modification

v

Flexible

software

support

v

Transparent

migration

of

function

v

Multiple

programming

language

support

v

Application-controlled

memory

usage.

DLLs

are

typically

used

to

provide

common

functions

that

can

be

used

by

a

number

of

applications.

An

application

using

a

DLL

can

use

either

load-time

dynamic

linking

or

run-time

dynamic

linking.

You

can

dynamically

link

with

the

supplied

run-time

DLLs,

as

well

as

with

your

own

DLLs.

The

following

steps

for

creating

and

using

a

dynamic

link

library

are

described

in

this

chapter:

v

Creating

the

source

files

for

a

DLL

v

Creating

a

module

definition

file

(.DEF)

for

the

DLL

v

Compiling

the

source

files

and

linking

the

resulting

object

files

to

build

a

DLL

file

v

Writing

a

module

definition

file

to

use

when

linking

the

external

module

that

identifies

what

is

in

the

DLL.

Each

section

contains

a

relevant

example

from

the

sample

program

SORT.PLI,

which

is

packaged

with

the

compiler.

Creating

DLL

source

files

To

build

a

DLL,

you

must

first

create

source

files

containing

the

data

or

routines

that

you

want

to

include

in

your

DLL.

No

special

file

extension

is

required

for

DLL

source

files.

Each

routine

that

you

want

to

export

from

the

DLL

(that

is,

a

routine

that

you

plan

to

call

from

other

executable

modules

or

DLLs)

must

be

an

external

routine,

either

by

default

or

by

being

qualified

with

the

external

keyword.

Compiling

your

DLL

source

You

can

compile

your

source

files

to

create

a

DLL

in

the

same

way

that

you

would

compile

any

other

file

(using

the

PLI

command)

with

one

exception—you

must

compile

at

least

one

file

with

the

DLLINIT

option.

You

can

compile

every

routine

in

a

DLL

with

the

DLLINIT

option;

however,

no

routine

compiled

with

DLLINIT

can

be

linked

into

an

EXE.

305

You

might

also

want

to

compile

your

programs

with

the

option

XINFO(DEF).

This

option

creates

a

.DEF

file

for

each

program.

These

.DEF

files

are

essential

to

preparing

to

link

your

DLL.

Preparing

to

link

your

DLL

When

you

link

your

DLL,

you

must

tell

the

linker

what

names

are

to

be

exported

out

of

the

DLL.

Specifying

exported

names

under

Windows

Under

Windows,

you

tell

the

linker

what

parts

are

exported

using

an

.EXP

file.

The

.EXP

file

is

a

binary

file

that

is

built

by

invoking

ilib

with

the

/GENI

option

and

using

either

of

the

following

as

input:

v

The

.DEF

file

for

the

DLL

v

All

the

.OBJ

containing

names

to

be

exported

by

the

DLL

Using

.DEF

files

is

preferable

since

it

gives

you

control

of

exactly

what

is

exported

by

the

DLL.

If

you

specify

.OBJ

names,

all

of

the

external

names

in

the

object

files

named

are

exported.

The

following

example

shows

a

command

you

could

use

to

create

an

.EXP

file:

ilib

/geni

myliba.def

The

Windows

.DEF

file

created

for

has

these

characteristics:

v

The

Windows

version

contains

only

an

EXPORTS

statement

v

The

Windows

version

contains

names

that

have

been

’decorated’

The

name

’decoration’

depends

on

a

routine’s

linkage,

but

if

you

use

the

.DEF

files

created

by

the

compiler,

you

do

not

need

to

be

concerned

about

this.

Linking

your

DLL

To

link

your

DLL,

use

the

following

options

and

input

files:

Linker

options

v

/dll,

v

/out:

followed

by

the

name

of

your

dll

Input

files

v

All

of

the

OBJs

comprising

your

DLL

v

The

.DEF

or

.EXP

file

specifying

what

is

to

be

exported

For

example,

to

link

mydlla.obj

and

mydllb.obj

into

mydlla.dll,

issue

the

following

link

command

under

Windows:

ilink

/dll

/out:mydlla.dll

mydlla.obj

mydllb.obj

mydlla.exp

Using

your

DLL

Once

you

have

built

your

DLL,

other

routines

in

your

application

can

access

the

variables

and

routines

exported

by

that

DLL

using

one

of

the

following

methods:

v

A

FETCH

statement

v

Linking

with

an

import

library

If

your

application

accesses

an

element

of

a

DLL

using

a

FETCH

statement,

you

do

not

need

to

take

any

special

action

when

you

link.

Unless

your

application

executes

that

FETCH

statement,

the

DLL

does

not

even

need

to

exist.

Compiling

your

DLL

source

306

PL/I

for

Windows:

Programming

Guide

If

your

application

accesses

an

element

of

a

DLL

as

if

it

were

statically

linked

with

that

DLL,

then

the

linker

must

be

able

to

resolve

the

name

of

that

element.

Under

Windows,

the

linker

can

resolve

names

from

a

DLL

if

you

link

with

a

import

library

for

that

DLL.

In

fact,

that

is

how

the

names

of

PL/I

library

routines

are

resolved.

For

example,

when

you

link

with

ibmws20i.lib,

you

are

linking

with

the

import

library

for

ibmws20.dll.

Under

Windows,

the

import

library

for

the

DLL

is

built

when

you

create

the

.EXP

file

when

preparing

to

link

the

DLL.

Note:

In

order

for

the

loader

to

find

a

DLL,

the

DLL

must

reside

either

in

your

current

working

directory

or

in

one

of

the

directories

listed

in

the

PATH

environment

variable

under

Windows.

Sample

program

to

build

a

DLL

The

sample

programs

SORT.PLI

and

DRIVER1.PLI

show

how

to

build

and

use

a

DLL

that

contains

three

different

sorting

functions.

These

functions

keep

track

of

the

number

of

swap

and

compare

operations

required

to

do

the

sorting.

The

files

for

the

sample

program

are:

SORT.PLI

The

source

file

for

the

DLL.

SORT.DEF

The

module

definition

file

for

the

DLL.

DRIVER1.DEF

The

module

definition

file

for

the

executable.

EXTDCL.CPY

The

user

include

file.

DRIVER1.PLI

The

main

program

that

uses

SORT.DLL.

If

you

installed

the

sample

programs,

these

files

are

found

in

the

..\SAMPLES\

directory.

Use

the

following

sequence

of

commands

to

compile,

link,

and

run

the

program:

1.

pli

sort

2.

ilib

/geni

sort.def

3.

ilink

/dll

/out:sort.dll

sort.obj

sort.exp

4.

pli

driver1

5.

ilink

driver1.obj

/stack:80000

sort.lib

6.

driver1

Using

your

DLL

Chapter

21.

Building

dynamic

link

libraries

307

Using

FETCH

and

RELEASE

in

your

main

program

The

SAMPLES

directory

also

contains

DRIVER2.PLI

which

is

a

modified

version

of

DRIVER1.PLI

that

uses

FETCH

and

RELEASE

statements

to

dynamically

link

the

SORT.DLL

routines

at

run

time

instead

of

at

load

time.

The

main

advantage

of

using

this

version

of

the

DRIVER

program

is

that

you

can

control

when

the

sort

routines

are

brought

into

and

released

from

memory.

Using

FETCH

and

RELEASE

statements,

however,

might

increase

your

program’s

execution

time.

Use

the

following

sequence

of

commands

to

compile,

link,

and

run

this

version

of

the

DRIVER

program

under

Windows:

1.

pli

sort

2.

ilib

/geni

sort.def

3.

ilink

/dll

/out:sort.dll

sort.obj

sort.exp

4.

pli

driver2

5.

ilink

driver2.obj

/stack:80000

6.

driver2

Exporting

data

from

a

DLL

The

preceding

discussion

described

how

to

export

external

entrys

from

a

DLL.

You

can

also

export

external

data

from

a

DLL.

To

export

external

data

from

a

DLL,

the

data

must

be

declared

as

RESERVED

throughout

your

application.

The

following

conditions

must

also

apply:

v

The

DLL

that

exports

a

variable

must

name

that

variable

in

the

RESERVES

option

of

some

package

in

that

DLL.

v

All

DLLs

and

EXEs

importing

a

variable

from

another

DLL

must

also

declare

that

variable

as

RESERVED(IMPORTED).

For

example,

to

create

a

DLL

exporting

just

the

variable

datatab,

the

following

routine

would

be

used:

*process

dllinit

langlvl(saa2);

edata:

package

reserves(

datatab

);

dcl

datatab

char(256)

reserved

external

init(

....

);

end;

To

import

datatab

into

a

procedure

outside

this

DLL,

it

would

be

declared

as:

dcl

datatab

char(256)

reserved(imported)

external;

Using

FETCH

and

RELEASE

308

PL/I

for

Windows:

Programming

Guide

Chapter

22.

Using

IBM

Library

Manager

on

Windows

Running

ILIB

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Using

the

command

line

.

.

.

.

.

.

.

. 310

Using

the

ILIB

environment

variable

.

.

.

. 310

Command

line

.

.

.

.

.

.

.

.

.

.

. 310

Windows

control

panel

.

.

.

.

.

.

.

. 311

Windows

98

AUTOEXEC.BAT

file

.

.

.

. 311

Using

an

ILIB

response

file

.

.

.

.

.

.

.

. 311

Examples

specifying

ILIB

parameters

.

.

.

. 312

Controlling

ILIB

input

.

.

.

.

.

.

.

.

.

. 312

Controlling

ILIB

output

.

.

.

.

.

.

.

.

.

. 312

Controlling

ILIB

output

.

.

.

.

.

.

.

.

. 313

ILIB

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

. 314

Summary

of

ILIB

objects

.

.

.

.

.

.

.

. 314

Add/Replace

.

.

.

.

.

.

.

.

.

.

.

. 315

/EXTRACT

.

.

.

.

.

.

.

.

.

.

.

.

. 315

/REMOVE

.

.

.

.

.

.

.

.

.

.

.

.

. 316

ILIB

options

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

Summary

of

ILIB

options

.

.

.

.

.

.

.

. 316

/?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

/BACKUP

.

.

.

.

.

.

.

.

.

.

.

.

. 317

/DEF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

/FREEFORMAT

.

.

.

.

.

.

.

.

.

.

. 318

/GENDEF

.

.

.

.

.

.

.

.

.

.

.

.

. 318

/GI

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

/HELP

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

/LIST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

/NOEXT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

/OUT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

/QUIET

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

/WARN

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

Use

the

IBM

Library

Manager

(also

referred

to

as

ILIB)

to

create

and

maintain

libraries

of

object

code,

create

import

libraries

and

export

object

pairs,

and

generate

module

definition

(.def)

files.

Using

the

ILIB

utility,

you

can:

v

Create

a

new

library

from

a

collection

of

objects

v

Maintain

a

library

–

Add

objects

to

an

existing

library

–

Delete

objects

from

an

existing

library

–

Copy

objects

from

an

existing

library

–

Replace

objects

in

an

existing

library
v

List

the

contents

of

a

new

or

existing

library

v

Create

import

library/export

object

pairs

from:

–

Module

definition

(.def)

files

–

Objects

generated

from

source

files

containing

#pragma

export

and

_Export

statements

–

A

combination

of

the

above
v

Generate

module

definition

(.def)

files

from:

–

An

existing

DLL

–

Objects

generated

from

source

files

containing

#pragma

export

and

_Export

statements

–

A

combination

of

the

above

Running

ILIB

Run

ILIB

by

typing

ilib

at

the

command

prompt.

You

can

specify

parameters

in

the

following

ways:

1.

Enter

them

directly

on

the

command

line

2.

Use

the

ILIBenvironment

variable

3.

Put

them

in

a

text

file,

called

a

response

file

and

specify

the

file

name

after

the

ilib

command.

4.

A

combination

of

the

above

You

can

press

Ctrl+C

or

Ctrl+Break

at

any

time

while

running

ILIB

to

return

to

the

operating

system.

Interrupting

ILIB

before

completion

restores

the

original

library

from

a

backup.

309

Notes:

1.

When

started,

ILIB

makes

a

backup

copy

of

the

original

library

in

case

it

is

interrupted

or

a

mistake

is

made.

Make

sure

you

have

enough

disk

space

for

both

your

original

library

and

the

modified

copy.

2.

The

library

must

end

with

the

extension

.lib.

If

an

extension

is

not

specified,

the

default

extension,

.lib,

will

be

appended.

High

Performance

File

System

(HPFS)

file

names

are

supported.

Hence,

mylibraryname.new.lib

is

still

a

valid

library.

Using

the

command

line

You

can

specify

all

the

input

ILIB

needs

on

the

command

line.

The

syntax

of

the

command

line

is:

ilib

[options]

[libraries]

[@responsefile]

[objects]

Options

Options

that

affect

the

behavior

of

ILIB

Libraries

The

input

library

to

be

created

or

modified

Response

file

The

name

of

a

text

file

containing

ILIB

options

Objects

Commands

used

to

add,

delete,

replace,

copy,

and

move

object

modules

within

the

library

The

ILIB

command

line

is

a

free

format

command

line;

that

is,

the

input

arguments

can

be

specified

any

number

of

times,

in

any

order.

The

only

exception

is

the

/FREEFORMAT

option,

which

does

have

a

position

restriction.

See

“/FREEFORMAT”

on

page

318

for

more

information.

Note:

For

compatibility

with

the

OS/2

release

of

ILIB,

a

fixed

format

command

line

is

also

supported.

To

use

the

fixed

format

command

line,

the

/NOFREEFORMAT

option

must

be

specified

immediately

following

ilib

on

the

command

line,

or

as

the

first

parameter

in

the

ILIB

environment

variable.

The

default

command

line

format

is

free

format.

For

the

purposes

of

this

document,

only

the

free

format

command

line

will

be

described

in

detail.

Using

the

ILIB

environment

variable

You

can

use

the

ILIB

environment

variable

to

specify

any

default

ILIB

options.

When

the

ilib

command

is

invoked,

the

environment

variable

will

be

parsed

before

the

command

line.

Use

the

SET

command

to

give

value

to

the

ILIB

environment

variable.

You

can

do

this

in

the

following

ways:

Command

line

When

the

SET

command

is

used

on

the

command

line,

the

values

you

specify

are

in

effect

for

only

that

session.

They

override

values

previously

specified.

Using

ILIB

on

Windows

310

PL/I

for

Windows:

Programming

Guide

You

can

append

the

original

value

of

the

variable

using

%variable%.

The

following

example

would

cause

the

ILIB

environment

variable

to

be

set

to

the

original

value

of

the

ILIB

environment

variable,

with

the

/NOFREEFORMAT

option

specified

ahead

of

any

existing

options.

SET

ILIB=/FREEFORMAT

%ILIB%

Windows

control

panel

Windows

allows

you

to

update

environment

variables

and

have

them

take

effect

immediately

(that

is,

no

reboot

required)

using

the

Windows

Control

Panel.

To

set

the

ILIB

environment

variable:

v

Select

the

Main

group

by

double-clicking

on

the

Main

icon.

v

Select

the

System

icon

from

the

Main

group

by

double-clicking

on

it.

v

Enter

ILIB

in

the

Variable

field.

v

Enter

the

value

for

the

ILIB

environment

variable

in

the

Value

field.

v

Choose

Set.

Windows

98

AUTOEXEC.BAT

file

Windows

98

allows

you

to

set

environment

variables

in

the

AUTOEXEC.BAT

file.

Any

environment

variables

set

in

this

fashion

are

available

in

every

user

session.

Add

a

line

to

your

AUTOEXEC.BAT

file

that

sets

the

environment

variable

to

the

value

you

want.

Consider

the

following

example:

SET

ILIB=/NOBACKUP

Because

environment

variables

specified

in

your

AUTOEXEC.BAT

file

are

in

effect

for

every

session

you

start,

this

is

a

good

place

to

specify

options

that

you

want

to

apply

each

time

you

invoke

ILIB.

However,

after

you

make

a

change

to

your

AUTOEXEC.BAT

file,

you

must

reboot

your

system

to

have

the

change

take

effect.

Using

an

ILIB

response

file

To

provide

input

to

ILIB

with

a

response

file,

type:

ilib

@responsefile

The

responsefile

is

the

name

of

a

file

containing

the

same

information

that

can

be

specified

on

the

command

line.

Why

use

a

response

file?

Use

a

response

file

for:

v

Complex

and

long

commands

you

type

frequently

v

Strings

of

commands

that

exceed

the

limit

for

command

line

length.

A

response

file

extends

the

command

line

to

include

everything

in

the

response

file.

To

split

input

to

ILIB

between

the

command

line

and

a

response

file,

put

part

of

your

input

on

the

command

line

and

specify

a

response

file

(preceding

the

response

file

name

with

the

at

sign

(@)).

No

space

can

appear

between

the

at

sign

and

the

file

name.

The

response

file

name

can

be

any

valid

Windows

file

name.

To

use

special

characters

in

the

file

name,

such

as

a

space

or

the

@

symbol,

the

file

name

must

be

enclosed

in

quotes.

Using

ILIB

on

Windows

Chapter

22.

Using

IBM

Library

Manager

on

Windows

311

ILIB

responds

to

input

you

place

in

a

response

file

just

as

it

does

to

input

you

enter

on

a

command

line.

Any

newline

characters

that

occur

between

arguments

are

treated

as

spaces.

This

allows

you

to

extend

an

ILIB

command

to

multiple

lines.

Note:

The

options

which

specify

which

format

command

line

to

use

(/FREEFORMAT

or

/NOFREEFORMAT)

must

be

specified

as

the

first

parameter

following

ilib

on

the

command

line

or

as

the

first

parameter

in

the

ILIB

environment

variable.

They

cannot

be

specified

inside

the

response

file.

Examples

specifying

ILIB

parameters

The

following

examples

show

different

methods

for

specifying

parameters

to

ILIB.

The

operations

shown

in

each

example

create

a

new

library,

newlib.lib,

and

its

listing

file,

newlib.lst,

from

the

existing

mylib.lib

library.

mylib.lib

is

unchanged,

but

newlib.lib

has

these

changes:

v

The

module

text

is

deleted

v

The

object

file

root.obj

is

appended

as

an

object

module

with

the

name

root

v

The

module

table

is

deleted

and

is

replaced

by

a

new

table

which

is

appended

after

root

v

The

module

string

is

copied

into

an

object

file

named

string.obj

Command

Line

Method

At

the

command

line

prompt,

enter

the

following:

ilib

/out:newlib.lib

/list:newlib.lst

mylib.lib

/remove:text

root

table

/extract:string

Response

File

Method

First,

create

a

response

file

with

the

following

contents:

/out:newlib.lib

/list:newlib.lst

mylib.lib

/remove:text

root

table

/extract:string

Then,

assuming

the

name

of

the

response

file

is

response.fil,

invoke

ILIB

with:

ilib

@response.fil

Controlling

ILIB

input

ILIB

determines

the

format

of

any

input

files

by

examining

the

file

contents.

Most

file

formats

can

be

identified

by

the

file

header

information.

If

the

format

of

an

input

file

is

not

recognized

and

seems

to

contain

only

ASCII,

it

is

assumed

to

be

a

module

definition

(.def)

file.

ILIB

allows

you

to

place

any

extension

you

choose

on

a

file

and

still

have

it

dealt

with

correctly.

Controlling

ILIB

output

ILIB

determines

what

output

is

to

be

produced

by

examining

the

options

that

you

supply

on

the

command

line.

The

following

options

control

ILIB

output:

Using

ILIB

on

Windows

312

PL/I

for

Windows:

Programming

Guide

Option

Description

/O[UT]:filename

A

static

library

is

produced.

/GEND[EF]:filename

A

module

definition

(.def)

file

is

produced.

The

short

form,

/gd,

may

also

be

used.

/GENI[MPLIB]:filename

An

import

library/export

object

pair

is

produced.

The

short

form,

/gi,

may

also

be

used.

/L[IST]:filename

A

list

file

is

produced.

If

none

of

the

above

are

specified,

ILIB

will

determine

what

is

to

be

produced,

as

follows:

v

If

a

DEF

file

is

input

to

ILIB,

an

import

library/export

object

pair

will

be

produced.

Note:

If

there

are

no

exported

symbols,

then

no

import

library

will

be

produced.

v

If

a

library

and/or

object(s)

are

input

to

ILIB,

a

library

combining

them

will

be

produced.

ILIB

will

allow

you

to

generate

a

DEF

file

directly

from

a

DLL.

However,

since

the

only

information

that

a

DLL

has

in

it

is

the

undecorated

(exported)

names,

symbol

decoration

(calling

convention)

and

type

information

(function

or

data)

cannot

be

determined.

ILIB

will

assume

that

all

symbols

exported

from

the

DLL

are

_Optlink

(the

default

linkage

convention),

unless

an

object

file

is

provided

that

indicates

otherwise.

The

best

way

of

using

ILIB

with

a

DLL

is

to

use

ILIB

to

create

a

DEF

file

using

the

/gd

option.

Edit

the

DEF

file

to

change

decorations,

where

appropriate,

and

then

run

the

DEF

file

through

ILIB

using

the

/gi

option

to

produce

an

import

library/export

object

pair.

If

an

import

library/export

object

pair

is

requested,

and

only

a

DLL

is

specified

as

input,

ILIB

will

generate

an

error.

Controlling

ILIB

output

The

following

are

examples

showing

how

to

control

ILIB

output.

Library

The

following

example

creates

create

the

library

newlib.lib

out

of

the

objects

in

text.obj

and

mylib.lib.

ilib

/out:newlib.lib

text.obj

mylib.lib

Note:

Unless

newlib.lib

is

specified

as

an

input

file,

its

contents

will

not

be

included

in

the

library.

If

an

output

file

already

exists,

and

is

not

used

as

an

input

file,

it

will

be

replaced.

DEF

File

This

example

creates

the

module

definition

file

winner.def

from

the

DLL

winner.dll.

Using

ILIB

on

Windows

Chapter

22.

Using

IBM

Library

Manager

on

Windows

313

ilib

/gd:winner.def

winner.dll

Import

Library/Export

Oject

Pair

The

following

example

creates

an

import

library

named

winner.lib

and

an

export

object

named

winner.exp.

However,

if

no

exported

symbols

are

contained

in

winner.def,

then

winner.lib

will

not

be

produced.

ilib

/gi

winner.def

List

File

The

following

example

generates

the

list

will

generate

the

list

file

mylib.lst,

based

on

the

library

mylib.lib,

in

the

current

directory.

ilib

/list:mylib.lst

mylib.lib

ILIB

objects

ILIB

objects

are

used

to

manipulate

modules

in

a

library.

When

you

run

ILIB,

you

can

specify

multiple

objects

in

any

order.

Each

object

consists

of

the

ILIB

command,

followed

by

the

name

of

the

object

module

that

is

the

subject

of

the

command.

Separate

objects

on

the

command

line

with

a

space

or

tab

character.

Summary

of

ILIB

objects

The

following

is

a

summary

of

ILIB

objects

on

Windows.

Table

29.

ILIB

objects

on

Windows

Syntax

Description

Default

Page

filename

Add/replace

the

named

object

in

the

library

None

315

/E[XTRACT]:obj

Copy

the

named

object

into

the

current

directory

and

overwrite

it

if

it

already

exists

None

315

/R[EMOVE]:obj

Remove

the

named

object

from

the

list

of

objects

to

be

placed

in

the

output

library

None

316

Notes:

1.

ILIB

objects

are

not

case

sensitive,

so

you

can

specify

them

in

lower-,

upper-,

or

mixed-case.

You

can

also

substitute

a

dash

(-)

for

the

slash

(/)

preceding

the

object.

For

example,

-REMOVE:filename

is

equivalent

to

/REMOVE:filename.

2.

You

can

specify

objects

in

either

short

or

long

form.

For

example,

/R:filename

and

/RE:filename

are

equivalent

to

/REMOVE:filename.

3.

The

order

of

operations

when

processing

the

command

line

is

left

to

right.

4.

ILIB

never

makes

changes

to

your

input

library

while

it

runs.

It

copies

the

library

and

makes

changes

to

the

copy.

If

ILIB

is

interrupted,

your

original

library

will

be

restored.

If

you

do

not

specify

an

output

library,

ILIB

will

not

produce

any

output.

Using

ILIB

on

Windows

314

PL/I

for

Windows:

Programming

Guide

Add/Replace

��

filename

��

The

default

action,

when

filename

is

specified

on

the

command

line

without

an

associated

object,

is

to

add

it

to

the

library.

If

filename

already

exists

in

the

library,

it

will

be

replaced.

Adding

an

Object

Module

to

a

Library

Type

the

name

of

the

object

file

to

be

added

on

the

command

line.

The

.obj

extension

may

be

omitted.

ILIB

uses

the

base

name

of

the

object

file

as

the

name

of

the

object

module

in

the

library.

For

example,

if

the

object

file

cursor.obj

is

added

to

a

library

file,

the

name

of

the

corresponding

object

module

is

cursor.

Object

modules

are

always

added

to

the

end

of

a

library

file.

Replacing

an

Object

Module

in

a

Library

Type

the

name

of

the

object

module

to

be

replaced

on

the

command

line.

The

.obj

extension

may

be

omitted.

If

the

object

module

already

exists

in

the

library,

ILIB

will

replace

it

with

the

new

copy.

Combining

Two

Libraries

Specify

the

name

of

the

library

file

to

be

added,

including

the

.lib

extension,

on

the

command

line.

A

copy

of

the

contents

of

that

library

is

added

to

the

library

file

being

modified.

If

both

libraries

contain

a

module

with

the

same

name,

ILIB

generates

a

warning

message,

and

uses

only

the

first

module

with

that

name.

ILIB

adds

the

modules

of

the

library

to

the

end

of

the

library

being

changed.

The

added

library

still

exists

as

an

independent

library

because

ILIB

copies

the

modules

without

deleting

them.

Examples

The

following

command

adds

the

file

sample.obj

to

the

library

mylib.lib.

If

sample.obj

already

exists

in

the

library

mylib.lib,

ILIB

will

replace

it.

ilib

/out:mylib.lib

mylib.lib

sample.obj

This

example

adds

the

contents

of

the

library

mylib.lib

to

the

library

newlib.lib.

The

library

mylib.lib

is

unchanged

after

this

command

is

executed.

ilib

/out:newlib.lib

newlib.lib

mylib.lib

/EXTRACT

��

/E[XTRACT]:

obj

��

Using

ILIB

on

Windows

Chapter

22.

Using

IBM

Library

Manager

on

Windows

315

Use

/EXTRACT

to

copy

a

module

from

the

library

into

an

object

file

of

the

same

name.

The

module

remains

in

the

library.

When

ILIB

copies

the

module

to

an

object

file,

it

adds

the

.obj

extension

to

the

module

name

and

places

the

file

in

the

current

directory.

If

a

file

with

this

name

already

exists,

ILIB

overwrites

it.

Example

The

command

above

copies

the

module

sample

from

the

mylib.lib

library

to

a

file

called

sample.obj

in

the

current

directory.

The

module

sample

in

mylib.lib

is

not

altered.

ilib

mylib.lib

/extract:sample

/REMOVE

��

/R[EMOVE]:

obj

��

Use

/REMOVE

to

delete

an

object

module

from

a

library.

After

/REMOVE,

specify

the

name

of

the

module

to

be

deleted.

Module

names

do

not

have

path

names

or

extensions.

Examples

The

following

command

deletes

the

module

sample

from

the

library

mylib.lib.

ilib

/out:mylib.lib

mylib.lib

/remove:sample

This

next

command

copies

sample.obj

from

the

mylib.lib

library

to

an

object

file

in

the

current

directory.

Then

sample.obj

is

deleted

from

the

library.

ilib

/out:mylib.lib

mylib.lib

/extract:sample

/remove:sample

ILIB

options

ILIB

options

affect

the

behavior

of

ILIB.

When

you

run

ILIB,

you

can

specify

multiple

options

in

any

order.

The

only

exception

is

the

/FREEFORMAT

option,

which

has

a

position

restriction.

Separate

options

on

the

command

line

with

a

space

or

tab

character.

Summary

of

ILIB

options

The

following

is

a

summary

of

ILIB

options

on

Windows.

Table

30.

ILIB

options

on

Windows

Syntax

Description

Default

Page

/?

Display

help

None

317

/BA[CKUP]

/NOBA[CKUP]

Back

up

the

output

file

(if

it

exists)

before

overwriting

it

/BA

317

/DEF:def

Specify

the

name

of

a

.def

file

to

use

to

get

information

about

exported

symbols

and

linker

parameters

None

317

/F[REEFORMAT]

/NOF[REEFORMAT]

Use

the

free

format

command

line

/F

318

/GEND[EF]:filename

Generate

a

.def

file

None

318

/GENI[MPLIB]:filename

Generate

an

import

library

None

318

Using

ILIB

on

Windows

316

PL/I

for

Windows:

Programming

Guide

Table

30.

ILIB

options

on

Windows

(continued)

Syntax

Description

Default

Page

/H[ELP]

Display

help

None

318

/L[IST]:filename

Generate

a

list

file

None

318

/NOE[XTDICTIONARY]

/EXTD[ICTIONARY]

Do

not

generate

an

extended

dictionary

in

an

OMF

library

/EXTD

319

/O[UT]:filename

Specify

the

name

of

the

output

library

None

319

/Q[UIET],

/NOL[OGO]

/LO[GO],

/NOQ[UIET]

Do

not

display

the

banner

on

startup

/LO

319

/W[ARN:msgnum,msgnum[,...]]

/NOW[ARN:msgnum,msgnum[,...]]

Enable

printing

of

warning

message

number

msgnum

None

319

Notes:

1.

ILIB

options

are

not

case

sensitive,

so

you

can

specify

them

in

lower-,

upper-,

or

mixed-case.

You

can

also

substitute

a

dash

(-)

for

the

slash

(/)

preceding

the

option.

For

example,

-FREEFORMAT

is

equivalent

to

/FREEFORMAT.

2.

You

can

specify

options

in

either

short

or

long

form.

For

example,

/F,

/FR,

and

/FREE

are

equivalent

to

/FREEFORMAT.

See

below

for

detailed

information

on

each

ILIB

option.

/?

��

/?

��

Use

/?

to

display

a

list

of

valid

ILIB

options.

This

option

is

equivalent

to

/HELP.

/BACKUP

��

/BA[CKUP]

/NOBA[CKUP]

��

Use

/BACKUP

to

back

up

the

output

file

(if

it

exists)

before

overwriting

it.

ILIB

uses

the

base

name

of

the

library

as

the

name

of

the

backup

library,

and

then

appends

the

.bak

extension.

For

example,

if

the

library

being

modified

is

mylib.lib

and

a

backup

is

requested,

ILIB

will

create

mylib.bak

in

the

current

directory.

/DEF

��

/DEF

:filename

��

Use

/DEF

to

specify

the

name

of

the

.def

file

to

use

to

get

information

about

exported

symbols

and

linker

parameters.

This

option

is

not

required,

since

ILIB

will

recognize

.def

files

by

their

contents

if

they

are

placed

with

other

input

files

on

the

command

line.

Using

ILIB

on

Windows

Chapter

22.

Using

IBM

Library

Manager

on

Windows

317

/FREEFORMAT

��

/F[REEFORMAT]

/NOF[REEFORMAT]

��

Use

the

/FREEFORMAT

option

to

tell

ILIB

that

you

are

using

the

free

format

command

line.

The

free

format

command

line

allows

you

to

specify

ILIB

input

arguments

any

number

of

times,

in

any

order.

Note:

This

option

must

be

specified

immediately

following

ilib

on

the

command

line,

or

as

the

first

argument

in

the

ILIB

environment

variable.

If

you

don’t

specify

either

/FREEFORMAT

or

/NOFREEFORMAT,

ILIB

will

default

to

the

free

format

command

line.

/GENDEF

��

/GEND[EF]:

filename

��

Use

the

/GENDEF

option

to

create

a

module

definition

(.def)

file.

Example

The

following

command

creates

the

module

definition

file

sample.def

from

the

DLL

sample.dll.

ilib

/gd:sample.def

sample.dll

/GI

��

/GENI[IMPLIB]

:filename

��

Use

the

/GENIMPLIB

option

to

create

an

import

library/export

object

pair.

Example

The

command

above

will

create

an

import

library

named

sample.lib

and

an

export

object

named

sample.exp

from

the

module

definition

file

sample.def.

However,

if

no

exported

symbols

are

contained,

then

sample.lib

will

not

be

produced.

ilib

/gi

sample.def

/HELP

��

/H[ELP]

��

Use

/HELP

to

display

a

list

of

valid

ILIB

options.

This

option

is

equivalent

to

/?.

/LIST

Using

ILIB

on

Windows

318

PL/I

for

Windows:

Programming

Guide

��

/L[IST]

filename

��

Use

the

/LIST

option

to

generate

a

list

file.

If

filename

is

not

specified,

ILIB

will

add

the

extension

.lst

to

the

input

filename.

Example

The

following

command

directs

ILIB

to

place

a

listing

of

the

contents

of

mylib.lib

into

the

file

mylib.lst.

No

path

specification

is

given

for

mylib.lst.

By

default,

the

file

created

is

put

into

the

current

directory.

ilib

mylib

/list:mylib.lst

Note:

The

/LISTLEVEL

option

is

not

supported

in

the

Windows

release

of

ILIB.

/NOEXT

��

/NOE[XTDICTIONARY]

/EXTD[ICTIONARY]

��

Use

/NOEXTDICTIONARY

to

disable

generation

of

the

extended

dictionary.

The

extended

dictionary

is

an

optional

part

of

the

library

that

increases

linking

speed.

However,

using

an

extended

dictionary

requires

more

memory.

The

space

reserved

for

the

extended

dictionary

is

limited

to

64K.

If

ILIB

reports

an

out-of-memory

error,

you

may

want

to

use

this

option.

As

an

alternative,

you

can

split

large

libraries

into

smaller

libraries

to

use

in

linking.

/OUT

��

��

/QUIET

��

��

Use

the

/QUIET

or

/NOLOGO

options

to

suppress

the

ILIB

copyright

notice.

/WARN

��

��

Use

the

/WARN

option

to

enable

printing

of

the

message

number

specified

in

the

msgnum

parameter.

Using

ILIB

on

Windows

Chapter

22.

Using

IBM

Library

Manager

on

Windows

319

320

PL/I

for

Windows:

Programming

Guide

Chapter

23.

Calling

conventions

Understanding

linkage

considerations

.

.

.

.

. 321

OPTLINK

linkage

.

.

.

.

.

.

.

.

.

.

.

. 322

Features

of

OPTLINK

.

.

.

.

.

.

.

.

. 323

Tips

for

using

OPTLINK

.

.

.

.

.

.

.

. 323

General-purpose

register

implications

.

.

.

.

. 324

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

. 324

Examples

of

passing

parameters

.

.

.

.

.

. 324

Passing

conforming

parameters

to

a

routine

324

SYSTEM

linkage

.

.

.

.

.

.

.

.

.

.

.

. 329

Features

of

SYSTEM

.

.

.

.

.

.

.

.

.

. 329

Example

using

SYSTEM

linkage

.

.

.

.

.

. 330

STDCALL

linkage

(Windows

only)

.

.

.

.

.

. 331

Features

of

STDCALL

.

.

.

.

.

.

.

.

. 331

Examples

using

the

STDCALL

convention

.

.

. 332

Using

WinMain

(Windows

only)

.

.

.

.

.

.

. 334

CDECL

linkage

.

.

.

.

.

.

.

.

.

.

.

.

. 334

Features

of

CDECL

.

.

.

.

.

.

.

.

.

. 334

Examples

using

the

CDECL

convention

.

.

. 335

This

chapter

discusses

the

calling

conventions

used

by

PL/I

for

Windows:

OPTLINK

SYSTEM

STDCALL

CDECL

The

OPTLINK

linkage

convention

(see

“OPTLINK

linkage”

on

page

322

for

details)

is

also

supported

by

VisualAge

for

C++

(OS/2

and

Windows)

and

is

the

fastest

method

of

calling

PL/I

procedures,

C

functions,

or

assembler

routines.

OPTLINK

is

not,

however,

standard

for

all

Windows

applications.

On

Windows,

specifying

SYSTEM

linkage

is

synonymous

with

STDCALL

linkage

and

is

implemented

the

same

as

STDCALL.

The

compiler,

however,

considers

the

names

SYSTEM

and

STDCALL

to

be

distinct

and

complains

if

you

mix

them.

The

STDCALL

linking

convention

is

described

in

“STDCALL

linkage

(Windows

only)”

on

page

331.

You

can

specify

the

calling

convention

for

all

functions

within

a

program

using

the

LINKAGE

suboption

of

the

DEFAULT

compile-time

option.

You

can

also

use

the

LINKAGE

option

of

the

OPTIONS

attribute

to

specify

the

linkage

for

individual

functions.

Note:

You

cannot

call

a

function

using

a

different

calling

convention

than

the

one

with

which

it

is

compiled.

For

example,

if

a

function

is

compiled

with

SYSTEM

linkage,

you

cannot

later

call

it

specifying

OPTLINK

linkage.

Understanding

linkage

considerations

On

Windows,

there

are

three

primary

linkages

that

the

PL/I

compiler

supports:

OPTLINK,

CDECL,

and

STDCALL.

On

Windows,

all

the

system

services

use

the

STDCALL

linkage.

These

linkages

differ

in

their

parameter

passing

conventions:

v

The

OPTLINK

linkage

is

the

only

one

that

attempts

to

pass

some

parameters

in

registers;

the

other

linkages

pass

all

the

parameters

on

the

stack.

v

The

STDCALL

linkage

is

the

only

one

that

makes

the

callee

responsible

for

cleaning

up

the

stack;

the

other

linkages

make

the

caller

responsible.

The

PL/I

for

Windows

compiler

interprets

any

specification

of

the

SYSTEM

linkage

as

if

the

STDCALL

linkage

were

intended.

The

VisualAge

C

compiler

does

the

same.

321

On

Windows,

all

external

names

are

decorated.

If

the

external

attribute

does

not

specify

a

name,

the

name

decoration

depends

on

the

linkage:

v

Routines

with

the

CDECL

linkage

have

a

’_’

added

as

a

prefix

so

that,

for

example,

the

name

FUNKY

would

become

_FUNKY.

v

Routines

with

the

OPTLINK

linkage

have

a

’?’

added

as

a

prefix

so

that,

for

example,

the

name

FUNKY

would

become

?FUNKY.

v

Routines

with

the

STDCALL

linkage

have

a

’_’

added

as

a

prefix

and

a

’@’

followed

by

the

bytes

used

by

its

parameters

added

as

a

suffix.

For

example,

then,

if

the

name

FUNKY

had

two

byvalue

pointers

or

any

two

byaddr

parameters,

it

would

become

_FUNKY@8.

One

consequence

of

these

name

decorations

is

that

if

a

caller

of

a

routine

specifies

the

wrong

linkage

for

that

routine,

the

program

fails

to

link.

So

far,

the

discussion

of

name

decoration

has

applied

only

to

routines

for

which

the

external

attribute

did

not

specify

a

name.

It

also

applies

when

the

external

attribute

specifies

a

name

that

differs

only

in

case

from

the

declared

name.

In

these

situations,

the

name

specified

as

part

of

the

external

attribute

is

decorated.

For

example,

given

the

following

declare,

the

name

that

the

linker

sees

is

?getenv.

dcl

getenv

ext(’getenv’)

entry(

char(*)

varz

byaddr

nonasgn

)

returns(

pointer

)

options(

nodescriptor

linkage(optlink)

);

Similarly,

for

the

following

declare

(for

the

Windows

system

routine

that

loads

a

DLL),

the

name

specified

as

part

of

the

external

attribute

is

decorated,

and

the

linker

sees

the

name

as

_LoadLibraryA@4.

dcl

loadlibrarya

ext(’LoadLibraryA’)

entry(

char(*)

varz

byaddr

nonasgn

)

returns(

pointer

byvalue

)

options(

linkage(stdcall)

nodescriptor

);

If,

however,

a

name

is

specified

as

part

of

the

external

attribute

and

that

name

differs

from

the

declared

name

by

more

than

its

case,

then

no

name

decoration

occurs.

For

example,

given

the

following

declare,

no

name

decoration

occurs

and

the

name

that

the

linker

sees

is

?getenv.

dcl

getenv

ext(’?getenv’)

entry(

char(*)

varz

byaddr

nonasgn

)

returns(

pointer

)

options(

nodescriptor

linkage(optlink)

);

Performing

name

decoration

yourself

as

illustrated

in

this

last

example

usually

makes

your

code

less

portable.

For

instance,

only

the

first

declare

for

getenv

in

the

preceding

examples

is

valid

for

Windows

and

AIX.

OPTLINK

linkage

This

is

the

default

calling

convention.

It

is

an

alternative

to

SYSTEM

linkage

that

is

normally

used

for

calls

to

the

operating

system.

This

linkage

provides

better

total

performance

than

SYSTEM

linkage.

Understanding

linkage

considerations

322

PL/I

for

Windows:

Programming

Guide

Features

of

OPTLINK

The

OPTLINK

convention

has

the

following

features:

v

Parameters

are

pushed

from

right

to

left

onto

the

stack.

v

The

caller

cleans

up

the

stack.

v

The

general-purpose

registers

EBX,

EDI,

and

ESI

are

preserved

across

the

call.

v

The

general-purpose

registers

EAX,

ECX,

and

EDX

are

not

preserved

across

the

call.

v

Floating-point

registers

are

not

preserved

across

the

call.

v

The

three

conforming

parameters

that

are

lexically

leftmost

(conforming

parameters

are

the

addresses

for

all

BYADDR

parameters

and

the

following

BYVALUE

parameters:

pointer,

handle,

ordinal,

offset,

limited

entry,

real

fixed

binary,

character(1),

and

nonvarying

bits

occupying

1

byte

or

less)

are

passed

in

the

three

unpreserved

general-purpose

registers.

v

Up

to

four

real

floating-point

or

two

complex

parameters

(the

lexically

first

four)

are

passed

in

extended

precision

format

(80-bit)

in

the

floating-point

register

stack.

v

All

conforming

parameters

not

passed

in

registers

and

all

nonconforming

parameters

are

passed

on

the

80386

stack.

v

Space

for

the

parameters

in

registers

is

allocated

on

the

stack,

but

the

parameters

are

not

copied

into

that

space.

v

Conforming

return

values

are

returned

in

EAX.

v

Real

floating-point

return

values

are

returned

in

extended

precision

format

in

the

topmost

register

of

the

floating-point

stack.

v

Complex

floating-point

return

values

are

returned

in

extended

precision

format

in

the

topmost

two

registers

of

the

floating-point

stack.

v

When

you

are

calling

external

functions,

the

floating-point

register

stack

contains

only

valid

parameter

registers

on

entry,

and

valid

return

values

on

exit.

v

Functions

returning

aggregates

pass

the

address

of

a

storage

area

determined

by

the

caller

as

a

hidden

parameter.

This

area

becomes

the

returned

aggregate.

The

address

of

this

aggregate

is

returned

in

EAX.

v

The

direction

flag

must

be

clear

upon

entry

to

functions,

and

clear

on

exit

from

functions.

The

state

of

the

other

flags

is

ignored

on

entry

to

a

function,

and

undefined

on

exit.

v

The

compiler

does

not

change

the

contents

of

the

floating-point

control

register.

If

you

want

to

change

the

control

register

contents

for

a

particular

operation,

save

the

contents

before

making

the

changes

and

restore

them

after

the

operation.

Tips

for

using

OPTLINK

By

following

the

tips

given

below

when

you

use

OPTLINK

linkage,

you

can

improve

the

performance

of

your

applications.

v

The

conforming

and

floating-point

parameters

that

are

most

heavily

used

should

be

lexically

leftmost

in

the

parameter

list

so

they

will

be

considered

for

registers

first.

If

they

are

adjacent

to

each

other,

the

preparation

of

the

parameter

list

will

be

faster.

v

If

you

have

a

parameter

that

is

used

near

the

end

of

a

function,

put

it

at

or

near

the

end

of

the

parameter

list.

If

all

of

your

parameters

are

used

near

the

end

of

functions,

consider

using

SYSTEM

linkage.

v

Compile

with

OPTIMIZE.

(See

“OPTIMIZE”

on

page

58.)

OPTLINK

linkage

Chapter

23.

Calling

conventions

323

General-purpose

register

implications

Parameters

EAX,

EDX,

and

ECX

are

used

for

the

lexically

first

three

conforming

parameters

with

EAX

containing

the

first

parameter,

EDX

the

second,

and

ECX

the

third.

Four

bytes

of

stack

storage

are

allocated

for

each

register

parameter

that

is

present,

but

the

parameters

exist

only

in

the

registers

at

the

time

of

the

call.

Examples

of

passing

parameters

The

following

examples

are

included

only

for

purposes

of

illustration

and

clarity

and

have

not

been

optimized.

These

examples

assume

that

you

are

familiar

with

programming

in

assembler.

In

each

example,

the

stack

grows

toward

the

bottom

of

the

page,

and

ESP

always

points

to

the

top

of

the

stack.

Passing

conforming

parameters

to

a

routine

The

following

example

shows

the

code

sequences

and

a

picture

of

the

stack

for

a

call

to

the

function

FUNC1.

