
WebSphere

MQ

Everyplace

MQe

Getting

Started

Version

2

Release

0

���

WebSphere

MQ

Everyplace

MQe

Getting

Started

Version

2

Release

0

���

Note

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

the

Notices

appendix.

First

Edition

(July

2004)

This

edition

applies

to

IBM

WebSphere®

MQ

Everyplace

Version

2.0.1

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

©

Copyright

International

Business

Machines

Corporation

2000,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

topic

collection

.

.

.

.

.

.

. v

Welcome

to

MQe

.

.

.

.

.

.

.

.

.

.

. 1

MQe

in

a

nutshell

.

.

.

.

.

.

.

.

.

. 3

Codebase

options

.

.

.

.

.

.

.

.

.

. 5

What’s

new

in

2.0.1

.

.

.

.

.

.

.

.

.

. 7

What’s

changed

in

the

documentation

. 9

What

is

MQe

.

.

.

.

.

.

.

.

.

.

.

. 11

Introduction

to

MQe

.

.

.

.

.

.

.

.

.

.

. 11

MQe

in

the

MQ

family

.

.

.

.

.

.

.

.

.

. 11

Basic

messaging

.

.

.

.

.

.

.

.

.

.

.

. 11

MQ

host

and

distributed

products

.

.

.

.

.

. 12

The

MQ

family

.

.

.

.

.

.

.

.

.

.

.

. 13

MQe

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

How

MQe

extends

the

MQ

family

.

.

.

.

.

. 14

What

you

might

use

MQe

for

.

.

.

.

.

.

.

. 15

Scenarios

and

Applications

.

.

.

.

.

.

.

. 15

How

MQe

works

.

.

.

.

.

.

.

.

.

.

.

. 15

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Queues

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Queue

managers

.

.

.

.

.

.

.

.

.

.

. 19

Queue

manager

configuration

.

.

.

.

.

. 20

Queue

manager

operations

.

.

.

.

.

.

. 20

Administration

.

.

.

.

.

.

.

.

.

.

.

. 21

Administration

messages

.

.

.

.

.

.

.

. 21

Selective

administration

.

.

.

.

.

.

.

. 22

Monitoring

and

related

actions

.

.

.

.

.

. 22

Connections

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Connection

styles

.

.

.

.

.

.

.

.

.

. 25

Adapters

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Dialup

connection

management

.

.

.

.

.

. 25

Trace

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Event

log

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

The

registry

.

.

.

.

.

.

.

.

.

.

.

. 27

Private

registry

and

credentials

.

.

.

.

.

. 27

Auto-registration

.

.

.

.

.

.

.

.

.

. 28

Public

registry

and

certificate

replication

.

.

. 28

Application

use

of

registry

services

.

.

.

. 28

Default

mini-certificate

issuance

service

.

.

. 29

The

security

interface

.

.

.

.

.

.

.

.

. 29

Customizing

rules

.

.

.

.

.

.

.

.

.

.

. 29

Attributes

rules

.

.

.

.

.

.

.

.

.

.

. 29

MQ

bridge

rules

.

.

.

.

.

.

.

.

.

.

. 30

Queue

rules

.

.

.

.

.

.

.

.

.

.

.

. 30

Queue

manager

rules

.

.

.

.

.

.

.

.

. 30

Classes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

Application

loading

.

.

.

.

.

.

.

.

. 31

MQe

SupportPacs

.

.

.

.

.

.

.

.

.

.

.

. 31

MS0B

-

MQSeries

Java

classes

for

PCF

.

.

.

. 33

Planning

your

implementation

.

.

.

. 35

Licenses

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

What

machines

to

use

.

.

.

.

.

.

.

.

.

.

. 35

Which

codebase

to

use

.

.

.

.

.

.

.

.

.

. 36

Your

MQe

development

cycle

.

.

.

.

.

.

.

. 36

Gaining

experience

on

MQe

.

.

.

.

.

.

.

.

. 37

Using

MQe

with

MQ

.

.

.

.

.

.

.

.

.

.

. 38

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Gateway

(bridge)

to

MQ

.

.

.

.

.

.

.

.

. 38

Message

conversion

.

.

.

.

.

.

.

.

.

. 38

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Compatibility

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Assured

delivery

.

.

.

.

.

.

.

.

.

.

. 40

Translation

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Further

information

.

.

.

.

.

.

.

.

.

.

. 41

Related

information

on

MQ

.

.

.

.

.

.

.

. 41

Websites

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Newsgroups

.

.

.

.

.

.

.

.

.

.

.

.

. 42

MQe

Certification

.

.

.

.

.

.

.

.

.

.

. 42

Installing

and

uninstalling

MQe

.

.

.

. 43

Before

you

install

.

.

.

.

.

.

.

.

.

.

.

. 43

Prerequisites

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Supported

platforms

.

.

.

.

.

.

.

.

. 43

Directly

supported

with

installation

support

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Directly

supported

without

installation

support

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Indirectly

supported

.

.

.

.

.

.

.

. 44

Java

environment

.

.

.

.

.

.

.

.

.

. 44

PersonalJava

.

.

.

.

.

.

.

.

.

.

. 45

J2ME

.

.

.

.

.

.

.

.

.

.

.

.

. 45

WS

Device

Developer

.

.

.

.

.

.

.

. 45

C

Bindings

environment

.

.

.

.

.

.

. 45

JMX

Interface

.

.

.

.

.

.

.

.

.

.

. 46

C

environment

.

.

.

.

.

.

.

.

.

.

. 46

Hardware

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Supported

devices

.

.

.

.

.

.

.

.

.

.

. 48

Licensing

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Installing

MQe

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Installation

procedure

.

.

.

.

.

.

.

.

.

. 49

Silent

installation

.

.

.

.

.

.

.

.

.

.

. 50

Silent

installation

directories

.

.

.

.

.

.

. 51

Silent

install

with

option

files

.

.

.

.

.

. 51

Installing

from

a

zip

file

.

.

.

.

.

.

.

.

. 52

Installed

components

.

.

.

.

.

.

.

.

.

. 52

MQe

for

Java

.

.

.

.

.

.

.

.

.

.

.

. 52

MQe

C

bindings

.

.

.

.

.

.

.

.

.

.

. 53

MQe

for

Palm

OS

.

.

.

.

.

.

.

.

.

. 53

MQe

for

Native

platforms

.

.

.

.

.

.

. 53

PocketPC

Version

information

tool

.

.

.

.

. 54

Documentation

.

.

.

.

.

.

.

.

.

.

. 55

Components

on

the

Web

.

.

.

.

.

.

.

.

. 56

©

Copyright

IBM

Corp.

2000,

2004

iii

Verifying

your

installation

.

.

.

.

.

.

.

. 56

Java

installation

verification

.

.

.

.

.

.

. 56

C

installation

verification

.

.

.

.

.

.

.

. 57

Modifying

your

installation

.

.

.

.

.

.

.

.

. 57

Uninstalling

MQe

.

.

.

.

.

.

.

.

.

.

.

. 57

Windows

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Unix

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Silent

uninstallation

.

.

.

.

.

.

.

.

.

. 58

Silent

uninstall

with

options

files

.

.

.

.

. 59

Applying

maintenance

to

MQe

.

.

.

.

.

.

.

. 59

Migrating

from

1.2.7

to

2.0

or

2.0.1

.

.

.

.

. 60

Aliases

in

MQeFields

.

.

.

.

.

.

.

.

. 60

MQeFields

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Peer

channels

.

.

.

.

.

.

.

.

.

.

.

. 60

MQeChannel

.

.

.

.

.

.

.

.

.

.

.

. 61

MQeAttribute

.

.

.

.

.

.

.

.

.

.

. 61

MQeQueueManager

.

.

.

.

.

.

.

.

. 61

Deprecated

methods

and

classes

.

.

.

.

. 61

Security

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Appendix.

Notices

.

.

.

.

.

.

.

.

.

. 69

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

iv

MQe

Getting

Started

About

this

topic

collection

This

PDF

collection

has

been

created

from

the

source

files

used

to

create

the

WebSphere

MQ

Everyplace

Help

Center,

for

when

you

need

a

printed

copy.

The

content

of

these

topics

was

created

for

viewing

on-screen;

you

might

find

that

the

formatting

and

presentation

of

some

figures,

tables,

examples,

and

so

on,

is

not

optimized

for

the

printed

page.

Text

highlighting

might

also

have

a

different

appearance.

In

this

PDF,

links

within

the

topic

content

itself

are

included,

but

are

active

only

if

they

link

to

another

topic

in

the

same

PDF

collection

(when

the

link

includes

a

page

number).

Links

to

topics

outside

this

topic

collection

attempt

to

link

to

a

PDF

that

is

named

after

the

topic

identifier

(for

example,

des10030.pdf)

and

therefore

fail;

you

can

identify

invalid

links

like

this

because

they

have

no

associated

page

number.

Use

the

Help

Center

to

navigate

freely

between

topics.

Please

do

not

provide

feedback

on

this

PDF.

Refer

to

the

help

center,

and

use

the

″Feedback

on

the

documentation″

topic

at

the

end

of

the

table

of

contents

to

report

any

errors

or

suggestions

for

improvement.

©

Copyright

IBM

Corp.

2000,

2004

v

vi

MQe

Getting

Started

Welcome

to

MQe

The

full

name

of

this

product

is

WebSphere

MQ

Everyplace

Version

2

Release

0

Modification

1,

more

usually

expressed

as

WebSphere

MQ

Everyplace

V2.0.1.

In

this

documentation

the

product

is

generally

described

simply

as

MQe.

MQe

is

used

for

secure

messaging

on

lightweight

devices

such

as

sensors,

phones,

Personal

Digital

Assistants

(PDAs),

and

laptop

computers.

Programming

Interfaces

The

Application

Programming

Interface

to

MQe

is

referred

to

in

this

documentation

as

the

MQe

API.

Two

languages

are

supported,

Java

and

C:-

v

The

Java

version

Provides

access

to

all

MQe

function

at

Version

2.

There

are

three

versions

of

the

C

support:

v

The

Native

C

codebase

Provides

access

to

a

major

subset

of

MQe

function,

the

main

restriction

being

that

only

a

device

queue

manager

can

be

used,

so

it

can

only

send

messages,

not

receive

them.
v

The

C

Bindings

Are

supplied

for

use

until

the

Native

C

codebase

provides

full

functionality.

Your

application

calls

the

C

API

in

the

bindings,

and

the

call

is

routed

to

the

Java

classes

for

MQe

to

carry

out

the

function.

The

bindings

were

written

for

MQe

Version

1,

but

still

provide

access

to

nearly

all

of

the

Java

function

in

MQe

Version

2.
v

The

C

support

for

Palm

Provides

access

to

a

major

subset

of

the

MQe

function

for

use

on

Palm

devices,

the

main

restriction

being

that

only

device

queue

managers

can

be

used,

so

it

can

only

send

messages,

not

receive

them.

The

C

support

for

Palm

remains

at

MQe

Version

1.

For

more

details

on

all

these

codebase

options

see

“Codebase

options”

on

page

5.

See

also:

Trademarks.

©

Copyright

IBM

Corp.

2000,

2004

1

2

MQe

Getting

Started

MQe

in

a

nutshell

What

is

MQe

for?

v

Secure

messaging

on

lightweight

devices

such

as

sensors,

phones,

Personal

Digital

Assistants

(PDAs),

and

laptop

computers

What

is

messaging?

v

Software

(as

contained

in

MQ

and

MQe)

that

performs

for

you

the

work

of

sending

and

receiving

data

between

your

applications,

and

over

networks.

Message

delivery

is

assured,

decoupled

from

the

application,

and

your

application

programmers

do

not

need

to

have

detailed

communications

programming

knowledge.

v

When

an

application

wants

to

transfer

data

to

another

application,

it

puts

the

data

into

messages,

and

then

puts

the

messages

onto

a

queue.

v

The

queue

is

owned

and

run

by

a

queue

manager.

v

A

further

application

(or

another

part

of

the

same

one)

can

retrieve

those

messages

from

the

same

queue;

or..

v

..the

queue

manager

can

be

configured

to

send

the

messages

on

the

queue

through

a

connection

over

the

network

to

a

queue

on

a

remote

queue

manager

on

another

computer,

where

another

application

retrieves

them;

or..

v

..the

destination

application

can

pull

the

messages

across

the

network

when

it

needs

them.

v

You

can

have

many

queues

on

one

queue

manager.

v

On

MQe,

you

can

only

have

one

queue

manager

per

JVM

or

process.

What

is

MQe?

v

A

toolkit,

supported

on

a

range

of

platforms:-

v

The

API

is

available

in

Java

or

C.

v

The

product

function

is

delivered

as

Java

classes,

and

C

(Win32)

.DLLs.

v

You

must

write

your

own

application

to

use

MQe.

v

You

can

create

queue

managers

and

remotely

manage

your

MQe

network

using

two

downloadable

SupportPacs:

MQe_Script

(scriptable

commands),

or

MQe_Explorer

(GUI).

v

You

can

experiment

with

MQe,

without

writing

an

application,

using

these

same

tools.

How

does

it

work?

v

A

queue

manager

is

created

as

a

set

of

information

that

describes

the

queue

manager’s

original

basic

configuration.

v

This

information

is

held

in

the

MQe

registry

(Note:

on

Windows

systems

this

is

not

the

Windows

registry).

v

On

your

device,

an

application

can

now

start

that

queue

manager,

and

it

runs

as

long

as

the

application

runs.

When

the

application

stops,

the

queue

manager

stops.

v

When

a

queue

manager

is

running

it

can

be

extensively

configured

and

reconfigured

by

sending

it

MQe

administration

messages,

(which

also

update

the

information

in

the

registry).

Typically

you

generate

these

messages

with

the

administrative

tools

MQe_Script

and

MQe_Explorer.

©

Copyright

IBM

Corp.

2000,

2004

3

v

On

your

server,

you

could

arrange

a

small

application

that

runs

the

queue

manager

and

that

is

left

constantly

running,

while

your

main

applications

come

and

go,

servicing

the

messages.

Further,

the

queue

manager

application

could

run

under

a

service

so

that

it

runs

every

time

the

computer

is

booted.

How

do

you

use

it?

v

You

create

your

MQe

device

queue

manager

configuration,

and

develop

your

MQe

application,

on

a

PC.

v

You

download

only

the

files

and

components

that

you

need

(for

both

your

application,

and

MQe)

to

your

device,

and

then

run

it

there.

v

You

run

an

MQe

server

queue

manager,

on

a

computer

other

than

a

device,

for

the

devices

to

connect

to

and

send

their

messages

to.

v

If

you

want

to

communicate

with

MQ,

you

run

an

MQe

gateway

queue

manager

(on

a

computer

other

than

a

device)

which

acts

as

an

intermediary

-

it

can

receive

MQe

messages

from

your

devices

(or

your

server),

transform

them

into

MQ-compatible

messages,

and

then

exchange

them

with

MQ.

Are

there

any

special

features?

v

You

can

exploit

adapters

to

map

MQe

to

device

interfaces.

For

example:

–

Channels

(used

on

each

end

of

a

connection)

exploit

protocol

adapters

to

run

over

HTTP,

native

TCP/IP,

UDP,

and

other

protocols.

–

Queues

exploit

field

storage

adapters

to

interface

to

a

storage

subsystem

such

as

memory

or

the

file

system.
v

You

can

achieve

security

at

three

levels:

–

Local

security

-

Protects

message-related

data

at

a

local

level.

–

Message-level

security

-

Protects

messages

between

the

initiating

and

receiving

MQe

application.

–

Queue-based

security

-

Protects

messages

between

the

initiating

queue

manager

and

the

target

queue.
v

You

can

use

rules

to

customize

the

behavior

of

some

of

the

main

MQe

components.

v

You

can

use

tracing

and

event

logging

to

help

debug

your

application.

See

also:

“Codebase

options”

on

page

5

“MQe

SupportPacs”

on

page

31

4

MQe

Getting

Started

Codebase

options

Overview

The

MQe

Application

Programming

Interface

(API)

is

the

programming

interface

to

MQe.

Two

languages

are

supported,

Java

and

C.

v

The

Java

version

Provides

access

to

all

MQe

function

at

Version

2.

The

detailed

classes,

methods,

and

procedures

are

described

in

the

Java

API

Programming

Reference.

Examples

of

MQe

programming

are

given

throughout

this

information

center.

There

are

three

versions

of

the

C

support:

v

The

Native

C

codebase

Provides

access

to

a

major

subset

of

MQe

function,

the

main

restriction

being

that

only

device

queue

managers

can

be

used.

Other

restrictions

are

as

follows

(see

also

the

table

below):-

–

Does

not

support

store-and-forward

queues

or

bridge

queues

–

Supports

the

HTTP

adapter

only

–

Supports

the

RLE

compressor

only

–

Supports

the

RC4

cryptor

only

–

Supports

the

MAttribute

and

local

security

features

only

The

detailed

methods

and

procedures

are

described

in

the

C

API

Programming

Reference.

Examples

of

programming

MQe

for

the

C

bindings

are

given

throughout

this

information

center.
v

The

C

Bindings

are

supplied

for

use

until

the

Native

C

codebase

provides

full

functionality.

Your

application

calls

the

C

API

in

the

bindings,

and

the

call

is

routed

to

the

Java

classes

for

MQe

to

carry

out

the

function.

The

bindings

were

written

for

MQe

Version

1,

but

still

provide

access

to

nearly

all

of

the

Java

function

in

MQe

Version

2.

The

detailed

methods

and

procedures

are

described

in

the

C

API

Programming

Reference.

Examples

of

programming

MQe

for

the

C

bindings

are

given

in

the

C

Bindings

Programming

Guide.
v

The

C

support

for

Palm

provides

access

for

a

subset

of

the

MQe

function

for

use

on

Palm

devices,

the

main

restriction

being

that

only

device

queue

managers

can

be

used.

The

C

support

for

Palm

remains

at

MQe

Version

1.

Details

of

the

classes

and

procedures,

together

with

programming

guidance,

are

provided

in

C

Programming

Guide

for

Palm

OS.

Types

of

queue

manager

Throughout

this

documentation,

and

in

the

table

below,

the

following

queue

manager

descriptions

are

used,

and

it

is

important

to

distinguish

between

them:-

©

Copyright

IBM

Corp.

2000,

2004

5

v

Device

queue

manager

A

queue

manager

with

no

listener

component,

and

no

bridge

component.

It

therefore

can

only

send

messages,

it

cannot

receive

them.
v

Server

queue

manager

A

queue

manager

that

can

have

a

listener

added.

With

the

listener

it

can

receive

messages

as

well

as

send

them.
v

Gateway

queue

manager

A

queue

manager

that

can

have

a

listener

and

a

bridge

added.

With

the

listener

it

can

receive

messages

as

well

as

send

them,

and

with

the

bridge

it

can

communicate

with

MQ.

Table

of

options

Option

Java

Native

C

C

for

Palm

OS

C

Bindings

Operating

systems

Any

with

Java

2

(which

began

at

Java

Version

1.2)

PocketPC2002;

PocketPC2003;

Windows

(from

MQe

V2.0.1.5

on);

Palm

OS

Windows

32bit

Queue

managers

Any

Device

only

Device

only

Any

Gateway

to

MQ

(queue

manager

with

bridge

and

listener)

Yes

No

No

Yes

Store-and-forward

queues,

bridge

queues

Yes

No

No

Yes

Adapters

All

HTTP

only

HTTP

only

All

Compressors

All

RLE

only

RLE

only

All

Cryptors

All

RC4

RC4

All

Security

features

All

MAttribute

and

local

only

MAttribute

and

local

only

All

Add

messages

to

Trace

Yes

No

No

Yes

Event

logging

Yes

No

No

Yes

Private

registry

and

credentials

Yes

No

No

Yes

Attribute

rules

Yes

No

No

Yes

Bridge

rules

Yes

No

No

Yes

Classes

for

customizing

All

No

No

Some

Application

loading

Yes

No

No

Yes

6

MQe

Getting

Started

What’s

new

in

2.0.1

Changes

in

the

release

of

WebSphere

MQ

Everyplace

Version

2.0.1

v

Support

for

the

following

has

been

added:

–

JMS

Version

1.1

–

JMX

Version

1.2

–

Windows

2003

–

AIX

Version

5.2

–

Sun

Solaris

Version

9.0
v

A

new

error

message,

Except_QMgr_NotBridgeEnabled,

has

been

added.

