
Web Services for Remote Portlets (WSRP)
WSRP Kickoff Meeting
March 18-20 2002

Dr. Carsten Leue
Thomas Schäck
Peter Fischer

Summary
� Web Services for Remote Portlets

¾ Idea and Goals
¾ Architecture and Design
¾ Markup, Actions and Persistence

� Implementation
¾ J2EE standalone version
¾ Integration into portal servers

� Standards
¾ Relationship to WSIA
¾ Interoperability

WSRP Motivation
� Enable the sharing of portlets

(markup fragments) over the
internet

Visual Component Pool Ö Internet

Client Ö Text processor

Client Ö Browser

Client Ö Portal

Goals of Web Services for Remote Portlets (WSRP)
� Allow visual, interactive, user-facing web services to be easily

plugged into all standards-compliant portals
� Let anybody create and publish their content and applications as

user-facing web services
� Portal administrators can browse public or private UDDI directories

for user-facing web services to plug into their portals as new
portlets, without any programming effort

� Let portals interact and publish portlets so that they can be
consumed by other portals

� Make the internet a pool of visual web services, waiting to be
integrated

Remote Portlets vs. data oriented WS

� WSRP Ù visual & user facing & interactive

Data service

100
101
96

100

100
101
96

100

100
101
96

100

WS
Presentation

Layer

WSRP Service

100
101
96

100

100
101
96

100

100
101
96

100

WS

Presentation
Layer

WSRP Sample Usage
Stocks serviceDocument service Cartoon service

Internet or Intranet via SOAP

WSRP Advertising

UDDI

Stocks service

Publish

?

Find

Bind

Liv
e C

on
ne

cti
on

SO
AP

Publish

WSRP Entities
� Service

¾ exposes the WSRP interface
� Aggregation (client)

¾ consumes multiple WSRP services
¾ aggregates the services onto pages

� Device
¾ displays the aggregated markup to the

end user
¾ handles user input

Service Component

WSRP

Aggregation Component (client)
Device Component

portlet

portlet portlet

e.g. HTTP

WSRP Instances
� Scenario

¾ The same service may be accessed
multiple times with different settings

¾ The server must manage and
identify each of these settings

� Solution
¾ Service + settings form a „remote

instance“
¾ Clients always integrate instances

of WSRP services
¾ The management of the instance‘s

settings can be negotiated between
client and server

Aggregation Component (client)

WSRP

IB
M

sto
ck

s

HP stocks

SUN stocks

Service Component

What needs to be defined?
� Interfaces

¾ Management of remote instances
¾ Markup retrieval and action

processing

� Protocol
¾ Sequence of calls
¾ Markup rules
¾ Action and namespace encoding

� UDDI configuration
¾ How to publish?
¾ What to publish?

foo

UDDI

Summary: Traditional Back-End Usage Scenario
� Local Portlets

¾ Efficient ☺
¾ Local deployment of code /
¾ Specific UI for each deployed portlet /
¾ Business layer and presentation layer both located on the portal server /
¾ Portlets cannot be shared between portals!! /

Aggregation

U
se

r

Portlet 1

Portlet 2

Portlet API

Portlet API

DataLayer 1

DataLayer 2

BE specific
API

BE specific
API

Portal Server

„Traditional“ Web Service Usage Scenario
� Portlets using Web Services

¾ Different Web Services expose different interfaces /
¾ Specialized UI and proxy code required for each WS /
¾ Local deployment of code is still necessary /
¾ Data layer separated from presentation layer ☺

Portal Server

Aggregation

U
se

r

Portlet 1

Portlet 2

Portlet API

Portlet API

Data
Layer 1Proxy 1

Proxy 2

Web
Service 1

WS specific
interface

Data
Layer 2

WS specific
interface

Web
Service 2

Wish list
� Client‘s view

¾ Plug-and-play
¾ Configurable
¾ Interactive
¾ Markup and user aware

� Server‘s view
¾ Modest implementation overhead
¾ Scalable
¾ Client aware

� Users‘ view
¾ Does not want to bother

Standard?