It

is

assumed

that

this

program

is

compiled

with

the

PREFIX(NOFIXEDOVERFLOW)

option.

dcl

func1

entry(

char(1),

fixed

bin(15),

fixed

bin(31),

fixed

bin(31)

)

returns(

fixed

bin(31)

)

options(

byvalue

nodescriptor

);

dcl

x

fixed

bin(15);

dcl

y

fixed

bin(31);

y

=

func1(’A’,

x,

y+x,

y);

caller’s

Code

Up

Until

Call:

PUSH

y

;

Push

p4

onto

the

80386

stack

SUB

ESP,

12

;

Allocate

stack

space

for

;

register

parameters

MOV

AL,

’A’

;

Put

p1

into

AL

MOV

DX,

x

;

Put

p2

into

DX

MOVSX

ECX,

DX

;

Sign-extend

x

to

long

ADD

ECX,

y

;

Calculate

p3

and

put

it

into

ECX

CALL

FUNC1

;

Make

call

Stack

Just

After

Call

Register

Set

Just

After

Call

·

·

┌─────────┬────┬────┐

│

caller’s

Local

│

EAX

│

undefined

│

p1

│

├────────────────────┤

├─────────┼────┼────┤

│

p4

│

EBX

│

caller’s

EBX

│

├────────────────────┤

├─────────┼────┼────┤

│

Blank

Slot

For

p3

│

ECX

│

p3

│

│

├────────────────────┤

├─────────┼────┼────┤

│

Blank

Slot

For

p2

│

EDX

│undefined│

p2

│

├────────────────────┤

├─────────┼────┴────┤

│

Blank

Slot

For

p1

│

EDI

│

caller’s

EDI

│

├────────────────────┤

├─────────┼─────────┤

│

caller’s

EIP

│

ESI

│

caller’s

ESI

│

ESP

───�

└────────────────────┘

└─────────┴─────────┘

callee’s

Prolog

Code:

PUSH

EBP

;

Save

caller’s

EBP

MOV

EBP,

ESP

;

Set

up

callee’s

EBP

SUB

ESP,

callee’s

local

size

;

Allocate

callee’s

Local

General-purpose

register

implications

324

PL/I

for

Windows:

Programming

Guide

PUSH

EBX

;

Save

preserved

registers

-

PUSH

EDI

;

will

optimize

to

save

PUSH

ESI

;

only

registers

callee

uses

Stack

After

Prolog

Register

Set

After

Prolog

·

·

┌──────────┬────┬────┐

│

caller’s

Local

│

EAX

│

undefined

│

p1

│

├───────────────────┤

├──────────┼────┼────┤

│

p4

│

EBX

│

undefined

│

├───────────────────┤

├──────────┼────┴────┤

│

Blank

Slot

For

p3

│

ECX

│

p3

│

├───────────────────┤

├──────────┼────┬────┤

│

Blank

Slot

For

p2

│

EDX

│undefined

│

p2

│

├───────────────────┤

├──────────┼────┴────┤

│

Blank

Slot

For

p1

│

EDI

│

undefined

│

├───────────────────┤

├──────────┼─────────┤

│

caller’s

EIP

│

ESI

│

undefined

│

├───────────────────┤

└──────────┴─────────┘

│

caller’s

EBP

│

├───────────────────┤

The

term

"undefined"

in

│

│

registers

EBX,

EDI

and

ESI

.

.

refers

to

the

fact

that

they

.

callee’s

Local

.

can

be

safely

overwritten

by

.

.

the

code

in

FUNC1.

│

│

├───────────────────┤

│

Saved

EBX

│

├───────────────────┤

│

Saved

EDI

│

├───────────────────┤

│

Saved

ESI

│

ESP

──�

└───────────────────┘

callee’s

Epilog

Code:

MOV

EAX,

RetVal

;

Put

return

value

in

EAX

POP

ESI

;

Restore

preserved

registers

POP

EDI

POP

EBX

MOV

ESP,

EBP

;

Deallocate

callee’s

local

POP

EBP

;

Restore

caller’s

EBP

RET

;

Return

to

caller

Stack

After

Epilog

Register

Set

After

Epilog

·

·

┌─────────┬────┬───┐

│

caller’s

Local

│

EAX

│

Return│Value

│

├───────────────────┤

├─────────┼────┼───┤

│

p4

│

EBX

│

caller’s

EBX

│

├───────────────────┤

├─────────┼────┼───┤

│

Blank

Slot

For

p3

│

ECX

│

undefined

│

├───────────────────┤

├─────────┼────┼───┤

│

Blank

Slot

For

p2

│

EDX

│

undefined

│

├───────────────────┤

├─────────┼────┴───┤

│

Blank

Slot

For

p1

│

EDI

│

caller’s

EDI

│

│

│

├─────────┼────────┤

ESP

───�

└───────────────────┘

ESI

│

caller’s

ESI

│

└─────────┴────────┘

caller’s

Code

Just

After

Call:

ADD

ESP,

16

;

Remove

parameters

from

stack

MOV

y,

EAX

;

Use

return

value.

General-purpose

register

implications

Chapter

23.

Calling

conventions

325

Stack

After

Cleanup

Register

Set

After

Cleanup

·

·

┌─────────┬────┬───┐

│

caller’s

Local

│

EAX

│

Return│Value

│

ESP

───�

└────────────────┘

├─────────┼────┼───┤

EBX

│

caller’s

EBX

│

├─────────┼────┼───┤

ECX

│

undefined

│

├─────────┼────┼───┤

EDX

│

undefined

│

├─────────┼────┴───┤

EDI

│

caller’s

EDI

│

├─────────┼────────┤

ESI

│

caller’s

ESI

│

└─────────┴────────┘

Passing

floating-point

parameters

to

a

routine:

The

following

example

shows

code

sequences,

80386

stack

layouts,

and

floating-point

register

stack

states

for

a

call

to

the

routine

FUNC2.

For

simplicity,

the

general-purpose

registers

are

not

shown.

It

is

assumed

that

this

program

is

compiled

with

the

IMPRECISE

option.

dcl

func2

entry(

float

bin(21),

float

bin(53),

float

bin(64),

float

bin(21),

float

bin(53)

)

returns(

float

bin(53)

)

options(

byvalue

nodescriptor

);

dcl

(a,

b,

c)

float

bin(53);

dcl

(d,

e)

float

bin(21);

a

=

b

+

func2(a,

d,

prec(a

+

c,

53),

e,

c);

caller’s

Code

Up

Until

Call:

PUSH

2ND

DWORD

OF

c

;

Push

upper

4

bytes

of

c

onto

stack

PUSH

1ST

DWORD

OF

c

;

Push

lower

4

bytes

of

c

onto

stack

FLD

DWORD_PTR

e

;

Load

e

into

80387,

promotion

;

requires

no

conversion

code

FLD

QWORD_PTR

a

;

Load

a

to

calculate

p3

FADD

ST(0),

QWORD_PTR

c

;

Calculate

p3,

result

is

float

bin(64)

;

from

nature

of

80387

hardware

FLD

QWORD_PTR

d

;

Load

d,

no

conversion

necessary

FLD

QWORD_PTR

a

;

Load

a,

demotion

requires

conversion

FSTP

DWORD_PTR

[EBP

-

T1]

;

Store

to

a

temp

(T1)

to

convert

to

float

FLD

DWORD_PTR

[EBP

-

T1]

;

Load

converted

value

from

temp

(T1)

SUB

ESP,

32

;

Allocate

the

stack

space

for

;

parameter

list

CALL

FUNC2

;

Make

call

General-purpose

register

implications

326

PL/I

for

Windows:

Programming

Guide

Stack

Just

After

Call

80387

Register

Set

Just

After

Call

┌

┐

┌───────────────────┐

│

caller’s

Local

│

ST(7)

│

Empty

│

├─────────────────────┤

├───────────────────┤

│

Upper

Dword

of

p5

│

ST(6)

│

Empty

│

├─

──

──

──

──

──

──

─┤

├───────────────────┤

│

Lower

Dword

of

p5

│

ST(5)

│

Empty

│

├─────────────────────┤

├───────────────────┤

│

Blank

Dword

for

p4

│

ST(4)

│

Empty

│

├─────────────────────┤

├───────────────────┤

│

Four

│

ST(3)

│

p4

(e)

│

├─

──

──

──

──

──

──

─┤

├───────────────────┤

│

Blank

│

ST(2)

│

p3

(a

+

c)

│

├─

──

──

──

──

──

──

─┤

├───────────────────┤

│

Dwords

│

ST(1)

│

p2

(d)

│

├─

──

──

──

──

──

──

─┤

├───────────────────┤

│

for

p3

│

ST(0)

│

p1

(a)

│

├─────────────────────┤

└───────────────────┘

│

Two

Blank

│

├─

──

──

──

──

──

──

─┤

│

Dwords

for

p2

│

├─────────────────────┤

│

Blank

Dword

for

p1

│

├─────────────────────┤

│

caller’s

EIP

│

ESP

────�

└─────────────────────┘

callee’s

Prolog

Code:

PUSH

EBP

;

Save

caller’s

EBP

MOV

EBP,

ESP

;

Set

up

callee’s

EBP

SUB

ESP,

callee’s

local

size

;

Allocate

callee’s

Local

PUSH

EBX

;

Save

preserved

registers

-

PUSH

EDI

;

will

optimize

to

save

PUSH

ESI

;

only

registers

callee

uses

General-purpose

register

implications

Chapter

23.

Calling

conventions

327

Stack

After

Prolog

80387

Register

Set

After

Prolog

·

·

┌─────────────────┤

│

caller’s

Local

│

ST(7)

│

Empty

│

├────────────────────┤

├─────────────────┤

│

Upper

Dword

of

p5

│

ST(6)

│

Empty

│

├─

──

──

──

──

──

──

┤

├─────────────────┤

│

Lower

Dword

of

p5

│

ST(5)

│

Empty

│

├────────────────────┤

├─────────────────┤

│

Blank

Dword

for

p4

│

ST(4)

│

Empty

│

├────────────────────┤

├─────────────────┤

│

Four

│

ST(3)

│

p4

│

├─

──

──

──

──

──

──

┤

├─────────────────┤

│

Blank

│

ST(2)

│

p3

│

├─

──

──

──

──

──

──

┤

├─────────────────┤

│

Dwords

│

ST(1)

│

p2

│

├─

──

──

──

──

──

──

┤

├─────────────────┤

│

for

p3

│

ST(0)

│

p1

│

├────────────────────┤

└─────────────────┘

│

Two

Blank

│

├─

──

──

──

──

──

──

┤

│

Dwords

for

p2

│

├────────────────────┤

│

Blank

Dword

for

p1

│

├────────────────────┤

│

caller’s

EIP

│

├────────────────────┤

│

caller’s

EBP

│

├────────────────────┤

│

│

.

.

.

callee’s

Local

.

.

.

│

│

├────────────────────┤

│

Saved

EBX

│

├────────────────────┤

│

Saved

EDI

│

├────────────────────┤

│

Saved

ESI

│

ESP

────�

└────────────────────┘

callee’s

Epilog

Code:

FLD

RETVAL

;

Load

return

value

onto

floating-point

stack

POP

ESI

;

Restore

preserved

registers

POP

EDI

POP

EBX

MOV

ESP,

EBP

;

Deallocate

callee’s

local

POP

EBP

;

Restore

caller’s

EBP

RET

;

Return

to

caller

General-purpose

register

implications

328

PL/I

for

Windows:

Programming

Guide

Stack

After

Epilog

80387

Register

Set

After

Epilog

·

·

┌──────────────────┐

│

caller’s

Local

│

ST(7)

│

Empty

│

├─────────────────────┤

├──────────────────┤

│

Upper

Dword

of

p5

│

ST(6)

│

Empty

│

├─

──

──

──

──

──

──

─┤

├──────────────────┤

│

Lower

Dword

of

p5

│

ST(5)

│

Empty

│

├─────────────────────┤

├──────────────────┤

│

Blank

Dword

for

p4

│

ST(4)

│

Empty

│

├─────────────────────┤

├──────────────────┤

│

Four

│

ST(3)

│

Empty

│

├─

──

──

──

──

──

──

─┤

├──────────────────┤

│

Blank

│

ST(2)

│

Empty

│

├─

──

──

──

──

──

──

─┤

├──────────────────┤

│

Dwords

│

ST(1)

│

Empty

│

├─

──

──

──

──

──

──

─┤

├──────────────────┤

│

for

p3

│

ST(0)

│

Return

Value

│

├─────────────────────┤

└──────────────────┘

│

Two

Blank

│

├─

──

──

──

──

──

──

─┤

│

Dwords

for

p2

│

├─────────────────────┤

│

Blank

Dword

for

p1

│

ESP

────�

└─────────────────────┘

caller’s

Code

Just

After

Call:

ADD

ESP,

40

;

Remove

parameters

from

stack

FADD

QWORD_PTR

b

;

Use

return

value

FSTP

QWORD_PTR

a

;

Store

expression

to

variable

a

Stack

After

Cleanup

80387

Register

Set

After

Cleanup

·

·

┌────────────────────┐

│

caller’s

Local

│

ST(7)

│

Empty

│

│

│

├────────────────────┤

ESP

────�

└─────────────────┘

ST(6)

│

Empty

│

├────────────────────┤

ST(5)

│

Empty

│

├────────────────────┤

ST(4)

│

Empty

│

├────────────────────┤

ST(3)

│

Empty

│

├────────────────────┤

ST(2)

│

Empty

│

├────────────────────┤

ST(1)

│

Empty

│

├────────────────────┤

ST(0)

│

Return

Value

│

└────────────────────┘

SYSTEM

linkage

To

use

this

linkage

convention,

you

must

specify

the

OPTIONS(LINKAGE(SYSTEM))

attribute

in

the

declaration

of

the

function,

or

specify

the

DEFAULT(LINKAGE(SYSTEM))

compile-time

option.

Features

of

SYSTEM

The

following

rules

apply

to

the

SYSTEM

linkage

convention:

v

All

parameters

are

passed

on

the

80386

stack.

v

Parameters

are

pushed

onto

the

stack

in

right-to-left

order.

v

The

calling

function

is

responsible

for

removing

parameters

from

the

stack.

v

All

parameters

are

doubleword

(4-byte)

aligned.

General-purpose

register

implications

Chapter

23.

Calling

conventions

329

v

Values

are

returned

in

the

same

manner

as

the

OPTLINK

linkage.

v

The

direction

flag

must

be

clear

upon

entry

to

functions

and

clear

on

exit

from

functions.

The

state

of

the

other

flags

is

ignored

on

entry

to

a

function,

and

undefined

on

exit.

v

The

compiler

does

not

change

the

contents

of

the

floating-point

control

register.

If

you

want

to

change

the

control

register

contents

for

a

particular

operation,

save

the

contents

before

making

the

changes

and

restore

them

after

the

operation.

Example

using

SYSTEM

linkage

The

following

example

is

included

only

for

purposes

of

illustration

and

clarity

and

has

not

been

optimized.

The

example

assumes

that

you

are

familiar

with

programming

in

assembler.

In

the

example,

the

stack

grows

toward

the

bottom

of

the

page,

and

ESP

always

points

to

the

top

of

the

stack.

The

following

example

shows

the

code

sequences

and

a

picture

of

the

stack

for

a

call

to

the

function

FUNC3

which

has

two

local

variables,

x

and

y

(both

fixed

bin(31)).

For

the

call

dcl

func3

entry(

fixed

bin(31),

fixed

bin(31),

fixed

bin(31)

)

returns(

fixed

bin(31)

)

options(

byvalue

nodescriptor

linkage(system)

);

m

=

func3(a,b,c);

the

stack

for

the

call

to

FUNC3

would

look

like

this:

Stack

┌────────────────────────┐

Higher

Memory

│

c

│

├────────────────────────┤

│

b

│

├────────────────────────┤

│

a

│

├────────────────────────┤

│

caller’s

EIP

│

├────────────────────────┤

│

caller’s

EBP

│

EBP

──────�

├────────────────────────┤

│

x

│

├────────────────────────┤

│

y

│

├────────────────────────┤

�─┐

│

Saved

EDI

│

│

├────────────────────────┤

│

These

would

only

be

│

Saved

ESI

│

│

be

pushed

if

they

├────────────────────────┤

│

were

used

in

this

│

Saved

EBX

│

│

function.

ESP

──────�

└────────────────────────┘

�─┘

Lower

Memory

The

instructions

used

to

build

this

activation

record

on

the

stack

look

like

this

on

the

calling

side:

PUSH

c

PUSH

b

PUSH

a

MOV

AL,

3H

CALL

func3

.

SYSTEM

linkage

330

PL/I

for

Windows:

Programming

Guide

.

ADD

ESP,

12

;

Cleaning

up

the

parameters

.

.

MOV

m,

EAX

.

.

For

the

callee,

the

code

looks

like

this:

func3

PROC

PUSH

EBP

MOV

EBP,

ESP

;

Allocating

8

bytes

of

storage

SUB

ESP,

8

;

for

two

local

variables.

PUSH

EDI

;

These

would

only

be

PUSH

ESI

;

pushed

if

they

were

used

PUSH

EBX

;

in

this

function.

.

.

MOV

EAX,

[EBP

-

8]

;

Load

y

into

EAX

MOV

EBX,

[EBP

+

12]

;

Load

b

into

EBX

.

.

XOR

EAX,

EAX

;

Zero

the

return

value

POP

EBX

;

Restore

the

saved

registers

POP

ESI

POP

EDI

LEAVE

;

Equivalent

to

MOV

ESP,

EBP

;

POP

EBP

RET

func3

ENDP

The

saved

register

set

is

EBX,

ESI,

and

EDI.

The

other

registers

(EAX,

ECX,

and

EDX)

can

have

their

contents

changed

by

a

called

routine.

Under

some

circumstances,

the

compiler

does

not

use

EBP

to

access

automatic

and

parameter

values,

thus

increasing

the

application’s

efficiency.

Whether

it

is

used

or

not,

EBP

does

not

change

across

the

call.

When

passing

aggregates

by

value,

the

compiler

generates

code

to

copy

the

aggregate

on

to

the

80386

stack.

If

the

size

of

the

aggregate

is

larger

than

an

80386

page

size

(4K),

the

compiler

generates

code

to

copy

the

aggregate

backward

(that

is,

the

last

byte

in

the

aggregate

is

the

first

to

be

copied).

Aggregates

are

not

returned

on

the

stack.

The

caller

pushes

the

address

where

the

returned

aggregate

is

to

be

placed

as

a

lexically

first

hidden

parameter.

A

function

that

returns

an

aggregate

must

be

aware

that

all

parameters

are

4

bytes

farther

away

from

EBP

than

they

would

be

if

no

aggregate

return

were

involved.

The

address

of

the

returned

aggregate

is

returned

in

EAX.

STDCALL

linkage

(Windows

only)

To

use

this

linkage

convention,

you

must

specify

the

OPTIONS(LINKAGE(STDCALL))

attribute

in

the

declaration

of

the

function,

or

specify

the

DEFAULT(LINKAGE(STDCALL))

compile-time

option.

Features

of

STDCALL

The

following

rules

apply

to

the

STDCALL

calling

convention:

v

All

parameters

are

passed

on

the

stack.

v

The

parameters

are

pushed

onto

the

stack

in

a

lexical

right-to-left

order.

SYSTEM

linkage

Chapter

23.

Calling

conventions

331

v

The

called

function

removes

the

parameters

from

the

stack.

v

Floating

point

values

are

returned

in

ST(0),

the

top

register

of

the

floating

point

register

stack.

Functions

returning

aggregate

values

return

them

as

follows:

Size

of

Aggregate

Value

Returned

in

8

bytes

EAX-EDX

pair

5,

6,

7

bytes

EAX

The

address

to

place

the

return

values

is

passed

as

a

hidden

parameter

in

EAX.

4

bytes

EAX

3

bytes

EAX

The

address

to

place

the

return

values

is

passed

as

a

hidden

parameter

to

EAX.

2

bytes

AX

1

byte

AL
For

functions

that

return

aggregates

5,

6,

7

or

more

than

8

bytes

in

size,

the

address

to

place

the

return

values

is

passed

as

a

hidden

parameter,

and

the

address

is

passed

back

in

EAX.

v

STDCALL

has

the

restriction

that

an

unprototyped

STDCALL

function

with

a

variable

number

of

arguments

will

not

work.

v

Function

names

are

decorated

with

an

underscore

prefix,

and

a

suffix

which

consists

of

an

at

sign

(@),

followed

by

the

number

of

bytes

of

parameters

(in

decimal).

Parameters

of

less

than

four

bytes

are

rounded

up

to

four

bytes.

Structure

sizes

are

also

rounded

up

to

a

multiple

of

four

bytes.

For

example,

consider

a

function

fred

prototyped

as

follows:

dcl

fred

ext

entry

(fixed

bin(31)

byvalue,

fixed

bin(31)

byvalue,

fixed

bin(15)

byvalue);

It

would

appear

as

follows

in

the

object

module:

_FRED@12

When

building

export

lists

in

.DEF

files,

the

decorated

version

of

the

name

should

be

used.

If

you

use

undecorated

names

in

the

DEF

file,

you

must

give

the

object

files

to

ILIB

along

with

the

DEF

file.

ILIB

uses

the

object

files

to

determine

how

each

name

ended

up

after

decoration.

Examples

using

the

STDCALL

convention

The

following

examples

are

included

for

purposes

of

illustration

and

clarity

only.

The

examples

assume

that

you

are

familiar

with

programming

in

assembler.

In

the

examples,

the

stack

grows

toward

the

bottom

of

the

page,

and

ESP

always

points

to

the

top

of

the

stack.

For

the

following

call,

a,

b,

and

c

are

32-bit

integers

and

func

has

two

local

variables,

x

and

y

(both

32-bit

integers):

m

=

func(a,b,c)

The

stack

for

the

call

to

FUNC

would

look

like

this:

STDCALL

linkage

332

PL/I

for

Windows:

Programming

Guide

Stack

┌────────────────────────┐

Higher

Memory

│

c

│

├────────────────────────┤

│

b

│

├────────────────────────┤

│

a

│

├────────────────────────┤

│

caller’s

EIP

│

├────────────────────────┤

│

caller’s

EBP

│

EBP

──────�

├────────────────────────┤

│

x

│

├────────────────────────┤

│

y

│

├────────────────────────┤

�─┐

│

Saved

EDI

│

│

├────────────────────────┤

│

These

would

only

│

Saved

ESI

│

│

be

pushed

if

they

├────────────────────────┤

│

were

used

in

this

│

Saved

EBX

│

│

function.

ESP

──────�

└────────────────────────┘

�─┘

Lower

Memory

The

instructions

used

to

create

this

activation

record

on

the

stack

look

like

this

on

the

calling

side:

PUSH

c

PUSH

b

PUSH

a

CALL

_func@12

.

.

MOV

m,

EAX

.

.

For

the

callee,

the

code

looks

like

this:

_func@12

PROC

PUSH

EBP

MOV

EBP,

ESP

;

Allocating

8

bytes

of

storage

SUB

ESP,

8

;

for

two

local

variables.

PUSH

EDI

;

These

would

only

be

PUSH

ESI

;

pushed

if

they

were

used

PUSH

EBX

;

in

this

function.

.

.

MOV

EAX,

[EBP

-

8]

;

Load

y

into

EAX

MOV

EBX,

[EBP

+

12]

;

Load

b

into

EBX

.

.

XOR

EAX,

EAX

;

Zero

the

return

value

POP

EBX

;

Restore

the

saved

registers

POP

ESI

POP

EDI

LEAVE

;

Equivalent

to

MOV

ESP,

EBP

;

POP

EBP

RET

0CH

_func@12

ENDP

The

saved

register

set

is

EBX,

ESI,

and

EDI.

Structures

are

not

returned

on

the

stack.

The

caller

pushes

the

address

where

the

returned

structure

is

to

be

placed

as

a

lexically

first

hidden

parameter.

A

function

STDCALL

linkage

Chapter

23.

Calling

conventions

333

that

returns

a

structure

must

be

aware

that

all

parameters

are

four

bytes

farther

away

from

EBP

than

they

would

be

if

no

structure

were

involved.

The

address

of

the

returned

structure

is

returned

in

EAX.

Using

WinMain

(Windows

only)

You

can

use

WinMain

by

specifying

OPTIONS(WINMAIN)

on

the

procedure

statement

(see

the

PL/I

Language

Reference

for

syntax).

This

automatically

implies

LINKAGE(STDCALL)

and

EXT(’WinMain’).

Your

WinMain

routine

needs

four

parameters:

v

An

instance

handle

v

A

previous

handle

v

A

pointer

to

the

command

line

v

An

integer

to

be

passed

to

ShowWindow

These

are

the

same

four

parameters

expected

by

WinMain

in

C.

The

calls

made

inside

this

routine

are

the

same

as

those

expected

from

a

C

routine.

An

example

guisamp.pli

is

provided

in

the

samples

directory

(see

the

program

prolog

for

more

details)

CDECL

linkage

To

use

this

linkage

convention,

you

must

specify

the

OPTIONS(LINKAGE(CDECL))

attribute

in

the

declaration

of

the

function,

or

specify

the

DEFAULT(LINKAGE(CDECL))

compile-time

option.

Features

of

CDECL

The

following

rules

apply

to

the

CDECL

calling

convention:

v

All

parameters

are

passed

on

the

stack.

v

The

parameters

are

pushed

onto

the

stack

in

a

lexical

right-to-left

order.

v

The

calling

function

removes

the

parameters

from

the

stack.

v

Floating

point

values

are

returned

in

ST(0).

All

functions

returning

non-floating

point

values

return

them

in

EAX,

except

for

the

special

case

of

returning

aggregates

less

than

or

equal

to

eight

bytes

in

size.

For

functions

that

return

aggregates

less

than

or

equal

to

four

bytes

in

size,

the

values

are

returned

as

follows:

Size

of

Aggregate

Value

Returned

in

8

bytes

EAX-EDX

pair

5,

6,

7

bytes

EAX

The

address

to

place

return

values

is

passed

as

a

hidden

parameter

in

EAX.

4

bytes

EAX

3

bytes

EAX

The

address

to

place

return

values

is

passed

as

a

hidden

parameter

to

EAX.

2

bytes

AX

STDCALL

linkage

334

PL/I

for

Windows:

Programming

Guide

1

byte

AL
For

functions

that

return

aggregates

5,

6,

7

or

more

than

8

bytes

in

size,

the

address

to

place

the

return

values

is

passed

as

a

hidden

parameter,

and

the

address

is

passed

back

in

EAX.

v

Function

names

are

decorated

with

an

underscore

prefix

when

they

appear

in

object

modules.

For

example,

a

function

named

fred

in

the

source

program

will

appear

as

_fred

in

the

object.

When

building

export

or

import

lists

in

.DEF

files,

the

decorated

version

of

the

name

should

be

used.

If

you

used

undecorated

names

in

the

DEF

file,

you

must

give

the

object

files

to

ILIB

along

with

the

DEF

file.

ILIB

uses

the

object

files

to

determine

how

each

name

ended

up

after

decoration.

Examples

using

the

CDECL

convention

The

following

examples

are

included

for

purposes

of

illustration

and

clarity

only.

They

have

not

been

optimized.

The

examples

assume

that

you

are

familiar

with

programming

in

assembler.

In

the

examples,

the

stack

grows

toward

the

bottom

of

the

page,

and

ESP

always

points

to

the

top

of

the

stack.

Consider

the

following

call:

m

=

func(a,b,c);

The

variables

a,

b,

and

c

are

32-bit

integers

and

FUNC

has

two

local

variables,

x

and

y

(both

32-bit

integers).

The

stack

for

the

call

to

FUNC

would

look

like

this:

Stack

┌────────────────────────┐

Higher

Memory

│

c

│

├────────────────────────┤

│

b

│

├────────────────────────┤

│

a

│

├────────────────────────┤

│

caller’s

EIP

│

├────────────────────────┤

│

caller’s

EBP

│

EBP

──────�

├────────────────────────┤

│

x

│

├────────────────────────┤

│

y

│

├────────────────────────┤

�─┐

│

Saved

EDI

│

│

├────────────────────────┤

│

These

would

only

│

Saved

ESI

│

│

be

pushed

if

they

├────────────────────────┤

│

were

used

in

this

│

Saved

EBX

│

│

function.

ESP

──────�

└────────────────────────┘

�─┘

Lower

Memory

The

instructions

used

to

create

this

activation

record

on

the

stack

look

like

this

on

the

calling

side:

PUSH

c

PUSH

b

PUSH

a

CALL

_func

.

.

CDECL

linkage

Chapter

23.

Calling

conventions

335

ADD

ESP,

12

:

cleaning

up

the

parameters

.

.

MOV

m,

EAX

.

.

For

the

callee,

the

code

looks

like

this:

_func

PROC

PUSH

EBP

MOV

EBP,

ESP

;

Allocating

8

bytes

of

storage

SUB

ESP,

08H

;

for

two

local

variables.

PUSH

EDI

;

These

would

only

be

PUSH

ESI

;

pushed

if

they

were

used

PUSH

EBX

;

in

this

function.

.

.

MOV

EAX,

[EBP

-

8]

;

Load

y

into

EAX

MOV

EBX,

[EBP

+

12]

;

Load

b

into

EBX

.

.

XOR

EAX,

EAX

;

Zero

the

return

value

POP

EBX

;

Restore

the

saved

registers

POP

ESI

POP

EDI

LEAVE

;

Equivalent

to

MOV

ESP,

EBP

;

POP

EBP

RET

_func

ENDP

The

saved

register

set

is

EBX,

ESI,

and

EDI.

In

the

case

where

the

structure

is

passed

as

a

value

parameter

and

the

size

of

the

structure

is

5,

6,

7,

or

more

than

8

bytes

in

size,

the

address

to

place

the

return

values

is

passed

as

a

hidden

parameter,

and

the

address

passed

back

in

EAX.

CDECL

linkage

336

PL/I

for

Windows:

Programming

Guide

Chapter

24.

Using

PL/I

in

mixed-language

applications

Matching

data

and

linkages

.

.

.

.

.

.

.

. 337

What

data

is

passed

.

.

.

.

.

.

.

.

.

. 337

How

data

is

passed

.

.

.

.

.

.

.

.

.

. 339

Where

data

is

passed

.

.

.

.

.

.

.

.

.

. 341

Maintaining

your

environment

.

.

.

.

.

.

. 341

Invoking

non-PL/I

routines

from

a

PL/I

MAIN

341

Invoking

PL/I

routines

from

a

non-PL/I

main

.

. 342

Using

ON

ANYCONDITION

.

.

.

.

.

.

. 342

Within

the

workstation

environment,

there

are

occasions

when

you

want

to

develop

mixed-language

applications

with

PL/I

being

one

of

the

languages

involved.

For

example,

an

application

could

be

constructed

with

the

main

program

written

in

C

and

a

dynamic

link

library

(DLL)

written

in

PL/I.

Another

possibility

is

an

application

using

REXX

which

can

load

and

call

PL/I

routines

packaged

in

a

PL/I

DLL.

Perhaps

you

want

to

construct

an

application

using

software

from

an

outside

vendor.

Using

a

vendor’s

prepackaged

program,

you

can

supply

a

user

exit

in

the

form

of

a

DLL

written

in

PL/I.

Creating

mixed-language

applications

is

generally

challenging

and

you

have

to

consider

many

factors

that

do

not

exist

when

coding

in

a

single

language.

Typically,

high

level

programming

languages

from

different

vendors

(for

example,

C,

C++,

COBOL,

and

PL/I)

require

the

use

of

specific

run-time

environments

as

implemented

by

the

run-time

libraries

of

the

distinct

languages.

Areas

in

which

these

languages

might

not

work

well

together

include:

v

Implementations

and

usages

of

data

types

v

Data

alignments

v

Exception

handling

facilities

v

Run-time

environment

initialization

and

termination

v

User

exit

routines

v

Input

and

output

facilities

These

inconsistencies

in

behavior

can

cause

unexpected

run-time

behavior

that

can

arise

in

some

mixed-language

program

execution

scenarios.

Matching

data

and

linkages

For

any

routine

to

invoke

another

routine

successfully,

the

two

routines

should

have

matching

views

of

shared

interfaces.

When

one

of

the

routines

is

not

coded

in

PL/I,

these

interfaces

are

limited

by

v

What

data

is

passed

v

How

data

is

passed

v

Where

data

is

passed

The

sections

that

follow

describe

these

situations

in

more

detail.

Mismatched

views

of

shared

interfaces

is

a

common

problem

in

mixed

language

applications.

Important

points

to

remember

are:

v

Arguments

and

parameters

must

match

v

Data

that

is

meant

to

be

received

by

value

should

be

passed

by

value

v

Both

the

called

and

calling

routines

should

use

the

same

linkage.

What

data

is

passed

PL/I

and

C

routines

'communicate'

by

passing

and

returning

data

of

equivalent

data

types.

PL/I

and

non-PL/I

routines

should

not

communicate

by

using

external

static

variables.

Table

31

on

page

338

lists

the

scalar

data

types

which

are

337

equivalent

between

PL/I

and

C.

Table

31.

Equivalent

data

types

between

C

and

PL/I

C

Data

Type

PL/I

Data

Type

signed

char

FIXED

BIN(7,0)

unsigned

char

UNSIGNED

FIXED

BIN(8,0)

or

CHAR(1)

signed

short

FIXED

BIN(15,0)

unsigned

short

UNSIGNED

FIXED

BIN(16,0)

signed

(long)

int

FIXED

BIN(31,0)

unsigned

(long)

int

UNSIGNED

FIXED

BIN(31,0)

float

FLOAT

BIN(21)

FLOAT

DEC(6)

double

FLOAT

BIN(53)

FLOAT

DEC(16)

long

double

FLOAT

BIN(64)

FLOAT

DEC

18)

enum

ORDINAL

<non-function-type>

*

POINTER

or

HANDLE

<function-type>

*

ENTRY

LIMITED

As

is

illustrated

in

the

last

row

of

the

table,

a

C

function

pointer

is

not

equivalent

to

a

PL/I

entry

variable

unless

the

entry

variable

is

LIMITED.

Errors

caused

by

this

mistake

are

hard

to

detect.

Arrays

of

equivalent

types

are

equivalent

as

long

as

they

have

the

same

number

of

dimensions

and

the

same

lower

and

upper

bounds.

In

C,

you

cannot

specify

lower

bounds,

and

the

actual

upper

bound

is

one

less

than

the

number

you

specify.

For

example,

consider

this

array

declared

in

C:

short

x

[

6

];

In

PL/I,

the

array

would

be

declared

as

follows:

dcl

x(0:5)

fixed

bin(15);

Structures

and

unions

of

equivalent

types

are

also

equivalent

if

their

elements

are

mapped

to

the

same

offsets.

The

offsets

are

the

same

if

there

is

no

padding

between

elements.

If

the

elements

of

a

structure

(or

union)

are

all

UNALIGNED,

PL/I

does

not

use

padding.

When

some

elements

are

ALIGNED,

you

can

determine

if

there

is

any

padding

by

examining

the

AGGREGATE

listing.

PL/I

regards

strings

as

scalars

but

C

does

not;

therefore,

none

of

the

previous

discussion

applies

to

strings.

C

bit

fields

have

only

nominal

resemblance

to

PL/I

bit

strings:

v

C

bit

fields

are

limited

to

32

bits,

while

PL/I

bit

strings

can

be

as

long

as

32767

bits

v

C

bit

fields

are

not

always

mapped

in

left-to-right

order.

Some

Intel

C

compilers

would

map

the

following

C

structure

so

that

it

is

equivalent

to

the

PL/I

structure:

C

Structure

struct

{

unsigned

byte1

:8;

unsigned

byte2

:8;

unsigned

byte3

:8;

unsigned

byte4

:8;

}

bytes;

Matching

data

and

linkages

338

PL/I

for

Windows:

Programming

Guide

PL/I

Structure

dcl

1

bytes,

2

byte1

bit(8),

2

byte2

bit(8),

2

byte3

bit(8),

2

byte4

bit(8);

Other

C

compilers

would

map

the

original

structure

with

the

bytes

reversed

so

that

it

would

be

equivalent

to

this

PL/I

structure.

PL/I

Structure

dcl

1

bytes,

2

byte4

bit(8),

2

byte3

bit(8),

2

byte2

bit(8),

2

byte1

bit(8);

Strictly

speaking,

C

has

no

character

strings,

but

only

pointers

to

char.

However,

by

common

usage,

a

C

string

is

a

sequence

of

characters

the

last

of

which

has

the

value

X’00’.

Thus,

in

the

example

below,

address

is

a

C

'string'

that

could

hold

up

to

30

non-null

characters.

char

address

[

31

];

The

following

PL/I

declare

most

closely

resembles

the

C

'string'.

dcl

address

char(30)

varyingz;

In

the

declarations

of

C

functions,

strings

are

usually

declared

as

char*.

For

example,

the

C

library

function

strcspn

could

be

declared

as:

int

strcspn(

char

*

string1,

char

*

string2

);

The

PL/I

declare

for

the

same

function

would

be:

dcl

strcspn

entry(

char(*)

varyingz,

char(*)

varyingz

)

returns(

fixed

bin(31)

);

In

the

preceding

examples,

both

the

C

and

PL/I

declarations

are

incomplete.

Complete

versions

are

given

and

explained

later

in

this

chapter.

How

data

is

passed

Both

PL/I

and

C

support

various

methods

of

passing

data.

To

understand

these

methods,

you

must

know

the

following

terms:

Parameter

A

variable

declared

in

a

PL/I

procedure

or

function

definition.

For

example,

seed

is

a

parameter

in

the

following

PL/I

function

definition.

funky:

proc(

seed

)

returns(

fixed

bin(31)

);

dcl

seed

fixed

bin(31);

.

.

.

end

funky;

Matching

data

and

linkages

Chapter

24.

Using

PL/I

in

mixed-language

applications

339

Argument

A

variable

or

value

actually

passed

to

a

routine.

When

the

function

funky

(from

the

preceding

example)

is

invoked

by

rc

=

funky(

seed

);,

seed

is

an

argument.

By

value

The

value

of

the

argument

is

passed.

When

a

calling

routine

passes

an

argument

by

value,

the

called

routine

cannot

alter

the

original

argument.

By

address

The

address

of

the

argument

is

passed.

When

a

calling

routine

passes

an

argument

by

address,

the

called

routine

can

alter

the

caller’s

argument.

C

passes

all

parameters

by

value,

but

PL/I

(by

default)

passes

parameters

by

address.

PL/I

also

supports

passing

parameters

by

value

except

for

arrays,

structures,

unions,

and

strings

with

length

declared

as

*.

As

is

described

in

more

detail

in

the

PL/I

Language

Reference,

you

can

indicate

if

a

parameter

is

passed

by

address

or

by

value

by

declaring

it

with

the

BYADDR

or

BYVALUE

attribute.

In

the

following

example,

the

first

parameter

to

modf

is

passed

by

value,

while

the

second

is

passed

by

address.

dcl

modf

entry(

float

bin(53)

byvalue,

float

bin(53)

byaddr

)

returns(

float

bin(53)

);

The

corresponding

C

declaration

is:

double

modf(

double

x,

double

*

intptr

);

If

the

BYADDR

or

BYVALUE

attributes

are

not

explicit

in

the

declaration,

you

can

specify

them

in

the

options

list

for

that

entry.

The

following

declare

uses

the

options

list

making

it

equivalent

to

the

previous

example.

dcl

modf

entry(

float

bin(53),

float

bin(53)

byaddr

)

returns(

float

bin(53)

)

options(

byvalue

);

Even

when

a

parameter

is

passed

by

address,

its

value

might

not

be

changed

by

the

receiving

routine.

You

can

indicate

this

in

PL/I

by

adding

the

attribute

NONASSIGNABLE

(or

NONASGN)

to

the

declaration

for

that

parameter.

The

following

partial

declaration

indicates

that

neither

of

the

arguments

to

the

function

strcspn

is

altered

by

that

function:

dcl

strcspn

entry(

nonasgn

char(*)

varyingz,

nonasgn

char(*)

varyingz

)

returns(

fixed

bin(31)

);

The

corresponding

C

declaration

is:

int

strcspn(

const

char

*

string1,

const

char

*

string2

);

A

routine

must

agree

with

any

routines

that

call

it

about

how

data

is

passed

between

them.

You

can

avoid

potential

problems

by

giving

the

compiler

enough

information

to

detect

these

kinds

of

mismatches.

For

example,

while

the

following

declare

is

technically

equivalent

to

the

declare

for

modf

in

the

sample

code

shown

earlier,

it

allows

the

address

of

any

argument

to

be

passed

as

the

second

argument.

The

earlier

declares

would

require

the

second

argument

to

have

the

correct

type.

dcl

modf

entry(

float

bin(53),

pointer

)

returns(

float

bin(53)

)

options(

byvalue

);

Matching

data

and

linkages

340

PL/I

for

Windows:

Programming

Guide

Finally,

when

PL/I

passes

some

data

types

(strings,

arrays,

structures,

and

unions),

it

also,

by

default,

passes

a

descriptor

that

describes

data

extents

(maximum

string

length,

array

bounds,

etc.).

Since

C

routines

cannot

consume

PL/I

descriptors,

you

should

keep

descriptors

from

being

passed

between

C

and

PL/I

routines.

You

can

do

this

by

adding

the

NODESCRIPTOR

option

to

the

OPTIONS

attribute

in

the

declaration

for

the

C

entry,

for

example:

dcl

strcspn

entry(

nonasgn

byaddr

char(*)

varyingz,

nonasgn

byaddr

char(*)

varyingz

)

returns(

fixed

bin(31)

)

options(

nodescriptor

);

Where

data

is

passed

It

is

as

important

for

interacting

routines

to

agree

on

what

and

where

data

is

passed

as

it

is

for

them

to

agree

on

how

data

is

passed.

With

both

PL/I

and

C,

data

can

be

passed

on

the

stack,

in

general

registers,

or

in

floating-point

registers.

In

PL/I,

the

LINKAGE

option

(in

the

OPTIONS

option

of

the

procedure

statement

and

entry

declaration)

determines

where

data

is

passed.

One

common

way

that

errors

in

data

location

occur

is

if

you

specify

mismatched

linkage

types

(or

fail

to

specify

a

linkage

type

when

the

default

is

incorrect).

PL/I

for

Windows

supports

three

32-bit

linkage

types—

OPTLINK,

CDECL

and

STDCALL.

The

following

PL/I

declaration

indicates

that

the

function

dosSleep

uses

the

SYSTEM

linkage:

dcl

dosSleep

entry(

fixed

bin(31)

byvalue

)

returns(

fixed

bin(31)

)

options(

linkage(system)

);

The

options

list

should

specify

the

linkage

used

by

any

C

routines

you

call.

Both

the

PL/I

and

VisualAge

for

C++

compilers

use

OPTLINK

as

their

default

linkage.

Many

C

routines

on

Windows

use

the

STDCALL

linkage,

and

for

these

routines,

LINKAGE(STDCALL)

should

be

specified

in

the

OPTIONS

attribute.

For

instance,

you

would

declare

the

Windows

equivalent

of

DosSleep

as:

dcl

Sleep

ext(’Sleep’)

entry(

fixed

bin(31)

byvalue

)

returns(

fixed

bin(31)

)

options(

linkage(stdcall)

);

Maintaining

your

environment

In

order

for

PL/I

(and

many

other

languages)

to

work

correctly,

you

must

not

damage

the

runtime

environment

they

establish.

When

interlanguage

calls

are

involved,

this

means

that:

v

Any

routine

that

registers

an

exception

handler

should

deregister

that

handler

before

returning

to

PL/I.

v

Out-of-block

GOTOs

are

permitted

only

if

the

source

and

target

blocks

are

coded

in

the

same

language

and

any

intervening

blocks

are

coded

in

the

same

language.

Invoking

non-PL/I

routines

from

a

PL/I

MAIN

If

your

main

routine

is

coded

in

PL/I,

you

can

call

two

kinds

of

non-PL/I

routines:

v

System

routines

(such

as

DOS

and

Windows

services)

v

C,

COBOL,

or

REXX

routines

Matching

data

and

linkages

Chapter

24.

Using

PL/I

in

mixed-language

applications

341

System

routines

do

not

require

their

own

run-time

environment,

and

they

can

be

linked

directly

into

a

PL/I

executable

(.EXE)

file

or

dynamic

link

library

(.DLL).

With

the

exception

of

IBM

VisualAge

C/C++

routines,

all

other

non-PL/I

routines

should

not

be

linked

directly

into

an

.EXE

or

.DLL.

They

should

be

linked

instead

into

a

.DLL

so

that

any

run-time

environment

initialization

that

they

require

can

be

performed

when

that

.DLL

is

loaded.

IBM

VisualAge

C/C++

routines

can

be

linked

with

PL/I.

However,

if

C

routines

are

linked

with

PL/I

and

any

of

them

use

C

library

functions

(or

are

C

library

functions

themselves),

the

C

runtime

must

be

initialized

before

any

routines

are

called.

The

C

runtime

can

be

initialized

by

calling

the

following

routine

dcl

_CRT_init

ext(’_CRT_init’)

entry()

returns(

optional

fixed

bin(31)

)

options(

linkage(optlink)

);

Also,

in

order

to

ensure

that

the

C

runtime

closes

all

files

it

opened

and

returns

any

other

system

resources

it

may

have

acquired,

you

have

to

terminate

the

C

runtime

by

calling

dcl

_CRT_term

ext(’_CRT_term’)

entry()

returns(

optional

fixed

bin(31)

)

options(

linkage(optlink)

);

Invoking

PL/I

routines

from

a

non-PL/I

main

The

PL/I

run-time

environment

has

the

ability

to:

v

Self-initialize

when

a

PL/I

DLL

is

dynamcally

loaded

from

a

non-PL/I

main

program.

v

Exist

with

a

non-PL/I

language

run-time

environment

with

minimal

conflicts.

Any

PL/I

routine

called

directly

from

non-PL/I

routines

must

have

the

FROMALIEN

option

in

the

OPTIONS

option

and

must

not

specify

the

MAIN

option.

A

PL/I

routine

invoked

from

a

non-PL/I

routine

should

handle

any

exceptions

that

occur

in

PL/I

code

and

returns

to

the

non-PL/I

using

a

RETURN

or

END

statement

in

the

first

PL/I

procedure

(see

“Using

ON

ANYCONDITION”)

The

PL/I

run-time

implicitly

frees

any

resources

acquired

by

PL/I,

but

not

until

the

application

terminates.

