IBM WebSphere Studio
Application Developer Version 5.0.1

Migration Guide

<|ll

Note!
Before using this information and the product it supports, be sure to read the general
information under Notices.

Fourth edition (April 2003)

© Copyright International Business Machines Corporation 2000, 2003. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. WebSphere Studio
Application Developer Version 5.0.1
Migration Guide1

Chapter 2. Targeting WebSphere
Application Server Version 4.0.x versus
Version 5 versus Version 5 Express. . . 3

Chapter 3. Migrating from WebSphere
Studio Application Developer Version

40x5
3.1 Differences between WebSphere Studlo
Application Developer Version 4.0.x and Version 5. . 5
3.2 WebSphere Application Server changes and
Servlet/JSP conversiontools6
3.3 Internal changes from Version 4.0.3 . . . 6
3.3.1 Circular project dependenc1es will not bu11d
by default6
3.3.2 Version 5 Web pro]ects are source locatlon
compatible with Version 4.0.3.6

3.3.3 WebSphere Studio Application Developer
Web project structures . e
3.3.4 Static versus J2EE Web Pro]ects .o .7
3.3.5 WebSphere Studio Application Developer E]B
1.1 and Application Client 1.2 project structures
3.3.6 Page Designer "Classic” . o
3.3.7 Page Designer enhancements38
3.3.8 Page Designer "Classic” versus Page

N

@ N

Designer functions ... 9
3.3.9 HTML and JSP drstrnctlons - .9
3.4 Migrating projects using a software confrguratlon
management (SCM) system . . .9
3.4.1 Migrating projects using CVS or Ratlonal
ClearCase9
3.4.2 Post-Migration removal of EAR and Server
Configuration absolute path references11
3.4.3 Migrating projects using other SCMs . . . 11
3.5 Migrating by exportlng and importing your
projects.11
3.6 Migrating pro]ects usmg an ex1st1ng Ver51on 4. 0 X
workspace. . . .12
3.6.1 Post- Mlgratlon rernoval of EAR and Server
Configuration absolute path references12
3.6.2 Known problems and limitations . . .12
3.7 Migrating J2EE project structures and/or]2EE
specification levels A ¢
Chapter 4. Migrating from WebSphere
Studio Application Developer Version 5
Early Availability or Beta Versions. . . 15

© Copyright IBM Corp. 2000, 2003

Chapter 5. Migrating from WebSphere
Studio "Classic” to WebSphere Studio

Application Developer17
5.1 Creating a new single-server stage for rnlgratlon 18
5.2 Creating a Web configuration descriptor file . . 18
5.3 Exporting a migration JAR file.18
5.4 Importing the migration JAR file into WebSphere
Studio Application Developer18
5.5 Testing your migrated application on a test

server19

Chapter 6. Migrating from VisualAge
for Java to WebSphere Studio

Application Developer21
6.1 Differences between VisualAge for]ava and
WebSphere Studio Application Developer21
6.2 Migrating from VisualAge for Java22
6.2.1 Exporting your Java files and project
resource files from VisualAge for Java22

6.2.2 Starting WebSphere Studio Application
Developer and creating new projects to contain

your code23
6.2.3 Importing your]ava and resource f11es 1nto
WebSphere Studio Application Developer . . . 23

6.2.4 Using the web.xml editor to ensure that
servlets are correctly defined (Web project only) . 23
6.2.5 Migrating project and workspace settings . 24
6.2.6 Setting up your WebSphere V4 test
environment and testing your migrated
application(s).25
6.2.7 Deploying your apphcat1ons frorn

WebSphere Studio Application Developer to

remote WebSphere Application Server26
6.2.8 Sharing WebSphere Studio Application
Developer project settings between multiple

developers (post-migration) 26
6.3 Team support in WebSphere Studio Apphcatlon
Developer 26

Chapter 7. Migrating enterprise beans
from VisualAge for Java to WebSphere

Studio Application Developer 27

7.1 VisualAge for Java EJB Export Tool (migrating

map/schema from EJB 1.0 to EJB 1.1).27
7.1.1 Items migrated28

7.2 VisualAge for Java Version 3.5. 3 E]B 1 0 JARs

versus VisualAge for Java Version 4.0 EJB 1.1 JARs . 28
7.3 Moving multiple VisualAge for Java EJB groups
into WebSphere Studio Application Developer EJB

projects.29

7.4 Migrating your enterprlse beans o0 029
7.4.1 Exporting your enterprise beans.29
7.4.2 Importing your enterprise beans into
WebSphere Studio Application Developer . . .29

iii

7.4.3 Generating deploy code and data source
binding information . . . 30
7.4.4 Creating a server conf1guratron and 1nstance 30
7.4.5 Adding the JDBC data source to the

WebSphere 4.0 server configuration . . . 30

7.4.6 Testing the enterprise beans with the E]B

test client B 1 |
7.5 Known problems and workarounds) |
7.6 Locating EJB information31
7.7 Migrating EJB access beans32
7.8 Migrating custom finder helpers32

Chapter 8. Migrating from EJB 1.0 to

EJBllortoEJB20O035
8.1 Migrating code from EJB 1.0 to EJB 1. 1 .. .35
8.2 Converting projects from EJB 1.x to E]JB 2.0 . . 36
8.3 Migrating code from EJB 1.x to EJB2.037
8.4 Migrating a JMS listener application to use

message-driven beans38

Chapter 9. Migrating from VisualAge
for Java Visual Composition Editor to

Visual Editor for Java41
9.1 Saving enhanced design-time Inetadata from
VisualAge for Java . . . A |
9.2 Completing the mlgratlon (1mport1ng 1nto
WebSphere Studio)42

Chapter 10. Converting from VisualAge
for Java Persistence Builder to EJB 2.0 43
10.1 Migrate and export the Persistence Builder

Model as an EJ[B 1.1 JAR43
10.2 Import EJB 1.1 JAR into EJB 1.1 pro]ect set

Access and Isolation values 43
10.3 (Optional) Convert client apphcatlon and get
server side running, all at EJB 1.1 level 44
10.4 Convert to EJB 2.0 project . . . oL 44
10.5 Convert EJB 1.1 code to EJB 2.0 and set

application profile declarations 44
10.6 Convert Persistence Builder client apphcatlon

into EJB client application45

Chapter 11. Migrating from WebSphere
Studio Application Developer Version 5

to Version 5.0.1 47
11.1 Migrating Web projects Version 5 to Versmn
501. . . .47

11.2 Convertlng Web pro]ects to Struts 1. 1 Beta 3 . 47

Chapter 12. Build setup (library, JARs,
dependent project JARs, Ant builds). . 49
12.1 Java library JARs and third-party external JARs 49
12.1.1 Recommended way to use a third-party
JAR within a Web project. 49
12.1.2 Recommended way to use a thlrd—party
JAR for use with multiple EJB or Web projects. . 49
12.1.3 References between Web projects and other
EJB projects50

iv

Chapter 13. Migration examples .
13.1 Example: VisualAge for Java JSP/servlet
sample (LeapYear) .

12.1.4 Alternative way to use external JAR files
(global build and server classpath)

12.2 Optimizing multi-project builds using
Dependent Project JARs . .
12.3 Automated production bullds usmg Ant .

13.1.1 Exportmg your flles from VlsualAge for
Java
13.1.2 Creatlng a new WebSphere Stud1o
Application Developer Web project .
13.1.3 Importing the Java and project resource
files into the WebSphere Studio Apphcatlon
Developer project .

13.1.4 Defining any servlets and make any
restructured application changes

13.1.5 Creating a WebSphere Studio Apphcatlon
Developer server project . .

13.1.6 Testing the migrated LeapYear apphcatlon

13.2 Example: Enterprise beans, VCE, and database
samples (HelloWorld session bean and Increment
enterprise bean) .

13.2.1 Exporting the Chent]ava source from
VisualAge for Java . .

13.2.2 Exporting the EJB group from VlsualAge
for Java into an EJB 1.1 JAR . . .
13.2.3 Creating a new WebSphere Studlo
Application Developer E]JB project.

13.2.4 Importing the EJB 1.1 JAR file into
WebSphere Studio Application Developer EJB
project .

13.2.5 Generatlng and deploylng RMIC stub and
tie code. .
13.2.6 Specifying the data source b1nd1ng
information

13.2.7 Creating a new WebSphere Studro
Application Developer project .

13.2.8 Creating a WebSphere Studio Apphcatlon
Developer server project . .

13.2.9 Specifying your data source, your EAR
project, and then start the server

13.2.10 Starting DB2 and connecting to sampleDB
13.2.11 Testing the migrated HelloWorld client.
13.2.12 Testing the migrated Increment client .
13.2.13 Testing the migrated Increment and
HelloWorld EJBs using the EJB Test Client .

13.3 Example: WebSphere Studio "Classic” Version
4.0 Web Application (YourCo)(Windows)

13.3.1 Starting WebSphere Studio "Classic”
Version 4.0 and creating a new Migration stage
13.3.2 Creating a Web conﬁguration descriptor
file .

13.3.3 Creatlng a mlgratlon f11e . .
13.3.4 Starting WebSphere Studio Apphcatlon
Developer and importing the WAR file .

13.3.5 Creating a WebSphere Studio Application
Developer server project . .

13.3.6 Testing the migrated YourCo apphcatlon

. 50

.51
. 51

. 53
. 53
. 53

. 54

. 54

. 55

56

. 56

. 57

. 57

. 58

. 58

. 58

. 58

. 58

. 59

. 60
60

. 60
. 61

. 61

. 61

. 62

. 62
. 62

. 63

. 63

64

13.4 Example: Migrating "Example: VisualAge for

Java JSP/servlet sample " EJB 2.0 (Increment

enterprise bean and HelloWorld session bean) .
13.4.1 Create a new EJB 2.0 project and
Enterprise Application 1.3 project . .
13.4.2 Import the VisualAge for Java EJB 1. 1]AR
into EJB 2.0 project . .
13.4.3 Migrate code from E]B 1. 0 to E]B 1 1
13.4.4 Migrate code from EJB 1.1 to EJB 2.0.
13.4.5 Generating and deploying RMIC stub and
tie code. .o
13.4.6 Specifying the data source b1ndmg
information
13.4.7 Creating a new WebSphere Studlo
Application Developer Java client project

. 64

. 65
. 65
. 65
. 66
. 66

. 67

13.4.8 Creating a server project with an
WebSphere Application Server Version 5.
13.4.9 Specify your data source, your EAR
project, and then start the server .
13.4.10 Testing the migrated HelloWorld chent.
13.4.11 Testing the migrated Increment client .
13.4.12 Testing the migrated Increment and
HelloWorld EJBs using the EJB Test Client .

Chapter 14. Further reading.

Notices .
Programming 1nterface mformatlon
Trademarks and service marks .

Contents

. 68
. 68
. 69
. 69

. 69

.71

. 73
.75
.75

\'%

Chapter 1. WebSphere Studio Application Developer Version
5.0.1 Migration Guide

In this version of IBM® WebSphere® Studio Application Developer Version 5.0.1,
you can migrate code from VisualAge for Java, or WebSphere Studio "Classic” or
WebSphere Studio Application Developer Version 4.0.x. or WebSphere Studio
Application Developer Version 5 Beta.

This guide is organized into the following chapters:

* [“Chapter 2. Targeting WebSphere Application Server Version 4.0.x versus Version|
5 versus Version 5 Express” on page 3|

« |“Chapter 3. Migrating from WebSphere Studio Application Developer Version|
4.0.x” on page 5

« |“Chapter 4. Migrating from WebSphere Studio Application Developer Version 5|
Early Availability or Beta Versions” on page 15|

« Em[‘Chapter 5. Migrating from WebSphere Studio "Classic” to WebSpherd
[Studio Application Developer” on page 17]

+ |“Chapter 6. Migrating from VisualAge for Java to WebSphere Studio Application|
Developer” on page 21|

* [“Chapter 7. Migrating enterprise beans from VisualAge for Java to WebSphere]
Studio Application Developer” on page 27|
* [“Chapter 8. Migrating from EJB 1.0 to EJB 1.1 or to EJB 2.0” on page 35|

+ |“Chapter 9. Migrating from VisualAge for Java Visual Composition Editor td
Visual Editor for Java” on page 41|

* [“Chapter 10. Converting from VisualAge for Java Persistence Builder to EJB 2.0

Ign page 4§|

+ [“Chapter 11. Migrating from WebSphere Studio Application Developer Version 5|
to Version 5.0.1” on page 47|

+ |“Chapter 12. Build setup (library, JARs, dependent project JARs, Ant builds)” on|

[page 49|

[“Chapter 13. Migration examples” on page 53

* [“Chapter 14. Further reading” on page 71|

Information about using WebSphere Studio Application Developer can be found in
the Getting Started guide and the online help. Read the Installation guide prior to
installing WebSphere Studio Application Developer. After you have successfully
installed WebSphere Studio Application Developer, read the Getting Started guide
and complete the Getting Started tutorials. The tutorials will introduce you to the
workbench, Java™ development, and Web services. After you have completed the
tutorials, read this guide to migrate your application resources into WebSphere
Studio Application Developer.

This guide is available in both HTML and Acrobat PDF versions, in the /readme
directory. Both versions contain the identical information. You can open

in any Web browser. To open you must have installed
the Acrobat Reader software, which you can download from
www.adobe.com/products/acrobat/readstep2.html}

© Copyright IBM Corp. 2000, 2003 1

migrate.html
migrate.pdf
http://www.adobe.com/products/acrobat/readstep2.html

This Migration Guide uses Windows® conventions throughout. For example,
"WS_Installdir\” in Windows is equivalent to "WS_Installdir/” in Linux™, For

future updates to this guide, refer to
fwww.ibm.com /websphere /developer /zones/studio/ transition.htmi|

http://www.ibm.com/websphere/developer/zones/studio/transition.html

Chapter 2. Targeting WebSphere Application Server Version
4.0.x versus Version 5 versus Version 5 Express

One of the significant features of WebSphere Studio Application Developer Version
5 is that it can target both WebSphere Application Server Version 4.0.x or Version 5
or both. This Migration Guide focuses on getting application programs migrated
into WebSphere Studio Application Developer Version 5 tool, and not on
differences in administration, operation, or features/functions between the two
WebSphere Application Server versions. So, where this guide has examples with
instructions in configuring and running the internal WebSphere Test Environment
(an embedded non-production copy of the WebSphere Application Server) it
contains instructions for WebSphere Application Server Version 4. WebSphere
Application Server Version 5 is very similar, but there are slight differences in
configuring data sources, and so on, and there is full online documentation
available. There is also a WebSphere Application Server - Express test environment
(the only test environment included in the WebSphere Application Server - Express
development product), which is essentially equivalent to WebSphere Application
Server Version 5 but without support for E]Bs.

For information on differences between WebSphere Application Server Version 4
and Version 5 functions, please refer to the WebSphere Application Server Version
5 online InfoCenter documentation. Most applications developed and tested on
WebSphere Application Server Version 4 will run unchanged on Version 5.
However, if the application uses newer specification level features/functions (J2EE
1.3, Servlet 2.3, Java ServerPages (JSP) 1.2, Enterprise JavaBeans™ (EJB) 2.0, Web
J2EE 1.3, and so on) then that application will only work on WebSphere
Application Server Version 5.

Note that some wizards in WebSphere Studio Application Developer create J2EE
projects or resources, and they default to J2EE 1.3. To change the default to J2EE
1.2, select Window > Preferences > J2EE >Highest J2EE version used for
development.

© Copyright IBM Corp. 2000, 2003 3

Chapter 3. Migrating from WebSphere Studio Application
Developer Version 4.0.x

This chapter covers migrating from WebSphere Studio Application Developer
Version 4.0.x to Version 5. All the migration information in this chapter is
applicable for both Windows and Linux operating system.

There are two supported methods that you can use to migrate your projects from
WebSphere Studio Application Developer Version 4.0.x to Version 5. Each of these
methods is described in greater detail, below:

* Using a software configuration management (SCM) system such as Concurrent
Versioning System (CVS) or Rational®™ ClearCase™. This is the recommended
method.

* Exporting your projects from Version 4.0.x and then importing them to this
edition. This method migrates everything except project build path information.

* Using your existing Version 4.0.x workspace. This is not supported for reasons
explained later.

Note that migrating from Version 4 to Version 5 does not automatically change the
project J2EE level since Version 5 can still build and deploy to WebSphere
Application Server Version 4. Changing the J2EE level of Web projects is simply a
matter of selecting the project in the Navigator View and then Properties > Web >
J2EE Level. Changing an EJB Project level is more involved. Refer to
Migrating from EJB 1.0 to EJB 1.1 or to EJB 2.0” on page 35} All J2EE project types,
including Web projects, can be migrated using the J2EE Migration Wizard available
in WebSphere Studio Application Developer. To access the J2EE Migration wizard,
right-click on the EJB project and then select Migrate > J2EE Migration Wizard.
For more information about the different wizard options, press F1 while in the
J2EE Migration wizard.

3.1 Differences between WebSphere Studio Application Developer
Version 4.0.x and Version 5

The following is a partial list of enhancements since Version 4.0.x:

* WebSphere Studio Application Developer Version 5 can generate code for either
WebSphere Application Server Version 4.0 or Version 5, and includes both
WebSphere Application Server Version 4.0.4 and Version 5 Test Environments.

* The enterprise applications archives (EARs) J2EE level has changed from 1.2 to
1.3 for WebSphere Application Server Version 5 projects.
— J2EE 1.2 EARs will run on either WebSphere Application Server Version 4.0.x
or WebSphere Application Server Version 5.
* The Enterprise Java Beans (E]JB) specification level has changed from 1.1 to 2.0
for WebSphere Application Server Version 5 EARs.
— EJB 1.1 projects are still supported, and may be part of either WebSphere
Application Server Version 4.0.x J2EE 1.2 EARs or Version 5 J2EE 1.3 EARs.
* The Web applications (WARs) J2EE level has changed from 1.2 to 1.3 for
WebSphere Application Server Version 5 projects.

— The JSP level has changed from 1.1 to 1.2 and the Servlet level has changed
from 2.2 to 2.3

© Copyright IBM Corp. 2000, 2003 5

— J2EE 1.2 Web projects (WARs) are still supported, and may be part of either
WebSphere Application Server Version 4.0.x J2EE 1.2 EARs or Version 5 J2EE
1.3 EARs.

* In Version 5, you can create static Web projects as well as J2EE Web projects. In a
static Web project you will only be able to create content served by a traditional
HTTP server (HTML,]avaScript(TM), images, text and so on).

* The underlying workbench, which is based on the Eclipse open-source project,
has changed from Version 1.0 to Version 2.0.

— There is a new and much improved Java builder
— There is a new and much improved VCM interface for SCM vendors

* Page Designer "Classic” and Page Designer are both available. For more
information, see the [“3.3 Internal changes from Version 4.0.3"}

3.2 WebSphere Application Server changes and Servlet/JSP
conversion tools

The [WebSphere Application Server InfoCenter
[www.ibm.com/software/webservers/appserv/doc/v40/aes/infocenter/index.html]
has the following information:

» Differences between WebSphere Application Server Version 3.5 and 4.0
[Www.ibm.com/software /webservers/appserv/doc/v40/aes/infocenter /was/03.html].

* WebSphere Application Server Version 5.0 Migration Guide with information on
the differences between WebSphere Application Server 4.0 and 5.0
[www.redbooks.ibm.com /pubs /pdfs /redbooks /s¢246910.pdf].

The WebSphere Application Server downloads page

[www14.software.ibm.com /webapp /download /product.jsp?s=p&id=TDUN-|

HIEVRT& type=s&dt=DIAGNOSTIC+TOOL| has tools to help convert your

application:

* MigrateWC takes a .91 or 1.0 JSP and converts it to a 1.1 JSP. It also takes a 2.1
Servlet and converts it to a 2.2 Servlet.

e XMLconvert converts XML configuration files from Release 3.02x or Release 3.5x
to Release 4.0 format.

3.3 Internal changes from Version 4.0.3

3.3.1 Circular project dependencies will not build by default

If your projects have circular dependencies, Version 5 reports a build error. You can
go into Window > Preferences > Java > Compiler, select the Other tab, and clear
the Stop building when an invalid class path is detected check box. Note that
this will no longer cause the build to stop, but there will still be one or more build
‘circular dependency’ errors shown on the Task view (even when the build
otherwise is successful). In this case, you may change these errors to warnings by
selecting the Other tab, and then changing the preference in the Circular
Dependencies drop-down.

