
WebSphere

MQ

Everyplace

Configuring

MQe

Objects

Version

2

Release

0

���

WebSphere

MQ

Everyplace

Configuring

MQe

Objects

Version

2

Release

0

���

Note

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

the

Notices

appendix.

First

Edition

(July

2004)

This

edition

applies

to

IBM®

WebSphere®

MQ

Everyplace

Version

2.0.1

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

©

Copyright

International

Business

Machines

Corporation

2000,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

topic

collection

.

.

.

.

.

. vii

How

to

configure

MQe

objects

.

.

.

.

. 1

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Overview

of

MQe

objects

.

.

.

.

.

.

.

.

. 2

Queue

managers

.

.

.

.

.

.

.

.

.

.

.

. 3

Connections

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Client-to-server

connections

.

.

.

.

.

.

. 6

Adapters,

routing

and

aliases

.

.

.

.

.

.

. 6

Queues

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Local

queue

.

.

.

.

.

.

.

.

.

.

.

. 8

Message

store

.

.

.

.

.

.

.

.

.

.

. 8

Creating

a

local

queue

.

.

.

.

.

.

.

. 9

Queue

security

.

.

.

.

.

.

.

.

.

. 10

Other

queue

characteristics

.

.

.

.

.

. 10

Aliases

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Action

restrictions

.

.

.

.

.

.

.

.

. 11

Home-server

queue

.

.

.

.

.

.

.

.

.

. 11

MQ

bridge

queue

.

.

.

.

.

.

.

.

.

. 13

Administration

queue

.

.

.

.

.

.

.

.

. 14

Security

and

administration

.

.

.

.

.

.

.

. 15

Configuring

with

messages

.

.

.

.

.

.

.

.

. 15

Configuration

by

messages

overview

.

.

.

.

. 15

The

administration

queue

.

.

.

.

.

.

.

. 16

The

administration

reply-to

queue

.

.

.

.

.

. 17

Create

the

appropriate

administration

message

17

Set

the

required

fields

in

a

message

-

Java

.

.

. 18

The

basic

administration

message

.

.

.

.

. 19

Base

administration

fields

.

.

.

.

.

.

. 19

Fields

specific

to

the

managed

resource

.

.

. 20

Other

useful

fields

.

.

.

.

.

.

.

.

.

. 21

Administration

message

Java

examples

1

.

. 22

Put

the

message

on

the

target

queue

.

.

. 23

Wait

for

an

administration

reply

message

23

Set

the

required

fields

in

the

message

-

C

.

.

. 25

Analyzing

the

data

in

the

reply

message

.

.

. 25

The

basic

administration

reply

message

.

.

.

. 26

Outcome

of

request

fields

.

.

.

.

.

.

.

. 27

Administration

message

Java

examples

-

2

.

.

. 29

Decorating

the

queue

manager

.

.

.

.

.

. 30

Putting

the

administration

message

.

.

.

. 30

Waiting

for

the

administration

reply

.

.

.

. 31

Analyzing

the

reply

message

.

.

.

.

.

. 31

Updating

a

queue

manager

description

.

.

. 32

Configuring

with

the

C

administrator

API

.

.

.

. 33

Creating

an

administrator

handle

.

.

.

.

.

. 33

Using

the

administrator

handle

.

.

.

.

.

.

. 33

Freeing

the

administrator

handle

.

.

.

.

.

. 34

Configuring

from

the

command

line

.

.

.

.

.

. 35

Example

use

of

command-line

tools

.

.

.

.

. 36

Script

files

required

.

.

.

.

.

.

.

.

.

. 37

MQe

and

MQ

objects

defined

by

the

scripts

38

How

to

use

the

script

files

.

.

.

.

.

.

. 39

How

to

use

MQe_Explorer

to

view

the

configuration

.

.

.

.

.

.

.

.

.

.

.

. 41

Configuring

MQe

objects

.

.

.

.

.

.

. 43

Configuring

queue

managers

.

.

.

.

.

.

.

. 43

Introduction

to

configuring

queue

managers

.

. 43

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Queue

manager

attributes

.

.

.

.

.

.

.

. 44

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

Create

a

queue

manager

.

.

.

.

.

.

.

.

. 46

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

Delete

a

queue

manager

.

.

.

.

.

.

.

.

. 47

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Inquire

and

inquire

all

.

.

.

.

.

.

.

.

.

. 48

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Update

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Add

alias

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Remove

alias

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

List

alias

names

.

.

.

.

.

.

.

.

.

.

.

. 51

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

IsAlias

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Configuring

a

queue

manager

using

memory

only

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Configuring

local

queues

.

.

.

.

.

.

.

.

.

. 52

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Local

queue

properties

.

.

.

.

.

.

.

.

. 54

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Create

a

local

queue

.

.

.

.

.

.

.

.

.

. 57

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Delete

a

local

queue

.

.

.

.

.

.

.

.

.

. 58

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Add

alias

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

List

aliases

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Remove

alias

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

©

Copyright

IBM

Corp.

2000,

2004

iii

Update

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Inquire

and

inquire

all

.

.

.

.

.

.

.

.

.

. 61

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

Message

storage

adapter

.

.

.

.

.

.

.

.

. 62

Configuring

remote

queues

.

.

.

.

.

.

.

.

. 63

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Structures

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Synchronous

and

asynchronous

.

.

.

.

.

. 64

Setting

the

operation

mode

.

.

.

.

.

.

.

. 66

Creating

a

remote

queue

.

.

.

.

.

.

.

.

. 66

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Create

synchronous

.

.

.

.

.

.

.

.

.

.

. 68

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Create

asynchronous

.

.

.

.

.

.

.

.

.

. 69

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Transporter

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Queue

aliases

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Configuring

home

server

queues

.

.

.

.

.

.

. 70

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Configuration

messages

.

.

.

.

.

.

.

.

. 72

Message

transmission

.

.

.

.

.

.

.

.

.

. 72

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Creating

a

home

server

queue

.

.

.

.

.

.

. 72

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Configuring

store-and-forward

queues

.

.

.

.

. 73

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Store

and

forward

queue

attributes

.

.

.

.

. 76

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Create

store

and

forward

queue

.

.

.

.

.

. 76

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Delete

store

and

forward

queue

.

.

.

.

.

. 77

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Add

queue

manager

.

.

.

.

.

.

.

.

.

. 77

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Remove

queue

manager

.

.

.

.

.

.

.

.

. 78

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Update

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Inquire

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Configuring

connection

definitions

.

.

.

.

.

. 79

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Direct

connection

definition

.

.

.

.

.

.

. 80

Indirect

connection

definition

.

.

.

.

.

. 80

Configuring

connection

definitions

in

Java

.

.

. 80

Creating

a

connection

definition

.

.

.

.

. 80

Altering

and

deleting

connection

definitions

82

Configuring

connection

definitions

in

C

.

.

.

. 83

Creating

a

connection

definition

.

.

.

.

. 84

Altering

and

deleting

connection

definitions

85

Configuring

a

listener

.

.

.

.

.

.

.

.

.

.

. 86

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Configuring

bridge/gateway

resources

.

.

.

.

. 88

Introduction

to

the

MQ

bridge

.

.

.

.

.

.

. 88

What

makes

a

queue

manager

bridge-enabled

.

. 88

Finding

out

if

a

queue

manager

is

bridge-enabled

89

Classes

to

bridge-enable

a

queue

manager

.

.

. 89

Overview

of

configuring

the

bridge

.

.

.

.

. 90

The

bridge

objects

and

hierarchy

.

.

.

.

.

. 92

Bridges

resource

.

.

.

.

.

.

.

.

.

.

. 92

Bridge

resource

.

.

.

.

.

.

.

.

.

.

. 92

MQ

queue

manager

proxy

.

.

.

.

.

.

. 93

Client

connection

resource

.

.

.

.

.

.

. 94

Transmit

queue

listener

resource

.

.

.

.

. 95

Bridge

queue

.

.

.

.

.

.

.

.

.

.

.

. 96

Naming

recommendations

for

interoperability

with

MQ

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Configuring

a

basic

MQ

bridge

.

.

.

.

.

.

. 98

Using

MQe

administration

messages

and

MQ

PCF

messages

.

.

.

.

.

.

.

.

.

.

.

. 100

Bridge

configuration

example

.

.

.

.

.

.

. 101

MQeMoonQM

to/from

MQeEarthQM

.

.

. 102

MQeEarthQM

to

MQeMoonQM

.

.

.

.

. 102

MQeEarthQM

to

MQSaturnQ

.

.

.

.

.

. 103

MQeEarthQM

to

MQJupiterQ

.

.

.

.

.

. 104

MQeMoonQM

to

MQJupiterQ

and

MQSaturnQ

.

.

.

.

.

.

.

.

.

.

.

. 104

MQSaturnQM

to

MQeEarthQ

.

.

.

.

.

. 105

MQSaturnQM

to

MQeMoonQ

.

.

.

.

.

. 105

MQJupiterQM

to

MQeMoonQ

.

.

.

.

.

. 106

Administration

of

the

bridge

.

.

.

.

.

.

. 106

Bridge

administration

actions

.

.

.

.

.

. 106

Run

state

.

.

.

.

.

.

.

.

.

.

.

. 106

Start

action

.

.

.

.

.

.

.

.

.

.

. 106

Stop

action

.

.

.

.

.

.

.

.

.

.

. 106

Inquire

action

.

.

.

.

.

.

.

.

.

. 106

Update

action

.

.

.

.

.

.

.

.

.

. 107

Delete

action

.

.

.

.

.

.

.

.

.

. 107

Create

action

.

.

.

.

.

.

.

.

.

. 107

Bridge

considerations

when

stopping

an

MQ

queue

manager

.

.

.

.

.

.

.

.

.

.

. 107

Immediate

shutdown

.

.

.

.

.

.

.

. 107

Controlled

shutdown

.

.

.

.

.

.

.

. 108

Administered

objects

and

their

characteristics

108

Handling

undeliverable

messages

.

.

.

.

. 109

Bridge

National

Language

Support

.

.

.

.

. 109

Configuring

queue

managers

as

servlets

.

.

.

. 111

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

. 111

An

example

servlet

configuration

using

WAS

112

Start

the

Application

Assembly

tool

.

.

.

. 112

Specifying

web

module

properties

.

.

.

. 113

Adding

files

to

the

application

.

.

.

.

.

. 113

Adding

web

components

.

.

.

.

.

.

. 114

Specifying

component

type

and

class

name

115

Specifying

a

URL

to

map

to

your

servlet

.

. 115

Finishing

and

saving

the

file

.

.

.

.

.

. 116

Install

enterprise

application

.

.

.

.

.

. 117

Installing

your

component

as

a

standalone

module

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Specifying

an

application

name

.

.

.

.

. 118

Finishing

the

configuration

.

.

.

.

.

.

. 119

Starting

the

web

module

.

.

.

.

.

.

. 119

Start

succeeded

.

.

.

.

.

.

.

.

.

.

. 120

Using

the

servlet

.

.

.

.

.

.

.

.

.

. 120

iv

Configuring

MQe

Objects

JMS

(Java

Message

Service)

configuration

.

.

.

. 120

JMS

Object

naming

changes

from

V2.0.1

.

.

. 120

Introduction

to

JMS

.

.

.

.

.

.

.

.

.

. 120

Configuring

MQeConnectionFactory

.

.

.

.

. 121

Configuring

MQeJMSQueue

.

.

.

.

.

.

. 122

The

MQe

administration

tool

for

JMS

.

.

.

. 122

Configuring

the

JMS

administration

tool

.

. 123

Starting

the

JMS

administration

tool

.

.

.

. 123

JMS

Administration

commands

.

.

.

.

. 124

Manipulating

subcontexts

.

.

.

.

.

.

. 125

Administering

JMS

objects

.

.

.

.

.

.

. 125

Verbs

used

with

JMS

objects

.

.

.

.

.

. 126

Creating

JMS

objects

.

.

.

.

.

.

.

.

. 127

LDAP

naming

of

JMS

objects

.

.

.

.

.

. 127

JMS

object

properties

.

.

.

.

.

.

.

.

. 128

Extending

MQeConnectionFactory

.

.

.

.

. 129

LDAP

schema

definition

for

Java

object

storage

130

Attribute

definitions

.

.

.

.

.

.

.

.

. 130

objectClass

definitions

.

.

.

.

.

.

.

. 132

JMX

(Java

Management

Extensions)

interface

.

.

. 132

Introduction

to

MQe

JMX

.

.

.

.

.

.

.

. 133

JMX

architecture

.

.

.

.

.

.

.

.

.

. 134

Instrumenting

your

MQe

resources

as

JMX

MBeans

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Typographical

conventions

in

this

JMX

documentation

.

.

.

.

.

.

.

.

.

.

. 136

Setting

up

the

MQe

JMX

interface

.

.

.

.

. 136

Enabling

MQe

applications

for

JMX

managment

137

Accessing

MQe

MBeans

via

the

MBeanServer

137

ObjectName

.

.

.

.

.

.

.

.

.

.

.

. 138

Useful

MBeanServer

methods

.

.

.

.

.

. 142

getMBeanInfo

.

.

.

.

.

.

.

.

.

. 142

getAttribute

.

.

.

.

.

.

.

.

.

.

. 143

getAttributes

.

.

.

.

.

.

.

.

.

. 143

setAttribute

.

.

.

.

.

.

.

.

.

.

. 144

setAttributes

.

.

.

.

.

.

.

.

.

.

. 144

invoke

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Data

types

.

.

.

.

.

.

.

.

.

.

.

. 146

Divergence

from

MQe

Administration

Interface

146

Messaging

operations

.

.

.

.

.

.

.

. 146

Store

and

Forward

queues

.

.

.

.

.

.

. 147

Programmatic

interface

versus

user

interface

terminology

.

.

.

.

.

.

.

.

.

.

.

. 148

Queue

references

.

.

.

.

.

.

.

.

. 148

Queue

queue

manager

references

.

.

.

. 148

Error

handling

.

.

.

.

.

.

.

.

.

.

.

. 149

Notifications

.

.

.

.

.

.

.

.

.

.

.

.

. 149

MQeAliasNotification

.

.

.

.

.

.

.

. 150

AttributeChangeNotification

.

.

.

.

.

. 150

Using

notifications

.

.

.

.

.

.

.

.

. 150

Other

Issues

.

.

.

.

.

.

.

.

.

.

.

.

. 152

Setting

attributes

of

array

type

.

.

.

.

. 152

Alias

MBeans

.

.

.

.

.

.

.

.

.

.

. 152

Translation

.

.

.

.

.

.

.

.

.

.

.

.

. 153

Related

information

on

JMX

.

.

.

.

.

.

. 154

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Appendix.

Notices

.

.

.

.

.

.

.

.

. 163

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

Contents

v

vi

Configuring

MQe

Objects

About

this

topic

collection

This

PDF

collection

has

been

created

from

the

source

files

used

to

create

the

WebSphere

MQ

Everyplace

Help

Center,

for

when

you

need

a

printed

copy.

The

content

of

these

topics

was

created

for

viewing

on-screen;

you

might

find

that

the

formatting

and

presentation

of

some

figures,

tables,

examples,

and

so

on,

is

not

optimized

for

the

printed

page.

Text

highlighting

might

also

have

a

different

appearance.

In

this

PDF,

links

within

the

topic

content

itself

are

included,

but

are

active

only

if

they

link

to

another

topic

in

the

same

PDF

collection

(when

the

link

includes

a

page

number).

Links

to

topics

outside

this

topic

collection

attempt

to

link

to

a

PDF

that

is

named

after

the

topic

identifier

(for

example,

des10030.pdf)

and

therefore

fail;

you

can

identify

invalid

links

like

this

because

they

have

no

associated

page

number.

Use

the

Help

Center

to

navigate

freely

between

topics.

Please

do

not

provide

feedback

on

this

PDF.

Refer

to

the

help

center,

and

use

the

″Feedback

on

the

documentation″

topic

at

the

end

of

the

table

of

contents

to

report

any

errors

or

suggestions

for

improvement.

©

Copyright

IBM

Corp.

2000,

2004

vii

viii

Configuring

MQe

Objects

How

to

configure

MQe

objects

Overview

of

configuring

MQe

queues,

queue

managers,

and

networks

This

part

of

the

information

center

provides

the

basic

information

necessary

in

order

to

configure

MQe

queue

managers

and

networks.

It

is

also

designed

to

help

you

to

customize

a

configuration

matching

your

specific

business

requirements.

It

describes

how

individual

MQe

components

can

be

created

and

administered

and

how

components

may

be

used

together

in

various

topologies.

Introduction

This

book

provides

the

basic

information

necessary

in

order

to

configure

MQe

queue

managers

and

networks.

It

is

also

designed

to

allow

a

user

to

customize

a

configuration

matching

his

or

her

specific

business

requirements.

It

describes

how

individual

MQe

components

can

be

created

and

administered

and

how

components

may

be

used

together

in

various

topologies.

The

contents

include

information

on:

v

Creating

and

starting

queue

managers

v

Defining

connectivity

between

queue

managers

v

Establishing

the

routes

taken

by

messages

through

an

MQe

network

v

Exercising

control

over

the

protocols

used

v

Determining

where

messages

are

staged,

if

appropriate

v

Configuring

queue-level

security

v

Appreciating

the

advantages

and

disadvantages

of

the

available

MQe

configuration

options

This

introduction

provides

a

map

of

various

routes

through

the

rest

of

the

guide

depending

on

the

type

of

configuration

which

the

user

hopes

to

achieve.

Since

these

routes

are

described

in

terms

of

queue

manager

configurations,

a

brief

description

of

the

MQe

queue

manager

and

associated

components

follows.

In

the

following

table,

the

necessary

steps

to

configure

each

type

of

queue

manager

are

itemized,

together

with

the

corresponding

chapters

of

this

manual.

The

Basic

Queue

Manager

configuration

is

a

prerequisite

of

all

other

configurations;

that

is

to

say,

any

queue

manager

must

first

be

configured

as

a

Basic

Queue

Manager.

Then,

other

types

of

functionality

may

be

added

as

required.

Thus:

To

configure

a

Client

Carry

out

steps

1,

2,

3,

4

and

5

To

configure

a

Server

Carry

out

steps

1,

2,

6

and

7

To

configure

a

queue

manager

with

both

Server

and

Client

functionality

Carry

out

steps

1

through

7

inclusive

©

Copyright

IBM

Corp.

2000,

2004

1

Table

1.

Configuring

clients,

servers,

and

queue

managers

Requisite

steps

Topics

Basic

queue

manager

1.

Create

and

start

the

queue

manager

“Configuring

with

messages”

on

page

15

Queue

manager

operations

2.

Create

a

local

queue

“Configuring

queue

managers”

on

page

43

“Configuring

local

queues”

on

page

52

Client

queue

manager

3.

Create

a

connection

definition

to

a

server

“Configuring

connection

definitions”

on

page

79

4.

Create

a

remote

queue

definition

“Configuring

remote

queues”

on

page

63

5.

Create

a

home

server

queue

for

triggered

transmission

(required

for

remote

asynchronous

queues)

“Configuring

home

server

queues”

on

page

70

Server

queue

manager

6.

Create

a

listener

“Configuring

a

listener”

on

page

86

7.

Create

a

store-and-forward

queue

(optional)

“Configuring

store-and-forward

queues”

on

page

73

8.

Add

bridge

functionality

“Configuring

bridge/gateway

resources”

on

page

88

Overview

of

MQe

objects

Queue

manager

A

queue

manager

owns

and

controls

MQe

messages,

queues,

and

connections

(see

below).

It

allows

applications

to

access

messages

and

queues.

Each

queue

manager

has

a

unique

name

that

distinguishes

it

from

any

other

MQe

queue

manager.

Depending

upon

the

needs

of

an

application,

queue

managers

can

differ

in

their

collection

of

queues,

messages,

connections,

and

other

objects,

and

also

in

the

role

they

play

in

a

configuration.

MQe

identifies

three

distinct

roles

for

queue

managers

in

addition

to

the

basic

queue

manager

functionality:

v

Client

A

queue

manager

that

supplies

messages

to,

or

gets

messages

from,

a

server

v

Server

A

queue

manager

that

provides

services

to

many

attached

client

queue

managers

v

Gateway

A

server

queue

manager

that

also

has

the

capability

to

exchange

messages

with

MQ

base

messaging

queue

managers

Queue

A

queue

may

be

used

to

store,

process,

or

move

messages.

Each

queue

belongs

to

a

queue

manager

and

applications

can

access

queues

through

the

queue

manager.

Each

queue

has

a

unique

name

that

distinguishes

it

from

any

other

queue

on

that

same

queue

manager.

Local

queues

are

not

strictly

mandatory,

however

you

cannot

do

much

without

them.

2

Configuring

MQe

Objects

Message

A

message

is

a

collection

of

data

which

can

be

stored

in

a

queue

or

moved

across

an

MQe

network.

Connection

A

connection

provides

its

local

queue

manager

with

the

information

it

needs

to

establish

communication

links

with

a

remote

queue

manager.

The

name

of

a

connection

is

the

name

of

that

remote

queue

manager.

Only

one

connection

definition

can

exist

on

a

local

queue

manager

for

each

remote

queue

manager

name.

Channel

A

channel

is

an

entity

allowing

a

queue

manager

to

move

messages

to

a

remote

queue

manager.

Registry

The

registry

is

the

primary

store

for

queue

manager

related

information.

Each

queue

manager

has

its

own

registry.

Every

queue

manager

uses

the

registry

to

hold

details

of

its

properties

and

objects.

Queue

managers

No

matter

what

role

a

queue

manager

performs,

there

is

a

basic

amount

of

configuration

required.

This

basic

configuration

results

in

what

is

here

termed

a

Basic

Queue

Manager.

Depending

upon

the

type

of

role

intended

for

the

queue

manager,

this

Basic

Queue

Manager

is

extended,

resulting

in

a

Client

Queue

Manager,

a

Server

Queue

Manager

or

a

Gateway

Queue

Manager.

The

following

diagram

attempts

to

summarize

these

configurations:

Table

2.

Queue

manager

configuration

Basic

Queue

Manager

+

Connection

definition

and

remote

queue

definition

=

Client

queue

manager

Basic

Queue

Manager

+

Listener

=

Server

queue

manager

Basic

Queue

Manager

+

Bridge

functionality

=

Gateway

queue

manager

Basic

Queue

Manager

+

Security

configuration,

and

so

on

The

complete

management

life

cycle

for

most

managed

resources

can

be

controlled

with

administration

messages.

This

means

that

the

managed

resource

can

be

brought

into

existence,

managed

and

then

deleted

with

administration

messages.

This

is

not

the

case

for

queue

managers.

Before

a

queue

manager

can

be

managed

it

must

be

created

and

started.

The

queue

manager

has

very

few

characteristics

itself,

but

it

controls

other

MQe

resources.

When

you

inquire

on

a

queue

manager,

you

can

obtain

a

list

of

connections

to

other

queue

managers

and

a

list

of

queues

that

the

queue

manager

How

to

configure

MQe

objects

3

can

work

with.

Each

list

item

is

the

name

of

either

a

connection

or

a

queue.

Once

you

know

the

name

of

a

resource,

you

can

use

the

appropriate

message

to

manage

the

resource.

For

instance

you

use

an

MQeConnectionAdminMessage

to

manage

connections.

Connections

Connections

define

how

to

connect

one

queue

manager

to

another

queue

manager.

Once

a

connection

has

been

defined,

it

is

possible

for

a

queue

manager

to

put

messages

to

queues

on

the

remote

queue

manager.

The

following

diagram

shows

the

constituent

parts

that

are

required

for

a

remote

queue

on

one

queue

manager

to

communicate

with

a

queue

on

a

different

queue

manager:

Communication

happens

at

different

levels:

Transporter:

Logical

connection

between

two

queues

Channel:

Logical

connection

between

two

systems

Adapter:

Protocol

specific

communication

The

channel

and

adapter

are

specified

as

part

of

a

connection

definition.

The

transporter

is

specified

as

part

of

a

remote

queue

definition.

The

following

example

code

shows

a

method

that

instantiates

and

primes

an

MQeConnectionAdminMsg

ready

to

create

a

connection:

/**

*

Setup

an

admin

msg

to

create

a

connection

definition

*/

public

MQeConnectionAdminMsg

addConnection(

remoteQMgr

adapter,

parms,

options,

channel,

description

)

throws

Exception

{

String

remoteQMgr

=

"ServerQM";

/*

*

Create

an

empty

queue

manager

admin

message

and

parameters

field

Local queue manager Remote queue manager

Channel Channel

Transporter Transporter

Listener

Remote
queue Queue

Network
adapter

Network
adapter

Figure

1.

Queue

manager

connections

4

Configuring

MQe

Objects

*/

MQeConnectionAdminMsg

msg

=

new

MQeConnectionAdminMsg();

/*

*

Prime

message

with

who

to

reply

to

and

a

unique

identifier

*/

MQeFields

msgTest

=

primeAdminMsg(

msg

);

/*

*

Set

name

of

queue

manager

to

add

routes

to

*/

msg.setName(

remoteQMgr

);

/*

*

Set

the

admin

action

to

create

a

new

queue

*

The

connection

is

setup

to

use

a

default

channel.

This

is

an

alias

*

which

must

have

be

setup

on

the

queue

manager

for

the

connection

to

*

work.

*/

msg.create(

adapter,

parms,

options,

channel,

description

);

return

msg;

}

You

use

MQeConnectionAdminMsg

to

configure

the

client

portion

of

a

connection.

The

channel

type

is

com.ibm.mqe.MQeChannel.

Normally

an

alias

of

DefaultChannel

is

configured

for

MQeChannel.The

following

code

fragment

shows

how

to

configure

a

connection

on

a

client

to

communicate

with

a

server

using

the

HTTP

protocol.

/**

*

Create

a

connection

admin

message

that

creates

a

connection

*

definition

to

a

remote

queue

manager

using

the

HTTP

protocol.

Then

*

send

the

message

to

the

client

queue

manager.

*/

public

addClientConnection(

MQeQueueManager

myQM,

String

targetQMgr

)

throws

Exception

{

String

remoteQMgr

=

"ServerQM";

String

adapter

=

"Network:127.0.0.1:80";

//

This

assumes

that

an

alias

called

Network

has

been

setup

for

//

network

adapter

com.ibm.mqe.adapters.MQeTcpipHttpAdapter

String

parameters

=

null;

String

options

=

null;

String

channel

=

"DefaultChannel";

String

description

=

"client

connection

to

ServerQM";

/*

*

Setup

the

admin

msg

*/

MQeConnectionAdminMsg

msg

=

addConnection(

remoteQMgr,

adapter,

parameters,

options,

channel,

description

);

/*

*

Put

the

admin

message

to

the

admin

queue

(not

using

assured

flows)

*/

myQM.putMessage(targetQMgr,

MQe.Admin_Queue_Name,

msg,

How

to

configure

MQe

objects

5

null,

0

);

}

Client-to-server

connections

You

can

connect

queue

managers

in

client

to

server

mode.

In

a

client

to

server

configuration,

one

queue

manager

acts

as

a

client

and

the

other

runs

in

a

server

environment.

A

server

allows

multiple

simultaneous

incoming

connections

(channels).

To

accomplish

this

the

server

must

have

components

that

can

handle

multiple

incoming

requests.

Figure

2

shows

the

typical

connection

components

in

a

client

to

server

configuration.

Note:

MQeChannelManager

and

MQeListener

are

deprecated

in

version

2.0.

Adapters,

routing

and

aliases

Adapters

See

Using

adapters

and

Java

API

Programming

Reference

for

more

information

on

adapters.