You

can

also

explicitly

resources

through

various

PL/I

statements:

v

RELEASE

*

-

releases

all

fetched

modules

v

FLUSH

FILE(*)

-

flushes

all

file

buffers

v

CLOSE

FILE(*)

-

closes

all

open

files

Using

ON

ANYCONDITION

Any

application

should

be

able

to

handle

all

exceptions

that

occur

within

it

and

return

'normal'

control

to

the

calling

program.

PL/I

exception-handling

facilities

and

ANYCONDITION

ON-units

help

make

this

possible.

The

first

executable

statement

in

any

PL/I

routine

that

is

called

from

a

non-PL/I

routine

should

be

an

ON

ANYCONDITION

statement.

This

statement

should

contain

code

to

handle

any

condition

not

handled

explicitly

by

other

ON-units.

If

a

Invoking

non-PL/I

routines

342

PL/I

for

Windows:

Programming

Guide

condition

arises

that

cannot

be

handled,

use

a

GOTO

statement

pointing

to

the

last

statement

that

would

normally

be

executed

in

the

routine,

for

example:

pliapp:

proc(

p1,

...,

pn

)

returns(

...

)

options(

fromalien

);

/*

declarations

of

paramaters,

if

any

*/

/*

declarations

of

other

variables

*/

on

anycondition

begin;

/*

handle

condition

if

possible

*/

/*

if

unhandled,

set

return

value

*/

goto

return_stmt;

end;

/*

mainline

code

*/

return_Stmt:

return(

...

);

end_stmt:

end

pliapp;

For

PL/I

routines

that

are

not

functions,

the

target

for

the

GOTO

should

be

the

END

statement

in

the

routine.

Invoking

PL/I

routines

Chapter

24.

Using

PL/I

in

mixed-language

applications

343

344

PL/I

for

Windows:

Programming

Guide

Chapter

25.

Interfacing

with

Java

This

chapter

gives

a

brief

description

of

Java

and

the

Java

Native

Interface

(JNI)

and

explains

why

you

might

be

interested

in

using

it

with

PL/I.

A

simple

Java

-

PL/I

application

will

be

described

and

information

on

compatibility

between

the

two

languages

will

also

be

discussed.

Before

you

can

communicate

with

Java

from

PL/I

you

need

to

have

Java

installed

on

your

system.

There

are

many

places

to

download

a

free

version

of

the

latest

Java

Development

Kit

(JDK).

What

is

the

Java

Native

Interface

(JNI)?

Java

is

an

object-oriented

programming

language

invented

by

Sun

Microsystems

and

provides

a

powerful

way

to

make

Internet

documents

interactive.

The

Java

Native

Interface

(JNI)

is

the

Java

interface

to

native

programming

languages

and

is

part

of

the

Java

Development

Kits.

By

writing

programs

that

use

the

JNI,

you

ensure

that

your

code

is

portable

across

many

platforms.

The

JNI

allows

Java

code

that

runs

within

a

Java

Virtual

Machine

(JVM)

to

operate

with

applications

and

libraries

written

in

other

languages,

such

as

PL/I.

In

addition,

the

Invocation

API

allows

you

to

embed

a

Java

Virtual

Machine

into

your

native

PL/I

applications.

Java

is

a

fairly

complete

programming

language;

however,

there

are

situations

in

which

you

want

to

call

a

program

written

in

another

programming

language.

You

would

do

this

from

Java

with

a

method

call

to

a

native

language,

known

as

a

native

method.

Some

reasons

to

use

native

methods

may

include

the

following:

v

The

native

language

has

a

special

capability

that

your

application

needs

and

that

the

standard

Java

class

libraries

lack.

v

You

already

have

many

existing

applications

in

your

native

language

and

you

wish

to

make

them

accessible

to

a

Java

application.

v

You

wish

to

implement

a

intensive

series

of

complicated

calculations

in

your

native

language

and

have

your

Java

applications

call

these

functions.

v

You

or

your

programmers

have

a

broader

skill

set

in

your

native

language

and

you

do

not

wish

to

loose

this

advantage.

Programming

through

the

JNI

lets

you

use

native

methods

to

do

many

different

operations.

A

native

method

can:

v

utilize

Java

objects

in

the

same

way

that

a

Java

method

uses

these

objects.

v

create

Java

objects,

including

arrays

and

strings,

and

then

inspect

and

use

these

objects

to

perform

its

tasks.

v

inspect

and

use

objects

created

by

Java

application

code.

v

update

Java

objects

that

it

created

or

were

passed

to

it,

and

these

updated

objects

can

then

be

made

available

to

the

Java

application.

Finally,

native

methods

can

also

easily

call

already

existing

Java

methods,

capitalizing

on

the

functionality

already

incorporated

in

the

Java

programming

345

framework.

In

these

ways,

both

the

native

language

side

and

the

Java

side

of

an

application

can

create,

update,

and

access

Java

objects

and

then

share

these

objects

between

them.

JNI

Sample

Program

#1

-

″Hello

World″

Writing

Java

Sample

Program

#1

The

first

sample

program

we

will

write

is

yet

another

variation

of

the

″Hello

World!″

program.

Our

″Hello

World!″

program

has

one

Java

class,

callingPLI.java.

Our

native

method,

written

in

PL/I,

is

contained

in

hiFromPLI.pli.

Here

is

a

brief

overview

of

the

steps

for

creating

this

sample

program:

1.

Write

a

Java

program

that

defines

a

class

containing

a

native

method,

loads

the

native

load

library,

and

calls

the

native

method.

2.

Compile

the

Java

program

to

create

a

Java

class.

3.

Write

a

PL/I

program

that

implements

the

native

method

and

displays

the

″Hello!″

text.

4.

Compile

and

link

the

PL/I

program.

5.

Run

the

Java

program

which

calls

the

native

method

in

the

PL/I

program.

Step

1:

Writing

the

Java

Program

Declare

the

Native

Method

All

methods,

whether

Java

methods

or

native

methods,

must

be

declared

within

a

Java

class.

The

only

difference

in

the

declaration

of

a

Java

method

and

a

native

method

is

the

keyword

native.

The

native

keyword

tells

Java

that

the

implementation

of

this

method

will

be

found

in

a

native

library

that

will

be

loaded

during

the

execution

of

the

program.

The

declaration

of

our

native

method

looks

like

this:

public

native

void

callToPLI();

In

the

above

statement,

the

void

means

that

there

is

no

return

value

expected

from

this

native

method

call.

The

empty

parentheses

in

the

method

name

callToPLI(

),

means

that

there

are

no

parameters

being

passed

on

the

call

to

the

native

method.

Load

the

Native

Library

A

step

that

loads

the

native

library

must

be

included

so

the

native

library

will

be

loaded

at

execution

time.

The

Java

statement

that

loads

the

native

library

looks

like

this:

static

{

System.loadLibrary("hiFromPLI");

}

In

the

above

statement,

the

Java

System

method

System.loadLibrary(...)

is

called

to

find

and

load

the

dynamic

link

library

(DLL).

The

PL/I

dynamic

link

library,

hiFromPLI.dll,

will

be

created

during

the

step

that

compiles

and

links

the

PL/I

program.

Write

the

Java

Main

Method

The

callingPLI

class

also

includes

a

main

method

to

instantiate

the

class

and

call

the

native

method.

The

main

method

instantiates

callingPLI

and

calls

the

callToPLI()

native

method.

346

PL/I

for

Windows:

Programming

Guide

The

complete

definition

of

the

callingPLI

class,

including

all

the

points

addressed

above

in

this

section,

looks

like

this:

public

class

callingPLI

{

public

native

void

callToPLI();

static

{

System.loadLibrary("hiFromPLI");

}

public

static

void

main(String[]

argv)

{

callingPLI

callPLI

=

new

callingPLI();

callPLI.callToPLI();

System.out.println("And

Hello

from

Java,

too!");

}

}

Step

2:

Compiling

the

Java

Program

Use

the

Java

compiler

to

compile

the

callingPLI

class

into

an

executable

form.

The

command

would

look

like

this:

javac

callingPLI.java

Step

3:

Writing

the

PL/I

Program

The

PL/I

implementation

of

the

native

method

looks

much

like

any

other

PL/I

subroutine.

Useful

PL/I

Compiler

Options

The

sample

program

contains

a

series

of

*PROCESS

statements

that

define

the

important

compiler

options.

*Process

Limits(

Extname(

31

)

)

Margins(

1,

100

)

;

*Process

Dllinit

xinfo(def);

*Process

Default(

IEEE

);

Here

is

a

brief

description

of

them

and

why

they

are

useful:

Extname(31)

Allows

for

longer,

Java

style,

external

names.

Margins(1,100)

Extending

the

margins

gives

you

more

room

for

Java

style

names

and

identifiers.

Dllinit

Includes

the

initilization

coded

needed

for

creating

a

DLL.

xinfo(def)

Instructs

the

compiler

to

build

a

*.DEF

file

to

be

used

in

the

creation

of

the

DLL.

Default(

IEEE

);

IEEE

specifies

that

FLOAT

data

is

held

in

IEEE

format

-

the

form

in

which

it

is

held

by

JAVA

Correct

Form

of

PL/I

Procedure

Name

and

Procedure

Statement

The

PL/I

procedure

name

must

conform

to

the

Java

naming

convention

in

order

to

be

located

by

the

Java

Class

Loader

at

execution

time.

The

Java

naming

scheme

consists

of

three

parts.

The

first

part

identifies

the

routine

to

the

Java

environment,

the

second

part

is

the

name

of

the

Java

class

that

defines

the

native

method,

and

the

third

part

is

the

name

of

the

native

method

itself.

Here

is

a

breakdown

of

the

external

PL/I

procedure

name

_Java_callingPLI_callToPLI

in

the

sample

program:

Chapter

25.

Interfacing

with

Java

347

_Java

All

native

methods

resident

in

dynamic

libraries

must

begin

with

_Java

_callingPLI

The

name

of

the

Java

class

that

declares

the

native

method

_callToPLI

The

name

of

the

native

method

itself.

Note:

There

is

an

important

difference

between

coding

a

native

method

in

PL/I

and

in

C.

The

javah

tool,

which

is

shipped

with

the

JDK,

generates

the

form

of

the

external

references

required

for

C

programs.

When

you

write

your

native

methods

in

PL/I

and

follow

the

rules

above

for

naming

your

PL/I

external

references,

performing

the

javah

step

is

not

necessary

for

PL/I

native

methods.

The

complete

procedure

statement

for

the

sample

program

looks

like

this:

Java_callingPLI_callToPLI:

Proc(

JNIEnv

,

MyJObject

)

External(

"_Java_callingPLI_callToPLI"

)

Options(

NoDescriptor

ByValue

linkage(stdcall)

);

JNI

Include

File

The

PL/I

include

file

which

contains

the

PL/I

definition

of

the

Java

interfaces

is

contained

in

two

include

files,

jni.cop

which

in

turn

includes

jni_md.cop.

These

include

files

are

included

with

this

statement:

%include

jni;

For

a

complete

listing

of

the

jni.cop

file

look

in

the

\ibmpliw\include

directory

The

Complete

PL/I

Procedure

For

completeness,

here

is

the

entire

PL/I

program

that

defines

the

native

method:

*Process

Limits(

Extname(

31

)

)

Margins(

1,

100

)

;

*Process

Dllinit

xinfo(def);

*Process

Default(

IEEE

);

PliJava_Demo:

Package

Exports(*);

Java_callingPLI_callToPLI:

Proc(

JNIEnv

,

MyJObject

)

External(

"Java_callingPLI_callToPLI"

)

Options(

NoDescriptor

ByValue

linkage(stdcall)

);

%include

jni;

Display(’Hello

from

PL/I

for

Windows!’);

End;

Step

4:

Compiling

and

Linking

the

PL/I

Program

Compiling

the

PL/I

Program

Compile

the

PL/I

sample

program

with

the

following

command:

pli

hiFromPLI.pli

Linking

the

Dynamic

Link

Library

Link

the

resulting

PL/I

object

deck

into

a

DLL

with

these

commands:

ilib

/nologo

/geni

hiFromPLI.def

ilink

/dll

hiFromPLI.obj

hiFromPLI.exp

javalib\javai.lib

348

PL/I

for

Windows:

Programming

Guide

Step

5:

Running

the

Sample

Program

Run

the

Java

-

PL/I

sample

program

with

this

command:

java

callingPLI

The

output

of

the

sample

program

will

look

like

this:

Hello

from

PL/I

for

Windows!

And

Hello

from

Java,

too!

The

first

line

written

from

the

PL/I

native

method.

The

second

line

is

from

the

calling

Java

class

after

returning

from

the

PL/I

native

method

call.

JNI

Sample

Program

#2

-

Passing

a

String

Writing

Java

Sample

Program

#2

This

sample

program

passes

a

string

back

and

forth

between

Java

and

PL/I.

Refer

to

Figure

29

on

page

350

for

the

complete

listing

of

the

jPassString.java

program.

The

Java

portion

has

one

Java

class,

jPassString.java.

Our

native

method,

written

in

PL/I,

is

contained

in

passString.pli.

Much

of

the

information

from

the

first

sample

program

applies

to

this

sample

program

as

well.

Only

new

or

different

aspects

will

be

discussed

for

this

sample

program.

Step

1:

Writing

the

Java

Program

Declare

the

Native

Method

The

native

method

for

this

sample

program

looks

like

this:

public

native

void

pliShowString();

Load

the

Native

Library

The

Java

statement

that

loads

the

native

library

for

this

sample

program

looks

like

this:

static

{

System.loadLibrary("passString");

}

Write

the

Java

Main

Method

The

jPassString

class

also

includes

a

main

method

to

instantiate

the

class

and

call

the

native

method.

The

main

method

instantiates

jPassString

and

calls

the

pliShowString()

native

method.

This

sample

program

prompts

the

user

for

a

string

and

reads

that

value

in

from

the

command

line.

This

is

done

within

a

try/catch

statement

as

shown

in

Figure

29

on

page

350.

Chapter

25.

Interfacing

with

Java

349

Step

2:

Compiling

the

Java

Program

The

command

to

compile

the

Java

code

would

look

like

this:

javac

jPassString.java

//

Read

a

string,

call

PL/I,

display

new

string

upon

return

import

java.io.*;

public

class

jPassString{

/*

Field

to

hold

Java

string

*/

String

myString;

/*

Load

the

PL/I

native

library

*/

static

{

System.loadLibrary("passString");

}

/*

Declare

the

PL/I

native

method

*/

public

native

void

pliShowString();

/*

Main

Java

class

*/

public

static

void

main(String[]

arg)

{

System.out.println("

");

/*

Instantiate

Java

class

and

initilize

string

*/

jPassString

myPassString

=

new

jPassString();

myPassString.myString

=

"

";

/*

Prompt

user

for

a

string

*/

try

{

BufferedReader

in

=

new

BufferedReader(

new

InputStreamReader(System.in));

/*

Process

until

’quit’

received

*/

while

(!myPassString.myString.equalsIgnoreCase("quit"))

{

System.out.println(

"From

Java:

Enter

a

string

or

’quit’

to

quit.");

System.out.print("Java

Prompt

>

");

/*

Get

string

from

command

line

*/

myPassString.myString

=

in.readLine();

if

(!myPassString.myString.equalsIgnoreCase("quit"))

{

/*

Call

PL/I

native

method

*/

myPassString.pliShowString();

/*

Return

from

PL/I

and

display

new

string

*/

System.out.println("

");

System.out.println(

"From

Java:

String

set

by

PL/I

is:

"

+

myPassString.myString

);

}

}

}

catch

(IOException

e)

{

}

}

}

Figure

29.

Java

Sample

Program

#2

-

Passing

a

String

350

PL/I

for

Windows:

Programming

Guide

Step

3:

Writing

the

PL/I

Program

All

of

the

information

about

writing

the

PL/I

″Hello

World″

sample

program

applies

to

this

program

as

well.

Correct

Form

of

PL/I

Procedure

Name

and

Procedure

Statement

The

external

PL/I

procedure

name

for

this

program

would

be

_Java_jPassString_pliShowString.

The

complete

procedure

statement

for

the

sample

program

looks

like

this:

Java_jPassString_pliShowString:

Proc(

JNIEnv

,

myjobject

)

external(

"_Java_jPassString_pliShowString"

)

options(

byvalue

nodescriptor

linkage(stdcall)

);

JNI

Include

File

The

PL/I

include

file

which

contains

the

PL/I

definition

of

the

Java

interfaces

is

contained

in

two

include

files,

jni.cop

which

in

turn

includes

jni_md.cop.

These

include

files

are

included

with

this

statement:

%include

jni;

For

a

complete

listing

of

the

jni.cop

file

look

in

the

\ibmpliw\include

directory

The

Complete

PL/I

Procedure

The

complete

PL/I

program

is

shown

in

Figure

30

on

page

352.

This

sample

PL/I

program

makes

several

calls

through

the

JNI.

Upon

entry,

a

reference

to

the

calling

Java

Object,

myObject

is

passed

into

the

PL/I

procedure.

The

PL/I

program

will

use

this

reference

to

get

information

from

the

calling

object.

The

first

piece

of

information

is

the

Class

of

the

calling

object

which

is

retrieved

using

the

GetObjectClass

JNI

function.

This

Class

value

is

then

used

by

the

GetFieldID

JNI

function

to

get

the

identity

of

the

Java

string

field

in

the

Java

object

that

we

are

interested

in.

This

Java

field

is

further

identified

by

providing

the

name

of

the

field,

myString,

and

the

JNI

field

descriptor,

Ljava/lang/String;,

which

identifies

the

field

as

a

Java

String

field.

The

value

of

the

Java

string

field

is

then

retrieved

using

the

GetObjectField

JNI

function.

Before

PL/I

can

use

the

Java

string

value,

it

must

be

unpacked

into

a

form

that

PL/I

can

understand.

The

GetStringUTFChars

JNI

function

is

used

to

convert

the

Java

string

into

a

PL/I

varyingz

string

which

is

then

displayed

by

the

PL/I

program.

After

displaying

the

retrieved

Java

string,

the

PL/I

program

prompts

the

user

for

a

PL/I

string

to

be

used

to

update

the

string

field

in

the

calling

Java

object.

The

PL/I

string

value

is

converted

to

a

Java

string

using

the

NewString

JNI

function.

This

new

Java

string

is

then

used

to

update

the

string

field

in

the

calling

Java

object

using

the

SetObjectField

JNI

function.

When

the

PL/I

program

ends

control

is

returned

to

Java,

where

the

newly

updated

Java

string

is

displayed

by

the

Java

program.

Chapter

25.

Interfacing

with

Java

351

Step

4:

Compiling

and

Linking

the

PL/I

Program

Compiling

the

PL/I

Program

Compile

the

PL/I

sample

program

with

the

following

command:

pli

passString.pli

Linking

the

Dynamic

Link

Library

Link

the

resulting

PL/I

object

deck

into

a

DLL

with

these

commands:

ilib

/nologo

/geni

passString.def

ilink

/dll

passString.obj

passString.exp

javalib\javai.lib

*Process

Limits(

Extname(

31

)

)

Margins(

1,

100

)

;

*Process

Dllinit

xinfo(def);

*Process

Default(

IEEE

);

plijava_demo:

package

exports(*);

Java_passString_pliShowString:

Proc(

JNIEnv

,

myJObject

)

external(

"_Java_jPassString_pliShowString"

)

options(

byvalue

nodescriptor

linkage(stdcall)

);

%include

jni;

Dcl

myBool

Type

jBoolean;

Dcl

myClazz

Type

jClass;

Dcl

myFID

Type

jFieldID;

Dcl

myJObject

Type

jObject;

Dcl

myJString

Type

jString;

Dcl

newJString

Type

jString;

Dcl

myID

Char(9)

Varz

static

init(

’myString’

);

Dcl

mySig

Char(18)

Varz

static

init(

’Ljava/lang/String;’

);

Dcl

pliStr

Char(132)

Varz

Based(pliStrPtr);

Dcl

pliReply

Char(132)

Varz;

Dcl

pliStrPtr

Pointer;

Dcl

nullPtr

Pointer;

Display(’

’);

/*

Get

information

about

the

calling

Class

*/

myClazz

=

GetObjectClass(JNIEnv,

myJObject);

/*

Get

Field

ID

for

String

field

from

Java

*/

myFID

=

GetFieldID(JNIEnv,

myClazz,

myID,

mySig

);

/*

Get

the

Java

String

in

the

string

field

*/

myJString

=

GetObjectField(JNIEnv,

myJObject,

myFID

);

/*

Convert

the

Java

String

to

a

PL/I

string

*/

pliStrPtr

=

GetStringUTFChars(JNIEnv,

myJString,

myBool

);

Display(’From

PLI:

String

retrieved

from

Java

is:

’

||

pliStr

);

Display(’From

PLI:

Enter

a

string

to

be

returned

to

Java:’

)

reply(pliReply);

/*

Convert

the

new

PL/I

string

to

a

Java

String

*/

newJString

=

NewString(JNIEnv,

trim(pliReply),

length(pliReply)

);

/*

Change

the

Java

String

field

to

the

new

string

value

*/

nullPtr

=

SetObjectField(JNIEnv,

myJObject,

myFID,

newJString);

End;

end;

Figure

30.

PL/I

Sample

Program

#2

-

Passing

a

String

352

PL/I

for

Windows:

Programming

Guide

Step

5:

Running

the

Sample

Program

Run

the

Java

-

PL/I

sample

program

with

this

command:

java

jPassString

The

output

of

the

sample

program,

complete

with

the

prompts

for

user

input

from

both

Java

and

PL/I,

will

look

like

this:

>java

jPassString

From

Java:

Enter

a

string

or

’quit’

to

quit.

Java

Prompt

>

A

string

entered

in

Java

From

PLI:

String

retrieved

from

Java

is:

A

string

entered

in

Java

From

PLI:

Enter

a

string

to

be

returned

to

Java:

A

string

entered

in

PL/I

From

Java:

String

set

by

PL/I

is:

A

string

entered

in

PL/I

From

Java:

Enter

a

string

or

’quit’

to

quit.

Java

Prompt

>

quit

>

JNI

Sample

Program

#3

-

Passing

an

Integer

Writing

Java

Sample

Program

#3

This

sample

program

passes

an

integer

back

and

forth

between

Java

and

PL/I.

Refer

to

Figure

31

on

page

354

for

the

complete

listing

of

the

jPassInt.java

program.

The

Java

portion

has

one

Java

class,

jPassInt.java.

The

native

method,

written

in

PL/I,

is

contained

in

passInt.pli.

Much

of

the

information

from

the

first

sample

program

applies

to

this

sample

program

as

well.

Only

new

or

different

aspects

will

be

discussed

for

this

sample

program.

Step

1:

Writing

the

Java

Program

Declare

the

Native

Method

The

native

method

for

this

sample

program

looks

like

this:

public

native

void

pliShowInt();

Load

the

Native

Library

The

Java

statement

that

loads

the

native

library

for

this

sample

program

looks

like

this:

static

{

System.loadLibrary("passInt");

}

Write

the

Java

Main

Method

The

jPassInt

class

also

includes

a

main

method

to

instantiate

the

class

and

call

the

native

method.

The

main

method

instantiates

jPassInt

and

calls

the

pliShowInt()

native

method.

This

sample

program

prompts

the

user

for

an

integer

and

reads

that

value

in

from

the

command

line.

This

is

done

within

a

try/catch

statement

as

shown

in

Figure

31

on

page

354.

Chapter

25.

Interfacing

with

Java

353

Step

2:

Compiling

the

Java

Program

The

command

to

compile

the

Java

code

would

look

like

this:

javac

jPassInt.java

Step

3:

Writing

the

PL/I

Program

All

of

the

information

about

writing

the

PL/I

″Hello

World″

sample

program

applies

to

this

program

as

well.

//

Read

an

integer,

call

PL/I,

display

new

integer

upon

return

import

java.io.*;

import

java.lang.*;

public

class

jPassInt{

/*

Fields

to

hold

Java

string

and

int

*/

int

myInt;

String

myString;

/*

Load

the

PL/I

native

library

*/

static

{

System.loadLibrary("passInt");

}

/*

Declare

the

PL/I

native

method

*/

public

native

void

pliShowInt();

/*

Main

Java

class

*/

public

static

void

main(String[]

arg)

{

System.out.println("

");

/*

Instantiate

Java

class

and

initilize

string

*/

jPassInt

pInt

=

new

jPassInt();

pInt.myInt

=

1024;

pInt.myString

=

"

";

/*

Prompt

user

for

an

integer

*/

try

{

BufferedReader

in

=

new

BufferedReader(

new

InputStreamReader(System.in));

/*

Process

until

’quit’

received

*/

while

(!pInt.myString.equalsIgnoreCase("quit"))

{

System.out.println

("From

Java:

Enter

an

Integer

or

’quit’

to

quit.");

System.out.print("Java

Prompt

>

");

/*

Get

string

from

command

line

*/

pInt.myString

=

in.readLine();

if

(!pInt.myString.equalsIgnoreCase("quit"))

{

/*

Set

int

to

integer

value

of

String

*/

pInt.myInt

=

Integer.parseInt(

pInt.myString

);

/*

Call

PL/I

native

method

*/

pInt.pliShowInt();

/*

Return

from

PL/I

and

display

new

string

*/

System.out.println("

");

System.out.println

("From

Java:

Integer

set

by

PL/I

is:

"

+

pInt.myInt

);

}

}

}

catch

(IOException

e)

{

}

}

}

Figure

31.

Java

Sample

Program

#3

-

Passing

an

Integer

354

PL/I

for

Windows:

Programming

Guide

Correct

Form

of

PL/I

Procedure

Name

and

Procedure

Statement

The

external

PL/I

procedure

name

for

this

program

would

be

_Java_jPassInt_pliShowInt.

The

complete

procedure

statement

for

the

sample

program

looks

like

this:

Java_passNum_pliShowInt:

Proc(

JNIEnv

,

myjobject

)

external(

"_Java_jPassInt_pliShowInt"

)

options(

byvalue

nodescriptor

linkage(stdcall)

);

JNI

Include

File

The

PL/I

include

file

which

contains

the

PL/I

definition

of

the

Java

interfaces

is

contained

in

two

include

files,

jni.cop

which

in

turn

includes

jni_md.cop.

These

include

files

are

included

with

this

statement:

%include

jni;

For

a

complete

listing

of

the

jni.cop

file

look

in

the

\ibmpliw\include

directory

The

Complete

PL/I

Procedure

The

complete

PL/I

program

is

shown

in

Figure

32

on

page

356.

This

sample

PL/I

program

makes

several

calls

through

the

JNI.

Upon

entry,

a

reference

to

the

calling

Java

Object,

myObject,

is

passed

into

the

PL/I

procedure.

The

PL/I

program

will

use

this

reference

to

get

information

from

the

calling

object.

The

first

piece

of

information

is

the

Class

of

the

calling

object

which

is

retrieved

using

the

GetObjectClass

JNI

function.

This

Class

value

is

then

used

by

the

GetFieldID

JNI

function

to

get

the

identity

of

the

Java

integer

field

in

the

Java

object

that

we

are

interested

in.

This

Java

field

is

further

identified

by

providing

the

name

of

the

field,

myInt,

and

the

JNI

field

descriptor,

I,

which

identifies

the

field

as

an

integer

field.

The

value

of

the

Java

integer

field

is

then

retrieved

using

the

GetIntField

JNI

function

which

is

then

displayed

by

the

PL/I

program.

After

displaying

the

retrieved

Java

integer,

the

PL/I

program

prompts

the

user

for

a

PL/I

integer

to

be

used

to

update

the

integer

field

in

the

calling

Java

object.

The

PL/I

integer

value

is

then

used

to

update

the

integer

field

in

the

calling

Java

object

using

the

SetIntField

JNI

function.

When

the

PL/I

program

ends,

control

is

returned

to

Java,

where

the

newly

updated

Java

integer

is

displayed

by

the

Java

program.

Chapter

25.

Interfacing

with

Java

355

Step

4:

Compiling

and

Linking

the

PL/I

Program

Compiling

the

PL/I

Program

Compile

the

PL/I

sample

program

with

the

following

command:

pli

passInt.pli

Linking

the

Dynamic

Link

Library

Link

the

resulting

PL/I

object

deck

into

a

DLL

with

these

commands:

ilib

/nologo

/geni

passInt.def

ilink

/dll

passInt.obj

passInt.exp

javalib\javai.lib

*Process

Limits(

Extname(

31

)

)

Margins(

1,

100

)

;

*Process

Dllinit

xinfo(def);

*Process

Default(

IEEE

);

plijava_demo:

package

exports(*);

Java_passNum_pliShowInt:

Proc(

JNIEnv

,

myjobject

)

external(

"_Java_jPassInt_pliShowInt"

)

options(

byvalue

nodescriptor

linkage(stdcall)

);

%include

jni;

Dcl

myClazz

Type

jClass;

Dcl

myFID

Type

jFieldID;

Dcl

myJInt

Type

jInt;

dcl

rtnJInt

Type

jInt;

Dcl

myJObject

Type

jObject;

Dcl

pliReply

Char(132)

Varz;

Dcl

nullPtr

Pointer;

Display(’

’);

/*

Get

information

about

the

calling

Class

*/

myClazz

=

GetObjectClass(JNIEnv,

myJObject);

/*

Get

Field

ID

for

int

field

from

Java

*/

myFID

=

GetFieldID(JNIEnv,

myClazz,

"myInt",

"I");

/*

Get

Integer

value

from

Java

*/

myJInt

=

GetIntField(JNIEnv,

myJObject,

myFID);

display(’From

PLI:

Integer

retrieved

from

Java

is:

’

||

trim(myJInt)

);

display(’From

PLI:

Enter

an

integer

to

be

returned

to

Java:’

)

reply(pliReply);

rtnJInt

=

pliReply;

/*

Set

Integer

value

in

Java

from

PL/I

*/

nullPtr

=

SetIntField(JNIEnv,

myJObject,

myFID,

rtnJInt);

End;

end;

Figure

32.

PL/I

Sample

Program

#3

-

Passing

an

Integer

356

PL/I

for

Windows:

Programming

Guide

Step

5:

Running

the

Sample

Program

Run

the

Java

-

PL/I

sample

program

with

this

command:

java

jPassInt

The

output

of

the

sample

program,

complete

with

the

prompts

for

user

input

from

both

Java

and

PL/I,

will

look

like

this:

>java

jPassInt

From

Java:

Enter

an

Integer

or

’quit’

to

quit.

Java

Prompt

>

12345

From

PLI:

Integer

retrieved

from

Java

is:

12345

From

PLI:

Enter

an

integer

to

be

returned

to

Java:

54321

From

Java:

Integer

set

by

PL/I

is:

54321

From

Java:

Enter

an

Integer

or

’quit’

to

quit.

Java

Prompt

>

quit

>

Determining

equivalent

Java

and

PL/I

data

types

When

you

communicate

with

Java

from

PL/I

you

will

need

to

match

the

data

types

between

the

two

programming

languages.

This

table

shows

Java

primitive

types

and

their

PL/I

equivalents:

Table

32.

Java

Primitive

Types

and

PL/I

Native

Equivalents

Java

Type

PL/I

Type

Size

in

Bits

boolean

jboolean

8,

unsigned

byte

jbyte

8

char

jchar

16,

unsigned

short

jshort

16

int

jint

32

long

jlong

64

float

jfloat

21

double

jdouble

53

void

jvoid

n/a

Chapter

25.

Interfacing

with

Java

357

358

PL/I

for

Windows:

Programming

Guide

Chapter

26.

Using

sort

routines

Comparing

S/390

and

workstation

sort

programs

359

Preparing

to

use

sort

.

.

.

.

.

.

.

.

.

.

. 360

Choosing

the

type

of

sort

.

.

.

.

.

.

.

. 361

Specifying

the

sorting

field

.

.

.

.

.

.

.

. 363

Example:

.

.

.

.

.

.

.

.

.

.

.

.

. 364

Specifying

the

records

to

be

sorted

.

.

.

.

. 364

Example:

.

.

.

.

.

.

.

.

.

.

.

.

. 364

Calling

the

sort

program

.

.

.

.

.

.

.

.

. 364

PLISRT

examples

.

.

.

.

.

.

.

.

.

.

. 364

Example

1

.

.

.

.

.

.

.

.

.

.

.

. 364

Example

2

.

.

.

.

.

.

.

.

.

.

.

. 365

Example

3

.

.

.

.

.

.

.

.

.

.

.

. 365

Example

4

.

.

.

.

.

.

.

.

.

.

.

. 365

Determining

whether

the

sort

was

successful

365

Sort

data

input

and

output

.

.

.

.

.

.

.

.

. 366

Sort

data

handling

routines

.

.

.

.

.

.

.

.

. 366

E15

—

input-handling

routine

(sort

exit

E15)

367

E35

—

output-handling

routine

(sort

exit

E35)

369

Calling

PLISRTA

.

.

.

.

.

.

.

.

.

.

. 371

Calling

PLISRTB

.

.

.

.

.

.

.

.

.

.

. 372

Calling

PLISRTC

.

.

.

.

.

.

.

.

.

.

. 374

Calling

PLISRTD,

example

1

.

.

.

.

.

.

. 375

Calling

PLISRTD,

example

2

.

.

.

.

.

.

. 376

PL/I

for

Windows

supports

the

PLISRTx

(x

=

A,

B,

C,

or

D)

built-in

subroutines.

To

use

the

PLISRTx

subroutines,

you

need

to:

v

Include

a

call

to

one

of

the

subroutines

and

pass

it

the

information

on

the

fields

to

be

sorted.

This

information

includes

the

length

of

the

records,

the

name

of

a

variable

to

be

used

as

a

return

code,

and

other

information

required

to

carry

out

the

sort.

v

Specify

the

data

sets

required

by

the

sort

program

in

DD

statements.

Windows

Users

The

PLISRTx

routines

are

supported

on

Windows.

In

order

to

use

them,

however,

you

must

have

the

SMARTsort

for

Windows

product

installed

(separately

orderable).

When

used

from

PL/I,

these

subroutines

sort

records

of

all

normal

lengths

on

a

large

number

of

sorting

fields.

Data

of

most

types

can

be

sorted

into

ascending

or

descending

order.

The

source

of

the

data

to

be

sorted

can

be

either

a

data

set

or

a

PL/I

procedure

written

by

the

programmer

that

the

sort

program

calls

each

time

a

record

is

required

for

the

sort.

Similarly,

the

destination

of

the

sort

can

be

a

data

set

or

a

PL/I

procedure

that

handles

the

sorted

records.

Comparing

S/390

and

workstation

sort

programs

If

your

existing

mainframe

programs

contain

CALL

PLISRTx,

you

can

download

and

run

them

on

your

workstation.

Several

of

the

parameters

allowed

on

S/390

are

ignored,

and

alter

run-time

behavior

to

some

extent.

The

following

table

indicates

which

arguments

accepted

by

OS

PL/I

are

ignored

by

the

workstation

compiler.

Table

33.

workstation

PLISRTx

Built-in

subroutine

Arguments

PLISRTA

Sort

input:

data

set

Sort

output:

data

set

(sort

statement,record

statement,storage,return

code

[,data

set

prefix,message

level,

sort

technique])

359

Table

33.

workstation

PLISRTx

(continued)

Built-in

subroutine

Arguments

PLISRTB

Sort

input:

PL/I

subroutine

Sort

output:

data

set

(sort

statement,record

statement,storage,return

code,

input

routine

[,data

set

prefix,message

level,sort

technique])

PLISRTC

Sort

input:

data

set

Sort

output:

PL/I

subroutine

(sort

statement,record

statement,storage,return

code,

output

routine

[,data

set

prefix,message

level,sort

technique])

PLISRTD

Sort

input:

PL/I

subroutine

Sort

output:

PL/I

subroutine

(sort

statement,record

statement,storage,return

code,

input

routine,output

routine

[,data

set

prefix,message

level,sort

technique])

Argument

definitions:

Sort

statement

Character

string

expression

describing

sorting

fields

and

format.

See

“Specifying

the

sorting

field”

on

page

363.

Record

statement

Character

string

expression

describing

the

length

and

record

format

of

data.

See

“Specifying

the

records

to

be

sorted”

on

page

364.

Storage

Ignored

by

workstation

PL/I.

Return

code

Fixed

binary

variable

of

precision

(31,0)

in

which

sort

places

a

return

code

when

it

has

completed.

The

meaning

of

the

return

code

is:

0=Sort

successful

16=Sort

failed

Input

routine

(PLISRTB

and

PLISRTD

only.)

Name

of

the

PL/I

external

or

internal

procedure

used

to

supply

the

records

for

the

Sort

program

at

sort

exit

15.

For

specific

requirements

using

workstation

PL/I,

see

“E15

—

input-handling

routine

(sort

exit

E15)”

on

page

367.

Output

routine

(PLISRTC

and

PLISRTD

only.)

Name

of

the

PL/I

external

or

internal

procedure

to

which

Sort

passes

the

sorted

records

from

sort

exit

35.

For

specific

requirements

using

workstation

PL/I,

see

“E35

—

output-handling

routine

(sort

exit

E35)”

on

page

369.

Data

set

prefix

Ignored

by

workstation

PL/I,

which

only

processes

SORTIN

and

SORTOUT

as

ddnames.

Message

level

Ignored

by

workstation

PL/I.

Sort

technique

Ignored

by

workstation

PL/I.

Preparing

to

use

sort

Before

using

sort,

you

must

determine

the

type

of

sort

you

require,

the

length

and

format

of

the

sorting

fields

in

the

data,

and

the

length

of

your

data

records.

To

determine

which

PLISRTx

built-in

subroutine

to

use,

you

must

decide

the

source

of

your

unsorted

data,

and

the

destination

of

your

sorted

data.

You

must

choose

between

data

sets

and

PL/I

subroutines.

Using

data

sets

is

simpler

to

understand

and

gives

faster

performance.

Using

PL/I

subroutines

gives

you

more

flexibility

and

more

function,

enabling

you

to

manipulate

the

data

before

it

is

Comparing

sort

programs

360

PL/I

for

Windows:

Programming

Guide

sorted,

and

to

make

immediate

use

of

the

data

in

its

sorted

form.

If

you

decide

to

use

an

input

or

output

handling

subroutine,

read

“Sort

data

handling

routines”

on

page

366.

The

sort

built-in

subroutines

and

the

source

and

destination

of

data

are

as

follows:

Built-in

subroutine

Source

Destination

PLISRTA

Data

set

Data

set

PLISRTB

Subroutine

Data

set

PLISRTC

Data

set

Subroutine

PLISRTD

Subroutine

Subroutine

Source

data

sets

are

defined

using

the

SORTIN

environment

variable

while

destination

data

sets

are

defined

using

SORTOUT.

Alternatively,

you

can

use

the

PUTENV

built-in

function

to

set

those

functions.

Having

determined

the

subroutine

you

are

using,

you

must

now

determine

a

number

of

things

about

your

data

set

and

specify

the

information

on

the

SORT

statement:

v

The

position

of

the

sorting

fields;

these

can

be

either

the

complete

record

or

any

part

or

parts

of

it.

v

The

type

of

data

these

fields

represent,

for

example,

character

or

binary.

v

Whether

you

want

the

sort

on

each

field

to

be

in

ascending

or

descending

order.

Next,

you

must

determine

two

things

about

the

records

to

be

sorted

and

specify

the

information

on

the

RECORD

statement:

v

Whether

the

record

format

is

fixed

or

varying

v

The

length

of

the

record

(maximum

length

for

varying)

You

use

these

on

the

RECORD

statement,

which

is

the

second

argument

to

PLISRTx.

Choosing

the

type

of

sort

To

make

the

best

use

of

the

sort

program,

you

should

understand

how

it

works.

In

your

PL/I

program

you

specify

a

sort

by

using

a

CALL

statement

to

the

built-in

subroutine

PLISRTx.

Each

specifies

a

different

source

for

the

unsorted

data

and

destination

for

the

data

when

it

has

been

sorted.

For

example,

a

call

to

PLISRTA

specifies

that

the

unsorted

data

(the

input

to

sort)

is

on

a

data

set,

and

that

the

sorted

data

(the

output

from

sort)

is

to

be

placed

on

another

data

set.

The

CALL

PLISRTx

statement

must

contain

an

argument

list

giving

the

sort

program

information

about

the

data

set

to

be

sorted,

the

fields

on

which

it

is

to

be

sorted,

the

name

of

a

variable

into

which

sort

places

a

return

code

indicating

the

success

or

failure

of

the

sort,

and

the

name

of

any

output

or

input

handling

procedure

that

can

be

used.

The

sort

interface

routine

builds

an

argument

list

for

the

sort

from

the

information

supplied

by

the

PLISRTx

argument

list

and

depends

on

your

choice

of

A,

B,

C,

or

D

for

x.

Control

is

then

transferred

to

the

sort

program.

If

you

have

specified

an

output-

or

input-handling

routine,

it

is

called

by

the

sort

program

as

many

times

as

is

necessary

to

handle

each

of

the

unsorted

or

sorted

records.

The

sort

operation

ends

in

one

of

two

ways:

Preparing

to

use

sort

Chapter

26.

Using

sort

routines

361

1.

Communicating

success

or

failure

by

sending

a

return

code

of

0

or

16

to

the

PL/I

calling

procedure.

2.

Raising

an

error

condition

when

certain

errors

are

detected

and

the

return

code

is

undefined.

Figure

33

is

a

simplified

flowchart

showing

the

sort

operation.

Within

the

sort

program

itself,

the

flow

of

control

between

the

sort

program

and

output-

and

input-handling

routines

is

controlled

by

return

codes.

The

sort

program

calls

these

routines

at

the

appropriate

point

in

its

processing.

(Within

the

sort

program,

these

routines

are

known

as

user

exits.

The

routine

that

passes

input

to

be

sorted

is

the

E15

sort

user

exit.

The

routine

that

processes

sorted

output

is

┌──────────────┐

│

│

│

CALL

PLISRTx

│

│

│

└──┬──┬──┬──┬──┘

│

│

│

│

┌────────────────────────────┘

│

│

└────────────────────────────┐

│

┌─────────┘

└─────────┐

│

�

�

�

�

PLISRTA

PLISRTB

PLISRTC

PLISRTD

│

│

│

│

�

�

�

�

┌───────────┴─────────────────────┴──────────────────────┴─────────────────────┴───────────┐

│

SORT

PROGRAM

│

├───────────┬─────────────────────┬──────────────────────┬─────────────────────┬───────────┤

│

�

�

�

�

│

│

┌─────────┴────────┐

┌─────────┴─────────┐

┌─────────┴────────┐

┌─────────┴─────────┐

│

│

│

Get

records

from

│

│

Call

PL/I

sub-

│

│

Get

records

from

│

│

Call

PL/I

sub-

│

│

│

│

data

set

until

│

│

routine

receiving

│

│

data

set

until

│

│

routine

receiving

│

│

│

│

end

of

file

│

│

one

record

on

│

│

end

of

file

│

│

one

record

on

│

│

│

│

│

│

each

call

(E15)

│

│

│

│

each

call

(E15)

│

│

│

└─────────┬────────┘

└─────────┬─────────┘

└─────────┬────────┘

└─────────┬─────────┘

│

│

│

│

│

│

│

│

│

└─────────┐

┌─────────┘

│

│

│

└────────────────────────────┐

│

│

┌────────────────────────────┘

│

│

│

│

│

│

│

│

�

�

�

�

│

│

┌──┴──┴──┴──┴──┐

│

│

│

│

│

│

│

Sort

records

│

│

│

│

│

│

│

└──┬──┬──┬──┬──┘

│

│

│

│

│

│

│

│

┌────────────────────────────┘

│

│

└────────────────────────────┐

│

│

│

┌─────────┘

└─────────┐

│

│

│

│

│

│

│

│

│

�

�

�

�

│

│

┌─────────┴────────┐

┌─────────┴─────────┐

┌─────────┴────────┐

┌─────────┴─────────┐

│

│

│

Place

sorted

│

│

Place

sorted

│

│

Call

PL/I

sub-

│

│

Call

PL/I

sub-

│

│

│

│

records

on

│

│

records

on

│

│

routine

passing

│

│

routine

passing

│

│

│

│

data

set

│

│

data

set

│

│

one

record

on

│

│

one

record

on

│

│

│

│

│

│

│

│

each

call

(E35)

│

│

each

call

(E35)

│

│

│

└─────────┬────────┘

└─────────┬─────────┘

└─────────┬────────┘

└─────────┬─────────┘

│

│

│

│

│

│

│

│

│

└─────────┐

┌─────────┘

│

│

│

└────────────────────────────┐

│

│

┌────────────────────────────┘

│

│

│

│

│

│

│

│

�

�

�

�

│

│

┌──────┴──┴──┴──┴──────┐

│

│

│

Set

up

return

code

│

│

│

│

to

indicate

success

│

│

│

│

or

failure

of

sort

│

│

│

└──────────┬───────────┘

│

│

│

│

└──┼───┘

│

�

┌────────┴─────────┐

│

Return

to

caller

│

│

of

PLISRTx

│

└──────────────────┘

Figure

33.

Flow

of

control

for

the

sort

program

Preparing

to

use

sort

362

PL/I

for

Windows:

Programming

Guide

the

E35

sort

user

exit.)

From

the

routines,

the

sort

program

expects

a

return

code

indicating

either

that

it

should

call

the

routine

again,

or

that

it

should

continue

with

the

next

stage

of

processing.

The

remainder

of

this

chapter

gives

detailed

information

on

how

to

use

sort

from

PL/I.

First

the

required

PL/I

statements

are

described,

followed

by

the

data

set

requirements.

The

chapter

finishes

with

a

series

of

examples

showing

the

use

of

the

four

built-in

subroutines.

Specifying

the

sorting

field

The

SORT

statement

is

the

first

argument

to

PLISRTx.