3.3.2 Version 5 Web projects are source location compatible

with Version 4.0.3

In WebSphere Studio Application Developer Version 5, there are internal project
structure changes from Version 4.0.3. A Version 5 J2EE 1.2 Web WAR, when
exported with Java source, will import into WebSphere Studio Application

http://www.ibm.com/software/webservers/appserv/doc/v40/aes/infocenter/index.html
http://www.ibm.com/software/webservers/appserv/doc/v40/aes/infocenter/was/03.html
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246910.pdf
http://www14.software.ibm.com/webapp/download/product.jsp?s=p&id=TDUN-49EVRT&type=s&dt=DIAGNOSTIC+TOOL
http://www14.software.ibm.com/webapp/download/product.jsp?s=p&id=TDUN-49EVRT&type=s&dt=DIAGNOSTIC+TOOL

Developer Version 4 and the source code folder will be automatically converted
into the right name and will build fine. The Web project still executes correctly on
WebSphere Application Server Version 4 similarly when a Version 4 project is
imported into Version 5, because the source code folder is automatically converted
to the correct name.

Note: The above is not true if the Web projects are shared between the Version 5
and Version 4 through a software configuration management (SCM)
system. The Version 4 projects needs to be migrated to Version 5 project
structure and cannot be loaded back into Version 4 from a SCM system
once migrated.

3.3.3 WebSphere Studio Application Developer Web project
structures

The internal Web project structure in WebSphere Studio Application Developer
Version 5 is different than it was for WebSphere Studio Application Developer
Version 4.0.x. This difference is not related to J2EE 1.2 versus J2EE 1.3, but rather it
is a tool usability change.

In Version 4, Web projects were J2EE Web projects by default and they appeared in
the Navigator view with a source folder and a webApplication folder. In Version
5, if you create a J2EE Web project, then it will appear with a Java Source folder
instead of a source folder and a Web Content folder instead of a webApplication
folder.

However, if a Version 4 Web project is saved into an SCM repository and then
loaded into Version 5, it will retain the old structure with the source and
webApplication folders. Either structure will build correctly in Version 5.

3.3.4 Static versus J2EE Web Projects

In Version 5, you can create static as well as J2EE Web projects.

Static Web projects contains only static resources like HTML, Java Scripts, images,
text and so on, and no dynamic content in them. Static Web projects can run and
be served by a traditional HTTP Web server and do not need a Web Application
Server.

J2EE Web projects contain dynamic J2EE resources such as servlets, JSPs, filters,
and associated metadata, in addition to static resources. When you create J2EE Web
projects, you can include cascading style sheets and JSP tag libraries, so that you
can begin development with a richer set of project resources. J2EE Web projects are
always imbedded in Enterprise Application projects and run only on Web
Application Servers.

3.3.5 WebSphere Studio Application Developer EJB 1.1 and
Application Client 1.2 project structures

The EJB 1.1 (J2EE 1.2) and Application Client 1.2 (J2EE 1.2) internal project
structure in WebSphere Studio Application Developer Version 5 is different than it
was for WebSphere Studio Application Developer Version 4.0.x. This difference is
not related to J2EE 1.2 versus J2EE 1.3, but rather is a tool usability change.

3.3.5.1 EJB 1.1 project structures

The default in Version 5 for new EJB 1.1 projects is to have the resulting compiled
binary classes in the same \ejpbModule directories as the source. However, the old
Version 4.0.x structure (with source directories under \ejpModule and the compiled

Chapter 3. Migrating from WebSphere Studio Application Developer Version 4.0.x 7

binary classes in the \bin directory) is retained in Version 5 for EJB 1.1 projects
originally created in Version 4.0.x and then saved into an SCM repository and then
reloaded into Version 5 (this avoids having to restructure the SCM directories and
to avoid having to change automated build scripts). Either structure will build
correctly in Version 5.

3.3.5.2 Application Client 1.2 project structures
The default in Version 5 for new Application Client 1.2 projects is to have the

resulting compiled binary classes in the same \appClientModule directories as the
source. However, the old Version 4.0.x structure (with source directories under
\appClientModule and the compiled binary classes in the \bin directory) is
retained in Version 5 for Application Client 1.2 projects originally created in
Version 4.0.x and then saved into an SCM repository and then reloaded into
Version 5 (this avoids having to restructure the SCM directories and to avoid
having to change automated build scripts). Either structure will build correctly in
Version 5.

Note that if a Version 4.0.x EJB 1.1 or Application Client 1.2 project is exported as
an JAR and then imported into a new Version 5 E]JB 1.1 or Application Client 1.2
project, it will have the new common source/binary structure.

3.3.6 Page Designer "Classic”

WebSphere Studio Application Developer Version 4 shipped Page Designer
"Classic” for Windows operating system. Version 5 contains a new Page Designer,
(which is the default for both Windows and Linux operating systems) but also
includes Page Designer "Classic” that was shipped with Version 4 for Windows
only as an optionally installable component. If you wish to have Page Designer
"Classic” bound to HTML/]JSP as the default editor, then install Page Designer
"Classic” and change your workbench preference.

For Page Designer "Classic” installation instructions, refer to the |[nstallation Guide}

To change the default HTML/JSP editor:
1. Select Window > Preferences > Workbench > File Associations.

2. In the File types field, select *.html or *.jsp or both or whatever you would
like to assign to Page Designer "Classic”.

3. In the Associated editors field, select Page Designer Classic and click Default.

If you do not want to change the default to become Page Designer "Classic”, you
can still select an HTML or JSP file, click on it, and then select Open With > Page
Designer Classic.

3.3.7 Page Designer enhancements

Page Designer now has some enhancements which are not in Page Designer
"Classic”:

* XHTML is supported for PvC application development

* HTML/]JSP tag attribute can be viewed/edited in attributes view

* Link to Servlet available in some dialogs

* Move and copy a table within page by dragging and dropping

* Enhanced JSP tag visualization within Design Page

* Enhanced tag library palette within dialog to insert custom JSP tags

* CSS Preview window in CSS Designer to preview the applied CSS effect

migrate.html

HTML/JSP thumbnail view

3.3.8 Page Designer "Classic” versus Page Designer functions

Page Designer "Classic” has some HTML editing functions which are not in the
current Page Designer:

JSP extensions for Design-time Control, Dynamic Elements, Author Time Visual

WebSphere enhancements (Dynamic Table Extensions for DB navigation, Table
alternating coloring)

Dynamic HTML support of Roll over effect, Event/action

Script editing (JavaScript or VBScript) in Design View or JSP Scriptlet library
Tag Checker, Accessibility Checker

WTP Annotation Support

Insertion of ActiveX controls

Image Pasting with logo/photo frame creation

Page editing assist for Ruler or various wizards for component insertion
URL editor, Heading editor, Table of Contents generation

WYSIWYG View Bi-Directional (BiDi) language support

Color gallery prepared by professional designers

3.3.9 HTML and JSP distinctions

In Version 4.0.x, HTML files and JSP files were treated identically by Page
Designer. For example, you could have JSP tags in an HTML file. This is no
longer true: in this release, there is a distinction between JSP and HTML files, so
you can no longer have JSP tags in an HTML file.

The previous distinction affects encoding of non-English JSP files. In versions
prior to this version, HTML encoding rules were used, even for JSP files, to
determine the encoding named in a file. That is, the content type attribute of the
meta tag was looked at (<META http-equiv="Content-Type” content="text/html;
charset=UTF-8">). In this version, this was changed to use JSP encoding rules to
determine the encoding named in a JSP file. That is, the page directive of the JSP
file is looked at (<%@page contentType="text/html;charset=UTF-8"%>). For HTML
files, encoding is unchanged from previous versions.

3.4 Migrating projects using a software configuration management

(SCM) system

3.4.1 Migrating projects using CVS or Rational ClearCase

This is the recommended way to move workspaces from Version 4.0.x to
WebSphere Studio Application Developer Version 5. This is the only method that
migrates all of your information, including project build path information.

1.

2.

As a backup precaution, save all your Version 4 projects into your SCM
repository. Then commit (release) any pending changes.

Still working in Version 4, save your work again into a new Version 5 branch
(stream). This is the branch that you will use when working with the Version 5.

Install the Version 5.

Close WebSphere Studio Application Developer Version 4 and start WebSphere
Studio Application Developer Version 5.

Tip: In Version 4, the workspace directory was located in the installation
directory, by default. In Version 5, this default has changed to a directory called

Chapter 3. Migrating from WebSphere Studio Application Developer Version 4.0.x 9

10

workspace in the My Documents directory. If you wish to override the location
where you work is stored, use the -data option on the wsappdev.exe command
when you start the workbench.

Note: Do not use -data to point to an existing Version 4 workspace since that
is a different unsupported approach to migration. (For more
information, refer to the "Migrating projects using an existing Version
4.0.x workspace”.)

Disable Windows > Preferences > Workbench > Perform build automatically
on resource modification (to avoid build errors as individual dependent
projects are loaded).

For CVS: Load all of the projects that you want to work with from the SCM
repository into WebSphere Studio Application Developer Version 5.

For ClearCase: Use a clean Version 5 workspace, then for each project to be
loaded, select File > Import > Existing WebSphere Studio 4.x ClearCase
Project into Workspace.

Restore your desired setting for Windows > Preferences > Workbench >
Perform build automatically on resource modification.

Change the source folder name from source to JavaSource and
webApplication folder to WebContent for the Web projects if a full build is
needed. Otherwise, the old folder structure is retained and the web projects
will not be fully rebuilt.

Do a full rebuild (Project > Rebuild all), and save the resulting projects back
into your repository in your new Version 5 stream. (Do not mix these resources
with your ongoing Version 4 stream.)

Note: These projects are now Version 5 projects and cannot be used by
WebSphere Studio Application Developer Version 4.0.x.

Post migration considerations:

Version 4 CVS files were stored as binary (no CarriageReturn/LineFeed
translations). If you work in a mixed (DOS/Windows plus UNIX"™)/Linux)
platform environment, you might wish to now mark source files as text (using
Team > CVS> Change ASCII/Binary Property) and resave them in CVS.

Version 4 Web projects from a CVS repository require Window > Preferences >
Team > CVS > Prune empty directories setting to be disabled (the default is
that it is enabled). If it is not disabled, and you load a Web project with an
empty source folder (like the MyHomePage Web example), then you will get the
following errors at check in:

The project was not built since it is involved in a cycle or has classpath problems.

Missing required source folder: /MyHomePageExample403/source.

For Web projects saved and loaded from a ClearCase repository, you need to
have a file checked out before you can open it in the editor. If it is not checked
out you receive errors error activating this view (Null pointer exception in
logs for Page Designer). With web.xml editor, editing a web.xml file you need to
have web.xml, ibm-web-bnd.xml, and ibm.web-ext.xmi checked out. (There are
indications that you need these files to be checked out on the status line, which
states that they are read only, but it is easily missed.)

If your projects have circular dependencies, Version 5 reports a build error. You
can go into Window > Preferences > Java > Compiler, select the Other tab, and
clear the Stop building on build path errors check box.

The .vem_meta (or .cc_meta) files could now be deleted from the Version 5
project because they are not used by Version 5 (it uses a new .project file

instead) and because you are using a new repository branch (stream) for these
Version 5 projects. Note that these files are still needed in the ongoing Version 4
branch (stream).

3.4.2 Post-Migration removal of EAR and Server Configuration
absolute path references

Version 4 EAR IBM application extension files and server configuration files
contained absolute path references. After you have migrated them into Version 5,
you need to open them with their editor (which will automatically change their old
absolute path references into new relative references).

1. For each EAR project, in a Navigator View, right-click META-
INF/application.xml > Open with > Deployment Descriptor Editor.

a. A dialog window pops up with the message:

The IBM extensions file contains deprecated absolute paths.
This can be auto-corrected and should be saved. This will
remove the paths from the file, and only needs to be done once.
Would you Tike to autocorrect?

b. Click Yes.
c. Save and then close the editor window.

Note: Alternatively, you can use the J2EE Migration wizard to migrate the
project structure only for an EAR project. To access the J2EE
Migration wizard, right-click on the EAR project and then select
Migrate > J2EE Migration Wizard. For more information about the
different wizard options, press F1 while in the J2EE Migration
wizard.

2. For each Server configuration, in a Server Perspective, Server Configuration
View, right-click on the server, and then select Open.

a. You will get a similar autocorrect dialog.
b. Click Yes.
c. Save and then close the editor window.

3.4.3 Migrating projects using other SCMs

There are other SCM vendors who provide SCM plug-ins for WebSphere Studio
Application Developer. Please browse the list of vendors at
www.ibm.com/software/ad/studioappdev/partners/scm.htmll As part of their
Ready for WebSphere Studio Softward
[www.developer.ibm.com/websphere/ready.html] validation, all SCM vendors who
provided a Version 4 plug-in will have ensured that the preceding migration steps
(save from Version 4 to SCM repository, load from repository into Version 5) also
work for their systems.

3.5 Migrating by exporting and importing your projects

1. In WebSphere Studio Application Developer Version 4.0.x, export your projects
to a WAR file, an EAR file, or a JAR file (File > Export).

2. In WebSphere Studio Application Developer Version 5, import your WAR file,
an EAR file, or a JAR file (File > Import).

Note: This is not a full migration since no project build path information is
maintained.

Chapter 3. Migrating from WebSphere Studio Application Developer Version 4.0.x 11

http://www-3.ibm.com/software/ad/studioappdev/partners/scm.html
http://www.developer.ibm.com/websphere/ready.html

3.6 Migrating projects using an existing Version 4.0.x workspace

This approach is partially supported, and will result in an incomplete migration.
User interface settings, debug settings, and most preferences are all lost. Project
names, project source files, and project Java build path (class path) are retained,

but nothing else is guaranteed. This approach should only be used if no supported
SCM system is being used and if it is critical to retain project build path
information, which is lost when you import projects that were exported from
Version 4. You can use the existing Version 4.0.x workspace by doing the following:

1.
2.

10.

11.

Commit (release) any pending changes to the repository.

Close all perspectives and shutdown WebSphere Studio Application Developer
Version 4.

Back up the contents of workspace_directory, where workspace_directory is the
fully qualified directory name that contains the Version 4.0.x workspace. By
default, the Version 4.0.x workspace subdirectory is located in the same
directory where the product is installed. You will need this backup if you ever
want to work with WebSphere Studio Application Developer Version 4.0.x
again. Once you have pointed to a Version 4.0.x workspace from a Version 5
IDE, you can no longer go back to using that workspace in WebSphere Studio
Application Developer Version 4.0.x.

Install WebSphere Studio Application Developer Version 5.

When you start WebSphere Studio Application Developer Version 5 with a
Version 4.0.x workspace from a command prompt (that is, use the -data
option to specify a fully qualified path to the Version 4.0.x workspace
directory on the wsappdev.exe command), that will cause an upgrade of the
.metadata information.

When prompted to confirm that you wish to convert to the new user interface
format, click OK.

Before doing any rebuilds or validating any projects that are in the workspace,
select all of the projects in the Navigator view within the Resource perspective
and then select Refresh from the pop-up menu. This will ensure that all files
are synchronized with their appropriate metadata.

Open any closed projects (see known problems below).

Verify your class path variables (see known problems below).

Some builders and validators have been added, removed, or modified in this
Version 5. To ensure that the correct errors and warnings are shown, you must

rebuild all the projects by selecting Project > Rebuild All, and then select Run
Validation for each Java project.

Some user preferences might be maintained, but many others will not be.
Check your preference settings in Version 5 to be sure that they are as you
want them.

3.6.1 Post-Migration removal of EAR and Server Configuration
absolute path references

The post-migration instructions described in[“3.4.2 Post-Migration removal of EAR|

land Server Configuration absolute path references” on page 11|also apply here.

3.6.2 Known problems and limitations

The following problems may occur if you attempt to migrate by opening a Version
4.0 workspace in WebSphere Studio Application Developer Version 5.

12

3.6.2.1 Incorrect value in the JRE_LIB class path variable
To reset your JRE_LIB class path variable to a valid location, follow these steps. Do

this even if the value seems correct when you first open the Preferences window.
1. Select Window > Preferences > Java > Installed JREs.

2. In the list, select the check box for the default JRE location that you wish your
JRE_LIB set to.

3. Choose Edit, and then click OK to close the Edit JRE dialog box.

If you do not do this, the value for JRE_LIB might be incorrect, causing many
build errors in Java files.

As a general check, verify the value of all your other class path variables.

3.6.2.2 For previously SCM shared projects, the Team menu
contains Share Project

Team support has changed significantly between Eclipse 1.0 and 2.0. The method
of sharing projects with the repository has changed as well.

* If you select the Team > Share Project option then a wizard will guide you
through the migration process. When you are finished, your project will be
shared and the Synchronize view will open. You will see conflicting changes on
every file. This is due to changes in the way sync information is stored between
Eclipse 1.0 and 2.0.

* If you do not have any outgoing changes (which you should not have if you
committed all your outgoing changes before upgrading as recommended above),
then you can simply select the project in the Synchronize view and select
Override and Update which will load the current contents from the server.

* If you do have outgoing changes, you can pull down the triangle menu in the
Synchronize view and select Compare File Contents. After some work, the
Synchronize view will show you only the files which are actually different. You
can then use the Synchronize view to resolve these conflicts.

3.6.2.3 Projects created outside the workspace directory

By default, projects are created in the workspace directory. If you overrode the
default to create projects elsewhere, open all of your projects now before closing
the workbench. This will allow the .project file for that project to be written in the
proper location. Failure to open a closed project whose directory is outside of the
workspace will result in a project that masks the actual project, with only a .project
file existing within it.

3.6.2.4 JSP breakpoints must be reset
You will need to remove any JSP breakpoints that you have, and reset them within
the migrated Version 5 workspace.

3.7 Migrating J2EE project structures and/or J2EE specification levels

As mentioned above, the EJB project and Web project internal structures are
different between WebSphere Studio Application Developer Version 4 and Version
5. New projects in Version 5 will always use the new internal structure. Although
the old Version 4 structures will continue to work in Version 5, you can optionally
convert any J2EE EAR, EJB, WAR, or application client project to the new structure
in Version 5 using the J2EE Migration Wizard. The J2EE Migration Wizard allows
you to perform the following migration activities:

1. Migrate the old Version 4 project structure to Version 5 project structure.

2. Migrate the J2EE 1.2 specification level to J2EE 1.3 specification level for J2EE
EAR, EJB, Web, or application client project.

Chapter 3. Migrating from WebSphere Studio Application Developer Version 4.0.x 13

14

3. Convert CMP 1.x beans to CMP 2.x and add Local Client Views for EJB
projects.

To access the J2EE Migration wizard in Version 5, follow the steps below:
1. Select the project.

2. Right-click on it and then select Migrate > J2EE Migration Wizard. Follow the
steps in the wizard to guide you through migration.

3. If your project is under source control, then save the restructured project in
your SCM.

For more information about the different wizard options, either press F1 while in
the J2EE Migration Wizard or read the online help section title "Migrating
application modules from J2EE 1.2 to J2EE 1.3".

Chapter 4. Migrating from WebSphere Studio Application
Developer Version 5 Early Availability or Beta Versions

WebSphere Studio Application Developer Version 5 Beta was a limited availability
Beta, and WebSphere Studio Application Developer was available to Passport
Advantage™ subscribers.

No migration is required. Either Version 5 Early Availability or Version 5 Beta
workspaces may be used (or shared) directly with Version 5 General Availability.
Version 5 Beta projects in Software Configuration Management (SCM) systems
(CVS or Rational ClearCase) may be used (or shared) directly with Version 5
General Availability.

Note: Sharing Version 5 Early Availability or Version 5 Beta workspaces with
Version 5 General Availability is not recommended. A one time step up to
Version 5 General Availability from Version 5 Early Availability or Version
5 Beta and continue future work in General Availability is the
recommended approach.