This

message

is

displayed

when

the

WebSphere

MQ

Java

classes

are

not

available

and

an

action

requiring

these

classes

is

attempted.

v

Support

for

wrapping

multiple

messages

has

been

added.

v

Native

support

for

PocketPC

2003

has

been

added.

©

Copyright

IBM

Corp.

2000,

2004

7

8

MQe

Getting

Started

What’s

changed

in

the

documentation

v

This

MQe

Information

Center,

delivered

as

an

Eclipse

documentation

plugin,

has

been

created:

–

SC34-6609-00

-

WebSphere

MQ

Everyplace

Information

Center

(plugin

com.ibm.mqe.info.doc_2.0.1)
v

The

new

MQe

Information

Center

was

built

from

the

information

in

the

following

5

previous

MQe

books,

which

it

replaces:-

–

GC34-6276-02

-

Read

Me

First

–

SC34-6277-02

-

Introduction

–

SC34-6283-02

-

Configuration

Guide

–

SC34-6278-01

-

Application

Programming

Guide

–

SC34-6274-01

-

Systems

Programming

Guide

The

table

of

contents

has

been

completely

revised.

Within

the

topics

some

correcting

and

tidying

up

has

been

done,

but

otherwise

the

information

is

unchanged.

v

The

following

two

books

are

presented

within

this

information

center

unchanged.

If

you

have

installed

the

plugin

com.ibm.mqe.cbooks.doc_2.0.1,

find

them

in

the

Programming

Reference

section

in

the

table

of

contents:-

–

SC34-6280-01

-

C

Bindings

Programming

Guide

–

SC34-6281-01

-

C

Programming

Guide

for

Palm

OS
v

The

following

two

reference

sets

(which

are

also

packaged

with

the

product

itself)

are

presented

within

this

information

center.

If

you

have

installed

the

plugin

com.ibm.mqe.apirefs.doc_2.0.1,

find

them

in

the

Programming

Reference

section

in

the

table

of

contents:-

–

Java

API

Programming

Reference

–

C

API

Programming

Reference

Notes:

1.

The

numbers

above

(for

example

SC34-6609-00)

are

IBM

publication

numbers

that

you

can

use

in

a

search

for

documentation

on

the

IBM

publications

website

at

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi.

2.

You

can

also

download

documentation

from

the

MQe

site

at:

http://www.ibm.com/software/integration/wmqe/library/pubs/.

©

Copyright

IBM

Corp.

2000,

2004

9

http://www.eclipse.org/
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.ibm.com/software/integration/wmqe/library/pubs/

10

MQe

Getting

Started

What

is

MQe

Introduction

to

MQe

MQe

is

a

member

of

the

WebSphere

MQ

family

of

business

messaging

products,

and

also

the

WebSphere

Everyplace

family.

You

use

it

to

write

your

own

applications

that

exchange

messages

containing

data,

providing

once

and

once-only

assured

delivery.

MQe

is

designed

to

integrate

well

with

other

members

of

the

WebSphere

MQ

family,

and

other

components

of

the

MQe

Server.

MQe

is

designed

to

satisfy

the

messaging

needs

of

lightweight

devices,

such

as

sensors,

phones,

Personal

Digital

assistants

(PDAs),

and

laptop

computers.

It

supports

mobile

environments

and

is

suitable

for

use

over

public

networks,

supporting

requirements

that

arise

from

the

use

of

fragile

communication

networks.

As

many

MQe

applications

run

outside

the

protection

of

an

Internet

firewall,

it

also

provides

security

capabilities.

To

understand

this

product

and

the

documentation,

an

understanding

of

the

concepts

of

secure

messaging

is

an

advantage.

If

you

do

not

have

this

understanding,

you

might

find

it

useful

to

read

the

following

WebSphere

MQ

book:

v

An

Introduction

to

Messaging

and

Queuing,

GC33-0805

This

book

is

available

in

softcopy

form

from

the

Book

section

of

the

online

WebSphere

MQ

library.

This

can

be

reached

from

the

WebSphere

MQ

Web

page:

http://www.ibm.com/software/integration/websphere/library/.

MQe

in

the

MQ

family

Basic

messaging

Messaging,

irrespective

of

the

particular

product

or

product

group,

is

based

on

queues

and

queue

managers.

Queue

managers

manage

queues

that

can

store

messages.

Applications

communicate

with

a

local

queue

manager,

and

get

or

put

messages

to

queues.

If

a

message

is

put

to

a

remote

queue

(a

queue

owned

by

another

queue

manager),

the

message

is

transmitted

over

connections

to

the

remote

queue

manager.

In

this

way,

messages

can

hop

through

one

or

more

intermediate

queue

managers

before

reaching

their

destination.

The

essence

of

messaging

is

to

uncouple

the

sending

application

from

the

receiving

application,

queuing

messages

at

intermediate

points,

if

necessary.

MQ

and

MQe

supply

MQ

family

messaging.

Both

are

designed

to

support

one

or

more

hardware

server

platforms

and

most

associated

operating

systems.

Given

the

wide

variety

in

platform

capabilities,

these

individual

products

are

organized

into

product

groups,

reflecting

common

function

and

design:

v

Distributed

messaging:

WebSphere

MQ

for

Windows

NT®,

Windows®

2000,

AIX®,

iSeries™,

HP-UX,

Solaris,

and

other

platforms

v

Host

messaging:

WebSphere

MQ

for

z/OS™

v

Pervasive

messaging:

MQe

for

Windows,

AIX,

Solaris,

Linux,

and

HP-UX

For

more

details

see

“How

MQe

works”

on

page

15.

©

Copyright

IBM

Corp.

2000,

2004

11

http://www.ibm.com/software/integration/websphere/library/

MQ

host

and

distributed

products

MQ

host

and

distributed

messaging

products

are

used

to

support

many

different

network

configurations,

all

of

which

involve

clients

and

servers,

some

examples

of

which

are

illustrated

below.

Note:

The

terms

client

and

server

have

very

specific

meanings

within

MQ

host,

distributed,

and

workstation

messaging

products,

that

do

not

always

correspond

to

their

meaning

within

MQe.

a)

Standalone

server

A

queue

manager

runs

on

a

single

server.

One

or

more

applications

run

on

that

server,

exchanging

messages

using

queues.

b)

Client/server

A

queue

manager

runs

on

a

server,

but

the

clients

each

have

access

to

it

through

a

bidirectional

connection

called

a

client

channel.

The

client

channel

implements

something

similar

to

a

remote

procedure

call

(RPC).

Applications

can

run

on

the

clients,

accessing

server

queues.

One

advantage

of

the

client/server

configuration

is

that

the

client-messaging

Server

(a) Standalone server

Server

Client

Client

(b) Client-server

Server

Client

Client

Server

Client

Client

(c) Distributed client-server

Figure

1.

Simple

host

and

distributed

configurations

12

MQe

Getting

Started

infrastructure

is

lightweight,

because

it

depends

on

the

server

queue

manager.

One

disadvantage

is

that

clients

and

their

associated

server

operate

synchronously

and,

therefore,

require

the

client

channel

to

be

available

at

all

times.

c)

Distributed

client/server

This

configuration

involves

multiple

servers.

In

this

example,

servers

exchange

messages

through

unidirectional

connections

called

message

channels.

Message

channels

assure

safe

and

asynchronous

exchange

of

message

data.

Message

channels

do

not

need

to

be

available

for

the

clients

to

continue

processing.

However,

no

messages

can

flow

between

servers

when

there

are

no

communication

links

established

between

servers.

The

MQ

family

The

MQ

family

includes

many

products,

offering

a

range

of

capabilities:

v

MQ

Workflow

simplifies

integration

across

the

whole

enterprise

by

automating

business

processes

involving

people

and

applications.

v

MQ

Integrator

is

powerful

message-brokering

software

that

provides

real-time,

intelligent

rules-based

message

routing,

and

content

transformation

and

formatting.

v

MQ

Messaging

provides

any-to-any

connectivity

from

desktop

to

mainframe,

through

business

quality

messaging,

supporting

over

35

platforms.

Both

MQ

Workflow

and

MQ

Integrator

products

take

advantage

of

the

connectivity

provided

by

the

MQ

messaging

layer.

MQe

MQe

supports

a

variety

of

network

configurations.

There

is

no

concept

of

a

client

or

a

server

as

in

the

MQ

host

or

distributed

products.

Instead,

you

can

configure

MQe

queue

managers

to

act

as

clients

or

servers,

enabling

them

to

perform

application-defined

tasks.

An

example

of

tailored

configuration

is

that

you

can

give

MQe

the

ability

to

exchange

messages

with

MQ

host

queue

managers.

To

do

this,

configure

an

MQe

WebSphere MQ Family

WebSphere MQ Workflow

WebSphere MQ Integrator

WebSphere MQ

�

�

�

Workflow Process flow
Application services
Tools

�

�

�

Transforms, rules, routing
API framework
Templates, utilities

�

�

�

Message services
All commercial platforms
Language adapters

Figure

2.

The

MQ

family

What

is

MQe

13

queue

manager

with

bridge

capabilities.

Without

the

bridge,

an

MQe

queue

manager

can

communicate

directly

with

other

MQe

queue

managers

only.

However,

it

can

communicate

indirectly

through

other

queue

managers

in

the

network

that

have

bridge

capabilities.

Note:

A

new

node

for

MQ

Integrator

(MQSI)

allows

you

to

connect

to

MQe,

without

using

the

MQ

bridge.

For

more

details

see

“How

MQe

works”

on

page

15.

How

MQe

extends

the

MQ

family

MQe

extends

the

messaging

scope

of

the

MQ

family

by:

v

Supporting

low-end

devices,

such

as

PDAs,

telephones,

and

sensors.

MQe

also

supports

intermediate

devices

such

as

laptops,

workstations,

distributed,

and

host

platforms.

MQe

offers

once

and

once-only

assured

delivery

of

messages,

and

permits

message

exchange

with

other

family

members.

v

Offering

lightweight

messaging

facilities.

v

Providing

extensive

security

features

to

protect

messages,

queues,

and

related

data,

whether

in

storage

or

in

transmission.

v

Operating

efficiently

in

hostile

communications

environments

where

networks

are

unstable,

or

where

bandwidth

is

tightly

constrained.

MQe

has

an

efficient

wire

protocol

and

automated

recovery

from

communication

link

failures.

v

Supporting

the

mobile

user,

allowing

network

connectivity

points

to

change

as

devices

roam.

MQe

also

allows

control

of

behavior

in

conditions

where

battery

resources

and

networks

are

constrained.

v

Operating

through

suitably

configured

firewalls.

v

Minimizing

administration

tasks

for

the

user.

This

makes

MQe

a

suitable

base

on

which

to

build

utility-style

applications.

v

Being

easily

customized

and

extended,

through

the

use

of

application-supplied

rules.

MQe

does

not

support

all

the

functions

of

MQ.

Apart

from

environmental,

operating

system

and

communication

considerations,

these

are

some

of

the

more

significant

differences:

v

No

clustering

support

v

No

distribution

list

support

v

No

grouped

or

segmented

messages

v

No

load

balancing

or

warm

standby

capabilities

v

No

reference

message

v

No

report

options

v

No

shared

queue

support

v

No

triggering

v

No

unit

of

work

support,

no

XA-coordination

v

Different

scalability

and

performance

characteristics

However,

within

MQe

many

application

tasks

can

be

achieved

through

alternative

means

using

MQe

features,

or

through

the

exploitation

of

subclassing,

the

replacement

of

the

supplied

classes,

or

the

exploitation

of

the

rules,

interfaces,

and

other

customization

features

built

into

the

product.

14

MQe

Getting

Started

What

you

might

use

MQe

for

MQe

supports

mobility,

and

fragile

communication

networks.

Because

MQe

is

targeted

at

lightweight

devices,

it

is

frugal

in

its

use

of

system

resources.

It

offers

tailored

functions

and

interfaces

and

does

not

aim

to

provide

exactly

the

same

capabilities

as

other

members

of

the

MQ

family.

It

also

includes

unique

functions

to

support

its

particular

classes

of

user,

such

as

comprehensive

security

provision,

messages,

synchronous

and

asynchronous

messaging,

remote

queue

access,

and

message

push

and

pull.

Scenarios

and

Applications

There

are

various

possible

types

of

MQe

applications,

many

of

which

are

expected

to

be

custom

applications

developed

for

particular

user

groups.

The

following

list

gives

some

examples:

Retail

applications

v

Trickle

feeding

till

transactions

to

host

systems,

such

as

message

brokers

Consumer

applications

v

Supermarket

shopping

from

home

using

a

PDA

v

Gathering

traveller

preferences

on

airlines

v

Financial

transactions

from

a

mobile

phone

Control

applications

v

Collection

and

integration

of

data

from

oil

pipeline

sensors

transmitted

via

satellite

v

Remote

operation

of

equipment

(such

as

valves)

with

security

to

guarantee

the

validity

of

the

operator

Mobile

workforce

v

Visiting

professionals,

for

example

an

insurance

agent

v

Rapid

publication

of

proof

of

customer

receipt

for

parcel

delivery

companies

v

Information

exchange

between

kitchen

and

waiting

staff

v

Golf

tournament

score

keeping

v

Secure

mobile

systems

messaging

for

the

police

v

Job

information

for

utility

workers

in

situations

where

communication

is

frequently

lost

v

Domestic

meter

reading

Personal

productivity

v

Mail

and

calendar

replication

v

Database

replication

v

Downloading

to

laptops

How

MQe

works

The

fundamental

elements

of

the

MQe

programming

model

are

messages,

queues,

and

queue

managers.

v

MQe

messages

contain

application-defined

content.

Messages

are

stored

in

a

queue

and

can

be

moved

across

an

MQe

network.

You

can

address

messages

to

a

target

queue

by

specifying

the

target

queue

manager

and

queue

name.

What

is

MQe

15

v

Applications

place

messages

on

queues

through

a

put

operation

and

typically

retrieve

them

through

a

get

operation.

v

Queues

can

either

be

local

or

remote

and

are

managed

by

queue

managers.

v

The

registry

stores

configuration

data.

Read

the

rest

of

the

topics

in

this

section

to

learn

more.

Messages

A

message

is

a

collection

of

data

sent

by

one

application

and

intended

for

another

application.

MQe

messages

differ

from

those

supported

by

MQ

messaging:-

v

In

MQ,

messages

are

byte

arrays,

divided

into

a

message

header

and

a

message

body.

MQ

creates

the

message

header,

which

contains

vital

information,

such

as

the

identity

of

the

reply-to

queue,

the

reply-to

queue

manager,

the

message

ID,

and

the

correlation

ID.

The

message

body

contains

data

that

is

useful

only

to

the

application.

v

Messages

in

MQe

have

no

concept

of

a

header

or

a

message

body.

They

are

of

type

MQeFields,

which

consists

of

a

name,

a

data

type,

and

the

data

itself.

Message

names

are

ASCII

character

strings

of

unlimited

length,

excluding

any

of

the

characters:

{

}

[

]

#

(

)

:

;

,

’

"

=

Table

1

describes

the

different

data

types:

Table

1.

Data

types

Type

Description

ASCII

String

or

a

dynamic

array

of

invariant

ASCII

strings,

excluding

any

of

the

characters

{

}

[

]

#

(

)

:

;

,

’

"

=

Boolean

True

or

false

value

Byte

Fixed

array,

or

a

dynamic

array

of

byte

values

Double

floating

point

Value,

fixed

array,

or

a

dynamic

array

of

double

floating

point

values

Fields

Object

or

a

dynamic

array

of

fields

objects

(thus

nesting

of

fields

objects

is

supported)

Floating

point

Value,

fixed

array,

or

a

dynamic

array

of

floating

point

values

Integer

4

byte

value,

fixed

array,

or

a

dynamic

array

of

integers

Long

integer

8

byte

value,

fixed

array,

or

a

dynamic

array

of

long

integers

Short

integer

2

byte

value,

fixed

array,

or

a

dynamic

array

of

short

integers

Unicode

String

or

a

dynamic

array

of

Unicode

strings

Additionally,

messages

include

a

UID

(unique

identifier)

which

is

generated

by

MQe.

This

UID

uniquely

identifies

each

individual

message

object

in

the

entire

MQe

network

and

is

constructed

from

the:

16

MQe

Getting

Started

Originating

queue

manager

This

is

the

name

of

the

originating

queue

manager,

which

must

be

unique.

It

is

added

by

the

queue

manager

on

receipt

of

the

message.

As

it

is

ASCII,

every

character

is

one

byte

long.

Creation

time

This

is

the

timestamp

of

a

message.

Therefore,

in

Java,

this

is

the

time

that

the

message

was

created,

and

in

C,

this

is

the

time

that

a

field’s

item

is

added

to

a

queue.

The

field

item

then

becomes

a

message.

A

message

destined

for

another

MQe

queue

manager

does

not

require

any

additional

information,

though

other

properties

are

almost

certainly

present.

Additional

properties

can:

v

Reflect

current

status

v

Be

associated

with

a

particular

message

subclass

v

Allow

you

to

customize

a

message.

Note:

In

the

C

codebase

a

field’s

item

only

becomes

a

message

upon

arrival

on

a

queue.

MQe

adds

property

related

information

to

a

message

(and

subsequently

removes

it)

in

order

to

implement

messaging

and

queuing

operations.

When

sending

a

message

between

queue

managers,

you

can

add

resend

information

to

indicate

that

data

is

being

retransmitted.

Chapter

4,

“Messaging”,

of

the

MQe

Application

Programming

Guide

provides

more

information

on

message

object

properties.

Messages

can

also

have

attributes.

Attributes

are

fundamental

to

the

MQe

security

model

and

allow

selective

access

to

content

and

the

protection

of

content.

They

have

the

following

properties:

Table

2.

Attribute

object

properties

Property

Description

Authentication

Controls

access

Encryption

Protects

the

contents

when

the

object

is

dumped

(and

allows

restoration)

Compression

Reduces

storage

requirements

(for

transmission

and

storage)

Rule

(Not

applicable

to

C

codebase)

Controls

permitted

operations

For

more

information

on

the

properties

in

Table

2,

see

“Security”

on

page

26.

Queues

Queues

are

typically

used

to

hold

messages

pending

their

removal

by

application

programs.

Each

queue

belongs

to

a

queue

manager.

Applications

are

not

normally

permitted

to

directly

access

a

queue.

Instead,

the

queue

manager

acts

as

an

intermediary

between

application

programs

and

queues.

Queues

are

identified

by

name,

and

the

name

can

be

an

ASCII

character

string

of

unlimited

length,

excluding

any

of

the

following

characters:

{

}

[

]

#

(

)

:

;

,

’

"

=

However,

queue

names

must

be

unique

within

a

particular

queue

manager.

For

interoperability

with

MQ,

we

recommend

that

you

also

observe

MQ

naming

What

is

MQe

17

restrictions,

including

a

maximum

name

length

of

48

characters.

The

name

length

may

also

be

restricted

by

the

file

system

you

are

using.

MQe

supports

a

number

of

different

queue

types:

Local

queues

Applications

use

local

queues

to

store

messages

in

a

safe

and

secure

manner

(excluding

hardware

failure

or

loss

of

the

device).

Local

queues

belong

to

a

specific

queue

manger.

This

can

be

either

a

standalone

queue

manager

or

a

queue

manager

that

is

connected

to

a

network.

Remote

queues

Remote

queues

are

local

references

to

queues

that

reside

on

another

queue

manager

in

the

MQe

network.

The

local

reference

has

the

same

name

as

the

target

queue,

but

the

remote

queue

definition

identifies

the

owning

queue

manager

of

the

real

queue.

Remote

queues

also

have

properties

concerned

with

access,

security

characteristics,

and

transmission

options.

Their

mode

of

access

can

be

either

synchronous

or

asynchronous.

Store-and-forward

queues

A

store-and-forward

queue

stores

messages

on

behalf

of

one

or

more

queue

managers

until

they

are

ready

to

receive

them.

This

type

of

queue

is

not

present

in

the

C

codebase.

Store-and-forward

queues

have

two

main

uses:

1.