The

syntax

of

the

SORT

statement

must

be

a

character

string

expression

that

takes

the

form:

��

’bSORTbFIELDS=

(

�

,

start,length,form,seq

)

other

options

b’

��

b

One

or

more

blanks.

Blanks

shown

are

mandatory.

No

other

blanks

are

allowed.

start,length,form,seq

Sorting

fields.

You

can

specify

any

number

of

such

fields,

but

there

is

a

limit

on

the

total

length

of

the

fields.

If

more

than

one

field

is

to

be

sorted

on,

the

records

are

sorted

first

according

to

the

first

field,

and

then

those

that

are

of

equal

value

are

sorted

according

to

the

second

field,

and

so

on.

If

all

the

sorting

values

are

equal,

the

order

of

equal

records

is

arbitrary.

Fields

can

overlay

each

other.

start

The

starting

position

within

the

record.

Give

the

value

in

bytes.

The

first

byte

in

a

string

is

considered

to

be

byte

1.

length

The

length

of

the

sorting

field.

Give

the

value

in

bytes.

The

length

of

sorting

fields

is

restricted

according

to

their

data

type.

form

The

format

of

the

data.

This

is

the

format

assumed

for

the

purpose

of

sorting.

All

data

passed

between

PL/I

routines

and

sort

must

be

in

the

form

of

character

strings.

The

main

data

types

and

the

restrictions

on

their

length

are

shown

below.

Code

Data

Type

and

Length

CH

character

1–256

ZD

zoned

decimal

signed

1–32

PD

packed

decimal

signed

1–32

FI

fixed

point,

signed

1–256

BI

binary,

unsigned

1

bit

to

256

bytes

The

sum

of

the

lengths

of

all

fields

must

not

exceed

256

bytes.

seq

The

sequence

in

which

the

data

is

sorted:

A

–

ascending

(that

is,

1,2,3,...)

D

–

descending

(that

is,

...,3,2,1).

Note

that

you

cannot

specify

E,

because

PL/I

does

not

provide

a

method

of

passing

a

user-supplied

sequence.

Preparing

to

use

sort

Chapter

26.

Using

sort

routines

363

other

options

The

only

option

supported

under

workstation

PL/I

is

the

default,

EQUALS.

Source

code

downloaded

from

the

mainframe,

however,

does

not

need

to

be

altered.

Example:

’

SORT

FIELDS=(1,10,CH,A)

’

Specifying

the

records

to

be

sorted

Use

the

RECORD

statement

as

the

second

argument

to

PLISRTx.

The

syntax

of

the

RECORD

statement

must

be

a

character

string

expression

which,

when

evaluated,

accepts

the

following

syntax:

��

’bRECORDbTYPE=rectype

,LENGTH=(n)

b’

��

b

One

or

more

blanks.

Blanks

shown

are

mandatory.

No

other

blanks

are

allowed.

TYPE

Specifies

the

type

of

record

as

follows:

F

Fixed

length

V

Varying

length

Even

when

you

use

input

and

output

routines

to

handle

the

sorted

and

unsorted

data,

you

must

specify

the

record

type

as

it

applies

to

the

work

data

sets

used

by

sort.

If

varying-length

strings

are

passed

to

sort

from

an

input

routine

(E15

exit),

you

should

normally

specify

V

as

a

record

format.

However,

if

you

specify

F,

the

records

are

padded

to

the

maximum

length

with

blanks.

LENGTH

Specifies

the

length

of

the

record

to

be

sorted.

You

can

omit

LENGTH

if

you

use

PLISRTA

or

PLISRTC,

because

the

length

is

taken

from

the

input

data

set.

The

maximum

length

of

a

record

that

can

be

sorted

is

32,767

bytes.

For

varying-length

records,

you

must

include

the

2-byte

prefix.

n

The

length

of

the

record

to

be

sorted.

Note:

Additional

length

specifications

that

can

be

used

are

ignored

by

workstation

PL/I.

Example:

'

RECORD

TYPE=F,length=(80)

'

Calling

the

sort

program

When

you

have

determined

the

sort

field

and

record

type

specifications,

you

are

in

a

position

to

write

the

CALL

PLISRTx

statement.

PLISRT

examples

The

following

examples

indicate

commonly

used

forms

of

calls

to

PLISRTx.

Example

1

A

call

to

PLISRTA

sorting

80-byte

records

from

SORTIN

to

SORTOUT,

and

a

return

code,

RETCODE,

declared

as

FIXED

BINARY

(31,0).

Preparing

to

use

sort

364

PL/I

for

Windows:

Programming

Guide

call

plisrta

(’

SORT

FIELDS=(1,80,CH,A)

’,

’

RECORD

TYPE=F,LENGTH=(80)

’,

0,

retcode);

Example

2

This

example

is

the

same

as

example

1

but

the

sort

is

to

be

undertaken

on

two

fields.

First,

bytes

1

to

10

which

are

characters,

and

then,

if

these

are

equal,

bytes

11

and

12

which

contain

a

binary

field.

Both

fields

are

to

be

sorted

in

ascending

order.

call

plisrta

(’

SORT

FIELD

=(1,10,CH,A,11,2,BI,A)

’,

’

RECORD

TYPE=F,LENGTH=(80)

’,

0,

retcode);

Example

3

A

call

to

PLISRTB.

The

input

is

to

be

passed

to

sort

by

the

PL/I

routine

PUTIN,

the

sort

is

to

be

carried

out

on

characters

1

to

10

of

an

80

byte

fixed-length

record.

Other

information

as

above.

call

plisrtb

(’

SORT

FIELDS=(1,10,CH,A)

’,

’

RECORD

TYPE=F,LENGTH=(80)

’,

0,

retcode,

putin);

Example

4

A

call

to

PLISRTD.

The

input

is

to

be

supplied

by

the

PL/I

routine

PUTIN

and

the

output

is

to

be

passed

to

the

PL/I

routine

PUTOUT.

The

record

to

be

sorted

is

82

bytes

varying

(including

the

length

prefix).

It

is

to

be

sorted

on

bytes

1

through

5

of

the

data

in

ascending

order,

then

if

these

fields

are

equal,

on

bytes

6

through

10

in

descending

order.

If

both

these

fields

are

the

same,

the

order

of

the

input

is

to

be

retained.

(The

EQUALS

option

does

this.)

call

plisrtd

(’

SORT

FIELDS=(1,5,CH,A,6,5,CH,D),EQUALS

’,

’

RECORD

TYPE=V,LENGTH=(82)

’,

0,

retcode,

putin,

/*

input

routine

(sort

exit

15)

*/

putout);

/*

output

routine

(sort

exit

35)

*/

Determining

whether

the

sort

was

successful

When

the

sort

is

completed,

sort

sets

a

return

code

in

the

variable

named

in

the

fourth

argument

of

the

call

to

PLISRTx.

It

then

returns

control

to

the

statement

that

follows

the

CALL

PLISRTx

statement.

The

value

returned

indicates

the

success

or

failure

of

the

sort

as

follows:

0

Sort

successful

16

Sort

failed

You

must

declare

this

variable

as

FIXED

BINARY

(31,0).

It

is

standard

practice

to

test

the

value

of

the

return

code

after

the

CALL

PLISRTx

statement

and

take

appropriate

action

according

to

the

success

or

failure

of

the

operation.

For

example

(assuming

the

return

code

was

called

RETCODE):

if

retcode¬=0

then

do;

put

data(retcode);

signal

error;

end;

Calling

the

sort

program

Chapter

26.

Using

sort

routines

365

The

error

condition

is

raised

if

errors

are

detected.

When

sort

detects

a

fatal

error

and

the

corresponding

error

code

is

greater

than

16,

the

error

condition

is

raised.

If

the

job

step

that

follows

the

sort

depends

on

the

success

or

failure

of

the

sort,

you

should

set

the

value

returned

in

the

sort

program

as

the

return

code

from

the

PL/I

program.

This

return

code

is

then

available

for

the

following

job

step.

The

PL/I

return

code

is

set

by

a

call

to

PLIRETC.

The

following

example

shows

how

you

can

call

PLIRETC

with

the

value

returned

from

sort:

call

pliretc(retcode);

You

should

not

confuse

this

call

to

PLIRETC

with

the

calls

made

in

the

input

(E15)

and

output

(E35)

routines,

where

a

return

code

is

used

for

passing

control

information

to

sort.

Sort

data

input

and

output

The

source

of

the

data

to

be

sorted

is

provided

either

directly

from

a

data

set

or

indirectly

by

a

routine

(sort

exit

E15)

written

by

the

user.

Similarly,

the

destination

of

the

sorted

output

is

either

a

data

set

or

a

routine

(sort

exit

E35)

provided

by

the

user.

PLISRTA

is

the

simplest

of

all

of

the

interfaces

because

it

sorts

from

data

set

to

data

set.

An

example

of

a

PLISRTA

program

is

in

Figure

37

on

page

371.

Other

interfaces

require

either

the

input-handling

routine

or

the

output-handling

routine,

or

both.

To

sort

varying-length

records,

you

first

need

to

convert

your

datasets

to

TYPE(VARLS)

format,

and

then

use

this

TYPE(VARLS)

file

as

input

to

the

sort

program.

TYPE(VARLS)

records

have

a

2-byte

length

field

at

the

beginning,

so

the

record

size

is

actually

two

less

than

the

length

of

the

record.

This

means

the

record

size

you

specify

should

be

two

less

than

the

maximum

record

length

for

the

file.

You

can

convert

your

dataset

to

a

TYPE(VARLS)

file

by

writing

a

PL/I

program

that

reads

from

the

existing

data

file

and

writes

to

an

output

file

declared

as

TYPE(VARLS).

Sort

data

handling

routines

The

input-handling

and

output-handling

routines

are

called

by

sort

when

PLISRTB,

PLISRTC,

or

PLISRTD

is

used.

They

must

be

written

in

PL/I,

and

can

be

either

internal

or

external

procedures.

If

they

are

internal

to

the

routine

that

calls

PLISRTx,

they

behave

in

the

same

way

as

ordinary

internal

procedures

with

respect

to

the

scope

of

names.

The

input

and

output

procedure

names

themselves

must

be

known

in

the

procedure

that

makes

the

call

to

PLISRTx.

The

routines

are

called

individually

for

each

record

required

by

sort

or

passed

from

sort.

Therefore,

each

routine

must

be

written

to

handle

one

record

at

a

time.

Variables

declared

as

AUTOMATIC

within

the

procedures

do

not

retain

their

values

between

calls.

Consequently,

items

such

as

counters,

which

need

to

be

retained

from

one

call

to

the

next,

should

either

be

declared

as

STATIC

or

be

declared

in

the

containing

block.

Calling

the

sort

program

366

PL/I

for

Windows:

Programming

Guide

E15

—

input-handling

routine

(sort

exit

E15)

Input

routines

are

normally

used

to

process

data

in

some

way

before

it

is

sorted,

such

as

printing

it,

(see

Figure

38

on

page

372

and

Figure

40

on

page

375),

or

generating

or

manipulating

the

sorting

fields

to

achieve

the

correct

results.

The

input-handling

routine

is

used

by

SORT

when

a

call

is

made

to

either

PLISRTB

or

PLISRTD.

When

SORT

requires

a

record,

it

calls

the

input

routine

which

should

return

a

record

in

character

string

format,

and

a

return

code

of

12,

which

means

the

record

passed

is

to

be

included

in

the

sort.

SORT

continues

to

call

the

routine

until

a

return

code

of

8

is

passed.

This

means

that

all

records

have

already

been

passed,

and

SORT

is

not

to

call

the

routine

again.

If

a

record

is

returned

when

the

return

code

is

8,

it

is

ignored

by

SORT.

Note:

You

must

compile

the

program

that

calls

PLISRTB

or

PLISRTD

with

the

same

options

(ASCII

or

EBCDIC;

NATIVE

or

NONNATIVE;

HEXADEC

or

IEEE)

that

you

used

to

compile

the

E15

handling

routine.

The

data

returned

by

the

E15

routine

must

be

a

fixed

or

varying

character

string.

If

it

is

varying,

you

should

normally

specify

V

as

the

record

format

in

the

RECORD

statement

which

is

the

second

argument

in

the

call

to

PLISRTx.

However,

you

can

specify

F,

in

which

case

the

string

is

padded

to

its

maximum

length

with

blanks.

The

record

is

returned

with

a

RETURN

statement,

and

you

must

specify

the

RETURNS

attribute

in

the

PROCEDURE

statement.

The

return

code

is

set

in

a

call

to

PLIRETC.

Examples

of

an

input

routine

are

given

in

Figure

38

on

page

372

and

Figure

40

on

page

375.

In

addition

to

the

return

codes

of

12

(include

current

record

in

sort)

and

8

(all

records

sent),

SORT

allows

the

use

of

a

return

code

of

16.

This

ends

the

sort

and

sets

a

return

code

from

SORT

to

your

PL/I

program

of

16–sort

failed.

It

should

be

noted

that

a

call

to

PLIRETC

sets

a

return

code

that

is

passed

by

your

PL/I

program,

and

is

available

to

any

job

steps

that

follow

it.

When

an

output

handling

routine

has

been

used,

it

is

a

good

practice

to

reset

the

return

code

with

a

call

to

PLIRETC

after

the

call

to

PLISRTx

to

avoid

receiving

a

nonzero

completion

code.

By

calling

PLIRETC

with

the

return

code

from

sort

as

the

argument,

you

can

make

the

PL/I

return

code

reflect

the

success

or

failure

of

the

sort.

This

practice

is

shown

in

Figure

39

on

page

374.

Sort

data

handling

routines

Chapter

26.

Using

sort

routines

367

In

addition,

to

code

the

input

user

exit

routine,

the

explicit

attributes

of

the

E15

must

be

specified

in

the

program

unit

that

calls

PLISRTx

if

E15

is

not

nested

in

that

program

unit.

E15:

proc

returns

(char(80));

/*

Returns

attribute

must

be

used

specifying

length

of

data

to

be

sorted,

maximum

length

if

varying

strings

are

passed

to

sort.

*/

dcl

string

char(80);

/*

A

character

string

variable

is

normally

required

to

return

the

data

to

sort

*/

if

Last_Record_Sent

then

do;

/*

A

test

must

be

made

to

see

if

all

the

records

have

been

sent,

if

they

have,

a

return

code

of

8

is

set

up

and

control

returned

to

sort

*/

call

pliretc(8);

/*

Set

return

code

of

8,

meaning

last

record

already

sent.

*/

end;

else

do;

/*

If

another

record

is

to

be

sent

to

sort,

do

the

necessary

processing,

set

a

return

code

of

12

by

calling

PLIRETC,

and

return

the

data

as

a

character

string

to

sort

*/

/*

The

code

to

do

your

processing

goes

here

*/

call

pliretc

(12);/*

Set

return

code

of

12,

meaning

this

record

is

to

be

included

in

the

sort

*/

return

(string);

/*

Return

data

with

RETURN

statement

*/

end;

end;

/*

End

of

the

input

procedure

*/

Figure

34.

Skeletal

code

for

an

input

procedure

Sort

data

handling

routines

368

PL/I

for

Windows:

Programming

Guide

E35

—

output-handling

routine

(sort

exit

E35)

You

must

compile

the

program

that

calls

PLISRTC

or

PLISRTD

with

the

same

options

(ASCII

or

EBCDIC;

NATIVE

or

NONNATIVE)

that

you

used

to

compile

the

E35

handling

routine.

Output-handling

routines

are

normally

used

for

any

processing

that

is

necessary

after

the

sort.

This

could

be

to

print

the

sorted

data,

as

shown

in

Figure

39

on

page

374

plisort:

proc

options(main);

dcl

e15

entry

returns(char(2000)

varying);

/*

Code

to

do

your

processing

goes

here

*/

call

plisrtb(’

SORT

FIELDS=(5,10,CH,A)

’

’

RECORD

TYPE=V,LENGTH=(2000)

’,

0,

retcode,

e15);

/*

Code

to

do

your

processing

goes

here

*/

end

plisort;

*PROCESS

E15:

proc

returns

(char(2000)

varying);

/*

Returns

option

must

be

used

specifying

length

of

data

to

be

sorted,

maximum

length

if

varying

strings

are

passed

to

sort.

*/

dcl

string

char(2000)

varying;

/*

A

character

string

variable

is

normally

required

to

return

the

data

to

sort

*/

if

Last_Record_Sent

then

do;

/*

A

test

must

be

made

to

see

if

all

the

records

have

been

sent,

if

they

have,

a

return

code

of

8

is

set

up

and

control

returned

to

sort

*/

call

pliretc(8);

/*

Set

return

code

of

8,

meaning

last

record

already

sent.

*/

end;

else

do;

/*

If

another

record

is

to

be

sent

to

sort,

do

the

necessary

processing,

set

a

return

code

of

12

by

calling

PLIRETC,

and

return

the

data

as

a

character

string

to

sort

*/

/*

Code

to

do

your

processing

goes

here

*/

call

pliretc

(12);/*

Set

return

code

of

12,

meaning

this

record

is

to

be

included

in

the

sort

*/

return

(string);

/*

Return

data

with

RETURN

statement

*/

end;

end;

/*

End

of

the

input

procedure

*/

Figure

35.

When

E15

is

external

to

the

procedure

calling

PLISRTx

Sort

data

handling

routines

Chapter

26.

Using

sort

routines

369

374

and

Figure

40

on

page

375,

or

to

use

the

sorted

data

to

generate

further

information.

The

output

handling

routine

is

used

by

sort

when

a

call

is

made

to

PLISRTC

or

PLISRTD.

When

the

records

have

been

sorted,

sort

passes

them

(one

at

a

time)

to

the

output

handling

routine.

The

output

routine

then

processes

them

as

required.

When

all

the

records

have

been

passed,

sort

sets

up

its

return

code

and

returns

to

the

statement

after

the

CALL

PLISRTx

statement.

There

is

no

indication

from

sort

to

the

output

handling

routine

that

the

last

record

has

been

reached.

Any

end-of-data

handling

must

therefore

be

done

in

the

procedure

that

calls

PLISRTx.

The

record

is

passed

from

sort

to

the

output

routine

as

a

character

string,

and

you

must

declare

a

character

string

parameter

in

the

output-handling

subroutine

to

receive

the

data.

The

output-handling

subroutine

must

also

pass

a

return

code

of

4

to

sort

to

indicate

that

it

is

ready

for

another

record.

You

set

the

return

code

by

a

call

to

PLIRETC.

The

sort

can

be

stopped

by

passing

a

return

code

of

16

to

sort.

This

results

in

sort

returning

to

the

calling

program

with

a

return

code

of

16–sort

failed.

The

record

passed

to

the

routine

by

sort

is

a

character

string

parameter.

If

you

specified

the

record

type

as

F

in

the

second

argument

in

the

call

to

PLISRTx,

you

should

declare

the

parameter

with

the

length

of

the

record.

If

you

specified

the

record

type

as

V,

you

should

declare

the

parameter

as

adjustable,

for

example:

dcl

string

char(*);

Skeletal

code

for

a

typical

output-handling

routine

is

shown

in

Figure

36.

You

should

note

that

a

call

to

PLIRETC

sets

a

return

code

that

is

passed

by

your

PL/I

program,

and

is

available

to

any

job

steps

that

follow

it.

When

you

have

used

an

output

handling

routine,

it

is

good

practice

to

reset

the

return

code

with

a

call

to

PLIRETC

after

the

call

to

PLISRTx

to

avoid

receiving

a

nonzero

completion

code.

By

calling

PLIRETC

with

the

return

code

from

sort

as

the

argument,

you

can

make

the

PL/I

return

code

reflect

the

success

or

failure

of

the

sort.

This

practice

is

shown

in

the

examples

at

the

end

of

this

chapter.

E35:

proc(String);

/*

The

procedure

must

have

a

character

string

parameter

to

receive

the

record

from

sort

*/

dcl

String

char(80);

/*

Declaration

of

parameter

*/

/*

Your

code

goes

here

*/

call

pliretc(4);

/*

Pass

return

code

to

sort

indicating

that

the

next

sorted

record

is

to

be

passed

to

this

procedure.

*/

end

E35;

/*

End

of

procedure

returns

control

to

sort

*/

Figure

36.

Skeletal

code

for

an

output-handling

procedure

Sort

data

handling

routines

370

PL/I

for

Windows:

Programming

Guide

Calling

PLISRTA

Content

of

EX106.DAT

to

be

used

with

Figure

37

003329HOOKER

S.W.

RIVERDALE,

SATCHWELL

LANE,

BACONSFIELD

002886BOOKER

R.R.

ROTORUA,

LINKEDGE

LANE,

TOBLEY

003077ROOKER

&

SON,

LITTLETON

NURSERIES,

SHOLTSPAR

059334HOOK

E.H.

109

ELMTREE

ROAD,

GANNET

PARK,

NORTHAMPTON

073872HOME

TAVERN,

WESTLEIGH

000931FOREST,

IVER,

BUCKS

/***/

/*

*/

/*

DESCRIPTION

*/

/*

Sorting

from

an

input

data

set

to

an

output

data

set

*/

/*

*/

/*

Use

the

following

statements:

*/

/*

set

dd:sortin=ex106.dat,type(crlf),lrecl(80)

*/

/*

set

dd:sortout=ex106.out,type(crlf),lrecl(80)

*/

/*

*/

/*

*/

/***/

ex106:

proc

options(main);

dcl

Return_code

fixed

bin(31,0);

call

plisrta

(’

SORT

FIELDS=(7,74,CH,A)

’,

’

RECORD

TYPE=F,LENGTH=(80)

’,

0,

Return_code);

select

(Return_code);

when(0)

put

skip

edit

(’Sort

complete

return_code

0’)

(a);

when(16)

put

skip

edit

(’Sort

failed,

return_code

16’)

(a);

other

put

skip

edit

(

’Invalid

sort

return_code

=

’,

Return_code)

(a,f(2));

end

/*

Select

*/;

/*

Set

pl/i

return

code

to

reflect

success

of

sort

*/

call

pliretc(Return_code);

end

ex106;

Figure

37.

PLISRTA—Sorting

from

input

data

set

to

output

data

set

Sort

data

handling

routines

Chapter

26.

Using

sort

routines

371

Calling

PLISRTB

/***/

/*

*/

/*

DESCRIPTION

*/

/*

Sorting

from

an

input-handling

routine

to

an

output

data

set

*/

/*

*/

/*

Use

the

following

statements:

*/

/*

*/

/*

set

dd:sysin=ex107.dat,type(crlf),lrecl(80)

*/

/*

set

dd:sortout=ex107.out,type(crlf),lrecl(80)

*/

/*

*/

/***/

ex107:

proc

options(main);

dcl

Return_code

fixed

bin(31,0);

call

plisrtb

(’

SORT

FIELDS=(7,74,CH,A)

’,

’

RECORD

TYPE=F,LENGTH=(80)

’,

0,

Return_code,

e15x);

select(Return_code);

when(0)

put

skip

edit

(’Sort

complete

return_code

0’)

(a);

when(16)

put

skip

edit

(’Sort

failed,

return_code

16’)

(a);

other

put

skip

edit

(’Invalid

return_code

=

’,Return_code)(a,f(2));

end

/*

Select

*/;

/*

Set

pl/i

return

code

to

reflect

success

of

sort

*/

call

pliretc(Return_code);

e15x:

/*

Input-handling

routine

gets

records

from

the

input

stream

and

puts

them

before

they

are

sorted

*/

proc

returns

(char(80));

dcl

sysin

file

stream

input,

Infield

char(80);

on

endfile(sysin)

begin;

put

skip(3)

edit

(’End

of

sort

program

input’)(a);

call

pliretc(8);

/*

Signal

that

last

record

has

already

been

sent

to

sort

*/

goto

ende15;

end;

get

file

(sysin)

edit

(infield)

(l);

put

skip

edit

(infield)(a(80));

/*

Print

input

*/

call

pliretc(12);

/*

Request

sort

to

include

current

record

and

return

for

more

*/

return(Infield);

ende15:

end

e15x;

end

ex107;

Figure

38.

PLISRTB—Sorting

from

input-handling

routine

to

output

data

set

Sort

data

handling

routines

372

PL/I

for

Windows:

Programming

Guide

Content

of

EX107.DAT

to

be

used

with

Figure

38

on

page

372

003329HOOKER

S.W.

RIVERDALE,

SATCHWELL

LANE,

BACONSFIELD

002886BOOKER

R.R.

ROTORUA,

LINKEDGE

LANE,

TOBLEY

003077ROOKER

&

SON,

LITTLETON

NURSERIES,

SHOLTSPAR

059334HOOK

E.H.

109

ELMTREE

ROAD,

GANNET

PARK,

NORTHAMPTON

073872HOME

TAVERN,

WESTLEIGH

000931FOREST,

IVER,

BUCKS

Sort

data

handling

routines

Chapter

26.

Using

sort

routines

373

Calling

PLISRTC

Content

of

EX108.DAT

to

be

used

with

Figure

39

003329HOOKER

S.W.

RIVERDALE,

SATCHWELL

LANE,

BACONSFIELD

002886BOOKER

R.R.

ROTORUA,

LINKEDGE

LANE,

TOBLEY

003077ROOKER

&

SON,

LITTLETON

NURSERIES,

SHOLTSPAR

059334HOOK

E.H.

109

ELMTREE

ROAD,

GANNET

PARK,

NORTHAMPTON

073872HOME

TAVERN,

WESTLEIGH

000931FOREST,

IVER,

BUCKS

/***/

/*

*/

/*

DESCRIPTION

*/

/*

Sorting

from

an

input

data

set

to

an

output-handling

routine

*/

/*

*/

/*

Use

the

following

statement:

*/

/*

*/

/*

set

dd:sortin=ex108.dat,type(crlf),lrecl(80)

*/

/*

*/

/***/

ex108:

proc

options(main);

dcl

Return_code

fixed

bin(31,0);

call

plisrtc

(’

SORT

FIELDS=(7,74,CH,A)

’,

’

RECORD

TYPE=F,LENGTH=(80)

’,

0,

Return_code,

e35x);

select(Return_code);

when(0)

put

skip

edit

(’Sort

complete

return_code

0’)

(a);

when(16)

put

skip

edit

(’Sort

failed,

return_code

16’)

(a);

other

put

skip

edit

(’Invalid

return_code

=

’,

Return_code)

(a,f(2));

end

/*

Select

*/;

/*

Set

pl/i

return

code

to

reflect

success

of

sort

*/

call

pliretc

(return_code);

e35x:

/*

Output-handling

routine

prints

sorted

records

*/

proc

(Inrec);

dcl

inrec

char(*);

put

skip

edit

(inrec)

(a);

call

pliretc(4);

/*

Request

next

record

from

sort

*/

end

e35x;

end

ex108;

Figure

39.

PLISRTC—Sorting

from

input

data

set

to

output-handling

routine

Sort

data

handling

routines

374

PL/I

for

Windows:

Programming

Guide

Calling

PLISRTD,

example

1

Contents

of

EX109.DAT

and

EX110.DAT

used

with

Figure

40

and

Figure

41

on

page

376

003329HOOKER

S.W.

RIVERDALE,

SATCHWELL

LANE,

BACONSFIELD

002886BOOKER

R.R.

ROTORUA,

LINKEDGE

LANE,

TOBLEY

003077ROOKER

&

SON,

LITTLETON

NURSERIES,

SHOLTSPAR

059334HOOK

E.H.

109

ELMTREE

ROAD,

GANNET

PARK,

NORTHAMPTON

073872HOME

TAVERN,

WESTLEIGH

000931FOREST,

IVER,

BUCKS

/***/

/*

*/

/*

DESCRIPTION

*/

/*

Sorting

an

input-handling

to

output-handling

routine

*/

/*

*/

/*

Use

the

following

statement:

*/

/*

*/

/*

set

dd:sysin=ex109.dat,type(crlf),lrecl(80)

*/

/*

*/

/***/

ex109:

proc

options(main);

dcl

Return_code

fixed

bin(31,0);

call

plisrtd

(’

SORT

FIELDS=(7,74,CH,A)

’,

’

RECORD

TYPE=F,LENGTH=(80)

’,

0,

Return_code,

e15x,

e35x);

select(Return_code);

when(0)

put

skip

edit

(’Sort

complete

return_code

0’)

(a);

when(16)

put

skip

edit

(’Sort

failed,

return_code

16’)

(a);

other

put

skip

edit

(’Invalid

return_code

=

’,

Return_code)

(a,f(2));

end

/*

select

*/;

/*

Set

pl/i

return

code

to

reflect

success

of

sort

*/

call

pliretc(Return_code);

e15x:

/*

Input-handling

routine

prints

input

before

sorting

*/

proc

returns(char(80));

dcl

infield

char(80);

on

endfile(sysin)

begin;

put

skip(3)

edit

(’end

of

sort

program

input.

’,

’sorted

output

should

follow’)(a);

call

pliretc(8);

/*

Signal

end

of

input

to

sort

*/

goto

ende15;

end;

get

file

(sysin)

edit

(infield)

(l);

put

skip

edit

(infield)(a);

call

pliretc(12);

/*

Input

to

sort

continues

*/

return(Infield);

ende15:

end

e15x;

e35x:

/*

Output-handling

routine

prints

the

sorted

records

*/

proc

(Inrec);

dcl

inrec

char(80);

put

skip

edit

(inrec)

(a);

next:

call

pliretc(4);

/*

Request

next

record

from

sort

*/

end

e35x;

end

ex109;

Figure

40.

PLISRTD—Sorting

input-handling

routine

to

output-handling

routine

Sort

data

handling

routines

Chapter

26.

Using

sort

routines

375

Calling

PLISRTD,

example

2

ex110:

proc

options(main);

/***/

/*

*/

/*

PLISRTD:

sorting

from

an

input-handling

rtn

to

an

*/

/*

output-handling

routine.

Records

are

varying-length.

*/

/*

*/

/***/

dcl

rc

fixed

bin(31,0);

call

plisrtd(’

SORT

FIELDS=(7,4,CH,A)

’,

’

RECORD

TYPE=V,LENGTH=(80)

’,

256000,

rc,

e15x,

e35x

);

select(

rc

);

when(0)

put

skip

edit

(’Sort

complete

return

code

=

0’)

(a);

when(16)

put

skip

edit

(’Sort

failed

return

code

=

16’)

(a);

other

put

skip

edit

(’Invalid

return

code

=

’,

rc)

(a,f(2));

end;

call

pliretc(rc);

e15x:

proc

returns(

char(80)

varying

);

dcl

infield

char(80)

var;

on

endfile(sysin)

begin;

put

skip(3)

edit(’End

of

sort

program

input.

’,

’Sortout

output

should

follow’)

(a);

call

pliretc(8);

goto

ende15;

end;

get

file(sysin)

edit(infield)

(l);

put

skip

edit(

infield

)

(a);

call

pliretc(12);

return(infield);

ende15:

end

e15x;

e35x:

proc

(

inrec

);

dcl

inrec

char(*);

put

skip

edit(inrec)

(a);

call

pliretc(4);

end

e35x;

end

ex110;

Figure

41.

PLISRTD—Sorting

input-handling

routine

to

output-handling

routine

Sort

data

handling

routines

376

PL/I

for

Windows:

Programming

Guide

Chapter

27.

Using

the

SAX

parser

The

compiler

provides

an

interface

called

PLISAXx

(x

=

A

or

B)

that

provides

you

basic

XML

capability

to

PL/I.

The

support

includes

a

high-speed

XML

parser,

which

allows

programs

to

consume

inbound

XML

messages,

check

them

for

well-formedness,

and

transform

their

contents

to

PL/I

data

structures.

The

XMLCHAR

built-in

function

provides

support

for

XML

generation.

Overview

There

are

two

major

types

of

interfaces

for

XML

parsing:

event-based

and

tree-based.

For

an

event-based

API,

the

parser

reports

events

to

the

application

through

callbacks.

Such

events

include:

the

start

of

the

document,

the

beginning

of

an

element,

etc.

The

application

provides

handlers

to

deal

with

the

events

reported

by

the

parser.

The

Simple

API

for

XML

or

SAX

is

an

example

of

an

industry-standard

event-based

API.

For

a

tree-based

API

(such

as

the

Document

Object

Model

or

DOM),

the

parser

translates

the

XML

into

an

internal

tree-based

representation.

Interfaces

are

provided

to

navigate

the

tree.

IBM

PL/I

provides

a

SAX-like

event-based

interface

for

parsing

XML

documents.

The

parser

invokes

an

application-supplied

handler

for

parser

events,

passing

references

to

the

corresponding

document

fragments.

The

parser

has

the

following

characteristics:

v

It

provides

high-performance,

but

non-standard

interfaces.

v

It

supports

XML

files

encoded

in

either

Unicode

UTF-16

or

any

of

several

single-byte

code

pages

listed

below.

v

The

parser

is

non-validating,

but

does

partially

check

well-formedness.

See

section

2.5.10,

XML

documents

have

two

levels

of

conformance:

well-formedness

and

validity,

both

of

which

are

defined

in

the

XML

standard,

which

you

can

find

at

http://www.w3c.org/XML/.

Recapitulating

these

definitions,

an

XML

document

is

well-formed

if

it

complies

with

the

basic

XML

grammar,

and

with

a

few

specific

rules,

such

as

the

requirement

that

the

names

on

start

and

end

element

tags

must

match.

A

well-formed

XML

document

is

also

valid

if

it

has

an

associated

document

type

declaration

(DTD)

and

if

it

complies

with

the

constraints

expressed

in

the

DTD.

The

XML

parser

is

non-validating,

but

does

partially

check

for

well-formedness

errors,

and

generates

exception

events

if

it

discovers

any.

377

The

PLISAXA

built-in

subroutine

The

PLISAXA

built-in

subroutine

allows

you

to

invoke

the

XML

parser

for

an

XML

document

residing

in

a

buffer

in

your

program.

��

PLISAXA(e,p,x,n

)

,c

��

e

An

event

structure

p

A

pointer

value

or

″token″

that

the

parser

will

pass

back

to

the

event

functions

x

The

address

of

the

buffer

containing

the

input

XML

n

The

number

of

bytes

of

data

in

that

buffer

c

A

numeric

expression

specifying

the

purported

codepage

of

that

XML

Note

that

if

the

XML

is

contained

in

a

CHARACTER

VARYING

or

a

WIDECHAR

VARYING

string,

then

the

ADDRDATA

built-in

function

should

be

used

to

obtain

the

address

of

the

first

data

byte.

Also

note

that

if

the

XML

is

contained

in

a

WIDECHAR

string,

the

value

for

the

number

of

bytes

is

twice

the

value

returned

by

the

LENGTH

built-in

function.

The

PLISAXB

built-in

subroutine

The

PLISAXB

built-in

subroutine

allows

you

to

invoke

the

XML

parser

for

an

XML

document

residing

in

a

file.

��

PLISAXB(e,p,x

)

,c

��

e

An

event

structure

p

A

pointer

value

or

″token″

that

the

parser

will

pass

back

to

the

event

functions

x

A

character

string

expression

specifying

the

input

file

c

A

numeric

expression

specifying

the

purported

codepage

of

that

XML

Under

batch,

the

character

string

specifying

the

input

file

should

have

the

form

’file://dd:ddname’,

where

ddname

is

the

name

of

the

DD

statement

specifying

the

file.

Under

USS,

the

character

string

specifying

the

input

file

should

have

the

form

’file://filename’,

where

filename

is

the

name

of

a

USS

file.

The

SAX

event

structure

The

event

structure

is

a

structure

consisting

of

24

LIMITED

ENTRY

variables

which

point

to

functions

that

the

parser

will

invoke

for

various

″events″.

The

descriptions

below

of

each

event

refer

to

the

example

of

an

XML

document

in

Figure

42

on

page

379.

In

these

descriptions,

the

term

″XML

text″

refers

to

the

string

based

on

the

pointer

and

length

passed

to

the

event.

378

PL/I

for

Windows:

Programming

Guide

In

the

order

of

their

appearance

in

this

structure,

the

parser

may

recognize

the

following

events:

start_of_document

This

event

occurs

once,

at

the

beginning

of

parsing

the

document.

The

parser

passes

the

address

and

length

of

the

entire

document,

including

any

line-control

characters,

such

as

LF

(Line

Feed)

or

NL

(New

Line).

For

the

above

example,

the

document

is

305

characters

in

length.

version_information

This

event

occurs

within

the

optional

XML

declaration

for

the

version

information.

The

parser

passes

the

address

and

length

of

the

text

containing

the

version

value,

″1.0″

in

the

example

above.

encoding_declaration

This

event

occurs

within

the

XML

declaration

for

the

optional

encoding

declaration.

The

parser

passes

the

address

and

length

of

the

text

containing

the

encoding

value.

standalone_declaration

This

event

occurs

within

the

XML

declaration

for

the

optional

standalone

declaration.

The

parser

passes

the

address

and

length

of

the

text

containing

the

standalone

value,

″yes″

in

the

example

above.

document_type_declaration

This

event

occurs

when

the

parser

finds

a

document

type

declaration.

Document

type

declarations

begin

with

the

character

sequence

″<!DOCTYPE″

and

end

with

a

″>″

character,

with

some

fairly

complicated

grammar

rules

describing

the

content

in

between.

The

parser

passes

the

address

and

length

of

the

text

containing

the

entire

declaration,

including

the

opening

and

closing

character

sequences,

and

is

the

only

event

where

XML

text

includes

the

delimiters.

The

example

above

does

not

have

a

document

type

declaration.

end_of_document

This

event

occurs

once,

when

document

parsing

has

completed.

xmlDocument

=

’<?xml

version="1.0"

standalone="yes"?>’

||

’<!--This

document

is

just

an

example-->’

||

’<sandwich>’

||

’<bread

type="baker’s

best"/>’

||

’<?spread

please

use

real

mayonnaise

?>’

||

’<meat>Ham

&

turkey</meat>’

||

’<filling>Cheese,

lettuce,

tomato,

etc.</filling>’

||

'<![CDATA[We

should

add

a

<relish>

element

in

future!]]>’

||

’</sandwich>’

||

’junk’;

Figure

42.

Sample

XML

document

Chapter

27.

Using

the

SAX

parser

379

start_of_element

This

event

occurs

once

for

each

element

start

tag

or

empty

element

tag.

The

parser

passes

the

address

and

length

of

the

text

containing

the

element

name.

For

the

first

start_of_element

event

during

parsing

of

the

example,

this

would

be

the

string

″sandwich″.

attribute_name

This

event

occurs

for

each

attribute

in

an

element

start

tag

or

empty

element

tag,

after

recognizing

a

valid

name.

The

parser

passes

the

address

and

length

of

the

text

containing

the

attribute

name.

The

only

attribute

name

in

the

example

is

″type″.

attribute_characters

This

event

occurs

for

each

fragment

of

an

attribute

value.

The

parser

passes

the

address

and

length

of

the

text

containing

the

fragment.

An

attribute

value

normally

consists

of

a

single

string

only,

even

if

it

is

split

across

lines:

<element

attribute="This

attribute

value

is

split

across

two

lines"/>

The

attribute

value

might

consist

of

multiple

pieces,

however.

For

instance,

the

value

of

the

″type″

attribute

in

the

″sandwich″

example

at

the

beginning

of

the

section

consists

of

three

fragments:

the

string

″baker″,

the

single

character

″’″

and

the

string

″s

best″.

The

parser

passes

these

fragments

as

three

separate

events.

It

passes

each

string,

″baker″

and

″s

best″

in

the

example,

as

attribute_characters

events,

and

the

single

character

″’″

as

an

attribute_predefined_reference

event,

described

next.

attribute_predefined_reference

This

event

occurs

in

attribute

values

for

the

five

pre-defined

entity

references

″&″,

″’″,

″>″,

″<″

and

″’″.

The

parser

passes

a

CHAR(1)

or

WIDECHAR(1)

value

that

contains

one

of

″&″,

″’″,

″>″,

″<″

or

’″’,

respectively.

attribute_character_reference

This

event

occurs

in

attribute

values

for

numeric

character

references

(Unicode

code

points

or

″scalar

values″)

of

the

form

″&#dd;″

or

″&#xhh;″,

where

″d″

and

″h″

represent

decimal

and

hexadecimal

digits,

respectively.

The

parser

passes

a

FIXED

BIN(31)

value

that

contains

the

corresponding

integer

value.

end_of_element

This

event

occurs

once

for

each

element

end

tag

or

empty

element

tag

when

the

parser

recognizes

the

closing

angle

bracket

of

the

tag.

The

parser

passes

the

address

and

length

of

the

text

containing

the

element

name.

start_of_CDATA_section

This

event

occurs

at

the

start

of

a

CDATA

section.

CDATA

sections

begin

with

the

string

“<![CDATA[”

and

end

with

the

string

“]]”,

and

are

used

to

″escape″

blocks

of

text

containing

characters

that

would

otherwise

be

recognized

as

XML

markup.

The

parser

passes

the

address

and

length

of

the

text

containing

the

opening

characters

“<![CDATA[”.

The

parser

passes

the

content

of

a

CDATA

section

between

these

delimiters

as

a

single

content-characters

event.

For

the

example,

in

the

above

example,

the

content-characters

event

is

passed

the

text

″We

should

add

a

<relish>

element

in

future!″.

380

PL/I

for

Windows:

Programming

Guide

end_of_CDATA_section

This

event

occurs

when

the

parser

recognizes

the

end

of

a

CDATA

section.

The

parser

passes

the

address

and

length

of

the

text

containing

the

closing

character

sequence,

“]]”.

content_characters

This

event

represents

the

″heart″

of

an

XML

document:

the

character

data

between

element

start

and

end

tags.

The

parser

passes

the

address

and

length

of

the

text

containing

the

this

data,

which

usually

consists

of

a

single

string

only,

even

if

it

is

split

across

lines:

<element1>This

character

content

is

split

across

two

lines</element1>

If

the

content

of

an

element

includes

any

references

or

other

elements,

the

complete

content

may

comprise

several

segments.

For

instance,

the

content

of

the

″meat″

element

in

the

example

consists

of

the

string

″Ham

″,

the

character

″&″

and

the

string

″

turkey″.

Notice

the

trailing

and

leading

spaces,

respectively,

in

these

two

string

fragments.

The

parser

passes

these

three

content

fragments

as

separate

events.

It

passes

the

string

content

fragments,

″Ham

″

and

″

turkey″,

as

content_characters

events,

and

the

single

″&″

character

as

a

content_predefined_reference

event.

The

parser

also

uses

the

content_characters

event

to

pass

the

text

of

CDATA

sections

to

the

application.

content_predefined_reference

This

event

occurs

in

element

content

for

the

five

pre-defined

entity

references

″&″,

″’″,

″>″,

″<″

and

″’″.

The

parser

passes

a

CHAR(1)

or

WIDECHAR(1)

value

that

contains

one

of

″&″,

″’″,

″>″,

″<″

or

’″’,

respectively.

content_character_reference

This

event

occurs

in

element

content

for

numeric

character

references

(Unicode

code

points

or

″scalar

values″)

of

the

form

″&#dd;″

or

″&#xhh;″,

where

″d″

and

″h″

represent

decimal

and

hexadecimal

digits,

respectively.

The

parser

passes

a

FIXED

BIN(31)

value

that

contains

the

corresponding

integer

value.

processing_instruction

Processing

instructions

(PIs)

allow

XML

documents

to

contain

special

instructions

for

applications.

This

event

occurs

when

the

parser

recognizes

the

name

following

the

PI

opening

character

sequence,

″<?″.

The

event

also

covers

the

data

following

the

processing

instruction

(PI)

target,

up

to

but

not

including

the

PI

closing

character

sequence,

″?>″.

Trailing,

but

not

leading

white

space

characters

in

the

data

are

included.

The

parser

passes

the

address

and

length

of

the

text

containing

the

target,

″spread″

in

the

example,

and

the

address

and

length

of

the

text

containing

the

data,

″please

use

real

mayonnaise

″

in

the

example.

comment

This

event

occurs

for

any

comments

in

the

XML

document.

The

parser

passes

the

address

and

length

of

the

text

between

the

opening

and

closing

comment

delimiters,

″<!--″

and

″-->″,

respectively.

In

the

example,

the

text

of

the

only

comment

is

″This

document

is

just

an

example″.

Chapter

27.

Using

the

SAX

parser

381

unknown_attribute_reference

This

event

occurs

within

attribute

values

for

entity

references

other

than

the

five

pre-defined

entity

references,

listed

for

the

event

attribute_predefined_character.

The

parser

passes

the

address

and

length

of

the

text

containing

the

entity

name.

unknown_content_reference

This

event

occurs

within

element

content

for

entity

references

other

than

the

five

pre-defined

entity

references

listed

for

the

content_predefined_character

event.

The

parser

passes

the

address

and

length

of

the

text

containing

the

entity

name.

start_of_prefix_mapping

This

event

is

currently

not

generated.

end_of_prefix_mapping

This

event

is

currently

not

generated.

exception

The

parser

generates

this

event

when

it

detects

an

error

in

processing

the

XML

document.

Parameters

to

the

event

functions

All

of

these

functions

must

return

a

BYVALUE

FIXED

BIN(31)

value

that

is

a

return

code

to

the

parser.

For

the

parser

to

continue

normally,

this

value

should

be

zero.

All

of

these

functions

will

be

passed

as

the

first

argument

a

BYVALUE

POINTER

that

is

the

token

value

passed

originally

as

the

second

argument

to

the

built-in

function.

With

the

following

exceptions,

all

of

the

functions

will

also

be

passed

a

BYVALUE

POINTER

and

a

BYVALUE

FIXED

BIN(31)

that

supply

the

address

and

length

of

the

text

element

for

the

event.