© Copyright IBM Corp. 2000, 2003 15

16

Chapter 5. Migrating from WebSphere Studio "Classic” to
WebSphere Studio Application Developer

This chapter documents how to migrate from WebSphere Studio Version 4.0 (both
Advanced and Professional Edition) to the WebSphere Studio Application
Developer. Migrating from WebSphere Studio "Classic” Version 4.0 to WebSphere
Studio Application Developer Version 5.0 involves the following steps:

1. Create a new single-server stage for migration.

Create a Web configuration descriptor file.

Export a migration JAR file.

Import the migration JAR file into WebSphere Studio Application Developer.

a s~ DN

Set up your server and test your migrated application.

Note: The following instructions are for migrating from WebSphere Studio
Version 4.0. If you want to migrate from an earlier version of WebSphere
Studio, you should migrate to WebSphere Studio 4.0 first, then migrate to
WebSphere Studio Application Developer.

The advanced publishing feature (mapping files to publishing stages) and the Page
Detailer feature (analysis of web pages) of WebSphere Studio "Classic” is not
available in WebSphere Studio Application Developer. Some other features from
the Version 4.0.x CD media pack are also no longer available. For example, the
Page Detailer feature for analysis of web pages, the HotMedia™® feature for rich
media types, the Voice XML editor (moved to WebSphere Everyplace™ Toolkit
and Portal Toolkit), DataBaseWizard for pervasive devices.

You should be aware of the following limitations before you migrate any of your
WebSphere Studio data:

* WebSphere Studio Application Developer uses an XML-based SQL editor, so
your .sql files cannot be used in it.

* Project publishing information and stage information cannot be migrated.
* WebSphere Studio server configuration information cannot be migrated.
* Version control information cannot be migrated.

During the migration process outlined below, WebSphere Studio creates a JAR file
that contains all of your project files, publishable and source, for a single server.
All the files visible in the Publishing view for the default server will be packaged
into the JAR file. You can then import the JAR file into WebSphere Studio
Application Developer.

When you migrate existing projects, all the project publishing information and the
stage information are lost during the migration. If your stage has multiple servers,
only files published to the default server are kept. Therefore, for the purpose of
migration, you will create a new stage that has only one server.

© Copyright IBM Corp. 2000, 2003 17

5.1 Creating a new single-server stage for migration

If you have more than one server in your current stage, create a new stage called
Migration with only one server by following these steps:

1.

a s~ DN

N o

Click Project > Customize Publishing Stages.

Type Migration in the Stage name field.

Click Add.

Click OK.

Click Project > Publishing Stage and select Migration from the list of available
stages.

While in the publishing view, click Insert > Server.

Type a server name, such as Tocalhost.

Changing the server or changing the publication stage does not propagate the
servlet mapping information for WebSphere Application Server Version 4.0. Go
to the Publishing view, and, for each servlet, click Properties > Publishing >
Servlet Mapping and then copy the actual servlet mapping.

5.2 Creating a Web configuration descriptor file

1.

2.
3.
4.

While in the project file view, click Project > Create Web Configuration
Descriptor File.

Select all required servlets.
Select all required Tag Library Descriptor (TLD) files.
Click Create.

The default Web configuration descriptor file name is serverName_web.xml,
localhost_web.xml in this scenario. Unless you specified a different location, the
xml file is saved in the WEB-INF directory.

5.3 Exporting a migration JAR file

1.

o o~ wN

While in the project file view, select server localhost and click Properties >
Publishing > WebApp Web Path and enter a web path (context root), such as
myWebPath. This will also be used as the WebSphere Studio Application
Developer project name.

While in the project file view, select Project > Create Migration file.

Verify that localhost is the selected server.

Verify that localhost_web.xml is the selected Web configuration descriptor file.
Click OK.

The default JAR file name is serverName. jar, localhost.jar for this scenario.
Rename the file if desired.

Save the JAR file.

5.4 Importing the migration JAR file into WebSphere Studio
Application Developer

18

1.
2.
3.

Start WebSphere Studio Application Developer.
Create a Web project (File > New > Project > Web Project).

In the Project name field, type the name of your Web project. This should be
the same name you specified in step 1 of the preceding "Exporting a migration
JAR file".

4. Specify the name of a new or existing EAR project that will contain the new
Web project for purposes of deployment.

5. In the Context Root field, type the Webapp Web Path name you specified when
you created the migration JAR file in WebSphere Studio. Click Finish.

6. In the Navigator view, select the Web project you just created.
7. Import the JAR file.
a. Click File > Import.

b. Click WAR file. Click Next. You must import the JAR file using the WAR
file option; otherwise it will not work properly.

c. Enter the path to localhost.jar in the WAR File field or click Browse to
search for it. (You can only browse for a .WAR name, not a .JAR name.)

d. Select the existing Web project that you created. The Context Root field is
automatically populated with the value you specified earlier.

e. Click Finish. A dialog appears asking "Resource WEB-INF/web.xml already
exists. Would you like to overwrite it?”.

f. Select Yes and WebSphere Studio Application Developer unpacks
localhost.jar.

8. You may have several unresolved references or missing import files. These will
appear in the Tasks view. To fix this, you must change the Java build path for
the Web project:

a. Right-click the project and click Properties > Java Build Path.
b. Click the Libraries tab. Click Add External JARs.
c. Import any JARs that you need from the following directories:
¢ WS_Installdir/runtimes/aes_v4/lib and
¢ WS_Installdir/runtimes/base_v4/lib
9. In the Navigator view, right-click the project and select Rebuild Project.

5.5 Testing your migrated application on a test server

You are now ready to test your application. To test it on the default test server,
follow these steps:

1. Right-click the EAR project.
2. Select Run on Server

To test your application on other server run-time environments, refer to the online
help for the Server Tools feature.

Chapter 5. Migrating from WebSphere Studio "Classic” to WebSphere Studio Application Developer 19

20

Chapter 6. Migrating from VisualAge for Java to WebSphere
Studio Application Developer

This chapter documents how to migrate from VisualAge™ for Java Professional
Edition or VisualAge for Java Enterprise Edition to WebSphere Studio Application
Developer.

Note: The instructions given in this chapter are for migrating from VisualAge for

Java Version 3.5.3 or 4.0 for Windows. If you want to migrate from an
earlier version of VisualAge for Java to WebSphere Studio Application
Developer, you should first migrate from your earlier version of VisualAge
for Java to Version 4.0 for Windows (if you have enterprise beans) or
Version 3.5.3 or 4.0 for Windows (without enterprise beans), before
migrating to WebSphere Studio Application Developer. Version 4.0 includes
a special tool (the EJB Export Tool) for exporting enterprise beans, which
you need in order to migrate EJB applications to WebSphere Studio
Application Developer. All other data can be migrated from either Version
3.5.3 or Version 4.0.

Note: EEP Instantiations, Inc., an IBM Business Partner, distributes a product,

called CodePro Studio that provides productivity enhancements to
VisualAge for Java and WebSphere Studio Application Developer,
including migration and co-existence facilities. To help VisualAge for Java
customers begin their migration, Instantiations is offering a free, unlimited
use VisualAge for Java to WebSphere Studio Application Developer export
facility as part of their time-limited evaluation copy of CodePro Studio.
You can download the evaluation copy from www.instantiations.com/vajq
For further information on Instantiation’s advanced migration and
co-existence support including full bi-directional export/import of files,
creation of export/import sets, project synchronization and task
automation, please browse Instantiations, Inc.

www.instantiations.com /codepro/ws|

6.1 Differences between VisualAge for Java and WebSphere Studio
Application Developer

The following is a partial list of changes from VisualAge for Java:

The Enterprise Java Beans (EJB) specification level has changed from 1.0 to 1.1
(EJB 2.0 is also supported for applications that will be deployed to WebSphere
Application Server Version 5).

For Web applications, the JSP level remains at 1.1 (1.2 for WebSphere Application
Server Version 5 applications).

For Web applications, the Servlet level remains at 2.2 (2.3 for WebSphere
Application Server Version 5 applications).

The level of the Java 2 platform that is supported has changed from 1.2 to 1.3.
(The compiler can target 1.4 code generation, but the WebSphere Application
Server run-time environment is still 1.3.)

The Visual Composition Editor has been replaced by the Visual Editor for Java.

VisualAge for Java version control and the propriety source code repository have
been replaced by support for software configuration management (SCM)
plug-ins.

© Copyright IBM Corp. 2000, 2003 21

http://www.instantiations.com/vaj-migrate
http://www.instantiations.com/vaj-migrate
http://www.instantiations.com/codepro/ws

* The VisualAge for Java Tools API has been replaced by the WebSphere Studio
Workbench plug-in architecture.

* The VisualAge for Java XML tools have been replaced by WebSphere Studio
Application Developer XML tools.

* The VisualAge for Java project concept has been replaced by multiple types of
WebSphere Studio Application Developer projects.

* Convertors in VisualAge for Java EJB access beans (not Data access beans) are
not available in WebSphere Studio Application Developer EJB access beans. Use
EJB convertors/composers in the underlying EJBs instead. For more information
about EJB convertors/composers, refer to the online help documentation.

6.2 Migrating from VisualAge for Java

22

The following steps outline how to migrate from VisualAge for Java. Details on
how to perform these steps are provided below:

1. |“6.2.1 Exporting your Java files and project resource files from VisualAge for

2

ava

2. [“6.2.2 Starting WebSphere Studio Application Developer and creating new]|
projects to contain your code” on page 23|

3. [“6.2.3 Importing your Java and resource files into WebSphere Studiol
Application Developer” on page 23|

4. |"6.2.4 Using the web.xml editor to ensure that servlets are correctly defined|
(Web project only)” on page 23|

5. [“6.2.5 Migrating project and workspace settings” on page 24|

6. [“6.2.6 Setting up your WebSphere V4 test environment and testing your|
migrated application(s)” on page 25

7. [“6.2.7 Deploying your applications from WebSphere Studio Application|
Developer to remote WebSphere Application Server” on page 26

8. [“6.2.8 Sharing WebSphere Studio Application Developer project settings|
between multiple developers (post-migration)” on page 26|

6.2.1 Exporting your Java files and project resource files from
VisualAge for Java

There is no support for the bulk migration of versioned projects and resources
from the VisualAge for Java repository. You can only migrate projects and
resources that are in your VisualAge for Java workspace. If you want to migrate a
versioned copy of a project or resource into WebSphere Studio Application
Developer, you must bring it into your VisualAge for Java workspace and then
migrate it.

Note: If your project contains more than one kind of data (for example,
enterprise beans and Java source code files), you should split up your data
into different JARs based on their type.

Export your projects to a JAR file by following these steps:

1. If the projects that you want to export are not currently in your VisualAge for
Java workspace, add them to the workspace now.

2. In the VisualAge for Java Workbench window, select your project(s), right-click,
and click Export.

3. Select the Jar file radio button and click Next.
4. Specify the name of the JAR file.

5. Select the .java check box to export your Java files and the resources check box
to export your resource files.

6. Fill in the other fields as required. Refer to the VisualAge for Java online help
for more information on how to perform this task.

6.2.2 Starting WebSphere Studio Application Developer and
creating new projects to contain your code

Start WebSphere Studio Application Developer, then create the appropriate
projects. The following is a set of general migration guidelines to help you decide
which kind of WebSphere Studio Application Developer project you should import
your files into:

* If your code is part of a Web application, you should import the code into a Web
project:
— Import all Java files into the Web project JavaSource directory (the proper

hierarchy based on their package statements will automatically be created by
WebSphere Studio Application Developer)

— Import all resource files into the Web project WebContent directory.

 If your code is straight Java, (for example, an application that will run
stand-alone) you should import the code into a Java project.

* If your code is enterprise beans, you should import the code into an EJB project.

Note: The preceding is only a general set of guidelines to help you decide which
kind of WebSphere Studio Application Developer projects you should use.
We recommend that you read the WebSphere Studio Application Developer
online help and become familiar with the different kinds of WebSphere
Studio Application Developer projects before you create any projects or
import any code.

6.2.3 Importing your Java and resource files into WebSphere
Studio Application Developer

1. Open WebSphere Studio Application Developer and switch to the Resource
perspective.

2. Click File > Import > Zip file. Click Next.

3. Browse to the appropriate JAR file.

4. Select the files you want to import and the project or folder you want to
contain your files.

Note: When you import your files into WebSphere Studio Application Developer,
you should ensure that they go in the appropriate directory. We
recommend that you read the WebSphere Studio Application Developer
online help and become familiar with the different kinds of WebSphere
Studio Application Developer projects before importing your code. This
will help you determine which folders should contain which kind of code.

6.2.4 Using the web.xml editor to ensure that servlets are
correctly defined (Web project only)

If your application uses servlets, then you need to define the servlet-URL
mappings in the web.xml file. Follow these steps:

1. In the Web perspective, open the web.xml file, which is located in the Web
Content/WEB-INF subdirectory of your Web project.

2. Click the Servlets tab.

Chapter 6. Migrating from VisualAge for Java to WebSphere Studio Application Developer 23

24

3. Click Add, and select the Servlet radio button.
4. Type the servlet name and click OK.

5. Click Browse to change the Servlet class value to the appropriate package
name.

6. (Optional) The display name is a short name used to identify the servlet. In the
Display name field, type a short name for the servlet.

7. A URL mapping defines a servlet and a URL pattern. Click the Add button
located next to the URL mappings field, then type the name of the URL
mapping.

8. Save the changes (File > Save web.xml) and close the web.xml file.

6.2.5 Migrating project and workspace settings

You must record the following VisualAge for Java settings and set them up in
WebSphere Studio Application Developer:

* Project class path

* Resource associations

¢ Code formatting

* EJB server configuration
* WTE configuration

* Java files and project resource files
Project class path

In VisualAge for Java, you set your project class path in the Resources pages of the
Options window (Window > Options > Resources). After you have migrated your
projects into WebSphere Studio Application Developer, you can set up your
project’s class path in the project’s Properties window (Right-click the project and
select Properties > Java Build Path. Click the Libraries tab.) You can also set class
path variables in the Preferences window (Window > Preferences > Java >
Classpath Variables.)

Resource associations

If you set up an association between a file type and an executable, you can open a
file that sits outside the workbench from within it.

In VisualAge for Java, you set up your resource associations in the Options
window (Window > Options > Resources > Resource Associations). After you
have migrated your resource files to WebSphere Studio Application Developer, you
can set up your resource associations using the Preferences window (Window >
Preferences > Workbench > File Associations).

Code formatter

In VisualAge for Java, you set up your code formatting options in the Formatter
page of the Options window (Window > Options > Coding > Formatter). After
you have migrated your code to WebSphere Studio Application Developer, you can
set up your code formatting in the Preferences window (Window > Preferences >
Java > Code Formatter).

EJB server configuration

In VisualAge for Java, you set up your EJB server configuration in the Properties
window for the EJB server. (In the EJB page, select EJB > Open To > Server
Configuration. Select the server, right-click it, and click Properties). After you have
migrated your enterprise beans to WebSphere Studio Application Developer, you
can set up your server configuration in the Server Configuration view (In the
Server perspective, open the Server Configuration view. Right-click the server and
click Open. Click the Data source tab.)

WTE configuration

In VisualAge for Java, your WebSphere Unit Test Environment and WebSphere
Application Server run time settings are in various property files in the following
directory: VisualAgelnstalldir\ide\project_resources\IBM WebSphere Test
Environment\properties, where VisualAgelnstalldir is your product installation
directory.

If, for example, you have enabled URL rewriting in the session.xml property file by
changing the property to true as shown below, <url-rewriting-
enabled>true</url-rewriting-enabled> you can configure this property in the
WebSphere Studio Application Developer Version 4.0 Test Environment. (In the
Server perspective, open the Server Configuration view, right-click the server you
want to work with and click Open. Click the Web tab and select the Enable URL
rewrite check box).

Java files and project resource files

The property file default.servlet_engine contains the <root-uri> context root of the
VisualAge for Java web application(s). When creating a Web Project in WebSphere
Studio Application Developer the Create a Web Project dialog contains a Context
root field for this data.

EE® Web application settings in files such as
VisualAge\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\servlets\default_app.webapp that
you have customized yourself should be migrated to your_Web_project \Web
Content\WEB-INF\web.xml file in WebSphere Studio Application Developer. For
example, if you have changed servlet names and servlet paths in the
default_app.webapp file, you would make the corresponding changes in your
web.xml file.

Web application settings in files such as
VisualAge\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\servlets\default_app.webapp that
you have customized yourself should be migrated to
your_WebSphere_Studio_Web_project / Web Content/WEB-INF/web.xml file in
WebSphere Studio Application Developer. For example, if you have modified
servlet names and servlet paths in the default_app.webapp file, you would make
the corresponding changes in your web.xml file.

6.2.6 Setting up your WebSphere V4 test environment and
testing your migrated application(s)

If the application is a Java project, then you just use the normal WebSphere Studio
Application Developer Run or Debug support for Java projects to test it.

Chapter 6. Migrating from VisualAge for Java to WebSphere Studio Application Developer 25

If the application uses WebSphere Application Server (Web projects and EJB
projects), then test it using the built-in WebSphere Application Server. This requires
that a default test server be created and started. For an EJB project, right-click the
EJB project and select Run on Server to run the EJB Test Client. For a Web project,
right-click on the main HTML page, and select Run on Server to launch the web
browser.

For information on testing other types of projects, refer to the online help.

6.2.7 Deploying your applications from WebSphere Studio
Application Developer to remote WebSphere Application
Server

If you are using the WebSphere Application Server as your run-time environment,
deploy your application using the Server Tools feature of WebSphere Studio
Application Developer.

6.2.8 Sharing WebSphere Studio Application Developer project
settings between multiple developers (post-migration)

WebSphere Studio Application Developer projects (and their associated settings)
can be shared between developers. To do this, save a project into the WebSphere
Studio Application Developer software configuration management (SCM) server,
then extract it onto another team member on the WebSphere Studio Application
Developer.

6.3 Team support in WebSphere Studio Application Developer

26

For information on team support in WebSphere Studio Application Developer
Version 4.0, refer to [www.ibm.com/websphere/developer /library /techarticles /|
0108_karasiuk /0108_karasiuk.htm]|

There is also information in the Installation guide and online help about team
support in WebSphere Studio Application Developer.

http://www.ibm.com/websphere/developer/library/techarticles/0108_karasiuk/0108_karasiuk.html
http://www.ibm.com/websphere/developer/library/techarticles/0108_karasiuk/0108_karasiuk.html

Chapter 7. Migrating enterprise beans from VisualAge for

Java to WebSphere Studio Application Developer

This chapter provides instructions on how to migrate your VisualAge for Java

enterprise beans to WebSphere Studio Application Developer. Migrating VisualAge
for Java enterprise beans to WebSphere Studio Application Developer involves the

following steps:

1. Export VisualAge for Java enterprise beans as a 1.1 JAR file using the

VisualAge for Java EJB Export tool.

Create a server configuration and instance.

Add data source information to your configuration.

S e

Test the enterprise beans with the new EJB test client.

This EJB migration chapter also contains information about:

* Items migrated

* Code changes due to E]JB 1.0 specification versus EJB 1.1 specification

Import the EJB 1.1 JAR file into WebSphere Studio Application Developer.

Generate deploy code and data source binding information.

* VisualAge for Java Version 3.5.3 EJB 1.0 JARs versus VisualAge for Java Version

4.0 EJB 1.1 JARs

* Moving multiple VisualAge for Java EJB groups into WebSphere Studio

Application Developer EJB projects

7.1 VisualAge for Java EJB Export Tool (migrating map/schema from

EJB 1.0 to EJB 1.1)

VisualAge for Java Version 4.0 includes a special tool (the EJB Export Tool) for

migrating enterprise beans, therefore, all enterprise beans must be migrated from

that version to WebSphere Studio Application Developer. Note that the tool
migrates VisualAge for Java EJB 1.0 map/schema metadata into EJB 1.1

map/schema XML files, but does not change the code in any way (it is still EJB 1.0

code).

Note: It is recommended that all of your database tables contain a table qualifier

prior to exporting using the VisualAge for Java Version 4.0 EJB Export

Tool. Most databases require a table to have a qualifier and the WebSphere
Studio Application Developer workbench does not handle empty qualifiers

when one is expected for the database vendor.

There is an Export tool for EJB 1.1 FixPak (be sure to get the latest version 4.1.5 or

later), available from the VisualAge Developer’s Domain (see

www?7.software.ibm.com /vad.nsf/Data/Document4624) which fixes certain defects
with the tool. One defect the FixPak fixes is a problem the EJB tool has if a group
has relationships with two or more ForeignKeys mapping to the same two or more
tables. Refer to the FixPak’s README file for more information about the defects

the FixPak fixes.