WebServices for Remote Portlets (WSRP)
� All remote connections share a unified API ☺
� No coding required, proxy and stub are coded once or generated

automatically ☺
� Stable and standardized transport mechanism (e.g. SOAP) ☺
� Visual and user-facing ☺

Portal Server WS specific
interface

Aggregation

U
se

r

Portlet API

Portlet API
Generic
Proxy

Generic
Proxy

Web
App1

Web
App2

Generic
Stub

Generic
Stub

SOAP

SOAP

WSRP
API

WSRP
API

Presentation and Interaction Layer

Requirements for a remote API
� Local case

¾ Each Portlet forms a logical
instance

¾ Portlets generate markup based on
user and device profile

¾ Portlets can store state data in a
database

¾ Portlets can encode actions as
URLs

� Remote case
¾ The service must be instance

aware
¾ User and device data must be

transmitted to the service
¾ The service must either be

persistent or it must delegate the
persistence to the caller

¾ Actions encoded by the service
must be recognized and remoted by
the caller

¾ To authorize calls, remote
instances are embedded in a
binding context

Aggregation

Portlet API WSRP API

WSRP Contract
� WSRP technical contracts define

¾ Action handling and embedding in URLs
¾ Namespacing of named entities
¾ Restrictions on markup produced
¾ Allowed order of method invocation

� WSRP interfaces define
¾ Lifecycle handling
¾ Markup Retrieval
¾ Action handling

Life Cycle Management

createPortletInstance

Service

Binding

Instance

Session
Pe

rs
ist

en
t

Tr
an

sie
nt

bindClient

[createSession]

Instance
Instance

Session Session

Binding

Aggregation Component (client)

Service Component

Instances are identified by handles

performPortletAction

destroyInstance

createPortletInstance

Example of Portal ÙWSRP Service Interaction
Aggregation Component (client) Service Component

Adds
Portlet

Removes
Portlet

Clicks
Action

getPortletMarkup
I SS

User

Views
Portlet

Allocate new Instance

Generate Markup,
(opt: create Session)

Action Handling
(opt: create Session)

I

I

A

I S A

I

I A

I

I S

I
Destroy instance

I

AS

I A

Markup Retrieval
� Client

¾ User information
¾ Client state
¾ Locale
¾ Instance/session handle
¾ Markup type
¾ Request parameters

� Server
¾ Generates markup based on the client‘s request data
¾ May have internal state
¾ May embed encoded action URLs in the markup
¾ Use namespace to encode named entities

Markup Retrieval (cont‘d)

WSRP
Service

Registry data

2. Client stores state

User
management user

user data

MarkupRequest

markup

U
se

r

Aggregation

MarkupResponse

WSRP

Aggregation Component (client)

Service Component

State Handling
� Idea

¾ Let the server decide whether to store persistent data on the server or client

� Concept
¾ Allow the server to return its (modified) state in a serialized form to the client
¾ The client persists the server‘s state and passes it to the server in each

request
¾ Servers may choose to persist only parts of its state (security)

Aggregation

WSRP

Registry Registry? ?

State Handling (cont‘d)

AggregationWSRP
Service

Portal Registry

S

S

S

3. Client hands over server‘s state

1. Service generates or
modifies state

2. Client stores state

Aggregation Component (client)

Service Component

WSRP

Action Handling
� Server

¾ Encodes actions in a special WSRP URL syntax
� Client

¾ Recodes WSRP action URLs to match the portal‘s URL syntax
¾ Intercepts WSRP URL clicks
¾ Invokes action processing via WSRP

� Server
¾ Processes an action and optionally invalidates its markup

� Client
¾ Requests new markup if necessary

Action Handling (local case)
Action

encoder

generate
Portlet

encode

Portal URL

click

Browser

markup

Invoke action handler

decoder
Invoke action handler

PortletAction

WSRP
encoder

generate

encode

click

Browser

markup

decoder

Action Handling (remote case)

WSRP URL

Invoke action handler

Proxy encoder

Portal URL

Proxy

parse

Service
Interface

Invoke action handler
Process Action

recode

SOAP SOAP

ma
rku

p

WSRP

Action Handing (summary)
� Transparency

¾ Actions are represented by handles
¾ No changes in portlet programming required
¾ Client can handle WSRP URLs without knowledge of the server‘s details
¾ Neither client nor server needs to be a portal