The

functions/events

that

are

different

are:

end_of_document

No

argument

other

than

the

user

token

is

passed.

attribute_predefined_reference

In

addition

to

the

user

token,

one

additional

argument

is

passed:

a

BYVALUE

CHAR(1)

or,

for

a

UTF-16

document,

a

BYVALUE

WIDECHAR(1)

that

holds

the

value

of

the

predefined

character.

content_predefined_reference

In

addition

to

the

user

token,

one

additional

argument

is

passed:

a

BYVALUE

CHAR(1)

or,

for

a

UTF-16

document,

a

BYVALUE

WIDECHAR(1)

that

holds

the

value

of

the

predefined

character.

attribute_character_reference

In

addition

to

the

user

token,

one

additional

argument

is

passed:

a

BYVALUE

FIXED

BIN(31)

that

holds

the

value

of

the

numeric

reference.

content_character_reference

In

addition

to

the

user

token,

one

additional

argument

is

passed:

a

BYVALUE

FIXED

BIN(31)

that

holds

the

value

of

the

numeric

reference.

processing_instruction

In

addition

to

the

user

token,

four

additional

arguments

are

passed:

382

PL/I

for

Windows:

Programming

Guide

1.

a

BYVALUE

POINTER

that

is

the

address

of

the

target

text

2.

a

BYVALUE

FIXED

BIN(31)

that

is

the

length

of

the

target

text

3.

a

BYVALUE

POINTER

that

is

the

address

of

the

data

text

4.

a

BYVALUE

FIXED

BIN(31)

that

is

the

length

of

the

data

text

exception

In

addition

to

the

user

token,

three

additional

arguments

are

passed:

1.

a

BYVALUE

POINTER

that

is

the

address

of

the

offending

text

2.

a

BYVALUE

FIXED

BIN(31)

that

is

the

byte

offset

of

the

offending

text

within

the

document

3.

a

BYVALUE

FIXED

BIN(31)

that

is

the

value

of

the

exception

code

Coded

character

sets

for

XML

documents

The

PLISAX

built-in

subroutine

supports

only

XML

documents

in

WIDECHAR

encoded

using

Unicode

UTF-16,

or

in

CHARACTER

encoded

using

one

of

the

explicitly

supported

single-byte

character

sets

listed

below.

The

parser

uses

up

to

three

sources

of

information

about

the

encoding

of

your

XML

document,

and

signals

an

exception

XML

event

if

it

discovers

any

conflicts

between

these

sources:

1.

The

parser

determines

the

basic

encoding

of

a

document

by

inspecting

its

initial

characters.

2.

If

step

1

succeeds,

the

parser

then

looks

for

any

encoding

declaration.

3.

Finally,

it

refers

to

the

codepage

value

on

the

PLISAX

built-in

subroutine

call.

If

this

parameter

was

omitted,

it

defaults

to

the

value

provided

by

the

CODEPAGE

compiler

option

value

that

you

specified

explicitly

or

by

default.

If

the

XML

document

begins

with

an

XML

declaration

that

includes

an

encoding

declaration

specifying

one

of

the

supported

code

pages

listed

below,

the

parser

honors

the

encoding

declaration

if

it

does

not

conflict

with

either

the

basic

document

encoding

or

the

encoding

information

from

the

PLISAX

built-in

subroutine.

If

the

XML

document

does

not

have

an

XML

declaration

at

all,

or

if

the

XML

declaration

omits

the

encoding

declaration,

the

parser

uses

the

encoding

information

from

the

PLISAX

built-in

subroutine

to

process

the

document,

as

long

as

it

does

not

conflict

with

the

basic

document

encoding.

Supported

EBCDIC

code

pages

In

the

following

table,

the

first

number

is

for

the

Euro

Country

Extended

Code

Page

(ECECP),

and

the

second

is

for

Country

Extended

Code

Page

(CECP).

CCSID

Description

01047

Latin

1

/

Open

Systems

01140,

00037

USA,

Canada,

etc.

01141,

00273

Austria,

Germany

01142,

00277

Denmark,

Norway

01143,

00278

Finland,

Sweden

01144,

00280

Italy

01145,

00284

Spain,

Latin

America

(Spanish)

01146,

00285

UK

01147,

00297

France

01148,

00500

International

Chapter

27.

Using

the

SAX

parser

383

CCSID

Description

01149,

00871

Iceland

Supported

ASCII

code

pages

CCSID

Description

00813

ISO

8859-7

Greek

/

Latin

00819

ISO

8859-1

Latin

1

/

Open

Systems

00920

ISO

8859-9

Latin

5

(ECMA-128,

Turkey

TS-5881)

Specifying

the

code

page

If

your

document

does

not

include

an

encoding

declaration

in

the

XML

declaration,

or

does

not

have

an

XML

declaration

at

all,

the

parser

uses

the

encoding

information

provided

by

the

PLISAX

built-in

subroutine

call

in

conjunction

with

the

basic

encoding

of

the

document.

You

can

also

specify

the

encoding

information

for

the

document

in

the

XML

declaration,

with

which

most

XML

documents

begin.

An

example

of

an

XML

declaration

that

includes

an

encoding

declaration

is:

<?xml

version="1.0"

encoding="ibm-1140"?>

If

your

XML

document

includes

an

encoding

declaration,

ensure

that

it

is

consistent

with

the

encoding

information

provided

by

the

PLISAX

built-in

subroutine

and

with

the

basic

encoding

of

the

document.

If

there

is

any

conflict

between

the

encoding

declaration,

the

encoding

information

provided

by

the

PLISAX

built-in

subroutine

and

the

basic

encoding

of

the

document,

the

parser

signals

an

exception

XML

event.

Specify

the

encoding

declaration

as

follows:

Using

a

number:

You

can

specify

the

CCSID

number

(with

or

without

any

number

of

leading

zeroes),

prefixed

by

any

of

the

following

(in

any

mixture

of

upper

or

lower

case):

IBM_

IBM-

CP

CP_

CP-

CCSID_

CCSID-

Using

an

alias

You

can

use

any

of

the

following

supported

aliases

(in

any

mixture

of

lower

and

upper

case):

Code

page

Supported

aliases

037

EBCDIC-CP-US,

EBCDIC-CP-CA,

EBCDIC-CP-WT,

EBCDIC-CP-NL

500

EBCDIC-CP-BE,

EBCDIC-CP-CH

813

ISO-8859-7,

ISO_8859-7

819

ISO-8859-1,

ISO_8859-1

920

ISO-8859-9,

ISO_8859-9

384

PL/I

for

Windows:

Programming

Guide

Code

page

Supported

aliases

1200

UTF-16

Exceptions

For

most

exceptions,

the

XML

text

contains

the

part

of

the

document

that

was

parsed

up

to

and

including

the

point

where

the

exception

was

detected.

For

encoding

conflict

exceptions,

which

are

signaled

before

parsing

begins,

the

length

of

the

XML

text

is

either

zero

or

the

XML

text

contains

just

the

encoding

declaration

value

from

the

document.

The

example

above

contains

one

item

that

causes

an

exception

event,

the

superfluous

″junk″

following

the

″sandwich″

element

end

tag.

There

are

two

kinds

of

exceptions:

1.

Exceptions

that

allow

you

to

continue

parsing

optionally.

Continuable

exceptions

have

exception

codes

in

the

range

1

through

99,

100,001

through

165,535,

or

200,001

to

265,535.

The

exception

event

in

the

example

above

has

an

exception

number

of

1

and

thus

is

continuable.

2.

Fatal

exceptions,

which

don’t

allow

continuation.

Fatal

exceptions

have

exception

codes

greater

than

99

(but

less

than

100,000).

Returning

from

the

exception

event

function

with

a

non-zero

return

code

normally

causes

the

parser

to

stop

processing

the

document,

and

return

control

to

the

program

that

invoked

the

PLISAXA

or

PLISAXB

built-in

subroutine.

For

continuable

exceptions,

returning

from

the

exception

event

function

with

a

zero

return

code

requests

the

parser

to

continue

processing

the

document,

although

further

exceptions

might

subsequently

occur.

See

section

2.5.6.1,

″Continuable

exceptions″

for

details

of

the

actions

that

the

parser

takes

when

you

request

continuation.

A

special

case

applies

to

exceptions

with

exception

numbers

in

the

ranges

100,001

through

165,535

and

200,001

through

265,535.

These

ranges

of

exception

codes

indicate

that

the

document’s

CCSID

(determined

by

examining

the

beginning

of

the

document,

including

any

encoding

declaration)

is

not

identical

to

the

CCSID

value

provided

(explicitly

or

implicitly)

by

the

PLISAXA

or

PLISAXB

built-in

subroutine,

even

if

both

CCSIDs

are

for

the

same

basic

encoding,

EBCDIC

or

ASCII.

For

these

exceptions,

the

exception

code

passed

to

the

exception

event

contains

the

document’s

CCSID,

plus

100,000

for

EBCDIC

CCSIDs,

or

200,000

for

ASCII

CCSIDs.

For

instance,

if

the

exception

code

contains

101,140,

the

document└s

CCSID

is

01140.

The

CCSID

value

provided

by

the

PLISAXA

or

PLISAXB

built-in

subroutine

is

either

set

explicitly

as

the

last

argument

on

the

call

or

implicitly

when

the

last

argument

is

omitted

and

the

value

of

the

CODEPAGE

compiler

option

is

used.

Depending

on

the

value

of

the

return

code

after

returning

from

the

exception

event

function

for

these

CCSID

conflict

exceptions,

the

parser

takes

one

of

three

actions:

1.

If

the

return

code

is

zero,

the

parser

proceeds

using

the

CCSID

provided

by

the

built-in

subroutine.

2.

If

the

return

code

contains

the

document’s

CCSID

(that

is,

the

original

exception

code

value

minus

100,000

or

200,000),

the

parser

proceeds

using

the

Chapter

27.

Using

the

SAX

parser

385

document└s

CCSID.

This

is

the

only

case

where

the

parser

continues

after

a

non-zero

value

is

returned

from

one

of

the

parsing

events.

3.

Otherwise,

the

parser

stops

processing

the

document,

and

returns

control

to

the

PLISAXA

or

PLISAXB

built-in

subroutine

which

will

raise

the

ERROR

condition.

Example

The

following

example

illustrates

the

use

of

the

PLISAXA

built-in

subroutine

and

uses

the

example

XML

document

cited

above:

saxtest:

package

exports(saxtest);

define

alias

event

limited

entry(

pointer,

pointer,

fixed

bin(31)

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

define

alias

event_end_of_document

limited

entry(

pointer

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

define

alias

event_predefined_ref

limited

entry(

pointer,

char(1)

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

nodescriptor

);

define

alias

event_character_ref

limited

entry(

pointer,

fixed

bin(31)

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

define

alias

event_pi

limited

entry(

pointer,

pointer,

fixed

bin(31),

pointer,

fixed

bin(31)

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

define

alias

event_exception

limited

entry(

pointer,

pointer,

fixed

bin(31),

fixed

bin(31)

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

Figure

43.

PLISAXA

coding

example

-

type

declarations

386

PL/I

for

Windows:

Programming

Guide

saxtest:

proc

options(

main

);

dcl

1

eventHandler

static

,2

e01

type

event

init(

start_of_document

)

,2

e02

type

event

init(

version_information

)

,2

e03

type

event

init(

encoding_declaration

)

,2

e04

type

event

init(

standalone_declaration

)

,2

e05

type

event

init(

document_type_declaration

)

,2

e06

type

event_end_of_document

init(

end_of_document

)

,2

e07

type

event

init(

start_of_element

)

,2

e08

type

event

init(

attribute_name

)

,2

e09

type

event

init(

attribute_characters

)

,2

e10

type

event_predefined_ref

init(

attribute_predefined_reference

)

,2

e11

type

event_character_ref

init(

attribute_character_reference

)

,2

e12

type

event

init(

end_of_element

)

,2

e13

type

event

init(

start_of_CDATA

)

,2

e14

type

event

init(

end_of_CDATA

)

,2

e15

type

event

init(

content_characters

)

,2

e16

type

event_predefined_ref

init(

content_predefined_reference

)

,2

e17

type

event_character_ref

init(

content_character_reference

)

,2

e18

type

event_pi

init(

processing_instruction

)

,2

e19

type

event

init(

comment

)

,2

e20

type

event

init(

unknown_attribute_reference

)

,2

e21

type

event

init(

unknown_content_reference

)

,2

e22

type

event

init(

start_of_prefix_mapping

)

,2

e23

type

event

init(

end_of_prefix_mapping

)

,2

e24

type

event_exception

init(

exception

)

;

Figure

44.

PLISAXA

coding

example

-

event

structure

Chapter

27.

Using

the

SAX

parser

387

dcl

token

char(8);

dcl

xmlDocument

char(4000)

var;

xmlDocument

=

’<?xml

version="1.0"

standalone="yes"?>’

||

’<!--This

document

is

just

an

example-->’

||

’<sandwich>’

||

’<bread

type="baker’s

best"/>’

||

’<?spread

please

use

real

mayonnaise

?>’

||

’<meat>Ham

&

turkey</meat>’

||

’<filling>Cheese,

lettuce,

tomato,

etc.</filling>’

||

'<![CDATA[We

should

add

a

<relish>

element

in

future!]]>'.

||

’</sandwich>’

||

’junk’;

call

plisaxa(

eventHandler,

addr(token),

addrdata(xmlDocument),

length(xmlDocument)

);

end;

Figure

45.

PLISAXA

coding

example

-

main

routine

388

PL/I

for

Windows:

Programming

Guide

dcl

chars

char(32000)

based;

start_of_document:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

length=’

||

tokenlength

);

return(0);

end;

version_information:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

encoding_declaration:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

Figure

46.

PLISAXA

coding

example

-

event

routines

(Part

1

of

8)

Chapter

27.

Using

the

SAX

parser

389

standalone_declaration:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

document_type_declaration:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

end_of_document:

proc(

userToken

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

put

skip

list(

lowercase(

procname()

)

);

return(0);

end;

Figure

46.

PLISAXA

coding

example

-

event

routines

(Part

2

of

8)

390

PL/I

for

Windows:

Programming

Guide

start_of_element:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

attribute_name:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

attribute_characters:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

Figure

46.

PLISAXA

coding

example

-

event

routines

(Part

3

of

8)

Chapter

27.

Using

the

SAX

parser

391

attribute_predefined_reference:

proc(

userToken,

reference

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

nodescriptor

);

dcl

userToken

pointer;

dcl

reference

char(1);

put

skip

list(

lowercase(

procname()

)

||

’

’

||

hex(reference

)

);

return(0);

end;

attribute_character_reference:

proc(

userToken,

reference

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

reference

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

hex(reference

)

);

return(0);

end;

end_of_element:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

Figure

46.

PLISAXA

coding

example

-

event

routines

(Part

4

of

8)

392

PL/I

for

Windows:

Programming

Guide

start_of_CDATA:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

end_of_CDATA:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

content_characters:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

Figure

46.

PLISAXA

coding

example

-

event

routines

(Part

5

of

8)

Chapter

27.

Using

the

SAX

parser

393

content_predefined_reference:

proc(

userToken,

reference

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

nodescriptor

);

dcl

userToken

pointer;

dcl

reference

char(1);

put

skip

list(

lowercase(

procname()

)

||

’

’

||

hex(reference

)

);

return(0);

end;

content_character_reference:

proc(

userToken,

reference

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

reference

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

hex(reference

)

);

return(0);

end;

processing_instruction:

proc(

userToken,

piTarget,

piTargetLength,

piData,

piDataLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

piTarget

pointer;

dcl

piTargetLength

fixed

bin(31);

dcl

piData

pointer;

dcl

piDataLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(piTarget->chars,1,piTargetLength

)

||

’>’

);

return(0);

end;

Figure

46.

PLISAXA

coding

example

-

event

routines

(Part

6

of

8)

394

PL/I

for

Windows:

Programming

Guide

comment:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

unknown_attribute_reference:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

unknown_content_reference:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

Figure

46.

PLISAXA

coding

example

-

event

routines

(Part

7

of

8)

Chapter

27.

Using

the

SAX

parser

395

The

preceding

program

would

produce

the

following

output:

start_of_prefix_mapping:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

end_of_prefix_mapping:

proc(

userToken,

xmlToken,

TokenLength

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

tokenLength

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

<’

||

substr(xmltoken->chars,1,tokenlength

)

||

’>’

);

return(0);

end;

exception:

proc(

userToken,

xmlToken,

currentOffset,

errorID

)

returns(

byvalue

fixed

bin(31)

)

options(

byvalue

);

dcl

userToken

pointer;

dcl

xmlToken

pointer;

dcl

currentOffset

fixed

bin(31);

dcl

errorID

fixed

bin(31);

put

skip

list(

lowercase(

procname()

)

||

’

errorid

=’

||

errorid

);

return(0);

end;

end;

Figure

46.

PLISAXA

coding

example

-

event

routines

(Part

8

of

8)

396

PL/I

for

Windows:

Programming

Guide

Continuable

exception

codes

For

each

value

of

the

exception

code

parameter

passed

to

the

exception

event

(listed

under

the

heading

″Number″),

the

following

table

describes

the

exception,

and

the

actions

that

the

parser

takes

when

you

request

it

to

continue

after

the

exception.

In

these

descriptions,

the

term

″XML

text″

refers

to

the

string

based

on

the

pointer

and

length

passed

to

the

event.

Table

34.

Continuable

Exceptions

Number

Description

Parser

Action

on

Continuation

1

The

parser

found

an

invalid

character

while

scanning

white

space

outside

element

content.

The

parser

generates

a

content_characters

event

with

XML

text

containing

the

(single)

invalid

character.

Parsing

continues

at

the

character

after

the

invalid

character.

2

The

parser

found

an

invalid

start

of

a

processing

instruction,

element,

comment

or

document

type

declaration

outside

element

content.

The

parser

generates

a

content_characters

event

with

the

XML

text

containing

the

2-

or

3-character

invalid

initial

character

sequence.

Parsing

continues

at

the

character

after

the

invalid

sequence.

start_of_dcoument

length=

305

version_information

<1.0>

standalone_declaration

<yes>

comment

<This

document

is

just

an

example>

start_of_element

<sandwich>

start_of_element

<bread>

attribute_name

<type>

attribute_characters

<baker>

attribute_predefined_reference

7D

attribute_characters

<s

best>

end_of_element

<bread>

processing_instruction

<spread>

start_of_element

<meat>

content_characters

<Ham

>

content_predefined_reference

50

content_characters

<

turkey>

end_of_element

<meat>

start_of_element

<filling>

content_characters

<Cheese,

lettuce,

tomato,

etc.>

end_of_element

<filling>

start_of_cdata

<<![CDATA[>

content_characters

<We

should

add

a

<relish>

element

in

future!>

end_of_cdata

<]]>

end_of_element

<sandwich>

exception

errorid

=

1

content_characters

<j>

exception

errorid

=

1

content_characters

<u>

exception

errorid

=

1

content_characters

<n>

exception

errorid

=

1

content_characters

<k>

end_of_document

Figure

47.

PLISAXA

coding

example

-

program

output

Chapter

27.

Using

the

SAX

parser

397

Table

34.

Continuable

Exceptions

(continued)

Number

Description

Parser

Action

on

Continuation

3

The

parser

found

a

duplicate

attribute

name.

The

parser

generates

an

attribute_name

event

with

the

XML

text

containing

the

duplicate

attribute

name.

4

The

parser

found

the

markup

character

″<″

in

an

attribute

value.

Prior

to

generating

the

exception

event,

the

parser

generates

an

attribute_characters

event

for

any

part

of

the

attribute

value

prior

to

the

″<″

character.

After

the

exception

event,

the

parser

generates

an

attribute_characters

event

with

XML

text

containing

″<″.

Parsing

then

continues

at

the

character

after

the

″<″.

5

The

start

and

end

tag

names

of

an

element

did

not

match.

The

parser

generates

an

end_of_element

event

with

XML

text

containing

the

mismatched

end

name.

6

The

parser

found

an

invalid

character

in

element

content.

The

parser

includes

the

invalid

character

in

XML

text

for

the

subsequent

content_characters

event.

7

The

parser

found

an

invalid

start

of

an

element,

comment,

processing

instruction

or

CDATA

section

in

element

content.

Prior

to

generating

the

exception

event,

the

parser

generates

a

content_characters

event

for

any

part

of

the

content

prior

to

the

″<″

markup

character.

After

the

exception

event,

the

parser

generates

a

content_characters

event

with

XML

text

containing

2

characters:

the

″<″

followed

by

the

invalid

character.

Parsing

continues

at

the

character

after

the

invalid

character.

8

The

parser

found

in

element

content

the

CDATA

closing

character

sequence

“]]”

without

the

matching

opening

character

sequence

“<![CDATA[”.

Prior

to

generating

the

exception

event,

the

parser

generates

a

content_characters

event

for

any

part

of

the

content

prior

to

the

“]]”

character

sequence.

After

the

exception

event,

the

parser

generates

a

content_characters

event

with

XML

text

containing

the

3-character

sequence

“]]”.

Parsing

continues

at

the

character

after

this

sequence.

9

The

parser

found

an

invalid

character

in

a

comment.

The

parser

includes

the

invalid

character

in

XML

text

for

the

subsequent

comment

event.

10

The

parser

found

in

a

comment

the

character

sequence

″--″

not

followed

by

″>″.

The

parser

assumes

that

the

″--″

character

sequence

terminates

the

comment,

and

generates

a

comment

event.

Parsing

continues

at

the

character

after

the

″--″

sequence.

11

The

parser

found

an

invalid

character

in

a

processing

instruction

data

segment.

The

parser

includes

the

invalid

character

in

XML

text

for

the

subsequent

processing_instruction

event.

398

PL/I

for

Windows:

Programming

Guide

Table

34.

Continuable

Exceptions

(continued)

Number

Description

Parser

Action

on

Continuation

12

A

processing

instruction

target

name

was

″xml″

in

lower-case,

upper-case

or

mixed-case.

The

parser

generates

a

processing_instruction

event

with

XML

text

containing

″xml″

in

the

original

case.

13

The

parser

found

an

invalid

digit

in

a

hexadecimal

character

reference

(of

the

form

�).

The

parser

generates

an

attribute_characters

or

content_characters

event

with

XML

text

containing

the

invalid

digit.

Parsing

of

the

reference

continues

at

the

character

after

this

invalid

digit.

14

The

parser

found

an

invalid

digit

in

a

decimal

character

reference

(of

the

form

&#dddd;).

The

parser

generates

an

attribute_characters

or

content_characters

event

with

XML

text

containing

the

invalid

digit.

Parsing

of

the

reference

continues

at

the

character

after

this

invalid

digit.

15

The

encoding

declaration

value

in

the

XML

declaration

did

not

begin

with

lower-

or

upper-case

A

through

Z

The

parser

generates

the

encoding

event

with

XML

text

containing

the

encoding

declaration

value

as

it

was

specified.

16

A

character

reference

did

not

refer

to

a

legal

XML

character.

The

parser

generates

an

attribute_character_reference

or

content_character_reference

event

with

XML-NTEXT

containing

the

single

Unicode

character

specified

by

the

character

reference.

17

The

parser

found

an

invalid

character

in

an

entity

reference

name.

The

parser

includes

the

invalid

character

in

the

XML

text

for

the

subsequent

unknown_attribute_reference

or

unknown_content_reference

event.

18

The

parser

found

an

invalid

character

in

an

attribute

value.

The

parser

includes

the

invalid

character

in

XML

text

for

the

subsequent

attribute_characters

event.

50

The

document

was

encoded

in

EBCDIC,

and

the

CODEPAGE

compiler

option

specified

a

supported

EBCDIC

code

page,

but

the

document

encoding

declaration

did

not

specify

a

recognizable

encoding.

The

parser

uses

the

encoding

specified

by

the

CODEPAGE

compiler

option.

51

The

document

was

encoded

in

EBCDIC,

and

the

document

encoding

declaration

specified

a

supported

EBCDIC

encoding,

but

the

parser

does

not

support

the

code

page

specified

by

the

CODEPAGE

compiler

option.

The

parser

uses

the

encoding

specified

by

the

document

encoding

declaration.

52

The

document

was

encoded

in

EBCDIC,

and

the

CODEPAGE

compiler

option

specified

a

supported

EBCDIC

code

page,

but

the

document

encoding

declaration

specified

an

ASCII

encoding.

The

parser

uses

the

encoding

specified

by

the

CODEPAGE

compiler

option.

Chapter

27.

Using

the

SAX

parser

399

Table

34.

Continuable

Exceptions

(continued)

Number

Description

Parser

Action

on

Continuation

53

The

document

was

encoded

in

EBCDIC,

and

the

CODEPAGE

compiler

option

specified

a

supported

EBCDIC

code

page,

but

the

document

encoding

declaration

specified

a

supported

Unicode

encoding.

The

parser

uses

the

encoding

specified

by

the

CODEPAGE

compiler

option.

54

The

document

was

encoded

in

EBCDIC,

and

the

CODEPAGE

compiler

option

specified

a

supported

EBCDIC

code

page,

but

the

document

encoding

declaration

specified

a

Unicode

encoding

that

the

parser

does

not

support.

The

parser

uses

the

encoding

specified

by

the

CODEPAGE

compiler

option.

55

The

document

was

encoded

in

EBCDIC,

and

the

CODEPAGE

compiler

option

specified

a

supported

EBCDIC

code

page,

but

the

document

encoding

declaration

specified

an

encoding

that

the

parser

does

not

support.

The

parser

uses

the

encoding

specified

by

the

CODEPAGE

compiler

option.

56

The

document

was

encoded

in

ASCII,

and

the

CODEPAGE

compiler

option

specified

a

supported

ASCII

code

page,

but

the

document

encoding

declaration

did

not

specify

a

recognizable

encoding.

The

parser

uses

the

encoding

specified

by

the

CODEPAGE

compiler

option.

57

The

document

was

encoded

in

ASCII,

and

the

document

encoding

declaration

specified

a

supported

ASCII

encoding,

but

the

parser

does

not

support

the

code

page

specified

by

the

CODEPAGE

compiler

option.

The

parser

uses

the

encoding

specified

by

the

document

encoding

declaration.

58

The

document

was

encoded

in

ASCII,

and

the

CODEPAGE

compiler

option

specified

a

supported

ASCII

code

page,

but

the

document

encoding

declaration

specified

a

supported

EBCDIC

encoding.

The

parser

uses

the

encoding

specified

by

the

CODEPAGE

compiler

option.

59

The

document

was

encoded

in

ASCII,

and

the

CODEPAGE

compiler

option

specified

a

supported

ASCII

code

page,

but

the

document

encoding

declaration

specified

a

supported

Unicode

encoding.

The

parser

uses

the

encoding

specified

by

the

CODEPAGE

compiler

option.

60

The

document

was

encoded

in

ASCII,

and

the

CODEPAGE

compiler

option

specified

a

supported

ASCII

code

page,

but

the

document

encoding

declaration

specified

a

Unicode

encoding

that

the

parser

does

not

support.

The

parser

uses

the

encoding

specified

by

the

CODEPAGE

compiler

option.

400

PL/I

for

Windows:

Programming

Guide

Table

34.

Continuable

Exceptions

(continued)

Number

Description

Parser

Action

on

Continuation

61

The

document

was

encoded

in

ASCII,

and

the

CODEPAGE

compiler

option

specified

a

supported

ASCII

code

page,

but

the

document

encoding

declaration

specified

an

encoding

that

the

parser

does

not

support.

The

parser

uses

the

encoding

specified

by

the

CODEPAGE

compiler

option.

100,001

through

165,535

The

document

was

encoded

in

EBCDIC,

and

the

encodings

specified

by

the

CODEPAGE

compiler

option

and

the

document

encoding

declaration

are

both

supported

EBCDIC

code

pages,

but

are

not

the

same.

The

exception

code

contains

the

CCSID

for

the

encoding

declaration

plus

100,000.

If

you

return

zero

from

the

exception

event,

the

parser

uses

the

encoding

specified

by

the

CODEPAGE

compiler

option.

If

you

return

the

CCSID

from

the

document

encoding

declaration

(by

subtracting

100,000

from

the

exception

code),

the

parser

uses

this

encoding.

200,001

through

265,535

The

document

was

encoded

in

ASCII,

and

the

encodings

specified

by

the

CODEPAGE

compiler

option

and

the

document

encoding

declaration

are

both

supported

ASCII

code

pages,

but

are

not

the

same.

The

exception

code

contains

the

CCSID

for

the

encoding

declaration

plus

200,000.

If

you

return

zero

from

the

exception

event,

the

parser

uses

the

encoding

specified

by

the

CODEPAGE

compiler

option.

If

you

return

the

CCSID

from

the

document

encoding

declaration

(by

subtracting

200,000

from

the

exception

code),

the

parser

uses

this

encoding.

Terminating

exception

codes

Table

35.

Terminating

Exceptions

Number

Description

100

The

parser

reached

the

end

of

the

document

while

scanning

the

start

of

the

XML

declaration.

101

The

parser

reached

the

end

of

the

document

while

looking

for

the

end

of

the

XML

declaration.

102

The

parser

reached

the

end

of

the

document

while

looking

for

the

root

element.

103

The

parser

reached

the

end

of

the

document

while

looking

for

the

version

information

in

the

XML

declaration.

104

The

parser

reached

the

end

of

the

document

while

looking

for

the

version

information

value

in

the

XML

declaration.

106

The

parser

reached

the

end

of

the

document

while

looking

for

the

encoding

declaration

value

in

the

XML

declaration.

108

The

parser

reached

the

end

of

the

document

while

looking

for

the

standalone

declaration

value

in

the

XML

declaration.

109

The

parser

reached

the

end

of

the

document

while

scanning

an

attribute

name.

110

The

parser

reached

the

end

of

the

document

while

scanning

an

attribute

value.

111

The

parser

reached

the

end

of

the

document

while

scanning

a

character

reference

or

entity

reference

in

an

attribute

value.

112

The

parser

reached

the

end

of

the

document

while

scanning

an

empty

element

tag.

113

The

parser

reached

the

end

of

the

document

while

scanning

the

root

element

name.

114

The

parser

reached

the

end

of

the

document

while

scanning

an

element

name.

Chapter

27.

Using

the

SAX

parser

401

Table

35.

Terminating

Exceptions

(continued)

Number

Description

115

The

parser

reached

the

end

of

the

document

while

scanning

character

data

in

element

content.

116

The

parser

reached

the

end

of

the

document

while

scanning

a

processing

instruction

in

element

content.

117

The

parser

reached

the

end

of

the

document

while

scanning

a

comment

or

CDATA

section

in

element

content.

118

The

parser

reached

the

end

of

the

document

while

scanning

a

comment

in

element

content.

119

The

parser

reached

the

end

of

the

document

while

scanning

a

CDATA

section

in

element

content.

120

The

parser

reached

the

end

of

the

document

while

scanning

a

character

reference

or

entity

reference

in

element

content.

121

The

parser

reached

the

end

of

the

document

while

scanning

after

the

close

of

the

root

element.

122

The

parser

found

a

possible

invalid

start

of

a

document

type

declaration.

123

The

parser

found

a

second

document

type

declaration.

124

The

first

character

of

the

root

element

name

was

not

a

letter,

’_’

or

’:’.

125

The

first

character

of

the

first

attribute

name

of

an

element

was

not

a

letter,

’_’

or

’:’.

126

The

parser

found

an

invalid

character

either

in

or

following

an

element

name.

127

The

parser

found

a

character

other

than

’=’

following

an

attribute

name.

128

The

parser

found

an

invalid

attribute

value

delimiter.

130

The

first

character

of

an

attribute

name

was

not

a

letter,

’_’

or

’:’.

131

The

parser

found

an

invalid

character

either

in

or

following

an

attribute

name.

132

An

empty

element

tag

was

not

terminated

by

a

’>’

following

the

’/’.

133

The

first

character

of

an

element

end

tag

name

was

not

a

letter,

’_’

or

’:’.

134

An

element

end

tag

name

was

not

terminated

by

a

’>’.

135

The

first

character

of

an

element

name

was

not

a

letter,

’_’

or

’:’.

136

The

parser

found

an

invalid

start

of

a

comment

or

CDATA

section

in

element

content.

137

The

parser

found

an

invalid

start

of

a

comment.

138

The

first

character

of

a

processing

instruction

target

name

was

not

a

letter,

’_’

or

’:’.

139

The

parser

found

an

invalid

character

in

or

following

a

processing

instruction

target

name.

140

A

processing

instruction

was

not

terminated

by

the

closing

character

sequence

’?>’.

141

The

parser

found

an

invalid

character

following

’&’

in

a

character

reference

or

entity

reference.

142

The

version

information

was

not

present

in

the

XML

declaration.

143

’version’

in

the

XML

declaration

was

not

followed

by

a

’=’.

144

The

version

declaration

value

in

the

XML

declaration

is

either

missing

or

improperly

delimited.

145

The

version

information

value

in

the

XML

declaration

specified

a

bad

character,

or

the

start

and

end

delimiters

did

not

match.

146

The

parser

found

an

invalid

character

following

the

version

information

value

closing

delimiter

in

the

XML

declaration.

147

The

parser

found

an

invalid

attribute

instead

of

the

optional

encoding

declaration

in

the

XML

declaration.

402

PL/I

for

Windows:

Programming

Guide

Table

35.

Terminating

Exceptions

(continued)

Number

Description

148

’encoding’

in

the

XML

declaration

was

not

followed

by

a

’=’.

149

The

encoding

declaration

value

in

the

XML

declaration

is

either

missing

or

improperly

delimited.

150

The

encoding

declaration

value

in

the

XML

declaration

specified

a

bad

character,

or

the

start

and

end

delimiters

did

not

match.

151

The

parser

found

an

invalid

character

following

the

encoding

declaration

value

closing

delimiter

in

the

XML

declaration.

152

The

parser

found

an

invalid

attribute

instead

of

the

optional

standalone

declaration

in

the

XML

declaration.

153

’standalone’

in

the

XML

declaration

was

not

followed

by

a

’=’.

154

The

standalone

declaration

value

in

the

XML

declaration

is

either

missing

or

improperly

delimited.

155

The

standalone

declaration

value

was

neither

’yes’

nor

’no’

only.

156

The

standalone

declaration

value

in

the

XML

declaration

specified

a

bad

character,

or

the

start

and

end

delimiters

did

not

match.

157

The

parser

found

an

invalid

character

following

the

standalone

declaration

value

closing

delimiter

in

the

XML

declaration.

158

The

XML

declaration

was

not

terminated

by

the

proper

character

sequence

’?>’,

or

contained

an

invalid

attribute.

159

The

parser

found

the

start

of

a

document

type

declaration

after

the

end

of

the

root

element.

160

The

parser

found

the

start

of

an

element

after

the

end

of

the

root

element.

300

The

document

was

encoded

in

EBCDIC,

but

the

CODEPAGE

compiler

option

specified

a

supported

ASCII

code

page.

301

The

document

was

encoded

in

EBCDIC,

but

the

CODEPAGE

compiler

option

specified

Unicode.

302

The

document

was

encoded

in

EBCDIC,

but

the

CODEPAGE

compiler

option

specified

an

unsupported

code

page.

303

The

document

was

encoded

in

EBCDIC,

but

the

CODEPAGE

compiler

option

is

unsupported

and

the

document

encoding

declaration

was

either

empty

or

contained

an

unsupported

alphabetic

encoding

alias.

304

The

document

was

encoded

in

EBCDIC,

but

the

CODEPAGE

compiler

option

is

unsupported

and

the

document

did

not

contain

an

encoding

declaration.

305

The

document

was

encoded

in

EBCDIC,

but

the

CODEPAGE

compiler

option

is

unsupported

and

the

document

encoding

declaration

did

not

specify

a

supported

EBCDIC

encoding.

306

The

document

was

encoded

in

ASCII,

but

the

CODEPAGE

compiler

option

specified

a

supported

EBCDIC

code

page.

307

The

document

was

encoded

in

ASCII,

but

the

CODEPAGE

compiler

option

specified

Unicode.

308

The

document

was

encoded

in

ASCII,

but

the

CODEPAGE

compiler

option

did

not

specify

a

supported

EBCDIC

code

page,

ASCII

or

Unicode.

309

The

CODEPAGE

compiler

option

specified

a

supported

ASCII

code

page,

but

the

document

was

encoded

in

Unicode.

310

The

CODEPAGE

compiler

option

specified

a

supported

EBCDIC

code

page,

but

the

document

was

encoded

in

Unicode.

311

The

CODEPAGE

compiler

option

specified

an

unsupported

code

page,

but

the

document

was

encoded

in

Unicode.

Chapter

27.

Using

the

SAX

parser

403

Table

35.

Terminating

Exceptions

(continued)

Number

Description

312

The

document

was

encoded

in

ASCII,

but

both

the

encodings

provided

externally

and

within

the

document

encoding

declaration

are

unsupported.

313

The

document

was

encoded

in

ASCII,

but

the

CODEPAGE

compiler

option

is

unsupported

and

the

document

did

not

contain

an

encoding

declaration.

314

The

document

was

encoded

in

ASCII,

but

the

CODEPAGE

compiler

option

is

unsupported

and

the

document

encoding

declaration

did

not

specify

a

supported

ASCII

encoding.

315

The

document

was

encoded

in

UTF-16

Little

Endian,

which

the

parser

does

not

support

on

this

platform.

316

The

document

was

encoded

in

UCS4,

which

the

parser

does

not

support.

317

The

parser

cannot

determine

the

document

encoding.

The

document

may

be

damaged.

318

The

document

was

encoded

in

UTF-8,

which

the

parser

does

not

support.

319

The

document

was

encoded

in

UTF-16

Big

Endian,

which

the

parser

does

not

support

on

this

platform.

500

to

99,999

Internal

error.

Please

report

the

error

to

your

service

representative.

404

PL/I

for

Windows:

Programming

Guide

Chapter

28.

Using

PL/I

MLE

in

your

applications

Applying

attributes

and

options

.

.

.

.

.

.

. 405

DATE

attribute

.

.

.

.

.

.

.

.

.

.

.

. 405

RESPECT

compile-time

option

.

.

.

.

.

.

. 406

WINDOW

compile-time

option

.

.

.

.

.

. 406

RULES

compile-time

option

.

.

.

.

.

.

. 407

Understanding

date

patterns

.

.

.

.

.

.

.

. 407

Patterns

and

windowing

.

.

.

.

.

.

.

. 408

Using

built-in

functions

with

MLE

.

.

.

.

.

. 408

DAYS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 408

DAYSTODATE

.

.

.

.

.

.

.

.

.

.

.

. 409

Performing

date

calculations

and

comparisons

.

. 409

Explicit

date

calculations

.

.

.

.

.

.

.

. 410

Comparing

dates

.

.

.

.

.

.

.

.

.

. 410

Converting

dates

.

.

.

.

.

.

.

.

.

. 410

Subtracting

dates

.

.

.

.

.

.

.

.

.

. 410

Implicit

date

calculations

.

.

.

.

.

.

.

. 410

Implicit

date

comparisons

.

.

.

.

.

.

.

. 410

Comparing

dates

with

like

patterns

.

.

.

. 411

Comparing

dates

with

differing

patterns

.

. 411

Comparisons

involving

the

DATE

attribute

and

a

literal

.

.

.

.

.

.

.

.

.

.

.

. 411

Comparisons

involving

the

DATE

attribute

and

a

non-literal

.

.

.

.

.

.

.

.

.

. 411

Implicit

DATE

assignments

.

.

.

.

.

.

.

. 411

Using

MLE

with

the

SQL

preprocessor

.

.

.

.

. 412

With

the

introduction

of

MLE,

PL/I

for

Windows

allows

support

for

a

number

of

additional

language

features.

The

purpose

of

this

chapter

is

for

you

to

become

familiar

with

the

new

attribute,

compile-time

options,

date

patterns,

and

built-in

functions.

As

you

follow

the

sequence

of

the

chapter,

you

should

have

an

idea

about

how

to

apply

these

to

your

existing

applications.

Applying

attributes

and

options

The

language

features

introduced

in

these

sections

are

found

elsewhere

in

the

Programming

Guide

and

Language

Reference,

but

are

repeated

in

this

chapter

so

you

can

better

understand

how

they

work

together.

DATE

attribute

Implicit

date

comparisons

and

conversions

are

made

by

the

compiler

if

the

two

operands

have

the

DATE

attribute.

The

DATE

attribute

specifies

that

a

variable,

argument,

or

returned

value

holds

a

date

with

a

specified

pattern.

millennium

language

extensions

supports

a

number

of

date

patterns

as

described

in

“Understanding

date

patterns”

on

page

407.

pattern

One

of

the

supported

date

patterns.

If

you

do

not

specify

a

pattern,

YYMMDD

is

the

default.

The

DATE

attribute

is

valid

only

with

variables

having

one

of

the

following

sets

of

attributes:

v

CHAR(n)

NONVARYING

v

PIC’(n)9’

REAL

v

FIXED

DEC(n,0)

REAL

The

length

or

precision,

n,

must

be

a

constant

equal

to

the

length

of

the

date

pattern

or

default

pattern.

When

the

RESPECT

compile-time

option

(discussed

later

in

this

chapter)

has

been

specified,

the

DATE

built-in

function

returns

a

value

that

has

the

attribute

DATE(’YYMMDD’).

This

allows

DATE()

to

be

assigned

to

a

variable

with

the

attribute

DATE(’YYMMDD’)

without

an

error

message

being

generated.

If

DATE()

is

assigned

to

a

variable

not

having

the

DATE

attribute,

however,

an

error

message

is

generated.

405

Here

are

a

few

examples

using

the

DATE

attribute:

dcl

gregorian_Date

char(6)

date;

dcl

julian_Date

pic’(5)9’

date

(’YYDDD’);

dcl

year

fixed

dec(2)

date(’YY’);

The

DATE

attribute

is

useful

even

if

you

have

no

year

2000

problems

in

your

applications.

You

can

use

it

to

manipulate

differing

dates

as

shown

in

these

examples:

dcl

gregorian_Date

char(8)

date

(’YYYYMMDD’);

dcl

julian_Date

pic’(7)9’

date

(’YYYYDDD’);

if

julian_Date

>

gregorian_Date

then

...

RESPECT

compile-time

option

Use

the

RESPECT

option

to

specify

which

attributes

the

compiler

should

recognize.

Currently,

DATE

is

the

only

selection

possible

for

this

compile-time

option.

The

default

is

RESPECT()

and

causes

the

compiler

to

ignore

any

specification

of

the

DATE

attribute.

Therefore,

the

DATE

attribute

is

not

applied

to

the

result

of

DATE

built-in.

NORESPECT

is

a

synonym

for

RESPECT()

Specifying

RESPECT(DATE),

on

the

other

hand,

causes

the

compiler

to

honor

any

specification

of

the

DATE

attribute

and

to

apply

the

DATE

attribute

to

the

result

of

DATE

built-in.

RESPECT()

is

not

accepted

when

compiling

with

the

PLI

command

on

TSO/MVS.

WINDOW

compile-time

option

By

default,

all

dates

with

two-digit

years

are

viewed

as

falling

in

a

window

starting

with

1950

and

ending

in

2049.

You

can

use

the

WINDOW

option

to

change

the

value

for

your

century

window.

As

previously

mentioned,

the

default

for

this

option

is

WINDOW(1950).

You

can

specify

the

value

for

w

as

one

of

the

following:

v

An

unsigned

integer

between

1582

and

9999

(inclusive)

that

represents

the

start

of

a

fixed

century

window

v

A

negative

integer

between

-1

and

-99

(inclusive)

that

creates

a

″sliding″

century

window

v

Zero,

indicating

the

value

for

w

is

the

current

year.

To

create

a

fixed

window,

you

could

specify

WINDOW(1900)

and

all

two-digit

years

would

be

assumed

to

occur

in

the

20th

century.

If

the

current

year

were

1998,

and

you

wanted

to

create

a

sliding

window,

you

could

specify

WINDOW(-5).

The

resulting

century

window

would

span

the

years

1993

through

2092,

inclusive.

When

the

year

changes

to

1999,

the

window

would

also

move

forward

by

one

year.

If

you

set

a

value

for

the

century

window

using

the

WINDOW

compile-time

option,

that

value

is

used

for

the

window

argument

in

the

built-in

functions

which

allow

it,

unless

otherwise

specified

in

that

built-in.

See

“Using

built-in

functions

with

MLE”

on

page

408

for

more

details.

DATE

attribute

406

PL/I

for

Windows:

Programming

Guide

RULES

compile-time

option

In

general,

the

RULES

option

allows

or

disallows

certain

language

capabilities

and

allows

you

to

choose

semantics

when

alternatives

are

available.

Currently,

LAXCOMMENT

is

the

only

selection

available

for

this

option.

The

default

is

RULES(NOLAXCOMMENT).

LAXCOM

and

NOLAXCOM

are

acceptable

abbreviations

for

the

suboptions.

If

you

specify

RULES(LAXCOMMENT),

the

compiler

ignores

the

special

characters

/*/;

therefore,

whatever

comes

between

the

sets

of

characters

is

interpreted

as

part

of

the

syntax

instead

of

as

a

comment.

If

you

specify

RULES(NOLAXCOMMENT),

the

compiler

treats

/*/

as

the

start

of

a

comment

which

continues

until

a

closing

*/

is

found.

If

you

happen

to

have

workstation

code

that

you

are

porting

to

the

mainframe

and

uses

/*/

around

the

DATE

attribute,

you

need

to

use

the

RULES(LAXCOMMENT)

option

so

that

the

compiler

honors

the

attribute.

Understanding

date

patterns

PL/I

MLE

supports

a

series

of

date

patterns

as

shown

in

the

following

table.

Table

36.