To

enable

the

intermediate

storage

of

messages

in

a

network,

so

that

they

can

proceed

to

their

destination

(a

forwarding

role)

2.

To

hold

messages

awaiting

collection

by

a

Home-server

queue.

This

type

of

queue

is

normally

(but

not

necessarily)

defined

on

a

server

or

gateway.

Store-and-forward

queues

can

hold

messages

for

many

target

queue

managers,

or

there

may

be

one

store-and-forward

queue

for

each

target

queue

manager.

Home-server

queues

While

remote

queues

and

store-and-forward

queues

push

messages

across

the

network,

with

the

sending

queues

initiating

the

transmission,

home-server

queues

pull

messages

from

a

remote

queue.

Messages

are

never

addressed

to

a

home-server

queue.

A

home-server

queue

definition

identifies

a

store-and-forward

queue

on

a

remote

queue

manager.

The

home-server

queue

then

pulls

messages

that

are

destined

for

its

local

queue

manager

from

the

store-and-forward

queue.

Multiple

home-server

queue

definitions

can

be

defined

on

a

single

queue

manager,

where

each

one

is

associated

with

a

different

remote

store-and-forward

queue.

Administration

queues

An

administration

queue

is

a

type

of

local

queue

that

accepts

administration

messages.

An

administration

message

contain

instructions,

processed

internally

by

the

application,

relating

to

a

particular

element

of

MQe.

Each

administration

action

can,

optionally,

cause

an

administration

reply

message

to

be

sent

back

to

the

originating

application.

These

reply

messages

inform

you

of

the

success

or

failure

of

the

administration

action.

In

this

way,

using

administration

queues

allows

an

element

on

one

queue

manager

to

control

the

configuration

of

a

second

queue

manager,

either

synchronously

or

asynchronously.

Administration

messages

are

processed

18

MQe

Getting

Started

in

order

of

arrival

on

the

administration

queue.

For

further

information,

refer

to

the

section

on

“Administration”

on

page

21.

MQ

bridge

queues

A

bridge

queue

is

a

specialist

form

of

remote

queue,

describing

a

queue

on

an

MQ

remote

queue

manager.

Bridge

queues

put

or

get

from

the

MQ

queue

they

reference.

In

Java

only,

it

uses

a

transformer

to

perform

any

necessary

data

or

message

reformatting

as

each

message

is

exchanged

between

the

MQe

and

MQ

systems.

You

can

only

create

a

bridge

queue

on

a

gateway

queue

manager.

MQe

stores

data

securely

on

queues,

ensuring

that

messages

are

physically

written

to

the

media

and

not

simply

stored

by

the

operating

system.

However,

MQe

does

not

independently

log

changes

to

messages

and

queues.

Therefore,

to

recover

from

media

failure,

you

need

to

deploy

hardware

solutions,

such

as

RAID

disk

systems.

Alternatively,

map

the

queue

into

recoverable

storage,

for

example

database

subsystems.

MQe

has

four

commonly

used

system

queues:

Administration

queue

Receives

administration

messages

Dead

letter

queue

Stores

messages

that

cannot

otherwise

be

delivered

Administration

reply

queue

Receives

replies

to

administration

messages

(optional)

SYSTEM.DEFAULT.LOCAL.QUEUE

Shares

a

common

name

with

the

mandatory

system

queue

on

MQ

servers.

Queue

managers

The

MQe

queue

manager

allows

MQe

to

support

a

variety

of

network

configurations.

It

provides:

v

A

central

point

of

access

to

a

messaging

and

queueing

network

for

MQe

applications

v

Optional

client-side

queuing

v

Connection

control

v

Optional

administration

functions

v

Once

and

once-only

assured

delivery

of

messages

v

Automated

recovery

from

failure

conditions

v

Customizable

rules-based

behavior

In

MQe,

you

can

only

have

one

queue

manager

active

on

a

single

Java

virtual

machine

(JVM),

or

in

a

single

native

application

process

at

any

one

time.

To

have

multiple

queue

managers

on

a

machine,

you

require

either

multiple

JVM

or

multiple

native

application

processes.

Queue

managers

are

identified

by

a

globally

unique

name

and

an

ASCII

character

string

of

unlimited

length,

excluding

any

of

the

following

characters:

{

}

[

]

#

(

)

:

;

,

’

"

=

This

restriction

is

not

enforced

by

MQe

or

MQ,

but

duplicate

queue

manager

names

may

cause

messages

to

be

delivered

to

the

wrong

queue

manager.

For

What

is

MQe

19

interoperability,

we

recommend

that

you

limit

the

maximum

name

length

to

48

characters.

The

file

system

that

you

are

using

may

also

restrict

the

name

length.

You

can

configure

queue

managers

with

or

without

local

queueing.

All

queue

managers

support

synchronous

messaging

operations.

A

queue

manager

with

local

queueing

also

supports

asynchronous

message

delivery.

Asynchronous

message

delivery

and

synchronous

message

delivery

have

very

different

characteristics

and

consequences:

Synchronous

message

delivery

With

synchronous

message

delivery

the

application

puts

the

message

to

MQe

for

delivery

to

the

remote

queue.

MQe

simultaneously

contacts

the

target

queue

and

delivers

the

message.

After

delivery,

MQe

returns

immediately

to

the

application.

If

the

message

cannot

be

delivered,

the

sending

application

receives

immediate

notification.

MQe

does

not

assume

responsibility

for

message

delivery

in

the

synchronous

case

(non-assured

message

delivery).

Asynchronous

message

delivery

With

asynchronous

message

delivery

the

application

puts

the

message

to

MQe

for

delivery

to

a

remote

queue.

MQe

immediately

returns

to

the

application.

If

the

message

can

be

delivered

immediately,

or

moved

to

a

suitable

staging

post,

then

it

is

sent.

If

not,

it

is

stored

locally.

Asynchronous

delivery

provides

once,

and

once-only

assured

delivery,

because

the

message

has

been

passed

to

MQe

and

it

has

become

responsible

for

delivery

(assured

message

delivery).

See

Message

delivery

for

more

detailed

information

on

synchronous

and

asynchronous

messaging.

Queue

manager

configuration

The

queue

manager

runs

in

an

environment

established

by

MQe,

before

the

queue

manager

is

loaded.

The

queue

manager

stores

its

configuration

information

in

its

registry.

“The

registry”

on

page

27

provides

more

information

on

this.

The

queues

themselves

(containing

messages)

are

stored

in

queue

stores.

You

can

configure

the

MQe

environment

using

the

API,

utilities

shipped

with

MQe,

or

management

tools

such

as

MQe_Explorer.

These

methods

can

capture

the

environment

parameters

in

an

initialization

file,

but

this

is

optional.

See

Queue

manager

operations

for

more

information

on

queue

managers.

See

Configuring

MQe

objects

for

more

information

on

configuration.

You

can

configure

a

queue

manager

with

MQ

bridge

capabilities.

This

is

called

a

gateway

and,

in

Java,

it

exchanges

messages

with

MQ

host

and

distributed

products.

The

C

codebase

uses

a

device

queue

manager

only.

Queue

manager

operations

Queue

managers

support

messaging

operations

and

manage

queues.

Applications

access

messages

through

the

services

of

the

queue

manager

using

methods

such

as:

Get

This

operation

removes

messages

from

a

queue.

Put

This

operation

places

messages

on

a

queue.

Delete

By

specifying

the

UID,

you

can

delete

messages

from

a

queue

without

using

the

get

operation.

Browse

You

can

browse

queues

for

messages

using

a

filter

(see

below).

Browsing

20

MQe

Getting

Started

retrieves

all

the

messages

that

match

the

filter,

but

leaves

them

on

the

queue.

MQe

also

supports

Browsing

under

lock.

This

allows

you

to

lock

the

matching

messages.

Wait

In

Java,

applications

can

wait

for

a

specified

time

for

messages

to

arrive

on

a

queue.

This

does

not

apply

to

the

C

codebase.

Listen

In

Java,

applications

can

listen

for

MQe

message

events,

again

with

an

optional

filter.

However,

in

order

to

do

this,

you

must

add

a

listener

to

the

queue.

Listeners

are

notified

when

messages

arrive

on

a

queue.

This

does

not

apply

to

the

C

codebase.

Many

of

these

operations

take

a

filter

as

one

of

their

parameters.

A

filter

matches

an

element

for

equality

and

any

parts

of

the

message

can

be

used

for

selective

retrieval.

Most

method

calls

also

include

an

attribute

to

be

used

in

the

encoding

or

decoding

of

a

message.

See

Messaging

for

detailed

information

on

messaging

operations.

Administration

The

MQe

interface

handles

the

generation

and

receipt

of

administration

messages,

enabling

administration.

While

applications

are

responsible

for

message-related

functions,

administration

provides

facilities

to

configure

and

manage

MQe

resources

such

as

queues

and

connections.

Requests

are

sent

to

the

administration

queue

of

the

target

queue

manager

and

replies

can

be

received,

if

required.

Any

local

or

remote

MQe

application

program

can

create

and

process

administration

messages

directly

or

indirectly

through

helper

methods.

You

can

perform

some

administration

actions

using

the

administrator.

These

actions

are

performed

only

on

resources

that

are

managed

by

the

local

queue

manager.

The

administration

queue

itself

cannot

perform

the

administration

of

individual

resources.

The

relevant

information

is

contained

in

each

resource

and

its

corresponding

administration

message.

Administration

messages

Once

created,

queue

managers

are

configured

by

the

sending

of

administration

messages

to

the

target

queue

manager

administration

queue.

A

queue

manager

that

does

not

have

an

administration

queue

cannot

be

administered.

The

intent

behind

using

administration

messages

is

that

both

local

and

remote

administration

is

performed

in

an

identical

manner.

An

administration

message

is

created

and

sent

to

the

administration

queue

of

the

queue

manager

to

be

administered.

You

can

apply

queue-based

security

attributes

to

control

access.

An

administration

message

includes

details

of

the

request,

indicates

whether

or

not

a

response

is

required,

and

contains

the

address

identifying

the

target

queue

manager

and

queue.

Therefore,

MQe

has

the

following

styles

of

administration

message:

v

Commands

that

indicate

an

administration

action

that

does

not

require

a

reply

v

Requests

that

require

a

reply

v

Reply

messages

constructed

from

a

copy

of

the

original

message

The

sender

can

add

additional

fields

for

use

by

the

receiver.

The

administration

queue

itself

acts

upon

the

message.

Administration

messages

can

inquire

on,

What

is

MQe

21

create,

delete,

or

update

objects.

For

a

subset

of

the

objects

they

can

perform

additional

functions,

such

as

stop

and

start.

See

Configuring

MQe

objects

for

more

detailed

information

on

administration

messages.

Administration

messages

can

also

be

generated

indirectly

through

the

MQe_Explorer,

a

management

tool

that

provides

a

graphical

user

interface

for

system

administration.

MQe_Explorer

is

not

included

with

MQe

but

is

available

for

free

download

as

a

SupportPac.

Selective

administration

The

authenticator

on

the

administration

queue

can

control

access

to

administration.

The

supplied

authenticator

considers

local

applications

to

represent

the

same

local

user

and,

therefore,

either

enables

or

prevents

administration

for

all

of

the

applications.

Starting

the

authenticator

on

the

connection,

before

any

administration

messages

flow,

controls

remote

administration

applications.

This

distinguishes

different

remote

applications

from

each

other,

and

then

enables

or

prevents

administration

for

each

remote

application.

In

all

cases,

administration

is

either

completely

enabled

or

prevented.

An

authenticator

can

keep

track

of

permissions

associated

with

user

identities,

and

administration

messages

can

subsequently

be

processed

on

the

basis

of

these

permissions.

See

“Security”

on

page

26

for

more

information

on

authentication.

You

can

also

use

rules

that

are

associated

with

queues

to

enable

or

prevent

actions

in

a

similar

manner.

See

“Customizing

rules”

on

page

29

for

more

information

on

rules.

Monitoring

and

related

actions

Administration

involves

more

than

creating

and

modifying

elements.

It

can

include

monitoring

a

system

and

informing

an

operator

when

a

queue

is

full,

or

dealing

with

an

error

situation,

for

example

taking

appropriate

action

when

a

message

arrives

that

is

too

large

for

its

target

queue.

MQe

handles

these

aspects

using

rules,

whenever

elements

significantly

change

their

status

or

when

certain

types

of

error

situations

arise.

MQe

provides

a

default

rule

implementation,

which

users

can

customize

if

they

wish.

See

“Customizing

rules”

on

page

29

for

more

information

on

this.

Connections

A

connection

provides

a

queue

manager

with

information

to

establish

communication

links

with

a

remote

queue

manager.

Queue

managers

then

use

connections

to

exchange

information.

Connection

definitions

are

stored

locally

at

each

queue

manager.

Note:

The

C

codebase

is

a

device

queue

manager

only.

Some

of

the

key

features

of

connections

are:

Support

for

both

synchronous

and

asynchronous

messaging

Synchronous

messaging

provides

a

transmission

service

directly

from

the

source

application

to

the

target

queue,

without

queuing

at

the

source

queue

manager.

Asynchronous

messaging

is

a

transmission

service

from

the

source

queue

manager

to

the

target

queue,

with

possible

queuing

at

the

source

queue

manager.

End-to-end

service

provision

Connections

go

from

the

source

queue

manager

to

a

destination

queue

22

MQe

Getting

Started

manager,

possibly

running

through

intermediate

queue

managers.

The

underlying

transport

protocol

used

can

change

as

the

connection

passes

through

these

intermediates.

Several

connections

can

link

together

to

form

end-to-end

connections.

Support

for

compression,

encryption,

and

authentication

Connections

have

these

security

characteristics

to

protect

the

data

in

transit.

Support

for

client/server

operation

Client/server

connections

are

request/response.

The

client

makes

a

request

of

the

server

and

the

server

responds

to

that

request.

Note

that

this

does

not

restrict

the

message

flow.

Messages

can

flow

from

client

to

server

and

from

server

to

client.

See

Messaging

for

more

detailed

information

on

client/server

connections.

The

following

diagrams

show

some

typical

MQe

configurations.

For

the

purpose

of

clarity,

the

diagrams

show

only

the

direct

connections

that

have

been

defined.

You

can

also

define

indirect

connections

that

exploit

the

direct

connections.

In

the

diagrams,

a

line

with

the

arrow

pointing

to

the

server

represents

a

client/server

connection.

Clients

can

use

the

client/server

connection

both

to

send

messages

to

the

server

and

to

pull

messages

destined

for

themselves

from

that

server.

Lines

with

no

arrows

indicate

MQ

client

channels

that

enable

communications

between

MQe

and

MQ.

Figure

3

shows

a

standalone

queue

manager

being

used

to

support

one

or

more

applications

that

use

queues

to

exchange

data.

Figure

4

shows

a

small

network

configuration,

where

the

central

server

queue

managers

use

a

pair

of

direct

client/server

connections

to

exchange

information.

Each

client

queue

manager

uses

a

direct

client/server

connection

to

link

to

one

of

the

server

queue

managers.

A

single

queue

manager

can

initiate

either

client

or

server

connections,

and

respond

as

a

server.

In

this

case,

the

listener

and

the

standard

listener

must

have

different

port

numbers.

Queue
manager

Figure

3.

A

stand-alone

MQe

queue

manager

Queue
manager

Queue
manager

Queue
manager

Queue
manager

Queue
manager

Queue
manager

Figure

4.

Small

network

configuration

What

is

MQe

23

Figure

5

an

MQe

configuration

where

one

of

the

queue

managers

has

been

configured

with

the

bridge

option

and

the

pool

of

client

channels

has

been

directed

at

a

single

target

MQ

host/distributed

server.

As

connections

typically

define

the

access

to

a

remote

queue

manager,

they

are

sometimes

referred

to

as

remote

queue

manager

definitions.

You

can

also

specify

indirect

connections.

In

this

case,

MQe

routes

the

connection

through

other

queue

managers

(which

can

be

chained),

and

the

protocol

can

change

en

route.

Indirect

connections

are

particularly

useful

in

enabling

devices

to

have

a

single

point

of

entry

to

an

MQe

network.

As

with

most

MQ

elements,

you

can

define

aliases

for

connections.

Use

a

local

connection,

defined

as

a

connection

with

a

name

matching

that

of

the

local

queue

manager,

to

define

alias

names

for

the

local

queue

manager

itself.

Connections

support

bidirectional

flows

and

are

established

by

the

queue

manager

as

required.

Asynchronous

and

synchronous

messaging

both

use

the

same

connections

and

the

protocol

used

is

unique

to

MQe.

Connection

definitions

determine

the

links

and

protocols

to

be

used

for

a

particular

connection.

At

each

intermediate

node

any

messages

flowing

through

are

passed

to

the

queue

manager

at

that

point.

The

queue

manager

will

handle

the

messages

according

to

the

resources

it

has.

So

a

message

may

be

placed

on

a

queue

which

might

be

a

local

queue,

a

remote

queue,

or

a

store-and-forward

queue.

Messages

placed

on

remote

queues

will

continue

their

journey

according

to

the

type

of

remote

queue.

Synchronous

remote

queues

will

move

the

messages

onward

immediately.

Asynchronous

remote

queues

will

store

their

messages

before

moving

them.

Connections

are

not

directly

visible

to

applications

or

administrators

and

are

established

by

the

queue

manager

as

required.

Connections

link

queue

managers

together

and

their

characteristics

are

changed

by

MQe,

depending

upon

the

information

to

be

flowed.

Transporters

are

the

MQe

components

that

exploit

connections

to

provide

queue

level

communication.

Again,

these

are

not

visible

to

the

application

programmer

or

administrator.

When

assured

messaging

is

demanded,

MQe

delivers

messages

to

the

application

once,

and

once-only.

It

achieves

this

by

ensuring

that

a

message

has

been

successfully

passed

from

one

queue

manager

to

another,

and

acknowledged,

before

WebSphere MQ
server

Client

Client
Queue

manager
with bridge

Queue
manager

Queue
manager

Figure

5.

An

integrated

MQ

family

network

24

MQe

Getting

Started

deleting

the

copy

at

the

transmitting

end.

In

the

event

of

a

communications

failure,

if

an

acknowledgment

has

not

been

received,

a

message

can

be

retransmitted,

as

once-only

delivery

does

not

imply

once-only

transmission.

However,

duplicates

are

not

delivered.

Connection

styles

MQe

supports

client/server

operation.

A

client

can

initiate

communication

with

a

server.

A

server

can

respond

only

to

the

requests

initiated

by

a

client.

The

components

involved

are:

Listener

Listens

for

incoming

connection

requests.

Queue

manager

Supports

applications

through

the

provision

of

messaging

and

queuing

capabilities.

Table

3.

Connection

styles

Queue

manager

Listener

Client

Yes

No

Client/server

Yes

Yes

Server

Yes

Yes

Servlet

Yes

No

Table

3

shows

the

relationship

between

these

components

and

the

connection

style.

The

client/server

connection

style

describes

the

situation

where

MQe

can

operate

in

either

client

or

server

mode.

The

servlet

option

describes

the

case

where

MQe

is

configured

as

an

HTTP

servlet

with

the

HTTP

server

itself

responsible

for

listening

for

incoming

connection

requests.

MQe

applications

are

not

directly

aware

of

the

connection

style

used

by

the

queue

managers.

However,

the

style

is

significant

in

that

it

affects

what

resources

are

available

to

the

parties,

which

queue

managers

can

connect

with

other

queue

managers,

how

much

memory

MQe

uses,

and

which

connections

can

concurrently

exist.

Adapters

Adapters

are

used

to

map

MQe

to

device

interfaces.

For

example:-

v

Channels

exploit

protocol

adapters

to

run

over

HTTP,

native

TCP/IP,

UDP,

and

other

protocols.

v

Queues

exploit

field

storage

adapters

to

interface

to

a

storage

subsystem

such

as

memory

or

the

file

system.

Adapters

provide

a

mechanism

for

MQe

to

extend

its

device

support

and

allow

version

control.

Note:

Unlike

the

MQe

Java

codebase,

the

C

codebase

uses

the

HTTP

adapter

only.

Dialup

connection

management

Dialup

networking

support

for

devices

is

handled

by

the

device

operating

system.