© Copyright IBM Corp. 2000, 2003

27

http://www7.software.ibm.com/vad.nsf/Data/Document4624

7.1.1 Items migrated

The following items are migrated when you migrate your enterprise beans:
* Entity beans (CMP, BMP)

* Session beans (both stateful and stateless)

* Finder helpers (method and where custom finders)

* Inheritance (with multi-levels)

* Associations

* Mappings and schemas

* Deployment and control descriptions

7.2 VisualAge for Java Version 3.5.3 EJB 1.0 JARs versus VisualAge
for Java Version 4.0 EJB 1.1 JARs

28

In VisualAge for Java Version 3.5.3 you can generate an undeployed EJB 1.0 JAR,
or generate a deployed EJB 1.0 JAR (with deployment code, stubs, tie code, and so
on). You can import the EJB 1.0 JAR into the WebSphere Application Server Version
4.0 Application Assembly Tool (AAT) and use that to generate deployment and
control descriptors and to run the EJB Deploy Tool to generate deploy code, stubs,
and so on into an EJB 1.1 format JAR (enterprise applications archives). The net
result of the previous steps is that you can have a deployed JAR that can be run in
WebSphere Application Server Version 4.0, and hence can also be run in
WebSphere Studio Application Developer (since its WebSphere test environment is
a WebSphere Application Server Version 4.0 server). However, run-time execution
does not imply ongoing development capability.

You can include the previously generated Java code into the corresponding EJB
JARs and import that into WebSphere Studio Application Developer, and
WebSphere Studio Application Developer would parse and understand the EJB
session support, security information, finder information, and assembly descriptor
(const methods, and so on). However, extensions (class inheritance and ForeignKey
associations) and the map and schema information are all lost. They can only be
retained if you use the VisualAge for Java Version 4.0 EJB Export Tool, to create an
EJB 1.1 JAR containing the map and schema XML information and extension XML
information. As well, the names of generated stub classes are different in 1.0 than
1.1 enterprise beans. The net result is that neither an EJB 1.0 JAR nor an EJB
Deploy Tool EJB 1.1 JAR retains the basic design metadata to allow them to be
used for ongoing development in WebSphere Studio Application Developer.

The VisualAge for Java Version 4.0 EJB Export Tool produces an EJB 1.1 JAR that
contains all the EJB design metadata, including the map and schema information
and the extensions (class inheritance and ForeignKey associations), so that you can
immediately continue to develop within WebSphere Studio Application Developer
and regenerate deployment code anytime that is required. This is the only
supported method of migrating VisualAge for Java enterprise beans into
WebSphere Studio Application Developer; and the use of the VisualAge for Java
Version 4.0 EJB Export Tool is the only method that will work for ongoing EJB
development within WebSphere Studio Application Developer.

7.3 Moving multiple VisualAge for Java EJB groups into WebSphere
Studio Application Developer EJB projects

In VisualAge for Java, you may have multiple EJB groups, with each group being
used for intragroup inheritance or associations. Typically, you would export each
VisualAge for Java E]JB group (using the VisualAge for Java 4.0 EJB Export tool)
into a matching JAR, and then import that JAR into a matching WebSphere Studio
Application Developer EJB project.

WebSphere Studio Application Developer EJB projects correspond to EJB modules.
Where intragroup inheritance or associations are not required, you may wish to
keep the EJB groups as separate E]JB projects - you can close individual projects
and hence keep the overall memory requirements down. WebSphere Studio
Application Developer has the concept of enterprise-level grouping, using .WAR
and .EAR files, so several E]B groups can be logically combined that way, and then
deployed as if they were a single unit.

If you import multiple EJB groups into the same EJB project, then any XML in
them may not be correctly merged (the last imported group overwrites).

7.4 Migrating your enterprise beans

The following steps outline how to migrate your enterprise beans. Details on how
to perform these steps are provided below:

1. Export them as a 1.1 JAR using the VisualAge for Java Version 4.0 EJB Export
tool.

2. Import them into WebSphere Studio Application Developer.
3. Generate deploy code and data source binding information.

4. Create a WebSphere Studio Application Developer server configuration for your
test server, if you do not already have one.

5. Add data source information to your server configuration.
6. Test the enterprise beans with the new EJB test client.

7.4.1 Exporting your enterprise beans
1. In VisualAge for Java Version 4.0, add the Export Tool for Enterprise Java
Beans 1.1 feature to the workspace.

2. In the EJB page of the Workbench, right-click the EJB group that you want to
export, and click Export > EJB 1.1 JAR.

3. Fill in the fields as necessary (ensure that the .java check box is selected), select
your database, and click Finish.

7.4.2 Importing your enterprise beans into WebSphere Studio
Application Developer

1. In WebSphere Studio Application Developer, create a new EJB 1.2 project and a
new enterprise applications archives project. You will automatically be switched
to the J2EE perspective.

2. Select File > Import > EJB JAR file. Click Next, then select your JAR file, your
EJB project, and your .EAR file. Click Finish.

3. If you have any errors (they will be listed in the Tasks view), refer to
[Known problems and workarounds” on page 31| below to troubleshoot them.

Chapter 7. Migrating enterprise beans from VisualAge for Java to WebSphere Studio Application Developer 29

4. After you have imported your EJB files, follow the instructions in
[EJB information” on page 31|to help you find out where to find your EJB and

method properties, your schemas, maps, and so on.

7.4.3 Generating deploy code and data source binding
information
1. In the J2EE Hierarchy view, expand the EJB Modules folder and select the
newly imported EJB JAR.

2. From the E]JB JAR’s pop-up menu, click Generate > Deploy and RMIC Code.
Select to generate code for all your beans.

3. From the EJB JAR’s pop-up menu, click Open With > Deployment Descriptor
Editor.

4. In the E]JB deployment descriptor, click the Overview tab.

5. Scroll down to the WebSphere Binding section, and type the WebSphere
binding JNDI name and the DataSource binding JNDI name. Record this data
source name as you will use it later when you configure your data source in
the test server instance.

6. Save your changes and close the E]JB deployment descriptor.

7.4.4 Creating a server configuration and instance

1. Switch to the Server perspective.

2. Click File > New > Server Project.

3. In the Project name field, type ServerTest. Click Finish.
4

. In the Navigator view, select ServerTest. From its pop-up menu, click New >
Server and Server Configuration.

5. Type the name of the server, for example, MyServer, and select ServerTest from
the Folder list.

6. In the Server instance type field, expand WebSphere Version 4.0 and select
Test Environment. In the Template field, click None.

7. Click Next. Specify a server port number of 8080.
8. Click Finish.

A new server configuration and instance will be created.

7.4.5 Adding the JDBC data source to the WebSphere 4.0
server configuration

1. In the Server Configuration view, expand the server item and select your
server.

2. Right-click it, and from your pop-up menu, click Open.

3. Click the Data source tab.

4. In the JDBC Driver List, select the appropriate database driver (for example,
Db2]JdbcDriver if you are using DB2®™) and click Edit.

5. Verify that the Class path field contains the correct path to db2java.zip. Click
OK.

6. If you are not using DB2, add a new driver - ensure that you use the J2EE
JDBC driver that the Database vendor provides.

7. Select your JDBC driver, and click the Add button that is to the right of the
Data source field.

8. In the Add a data source dialog, type a data source name. In the JNDI name
field, type the same name you used in step 5 of "Generating deploy code and
data source binding information” section. Enter the name of your database and
click OK.

9. Save your changes.

7.4.6 Testing the enterprise beans with the EJB test client

1. In the Server Configuration view, expand the server item and select your
server. Right-click it, and click Add Project. Select the .EAR project that
contains your EJB module.

2. In the Servers view, select your server instance. Right-click it and, from its
pop-up menu, click Start.

3. The project will be published and the server will start. After a few moments,
click the Console tab to view the console window. You should see a message
saying the Default Server is open for e-business. Scroll through the console to
verify the EJB JAR has been started.

4. In J2EE Hierarchy view, expand the EJB Modules folder, select the enterprise
bean that you want to test, right-click it, and click Run on server.

7.5 Known problems and workarounds

* When migrating the method finder helpers, the finder helper interfaces will
disappear, as they have moved into an XML description file. This will generate a
problem since your finder helper object usually implements this interface; the
implementation must be removed.

* If you use inheritance in your enterprise beans, and you have built your own
custom finders, they may break, since the mapping of fields in the generated
code is different in WebSphere Studio Application Developer. To fix this, go to
the EJSCMPxxxxxx generated class, find the select statement generated for the
findbyPrimaryKey, and use it as a template.

* If you set up the Preferences page (in WebSphere Studio Application Developer)
to stop an automatic build from being done every time you save changes, you
must perform the following steps to generate the EJB deployed code and RMIC
stubs:

1. Select your EJB project, right-click and select Generate > Deploy and RMIC
code.

2. After you get an error (because the RMIC compiler can only see compiled
code and since the generated Java classes were not compiled yet it will give
an error), switch to Java perspective and build the project.

3. Repeat step 1. You should not receive any errors this time.

4. Repeat step 2, as you want to compile your newly generated stubs so you do
not receive run-time errors when you deploy your enterprise beans.

7.6 Locating EJB information

The following table contains a list of EJB items and where to find your enterprise
beans after you have migrated them to WebSphere Studio Application Developer:

Chapter 7. Migrating enterprise beans from VisualAge for Java to WebSphere Studio Application Developer 31

Table 1. EJB items and their location table

Item Location

Enterprise beans Expand the ejpbModule folder in the J2EE Hierarchy view and select

(fields, classes) the EJB Jar you want to work with and double-click on it.

Enterprise beans Expand the ejpbModule folder in the Navigator view and go to the

(finder classes, access | com subdirectory (or your package structure). They are located in

beans, generated this subdirectory.

classes).

Association Expand the ejpbModule folder in the J2EE Hierarchy view and select

information the EJB Jar you want to work with and double-click on it. In the
deployment descriptor, click the Overview tab.

Finder helper Expand the ejpbModule folder in the J2EE Hierarchy view and select

description the EJB Jar you want to work with and double-click on it. In the

deployment descriptor, click the Beans tab.

Mapping /schema Expand the ejpModule folder in the J2EE Hierarchy view and select
description the EJB Jar you want to work with and double-click on it. From its
pop-up menu, click Generate > EJB to RDB mapping.

Transaction Expand the ejpbModule folder in the J2EE Hierarchy view and select
demarcation the EJB Jar you want to work with and double-click on it. In the
editor, click the Beans tab.

Isolation Levels or Expand the ejpbModule folder in the J2EE Hierarchy view and select
find for update or |the EJB Jar you want to work with and double-click on it. In the

read me methods deployment descriptor, click the Access tab.

marking

EJB environment Expand the ejpModule folder in the J2EE Hierarchy view and select

variables the EJB Jar you want to work with and double-click on it. From its
pop-up menu, click Open With > EJB Editor. In the editor, click the
Beans tab.

7.7 Migrating EJB access beans

When enterprise beans are exported from VisualAge for Java, Enterprise Edition,
Version 4.0 using the Export Tool for Enterprise Java Beans 1.1, the metadata for
any associated Java bean wrapper and copy-helper access beans will also be
exported. Rowset access beans are not supported by WebSphere Studio Application
Developer, so the metadata for these access beans will not be exported.

Note: Migrated access beans with methods that have arrays as arguments or
return types may cause problems for the access bean tools in WebSphere
Studio Application Developer.

7.8 Migrating custom finder helpers

32

When you export enterprise beans from VisualAge for Java, Enterprise Edition,
Version 4.0 using the Export Tool for Enterprise JavaBeans 1.1, or when 1.0 JAR
files are deployed with the Deployment Tool for Enterprise JavaBeans (that is, the
EJB Deploy Tool), the finder helper interfaces are migrated to the extension
document. If the JAR file is an EJB JAR file, the metadata is also migrated to the
extension document from the finder helper interfaces. However, migration of the
finder helper interfaces to the extension document only occurs if the finder
descriptors in the JAR file are not found in the extension document. If the
enterprise beans are exported using the Export Tool for Enterprise Java Beans 1.1,
the redundant classes are filtered from the exported JAR. If the enterprise beans

are not exported using the Export Tool for Enterprise Java Beans 1.1 and are
imported along with the redundant classes, the classes are simply ignored.

Chapter 7. Migrating enterprise beans from VisualAge for Java to WebSphere Studio Application Developer 33

34

Chapter 8. Migrating from EJB 1.0 to EJB 1.1 or to EJB 2.0

This chapter provides instructions on how to migrate your enterprise beans from
EJB 1.0 to EJB 1.1 or to EJB 2.0. The main steps are:

Migrate code from EJB 1.0 to 1.1
Convert projects from EJB 1.x to EJB 2.0
Migrate code from EJB 1.x to EJB 2.0

Migrate a JMS listener application to use message-driven beans

8.1 Migrating code from EJB 1.0to EJB 1.1

If you are migrating EJB 1.0 code to WebSphere Studio Application Developer,
there are some EJB 1.1 specification changes that may affect your code. You may
see some of the following validation errors or warnings due to EJB 1.1 changes:

An enterprise bean cannot use the javax.jts.UserTransaction interface (use the
new javax.transaction.UserTransaction interface instead)

An entity bean cannot use the UserTransaction interface (this is not allowed in
1.1)

An entity bean must define FinderException in their throws clause of finder
methods

An enterprise bean cannot throw java.rmi.RemoteException (it can throw
javax.ejb.EJBException instead) but RemoteException must still be defined in
EJB home and remote interfaces (as required by RMI).

You cannot use the finalize method
java.security.Identity is deprecated

Enterprise bean methods getCallerIdentity() and isCallerInRole(Identity)
are deprecated (use getCallerPrincipal() and isCallerinRole(String
roleName) instead)

getEnvironment is deprecated. Open ejb_jar.xml with EJB deployment descriptor,
Beans tab, and view environment variables (such as TARGET_HOME_NAME)

String homeName=alink.getEntityContext().getEnvironment().getProperty("TARGET HOME_NAME");
if (homeName == null) homeName = "TARGET_HOME_NAME";

becomes:

Context env = (Context)(new InitialContext()).lookup("java:comp/env");
String homeName = (String)env.lookup("ejblO-properties/TARGET _HOME_NAME");

CMP enterprise beans ejbCreate(...) methods should return the bean’s primary
key class (instead of void).

New HomeHand1e interface, and EJBHome interface requires new getHomeHandle()
method:

public javax.ejb.HomeHandle getHomeHandle() { return null; }

You should consider enhancements to match EJB 1.1 changes such as:

Entity bean primary keys can now be java.lang.String objects
Entity bean finder methods should define FinderException in their throws clause
Entity bean finder methods return java.util.Collection

Check the format of your JNDI names (and local namespaces are now
supported)

© Copyright IBM Corp. 2000, 2003 35

* There are now security roles, and isolation levels are now defined at the method

level (were defined at E]B level for EJB 1.0)

You should review the EJB 1.1 changes in general, to see what other application
changes are appropriate. For detailed information, refer to the following
publications and Web sites:

* Enterprise Java Beans Specification, Version 1.1 - Section 1.3, Application

compatibility (page 16). You can access this publication at:
iava.sun.com/products/ejb/docs.html|

e The IBM WebSphere InfoCenter which is at the following URL:

[www.ibm.com /software /webservers /appserv/doc/v40/aes/infocenter /index.html|
Refer to the following sections:

— Transitioning to Version 4.0 (Click Application Server AE > Migration >
Transitioning to Version 4.0 and read the Role-based security section.)

- Migrating to supported EJB specifications (Click Application Server AE >
Migration > 3.3 Migrating APIs and specifications > 3.3.1 Migrating to
supported EJB specifications.)

— Migrating from Version 3.x (Click Application Server AE > Migration > 3.2
Migrating from previous products versions > 3.2.2 Migrating from Version
3.x.)

WebSphere Version 4 Application Development Handbook - Chapter 11, Migrating 1.0
EJBs to 1.1 E]JBs (page 267). You can access this publication at:
[www.redbooks.ibm.com /pubs /pdfs /redbooks /sg246134.pdf| (Click Chapter 11 >
Developing Web Applications with VisualAge for Java > Developing EJBs in
VisualAge for Java and read the section Migrating 1.0 E]Bs to 1.1 EJBs).

Programming J2EE APIs with WebSphere Advanced - Chapter 5, EJB 1.1 code
changes (page 113). You can access this publication at:
[www.redbooks.ibm.com /pubs /pdfs /redbooks /sg246124.pdf| (Click Chapter 5 >
5.8 EJB-JAR and read the section EJB 1.1 code changes)

EJB Development with VisualAge for Java for WebSphere Application Server -
Appendix B. You can access this publication at:
[www.redbooks.ibm.com /pubs/pdfs/redbooks /sg246144.pdf|

8.2 Converting projects from EJB 1.x to EJB 2.0

You can migrate your existing 1.1 project to a 2.0 project, or you can keep both by
creating a new 2.0 project and then import the existing 1.1 project JAR file into it.

36

In the J2EE Hierarchy view, right-click on the 1.1 project and then select Migrate
> J2EE Migration Wizard. For more information about the different wizard
options, press F1 while in the J2EE Migration wizard or read the online help
section title "Migrating application modules from J2EE 1.2 to J2EE 1.3".

Or, export the existing 1.1 project as an EJB JAR, create a new 2.0 project, and
then File > Import > EJB JAR.

Although the project is an EJB 2.0 project, the existing (or imported) EJB 1.1
Container Managed Persistence (CMP) beans remain EJB 1.1 beans. That is, the
CMP beans are not converted to EJB 2.0.

The J2EE Migration wizard migrates the Enterprise Beans within an EJB 2.0 project
from 1.x into 2.0. (If you choose to migrate your 1.1 CMP beans to 2.0, all beans in
the 2.0 project must be migrated. However, you can selectively choose to add local
client views to these migrated 2.0 beans.)

It will maintain the existing EJB 1.1 inheritance in the EJB 2.0 project.

http://java.sun.com/products/ejb/docs.html
http://www.ibm.com/software/webservers/appserv/doc/v40/aes/infocenter/index.html
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246134.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246124.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246144.pdf

* It will migrate EJB 1.1 (proprietary) relationships into EJB 2.0 (standard)
relationships, plus other benefits.

Note: If you have any mapped associations, EJB 2.0 associations will be created
for the associations themselves, but the role maps for that association will
become invalid. If you run validation, you will see an error occurs. Make
sure you simply open the Mapping Editor first, save the map, and the role
maps will be removed. You may then run validation again and re-map the
roles.

8.3 Migrating code from EJB 1.x to EJB 2.0

Note: EJB 2.0 beans are only supported in an EJB 2.0 project (although a 2.0
project also supports 1.1 beans).

1. For any CMP 1.x bean, replace each CMP field with abstract getXXX and setXXX
methods. (Then the bean class needs to be abstract.)

2. For any CMP, create an abstract getXXX and setXXX method for the primary key.
3. For any CMP 1.x finder, create an EJBQL (EJB Query Language) for each finder.

Note: EJB Query Language has the following limitations in WebSphere Studio
Application Developer Version 5:
* EJB Query Language queries involving E]Bs with keys made up of
relationships to other EJBs will appear as invalid and cause errors at
deployment time.

* The IBM EJB Query Language support extends the EJB 2.0 spec in
various ways, including relaxing some restrictions, adding support
for more DB2 functions, and so on. If portability across various
vendor databases or EJB deployment tools is a concern, then care
should be taken to write all EJB Query Language queries strictly
according to instructions described in Chapter 11 of the EJB 2.0
specification.

4. For any CMP 1.x finder, return java.util.Collection instead of
Java.util.Enumeration.

5. For any CMP 1.x bean, change all occurrences of this.field = value to
setField(value) in ejbCreate() and elsewhere throughout the code.
6. Update your exception handling (rollback behavior) for non-application
exceptions:
* Throw javax.ejb.EJBException instead of java.rmi.RemoteException to
report non-application exceptions.

* In EJB 2.0 and 1.1, all non-application exceptions thrown by the instance
result in the rollback of the transaction in which the instance executed, and
in discarding the instance.