Date

patterns

supported

by

PL/I

MLE

4-digit

year

Example

2-digit

year

Example

Year

first

YYYY

YYYYMM

YYYYMMDD

YYYYMMM

YYYYMMMDD

YYYYMmm

YYYYMmmDD

YYYYDDD

1999

199912

19991225

1999DEC

1999DEC25

1999Dec

1999Dec25

1999359

YY

YYMM

YYMMDD

YYMMM

YYMMMDD

YYMmm

YYMmmDD

YYDDD

99

9912

991225

99DEC

99DEC25

99Dec

99Dec25

99359

Month

first

MMYYYY

MMDDYYYY

MMMYYYY

MMMDDYYYY

MmmYYYY

MmmDDYYYY

121999

12251999

DEC1999

DEC251999

Dec1999

Dec251999

MMYY

MMDDYY

MMMYY

MMMDDYY

MmmYY

MmmDDYY

1299

122599

DEC99

DEC2599

Dec99

Dec2599

Day

first

DDMMYYYY

DDMMMYYYY

DDMmmYYYY

DDDYYYY

25121999

25DEC1999

25Dec1999

3591999

DDMMYY

DDMMMYY

DDMmmYY

DDDYY

251299

25DEC99

25Dec99

35999

When

the

day

or

month

is

omitted

from

one

of

these

patterns,

the

compiler

assumes

it

has

a

value

of

1.

If

the

day

or

month

are

not

omitted

but

out

of

range,

for

example

00/38/11,

a

message

is

issued

if

the

date

involves

a

comparison.

Exceptions

to

the

rules

are

cases

of

patterns

YYMM

and

YYMMDD

with

values

of

all

zeros

that

will

be

converted

to

a

Julian

date

of

1,

that,

is,

the

smallest

valid

date.

RULES

compile-time

option

Chapter

28.

Using

PL/I

MLE

in

your

applications

407

Patterns

and

windowing

To

define

how

a

date

with

a

two-digit

year

(YY)

is

interpreted,

a

century

window

is

defined

using

the

WINDOW

compile-time

option.

As

described

previously,

the

century

window

defines

the

beginning

of

a

100-year

span

to

which

the

two-digit

year

applies.

Without

the

help

of

PL/I’s

Millennium

Language

Extensions,

you

would

have

to

implement

something

like

the

following

logic

which

converts

y2

from

a

two-digit

year

to

a

four-digit

year

with

a

window

(w).

dcl

y4

pic’9999’;

dcl

cc

pic’99’;

cc

=

w/100;

if

y2

<

mod(w,100)

then

y4

=

(100

*

cc)

+

100

+

y2;

else

y4

=

(100

*

cc)

+

y2;

Using

this

example,

if

you

were

to

specify

WINDOW(1900),

19

would

be

interpreted

as

the

year

1919.

If

you

were

to

specify

WINDOW(1950),

however,

19

would

be

interpreted

as

the

year

2019.

Conversely,

this

logic

calculates

the

two-digit

year

(y2)

when

converting

from

a

four-digit

year.

dcl

y4

pic’9999’;

if

y4

<

w

|

y4

>=

w

+

100

then

signal

error;

y2

=

mod(y4,100);

Using

built-in

functions

with

MLE

The

date

patterns

for

PL/I

MLE

are

supported

by

the

DAYS

and

DAYSTODATE

built-in

functions.

These

built-ins

both

accept

the

optional

argument

(w)

that

specifies

a

window

to

be

used

in

handling

two-digit

year

patterns.

If

you

specify

w

as

part

of

DAYS

or

DAYSTODATE,

the

value

you

enter

overrides

the

value

as

defined

by

the

WINDOW

compile-time

option.

DAYS

DAYS

returns

a

FIXED

BINARY(31,0)

value

which

is

the

number

of

days

(in

Lilian

format)

corresponding

to

the

date

d.

d

String

expression

representing

a

date.

If

omitted,

it

is

assumed

to

be

the

value

returned

by

DATETIME().

The

value

for

d

should

have

character

type.

If

not,

d

is

converted

to

character.

p

One

of

the

supported

date

patterns

shown

in

Table

36

on

page

407.

If

omitted,

the

compiler

assumes

that

p

is

the

default

pattern

returned

by

the

DATETIME

built-in

function

(YYYYMMDDHHMISS999).

p

should

have

character

type.

If

not,

it

is

converted

to

character.

w

An

integer

expression

that

defines

a

century

window

to

be

used

to

handle

any

two-digit

year

formats.

v

If

the

value

is

positive,

such

as

1950,

it

is

treated

as

a

year.

Patterns

and

windowing

408

PL/I

for

Windows:

Programming

Guide

v

If

negative

or

zero,

the

value

specifies

an

offset

to

be

subtracted

from

the

current,

system-supplied

year.

v

If

omitted,

w

defaults

to

the

value

specified

in

the

WINDOW

compile-time

option.

The

following

example

shows

uses

of

both

the

DAYS

and

DAYSTODATE

built-in

functions:

dcl

date_format

char(8)

static

init(’MMDDYYYY’);

dcl

todays_date

char(8);

dcl

sep2_1993

char(8);

dcl

days_of_july4_1993

fixed

bin(31);

dcl

msg

char(100)

varying;

dcl

date_due

char(8);

todays_date

=

daystodate(days(),date_format);

days_of_july4_1993

=

days(’07041993’,’MMDDYYYY’);

sep2_1993

=

daystodate(days_of_july4_1993

+

60,

Date_format);

/*

09021993

*/

date_due

=

daystodate(days()

+

60,

date_format);

/*

assuming

today

is

July

4,

1993,

this

would

be

Sept.

2,

1993

msg

=

’Please

pay

amount

due

on

or

before

’

\

substr(date_due,

1,

2)

\

’/’

\

substr(date_due,

3,2)

\

’/’

\

substr(date_due,

5);

DAYSTODATE

DAYSTODATE

returns

a

nonvarying

character

string

containing

the

date

in

the

form

p

that

corresponds

to

d

days

(in

Lilian

format).

d

The

number

of

days

(in

Lilian

format).

d

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0)

if

necessary.

p

One

of

the

supported

date

patterns

shown

in

Table

36

on

page

407.

If

omitted,

the

compiler

assumes

that

p

is

the

default

pattern

returned

by

the

DATETIME

built-in

function

(YYYYMMDDHHMISS999).

p

should

have

character

type.

If

not,

it

is

converted

to

character.

w

An

integer

expression

that

defines

a

century

window

to

be

used

to

handle

any

two-digit

year

formats.

v

If

the

value

is

positive,

such

as

1950,

it

is

treated

as

a

year.

v

If

negative

or

zero,

the

value

specifies

an

offset

to

be

subtracted

from

the

current,

system-supplied

year.

v

If

omitted,

w

defaults

to

the

value

specified

in

the

WINDOW

compile-time

option.

Performing

date

calculations

and

comparisons

Once

you

understand

what

the

PL/I

millennium

language

features

are

and

you

have

made

the

appropriate

syntax

changes,

you

can

use

MLE

to

perform

calculations

and

comparisons

in

your

applications.

DAYS

Chapter

28.

Using

PL/I

MLE

in

your

applications

409

Explicit

date

calculations

You

can

use

the

DAYS

and

DAYSTODATE

built-in

functions

to

make

date

comparisons

and

calculations

manually.

Comparing

dates

To

compare

two

dates

d1

and

d2

which

have

the

date

pattern

YYMMDD,

you

can

use

the

following

code:

DAYS

(d1,

’YYMMDD’,

w)

<

DAYS(d2,

’YYMMDD’,

w)

Converting

dates

You

can

convert

between

a

two-digit

date

(d1)

with

the

pattern

YYMMDD

and

a

four-digit

date

(d2)

with

the

pattern

YYYYMMDD

using

assignments:

d2

=

DAYSTODATE(DAYS(d1,’YYMMDD’,w),

’YYYYMMDD’);

d1

=

DAYSTODATE(DAYS(d2,’YYYYMMDD’),

’YYMMDD’

,w);

Subtracting

dates

To

subtract

2

two-digit

years,

y1

and

y2,

you

need

to

calculate

the

imposing

difference:

DAYSTODATE(DAYS(y1,’YY’,w),

’YYYY’)

-

DAYSTODATE(DAYS(y2,’YY’,w),’YYYY’)

Implicit

date

calculations

You

can

use

MLE

to

take

advantage

of

implicit

date

comparisons

and

conversions

if

you

first

complete

the

following

steps:

v

Give

the

two

operands

the

DATE

attribute

v

Specify

the

RESPECT

compile-time

option

Implicit

date

comparisons

The

DATE

attribute

causes

implicit

commoning

when

two

variables

declared

with

the

DATE

attribute

are

compared.

Comparisons

where

only

one

variable

has

the

DATE

attribute

are

flagged,

and

the

other

comparand

is

generally

treated

as

if

it

had

the

same

DATE

attribute,

although

some

exceptions

apply

which

are

discussed

later.

Implicit

commoning

means

that

the

compiler

generates

code

to

convert

the

dates

to

a

common,

comparable

representation.

This

process

converts

2-digit

years

using

the

window

you

specify

in

the

WINDOW

compile-time

option.

In

the

following

code

fragment,

if

the

DATE

attribute

is

honored,

then

the

comparison

in

the

second

display

statement

is

’windowed’.

This

means

that

if

the

window

started

at

1900,

the

comparison

would

return

false.

However,

if

the

window

started

at

1950,

the

comparison

would

return

true.

dcl

a

pic’(6)9’

date;

dcl

b

pic’(6)9’

def(a);

dcl

c

pic’(6)9’

date;

dcl

d

pic’(6)9’

def(c);

b

=

’670101’;

d

=

’010101’;

display(

b

||

’

<

’

||

d

||

’

?’

);

display(

a

<

c

);

Date

comparisons

can

also

occur

in

the

following

places:

v

IF

and

SELECT

statements

v

WHILE

or

UNTIL

clauses

Explicit

date

calculations

410

PL/I

for

Windows:

Programming

Guide

v

Implicit

comparisons

caused

by

a

TO

clause.

Comparing

dates

with

like

patterns

The

compiler

does

not

generate

any

special

code

to

compare

dates

with

identical

patterns

under

the

following

conditions:

v

The

comparison

operator

of

=

or

¬=

is

used

v

The

pattern

is

equal

to

YYYY,

YYYYMM,

YYYYDDD,

or

YYYYMMDD.

Comparing

dates

with

differing

patterns

For

comparisons

involving

dates

with

unlike

patterns,

the

compiler

generates

code

to

convert

the

dates

to

a

common

comparable

representation.

Once

the

conversion

has

taken

place,

the

compiler

compares

the

two

values.

Comparisons

involving

the

DATE

attribute

and

a

literal

If

you

are

making

comparisons

in

which

one

comparand

has

the

DATE

attribute

and

the

other

is

a

literal,

the

compiler

issues

a

W-level

message.

Further

compiler

action

depends

on

the

value

of

the

literal

as

follows:

v

If

the

literal

appears

to

be

a

valid

date,

it

is

treated

as

if

it

had

the

same

date

pattern

and

window

as

the

comparand

with

the

DATE

attribute.

v

If

the

literal

does

not

appear

to

be

a

valid

date,

the

DATE

attribute

is

ignored

on

the

other

comparand.

dcl

start_date

char(6)

date;

if

start_date

>=

’’

then

/*

no

windowing

*/

...

if

start_date

>=

’851003’

then

/*

windowed

*/

...

Comparisons

involving

the

DATE

attribute

and

a

non-literal

In

comparisons

where

one

comparand

has

the

DATE

attribute

and

the

other

is

not

a

date

and

not

a

literal,

the

compiler

issues

an

E-level

message.

The

non-date

value

is

treated

as

if

it

had

the

same

date

pattern

as

the

other

comparand

and

as

if

it

had

the

same

window.

dcl

start_date

char(6)

date;

dcl

non_date

char

(6);

if

start_date

>=

non_date

then

/*

windowed

*/

...

Implicit

DATE

assignments

The

DATE

attribute

can

also

cause

implicit

conversions

to

occur

in

assignments

of

two

variables

declared

with

date

patterns.

v

If

the

source

and

target

have

the

same

DATE

and

data

attributes,

then

the

assignment

proceeds

as

if

neither

had

the

DATE

attribute.

v

If

the

source

and

target

have

differing

DATE

attributes,

then

the

compiler

generates

code

to

convert

the

source

date

before

making

the

assignment.

v

In

assignments

where

the

source

has

the

DATE

attribute

but

the

target

does

not,

the

compiler

issues

an

E-level

message

and

ignores

the

DATE

attribute.

v

In

assignments

where

the

target

has

the

DATE

attribute

but

the

source

does

not

(and

the

source

IS

NOT

a

literal),

the

compiler

issues

an

E-level

message

and

ignores

the

DATE

attribute.

v

In

assignments

where

the

target

has

the

DATE

attribute

but

the

source

does

not

(and

the

source

IS

a

literal),

the

compiler

issues

a

W-level

message

and

ignores

the

DATE

attribute.

Implicit

date

comparisons

Chapter

28.

Using

PL/I

MLE

in

your

applications

411

dcl

start_date

char(6)

date;

start_date

=

’’;

...

v

If

the

source

holds

a

four-digit

year

and

the

target

holds

a

two-digit

year,

the

source

can

hold

a

year

that

is

not

in

the

target

window.

In

this

case,

the

ERROR

condition

is

raised.

dcl

x

char(6)

date;

dcl

y

char(8)

date(’YYYYMMDD’);

y

=

’20600101’;

x

=

y;

/*

raises

error

if

window

is

<=

1960

*/

v

The

DATE

attribute

is

ignored

in:

–

The

debugger

–

Assignments

performed

in

record

I/O

statements

–

Assignments

and

conversions

performed

in

stream

I/O

statements

(such

as

GET

DATA).

Even

if

you

do

not

choose

a

windowing

solution,

you

might

have

some

code

that

needs

to

manipulate

both

two-

and

four-digit

years.

You

can

use

multiple

date

patterns

to

help

you

in

these

situations:

dcl

old_date

char(6)

date(’YYMMDD’);

dcl

new_date

char(8)

date(’YYYYMMDD’);

new_date

=

old_date;

Using

MLE

with

the

SQL

preprocessor

The

SQL

preprocessor

objects

to

the

DATE

attribute.

However,

if

you

enclose

the

attribute

between

/*/

and

/*/,

the

SQL

preprocessor

ignores

it

(as

part

of

a

comment

that

stretches

from

the

first

/*

to

the

last

*/).

In

order

for

the

compiler

to

honor

the

DATE

attribute

between

these

special

characters,

you

must

specify

RULES(LAXCOMMENT),

see

“RULES

compile-time

option”

on

page

407

for

more

details.

Implicit

DATE

assignments

412

PL/I

for

Windows:

Programming

Guide

Part

7.

Appendixes

413

414

PL/I

for

Windows:

Programming

Guide

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

J74/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1099

415

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

might

not

appear.

Programming

interface

information

This

publication

documents

intended

Programming

Interfaces

that

allow

the

customer

to

write

programs

to

obtain

the

services

of

IBM

PL/I

for

MVS

&

VM.

Macros

for

customer

use

IBM

PL/I

for

MVS

&

VM

provides

no

macros

that

allow

a

customer

installation

to

write

programs

that

use

the

services

of

IBM

PL/I

for

MVS

&

VM.

Attention:

Do

not

use

as

programming

interfaces

any

IBM

PL/I

for

MVS

&

VM

macros.

416

PL/I

for

Windows:

Programming

Guide

Trademarks

The

following

terms

are

trademarks

of

the

IBM

Corporation

in

the

United

States

or

other

countries

or

both:

AIX

CICS

CICS/ESA

DFSMS/MVS

DFSORT

IBM

IMS

IMS/ESA

Language

Environment

OS/2

OS/390

Proprinter

VisualAge

WebSphere

Windows

is

a

trademark

of

Microsoft

Corporation

in

the

United

States

and/or

other

countries.

UNIX

is

a

registered

trademark

in

the

United

States

and/or

other

countries

licensed

exclusively

through

X/Open

Company

Limited.

Notices

417

418

PL/I

for

Windows:

Programming

Guide

Bibliography

Enterprise

PL/I

publications

Programming

Guide,

SC27-1457

Language

Reference,

SC27-1460

Messages

and

Codes,

SC27-1461

Diagnosis

Guide,

GC27-1459

Compiler

and

Run-Time

Migration

Guide,

GC27-1458

DB2

UDB

for

OS/390

and

z/OS

Administration

Guide,

SC26-9931

Command

Reference,

SC26-9934

SQL

Reference,

SC26-9944

Application

Programming

and

SQL

Guide,

SC26-9933

Messages

and

Codes,

GC26-9940

CICS

Transaction

Server

Customization

Guide,

SC33-1683

External

Interfaces

Guide,

SC33-1944

Application

Programming

Reference,

SC33-1688

Application

Programming

Guide,

SC33-1687

419

420

PL/I

for

Windows:

Programming

Guide

Glossary

This

glossary

defines

terms

for

all

platforms

and

releases

of

PL/I.

It

might

contain

terms

that

this

manual

does

not

use.

If

you

do

not

find

the

terms

for

which

you

are

looking,

see

the

index

in

this

manual

or

IBM

Dictionary

of

Computing,

SC20-1699.

A

access.

To

reference

or

retrieve

data.

action

specification.

In

an

ON

statement,

the

ON-unit

or

the

single

keyword

SYSTEM,

either

of

which

specifies

the

action

to

be

taken

whenever

the

appropriate

condition

is

raised.

activate

(a

block).

To

initiate

the

execution

of

a

block.

A

procedure

block

is

activated

when

it

is

invoked.

A

begin-block

is

activated

when

it

is

encountered

in

the

normal

flow

of

control,

including

a

branch.

A

package

cannot

be

activated.

activate

(a

preprocessor

variable

or

preprocessor

entry

point).

To

make

a

macro

facility

identifier

eligible

for

replacement

in

subsequent

source

code.

The

%ACTIVATE

statement

activates

preprocessor

variables

or

preprocessor

entry

points.

active.

The

state

of

a

block

after

activation

and

before

termination.

The

state

in

which

a

preprocessor

variable

or

preprocessor

entry

name

is

said

to

be

when

its

value

can

replace

the

corresponding

identifier

in

source

program

text.

The

state

in

which

an

event

variable

is

said

to

be

during

the

time

it

is

associated

with

an

asynchronous

operation.

The

state

in

which

a

task

variable

is

said

to

be

when

its

associated

task

is

attached.

The

state

in

which

a

task

is

said

to

be

before

it

has

been

terminated.

actual

origin

(AO).

The

location

of

the

first

item

in

the

array

or

structure.

additive

attribute.

A

file

description

attribute

for

which

there

are

no

defaults,

and

which,

if

required,

must

be

stated

explicitly

or

implied

by

another

explicitly

stated

attribute.

Contrast

with

alternative

attribute.

adjustable

extent.

The

bound

(of

an

array),

the

length

(of

a

string),

or

the

size

(of

an

area)

that

might

be

different

for

different

generations

of

the

associated

variable.

Adjustable

extents

are

specified

as

expressions

or

asterisks

(or

by

REFER

options

for

based

variables),

which

are

evaluated

separately

for

each

generation.

They

cannot

be

used

for

static

variables.

aggregate.

See

data

aggregate.

aggregate

expression.

An

array,

structure,

or

union

expression.

aggregate

type.

For

any

item

of

data,

the

specification

whether

it

is

structure,

union,

or

array.

allocated

variable.

A

variable

with

which

main

storage

is

associated

and

not

freed.

allocation.

The

reservation

of

main

storage

for

a

variable.

A

generation

of

an

allocated

variable.

The

association

of

a

PL/I

file

with

a

system

data

set,

device,

or

file.

alignment.

The

storing

of

data

items

in

relation

to

certain

machine-dependent

boundaries

(for

example,

a

fullword

or

halfword

boundary).

alphabetic

character.

Any

of

the

characters

A

through

Z

of

the

English

alphabet

and

the

alphabetic

extenders

#,

$,

and

@

(which

can

have

a

different

graphic

representation

in

different

countries).

alphameric

character.

An

alphabetic

character

or

a

digit.

alternative

attribute.

A

file

description

attribute

that

is

chosen

from

a

group

of

attributes.

If

none

is

specified,

a

default

is

assumed.

Contrast

with

additive

attribute.

ambiguous

reference.

A

reference

that

is

not

sufficiently

qualified

to

identify

one

and

only

one

name

known

at

the

point

of

reference.

area.

A

portion

of

storage

within

which

based

variables

can

be

allocated.

argument.

An

expression

in

an

argument

list

as

part

of

an

invocation

of

a

subroutine

or

function.

argument

list.

A

parenthesized

list

of

zero

or

more

arguments,

separated

by

commas,

following

an

entry

name

constant,

an

entry

name

variable,

a

generic

name,

or

a

built-in

function

name.

The

list

becomes

the

parameter

list

of

the

entry

point.

arithmetic

comparison.

A

comparison

of

numeric

values.

See

also

bit

comparison,

character

comparison.

arithmetic

constant.

A

fixed-point

constant

or

a

floating-point

constant.

Although

most

arithmetic

constants

can

be

signed,

the

sign

is

not

part

of

the

constant.

arithmetic

conversion.

The

transformation

of

a

value

from

one

arithmetic

representation

to

another.

421

arithmetic

data.

Data

that

has

the

characteristics

of

base,

scale,

mode,

and

precision.

Coded

arithmetic

data

and

pictured

numeric

character

data

are

included.

arithmetic

operators.

Either

of

the

prefix

operators

+

and

−,

or

any

of

the

following

infix

operators:

+

−

*

/

**

array.

A

named,

ordered

collection

of

one

or

more

data

elements

with

identical

attributes,

grouped

into

one

or

more

dimensions.

array

expression.

An

expression

whose

evaluation

yields

an

array

of

values.

array

of

structures.

An

ordered

collection

of

identical

structures

specified

by

giving

the

dimension

attribute

to

a

structure

name.

array

variable.

A

variable

that

represents

an

aggregate

of

data

items

that

must

have

identical

attributes.

Contrast

with

structure

variable.

ASCII.

American

National

Standard

Code

for

Information

Interchange.

assignment.

The

process

of

giving

a

value

to

a

variable.

asynchronous

operation.

The

overlap

of

an

input/output

operation

with

the

execution

of

statements.

The

concurrent

execution

of

procedures

using

multiple

flows

of

control

for

different

tasks.

attachment

of

a

task.

The

invocation

of

a

procedure

and

the

establishment

of

a

separate

flow

of

control

to

execute

the

invoked

procedure

(and

procedures

it

invokes)

asynchronously,

with

execution

of

the

invoking

procedure.

attention.

An

occurrence,

external

to

a

task,

that

could

cause

a

task

to

be

interrupted.

attribute.

A

descriptive

property

associated

with

a

name

to

describe

a

characteristic

represented.

A

descriptive

property

used

to

describe

a

characteristic

of

the

result

of

evaluation

of

an

expression.

automatic

storage

allocation.

The

allocation

of

storage

for

automatic

variables.

automatic

variable.

A

variable

whose

storage

is

allocated

automatically

at

the

activation

of

a

block

and

released

automatically

at

the

termination

of

that

block.

B

base.

The

number

system

in

which

an

arithmetic

value

is

represented.

base

element.

A

member

of

a

structure

or

a

union

that

is

itself

not

another

structure

or

union.

base

item.

The

automatic,

controlled,

or

static

variable

or

the

parameter

upon

which

a

defined

variable

is

defined.

based

reference.

A

reference

that

has

the

based

storage

class.

based

storage

allocation.

The

allocation

of

storage

for

based

variables.

based

variable.

A

variable

whose

storage

address

is

provided

by

a

locator.

Multiple

generations

of

the

same

variable

are

accessible.

It

does

not

identify

a

fixed

location

in

storage.

begin-block.

A

collection

of

statements

delimited

by

BEGIN

and

END

statements,

forming

a

name

scope.

A

begin-block

is

activated

either

by

the

raising

of

a

condition

(if

the

begin-block

is

the

action

specification

for

an

ON-unit)

or

through

the

normal

flow

of

control,

including

any

branch

resulting

from

a

GOTO

statement.

binary.

A

number

system

whose

only

numerals

are

0

and

1.

binary

digit.

See

bit.

binary

fixed-point

value.

An

integer

consisting

of

binary

digits

and

having

an

optional

binary

point

and

optional

sign.

Contrast

with

decimal

fixed-point

value.

binary

floating-point

value.

An

approximation

of

a

real

number

in

the

form

of

a

significand,

which

can

be

considered

as

a

binary

fraction,

and

an

exponent,

which

can

be

considered

as

an

integer

exponent

to

the

base

of

2.

Contrast

with

decimal

floating-point

value.

bit.

A

0

or

a

1.

The

smallest

amount

of

space

of

computer

storage.

bit

comparison.

A

left-to-right,

bit-by-bit

comparison

of

binary

digits.

See

also

arithmetic

comparison,

character

comparison.

bit

string

constant.

A

series

of

binary

digits

enclosed

in

and

followed

immediately

by

the

suffix

B.

Contrast

with

character

constant.

A

series

of

hexadecimal

digits

enclosed

in

single

quotes

and

followed

by

the

suffix

B4.

bit

string.

A

string

composed

of

zero

or

more

bits.

bit

string

operators.

The

logical

operators

not

and

exclusive-or

(¬),

and

(&),

and

or

(|).

bit

value.

A

value

that

represents

a

bit

type.

block.

A

sequence

of

statements,

processed

as

a

unit,

that

specifies

the

scope

of

names

and

the

allocation

of

storage

for

names

declared

within

it.

A

block

can

be

a

package,

procedure,

or

a

begin-block.

bounds.

The

upper

and

lower

limits

of

an

array

dimension.

422

PL/I

for

Windows:

Programming

Guide

break

character.

The

underscore

symbol

(

_

).

It

can

be

used

to

improve

the

readability

of

identifiers.

For

instance,

a

variable

could

be

called

OLD_INVENTORY_TOTAL

instead

of

OLDINVENTORYTOTAL.

built-in

function.

A

predefined

function

supplied

by

the

language,

such

as

SQRT

(square

root).

built-in

function

reference.

A

built-in

function

name,

which

has

an

optional

argument

list.

built-in

name.

The

entry

name

of

a

built-in

subroutine.

built-in

subroutine.

Subroutine

that

has

an

entry

name

that

is

defined

at

compile-time

and

is

invoked

by

a

CALL

statement.

buffer.

Intermediate

storage,

used

in

input/output

operations,

into

which

a

record

is

read

during

input

and

from

which

a

record

is

written

during

output.

C

call.

To

invoke

a

subroutine

by

using

the

CALL

statement

or

CALL

option.

character

comparison.

A

left-to-right,

character-by-character

comparison

according

to

the

collating

sequence.

See

also

arithmetic

comparison,

bit

comparison.

character

string

constant.

A

sequence

of

characters

enclosed

in

single

quotes;

for

example,

'Shakespeare''s

'Hamlet:''.

character

set.

A

defined

collection

of

characters.

See

language

character

set

and

data

character

set.

See

also

ASCII

and

EBCDIC.

character

string

picture

data.

Picture

data

that

has

only

a

character

value.

This

type

of

picture

data

must

have

at

least

one

A

or

X

picture

specification

character.

Contrast

with

numeric

picture

data.

closing

(of

a

file).

The

dissociation

of

a

file

from

a

data

set

or

device.

coded

arithmetic

data.

Data

items

that

represent

numeric

values

and

are

characterized

by

their

base

(decimal

or

binary),

scale

(fixed-point

or

floating-point),

and

precision

(the

number

of

digits

each

can

have).

This

data

is

stored

in

a

form

that

is

acceptable,

without

conversion,

for

arithmetic

calculations.

combined

nesting

depth.

The

deepest

level

of

nesting,

determined

by

counting

the

levels

of

PROCEDURE/BEGIN/ON,

DO,

SELECT,

and

IF...THEN...ELSE

nestings

in

the

program.

comment.

A

string

of

zero

or

more

characters

used

for

documentation

that

are

delimited

by

/*

and

*/.

commercial

character.

v

CR

(credit)

picture

specification

character

v

DB

(debit)

picture

specification

character

comparison

operator.

An

operator

that

can

be

used

in

an

arithmetic,

string

locator,

or

logical

relation

to

indicate

the

comparison

to

be

done

between

the

terms

in

the

relation.

The

comparison

operators

are:

=

(equal

to)

>

(greater

than)

<

(less

than)

>=

(greater

than

or

equal

to)

<=

(less

than

or

equal

to)

¬=

(not

equal

to)

¬>

(not

greater

than)

¬<

(not

less

than)

compile

time.

In

general,

the

time

during

which

a

source

program

is

translated

into

an

object

module.

In

PL/I,

it

is

the

time

during

which

a

source

program

can

be

altered,

if

desired,

and

then

translated

into

an

object

program.

compiler

options.

Keywords

that

are

specified

to

control

certain

aspects

of

a

compilation,

such

as:

the

nature

of

the

object

module

generated,

the

types

of

printed

output

produced,

and

so

forth.

complex

data.

Arithmetic

data,

each

item

of

which

consists

of

a

real

part

and

an

imaginary

part.

composite

operator.

An

operator

that

consists

of

more

than

one

special

character,

such

as

<=,

**,

and

/*.

compound

statement.

A

statement

that

contains

other

statements.

In

PL/I,

IF,

ON,

OTHERWISE,

and

WHEN

are

the

only

compound

statements.

See

statement

body.

concatenation.

The

operation

that

joins

two

strings

in

the

order

specified,

forming

one

string

whose

length

is

equal

to

the

sum

of

the

lengths

of

the

two

original

strings.

It

is

specified

by

the

operator

||.

condition.

An

exceptional

situation,

either

an

error

(such

as

an

overflow),

or

an

expected

situation

(such

as

the

end

of

an

input

file).

When

a

condition

is

raised

(detected),

the

action

established

for

it

is

processed.

See

also

established

action

and

implicit

action.

condition

name.

Name

of

a

PL/I-defined

or

programmer-defined

condition.

condition

prefix.

A

parenthesized

list

of

one

or

more

condition

names

prefixed

to

a

statement.

It

specifies

whether

the

named

conditions

are

to

be

enabled

or

disabled.

Glossary

423

connected

aggregate.

An

array

or

structure

whose

elements

occupy

contiguous

storage

without

any

intervening

data

items.

Contrast

with

nonconnected

aggregate.

connected

reference.

A

reference

to

connected

storage.

It

must

be

apparent,

prior

to

execution

of

the

program,

that

the

storage

is

connected.

connected

storage.

Main

storage

of

an

uninterrupted

linear

sequence

of

items

that

can

be

referred

to

by

a

single

name.

constant.

An

arithmetic

or

string

data

item

that

does

not

have

a

name

and

whose

value

cannot

change.

An

identifier

declared

with

the

VALUE

attribute.

An

identifier

declared

with

the

FILE

or

the

ENTRY

attribute

but

without

the

VARIABLE

attribute.

constant

reference.

A

value

reference

which

has

a

constant

as

its

object

contained

block,

declaration,

or

source

text.

All

blocks,

procedures,

statements,

declarations,

or

source

text

inside

a

begin,

procedure,

or

a

package

block.

The

entire

package,

procedure,

and

the

BEGIN

statement

and

its

corresponding

END

statements

are

not

contained

in

the

block.

containing

block.

The

package,

procedure,

or

begin-block

that

contains

the

declaration,

statement,

procedure,

or

other

source

text

in

question.

contextual

declaration.

The

appearance

of

an

identifier

that

has

not

been

explicitly

declared

in

a

DECLARE

statement,

but

whose

context

of

use

allows

the

association

of

specific

attributes

with

the

identifier.

control

character.

A

character

in

a

character

set

whose

occurrence

in

a

particular

context

specifies

a

control

function.

One

example

is

the

end-of-file

(EOF)

marker.

control

format

item.

A

specification

used

in

edit-directed

transmission

to

specify

positioning

of

a

data

item

within

the

stream

or

printed

page.

control

variable.

A

variable

that

is

used

to

control

the

iterative

execution

of

a

DO

statement.

controlled

parameter.

A

parameter

for

which

the

CONTROLLED

attribute

is

specified

in

a

DECLARE

statement.

It

can

be

associated

only

with

arguments

that

have

the

CONTROLLED

attribute.

controlled

storage

allocation.

The

allocation

of

storage

for

controlled

variables.

controlled

variable.

A

variable

whose

allocation

and

release

are

controlled

by

the

ALLOCATE

and

FREE

statements,

with

access

to

the

current

generation

only.

control

sections.

Grouped

machine

instructions

in

an

object

module.

conversion.

The

transformation

of

a

value

from

one

representation

to

another

to

conform

to

a

given

set

of

attributes.

For

example,

converting

a

character

string

to

an

arithmetic

value

such

as

FIXED

BINARY

(15,0).

cross

section

of

an

array.

The

elements

represented

by

the

extent

of

at

least

one

dimension

of

an

array.

An

asterisk

in

the

place

of

a

subscript

in

an

array

reference

indicates

the

entire

extent

of

that

dimension.

current

generation.

The

generation

of

an

automatic

or

controlled

variable

that

is

currently

available

by

referring

to

the

name

of

the

variable.

D

data.

Representation

of

information

or

of

value

in

a

form

suitable

for

processing.

data

aggregate.

A

data

item

that

is

a

collection

of

other

data

items.

data

attribute.

A

keyword

that

specifies

the

type

of

data

that

the

data

item

represents,

such

as

FIXED

BINARY.

data-directed

transmission.

The

type

of

stream-oriented

transmission

in

which

data

is

transmitted.

It

resembles

an

assignment

statement

and

is

of

the

form

name

=

constant.

data

item.

A

single

named

unit

of

data.

data

list.

In

stream-oriented

transmission,

a

parenthesized

list

of

the

data

items

used

in

GET

and

PUT

statements.

Contrast

with

format

list.

data

set.

A

collection

of

data

external

to

the

program

that

can

be

accessed

by

reference

to

a

single

file

name.

A

device

that

can

be

referenced.

data

specification.

The

portion

of

a

stream-oriented

transmission

statement

that

specifies

the

mode

of

transmission

(DATA,

LIST,

or

EDIT)

and

includes

the

data

list(s)

and,

for

edit-directed

mode,

the

format

list(s).

data

stream.

Data

being

transferred

from

or

to

a

data

set

by

stream-oriented

transmission,

as

a

continuous

stream

of

data

elements

in

character

form.

data

transmission.

The

transfer

of

data

from

a

data

set

to

the

program

or

vice

versa.

data

type.

A

set

of

data

attributes.

DBCS.

In

the

character

set,

each

character

is

represented

by

two

consecutive

bytes.

deactivated.

The

state

in

which

an

identifier

is

said

to

be

when

its

value

cannot

replace

a

preprocessor

identifier

in

source

program

text.

Contrast

with

active.

424

PL/I

for

Windows:

Programming

Guide

debugging.

Process

of

removing

bugs

from

a

program.

decimal.

The

number

system

whose

numerals

are

0

through

9.

decimal

digit

picture

character.

The

picture

specification

character

9.

decimal

fixed-point

constant.

A

constant

consisting

of

one

or

more

decimal

digits

with

an

optional

decimal

point.

decimal

fixed-point

value.

A

rational

number

consisting

of

a

sequence

of

decimal

digits

with

an

assumed

position

of

the

decimal

point.

Contrast

with

binary

fixed-point

value.

decimal

floating-point

constant.

A

value

made

up

of

a

significand

that

consists

of

a

decimal

fixed-point

constant,

and

an

exponent

that

consists

of

the

letter

E

followed

by

an

optionally

signed

integer

constant

not

exceeding

three

digits.

decimal

floating-point

value.

An

approximation

of

a

real

number,

in

the

form

of

a

significand,

which

can

be

considered

as

a

decimal

fraction,

and

an

exponent,

which

can

be

considered

as

an

integer

exponent

to

the

base

10.

Contrast

with

binary

floating-point

value.

decimal

picture

data.

See

numeric

picture

data.

declaration.

The

establishment

of

an

identifier

as

a

name

and

the

specification

of

a

set

of

attributes

(partial

or

complete)

for

it.

A

source

of

attributes

of

a

particular

name.

default.

Describes

a

value,

attribute,

or

option

that

is

assumed

when

none

has

been

specified.

defined

variable.

A

variable

that

is

associated

with

some

or

all

of

the

storage

of

the

designated

base

variable.

delimit.

To

enclose

one

or

more

items

or

statements

with

preceding

and

following

characters

or

keywords.

delimiter.

All

comments

and

the

following

characters:

percent,

parentheses,

comma,

period,

semicolon,

colon,

assignment

symbol,

blank,

pointer,

asterisk,

and

single

quote.

They

define

the

limits

of

identifiers,

constants,

picture

specifications,

iSUBs,

and

keywords.

descriptor.

A

control

block

that

holds

information

about

a

variable,

such

as

area

size,

array

bounds,

or

string

length.

digit.

One

of

the

characters

0

through

9.

dimension

attribute.

An

attribute

that

specifies

the

number

of

dimensions

of

an

array

and

indicates

the

bounds

of

each

dimension.

disabled.

The

state

of

a

condition

in

which

no

interrupt

occurs

and

no

established

action

will

take

place.

do-group.

A

sequence

of

statements

delimited

by

a

DO

statement

and

ended

by

its

corresponding

END

statement,

used

for

control

purposes.

Contrast

with

block.

do-loop.

See

iterative

do-group.

dummy

argument.

Temporary

storage

that

is

created

automatically

to

hold

the

value

of

an

argument

that

cannot

be

passed

by

reference.

dump.

Printout

of

all

or

part

of

the

storage

used

by

a

program

as

well

as

other

program

information,

such

as

a

trace

of

an

error’s

origin.

E

EBCDIC.

(Extended

Binary-Coded

Decimal

Interchange

Code).

A

coded

character

set

consisting

of

8-bit

coded

characters.

edit-directed

transmission.

The

type

of

stream-oriented

transmission

in

which

data

appears

as

a

continuous

stream

of

characters

and

for

which

a

format

list

is

required

to

specify

the

editing

desired

for

the

associated

data

list.

element.

A

single

item

of

data

as

opposed

to

a

collection

of

data

items

such

as

an

array;

a

scalar

item.

element

expression.

An

expression

whose

evaluation

yields

an

element

value.

element

variable.

A

variable

that

represents

an

element;

a

scalar

variable.

elementary

name.

See

base

element.

enabled.

The

state

of

a

condition

in

which

the

condition

can

cause

an

interrupt

and

then

invocation

of

the

appropriate

established

ON-unit.

end-of-step

message.

message

that

follows

the

listng

of

the

job

control

statements

and

job

scheduler

messages

and

contains

return

code

indicating

success

or

failure

for

each

step.

entry

constant.

The

label

prefix

of

a

PROCEDURE

statement

(an

entry

name).

The

declaration

of

a

name

with

the

ENTRY

attribute

but

without

the

VARIABLE

attribute.

entry

data.

A

data

item

that

represents

an

entry

point

to

a

procedure.

entry

expression.

An

expression

whose

evaluation

yields

an

entry

name.

Glossary

425

entry

name.

An

identifier

that

is

explicitly

or

contextually

declared

to

have

the

ENTRY

attribute

(unless

the

VARIABLE

attribute

is

given)

or

An

identifier

that

has

the

value

of

an

entry

variable

with

the

ENTRY

attribute

implied.

entry

point.

A

point

in

a

procedure

at

which

it

can

be

invoked.

primary

entry

point

and

secondary

entry

point.

entry

reference.

An

entry

constant,

an

entry

variable

reference,

or

a

function

reference

that

returns

an

entry

value.

entry

variable.

A

variable

to

which

an

entry

value

can

be

assigned.

It

must

have

both

the

ENTRY

and

VARIABLE

attributes.

entry

value.

The

entry

point

represented

by

an

entry

constant

or

variable;

the

value

includes

the

environment

of

the

activation

that

is

associated

with

the

entry

constant.

environment

(of

an

activation).

Information

associated

with

and

used

in

the

invoked

block

regarding

data

declared

in

containing

blocks.

environment

(of

a

label

constant).

Identity

of

the

particular

activation

of

a

block

to

which

a

reference

to

a

statement-label

constant

applies.

This

information

is

determined

at

the

time

a

statement-label

constant

is

passed

as

an

argument

or

is

assigned

to

a

statement-label

variable,

and

it

is

passed

or

assigned

along

with

the

constant.

established

action.

The

action

taken

when

a

condition

is

raised.

See

also

implicit

action

and

ON-statement

action.

epilogue.

Those

processes

that

occur

automatically

at

the

termination

of

a

block

or

task.

evaluation.

The

reduction

of

an

expression

to

a

single

value,

an

array

of

values,

or

a

structured

set

of

values.

event.

An

activity

in

a

program

whose

status

and

completion

can

be

determined

from

an

associated

event

variable.

event

variable.

A

variable

with

the

EVENT

attribute

that

can

be

associated

with

an

event.

Its

value

indicates

whether

the

action

has

been

completed

and

the

status

of

the

completion.

explicit

declaration.

The

appearance

of

an

identifier

(a

name)

in

a

DECLARE

statement,

as

a

label

prefix,

or

in

a

parameter

list.

Contrast

with

implicit

declaration.

exponent

characters.

The

following

picture

specification

characters:

1.

K

and

E,

which

are

used

in

floating-point

picture

specifications

to

indicate

the

beginning

of

the

exponent

field.

2.

F,

the

scaling

factor

character,

specified

with

an

integer

constant

that

indicates

the

number

of

decimal

positions

the

decimal

point

is

to

be

moved

from

its

assumed

position

to

the

right

(if

the

constant

is

positive)

or

to

the

left

(if

the

constant

is

negative).

expression.

A

notation,

within

a

program,

that

represents

a

value,

an

array

of

values,

or

a

structured

set

of

values.

A

constant

or

a

reference

appearing

alone,

or

a

combination

of

constants

and/or

references

with

operators.

extended

alphabet.

The

uppercase

and

lowercase

alphabetic

characters

A

through

Z,

$,

@

and

#,

or

those

specified

in

the

NAMES

compiler

option.

extent.

The

range

indicated

by

the

bounds

of

an

array

dimension,

by

the

length

of

a

string,

or

by

the

size

of

an

area.

The

size

of

the

target

area

if

this

area

were

to

be

assigned

to

a

target

area.

external

name.

A

name

(with

the

EXTERNAL

attribute)

whose

scope

is

not

necessarily

confined

only

to

one

block

and

its

contained

blocks.

external

procedure.

A

procedure

that

is

not

contained

in

any

other

procedure.

A

level-2

procedure

contained

in

a

package

that

is

also

exported.

external

symbol.

Name

that

can

be

referred

to

in

a

control

section

other

than

the

one

in

which

it

is

defined.

External

Symbol

Dictionary

(ESD).

Table

containing

all

the

external

symbols

that

appear

in

the

object

module.

extralingual

character.

Characters

(such

as

$,

@,

and

#)

that

are

not

classified

as

alphanumeric

or

special.

This

group

includes

characters

that

are

determined

with

the

NAMES

compiler

option.

F

factoring.

The

application

of

one

or

more

attributes

to

a

parenthesized

list

of

names

in

a

DECLARE

statement,

eliminating

the

repetition

of

identical

attributes

for

multiple

names.

field

(in

the

data

stream).

That

portion

of

the

data

stream

whose

width,

in

number

of

characters,

is

defined

by

a

single

data

or

spacing

format

item.

field

(of

a

picture

specification).

Any

character-string

picture

specification

or

that

portion

(or

all)

of

a

numeric

character

picture

specification

that

describes

a

fixed-point

number.

file.

A

named

representation,

within

a

program,

of

a

data

set

or

data

sets.

A

file

is

associated

with

the

data

set(s)

for

each

opening.

426

PL/I

for

Windows:

Programming

Guide

file

constant.

A

name

declared

with

the

FILE

attribute

but

not

the

VARIABLE

attribute.

file

description

attributes.

Keywords

that

describe

the

individual

characteristics

of

each

file

constant.

See

also

alternative

attribute

and

additive

attribute.

file

expression.

An

expression

whose

evaluation

yields

a

value

of

the

type

file.

file

name.

A

name

declared

for

a

file.

file

variable.

A

variable

to

which

file

constants

can

be

assigned.

It

has

the

attributes

FILE

and

VARIABLE

and

cannot

have

any

of

the

file

description

attributes.

fixed-point

constant.

See

arithmetic

constant.

fix-up.

A

solution,

performed

by

the

compiler

after

detecting

an

error

during

compilation,

that

allows

the

compiled

program

to

run.

floating-point

constant.

See

arithmetic

constant.

flow

of

control.

Sequence

of

execution.

format.

A

specification

used

in

edit-directed

data

transmission

to

describe

the

representation

of

a

data

item

in

the

stream

(data

format

item)

or

the

specific

positioning

of

a

data

item

within

the

stream

(control

format

item).

format

constant.

The

label

prefix

on

a

FORMAT

statement.

format

data.

A

variable

with

the

FORMAT

attribute.

format

label.

The

label

prefix

on

a

FORMAT

statement.

format

list.

In

stream-oriented

transmission,

a

list

specifying

the

format

of

the

data

item

on

the

external

medium.

Contrast

with

data

list.

fully

qualified

name.

A

name

that

includes

all

the

names

in

the

hierarchical

sequence

above

the

member

to

which

the

name

refers,

as

well

as

the

name

of

the

member

itself.

function

(procedure).

A

procedure

that

has

a

RETURNS

option

in

the

PROCEDURE

statement.

A

name

declared

with

the

RETURNS

attribute.

It

is

invoked

by

the

appearance

of

one

of

its

entry

names

in

a

function

reference

and

it

returns

a

scalar

value

to

the

point

of

reference.

Contrast

with

subroutine.

function

reference.

An

entry

constant

or

an

entry

variable,

either

of

which

must

represent

a

function,

followed

by

a

possibly

empty

argument

list.

Contrast

with

subroutine

call.

G

generation

(of

a

variable).

The

allocation

of

a

static

variable,

a

particular

allocation

of

a

controlled

or

automatic

variable,

or

the

storage

indicated

by

a

particular

locator

qualification

of

a

based

variable

or

by

a

defined

variable

or

parameter.

generic

descriptor.

A

descriptor

used

in

a

GENERIC

attribute.

generic

key.

A

character

string

that

identifies

a

class

of

keys.

All

keys

that

begin

with

the

string

are

members

of

that

class.