When

MQe

on

a

disconnected

device

attempts

to

use

the

network

(for

example

because

a

message

must

be

sent)

and

the

network

stack

is

not

active,

the

operating

What

is

MQe

25

system

itself

initiates

remote

access

services

(RAS).

Typically

this

takes

the

form

of

a

panel

displayed

to

the

user,

offering

a

dialup

connection

profile.

Until

the

connection

is

established,

the

operating

system

is

in

control.

Consequently

the

device

user

must

ensure

that

appropriate

dialup

connection

profiles

are

available

for

the

operating

system

to

use.

There

is

no

explicit

support

for

dialup

networking

in

MQe.

Trace

Trace

is

enabled

by

running

an

independent

program

that

performs

tracing

actions.

Calls

to

trace

for

information,

warning,

and

error

situations

are

embedded

within

MQe.

Applications

can

also

call

trace

directly

and,

using

the

MQe

Java

codebase

only,

add

new

messages.

Because

the

interface

that

a

trace

handler

must

implement

is

published,

solutions

can

implement

this

interface

to

collect

MQe

and

application

trace,

interleave

it,

and

direct

the

output

to

where

it

can

be

collected.

Several

trace

handlers

are

supplied

as

part

of

the

product

code.

Also,

because

most

MQe

exceptions

are

passed

to

the

application

for

handling,

the

application

exception

handler

can

also

route

these

to

trace.

Event

log

This

does

not

apply

to

the

C

codebase.

MQe

provides

event

log

mechanisms

and

interfaces

that

can

be

used

to

log

status.

For

example,

you

can

request

a

log

entry

when

a

queue

manager

starts.

Logging

is,

by

default,

written

to

a

file,

but

you

can

intercept

this

and

direct

it

elsewhere.

The

MQe

event

log

does

not

log

message

data

and

cannot

be

used

to

recover

messages

or

queues.

Security

MQe

provides

an

integrated

set

of

security

features

enabling

the

protection

of

message

data

both

when

held

locally

and

when

being

transferred.

MQe

provides

security

under

three

different

categories:

Local

security

Protects

message-related

data

at

a

local

level

Message-level

security

Protects

messages

between

the

initiating

and

receiving

MQe

application

Queue-based

security

Protects

messages

between

the

initiating

queue

manager

and

the

target

queue

Local

and

message-level

security

are

used

internally

by

MQe

and

are

also

made

available

to

MQe

applications.

MQe

queue-based

security

is

an

internal

service.

26

MQe

Getting

Started

The

MQe

security

features

of

all

three

categories

protect

message

data

by

use

of

an

attribute,

for

example

MQeAttribute.

Depending

on

the

category,

the

attribute

is

applied

either

externally

or

internally.

Each

attribute

can

contain

the

following:

Authenticator

Provides

additional

controls

to

prevent

access

to

the

local

data

by

unauthorized

users

Cryptor

Controls

the

strength

of

protection

required

Compressor

Optimizes

the

size

of

the

protected

data

Key

Controls

access

by

requesting

a

password

Target

entity

name

Requests

the

target

queue

name

These

elements

are

used

differently,

depending

on

the

MQe

security

category,

but

in

all

cases

the

MQe

security

feature’s

protection

is

applied

when

the

attribute

attached

to

a

message

is

invoked.

See

Security

for

more

information

on

the

above

elements,

and

Writing

authenticators

describes

how

to

write

your

own

authenticator.

The

registry

The

registry

is

the

main

store

for

queue

manager-related

information.

Each

queue

manager

has

at

least

one

registry.

Every

queue

manager

uses

the

registry

to

hold

its:

v

Queue

manager

configuration

data

v

Queue

definitions

v

Remote

queue

definitions

v

Connection

definitions

v

User

data

(including

configuration-dependent

security

information)

Registry

information

is

stored

using

an

adapter,

usually

the

MQeDiskFields

adapter.

See

Security

for

more

detailed

information

on

the

registry.

Private

registry

and

credentials

This

section

does

not

apply

to

the

C

codebase.

As

every

entity

needs

its

own

credentials

to

be

authenticated,

we

need

to

know:

1.

How

to

execute

registration

to

get

the

credentials

2.

Where

to

manage

the

credentials

in

a

secure

manner

The

private

registry

enables

the

secure

management

of

an

entity’s

private

credentials,

and

the

public

registry

manages

the

set

of

public

credentials.

The

private

registry

provides

a

base

registry

with

secure

or

cryptographic

tokens.

For

example,

it

can

be

a

secure

repository

for

public

elements

like

mini-certificates,

and

private

elements

like

private

keys.

What

is

MQe

27

The

private

registry

allows

only

authorized

users

to

access

the

private

elements.

Normally,

only

the

legitimate

queue

manager

user

can

access

the

registry

using

a

PIN.

However,

configuration

options

enable

you

to

bypass

this

if

you

are

not

overly

concerned

with

security

issues.

The

private

registry

provides

support

for

services,

for

example

digital

signature

and

RSA

decryption,

in

such

a

way

that

the

private

objects

never

leave

the

private

registry.

By

providing

a

common

interface,

it

hides

the

underlying

device

support,

which

currently

is

restricted

to

the

local

file

system.

See

Security

for

more

detailed

information

on

the

private

registry

and

credentials.

Auto-registration

MQe

provides

default

services

that

support

auto-registration.

These

services

are

automatically

triggered

when

an

authenticatable

entity

is

configured,

for

example

when

a

queue

manager

is

started

or

when

a

new

queue

is

defined.

In

both

cases

registration

is

triggered

and

new

credentials

are

created

and

stored

in

the

entity’s

private

registry.

Therefore,

auto-registration

provides

a

simple

mechanism

to

establish

credentials

for

message-level

protection.

Auto-registration

steps

include:

1.

Generating

a

new

RSA

key

pair

2.

Protecting

and

saving

the

private

key

in

the

private

registry

3.

Packaging

the

public

key

in

a

new

certificate

request

to

the

default

mini-certificate

server

Assuming

the

mini-certificate

server

is

configured

and

available,

it

returns

the

entity’s

new

mini-certificate,

along

with

its

own.

These

servers

and

the

protected

private

key

are

stored

in

the

entity’s

private

registry

as

its

new

credentials.

See

Security

for

more

detailed

information

on

auto-registration.

Public

registry

and

certificate

replication

MQe

provides

default

services

that

enable

MQe

components

to

share

mini-certificates.

The

MQe

public

registry

provides

a

publicly

accessible

repository

for

mini-certificates.

This

is

analogous

to

the

personal

telephone

directory

service

on

a

mobile

phone,

the

difference

being

that,

instead

of

phone

numbers,

it

is

a

set

of

mini-certificates

of

the

authenticatable

entities

that

are

the

most

frequently

contacted.

The

public

registry

is

not

purely

passive

in

its

services.

If

accessed

to

provide

a

mini-certificate

that

it

does

not

hold,

and

if

configured

with

a

valid

home-server

component,

the

public

registry

automatically

attempts

to

fetch

the

requested

mini-certificate

from

the

public

registry

of

the

home

server.

These

services

can

be

used

to

provide

an

intelligent

automated

mini-certificate

replication

service

that

makes

the

right

mini-certificate

available

at

the

right

time.

Application

use

of

registry

services

The

MQe

queue

manager

exploits

the

advantages

of

using

private

and

public

registry

services,

but

access

to

these

services

is

not

restricted.

MQe

solutions

can

define

and

manage

their

own

entities,

such

as

users.

You

can

then

use

private

registry

services

to

auto-register

and

manage

the

credentials

of

the

new

entities,

and

public

registry

services

to

make

the

public

credentials

available

where

needed.

See

Security

for

more

detailed

information

on

how

to

use

registry

services.

28

MQe

Getting

Started

Default

mini-certificate

issuance

service

The

SupportPac

MQe

WTLS

Mini-Certificate

Server

is

available

as

a

separate

free

download.

This

software

package

provides

a

certificate

issuance

service

for

WTLS

certificates.

You

can

configure

queue

manager

and

queue

entities

on

this

certificate

issuance

server

to

provide

a

default

mini-certificate

issuance

service

that

satisfies

private-registry

auto-registration

requests

with

the

issuance

of

WTLS

certificates.

You

can

use

the

MQe

certificate

issuance

service

to

set

up

and

manage

a

mini-certificate

issuance

service

to

issue

mini-certificates

to

a

carefully

controlled

set

of

entity

names.

The

characteristics

of

this

issuance

service

are:

v

Management

of

the

set

of

registered

authenticatable

entities

v

Mini-certificate

issuance

v

WAP

WTLS

mini-certificate

repository

management

See

Security

for

more

detailed

information

on

issuing

mini-certificates.

Also,

refer

to

the

documentation

included

in

the

SupportPac

for

more

details

of

how

to

install

and

use

the

WTLS

digital

certificate

issuance

service

for

MQe.

The

security

interface

An

optional

interface

is

provided

that

can

be

implemented

by

a

custom

security

manager.

The

methods

allow

the

security

manager

to

authorize

or

reject

requests

associated

with:

v

Adding

and

removing

class

aliases

v

Defining

adapters

v

Mapping

file

descriptors

v

Processing

connection

commands

Customizing

rules

Rules

allow

users

to

customize

the

behavior

of

some

of

the

main

MQe

components.

MQe

provides

default

rules

where

necessary,

but

you

can

replace

these

with

application

or

installation-specific

rules

to

meet

customer

requirements.

The

rule

types

supported

differ

in

how

they

are

triggered

and

in

what

they

can

do.

Rules

contain

logic

and

can

therefore

perform

a

wide

range

of

functions.

Attributes

rules

Attribute

rules

apply

to

the

Java

codebase

only.

This

rule

class

is

given

control

whenever

a

change

of

state

is

attempted,

for

example,

a

change

of:

v

Authenticator

v

Compressor

v

Cryptor

The

rule

would

normally

allow

or

disallow

the

change.

See

Using

rules

for

more

detailed

information

on

rules.

What

is

MQe

29

MQ

bridge

rules

MQ

bridge

rules

apply

to

the

Java

codebase

only.

These

rule

classes

are

given

control

when

the

MQe

to

MQ

bridge

code

has

a

change

of

state.

There

is

a

separate

bridge

rule

class

to

determine

each

of

the

following:

v

What

to

do

with

a

message

when

a

listener

cannot

deliver

it

to

MQe,

when

it

is

coming

from

MQ,

for

example,

because

the

message

is

too

big

or

the

queue

does

not

exist

v

What

state

the

bridge-administered

queues

should

start

in

once

the

server

is

instantiated

v

What

to

do

when

the

bridge

finds

something

wrong

with

the

MQ

Sync

queue,

that

is

the

persistent

store

used

for

crash

recovery

(the

default

rule

displays

the

problem

only)

v

How

to

convert

an

MQe

message

to

an

MQ

message,

and

vice-versa

using

transformers

See

Using

rules

for

more

detailed

information

on

MQ

bridge

rules.

Queue

rules

This

rule

class

is

invoked

at

key

points

in

the

lifestyle

of

a

queue,

for

example

when:

v

A

message

is

added

to

a

queue,

for

example,

to

see

if

a

threshold

is

exceeded,

that

is

number

of

messages,

size

of

message,

or

invalid

priority.

v

A

queue

is

opened

or

closed.

v

A

queue

is

removed

from

a

queue

manager.

This

does

not

apply

to

the

native

C

codebase.

v

A

message

on

a

queue

has

exceeded

either

the

queue’s

or

its

own

expiry

interval.

Queue

manager

rules

This

rule

class

invoked

at

key

points

in

the

life-cycle

of

a

queue

manager,

for

example

when:

v

A

queue

manager

is

opened,

for

example,

to

start

a

background

timer

thread

running

to

allow

timed

actions

to

occur.

v

A

queue

manager

is

closed,

for

example,

to

terminate

the

background

timer

thread.

v

The

transmission

of

the

queue

manager’s

pending

messages

is

triggered.

Classes

This

section

does

not

apply

to

the

MQe

native

C

codebase.

MQe

provides

a

choice

of

classes

for

certain

functions

that

allow

you

to

customize

MQe

behavior

to

meet

specific

application

requirements.

In

some

cases

the

interfaces

to

classes

are

documented

so

that

additional

alternatives

can

be

developed.

The

table

below

summarizes

the

possibilities.

Classes

can

be

identified

either

explicitly

or

through

the

use

of

alias

names.

Note:

Some

of

the

classes

are

not

provided

in

the

C

Bindings

API.

See

Java

API

Programming

Reference

and

C

API

Programming

Reference

for

definitive

lists

of

the

supported

classes.

30

MQe

Getting

Started

Many

of

these

classes

are

automatically

given

an

alias

by

MQe,

these

are

documented

in

the

Java

API

Programming

Reference

in

com.ibm.mqe.MQe.alias.

Table

4.

Class

options

Class

Alternatives

supplied

Interfaces

documented

MQe

package

How

to

implement

Administration

No

Yes

Authenticators

Yes

No

com.ibm.mqe.attributes

extend

com.ibm.mqe.MQeAuthenticator

Communications

adapter

Yes

Yes

com.ibm.mqe.adapters

extend

com.ibm.mqe.adapters.MQeCommunicationsA

Communications

style

Yes

No

Compressors

Yes

No

com.ibm.mqe.attributes

extend

com.ibm.mqe.MQeCompressor

Cryptors

Yes

No

com.ibm.mqe.attributes

extend

com.ibm.mqe.MQeCryptor

Event

log

Sample

provided

Yes

implement

com.ibm.mqe.MQeEventLogInterface

Messages

No

Yes

com.ibm.mqe

extend

com.ibm.mqe.MQeMsgObject

Queue

storage

Yes

No

Normally

the

default

as

defined

by

the

alias

MsgLog:

should

be

used.

See

more

in

Queue

persistent

storage.

Rules

Default

classes

provided

Yes

extend

com.ibm.mqe.MQeRule

Storage

adapter

Yes

Yes

com.ibm.mqe.adapters

extend

com.ibm.mqe.adapters.MQeAdapter

Trace

Samples

provided

Yes

com.ibm.mqe.trace

Application

loading

This

section

does

not

apply

to

the

C

codebase.

When

an

MQe

queue

manager

is

loaded,

the

initiating

application

must

load

any

other

applications

into

the

JVM.

Standard

Java

facilities

can

be

used

for

this,

or

you

can

use

the

class

loader

included

as

part

of

MQe.

Therefore:-

v

Multiple

applications

can

run

against

a

single

queue

manager

in

the

same

JVM.

v

Alternatively,

you

can

use

multiple

JVMs,

but

each

requires

its

own

queue

manager

and

each

of

these

must

have

a

unique

name.

MQe

SupportPacs

MQe

is

a

family

of

products

that

collectively

provide

the

tools

needed

to

develop,

deploy,

and

manage

MQe

messaging

and

queuing

solutions.

The

family

comprises:

What

is

MQe

31

1.

The

MQe

licensed

product,

available

on

physical

media

from

IBM

or

as

a

Web

download

from:

http://www.ibm.com/software/integration/wmqe/

The

licensed

product

includes:

v

MQe

Java

classes

v

Helper

classes

v

MQe

C

Bindings

files

and

native

C

codebase

v

Application

source

code

examples

v

Utilities

v

Reference

manuals

v

License

information

The

physical

Program

Product

also

includes

entitlement

to

use

the

product

for

non-development

use

on

certain

platforms.

Further

capacity

units

need

to

be

purchased

for

use

on

larger

machines,

or

with

the

MQ

bridge.

2.

MQe

SupportPacs,

available

as

Web

downloads

from:

http://www.ibm.com/software/integration/support/supportpacs/

or

http://www.ibm.com/software/integration/wmqe/

The

management

tools

in

the

MQe

SupportPacs

play

an

important

role

in

all

phases

of

application

development

and

rollout.

They

are

more

sophisticated

than

the

utilities

included

with

the

licensed

product

and

are

an

essential

aid

to

getting

started,

configuring,

inspecting

pilot

networks,

and

managing

production

systems.

EA01:

WebSphere

MQ

Everyplace

-

XML

conversion

utility

Software

that

can

convert

from

an

MQeFields

object

to

an

XML

representation

and

vice-versa.

ED01:

MQSeries

Everyplace

-

GetStarted

Demonstrates

some

of

the

features

of

MQe

using

a

simple

message-passing

application

(Postcard),

with

a

simple

example

network

of

MQe

queue

managers.

ED02:

Using

MQSeries

Everyplace

with

WebSphere

Everyplace

Server

Describes

transaction

messaging,

as

implemented

by

the

MQSeries

Everyplace

component

of

the

WebSphere

Everyplace

Server.

ED03:

WebSphere

MQ

Everyplace

-

Designer

A

tool

for

all

Java

platforms

that

aids

in

designing,

validating,

and

administering

MQe

networks.

EP01:

MQSeries

Everyplace

-

Performance

Report

Analyses

MQe

performance

on

a

variety

of

client

platforms.

ES01:

MQSeries

Everyplace

-

Administration

Tool

(MQe_Explorer

v1.0)

This

is

a

generic

tool

for

all

Java

platforms

enabling

easy

graphical

administration

of

MQe

queue

managers.

ES02:

WebSphere

MQ

Everyplace

-

MQe_Explorer

This

is

an

MQe

administration

tool

developed

exclusively

to

support

the

Microsoft

Windows

range

of

operating

systems.

ES03:

WebSphere

MQ

Everyplace

-

WTLS

Mini-Certificate

server

This

SupportPac

issues

and

renews

Wireless

Transport

Layer

Security

(WTLS)

certificates

to

MQe

queue

managers

and

their

associated

queues,

to

enable

certificate-based

security

operations.

32

MQe

Getting

Started

http://www.ibm.com/software/integration/wmqe/
http://www.ibm.com/software/integration/support/supportpacs/
http://www.ibm.com/software/integration/wmqe/

ES04:

WebSphere

MQ

Everyplace

-

MQe_Script

MQe_Script

is

a

command

line

based

tool

for

MQe.

It

provides

a

platform

neutral,

text

command-driven

interface

for

the

creation

and

administration

of

MQe.

MS0B

-

MQSeries

Java

classes

for

PCF

Java

code

that

provides

PCF

message

support.

See

how

to

use

it

in

“MS0B

-

MQSeries

Java

classes

for

PCF”

MS0B

-

MQSeries

Java

classes

for

PCF

PCF

messages

are

administration

messages

used

by

MQ

queue

managers.

This

SupportPac

contains

Java

code,

which

supplies

PCF

message

support.

If

you

download

and

install

it,

and

put

the

com.ibm.mq.pcf.jar

file

on

your

ClassPath

environment

variable,

you

have

access

to

Java

classes,

which

can

dynamically

manipulate

MQ

resources.

When

PCF

messages

are

combined

with

MQe

administration

messages,

complete

programmatic

configuration

of

bridge

resources,

and

corresponding

resources

on

an

MQe

queue

manager

are

possible.

Example

code

contained

in

the

examples.mqbridge.administration.programming.AdminHelperMQ

class,

used

in

conjunction

with

the

examples.mqbridge.administration.programming.MQAgent

demonstrates

how

to

do

this.

This

example

code

has

been

added

to

the

examples.awt.AwtMQeServer

program,

such

that

selecting

View->Connect

local

MQ

default

queue

manager

will:

v

Ensure

that

a

bridge

object

exists,

creating

one

as

required.

v

Query

properties

from

the

default

MQ

queue

manager.

v

Attempt

to

connect

that

queue

manager

to

the

currently

running

MQe

queue

manager.

v

Ensure

that

a

proxy

object

representing

the

default

MQ

queue

manager

exists,

creating

one

if

necessary.

v

Ensure

an

MQe

client

connection

exists,

and

that

a

corresponding

MQ

server

connection

channel

exists

also,

creating

these

resources

if

necessary.

v

Ensure

that

a

sync

queue

exists

on

the

MQ

queue

manager.

v

Ensure

that

a

transmit

queue

on

MQ

exists,

and

create

if

necessary.

v

Ensure

that

a

matching

MQ

transmit

queue

listener

exists

in

the

configuration

of

the

current

MQe

queue

manager,

creating

one

if

necessary.

v

Ensure

that

all

the

bridge

resources

are

started.

v

Ensure

that

a

test

queue

on

the

MQ

queue

manager

exists,

creating

one

if

necessary.

v

Ensure

that

a

matching

MQe

bridge

queue

exists,

which

refers

to

that

test

queue.

v

Send

a

test

MQeMQMsgObject

to

the

test

queue

to

make

sure

the

configuration

is

working.

v

Get

the

test

MQeMQMsgObject

from

the

test

queue

to

make

sure

the

configuration

is

working.