MQeChannel

Transporter

Network
adapter

MQeChannel

Transporter

Remote
queue

Client
Local queue manager

Server
Remote queue manager

Network
adapter

Queue

Network adapter

MQeListener

MQeChannelManager

Figure

2.

Client

to

server

connections

6

Configuring

MQe

Objects

Routing

connections

You

can

set

up

a

connection

so

that

a

queue

manager

routes

messages

through

an

intermediate

queue

manager.

This

requires

two

connections:

1.

A

connection

to

the

intermediate

queue

manager

2.

A

connection

to

the

target

queue

manager

The

first

connection

is

created

by

the

methods

described

earlier

in

this

section,

either

as

a

client

or

as

a

peer

connection.

For

the

second

connection,

the

name

of

the

intermediate

queue

manager

is

specified

in

place

of

the

network

adapter

name.

With

this

configuration

an

application

can

put

messages

to

the

target

queue

manager

but

route

them

through

one

or

more

intermediate

queue

managers.

Aliases

You

can

assign

multiple

names

or

aliases

to

a

connection.

When

an

application

calls

methods

on

the

MQeQueueManager

class

that

require

a

queue

manager

name

to

be

specified,

it

can

also

use

an

alias.

You

can

alias

both

local

and

remote

queue

managers.

To

alias

a

local

queue

manager,

you

must

first

establish

a

connection

definition

with

the

same

name

as

the

local

queue

manager.

This

is

a

logical

connection

that

can

have

all

parameters

set

to

null.

To

add

and

remove

aliases,

use

the

Action_AddAlias

and

Action_RemoveAlias

actions

of

the

MQeConnectionAdminMsg

class.

You

can

add

or

remove

multiple

aliases

in

one

message.

Put

the

aliases

that

you

want

to

manipulate

directly

into

the

message

by

setting

the

ASCII

array

field

Con_Aliases.

Alternatively

you

can

use

the

two

methods

addAlias()

or

removeAlias().

Each

of

these

methods

takes

one

alias

name

but

you

can

call

the

method

repeatedly

to

add

multiple

aliases

to

a

message.

The

following

snippet

of

code

shows

how

to

add

connection

aliases

to

a

message:

/**

*

Setup

an

admin

msg

to

add

aliases

to

a

queue

manager

(connection)

*/

public

MQeConnectionAdminMsg

addAliases(

String

queueManagerName

String

aliases[]

)

throws

Exception

{

/*

*

Create

an

empty

connection

admin

message

*/

MQeConnectionAdminMsg

msg

=

new

MQeConnectionAdminMsg();

/*

*

Prime

message

with

who

to

reply

to

and

a

unique

identifier

*/

MQeFields

msgTest

=

primeAdminMsg(

msg

);

/*

*

Set

name

of

the

connection

to

add

aliases

to

*/

msg.setName(

queueManagerName

);

/*

*

Use

the

addAlias

method

to

add

aliases

to

the

message.

*/

for

(

int

i=0;

i<aliases.length;

i++

)

How

to

configure

MQe

objects

7

{

msg.addAlias(

aliases[i]

);

}

return

msg;

}

Queues

The

queue

types

provided

by

MQe

are

described

briefly

in

Queues.

The

simplest

of

these

is

a

local

queue

that

is

implemented

in

class

MQeQueue

and

is

managed

by

class

MQeQueueAdminMsg.

All

other

types

of

queue

inherit

from

MQeQueue.

For

each

type

of

queue

there

is

a

corresponding

administration

message

that

inherits

from

MQeQueueAdminMsg.

The

following

sections

describe

the

administration

of

the

various

types

of

queues.

Local

queue

You

can

create,

update,

delete

and

inquire

on

local

queues

and

their

descendents

using

administration

actions

provided

in

MQe.

The

basic

administration

mechanism

is

inherited

from

MQeAdminMsg.

The

name

of

a

queue

is

formed

from

the

target

queue

manager

name,

for

a

local

queue

this

is

the

name

of

the

queue

manager

that

owns

the

queue,

and

a

unique

name

for

the

queue

on

that

queue

manager.

Two

fields

in

the

administration

message

are

used

to

uniquely

identify

the

queue,

these

are

the

ASCII

fields

Admin_Name

and

Queue_QMgrName.

You

can

use

the

setName(queueManagerName,

queueName)

method

to

set

these

two

fields

in

the

administration

message.

The

following

diagram

shows

an

example

of

a

queue

manager

configured

with

a

local

queue.

Queue

manager

qm1

has

a

local

queue

named

invQ.

The

queue

manager

name

characteristic

of

the

queue

is

qm1,

which

matches

the

queue

manager

name.

The

following

diagram

shows

a

local

queue:

Message

store:

Queue
invQ

msg = getMessage(null, invQ, ...)

putMessage(null, invQ, msg, …)

qm1

Figure

3.

Local

queue

8

Configuring

MQe

Objects

Local

queues

require

a

message

store

to

store

their

messages.

Each

queue

can

specify

what

type

of

store

to

use,

and

where

it

is

located.

Use

the

queue

characteristic

Queue_FileDesc

to

specify

the

type

of

message

store

and

to

provide

parameters

for

it.

The

field

type

is

ascii

and

the

value

must

be

a

file

descriptor

of

the

form:

adapter

class:adapter

parameters

or

adapter

alias:adapter

parameters

For

example:

MsgLog:d:\QueueManager\ServerQM12\Queues

MQe

Version

2.1

provides

two

adapters,

one

for

writing

messages

to

disk

and

one

for

storing

them

in

memory.

By

creating

an

appropriate

adapter,

messages

can

be

stored

in

any

suitable

place

or

medium

(such

as

DB2®

database

or

writable

CDs).

The

choice

of

adapter

determines

the

persistence

and

resilience

of

messages.

For

instance

if

a

memory

adapter

is

used

then

the

messages

are

only

as

resilient

as

the

memory.

Memory

may

be

a

much

faster

medium

than

disk

but

is

highly

volatile

compared

to

disk.

Hence

the

choice

of

adapter

is

an

important

one.

If

you

do

not

provide

message

store

information

when

creating

a

queue,

it

defaults

to

the

message

store

that

was

specified

when

the

queue

manager

was

created.

Take

the

following

into

consideration

when

setting

the

Queue_FileDesc

field:

v

Ensure

that

the

correct

syntax

is

used

for

the

system

that

the

queue

resides

on.

For

instance,

on

a

Windows

system

use

″\″

as

a

file

separator.

On

UNIX®

systems

use

″/″

as

a

file

separator.

In

some

cases

it

may

be

possible

to

use

either

but

this

is

dependent

on

the

support

provided

by

the

JVM

(Java

Virtual

Machine)

that

the

queue

manager

runs

in.

As

well

as

file

separator

differences,

some

systems

use

drive

letters

(like

Windows

NT®)

whereas

others

(like

UNIX)

do

not.

v

On

some

systems

it

is

possible

to

specify

relative

directories

(″

.\″),

whilst

on

others

it

is

not.

Even

on

those

where

relative

directories

can

be

specified,

they

should

be

used

with

great

caution

as

the

current

directory

can

be

changed

during

the

lifetime

of

the

JVM.

Such

a

change

causes

problems

when

interacting

with

queues

using

relative

directories.

Creating

a

local

queue:

The

following

code

fragment

demonstrates

how

to

create

a

local

queue:

/**

*

Create

a

new

local

queue

*/

protected

void

createQueue(MQeQueueManager

localQM,

String

qMgrName,

String

queueName,

String

description,

String

queueStore

)

throws

Exception

{

/*

*

Create

an

empty

queue

admin

message

and

parameters

field

*/

MQeQueueAdminMsg

msg

=

new

MQeQueueAdminMsg();

MQeFields

parms

=

new

MQeFields();

How

to

configure

MQe

objects

9

/*

*

Prime

message

with

who

to

reply

to

and

a

unique

identifier

*/

MQeFields

msgTest

=

primeAdminMsg(

msg

);

/*

*

Set

name

of

queue

to

manage

*/

msg.setName(

qMgrName,

queueName

);

/*

*

Add

any

characteristics

of

queue

here,

otherwise

*

charateristics

will

be

left

to

default

values.

/

if

(

description

!=

null

)

//

set

the

description

?

parms.putUnicode(

MQeQueueAdminMsg.Queue_Description,

description);

if

(

queueStore

!=

null

)

//

Set

the

queue

store

?

//

If

queue

store

includes

directory

and

file

info

then

it

//

must

be

set

to

the

correct

style

for

the

system

that

the

//

queue

will

reside

on

e.g

\

or

/

parms.putAscii(MQeQueueAdminMsg.Queue_FileDesc,

queueStore

);

/*

*

Other

queue

characteristics

like

queue

depth,

message

expiry

*

can

be

set

here

...

*/

/*

*

Set

the

admin

action

to

create

a

new

queue

*/

msg.create(

parms

);

/*

*

Put

the

admin

message

to

the

admin

queue

(not

assured

delivery)

*/

localQM.putMessage(

qMgrName,

MQe.Admin_Queue_Name,

msg,

null,

0);

}

Queue

security:

Access

and

security

are

owned

by

the

queue

and

may

be

granted

for

use

by

a

remote

queue

manager

(when

connected

to

a

network),

allowing

the

other

queue

managers

in

the

network

to

send

messages

to

the

queue,

or

receive

messages

from

the

queue.

The

following

characteristics

are

used

in

setting

up

queue

security:

v

Queue_Cryptor

v

Queue_Authenticator

v

Queue_Compressor

v

Queue_TargetRegistry

v

Queue_AttrRule

Other

queue

characteristics:

You

can

configure

queues

with

many

other

characteristics,

such

as

the

maximum

number

of

messages

that

are

permitted

on

the

queue.

For

a

description

of

these,

see

the

MQeQueueAdminMsg

section

of

the

Java

API

Programming

Reference.

10

Configuring

MQe

Objects

Aliases:

Queue

names

can

have

aliases

similar

to

those

described

for

connections

in

“Adapters,

routing

and

aliases”

on

page

6.

The

code

fragment

in

the

connections

section

alias

example

shows

how

to

setup

aliases

on

a

connection.

Setting

up

aliases

on

a

queue

is

the

same

except

that

an

MQeQueueAdminMsg

is

used

instead

of

an

MQeConnectionAdminMsg.

Action

restrictions:

Some

administrative

actions

can

be

performed

only

when

the

queue

is

in

a

predefined

state,

as

follows:

Action_Update

v

If

the

queue

is

in

use,

characteristics

of

the

queue

cannot

be

changed

v

The

security

characteristics

of

the

queue

cannot

be

changed

if

there

are

messages

on

the

queue

v

The

queue

message

store

cannot

be

changed

once

it

has

been

set

Action_Delete

The

queue

cannot

be

deleted

if

the

queue

is

in

use

or

if

there

are

messages

on

the

queue

If

the

request

requires

that

the

queue

is

not

in

use,

or

that

it

has

zero

messages,

the

administration

request

can

be

retried,

either

when

the

queue

manager

restarts

or

at

regular

time

intervals.

See

“The

basic

administration

message”

on

page

19

for

details

on

setting

up

an

administration

request

retry.

Home-server

queue

Home-server

queues

are

implemented

by

the

MQeHomeServerQueue

class.

They

are

managed

with

the

MQeHomeServerQueueAdminMsg

class,

which

is

a

subclass

of

MQeRemoteQueueAdminMsg.

The

only

addition

in

the

subclass

is

the

Queue_QTimerInterval

characteristic.

This

field

is

of

type

int

and

is

set

to

a

millisecond

timer

interval.

If

you

set

this

field

to

a

value

greater

than

zero,

the

home-server

queue

checks

the

home

server

every

n

milliseconds

to

see

if

there

are

any

messages

waiting

for

collection.

Any

messages

that

are

waiting

are

delivered

to

the

target

queue.

A

value

of

0

for

this

field

means

that

the

home-server

is

polled

only

when

the

MQeQueueManager.triggertransmission

method

is

called.

Note:

If

a

home-server

queue

fails

to

connect

to

its

store-and-forward

queue

(for

instance

if

the

store-and-forward

queue

is

unavailable

when

the

home

server

queue

starts)

it

stops

trying

until

a

trigger

transmit

call

is

made.

How

to

configure

MQe

objects

11

The

name

of

the

home-server

queue

is

set

as

follows:

v

The

queue

name

must

match

the

name

of

the

store-and-forward

queue

v

The

queue

manager

attribute

of

the

queue

name

must

be

the

name

of

the

home-server

queue

manager

The

queue

manager

where

the

home-server

queue

resides

must

have

a

connection

configured

to

the

home-server

queue

manager.

Figure

4

shows

an

example

of

a

queue

manager

qm3

that

has

a

home-server

queue

SFQ

configured

to

collect

messages

from

its

home-server

queue

manager

qm2.

The

configuration

consists

of:

v

A

home

server

queue

manager

qm2

v

A

store

and

forward

queue

SFQ

on

queue

manager

qm2

that

holds

messages

for

queue

manager

qm3

v

A

queue

manager

qm3

that

normally

runs

disconnected

and

cannot

accept

connections

from

queue

manager

qm2

Connection to
qm3 via qm2

Connection to
qm2

push pull

Homeserver queue
manager for qm3

msg = getMessage(qm3, invQ, ...)

qm3

MQeQueue
invQ on qm3

MQeHomeServerQueue
SFQ on qm2

qm1

MQeRemoteQueue
invQ on qm3

mode:asynchronous

putMessage(qm3, invQ, msg, ...)

qm2

MQeStoreAndForwardQueue
SFQ on qm2

hold messages for: qm3

Figure

4.

Home-server

queue

12

Configuring

MQe

Objects

v

Queue

manager

qm3

has

a

connection

configured

to

qm2

v

A

home

server

queue

SFQ

that

uses

queue

manager

qm2

as

its

home

server

Any

messages

that

are

directed

to

queue

manager

qm3

through

qm2

are

stored

on

the

store-and-forward

queue

SFQ

on

qm2

until

the

home-server

queue

on

qm3

collects

them.

MQ

bridge

queue

An

MQ

bridge

queue

is

a

remote

queue

definition

that

refers

to

a

queue

residing

on

an

MQ

queue

manager.

The

queue

holding

the

messages

resides

on

the

MQ

queue

manager,

not

on

the

local

queue

manager.

v

The

MQSaturnQM

MQ

queue

manager

has

a

local

queue

MQSaturnQ

defined

.

v

The

MQeEarthQM

must

have

an

MQ

bridge

queue

defined

called

MQSaturnQ

on

the

MQSaturnQM

queue

manager.

v

Applications

attached

to

the

MQeEarthQM

queue

manager

put

messages

to

the

MQSaturnQ

MQ

bridge

queue,

and

the

bridge

queue

delivers

the

message

to

the

MQSaturnQ

on

the

MQSaturnQM

queue

manager.

The

definition

of

the

bridge

queue

requires

that

bridge,

MQ

queue

manager

proxy,

and

client

connection

names

are

specified

to

uniquely

identify

a

client

connection

object

in

the

bridge

object

hierarchy.

Refer

to

Figure

18

on

page

91

for

more

information.

This

information

identifies

how

the

MQ

bridge

accesses

the

MQ

queue

manager,

to

manipulate

an

MQ

queue.

The

MQ

bridge

queue

provides

the

facility

to

put

to

a

queue

on

a

queue

manager

that

is

not

directly

connected

to

the

MQ

bridge.

This

allows

a

message

to

be

sent

to

an

MQ

queue

manager

(the

target)

routed

through

another

MQ

queue

manager.

The

MQ

bridge

queue

takes

the

name

of

the

target

queue

manager

and

the

intermediate

queue

manager

is

named

by

the

MQ

queue

manager

proxy.

For

a

complete

list

of

the

characteristics

used

by

the

MQ

bridge

queue,

refer

to

MQeMQBridgeQueueAdminMsg

in

the

com.ibm.mqe.bridge

section

of

Java

API

Programming

Reference.

The

following

table

details

the

list

of

operations

supported

by

the

MQ

bridge

queue,

once

it

has

been

configured:

Table

3.

Message

operations

supported

by

MQ—bridge

queue

Type

of

operation

Supported

by

MQ

bridge

queue

getMessage()

yes*

MQeEarthQM

WebSphere MQ
Everyplace
application

WebSphere MQ
bridge queue

WebSphere MQ Everyplace
queue manager
Windows 2000

I/P address 20.8.9.50

MQSaturnQM

WebSphere MQ
queue manager

Windows NT
I/P address 20.8.9.51

WebSphere MQ
local queue

Figure

5.

MQ

bridge

queue

How

to

configure

MQe

objects

13

Table

3.

Message

operations

supported

by

MQ—bridge

queue

(continued)

Type

of

operation

Supported

by

MQ

bridge

queue

putMessage()

yes

browseMessage()

Yes*

browseAndLockMessage

no

Note:

*

These

functions

have

restrictions

on

their

use.

Refer

to

Messaging

for

more

information.

If

an

application

attempts

to

use

one

of

the

unsupported

operations,

an

MQeException

of

Except_NotSupported

is

returned.

When

an

application

puts

a

message

to

the

bridge

queue,

the

bridge

queue

takes

a

logical

connection

to

the

MQ

queue

manager

from

the

pool

of

connections

maintained

by

the

bridge’s

client

connection

object.

The

logical

connection

to

MQ

is

supplied

by

either

the

MQ

Java

Bindings

classes,

or

the

MQ

Classes

for

Java.

The

choice

of

classes

depends

on

the

value

of

the

hostname

field

in

the

MQ

queue

manager

proxy

settings.

Once

the

MQ

bridge

queue

has

a

connection

to

the

MQ

queue

manager,

it

attempts

to

put

the

message

to

the

MQ

queue.

An

MQ

bridge

queue

must

always

have

an

access

mode

of

synchronous

and

cannot

be

configured

as

an

asynchronous

queue.

This

means

that,

if

your

put

operation

is

directly

manipulating

an

MQ

bridge

queue

and

returns

success,

your

message

has

passed

to

the

MQ

system

while

your

process

was

waiting

for

the

put

operation

to

complete.

If

you

do

not

want

to

use

synchronous

operations

against

the

MQ

bridge

queue,

you

can

set

up

an

asynchronous

remote

queue

definition

that

refers

to

the

MQ

bridge

queue.

See

Message

delivery

for

information

on

asynchronous

message

delivery.

Alternatively,

you

can

set

up

a

store-and-forward

queue,

and

home-server

queue.

These

two

alternative

configurations

provide

the

application

with

an

asynchronous

queue

to

which

it

can

put

messages.

With

these

configurations,

when

your

putMessage()

method

returns,

the

message

may

not

necessarily

have

passed

to

the

MQ

queue

manager.

An

example

of

MQ

bridge

queue

usage

is

described

in

“Bridge

configuration

example”

on

page

101.

Administration

queue

The

administration

queue

is

implemented

in

class

MQeAdminQueue

and

is

a

subclass

of

MQeQueue,

so

it

has

the

same

features

as

a

local

queue.

It

is

managed

using

administration

class

MQeAdminQueueAdminMsg.

If

a

message

fails

because

the

resource

to

be

administered

is

in

use,

it

is

possible

to

request

that

the

message

be

retried.

“The

basic

administration

message”

on

page

19

provides

details

on

setting

up

the

count

for

the

maximum

number

of

attempts.

If

the

message

fails

due

to

the

managed

resource

not

being

available,

and

the

maximum

number

of

attempts

has

not

been

reached,

the

message

is

left

on

the

queue

for

processing

at

a

later

date.

If

the

maximum

number

of

attempts

has

been

reached,

the

request

fails

with

an

MQeException.

By

default

the

message

is

retried

the

next

time

the

queue

manager

is

started.

Alternatively,

a

timer

can

be

set

on

the

queue

that

processes

messages

on

the

queue

at

specified

intervals.

The

timer

interval

is

specified

by

setting

the

long

field

Queue_QTimerInterval

field

in

the

administration

message.

The

interval

value

is

specified

in

milliseconds.

14

Configuring

MQe

Objects

Security

and

administration

By

default,

any

MQe

application

can

administer

managed

resources.

The

application

can

be

running

as

a

local

application

to

the

queue

manager

that

is

being

managed,

or

it

can

be

running

on

a

different

queue

manager.

It

is

important

that

the

administration

actions

are

secure,

otherwise

there

is

potential

for

the

system

to

be

misused.

MQe

provides

the

basic

facilities

for

securing

administration

using

queue-based

security,

as

described

in

this

information

center.

If

you

use

synchronous

security,

you

can

secure

the

administration

queue

by

setting

security

characteristics

on

the

queue.

For

example,

you

can

set

an

authenticator

so

that

the

user

must

be

authenticated

to

the

operating

system

(Windows®

NT

or

UNIX)

before

they

can

perform

administration

actions.

This

can

be

extended

so

that

only

a

specific

user

can

perform

administration.

The

administration

queue

does

not

allow

applications

direct

access

to

messages

on

the

queue,

the

messages

are

processed

internally.

This

means

that

messages

put

to

the

queue

that

have

been

secured

with

message

level

security

cannot

be

unwrapped

using

the

normal

mechanism

of

providing

an

attribute

on

a

get

or

browse

request.

However,

a

queue

rule

class

can

be

applied

to

the

administration

queue

to

unwrap

any

secured

messages

so

that

they

can

be

processed

by

the

administration

queue.

The

queue

rule

browseMessage()

must

be

coded

to

perform

this

unwrap

and

allow

administration

to

take

place.

Configuring

with

messages

This

topic

explains

how

you

can

administer

MQe

resources,

locally

or

remotely,

using

administration

messages.

Configuration

by

messages

overview

You

can

administer

MQe

resources

using

specialized

messages

called

administration

messages

(admin

messages).

Using

these

messages

allows

you

to

administer

resources

locally

or

remotely.

The

native

codebase,

if

configured

with

an

administration

queue

(admin

queue),

responds

to

admin

messages.

However,

it

does

not

provide

helper

functions

to

create

admin

messages.

For

more

information

on

this,

refer

to

“Configuring

with

the

C

administrator

API”

on

page

33.

Java™

is

administered

by

admin

messages.

C

can

be,

but

has

an

administration

interface

for

local

administration.

How

to

configure

MQe

objects

15

These

are

the

steps

you

need

to

follow

when

using

administration

messages

to

administer

a

resource:

1.

Create

an

admin

queue

on

the

resource

performing

the

administration,

or

make

sure

that

one

exists.

2.

Create

an

appropriate

admin

message

for

the

resource

being

managed.

3.

Set

the

required

fields

in

the

message.

4.

Put

the

admin

message

to

the

appropriate

admin

queue.

5.

Wait

for

an

admin

reply

message

on

the

appropriate

admin

reply

queue,

if

a

reply

has

been

requested

in

the

admin

message.

6.

Analyze

the

data

in

the

admin

reply

message.

The

administration

queue

Before

you

can

administer

a

queue

manager

(or

its

resources)

using

admin

messages,

you

must

start

the

queue

manager

and

configure

an

admin

queue

on

it.

The

admin

queue’s

role

is

to

process

admin

messages

in

the

sequence

that

they

arrive

on

the

queue.

Only

one

request

is

processed

at

a

time.

Java

In

Java,

the

queue

can

be

created

using

the

defineDefaultAdminQueue()

method

of

the

MQeQueueManagerConfigure

class.

The

name

of

the

queue

is

AdminQ

and

applications

can

refer

to

it

using

the

constant

MQe.Admin_Queue_Name.

C

In

the

native

codebase,

an

admin

queue

is

created

using

the

following

API:

MQeAdminQParms

params

=

ADMIN_Q_INIT_VAL;

rc

=

mqeAdministrator_AdminQueue_create(hAdmin,

//

handle

to

MQeAdministrator

pExceptBlock,

//

handle

to

an

exception

block

hQueueName,

//

the

name

of

the

queue

to

be

created

hQueueQMgrName,

//

the

name

of

the

queue’s

//owning

queue

manager

¶ms);

//

pointer

to

structure

//

for

configuring

the

//

queue

of

type

MQeAdminQParms,

Managed
resource

admin
methods

Admin
application

AdminMsg
(Request)

AdminMsg
(Reply)

Queue
manager

Queue
manager

AdminMsg
(Request)

AdminMsg
(Reply)

AdminQ

ReplyQ

Figure

6.

MQe

administration

using

administration

messages

16

Configuring

MQe

Objects

In

particular,

the

constant

string

handle

MQE_ADMIN_QUEUE_NAME

can

be

used

as

the

admin

queue

name.

This

is

the

equivalent

of

the

constant

MQe.Admin_Queue_Name

in

the

Java

codebase.

The

params

structure

can

be

initialized

to

contain

default

values

for

all

admin

queue

properties.

The

structure

also

contains

an

opFlags

bit

mask

element

that

must

be

used

to

indicate

which

properties

have

been

set

to

a

value

other

than

the

default

value.

The

above

example

accepts

all

of

the

default

values,

as

specified

using

the

ADMIN_Q_INIT_VAL

constant.

The

administration

reply-to

queue

This

topic

describes

the

use

of

administration

reply-to

queues

in

Java

and

C.

Java

In

Java,

a

typical

administration

application

instantiates

a

subclass

of

MQeAdminMsg,

configures

it

with

the

required

administration

request,

and

passes

it

to

the

AdminQ

on

the

target

queue

manager.

If

the

application

needs

to

know

the

outcome

of

the

action,

a

reply

can

be

requested.

When

the

request

has

been

processed,

the

result

of

the

request

is

returned

in

a

message

to

the

reply-to

queue

and

queue

manager

specified

in

the

request

message.

The

reply

can

be

sent

to

any

queue

manager

or

queue

but

you

can

configure

a

default

reply-to

queue

that

is

used

solely

for

administration

reply

messages.

This

default

queue

is

created

using

the

defineDefaultAdminReplyQueue()

method

of

the

MQeQueueManagerConfigure

class.

The

name

of

the

queue

is

AdminReplyQ,

and

applications

can

refer

to

it

using

the

constant

MQe.Admin_Reply_Queue_Name.

C

In

the

native

codebase,

as

in

the

Java

codebase,

any

queue

can

be

specified

as

the

admin

reply-to

queue.

However,

it

is

recommended

that

the

default

admin

reply-to

queue

name,

MQE_ADMIN_REPLY_QUEUE_NAME,

is

used

to

name

a

queue

dedicated

to

the

role

of

admin

reply-to

queue.

This

name

corresponds

to

MQe.Admin_Reply_Queue_Name

in

the

Java

codebase.

In

practice,

the

native

client

is

more

likely

to

be

receiving

than

to

be

sending

admin

messages.

In

this

case,

the

client

needs

a

remote

asynchronous

queue

definition

of

the

admin

reply-to

queue

on

the

server,

as

well

as

a

home

server

queue

matching

a

store-and-forward

queue

on

the

server,

to

enable

the

admin

and

admin

reply

messages

to

be

transferred.

Create

the

appropriate

administration

message

The

administration

queue

does

not

know

how

to

perform

administration

of

individual

resources.

This

information

is

encapsulated

in

each

resource

and

its

corresponding

message.

Java

In

Java,

there

is

a

hierarchy

of

administration

message

types.

For

certain

operations,

the

exact

type

of

administration

message

is

required.

For

example,

to

create

a

Home

Server

’queue’

you

need

a

Home

Server

Queue

administration

message.

For

other

operations,

a

more

general

administration

message

is

How

to

configure

MQe

objects

17

appropriate.

For

example,

to

enquire

upon

a

home

server

queue,

you

can

use

a

queue

administration

message

or

a

remote

queue

administration

message.

If

in

doubt,

use

the

exact

type

of

administration

message.

The

following

messages

are

provided

for

administration

of

MQe

resources:

Table

4.