� Uniqueness
¾ URLs are automatically unique by using a GUID

� Efficiency
¾ Simple string replacement required on client side (eg. BM algorithm)

{3096CAEB-031A-42a1-923C-F641CA340E4E}{0}<0xfg449i7>

Escape Identifier Action handleClient
Mode

Namespace Encoding
� Problem

¾ The portlet‘s markup may contain named entities (e.g. form names)
¾ Names from different portlets that are aggregated onto a single page may

conflict
¾ The same portlet may be aggregated multiple times which leads to

conflicting names

Service instance 2

Aggregator (Portal)

Name clash in „Stocks“

Service instance 1

Stocks

Stocks

STOCKS

STOCKS

Namespace Encoding (cont‘d)
� Solution

¾ The aggregator must lift every named entity into a unique namespace
¾ When passing the names to the portlets the namespace must be resolved

for each destination portlet
¾ How to locate the named entities in the markup?

– Write a parser for each markup type /
– Let the portlet indicate the names by tagging them ☺

Service instance 2

Aggregator (Portal)

Ok, no naming problems

Service instance 1

ID1:Stocks

ID2:Stocks

WSRP:STOCKS

WSRP:STOCKS

Namespace Encoding (cont‘d)

WSRP
Service

WSRP
encoder

WSRP
decoder

namespace
encoder

Aggregation

Browser

click

namespace
decoder

WSRP
encoder

WSRP
decoder

Aggregator (Portal)Service

STOCKS

WSRP:STOCKS
STOCKS

ID1:STOCKS

STOCKS

WSRP:STOCKS

STOCKS

ID1:STOCKS

Start

Possible Implementations
� Baseline

¾ Implementing both a WSRP server and a WSRP client is very simple!

� Sample Implementations
¾ Java based WSRP Server (on Tomcat)
¾ Java (Swing) based WSRP Client
¾ .NET service as WSRP Server
¾ ActiveX Control as WSRP Client

Implementing a WSRP Server on Tomcat

SO
AP

 S
er

vl
et

W
SR

P
In

fo
rm

at
io

n
Pr

ov
id

er

Server

Simple
Service

WSRP-let
Service

W
SR

P-
le

t

Request Dispatcher

Client

Persistence

Registry

JSP

JSP

W
SR

P

Service generates
markup directly

Service invokes a
standard servlet

Standard servlet
calling JSPs

WSRP‘

WSRP‘

Se
rv

let

Making a portal server a WSRP server
Request Dispatcher

Device
SO

AP
 S

er
vl

et

W
SR

P

Portal Server

WSRP
Router

Portlet
Invoker

Local
Portlet

Po
rtl

et
 A

PI

Prepare the WSRP parameters
such that they are compatible
to the portal‘s internal
parameters

AggregationDevice

Remote
case

Local
case

One single
local portlet
can be used for
the local and the
remote case.

Po
rtl

et
 A

PI

WSRP specific

Making a portal server a WSRP client

AggregationDevice

Request Dispatcher

Portlet API
Generic
Proxy

Portlet
Invoker

WSRP
Service

Portal Server

WSRP

Open Source Projects used for Reference Impl.
� Projects for server impl.

¾ Jakarta Tomcat
– Application server

¾ Axis
– SOAP implementation

¾ UDDI4J
– UDDI access

¾ Xerces
– XML parsing

� Standards
¾ SOAP

– Basis for the communication layer
– Guarantees interoparability

¾ WSDL
– Used as the interface definition

¾ UDDI
– Serving portals publish the UDDI to

make their content available
– Client portals can query published

portals from UDDI
– UDDI registry strores binding and

configuration information

¾ WSIA
– WSRP is a special case of a WSIA

service
– Remote portlets will be accessible from

WSIA clients

¾ Portlet API

WSIA ÙWSRP Relationship
� Basic Issues

¾ WSIA provides a generic set of basic interfaces for life cycle, presentation,
persistence and event handling