* In EJB 1.0, the container would not rollback a transaction and discard the
instance if the instance threw the java.rmi.RemoteException.

7. Update your Exception handling (rollback behavior) for application exceptions:

* In EJB 2.0 and 1.1, an application exception does not cause the container to
automatically rollback a transaction.

* In EJB 1.1, the container performs the rollback only if the instance have
invoked the setRollbackOnly() method on its EJBContext object.

* In EJB 1.0, the container was required to rollback a transaction when an
application exception was passed through a transaction boundary started by
the container.

Chapter 8. Migrating from EJB 1.0 to EJB 1.1 or to EJB 2.0 37

8. Update any CMP setting of application specific default values to be inside
ejbCreate (not using global variables, since EJB 1.1 containers set all fields to
generic default values before calling ejbCreate which will overwrite any
previous application specific defaults). This approach will also work for EJB 1.0
CMPs.

To access the J2EE Migration wizard, right-click on the EJB project and then select
Migrate > J2EE Migration Wizard. For more information about the different
wizard options, press F1 while in the J2EE Migration wizard.

8.4 Migrating a JMS listener application to use message-driven beans

38

In WebSphere Application Server Version 4.0, IBM had a proprietary
implementation of Message Beans with the JMS Listener similar to the Message
Driven Beans in EJB 2.0 specification. Customers using Message Beans with the
JMS Listener in WebSphere Application Server Version 4.0 can migrate to the EJB
2.0 Message Driven Beans using the mb2mdb.bat program available in WebSphere
Application Server Version 5 run-time environment that comes with WebSphere
Studio Application Developer. This program is located in the

. \WS_installdir\runtimes\base_v5\bin folder (where WS_installdir is the directory
where WebSphere Studio Application Developer is installed).

The mb2mdb command line utility takes as its input either a deployed
MessageBean jar module or a deployed Enterprise Application (.ear file) that
contains a message bean, along with the JMS listener configuration XML file that
defines the WebSphere Application Server Version 4.0 message beans. The result is
a new jar or .ear module that can then be deployed directly into a WebSphere
Application Server Version 5 application server.

To display the usage help for the migration utility, typing the following command
on the command line: mb2mdb

To migrate a WebSphere Application Server Version 4.0 enterprise application that
uses message beans to use EJB 2.0 message-driven beans, type the mb2mdb
command with the following syntax on the command line:

mb2mdb inputMB.jar-ear jmsListenerConfig.xml workingDirectory outputMDB.jar-ear
options

where:

e inputMB.jar-ear is the name of the deployed WebSphere Application Server
Version 4.0 jar or .ear file containing a stateless session message bean.

* jmsListenerConfig.xml is the name of the XML configuration file used to configure
the WebSphere Application Server Version 4.0 JMS listeners.

* workingDirectory is the name of a new or existing directory that is used to
generate the new message-driven bean and package the outputMDB jar or
outputMDB.ear file. Note: By default, the tool clears the working directory after
it has completed. If you want to preserve the contents of the working directory,
you must specify the -keep option.

* outputMDB.jar-ear is the name of the output .jar or .ear file for the migrated
message-driven bean application.

* options is a set of optional parameters that you can use to control the mb2mdb
utility. The following table lists the valid options.

Table 2. List of valid options.

Options Description

-keep Prevents the tool from clearing out the
working directory after completion.

-verbose Causes the tool to display
informational messages as to the
progress of the migration and its
parameters.

-map listenerHome=bindingHome Provides a mechanism to map
between the JINDIHomeName
specified for a listener in the JMS
listener configuration XML file and
the default binding home name
specified in the inputMB jar-ear file.

If the jmsListenerConfig.xml file
contains a deployed EJB home JNDI
name that is different to the default
binding within the inputMB jar-ear,
use this option to map between the
two names.

This enables you to install the output
jar or .ear file for the message-driven
bean into an application server and
bind the bean with a different
JNDIHomeName than is specified in
the bean’s bindings.xmi.

The result of this task is a new .jar or .ear file for a message-driven bean that can
then be deployed directly into a WebSphere Application Server Version 5.0
application server.

To successfully install the jar or .ear file:

1. Bind the message-driven bean against a listener port defined to the message
listener service of the application server.

2. Use the WebSphere Application Server administrative console to define the
listener port, which defines the JMS connection factory and destination that a
message-driven bean bound to it listens on.

Chapter 8. Migrating from EJB 1.0 to EJB 1.1 or to EJB 2.0 39

40

Chapter 9. Migrating from VisualAge for Java Visual
Composition Editor to Visual Editor for Java

This chapter provides instructions on how to migrate applications created in the
Visual Composition Editor feature of VisualAge for Java to the Visual Editor for
Java within WebSphere Studio Application Developer:

* Saving enhanced design-time metadata from VisualAge for Java

* Completing the migration (importing into WebSphere Studio)

9.1 Saving enhanced design-time metadata from VisualAge for Java

This step is optional but is highly recommended (especially if your application has
any connections) for the following reasons.

* VisualAge for Java did not save information about the placement of top-level
beans (that is, beans that are not contained inside other beans) on the free-form
surface. By contrast, WebSphere Studio always saves this information as a
comment on the line of code that declares the bean and restores the bean to that
position on the canvas every time you open the visual editor. You have the
option to save this design-time information in VisualAge for Java before
migration. If you do not save it, when you first open your .java files in the new
Visual Editor for Java the editor calculates a default position for top-level beans
(also known as free-form parts), which you can easily change by means of a
drag and drop operation.

* Although the new Visual Editor for Java in WebSphere Studio Application
Developer does not support connection design, it is possible that equivalent
function might be added in the future. (Note: This is not a product commitment;
it is just preparation for a future possibility.)

To save the enhanced metadata information prior to migration:

1. Go to the VisualAge for Java Developer Domain
[www?7.software.ibm.com/vad.nsf/data/document4293] and download the
"IBM VCE Code Generation and Export Utility".

2. Following the tool readme, add the tool into VisualAge for Java and then stop
and restart VisualAge for Java.

3. Version the current application code into the VisualAge for Java repository (so
you can return to this version in case of any ongoing VisualAge for Java
development).

4. For each of your graphical applications within VisualAge for Java, select one or
more of the graphical programs (typically XxxxxView), right-click, and then do
the following:

a. Click VCE Code Generation/Export, and leave selected the Export to a
directory after code regeneration option.

b. Click Finish.
C. Leave Directory as the selected export destination, click Next.

d. Select your target directory, clearing the .class option and selecting the .java
option (since you want the source code), and then click Finish.

e. Optionally, reload your VisualAge for Java code with its previous version
(right-click and then select Replace with > Previous edition).

© Copyright IBM Corp. 2000, 2003 41

http://www7.software.ibm.com/vad.nsf/data/document4293

9.2 Completing the migration (importing into WebSphere Studio)

42

Your classes are now ready to be imported into WebSphere Studio. Refer to the
earlier chapter [’Chapter 6. Migrating from VisualAge for Java to WebSphere Studio
[Application Developer” on page 21| Once your previous Visual Composition Editor
source programs have been imported into WebSphere Studio Application
Developer, you can maintain them in the Visual Editor for Java.

Chapter 10. Converting from VisualAge for Java Persistence
Builder to EJB 2.0

This chapter provides an overview of how to convert your VisualAge for Java
Persistence Builder applications to EJB 2.0 on WebSphere Studio Application
Developer Version 5.0.

Migrate and export the Persistence Builder Model as an E]JB 1.1 JAR
Import EJB 1.1 JAR into EJB 1.1 project, set Access and Isolation values

(Optional) Convert client application and get server side running, all at EJB 1.1.
level

Convert to EJB 2.0 project
Convert EJB 1.1 code to EJB 2.0 and set Application Profile Declarations

(If not already done) Convert Persistence Builder client application into EJB
client application

10.1 Migrate and
JAR

export the Persistence Builder Model as an EJB 1.1

Use VisualAge for Java 4.0 tool to migrate Persistence Builder Model into an
EJB 1.0 Group (OnlineHelp > Tasks > AddingPersistence >
MigratingPersistenceBuilderModel to EJB)

Use VisualAge for Java E]JB 1.1 Export Wizard to export an EJB 1.1 JAR

10.2 Import EJB 1.1 JAR into EJB 1.1 project, set Access and Isolation

values
1.

Import EJB 1.1 JAR into WebSphere Studio Application Developer EJB 1.1
project.

Note: EJB 2.0 primarily provides server-side performance improvements. You
should be able to get your Persistence Builder application converted
and running using EJB 1.1 if you wish (and this might be a nice project
stepping-stone before undertaking the EJB 2.0 conversion in order to
achieve the performance enhancements). Alternately, you can convert
your server-side code to EJB 2.0 first, and then get your client and
overall application running.

Per Bean within your EJB 1.1 project, set your ReadOnly Access Intents (Read,
or Update) and Isolation Levels (Repeatable read, or Read committed, or Read
uncommitted, or Serializable) - these are not exported out of Visual Age for
Java and must be manually set.

* In the J2EE View under EJB Modules, select the EJB Module you are working
with and double-click on it. In the EJB Deployment Descriptor on the Access
tab, in the Access Intent for Entities 1.x section Add, or Edit, or Remove (as
appropriate) in the Isolation Level section Add, or Edit, or Remove (as
appropriate).

© Copyright IBM Corp. 2000, 2003 43

10.3 (Optional) Convert client application and get server side running,
all at EJB 1.1 level

See details in|“10.6 Convert Persistence Builder client application into EJB client|

lapplication” on page 45|

10.4 Convert to EJB 2.0 project

Convert EJB 1.1 project into EJB 2.0 project by selecting your EJB project, then
right-clicking Migrate > J2EE Migration Wizard.

The EAR project that contains the above EJB 1.1 module project also needs to be
migrated to J2EE 1.3 specification level. Both the EJB project and EAR project can
be migrated at once by selecting the EAR project in the J2EE Migration wizard.

For more information about the different wizard options, press F1 while in the
J2EE Migration wizard or read the online help section titled "Migrating application
module from J2EE 1.2 to J2EE 1.3".

10.5 Convert EJB 1.1 code to EJB 2.0 and set application profile

declarations

44

1. Use the J2EE (EJB Bean) Migration wizard to convert from 1.x CMPs into 1.1
CMPs into 2.0 CMPs

* Refer to the earlier chapter|”8.3 Migrating code from EJB 1.x to EJB 2.0” on|
including additional (manual) changes.

* This will also migrate your Access Intents from Entity 1.x to Entity 2.x
format

¢ This will also migrate any 1.1 (proprietary) relationships into 2.0 (standard)
relationships - using Local Interfaces.

— This also migrates any relationship accessor access intents.
— Client code (including existing session beans) will have to change to
match the new method signatures.
2. Manually adjust your Access Intents
* Entity 2.x Access Intents are more powerful (Optimistic/Pessimistic
Read/Update, Pessimistic Update Exclusive, and so on).

— If you an optimistic type (wsOptimisticUpdate or wsOptimisticRead), then
you can also select the Read Ahead Hint check box. This adds the ability
to Preload (ReadAhead) related enterprise beans across relationships in a
single query.

* Per Bean within your EJB 2.0 project, adjust your migrated Access Intents.

a. For each EJB project, right-click Open with > EJB Deployment
Descriptor Editor > Access tab.

b. Then click Access Intent for Entities 2.x > Add, or Edit, or Remove (as
appropriate).

10.6 Convert Persistence Builder client application into EJB client

application

Important note: Persistence Builder provides the capability to create stand-alone
applications (as well as distributed applications). There is no facility for
stand-alone EJB applications, the distributed alternatives are:

* Install a WebSphere Application Server and run everything on one machine.

* Install the WebSphere Application Server "light server” to provide the client-side
environment to access remote servers.

* Do not use EJBs at all (use JDBC, or the new DataBase Access Beans for RowSet
JDBC access, or other approaches).

Additional note: Persistence Builder provided Visual Composition Editor (VCE)
palette items for visually building client applications. There are no corresponding
components within Application Developer. Alternatives are:

¢ Convert the client-side Java program by removing the use of the Persistence
Builder visual components.

* Convert the client-side Java program into a web browser-based program
accessing server-side servlets.

1. Use Session Beans to abstract layer(s) of business logic above Entity Beans

Important reference: Refer to '[Rules and Patterns for Session Facades|'
[www.ibm.com/websphere/developer/library/techarticles /0106_brown/
sessionfacades.html].

If your Persistence Builder applications used the recommended Persistence
Builder {Task Wrapper Pattern|’ [www?7b.software.ibm.com /vadd-
bin/httpdl?1/vadc/techarticle/0010_lanuti.pdf]. Then your application
servlets and JSPs do not directly use the business objects nor associated
transactions, instead all persistence and transaction exceptions are
encapsulated and the data flowing into and out of the TaskWrapper is
typically only serializable objects. Such a "Task Wrapper” application should
convert fairly easily into EJBs plus Session Beans.

The Session Beans now control transaction demarcation. They use EJB
Container Managed Persistence (CMPs) with container managed transactions
('TRANSACTION_REQUIRED").

— No RollBacks are available to the servlet/client calling the Session Bean,
so they must have recover logic.

— Manually convert any Persistence Builder ConflictResolution code into
EJB TransactionRolledBack exception handling.

Where Persistence Builder provided nested transactions, servlets/clients now

would use multiple Session Beans with 'REQUIRES_NEW" and with

recovert/compensation logic in case of errors.

Important Reference: '|WebSphere Application Server, Development Bes
Practices for Performance and Scalability[[www-

4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf].

2. Manually convert persistence builder business logic from persistence builder
model to use new Session Beans.

Persistence Builder clients used to use MyobjectImpl implementation classes.
New (converted) EJB clients (or more typically their new application session
beans) will now use the EJB MyObject classes (remote interface, and hence
indirectly the MyobjectBean object).

Chapter 10. Converting from VisualAge for Java Persistence Builder to EJB 2.0 45

http://www.ibm.com/websphere/developer/library/techarticles/0106_brown/sessionfacades.html
http://www7b.software.ibm.com/vadd-bin/httpdl?1/vadc/techarticle/0010_lanuti.pdf
http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

46

¢ If the developer had any business methods in the previous implementation
classes, then they need to be copied into the new EJB bean (and promoted to
the remote interface), including any required exception handling.

3. Manually convert from Persistence Builder Lite Collections to EJB 2.0
Dependent Values.

* Alternately, single-value finders can return a single field - which may be
suitable in some cases.

* Alternately, a Session Bean can directly use JDBC - which may be suitable in
some cases.

Chapter 11. Migrating from WebSphere Studio Application
Developer Version 5 to Version 5.0.1

This chapter covers the following migration topics:
* Migrate Web projects Version 5 to Version 5.0.1
* Convert Web projects to Struts 1.1 Beta 3

11.1 Migrating Web projects Version 5 to Version 5.0.1

In Version 5.0 (General Availability), the folder names are Java Source and Web
Content. In Version 5.0.1, the default folder names for new Web projects are
configurable through a preference page (Window > Web Tools > New Project).
The default default names are now JavaSource and WebContent. These default
names will be used for new Web projects only. Web projects created in Version
4.0.x and Version 5.0 will continue to function using the old names. The same is
true for Static Web projects.

If you opt to change the source folders names for 4.0.x and 5.0 projects in Version
5.0.1, use the Rename pop-up menu action in the Navigator view. The Rename
pop-up menu action renames the folder names and fixes the Java build path for
the 4.0.x and 5.0 Web projects.

For the JavaSource folder, the Rename pop-up menu action works in J2EE
Navigator View and Package Explorer view. For the WebContent folder, the
Rename pop-up menu action works in Resource Navigator view, J2EE Navigator
View and Package Explorer view.

If a Version 4 Web project is saved into an SCM repository and then loaded into
Version 5.0.1, it will retain the old structure with the source and webApplication
folders. Either structure will build correctly in Version 5.0.1.

Note: If the users opt to rename Java Source and Web Contentfolder names in
Version 5.0.1, then they have to manually update any automated build
scripts they have to change them to use the new folder names.

11.2 Converting Web projects to Struts 1.1 Beta 3

In WebSphere Studio Application Developer Version 5.0.1, the Struts tools run-time
has stepped up from Version 1.1 Beta 2 to Version 1.1 Beta 3. In WebSphere Studio
Application Developer Version 5.0 (General Availability) when you create a Web
project you have the option to add Struts support to your project. You can choose
either Struts 1.0.2 or Struts 1.1 Beta 2. In WebSphere Studio Application Developer
Version 5.0.1, the latter choice is replaced by Struts 1.1 Beta 3. If you created Struts
1.1 Beta 2 Web projects in WebSphere Studio Application Developer Version 5.0,
you might wish to convert it to Struts 1.1 Beta 3 but this is not required as Struts
1.1 Beta 2 is still supported in WebSphere Studio Application Developer Version
5.0.1. If you do have Struts 1.1 Beta 2 Web projects that you wish to convert to
Struts 1.1 Beta 3, you will need to do the following:

1. Load your Struts 1.1 Beta 2 projects into a WebSphere Studio Application
Developer Version 5.0.1 workspace.

© Copyright IBM Corp. 2000, 2003 47

48

2. Create a new Struts 1.1 Beta 3 Web project named beta3. This provides
convenient access to the Struts 1.1 Beta 3 artifacts we will need while we are
converting our real projects. You can delete this project when you are done.

3. For each Struts 1.1 Beta 2 project that you want to convert to Struts 1.1 Beta 3,
do the following:

a. Delete the following jar files from your project’'s Web Content/WEB-
INF/lib directory: commons-*jar and struts.jar.

b. Copy the following jar files from beta3/WebContent/WEB-INF/lib
directory to your project’s Web Content/WEB-INF/lib directory:
commons-*jar and struts.jar.

C. Delete the following .tld files from your project’'s Web Content/WEB-INF
directory: struts-*.tld.

d. Copy the following .tld files from beta3/WebContent/WEB-INF directory to
your project’'s Web Content/WEB-INF directory: struts-*.tld.

Chapter 12. Build setup (library, JARs, dependent project
JARSs, Ant builds)

This chapter covers the following migration topics:

* Java library JARs, and third-party external JARs

¢ Optimizing multi-project builds using dependent Project JARs
* Automated production builds using Ant

12.1 Java library JARs and third-party external JARs

For detailed explanations of what is involved, see the article on J2EE Class Loading
(www.ibm.com /websphere/developer/library /techarticles /0112_deboer/deboer.html)
(J2EE modules and class paths) and on developing J2EE utility JARs
(www.ibm.com/websphere/developer /library /techarticles/0112_deboer/deboer2.html)
(Java JARs in J2EE modules). These provide excellent technical background and
advice.

12.1.1 Recommended way to use a third-party JAR within a
Web project
The recommended way to use a third-party JAR file within a Web project is to
import it (keeping it as a JAR file) into the library folder of your Web project. This

is the only J2EE-defined, portable way to use a JAR file, and will ensure that you
do not have to make any changes when deploying to another server.

To use an external JAR file in a single Web project, follow the steps below. If you
need to use the JAR file in an EJB project or in multiple Web projects, follow the
steps in the [“12.1.2 Recommended way to use a third-party JAR for use with|
multiple EJB or Web projects”|instead.

1. Select File > Import > File System. Click Next. You must select File system,
not Zip file, in order to ensure that the JAR file is not expanded when it is
imported.

2. Click Browse and locate the JAR file directory.

3. Import it into your WebProject/ WebContent/ WEB-INF/lib folder, where
WebProject is the name of your Web project.

4. Click Finish. The JAR file will be automatically added to the Java build path,
and no further changes are required at run time.

12.1.2 Recommended way to use a third-party JAR for use
with multiple EJB or Web projects

The recommended way to use a third-party JAR file with two or more EJB or Web
projects is to import it (keeping it as a JAR file) into your Enterprise Application
(EAR) project. This is the only J2EE-defined, portable way to use a JAR file, and
will ensure that you do not have to make any changes when deploying to another
server.

To use an external JAR file with multiple EJB or Web projects, follow the steps

below. If you only need to use the JAR file in a single Web project, follow the steps
in the previous section.

© Copyright IBM Corp. 2000, 2003 49

http://www.ibm.com/websphere/developer/library/techarticles/0112_deboer/deboer.html
http://www.ibm.com/websphere/developer/library/techarticles/0112_deboer/deboer2.html

1. Select File > Import > File System. Click Next. You must select File system,
not Zip file, in order to ensure that the JAR file is not expanded when it is
imported.