Administration

messages

Message

name

Purpose

MQeAdminMsg

An

abstract

class

that

acts

as

the

base

class

for

all

administration

messages

MQeAdminQueueAdminMsg

Provides

support

for

administering

the

administration

queue

MQeConnectionAdminMsg

Provides

support

for

administering

connections

between

queue

managers

MQeHomeServerQueueAdminMsg

Provides

support

for

administering

home-server

queues

MQeQueueAdminMsg

Provides

support

for

administering

local

queues

MQeQueueMangerAdminMsg

Provides

support

for

administering

queue

managers

MQeRemoteQueueAdminMsg

Provides

support

for

administering

remote

queues

MQeStoreAndForwardQueueAdminMsg

Provides

support

for

administering

store-and-forward

queues

MQeCommunicationsListenerAdminMsg

Provides

support

for

administering

communications

listeners

These

base

administration

messages

are

provided

in

the

com.ibm.mqe.administration

package.

Other

types

or

resource

can

be

managed

by

subclassifying

either

MQeAdminMsg

or

one

of

the

existing

administration

messages.

For

instance,

an

additional

administration

message

for

managing

the

MQ

bridge

is

provided

in

the

com.ibm.mqe.mqbridge

package.

C

In

the

C

codebase,

all

messages

are

MQeFields

instances.

This

applies

to

admin

messages,

and

the

admin

message

types

are

distinguished

by

a

special

field

inserted

into

the

fields

object.

You

need

to

create

an

admin

message

of

the

appropriate

type

from

new,

inserting

all

of

the

required

fields.

Alternatively,

for

local

administration,

use

the

native

administration

API.

The

native

codebase

can

respond

correctly

to

all

administration

messages

but

the

native

administration

API

is

usually

used

for

local

administration.

Set

the

required

fields

in

a

message

-

Java

Administration

messages

convey

the

administration

action

required

by

a

combination

of

data

fields

stored

in

the

message.

These

fields

have

well

defined

names,

types,

and

values,

and

you

can

set

up

the

administration

message

using

low

level

fields

API.

In

Java,

there

are

numerous

helper

methods

to

make

this

task

less

arduous.

The

following

sections

describe

the

constituent

fields

of

admin

messages

and

admin

reply

messages.

18

Configuring

MQe

Objects

The

basic

administration

message

Every

request

to

administer

an

MQe

resource

takes

the

same

basic

form.

The

following

table

shows

the

basic

structure

for

all

administration

request

messages:

A

request

is

made

up

of:

1.

Base

administration

fields,

that

are

common

to

all

administration

requests.

2.

Administration

fields,

that

are

specific

to

the

resource

being

managed.

3.

Optional

fields

to

assist

with

the

processing

of

administration

messages.

Base

administration

fields

The

base

administration

fields,

that

are

common

to

all

administration

messages,

are:

Admin_Target_QMgr

This

field

provides

the

name

of

the

queue

manager

on

which

the

requested

action

is

to

take

place

(target

queue

manager).

The

target

queue

manager

can

be

either

a

local

or

a

remote

queue

manager.

As

only

one

queue

manager

can

be

active

at

a

time

in

a

Java

Virtual

Machine,

the

target

queue

manager,

and

the

one

to

which

the

message

is

put,

are

the

same.

Admin_Action

This

field

contains

the

administration

action

that

is

to

be

performed.

Each

managed

resource

provides

a

set

of

administrative

actions

that

it

can

perform.

A

single

administration

message

can

only

request

that

one

action

be

performed.

The

following

common

actions

are

defined:

Table

5.

Administration

actions

Administration

action

Purpose

Action_Create

Create

a

new

instance

of

a

managed

resource.

Action_Delete

Delete

an

existing

managed

resource

Base admin field items:

Admin_TargetQMgr
Admin_Action
Admin_MaxAttempts
Admin_Parms:

(Characteristics of managed

resource required for the action.)

Admin_Name
others ...
…

1

2

Optional fields: (commonly used)

MQe.Msg_Style
MQe.Msg_ReplyToQ
MQe.Msg_ReplyToQMgr
MQe.Msg_MsgID
MQe.Msg_CorrelID

3

Figure

7.

Administration

request

message

How

to

configure

MQe

objects

19

Table

5.

Administration

actions

(continued)

Administration

action

Purpose

Action_Inquire

Inquire

on

one

or

more

characteristics

of

a

managed

resource

Action_InquireAll

Inquire

on

all

characteristics

of

a

managed

resource

Action_Update

Update

one

or

more

characteristics

of

a

managed

resource

All

resources

do

not

necessarily

implement

these

actions.

For

instance,

it

is

not

possible

to

create

a

queue

manager

using

an

administration

message.

Specific

administration

messages

can

extend

the

base

set

to

provide

additional

actions

that

are

specific

to

a

resource.

Each

common

action

provides

a

method

that

sets

the

Admin_Action

field:

Table

6.

Setting

the

administration

action

field

Administration

action

Setting

method

Action_Create

create

(MQeFields

parms)

Action_Delete

delete

(MQeFields

parms)

Action_Inquire

inquire

(MQeFields

parms)

Action_InquireAll

inquireAll

(MQeFields

parms)

Action_Update

update(

MQeFields

parms

)

Admin_MaxAttempts

This

field

determines

how

many

times

an

action

can

be

retried

if

the

initial

action

fails.

The

retry

occurs

either

the

next

time

that

the

queue

manager

restarts

or

at

the

next

interval

set

on

the

administration

queue.

Other

fields

For

most

failures

further

information

is

available

in

the

reply

message.

It

is

the

responsibility

of

the

requesting

application

to

read

and

handle

failure

information.

See

“The

basic

administration

reply

message”

on

page

26

for

more

details

on

using

the

reply

data.

A

set

of

methods

is

available

for

setting

some

of

the

request

fields:

Table

7.

Setting

administration

request

fields

Administration

action

Field

type

Set

and

get

methods

Admin_Parms

MQeFields

MQeFields

getInputFields()

Admin_Action

int

setAction

(int

action)

Admin_TargetQMgr

ASCII

setTargetQMgr(String

qmgr)

Admin_MaxAttempts

int

setMaxAttempts(int

attempts)

Fields

specific

to

the

managed

resource

Admin_Parms

This

field

contains

the

resource

characteristics

that

are

required

for

the

action.

Every

resource

has

a

set

of

unique

characteristics.

Each

characteristic

has

a

name,

type

and

value,

and

the

name

of

each

is

defined

by

a

constant

in

the

administration

message.

The

name

of

the

resource

is

a

characteristic

that

is

20

Configuring

MQe

Objects

common

to

all

managed

resources.

The

name

of

the

resource

is

held

in

the

Admin_Name,

and

it

has

a

type

of

ASCII.

The

full

set

of

characteristics

of

a

resource

can

be

determined

by

using

the

characteristics()

method

against

an

instance

of

an

administration

message.

This

method

returns

an

MQeFields

object

that

contains

one

field

for

each

characteristic.

MQeFields

methods

can

be

used

for

enumerating

over

the

set

of

characteristics

to

obtain

the

name,

type

and

default

value

of

each

characteristic.

The

action

requested

determines

the

set

of

characteristics

that

can

be

passed

to

the

action.

In

all

cases,

at

least

the

name

of

the

resource,

Admin_Name,

must

be

passed.

In

the

case

of

Action_InquireAll

this

is

the

only

parameter

that

is

required.

The

following

code

could

be

used

to

set

the

name

of

the

resource

to

be

managed

in

an

administration

message:

SetResourceName(

MQeAdminMsg

msg,

String

name

)

{

MQeFields

parms;

if

(

msg.contains(

Admin_Parms

)

)

parms

=

msg.getFields(

Admin_Parms

);

else

parms

=

new

MQeFields();

parms.putAscii(

Admin_Name,

name

);

msg.putFields(

Admin_Parms,

parms

);

}

Alternatively,

the

code

can

be

simplified

by

using

the

getInputFields()

method

to

return

the

Admin_Parms

field

from

the

message,

or

setName()

to

set

the

Admin_Name

field

into

the

message.

This

is

shown

in

the

following

code:

SetResourceName(

MQeAdminMsg

msg,

String

name

)

{

msg.SetName(

name

);

}

Other

useful

fields

By

default,

no

reply

is

generated

when

an

administration

request

is

processed.

If

a

reply

is

required,

then

the

request

message

must

be

set

up

to

ask

for

a

reply

message.

The

following

fields

are

defined

in

the

MQe

class

and

are

used

to

request

a

reply.

Msg_Style

A

field

of

type

int

that

can

take

one

of

three

values:

Msg_Style_Datagram

A

command

not

requiring

a

reply

Msg_Style_Request

A

request

that

would

like

a

reply

Msg_Style_Reply

A

reply

to

a

request

If

Msg_Style

is

set

to

Msg_Style_Request

(a

reply

is

required),

the

location

that

the

reply

is

to

be

sent

to

must

be

set

into

the

request

message.

The

two

fields

used

to

set

the

location

are:

Msg_ReplyToQ

An

ASCII

field

used

to

hold

the

name

of

the

queue

for

the

reply

How

to

configure

MQe

objects

21

Msg_ReplyToQMgr

An

ASCII

field

used

to

hold

the

name

of

the

queue

manager

for

the

reply

If

the

reply-to

queue

manager

is

not

the

queue

manager

that

processes

the

request

then

the

queue

manager

that

processes

the

request

must

have

a

connection

defined

to

the

reply-to

queue

manager.

For

an

administration

request

message

to

be

correlated

to

its

reply

message

the

request

message

needs

to

contain

fields

that

uniquely

identify

the

request,

and

that

can

then

be

copied

into

the

reply

message.

MQe

provides

two

fields

that

can

be

used

for

this

purpose:

Msg_MsgID

A

byte

array

containing

the

message

ID

Msg_CorrelID

A

byte

array

containing

the

Correl

ID

of

the

message

Any

other

fields

can

be

used

but

these

two

have

the

added

benefit

that

they

are

used

by

the

queue

manager

to

optimize

searching

of

queues

and

message

retrieval.

The

following

code

fragment

provides

an

example

of

how

to

prime

a

request

message.

Administration

message

Java

examples

1

As

this

is

a

frequently

performed

process,

this

code

example

combines

each

step

in

the

primeAdminMsg()

method,

that

can

be

invoked

in

other

sections

of

this

documentation

(assuming

that

the

method

has

been

defined

for

the

class

in

question).

public

class

LocalQueueAdmin

extends

MQe

{

public

String

targetQMgr

=

"ExampleQM";

//

target

queue

manager

public

MQeFields

primeAdminMsg(MQeAdminMsg

msg)

throws

Exception

{

/*

*

Set

the

target

queue

manager

that

will

process

this

message

*/

msg.setTargetQMgr(

targetQMgr

);

/*

*

Ask

for

a

reply

message

to

be

sent

to

the

queue

*

manager

that

processes

the

admin

request

*/

msg.putInt

(MQe.Msg_Style,

MQe.Msg_Style_Request);

msg.putAscii(MQe.Msg_ReplyToQ,

MQe.Admin_Reply_Queue_Name);

msg.putAscii(MQe.Msg_ReplyToQMgr,

targetQMgr);

/*

*

Setup

the

correl

id

so

we

can

match

the

reply

to

the

request.

*

-

Use

a

value

that

is

unique

to

the

this

queue

manager.

*/

byte[]

correlID

=

Long.toHexString(

(MQe.uniqueValue()).getBytes()

);

msg.putArrayOfByte(

MQe.Msg_CorrelID,

correlID

);

/*

*

Ensure

matching

response

message

is

retrieved

*

-

set

up

a

fields

object

that

can

be

used

as

a

match

parameter

*

when

searching

and

retrieving

messages.

*/

MQeFields

msgTest

=

new

MQeFields();

msgTest.putArrayOfByte(

MQe.Msg_CorrelID,

new

Byte{1,

2,

3,

4}

);

22

Configuring

MQe

Objects

/*

*

Return

the

unique

filter

for

this

message

*/

return

msgTest;

}

Depending

on

how

the

destination

administration

queue

is

defined,

delivery

of

the

message

can

be

either

synchronous

or

asynchronous.

The

next

example

is

used

to

make

an

’inquire

all’

on

a

queue

manager.

This

method

performs

the

steps

required

to

address

the

admin

message,

request

a

reply,

and

add

a

unique

marker

to

the

message.

/*

This

method

performs

standard

processing

*/

/*

that

primes

an

administration

message

so

that

*/

/*

we

can

handle

it

in

a

standard

way

*/

/*

This

method

sets

the

target

queue

manager

*/

/*

(the

queue

manager

upon

which

the

admin

*/

/*

action

takes

place.

*/

/*

Requests

that

a

reply

message

is

sent

to

the

*/

/*

admin

reply

queue

on

*the

target

queue

manager.

*/

/*

Incorporates

a

unique

key

in

the

message

that

*/

/*

can

be

used

to

retrieve

the

reply

for

this

message.*/

/*

The

unique

key

is

returned

as

a

string,to

be

*/

/*

used

by

the

routine

extracting

the

reply.

*/

public

static

final

String

decorateAdminMsg(MQeAdminMsg

msg,

String

targetQMName)throws

Exception

{

//set

the

target

queue

manager

msg.setTargetQMgr(targetQMName);

//indicate

that

we

require

a

reply

message

msg.putInt(MQe.Msg_Style,MQe.Msg_Style_Request);

//use

default

reply-to

queue

on

the

target

queue

manager.

msg.putAscii(MQe.Msg_ReplyToQ,MQe.Admin_Reply_Queue_Name);

msg.putAscii(MQe.Msg_ReplyToQMgr,targetQMName);

//create

a

unique

tag

that

we

can

identify

the

reply

with

String

match

="Msg"+System.currentTimeMillis();

msg.putArrayOfByte(MQe.Msg_CorrelID,match.getBytes());

return

match;

}

Put

the

message

on

the

target

queue:

The

action

defined

in

the

admin

message

will

only

be

performed

when

the

message

reaches

the

admin

queue

on

the

target

queue

manager.

The

target

queue

manager

will

need

to

have

an

admin

queue.

To

get

the

message

to

a

remote

target

queue

manager,

you

will

need

to

have

all

the

appropriate

connectivity

in

place.

If

the

administration

is

to

be

done

on

the

local

queue

manager,

no

connectivity

is

required.

Message

delivery

is

achieved

by

a

simple

put

message

call.

Simply

use

the

MQeQueueManager

API

call

putMessage(),

specifying

the

destination

queue

manager

and

the

standard

admin

queue

name.

We

can

ignore

the

attribute,

and

confirmed

parameters

in

our

example,

though

they

are

available

for

more

controlled

access

to

the

admin

queue.

//put

the

message

to

the

right

admin

queue

LocalQueueManager.putMessage(targetQueueManagerName,

MQe.Admin_Queue_Name,

msg,null,0L);

Wait

for

an

administration

reply

message:

Since

administration

is

performed

asynchronously,

you

will

have

to

wait

for

the

reply

to

the

admin

message

in

order

How

to

configure

MQe

objects

23

to

determine

if

the

action

was

successful.

Standard

MQe

message

processing

is

used

to

wait

for

a

reply

or

notification

of

a

reply.

In

the

Java

codebase,

for

instance,

the

queue

manager

API

call

waitForMessage()

can

be

used

for

this

purpose.

There

is

a

time

lag

between

sending

the

request

and

receiving

the

reply

message.

The

time

lag

may

be

small

if

the

request

is

being

processed

locally

or

may

be

long

if

both

the

request

and

reply

messages

are

delivered

asynchronously.

The

following

Java

code

fragment

could

be

used

to

send

a

request

message

and

wait

for

a

reply:

public

class

LocalQueueAdmin

extends

MQe

{

public

String

targetQMgr

=

"ExampleQM";

//

target

queue

manager

public

int

waitFor

=

10000;

//

millisecs

to

wait

for

reply

/*

*

Send

a

completed

admin

message.

*

Uses

the

simple

putMessage

method

which

is

not

assured

if

the

*

the

queue

is

defined

for

synchronous

operation.

*/

public

void

sendRequest(

MQeAdminMsg

msg

)

throws

Exception

{

myQM.putMessage(

targetQMgr,

MQe.Admin_Queue_Name,

msg,

null,

0L

);

}

/*

*

Wait

ten

seconds

for

a

reply

message.

This

method

will

wait

for

*

a

limited

time

on

either

a

local

or

a

remote

reply

to

queue.

*

*

*/

public

MQeAdminMsg

waitForReply(MQeFields

msgTest)

throws

Exception

{

int

secondsElapsed

=

0;

MQeAdminMsg

msg

=

null;

try

{

msg

=

(MQeAdminMsg)myQM.getMessage(

targetQMgr,

MQe.Admin_Reply_Queue_Name,

msgTest,

null,

0L);

}

catch

(MQeException

e)

{

if

(e.code()

!=

MQe.Except_Q_NoMatchingMsg)

{

//

if

the

exception

is

’no

matching

//message

then

ignore

it.

This

//

will

result

in

a

null

return

value.

//Rethrow

all

other

exceptions

throw

e;

}

}

while

(null

==

msg

&&

secondsElapsed

<

10)

{

Thread.sleep(1000);

secondsElapsed++;

try

{

msg

=

(MQeAdminMsg)myQM.getMessage(

targetQMgr,

MQe.Admin_Reply_Queue_Name,

msgTest,

null,

0L);

}

catch

(MQeException

e)

{

if

(e.code()

!=

MQe.Except_Q_NoMatchingMsg)

{

//

if

the

exception

is

’no

matching

message’

then

ignore

it.

This

//

will

result

in

a

null

return

value.

Rethrow

all

other

exceptions

throw

e;

24

Configuring

MQe

Objects

}

}

}

return

msg;

}

This

method

is

a

simple

wrapper

for

the

MQeQueueManager

API

call

waitForMessage(),

that

sets

up

a

filter

to

select

the

required

admin

reply,

and

casts

any

message

obtained

to

an

admin

message.

/**

*Wait

for

message

-waits

for

a

message

to

arrive

on

the

admin

reply

queue

*of

the

specified

target

queue

manager.Will

wait

only

for

messages

with

the

*specified

unique

tag

return

message,or

return

null

if

timed

out

*/

public

static

final

MQeAdminMsg

waitForRemoteAdminReply(

MQeQueueManager

localQueueManager,

String

remoteQueueManagerName,

String

match)throws

Exception

{

//construct

a

filter

to

ensure

we

only

get

the

matching

reply

MQeFields

filter

=new

MQeFields();

filter.putArrayOfByte(MQe.Msg_CorrelID,match.getBytes());

//now

wait

for

the

reply

message

MQeMsgObject

reply

=localQueueManager.waitForMessage(

remoteQueueManagerName,

MQe.Admin_Reply_Queue_Name,

filter,

null,

0L,

10000);//wait

for

10

seconds

return

(MQeAdminMsg)reply;

}

Set

the

required

fields

in

the

message

-

C

This

section

applies

to

the

C

codebase

only.

Since

administration

is

performed

asynchronously,

you

have

to

wait

for

the

reply

to

the

administration

message

in

order

to

determine

if

the

action

was

successful.

You

therefore

need

to

request

a

reply

(the

default

is

to

send

no

reply)

and

specify

where

to

send

the

reply

message.

The

destination

for

the

reply

message

should

be

a

convenient

local

queue.

Remember

that

the

administration

code

needs

to

send

the

reply

message

to

the

destination

specified,

and

so

may

need

connection

definitions

and

listeners

set

up.

It

is

easiest

to

get

the

administration

reply

message

sent

to

the

administration

reply

queue

on

the

machine

on

which

the

administration

is

performed.

The

connectivity

used

to

deliver

the

administration

message

to

the

target

queue

manager

can

then

be

used

to

retrieve

the

administration

reply

message

from

the

target

queue

manager.

This

is

the

technique

we

use

in

the

following

examples.

Another

useful

task

you

can

perform

at

this

stage

is

to

add

an

identifying

field

to

the

administration

request

message,

so

that

you

can

easily

identify

the

matching

reply.

You

do

this

by

adding

a

byte

array

field

called

MQe.Msg_CorrelID

to

the

message.

The

administration

code

ensures

that

this

field

is

copied

into

the

reply

message.

If

you

wished

you

could

then

use

this

to

correlate

the

administration

action

with

the

administration

response.

Analyzing

the

data

in

the

reply

message

Administration

reply

messages

contain

information

about

the

success

or

failure

of

the

attempt

to

perform

the

administration

request.

There

are

three

levels

of

success:

How

to

configure

MQe

objects

25

1.

Total

success

-

the

action

happened

as

requested.

For

enquire

requests

the

messages

contains

the

data

requested.

2.

Total

failure

-

the

action

failed.

The

message

contains

a

reason

why

the

action

failed.

3.

Partial

failure

-

some

portion

of

a

composite

request

failed.

For

example

an

attempt

to

update

five

fields

might

be

successful

for

three,

but

unsuccessful

for

two.

The

fields

that

failed,

and

the

reason

for

their

failure

is

contained

in

the

message.

Total

success

If

the

administration

action

is

successful

then

the

return

message

contains

a

byte

field

called

MQeAdminMsg.Admin_RC

with

a

value

of

MQeAdminMsg.RC_Success.

Total

failure

If

the

administration

action

is

a

complete

failure

then

the

return

message

contains

a

byte

field

called

MQeAdminMsg.Admin_RC

with

a

value

of

MQeAdminMsg.RC_Fail.

It

also

contains

a

String

field

called

MQeAdminMsg#Admin_Reason

which

contains

a

description

of

the

failure.

Partial

failure

If

the

administration

action

is

a

partial

failure

then

the

return

message

contains

a

byte

field

called

MQeAdminMsg.Admin_RC

with

a

value

of

MQeAdminMsg.RC_Mixed.

The

String

field

called

MQeAdminMsg.Admin_Reason

which

only

contains

a

general

explanation

’errors

occurred’.

For

more

detail,

access

the

field

called

MQeAdminMsg.Admin_Errors.

The

MQeFields

object

contains

any

errors

related

to

subproblems

that

occur

when

a

request

fails

with

a

return

code

of

RC_Fail

or

RC_Mixed.

For

each

attribute

in

error,

there

is

a

corresponding

field

in

this

MQeFields

object.

If

the

field

that

was

processed

was

an

array

then

the

corresponding

error

field

is

of

type

ASCII

array.

If

the

field

that

was

processed

was

not

an

array

then

the

corresponding

error

field

is

of

type

ASCII.

For

example

if

an

update

request

was

made

to

change

4

attributes

of

a

resource

and

2

of

the

updates

were

successful

and

2

failed,

this

field

would

contain

information

detailing

the

reason

for

the

2

failures.

Each

error

is

typically

a

toString()

representation

of

the

exception

that

caused

the

failure.

If

the

exception

is

of

type

com.ibm.mqe.MQeException

the

string

includes

the

MQeException

code

at

the

start

of

the

string

as

″Code=nnn″.

The

basic

administration

reply

message

Once

an

administration

request

has

been

processed,

a

reply,

if

requested,

is

sent

to

the

reply-to

queue

manager

queue.

The

reply

message

has

the

same

basic

format

as

the

request

message

with

some

additional

fields.

26

Configuring

MQe

Objects

A

reply

is

made

up

of:

1.

Base

administration

fields.

These

are

copied

from

the

request

message.

2.

Administration

fields

that

are

specific

to

the

resource

being

managed.

3.

Optional

fields

to

assist

with

the

processing

of

administration

messages.

These

are

copied

from

the

request

message.

4.

Administration

fields

detailing

outcome

of

request.

5.

Administration

fields

providing

detailed

results

of

the

request

that

are

specific

to

the

resource

being

managed.

6.

Administration

fields

detailing

errors

that

are

specific

to

the

resource

being

managed.

The

first

three

items

are

describe

in

“The

basic

administration

message”

on

page

19.

The

reply

specific

fields

are

described

in

the

following

sections.

Outcome

of

request

fields

Admin_RC

field

This

byte

field

contains

the

overall

outcome

of

the

request.

This

is

a

field

of

type

int

that

is

set

to

one

of:

MQeAdminMsg.RC_Success

The

action

completed

successfully.

Base admin field items:

Admin_TargetQMgr
Admin_Action
Admin_MaxAttempts
Admin_Parms:

(Characteristics of managed

resource required for the action.)

Admin_Name
others ...
…

1

2, 5

(Error field items: 1 per
characteristic in error.)

Field in error
…

6

Admin_Errors:

Reply admin field items:

Admin_RC
Admin_Reason

4

Optional fields: (commonly used)

MQe.Msg_Style
MQe.Msg_ReplyToQ
MQe.Msg_ReplyToQMgr
MQe.Msg_MsgID
MQe.Msg_CorrelID

3

Figure

8.

Administration

reply

message

How

to

configure

MQe

objects

27

MQeAdminMsg.RC_Failed

The

request

failed

completely.

MQeAdminMsg.RC_Mixed

The

request

was

partially

successful.

A

mixed

return

code

could

result

if

a

request

is

made

to

update

four

attributes

of

a

queue

and

three

succeed

and

one

fails.

Admin_Reason

A

Unicode

field

containing

the

overall

reason

for

the

failure

in

the

case

of

Mixed

and

Failed.

Admin_Parms

An

MQeFields

object

containing

a

field

for

each

characteristics

of

the

managed

resource.

Admin_Errors

An

MQeFields

object

containing

one

field

for

each

update

that

failed.

Each

entry

contained

in

the

Admin_Errors

field

is

of

type

ASCII

or

asciiArray.

The

following

methods

are

available

for

getting

some

of

the

reply

fields:

Table

8.

Getting

administration

reply

fields

Administration

field

Field

type

Get

method

Admin_RC

int

int

getAction()

Admin_Reason

Unicode

String

getReason()

Admin_Parms

MQeFields

MQeFields

getOutputFields()

Admin_Errors

MQeFields

MQeFields

getErrorFields()

Depending

on

the

action

performed,

the

only

fields

of

interest

may

be

the

return

code

and

reason.

This

is

the

case

for

delete.

For

other

actions

such

as

inquire,

more

details

may

be

required

in

the

reply

message.

For

instance,

if

an

inquire

request

is

made

for

fields

Queue_Description

and

Queue_FileDesc,

the

resultant

MQeFields

object

would

contain

the

values

for

the

actual

queue

in

these

two

fields.

The

following

table

shows

the

Admin_Parms

fields

of

a

request

message

and

a

reply

message

for

an

inquire

on

several

parameters

of

a

queue:

Table

9.

Enquiring

on

queue

parameters

Admin_Parms

field

name

Request

message

Reply

message

Type

Value

Type

Value

Admin_Name

ASCII

″TestQ″

ASCII

″TestQ″

Queue_QMgrName

ASCII

″ExampleQM″

ASCII

″ExampleQM″

Queue_Description

Unicode

null

Unicode

″A

test

queue″

Queue_FileDesc

ASCII

null

ASCII

″c:\queues\″

For

actions

where

no

additional

data

is

expected

on

the

reply,

the

Admin_Parms

field

in

the

reply

matches

that

of

the

request

message.

This

is

the

case

for

the

create

and

update

actions.

Some

actions,

such

as

create

and

update,

may

request

that

several

characteristic

of

a

managed

resource

be

set

or

updated.

In

this

case,

it

is

possible

for

a

return

code

of

RC_Mixed

to

be

received.

Additional

details

indicating

why

each

update

failed

28

Configuring

MQe

Objects

are

available

from

the

Admin_Errors

field.

The

following

table

shows

an

example

of

the

Admin_Parms

field

for

a

request

to

update

a

queue

and

the

resultant

Admin_Errors

field:

Table

10.