What

is

MQe

33

34

MQe

Getting

Started

Planning

your

implementation

Licenses

Licenses

required

for

deployment

of

your

MQe

applications

MQe

is

a

toolkit

that

enables

users

to

write

MQe

applications

and

to

create

an

environment

in

which

to

run

them.

Before

deploying

this

product,

or

applications

that

use

it,

please

make

sure

that

you

have

the

necessary

licenses.

1.

The

pricing

of

licenses

for

use

of

the

Program

on

servers

is

based

on

Processor

License

Units.

Use

of

each

copy

of

the

Program

on

a

server

requires

one

Processor

License

Unit

to

be

acquired

for

each

processor

or

symmetric

multiprocessor

contained

in

the

server

on

which

the

copy

of

the

Program

is

to

run.

Different

types

of

Processor

License

Units

and

Device

Use

Authorizations

are

required,

depending

on

whether

the

Program

is

running

on

point-of-sale,

that

is

retail,

equipment

or

on

another

type

of

computer.

Use

of

the

Program

on

retail

equipment

requires

a

Retail

server

license,

whereas

use

on

other

(non-retail)

equipment

requires

a

Network

server

license.

2.

Additional

Device

Use

Authorization

is

required

for

any

use

of

the

Program

on

a

separate

client

device,

except

those

included

in

the

Network

server

license

described

in

3.

below.

3.

Each

Network

server

license

includes

authorization

for

the

restricted

use

of

the

Program

with

no

more

than

one

hundred

(100)

client

devices,

on

condition

that

all

such

copies

are

used

in

the

same

economic

enterprise

or

organization

as

the

server

copy.

Please

refer

to

http://www.ibm.com/software/integration/wmqe/

for

details

of

these

restrictions.

Device

platform

use

authorizations,

which

are

recorded

on

Proof

of

Entitlement

documents

and

valid

to

support

the

use

of

MQe,

are

required

to

use

the

product

(other

than

for

purposes

of

code

development

and

test)

on

specified

client

platforms.

These

licenses

do

not

entitle

the

user

to

use

the

MQe

Bridge,

or

to

run

on

the

server

platforms

specified

in

the

MQe

pricing

group

lists

published

by

IBM®

and

also

available

on

the

Web

via

the

URL

mentioned

below.

Please

refer

to

http://www.ibm.com/software/integration/mqfamily/

for

details

of

these

restrictions.

What

machines

to

use

What

machines

to

use

for

developing

and

deploying

your

applications

You

will

need:-

v

A

PC

to

write

and

compile

your

application.

A

Windows

system

is

recommended

because

then

you

can

run

any

of

the

MQe

SupportPacs,

in

particular

the

MQe

Explorer

which

is

very

useful

while

developing.

This

computer

should

have

access

to

the

internet

for

downloading

MQe,

SupportPacs,

documentation,

and

so

on.

©

Copyright

IBM

Corp.

2000,

2004

35

http://www.ibm.com/software/integration/wmqe/
http://www.ibm.com/software/integration/mqfamily/

v

At

least

one

of

the

computers

or

devices,

that

you

intend

to

deploy

on,

to

use

for

testing

v

Any

interface

devices

and

cables

for

connecting

your

device

to

your

development

PC.

Which

codebase

to

use

The

MQe

Application

Programming

Interface

(API)

is

the

programming

interface

to

MQe.

Two

languages

are

supported,

Java

and

C.

The

Java

version

provides

access

to

all

MQe

functions.

The

detailed

classes,

methods,

and

procedures

are

described

in

the

Java

API

Programming

Reference.

Examples

of

MQe

programming

are

given

throughout

this

information

center.

There

are

three

versions

of

the

C

support:

The

Native

C

codebase

provides

access

to

a

major

subset

of

MQe

functions.

As

the

C

codebase

is

a

device

queue

manager

only

it:

v

Does

not

support

store-and-forward

queues

or

bridge

queues

v

Supports

the

HTTP

adapter

only

v

Supports

the

RLE

compressor

only

v

Supports

the

RC4

cryptor

only

v

Supports

the

MAttribute

and

local

security

features

only

The

detailed

methods

and

procedures

are

described

in

the

C

API

Programming

Reference.

Examples

of

programming

MQe

for

the

C

bindings

are

given

throughout

this

information

center.

The

C

Bindings

are

supplied

for

use

until

the

Native

C

codebase

provides

full

functionality.

They

provide

access

to

a

major

subset

of

MQe

functions.

The

detailed

methods

and

procedures

are

described

in

the

C

API

Programming

Reference.

Examples

of

programming

MQe

for

the

C

bindings

are

given

in

the

C

Bindings

Programming

Guide.

The

C

support

for

Palm

provides

access

for

a

subset

of

the

MQe

function

for

use

on

Palm

devices.

Details

of

these

classes

and

procedures,

together

with

programming

guidance,

are

provided

in

C

Programming

Guide

for

Palm

OS.

Your

MQe

development

cycle

Given

the

wide

range

of

uses

for

MQe,

the

product

is

not

installed,

configured,

and

deployed

in

the

same

way

as

other

members

of

the

MQ

family.

There

are

three

phases

in

the

adoption

of

MQe:

1.

Development

and

prototyping

phase

MQe

is

available

for

installation

and

use

without

charge,

subject

to

the

conditions

of

the

MQe

development

license.

MQe

applications

are

developed,

using

the

functions

of

the

Java

classes

and

C

API.

These

applications

can

be

packaged

in

a

variety

of

ways.

v

In

Java,

you

can

set

up

an

MQe

queue

manager

as

a

daemon

with

one

or

more

applications

launched

into

the

same

Java

virtual

machine

(JVM)

and

sharing

a

common

queue

manager.

v

In

C,

to

develop

applications

using

the

MQe

Development

Kit,

you

need

Microsoft

embedded

Visual

Tools

3.0

and

an

SDK

for

your

chosen

platform.

36

MQe

Getting

Started

v

In

Java,

the

application

embeds

the

required

MQe

classes

such

that

the

application

runs

on

machines

where

MQe

has

not

been

installed,

launching

its

own

queue

manager

into

its

own

JVM.

v

In

Java,

the

application

uses

the

MQe

Java

classes

and

C

APIs

that

exist

on

the

target

machine.

Support

from

IBM

is

not

included

with

the

development

license.

However,

support

during

application

development

and

beyond

is

provided

with

the

deployment

license

(see

below).

2.

Deployment

phase

The

deployment

phase

refers

to

how

you

use

the

developed

applications

and,

therefore,

under

the

terms

of

the

MQe

license,

capacity

units

are

required

to

use

the

product.

The

Java

classes

and

C

API

can

only

be

distributed

with

the

application

with

agreement

from

IBM,

or

where

the

users

already

have

entitlement

to

use

them.

Otherwise,

in

Java,

users

must

customize

the

necessary

classes

themselves

and,

in

C,

copy

the

MQe

to

the

device.

3.

Management

phase

Subsequently,

when

MQe

queue

managers

are

active

within

a

network,

tools

are

needed

to

inspect

and

manage

them.

Support

for

MQe

is

provided

under

the

terms

of

the

International

Program

License

Agreement.

Support

levels

This

adoption

life

cycle

explains

the

variation

in

level

of

support

with

platforms.

For

the

MQe

with

capacity

units,

and

Category

3

SupportPacs,

IBM

distinguishes

between:

v

Platforms

where

installation

and

application

development

is

supported:

–

Problem

reports

on

install,

application

development,

and

use

are

accepted
v

Platforms

where

the

application

deployment

is

permitted

but

not

directly

supported:

–

Problem

reports

might

be

required

to

be

reproduced

on

a

supported

platform
v

Platforms

where

application

deployment

is

supported:

–

Problem

reports

resulting

from

application

deployment

are

accepted

Gaining

experience

on

MQe

There

are

many

ways

to

get

started

with

MQe.

v

Getting

a

queue

manager

up

and

running,

followed

by

setting

up

a

simple

MQe

network,

is

a

productive

way

to

become

familiar

with

the

product

and

its

concepts.

v

Writing

a

simple

application

is

sound

preparation

for

in-depth

study

of

the

product

details.

v

In

the

early

stages

it

is

generally

not

helpful

to

examine

other

members

of

the

MQ

family.

Later,

when

the

bridge

functionality

is

of

interest,

this

understanding

becomes

essential.

With

this

strategy

in

mind,

new

users

are

recommended

to

understand

the

essentials

of

the

concepts

presented

in

this

introductory

part

of

the

documentation.

If

you

have

access

to

a

machine

running

a

Windows

operating

system,

download

SupportPac

ES02,

MQe_Explorer,

and

follow

the

instructions

given

to

get

started

Planning

your

implementation

37

with

MQe.

You

do

not

have

to

install

the

licensed

product

beforehand,

but

if

you

do

not,

you

are

restricted

by

the

terms

of

the

license.

Using

MQe

with

MQ

Introduction

Although

an

MQe

network

can

exist

standalone,

without

the

need

for

an

MQ

server

or

network,

in

practice

MQe

is

often

used

to

complement

an

existing

MQ

installation.

This

extends

MQ’s

reach

to

new

platforms

and

devices,

and

provides

advanced

capabilities,

such

as

queue

or

message

based

security

and

synchronous

messaging.

From

an

MQe

application

perspective,

MQ

queues

and

queue

managers

act

as

additional

remote

queues

and

queue

managers.

However,

a

number

of

functional

restrictions

exist

because

these

queues

are

not

accessed

directly

through

MQe

connections

and

an

MQe

queue

manager,

but

require

the

involvement

of

an

MQe

gateway.

The

gateway

can

send

messages

to

multiple

MQ

queue

managers

either

directly

or

indirectly,

through

MQ

client

channels.

If

the

connection

is

indirect,

the

messages

pass

through

MQ

client

channels

to

an

intermediate

MQ

queue

manager

and

then

onwards

through

MQ

message

channels

to

the

target

queue

manager.

Gateway

(bridge)

to

MQ

This

section

does

not

apply

to

the

C

codebase.

MQe

supports

the

MQ

bridge,

which

acts

as

an

interface

between

MQe

and

MQ

networks.

This

bridge

uses

the

MQ

Java

client

to

interface

to

one

or

more

MQ

queue

managers,

thereby

allowing

messages

to

flow

from

MQe

to

MQ

and

vice

versa.

In

the

current

version

of

MQe:-

v

one

such

bridge

is

recommended

per

server

v

each

is

associated

with

multiple

MQ

queue

manager

proxies

(definitions

of

MQ

queue

managers)

v

a

queue

manager

proxy

definition

is

required

for

each

MQ

queue

manager

that

communicates

with

MQe

v

each

of

these

definitions

can

have

one

or

more

associated

client

connection

services,

where

each

represents

a

connection

to

a

single

MQ

queue

manager

v

each

of

these

may

use

a

different

MQ

server

connection

to

the

queue

manager,

and

optionally

a

different

set

of

properties

such

as

user

exits

or

ports

See

MQe-MQ

bridge

message

resolution

for

more

details

on

how

messages

flow

between

MQe

and

MQ

using

the

MQ

bridge.

Message

conversion

MQe

messages

destined

for

MQ

pass

through

the

bridge

and

are

converted

into

an

MQ

format,

using

either

a

default

transformer

or

one

specific

to

the

target

queue.

A

custom

transformer

offers

much

flexibility,

for

example

it

is

good

practice

to

use

a

subclass

of

the

MQe

message

class

to

represent

messages

of

a

particular

type

over

the

MQe

network.

On

the

gateway

a

transformer

can

convert

the

message

38

MQe

Getting

Started

into

an

MQ

format

using

appropriate

mapping

between

fields

and

MQ

values

and

adding

specific

data

to

represent

the

significance

of

the

subclass.

The

default

transformer

from

MQe

to

MQ

cannot

take

advantage

of

subclass

information

but

has

been

designed

to

be

useful

in

a

wide

range

of

situations.

It

has

the

following

characteristics:

v

Message

flow

from

MQe

to

MQ:

The

default

transformer

from

MQe

to

MQ

works

in

conjunction

with

the

MQeMQMsgObject

class.

This

class

is

a

representation

of

all

the

fields

you

could

find

in

an

MQ

message

header.

Using

the

MQeMQMsgObject,

your

application

can

set

values

using

set()

methods.

Therefore,

when

an

MQeMQMsgObject,

or

an

object

derived

from

it,

is

passed

through

the

default

MQe

transformer,

(that

is

the

MQeBaseTransformer),

the

MQeBaseTransformer

gets

the

values

from

inside

the

MQeMSMsgObject,

and

sets

the

corresponding

values

in

the

MQ

message,

for

example,

the

priority

value

is

copied

over

to

the

MQ

message.

If

the

message

being

passed

is

not

an

MQeMQMsgObject,

and

is

not

derived

from

the

MQeMQMsgObject

class,

the

whole

MQe

message

is

copied

into

the

body

of

the

MQ

message.

This

is

referred

to

as

funneling.

The

message

format

field

in

the

MQ

message

header

is

set

to

indicate

that

the

MQ

message

holds

a

message

in

MQe

funneled

format.

v

MQ

to

MQe

message

flow:

MQ

messages

for

MQe

are

handled

similarly

to

those

travelling

in

the

other

direction.

The

default

transformer

inspects

the

message

type

field

of

the

MQ

header

and

acts

accordingly.

If

the

MQ

header

indicates

a

funneled

MQe

message,

then

the

MQ

message

body

is

reconstituted

as

the

original

MQe

message

that

is

then

posted

to

the

MQe

network.

If

the

message

is

not

a

funneled

MQe

message,

then

the

MQ

message

header

content

is

extracted,

and

placed

into

an

MQeMQMsgObject.

The

MQ

message

body

is

treated

as

a

simple

byte

field,

and

is

also

placed

into

the

MQeMQMsgObject.

The

MQeMQMsgObject

is

then

posted

to

the

MQe

network.

This

MQeMQMsgObject

class

and

the

default

transformer

behavior

mean

that:

v

An

MQe

message

can

travel

across

an

MQ

network

to

an

MQe

network

without

change.

v

An

MQ

message

can

travel

across

an

MQe

network

to

an

MQ

network

without

change.

v

An

MQe

application

can

drive

any

existing

MQ

application

without

the

MQ

application

being

changed.

Function

MQ

remote

queues

are

enabled

for

synchronous

MQe

put

messaging

operations

from

an

MQe

queue

manager.

All

other

messaging

operations

must

be

asynchronous.

MQe

administration

messages

cannot

be

sent

to

an

MQ

queue

manager.

The

administration

queue

does

not

exist

there

and

the

administration

message

format

differs

from

that

used

by

MQ.

Planning

your

implementation

39

Compatibility

An

MQe

network

can

exist

independently

of

MQ,

but

in

many

situations

the

two

products

together

are

needed

to

meet

the

application

requirements.

MQe

can

integrate

into

an

existing

MQ

network

with

compatibility

including

the

aspects

summarized

below:

Addressing

and

naming:

v

Identical

addressing

semantics

using

a

queue

manager

or

queue

address

v

Common

use

of

an

ASCII

name

space

Applications:

v

MQe

is

able

to

support

existing

MQ

applications

without

application

change.

Connections:

v

The

MQe

gateway

uses

MQ

client

channels.

Message

interchange

and

content:

v

Interchange

of

messages

between

MQe

and

MQ

v

Message

network

invisibility

(messages

from

either

MQe

or

MQ

can

cross

the

other

network

without

change)

v

Mutual

support

for

identified

fields

in

the

MQ

message

header

v

Once

and

once-only

assured

message

delivery

MQe

does

not

support

all

the

functions

of

MQ.

Apart

from

environmental,

operating

system

and

communication

considerations,

these

are

some

of

the

more

significant

differences:

v

No

clustering

support

v

No

distribution

list

support

v

No

grouped

or

segmented

messages

v

No

load

balancing

or

warm

standby

capabilities

v

No

reference

message

v

No

report

options

v

No

shared

queue

support

v

No

triggering

v

No

unit

of

work

support,

no

XA-coordination

v

Different

scalability

and

performance

characteristics

However,

within

MQe

many

application

tasks

can

be

achieved

through

alternative

means

using

MQe

features,

or

through

the

exploitation

of

subclassing,

the

replacement

of

the

supplied

classes,

or

the

exploitation

of

the

rules,

interfaces,

and

other

customization

features

built

into

the

product.

Assured

delivery

Although

both

MQe

and

MQ

offer

assured

delivery,

they

each

provide

for

different

levels

of

assurance.

v

When

a

message

is

travelling

from

MQe

to

MQ,

the

message

transfer

is

only

assured

if

the

combination

of

putMessage

and

confirmPutMessage

is

used.

v

When

a

message

is

travelling

from

MQ

to

MQe,

the

transfer

is

assured

only

if

the

MQ

message

is

defined

as

persistent.

See

Messaging

for

more

detailed

information

on

transferring

messages.

40

MQe

Getting

Started

Translation

From

Version

2.0.1,

the

following

components

of

MQe

have

been

translated

into

languages

other

than

English:

v

Example

trace

graphical

user

interface

v

JMX

descriptions

and

error

messages.

Other

components

(such

as

the

trace

messages)

are

NLS

enabled,

but

have

not

been

translated.

Further

information

Related

information

on

MQ

The

following

are

related

MQ

publications,

which

you

might

find

useful:

WebSphere

MQ:

An

Introduction

to

Messaging

and

Queuing

(GC33–0805)

This

book

describes

briefly

what

MQ

is,

how

it

works,

and

how

it

can

solve

some

classic

interoperability

problems.

WebSphere

MQ:

Quick

Beginnings

series

There

are

MQ

Quick

Beginnings

books

for

each

platform

supported

by

MQ.

These

books

contain

platform-specific

planning

and

installation

information

for

MQ.

Websites

The

MQe

home

page

is

at:

http://www.ibm.com/software/integration/wmqe/

By

following

the

links

from

this

home

page,

you

can:

v

Find

out

more

about

the

features

and

benefits

of

MQe

v

Obtain

information

about

training

and

certification

v

Access

the

MQe

manuals

in

PDF

and

HTML

format

v

Download

the

latest

upgrades

and

trial

code.

You

can

download

the

MQe

SupportPacs

by

choosing

the

product

WebSphere

MQ

Everyplace

on

this

page:

http://www.ibm.com/software/integration/support/supportpacs/

You

might

also

be

interested

in

the

home

page

for

MQ,

which

you

can

find

at:

http://www.ibm.com/software/integration/wmq/

and

the

home

page

for

the

MQ

family:

http://www.ibm.com/software/integration/mqfamily/

You

can

access

the

library

of

books

for

the

MQ

family

of

products

at:

http://www.ibm.com/software/integration/websphere/library/books/

Translated

documentation

The

MQe

Introduction

book

has

been

translated

into

languages

other

than

English.

These

translated

documents

are

available

for

download

from

the

MQ

library

Web

site

at

Planning

your

implementation

41

http://www.ibm.com/software/integration/wmqe/
http://www.ibm.com/software/integration/support/supportpacs/
http://www.ibm.com/software/integration/wmq/
http://www.ibm.com/software/integration/mqfamily/
http://www.ibm.com/software/integration/websphere/library/books/

http://www.ibm.com/software/integration/websphere/library/.

Newsgroups

These

newsgroups

are

all

on

news.software.ibm.com,

and

will

also

be

on

many

other

public

newsservers.

For

MQe:-

v

ibm.software.websphere.mqeveryplace

For

MQ:-

v

ibm.software.websphere.mq

v

ibm.software.websphere.mq.administration

v

ibm.software.websphere.mq.programming

Other

related:-

v

ibm.software.websphere.mqintegrator

v

ibm.software.websphere.studio

v

ibm.software.websphere.studio.various

MQe

Certification

Training

and

certification

on

MQe

is

available.