¾ WSRP extends selected WSIA interfaces and provides an own specialized
interface to its services

� Design Goals
¾ Implementing a compliant service should be as easy as possible
¾ Services should be extensible
¾ Accessing interfaces should be efficient

WSIA ÙWSRP Interoperability
� Interoperability goals

¾ Specialized clients can access WSRP services by only using the WSRP
interface

¾ Generic clients can make use of WSRP services by only using the WSIA
interfaces

� Implications
¾ WSRP services must implement the WSIA interfaces for special cases only

(the WSRP relevant ones)

WSIA ÙWSRP Interoperability (cont‘d)

WSIA
Service

WSIABase

WSIA

WSIA aware service

Portlet

WSIABase

WSRP

WSRP aware service

WSIA
Client

Portlet
Proxy

Adaptor
WSRP

WSIABase

WSIA

WSIABase

WSRP

Summary
� A standardized portlet model is key to interoperability between

portal servers and portlets
� Portlets can be published as WSRP services
� WSRP services can be wrapped in Portlets
� Interoparability with different platforms

¾ J2EE client and server
¾ .NET client and server

� In sync with WSIA

Client Server Communication (Java)

WSRP
Client

Tomcat
ServerW

SR
P

� To be demonstrated
¾ Find a portlet via UDDI
¾ Bind to the portlet
¾ React on an action

Java client consuming at .NET service

IIS .NET
object

MS Office
as

OLE server

W
SR

P

WSRP service inside a Word Document

Tomcat
Server

.NET
object

Questions!?

Publish/Find/Bind

Service
Requestor

Service
Provider

Service
Registry

PublishFind

Bind

• Access point
• Description
• tModel key

• service description
• title
• default expiry
• window states
• markup types
• locales
• keywords

UDDI entry
XML description

WSRP Server

Server

Database

WSRP Client

Client

WSRP

Action Handling (URL recoding)
� Portlets

¾ Use the same URL encoder in local and remote case
� Client

¾ Provides different encoders for the local and remote (same interface) case
¾ Each action is assigned a locally unique action handle
¾ Recognizes WSRP URLs in the markup
¾ Decodes the URL to distinguish between window state changes and remote

action handles
� WSRP

¾ Defines globally unique action identifiers which prefix action handles

Information Flow
� Persistent Attributes

¾ Portal registration Ö initialization per portal
¾ Portlet ID to bind to Ö initialization per portlet

� Transient Attributes
¾ Markup type (HTML, VoiceXML, etc.)
¾ Locale
¾ User information
¾ Window state
¾ Session
¾ Actions

Ö transfer per request

Web Services for Remote Portlets (WSRP) – some Details
March 18-20 2002

Dr. Carsten Leue
Thomas Schäck
Peter Fischer

Summary
� WebServices for Remote Portlets

¾ Recapitulation: Architecture and Design
¾ Interfaces
¾ Protocoll

� Implementation
¾ Client Sample
¾ Server Sample

� Misc
¾ Performance, Caching
¾ Discussion

Portlet / User Interaction
� User actions

¾ Read the markup
¾ Trigger actions by clicking on links
¾ Enter data into forms and send it to the server
¾ Edit the portlet

� Portlet
¾ Generate markup based on user settings (identitiy, markup type, locale)
¾ Encode actions as links in the markup
¾ Encode namespaces
¾ React on actions triggered by the user by modifying the portlet‘s state
¾ Receive form data entered by the user and process it

Performance
� Goal

¾ Use as little rountrips as possible
– two roundtrips to setup a portlet (bind, createInstance)
– one single roundtrip per markup request (getPortletMarkup)
– one or two roundtrips per action (invokePortletAction)

¾ Enable caching of remote services

¾ Efficient markup interpretation
– Fast string search algorithms
– Use of escape tokens for efficient parsing

Caching
� Requirements

¾ WSRP clients may want to provide caching to relieve the WSRP service
¾ The WSRP service must provide information on the expiry of its content

� Solution
¾ The WSRP service returns an expiry flag to the client on each markup call
¾ Each action event may explicitely expire the markup

– either a subsequent getPortletMarkup call follows
– or the service returns its markup in a single roundtrip