Request

and

reply

message

to

update

a

queue

Field

name

Request

message

Reply

message

Type

Value

Type

Value

Admin_Parms

field

Admin_Name

ASCII

″TestQ″

ASCII

″TestQ″

Queue_QMgrName

ASCII

″ExampleQM″

ASCII

″ExampleQM″

Queue_Description

Unicode

null

Unicode

″ExampleQM″

″A

new

description″

Queue_FileDesc

ASCII

null

Unicode

″D:\queues″

Admin_Errors

field

Queue_FileDesc

n/a

n/a

ASCII

″Code=4;com.ibm.

mqe.MQeException:

wrong

field

type″

For

fields

where

the

update

or

set

is

successful

there

is

no

entry

in

the

Admin_Errors

field.

A

detailed

description

of

each

error

is

returned

in

an

ASCII

string.

The

value

of

the

error

string

is

the

exception

that

occurred

when

the

set

or

update

was

attempted.

If

the

exception

was

an

MQeException,

the

actual

exception

code

is

returned

along

with

the

toString

representation

of

the

exception.

So,

for

an

MQeException,

the

format

of

the

value

is:

"Code=nnnn;toString

representation

of

the

exception"

Administration

message

Java

examples

-

2

This

method

shows

how

you

might

analyze

a

reply

message,

and

return

a

boolean

to

indicate

whether

or

not

the

action

was

successful.

Error

messages

are

printed

to

the

console.

/**

*Reply

true

if

the

given

admin

reply

*message

represents

a

successful

*admin

action.Return

false

otherwise.

*A

message

indicating

success

*or

failure

will

be

printed

to

the

console.

*If

the

admin

action

was

not

successful

then

the

reason

will

be

printed

*to

the

console

*/

public

static

final

boolean

isSuccess(MQeAdminMsg

reply)

throws

Exception

{

boolean

success

=false;

final

int

returnCode

=reply.getRC();

switch

(returnCode){

case

MQeAdminMsg.RC_Success:

System.out.println("Admin

succeeded");

success

=true;

break;

case

MQeAdminMsg.RC_Fail:

/*

all

on

one

line

*/

System.out.println("Admin

failed,reason:"+

reply.getReason());

break;

How

to

configure

MQe

objects

29

case

MQeAdminMsg.RC_Mixed:

System.out.println("Admin

partially

succeeded:\n"

+reply.getErrorFields());

break;

}

return

success;

}

Decorating

the

queue

manager

This

method

is

implemented

in

class

examples.config.BasicAdministration.

It

addresses

the

administration

message,

requests

a

reply,

and

adds

a

unique

marker

to

the

message.

/**

*

This

method

performs

standard

processing

that

*

decorates

an

administration

message

*

so

that

we

can

handle

it

in

a

standard

way.

*

<p>This

method:

*

<p>

Sets

the

target

queue

manager

*

(the

queue

maanger

upon

which

*

the

administration

action

takes

place.

*

<p>

Requests

that

a

reply

message

is

sent

*

to

the

administration

reply

queue

on

*

the

target

queue

manager.

*

<p>

Incorporates

a

unique

key

in

the

message

*

that

can

be

used

to

retrieve

*

the

reply

for

this

message.

*

The

unique

key

is

returned

as

a

string,

to

be

*

used

by

the

routine

extracting

the

reply.

*/

public

static

final

String

decorateAdminMsg(MQeAdminMsg

msg,

String

targetQMName)

throws

Exception

{

//

set

the

target

queue

manager

msg.setTargetQMgr(targetQMName);

//

indicate

that

we

require

a

reply

message

msg.putInt(MQe.Msg_Style,

MQe.Msg_Style_Request);

//

use

default

reply-to

queue

on

the

target

queue

manager.

msg.putAscii(MQe.Msg_ReplyToQ,

MQe.administration_Reply_Queue_Name);

msg.putAscii(MQe.Msg_ReplyToQMgr,

targetQMName);

//

create

a

unique

tag

that

we

can

identify

the

reply

with

String

match

=

"Msg"

+

System.currentTimeMillis();

msg.putArrayOfByte(MQe.Msg_CorrelID,

match.getBytes());

return

match;

}

Putting

the

administration

message

Use

the

MQeQueueManager

API

call

putMessage(),

specifying

the

destination

queue

manager

and

the

standard

administration

queue

name.

You

can

ignore

the

attribute,

and

confirmed

parameters

in

the

example,

though

they

are

available

for

more

controlled

access

to

the

administration

queue.

//

put

the

message

to

the

right

administration

queue

localQueueManager.putMessage(targetQueueManagerName,

MQe.Admin_Queue_Name,

msg,

null,

0L);

30

Configuring

MQe

Objects

Waiting

for

the

administration

reply

This

method

is

implemented

in

class

examples.config.BasicAdministration.

It

is

a

simple

wrapper

for

the

MQeQueueManager

API

call

waitForMessage(),

which

sets

up

a

filter

to

select

the

required

administration

reply,

and

casts

any

message

obtained

to

an

administration

message.

/**

*

Wait

for

message

-

waits

for

a

message

to

*

arrive

on

the

administration

reply

queue

*

of

the

specified

target

queue

manager.

*

Will

wait

only

for

messages

with

the

*

specified

unique

tag

*

return

message,

or

null

if

timed

out

*/

public

static

final

MQeAdminMsg

waitForRemoteAdminReply(

MQeQueueManager

localQueueManager,

String

remoteQueueManagerName,

String

match)

throws

Exception

{

//

construct

a

filter

to

ensure

we

only

get

the

matching

reply

MQeFields

filter

=

new

MQeFields();

filter.putArrayOfByte(MQe.Msg_CorrelID,

match.getBytes());

//

now

wait

for

the

reply

message

MQeMsgObject

reply

=

localQueueManager.waitForMessage(

remoteQueueManagerName,

MQe.Admin_Reply_Queue_Name,

filter,

null,

0L,

10000);

//

wait

for

10

seconds

return

(MQeAdminMsg)reply;

}

Analyzing

the

reply

message

This

method

is

implemented

in

class

examples.config.BasicAdministration.

It

shows

how

you

might

analyze

a

reply

message,

and

return

a

reply

that

indicates

whether

or

not

the

action

was

successful.

Any

error

messages

are

printed

to

the

console.

/**

*

Reply

true

if

the

given

administration

*

reply

message

represents

a

successful

*

administration

action.

Return

false

otherwise.

*

A

message

indicating

success

*

or

failure

will

be

printed

to

the

console.

*

If

the

administration

action

was

not

successful

*

then

the

reason

will

be

printed

*

to

the

console

*/

public

static

final

boolean

isSuccess(MQeAdminMsg

reply)

throws

Exception

{

boolean

success

=

false;

final

int

returnCode

=

reply.getRC();

switch

(returnCode)

{

case

MQeAdminMsg.RC_Success:

System.out.println("Admin

succeeded");

success

=

true;

break;

case

MQeAdminMsg.RC_Fail:

System.out.println("Admin

failed,

reason:

"+

reply.getReason());

break;

case

MQeAdminMsg.RC_Mixed:

System.out.println("Admin

partially

succeeded:\n"

How

to

configure

MQe

objects

31

+reply.getErrorFields());

break;

}

return

success;

}

Updating

a

queue

manager

description

This

method

is

implemented

in

class

examples.config.QueueManagerAdmin.

It

shows

how

to

use

the

primitives

in

the

BasicAdministration

class

to

update

a

queue

manager

description,

and

to

report

the

success

of

the

action.

/**

*

Update

the

description

field

of

the

*

specified

queue

manager

to

the

specified

*

string.

Use

the

supplied

queueManager

*

reference

as

the

access

to

the

*

MQe

network.

*

*

@param

queueManager

(MQeQueueManager):

access

point

to

the

MQe

network

*

@param

queueManagerName

(String):

name

of

queue

manager

to

modify

*

@param

(String):

new

description

for

queue

manager

*/

public

static

final

boolean

updateQueueManagerDescription(

MQeQueueManager

queueManager,

String

targetQueueManagerName,

String

description)

throws

Exception

{

//

create

administration

message

MQeQueueManagerAdminMsg

msg

=

new

MQeQueueManagerAdminMsg();

//

request

an

update

msg.setAction(MQeAdminMsg.Action_Update);

//

set

the

new

value

of

the

parameter

//into

the

input

fields

in

the

message

//

the

field

name

is

the

attribute

name,

//

and

the

field

value

is

the

new

//

value

of

the

attribute.

The

type

is

specified

//

by

the

administration

message.

//

In

this

case,

the

field

name

is

’description’,

//

the

value

is

the

new

//

description,

an

the

type

is

Unicode.

msg.getInputFields().putAscii(

MQeQueueManagerAdminMsg.QMgr_Description,

description);

//

set

up

for

reply

etc

String

uniqueTag

=

BasicAdministration.decorateAdminMsg(

msg,

targetQueueManagerName);

//

put

the

message

to

the

right

administration

queue

queueManager.putMessage(targetQueueManagerName,

MQe.Admin_Queue_Name,

msg,

null,

0L);

//

wait

for

the

reply

message

MQeAdminMsg

reply

=

BasicAdministration.waitForRemoteAdminReply(

queueManager,

targetQueueManagerName,

uniqueTag);

return

BasicAdministration.isSuccess(reply);

}

32

Configuring

MQe

Objects

Configuring

with

the

C

administrator

API

To

create

and

administer

Queue

Managers

and

their

associated

objects

(queues

etc.),

the

Java

API

uses

the

MQeQueueManagerConfigure

class

and

admin

messages.

In

the

C

API,

admin

activities

are

performed

using

an

Administrator

API.

The

native

codebase

responds

to

admin

messages

correctly

but

no

provision

is

provided

for

creating

them.

Therefore,

the

Administrator

API

is

the

recommended

method

for

local

administration.

For

complete

documentation

on

the

Administrator

API

and

all

the

available

options,

refer

to

the

C

API

Programming

Reference.

Creating

an

administrator

handle

Before

any

administration

can

take

place,

an

administrator

handle

must

be

created

using

the

mqeAdministrator_new

API

call.

The

prototype

for

the

call

is:

MQERETURN

mqeAdministrator_new(MQeExceptBlock*

pExceptBlock,

MQeAdministratorHndl*

phAdmin,

MQeQueueManagerHndl

hQueueMgr)

The

first

parameter

is

a

pointer

to

a

valid

exception

block.

The

second

parameter

is

a

pointer

to

an

administrator

handle,

which

is

filled

in

with

a

valid

handle

upon

successful

return

from

the

function.

The

third

parameter

is

an

optional

queue

manager

handle.

If

the

queue

manager

to

be

administered

already

exists,

it

must

be

created

using

the

mqeQueueManager_new

function,

and

the

queue

manager

handle

returned

must

be

passed

to

the

mqeAdministrator_new

call.

To

create

a

queue

manager,

NULL

must

be

passed

as

the

third

parameter

to

the

mqeAdministrator_new

call.

If

NULL

is

used,

pass

the

mqeAdministrator_free

or

mqeAdministrator_QueueManager_create

call.

Once

the

mqeAdministrator_QueueManager_create

call

has

been

executed,

the

administrator

handle

can

be

used

as

normal.

Using

the

administrator

handle

Once

an

Administrator

Handle

has

been

created,

any

of

the

mqeAdministrator

calls

can

then

be

used.

The

calls

are

all

of

the

form:

MQERETURN

mqeAdministrator_Object_action(

MQeAdministratorHndl

hAdministrator,

MQeExceptBlock*

pExceptBlock,

...)

Where:

v

object

is

the

type

of

object

to

be

administered,

for

example,

a

queue

manager,

local

queue,

or

synchronous

remote

queue

v

action

is

the

operation

to

be

performed,

for

example,

create,

delete,

inquire,

or

update.

Note:

Some

actions

are

only

available

for

some

object

types.

Example

calls:

If

NULL

is

used

to

create

an

MQeAdministratirHndl,

the

next

administration

API

call

can

only

be

one

of

MQeAdministrator_free

or

How

to

configure

MQe

objects

33

MQeAdministrator_create_QueueManager.

Once

the

queue

manager

has

been

created,

all

the

administration

APIs

are

available

for

use.

mqeAdministrator_LocalQueue_create

/*

create

a

local

queue

*/

mqeAdministrator_AdminQueue_inquire

/*

inquire

on

a

local

queue

*/

Many

of

the

APIs,

particularly

the

inquire

and

update

calls,

have

arguments

which

are

structures

containing

multiple

elements,

some

of

which

may

or

may

not

be

filled

in.

In

order

to

accommodate

this

functionality,

such

structures

contain

an

element

called

″opFlags″,

a

set

of

bits

to

indicate

which

elements

of

the

structure

are

set.

Also

supplied

are

macros

that

initialize

these

opFlag

structures

to

appropriate

values,

and

macros

for

each

bit

that

can

be

set.

For

instance,

if

you

wanted

to

inquire

on

a

local

queue

but

you

were

only

interested

in

the

description

and

the

Maximum

Message

Size

fields,

then

you

would

do

the

following:

MQeLocalQParms

lqParms

=

LOCAL_Q_INIT_VAL;

lqParms.opFlags

|=

QUEUE_DESC_OP;

lqParms.opFlags

|=

QUEUE_MAX_MSG_SIZE_OP;

/*

Note

that

the

|

function

is

being

used

*/

/*

call

inquire

function

*/

Similarly,

if

you

wanted

to

test

which

elements

are

filled

in

when

such

a

structure

is

returned

from

a

function,

you

would

do

the

following:

if(lqParms.opFlags

&

QUEUE_DESC_OP)

{

/*

description

is

set*/

}

if(lqParms.opFlags

&

QUEUE_MAX_MSG_SIZE_OP)

{

/*

max

msg

size

is

set*/

}

Freeing

the

administrator

handle

When

the

application

has

finished

with

the

administrator

handle

it

should

be

destroyed

using

the

mqeAdministrator_free

call.

This

allows

the

system

to

free

up

any

resources

that

are

in

use

by

the

administrator.

Once

an

administrator

handle

has

been

freed,

it

must

not

be

used

in

any

of

the

mqeAdministrator_*

API

calls

-

if

the

handle

is

used,

the

behavior

is

indeterminate,

but

is

likely

cause

an

access

violation.

If

further

administration

actions

are

to

be

performed,

the

handle

can

be

recreated

with

the

mqeAdministrator_new

call.

rc

=

mqeAdministrator_new(&exceptBlock,

&hAdministrator,

NULL);

if(MQERETURN_OK

==

rc)

{

/*

mqeAdministrator_QueueManager_create

*/

/*

further

mqeAdministrator

calls

*/

/*

...

*/

rc

=

mqeAdministrator_free(hAdministrator,

&exceptBlock);

}

hAdministrator

=

NULL;

Figure

9.

Creating

an

Administrator

Handle

for

a

new

Queue

Manager

34

Configuring

MQe

Objects

When

a

handle

has

been

freed,

set

it

to

NULL.

If

this

handle

is

then

reused

accidentally,

the

API

returns

an

error.

Table

11.

Common

reason

and

return

codes

Return

codes

Reason

codes

Notes

MQERETURN_ADMINISTRATION_ERROR

MQEREASON_INVALID_QMGR_NAME

Name

has

invalid

character

or

is

NULL

MQEREASON_INVALID_QUEUE_NAME

Name

has

invalid

character

or

is

NULL

MQERETURN_INVALID_ARGUMENT

MQEREASON_API_NULL_POINTER

Pointer

is

NULL

MQEREASON_WRONG_TYPE

Wrong

type

handle

has

been

passed,

for

example,

QueueManager

hndl

instead

of

MQeFields

MQERETURN_QUEUE_ERROR

MQEREASON_QMGR_QUEUE_EXISTS

Queue

already

Exists

MQEREASON_QMGR_QUEUE_NOT_EMPTY

Queue

is

not

empty

MQERETURN_QUEUE_MANAGER_ERROR

MQEREASON_UNKOWN_QUEUE

Queue

does

not

exist

MQEREASON_UNKOWN_QUEUE_MANAGER

Queue

manager

does

not

exist

MQERETURN_NOTHING_TO_DO

MQEREASON_DUPLICATE

Name

already

in

use

MQEREASON_NO_SUCH_QUEUE_ALIAS

The

queue

alias

specified

does

not

exist

Configuring

from

the

command

line

MQe

includes

some

tools

that

enable

the

administration

of

MQe

objects

from

the

command

line,

using

simple

scripts.

The

following

tools

are

provided:

/*

mqeQueueManager_new(...,&hQueueManager,...)

*/

/*

...

*/

rc

=

mqeAdministrator_new(&exceptBlock,

&hAdministrator,

hQueueManager);

if(MQERETURN_OK

==

rc)

{

/*

further

mqeAdministrator

calls

*/

/*

...

*/

rc

=

mqeAdministrator_free(hAdministrator,

&exceptBlock);

}

Figure

10.

Creating

an

Administrator

Handle

for

an

existing

Queue

Manager

How

to

configure

MQe

objects

35

QueueManagerUpdater

Creates

a

device

queue

manager

from

an

ini

file,

and

sends

an

administration

message

to

update

the

characteristics

of

a

queue

manager.

IniFileCreator

Creates

an

ini

file

with

the

necessary

content

for

a

client

queue

manager.

LocalQueueCreator

Opens

a

client

queue

manager,

adds

a

local

queue

definition

to

it,

and

closes

the

queue

manager.

HomeServerCreator

Opens

a

server

queue

manager,

adds

a

home-server

queue,

and

closes

the

queue

manager.

ConnectionCreator

Allows

a

connection

to

be

added

to

an

MQe

queue

manager

without

programming

anything

in

Java.

RemoteQueueCreator

Opens

a

device

queue

manager

for

use,

sends

it

an

administration

message

to

cause

a

remote

queue

definition

to

be

created,

then

closes

the

queue

manager.

MQBridgeCreator

Creates

an

MQ

bridge

on

an

MQe

queue

manager.

MQQMgrProxyCreator

Creates

an

MQ

queue

manager

proxy

for

a

bridge.

MQConnectionCreator

Creates

a

connection

definition

for

an

MQ

system

on

a

proxy

object.

MQListenerCreator

Creates

an

MQ

transmit

queue

listener

to

pull

messages

from

MQ.

MQBridgeQueueCreator

Creates

an

MQe

queue

that

can

reference

messages

on

an

MQ

queue.

StoreAndForwardQueueCreator

Creates

a

store-and-forward

queue.

StoreAndForwardQueueQMgrAdder

Adds

a

queue

manager

name

to

the

list

of

queue

managers

for

which

the

store-and-forward

queue

accepts

messages.

The

following

files

are

also

provided:

Example

script

files

Two

example

.bat

files,

and

a

runmqsc

script

to

demonstrate

setting

up

a

fictitious

network

configuration,

involving

a

branch,

a

gateway,

and

an

MQ

system.

Rolled-up

Java

example

An

example

of

how

a

batch

file

can

be

rolled-up

into

a

Java

file

for

batch-language

independence.

Example

use

of

command-line

tools

You

can

use

the

command-line

tools

to

create

an

initial

queue

manager

configuration

using

a

script,

without

needing

to

know

how

to

program

in

Java.

36

Configuring

MQe

Objects

The

following

example

demonstrates

how

to

use

these

tools

to

configure

the

network

topology

shown

in

the

following

figure:

In

this

scenario:

v

The

branch

offices

need

to

send

sales

information

to

the

central

site

for

processing

by

applications

on

the

MQ

server

v

Each

branch

has

a

single

machine

with

DNS

names

BRANCH000,

BRANCH001,

and

BRANCH002

respectively.

These

machines

all

run

MQe,

and

each

has

a

single

queue

manager

called

BRANCH000QM,

BRANCH001QM,

and

BRANCH002QM

respectively.

v

The

central

office

machine

GATEWAY00

runs

a

single

gateway

queue

manager

GATEWAY00QM

v

The

central

office

machine

CENTRAL00

runs

MQ

with

a

single

queue

manager

called

CENTRAL00QM

v

When

a

sale

occurs,

a

message

is

sent

to

the

MQ

queue

manager

called

CENTRAL00QM,

into

a

queue

called

BRANCH.SALES.QUEUE.

v

The

messages

are

encoded

in

a

byte

array

at

the

branch,

and

sent

inside

an

MQeMQMsgObject.

v

The

MQ

system

must

be

able

to

send

messages

back

to

each

branch

queue

manager.

v

The

topology

must

also

be

able

to

cope

with

the

addition

of

a

Firewall

later

between

the

branches

and

the

gateway.

v

The

MQ-bound

queue

traffic

should

use

the

56-bit

DES

cryptor.

Script

files

required

The

following

scripts

are

needed

to

configure

this

network

topology:

Central.tst

Used

with

the

runmqsc

script

to

create

relevant

objects

on

CENTRAL00QM

CentralQMDetails.bat

Used

to

describe

the

CENTRAL00QM

to

other

scripts

Local area
network

GATEWAY00
central office

runs
WebSphere MQ

Everyplace

CENTRAL00
central office

runs
WebSphere MQ

Leased
lines

Branch000

Branch001

Branch002

Figure

11.

MQe

administration

scenario

How

to

configure

MQe

objects

37

GatewayQMDetails.bat

Used

to

describe

the

GATEWAY00QM

to

other

scripts

CreateGatewayQM.bat

Used

to

create

the

gateway

queue

manager

CreateBranchQM.bat

Used

to

create

a

branch

queue

manager

These

.bat

files

can

all

be

found

in

the

installed

product,

in

MQe\Java\Demo\Windows.

Note:

Although

the

example

scripts

provided

are

in

the

Windows

.bat

file

format,

they

could

be

converted

to

work

equally

well

in

any

scripting

language

available

on

your

system.

MQe

and

MQ

objects

defined

by

the

scripts

The

following

objects

are

created

by

the

scripts

to

provide

the

branch-to-central

routing:

The

following

objects

are

created

by

the

scripts

to

provide

the

central-to-branch

routing:

BRANCH001QM (MQe)
BRANCH000QM (MQe)

Remote queue:
Name: BRANCH.SALES.QUEUE
Queue manager: CENTRAL00QM

Connection
Name:CENTRAL00QM
Routed vis: GATEWAY00QM

Connection
Name: GATEWAY00QM
Route: Network:<host>:<port>

Listener
<port>

WebSphere MQ classes
for Java

JVM
GATEWAY00QM (MQe)
BridgeQueue
Name: BRANCH.SALES.QUEUE
Qmgr: GATEWAY))QM
Connection
Name:CENTRAL00QM
Route:null

Bridge
Name: <bridgeName>

MQ Qmgr Proxy “CENTRAL00QM”

Connection Pool “FOR.GATEWAY01QM”

TCP/IP Sockets

CENTRAL00QM (WebSphere MQ)

Local queue: “BRANCH.SALES.QUEUE”

Local queue: “SYNC.Q.GATEWAY00QM”

Server connection channel: “FOR.GATEWAY00QM”

Figure

12.

Branch

to

central

routing

38

Configuring

MQe

Objects

How

to

use

the

script

files

Follow

these

procedures

to

create

the

required

objects

and

operate

the

example

scenario,

using

the

supplied

script

files:

1.

Edit

the

JavaEnv.bat

Make

sure

you

have

edited

the

JavaEnv.bat

file

to

set

your

required

working

environment.

2.

Create

a

command-line

session

Create

a

command-line

session,

and

invoke

the

JavaEnv.bat

to

make

the

settings

available

in

the

current

environment.

3.

Gather

hardware

required

Locate

all

the

hardware

on

which

you

will

be

installing

the

network

topology.

Gather

the

machine

names

of

those

machines

available

to

you,

and

note

them

down.

If

you

have

only

one

machine

available,

you

can

still

use

the

scripts

to

deploy

the

example

network

topology,

as

you

can

specify

the

same

hostname

for

each

queue

manager.

4.

Create

an

MQ

queue

manager

By

default,

the

scripts

assume

this

is

called

CENTRAL00QM

listening

on

port

1414

for

client

channel

connections.

5.

Describe

the

MQ

queue

manager

WebSphere MQ classes
for Java

BRANCH001QM (MQe)
BRANCH000QM (MQe)

Home-server queue:
Name: ToBranchQueue
Queue manager: GATEWAY00QM

Local queue
Name:FromCentralQ
Queue manager: BRANCH00QM

Connection
Name: GATEWAY00QM
Route: Network:<host>:<port>

JVM

GATEWAY00QM (MQe)
Store-and-forward queue “ToBranchQ”
with target qmgrs “BRANCH00QM”,
“BRANCH001QM”, and “BRANCH002QM”

Bridge
Name: <bridgeName>

MQ Qmgr Proxy “CENTRAL00QM”

Connection Pool “FOR.GATEWAY01QM”

TCP/IP Sockets

CENTRAL00QM (WebSphere MQ)

Remote queue manager alias: “BRANCH000QM”
(transmit queue: TO.GATEWAY00QM)

Local transmit queue: “TO.GATEWAY00QM”
Server connection channel: “FOR>GATEWAY00QM”

WebSphere MQ application puts to
“FromCentralQ” on “BRANCH00QM”

Transmit queue listener “TO.GATEWAY00QM”

Figure

13.

Central

to

branch

routing

How

to

configure

MQe

objects

39

Edit

and

review

the

CentralQMDetails.bat

file

to

make

sure

that

its

details

match

those

of

the

MQ

queue

manager

you

have

just

created.

All

values,

except

the

name

of

the

machine

on

which

the

MQ

queue

manager

sits,

are

defaulted

in

the

script

file.

6.

Describe

the

gateway

queue

manager

Edit

and

review

the

GatewayQMDetails.bat

file

to

make

sure

that

details

of

the

gateway

queue

manager

are

decided

on,

and

available

for

the

other

.bat

files

to

use.

The

default

name

of

the

gateway

queue

manager

created

by

the

scripts

is

GATEWAY00QM.

You

will

need

to

set

the

machine

name,

and

port

number

it

will

listen

on.

This

port

must

be

available

for

use.

Tip:

On

Windows

machines,

use

the

command

netstat

-a

to

get

a

list

of

ports

currently

in

use.

7.

Review

the

central.tst

file

Read

the

central.tst

file,

make

sure

it

won’t

create

any

MQ

objects

you

are

unhappy

with

on

your

MQ

queue

manager.

8.

Distribute

all

the

scripts

to

all

machines

Copy

all

of

the

scripts

to

all

of

the

machines

on

which

you

will

be

running

MQe

queue

managers.

This

step

spreads

knowledge

to

all

the

machines

in

your

network,

of

the

host

names,

port

numbers,

and

queue

manager

names

that

you

have

decided

to

use.

If

any

of

these

files

are

changed,

delete

all

MQe

queue

managers

and

restart

from

this

point

in

the

instructions.

9.

Run

the

central.tst

script

on

your

new

MQ

queue

manger

The

central.tst

script

is

in

a

format

used

by

the

runmqsc

sample

program

supplied

with

MQ.

Pipe

the

central.tst

file

into

runmqsc

to

configure

your

MQ

queue

manger

For

example:

runmqsc

CENTRAL00QM

<

Central.tst

Use

the

MQ

Explorer

to

view

the

resultant

MQ

objects

that

are

created.

Milestone:

You

have

now

set

up

your

MQ

system.

10.

Run

the

CreateGatewayQM

script

The

CreateGatewayQM

script

uses

the

details

in

the

CentralQMDetails

and

GatewayQMDetails

scripts

to

create

a

gateway

queue

manager.

The

script

needs

no

parameters.

11.

Check

for

the

test

message

The

script

that

creates

the

queue

manager

sends

a

test

message

to

the

MQ

system.

Use

the

MQ

Explorer

tool

to

look

at

the

target

queue

(BRANCH.SALES.QUEUE

by

default)

to

make

sure

a

test

message

arrived.

The

body

of

the

test

message

contains

the

string

ABCD.

Milestone:

You

have

now

set

up

your

MQe

gateway

queue

manager.

12.