For

more

details,

start

here:-

http://www.ibm.com/software/integration/websphere/education/

42

MQe

Getting

Started

http://www.ibm.com/software/integration/websphere/library/.
http://www.ibm.com/software/integration/websphere/education/

Installing

and

uninstalling

MQe

Before

you

install

Prerequisites

Supported

platforms

You

can

install

MQe

on

certain

server

platforms

only.

To

transfer

programs

and

Java

classes

to

other

platforms,

you

must

use

an

appropriate

download

or

file

transfer

program

(not

supplied).

Note:

You

can

install

the

C

Bindings,

the

Native

C

Client,

and

Palm

support

only

on

platforms

marked

with

an

asterisk

(*)

in

the

lists

on

the

following

pages.

Directly

supported

with

installation

support:

Note:

You

can

install

the

C

Bindings,

the

Native

C

Client,

and

Palm

support

only

on

platforms

marked

with

an

asterisk

(*)

in

the

lists

on

these

pages.

Server

platforms:

You

can

install

the

product

using

the

built-in

tools

on

the

following

supported

platforms:

v

*

Windows

NT

Version

4

v

*

Windows

2000

v

*

Windows

XP

Professional

v

*

Windows

2003

v

AIX

Version

4.3.3,

Version

5.1

and

Version

5.2

v

Sun

Solaris

Version

7,

Version

8,

and

Version

9

v

HP-UX

Version

11.0

v

Linux

on

Intel

Kernel

Version

2.2

and

2.4

(installed

using

a

zip

file)

v

Linux

on

zSeries

Kernel

Version

2.4

v

iSeries

Version

5.1

and

5.2

Note

that

for

server

platforms,

Java

runtime

must

be:

v

IBM

Java

Runtime

Environment

or

IBM

Java

Version

1.2

or

higher

v

Any

JRE

that

is

Sun

Java

compatible,

Version

1.2

or

higher

IBM

MQ

Classes

for

Java

are

required

for

the

bridge

to

MQ

to

operate.

These

classes

require

a

higher

version

of

Java

than

base

MQe

Wireless

Client

platforms:

The

following

wireless

client

platforms

are

supported:

v

PocketPC

2000

v

PocketPC

2002

v

PocketPC

2003

©

Copyright

IBM

Corp.

2000,

2004

43

Note

that

for

client

platforms,

Java

runtime

must

be:

v

IBM

Java

Runtime

Environment

Version

1.2

or

higher

v

Microsoft

Virtual

Machine

for

Java,

Version

5.0.3155

or

higher

v

Any

JRE

that

is

Sun

Java

compatible,

Version

1.1

or

higher

v

J2ME

CLDC/MIDP

or

CDC/Foundation

that

is:

“Java

Powered”,

or

IBM

WebSphere

Studio

Micro

Edition

Note

the

following

for

Wireless

Client

Platforms:

v

Problems

reported

may

need

to

be

reproduced

in

the

equivalent

IBM

environment

before

they

will

be

fixed,

due

to

problems

with

other

JVM

implementations

v

You

may

need

to

provide

a

device

or

test

environment

to

enable

IBM

to

service

certain

devices,

which

could

extend

normal

IBM

service

response

times

v

Some

J2ME

implementations

have

restricted

runtime

environments

which

may

not

support

sufficient

memory

for

MQe

to

run.

Directly

supported

without

installation

support:

The

following

platforms

are

supported

for

the

testing

and

deployment

of

MQe,

but

only

support

installation

by

file

transfer

from

another

platform:

v

WinCE

2.1

running

on

HP

Jornada

devices

(Models

680

or

820)

v

EPOC

32

bit

Release

5

running

on

Psion

devices

(5MX

Pro

or

NetBook)

v

PalmOS

V3.0

or

higher

running

on

Palm

V

and

IBM

Workpad

C3

v

IBM

4690

OS

with

Java

v

Pocket

PCs.

Indirectly

supported:

You

can

use

the

following

platforms,

but

IBM

will

only

investigate

problems

if

the

problem

can

be

reproduced

on

one

of

the

directly

supported

platforms

listed

above:

v

Linux

on

zSeries®

running

Kernel

2.2

v

iSeries

v

OS/2

v

EPOC

(on

devices

other

than

those

listed

above)

v

WinCE

(on

devices

other

than

those

listed

above)

v

QNX

Neutrino

v

PalmOS

(on

devices

other

than

those

listed

above)

v

Any

other

platform

running

one

of

the

Java

environments

listed

in

“Java

environment”

Java

environment

Running

the

Java

APIs

requires

one

of

the

following

Java

runtime

environments:

v

IBM

Java

runtime

(JVM

V1.1

or

later)

v

Any

Java

which

is

Sun

Java

(V1.1

or

later)

certified

v

IBM

VisualAge

Micro

Edition

v

Personal

Java

v

J2ME

(see

“J2ME”

on

page

45).

MQ

bridge

operation

requires

MQ

Classes

for

Java:-

v

These

are

packaged

with

MQ

Version

5.3

and

later

versions.

44

MQe

Getting

Started

v

If

you

are

using

an

earlier

version

of

MQ,

you

can

download

the

MQe

Classes

for

Java

as

SupportPac

ma88

from

the

IBM

MQ

Web

site

at

http://www.ibm.com/software/integration/support/supportpacs/product.html#wmq

Check

the

level

of

Java

that

is

required

to

run

the

version

of

MQ

Classes

for

Java

that

you

are

using.

PersonalJava:

You

can

use

PersonalJava

instead

of

other

Java

runtimes

on

device

platforms.

Using

MQe

requires

the

following

optional

classes

of

PersonalJava:

v

To

use

MQe

base

classes:

–

java.io.FileInputStream

–

java.io.FileOutputStream

–

java.io.File
v

To

use

the

MQeGZIPCompressor:

–

java.util.zip.GZIPOutputStream
v

To

use

any

encryption:

–

java.math.BigInteger

The

MQe

examples

require

some

of

the

optional

classes

in

packagesjava.io

and

java.awt.

J2ME:

MQe

is

compliant

with

the

J2ME

technologies:

1.

Connected

Device

Configuration

(CDC)

2.

Connected

Limited

Device

Configuration

(CLDC)

or

more

explicitly

their

most

popular

profiles:

1.

CDC/Foundation

2.

CLDC/Midp

When

deciding

which

to

use,

consider

the

following:

1.

Using

CDC/Foundation

enables

the

full

functionality

of

MQe,

excluding

any

example

code

requiring

the

AWT

GUI

package.

2.

The

use

of

CLDC/Midp,

however,

restricts

the

application

to

solely

’client’

side

behavior

and

a

limited

range

of

built-in

compressors

and

encryptors.

Note:

Devices

that

are

CLDC/Midp

enabled

might

have

severe

memory

limitations

that

can

preclude

the

direct

use

of

the

MQe

core

package.

WS

Device

Developer:

WebSphere

Studio

Device

Developer

(WSDD)

provides

a

Java

IDE

together

with

runtime

environments

for

many

different

device

platforms.

WSDD

includes

WebSphere

Micro

Environment

for

developing

J2ME

applications

and

supports

WebSphere

Custom

Environment

for

developing

applications

for

real-time

control

systems

and

other

devices

in

closed

systems.

You

can

develop

applications

using

MQe

in

the

WSDD

IDE

and

deploy

those

applications

using

the

runtime

environments.

MQe

requires

the

use

of

the

jclMidp

class

library,

or

higher.

C

Bindings

environment:

The

C

Bindings

APIs

require:

Installing

and

uninstalling

MQe

45

http://www.ibm.com/software/integration/support/supportpacs/product.html#wmq

v

IBM

Java

runtime

(JVM

V1.2.2

or

later)

v

Any

Java

which

is

Sun

Java

(V1.2.2

or

later)

certified

The

C

Bindings

cannot

be

used

with

Personal

Java

or

VisualAge

Micro

Edition.

JMX

Interface:

The

MQe

Java

Management

Extensions

Interface

(WMQe

JMX)

executes

as

an

application

running

in

a

Java

Virtual

Machine

(JVM).

All

it

requires

is

an

activated

local

queue

manager.

Given

this,

the

interface

can

then

manage

the

instrumented

local

queue

manager,

and

the

queue

manager’s

resources.

It

can

also

manage

any

remotely

activated

WMQe

queue

managers

(and

their

resources)

for

which

the

local

queue

manager

is

able

to

connect

directly

to

the

WMQe

network.

WMQe

JMX

requires

a

compliant

implementation

of

the

JMX

specification.

WMQe

JMX

API

has

been

developed

in

compliance

with

the

JMX

specification

v.1.2.

The

jar

files

provided

by

the

JMX

specification

implementation

must

be

added

to

the

CLASSPATH

before

you

attempt

to

use

the

WMQe

JMX

interface

APIs.

v

The

JMX

Reference

Implementation

provided

by

Sun

is

freely

available

and

redistributable

from:

http://java.sun.com/products/JavaManagement/

To

install

it:

1.

Download

the

Reference

Implementation

binary

code,

which

comes

in

a

ZIP

file

2.

Extract

the

contents

to

a

directory

3.

Copy

lib/jmxri.jar

and

lib/jmxtools.jar

into

the

extension

directory

of

your

Java

runtime

environment,

or

make

sure

they

are

in

your

classpath.
v

The

Tivoli

Implementation

of

the

JMX

specification

is

also

freely

available

from:

http://www.alphaworks.ibm.com/tech/TMX4J

To

install

it:

1.

Download

the

binary

code,

which

comes

in

a

ZIP

file.

2.

Extract

the

contents

to

a

directory

3.

Copy

the

relevant

jars

for

your

platform

into

the

extension

directory

of

your

Java

runtime

environment,

or

make

sure

they

are

in

your

classpath.

C

environment

C

Bindings

For

the

C

Bindings

codebase

see

C

Bindings

Programming

Guide

-

Getting

Started.

Native

C

For

general

information

see

C

API

Programming

Reference,

in

particular

the

page

Compilation

Information,

however

that

page

is

now

a

little

out

of

date,

and

this

topic

provides

an

update.

For

the

native

C

codebase,

support

is

provided

for

four

platforms:

v

PocketPC2000

v

PocketPC2002

v

PocketPC2003

v

Windows

32bit.

46

MQe

Getting

Started

http://java.sun.com/products/JavaManagement/
http://www.alphaworks.ibm.com/tech/TMX4J

For

PocketPC,

binaries

are

provided

for

both

the

device,

and

the

emulator

that

is

available

in

the

Integrated

Development

Environment

Microsoft

Embedded

Visual

C++.

The

binaries

provided

for

the

devices

are

compiled

for

ARM

processors.

Binary

files

The

root

of

the

binary

files,

as

well

as

the

documentation

and

examples,

is

the

C

directory

below

the

directory

where

you

choose

to

install

MQe.

Then

in

the

C

directory,

the

files

are

located

as

follows:-

PocketPC2000

ARM

DLLs

C\PocketPc2000\arm\bin

LIBs

C\PocketPc2000\arm\lib

Emulator

DLLs

C\PocketPc2000\x86emulator\bin

LIBs

C\PocketPc2000\x86emulator\lib

PocketPC2002

ARM

DLLs

C\PocketPc2002\arm\bin

LIBs

C\PocketPc2002\arm\lib

Emulator

DLLs

C\PocketPc2002\x86emulator\bin

LIBs

C\PocketPc2002\x86emulator\lib

PocketPC2003

ARM

DLLs

C\PocketPc2003\arm\bin

LIBs

C\PocketPc2003\arm\lib

Emulator

DLLs

C\PocketPc2003\x86emulator\bin

LIBs

C\PocketPc2003\x86emulator\lib

Windows

32bit

DLLs

C\Win32\Native\bin

LIBs

C\Win32\Native\lib

Header

files

The

header

files

are

common

to

all

the

Native

platforms,

and

may

be

found

in

the

include

directory

below

the

installation

directory.

MQe_API.h

This

is

the

″root″

header

file.

If

this

is

included

all

relevant

header

files

will

be

included

for

you.

In

order

to

ensure

the

correct

files

and

definitions

are

included

you

must

indicate

you

are

running

the

Native

code

base

as

follows:

Installing

and

uninstalling

MQe

47

#define

NATIVE

//

or

specify

this

as

an

option

to

the

compiler

#include

<published/MQe_API.h>

Linking

You

should

link

against

the

following

two

libraries:-

HMQ_nativeAPI.lib

//

the

API

library

HMQ_nativeCnst.lib

//

the

static

constant

MQeString

library

Generally

you

should

include

both

these

files.

Then

an

optimizing

linker

should

remove

links

to

any

functions

and

constants

you

have

not

used.

The

other

MQe

libraries

are

statically

and

dynamically

linked

with

the

main

API

library

and

will

be

included

as

required.

Hardware

This

topic

describes

the

minimum

hardware

requirements

for

MQe.

The

following

table

shows

the

storage

you

need

to

perform

the

installation

of

all

the

available

options

of

MQe.

Table

5.

Storage

required

to

perform

installation

Operating

system

Storage

required

Windows

NT

(file

system

=

NTFS)

40Mb

Windows

2000

(file

system

=

NTFS)

40Mb

Windows

XP

(file

system

=

NTFS)

40Mb

Windows

2003

(file

system

=

NTFS)

40Mb

AIX

27Mb

Solaris

27Mb

Linux

27Mb

HP-UX

27Mb

Supported

devices

v

Pocket

PC

2002

v

Pocket

PC

2003

v

WinCE

v

Palm

OS

v

J9

v

J2SE

v

J2ME

v

4690

Licensing

MQe

is

a

toolkit

that

enables

users

to

write

MQe

applications

and

to

create

an

environment

in

which

to

run

them.

Before

deploying

this

product,

or

applications

that

use

it,

please

make

sure

that

you

have

the

necessary

licenses.

48

MQe

Getting

Started

1.

The

pricing

of

licenses

for

use

of

the

Program

on

servers

is

based

on

Processor

License

Units.

Use

of

each

copy

of

the

Program

on

a

server

requires

one

Processor

License

Unit

to

be

acquired

for

each

processor

or

symmetric

multiprocessor

contained

in

the

server

on

which

the

copy

of

the

Program

is

to

run.

Different

types

of

Processor

License

Units

and

Device

Use

Authorizations

are

required,

depending

on

whether

the

Program

is

running

on

point-of-sale,

that

is

retail,

equipment

or

on

another

type

of

computer.

Use

of

the

Program

on

retail

equipment

requires

a

Retail

server

license,

whereas

use

on

other

(non-retail)

equipment

requires

a

Network

server

license.

2.

Additional

Device

Use

Authorization

is

required

for

any

use

of

the

Program

on

a

separate

client

device,

except

those

included

in

the

Network

server

license

described

in

3.

below.

3.

Each

Network

server

license

includes

authorization

for

the

restricted

use

of

the

Program

with

no

more

than

one

hundred

(100)

client

devices,

on

condition

that

all

such

copies

are

used

in

the

same

economic

enterprise

or

organization

as

the

server

copy.

Please

refer

to

http://www.ibm.com/software/integration/wmqe/

for

details

of

these

restrictions.

Device

platform

use

authorizations,

which

are

recorded

on

Proof

of

Entitlement

documents

and

valid

to

support

the

use

of

MQe,

are

required

to

use

the

product

(other

than

for

purposes

of

code

development

and

test)

on

specified

client

platforms.

These

licenses

do

not

entitle

the

user

to

use

the

MQe

Bridge,

or

to

run

on

the

server

platforms

specified

in

the

MQe

pricing

group

lists

published

by

IBM

and

also

available

on

the

Web

via

the

URL

mentioned

below.

Please

refer

to

http://www.ibm.com/software/integration/mqfamily/

for

details

of

these

restrictions.

Installing

MQe

The

information

in

this

chapter

guides

you

through

the

installation

of

MQe

on

machines

that

are

to

be

used

to

develop

MQe

applications.

The

MQe

installation

program

is

a

Java™

jar

file

that

has

platform-specific

launchers,

which

can

be

run

straight

from

the

product

CD.

The

installation

program

extracts

the

working

files

to

a

temporary

directory,

copies

the

MQe

files

onto

your

computer,

and

cleans

up

the

working

files.

Note

that,

in

this

release,

the

application

and

solution

provider

is

responsible

for

deploying

MQe

to

pervasive

devices.

Installation

procedure

The

information

in

this

section

applies

to

installation

on

Windows,

AIX,

Linux,

Solaris,

and

HP-UX.

At

any

time

during

the

installation,

you

can

click

the

Back

button

on

a

screen

to

take

you

back

to

previous

screens

and

review

or

change

information.

To

exit

the

install

procedure

and

cancel

the

installation,

click

the

Cancel

button

on

any

screen.

Before

you

start:

v

You

are

strongly

advised

to

uninstall

any

previous

versions

of

MQe

before

installing

or

reinstalling

this

new

version

(see

“Uninstalling

MQe”

on

page

57).

Installing

and

uninstalling

MQe

49

http://www.ibm.com/software/integration/wmqe/
http://www.ibm.com/software/integration/mqfamily/

The

installation

program

does

not

detect

versions

of

the

product

prior

to

Version

1.2.4,

and

does

not

display

any

warnings.

v

If

you

are

using

Windows,

check

that

your

user

id

has

administrator

access.

If

it

does

not,

the

Start

Menu

icons

for

IBM

MQe

may

not

appear.

v

If

you

are

using

AIX,

you

must

be

logged

on

as

the

root

user

in

order

to

run

the

installation

successfully.

To

install

MQe:

1.

Insert

the

product

CD

into

your

CD-ROM

drive.

2.

Start

the

installation

either

from

the

platform

specific

launcher,

or

from

the

setup.jar

file:

v

Installing

from

the

platform-specific

launcher:

a.

The

launchers

are

held

in

the

platform-specific

subdirectories

on

the

product

CD.

To

begin

the

installation

process,

run

the

correct

launcher

for

your

platform

(for

example,

setup.exe

for

Windows).

b.

If

you

copy

the

launcher

to

your

local

target

machine,

you

also

need

to

copy

the

setup.jar

file

into

the

parent

directory

of

the

directory

into

which

you

have

copied

the

launcher.

The

launcher

cannot

be

run

from

a

root

directory.

c.

If

you

run

the

installation

from

a

launcher

and

you

see

a

message

box

with

the

text

No

matching

JVM

was

found,

the

installer

was

unable

to

find

a

Java

environment

to

use.

If

you

see

this

message

you

need

to

use

the

setup.jar

file

for

installation.

d.

To

tell

the

launcher

to

use

a

specific

JVM,

use

the

following

flag:

setup.exe

-is:javahome

c:\jdk1.3

To

tell

the

launcher

to

use

a

specific

directory

to

store

temporary

files,

use

the

following

launcher

flag:

setup.exe

-is:tempdir

c:\mytempdir

v

From

the

setup.jar

file:

Change

to

the

product

CD

directory

where

the

setup.jar

is

stored,

and

run

the

installation

program

using

the

Java

command

on

your

computer.

This

command

is

typically

java,

jre,

or

jview.

For

example:

On

Windows

set

classpath=.\setup.jar;%classpath%

jview

run

(If

you

use

JVM

1.2.2

or

higher,

you

can

execute

the

jar

file

by

double-clicking

it.)

On

Linux,

AIX,

Solaris,

and

HP-UX

CLASSPATH=./setup.jar:$CLASSPATH

export

CLASSPATH

java

run

3.

On

the

Welcome

screen,

confirm

that

you

want

to

install

the

MQe

program

by

clicking

the

Next

button

and

then

follow

the

prompts

to

complete

your

installation.

Silent

installation

You

can

run

the

installer

in

silent

mode.

This

means

that

no

panels

are

displayed

during

the

installation

and

there

are

no

prompts

for

input.

There

are

two

ways

to

run

the

install

silently:-

From

the

jar

file

50

MQe

Getting

Started

Run

the

installation

in

the

same

way

as

previously

described,

but

append

the

-silent

flag.

For

example:

On

Windows

set

classpath=.\setup.jar;%classpath%

jview

run

-silent

On

Linux,

AIX,

Solaris,

and

HP-UX

CLASSPATH=./setup.jar:$CLASSPATH

export

CLASSPATH

java

run

-silent

From

a

platform

specific

launcher

Add

the

-is:silent

-silent

flags.