Boyer – Moore String Search

(Robert S. Boyer, J Strother Moore: A Fast String Searching Algorithm, Communications of the ACM, October 1977, Volume 20, Number 10)

� Requirements
¾ String search is needed for URL rewriting and namespace encoding

� BM offers a verify efficient string search algorithm
¾ Run time typically of order O(N/M)

N = len(text), M = len(token)
¾ Small initialization costs

� Implications for WSRP
¾ Select the same escape token for URLs and namespaces
¾ Choose the token as long as possible consisting of unlikely characters

WSRP Interface

public interface WSRPComponent extends WSXLBindable
{

// markup and actions
public WSRPMarkupResponse getPortletMarkup(

String hPortlet,
WSRPMarkupRequest request) throws WSXLException;

public WSRPActionResponse invokePortletAction(
String hPortlet,
String hAction,
WSRPActionRequest request) throws WSXLException;

// instance management
public String createPortletInstance(

String hBinding,
String classID) throws WSXLException;

public String createSession (String hPortlet) throws WSXLException;

public void destroyInstance (String hGeneric) throws WSXLException;

public String bindClient () throws WSXLException;

};

WSRP Interface – bindClient

public String bindClient () throws WSXLException;

� Input:
¾ None

� Output:
¾ Handle identiying the binding

� Remarks:
¾ Can be omitted if the binding information has been transfered otherwise

WSRP Interface – createPortletInstance
public String createPortletInstance(

String hBinding, String classID) throws WSXLException;

� Input:
¾ Binding handle
¾ Identifier of the service within the server (LUID)

� Output:
¾ Handle identiying the remote instance

String hBinding = bindClient();
String hInstance = createPortletInstance(hBinding,“107“);
...
destroyInstance(hInstance);
destroyInstance(hBinding);

WSRP Interface – destroyInstance
public void destroyInstance (String hGeneric) throws WSXLException;

� Input:
¾ Arbitrary handle

� Output:
¾ none

String hBinding = bindClient();
String hInstance = createPortletInstance(hBinding,“107“);
...
destroyInstance(hInstance);
destroyInstance(hBinding);

WSRP Interface – getPortletMarkup
public WSRPMarkupResponse getPortletMarkup(

String hPortlet,
WSRPMarkupRequest request) throws WSXLException;

� Input:
¾ Instance or session handle
¾ Markup request containing client data, user data, portlet state etc.

� Output:
¾ Markup response

String hBinding = bindClient();
String hInstance = createPortletInstance(hBinding,“107“);

WSRPMarkupResponse res = getPortletMarkup(hInstance,request);
System.out.println(res.getResultString());

destroyInstance(hInstance);
destroyInstance(hBinding);

WSRP Interface – invokePortletAction
public WSRPActionResponse invokePortletAction(

String hPortlet, String hAction, WSRPActionRequest request)
throws WSXLException;

� Input:
¾ Instance or session handle
¾ Action handle
¾ Action request containing client data, user data, portlet state etc.

� Output:
¾ Action response

...
WSRPActionResponse res = invokePortletAction(hInstance,hAction,request);
String out = res.getResultString();
if (out==null)

out = getPortletMarkup(hInstance,request).getResultString();
System.out.println(res.getResultString());

Implementing a WSRP Server on Tomcat

SO
AP

 S
er

vl
et

W
SR

P
In

fo
rm

at
io

n
Pr

ov
id

er

Server

Simple
Service

WSRP-let
Service

W
SR

P-
le

t

Request Dispatcher

Client

Persistence

Registry

JSP

JSP

W
SR

P

Service generates
markup directly

Service invokes a
standard servlet

Standard servlet
calling JSPs

WSRP‘

WSRP‘

Se
rv

let

Instantiating a WSRP service

¾ the server defers the service type from the incoming class handle
¾ the registry maps the service type against a service factory
¾ the factory instantiates the service

Server Service
Factory

Service

Registry

type_0x_class

ClassID

type

map
pin

g

create factory

1

2 3

4 class

WSRP‘

createInstance instantiation
5

Summary

Questions!?