Keep

the

gateway

queue

manager

running

During

the

running

of

the

CreateGatewayQM

script,

an

example

server

program

is

invoked

to

start

the

gateway

queue

manager,

and

keep

it

running.

An

AWT

application

runs,

displaying

a

window

on

the

screen.Do

not

close

this

window.

All

the

time

this

window

is

active,

the

MQe

gateway

queue

manager

it

represents

is

also

active.

Closing

the

window

closes

the

MQe

gateway

queue

manager

and

breaks

the

path

from

the

branch

queue

managers

to

the

MQ

queue

manager.

13.

Create

a

branch

queue

manager

If

your

branch

queue

manager

needs

to

run

on

a

different

machine,

you

may

need

to

edit

the

JavaEnv.bat

file

to

set

up

your

local

environment.

Create

a

command-line

session,

and

call

JavaEnv.bat

as

before

to

set

up

your

environment.

Use

the

CreateBranchQM

script

to

create

a

branch

queue

manager.

The

syntax

of

the

command

is

:

40

Configuring

MQe

Objects

CreateBranchQM.bat

branchNumber

portListeningOn

Where:

branchNumber

Is

a

3-digit

number,

padded

with

leading

zeros,

indicating

which

branch

the

queue

manager

is

being

created

for.

For

example,

000,

001,

002...

portListeningOn

Is

a

port

on

which

the

device

branch

queue

manager

listens

on

for

administration

requests.

For

example,

8082,

8083...

Note:

The

port

must

not

already

be

in

use
Hint:

On

Windows

machines,

use

the

netstat

-a

command

to

view

the

list

of

ports

in

use.

During

the

script,

a

test

message

is

sent

to

your

MQ

system.

Use

the

MQ

Explorer

to

make

sure

the

test

message

arrived

successfully.

The

body

of

the

test

message

contains

the

string

ABCD.

At

the

end

of

the

script,

an

example

program

is

used

to

start

the

MQe

queue

manager.

An

AWT

application

runs,

displaying

a

window

on

the

screen.As

with

the

gateway

queue

manager,

do

not

close

this

window

until

you

wish

to

close

the

queue

manager.
14.

Explore

the

branch

queue

manager

The

branch

queue

manager

is

set

up

with

a

channel

manager

and

listener,

on

the

port

you

specified

when

you

created

it,

and

the

Primary

Network

connection

is

HttpTcpipAdapter.

As

a

result,

you

can

use

the

MQe_Explorer

to

view

the

queue

managers.

Refer

to

“How

to

use

MQe_Explorer

to

view

the

configuration.”

Milestone:

You

now

have

a

branch

queue

manager

set

up.

Note:

An

MQe

queue

manager

should

be

named

uniquely.

Never

create

two

queue

managers

with

the

same

name.

You

can

now

use

the

MQe_Explorer

to

view

the

configuration.

How

to

use

MQe_Explorer

to

view

the

configuration

To

use

the

MQe_Explorer

to

view

your

configuration:

1.

Start

the

MQe_Explorer.exe

program.

2.

Stop

one

of

the

branch

queue

managers,

for

example,

BRANCH002QM.

3.

Open

the

BRANCH002QM.ini

file,

and

navigate

from

there.

How

to

configure

MQe

objects

41

42

Configuring

MQe

Objects

Configuring

MQe

objects

Configuring

queue

managers

Introduction

to

configuring

queue

managers

The

queue

manager

is

the

central

component

of

MQe.

It

provides

the

main

programming

interface

for

application

programs,

and

it

also

owns

queues,

communication

and

MQ

bridge

subsystems.

Java

and

C

differ

significantly

in

the

area

of

creating

and

deleting

queue

managers:

v

In

Java,

general

queue

manager

configuration

is

performed

using

administration

messages,

but

creation

and

deletion

is

performed

using

the

MQeQueueManagerConfigure

class.

v

In

C,

all

administration

is

performed

using

the

administrator

API.

Java

Queue

managers

are

created

and

deleted

using

the

MQeQueueManagerConfigure

class.

General

queue

manager

administration

is

performed

using

the

MQeQueueManagerAdminMsg

class

which

inherits

from

MQeAdminMsg.

The

following

actions

are

applicable

to

queue

managers:

v

MQeAdminMsg.Action_Inquire

v

MQeAdminMsg.Action_InquireAll

v

MQeAdminMsg.Action_Update

TheMQeAdminMsg.Admin_Name

field

in

the

administration

message

is

used

to

identify

the

queue

manager.

The

method

setName(String)

can

be

used

set

this

field

in

the

administration

message.

Note:

For

all

administration

messages,

information

relating

to

the

destination

queue

manager,

reply

queue,

and

so

on,

must

be

set.

This

is

referred

to

in

the

examples

below

as

priming

the

administration

message.

The

examples

show

how

to

create

the

administration

message

to

achieve

the

required

result.

The

message

then

needs

to

be

sent,

and

the

administration

reply

messages

checked

as

required.

C

All

administration

is

done

via

the

administration

API.

These

APIs

are

of

the

form:

MQERETURN

MQEPUBLISHED

mqeAdministrator_QueueManager_action();

Where

action

is

one

of

the

following:

create

Create

a

Queue

Manager

delete

Delete

a

Queue

Manager

update

Updates

the

properties

of

a

queue

manager

inquire

Inquires

the

properties

of

a

queue

manager

©

Copyright

IBM

Corp.

2000,

2004

43

addAlias

Adds

a

Queue

Manager

Alias

removeAlias

Removes

a

Queue

Manager

Alias

listAliasNames

Lists

all

the

aliases

present

for

this

qmgr.

isAlias

Determines

if

a

qmgr

name

is

an

alias

or

a

real

qmgr.

For

the

create

update

and

inquire

calls

a

structure

is

passed

in

for

various

parameters.

Queue

manager

attributes

Queue

Managers

have

a

number

of

attributes,

which

are

listed

below.

Information

about

these

attributes

is

passed

either

via

API

parameters,

or

configuration

structures

or

MQeField

objects.

The

first

list

shows

all

the

possible

queue

manager

attributes

and

indicates

which

are

available

in

the

codebases.

Table

12.

Queue

Manager

attributes

Attribute

Description

Java

Native

C

Read/Write

Bridge

Capable

Determines

if

the

queue

manager

has

MQBridge

functionality

Yes

Yes

(but

always

false)

Read

Channel

Attribute

Rule

The

attribute

rule

to

be

used

by

this

queue

manager’s

channels

Yes

No

Read/Write

Channel

Timeout

The

timeout

to

be

used

by

this

queue

manager’s

outgoing

channels

Yes

Yes

Read/Write

Communications

Listeners

The

list

of

listeners

defined

on

this

queue

manager

Yes

No

Read

Connections

The

list

of

connections

known

by

this

queue

manager

Yes

Yes

Read

Description

A

free-format

textual

description

of

this

queue

manager.

Yes

Yes

Read/Write

44

Configuring

MQe

Objects

Table

12.

Queue

Manager

attributes

(continued)

Attribute

Description

Java

Native

C

Read/Write

Maximum

Transmission

Threads

The

maximum

number

of

background

transmission

threads

supported

by

this

queue

manager.

Yes

No

Read/Write

Queues

The

list

of

queues

owned

by

this

queue

manager

Yes

Yes

Read

Queue

Store

The

location

where

this

queue

manager

will

store

its

queues

Yes

Yes

Read/Write

Qmgr

Rules

The

rules

class

which

will

be

used

by

this

queue

manager

Yes

Yes

Read/Write

Java

The

parameters

in

Java

are

passed

in

using

MQeFields

objects.

The

values

are

passed

using

field

elements

of

specific

types.

The

field

names

are

as

follows.

All

the

symbolic

names

are

pubic

static

final

static

strings

in

the

MQeQueueManagerAdminMsg

class.

Table

13.

Java

Parameters

passed

in

using

MQeFields

Element

type

Field

name

constants

Symbolic

Value

boolean

QMgr_BridgeCapable

bridge_capable

ascii

QMgr_ChnlAttrRules

chnlattrrules

long

QMgr_ChnlTimeout

chnltimeout

fields

array

QMgr_CommsListeners

commsls

fields

array

QMgr_Connections

conns

unicode

QMgr_Description

desc

int

QMgr_MaximumTransmissionThreads

maximumTransmissionThreads

fields

arrayEach

element

contains

a

fields

object

containing

{QMgr_QueueName,

QMgr_QueueQMgrName,

QMgr_QueueType}

QMgr_Queues

queues

ascii

QMgr_QueueStore

queueStore

ascii

QMgr_Rules

rules

Configuring

MQe

objects

45

C

All

the

C

parameters

are

passed

in

using

a

parameter

structure.

This

structure

needs

to

be

initialized

before

it

can

be

used

-

set

it

to

QMGR_INIT_VAL.

Table

14.

Parameter

structures

for

C

Element

Type

Element

Name

Notes

MQEINT32

opFlags

Flags

to

indicate

what

parts

of

this

structure

have

been

set/requested

MQeStringHndl

hDescription

MQeStringHndl

hQueueManagerRules

MQEINT64

channelTimeOut

MQeStringHndl

hQueueStore

MQeVectorHndl

hQueues

MQeVectorHndl

hConnections

MQEBOOL

bridgeCapable

Valid

values

{MQE_TRUE,

MQE_FALSE}

Create

a

queue

manager

Java

First,

create

the

QueueAdminMsg

object.

This

needs

to

be

primed

using

code

to

setup

the

origin

queueManagerAdmin

reply

etc.

MQeFields

parms

=

new

MQeFields();

MQeFields

queueManagerParameters

=

new

MQeFields();

queueManagerParameters.putAscii(MQeQueueManager.Name,

"MyQmgrName");

parms.putFields(MQeQueueManager.QueueManager,

queueManagerParameters);

MQeFields

registryParameters

=

new

MQeFields();

registryParameters.putAscii(MQeRegistry.DirName,

"c:\MyRegLocation");

parms.putFields(MQeQueueManager.Registry,

registryParameters);

String

queueStore

=

"MsgLog:"

+

java.io.File.separator

+

"queues";

MQeQueueManagerConfigure

qmConfig

=

new

MQeQueueManagerConfigure(parms,

queueStore);

qmConfig.defineQueueManager();

qmConfig.defineDefaultSystemQueue();

qmConfig.defineDefaultDeadLetterQueue();

qmConfig.defineDefaultAdminReplyQueue();

qmConfig.defineDefaultAdminQueue();

qmConfig.close();

C

The

information

for

the

queue

is

passed

in

via

a

structure

to

the

API.

Two

important

points

are:

v

The

structure

is

initialized

using

QMGR_INIT_VAL

v

The

properties

that

are

set

are

indicated

using

the

opFlags

elements

of

the

structure.

Each

property

has

a

corresponding

bit

mask

–

these

need

to

be

bitwise

ORed

together.
MQeQueueManagerParms

qmParams

=

QMGR_INIT_VAL;

MQeRegistryParms

regParams

=

REGISTRY_INIT_VAL;

/*

String

parameters

for

the

location

of

the

msg

store

*/

qmParams.hQueueStore

=

hQueueStore;

46

Configuring

MQe

Objects

/*

Indicate

what

parts

of

the

structure

have

been

set

*/

qmParams.opFlags

=

QMGR_Q_STORE_OP;

/*

...

create

the

registry

parameters

-

minium

that

are

required

*/

regParams.hBaseLocationName

=

hRegistryDir;

rc

=

mqeAdministrator_QueueManager_create(hAdministrator,

&exceptBlk,

&hQueueManager,

hLocalQMName,

&qmParams,

®Params);

Delete

a

queue

manager

Java

MQeFields

parms

=

new

MQeFields();

MQeFields

queueManagerParameters

=

new

MQeFields();

queueManagerParameters.putAscii(MQeQueueManager.Name,

"MyQmgrName");

parms.putFields(MQeQueueManager.QueueManager,

queueManagerParameters);

MQeFields

registryParameters

=

new

MQeFields();

registryParameters.putAscii(MQeRegistry.DirName,

"c:\MyRegLocation");

parms.putFields(MQeQueueManager.Registry,

registryParameters);

String

queueStore

=

"MsgLog:"

+

java.io.File.separator

+

"queues";

MQeQueueManagerConfigure

qmConfig

=

new

MQeQueueManagerConfigure(parms,

queueStore);

qmConfig.deleteDefaultAdminReplyQueue();

qmConfig.deleteDefaultAdminQueue();

qmConfig.deleteDefaultDeadLetterQueue();

qmConfig.deleteDefaultSystemQueue();

qmConfig.deleteQueueManager();

qmConfig.close();

C

In

order

to

delete

a

queue

manager:

v

The

queue

manager

must

be

stopped

v

All

queues

must

be

deleted

v

All

connection

definitions

must

be

deleted

Note

there

is

no

parameter

structure

here

–

just

a

Queue

Manager

handle.

rc

=

mqeAdministrator_QueueManager_delete(hAdministrator,

pExceptBlock);

if

(

EC(&exceptBlk)

==

MQERETURN_QUEUE_MANAGER_ERROR

)

{

if(ERC(&exceptBlk)

==

MQEREASON_QMGR_ACTIVATED)

{

/*

qmgr

not

been

stopped

-

take

appropriate

actions

*/

}

else

if(ERC(&exceptBlk)

==

MQEREASON_QMGR_QUEUE_EXISTS)

{

/*

queues

exist

-

take

appropriate

actions

*/

}

else

if(ERC(&exceptBlk)

==

MQEREASON_CONNECTION_DEFINITION_EXISTS)

{

/*

connection

defs

exist

-

take

appropriate

actions

*/

}

else

Configuring

MQe

objects

47

{

/*

unknown

error

*/

}

}

Inquire

and

inquire

all

In

general,

when

inquiring

on

objects

in

MQe,

you

can:

v

ask

for

particular

parameters

which

are

of

interest

using

inquire

v

ask

for

all

information

using

inquireAll.

Java

Inquire

//inquire

//Request

the

value

of

description

try

{

//Prime

admin

message

with

targetQM

name,

reply

to

queue,

and

so

on

MQeAdminMsg

msg

=

(MQeAdminMsg)

new

MQeQueueManagerAdminMsg();

parms

=

new

MQeFields();

parms.putUnicode(MQeQueueManagerAdminMsg.QMgr_Description,

null);

//set

the

name

of

the

queue

to

inquire

on

msg.setName("ExampleQM");

//Set

the

action

required

and

its

parameters

into

the

message

msg.inquire(parms);

//Put

message

to

target

admin

queue

(code

not

shown)

}

catch

(Exception

e)

{

System.err.println("Failure

!

"

+

e.toString());

}

Inquire

all

//inquire

all

try

{

MQeAdminMsg

msg

=

(MQeAdminMsg)

new

MQeQueueManagerAdminMsg();

//set

the

name

of

the

queue

to

inquire

on

msg.setName("ExampleQM");

//Set

the

action

required

and

its

parameters

into

the

message

msg.inquireAll(new

MQeFields());

}

catch

(Exception

e)

{

System.err.println("Failure

!

"

+

e.toString());

}

C

The

example

below

shows

how

to

inquire

on

the

list

of

queues.

This

is

the

most

complex

inquire

that

can

be

performed

as

a

vector

of

structures

is

returned.

All

these

structures

must

be

freed

as

shown

below.

This

queue

info

structure

contains

three

strings

and

an

MQeQueueType:

v

String:

QueueQueueManager

Name.

Must

be

freed

v

String:

QueueName.

Must

be

freed

v

Constant

string:

The

Java

Class

Name

-

need

not

be

freed

v

Primitive:

MQeQueueType.

48

Configuring

MQe

Objects

The

Queue

Info

structure

must

be

freed

using

the

mqeMemory_free

function.

Please

see

C

API

Programming

Reference

for

more

information

on

the

mqeMemory

function.

As

well

as

information

on

queues,

a

vector

of

connection

definitions

can

be

returned.

This

should

also

be

freed

when

it

has

been

processed.

MQeQueueManagerParms

qmParms

=

QMGR_INIT_VAL;

qmParms.opFlags

|=

QMGR_QUEUES_OP;

rc

=

mqeAdministrator_QueueManager_inquire(hAdministrator,

&exceptBlk,

&qmParms);

if

(MQERETURN_OK

==

rc)

{

/*

This

has

returned

a

Vector

of

information

*/

/*

blocks

about

the

queues

*/

MQeVectorHndl

hListQueues

=

qmParms.hQueues;

MQEINT32

numberQueues;

rc

=

mqeVector_size(hListQueues,&exceptBlk,&numberQueues);

if

(MQERETURN_OK

==

rc)

{

MQEINT32

count;

/*

Loop

round

the

array

to

get

the

information

*/

/*

about

the

queues

*/

for

(count=0;count<numberQueues;count++)

{

MQeQMgrQParms

*pQueueInfo;

rc

=

mqeVector_removeAt(hListQueues,

&exceptBlk,

&pQueueInfo,

count);

if

(MQERETURN_OK

==

rc)

{

/*

Queue

QueueManager

-

FREE

THIS

STRING

when

done

*/

MQeStringHndl

hQMgrName

=

pQueueInfo->hOwnerQMgrName;

/*

QueueName

-

FREE

THIS

STRING*/

MQeStringHndl

hQueueName

=

pQueueInfo->hQMgrQName;

/*

A

Constant

String

matching

the

Java

Class

Name

*/

/*

for

this

queue

one

of

*

MQE_QUEUE_LOCAL

*

MQE_QUEUE_REMOTE

*

MQE_QUEUE_ADMIN

*

MQE_QUEUE_HOME_SERVER

*/

MQeStringHndl

hQueueClassName

=

pQueueInfo->hQueueType;

/*

Will

be

set

from

MQeQueueType

*/

MQeQueueType

queueType

=

pQueueInfo->queueExactType;

(void)mqeMemory_free(&exceptBlk,pQueueInfo);

}

}

}

/*

the

vector

needs

to

be

freed

as

well

*/

mqeVector_free(hListQueues,&exceptBlk);

}

Update

Java

//Set

name

of

resource

to

be

managed

try

{

MQeAdminMsg

msg

=

(MQeAdminMsg)

new

MQeQueueManagerAdminMsg();

msg.setName("ExampleQM");

Configuring

MQe

objects

49

//Change

the

value

of

description

parms

=

new

MQeFields();

Parms.putUnicode(MQeQueueManagerAdminMsg.QMgr_Description,

"Change

description

...");

//Set

the

action

required

and

its

parameters

into

the

message

msg.update(parms);

}

catch

(Exception

e)

{

System.err.println("Failure

!

"

+

e.toString());

}

C

This

shows

how

to

update

the

description.

Note

that

the

queues

and

so

on,

can

not

be

updated,

via

this

API

-

they

must

be

done

via

the

specific

Queue

update

methods.

Updates

of

the

Description,

ChannelTimeout

and

QueueStore

are

allowed.

QueueStore

changes

will

only

take

effect

for

any

new

queues

that

are

created.

MQeQueueManagerParms

qmParms

=

QMGR_INIT_VAL;

qmParms.opFlags

|

=

QMGR_DESC_OP;

qmParms.hDescription

=

hNewDescription;

rc

=

mqeAdministrator_QueueManager_update(hAdministrator,

&exceptBlk,

&qmParms);

Add

alias

Note:

Note

that

it

is

not

possible

to

chain

aliases

together.

So

QM1

can’t

be

an

alias

for

QM2,

which

itself

is

an

alias

for

QM3.

Java

In

Java,

queue

manager

aliases

are

manipulated

using

the

MQeConnectionAdminMsg.

Refer

to

the

Configuring

a

Connection

section

for

more

information.

C

The

real

name

of

the

queue

manager

is

hRealTargetQMname,

and

the

alias

to

this

is

hAliasName.

Note

that

these

strings

will

be

duplicated

internally,

so

could

be

freed

if

not

required

elsewhere.

rc

=

mqeAdministrator_QueueManager_addAlias(hAdministrator,

&exceptBlk,

hAliasName,

hRealTargetQMName);

Remove

alias

Java

In

Java,

queue

manager

aliases

are

manipulated

using

the

MQeConnectionAdminMsg.

Refer

to

the

Configuring

a

Connection

section

for

more

information.

C

Removes

the

Alias

hAliasName.

An

error

is

returned

if

this

is

not

present.

rc

=

mqeAdministrator_QueueManager_removeAlias(hAdministrator,

&exceptBlk,

hAliasName);

50

Configuring

MQe

Objects

List

alias

names

Java

In

Java,

queue

manager

aliases

are

manipulated

using

the

MQeConnectionAdminMsg.

Refer

to

the

Configuring

a

Connection

section

for

more

information.

C

Lists

all

aliases,

into

a

new

MQeVector.

These

are

the

Alias

names.

Note

that

when

the

vector

is

freed,

its

contents

will

automatically

also

be

freed.

MQeVectorHndl

hAliasList;

rc

=

mqeAdministrator_QueueManager_listAliasNames(hAdministrator,

&exceptBlk,

&hAliasList);

if

(MQERETURN_OK

==

rc)

{

/*

do

processing

*/

rc

=

mqeVector_free(hAliasList,&exceptBlk);

}

IsAlias

Java

In

Java,

queue

manager

aliases

are

manipulated

using

the

MQeConnectionAdminMsg.

Refer

to

the

Configuring

a

Connection

section

for

more

information.

C

MQEBOOL

isAlias;

rc

=

mqeAdministrator_QueueManager_isAlias(hAdministrator,

&exceptBlk,

hName,

&isAlias);

if

(isAlias==MQE_TRUE)

{

/*

name

is

alias

*/

}

Configuring

a

queue

manager

using

memory

only

This

topic

applies

only

to

the

Java

codebase.

It

is

sometimes

required

that

applications

have

a

queue

manager

which

exists

in

memory

only.

MQe

Version

2.0

provides

the

ability

to

configure

and

use

a

queue

manager

using

memory

resources

only,

without

the

need

to

persist

any

information

at

all

to

disk.

An

MQe

queue

manager

normally

uses

two

mechanisms

to

store

data:

v

Configuration

information

is

stored

via

a

registry

to

an

adapter.

v

Messages

are

stored

via

a

message

store,

which

in

turn

uses

an

adapter

to

store

data.

The

default

is

the

MQeDiskFieldsAdapter,

which

persists

information

to

disk.

Configuring

MQe

objects

51

Using

the

MQeMemoryFieldsAdapter

instead

of

the

MQeDiskFieldsAdapter

for

both

of

these

tasks

allows

the

queue

manager

to

be

defined,

used

to

transmit

and

store

messages,

and

deleted

all

without

accessing

a

disk.

In-memory

MQe

queue

managers

have

the

following

characteristics:

v

Functionally

they

can

do

everything

other

MQe

queue

managers

can

do.

v

Nothing

is

stored

to

disk.

v

Messages

and

configuration

stored

to

registries

or

queues

are

nonpersistent.

They

are

lost

if

all

instances

of

the

MQeMemoryFieldsAdapter

are

garbage

collected,

or

in

the

event

of

the

JVM

being

shut

down.

v

The

same

steps

are

required

to

configure

the

in-memory

queue

manager,

except

they

are

required

every

time

the

JVM

is

started.

v

Transient

queue

managers

which

are

created,

used,

and

destroyed

can

be

easier

to

implement,

with

no

clean-up

problems

if

the

JVM

terminates

abnormally.

Solutions

that

find

this

particular

configuration

of

an

MQe

queue

manager

useful

have

the

following

properties:

v

Disk

space

is

not

available

or

nonexistent,

for

example

in

Java

applets.

v

Message

traffic

is

synchronous

only

to

remote

queue

managers.

v

The

application

requires

no

local

message

store

which

cannot

be

recovered

from

elsewhere

if

the

JVM

is

terminated.

v

The

highest

performance

is

required.

Memory

operations

are

much

faster

than

disk

operations,

so

configuring

a

queue

manager

using

purely

memory

resources

normally

increases

performance

of

queue

manager

configurations

which,

otherwise

store

information

to

disk.

Using

too

much

memory

can

result

in

thrashing,

and

synchronous

remote

queues

ususally

run

at

the

same

speed

on

a

memory-hosted

or

disk-hosted

queue

manager.

v

Creation

and

sending

of

messages

for

which

no

replies

are

required,

though

in-memory

queue

managers

can

obtain

replies,

you

would

normally

leave

replies

on

persistent

queue

managers

and

browse

or

get

them

using

a

synchronous

remote

queue.

An

example

of

the

configuration

technique

can

be

seen

in

the

examples.queuemanager.MQeMemoryQM

class.

Note

that

the

MQeMemoryFieldsAdapter

is

instantiated

explicitly

at

the

start,

and

a

reference

is

held

until

the

point

where

the

queue

manager,

and

messages

it

contains

are

no

longer

required.

Note

also

that

it

is

still

important

that

in-memory

queue

managers

have

names

which

are

unique

within

the

messaging

network.

Configuring

local

queues

Introduction

Local

queues,

as

the

name

suggests,

are

local

to

the

owning

queue

manager.

The

name

of

a

queue

is

formed

from

the

target

queue

manager

name

(for

a

local

queue

this

is

the

name

of

the

queue

manager

that

owns

the

queue),

and

a

unique

name

for

the

queue

on

that

queue

manager.

These

two

components

of

a

queue

name

have

ASCII

values.

52

Configuring

MQe

Objects

The

method

setName(String,

String)

can

be

used

to

set

the

QueueName

and

the

owning

QueueManagerName

in

the

administration

message.

Java

The

simplest

type

of

queue

is

a

local

queue,

managed

by

class

MQeQueueAdminMsg.

For

other

types

of

queue

there

is

a

corresponding

administration

message

that

inherits

from

MQeQueueAdminMsg.

The

MQeQueueAdminMsg

inherits

from

the

MQeAdminMsg.

The

following

actions

are

applicable

on

queues:

v

MQeAdminMsg.Action_Create

v

MQeAdminMsg.Action_Delete

v

MQeAdminMsg.Action_Inquire

v

MQeAdminMsg.Action_InquireAll

v

MQeAdminMsg.Action_Update

v

MQeQueueAdminMsg.Action_AddAlias

v

MQeQueueAdminMsg.Action_RemoveAlias

Note:

For

all

administration

messages,

information

relating

to

the

destination

queue

manager

must

be

set.

This

is

referred

to

in

the

examples

below

as

priming

the

administration

message.

The

examples

show

how

to

create

the

administration

message

to

achieve

the

required

result.

The

messages

needs

then

to

be

sent,

and

the

admin

reply

messages

checked

as

required.

C

All

administration

is

done

via

the

administration

APIs,

which

are

of

the

form:

MQERETURN

MQEPUBLISHED

mqeAdministrator_queuetype_action();

Where

action

can

be

one

of

the

following:

create

Create

a

Queue

delete

Delete

a

Queue

update

Update

the

properties

of

a

queue

inquire

Inquire

the

properties

of

a

queue

listAliasName

List

all

the

Queue

Aliases

addAlias

Add

a

Queue

Alias

removeAlias

Remove

a

Queue

Alias

QueueType

can

be

one

of

the

following:

v

LocalQueue

v

SyncRemoteQueue

v

AsyncRemoteQueue

v

AdminQueue

Configuring

MQe

objects

53

v

HomeServerQueue

For

the

create,

update,

and

inquire

calls,

a

structure

is

passed

in

as

a

parameter.

There

is

a

general

structure

for

elements

that

are

applicable

to

all

queues.

For

more

specialized

forms

of

queues,

such

as

HomeServer,

there

are

structures

which

are

composed

of

a

reference

to

the

general

structure

plus

additional

information.

For

more

information,

refer

to

“Configuring

with

the

C

administrator

API”

on

page

33.

Local

queue

properties

Queues

have

a

number

of

properties,

which

are

listed

below.

Information

about

these

properties

is

passed

either

via

discrete

API

parameters

or

configuration

structures

(MQeFields)

objects.