2. Click Browse and locate the JAR file directory.

3. Import the JAR file into the Enterprise Application project that contains the EJB
or Web projects.

4. Click Finish. The JAR file will automatically be added to the Java build path,
and no further changes are required at run time.

5. Follow the steps in the following next section to add the JAR to the module
dependencies of the Web or EJB project.

12.1.3 References between Web projects and other EJB
projects
If you have a Web or EJB project that depends on another EJB project, you must
take the following steps to make sure that the project will be visible at run time.

1. Select the Web or EJB project, right-click it, and select Properties > Java Build
Path > Projects tab.

2. Select the projects that the Web or EJB project requires at run time.
3. Click Finish.

This changes the Web or E]JB project manifest file to contain an explicit reference to
the required EJB project. It also modifies the Java build path to include the
references to EJB and Web projects. Using this technique, the WebSphere
Application Server does not need any specific setting for modulevisibility
(deprecated).

If you have Web or EJB project references to JAR files, you must take the following

steps to make sure that the JAR files are on the Java Build path of the project.

1. Select the Web or EJB project, right-click it, and select Properties > Java JAR
Dependencies.

2. Select the JARs from the Available Dependent Jars list for the Web or EJB
project required at run time.

3. Click OK.

12.1.4 Alternative way to use external JAR files (global build
and server classpath)

You may also leave the JAR file outside of WebSphere Studio Application
Developer and add it to both the Java build path and the server instance’s class
path. This is not recommended, because your application will not be easily
portable. When you move to a different server, you will always have to update the
server’s class path. As well, you need to ensure that your class files do not conflict
with other versions of similar class files already on the server classpath (and
needed by the server or its other applications). If you do decide to take this
approach, take the following steps:

1. Add the external JAR file to the Java build class path of the project that
requires the JAR file.

a. Select the project, right-click it, and select Properties from its pop-up menu.
b. Click Java Build Path.

c. Click the Libraries tab.

d. Click Add External JARs. Select the JAR file, and click Open.

e. Click OK.
2. Add the external JAR file to the server instance’s class path
a. Open the Server Configuration view, and expand the Server folder.

b. Select the server instance that the project is deployed on. Right-click it and
click Open.

c. Click the Paths tab.

d. Within ws.ext.dirs, click Add External JARs. Select the JAR file, and click
Open. Note that ws.ext.dirs is used for application JAR files, and the
CLASSPATH is used for server JAR files.

e. Close the server instance and save your changes.

12.2 Optimizing multi-project builds using Dependent Project JARs

WebSphere Studio Application Developer’s powerful autobuild feature can slow
down build performance during complex, multiproject builds. There are a number
of ways to control these autobuilds (dependent files, active and inactive projects,
and projects in source or JAR format) but these options can get quite complicated.
There is an article that explains the options and how to optimize your build
performance. See the WebSphere Developer Domain article 'lOptimizing complex|
builds in WebSphere Studio Application Developer]’
(www.ibm.com/websphere/developer/library/techarticles /0204_searle/searle.html).

12.3 Automated production builds using Ant

You can use Ant with WebSphere Studio Application Developer to automate your
production builds. There is a multi-part article that explains the following things:

¢ What is Ant

* How to run Ant both inside and outside WebSphere Studio Application
Developer

* How to use Ant for production builds of J2EE elements (EJBs, WARs, EARs, and
SO on)

* How to extend Ant with new WebSphere Studio Application Developer build
tasks

See the WebSphere Developer Domain article {Using Ant with WebSphere Studiol
[Application Developer’
(www.ibm.com/websphere/developer/library/techarticles /0203_searle/searlel.html).

Chapter 12. Build setup (library, JARs, dependent project JARs, Ant builds) 51

http://www.ibm.com/websphere/developer/library/techarticles/0204_searle/searle.html
http://www.ibm.com/websphere/developer/library/techarticles/0204_searle/searle.html
http://www.ibm.com/websphere/developer/library/techarticles/0203_searle/searle1.html
http://www.ibm.com/websphere/developer/library/techarticles/0203_searle/searle1.html

52

Chapter 13. Migration examples

This chapter contains migration examples to help you learn more about migrating
from VisualAge for Java and WebSphere Studio "Classic” to WebSphere Studio
Application Developer.

* VisualAge for Java JSP/servlet sample (LeapYear)

* VisualAge for Java EJB, VCE, and database samples (HelloWorld session bean
and Increment enterprise bean)

* WebSphere Studio "Classic” Web application sample (YourCo)

* Migration from EJB 1.x to EJB 2.0 (HelloWorld session bean and Increment
enterprise bean)

13.1 Example: VisualAge for Java JSP/servlet sample (LeapYear)

Description

This is the FindTheLeapYears sample provided with VisualAge for Java Version
4.0. Information about it can be found in the VisualAge for Java online help
(Samples > JSP/Servlet Development Environment).

Migration overview
You will follow the steps below to migrate the sample from VisualAge for Java to

WebSphere Studio Application Developer. These steps are discussed in more detail
below:

1. |“13.1.1 Exporting your files from VisualAge for Java”|

2. [“13.1.2 Creating a new WebSphere Studio Application Developer Web project”]

|0r1 page 54_11r

3. [“13.1.3 Importing the Java and project resource files into the WebSphere Studio]
Application Developer project” on page 54

4. |"13.1.4 Defining any servlets and make any restructured application changes”]

|on page 55[

5. [“13.1.5 Creating a WebSphere Studio Application Developer server project” on|

[page 55[

6. [“13.1.6 Testing the migrated Leap Year application” on page 56}

13.1.1 Exporting your files from VisualAge for Java
1. Open VisualAge for Java.
2. Select the IBM JSP Examples project.

3. Right-click the project and select Export. Select the Directory radio button and
click Next.

4. Type the name of the directory you want to export the files to.

5. Clear the .class check box. You do not need to export these files as you will
rebuild the project in WebSphere Studio Application Developer and re-create
these files.

6. Select the .java check box and click Details. Select only the LeapYear files and
click OK.

7. Select the resource check box and click Details.

© Copyright IBM Corp. 2000, 2003 53

54

10.

11.
12.

Select LeapYearInput.html and LeapYearResults.jsp, which are located in the
following directory: IBM WebSphere Test
Environment\hosts\default_host\default_app\web\JSP\sample3.

Click OK.

Clear the Create Manifest file check box (you do not need to create a
manifest file).

Click Finish.
Close VisualAge for Java.

13.1.2 Creating a new WebSphere Studio Application
Developer Web project

1.
2.

6.
7.

Start WebSphere Studio Application Developer.

Create a new Web project (File > New > Project > Web > WebProject) called
LeapYear.

Ensure that J2EE Web project is selected, and then click Next.
Select New.

Change the Enterprise Application project name to LeapYearEAR and select
J2EE level 1.2. You could put the Web project into any existing Enterprise
Application (EAR) project, but for this example, you will put it in
LeapYearEAR.

Leave LeapYear in the Context root field.
Click Finish.

13.1.3 Importing the Java and project resource files into the
WebSphere Studio Application Developer project

Import the Java source files into the LeapYear project source directory by following
these steps:

1.
2.

4.

In the Web perspective, expand LeapYear and select the JavaSource directory.

Click File > Import > File system and click Next. Browse to the directory you
exported your files to and click OK.

You only want to import the Java source files into the JavaSource directory, so,
in the Import dialog, expand your export directory and select only the com
subdirectory (it contains the three Java source files).

Click Finish. This creates
LeapYear\JavaSource\com\ibm\ivj\wte\samples\leapyear\LeapYearXXXX java
files. Java classes are automatically compiled into LeapYear\WebContent\WEB-
INF\classes.

s Click Finish. This creates
LeapYear/JavaSource/com/ibm/ivj/wte/samples/leapyear/LeapYearXXXX java
files. Java classes are automatically compiled into LeapYear/WebContent/WEB-
INF/classes.

Import the resource files into the LeapYear project under the WebContent directory
by following these steps:

1.

2.

In the current Web perspective, expand the LeapYear project and select the
WebContent directory.

Select File > Import > File system and click Next. Browse to the directory you
exported your files to, expand your export directory to the sample3
subdirectory, then click OK.

3.

4.

You only want to import the resource files into the WebContent directory, so, in
the Import dialog, select the sample3 subdirectory, which contains the .jsp and
html files.

Click Finish. The files are imported into the WebContent directory.

13.1.4 Defining any servlets and make any restructured
application changes

1.

No gk wd

You now need to create a servlet. Select the LeapYear project and expand it
(Leap Year > WebContent > WEB-INF) to the web.xml file. Open the web.xml
file.

Click the Servlets tab at the bottom of the page.

Click Add.

Ensure that the Servlet radio button is selected.

Select the class LeapYear, then click OK.

Select URL Mapping > Add, then type LeapYear.

Save the changes (File > Save web.xml) and close the web.xml file.

You now need to make any application changes due to the slightly changed
source/application structure:

1.

7.

There will be two errors listed in the Tasks view. One is in LeapYearInput.html
and one is in LeapYearResults.jsp.

Open the LeapYearResults.jsp file. Replace /JSP/index.html with
LeapYearInput.html.

Open the LeapYearInput.html file. Replace
/servlet/com.ibm.ivj.wte.samples.leapyear.LeapYear with LeapYear.

Save your changes and close the LeapYearResults.jsp and LeapYearInput.html
files.

To avoid a run-time error, open the LeapYear.java file, which is located in the
following subdirectory:

e EmM JavaSource\com\ibm\ivj\wte\samples\leapyear
e mmW JavaSource/com/ibm/ivj/wte/samples/leapyear

Go to line 118 and change getRequestDispatcher from
“/JSP/Sample3/LeapYearResults.jsp” to "LeapYearResults.jsp"

Save your changes and close LeapYear.java.

At this point the sample has been migrated into WebSphere Studio Application
Developer. All that remains is to create a WebSphere Studio Application Developer
server project and test the sample in the WebSphere test environment.

13.1.5 Creating a WebSphere Studio Application Developer
server project

1.

Click File > New > Project > Server > Server Project. Click Next. In the
Project name field, type newServer and click Finish. You will automatically be
switched to the Server perspective.

Right-click newServer and click New > Server and Server Configuration.

In the Server name field, type WSTestEnv. In the Server instance type field,
select WebSphere V4.0 Test Environment. Click Finish.

Now, you need to specify your EAR project to the server configuration:

Chapter 13. Migration examples 55

1. In the Server Configuration view, expand the server items and click
WSTestEnv.

2. Right-click it and click Add > LeapYearEAR.

13.1.6 Testing the migrated LeapYear application

1. Select the LeapYearInput.html file.
2. Right-click the HTML file, and from its pop-up menu, click Run on Server.

3. Wait while the server starts. Watch the Console page (click the Console tab in
the Servers view) until the message “Server Default Server open for e-business”
appears.

4. When a browser opens, type 2001 in the Start Year field, then click Submit.

5. The Console view shows the message LeapYear:init. Wait until you see the list
of leap years, then select WSTestEnv in the Servers view. Right-click it and
click Stop.

13.2 Example: Enterprise beans, VCE, and database samples
(HelloWorld session bean and Increment enterprise bean)

56

Description

You will work with two EJB Development samples, Hello World and Increment. To
access these samples open the online help, and select Samples > EJB
Development.

You must work with VisualAge for Java Version 4.0 for this example.

You do not have to migrate these samples together. If you are not currently
working with DB2, you may not wish to migrate Increment. In this case, you can
ignore any steps that only apply to the Increment sample.

Before you begin

* Be sure the applications run in VisualAge for Java (that is, the DB2 setup for the
Increment sample is complete)

* Be sure to stop the VisualAge for Java WebSphere test environment EJB server
and Persistent Name Server (so they will not conflict with WebSphere Studio
Application Developer).

Migration steps
You will follow the steps below to migrate the samples from VisualAge for Java to

WebSphere Studio Application Developer. These steps are discussed in more detail
below:

1. [“13.2.1 Exporting the client Java source from VisualAge for Java” on page 57}

2. [“13.2.2 Exporting the EJB group from VisualAge for Java into an EJB 1.1 JAR”]
[on page 57]

3. [“13.2.3 Creating a new WebSphere Studio Application Developer EJB project’|

[on page 58|
4. ["13.2.4 Importing the EJB 1.1 JAR file into WebSphere Studio Application|
Developer EJB project” on page 58]

5. [“13.2.5 Generating and deploying RMIC stub and tie code” on page 58}

6. [“13.2.6 Specifying the data source binding information” on page 58

9.

10.

“13.2.7 Creating a new WebSphere Studio Application Developer project” on|

[page 58|

“13.2.8 Creating a WebSphere Studio Application Developer server project” on|

page 59|

“13.2.9 Specifying your data source, your EAR project, and then start theI

server” on page 60|

(Optional) [“13.2.10 Starting DB2 and connecting to sampleDB” on page 60}

11. [“13.2.11 Testing the migrated HelloWorld client” on page 60}

12.
13.

“13.2.12 Testing the migrated Increment client” on page 61}

“13.2.13 Testing the migrated Increment and HelloWorld EJBs using the EJB]

Test Client” on page 61

13.2.1 Exporting the client Java source from VisualAge for

Java

L

8.
9.
10.

Start VisualAge for Java Version 4.0.

Select the IBM EJB Samples project

Right-click the project and click Export.

Select the Directory radio button and click Next.

Type the name of the directory you want to export your files to.

Clear the .class check box. (You will rebuild the .class files in WebSphere
Studio Application Developer to ensure that you have successfully migrated
the samples.)

Select the .java check box. Click Details and clear the IBM EJB Samples check
box.

Select the HelloClient and IncrementClient check boxes and click OK.
Clear the .resource check box (unless you want the DB2 .clp setup scripts).
Click Finish.

13.2.2 Exporting the EJB group from VisualAge for Java into
an EJB 1.1 JAR

1.
2.

o ok~ w

10.

Open map browser to load map for IBM EJB samples.

Click the EJB tab. In the Enterprise Beans pane, right-click IBMEJBSamples
and click Export > EJB 1.1 JAR.

Select a directory to export your JAR file to.
In the JAR file field, type the name of the JAR file you want to create.
In the Select a target database list, select DB2 for NT, V7.1.

Select the .class check box. (You will rebuild the files in WebSphere Studio
Application Developer as a verification of the migration, but this must be
selected in order to proceed.)

Select the .java check box. (You need the four HelloWorld and the five
Increment EJB files.)

Click Finish.

If you were running the samples, then stop the VisualAge for Java Persistent
Name Server, EJB server, and WTE.

(Optional) Exit VisualAge for Java.

Chapter 13. Migration examples 57

13.2.3 Creating a new WebSphere Studio Application
Developer EJB project

Note: This section is optional. If you do not have an EJB and EAR project, they
will automatically be created when you import the EJB 1.1 JAR file.

=

Start WebSphere Studio Application Developer.

n

Create a new EJB project (File > New > Project > EJB > EJB Project > Create
1.1 > Next).

In the Project name field, type EJBSamples.
Select EAR new.
In the EAR project name field, type EJBSampTesEAR.

Click Finish. You could put this EJB project into any existing Enterprise
Application (EAR) project you currently have, but for this example, create a
new EAR project called EJBSamplesEAR. The new projects are created and
appear in the J2EE perspective.

13.2.4 Importing the EJB 1.1 JAR file into WebSphere Studio
Application Developer EJB project

1. Click File > Import > EJB JAR file. Click Next.

2. In the E]JB JAR file field, browse for the location of the EJB 1.1 JAR you
created.

3. In the EJB Project field, select existing EJB project EJBSamples. This selects the
corresponding EAR project EJBSamplesEAR.

o ok w

4. Click Finish. You will receive four or five EJB 1.1 warnings. You can ignore
them.

13.2.5 Generating and deploying RMIC stub and tie code

1. In the J2EE perspective, click on the J2EE Hierarchy tab, expand the E]JB
Modules folder, and select IBMEJBSamples.

2. Right-click it and click Generate > Deploy and RMIC Code.
3. Select the Hello World and Increment beans. Click Finish.

13.2.6 Specifying the data source binding information

1. In the J2EE Perspective, expand EJB Modules, and select IBMEJBSamples.

2. Right-click the module and select Open With > Deployment Descriptor Editor.
3. In the EJB deployment descriptor, click the Overview tab.
4

. Scroll down to the WebSphere bindings section, and type jdbc/sampledb in the
DataSource JNDI name field.

If necessary, type a default user ID and password.

o

6. Close the EJB deployment descriptor (you will be prompted to save your
changes).

13.2.7 Creating a new WebSphere Studio Application
Developer project
1. Create a new Java project (File > New > Project > Java > Java Project).
2. In the Project name field, type EJBClients. Click Next.
3. Click the Projects tab. Select the EJBSamples check box.
4. Click Finish.

You are now going to import the Java code into a Java project:

1.

10.

11.

12.
13.
14.

15.

In the Java perspective, open the Navigator view (Window > Show view >
Navigator).

In the Navigator view, click the EJBClients project.

Select File > Import > File system and click Next. Browse to the directory that
you exported your client code to.

Expand your export directory and find your files (they will be in a
subdirectory under com). Select the folders that contain your HelloClient and
Increment Client files.

Click Finish.

There will be two errors in the Tasks view (if you did not add the EJBSamples
project to the class path, you will have several errors). One occurs because
references to javax.ejb.CreateException, which can be found in j2ee jar, exist.
The other occurs because of a reference to

com.ibm.ivj.ejb.runtime. AbstractSessionAccessBean, which can be found in
ivjejb35.jar.

Select EJBClients and right-click it. Click Properties > Java Build Path.

If you did not link to the EJBSamples project, select the Projects tab and select
the EJBSamples check box. There should now only be two errors left.

Click the Libraries tab and click Add External JARs.

Browse to the WS_Installdir\runtimes\aes_v4\lib directory, where
WS_Installdir is your product installation directory.

Browse to the /opt/IBM/WebSphere Studio/runtimes/aes_v4/lib
directory.

Select the j2ee jar file. Click Open, and then click Add External JARs.
Browse to the WS_Installdir\runtimes\aes_v4\lib directory.
Browse to the /opt/IBM/WebSphere Studio/runtimes/aes_v4/lib
directory.

Select the ivjejb35.jar file. Click Open, then click OK. There should now be no
errors in the Tasks view, except the EJB 1.1 warnings.

Note:

o mmmW In order for the IncrementClient to access the IncrementBean, you
must set the portNumber and the hostName variables. Do this by
changing lines 35 and 36 of IncrementClientjava to:
private String portNumber = "2809";
private String hostName = "Tocalhost";

« mmmm HelloClient.java will run on Linux with no changes but only if
logged in as "root” as the current Access Bean support does not allow to
change the port number that the HelloWorld AccessBean uses in
HelloClient.java. When logged in as root, any port number can be used.

At this point the samples have now been migrated into WebSphere Studio
Application Developer. All that remains is to test them in the WebSphere test
environment.

13.2.8 Creating a WebSphere Studio Application Developer
server project

1. Click File > New > Project > Server > Server Project and click Next. In the

Project name field, type EJBServer and click Finish.

Chapter 13. Migration examples 59

The Server perspective will automatically open. In the Navigator view, select
EJBServer and right-click it.

Click New > Server and Server Configuration.

In the Server name field, type MyEJBServer. In the Server type field, expand
WebSphere Version 4.0, select Test Environment, and then click Finish.

13.2.9 Specifying your data source, your EAR project, and
then start the server

1. In the Server Configuration view, expand Servers, and then select
MyE]BServer.

2. Right-click it, and from your pop-up menu, click Open.

3. Click the Data source tab.

4. In the JDBC Driver List, select the Db2]JdbcDriver and click Edit.

5. Verify that the Class path field contains the correct path to db2java.zip. Click
OK.

6. Select your JDBC driver, and click the Add button to the right of the Data
source field.

7. In the Add a data source dialog, type EJB Sampledb in the Name field. In the
JNDI name field, type jdbc/sampledb.

8. In the Database name field, type sampledb. Click OK.

9. Save your changes and close the server configuration editor.

Now, you need to specify your EAR project to the server configuration and start

the server:

1. In the Server Configuration view, click Servers > MyE]BServer.

2. Right-click it and click Add > EJBSamplesEAR.

3. In the Server view, right click on MyE]BServer, then click Start.

13.2.10 Starting DB2 and connecting to sampleDB

Note: DB2 must be running with the sampleDB created and available (as per

VisualAge for Java sample). This is only applicable if you are migrating the
Increment sample.