For

example,

the

recorded

keys

'ABCD',

'ABCE',

and

'ABDF',

are

all

members

of

the

classes

identified

by

the

generic

keys

'A'

and

'AB',

and

the

first

two

are

also

members

of

the

class

'ABC';

and

the

three

recorded

keys

can

be

considered

to

be

unique

members

of

the

classes

'ABCD',

'ABCE',

'ABDF',

respectively.

generic

name.

The

name

of

a

family

of

entry

names.

A

reference

to

the

generic

name

is

replaced

by

the

entry

name

whose

parameter

descriptors

match

the

attributes

of

the

arguments

in

the

argument

list

at

the

point

of

invocation.

group.

A

collection

of

statements

contained

within

larger

program

units.

A

group

is

either

a

do-group

or

a

select-group

and

it

can

be

used

wherever

a

single

statement

can

appear,

except

as

an

on-unit.

H

hex.

See

hexadecimal

digit.

hexadecimal.

Pertaining

to

a

numbering

system

with

a

base

of

sixteen;

valid

numbers

use

the

digits

0

through

9

and

the

characters

A

through

F,

where

A

represents

10

and

F

represents

15.

hexadecimal

digit.

One

of

the

digits

0

through

9

and

A

through

F.

A

through

F

represent

the

decimal

values

10

through

15,

respectively.

I

identifier.

A

string

of

characters,

not

contained

in

a

comment

or

constant,

and

preceded

and

followed

by

a

delimiter.

The

first

character

of

the

identifier

must

be

one

of

the

26

alphabetic

characters

and

extralingual

characters,

if

any.

The

other

characters,

if

any,

can

additionally

include

extended

alphabetic,

digit,

or

the

break

character.

IEEE.

Institute

of

Electrical

and

Electronics

Engineers.

implicit.

The

action

taken

in

the

absence

of

an

explicit

specification.

Glossary

427

implicit

action.

The

action

taken

when

an

enabled

condition

is

raised

and

no

ON-unit

is

currently

established

for

the

condition.

Contrast

with

ON-statement

action.

implicit

declaration.

A

name

not

explicitly

declared

in

a

DECLARE

statement

or

contextually

declared.

implicit

opening.

The

opening

of

a

file

as

the

result

of

an

input

or

output

statement

other

than

the

OPEN

statement.

infix

operator.

An

operator

that

appears

between

two

operands.

inherited

dimensions.

For

a

structure,

union,

or

element,

those

dimensions

that

are

derived

from

the

containing

structures.

If

the

name

is

an

element

that

is

not

an

array,

the

dimensions

consist

entirely

of

its

inherited

dimensions.

If

the

name

is

an

element

that

is

an

array,

its

dimensions

consist

of

its

inherited

dimensions

plus

its

explicitly

declared

dimensions.

A

structure

with

one

or

more

inherited

dimensions

is

called

a

nonconnected

aggregate.

Contrast

with

connected

aggregate.

input/output.

The

transfer

of

data

between

auxiliary

medium

and

main

storage.

insertion

point

character.

A

picture

specification

character

that

is,

on

assignment

of

the

associated

data

to

a

character

string,

inserted

in

the

indicated

position.

When

used

in

a

P-format

item

for

input,

the

insertion

character

is

used

for

checking

purposes.

integer.

An

optionally

signed

sequence

of

digits

or

a

sequence

of

bits

without

a

decimal

or

binary

point.

An

optionally

signed

whole

number,

commonly

described

as

FIXED

BINARY

(p,0)

or

FIXED

DECIMAL

(p,0).

integral

boundary.

A

byte

multiple

address

of

any

8-bit

unit

on

which

data

can

be

aligned.

It

usually

is

a

halfword,

fullword,

or

doubleword

(2-,

4-,

or

8-byte

multiple

respectively)

boundary.

interleaved

array.

An

array

that

refers

to

nonconnected

storage.

interleaved

subscripts.

Subscripts

that

exist

in

levels

other

than

the

lowest

level

of

a

subscripted

qualified

reference.

internal

block.

A

block

that

is

contained

in

another

block.

internal

name.

A

name

that

is

known

only

within

the

block

in

which

it

is

declared,

and

possibly

within

any

contained

blocks.

internal

procedure.

A

procedure

that

is

contained

in

another

block.

Contrast

with

external

procedure.

interrupt.

The

redirection

of

the

program’s

flow

of

control

as

the

result

of

raising

a

condition

or

attention.

invocation.

The

activation

of

a

procedure.

invoke.

To

activate

a

procedure.

invoked

procedure.

A

procedure

that

has

been

activated.

invoking

block.

A

block

that

activates

a

procedure.

iteration

factor.

In

an

INITIAL

attribute

specification,

an

expression

that

specifies

the

number

of

consecutive

elements

of

an

array

that

are

to

be

initialized

with

the

given

value.

In

a

format

list,

an

expression

that

specifies

the

number

of

times

a

given

format

item

or

list

of

format

items

is

to

be

used

in

succession.

iterative

do-group.

A

do-group

whose

DO

statement

specifies

a

control

variable

and/or

a

WHILE

or

UNTIL

option.

K

key.

Data

that

identifies

a

record

within

a

direct-access

data

set.

See

source

key

and

recorded

key.

keyword.

An

identifier

that

has

a

specific

meaning

in

PL/I

when

used

in

a

defined

context.

keyword

statement.

A

simple

statement

that

begins

with

a

keyword,

indicating

the

function

of

the

statement.

known

(applied

to

a

name).

Recognized

with

its

declared

meaning.

A

name

is

known

throughout

its

scope.

L

label.

A

name

prefixed

to

a

statement.

A

name

on

a

PROCEDURE

statement

is

called

an

entry

constant;

a

name

on

a

FORMAT

statement

is

called

a

format

constant;

a

name

on

other

kinds

of

statements

is

called

a

label

constant.

A

data

item

that

has

the

LABEL

attribute.

label

constant.

A

name

written

as

the

label

prefix

of

a

statement

(other

than

PROCEDURE,

ENTRY,

FORMAT,

or

PACKAGE)

so

that,

during

execution,

program

control

can

be

transferred

to

that

statement

through

a

reference

to

its

label

prefix.

label

data.

A

label

constant

or

the

value

of

a

label

variable.

label

prefix.

A

label

prefixed

to

a

statement.

label

variable.

A

variable

declared

with

the

LABEL

attribute.

Its

value

is

a

label

constant

in

the

program.

leading

zeroes.

Zeros

that

have

no

significance

in

an

arithmetic

value.

All

zeros

to

the

left

of

the

first

nonzero

in

a

number.

428

PL/I

for

Windows:

Programming

Guide

level

number.

A

number

that

precedes

a

name

in

a

DECLARE

statement

and

specifies

its

relative

position

in

the

hierarchy

of

structure

names.

level-one

variable.

A

major

structure

or

union

name.

Any

unsubscripted

variable

not

contained

within

a

structure

or

union.

lexically.

Relating

to

the

left-to-right

order

of

units.

library.

An

MVS

partitioned

data

set

or

a

CMS

MACLIB

that

can

be

used

to

store

other

data

sets

called

members.

list-directed.

The

type

of

stream-oriented

transmission

in

which

data

in

the

stream

appears

as

constants

separated

by

blanks

or

commas

and

for

which

formatting

is

provided

automatically.

locator.

A

control

block

that

holds

the

address

of

a

variable

or

its

descriptor.

locator/descriptor.

A

locator

followed

by

a

descriptor.

The

locator

holds

the

address

of

the

variable,

not

the

address

of

the

descriptor.

locator

qualification.

In

a

reference

to

a

based

variable,

either

a

locator

variable

or

function

reference

connected

by

an

arrow

to

the

left

of

a

based

variable

to

specify

the

generation

of

the

based

variable

to

which

the

reference

refers.

It

might

be

an

implicit

reference.

locator

value.

A

value

that

identifies

or

can

be

used

to

identify

the

storage

address.

locator

variable.

A

variable

whose

value

identifies

the

location

in

main

storage

of

a

variable

or

a

buffer.

It

has

the

POINTER

or

OFFSET

attribute.

locked

record.

A

record

in

an

EXCLUSIVE

DIRECT

UPDATE

file

that

has

been

made

available

to

one

task

only

and

cannot

be

accessed

by

other

tasks

until

the

task

using

it

relinquishes

it.

logical

level

(of

a

structure

or

union

member).

The

depth

indicated

by

a

level

number

when

all

level

numbers

are

in

direct

sequence

(when

the

increment

between

successive

level

numbers

is

one).

logical

operators.

The

bit-string

operators

not

and

exclusive-or

(¬),

and

(&),

and

or

(|).

loop.

A

sequence

of

instructions

that

is

executed

iteratively.

lower

bound.

The

lower

limit

of

an

array

dimension.

M

main

procedure.

An

external

procedure

whose

PROCEDURE

statement

has

the

OPTIONS

(MAIN)

attribute.

This

procedure

is

invoked

automatically

as

the

first

step

in

the

execution

of

a

program.

major

structure.

A

structure

whose

name

is

declared

with

level

number

1.

member.

A

structure,

union,

or

element

name

in

a

structure

or

union.

Data

sets

in

a

library.

minor

structure.

A

structure

that

is

contained

within

another

structure

or

union.

The

name

of

a

minor

structure

is

declared

with

a

level

number

greater

than

one

and

greater

than

its

parent

structure

or

union.

mode

(of

arithmetic

data).

An

attribute

of

arithmetic

data.

It

is

either

real

or

complex.

multiple

declaration.

Two

or

more

declarations

of

the

same

identifier

internal

to

the

same

block

without

different

qualifications.

Two

or

more

external

declarations

of

the

same

identifier.

multiprocessing.

The

use

of

a

computing

system

with

two

or

more

processing

units

to

execute

two

or

more

programs

simultaneously.

multiprogramming.

The

use

of

a

computing

system

to

execute

more

than

one

program

concurrently,

using

a

single

processing

unit.

multitasking.

A

facility

that

allows

a

program

to

execute

more

than

one

PL/I

procedure

simultaneously.

N

name.

Any

identifier

that

the

user

gives

to

a

variable

or

to

a

constant.

An

identifier

appearing

in

a

context

where

it

is

not

a

keyword.

Sometimes

called

a

user-defined

name.

nesting.

The

occurrence

of:

v

A

block

within

another

block

v

A

group

within

another

group

v

An

IF

statement

in

a

THEN

clause

or

in

an

ELSE

clause

v

A

function

reference

as

an

argument

of

a

function

reference

v

A

remote

format

item

in

the

format

list

of

a

FORMAT

statement

v

A

parameter

descriptor

list

in

another

parameter

descriptor

list

v

An

attribute

specification

within

a

parenthesized

name

list

for

which

one

or

more

attributes

are

being

factored

nonconnected

storage.

Storage

occupied

by

nonconnected

data

items.

For

example,

interleaved

arrays

and

structures

with

inherited

dimensions

are

in

nonconnected

storage.

null

locator

value.

A

special

locator

value

that

cannot

identify

any

location

in

internal

storage.

It

gives

a

Glossary

429

positive

indication

that

a

locator

variable

does

not

currently

identify

any

generation

of

data.

null

statement.

A

statement

that

contains

only

the

semicolon

symbol

(;).

It

indicates

that

no

action

is

to

be

taken.

null

string.

A

character,

graphic,

or

bit

string

with

a

length

of

zero.

numeric-character

data.

See

decimal

picture

data.

numeric

picture

data.

Picture

data

that

has

an

arithmetic

value

as

well

as

a

character

value.

This

type

of

picture

data

cannot

contain

the

characters

'A'

or

'X.'

O

object.

A

collection

of

data

referred

to

by

a

single

name.

offset

variable.

A

locator

variable

with

the

OFFSET

attribute,

whose

value

identifies

a

location

in

storage

relative

to

the

beginning

of

an

area.

ON-condition.

An

occurrence,

within

a

PL/I

program,

that

could

cause

a

program

interrupt.

It

can

be

the

detection

of

an

unexpected

error

or

of

an

occurrence

that

is

expected,

but

at

an

unpredictable

time.

ON-statement

action.

The

action

explicitly

established

for

a

condition

that

is

executed

when

the

condition

is

raised.

When

the

ON-statement

is

encountered

in

the

flow

of

control

for

the

program,

it

executes,

establishing

the

action

for

the

condition.

The

action

executes

when

the

condition

is

raised

if

the

ON-unit

is

still

established

or

a

RESIGNAL

statement

reestablishes

it.

Contrast

with

implicit

action.

ON-unit.

The

specified

action

to

be

executed

when

the

appropriate

condition

is

raised.

opening

(of

a

file).

The

association

of

a

file

with

a

data

set.

operand.

The

value

of

an

identifier,

constant,

or

an

expression

to

which

an

operator

is

applied,

possibly

in

conjunction

with

another

operand.

operational

expression.

An

expression

that

consists

of

one

or

more

operators.

operator.

A

symbol

specifying

an

operation

to

be

performed.

option.

A

specification

in

a

statement

that

can

be

used

to

influence

the

execution

or

interpretation

of

the

statement.

P

package

constant.

The

label

prefix

on

a

PACKAGE

statement.

packed

decimal.

The

internal

representation

of

a

fixed-point

decimal

data

item.

padding.

One

or

more

characters,

graphics,

or

bits

concatenated

to

the

right

of

a

string

to

extend

the

string

to

a

required

length.

One

or

more

bytes

or

bits

inserted

in

a

structure

or

union

so

that

the

following

element

within

the

structure

or

union

is

aligned

on

the

appropriate

integral

boundary.

parameter.

A

name

in

the

parameter

list

following

the

PROCEDURE

statement,

specifying

an

argument

that

will

be

passed

when

the

procedure

is

invoked.

parameter

descriptor.

The

set

of

attributes

specified

for

a

parameter

in

an

ENTRY

attribute

specification.

parameter

descriptor

list.

The

list

of

all

parameter

descriptors

in

an

ENTRY

attribute

specification.

parameter

list.

A

parenthesized

list

of

one

or

more

parameters,

separated

by

commas

and

following

either

the

keyword

PROCEDURE

in

a

procedure

statement

or

the

keyword

ENTRY

in

an

ENTRY

statement.

The

list

corresponds

to

a

list

of

arguments

passed

at

invocation.

partially

qualified

name.

A

qualified

name

that

is

incomplete.

It

includes

one

or

more,

but

not

all,

of

the

names

in

the

hierarchical

sequence

above

the

structure

or

union

member

to

which

the

name

refers,

as

well

as

the

name

of

the

member

itself.

picture

data.

Numeric

data,

character

data,

or

a

mix

of

both

types,

represented

in

character

form.

picture

specification.

A

data

item

that

is

described

using

the

picture

characters

in

a

declaration

with

the

PICTURE

attribute

or

in

a

P-format

item.

picture

specification

character.

Any

of

the

characters

that

can

be

used

in

a

picture

specification.

PL/I

character

set.

A

set

of

characters

that

has

been

defined

to

represent

program

elements

in

PL/I.

PL/I

prompter.

Command

processor

program

for

the

PLI

command

that

checks

the

operands

and

allocates

the

data

sets

required

by

the

compiler.

point

of

invocation.

The

point

in

the

invoking

block

at

which

the

reference

to

the

invoked

procedure

appears.

pointer.

A

type

of

variable

that

identifies

a

location

in

storage.

pointer

value.

A

value

that

identifies

the

pointer

type.

430

PL/I

for

Windows:

Programming

Guide

pointer

variable.

A

locator

variable

with

the

POINTER

attribute

that

contains

a

pointer

value.

precision.

The

number

of

digits

or

bits

contained

in

a

fixed-point

data

item,

or

the

minimum

number

of

significant

digits

(excluding

the

exponent)

maintained

for

a

floating-point

data

item.

prefix.

A

label

or

a

parenthesized

list

of

one

or

more

condition

names

included

at

the

beginning

of

a

statement.

prefix

operator.

An

operator

that

precedes

an

operand

and

applies

only

to

that

operand.

The

prefix

operators

are

plus

(+),

minus

(−),

and

not

(¬).

preprocessor.

A

program

that

examines

the

source

program

before

the

compilation

takes

place.

preprocessor

statement.

A

special

statement

appearing

in

the

source

program

that

specifies

the

actions

to

be

performed

by

the

preprocessor.

It

is

executed

as

it

is

encountered

by

the

preprocessor.

primary

entry

point.

The

entry

point

identified

by

any

of

the

names

in

the

label

list

of

the

PROCEDURE

statement.

priority.

A

value

associated

with

a

task,

that

specifies

the

precedence

of

the

task

relative

to

other

tasks.

problem

data.

Coded

arithmetic,

bit,

character,

graphic,

and

picture

data.

problem-state

program.

A

program

that

operates

in

the

problem

state

of

the

operating

system.

It

does

not

contain

input/output

instructions

or

other

privileged

instructions.

procedure.

A

collection

of

statements,

delimited

by

PROCEDURE

and

END

statements.

A

procedure

is

a

program

or

a

part

of

a

program,

delimits

the

scope

of

names,

and

is

activated

by

a

reference

to

the

procedure

or

one

of

its

entry

names.

See

also

external

procedure

and

internal

procedure.

procedure

reference.

An

entry

constant

or

variable.

It

can

be

followed

by

an

argument

list.

It

can

appear

in

a

CALL

statement

or

the

CALL

option,

or

as

a

function

reference.

program.

A

set

of

one

or

more

external

procedures

or

packages.

One

of

the

external

procedures

must

have

the

OPTIONS(MAIN)

specification

in

its

procedure

statement.

program

control

data.

Area,

locator,

label,

format,

entry,

and

file

data

that

is

used

to

control

the

processing

of

a

PL/I

program.

prologue.

The

processes

that

occur

automatically

on

block

activation.

pseudovariable.

Any

of

the

built-in

function

names

that

can

be

used

to

specify

a

target

variable.

It

is

usually

on

the

left-hand

side

of

an

assignment

statement.

Q

qualified

name.

A

hierarchical

sequence

of

names

of

structure

or

union

members,

connected

by

periods,

used

to

identify

a

name

within

a

structure.

Any

of

the

names

can

be

subscripted.

R

range

(of

a

default

specification).

A

set

of

identifiers

and/or

parameter

descriptors

to

which

the

attributes

in

a

DEFAULT

statement

apply.

record.

The

logical

unit

of

transmission

in

a

record-oriented

input

or

output

operation.

A

collection

of

one

or

more

related

data

items.

The

items

usually

have

different

data

attributes

and

usually

are

described

by

a

structure

or

union

declaration.

recorded

key.

A

character

string

identifying

a

record

in

a

direct-access

data

set

where

the

character

string

itself

is

also

recorded

as

part

of

the

data.

record-oriented

data

transmission.

The

transmission

of

data

in

the

form

of

separate

records.

Contrast

with

stream

data

transmission.

recursive

procedure.

A

procedure

that

can

be

called

from

within

itself

or

from

within

another

active

procedure.

reentrant

procedure.

A

procedure

that

can

be

activated

by

multiple

tasks,

threads,

or

processes

simultaneously

without

causing

any

interference

between

these

tasks,

threads,

and

processes.

REFER

expression.

The

expression

preceding

the

keyword

REFER,

which

is

used

as

the

bound,

length,

or

size

when

the

based

variable

containing

a

REFER

option

is

allocated,

either

by

an

ALLOCATE

or

LOCATE

statement.

REFER

object.

The

variable

in

a

REFER

option

that

holds

or

will

hold

the

current

bound,

length,

or

size

for

the

member.

The

REFER

object

must

be

a

member

of

the

same

structure

or

union.

It

must

not

be

locator-qualified

or

subscripted,

and

it

must

precede

the

member

with

the

REFER

option.

reference.

The

appearance

of

a

name,

except

in

a

context

that

causes

explicit

declaration.

relative

virtual

origin

(RVO).

The

actual

origin

of

an

array

minus

the

virtual

origin

of

an

array.

remote

format

item.

The

letter

R

followed

by

the

label

(enclosed

in

parentheses)

of

a

FORMAT

statement.

The

Glossary

431

format

statement

is

used

by

edit-directed

data

transmission

statements

to

control

the

format

of

data

being

transmitted.

repetition

factor.

A

parenthesized

unsigned

integer

constant

that

specifies:

1.

The

number

of

times

the

string

constant

that

follows

is

to

be

repeated.

2.

The

number

of

times

the

picture

character

that

follows

is

to

be

repeated.

repetitive

specification.

An

element

of

a

data

list

that

specifies

controlled

iteration

to

transmit

one

or

more

data

items,

generally

used

in

conjunction

with

arrays.

restricted

expression.

An

expression

that

can

be

evaluated

by

the

compiler

during

compilation,

resulting

in

a

constant.

Operands

of

such

an

expression

are

constants,

named

constants,

and

restricted

expressions.

returned

value.

The

value

returned

by

a

function

procedure.

RETURNS

descriptor.

A

descriptor

used

in

a

RETURNS

attribute,

and

in

the

RETURNS

option

of

the

PROCEDURE

and

ENTRY

statements.

S

scalar

variable.

A

variable

that

is

not

a

structure,

union,

or

array.

scale.

A

system

of

mathematical

notation

whose

representation

of

an

arithmetic

value

is

either

fixed-point

or

floating-point.

scale

factor.

A

specification

of

the

number

of

fractional

digits

in

a

fixed-point

number.

scaling

factor.

See

scale

factor.

scope

(of

a

condition

prefix).

The

portion

of

a

program

throughout

which

a

particular

condition

prefix

applies.

scope

(of

a

declaration

or

name).

The

portion

of

a

program

throughout

which

a

particular

name

is

known.

secondary

entry

point.

An

entry

point

identified

by

any

of

the

names

in

the

label

list

of

an

entry

statement.

select-group.

A

sequence

of

statements

delimited

by

SELECT

and

END

statements.

selection

clause.

A

WHEN

or

OTHERWISE

clause

of

a

select-group.

self-defining

data.

An

aggregate

that

contains

data

items

whose

bounds,

lengths,

and

sizes

are

determined

at

program

execution

time

and

are

stored

in

a

member

of

the

aggregate.

separator.

See

delimiter.

shift.

Change

of

data

in

storage

to

the

left

or

to

the

right

of

original

position.

shift-in.

Symbol

used

to

signal

the

compiler

at

the

end

of

a

double-byte

string.

shift-out.

Symbol

used

to

signal

the

compiler

at

the

beginning

of

a

double-byte

string.

sign

and

currency

symbol

characters.

The

picture

specification

characters.

S,

+,

−,

and

$

(or

other

national

currency

symbols

enclosed

in

<

and

>).

simple

parameter.

A

parameter

for

which

no

storage

class

attribute

is

specified.

It

can

represent

an

argument

of

any

storage

class,

but

only

the

current

generation

of

a

controlled

argument.

simple

statement.

A

statement

other

than

IF,

ON,

WHEN,

and

OTHERWISE.

source.

Data

item

to

be

converted

for

problem

data.

source

key.

A

key

referred

to

in

a

record-oriented

transmission

statement

that

identifies

a

particular

record

within

a

direct-access

data

set.

source

program.

A

program

that

serves

as

input

to

the

source

program

processors

and

the

compiler.

source

variable.

A

variable

whose

value

participates

in

some

other

operation,

but

is

not

modified

by

the

operation.

Contrast

with

target

variable.

spill

file.

Data

set

named

SYSUT1

that

is

used

as

a

temporary

workfile.

standard

default.

The

alternative

attribute

or

option

assumed

when

none

has

been

specified

and

there

is

no

applicable

DEFAULT

statement.

standard

file.

A

file

assumed

by

PL/I

in

the

absence

of

a

FILE

or

STRING

option

in

a

GET

or

PUT

statement.

SYSIN

is

the

standard

input

file

and

SYSPRINT

is

the

standard

output

file.

standard

system

action.

Action

specified

by

the

language

to

be

taken

for

an

enabled

condition

in

the

absence

of

an

ON-unit

for

that

condition.

statement.

A

PL/I

statement,

composed

of

keywords,

delimiters,

identifiers,

operators,

and

constants,

and

terminated

by

a

semicolon

(;).

Optionally,

it

can

have

a

condition

prefix

list

and

a

list

of

labels.

See

also

keyword

statement,

assignment

statement,

and

null

statement.

statement

body.

A

statement

body

can

be

either

a

simple

or

a

compound

statement.

statement

label.

See

label

constant.

static

storage

allocation.

The

allocation

of

storage

for

static

variables.

432

PL/I

for

Windows:

Programming

Guide

static

variable.

A

variable

that

is

allocated

before

execution

of

the

program

begins

and

that

remains

allocated

for

the

duration

of

execution.

stream-oriented

data

transmission.

The

transmission

of

data

in

which

the

data

is

treated

as

though

it

were

a

continuous

stream

of

individual

data

values

in

character

form.

Contrast

with

record-oriented

data

transmission.

string.

A

contiguous

sequence

of

characters,

graphics,

or

bits

that

is

treated

as

a

single

data

item.

string

variable.

A

variable

declared

with

the

BIT,

CHARACTER,

or

GRAPHIC

attribute,

whose

values

can

be

either

bit,

character,

or

graphic

strings.

structure.

A

collection

of

data

items

that

need

not

have

identical

attributes.

Contrast

with

array.

structure

expression.

An

expression

whose

evaluation

yields

a

structure

set

of

values.

structure

of

arrays.

A

structure

that

has

the

dimension

attribute.

structure

member.

See

member.

structuring.

The

hierarchy

of

a

structure,

in

terms

of

the

number

of

members,

the

order

in

which

they

appear,

their

attributes,

and

their

logical

level.

subroutine.

A

procedure

that

has

no

RETURNS

option

in

the

PROCEDURE

statement.

Contrast

with

function.

subroutine

call.

An

entry

reference

that

must

represent

a

subroutine,

followed

by

an

optional

argument

list

that

appears

in

a

CALL

statement.

Contrast

with

function

reference.

subscript.

An

element

expression

that

specifies

a

position

within

a

dimension

of

an

array.

If

the

subscript

is

an

asterisk,

it

specifies

all

of

the

elements

of

the

dimension.

subscript

list.

A

parenthesized

list

of

one

or

more

subscripts,

one

for

each

dimension

of

the

array,

which

together

uniquely

identify

either

a

single

element

or

cross

section

of

the

array.

subtask.

A

task

that

is

attached

by

the

given

task

or

any

of

the

tasks

in

a

direct

line

from

the

given

task

to

the

last

attached

task.

synchronous.

A

single

flow

of

control

for

serial

execution

of

a

program.

T

target.

Attributes

to

which

a

data

item

(source)

is

converted.

target

reference.

A

reference

that

designates

a

receiving

variable

(or

a

portion

of

a

receiving

variable).

target

variable.

A

variable

to

which

a

value

is

assigned.

task.

The

execution

of

one

or

more

procedures

by

a

single

flow

of

control.

task

name.

An

identifier

used

to

refer

to

a

task

variable.

task

variable.

A

variable

with

the

TASK

attribute

whose

value

gives

the

relative

priority

of

a

task.

termination

(of

a

block).

Cessation

of

execution

of

a

block,

and

the

return

of

control

to

the

activating

block

by

means

of

a

RETURN

or

END

statement,

or

the

transfer

of

control

to

the

activating

block

or

to

some

other

active

block

by

means

of

a

GO

TO

statement.

termination

(of

a

task).

Cessation

of

the

flow

of

control

for

a

task.

truncation.

The

removal

of

one

or

more

digits,

characters,

graphics,

or

bits

from

one

end

of

an

item

of

data

when

a

string

length

or

precision

of

a

target

variable

has

been

exceeded.

type.

The

set

of

data

attributes

and

storage

attributes

that

apply

to

a

generation,

a

value,

or

an

item

of

data.

U

undefined.

Indicates

something

that

a

user

must

not

do.

Use

of

a

undefined

feature

is

likely

to

produce

different

results

on

different

implementations

of

a

PL/I

product.

In

that

case,

the

application

program

is

in

error.

union.

A

collection

of

data

elements

that

overlay

each

other,

occupying

the

same

storage.

The

members

can

be

structures,

unions,

elementary

variables,

or

arrays.

They

need

not

have

identical

attributes.

union

of

arrays.

A

union

that

has

the

DIMENSION

attribute.

upper

bound.

The

upper

limit

of

an

array

dimension.

V

value

reference.

A

reference

used

to

obtain

the

value

of

an

item

of

data.

variable.

A

named

entity

used

to

refer

to

data

and

to

which

values

can

be

assigned.

Its

attributes

remain

constant,

but

it

can

refer

to

different

values

at

different

times.

variable

reference.

A

reference

that

designates

all

or

part

of

a

variable.

Glossary

433

virtual

origin

(VO).

The

location

where

the

element

of

the

array

whose

subscripts

are

all

zero

are

held.

If

such

an

element

does

not

appear

in

the

array,

the

virtual

origin

is

where

it

would

be

held.

Z

zero-suppression

characters.

The

picture

specification

characters

Z

and

*,

which

are

used

to

suppress

zeros

in

the

corresponding

digit

positions

and

replace

them

with

blanks

or

asterisks

respectively.

434

PL/I

for

Windows:

Programming

Guide

Index

Special

characters
?

option

for

ILIB

317

*PROCESS

statement

23

%INCLUDE

statement

23

%LINE

directive

24

%OPTION

directive

24

%PROCESS

statement
and

PROCEDURE

statement

23

specifying

compile-time

options

with

29

A
access

methods
DDM

158

I/O

160

accessing

data

sets
examples

of

REGIONAL(1)

200

record

I/O

199

REGIONAL(1)

211

stream

I/O

187

adapting

existing

programs

for

workstation

VSAM

221

ADDBUFF

ENVIRONMENT

option

10

adding

or

replacing

objects

in

a

library,

ILIB

315

aggregate
length

table,

example

111

AGGREGATE

compile-time

option

33

ALIGNED

compile-time

suboption

44

American

National

Standard

(ANS)
in

CTLASA

option

163

in

printer-destined

files

183

AMTHD

option

168

ANS
compile-time

suboption

40

control

character

163,

183

print

control

characters

184

APPEND

option

169

application

program
coding

SQL

statements
data

declarations

251

AREAs

and

INITIAL

attribute

17

array

expressions

restrictions

11

ASA

option

169

ASCII
compile-time

suboption
description

40

effect

on

performance

288

data

conversion

tables

304

DBCS

portability

16

portability

considerations

14

ASCII

ENVIRONMENT

option

10

ASSIGNABLE

compile-time

suboption

40

attributes

and

cross-reference

table

110

avoiding

calls

to

library

routines

294

B
BACKUP

option

for

ILIB

317

BACKWARDS

file

attribute

10

base

file

of

VSAM

keyed

data

set

216

BKWD

option

162

BTRIEVE

access

method

160

BUFFERS

ENVIRONMENT

option

10

BUFND

ENVIRONMENT

option

10

BUFNI

ENVIRONMENT

option

10

BUFOFF

ENVIRONMENT

option

10

BUFSIZE

option

169

built-in

functions
DAYS

408

DAYSTODATE

409

restricted

12

BYADDR
description

286

effect

on

performance

287

using

with

DEFAULT

option

40

byte-reversed

integers

14

BYVALUE
description

286

effect

on

performance

287

using

with

DEFAULT

option

40

C
calculations

using

dates

410

call

interface

conventions
with

ODBC

247

calling

conventions

321

general-purpose

register

implications
examples

of

passing

parameters

324

parameters

324

carriage

return-line

feed

(CR

-

LF)

174

CEE.OPTIONS

environment

variable

135

character

device

158

CHECK

compile-time

option

36

CICS
environment

variables

103

IBM.PPCICS

27

preprocessor

options

102

run-time

user

exit

303

support

100

CMPAT

compile-time

option

36

code

inspection

139

coding
CICS

statements

103

embedded

control

characters

9

improving

performance

289

SQL

statements

85

command

line

parameters

for

ILIB

310

command

line,

setting

run-time

options

135

communications

area,

SQL

85

comparing

dates
implicit

410

using

literals

411

comparing

dates

(continued)
using

non-literals

411

with

differing

patterns

411

with

like

patterns

410,

411

compatibility

of

OS

PL/I

files

for

the

workstation

221

compilation
compile-time

options

31

environment

variables
IBM.DECK

28

IBM.OBJECT

28

IBM.OPTIONS

26

IBM.PRINT

28

IBM.SOURCE

27

IBM.SYSLIB

27

INCLUDE

28

TMP

28

failure

153

mainframe

applications

on

your

workstation

9

preparing

your

source

program

22

user

exit
activating

298

customizing

299

IBMUEXIT

298

procedures

297

using

the

PLI

command

to

invoke

the

compiler

28

compilation

output
compiler

output

112

using

the

compiler

listing

105

compile-time

options

10

AGGREGATE

33

CHECK

36

CMPAT

36

DEFAULT

286

GONUMBER

284

IMPRECISE

284

INSOURCE

50

LIBS

51

MAXSTMT

55

MDECK

55

OPTIMIZE

283

PPTRACE

60

PREFIX

285

RESPECT

406

RULES

284,

407

SNAP

67,

284

SYSTEM

70

USAGE

71

use

in

debugging

141

where

to

specify

29

WIDECHAR

71

WINDOW

72,

406

XINFO

72

compiler
descriptions

of

options

31

listing
stack

storage

used

68

compiler

options
abbreviations

31

435

compiler

options

(continued)
COPYRIGHT

37

default

31

EXTRN

45

REDUCE

62

STATIC

68

STORAGE

68

XINFO

72

compiler

restrictions
array

expressions

11

built-in

functions

12

DBCS

12

DEFAULT

statement

11

extents

of

automatic

variables

12

iSUB

defining

12

MACRO

preprocessor

12

pseudovariables

12

RECORD

I/O

10

STREAM

I/O

11

structure

expressions

11

concatenation

25

condition

handling
coding

ON-units

149

general

concepts

147

interrupts

147

list

of

conditions

and

their

attributes

150

qualified

and

unqualified

conditions

150

scope

and

descendancy

147

terminology

147

conditions
handling

conversions

inline

295

handling

string

built-in

functions

inline

295

CONNECT

TO

statement

96

CONNECTED

compile-time

suboption
description

40

effect

on

performance

287

CONSECUTIVE
files

220

option
definition

162

stream

I/O

185

consecutive

data

sets
controlling

input

from

the

console
capital

and

lowercase

letters

196

end

of

file

196

format

of

data

195

stream

and

record

files

195

using

files

conversationally

195

controlling

output

to

the

console
example

of

an

interactive

program

196

format

of

PRINT

files

196

stream

and

record

files

196

description

183

examples

200

PRINT

files

196

printer-destined

files

183

using

record-oriented

I/O
accessing

and

updating

a

data

set

199

creating

a

data

set

199

defining

files

198

ENVIRONMENT

options

for

data

transmission

199

consecutive

data

sets

(continued)
using

stream-oriented

data

transmission
accessing

a

data

set

with

stream

I/O

187

creating

a

data

set

with

stream

I/O

185

defining

files

using

stream

I/O

185

ENVIRONMENT

options

for

185

using

PRINT

files

189

using

SYSIN

and

SYSPRINT

files

194

console
input

194

output

196

control

blocks
function-specific

298

global

control

300

control

characters
ANS

in

CTLASA

option

163

printer

183

conversion

tables

304

converting

dates

410

COPYRIGHT

compiler

option

37

cross-reference

table

in

compilation

output

110

CTLASA

option

163

CURRENCY

compile-time

option
portability

9

customizing
setting

compile-time

environment

variables

25

user

exit
modifying

IBMUEXIT.INF

299

structure

of

global

control

blocks

300

writing

your

own

compiler

exit

300

D
data

conversion

176

conversion

tables

304

files
associating

a

data

file

with

OPEN

178

closing

a

PL/I

file

178

creating

178

record

161

remote

file

access

160

representations,

portability

14

structures

251

testing

140

transmission

162

types
equivalent

Java

and

PL/I

357

equivalent

SQL

and

PL/I

88

data

sets
access

methods

160

accessing
examples

of

REGIONAL(1)

200

record

I/O

199

associating

a

PL/I

file

with

a

data

set
how

PL/I

finds

data

sets

178

using

environment

variables

176

data

sets

(continued)
associating

a

PL/I

file

with

a

data

set

(continued)
using

the

TITLE

option

of

the

OPEN

statement

177

using

unassociated

files

178

associating

several

data

sets

with

one

file

178

associating

with

more

than

one

file

178

characteristics

157

combinations

of

I/O

statements,

attributes,

and

options

179

DD:ddname

environment

variable

168,

176

default

identification

176

defining

and

using

216

disassociating

178

DISPLAY

statement

input

and

output

181

establishing

a

path

178

establishing

characteristics
data

set

organizations

161

DD:ddname

environment

variable

168

PL/I

ENVIRONMENT

attribute

162

record

formats

161

records

161

extending

on

output

169

keyed

access

159

maximum

number

of

regions

172

native,

fixed-length

159

number

of

regions

172

opening

a

PL/I

file

178

organization
DDM

and

VSAM

168

default

161

options

161

regional

167

PL/I

standard

files

(SYSPRINT

and

SYSIN)

182

record

I/O

access

158

recreating

output

169

redirecting

standard

input
output,

and

error

devices

182

regional

159

REGIONAL(1)

160

sequential

access

158

specifying

characteristics

160

stream

files

184

types
conventional

text

files

and

devices

159

fixed-length

data

sets

159

native

data

sets

158

regional

data

sets

159

VSAM

159

workstation

VSAM
defining

files

216

direct

data

sets

232

keyed

data

sets

225

organization

216

sequential

data

sets

222

data-directed

I/O
coding

for

performance

289

DBCS

constants

165

436

PL/I

for

Windows:

Programming

Guide

data-directed

I/O

(continued)
specifying

GRAPHIC

option

165

DATE

attribute
definition

and

syntax

405

when

ignored

412

DAYS

built-in

function

408

DAYSTODATE

built-in

function

409

DBCS

(double-byte

character

set)
and

GRAPHIC

option

165

table

names

251

DBCS

restrictions

12

DCLGEN

251

DD

information
record

format

161

TITLE

statement

177

DD:ddname

environment

variables

168

alternate

ddname

177

AMTHD

168

APPEND

169

ASA

169

DELAY

170

DELIMIT

171

LRECL

171

LRMSKIP

171

PROMPT

171

PUTPAGE

171

RECCOUNT

172

RECSIZE

172

RETRY

172

SAMELINE

172

SHARE

173

SKIP0

174

specifying

characteristics

168

TERMLBUF

174

TYPE

174

DDM

access

method

158,

160

DDM

data

sets
record

formats

161

value

of

AMTHD

168

debugging

programs
common

PL/I

errors
compiler

or

library

subroutine

failure

153

invalid

use

of

PL/I

151

logical

errors

in

source

150

loops

and

other

unforeseen

errors

151

poor

performance

154

system

failure

154

unexpected

input/output

data

152

unexpected

program

results

153

unexpected

program

termination

152

uninitialized

entry

variables

151

condition

handling

147

dumps

143

FLAG

option

141

general

debugging

tips

140

GONUMBER

option

141

NOLAXDCL

option

142

NOLAXIF

option

142

PREFIX

option

141

RULES

option

141

SNAP

option

142

using

compile-time

options

141

debugging

programs

(continued)
using

footprints

for

debugging
DISPLAY

143

PUT

DATA

143

PUT

LIST

143

PUT

SKIP

LIST

143

XREF

option

142

DECLARE
STATEMENT

definition

97

TABLE

statement

97

declaring
host

variables,

SQL

preprocessor

87

DEF

files
creating

305

DEF

option

for

ILIB

317

DEFAULT

compile-time

option
suboptions

ALIGNED

44

ASCII

or

EBCDIC

40

ASSIGNABLE

or

NONASSIGNABLE

40

BYADDR

or

BYVALUE

40

CONNECTED

or

NONCONNECTED

40

DESCLIST

or

DESCLOCATOR

43

DESCRIPTOR

or

NODESCRIPTOR

40

DUMMY

43

E

44

EVENDEC

or

NOEVENDEC

42

IBM

or

ANS

40

IEEE

or

HEXADEC

42

INITFILL

or

NOINITFILL

42

INLINE

or

NOINLINE

41

LINKAGE

42

LOWERINC

or

UPPERINC

43

NATIVE

or

NONNATIVE

41

NATIVEADDR

or

NONNATIVEADDR

41

NULLSYS

or

NULL370

43

ORDER

or

REORDER

41

ORDINAL

41

OVERLAP

or

NOOVERLAP

41

RECURSVIE

or

NONRECURSIVE

43

RETCODE

44

RETURNS

43

SHORT

43

using

default

suboptions

286

DEFAULT

statement

restrictions

11

DEFINED
versus

UNION

293

defining

files
for

data

sets

219

for

REGIONAL(1)

data

sets

207

definition

file
creating

305

DELAY

option
description

and

syntax

170

DELETE

statement

180

DELIMIT

option
description

and

syntax

171

DESCLIST

compile-time

suboption

43

DESCLOCATOR

compile-time

suboption

43

descriptor

area,

SQL

85

DESCRIPTOR

compile-time

option
effect

on

performance

287

DESCRIPTOR

compile-time

suboption
description

40

desk

checking

139

device
character

157

con

181

standard

157

std

181

direct

access

209

direct

data

sets

232,

241

DIRECT

file
using

to

access

a

workstation

VSAM

direct

data

set

237

using

to

access

a

workstation

VSAM

keyed

data

set

229

directing

I/O

181

DISPLAY

143

Distributed

Data

Management

157

DLLs

305

DPATH

run-time

environment

variable

135

DRIVER

sample

program
compile,

link,

and

run

308

example

of

FETCHing

a

DLL

at

run

time

308

DRIVER1.DEF

file
sample

program

to

build

a

DLL

307

DRIVER1.PLI

file
sample

program

that

uses

a

DLL

307

DSNTIAR.PLI

sample

program

97

dummy
records

205

DUMMY

compile-time

suboption

43

dumps
condition

handling

147

default

options

144

error

handling

147

formatted

PL/I

dumps—PLIDUMP

144,

145

options

string

144

SNAP

dumps

for

trace

information

147

title

string

144

dynamic

descendancy

147

dynamic

link

libraries
building

305

compiling,

linking,

running

307

creating

DLL

source

files

305

using

FETCH

and

RELEASE

in

your

main

program

308

E
E

compile-time

suboption

44

EBCDIC
compile-time

suboption

40

data

conversion

tables

304

DBCS

portability

16

effect

on

performance

288

portability

considerations

14

edit-directed

I/O

165

embedded
CICS

statements

103

control

characters

9

SQL

statements

86

Index

437

embedded

SQL
advantages

244

end

of

file

characters

(/*)

196

ENVIRONEMENT

options

not

supported

10

ENVIRONMENT

attribute
(REREAD)

on

the

CLOSE

statement
regional

data

sets

207

options
CTLASA

183

specifying

characteristics

162

BKWD

162

BUFSIZE

169

CONSECUTIVE

162

CTLASA

163

GENKEY

163

GRAPHIC

165

KEYLENGTH

165

KEYLOC

165

ORGANIZATION

166

RECSIZE

166

REGIONAL(1)

167

SCALARVARYING

167

VSAM

167

specifying

options
for

record

I/O

199

for

workstation

VSAM

data

sets

219

stream

I/O

185

environment

differences,

S/390

and

AIX

16

ENVIRONMENT

options
for

record-oriented

data

transmission
CONSECUTIVE

199

CTLASA

199

ORGANIZATION(CONSECUTIVE)

199

RECSIZE

199

SCALARVARYING

199

stream-oriented

data

transmission

185

environment

variables
CICS

preprocessor

103

compile-time

25

include

preprocessor

76

macro

facility

78

SQL

preprocessor

84

ERROR
ON-units

18

error

and

condition

handling
conditions

used

for

testing

and

debugging

150

dynamic

descendancy

147

general

concepts

147

interrupts

and

PL/I

conditions

147

normal

return

148

ON-units

for

conditions

150

standard

system

action

148

static

descendancy

147

terminology

147

errors
calling

uninitialized

entry

variables

151

compiler

or

library

153

differences

in

issuing

from

OS

PL/I

18

invalid

use

of

PL/I

151

logical

errors

in

source

program

150

errors

(continued)
loops

151

poor

performance

154

run-time

messages

149

system

failure

154

unexpected
input/output

data

152

program

results

153

program

termination

152

unforeseen

errors

151

EVENDEC

compile-time

suboption

42

EXCLUSIVE

file

attribute

10

EXEC

SQL

statements

79

exporting

data

from

a

DLL

308

EXTDICTIONARY

option

for

ILIB

319

EXTRACT

object

for

ILIB

315

EXTRN

compiler

option

45

F
FETCH

statement
using

in

your

main

program

308

file

attributes

not

supported
BACKWARDS

10

EXCLUSIVE

10

TRANSIENT

10

files
adapting

existing

programs

for

workstation

VSAM
using

CONSECUTIVE

files

220

using

INDEXED

files

220

using

REGIONAL(1)

files

221

using

VSAM

files

221

closing

178

declarations

for

REGIONAL(1)

data

sets

205,

206,

207

defining
record

I/O

198

stream

I/O

185

opening

178

PL/I
definition

157

standard

182

printer-destined

184

STREAM

attribute

184

SYSIN

194

SYSPRINT

194

filespec

168

FILLERS

193

filtering

messages

298

FIXED
BINARY,

mapping

and

portability

17

TYPE

option

175

fixed-length

record

format

161

FLAG

compile-time

option
using

when

debugging

141

floating-point

data

15

footprints

for

debugging

142

formatted

PL/I

dumps

143

FREEFORMAT

option

for

ILIB

318

FROMALIEN

compile-time

suboption

342

G
GENDEF

(/gd)

option

for

ILIB

318

general

purpose

register

implications
example

passing

conforming

parameters

to

a

routine

324

passing

floating

point

parameters

to

a

routine

326

parameters

324

generating

declare

statements

251

GENIMPLIB

(/gi)

option

for

ILIB

318

GENKEY

option

162,

163

GET

statement

180

GET

statements
controlling

input

from

the

console

194

GRAPHIC

option

165

global

control

blocks
data

entry

fields

300

writing

the

initialization

procedure

301

writing

the

message

filtering

procedure

301

writing

the

termination

procedure

302

GONUMBER

compile-time

option

284

using

when

debugging

141

GRAPHIC
ENVIRONMENT

option

165,

185

graphic

data

and

stream

I/O

184

H
handling

conditions
built-in

for

condition

handling

149

PL/I

run-time

error

message

formats

149

SNAP

messages

149

system

messages

149

sources

of

conditions

149

HELLO

program

21

HELP

option

for

ILIB

318

HEXADECIMAL
compile-time

suboption

42

portability

considerations

15

host
structures

94

variables,

using

in

SQL

statements

87

I
I/O

access

methods
BTRIEVE

160

ISAM

160

REMOTE

160

attributes

table

179

DDM

160

options

table

179

redirection

182

statements

table

179

unexpected

152

using

the

sort

program

366

IBM

compile-time

suboption

40

IBMUEXIT

compiler

exit

298

IEEE
compile-time

suboption

42

438

PL/I

for

Windows:

Programming

Guide

IEEE

(continued)
portability

considerations

15

ILIB
input

312

introduction

309

invoking

309

objects

314

options

316

output

312

specifying

parameters

309

using

a

response

file

311

ILINK

environment

variable

122

ilink

syntax

113

IMPRECISE

compile-time

option
improving

performance

284

improving

application

performance

283

INCLUDE
environment

variable

28

processing

23

statement,

using

DCLGEN

255

include

files
with

ODBC

247

include

preprocessor
environment

variables

76

syntax

76

INDEXAREA

ENVIRONMENT

option

10

indexed

data

sets

159

INDEXED

files,

adapting

programs

220

indicator

variables,

SQL

95

INITFILL

compile-time

suboption

42

INITIAL

attribute

17

initialization

procedure

of

compiler

user

exit

301

INLINE

compile-time

suboption

41

input
controlling

from

console

194

defining

data

sets

for

stream

files

185

example

of

interactive

program

196

SEQUENTIAL

197

to

the

console
example

of

an

interactive

program

196

format

of

PRINT

files

196

stream

and

record

files

196

input

and

output

with

workstation

VSAM

data

sets
description

215

organization
accessing

records

in

217

creating

and

accessing

216

determining

which

type

you

need

216

using

keys

218

using

workstation

VSAM

direct

data

sets
loading

234

using

a

DIRECT

file

to

access

237

using

a

SEQUENTIAL

file

to

access

236

using

workstation

VSAM

keyed

data

sets
loading

227

using

a

DIRECT

file

to

access

229

using

a

SEQUENTIAL

file

to

access

229

input

and

output

with

workstation

VSAM

data

sets

(continued)
using

workstation

VSAM

sequential

data

sets
defining

and

loading

223

updating

224

using

a

SEQUENTIAL

file

to

access

223

input-

and

output-handling

routines,

sort

program

366

INSOURCE

compile-time

option

50

interactive

program,

example

196

interlanguage

communication

(ILC)

337

interrupts

141

invoking
compiler

28

ISAM

access

method

160

iSUB

defining

restrictions

12

J
Java

346,

347,

348,

349,

350,

351,

352,

353,

354,

356,

357

JAVA

345

Java

code,

compiling

347,

350,

354

Java

code,

writing

346,

349,

353

jni
JNI

sample

program

346,

349,

353

K
key

accessing

a

sequential

data

set

218

generic

163

relative

record

number
padding

218

truncation

218

starting

position

165

KEY
keys

for

workstation

VSAM

keyed

data

sets

218

option

in

READ

statement

162

relative

record

numbers

218

sequential

record

values

218

key

length,

checking

165

keyboard
screen

operations

181

keyed

data

sets

229

statements

and

options

for

225

types

and

advantages

217

KEYFROM

218

KEYFROM,

relative

record

numbers

218

KEYLENGTH

option

165

KEYLOC

option

165

keys
using

for

workstation

VSAM

keyed

data

sets

218

using

relative

record

numbers

218

using

sequential

record

values

218

KEYTO
keys

for

workstation

VSAM

keyed

data

sets

218

relative

record

numbers

218

sequential

file

to

access

a

workstation

VSAM

sequential

data

set

223

sequential

record

values

218

L
large

object

(LOB)

support,

SQL

preprocessor

90

LEAVE

ENVIRONMENT

option

10

length

of

record
maximum

166

specifying

172

library

manager

309

library,

compiler

subroutine

failure

153

LIBS

compile-time

option

51

line

continuation

25

line

feed

(LF)
definition

175

delimiting

logical

records

159

LF

files

161

LINE

option
in

controlling

output

to

the

console

196

of

PUT

statement

183

using

with

PRINT

files

189

when

using

PRINT

files

189

LINESIZE

option
accessing

a

data

set

with

stream

I/O

185

creating

a

data

set

with

stream

I/O

185

definition

190

OPEN

statement

185

tab

set

table

field

193

linkage
OPTLINK

example

324

features

323

tips

for

using

323

SYSTEM
description

329

example

330

LINKAGE

compile-time

suboption
calling

conventions

321

effect

on

performance

288

syntax

42

linking

your

program
creating

files
dynamic

link

library

118

executable

files

118

map

119

input

and

output

115

return

codes

119

search

rules

115

specifying

directories

116

starting

the

linker

113

static

linking

113

using

a

make

file

114

using

response

files

117

using

the

command

line

113

LIST

option

for

ILIB

318

list-directed

I/O
DBCS

constants

165

specifying

GRAPHIC

option

165

LOCATE

statement

180

logical

errors

in

source

150

loops
coding

ON-units

151

control

variables

291

tips

for

use

151

LOWERINC

compile-time

suboption

43

LRECL

option

171

Index

439

LRMSKIP

option

171

M
machine

interrupts

147

macro

facility
environment

variables

78

IBM.PPMACRO

26

macro

definition

77

portability

13

macro

preprocessor
macro

definition

77

mainframe

applications
running

on

the

workstation

13

make

file

utility

(NMAKE)

259

managing

libraries

(.LIB

files)

309

margins

24

MAXSTMT

compile-time

option

55

MDECK

compile-time

option

55

messages
filter

function

301

modifying

in

compiler

user

exit

299

migration
compatibility

with

OS

PL/I

9

OS

PL/I

files

for

the

workstation
CONSECUTIVE

file

220

EXCLUSIVE

file

220

INDEXED

file

220

ISAM

record

handling

220

REGIONAL(1)

file

221

VSAM

file

221

Millennium

Language

Extensions
using

in

PL/I

applications

405

using

with

the

SQL

preprocessor

412

mixed-language

applications

337

module

testing

140

N
named

constants
defining

293

versus

static

variables

293

national

characters

9

national

language

support

137

NATIVE

compile-time

suboption
description

41

effect

on

performance

288

portability

considerations

14

native

data

sets
accessing

158

character

devices

159

conventional

text

files

159

DDM

data

sets

160

fixed-length

data

sets

159

regional

data

sets

159

types

158

NATIVEADDR

compile-time

suboption

41

NATLANG
run-time

option

137

NCP

ENVIRONMENT

option

10

NMAKE

utility
characters

that

modify

commands

278

descriptions

264

directives

273

NMAKE

utility

(continued)
inference

rules

271

inline

files

277

introduction

259

make

file

utility

(NMAKE)

259

options

262

special

macros

269

syntax

260

TOOLS.INI

file

281

using

command

files

261

using

macros

266

using

the

command

line

260

NOBACKUP

option

for

ILIB

317

NODESCRIPTOR

compile-time

suboption

40

NOEVENDEC

compile-time

suboption

42

NOEXTDICTIONARY

option

for

ILIB

319

NOFREEFORMAT

option

for

ILIB

318

NOINITFILL

compile-time

suboption

42

NOINLINE

compile-time

suboption

41

NOLAXDCL

compile-time

option

142

NOLAXIF

compile-time

option

142

NONASSIGNABLE

compile-time

suboption

40

NONCONNECTED

compile-time

suboption

40

NONNATIVE

compile-time

suboption

41

NONNATIVEADDR

compile-time

suboption

41

NONRECURSIVE

compile-time

suboption

43

NOOVERLAP

compile-time

suboption
description

41

NOT

compile-time

option
portability

9

notices

415

NOWARN

option

for

ILIB

319

NOWRITE

ENVIRONMENT

option

10

NULL370

compile-time

suboption

43

NULLSYS

compile-time

suboption

43

NUMBER

compile-time

option

110

numeric

arguments

for

the

linker

122

O
ODBC

243

advantages

244

background

243

CALL

interface

convention

247

connecting

245

driver

manager

244

embedded

SQL

244

environment-specific

information

244

mapping

of

C

data

types

248

online

help

244

supplied

include

files

247

using

APIs

from

PL/I

246

offset
determining

statement

numbers

149

tab

count

193

Open

Database

Connectivity

(see

ODBC)

243

OPEN

statement
opening

a

file

178

OPEN

statement

(continued)
specifying

the

length

of

records

161

using
LINESIZE

option

185

TITLE

option

161,

178

Operating

system
data

definition

(DD)

information

176

optimal

coding
coding

style

289

compile-time

options

283

OPTIMIZE

compile-time

option

283

options
compile-time

DEFAULT

321

DD:ddname

environment

variables
AMTHD

168

APPEND

169

ASA

169

DELAY

170

DELIMIT

171

LRECL

171

LRMSKIP

171

PROMPT

171

PUTPAGE

171

RECCOUNT

172

RECSIZE

172

RETRY

172

SAMELINE

172

SHARE

173

SKIP0

174

TERMLBUF

174

TYPE

174

FROMALIEN

342

I/O

table

179

PL/I

ENVIRONMENT

attribute
BKWD

162

BUFSIZE

169

CONSECUTIVE

162

CTLASA

163

GENKEY

163

GRAPHIC

165

KEYLENGTH

165

KEYLOC

165

ORGANIZATION(CONSECUTIVE)

166

ORGANIZATION(INDEXED)

166

ORGANIZATION(RELATIVE)

166

RECSIZE

166

REGIONAL(1)

167

SCALARVARYING

167

VSAM

167

PRINT

attribute
LINE

189

PAGE

189

SKIP

189

run-time
NATLANG

137

using
DD

information

177

TITLE

177

OR

compile-time

option
portability

9

ORDER

compile-time

suboption
description

41

effect

on

performance

288

ORDINAL

compile-time

suboption

41

organization
data

sets

161

440

PL/I

for

Windows:

Programming

Guide

organization

(continued)
default

162

regional

data

sets

167

VSAM

167

ORGANIZATION

option

166

output
defining

data

sets

for

stream

files

185

SEQUENTIAL

197

to

the

console
example

of

an

interactive

program

196

format

of

PRINT

files

196

stream

and

record

files

196

OVERLAP

compile-time

suboption
description

41

P
PACKAGEs

versus

nested

PROCEDUREs

291

page
PAGELENGTH

tab

set

table

field

193

PAGESIZE

tab

set

table

field

193

PAGE

option
of

PUT

statement

183

using

with

PRINT

files

189

parameters

for

ILIB

309

PATH

run-time

environment

variable

135

path

testing

140

patterns

for

dates

407

performance

improvement
coding

for

performance
avoiding

calls

to

library

routines

294

DATA-directed

input

and

output

289

DEFINED

versus

UNION

293

loop

control

variables

291

named

constants

versus

static

variables

293

PACKAGEs

versus

nested

PROCEDUREs

291

REDUCIBLE

functions

292

selecting

compile-time

options
DEFAULT

286

GONUMBER

284

IMPRECISE

284

OPTIMIZE

283

PREFIX

285

RULES

284

SNAP

284

PL/I
compiler

invalid

language

use

151

user

exit

procedures

298

ENVIRONMENT

attribute
OPEN

statement

161

options

portable

to

other

SAA

implementations

162

files
associating

with

a

data

set

176

definition

157

preparing

for

compilation

22

structure

22

PL/I

(continued)
standard

files

182

PL/I

code,

compiling

348,

352,

356

PL/I

code,

linking

348,

352,

356

PL/I

code,

writing

347,

351,

354

platform
differences

16

PLI

command
invoking

the

compiler

28

specifying

compile-time

options

29

PLIDUMP
discussion

143

obtaining
file

information

143

TCA

information

143

reading

a

formatted

PL/I

dump

146

suggested

coding

145

PLISRTx
calling

the

sort

program

364

communicating

success

or

failure

361,

365

determining

which

subroutine

to

use

360

input-

and

output-handling

routines

366

parameters

359

sort

data

input

and

output

366

specifying

the

sorting

field

363

PLITABS

193

poor

performance

154

portability
avoiding

logic

errors

14

changes

in

run-time

behavior

13

creating

executable

files

13

data

representations

14

embedded

control

characters

9

environment

differences

16

language

elements

17

national

characters

and

other

symbols

9

operating

system

differences

9

using

the

macro

facility

13

PPTRACE

compile-time

option

60

practice

exercise

21

HELLO

program

21

using

compile-time

options

22

using

the

sample

programs

provided

22

PREFIX

compile-time

option

285

using

default

suboptions

285

using

when

debugging

141

preparing

your

source

program

for

compilation
INCLUDE

processing

23

line

continuation

25

margins

24

program

file

format

25

program

file

structure

22,

23

preprocessors
available

with

PL/I

75

CICS

options

102

include

76

macro

facility

77

macro

preprocessor

77

SQL

options

80

SQL

preprocessor

79

PRINT

files
applying

the

PRINT

attribute

189

controlling

printed

line

length

190

format

at

terminal

196

inserting

ANS

print

control

characters

189

overriding

the

tab

control

table

192

printer

control

character,

ASA

183

printer-destined

files

183

ANS

print

control

characters
IBM

Proprinter

equivalents

184

list

184

ASA

option

183

controlling

printed

line

length

190

example

of

creating

a

file

192

overriding

the

tab

control

table

192

print

control

characters

183

program
file

format
correct

format

23

discussion

25

expectations

25

INCLUDE

processing

23

line

continuation

25

margins

24

preparing

for

compilation

22

PROMPT

option

171

Proprinter,

IBM,

control

characters

163

pseudovariables

restricted

12

PUT
DATA

143

LIST

143

SKIP

LIST

143

statement
attributes

and

options

179

controlling

input

from

the

console

194

GRAPHIC

option

165

without

FILE

option

194

PUT

statement
PAGE,

SKIP,

and

LINE

options

183

PUTPAGE

option

171

R
READ

statement,

attributes,

and

options

180

RECCOUNT

option

172

RECORD

condition
adapting

CONSECUTIVE

file

for

workstation

VSAM

220

adapting

INDEXED

file

for

workstation

VSAM

220

RECORD

file

165

record

formats

161

RECORD

I/O
restrictions

10

RECORD

OUTPUT

files
associated

with

consecutive

data

sets

163

using

CTLASA

163

record-oriented

I/O
accessing

a

data

set

199

creating

a

data

set

199

defining

files

using

198

ENVIRONMENT

options

for

data

transmission

199

Index

441

record-oriented

I/O

(continued)
essential

information

200

examples

of

consecutive

data

sets

200

updating

a

data

set

with

199

records
accessing

in

workstation

VSAM

data

sets

217

length

172

specifying

length

161

RECSIZE

option
description

and

syntax

172

for

stream

I/O

185

PL/I

ENVIRONMENT

attribute

166

specifying

the

length

of

records

161

RECURSIVE

compile-time

suboption

43

REDUCE

compiler

option

62

REDUCIBLE

functions

292

region

numbers

209

regional

data

sets
commands

and

options

205,

206,

207

description

205

file

definition
specifying

ENVIRONMENT

options

207

using

keys

with

regional

data

sets

208

required

information

208

using

REGIONAL(1)

data

sets
direct

access

212

dummy

records

208

example

212

sequential

access

211

updating

211

REGIONAL

ENVIRONMENT

option

10

REGIONAL(1)
data

sets
accessing

and

updating

211

creating

209

discussion

205

example

209

using

direct

access

212

using

sequential

access

211

ENVIRONMENT

option

167

files

221

regions

172

relative

record

numbers

in

workstation

VSAM

data

sets

218

RELEASE

statement,

example

308

remote

access

158

REMOTE

access

method

160

remote

file

access

158

REMOVE

object

for

ILIB

316

REORDER

compile-time

suboption
description

41

effect

on

performance

288

REREAD

ENVIRONMENT

option

11

RESPECT

compile-time

option

406

RETCODE

compile-time

suboption

44

RETRY

option

172

return

codes,

linker

119

RETURNS

compile-time

suboption

43,

287

REWRITE

statement

180

REWRITE

statement,

attributes

and

options

181

routines,

library,

conversions

295

RULES

compile-time

option

407

effect

on

performance

284

using

when

debugging

141

run-time
behavior

differences
ERROR

message

issuing

18

INITIAL

attribute

for

AREAs

is

ignored

17

language

elements

17

using

variables

declared

as

FIXED

BIN

17

differences

between

platforms

14

messages
SNAP

149

SYSTEM

149

options,

specifying

135

shipping

DLLs

137

run-time

options
NATLANG

137

specifying

multiple

run-time

options

or

suboptions

136

where

to

specify

run-time

options

135

running

your

program
setting

run-time

environment

variables

135

specifying

run-time

options

135

S
SAA

suboption

of

LANGLVL

50

SAA2

suboption

of

LANGLVL

51

SAMELINE

option

172

sample

program,

running

349,

353,

357

sample

programs

22

SCALARVARYING

option

167

screen

and

keyboard

operations

181

search

rules
linker

115

sequential
access

209

data

sets
statements

and

options

222

workstation

VSAM

217

record

value
in

workstation

VSAM

sequential

data

set

218

using

KEYTO

to

find

223

SEQUENTIAL
INPUT

162

OUTPUT

198

UPDATE

162

SEQUENTIAL

file
using

to

access

a

workstation

VSAM

direct

data

set

236

using

to

access

a

workstation

VSAM

keyed

data

set

229

using

to

access

a

workstation

VSAM

sequential

data

set

223

SET

command
run-time

environment

variables

135

setting

linker

options

121

SHARE

option

173

shipping

runtime

137

SHORT

compile-time

suboption

43

SIS

ENVIRONMENT

option

11

SKIP

ENVIRONMENT

option

11

SKIP

option
controlling

input

from

the

console

195

of

PUT

statement

183

using

with

PRINT

files

189

SKIP0

option

174

SMARTdata

Utilities

158

SNAP

compile-time

option
description

67

dumps

142

effect

on

performance

284

messages

149

using

when

debugging

142

sort

exit
E15

367

E35

369

sort

program
calling

the

sort

program

364

communicating

success

or

failure

361,

365

comparing

S/390

to

the

workstation

359

input-

and

output-handling

routines

366

PLISRTx

359

preparing

to

use

sort

360

sort

data

input

and

output

366

specifying

the

sorting

field

363

varying-length

records

366

SORT.DEF

file

307

SORT.PLI

file

307

source

key

208

specifying

run-time

options

135

SQL

preprocessor

412

communications

area

85

descriptor

area

85

environment

variables

27,

84

error

return

codes,

handling

97

EXEC

SQL

statements

79

large

object

support

90

options

80

user

defined

functions

92

using

host

structures

94

using

host

variables

87

using

indicator

variables

95

SQL

statements
INCLUDE

255

SQLCA

85

SQLDA

85

standard
device,

workstation

157

system

action

148

statement

numbers,

determining

from

offset

149

statements
DELETE

180

GET

180

LOCATE

180

READ

180

REWRITE

180

WRITE

180

STATIC

compiler

option

68

static

descendancy

147

static

linking

113

storage
report

in

listing

68

STORAGE

compiler

option

68

442

PL/I

for

Windows:

Programming

Guide

stream

and

record

files

196

STREAM

attribute
data

sets

184

discussion

184

stream

I/O
accessing

data

sets

187

creating

a

data

set

185

essential

information

185

example

186

STREAM

I/O
restrictions

11

stream-oriented

data

transmission
accessing

a

data

set

with

stream

I/O
essential

information

188

example

188

creating

a

data

set

with

stream

I/O

185

defining

files

using

stream

I/O

185

ENVIRONMENT

options

for

stream-oriented

data

transmission

185

using

PRINT

files

189

using

SYSIN

and

SYSPRINT

files

194

structure

expression

restrictions

11

structure

of

global

control

blocks
writing

the

initialization

procedure

301

writing

the

message

filtering

procedure

301

writing

the

termination

procedure

302

subtracting

dates

410

SYSIN

files
attributes

194

redirecting

standard

input

182

SYSPRINT

files
attributes

194

redirecting

standard

output

182

system
error-handling

facilities

148

failure

154

messages

149

standard

action

for

conditions

148

SYSTEM
compile-time

option

70

linkage,

calling

conventions

329

message

149

T
tab

control

table

192

terminal
conversational

I/O

195

example

of

an

interactive

program

196

input

194

output

196

termination

procedure
compiler

user

exit

302

example

of

procedure-specific

control

block

302

syntax
global

300

specific

302

TERMLBUF

option

174

testing

programs
code

inspection

139

testing

programs

(continued)
data

testing

140

path

testing

140

text

file
conventional

157

LF

157

TITLE

option
description

177

opening

and

closing

a

file

178

specifying

the

length

of

records

161

using
RECSIZE

option

185

SYSPRINT

and

SYSIN

files

182

using

files

not

associated

with

data

sets

177

TMP

environment

variable

28

TOTAL

ENVIRONMENT

option

11

TP

ENVIRONMENT

option

11

trace

information

143

TRANSIENT

file

attribute

10

TRKOFL

ENVIRONMENT

option

11

TYPE

option

174

specifying

record

formats

161

U
U-format

record

161

undefined-length

record

format

161

UNDEFINEDFILE

condition
raising

when

opening

a

file

176

using

files

not

associated

with

data

sets

176

unexpected
input/output

data

152

program

end

152,

153

uninitialized

entry

variables

151

UNLOCK

statement

10

UPPERINC

compile-time

suboption

43

USAGE

compile-time

option

71

user

defined

functions,

SQL

preprocessor

92

user

exit
CICS

run-time

303

compiler

297

customizing
modifying

IBMUEXIT.INF

299

structure

of

global

control

blocks

300

writing

your

own

compiler

exit

300

functions

298

using

host

variables,

SQL

preprocessor

87

Using

Millennium

Language

Extensions
date

patterns

407

language

features

405

using

the

sort

program

359

V
variables

environment

variables

for

compile

time

25

varying-length

records
format

161

sorting

366

VSAM
files,

adapting

programs

221

option

167

W
WARN

option

for

ILIB

319

WIDECHAR

compile-time

option

71

WINDOW

compile-time

option

72,

406

workstation
native

data

sets

157

record

format

161

text

file

158

workstation

VSAM

data

sets
accessing

records

217

adapting

programs
using

CONSECUTIVE

files

220

using

INDEXED

files

220

using

REGIONAL(1)

files

221

using

VSAM

files

221

choosing

a

type

218

defining

files
adapting

existing

programs

220

specifying

options

of

the

PL/I

ENVIRONMENT

attribute

219

direct

216

file

declaration

219

keyed
base

file

216

prime

index

file

216

sequential

216

types

and

advantages

216

workstation

VSAM

direct

data

sets
loading

234

using

a

DIRECT

file

to

access

237

using

a

SEQUENTIAL

file

to

access

236

workstation

VSAM

keyed

data

sets
loading

227

using

a

DIRECT

file

to

access

229

using

a

SEQUENTIAL

file

to

access

229

workstation

VSAM

sequential

data

sets
accessing

from

a

SEQUENTIAL

file

223

defining

and

loading

223

updating

224

using

a

SEQUENTIAL

file

to

access

223

WRITE

statement,

attributes

and

options

180

X
XINFO

compile-time

option

72

XINFO

compiler

option

72

XREF

compile-time

option
output

in

listing

110

using

when

debugging

142

Index

443

444

PL/I

for

Windows:

Programming

Guide

����

Program

Number:

04L7217

Printed

in

USA

Enterprise

PL/I

for

z/OS

and

OS/390

Library

SC27-1456

Licensed

Program

Specifications

SC27-1457

Programming

Guide

GC27-1458

Compiler

and

Run-Time

Migration

Guide

GC27-1459

Diagnosis

Guide

SC27-1460

Language

Reference

SC27-1461

Compile-Time

Messages

and

Codes

GC26-9177-01

	Contents
	Figures
	Part 1. Introducing PL/I on your workstation
	Chapter 1. About this book
	What's new?

	Chapter 2. How to read the syntax diagrams
	Chapter 3. Porting applications between platforms
	Getting mainframe applications to compile on the workstation
	Choosing the right compile-time options
	Language restricted
	RECORD I/O
	STREAM I/O
	Structure expressions
	Array expressions
	DEFAULT statement
	Extents of automatic variables
	Built-in functions
	iSUB defining
	DBCS
	Macro preprocessor

	Using the macro facility to help port programs

	Getting mainframe applications to run on the workstation
	Linking differences
	Data representations causing run-time differences
	Environment differences affecting portability
	Language elements causing run-time differences

	Part 2. Compiling and linking your program
	Chapter 4. Compiling your program
	A short practice exercise
	The HELLO program
	Using compile-time options
	Using the sample programs provided with the product

	Preparing to compile source programs
	Program file structure
	Using a PROCEDURE statement with PROCESS:
	INCLUDE processing
	%OPTION directive
	%LINE directive
	Margins

	Program file format
	Line continuation

	Setting compile-time environment variables
	IBM.OPTIONS
	IBM.PPINCLUDE
	IBM.PPMACRO
	IBM.PPSQL
	IBM.PPCICS
	IBM.SOURCE
	IBM.SYSLIB
	IBM.PRINT
	IBM.OBJECT
	IBM.DECK
	INCLUDE
	TMP

	Using the PLI command to invoke the compiler
	Where to specify compile-time options
	IBM.OPTIONS and IBM.PPxxx environment variables
	PLI command
	%PROCESS statement

	Chapter 5. Compile-time option descriptions
	Compile-time option descriptions
	Rules for using compile-time options
	AGGREGATE
	ADDEXT
	ATTRIBUTES
	BIFPREC
	BLANK
	CHECK
	CMPAT
	CODEPAGE
	COMPILE
	COPYRIGHT
	CURRENCY
	DEFAULT
	DLLINIT
	EXIT
	EXTRN
	FLAG
	FLOATINMATH
	GONUMBER
	GRAPHIC
	IMPRECISE
	INCAFTER
	INITAUTO
	INITBASED
	INITCTL
	INITSTATIC
	INCLUDE
	INSOURCE
	LANGLVL
	LIBS
	LIMITS
	LINECOUNT
	LIST
	MACRO
	MARGINI
	MARGINS
	MAXMSG
	MAXSTMT
	MAXTEMP
	MDECK
	MSG
	NAMES
	NATLANG
	NEST
	NOT
	NUMBER
	OBJECT
	OFFSET
	OPTIMIZE
	OPTIONS
	OR
	PP
	PPTRACE
	PRECTYPE
	PREFIX
	PROBE
	PROCEED
	REDUCE
	RESEXP
	RESPECT
	RULES
	SEMANTIC
	SNAP
	SOURCE
	STATIC
	STMT
	STORAGE
	SYNTAX
	SYSPARM
	SYSTEM
	TERMINAL
	TEST
	USAGE
	WIDECHAR
	WINDOW
	XINFO
	XREF

	Chapter 6. PL/I preprocessors
	Include preprocessor
	Examples:
	Include preprocessor options environment variable

	Macro preprocessor
	Macro preprocessor options
	Macro facility options environment variables

	SQL support
	Programming and compilation considerations
	SQL preprocessor options
	Abbreviations:
	SQL preprocessor options environment variable
	SQL preprocessor BIND environment variables
	Coding SQL statements in PL/I applications
	Defining the SQL communications area
	Defining SQL descriptor areas
	Embedding SQL statements
	Using host variables
	Determining equivalent SQL and PL/I data types

	Large Object (LOB) support
	General information on LOBs
	PL/I variable declarations for LOB Support
	Sample programs for LOB support

	User defined functions sample programs
	Determining compatibility of SQL and PL/I data types
	Using host structures
	Using indicator variables
	Host structure example
	CONNECT TO statement
	DECLARE TABLE statement
	DECLARE STATEMENT statement
	Logical NOT sign (¬)
	Handling SQL error return codes
	Use of varying strings under DFT(EBCDIC NONNATIVE)
	Using the DEFAULT(EBCDIC) compile-time option
	SQL compatibility and migration considerations

	CICS support
	Programming and compilation considerations
	CICS preprocessor options
	Abbreviations:
	CICS preprocessor options environment variables
	Coding CICS statements in PL/I applications
	Embedding CICS statements

	Writing CICS transactions in PL/I
	CICS abends used for PL/I programs
	CICS run-time user exit

	Chapter 7. Compilation output
	Using the compiler listing
	Compiler output files

	Chapter 8. Linking your program
	Starting the linker
	Statically linking
	Linking from the command line
	Linking from a make file

	Input and output
	Search rules
	Specifying directories
	Filename defaults

	Specifying object files
	Using response files
	Specifying executable output type
	Producing an .EXE file
	Producing a dynamic link library

	Packing executables
	Generating a map file
	Linker return codes

	Chapter 9. Setting linker options
	Setting options on the command line
	Setting options in the ILINK environment variable
	Using the linker
	Specifying numeric arguments

	Summary of Windows linker options
	Windows linker options
	/?
	/ALIGNADDR
	/ALIGNFILE
	/BASE
	/CODE
	/DATA
	/DBGPACK, /NODBGPACK
	/DEBUG, /NODEBUG
	/DEFAULTLIBRARYSEARCH
	/DLL
	/ENTRY
	/EXECUTABLE
	/EXTDICTIONARY, /NOEXTDICTIONARY
	/FIXED, /NOFIXED
	/FORCE
	/HEAP
	/HELP
	/INCLUDE
	/INFORMATION, /NOINFORMATION
	/LINENUMBERS, /NOLINENUMBERS
	/LOGO, /NOLOGO
	/MAP, /NOMAP
	/OUT
	/PMTYPE
	/SECTION
	/SEGMENTS
	/STACK
	/STUB
	/SUBSYSTEM
	/VERBOSE
	/VERSION

	Part 3. Running and debugging your program
	Chapter 10. Using run-time options
	Setting run-time environment variables
	PATH
	DPATH

	Specifying run-time options
	Where to specify run-time options
	Specifying multiple run-time options or suboptions

	Run-time options
	NATLANG

	Shipping run-time DLLs

	Chapter 11. Testing and debugging your programs
	Testing your programs
	General debugging tips
	PL/I debugging techniques
	Using compile-time options for debugging
	Using footprints for debugging
	Using dumps for debugging
	Formatted PL/I dumps—PLIDUMP
	SNAP dumps for trace information

	Using error and condition handling for debugging
	Error and condition handling terminology

	Error handling concepts
	System facilities
	Language facilities
	ON-units for qualified and unqualified conditions
	Conditions used for testing and debugging

	Common programming errors
	Logical errors in your source programs
	Invalid use of PL/I
	Calling uninitialized entry variables
	Loops and other unforeseen errors
	Tips for dealing with loops

	Unexpected input/output data
	Unexpected program termination
	Other unexpected program results
	Compiler or library subroutine failure
	System failure
	Poor performance

	Part 4. Input and output
	Chapter 12. Using data sets and files
	Types of data sets
	Native data sets
	Conventional text files and devices
	Fixed-length data sets

	Additional data sets
	Varying-length data sets
	Regional data sets
	Workstation VSAM data sets

	Establishing data set characteristics
	Records
	Record formats
	Data set organizations
	Specifying characteristics using the PL/I ENVIRONMENT attribute
	BKWD
	CONSECUTIVE
	CTLASA
	GENKEY
	GRAPHIC
	KEYLENGTH
	KEYLOC
	ORGANIZATION
	RECSIZE
	REGIONAL(1)
	SCALARVARYING
	VSAM

	Specifying characteristics using DD:ddname environment variables
	AMTHD
	APPEND
	ASA
	BUFSIZE
	CHARSET for record I/O
	CHARSET for stream I/O
	DELAY
	DELIMIT
	LRECL
	LRMSKIP
	PROMPT
	PUTPAGE
	RECCOUNT
	RECSIZE
	RETRY
	SAMELINE
	SHARE
	SKIP0
	TERMLBUF
	TYPE

	Associating a PL/I file with a data set
	Using environment variables
	Using the TITLE option of the OPEN statement
	Attempting to use files not associated with data sets
	How PL/I finds data sets

	Opening and closing PL/I files
	Opening a file
	Closing a file

	Associating several data sets with one file
	Combinations of I/O statements, attributes, and options
	DISPLAY statement input and output
	PL/I standard files (SYSPRINT and SYSIN)
	Redirecting standard input, output, and error devices

	Chapter 13. Defining and using consecutive data sets
	Printer-destined files
	Using stream-oriented data transmission
	Defining files using stream I/O
	ENVIRONMENT options for stream-oriented data transmission
	Creating a data set with stream I/O
	Essential information
	Example

	Accessing a data set with stream I/O
	Essential information
	Example

	Using PRINT files
	Controlling printed line length
	Overriding the tab control table

	Using SYSIN and SYSPRINT files

	Controlling input from the console
	Using files conversationally
	Format of data
	Stream and record files
	Capital and lowercase letters
	End of file

	Controlling output to the console
	Format of PRINT files
	Stream and record files
	Example of an interactive program

	Using record-oriented I/O
	Defining files using record I/O
	ENVIRONMENT options for record-oriented data transmission
	Creating a data set with record I/O
	Essential information

	Accessing and updating a data set with record I/O
	Essential information
	Examples of consecutive data sets

	Chapter 14. Defining and using regional data sets
	Defining files for a regional data set
	Specifying ENVIRONMENT options
	Essential information for creating and accessing regional data sets
	Using keys with regional data sets

	Using REGIONAL(1) data sets
	Dummy records
	Creating a REGIONAL(1) data set
	Example
	Accessing and updating a REGIONAL(1) data set
	Sequential access
	Direct access
	Example

	Chapter 15. Defining and using workstation VSAM data sets
	Moving data between the workstation and mainframe
	Workstation VSAM organization
	Creating and accessing workstation VSAM data sets
	Determining which type of workstation VSAM data set you need
	Accessing records in workstation VSAM data sets
	Using keys for workstation VSAM data sets
	Using keys for workstation VSAM keyed data sets
	Using sequential record values
	Using relative record numbers

	Choosing a data set type
	Defining files for workstation VSAM data sets
	Specifying options of the PL/I ENVIRONMENT attribute
	Adapting existing programs for workstation VSAM
	Adapting programs using CONSECUTIVE files
	Adapting programs using INDEXED files
	Adapting programs using REGIONAL(1) files
	Adapting programs using VSAM files

	Using workstation VSAM sequential data sets
	Using a sequential file to access a workstation VSAM sequential data set
	Defining and loading a workstation VSAM sequential data set
	Updating a sequential data set

	Workstation VSAM keyed data sets
	Loading a workstation VSAM keyed data set
	Using a SEQUENTIAL file to access a workstation VSAM keyed data set
	Using a DIRECT file to access a workstation VSAM keyed data set

	Workstation VSAM direct data sets
	Loading a workstation VSAM direct data set
	Using a SEQUENTIAL file to access a workstation VSAM direct data set
	Using READ statements
	Using WRITE statements
	Using the REWRITE or DELETE statements

	Using a DIRECT file to access a workstation VSAM direct data set

	Part 5. Using PL/I with databases
	Chapter 16. Open Database Connectivity
	Introducing ODBC
	Background
	ODBC Driver Manager
	Choosing embedded SQL or ODBC

	Using the ODBC drivers
	Online help
	Environment-specific information
	Driver names
	Configuring data sources

	Connecting to a data source
	Using a logon dialog box
	Using a connection string

	Error messages

	ODBC APIs from PL/I
	CALL interface convention
	Using the supplied include files
	Mapping of ODBC C types
	Setting licensing information for ODBC Driver Manager/driver

	Sample program using supplied include files

	Chapter 17. Using java Dclgen
	Understanding java Dclgen terminology
	PL/I java Dclgen support
	Creating a table declaration and host structure
	Selecting a database
	Selecting a table and generation a PL/I declaration
	Modifying and saving the generated PL/I declaration
	Exiting java Dclgen
	Including data declarations in your program

	Part 6. Advanced topics
	Chapter 18. Using the Program Maintenance Utility, NMAKE
	Why use NMAKE?
	Running NMAKE
	Using the command line
	Command-line syntax
	Command-line help

	Using NMAKE command files
	Why use a command file?
	Command file syntax
	Example

	NMAKE options
	Produce error file (/X)
	Build all targets (/A)
	Suppress messages (/C)
	Display modification dates (/D)
	Override environment variables (/E)
	Specify description file (/F)
	Display help (/HELP or /?)
	Ignore exit codes (/I)
	Display commands (/N)
	Suppress sign-on banner (/NOLOGO)
	Print macro and target definitions (/P)
	Return exit code (/Q)
	Ignore TOOLS.INI file (/R)
	Suppress command display (/S)
	Change target modification dates (/T)

	Description files
	Description blocks
	Special features
	Targets in several description blocks

	Using macros
	Macros example
	Special features
	Macros in a description file
	Macros on the command line
	Inherited macros
	Defined macros
	Macro substitutions

	Special macros
	Special macros examples
	File-specification parts
	Characters that modify special macros
	Modified special macros example
	Macro precedence rules

	Inference rules
	Special features
	Inference rules example
	Inference-rule path specifications
	Predefined inference rules

	Directives
	Directives example
	Pseudotargets
	Predefined pseudotargets
	.SILENT Pseudotarget
	.IGNORE Pseudotarget
	.SUFFIXES Pseudotarget
	.PRECIOUS Pseudotarget

	Inline files
	Inline files example
	Escape characters

	Characters that modify commands
	Turn error checking off (-)
	Dash command modifier examples
	Suppress command display (@)
	At sign (@) command modifier example
	Execute command for dependents (!)
	Exclamation point (!) command modifier examples
	EXTMAKE Syntax

	Macros and inference rules in TOOLS.INI
	TOOLS.INI example

	Chapter 19. Improving performance
	Selecting compile-time options for optimal performance
	OPTIMIZE
	IMPRECISE
	GONUMBER
	SNAP
	RULES
	PREFIX
	CONVERSION
	FIXEDOVERFLOW

	DEFAULT
	BYADDR or BYVALUE
	(NON)CONNECTED
	RETURNS(BYVALUE) or RETURNS(BYADDR)
	(NO)DESCRIPTOR
	(RE)ORDER
	LINKAGE
	ASCII or EBCDIC
	IEEE or HEXADEC
	(NON)NATIVE
	(NO)INLINE

	Summary of compile-time options that improve performance

	Coding for better performance
	DATA-directed input and output
	Input-only parameters
	String assignments
	Loop control variables
	PACKAGEs versus nested PROCEDUREs
	Example with nested procedures

	REDUCIBLE functions
	DEFINED versus UNION
	Named constants versus static variables
	Example with optimal code but no meaningful names

	Avoiding calls to library routines

	Chapter 20. Using user exits
	Using the compiler user exit
	Procedures performed by the compiler user exit
	Activating the compiler user exit
	The IBM-supplied compiler exit, IBMUEXIT
	Customizing the compiler user exit
	Modifying IBMUEXIT.INF
	Writing your own compiler exit
	Structure of global control blocks
	Writing the initialization procedure
	Writing the message filtering procedure
	Writing the termination procedure

	Using the CICS run-time user exit
	Prior to program invocation
	After program termination
	Modifying CEEFXITA

	Using data conversion tables

	Chapter 21. Building dynamic link libraries
	Creating DLL source files
	Compiling your DLL source
	Preparing to link your DLL
	Specifying exported names under Windows

	Linking your DLL
	Using your DLL

	Sample program to build a DLL
	Using FETCH and RELEASE in your main program
	Exporting data from a DLL

	Chapter 22. Using IBM Library Manager on Windows
	Running ILIB
	Using the command line
	Using the ILIB environment variable
	Command line
	Windows control panel
	Windows 98 AUTOEXEC.BAT file

	Using an ILIB response file
	Examples specifying ILIB parameters

	Controlling ILIB input
	Controlling ILIB output
	Controlling ILIB output

	ILIB objects
	Summary of ILIB objects
	Add/Replace
	/EXTRACT
	/REMOVE

	ILIB options
	Summary of ILIB options
	/?
	/BACKUP
	/DEF
	/FREEFORMAT
	/GENDEF
	/GI
	/HELP
	/LIST
	/NOEXT
	/OUT
	/QUIET
	/WARN

	Chapter 23. Calling conventions
	Understanding linkage considerations
	OPTLINK linkage
	Features of OPTLINK
	Tips for using OPTLINK

	General-purpose register implications
	Parameters
	Examples of passing parameters
	Passing conforming parameters to a routine

	SYSTEM linkage
	Features of SYSTEM
	Example using SYSTEM linkage

	STDCALL linkage (Windows only)
	Features of STDCALL
	Examples using the STDCALL convention

	Using WinMain (Windows only)
	CDECL linkage
	Features of CDECL
	Examples using the CDECL convention

	Chapter 24. Using PL/I in mixed-language applications
	Matching data and linkages
	What data is passed
	How data is passed
	Where data is passed

	Maintaining your environment
	Invoking non-PL/I routines from a PL/I MAIN
	Invoking PL/I routines from a non-PL/I main
	Using ON ANYCONDITION

	Chapter 25. Interfacing with Java
	What is the Java Native Interface (JNI)?
	JNI Sample Program #1 - "Hello World"
	Writing Java Sample Program #1
	Step 1: Writing the Java Program
	Declare the Native Method
	Load the Native Library
	Write the Java Main Method

	Step 2: Compiling the Java Program
	Step 3: Writing the PL/I Program
	Useful PL/I Compiler Options
	Correct Form of PL/I Procedure Name and Procedure Statement
	JNI Include File
	The Complete PL/I Procedure

	Step 4: Compiling and Linking the PL/I Program
	Compiling the PL/I Program
	Linking the Dynamic Link Library

	Step 5: Running the Sample Program

	JNI Sample Program #2 - Passing a String
	Writing Java Sample Program #2
	Step 1: Writing the Java Program
	Declare the Native Method
	Load the Native Library
	Write the Java Main Method

	Step 2: Compiling the Java Program
	Step 3: Writing the PL/I Program
	Correct Form of PL/I Procedure Name and Procedure Statement
	JNI Include File
	The Complete PL/I Procedure

	Step 4: Compiling and Linking the PL/I Program
	Compiling the PL/I Program
	Linking the Dynamic Link Library

	Step 5: Running the Sample Program

	JNI Sample Program #3 - Passing an Integer
	Writing Java Sample Program #3
	Step 1: Writing the Java Program
	Declare the Native Method
	Load the Native Library
	Write the Java Main Method

	Step 2: Compiling the Java Program
	Step 3: Writing the PL/I Program
	Correct Form of PL/I Procedure Name and Procedure Statement
	JNI Include File
	The Complete PL/I Procedure

	Step 4: Compiling and Linking the PL/I Program
	Compiling the PL/I Program
	Linking the Dynamic Link Library

	Step 5: Running the Sample Program
	Determining equivalent Java and PL/I data types

	Chapter 26. Using sort routines
	Comparing S/390 and workstation sort programs
	Preparing to use sort
	Choosing the type of sort
	Specifying the sorting field
	Example:

	Specifying the records to be sorted
	Example:

	Calling the sort program
	PLISRT examples
	Example 1
	Example 2
	Example 3
	Example 4

	Determining whether the sort was successful

	Sort data input and output
	Sort data handling routines
	E15 — input-handling routine (sort exit E15)
	E35 — output-handling routine (sort exit E35)
	Calling PLISRTA
	Calling PLISRTB
	Calling PLISRTC
	Calling PLISRTD, example 1
	Calling PLISRTD, example 2

	Chapter 27. Using the SAX parser
	Overview
	The PLISAXA built-in subroutine
	The PLISAXB built-in subroutine
	The SAX event structure
	start_of_document
	version_information
	encoding_declaration
	standalone_declaration
	document_type_declaration
	end_of_document
	start_of_element
	attribute_name
	attribute_characters
	attribute_predefined_reference
	attribute_character_reference
	end_of_element
	start_of_CDATA_section
	end_of_CDATA_section
	content_characters
	content_predefined_reference
	content_character_reference
	processing_instruction
	comment
	unknown_attribute_reference
	unknown_content_reference
	start_of_prefix_mapping
	end_of_prefix_mapping
	exception
	Parameters to the event functions

	Coded character sets for XML documents
	Supported EBCDIC code pages
	Supported ASCII code pages
	Specifying the code page
	Using a number:
	Using an alias

	Exceptions
	Example
	Continuable exception codes
	Terminating exception codes

	Chapter 28. Using PL/I MLE in your applications
	Applying attributes and options
	DATE attribute
	RESPECT compile-time option
	WINDOW compile-time option
	RULES compile-time option

	Understanding date patterns
	Patterns and windowing

	Using built-in functions with MLE
	DAYS
	DAYSTODATE

	Performing date calculations and comparisons
	Explicit date calculations
	Comparing dates
	Converting dates
	Subtracting dates

	Implicit date calculations
	Implicit date comparisons
	Comparing dates with like patterns
	Comparing dates with differing patterns
	Comparisons involving the DATE attribute and a literal
	Comparisons involving the DATE attribute and a non-literal

	Implicit DATE assignments

	Using MLE with the SQL preprocessor

	Part 7. Appendixes
	Notices
	Programming interface information
	Macros for customer use

	Trademarks

	Bibliography
	Enterprise PL/I publications
	DB2 UDB for OS/390 and z/OS
	CICS Transaction Server

	Glossary
	Index