The

first

list

shows

all

the

possible

queue

properties

and

indicates

which

are

available

in

the

codebases.

All

other

queues

will

have

these

properties

also.

Table

15.

Queue

properties

available

in

each

code

base

Property

Description

Java

Native

Read/Write

Queue

name

Identifies

the

name

of

the

local

queue

Yes

Yes

Read

(write

on

create)

Local

qMgr

The

name

of

the

local

queue

manager

owning

the

queue

Yes

Yes

Read

(write

on

create)

Adapter

The

class

(or

alias)

of

a

storage

adapter

that

provides

access

to

the

message

storage

medium

(see

Storage

adapters

on

page

116)

Yes

No

–

only

one

adapter

in

codebase

Read

Alias

Alias

names

are

optional

alternative

names

for

the

queue

(see

below)

Yes

Yes

Read/Write

Attribute

rule

The

attribute

class

(or

alias)

associated

with

the

security

attributes

of

the

queue

(for

more

details

see

later

in

this

chapter)

Yes

No

Read/Write

Authenticator

The

authenticator

class

(or

alias)

associated

with

the

queue

(for

more

details

see

later

in

this

chapter)

Yes

No

Read/Write

54

Configuring

MQe

Objects

Table

15.

Queue

properties

available

in

each

code

base

(continued)

Property

Description

Java

Native

Read/Write

Class

The

class

(or

alias)

used

to

realize

the

local

queue

Yes

No

Read

Compressor

The

compressor

class

(or

alias)

associated

with

the

queue

(for

more

details

see

later

in

this

chapter)

Yes

No

Read/Write

Cryptor

The

cryptor

class

(or

alias)

associated

with

the

queue

(for

more

details

see

later

in

this

chapter)

Yes

No

Read/Write

Description

An

arbitrary

string

describing

the

queue

Yes

Yes

Read/Write

Expiry

The

time

after

which

messages

placed

on

the

queue

expire

Yes

Yes

Read/Write

Maximum

depth

The

maximum

number

of

messages

that

may

be

placed

on

the

queue

Yes

Yes

Read/Write

Maximum

message

length

The

maximum

length

of

a

message

that

may

be

placed

on

the

queue

Yes

Yes

Read/Write

Message

store

The

class

(or

alias)

that

determines

how

messages

on

the

local

queue

are

stored

Yes

No

–

only

one

message

store

available

Read

(write

on

create)

Path

The

location

of

the

queue

store

Yes

Yes

Read

Priority

The

default

priority

associated

with

messages

on

the

queue

Yes

Yes

Read/Write

Configuring

MQe

objects

55

Table

15.

Queue

properties

available

in

each

code

base

(continued)

Property

Description

Java

Native

Read/Write

Rule

The

class

(or

alias)

of

the

rule

associated

with

the

queue;

determines

behavior

when

there

is

a

change

in

state

for

the

queue

Yes

No

–

rules

handled

on

global

level

Read/Write

Target

registry

The

target

registry

to

be

used

with

the

authenticator

class

(that

is,

None,

Queue,

or

Queue

manager)

Yes

No

Read/Write

Java

The

parameters

in

Java

are

passed

in

using

MQeFields

objects.

The

values

are

passed

using

field

elements

of

specific

types.

The

field

names

are

as

follows.

All

the

symbolic

names

are

public

static

final

static

Strings

on

the

MQeQueueAdminMsg

class.

Table

16.

Queue

properties

available

in

Java

Element

type

Field

name

constants

Notes

Symbolic

Value

Unicode

Queue_CreationDate

qcd

Int

Queue_CurrentSize

qcs

Unicode

Queue_Description

qd

Long

Queue_Expiry

qe

Ascii

Queue_FileDesc

qfd

Int

Queue_MaxMsgSize

qms

If

no

limit,

use

Queue_NoLimit

(which

is

-1)

Int

Queue_MaxQSize

qmqs

If

no

limit,

use

Queue_NoLimit

(which

is

-1)

Ascii

Queue_Mode

qm

Possible

values

are

given

by

the

constants:

Queue_Asynchronous

Queue_Synchronous

Byte

Queue_Priority

qp

Between

0

and

9

inclusive

Ascii

array

Queue_QAliasNameList

qanl

Ascii

Queue_QMgrName

qqmn

Ascii

Queue_AttrRule

qar

Ascii

Queue_Authenticator

qau

Ascii

Queue_Compressor

qco

56

Configuring

MQe

Objects

Table

16.

Queue

properties

available

in

Java

(continued)

Element

type

Field

name

constants

Notes

Symbolic

Value

Ascii

Queue_Cryptor

qcr

Byte

Queue_TargetRegistry

qtr

Possible

values

are

given

by

the

constants:

Queue_RegistryNone

Queue_RegistryQMgr

Queue_RegistryQueue

Ascii

Queue_Rule

qr

C

All

the

C

parameters

are

passed

in

using

a

parameter

structure.

This

structure

needs

to

be

initialized

before

it

can

be

used

by

setting

it

to

LOCAL_Q_INIT_VAL.

Table

17.

Queue

properties

available

in

C

Element

type

Element

name

Description

MQEINT32

opFlags

Flags

to

indicate

what

parts

of

this

structure

have

been

set/requested

MQeStringHndl

hDescription

Description

of

the

queue

MQeStringHndl

hFileDesc

File

Description

for

the

Message

Store

(Read/Create/Write)

MQeVectorHndl

hQAliasNameList

Alias

List

MQEINT64

queueExpiry

Queue

Expiry

MQEINT64

queueCreationDate

Queue

Creation

Date

MQEINT32

queueMaxMsgSize

Queue

Max

Message

Size

MQEINT32

queueMaxQSize

Maximum

Number

of

messages

on

the

queue

MQEINT32

queueCurrentSize

Current

size

of

the

Queue

(all

msg

states)

MQEBOOL

queueActive

Indication

of

the

Queue’s

state

MQEBYTE

queuePriority

Priority

of

messages

on

the

queue

Create

a

local

queue

When

creating

a

queue,

a

number

of

parameters

can

be

specified.

In

this

example

a

queue

is

created,

with

a

maximum

size

of

200

messages,

expiry

time

of

20,000ms,

and

a

description.

Java

First

of

all

create

the

MQeQueueAdminMsg

object.

This

needs

to

be

primed

to

set

up

the

origin

queue

manager

administration

reply.

/*

Create

an

empty

queue

admin

message

and

parameters

field

*/

MQeQueueAdminMsg

msg

=

new

MQeQueueAdminMsg();

MQeFields

parms

=

new

MQeFields();

Configuring

MQe

objects

57

/**

Prime

message

with

who

to

reply

to

and

a

unique

identifier

*/

/*

Set

name

of

queue

to

manage

*/

msg.setName(

qMgrName,

queueName

);

/*

Add

any

characteristics

of

queue

here,

otherwise

*/

/*

characteristics

will

be

left

to

default

values.

*/

parms.putUnicode(

MQeQueueAdminMsg.Queue_Description,

description);

parms.putInt32(MQeQueueAdminMsg.Queue_MaxQSize,200);

parms.putInt32(MQeQueueAdminMsg.

Queue_Expiry,

20000);_

/*

Set

the

admin

action

to

create

a

new

queue

*/

msg.create(

parms

);

Once

the

Admin

message

has

been

created,

it

must

be

sent

to

the

local

admin

queue.

C

The

information

for

the

queue

is

passed

in

via

a

structure

to

the

API.

Two

important

points

are:

v

The

structure

is

initialized

using

LOCAL_Q_INIT_VAL

v

The

properties

that

are

set

are

indicated

using

the

opFlags

elements

of

the

structure.

Each

property

has

a

corresponding

bit

mask,

which

needs

to

be

ORed

together.

Omitting

the

QUEUE_DESC_OP

would

mean

that

the

queue

does

not

have

its

description

set,

even

though

a

value

was

present

in

the

structure.
MQeLocalQParms

localQParms

=

LOCAL_Q_INIT_VAL;

localQParms.queueMaxQSize

=

200;

localQParms.queueExpiry

=

20000;

localQParms.queueDescription

=

hDescription;

//this

is

an

MQeStringHndl

localQParms.opFlags

=

QUEUE_MAX_Q_SIZE_OP

|

QUEUE_EXPIRY_OP

|

QUEUE_DESC_OP;

rc

=

mqeAdministrator_LocalQueue_create(hAdministrator,

&exceptBlk,

hLocalQueueName,

hLocalQMName,

&localQParms);

Delete

a

local

queue

Before

a

queue

is

deleted,

it

must

be

empty.

Create

a

new

administration

message

and

set

the

delete

action.

Java

/*

Create

an

empty

queue

admin

message

and

parameters

field

*/

MQeQueueAdminMsg

msg

=

new

MQeQueueAdminMsg();

MQeFields

parms

=

new

MQeFields();

/**

Prime

message

with

who

to

reply

to

and

a

unique

identifier

*/

/*

Set

name

of

queue

to

manage

*/

msg.setName(

qMgrName,

queueName

);

/*

Set

the

admin

action

to

create

a

new

queue

*/

msg.delete(

parms

);

C

The

deletion

of

a

queue

requires

that

the

queue

be

empty

of

messages.

58

Configuring

MQe

Objects

Note

that

there

is

no

parameter

structure

here

–

just

the

QueueName

and

QueueManager

name.

rc

=

mqeAdministrator_LocalQueue_delete(hAdministrator,

&exceptBlk,

hLocalQueueName,

hLocalQMName);

if

(

EC(&exceptBlk)

==

MQERETURN_QUEUE_ERROR

&&

ERC(&exceptBlk)

==

MQEREASON_QMGR_QUEUE_NOT_EMPTY)

{

/*

queue

not

empty

-

take

appropriate

actions

*/

}

Add

alias

Queues

can

be

known

by

multiple

names

or

aliases.

If

you

try

to

add

an

alias

that

already

exists,

you

will

get

an

error.

Java

To

add

an

alias

name

to

a

queue,

use

the

addAlias

method

on

the

MQeQueueAdminMsg.

With

admin

messages

multiple

add

alias

and

remove

alias

operations

can

be

done

in

one

admin

message.

C

Use

the

addAlias()

method

to

add

an

alias

name.

Note

that

aliases

have

to

be

added

one

at

a

time.

For

other

types

of

queues,

such

as

Remote

Queues,

the

format

of

the

API

remains

the

same,

just

change

LocalQueue

to,

for

example,

SyncRemoteQueue.

rc

=

mqeAdministrator_LocalQueue_addAlias(hAdministrator,

&exceptBlk,

hLocalQueueName,

hLocalQMName,

hAliasName);

if

(

EC(&exceptBlk)

==

MQERETURN_NOTHING_TO_DO

&&

ERC(&exceptBlk)

==MQEREASON_DUPLICATE

)

{

/*

already

has

alias

*/

}

/*

Create

an

empty

queue

admin

message

and

parameters

field

*/

MQeQueueAdminMsg

msg

=

new

MQeQueueAdminMsg();

/*

Prime

message

with

who

to

reply

to

and

a

unique

identifier

*

and

set

the

name

of

the

QueueManager

and

Queue

*/

/*

Add

a

name

that

will

be

the

alias

of

this

queue

*/

msg.addAlias(

"Fred"

);

/*

Set

the

admin

action

to

update

the

queue

*/

msg.update(

parms

);

Figure

14.

Adding

an

alias

to

a

queue

in

Java

Configuring

MQe

objects

59

List

aliases

Use

the

listAlias()

method

to

list

the

aliases

in

use.

Java

To

get

a

list

of

Alias

Names

using

Administration

Messages,

use

the

inquire

action

and

specify

a

field

of

Queue_QAliasNameList

in

the

parameters

Fields

Object.

C

A

list

of

aliases

can

be

obtained

from

the

C

API

by

using

the

following

API.

Note

that

the

Vector

must

be

freed

after

use.

if

(MQERETURN_OK

==

rc)

{

MQeVectorHndl

hVectorAliases;

rc

=

mqeAdministrator_LocalQueue_listAliasNames(hAdministrator,

&exceptBlk,

hLocalQueueName,

hLocalQMName,

&hVectorAliases);

/*

process

the

aliases

vector

here

*/

rc

=

mqeVector_free(hVectorAliases,&exceptBlk);

}

Remove

alias

Note

that

removing

an

alias

could

potentially

alter

the

routing

of

messages.

Therefore,

this

operation

should

be

treated

with

care.

Java

/*

Create

an

empty

queue

admin

message

and

parameters

field

*/

MQeQueueAdminMsg

msg

=

new

MQeQueueAdminMsg();

/*

Prime

the

message

with

who

to

reply

to

and

a

unique

identifier

/*

and

set

the

name

of

the

QueueManager

and

Queue

*/

/*

Specify

the

alias

of

the

queue

to

be

removed

*/

msg.removeAlias(

"Fred"

);

/*

Set

the

admin

action

to

update

the

queue

*/

msg.update(

parms

);

C

rc

=

mqeAdministrator_LocalQueue_removeAlias(hAdministrator,

&exceptBlk,

hLocalQueueName,

hLocalQMName,

hAliasName);

if

(

EC(&exceptBlk)

==

MQERETURN_NOTHING_TO_DO

&&

ERC(&exceptBlk)

==

MQEREASON_NO_SUCH_QUEUE_ALIAS

)

{

/*

alias

doesn’t

exist

*/

}

Update

Some

of

the

properties

of

a

queue

can

be

updated.

This

is

only

those

properties

which

are

marked

as

writable

in

the

table

of

properties.

60

Configuring

MQe

Objects

A

similar

technique

is

used

to

update

and

inquire

upon

other

types

of

queues,

such

as

remote

and

home

server

queues.

Java

The

parameter

field

object

needs

to

be

set

with

field

elements

that

need

to

be

updated.

/*

Create

an

empty

queue

admin

message

and

parameters

field

*/

MQeQueueAdminMsg

msg

=

new

MQeQueueAdminMsg();

/*

Prime

the

message

with

who

to

reply

to

and

a

unique

identifier

*

and

set

the

name

of

the

QueueManager

and

Queue

*/

MQeFields

params

=

new

MQeFields();

/*

Add

a

new

description

for

the

queue

*/

msg.putAscii(MQeQueueAdminMsg.Queue_Descrpition,"New

Description");

/*

Set

the

admin

action

to

update

the

queue

*/

msg.update(

parms

);

C

In

a

similar

manner

to

creating

the

Queue,

the

parameter

structure

needs

to

be

set

with

the

details

to

update.

For

example,

to

update

the

description

of

the

queue:

MQeLocalQParms

localQParms

=

LOCAL_Q_INIT_VAL;

localQParms.queueDescription

=

hDescription;

//MQeStringHndl

localQParms.opFlags

|=

QUEUE_DESC_OP;

rc

=

mqeAdministrator_LocalQueue_update(hAdministrator,

&exceptBlk,

hLocalQueueName,

hLocalQMName,

&localQParms);

Inquire

and

inquire

all

It

is

possible

to

inquire

the

properties

of

queue

by

using

the

inquire

action.

The

details

that

are

required

are

set.

When

using

the

Java

administration

message,

the

administration

reply

message

contains

a

fields

object

with

the

required

information.

When

using

the

C

API,

a

structure

will

be

filled

out

with

the

requested

information.

Java

There

are

two

ways

of

inquiring

on

a

queue:

inquire

and

inquireAll.

InquireAll

will

return

a

Fields

object

in

the

admin

reply

message.

/*

Create

an

empty

queue

admin

message

and

parameters

field*/

MQeQueueAdminMsg

msg

=

new

MQeQueueAdminMsg();

/*Prime

message

with

who

to

reply

to

and

a

unique

identifier

*

Set

the

admin

action

to

get

all

characteristics

of

queue

manager.

*/

msg.inquireAll(new

MQeFields());

Configuring

MQe

objects

61

/*

get

message

back

from

the

admin

reply

queue

to

match

*/

/*

and

retrieve

the

results

from

the

reply

message

*/

The

fields

object

that

is

returned

in

the

administration

reply

message

is

populated

with

all

of

the

properties

of

the

queue.

To

get

access

to

a

specific

value

use

the

field

labels

as

in

the

property

table

above.

For

example,

to

get

at

the

queue

description,

assuming

respMsg

is

the

administration

reply

message:

//

all

on

one

line:

String

description

=

respMsg.getOutputFields().

getAscii(com.ibm.mqe.administration.Queue_Description)

Instead

of

requesting

all

the

properties

of

a

queue,

particular

ones

can

be

requested

and

returned.

If,

for

example,

only

the

description

is

required

the

following

can

be

used:

MQeFields

requestedProperties

=

new

MQeFields();

requestedProperties.putAscii(Queue_Description);

msg.inquire(requestedProperties)

/*

Retrieve

the

administration

reply

*/

/*

message

from

the

relevant

queue

*/

/*

Then

retrieve

the

returned

MQeFields

*/

/*

object

from

this

message

*/

MQeFields

outputFields

=

respMsg.getOutputFields();

outputFields

now

contains

the

field

Queue_Description

only.

C

The

API

takes

the

same

parameter

structure

that

the

other

APIs

(such

as

create)

take.

To

specify

the

elements

that

are

of

interest,

set

opFlags

accordingly.

To

get,

for

example,

the

queue

maximum

depth,

expiry,

and

description,

set

opflags

as

follows:

MQeLocalQParms

params

=

LOCAL_Q_INIT_VAL;

params.opflags

=

QUEUE_MAX_Q_SIZE_OP

|

QUEUE_EXPIRY_OP

|

QUEUE_DESC_OP;

rc

=

mqeAdministrator_LocalQueue_inquire(hAdministrator,

&exceptBlk,

hQueueName,

hQueueMgrName,

¶ms);

if

(MQERETURN_OK

==

rc)

{

MQEINT64

queueExpiry

=

params.queueExpiry;

MQEINT32

queueMaxSize

=

params.queueMaxQSize;

MQeStringHndl

queueDescription

=

params.

hDescription;

}

Message

storage

adapter

A

local

queue

uses

a

queue

store

adapter

to

handle

its

communications

with

the

storage

device.

Adapters

are

interfaces

between

MQe

and

hardware

devices,

such

as

disks

or

networks,

or

software,

such

as

databases.

Adapters

are

designed

to

be

pluggable

components,

allowing

the

queue

store

to

be

easily

changed.

All

types

of

queue

other

than

those

that

are

remote

and

synchronous

require

a

message

store

to

store

their

messages.

Each

queue

can

specify

what

type

of

store

to

62

Configuring

MQe

Objects

use,

and

where

it

is

located.

The

queue

characteristic

Queue_FileDesc

is

used

to

specify

the

type

of

message

store

and

to

provide

parameters

for

it.

The

file

descriptor

takes

the

form:

v

adapterClass:adapterParameters

or

v

adapterAlias:adapterParameters

For

example

assuming

MsgLog

has

been

defined

as

an

MQe

alias:

MsgLog:d:\QueueManager\ServerQM12\Queues

A

number

of

storage

adapters

are

provided

and

include:

v

MQeDiskFieldsAdapter

to

store

messages

on

a

file

system

v

MQeMemoryFieldsAdapter

to

store

messages

in

memory

v

Other

storage

adapters

can

be

found

in

package

com.ibm.mqe.adapters

The

choice

of

adapter

determines

the

persistence

and

resilience

of

messages.

For

instance

if

a

memory

adapter

is

used

then

the

messages

are

only

as

resilient

as

the

memory.

Memory

may

be

a

much

faster

medium

than

disk

but

is

highly

volatile

compared

to

disk.

Hence

the

choice

of

adapter

is

an

important

one.

If

a

message

store

is

not

defined

when

creating

a

queue,

the

default

is

to

use

the

message

store

that

was

specified

when

the

queue

manager

was

created.

Note

that

under

the

C

codebase,

there

is

only

one

supplied

message

store,

and

one

adapter,

therefore

the

format

of

the

QueueStore

is

fixed

(the

MsgLog

is

left

as

a

placeholder

for

future

expansion).

Examples

where

this

option

would

be

used

are:

v

When

you

want

to

use

the

MemoryFieldsAdapter

to

store

data

in

memory

and

not

on

disk

v

Alternative

Message

Stores

are

provided,

such

as

the

ShortFilename

message

store

for

4690

Take

the

following

into

consideration

when

setting

the

Queue_FileDesc

field:

v

Ensure

that

the

correct

syntax

is

used

for

the

system

that

the

queue

resides

on.

For

instance,

on

a

windows

system

use

″\″

as

a

file

separator,

and

on

UNIX

systems

use

″/″.

In

some

cases

it

may

be

possible

to

use

either

but

this

is

dependent

upon

the

support

provided

by

the

JVM

(Java

Virtual

Machine)

that

the

queue

manager

runs

in.

As

well

as

file

separator

differences,

some

systems

such

as

Windows

use

drive

letters,

but

others

such

as

UNIX

do

not.

v

On

some

systems

it

is

possible

to

specify

relative

directories

(″

.\″)

on

others

it

is

not.

Even

on

those

where

relative

directories

can

be

specified,

they

should

be

used

with

great

caution

as

the

current

directory

can

be

changed

during

the

lifetime

of

the

JVM.

Such

a

change

causes

problems

when

interacting

with

queues

using

relative

directories.

Configuring

remote

queues

Introduction

Consider

two

QueueManagers,

QM_A

and

QM_B:

v

There

is

a

queue

on

QM_B

called

Queue_One

–

which

is

a

local

queue

on

QM_B.

Initially

this

is

only

accessible

to

the

QM_B,

QM_A

has

no

access

to

it.

Configuring

MQe

objects

63

v

In

order

to

get

access

to

Queue_One,

QM_A

needs

a

Remote

Queue

Definition

(usually

abbreviated

to

RemoteQueue).

v

When

referring

to

the

Remote

Queue

Definition,

the

term

QueueQueueManager

is

used

to

refer

to

QM_B,

that

is,

the

QueueQueueManager

is

the

QueueManager

upon

which

the

LocalQueue

referenced

by

the

Remote

Queue

Definition

resides.

In

summary,

remote

queues

are

references

to

queues

that

reside

on

a

queue

manager

that

is

remote

to

where

the

definition

is.

The

remote

queue

has

the

same

name

as

the

target

queue

but

the

remote

queue

definition

also

identifies

the

owning

or

target

queue

manager

of

the

real

queue.

The

remote

definition

of

the

queue

should,

in

most

cases,

match

that

of

the

real

queue.

If

this

is

not

the

case

different

results

may

be

seen

when

interacting

with

the

queue.

For

instance:

For

asynchronous

queues

if

the

max

message

size

on

the

remote

definition

is

greater

than

that

on

the

real

queue,

the

message

is

accepted

for

storage

on

the

remote

queue

but

may

be

rejected

when

moved

to

the

real

queue.

The

message

is

not

lost,

it

remains

on

the

remote

queue

but

cannot

be

delivered.

If

the

security

characteristics

for

a

synchronous

queue

do

not

match,

MQe

negotiates

with

the

real

queue

to

decide

what

security

characteristics

should

be

used.

In

some

cases,

the

message

put

is

successful,

in

others

an

attribute

mismatch

exception

is

returned.

Structures

The

constants

provided

for

setting

the

Transport

and

Transporter

XOR

parameter

are

provided

for

backward

compatibility.

The

structure

for

Asynchronous

Remote

Queues

is

the

same,

apart

from

the

name.

typedef

struct

MQeRemoteAsyncQParms

{

/**<

Queue

Parms

Structure

-

for

general

parameters

*/

MQeQueueParms

baseParms;

/**<

Transport

Class

(Read/Write)

*/

MQeStringHndl

hQTransporterClass;

}

MQeRemoteAsyncQParms;

Synchronous

and

asynchronous

The

difference

between

the

two

types

of

remote

queue

definition

is

that

with

synchronous

a

message

put

to

a

remote

queue

definition

is

sent

over

the

network

in

real-time

and

put

to

the

queue

on

the

remote

queue

manager,

whereas

with

asynchronous

the

message

is

put

to

a

temporary

store

and

transmitted

when

a

network

connection

becomes

available.

See

more

at

Message

delivery.

Synchronous

Synchronous

remote

queues

are

queues

that

can

only

be

accessed

when

connected

to

a

network

that

has

a

communications

path

to

the

owning

queue

manager

(or

next

hop).

If

the

network

is

not

established

then

the

operations

such

as

put,

get,

and

browse

cause

an

exception

to

be

raised.

The

owning

queue

controls

the

access

permissions

and

security

requirements

needed

to

access

the

queue.

It

is

the

application’s

64

Configuring

MQe

Objects

responsibility

to

handle

any

errors

or

retries

when

sending

or

receiving

messages

as,

in

this

case,

MQe

is

no

longer

responsible

for

once-only

assured

delivery.

Asynchronous

Asynchronous

remote

queues

are

queues

that

move

messages

to

remote

queues

but

cannot

remotely

retrieve

messages.

When

message

are

put

to

the

remote

queue,

the

messages

are

temporarily

stored

locally.

When

there

is

network

connectivity,

transmission

has

been

triggered

and

rules

allow,

an

attempt

is

made

to

move

the

messages

to

the

target

queue.

Message

delivery

will

be

once-only

assured

delivery.

This

allows

applications

to

operate

on

the

queue

when

the

device

is

offline.

Consequently,

asynchronous

queues

require

a

message

store

in

order

that

messages

can

be

temporarily

stored

at

the

sending

queue

manager

whilst

awaiting

transmission.

Note:

In

the

Java

codebase,

the

mode

of

an

instance

of

the

MQeRemoteQueue

class

is

set

to

Queue_Synchronous

or

Queue_Asynchronous

to

indicate

whether

the

queue

is

synchronous

or

asynchronous.

In

the

native

codebase,

two

distinct

sets

of

APIs

are

used

to

create

and

administer

synchronous

and

asynchronous

remote

queues.

This

diagram

shows

an

example

of

a

remote

queue

set

up

for

synchronous

operation

and

a

remote

queue

setup

for

asynchronous

operation.

qm1

qm2

RemoteQ
invQ on qm2

mode:asynchronous

qm1

Remote
synchronous

Remote
asynchronous

RemoteQ
invQ on qm2

mode:synchronous

getMessage(qm2, invQ, ..)

qm2

Queue
invQ

on qm2

Queue
invQ

on qm2

getMessage(qm2, invQ, ..)

putMessage(qm2, invQ, msg,...) putMessage(qm2, invQ, msg, ...)

Configuring

MQe

objects

65

In

both

the

synchronous

and

asynchronous

examples

queue

manager

qm2

has

a

local

queue

invQ.

In

the

synchronous

example,

queue

manager

qm1

has

a

remote

queue

definition

of

queue

invQ.

invQ

resides

on

queue

manager

qm2.

The

mode

of

operation

is

set

to

synchronous.

An

application

using

queue

manager

qm1

and

putting

messages

to

queue

qm2.invQ

establishes

a

network

connection

to

queue

manager

qm2

(if

it

does

not

already

exist)

and

the

message

is

immediately

put

on

the

real

queue.

If

the

network

connection

cannot

be

established

then

the

application

receives

an

exception

that

it

must

handle.

In

the

asynchronous

example,

queue

manager

qm1

has

a

remote

queue

definition

of

queue

invQ.

invQ

resides

on

queue

manager

qm2.

The

mode

of

operation

is

set

to

asynchronous.

An

application

using

queue

manager

qm1

and

putting

messages

to

queue

qm2.invQ

stores

messages

temporarily

on

the

remote

queue

on

qm1.

When

the

transmission

rules

allow,

the

message

is

moved

to

the

real

queue

on

queue

manager

qm2.

The

message

remains

on

the

remote

queue

until

the

transmission

is

successful.