For

example:

On

Windows

setup.exe

-is:silent

-silent

On

AIX

Setupaix.bin

-is:silent

-silent

On

Linux

Setuplinux.bin

-is:silent

-silent

On

Solaris

Setupsolaris.bin

-is:silent

-silent

On

HP-UX

Setuphp-ux.bin

-is:silent

-silent

Silent

installation

directories

By

default

the

installation

program

installs

MQe

in

the

directories

shown

in

the

table

below.

If

you

have

any

old

versions

of

MQe

on

the

computer,

a

silent

install

uses

your

current

directory

and

not

the

default

shown

in

this

table:

Table

6.

Default

installation

directories

Platform

Default

installation

directory

AIX

/opt/MQe

Linux

/opt/MQe

Solaris

/opt/MQe

Win32

\Program

Files\MQe

HP-UX

/opt/MQe

To

set

a

different

installation

directory

for

a

silent

install,

append

the

-P

MQe.installLocation

flag

to

the

install

command

as

follows:

From

the

jar

file

java

run

-silent

-P

MQe.installLocation="C:\my

new

install

directory"

From

a

platform

specific

launcher

setup.exe

-is:silent

-silent

-P

MQe.installLocation=

"C:\my

new

install

directory"

Note:

When

using

the

-P

MQe.installLocation

parameter

to

override

the

install

location

during

silent

install,

ensure

that

you

specify

the

full

path

of

the

the

new

destination.

Silent

install

with

option

files

When

running

the

install

silently

you

can

specify

an

options

file.

The

options

file

allows

you

to:

Installing

and

uninstalling

MQe

51

v

Set

the

install

to

silent

v

Change

the

install

location

v

Select

which

features

to

install

The

following

example

options

file

sets

the

install

to

run

silently,

sets

the

install

location

to

″C:\MQe″,

and

chooses

to

install

all

features

except

the

Palm

feature.

#specify

silent

install

-silent

#set

features

to

active

-P

Java.active=true

-P

Documentation.active=true

-P

CBindings.active=true

-P

Native.active=true

-P

Palm.active=false

#Set

the

install

location

-P

MQe.installLocation="C:\MQe"

Note:

1.

Include

the

-is:silent

flag

in

the

options

file

if

running

the

install

from

a

launcher.

2.

Do

not

leave

any

blank

lines

in

the

options.txt

file.

3.

Start

all

lines

with

#

or

a

valid

command.

4.

You

can

have

multiple

commands

on

a

single

line.

The

following

examples

show

how

to

run

the

installer

with

an

options

file:

From

the

jar

file

java

-cp

setup.jar

run

-options

C:\options.txt

From

a

launcher

setup.exe

-options

C:\options.txt

Installing

from

a

zip

file

The

MQe

classes

are

also

provided

as

a

zip

file.

You

can

use

this

file

to

install

MQe

on

devices

where

the

graphical

installer

is

not

suitable

or

not

supported.

On

a

UNIX®

based

system

(such

as

Linux

and

HP-UX)

you

need

to

create

a

folder,

copy

the

appropriate

zip

file

into

it,

and

then

use

an

unzip

utility

to

extract

the

class

files.

For

example:

mkdir

mqe

cp

/cdrom/unixinst.zip

mqe

cd

mqe

unzip

unixinst.zip

chmod

-R

+x

*

Once

the

class

files

have

been

extracted,

configure

your

environment

to

run

MQe

programs.

Please

see

the

MQe

Application

Programming

Guide

for

more

information.

Installed

components

You

can

select

various

features

during

the

installation

of

MQe.

These

features

are

described

in

the

following

topics,

along

with

the

components

that

are

installed

if

the

feature

is

selected.

MQe

for

Java

MQe

Java

classes

A

set

of

classes

that

implement

all

of

the

MQe

function.

Subsets

of

these

52

MQe

Getting

Started

classes

can

be

used

to

provide

different

MQe

configurations

such

as

a

subset

for

a

device,

or

a

subset

for

a

server.

Helper

classes

A

set

of

classes

derived

from

the

base

classes

that

implement

some

commonly

used

functions.

Example

classes

A

set

of

classes

that

demonstrate

how

to

use

many

of

the

features

of

MQe.

The

source

code

for

these

classes

is

also

provided.

Utilities

Tools

to

assist

with

the

programming

and

administration

of

MQe.

MQe

C

bindings

C

Bindings

specific

classes

Includes

the

package

com.ibm.mqe.bindings.

These

are

only

required

for

the

C

Bindings

and

do

not

affect

existing

functionality.

Header

and

binary

files

C

Bindings

adds

in

extra

binary

files,

and

header

files.

These

files

are

fully

documented

in

the

MQe

C

Bindings

Programming

Guide

MQe

C

Bindings

Programming

Guide

SC34-6280–01

This

book

contains

guidance

and

procedural

information

for

writing

MQe

C

applications

and

administering

your

systems.

The

filename

is

hmq9al_WMQE_C_BindingsProgrammingGuide.pdf.

See

also

the

html

version

here

C

Bindings

Programming

Guide.

MQe

for

Palm

OS

MQe

for

Palm

Device

Code

This

is

the

Palm

OS

code.

The

installer

unzips

and

installs

the

code.

MQe

C

Programming

Guide

for

Palm

OS

SC34-6281–01

This

book

contains

guidance

and

reference

information

for

using

MQe

on

the

Palm

operating

system.

The

filename

is

hmq8an_WMQE_C_ProgrammingGuideforPalmOS.pdf

See

also

the

html

version

here

C

Programming

Guide

for

Palm

OS

MQe

for

Native

platforms

Header

files

The

set

of

header

files

required

are

common

for

all

native

platforms

are

also

shared

with

C

Bindings.

Binary

files

There

are

DLL

and

LIB

files,

built

against

the

following

SDKs:

v

PocketPC

2002

SDK,

ARM

processor

and

PocketPC

2002

Emulator

v

PocketPC

2003

SDK,

ARM

processor

and

PocketPC

2003

Emulator

Examples

Some

examples

are

also

documented

in

the

MQe

Native

Platforms

Programming

Reference.

Installing

and

uninstalling

MQe

53

PocketPC

Version

information

tool

The

MQeVersion

information

tool

is

shipped

as

part

of

the

native

code

base.

This

is

an

executable

which

allows

you

to

check

the

version

information

for

the

installed

native

DLL

files.

This

tool

is

built

for

PocketPC

2000,

2002,

and

2003.

The

program

file

is

in

the

C:\tools\Version\PocketPc2000\arm

or

C:\tools\Version\PocketPc2002\arm

directory

of

the

installation.

This

file

needs

to

be

copied

to

a

suitable

place

on

the

device.

When

running,

the

tool

attempts

to

load

all

the

native

DLL

files.

A

file

is

written

to

the

root

of

the

device

with

information

on

the

DLL

files.

v

Run

the

tool

directly

from

the

file

explorer

or

a

command

line,

with

no

arguments,

and

the

tool

loads

the

DLL

files

that

are

found

using

the

standard

load

path

of

the

device.

v

Run

the

tool

at

a

command

line

to

specify

a

directory

as

a

parameter.

The

specification

is

partly

device

dependant,

but

you

can

opt

to

use

one

of

the

command

line

interpreters

available

for

the

PocketPC

device.

When

a

directory

is

specified,

only

the

DLL

files

that

exist

in

that

directory

are

checked.

For

each

DLL

file

,

the

tool

gives

the

main

version

number,

a

possible

EFix

level,

that

is

the

fourth

digit

of

the

version

number,

and

the

build

ID

that

this

DLL

file

came

from.

If

there

are

DLL

files

that

you

have

chosen

not

to

copy

to

the

device,

you

can

see

message

reports

to

this

effect.

Note:

If

you

see

DLL

files

from

different

builds

or

versions,

please

double

check

that

you

have

copied

the

correct

files.

Within

the

installation

there

are

DLLs

for

the

PocketPC

emulators

as

well

as

the

devices.

Be

careful

to

copy

the

correct

files.

Failure

to

do

so

results

in

errors

when

trying

to

execute

programs.

Running

the

tool

gives

an

output

file

similar

to

this

example:

WMQe

Version

Tool

Module

Name

Ver

EFix

Build

Scanning

dir

e:_builds\sb_la200\export\x86_nt_4\usr\lib

HMQ_AdminQueue

2.0.1.0

la201

e:_builds\sb_la200\export\x86_nt_4\usr\lib\HMQ_Admi

HMQ_AsyncRemoteQueue

2.0.1.0

la201

e:_builds\sb_la200\export\x86_nt_4\usr\lib\HMQ_Asyn

HMQ_Core

2.0.1.0

la201

e:_builds\sb_la200\export\x86_nt_4\usr\lib\HMQ_Core

HMQ_DiskAdapter

2.0.1.0

la201

e:_builds\sb_la200\export\x86_nt_4\usr\lib\HMQ_Disk

HMQ_HAL

2.0.1.0

la201

e:_builds\sb_la200\export\x86_nt_4\usr\lib\HMQ_HAL

HMQ_HomeServerQueue

2.0.1.0

la201

e:_builds\sb_la200\export\x86_nt_4\usr\lib\HMQ_Home

HMQ_HttpAdapter

2.0.1.0

la201

e:_builds\sb_la200\export\x86_nt_4\usr\lib\HMQ_Http

HMQ_LocalQueue

2.0.1.0

la201

e:_builds\sb_la200\export\x86_nt_4\usr\lib\HMQ_Loca

HMQ_nativeAPI

2.0.1.0

la201

e:_builds\sb_la200\export\x86_nt_4\usr\lib\HMQ_nati

HMQ_nativeOSA

2.0.1.0

la201

e:_builds\sb_la200\export\x86_nt_4\usr\lib\HMQ_nati

HMQ_RC4Cryptor

2.0.1.0

la201

e:_builds\sb_la200\export\x86_nt_4\usr\lib\HMQ_RC4C

HMQ_RegistryFileSession

2.0.1.0

la201

e:_builds\sb_la200\export\x86_nt_4\usr\lib\HMQ_Regi

54

MQe

Getting

Started

HMQ_RleCompressor

2.0.1.0

la201

e:_builds\sb_la200\export\x86_nt_4\usr\lib\HMQ_R

HMQ_SyncRemoteQueue

2.0.1.0

la201

e:_builds\sb_la200\export\x86_nt_4\usr\lib\HMQ_S

Documentation

English

language

versions

of

the

following

books

are

provided

in

Adobe

Acrobat

readable

format

(PDF).

These

five

books

have

been

substantially

restructured

into

this

MQe

Information

Center

that

you

are

reading

now,

see

the

Contents

pane

on

the

left:-

MQe

Read

Me

First

SC34-6276–02

This

book

contains

general

migration

and

installation

information

for

MQe.

The

filename

is

hmq8aa_WMQE_ReadmeFirst.pdf.

MQe

Introduction

SC34-6277–02

This

book

provides

a

general

introduction

to

MQe,

covering

the

product

concepts

and

the

relationship

between

MQe

and

other

MQ

products.

The

filename

is

hmq8ac_WMQE_Introduction.pdf.

MQe

Configuration

Guide

SC34-6283–03

This

book

contains

information

on

system

administration

using

administration

messages

and

the

C

administration

API.

It

also

describes

the

creation

and

administration

of

the

fundamental

components

of

an

MQe

solution.

The

filename

is

hmq8ag_WMQE_ConfigurationGuide.pdf.

MQe

Application

Programming

Guide

SC34-6278–01

This

book

contains

guidance

and

procedural

information

for

writing

MQe

Java

and

C

applications

and

administering

your

systems.

The

filename

is

hmq8al_WMQE_ApplicationProgrammingGuide.pdf.

MQe

System

Programming

Guide

SC34-6274–01

This

book

contains

guidance

and

procedural

information

for

writing

MQe

Java

and

C

applications,

and

administering

your

systems.

The

filename

is

hmq8as_WMQE_SystemProgrammingGuide.pdf.

These

two

books

are

provided

in

html

form

within

this

Information

Center,

click

the

links

to

find

them:-

MQe

C

Bindings

Programming

Guide

This

book

contains

detailed

guidance

information

on

using

the

C

Bindings.

See

also

the

html

version

here

C

Bindings

Programming

Guide.

MQe

C

Programming

Guide

for

Palm

OS

This

book

contains

information

on

using

MQe

on

the

Palm

platform.

See

also

the

html

version

here

C

Programming

Guide

for

Palm

OS

The

latest

versions

of

these

documents

are

available

from

the

book

section

of

the

MQ

library

Web

site.

See

“Websites”

on

page

41

for

more

information.

If

you

need

to

obtain

the

Adobe

Acrobat

Reader,

or

would

like

up-to-date

information

about

the

platforms

on

which

the

Acrobat

Reader

is

supported,

visit

the

Adobe

Systems

Inc.

Web

site

at

http://www.adobe.com/.

The

MQe

books

are

also

available

in

HTML

format.

These

files

are

provided

on

the

product

CD

but

are

not

included

in

the

product

installation.

Installing

and

uninstalling

MQe

55

http://www.adobe.com/

Components

on

the

Web

Typically

you

will

want

to

install

more

than

just

the

MQe

product

in

order

to

develop

your

applications.

For

more

information

on

further

tools,

see

“MQe

SupportPacs”

on

page

31.

Verifying

your

installation

This

section

describes

how

to

run

some

examples

that

verify

the

successful

installation

of

an

MQe

development

kit.

Java

installation

verification

After

you

have

installed

MQe

you

can

use

the

following

procedures

to

run

some

examples

that

determine

whether

the

installation

of

the

development

kit

was

successful.

v

Ensure

that

the

Java

environment

is

set

up

as

described

in

“Java

environment”

on

page

44.

When

running

any

of

the

Windows

batch

files

described

in

this

section,

the

first

parameter

of

each

is

the

name

of

the

Java

development

kit

to

use.

If

you

do

not

specify

a

name,

the

default

is

IBM.

Note:

The

UNIX

shell

scripts

do

not

have

a

corresponding

parameter.

v

Move

to

the

correct

directory:

Windows

Change

to

the

<MQeInstallDir>\Java\demo\Windows

directory.

UNIX

Change

to

the

<MQeInstallDir>/Java/demo/UNIX

directory.
v

Create

a

queue

manager

as

follows:

Windows

Run

the

batch

file:

CreateExampleQM.bat

<JDK>

UNIX

Run

the

shell

script:

CreateExampleQM

to

create

an

example

queue

manager

called

ExampleQM.

Part

of

the

creation

process

sets

up

directories

to

hold

queue

manager

configuration

information

and

queues.

The

example

uses

a

directory

called

ExampleQM

that

is

relative

to

the

current

directory.

Within

this

directory

are

two

other

directories:

–

Registry

-

holds

files

that

contain

queue

manager

configuration

data.

–

Queues

-

for

each

queue

there

is

a

subdirectory

to

hold

the

queue’s

messages.

(The

directory

is

not

created

until

the

queue

is

activated.)
v

Run

a

simple

application

as

follows:

Once

you

have

created

a

queue

manager

you

can

start

it

and

use

it

in

applications.

You

can

use

the

batch

file

ExamplesMQeClientTest.bat

or

the

shell

script

ExamplesMQeClientTest

to

run

some

of

the

simple

application

examples.

The

batch

file

runs

examples.application.Example1

by

default.

This

example

puts

a

test

message

to

queue

manager

ExampleQM

and

then

gets

the

message

from

the

same

queue

manager.

If

the

two

messages

match,

the

application

ran

successfully.

There

is

a

set

of

applications

in

the

examples.application

package

that

demonstrate

different

features

of

MQe.

You

can

run

these

examples

as

follows:

56

MQe

Getting

Started

Windows

Pass

parameters

to

the

batch

files:

ExamplesMQeClientTest

<JDK>

<ExampleNo>

UNIX

Pass

parameters

to

the

shell

scripts:

ExamplesMQeClientTest

<ExampleNo>

where

ExampleNo

is

the

suffix

of

the

example.

This

can

range

from

1

to

6.

v

Delete

a

Queue

manager.

When

a

queue

manager

is

no

longer

required

you

can

delete

it.

To

delete

the

example

queue

manager

ExampleQM:

Windows

Run

the

batch

file

DeleteExampleQM.bat

<JDK>

UNIX

Run

the

shell

script

DeleteExampleQM

Once

you

have

deleted

a

queue

manager

you

cannot

start

it.

Note:

The

examples

use

relative

directories

for

ease

of

set

up.

You

are

strongly

recommended

to

use

absolute

directories

for

anything

other

than

base

development

and

demonstration.

If

the

current

directory

is

changed,

and

you

are

using

relative

directories,

the

queue

manager

can

no

longer

locate

its

configuration

information

and

queues.

C

installation

verification

After

you

have

installed

MQe

you

can

run

some

examples

from

the

MQe

C

Programming

Reference

to

verify

your

installation.

Modifying

your

installation

If

you

want

to

remove

your

installation,

see

“Uninstalling

MQe.”

Note

that

it

is

not

possible

to

use

Add/Remove

Programs

to

modify

the

options

you

have

installed,

only

to

completely

uninstall.

To

modify

your

installation,

for

example

to

add

a

feature

or

component

that

you

did

not

select

when

you

previously

installed,

insert

the

product

CD

into

your

drive,

and

then

follow

the

instructions

in

“Installation

procedure”

on

page

49.

Uninstalling

MQe

Follow

the

instructions

that

relate

to

your

operating

system.

Windows

Choose

one

of

the

following

ways

to

uninstall

MQe

from

your

Windows

system:

Using

the

Windows

Control

Panel

1.

Click

Start->Settings->Control

Panel.

2.

Double-click

the

Add/Remove

Programs

icon.

3.

In

the

Add/Remove

Programs

dialog

box

click

on

IBM

MQe.

4.

Click

the

Add/Remove...

button

to

start

the

uninstall

program.

Follow

the

on

screen

prompts

or

instructions

until

the

program

indicates

that

the

uninstall

is

complete.

Installing

and

uninstalling

MQe

57

Using

uninstall.exe

In

the

<MQe

install

directory>

double-click

uninstall.exe,

or

use

the

command:

<MQe

install

directory>\Uninst\uninstall.exe

where

<MQe

install

directory>

is

the

directory

where

you

installed

MQe.

Follow

the

prompts

until

the

program

indicates

that

the

uninstall

is

complete.

Using

uninstall.jar

Use

the

uninstall.jar

file

as

follows:

set

classpath=<MQe

directory>\Uninst\uninstall.jar;%classpath%

jview

run

Unix

Use

these

instructions

to

uninstall

MQe

on:

v

AIX

v

HP-UX

v

Linux

v

Solaris

v

Unix

Choose

one

of

the

following

ways

to

uninstall

MQe

from

your

system:

Note:

On

AIX

always

use

one

of

these

methods,

do

not

use

SMIT

because

it

will

not

remove

the

product

properly.

Note:

On

Solaris

always

use

one

of

these

methods,

do

not

use

pkgrm

because

it

will

not

remove

the

product

properly.

Using

uninstall.bin

Enter

the

command:

<MQe

install

directory>/Uninst/uninstall.bin

<MQe

install

directory>

is

the

directory

where

you

installed

MQe.

This

defaults

to

/opt/MQe,

but

you

can

change

this

during

the

installation

procedure.

Follow

the

prompts

until

the

program

indicates

that

the

uninstall

is

complete.

Using

uninstall.jar

Use

the

following

commands

to

invoke

the

uninstall.jar:

CLASSPATH=<MQe

directory>/Uninst/uninstall.jar:$CLASSPATH

export

CLASSPATH

java

run

Follow

the

prompts

until

the

program

indicates

that

the

uninstall

is

complete.

Silent

uninstallation

You

can

run

the

uninstaller

in

silent

mode.

This

means

that

no

panels

are

displayed

during

the

uninstall

and

there

are

no

prompts

for

input.

There

are

two

ways

to

run

the

uninstall

silently:-

58

MQe

Getting

Started

From

the

jar

file

Run

the

uninstall

in

the

same

way

as

previously

described,

but

append

the

-silent

flag.

For

example:

On

Windows

set

classpath=<MQe

directory>\Uninst\uninstall.jar;%classpath%

Jview

run

-silent

On

Linux,

AIX,

Solaris,

and

HP-UX

CLASSPATH=<MQe

directory>/Uninst/uninstall.jar:$CLASSPATH

export

CLASSPATH

java

run

-silent

From

a

platform

specific

launcher

Add

the

-is:silent

-silent

flags.