Optional: You can perform the following steps to verify your DB2 setup:

© o No gk~ wDdhPRE

Switch to the Data perspective.

Right-click in the DB Servers view, right-click and select New Connection.
In the Connection Name field, type sampleDB connection

In the Database field, type SAMPLEDB.

If necessary, type a default user ID and password.

In the JDBC Driver field, select IBM DB2 App Driver.

In the Class Location field, specify the location of the db2java.zip file.
Click Finish.

In the DB Servers view, expand sampleDB connection to ensure that the Tables
subdirectory contains MYHOST.INCREMENTS.

13.2.11 Testing the migrated HelloWorld client

1.

60

In the Java perspective, select the EJBClients project.

2. Click the Run from the Run menu, and then select Java application from the
Launch Configurations list.

Click New to create new configuration file.

In the main class, select HelloClient.

On the JRE tab, select WAS V4 JRE and then select Run.

In the client window Input field, type XX YY and click Send.

N o gk w

The value of the Output field becomes you said: XX YY. Close the window to
terminate the client.

You have successfully migrated and tested the HelloWorld sample.

13.2.12 Testing the migrated Increment client

1. In the Java perspective, select the EJBClients project.

2. Click the Run from the Run menu, and then select Java application from the
Launch Configurations list.

3. In the main class, select IncrementClient.
4. On the JRE tab, select WAS V4 JRE and then select Run.
5. The Console view contains the following content:

Obtaining initial context., Looking up Increment enterprise bean.,
Obtaining IncrementHome object.,

Looking for increment object named: TEST,

Object named: TEST has count: 0,
Now, object named: TEST has count:
Now, object named: TEST has count:
Now, object named: TEST has count:
Now, object named: TEST has count:
Now, object named: TEST has count:

Ol WN =

13.2.13 Testing the migrated Increment and HelloWorld EJBs
using the EJB Test Client

1. In the J2EE Hierarchy view of the J2EE perspective expand the EJB Modules
folder, right-click IBMEJBSamples, select Run on server. The E]JB Test Client
will start running.

2. In the JNDI Explorer page, click HelloWorld to test the HelloWorld EJB.

3. EEE In JNDI Explorer, expand com\ibm\ivj\ejb\samples\increment and
then click Increment to test the Increment EJB.

4. =mmm Expand com/ibm/ivj/ejb/samples/increment and click Increment to test
the Increment EJB.

You have successfully migrated and tested the Increment and HelloWorld samples.

In the Servers view of the Server perspective, select MyEJBServer, right-click it,
and then click Stop.

13.3 Example: WebSphere Studio "Classic” Version 4.0 Web
Application (YourCo)(Windows)

Description

You must work with WebSphere Studio "Classic” Version 4.0.x for this example.

Chapter 13. Migration examples 61

62

The sample you are going to work with is the YourCo sample. To access this
sample open the online help (Help > WebSphere Studio 4.0 > How to > Work
with the samples > Overview). To load this sample, follow the instructions in
Opening the Studio Samples (for WebSphere Application Server 4.0) and load
YourCo.war.

Note: The migrated application will execute in WebSphere Studio Application
Developer, but WebSphere Studio Application Developer does not currently
provide all the web page design and development features of WebSphere
Studio, Professional or Advanced Editions.

Before you begin

* Ensure that the YourCo sample application is loaded in WebSphere Studio
"Classic”.

* Stop any instances of the WebSphere Application Server (so it will not conflict
with WebSphere Studio Application Developer)

Migration steps

To migrate this sample from WebSphere Studio "Classic” to WebSphere Studio
Application Developer, you will follow the steps below. Each step is described in
more detail below.

1. (Optional) [“13.3.1 Starting WebSphere Studio "Classic” Version 4.0 and creating|
[a new Migration stage’]

2. [“13.3.2 Creating a Web configuration descriptor file”}

3. [“13.3.3 Creating a migration file”}

4. |“13.3.4 Starting WebSphere Studio Application Developer and importing the|
WAR file” on page 63

5. [“13.3.5 Creating a WebSphere Studio Application Developer server project” on|
[page 6§l

6. [“13.3.6 Testing the migrated YourCo application” on page 64}

13.3.1 Starting WebSphere Studio "Classic” Version 4.0 and
creating a new Migration stage

(Optional) Normally, you would create a new stage for a migration, but for the
purposes of this example, you use the Test stage included with WebSphere Studio
"Classic”. Using the Test stage will save you from having to manually edit many
servlet mappings in step 8.

For information on how to create a new stage for migration, refer to the "Migrating
from WebSphere Studio "Classic” to WebSphere Studio Application Developer”.

13.3.2 Creating a Web configuration descriptor file

1. In the project file view, click Project > Create Web Configuration Descriptor
File, and accept the default value WEB-INF\Tocalhost_web.xml.

2. Select all required servlets (any files that are not named xxxxBean).
3. There are no Tag Library Descriptor (TLD) files for this sample.
4. Click Create.

13.3.3 Creating a migration file

1. While in the project file view, select server localhost and click Properties >
Publishing > WebApp Web Path and type a web path (context root)

~

8.
9.

o g wDN

“newStudioSample”. (Setting a Web path will remain the recommended
approach in the final WebSphere Studio Application Developer product).

While in the project file view, select Project > Create Migration file.

Verify that localhost is the selected server.

Verify that localhost_web.xml is the selected Web configuration descriptor file.
Click OK.

The default JAR file name is X:\Studio40\projects\ YourCo\localhost.jar, where
X is your WebSphere Studio "Classic” installation directory.

Click Save.
Close WebSphere Studio "Classic”.
Rename the localhost jar file to localhost.war.

13.3.4 Starting WebSphere Studio Application Developer and
importing the WAR file

1.
2.

8.

Start WebSphere Studio Application Developer.

Click File > Import > WAR file > Next.

Note: You must import the JAR file using the WAR file option, otherwise it
will not work properly.

Type the path to localhost.war in the WAR File field or click Browse to search
for it.

In the Web Project field, select New, and then type newStudioSample
In the EAR project name field, select New, and then type newStudioSampT1eEAR

Click Finish. WebSphere Studio Application Developer will unpack
localhost.war.

You will have many unresolved references or missing import files. They will
appear in the Task view.

a. com.ibm.db requires databeans.jar,

b. com.ibm.webtools.runtime requires webtlsrn.jar,

c. com.ibm.ejs.ns.jndi requires ns.jar,

d. com.ibm.webshpere.advanced.cm.factory requires cm.jar,

e

. com.ibm.ejs.models.base.extensions.webappext.ServletExtensions requires
ws-base-extensions.jar

To fix this, you must modify the Java build path for the Web project.
a. Right-click the project and click Properties > Java Build Path.
b. Click the Libraries tab. Click Add External JARs.

c. Import the following JAR files: databeans.jar, webtlsrn.jar, ns.jar, cm.jar,
and ws-base-extensions.jar from this directory:
MyInstall\runtimes\aes_v4\lib

d. Twenty-four warnings will remain. You do not need to deal with them.
Right-click the newStudioSample project and click Rebuild Project.

At this point the sample has been migrated into WebSphere Studio Application
Developer. All that remains is to create a WebSphere Studio Application Developer
Server project and test the sample in the WebSphere Test Environment.

13.3.5 Creating a WebSphere Studio Application Developer
server project

1. Switch to the Server perspective.

Chapter 13. Migration examples 63

2. Click File > New > Project > Server > Server Project. Click Next. In the
Project name field, type newServer and click Finish.

3. In the Navigator view, right-click newServer and click New > Server and
Server Configuration.

4. In the Server name field, type WSTestEnv. In the Server instance type field,
select WebSphere V4.0 > Test Environment. Click Finish.

Now, you need to specify your EAR project to the server configuration:

1. In the Server Configuration view, click Servers > WSTestEnv.

2. Right-click it and click Add > newStudioSampleEAR.

Note: (Optional) Right-click newStudioSample project, select Properties > Server

Preference > Always run on the following server, select WSTestEnv, then
click Apply > OK. (This step is only necessary if you have other servers.)

13.3.6 Testing the migrated YourCo application

1. Select the YourColntro.html file, which is located in the following directory in
your newStudioSample project: WebContent\StudioSamples

2. Right-click YourColntro.html, and from its pop-up menu, click Run on Server,
and then select WSTestEnv.

3. Wait while the server starts. Watch the Console page (click the Console tab in
the Servers view) until the message Server Default Server open for
e-business appears.

4. If you have not already run this sample in WebSphere Studio "Classic”, then
you need to configure the database by clicking Database Configuration.
5. When a browser opens, scroll down and click Run This Sample.

6. Wait until the browser Welcome page appears, then click Employee Center.

Note: The first time you run this application, you will receive the following
errors in the Console page: DataSource not found. Try to construct a
new datasource name: jdbc/yourco DataSource not found. Try to
construct a new datasource name: jdbc/studio. These errors are
self-correcting. You can ignore them.

7. When you are done, close the browser window and the Web Browser view,
then in the Server Control Panel right-click WSTestEnv and click Stop.

8. (Optional) Close WebSphere Studio Application Developer.

13.4 Example: Migrating "Example: VisualAge for Java JSP/servlet
sample " EJB 2.0 (Increment enterprise bean and HelloWorld session

bean)

64

This example, migrates the "Example: VisualAge for Java JSP/servlet sample” from
EJB 1.x to EJB 2.0. Note that this example requires that you have completed
"Example: Enterprise beans, VCE, and database samples” and that you have DB2
setup and running for that sample.

13.4.1 Create a new EJB 2.0 project and Enterprise Application
1.3 project

1. Select File > New > EJB Project > Create EJB 2.0 project, and then click Next.
2. In the EJB Project Name field, type EJBSamplesV2
3. Select the new EAR project.

4. In the EAR Project Name field, type EJBSampTesV2EAR, and then click Finish.

13.4.2 Import the VisualAge for Java EJB 1.1 JAR into EJB 2.0
project
Import the VisualAge for Java EJB 1.1 JAR file in the "Example: Enterprise beans,
VCE, and database samples” section to an EJB 2.0 project.
1. Import the EJB 1.1 JAR (or the EJB 1.1 project) into the E]JB 2.0 project:
a. Click File > Import > EJB JAR file and then click Next.

b. In the EJB JAR file field, browse for the location of the EJB 1.1 JAR that
you created from VisualAge for Java.

Select the existing EJB project.
In the existing E]JB Project name, select EJBSamplesV2.
Click Finish.

You will be asked if you wish to overwrite META-INF/MANIFEST.MEF. Click
Yes.

0. You will receive four EJB 1.1 warnings. They will be fixed in the next
section.

~ o oo

2. To change the EJB module display name to make it different than your
previous EJB 1.1 module name, follow these steps:

a. In the Navigator view, expand EJBSamplesV2 > ejpbModule > META-INF
and double-click to open ejb-jar.xml with the EJB Deployment Descriptor
Editor.

b. In the Overview tab, change the display name to IBMEJBSampTles-V2.

C. Save and close that EJB deployment descriptor editor window.

13.4.3 Migrate code from EJB 1.0to EJB 1.1

1. Edit IncrementBean.java ejbCreate() line 57 to throw javax.ejb.EJBException
instead of java.rmi.RemoteException.

2. Edit IncrementBean.java ejbCreate() line 57 to return IncrementKey instead of
void.

3. Edit IncrementBean.java ejbCreate() to add "return null;” as new last line
61.

4. Edit IncrementBean.java to add new lines 63 to 65 implementing new
ejbPostCreate() method:

public void ejbPostCreate(IncrementKey argPrimaryKey)
throws javax.ejb.CreateException, javax.ejb.EJBException {

}

5. Save and close IncrementBean.java (all of the previous IncrementBean warnings
should go away).

6. Edit HelloWorldBean.java ejbCreate() line 23 to throw
javax.ejb.EJBException instead of java.rmi.RemoteException.

7. Save and close HelloWorldBean.java (the previous HelloWorldBean warnings
should go away).

13.4.4 Migrate code from EJB 1.1 to EJB 2.0

Note: The bean migration to EJB 2.0 is not required, since EJB 1.1 beans work
correctly in an EJB 2.0 project. However, there is a tool to assist in
migrating EJB 1.x beans into EJB 2.0. To use the J2EE Migration wizard,

Chapter 13. Migration examples 65

66

right-click on the EJB project and then select Migrate > J2EE Migration
Wizard. For more information about the different wizard options, press F1
while in the J2EE Migration wizard.

The steps below outline the general approach should you choose to undertake this
yourself.

1.

2.

Use the J2EE Migration wizard to do this initial bean migration from 1.1 to 2.0.
For more information about the different wizard options, press F1 while in the
J2EE Migration wizard or read the online help section titled "Migrating
application modules from J2EE 1.2 to J2EE 1.3".

Open IncrementBean.java with the Java Editor.

a. In the ejbCreate method, comment out the primaryKey operation and add a
set invocation (line 60, new line 61)

// primaryKey = argPrimaryKey.primaryKey;
setPrimaryKey (argPrimaryKey.primaryKey) ;

b. Modify increment method to get/increment/set the count field
public int increment()

{

// return ++count;
int ¢ = getCount();
c += 1;
setCount(c);
return c;

}

C. You may see an error "The method _initLinks is undefined for the type
com.ibm.ivj.ejb.samples .increment.IncrementBean”. If this is the case, go to
the line where the error occurs and delete the method call _initLinks().

d. Save and close the Java Editor window for IncrementBean.java.

13.4.5 Generating and deploying RMIC stub and tie code

1.

In the J2EE perspective,]2EE Hierarchy view, expand the EJB Modules folder,
and select IBMEJBSamples-V2 (or in the J2EE perspective, J2EE Navigator
view, select the EJBSamplesV2 project).

Right-click it and then click Generate > Deploy and RMIC Code.

Select the Hello World and Increment beans.

Click Finish.

13.4.6 Specifying the data source binding information

1.

In the J2EE Perspective,]2EE Hierarchy view, expand E]JB Modules and select
IBME]BSamples-V2 (or in the J2EE perspective, Navigator view, select the
EJBSampleV2/ejpModule/META-INF/ejb-jar.xml file in the EJBSamplesV2
project.

Right-click the module and select Open With > Deployment Descriptor
Editor.

In the EJB deployment descriptor, click the Overview tab.

Scroll down to the WebSphere Bindings section. In the JNDI CMP Factory
Connection Binding section, type jdbc/sampledb in the DataSource JNDI
name field. For the Container authorization type, select
Per_Connection_Factory.

In the EJB deployment descriptor editor, click the Beans tab.
Select the Increment bean.

7. In WebSphere Binding section, type
com/ibm/ivj/ejb/samples/increment/Increment in the JNDI name field.

8. Type jdbc/sampledb in the CMP Container Factory JNDI Name field.
9. Select Per_Connection_Factory for the Container authorization type.
10. Select the HelloWorld bean.
11. In WebSphere Binding section, type HelloWorld in the JNDI name field.
12. Save then close the EJB deployment descriptor editor.

13.4.7 Creating a new WebSphere Studio Application
Developer Java client project
1. Create a new Java project (File > New > Project > Java > Java Project).
2. In the Project name field, type EJBSamplesClientsV2. Click Next.
3. Click the Projects tab. Select the EJBSamples-V2 check box.
4. Click Finish.

You are now going to import the Java code into the Java project:

1. In the Java perspective, open the Navigator view (Window > Show view >
Navigator).

2. In the Navigator view, click the EJBSamplesClientsV2 project.

3. Select File > Import > File system and click Next. Browse to the directory that
you exported your VisualAge for Java client code to.

4. Expand your export directory and find your files (they will be in a
subdirectory under com). Select the folders that contain your HelloClient and
Increment Client files by selecting com.

5. In the Destination folder field, type EJBSamplesClientsV2 (or browse to that
folder).

6. Click Finish.

7. There will be two errors in the Tasks view (if you did not add the
EJBSamplesV2 project to the class path, you will have several errors). One
occurs because references to javax.ejb.CreateException, which can be found
in j2ee.jar, exist.

8. Select EJBSamplesClientsV2 and right-click it. Click Properties > Java Build
Path.

9. If you did not link to the EJBSamplesV2 project, select the Projects tab and
select the EJBSamplesV2 check box. There should now only be two errors left.

10. Click the Libraries tab, click Add Variable, then select WAS_50_PLUGINDIR.
Click Extend then select the lib/j2ee.jar file. Click OK, then click OK again.
There are still two errors in the Tasks view (a new one due to
com.ibm.ivj.ejb.runtime.AbstractSessionAccessBean, which can be found in
ivjejb35.jar).

11. Repeat the previous Properties > Java Build Path > Libraries step to add the
1ib/ivjejb35. jar file. There should now be no errors in the Tasks view.

12. Select the EJBSamplesClientsV2 project and repeat the Properties > Java
Build Path > Libraries step to add the namingclient jar file.

13. Select Add External JARS and browse to
WS_Installdir\wstools\eclipse\ plugins\com.ibm.websphere.V5_5.0.2\implfactory.jar
to the classpath in order for the application to run.

14. Click Open and then OK to exit the Properties editor.

Chapter 13. Migration examples 67

At this point the samples have now been migrated into WebSphere Studio
Application Developer. All that remains is to test them in the WebSphere test
environment.

13.4.8 Creating a server project with an WebSphere
Application Server Version 5

1.

If you have not previously created a server project, click File > New > Project
> Server > Server Project and then clickNext.

In the Project name field, type MyEJBServerV5 and then click Finish.

The Server perspective will automatically open. In the Navigator view, select
MyE]BServerV5 and right-click it.

Click New > Server and Server Configuration.
In the Server name field, type MyEJBServerV5.

In the Server instance type field, expand WebSphere V5.0, select Test
Environment, and then click Finish.

13.4.9 Specify your data source, your EAR project, and then
start the server

1.

o~ N

8.

In the Server Configuration view, expand the servers and select
MyE]BServerV5.

Right-click it, and from your pop-up menu, click Open.

Click the Data source tab.

Select the DefaultDb2JDBCDriver in the JDBC Provider List.

Beside the Data source defined In JDBC driver selected above list, click Add.
a. Select Version 5.0 data source, and then click Next.

b. In the Name field, type ejb samples

c. In the JNDI name field, type jdbc/sampledb

d

. In the DataSource Helper Class Name field, retain
com.ibm.websphere.rsadapter.DB2DataStoreHelper

e. Select [X] Use This DataSource In Container Manager Persistence (CMP)
f. Click Finish.
Select this new E]JB samples in the Data source defined list.

In the Resource properties defined in the data source selected above list,
select the databaseName entry, and then click Edit.

a. In the Name field, retain databaseName (note the upper case N).
b. In the Type field, retain java.lang.String
C. In the Value field, change to SAMPLEDB.
1) Edit and then type SAMPLEDB
2) Do not select the Required check box.
3) Click OK.
Save your changes and close the server configuration editor.

Now, you need to specify your EAR project to the server configuration and start
the server:

1.
2.

68

In the Server Configuration view, click Servers > MyEJBServerV5.
Right-click it and then click Add > EJBSamplesV2EAR.

3.

4.

(Optional) In Navigator view, right-click EKBSamplesV2 project, select
Properties > Server Preference > Always run on the following server, select
MyE]BServerV5, and then click Apply > OK. (This step is only necessary if
you have other servers.)

In the Server view, right-click on MyEJBServerV5, and then click Start.

13.4.10 Testing the migrated HelloWorld client

1.

n

o ok W

8.

In the Java perspective, select the EJBSamplesClientsV2 project.

Click the Run triangle (pull-down), and select Run... then select Java
Application, then click New.

In the Name field, type HelloWor1dV2onV5
In the Main tab, leave Project as EJBSamplesClientsV2.
Beside Main class, click Search, select HelloClient, and then click OK.

In the JRE tab, select WebSphere V5 JRE from the pull-down menu, click
Apply, and then click Run.

In the client window Input field, type XX YY and then click Send. The value of
the Output field becomes you said: XX YY.

Close the window to terminate the client.

You have successfully migrated and tested the HelloWorld sample.