Setting

the

operation

mode

v

To

set

a

queue

for

synchronous

operation,

set

the

Queue_Mode

field

to

Queue_Synchronous.

v

To

set

a

queue

for

asynchronous

operation,

set

the

Queue_Mode

field

to

Queue_Asynchronous.

Asynchronous

queues

require

a

message

store

to

temporarily

store

messages.

Definition

of

this

message

store

is

the

same

as

for

local

queues.

Creating

a

remote

queue

The

following

code

fragments

show

how

to

setup

an

administration

message

to

create

a

remote

queue.

For

synchronous

operation,

the

queue

characteristics

for

inclusion

in

the

remote

queue

definition

can

be

obtained

using

queue

discovery.

Java

The

following

code

fragment

shows

how

to

setup

an

administration

message

to

create

a

remote

queue.

/**

*

Create

a

remote

queue

*/

protected

void

createQueue(MQeQueueManager

localQM,

String

targetQMgr,

String

qMgrName,

String

queueName,

String

description,

String

queueStore,

byte

queueMode)

throws

Exception

{

/*

*

Create

an

empty

queue

admin

*

message

and

parameters

field

*/

66

Configuring

MQe

Objects

MQeRemoteQueueAdminMsg

msg

=

new

MQeRemoteQueueAdminMsg();

MQeFields

parms

=

new

MQeFields();

/*

*

Prime

message

with

who

to

reply

*

to

and

a

unique

identifier

*/

MQeFields

msgTest

=

primeAdminMsg(

msg

);

/*

*

Set

name

of

queue

to

manage

*/

msg.setName(

qMgrName,

queueName

);

/*

*

Add

any

characteristics

of

queue

here,

otherwise

*

characteristics

will

be

left

to

default

values.

*/

if

(

description

!=

null

)

//

set

the

description

?

parms.putUnicode(

MQeQueueAdminMsg.Queue_Description,

description);

/*

*

set

the

queue

access

mode

if

mode

is

valid

*/

if

(

queueStore

!=

MQeQueueAdminMsg.Queue_Asynchronous

&&

queueStore

!=

MQeQueueAdminMsg.Queue_Synchronous

)

throw

new

Exception

("Invalid

queue

store");

parms.putByte(

MQeQueueAdminMsg.Queue_Mode,

queueMode);

if

(

queueStore

!=

null

)

//

Set

the

queue

store

?

/*

*

If

queue

store

includes

directory

and

file

info

then

it

*

must

be

set

to

the

correct

style

for

the

system

that

the

*

queue

will

reside

on

e.g

\

or

/

*/

parms.putAscii(

MQeQueueAdminMsg.Queue_FileDesc,

queueStore

);

/*

*

Other

queue

characteristics

like

queue

depth,

message

expiry

*

can

be

set

here

...

*/

/*

*

Set

the

admin

action

to

create

a

new

queue

*/

msg.create(

parms

);

/*

*

Put

the

admin

message

to

the

admin

*

queue

(not

assured

delivery)

*

on

the

target

queue

manager

*/

localQM.putMessage(

targetQMgr,

MQe.Admin_Queue_Name,

msg,

null,

0);

}

C

The

parameter

structure

of

the

synchronous

remote

queue

contains

two

elements:

v

The

first

is

a

parameter

structure

of

the

same

type

as

that

used

for

local

queues:

MQeQueueParms.

Configuring

MQe

objects

67

v

The

second

is

the

transporter

for

use

with

this

queue.

The

remote

queue

shares

the

properties

of

the

local

queue,

hence

the

reason

for

the

local

queue

structure.

Note

that

the

opFlags

parameter,

for

specifying

what

elements

of

the

structure

have

been

set,

is

in

the

MQeQueueParms

structure.

typedef

struct

MQeRemoteSyncQParms

{

/*<

Queue

Parms

Structure

for

general

parameters

*/

MQeQueueParms

baseParms;

/*<

Transporter

Class

(Read/Write)

*/

MQeStringHndl

hQTransporterClass;

}

MQeRemoteSyncQParms;

Create

synchronous

Java

First

create

the

remote

queue

administration

message.

MQeRemoteQueueAdminMsg

msg

=

new

AdminMsg();

MQeFields

params

=

new

MQeFields();

Then

prime

the

administration

message,

as

explained

in

“How

to

configure

MQe

objects”

on

page

1.

Then

set

the

queue

queue

manager

name.

msg.setName(queueQMgrName,

queueName);

params.putUnicode(descriptiorn);

/*

set

this

to

be

a

synchronous

queue

*/

params.putByte(MQeQueueAdminMsg.Queue_Mode,

MQeQueueAdminMsg.Queue_Synchronous);

Now,

set

the

administration

action

to

create

the

queue.

msg.create(params);

/*

send

the

message

*/

C

This

is

the

C

API

to

create

a

sync

queue.

It

is

very

similar

to

the

Local

Queue

creation.

Options

for

description,

max

size

etc

can

be

set

just

as

for

the

local

queue.

MQeRemoteSyncQParms

remoteSyncQParms

=

REMOTE_SYNC_Q_INIT_VAL;

rc

=

mqeAdministrator_SyncRemoteQueue_create(hAdministrator,

&exceptBlk,

hQueueName,

hServerName,

&remoteSyncQParms);

68

Configuring

MQe

Objects

Create

asynchronous

Java

MQeRemoteQueueAdminMsg

msg

=

new

MQeRemoteQueueAdminMsg();

MQeFields

params

=

new

MQeFields();

/*

Prime

the

admin

message

*/

msg.setName(queueQMgrName,

queueName);

params.putUnicode(description);

/*

set

this

to

be

an

asynchronous

queue

*/

params.putByte(MQeQueueAdminMsg.Queue_Mode,

MQeQueueAdminMsg.Queue_Asynchronous);

/*

*

Assuming

that

MsgLog

is

an

established

Alias,

*

set

the

QueueStore

location

*/

params.putAscci(MQeQueueAdminMsg.Queue_FileDesc,

"MsgLog:c:\queuestore");

/*

Set

the

administration

action

to

create

the

queue

*/

msg.create(params);

/*

send

the

message

*/

C

This

is

the

C

API

to

create

an

async

queue.

It

is

very

similar

to

the

Local

Queue

creation.

Options

for

description,

max

size

etc

can

be

set

just

as

for

the

local

queue.

MQeRemoteAsyncQParms

remoteAsyncQParms

=

REMOTE_ASYNC_Q_INIT_VAL;

rc

=

mqeAdministrator_AsyncRemoteQueue_create(hAdministrator,

&exceptBlk,BROKERTRADE_Q_NAME,

SERVER_QM_NAME,

&remoteAsyncQParms);

Transporter

One

of

the

parameters

of

Remote

Queue

Definition

is

the

transport

that

is

in

use.

This

can

be

modified

if

required.

Usually

it

is

set

to

the

DefaultTransporter,

com.ibm.mqe.MQeTransporter.

Note

that

this

cannot

be

modified

after

the

Queue

has

been

created.

Queue

aliases

The

administration

of

aliases

is

the

same

as

for

LocalQueues,

because

the

MQeRemoteQueueAdminMsg

is

a

subclass

of

the

MQeQueueAdminMsg.

Under

C

use

the

following

APIs

in

the

same

way

as

for

a

local

queue.

mqeAdministrator_SyncRemoteQueue_addAlias

mqeAdministrator_SyncRemoteQueue_removeAlias

mqeAdministrator_AsyncRemoteQueue_addAlias

mqeAdministrator_AsyncRemoteQueue_removeAlias

Configuring

MQe

objects

69

Configuring

home

server

queues

Introduction

A

home-server

queue

definition

identifies

a

store-and-forward

queue

on

a

remote

queue

manager.

The

home-server

queue

then

pulls

any

messages

that

are

destined

for

the

home-server

queue’s

local

queue

manager,

off

the

store-and-forward

queue.

Multiple

home-server

queue

definitions

may

be

defined

on

a

single

queue

manager,

where

each

one

is

associated

with

a

different

remote

queue

manager.

Home-server

queues

normally

reside

on

a

device

and

are

typically

set

to

pull

messages

from

a

server

whenever

the

device

connects

to

the

network.

When

a

message

is

pulled

from

the

server,

the

message

is

then

put

on

the

correct

target

local

queue.

If

the

target

queue

does

not

exist

then

a

rule

is

called

which

allows

the

message

to

be

placed

on

a

dead

letter

queue.

The

name

of

the

home-server

queue

is

set

as

follows:

v

The

queue

name

must

match

the

name

of

the

store-and-forward

queue

v

The

queue

manager

attribute

of

the

queue

name

must

be

the

name

of

the

home-server

queue

manager

v

The

queue

manager

where

the

home-server

queue

resides

must

have

a

connection

configured

to

the

home-server

queue

manager

where

the

store-and-forward

queue

resides..

70

Configuring

MQe

Objects

The

above

diagram

shows

an

example

of

a

queue

manager

qm3

that

has

a

home-server

queue

SFQ

configured

to

collect

messages

from

its

home-server

queue

manager

qm2.

The

configuration

consists

of:

v

A

home

server

queue

manager

qm2

v

A

store

and

forward

queue

SFQ

on

queue

manager

qm2

that

holds

messages

for

queue

manager

qm3

v

A

queue

manager

qm3

that

normally

runs

disconnected

and

cannot

accept

connections

from

queue

manager

qm2

v

Queue

manager

qm3

has

a

connection

configured

to

qm2

v

A

home

server

queue

SFQ

that

uses

queue

manager

qm2

as

its

home

server

Any

messages

that

are

directed

to

queue

manager

qm3

through

qm2

are

stored

on

the

store-and-forward

queue

SFQ

on

qm2

until

the

home-server

queue

on

qm3

collects

them.

Connection to
qm3 via qm2

Connection to
qm2

push pull

Homeserver queue
manager for qm3

msg = getMessage(qm3, invQ, ...)

qm3

MQeQueue
invQ on qm3

MQeHomeServerQueue
SFQ on qm2

qm1

MQeRemoteQueue
invQ on qm3

mode:asynchronous

putMessage(qm3, invQ, msg, ...)

qm2

MQeStoreAndForwardQueue
SFQ on qm2

hold messages for: qm3

Figure

15.

Home-server

queue

Configuring

MQe

objects

71

Configuration

messages

The

Java

class

extends

MQeRemoteQueueAdminMsg

which

provides

most

of

the

MQeHomeServerQueueAdminMsg

administration

capability

for

remote

queues.

This

class

adds

additional

actions

and

constants

for

managing

home

server

queues.

Home-server

queues

are

implemented

by

the

MQeHomeServerQueue

class.

They

are

managed

with

the

MQeHomeServerQueueAdminMsg

class

which

is

a

subclass

of

MQeRemoteQueueAdminMsg.

The

only

addition

in

the

subclass

is

the

Queue_QTimerInterval

characteristic.

This

field

is

of

type

int

and

is

set

to

a

millisecond

timer

interval.

If

you

set

this

field

to

a

value

greater

than

zero,

the

home-server

queue

checks

the

home

server

every

n

milliseconds

to

see

if

there

are

any

messages

waiting

for

collection.

Any

messages

that

are

waiting

are

delivered

to

the

target

queue.

A

value

of

0

for

this

field

means

that

the

home-server

is

only

polled

when

the

MQeQueueManager.triggertransmission

method

is

called

Note:

If

a

home-server

queue

fails

to

connect

to

its

store-and-forward

queue

(for

instance

if

the

store-and-forward

queue

is

unavailable

when

the

home

server

queue

starts)

it

will

stop

trying

until

a

trigger

transmit

call

is

made.

Message

transmission

Java

A

home

server

queue

can

be

requested

to

check

for

pending

messages:

v

By

setting

a

poll

interval

in

field

Queue_QTimerInterval,

that

causes

a

regular

check

for

messages

on

the

server

whilst

connectivity

is

available.

When

network

connectivity

is

not

available

or

a

network

outage

occurs,

the

polling

will

stop

and

not

restart

until

the

queue

is

triggered

using

the

MQeQueueManager.triggerTransmission()

method.

v

When

the

MQeQueueManager.triggerTransmission()

method

is

called.

Home

server

queues

have

an

important

role

in

enabling

devices

to

receive

messages

over

client-server

channels

particularly

in

environments

where

it

is

not

possible

for

a

server

to

establish

a

connection

to

a

device.

C

The

C

codebase

does

not

have

background

threads.

Therefore,

the

HomeServerQueue

will

only

pull

down

messages

from

a

Store

and

Forward

Queue

when

mqeQueueManager_triggerTransmission

is

called.

The

trigger

transmission

method

will

only

return

when

an

attempt

has

been

made

to

transmit

all

messages.

Creating

a

home

server

queue

Java

The

home

server

queue

is

created

in

a

similar

manner

to

other

queues.

It

is

generally

recommended

not

to

use

a

time

interval

but

to

control

the

transmission

using

triggerTransmission.

C

if

(MQERETURN_OK

==

rc)

{

MQeHomeServerQParms

homeServerQParms

=

HOME_SERVER_Q_INIT_VAL;

rc

=

mqeAdministrator_HomeServerQueue_create(hAdministrator,

72

Configuring

MQe

Objects

&exceptBlk,

hQueueName,

hServerName,

&homeServerQParms);

Administration

is

performed

using

the

following

APIs.

mqeAdministration_HomeServerQueue_action()

The

MQeHomeServerQParms

structure

is

used

to

pass

parameters.

Note

that

the

first

element

is

the

MQeRemoteSyncQParms

structure.

This

maps

onto

the

MQeHomeServerQueueAdminMsg

inheriting

function

from

the

MQeRemoteQueueAdminMsg.

typedef

struct

MQeHomeServerQParms

{

/**<Remote

Queue

Parameters

to

be

filled

in

*/

MQeRemoteSyncQParms

remoteQParms;

/**<Time

Interval

-

for

Java

compatibility

only*/

MQEINT64

qTimerInterval;

}

MQeHomeServerQParms;

Configuring

store-and-forward

queues

Introduction

Note:

Since

there

is

no

concept

of

a

store

and

forward

queue

in

C

all

of

the

following

information

relates

to

the

Java

codebase.

The

store

and

forward

queue

is

managed

by

class

MQeStoreAndForwardQueueAdminMsg

which

inherits

from

MQeQueueAdminMsg.

A

store

and

forward

queue

is

normally

defined

on

a

server

and

can

be

configured

in

the

following

ways:

v

Forward

messages

either

to

the

target

queue

manager,

or

to

another

queue

manager

between

the

sending

and

the

target

queue

managers.

In

this

case

the

store-and-forward

queue

pushes

messages

either

to

the

next

hop

or

to

the

target

queue

manager

v

Hold

messages

until

the

target

queue

manager

can

collect

the

messages

from

the

store-and-forward

queue.

This

can

be

accomplished

using

a

home-server

queue,

as

described

in

Configuring

home

server

queues

-

Introduction.

Using

this

approach

messages

are

pulled

from

the

store-and-forward

queue.

Store-and-forward

queues

are

implemented

by

the

MQeStoreAndForwardQueue

class.

They

are

managed

with

the

MQeStoreAndForwardQueueAdminMsg

class,

which

is

a

subclass

of

MQeRemoteQueueAdminMsg.

The

main

addition

in

the

subclass

is

the

ability

to

add

and

remove

the

names

of

queue

managers

for

which

the

store-and-forward

queue

can

hold

messages.

Apart

from

the

characteristics

shared

by

all

remote

queues,

a

store-and-forward

queue

object

also

has

a

property

identifying

its

set

of

target

queue

managers.

The

string

field

Queue_QMgrNameList,

with

the

value

″qqmnl″,

identifies

the

field

in

an

administration

message

representing

the

set

of

target

queue

managers.

The

value

of

this

field

is

set

or

retrieved

using

putAsciiArray()

and

getAsciiArray()

methods.

Configuring

MQe

objects

73

Each

store-and-forward

queue

has

to

be

configured

to

handle

messages

for

any

queue

managers

for

which

it

can

hold

messages.

Use

the

Action_AddQueueManager

action,

described

earlier

in

this

section,

to

add

the

queue

manager

information

to

each

queue:

v

If

you

want

the

store-and-forward

queue

to

push

messages

to

the

next

queue

manager,

the

queue

manager

name

attribute

of

the

store-and-forward

queue

must

be

the

name

of

the

next

queue

manager.

A

connection

with

the

same

name

as

the

next

queue

manager

must

also

be

configured.

The

store-and-forward

queue

uses

this

connection

as

the

transport

mechanism

for

pushing

messages

to

the

next

hop.

v

If

you

want

the

store-and-forward

queue

to

wait

for

messages

to

be

collected

or

pulled,

the

queue

manager

name

attribute

of

the

store-and-forward

queue

has

no

meaning,

but

it

must

still

be

configured.

The

only

restriction

on

the

queue

manager

attribute

of

the

queue

name

is

that

there

must

not

be

a

connection

with

the

same

name.

If

there

is

such

a

connection,

the

queue

tries

use

the

connection

to

forward

messages.

The

diagram

shows

an

example

of

two

store

and

forward

queues

on

different

queue

managers,

one

setup

to

push

messages

to

the

next

queue

manager,

the

other

setup

to

wait

for

messages

to

be

collected:

v

Queue

manager

qm2

has

a

connection

configured

to

queue

manager

qm3

Connection to
qmb via qm2

Connection to
qma via qm2

Connection
to qm3

qma qmb qmc

Gateway Gateway

:
MQeStoreAndForwardQueue

SFQ on qm3
holds messages for
qma, qmb and qmc

qm2

:
MQeStoreAndForwardQueue

SFQ on qm3
holds messages for
qma, qmb and qmc

qm3

qm1

MQeRemoteQueue
invQ on qma

mode:asynchronous

putMessage(qma, invQ, msg, …)

Figure

16.

Store-and-forward

queue

74

Configuring

MQe

Objects

v

Queue

manager

qm2

has

a

store-and-forward

queue

configuration

that

pushes

messages

using

connection

qm3,

to

queue

manager

qm3.

Note

that

the

queue

manager

name

portion

of

the

store-and-forward

queue

is

qm3

which

matches

the

connection

name.

Store-and-forward

queue

qm3.SFQ

on

qm2

temporarily

holds

messages

on

behalf

of

qma,

qmb

and

qmc,

(but

not

qm3).

v

Queue

manager

qm3

has

a

store-and-forward

queue

qm3.SFQ.

The

queue

manager

name

portion

of

the

queue

name

qm3

does

not

have

a

corresponding

connection

called

qm3,

so

all

messages

are

stored

on

the

queue

until

they

are

collected.

v

Store-and-forward

queue

qm3.SFQ

on

qm3

holds

messages

on

behalf

of

queue

managers

qma,

qmb

and

qmc.

Messages

are

stored

until

they

are

collected

or

they

expire.

If

a

queue

manager

wants

to

send

a

message

to

another

queue

manager

using

a

store-and-forward

queue

on

an

intermediate

queue

manager,

the

initiating

queue

manager

must

have:

v

A

connection

configured

to

the

intermediate

queue

manager

v

A

connection

configured

to

the

target

queue

manager

routed

through

the

intermediate

queue

manager

v

A

remote

queue

definition

for

the

target

queue

When

these

conditions

are

fulfilled,

an

application

can

put

a

message

to

the

target

queue

on

the

target

queue

manager

without

having

any

knowledge

of

the

layout

of

the

queue

manager

network.

This

means

that

changes

to

the

underlying

queue

manager

network

do

not

affect

application

programs.

In

the

diagram,

queue

manager

qm1

has

been

configured

to

allow

messages

to

be

put

to

queue

invQ

on

queue

manager

qma.

The

configuration

consists

of:

v

A

connection

to

the

intermediate

queue

manager

qm2

v

A

connection

to

the

target

queue

manager

qma

v

A

remote

asynchronous

queue

invQ

on

qma

If

an

application

program

uses

queue

manager

qm1

to

put

a

message

to

queue

invQ

on

queue

manager

qma

the

message

flows

as

follows:

1.

The

application

puts

the

message

to

asynchronous

queue

qma.invQ.

The

message

is

stored

locally

on

qm1

it

is

transmitted.

2.

When

transmission

rules

allow,

the

message

is

moved.

Based

on

the

connection

definition

for

qma,

the

message

is

routed

to

queue

manager

qm2

3.

The

only

queue

configured

to

handle

messages

for

queue

invQ

on

queue

manager

qma

is

store-and-forward

queue

qm3.SFQ

on

qm2.

The

message

is

temporarily

stored

in

this

queue

4.

The

stored

and

forward

queue

has

a

connection

that

allows

it

to

push

messages

to

its

next

hop

which

is

queue

manager

qm3

5.

Queue

manager

qm3

has

a

store-and-forward

queue

qm3.SFQ

that

can

hold

messages

destined

for

queue

manager

qma

so

the

message

is

stored

on

that

queue

6.

Messages

for

qma

remain

on

the

store-and-forward

queue

until

they

are

collected

by

queue

manager

qma.

See

Configuring

home

server

queues

-

Introduction

for

how

to

set

this

up.

Configuring

MQe

objects

75

Store

and

forward

queue

attributes

Store

and

forward

queues

have

a

number

of

attributes

extra

to

those

of

remote

queues

–

these

are

listed

below.

Information

about

these

attributes

is

passed

either

via

API

parameters

or

configuration

structures/MQeFields

objects.

In

Java,

the

queue

manager

name

list

identifies

the

field

in

the

message

representing

a

set

of

target

queue

managers.

This

does

not

occur

in

the

native

codebase.

Java

The

parameters

in

Java

are

passed

in

using

MQeFields

objects.

The

values

are

passed

using

field

elements

of

specific

types.

The

field

names

are

as

follows:

Table

18.

Java

parameters

Element

type

Field

label

Textual

value

of

field

label

public

static

final

java.lang.String

Queue_QMgrNameList

″qqmnl″

Create

store

and

forward

queue

There

are

no

extra

parameters

other

than

those

used

in

creating

a

remote

queue

that

can

be

specified

for

creating

a

store

and

forward

queue.

In

this

example

a

queue

with

a

description

is

created.

Java

As

with

all

queues

the

first

action

is

to

create

the

appropriate

admin

message

object.

This

then

needs

to

be

followed

by

priming

the

message

using

the

code

introduced

in

“Configuring

with

messages”

on

page

15.

/*

Create

an

empty

store

and

forward

queue

dmin

message

and

parameters

field

*/

MQeStoreAndForwardQueueAdminMsg

msg

=

new

MQeStoreAndForwardQueueAdminMsg();

MQeFields

parms

=

new

MQeFields();

/*

Prime

message

stating

who

to

reply

to

and

a

unique

identifier

*/

/*

Refer

to

Chapter

2,

Administration

using

administration

messages,

*/

/*

for

a

definition

of

the

user

helper

method

primeAdminMsg();

*/

primeAdminMsg(

msg

);

/*

Set

name

of

queue

to

manage

*/

msg.setName(

qMgrName,

queueName

);

/*

Add

any

characteristics

of

the

queue

here,

otherwise

*/

/*

characteristics

will

be

left

to

default

values.

*/

parms.putUnicode(

MQeQueueAdminMsg.Queue_Description,

description);

/*

Set

the

admin

action

to

create

a

new

queue

*/

msg.create(

parms

);

After

the

administration

message

has

been

created,

it

needs

to

be

sent

to

the

local

administration

queue.

76

Configuring

MQe

Objects

Delete

store

and

forward

queue

In

this

example

the

constructor

is

used

to

set

the

QueueName

and

the

QueueManager

name.

This

is

an

alternative

to

using

the

setName()

method

on

the

admin

message.

Java

As

with

all

queues

deletion

requires

that

the

queue

be

empty

of

messages.

Note

that

there

is

no

parameter

structure

here

–

just

the

QueueName

and

QueueManager

name.

/*

Create

an

empty

store-and-forward

queue

admin

message

*/

MQeStoreAndForwardQueueAdminMsg

msg

=

new

MQeStoreAndForwardQueueAdminMsg

(qMgrName,

queueName);

/*

Prime

message

with

who

to

reply

to,

and

a

unique

identifier

*/

primeAdminMsg(

msg

);

/*

Set

the

admin

action

to

delete

a

queue

*/

msg.delete(new

MQeFields()

);

Add

queue

manager

You

can

add

and

delete

queue

manager

names

with

the

following

actions:

v

Action_AddQueueManager

v

Action_RemoveQueueManager

You

can

add

or

remove

multiple

queue

manager

names

with

one

administration

message.

You

can

put

names

directly

into

the

message

by

setting

the

ASCII

array

field

Queue_QMgrNameList.

Alternatively,

you

can

use

the

methods:

v

addQueueManager()

v

removeQueueManager()

Each

of

these

methods

takes

one

queue

manager

name,

but

you

can

call

the

method

repeatedly

to

add

multiple

queue

managers

to

a

message.

This

action

is

specific

to

store

and

forward

queues.

In

the

following

example

multiple

queue

manager

names

are

added

to

a

String

array

(queueManagerNames)

and

set

into

the

fields

object.

The

action

and

fields

object

are

added

to

the

message.

Java

/*

Create

an

empty

store

and

forward

queue

admin

message

and

parameters

field

*/

MQeStoreAndForwardQueueAdminMsg

msg

=

new

MQeStoreAndForwardQueueAdminMsg

(qMgrName,

queueName);

MQeFields

parms

=

new

MQeFields();

/*

Prime

message

with

who

to

reply

to,

and

a

unique

identifier

*/

primeAdminMsg(msg);

/*

*

Add

any

characteristics

of

queue

here,

otherwise

*

characteristics

will

be

left

to

default

values.

Configuring

MQe

objects

77

*/

parms.putAsciiArray(MQeStoreAndForwardQueueAdminMsg.Queue_QMgrNameList,queueManagerNames);

/*

Set

the

admin

action

to

add

a

queue

manager

to

a

queue

*/

msg.putInt(MQeAdminMsg.Admin_Action,

MQeStoreAndForwardQueueAdminMsg.Action_AddQueueManager);

/*

Put

the

fields

object

into

the

message

*/

msg.putFields(MQeAdminMsg.Admin_Parms,

parms);

Remove

queue

manager

This

action

is

specific

to

store

and

forward

queues.

In

this

example

the

helper

method

removeQueueManager()

is

used

to

remove

a

single

queue

manager.

Java

/*

Create

an

empty

store

and

forward

queue

admin

message*/

MQeStoreAndForwardQueueAdminMsg

msg

=

new

MQeStoreAndForwardQueueAdminMsg

(qMgrName,

queueName);

/*

Prime

message

with

who

to

reply

to

and

a

unique

identifier

*/

primeAdminMsg(msg);

/*

Set

the

admin

action

to

remove

a

queue

manager

*/

msg.removeQueueManager(queueManagerName);

Update

In

this

example

the

description

and

of

a

store

and

forward

queue

and

the

maximum

number

of

messages

allowed

on

the

queue

are

updated.

Java

/*

Create

an

empty

store

and

forward

queue

admin

message

and

parameters

field

*/

MQeStoreAndForwardQueueAdminMsg

msg

=

new

MQeStoreAndForwardQueueAdminMsg

();

MQeFields

parms

=

new

MQeFields();

/*

Prime

message

with

who

to

reply

to,

and

a

unique

identifier

*/

primeAdminMsg(msg);

/*

Set

name

of

queue

to

manage

*/

msg.setName(qMgrName,

queueName);

/*

*

Add

any

characteristics

of

queue

here,

otherwise

*

characteristics

will

be

left

to

default

values

*/

parms.putUnicode(MQeQueueAdminMsg.Queue_Description,

description);

parms.putInt(MQeQueueAdminMsg.Queue_MaxQSize,10);

/*

Set

the

admin

action

to

update

*/

msg.update(parms);

78

Configuring

MQe

Objects

Inquire

In

this

example

the

list

of

queue

manager

names

of

a

store

and

forward

queue

are

inquired.