For

example:

On

Windows

uninstall.exe

-is:silent

-silent

On

Linux,

AIX,

Solaris,

and

HP-UX

uninstall.bin

-is:silent

-silent

Silent

uninstall

with

options

files

When

running

the

uninstall

silently

you

can

specify

an

options

file.

The

options

file

allows

you

to:

v

Set

the

uninstall

to

silent

v

Select

which

features

to

uninstall

The

following

example

options

file

sets

the

uninstall

to

run

silently,

and

chooses

to

uninstall

all

the

features

except

the

Documentation

feature.

#specify

silent

uninstall

-silent

#set

features

to

active

-P

Java.active=true

-P

Documentation.active=false

-P

CBindings.active=true

-P

Native.active=true

-P

Palm.active=true

Note:

1.

Include

the

-is:silent

flag

in

the

options

file

if

running

the

uninstall

from

a

launcher.

2.

Do

not

leave

any

blank

lines

in

the

options.txt

file.

3.

Start

all

lines

with

#...,

or

a

valid

command.

4.

You

can

have

multiple

commands

on

a

single

line.

The

following

examples

show

how

to

run

the

uninstaller

with

an

options

file:

From

the

jar

file

java

-cp

uninstall.jar

run

-options

C:\options.txt

From

a

launcher

uninstall.exe

-options

C:\options.txt

Applying

maintenance

to

MQe

Maintenance

updates

for

MQe

are

shipped

as

a

complete

new

release.

There

are

two

options

when

upgrading

from

one

release

to

another:

Installing

and

uninstalling

MQe

59

Completely

uninstall

the

current

level,

and

install

the

new

level

in

the

same

directory

Keep

the

install

package

for

the

current

level,

in

case

you

want

to

restore

it

later.

Keep

the

existing

level

and

install

the

new

level

into

a

new

directory

After

installation,

check

your

classpath

to

ensure

that

the

latest

level

of

MQe

is

being

invoked.

If

installing

on

Windows,

make

sure

that

you

give

the

shortcuts

folder

for

the

new

install

a

different

name

to

the

existing

one.

For

more

general

information

on

maintenance

updates

and

their

availability

see

the

MQ

family

Web

page

at

http://www.ibm.com/software/integration/mqfamily/.

Migrating

from

1.2.7

to

2.0

or

2.0.1

If

you

are

upgrading

to

Version

2.0

or

Version

2.0.1,

you

need

to

consider

how

the

changes

described

in

this

section

will

affect

your

MQe

application.

Aliases

in

MQeFields

In

Version

1,

the

MQeFields

structure

passed

to

the

MQeQueueManager

allowed

the

specification

of

the

following

two

aliases:

v

(ascii)AttributeKey_2=com.ibm.mqe.attributes.MQeSharedKey

v

(ascii)AttributeKey_1=com.ibm.mqe.MQeKey

Those

aliases

specified

the

default

class

names

to

use

when

loading

attribute

keys,

where

an

attribute

key

class

was

not

specified.

These

values

are

hard-coded

in

the

Version

2.0

and

2.0.1

codebase,

and

cannot

be

changed

using

the

alias

mechanism.

If

the

values

are

specified

in

.ini

files,

or

calls

to

the

MQeQueueManager,

they

are

ignored.

MQeFields

In

order

to

comply

with

Java

2

Platform

Micro

Edition’s

(J2ME)

Connected

Limited

Device

Configuration

(CLDC)

/

Mobile

Information

Device

Protocol

(MIDP)

specification,

several

methods

have

been

modified

or

removed

from

MQeFields:

v

The

explicit

use

of

the

floating

point

types,

float

and

double,

has

been

removed.

For

example,

you

might

have

used

putFloat("Val1",

-1.234).

Under

Java

platforms

that

enable

the

use

of

float/double,

this

functionality

can

be

mimicked

by

explicitly

converting

the

data

into

the

equivalent

int

or

long

using

the

base

types

Java

Object

convert

method.

In

this

case,

the

above

method

is

replaced

with

putFloatAsInt("Val1",Float.floatToIntBits(-1.234)).

Note:

Version

1

applications

can

retrieve

these

values

as

normal.

v

Methods

dumpToFile

and

restoreFromFile

have

been

removed.

Applications

that

used

these

functions

must

now

dump

the

MQeFields

object

and

write

the

byte

array

to

the

specified

file.

v

XOR’ing

of

dumped

data

has

also

been

removed.

Peer

channels

Peer

channels

have

been

removed

from

the

MQe

2.0

and

2.0.1

codebase.

60

MQe

Getting

Started

http://www.ibm.com/software/integration/mqfamily/

MQeChannel

The

com.ibm.mqe.MQeChannel

class

has

been

moved

and

is

now

known

as

com.ibm.mqe.communications.MQeChannel

Any

references

to

the

old

class

name

in

administration

messages

are

replaced

automatically

with

the

new

class

name.

MQeAttribute

The

following

changes

have

been

implemented

in

relation

to

MQeAttribute:

v

The

implementation

of

the

equals()

method

on

MQeAttribute

and

its

subclasses

in

Version

1.2.7

(and

earlier

versions),

has

been

renamed

as

isAcceptable()

v

An

MQeAttributeRule

now

ships

with

the

product.

You

should

now

extend

your

attribute

rules

from

this

class

instead

of

MQeRule.

All

methods

on

MQeAttribute

and

its

subclasses,

which

used

to

take

an

MQeRule

object

as

one

of

its

parameters,

now

take

an

MQeAttributeRule

object

instead.

MQeQueueManager

See

“Migrating

from

1.2.7

to

2.0

or

2.0.1”

on

page

60.

Deprecated

methods

and

classes

The

classes

listed

here

have

been

removed

from

the

product.

We

recommend

that

you

update

any

applications

written

to

make

use

of

these

classes

to

use

instead

the

equivalent

function

provided

in

MQe

Version

2.0

and

Version

2.0.1.

To

enable

existing

applications

to

be

run

before

being

updated,

MQe

provides

the

MQeDeprecated.jar

jar

file.

The

MQeDeprecated.jar

file

contains

the

following

classes:

v

MQeMQBridge.class

v

MQeChannelListener.class

v

MQeChannelListenerTimer.class

v

MQeChannelManager.class

v

MQeTraceInterface.class

For

more

details

on

replacements

for

the

above

classes,

refer

to

the

listing

for

each

class

in

the

Java

API

Programming

Reference.

Security

The

following

changes

have

been

made

to

security:

1.

The

MQeCL

and

MQeRandom

classes

have

been

replaced

with

cryptoLite’s

CL

class.

2.

The

old

style

mini-certificate

support

has

been

withdrawn

from

Version

2.0

onwards.

Installing

and

uninstalling

MQe

61

These

changes

have

the

following

implications:

1.

The

CL

class

is

supplied

as

a

cryptoLite.zip.

In

order

to

use

MQe

security,

the

zip

file

must

be

placed

in

the

Java

class

path.

2.

MQeMiniCertificateServer

no

longer

supports

the

old

style

mini-certificate.

62

MQe

Getting

Started

Glossary

This

glossary

describes

terms

used

in

this

book,

and

words

used

with

other

than

their

everyday

meaning.

In

some

cases,

a

definition

might

not

be

the

only

one

applicable

to

a

term,

but

it

gives

the

particular

sense

in

which

the

word

is

used

in

this

book.

If

you

do

not

find

the

term

you

are

looking

for,

try

a

softcopy

search,

or

see

the

hardcopy

index,

or

see

the

IBM

Dictionary

of

Computing,

New

York:.

McGraw-Hill,

1994.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

application

programming

interface

(API)

An

application

programming

interface

consists

of

the

functions

and

variables

that

programmers

are

allowed

to

use

in

their

applications.

asynchronous

messaging

A

method

of

communication

between

programs

in

which

programs

place

messages

on

message

queues.

With

asynchronous

messaging,

the

sending

program

proceeds

with

its

own

processing

without

waiting

for

a

reply

to

its

message.

Contrast

with

synchronous

messaging.

authenticator

A

program

that

verifies

the

senders

and

receivers

of

messages.

B

bridge

A

component

that

can

be

added

to

an

MQe

queue

manager

to

allow

it

to

communicate

with

MQ.

See

MQe

queue

managers.

C

channel

See

dynamic

channel

and

MQI

channel.

channel

manager

an

MQe

object

that

supports

logical

multiple

concurrent

communication

pipes

between

end

points.

class

An

encapsulated

collection

of

data

and

methods

to

operate

on

the

data.

A

class

may

be

instantiated

to

produce

an

object

that

is

an

instance

of

the

class.

client

In

MQ,

a

client

is

a

run-time

component

that

allows

local

user

applications

to

send

messages

to

a

server.

compressor

A

program

that

compacts

a

message

to

reduce

the

volume

of

data

to

be

transmitted.

connection

Links

MQe

devices

and

transfers

synchronous

and

asynchronous

messages

and

responses

in

a

bidirectional

manner.

©

Copyright

IBM

Corp.

2000,

2004

63

cryptor

A

program

that

encrypts

a

message

to

provide

security

during

transmission.

D

device

platform

A

small

computer

that

is

capable

of

running

MQe

only

as

a

client,

that

is,

with

a

device

queue

manager

only.

device

queue

manager

See

MQe

queue

managers.

E

encapsulation

An

object

oriented

programming

technique

that

makes

an

object’s

data

private

or

protected

and

allows

programmers

to

access

and

manipulate

the

data

only

through

method

calls.

G

gateway

A

computer

of

any

size

running

an

MQe

gateway

queue

manager,

which

includes

the

MQ

bridge

function.

See

MQe

queue

managers.

gateway

queue

manager

A

queue

manager

with

a

listener

and

a

bridge.

See

MQe

queue

managers.

H

Hypertext

Markup

Language

(HTML)

A

language

used

to

define

information

that

is

to

be

displayed

on

the

World

Wide

Web.

I

instance

An

object.

When

a

class

is

instantiated

to

produce

an

object,

the

object

is

an

instance

of

the

class.

interface

A

class

that

contains

only

abstract

methods

and

no

instance

variables.

An

interface

provides

a

common

set

of

methods

that

can

be

implemented

by

subclasses

of

a

number

of

different

classes.

internet

A

cooperative

public

network

of

shared

information.

Physically,

the

Internet

uses

a

subset

of

the

total

resources

of

all

the

currently

existing

public

telecommunication

networks.

Technically,

what

distinguishes

the

Internet

as

a

cooperative

public

network

is

its

use

of

a

set

of

protocols

called

TCP/IP

(Transport

Control

Protocol/Internet

Protocol).

J

Java

Development

Kit

(JDK)

A

package

of

software

distributed

by

Sun

Microsystems

for

Java

developers.

It

includes

the

Java

interpreter,

Java

classes

and

Java

development

tools:

compiler,

debugger,

disassembler,

appletviewer,

stub

file

generator,

and

documentation

generator.

64

MQe

Getting

Started

Java

Naming

and

Directory

Service

(JNDI)

An

API

specified

in

the

Java

programming

language.

It

provides

naming

and

directory

functions

to

applications

written

in

the

Java

programming

language.

L

Lightweight

Directory

Access

Protocol

(LDAP)

A

client/server

protocol

for

accessing

a

directory

service.

M

message

In

message

queuing

applications,

a

communication

sent

between

programs.

message

queue

See

queue.

message

queuing

A

programming

technique

in

which

each

program

within

an

application

communicates

with

the

other

programs

by

putting

messages

on

queues.

method

The

object

oriented

programming

term

for

a

function

or

procedure.

MQ

bridge

A

computer

with

a

gateway

queue

manager

that

can

communicate

with

MQ.

See

MQe

queue

managers.

MQ

and

MQ

family

Refers

to

WebSphere

MQ,

which

includes

these

products:

v

WebSphere

MQ

Workflow

simplifies

integration

across

the

whole

enterprise

by

automating

business

processes

involving

people

and

applications.

v

WebSphere

MQ

Integrator

is

message-brokering

software

that

provides

real-time,

intelligent,

rules-based

message

routing,

and

content

transformation

and

formatting.

v

WebSphere

MQ

Messaging

provides

any-to-any

connectivity

from

desktop

to

mainframe,

through

business

quality

messaging,

with

over

35

platforms

supported.

MQ

Messaging

Refers

to

the

following

WebSphere

MQ

messaging

product

groups:

v

Distributed

messaging:

MQ

for

Windows

NT

and

Windows

2000,

AIX,

iSeries®,

HP-UX,

Solaris,

and

other

platforms

v

Host

messaging:

MQ

for

z/OS®

v

Pervasive

messaging:

MQe

MQe

Refers

to

WebSphere

MQ

Everyplace,

the

MQ

pervasive

messaging

product

group

.

MQI

channel

Connects

an

MQ

client

to

a

queue

manager

on

a

server

system

and

transfers

MQI

calls

and

responses

in

a

bidirectional

manner.

O

object

(1)

In

Java,

an

object

is

an

instance

of

a

class.

A

class

models

a

group

of

things;

an

object

models

a

particular

member

of

that

group.

(2)

In

MQ,

an

object

is

a

queue

manager,

a

queue,

or

a

channel.

Glossary

65

P

package

A

package

in

Java

is

a

way

of

giving

a

piece

of

Java

code

access

to

a

specific

set

of

classes.

Java

code

that

is

part

of

a

particular

package

has

access

to

all

the

classes

in

the

package

and

to

all

non-private

methods

and

fields

in

the

classes.

personal

digital

assistant

(PDA)

A

pocket

sized

personal

computer.

private

A

private

field

is

not

visible

outside

its

own

class.

protected

A

protected

field

is

visible

only

within

its

own

class,

within

a

subclass,

or

within

packages

of

which

the

class

is

a

part.

public

A

public

class

or

interface

is

visible

everywhere.

A

public

method

or

variable

is

visible

everywhere

that

its

class

is

visible.

Q

queue

A

queue

is

an

MQ

object.

Message

queueing

applications

can

put

messages

on,

and

get

messages

from,

a

queue.

queue

manager

A

queue

manager

is

a

system

program

that

provides

message

queuing

services

to

applications.

queue

queue

manager

This

term

is

used

in

relation

to

a

remote

queue

definition.

It

describes

the

remote

queue

manager

that

owns

the

local

queue

that

is

the

target

of

a

remote

queue

definition.

See

more

at

Configuring

remote

queues

-

Introduction.

device

queue

manager

On

MQe:-

A

queue

manager

with

no

listener

component,

and

no

bridge

component.

It

therefore

can

only

send

messages,

it

cannot

receive

them.

server

queue

manager

On

MQe:-

A

queue

manager

that

can

have

a

listener

added.

With

the

listener

it

can

receive

messages

as

well

as

send

them.

gateway

queue

manager

On

MQe:-

A

queue

manager

that

can

have

a

listener

and

a

bridge

added.

With

the

listener

it

can

receive

messages

as

well

as

send

them,

and

with

the

bridge

it

can

communicate

with

MQ.

R

registry

Stores

the

queue

manager

configuration

information.

S

server

1.

An

MQe

server

is

a

device

that

has

an

MQe

channel

manager

configured,

and

responds

to

requests

for

information

in

a

client-server

setup.

2.

An

MQ

server

is

a

queue

manager

that

provides

message

queuing

services

to

client

applications

running

on

a

remote

workstation.

66

MQe

Getting

Started

3.

More

generally,

a

server

is

a

program

that

responds

to

requests

for

information

in

the

particular

two-program

information-flow

model

of

client-server.

4.

The

computer

on

which

a

server

program

runs.

server

queue

manager

A

queue

manager

with

a

listener

that

can

therefore

receive

messages

as

well

as

send

them.

See

MQe

queue

managers.

server

platform

A

computer

of

any

size

that

is

capable

of

running

MQe

as

a

server

or

client.

servlet

A

Java

program

which

is

designed

to

run

only

on

a

Web

server.

subclass

A

subclass

is

a

class

that

extends

another.

The

subclass

inherits

the

public

and

protected

methods

and

variables

of

its

superclass.

superclass

A

superclass

is

a

class

that

is

extended

by

some

other

class.

The

superclass’s

public

and

protected

methods

and

variables

are

available

to

the

subclass.

synchronous

messaging

A

method

of

communicating

between

programs

in

which

programs

place

messages

on

message

queues.

With

synchronous

messaging,

the

sending

program

waits

for

a

reply

to

its

message

before

resuming

its

own

processing.

Contrast

with

asynchronous

messaging.

T

Transmission

Control

Protocol/Internet

Protocol

(TCP/IP)

A

set

of

communication

protocols

that

support

peer-to-peer

connectivity

functions

for

both

local

and

wide

area

networks.

transformer

A

piece

of

code

that

performs

data

or

message

reformatting.

W

Web

See

World

Wide

Web.

Web

browser

A

program

that

formats

and

displays

information

that

is

distributed

on

the

World

Wide

Web.

World

Wide

Web

(Web)

The

World

Wide

Web

is

an

Internet

service,

based

on

a

common

set

of

protocols,

which

allows

a

particularly

configured

server

computer

to

distribute

documents

across

the

Internet

in

a

standard

way.

Glossary

67

68

MQe

Getting

Started

Appendix.

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

United

Kingdom

Laboratories,

Mail

Point

151,

©

Copyright

IBM

Corp.

2000,

2004

69

Hursley

Park,

Winchester,

Hampshire

England

SO21

2JN

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Trademarks

The

following

terms

are

trademarks

of

International

Business

machines

Corporation

in

the

United

States,

or

other

countries,

or

both.

AIX

Everyplace

IBM

iSeries

MQSeries

WebSphere

z/OS

zSeries

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States

and/or

other

countries.

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States

and/or

other

countries.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

70

MQe

Getting

Started

����

Printed

in

USA

	Contents
	About this topic collection
	Welcome to MQe
	MQe in a nutshell
	Codebase options
	What's new in 2.0.1
	What's changed in the documentation
	What is MQe
	Introduction to MQe
	MQe in the MQ family
	Basic messaging
	MQ host and distributed products
	The MQ family
	MQe
	How MQe extends the MQ family

	What you might use MQe for
	Scenarios and Applications

	How MQe works
	Messages
	Queues
	Queue managers
	Queue manager configuration
	Queue manager operations

	Administration
	Administration messages
	Selective administration
	Monitoring and related actions

	Connections
	Connection styles

	Adapters
	Dialup connection management
	Trace
	Event log
	Security
	The registry
	Private registry and credentials
	Auto-registration
	Public registry and certificate replication
	Application use of registry services
	Default mini-certificate issuance service
	The security interface

	Customizing rules
	Attributes rules
	MQ bridge rules
	Queue rules
	Queue manager rules

	Classes
	Application loading

	MQe SupportPacs
	MS0B - MQSeries Java classes for PCF

	Planning your implementation
	Licenses
	What machines to use
	Which codebase to use
	Your MQe development cycle
	Gaining experience on MQe
	Using MQe with MQ
	Introduction
	Gateway (bridge) to MQ
	Message conversion
	Function
	Compatibility
	Assured delivery

	Translation
	Further information
	Related information on MQ
	Websites
	Newsgroups
	MQe Certification

	Installing and uninstalling MQe
	Before you install
	Prerequisites
	Supported platforms
	Directly supported with installation support
	Directly supported without installation support
	Indirectly supported

	Java environment
	PersonalJava
	J2ME
	WS Device Developer
	C Bindings environment
	JMX Interface

	C environment
	Hardware

	Supported devices
	Licensing

	Installing MQe
	Installation procedure
	Silent installation
	Silent installation directories
	Silent install with option files

	Installing from a zip file
	Installed components
	MQe for Java
	MQe C bindings
	MQe for Palm OS
	MQe for Native platforms
	PocketPC Version information tool
	Documentation

	Components on the Web
	Verifying your installation
	Java installation verification
	C installation verification

	Modifying your installation
	Uninstalling MQe
	Windows
	Unix
	Silent uninstallation
	Silent uninstall with options files

	Applying maintenance to MQe
	Migrating from 1.2.7 to 2.0 or 2.0.1
	Aliases in MQeFields
	MQeFields
	Peer channels
	MQeChannel
	MQeAttribute
	MQeQueueManager
	Deprecated methods and classes
	Security

	Glossary
	Appendix. Notices
	Trademarks