13.4.11 Testing the migrated Increment client

1.

N

o 0 s w

In the Java perspective, select the EJBSamplesClientsV2 project.

Click the Run triangle (pull-down), and select Run, select Java Application,
and then click New.

In the Name field, type Increment2onV5
In the Main tab, leave Project as EJBSamplesClientsV2
Beside Main class, click Search, select IncrementClient, click OK.

In the JRE tab, click the triangle (pull-down), select V5 JRE, click Apply, and
then click Run. The Console view contains the following content:

Obtaining initial context., Looking up Increment enterprise bean.,

Obtaining IncrementHome object., Looking for increment object named: TEST,
Object named: TEST has count: 0, Now, object named: TEST has count: 1,

Now, object named: TEST has count: 2, Now, object named: TEST has count: 3
Now, object named: TEST has count: 4, Now, object named: TEST has count: 5

13.4.12 Testing the migrated Increment and HelloWorld EJBs
using the EJB Test Client

1.

In the J2EE Hierarchy view of the J2EE perspective, expand the EJB Modules
folder, right-click IBMEJBSamplesV2, and select Run on server. The EJB Test
Client will start running.

In the Unit Test Client home page, click JNDI explorer.

In the JNDI Explorer page, click HelloWorld to test the HelloWorld EJB.

In the JNDI Explorer page, expand com\ibm\ivj\ejb\samples\increment and
click Increment to test the Increment EJB.

You have successfully migrated and tested the Increment and HelloWorld samples.

Chapter 13. Migration examples 69

70

In the Servers view of the Server perspective, select MyEJBServerV5, right-click it,
and then click Stop. In the Debug view, select all the terminated processes,
right-click them, and then select Remove all Terminated.

Chapter 14. Further reading

Up-to-date information on migration and other topics is available at
www.ibm.com /websphere/developer/zones /studio /transition.html|

The following publications and Web pages provide general information which you

may find helpful when working with WebSphere Studio Application Developer:

* Enterprise JavaBeans Specification, Version 1.1 and Version 2.0:
[iava.sun.com/products/ejb/docs.html|

e JSR-000053 Java Servlet 2.3 and JavaServer Pages 1.2 Specifications:
[iava.sun.com/aboutJava/communityprocess/ first/jsr053 /index.html]]

* The IBM WebSphere Application Server Version 4 InfoCenter:
[www.ibm.com /software /webservers/appserv/doc/v40/aes/infocenter /index.html|

» WebSphere Version 4 Application Development Handbook:
[www.redbooks.ibm.com/pubs /pdfs /redbooks /sg246134.pdf|

* Programming J2EE APIs with WebSphere Advanced:
[www.redbooks.ibm.com/pubs/pdfs/redbooks /sg246124.pdf|

* EJB Development with VisualAge for Java for WebSphere Application Server:
[www.redbooks.ibm.com /pubs /pdfs /redbooks /sg246144.pdf|

* EJB 2.0 Development with WebSphere Studio Application Developer:
[www.redbooks.ibm.com /redpieces/pdfs/sg246819.pdf|

» WebSphere Application Server Version 3.5 to 4.x - Migration Hints & Tips:
|www7b.software.ibm.com/ wsdd /library /techarticles /0208 _wright/ wright.htm]l

» WebSphere Studio Application Developer Service Portal:
[www.ibm.com /software /ad /studioappdev /support/|
» WebSphere Studio Application Developer FAQ Frequently Asked Questions:
[www.ibm.com /support/search.wss?rs=457&tc=SSBRLP&dc=D800|
» WebSphere Application Server Service Portal:
[www.ibm.com /software /software /webservers/appserv /support.html|
» WebSphere Application Server FAQ Frequently Asked Questions:
[www.ibm.com /support/search.wss?rs=180&tc=SSEQTP&dc=D800|

Further reading which may be of interest:
* An article on Using Ant with WebSphere Studio Application Developer
(including J2EE project builds/exports):
[www.ibm.com /websphere/developer/library /techarticles /0203 _searle/searlel.html|

* An article on Optimizing complex builds in WebSphere Studio Application
Developer:
|www.ibm.com /websphere/developer/library /techarticles/0204_searle/ searle.htm]l

* An article on J2EE Class Loading (J2EE modules and class paths) in WebSphere
Studio Application Developer:
[www.ibm.com /websphere/developer/library /techarticles /0112_deboer/deboer.htm]|

* An article on developing J2EE utility JARs (Java JARs in J2EE modules) in
WebSphere Studio Application Developer:
[www.ibm.com /websphere/developer/library /techarticles /0112_deboer/deboer2 html|

* An article on team support in WebSphere Studio Application Developer:
www.ibm.com/websphere /developer /library/techarticles/ 0108_karasiuk /|
0108_karasiuk.html|

© Copyright IBM Corp. 2000, 2003 71

http://www.ibm.com/websphere/developer/zones/studio/transition.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/aboutJava/communityprocess/first/jsr053/index.html
http://www.ibm.com/software/webservers/appserv/doc/v40/aes/infocenter/index.html
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246134.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246124.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246144.pdf
http://www.redbooks.ibm.com/redpieces/pdfs/sg246819.pdf
http://www7b.software.ibm.com/wsdd/library/techarticles/0208_wright/wright.html
http://www.ibm.com/software/ad/studioappdev/support/
http://www.ibm.com/support/search.wss?rs=457&tc=SSBRLP&dc=D800
http://www.ibm.com/software/software/webservers/appserv/support.html
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&dc=D800
http://www.ibm.com/websphere/developer/library/techarticles/0203_searle/searle1.html
http://www.ibm.com/websphere/developer/library/techarticles/0204_searle/searle.html
http://www.ibm.com/websphere/developer/library/techarticles/0112_deboer/deboer.html
http://www.ibm.com/websphere/developer/library/techarticles/0112_deboer/deboer2.html
http://www.ibm.com/websphere/developer/library/techarticles/0108_karasiuk/0108_karasiuk.html
http://www.ibm.com/websphere/developer/library/techarticles/0108_karasiuk/0108_karasiuk.html

72

* An article on Migrating Enterprise Access Builder Components from VisualAge
for Java to WebSphere Studio Application Developer:
[www.ibm.com /websphere/developer /techjournal /0201_minocha /minocha.html|

e An article on EJB application design using the Session Facade to talk to CMPs
www.ibm.com/websphere /developer/library / techarticles /|
0106_brown/ sessionfacades.htmﬂ

e An article on WebSphere Application Server Best Practices:
[www.ibm.com /software /webservers/appserv /ws_bestpractices.pdf|

e An article on WebSphere Best Practices zone:
|www.ibm.com /websphere/developer/zones/bp/ |

* WebSphere Developer Domain main Web page:
[www.ibm.com /websphere/developer]|

* WebSphere Developer Domain Technical Articles:
[www.ibm.com /websphere/developer /techjournal /|

* Information about the WebSphere Studio family, and the features and directions
of WebSphere Studio Application Developer:
[www.ibm.com /websphere /developer /zones/studio/transition.html|

* All about the IBM WebSphere Studio Family of Development Tools:
|www.ibm.com /websphere /developer/library /techarticles/0108_studio/ studio_beta.htm]]

» External Application Developer newsgroup:
news:/ /news.software.ibm.com/ibm.software.websphere.studio.application-site
develoger|
» External workBench (Eclipse) newsgroup:
[news:/ /news.software.ibm.com/ibm.software.websphere.studio.workbench|

» External WebSphere Application Server newsgroup:
[news:/ /news.software.ibm.com /ibm.software.websphere.application-server|

* An article on deploying a J2EE Application from WebSphere Studio Application
Developer to WebSphere Application Server:
[www.software.ibm.com /vad.nsf/Data/Document3584

* Application Developer Software Configuration Management (Source Code
Management) vendors:
[www.ibm.com /software /ad /studioappdev /partners/scm.html|

* Migrating applications to Application Developer from competitors development
tools: www.ibm.com /websphere /developer/zones/studio/migration.html|

* Migrating VisualCafé WebLogic applications to Application Developer (still
deploying to WebLogic):
[www.ibm.com /websphere/developer /library/techarticles/0209_searle/searlel.html|

* Eclipse.org: www.eclipse.org]

¢ WebSphere Developer Domain Plugin Central:
[www.ibm.com /websphere/developer/downloads/ plugin /|

* Eclipse workbench plug-ins (not part of Eclipse.org): Iv_vww.ecliEseJ
[workbench.com /jsp /plugins.jsp|

* Eclipse plug-ins (not part of Eclipse.org): Iv_vww.eclipse:l
[plugins.2y.net/eclipse/plugins jsp|

http://www.ibm.com/websphere/developer/techjournal/0201_minocha/minocha.html
http://www.ibm.com/websphere/developer/library/techarticles/0106_brown/sessionfacades.html
http://www.ibm.com/websphere/developer/library/techarticles/0106_brown/sessionfacades.html
http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www.ibm.com/websphere/developer/zones/bp/
http://www.ibm.com/websphere/developer
http://www.ibm.com/websphere/developer/techjournal/
http://www.ibm.com/websphere/developer/zones/studio/transition.html
http://www.ibm.com/websphere/developer/library/techarticles/0108_studio/studio_beta.html
news://news.software.ibm.com/ibm.software.websphere.studio.application-site-developer
news://news.software.ibm.com/ibm.software.websphere.studio.application-site-developer
news://news.software.ibm.com/ibm.software.websphere.studio.workbench
news://news.software.ibm.com/ibm.software.websphere.application-server
http://www7.software.ibm.com/vad.nsf/Data/Document3584
http://www-3.ibm.com/software/ad/studioappdev/partners/scm.html
http://www.ibm.com/websphere/developer/zones/studio/migration.html
http://www.ibm.com/websphere/developer/library/techarticles/0209_searle/searle1.html
http://www.eclipse.org
http://www.ibm.com/websphere/developer/downloads/plugin/
http://www.eclipse-workbench.com/jsp/plugins.jsp
http://www.eclipse-workbench.com/jsp/plugins.jsp
http://www.eclipse-plugins.2y.net/eclipse/plugins.jsp
http://www.eclipse-plugins.2y.net/eclipse/plugins.jsp

Notices

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this
Documentation in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this Documentation. The furnishing of this Documentation does not
give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2003 73

74

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this Documentation and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. (C) Copyright IBM Corp. 2000, 2003. All rights reserved.

Programming interface information

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States, or other countries, or both:

o AIX

* CICS

* Cloudscape

* DB2

* DB2 Extenders
* DB2 Universal Database
* e-business

* IBM

* iSeries

* 0S/390

* S/390

* VisualAge

* WebSphere

« z/0S

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

ActiveX, Microsoft, Windows, Windows NT, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

UNIX is a registered trademark of The Open Group.

Linux is a registered trademark of Linus Torvalds.

Rational and ClearCase are trademarks or registered trademarks of Rational
Software Corp. in the U.S. and other countries.

Other company, product or service names, which may be denoted by a double
asterisk (**), may betrademarks or service marks of others.

Notices 75

	Contents
	Chapter 1. WebSphere Studio Application Developer Version 5.0.1 Migration Guide
	Chapter 2. Targeting WebSphere Application Server Version 4.0.x versus Version 5 versus Version 5 Express
	Chapter 3. Migrating from WebSphere Studio Application Developer Version 4.0.x
	3.1 Differences between WebSphere Studio Application Developer Version 4.0.x and Version 5
	3.2 WebSphere Application Server changes and Servlet/JSP conversion tools
	3.3 Internal changes from Version 4.0.3
	3.3.1 Circular project dependencies will not build by default
	3.3.2 Version 5 Web projects are source location compatible with Version 4.0.3
	3.3.3 WebSphere Studio Application Developer Web project structures
	3.3.4 Static versus J2EE Web Projects
	3.3.5 WebSphere Studio Application Developer EJB 1.1 and Application Client 1.2 project structures
	3.3.5.1 EJB 1.1 project structures
	3.3.5.2 Application Client 1.2 project structures

	3.3.6 Page Designer "Classic"
	3.3.7 Page Designer enhancements
	3.3.8 Page Designer "Classic" versus Page Designer functions
	3.3.9 HTML and JSP distinctions

	3.4 Migrating projects using a software configuration management (SCM) system
	3.4.1 Migrating projects using CVS or Rational ClearCase
	3.4.2 Post-Migration removal of EAR and Server Configuration absolute path references
	3.4.3 Migrating projects using other SCMs

	3.5 Migrating by exporting and importing your projects
	3.6 Migrating projects using an existing Version 4.0.x workspace
	3.6.1 Post-Migration removal of EAR and Server Configuration absolute path references
	3.6.2 Known problems and limitations
	3.6.2.1 Incorrect value in the JRE_LIB class path variable
	3.6.2.2 For previously SCM shared projects, the Team menu contains Share Project
	3.6.2.3 Projects created outside the workspace directory
	3.6.2.4 JSP breakpoints must be reset

	3.7 Migrating J2EE project structures and/or J2EE specification levels

	Chapter 4. Migrating from WebSphere Studio Application Developer Version 5 Early Availability or Beta Versions
	Chapter 5. Migrating from WebSphere Studio "Classic" to WebSphere Studio Application Developer
	5.1 Creating a new single-server stage for migration
	5.2 Creating a Web configuration descriptor file
	5.3 Exporting a migration JAR file
	5.4 Importing the migration JAR file into WebSphere Studio Application Developer
	5.5 Testing your migrated application on a test server

	Chapter 6. Migrating from VisualAge for Java to WebSphere Studio Application Developer
	6.1 Differences between VisualAge for Java and WebSphere Studio Application Developer
	6.2 Migrating from VisualAge for Java
	6.2.1 Exporting your Java files and project resource files from VisualAge for Java
	6.2.2 Starting WebSphere Studio Application Developer and creating new projects to contain your code
	6.2.3 Importing your Java and resource files into WebSphere Studio Application Developer
	6.2.4 Using the web.xml editor to ensure that servlets are correctly defined (Web project only)
	6.2.5 Migrating project and workspace settings
	6.2.6 Setting up your WebSphere V4 test environment and testing your migrated application(s)
	6.2.7 Deploying your applications from WebSphere Studio Application Developer to remote WebSphere Application Server
	6.2.8 Sharing WebSphere Studio Application Developer project settings between multiple developers (post-migration)

	6.3 Team support in WebSphere Studio Application Developer

	Chapter 7. Migrating enterprise beans from VisualAge for Java to WebSphere Studio Application Developer
	7.1 VisualAge for Java EJB Export Tool (migrating map/schema from EJB 1.0 to EJB 1.1)
	7.1.1 Items migrated

	7.2 VisualAge for Java Version 3.5.3 EJB 1.0 JARs versus VisualAge for Java Version 4.0 EJB 1.1 JARs
	7.3 Moving multiple VisualAge for Java EJB groups into WebSphere Studio Application Developer EJB projects
	7.4 Migrating your enterprise beans
	7.4.1 Exporting your enterprise beans
	7.4.2 Importing your enterprise beans into WebSphere Studio Application Developer
	7.4.3 Generating deploy code and data source binding information
	7.4.4 Creating a server configuration and instance
	7.4.5 Adding the JDBC data source to the WebSphere 4.0 server configuration
	7.4.6 Testing the enterprise beans with the EJB test client

	7.5 Known problems and workarounds
	7.6 Locating EJB information
	7.7 Migrating EJB access beans
	7.8 Migrating custom finder helpers

	Chapter 8. Migrating from EJB 1.0 to EJB 1.1 or to EJB 2.0
	8.1 Migrating code from EJB 1.0 to EJB 1.1
	8.2 Converting projects from EJB 1.x to EJB 2.0
	8.3 Migrating code from EJB 1.x to EJB 2.0
	8.4 Migrating a JMS listener application to use message-driven beans

	Chapter 9. Migrating from VisualAge for Java Visual Composition Editor to Visual Editor for Java
	9.1 Saving enhanced design-time metadata from VisualAge for Java
	9.2 Completing the migration (importing into WebSphere Studio)

	Chapter 10. Converting from VisualAge for Java Persistence Builder to EJB 2.0
	10.1 Migrate and export the Persistence Builder Model as an EJB 1.1 JAR
	10.2 Import EJB 1.1 JAR into EJB 1.1 project, set Access and Isolation values
	10.3 (Optional) Convert client application and get server side running, all at EJB 1.1 level
	10.4 Convert to EJB 2.0 project
	10.5 Convert EJB 1.1 code to EJB 2.0 and set application profile declarations
	10.6 Convert Persistence Builder client application into EJB client application

	Chapter 11. Migrating from WebSphere Studio Application Developer Version 5 to Version 5.0.1
	11.1 Migrating Web projects Version 5 to Version 5.0.1
	11.2 Converting Web projects to Struts 1.1 Beta 3

	Chapter 12. Build setup (library, JARs, dependent project JARs, Ant builds)
	12.1 Java library JARs and third-party external JARs
	12.1.1 Recommended way to use a third-party JAR within a Web project
	12.1.2 Recommended way to use a third-party JAR for use with multiple EJB or Web projects
	12.1.3 References between Web projects and other EJB projects
	12.1.4 Alternative way to use external JAR files (global build and server classpath)

	12.2 Optimizing multi-project builds using Dependent Project JARs
	12.3 Automated production builds using Ant

	Chapter 13. Migration examples
	13.1 Example: VisualAge for Java JSP/servlet sample (LeapYear)
	13.1.1 Exporting your files from VisualAge for Java
	13.1.2 Creating a new WebSphere Studio Application Developer Web project
	13.1.3 Importing the Java and project resource files into the WebSphere Studio Application Developer project
	13.1.4 Defining any servlets and make any restructured application changes
	13.1.5 Creating a WebSphere Studio Application Developer server project
	13.1.6 Testing the migrated LeapYear application

	13.2 Example: Enterprise beans, VCE, and database samples (HelloWorld session bean and Increment enterprise bean)
	13.2.1 Exporting the client Java source from VisualAge for Java
	13.2.2 Exporting the EJB group from VisualAge for Java into an EJB 1.1 JAR
	13.2.3 Creating a new WebSphere Studio Application Developer EJB project
	13.2.4 Importing the EJB 1.1 JAR file into WebSphere Studio Application Developer EJB project
	13.2.5 Generating and deploying RMIC stub and tie code
	13.2.6 Specifying the data source binding information
	13.2.7 Creating a new WebSphere Studio Application Developer project
	13.2.8 Creating a WebSphere Studio Application Developer server project
	13.2.9 Specifying your data source, your EAR project, and then start the server
	13.2.10 Starting DB2 and connecting to sampleDB
	13.2.11 Testing the migrated HelloWorld client
	13.2.12 Testing the migrated Increment client
	13.2.13 Testing the migrated Increment and HelloWorld EJBs using the EJB Test Client

	13.3 Example: WebSphere Studio "Classic" Version 4.0 Web Application (YourCo)(Windows)
	13.3.1 Starting WebSphere Studio "Classic" Version 4.0 and creating a new Migration stage
	13.3.2 Creating a Web configuration descriptor file
	13.3.3 Creating a migration file
	13.3.4 Starting WebSphere Studio Application Developer and importing the WAR file
	13.3.5 Creating a WebSphere Studio Application Developer server project
	13.3.6 Testing the migrated YourCo application

	13.4 Example: Migrating "Example: VisualAge for Java JSP/servlet sample " EJB 2.0 (Increment enterprise bean and HelloWorld session bean)
	13.4.1 Create a new EJB 2.0 project and Enterprise Application 1.3 project
	13.4.2 Import the VisualAge for Java EJB 1.1 JAR into EJB 2.0 project
	13.4.3 Migrate code from EJB 1.0 to EJB 1.1
	13.4.4 Migrate code from EJB 1.1 to EJB 2.0
	13.4.5 Generating and deploying RMIC stub and tie code
	13.4.6 Specifying the data source binding information
	13.4.7 Creating a new WebSphere Studio Application Developer Java client project
	13.4.8 Creating a server project with an WebSphere Application Server Version 5
	13.4.9 Specify your data source, your EAR project, and then start the server
	13.4.10 Testing the migrated HelloWorld client
	13.4.11 Testing the migrated Increment client
	13.4.12 Testing the migrated Increment and HelloWorld EJBs using the EJB Test Client

	Chapter 14. Further reading
	Notices
	Programming interface information
	Trademarks and service marks