Java

/*

Create

an

empty

store

and

forward

queue

admin

message

and

parameters

field

*/

MQeStoreAndForwardQueueAdminMsg

msg

=

new

MQeStoreAndForwardQueueAdminMsg

();

MQeFields

parms

=

new

MQeFields();

/**

Prime

message

with

who

to

reply

to,

and

a

unique

identifier

*/

primeAdminMsg(msg);

/*

Set

name

of

queue

to

manage

*/

msg.setName(qMgrName,

queueName);

/*

Add

any

characteristics

of

queue

here

that

you

want

to

inquire.*/

parms.putAsciiArray(MQeStoreAndForwardQueueAdminMsg.Queue_QMgrNameList,

new

String[0]);

/*

Set

the

admin

action

to

inquire

*/

msg.inquire(parms);

Configuring

connection

definitions

Introduction

Connection

definitions

provide

MQe

with

information

on

how

to

locate

and

communicate

with

remote

queue

managers.

The

name

of

a

connection

definition

is

that

of

the

remote

queue

manager

to

which

it

describes

a

route,

thus

there

may

only

be

one

direct

connection

definition

for

a

remote

queue

manager.

As

connection

definitions

define

the

MQe

network

they

are

held

in

permanent

storage

in

the

registry

and

therefore

persist

across

instances

of

the

queue

manager.

The

route

created

using

a

connection

definition

uses

an

internal

object

called

a

channel

as

the

transport

mechanism

to

send

data

between

two

queue

managers.

Channels

may

not

be

accessed

directly

by

a

user

but

configuration

decisions

made

for

a

queue

manager

affects

the

behavior

of

a

channel.

At

the

lowest

level

of

the

communications

layers

is

the

communications

adapter.

The

reason

they

are

mentioned

here

is

that

it

is

imperative

the

connection

definition

defines

the

same

communications

adapter

class

as

the

adapter

class

being

used

by

the

listener

on

the

listening

queue

manager.

If

the

communications

adapters

are

not

exactly

the

same

a

successful

connection

will

not

be

made.

For

the

connection

definition

to

create

a

successful

connection

to

a

remote

queue

manager

it

is

necessary

for

the

correct

communications

adapter,

the

correct

network

address

of

the

listening

queue

manager

and

the

correct

listening

location

to

be

specified.

If

any

of

this

information

is

incorrect

it

is

not

possible

to

make

a

connection

to

the

remote

queue

manager.

Note:

Configuring

MQe

objects

79

As

will

be

seen

from

the

examples

there

is

much

repetitive

code

involved

in

creating

then

checking

the

reply

for

an

administration

message.

It

is

therefore

probably

desirable

to

put

this

code

into

a

common

class

that

may

be

used

by

all

classes

creating

and

checking

the

replies

of

administration

messages.

The

full

code

for

updating

a

connection

definition

and

for

deleting

a

connection

definition

may

be

found

in

the

examples

supplied

with

the

MQe

product.

Direct

connection

definition

A

direct

connection

definition

supplies

information

to

allow

the

local

queue

manager

to

create

a

channel

to

a

remote

queue

manager

in

the

MQe

network.

The

information

is

the

actual

network

information

for

the

remote

queue

manager

and

does

not

involve

any

routing

via

other

queue

managers.

There

are

two

variants

of

a

direct

connection,

these

are:

Alias

connection

definition

An

alias

connection

definition

provides

just

one

piece

of

information,

the

name

of

an

actual

connection

definition

or

another

alias.

One

may

think

of

these

aliases

as

queue

manager

aliases,

they

allow

an

administrator

to

set

up

a

connection

definition

to

a

particular

queue

manager

which

may

then

be

referred

to

by

another

name.

MQ

connection

definition

This

is

a

specialized

connection

that

identifies

a

remote

queue

manager

as

an

MQ

queue

manager

as

opposed

to

an

MQe

queue

manager.

For

further

information

on

the

Bridge

functionality

of

MQe

refer

to

“Configuring

bridge/gateway

resources”

on

page

88.

Indirect

connection

definition

You

can

also

have

an

indirect

connection

definition:

Via

connection

definition

A

via

connection

definition

supplies

information

to

allow

the

local

queue

manager

to

create

a

channel

to

a

remote

queue

manager

using

a

route

via

an

intermediate

queue

manager.

The

intermediate

queue

manager(s)

should

be

configured

so

they

have

connection

definitions

to

either

the

next

queue

manager

in

the

route

or

the

final

destination

queue

manager.

It

is

the

responsibility

of

the

administrator

to

ensure

that

all

necessary

connection

definitions

are

configured

on

the

route.

Configuring

connection

definitions

in

Java

Creating

a

connection

definition

In

order

to

create

a

connection

definition

an

administration

message

must

be

created

and

put

to

the

administration

queue.

A

reply

must

be

received

to

indicate

successful

creation

of

a

connection

definition

before

any

attempt

is

made

to

use

the

connection,

indeterminate

behavior

may

result

if

an

attempt

is

made

to

use

a

connection

before

such

as

reply

has

been

received.

In

order

to

show

how

one

might

create

a

connection

definition

we

shall

use

the

examples.config.CreateConnectionDefinition

example.

A

connection

definition

administration

message

has

a

number

of

methods

to

help

create

the

message

correctly.

First

of

all

we

need

to

create

an

MQeConnectionAdminMsg:

80

Configuring

MQe

Objects

MQeConnectionAdminMsg

connectionMessage

=

new

MQeConnectionAdminMsg();

Once

we

have

created

the

connection

administration

message

we

need

to

set

the

name

of

the

resource

we

wish

to

work

on:

connectionMessage.setName("RemoteQM");

We

now

need

to

set

the

information

in

the

administration

message

that

will

set

the

action

to

create

and

will

provide

the

information

for

the

route

to

our

remote

queue

manager:

connectionMessage.create("com.ibm.mqe.adapters.MQeTcpipHistoryAdapter:127.0.0.1:8082",

null,

null,

"Default

Channel",

"Example

connection");

There

are

a

number

of

things

to

note

about

the

information

passed

to

the

create

method.

The

first

parameter

is

a

colon

delimited

string

and

has

a

profound

affect

on

what

type

of

connection

definition

will

be

created.

The

string

used

in

the

above

example

will

create

a

connection

to

a

queue

manager

called

RemoteQM

using

the

communications

adapter

MQeTcpipHistoryAdapter

running

on

the

local

machine

listening

at

port

8082.

If

we

had

merely

specified

a

queue

manager

name,

for

instance

″ServerQM″

then

a

via

connection

definition

would

have

been

created

and

we

would

have

to

either

already

have

a

connection

definition

for

ServerQM

or

create

one

before

we

attempted

to

use

the

via

connection

definition.

The

second

parameter

is

really

only

useful

for

HTTP

adapters

that

may

run

a

servlet

on

the

server.

This

is

where

you

would

define

your

servlet

name

which

would

then

be

passed

within

the

HTTP

header.

The

third

parameter

allows

the

persistent

option

to

be

set

or

unset,

although

in

reality

this

should

be

done

with

great

care

as

the

default

values

for

persistence

are

set

within

the

communications

adapters

so

they

are

consistent

with

the

protocol

being

used.

For

instance

the

MQeTcpipLengthAdapter

and

MQeTcpipHistoryAdapter

both

use

persistence,

that

is

the

socket

is

kept

open,

the

MQeTcpipHttpAdapter

on

the

other

hand

uses

a

new

socket

for

each

conversation.

The

fourth

parameter

defines

the

channel,

this

should

always

be

set

to

″Default

Channel″.

The

fifth

parameter

provides

descriptive

text

for

the

connection

definition.

We

now

need

to

add

information

to

the

administration

message

that

will

determine

which

queue

manager

receives

the

administration

message.

connectionMessage.setTargetQMgr("LocalQM");

Specify

that

you

want

to

receive

a

reply,

if

using

the

Msg_Style_Datagram,

indicate

that

no

reply

was

required.

The

reply

indicates

success

or

failure

of

the

administrative

action.

connectionMessage.putInt(MQe.Msg_Style,

MQe.Msg_Style_Request);

The

queue

and

queue

manager

that

will

receive

the

reply,

this

may

not

necessarily

be

the

queue

manager

that

created

and

sent

the

administration

message.

Using

the

default

administration

reply

queue

allows

you

to

use

the

definition

of

the

String

provided

in

the

MQe

class.

Also,

the

reply

must

arrive

on

the

local

queue.

Configuring

MQe

objects

81

connectionMessage.putAscii(MQe.Msg_ReplyToQ,

MQe.Admin_Reply_Queue_Name);

connectionMessage.putAscii(MQe.MSG_ReplyToQMgr,

"LocalQM");

A

unique

identifier

must

be

added

to

the

message

before

putting

it

onto

the

administration

queue.

This

allows

you

to

identify

the

appropriate

reply

message.

Use

the

system

time

in

order

to

do

this.

String

match

=

"Msg"

+

System.currentTimeMillis();

connectionMessage.putArrayOfByte(MQe.Msg_CorrelID,

match.getByte());

You

can

now

put

our

administration

message

to

the

default

administration

queue,

the

fourth

parameter

allows

for

an

MQeAttribute

to

be

specified

with

the

fifth

parameter

allowing

for

an

identifier

that

allows

you

to

undo

the

put.

As

neither

is

required,

specify

null

and

zero

respectively.

queueManager.putMessage("LocalQM",

MQe.Admin_Queue_Name,

connectionMessage,

null,

0);

Before

we

can

safely

use

the

connection

definition

we

need

to

ensure

it

has

been

correctly

created

and

must

therefore

wait

for

a

reply.

We

specified

the

reply

should

be

sent

to

the

queue

manager

LocalQM

on

the

default

administration

reply

queue.

We

create

a

filter

using

the

correlation

id

so

we

get

the

correct

reply:

MQeFields

filter

=

new

MQeFields();

filter.putArrayOfByte(MQe.Msg_CorrelID,

match.getBytes());

Now

using

the

filter

we

have

created

we

wait

for

a

reply

message

on

the

default

administration

reply

queue.

The

return

from

the

waitForMessage

method

gives

an

MQeMsgObject,

so

we

cast

that

to

an

MQeAdminMsg.

The

fourth

parameter

which

we

have

set

to

null

may

be

used

for

an

MQeAttribute,

this

is

set

to

null

as

we

have

not

used

security

during

this

example,

the

zero

passed

in

parameter

five

is

for

a

confirm

ID

that

may

be

used

in

an

undo

operation,

again

we

have

not

used

this.

The

last

parameter

defines

how

long

to

wait

in

milliseconds,

we

are

waiting

for

three

seconds.

//

all

on

one

line

MQeAdminMsg

response

=

(MQeAdminMsg)

queueManager.waitForMessage(queueManagerName,

MQe.Admin_Reply_Queue_Name,

filter,

null,

0,

3000);

Once

we

have

received

the

reply

we

check

to

make

sure

we

have

a

successful

return

code,

there

is

additional

checking

done

within

the

example,

for

the

purposes

of

this

manual

we

just

look

at

the

successful

return.

As

can

be

seen

there

is

a

useful

method

on

the

administration

message

which

will

return

a

return

code

to

us

for

easy

checking.

switch

(response.getRC())

{

case

MQeAdminMsg.RC_Success

:

System.out.println("connection

created");

break;

We

have

now

successfully

created

a

connection

definition

to

a

remote

queue

manager.

Altering

and

deleting

connection

definitions

Connection

definitions

define

the

network

for

MQe

and

therefore

great

care

should

be

taken

when

altering

or

deleting

them.

It

is

strongly

recommended

that

when

altering

or

deleting

a

connection

definition

one

should

ensure

there

is

no

activity

on

the

network

that

may

be

using

that

connection

definition.

82

Configuring

MQe

Objects

As

with

creating

a

connection

definition,

in

order

to

alter

or

delete

a

connection

definition

an

administration

message

must

be

used.

The

approach

is

the

same

as

for

creating

a

connection

definition,

with

a

different

action

being

used

for

the

administration

message.

For

instance

in

order

to

update

a

connection

definition

the

following

method

should

be

used:

updateMessage.update(

"com.ibm.mqe.adapters.MQeTcpipHttpAdapter:127.0.0.1:8083",

null,

null,

"DefaultChannel",

"Altered

Example

Connection");

In

order

to

delete

a

connection

definition

all

that

is

required

is

the

resource

name

and

the

relevant

action

being

set,

so

the

following

method

is

used:

deleteMessage.setAction(MQeAdminMsg.Action_Delete);

Configuring

connection

definitions

in

C

There

is

an

important

difference

between

administration

available

in

C

to

that

in

Java.

The

Java

product

relies

solely

on

the

administration

message,

C

provides

an

administration

API

for

the

user

to

locally

administer

MQe.

More

information

may

be

found

abut

the

administration

API

in

“Configuring

with

the

C

administrator

API”

on

page

33,

this

chapter

assumes

you

have

already

read

the

chapter

on

administration

and

know

how

to

create

an

administrator

handle

and

exception

block

used

in

the

calls

to

the

administration

API.

This

example

is

in

transport.c

in

the

broker.dll

for

C.

Before

we

look

at

the

individual

functions

providing

the

API

to

administer

the

connection

definition,

it

will

be

worthwhile

looking

at

the

structure

containing

the

information

about

the

connection

definition

that

is

passed

into

all

the

functions

requiring

information,

that

is

all

except

the

function

to

delete

the

connection

definition.

The

MQeConnectionDefinitionParms

structure

is

as

follows:

MQEVERSION

version;

MQEINT32

opFlags;

MQeStringHndl

hDescription;

MQeStringHndl

hAdapterClass;

MQeStringHndl

*

phAdapterParms;

MQEINT32

destParmLen;

MQeStringHndl

hAdapterCommand;

MQeStringHndl

hChannelClass;

MQeStringHndl

hViaQMName;

Version

This

is

a

field

for

internal

use

only

and

should

not

be

set

by

the

user.

opFlags

On

input

to

a

function

this

field

provides

bit

flags

indicating

the

areas

of

the

resource

that

are

to

be

administered.

On

output

from

a

function

if

the

action

has

been

successful

the

flags

will

indicate

the

operations

performed,

if

the

action

has

failed

the

flags

will

indicate

the

failed

component.

hDescription

The

description

for

this

connection

definition.

hAdapterClass

The

communications

adapter

class

that

will

be

used

by

this

connection

definition,

currently

there

is

just

one

communications

adapter

for

C.

In

the

MQe_Adapter_Constants.h

header

file

there

is

a

constant

to

define

the

class

–

MQE_HTTP_ADAPTER.

phAdapterParams

An

array

containing

the

network

information

required

to

connect

to

the

remote

queue

manager.

In

an

IP

network

this

will

contain

the

network

Configuring

MQe

objects

83

address

and

IP

port.

The

first

element

in

the

array

is

assumed

to

be

the

IP

address,

the

second

element

is

assumed

to

be

the

port

number.

destParmLen

The

length

of

the

phAdapterParams

array.

hAdapterCommand

This

field

may

contain

a

servlet

name

to

be

included

in

an

HTTP

header.

hChannelClass

The

class

of

channel

to

use,

this

should

be

set

to

MQE_CHANNEL_CLASS,

defined

in

MQe_Connection_Constants.h

hViaQMName

If

this

connection

definition

defines

a

via

connection

then

all

other

parameters

should

be

null

with

this

parameter

containing

the

name

of

the

via

queue

manager

name.

A

constant

in

MQe_Connection_Constant.h

-

CONNDEF_INIT_VAL

will

set

the

values

of

this

structure

to

initial

values

which

can

then

be

altered

as

required.

Creating

a

connection

definition

In

order

to

create

a

connection

definition

will

need

to

call

the

function:

mqeAdministrator_Connection_create(MQeAdministratorHndl,

hAdmin,

MQeExceptBlock*

pExceptBlock,

MQeStringHndl

hConnectionName,

MQeConnectionDefinitionParms*

pParams);

The

third

parameter

will

define

the

name

of

the

connection

definition.

As

stated,

this

must

be

the

name

of

the

remote

queue

manager

to

which

this

connection

definition

holds

the

route.

The

fourth

parameter

is

a

structure

holding

information

that

is

required

to

setup

the

connection

definition

information.

Either

the

hViaQMName

field

should

be

set

or

the

hAdapterClass,

phAdapterParams,

destParmLen,

hAdapterCommand

and

hChannelClass

in

order

to

create

a

connection

definition.

For

instance,

to

create

a

connection

definition,

first

create

and

set

up

an

MQeConnectionDefinition

parameter

structure:

/*

Create

the

structure

and

set

it

to

the

initial

values

*/

MQeConnectionDefinitionParms

parms

=

CONNDEF_INIT_VAL;

Create

an

MQeString

to

hold

the

name

of

the

remote

queue

manager,

this

becomes

the

name

of

the

connection

definition:

rc

=

OSAMQESTRING_NEW(&error,

"ServerQM",

SB_STR,

&hQueueMgrName);

Set

the

adapter

and

channel

class

names,

these

must

be

set

to

these

names

as

these

are

the

only

classes

currently

supported:

parms.hAdapterClass

=

MQE_HTTP_ADAPTER;

parms.hChannelClass

=

MQE_CHANNEL_CLASS;

In

order

to

set

up

an

array

we

need

to

allocate

some

memory

then

setup

the

network

information.

This

example

shows

using

the

loopback

address

with

the

listener

expected

to

be

on

port

8080:

OSAMEMORY_ALLOC(&error,

(MQEVOID**)

&parms.phAdapterParms,

(sizeof(MQEHANDLE)

*

2),

"comms

test");

rc

=

OSAMQESTRING_NEW(&error,

"127.0.0.1",

SB_STR,

&parms.phAdapterParms[0]);

rc

=

OSAMQESTRING_NEW(&error,

"8080",

SB_STR,

&parms.phAdapterParms[1]);

84

Configuring

MQe

Objects

We

now

set

the

number

of

element

in

the

array:

parms.destParmLen

=

2;

And

last

of

all

set

the

flags

to

tell

the

receiving

administration

function

what

information

it

should

look

for

in

the

structure:

parms.opFlags

=

CONNDEF_ADAPTER_CLASS_OP

|

CONNDEF_ADAPTER_PARMS_OP

|

CONNDEF_CHANNEL_CLASS_OP;

Now,

having

set

everything

up

we

can

call

the

administration

function

in

order

to

create

our

connection

definition.

Note,

it

is

wise

to

check

the

return

code

in

order

to

determine

whether

the

call

has

been

successful

rc

=

mqeAdministrator_Connection_create(

hAdministrator,

&error,

hQueueMgrName,

&parms);

if

(MQERETURN_OK

==

rc)

{

fprintf(pOutput,

"connection

definition

to

ServerQM

at

127.0.0.1:8081

successfully

added\n");

}

The

above

creates

a

direct

connection

definition,

if

we

want

to

create

a

via

connection

definition

we

would

need

to

set

the

parameter

structure

to

the

default

values

and

the

name

of

the

remote

queue

manager

as

usual:

MQeConnectionDefinitionParms

parms

=

CONNDEF_INIT_VAL;

rc

=

OSAMQESTRING_NEW(&error,

"ServerQM",

SB_STR,

&hQueueMgrName);

We

now

need

to

set

the

name

of

the

queue

manager

that

will

then

route

the

messages

on

to

the

remote

queue

manager.

rc

=

OSAMQESTRING_NEW(&error,

"RoutingQM",

SB_STR,

&parms.hViaQMName);

Now

all

that

is

left

to

do

is

correctly

set

the

flags

that

tells

the

administration

function

what

to

look

for

in

the

structure:

parms.opFlags

=

CONNDEF_VIAQM_OP;

We

then

call

the

function

as

with

the

direct

connection

definition:

rc

=

mqeAdministrator_Connection_create(hAdministrator,

&error,

hQueueMgrName,

&parms);

Altering

and

deleting

connection

definitions

Altering

a

connection

definition

As

has

been

previously

stated

it

is

strongly

recommended

you

ensure

a

connection

is

not

being

used

when

a

connection

definition

is

updated.

The

flags

are

used

to

determine

which

parts

of

the

information

in

the

connection

definition

are

to

be

updated.

So,

even

if

a

value

is

provided

in

the

structure,

if

the

correct

flag

is

not

set

that

value

will

not

be

used:

MQeConnectionDefinitionParms

parms

=

CONNDEF_INIT_VAL;

We

will

create

a

new

description:

rc

=

OSAMQESTRING_NEW(&error,

"replacement

description",

SB_STR,

&parms.hDescription);

Configuring

MQe

objects

85

If

we

set

the

opFlags

field

as

follows

the

description

will

not

be

updated,

instead

the

administration

function

will

attempt

to

update

the

value

for

the

name

of

the

via

queue

manager:

parms.opFlags

=

CONNDEF_VIAQM_OP;

We

need

to

set

the

opFlags

field

as

follows

in

order

to

obtain

the

desired

behavior:

Parms.opFlags

=

CONNDEF_DESC_OP;

The

function

to

update

the

connection

definition

is

then

called

as

follows:

rc

=

mqeAdministration_Connection_update(hAdministrator

,

&error,

hQueueMgrName,

&parms);

Deleting

connection

definitions

A

connection

may

be

deleted

as

follows.

If

the

connection

doesn’t

exist

then

the

return

code

of

MQERETURN_COMMS_MANAGER_WARNING

will

be

given

with

the

reason

code

of

MQEREASON_CONDEF_DOES_NOT_EXIST.

rc

=

mqeAdministrator_Connection_delete(hAdministrator,

&error,

hQueueMgrName);

Configuring

a

listener

In

order

for

a

queue

manager

to

receive

requests

from

other

queue

managers

it

is

necessary

for

an

MQeListener

to

be

instantiated

and

running.

Note:

This

functionality

is

only

available

in

Java.

A

listener

uses

a

communications

adapter

to

listen

at

a

named

location,

in

an

IP

network

this

is

a

named

port.

For

a

client

to

make

a

successful

connection,

the

network

address

of

the

listening

queue

manager,

the

named

location,

and

the

communications

adapter

class

must

be

made

known

to

the

client.

An

error

in

any

one

of

these

in

the

connection

definition

on

the

client

will

result

in

an

error

when

they

try

to

connect.

Java

In

order

to

create

a

listener

is

it

necessary

to

use

an

administration

message.

The

following

is

based

upon

the

example

example.config.ConfigListener,

the

administration

message

is

instantiated

as

follows:

MQeCommunicationsListenerAdminMsg

createMessage

=

new

MQeCommunicationsListenerAdminMsg();

We

now

need

to

provide

a

name

for

the

listener:

createMessage.setName("Listener1");

The

name

of

the

queue

manager

to

which

the

administration

message

is

intended

is

also

required:

createMessage.setTargetQMgr(queueManagerName);

The

next

thing

we

need

to

do

is

set

the

action

for

the

administration

message

as

well

as

providing

the

information

the

listener

requires

in

order

to

function.

createMessage.create(com.ibm.mqe.adapters.MQeTcpipHistoryAdapter,

8087,

36000000,

10);

86

Configuring

MQe

Objects

The

first

parameter

provides

the

name

of

the

communications

adapter

we

wish

to

use,

in

this

instance

we

have

stipulated

the

MQeTcpipHistoryAdapter,

an

alias

may

be

used

instead.

The

type

of

communications

adapter

being

used

by

the

listener

needs

to

be

made

known

to

clients

wishing

to

connect

to

the

queue

manager

using

the

listener.

The

second

parameter

defines

the

named

location

the

listener

uses,

in

this

instance

an

IP

port

number

of

8087,

again

the

clients

will

need

to

be

aware

of

this

in

order

to

contact

this

listener.

The

third

parameter

specifies

the

channel

timeout

value.

This

value

is

used

to

determine

when

an

incoming

channel

should

be

closed.

MQe

polls

the

channels,

if

a

channel

has

been

idle

for

longer

than

the

timeout

value

it

will

be

closed.

The

last

parameter

determines

the

maximum

number

of

channels

the

listener

will

have

running

at

any

one

time.

If

a

client

tries

to

connect

once

this

value

has

been

reached

the

connection

is

refused.

Having

set

the

correct

action

and

provided

the

relevant

information

we

can

set

the

message

type,

in

this

instance

we

are

using

a

request

message

style

which

indicates

we

would

like

a

reply

to

indicate

success

or

failure.

However,

it

might

make

no

difference

if

a

description

is

altered

successfully

or

not.

In

this

case,

use

a

message

style

of

datagram

which

indicates

no

reply

is

required.

createMessage.putInt(MQe.Msg_Style,

MQe.Msg_Style_Request);

When

requesting

a

reply,

provide

the

queue

and

owning

queue

manager

name

to

which

the

reply

must

be

sent.

This

example

uses

the

default

administration

reply

queue.

createMessage.putAscii(MQe.Msg_ReplyToQ,

MQe.Admin_Reply_Queue_Name);

createMessage.putAscii(MQe.Msg_ReplyToQMgr,

queueManagerName);

To

get

the

correct

reply

message

that

corresponds

to

our

administration

message,

use

a

correlation

ID.

This

is

copied

from

the

administration

message

into

the

reply

so

we

can

get

the

correct

message.

To

generate

an

id

that

is

relatively

safe

as

being

unique,

use

the

system

time:

String

match

=

"Msg"

+

System.currentTimeMillis();

createMessage.putArrayOfByte(MQe.Msg_CorrelID,

match.getBytes());

We

are

now

in

a

position

to

put

the

administration

message

to

the

administration

queue

of

the

target

queue

manager.

The

last

two

parameters

provide

the

ability

to

use

an

attribute

and

an

id

to

allow

the

undo

method

to

be

called,

neither

of

which

we

shall

worry

about

at

this

juncture.

queueManager.putMessage(queueManagerName,

MQe.Admin_Queue_Name,

createMessage,

null,

0);

Having

put

the

message

to

the

queue

we

shall

now

wait

for

a

reply.

As

can

be

seen

we

use

the

correlation

identifier

we

used

to

put

the

message

in

order

to

get

the

reply

and

there

is

a

useful

method

that

provides

us

with

the

reason

code

to

indicate

success

or

failure.

MQeFields

filter

=

new

MQeFields();

filter.putArrayOfByte(MQe.Msg_CorrelID,

match.getBytes());

//

now

wait

for

a

reply

MQeAdminMsg

response

=

(MQeAdminMsg)

queueManager.waitForMessage(queueManagerName,

MQe.Admin_Reply_Queue_Name,

filter,

Configuring

MQe

objects

87

null,

0,

3000);

//

the

administration

message

has

a

method

that

//

will

get

out

the

return

code

:

switch

(response.getRC())

{

case

MQeAdminMsg.RC_Success

:

break;

Having

successfully

created

our

listener

we

need

to

start

it,

the

listener

is

only

automatically

started

on

the

next

restart

of

the

queue

manager.

Again

an

administration

message

is

required

to

start

or

stop

a

listener,

we

can

use

the

approach

taken

above,

using

the

following

methods

in

the

MQeCommunicationsListenerAdminMsg

class.

To

start

the

listener:

MQeCommunicationsListenerAdminMsg

startMessage

=

new

MQeCommunicationsListenerAdminMsg();

.

.

.

startMessage.start();

To

stop

the

listener:

MQeCommunicationsListenerAdminMsg

startMessage

=

new

MQeCommunicationsListenerAdminMsg();

.

.

.

startMessage.stop();

In

order

to

delete

a

listener

we

need

to

set

the

action

of

the

administration

message

to

delete

as

follows:

deleteMessage.setAction(MQeAdminMsg.Action_Delete);

If

you

try

to

delete

a

listener

that

is

running

you

will

receive

an

exception,

so

make

sure

your

listener

has

successfully

stopped

before

trying

to

delete

it.

Configuring

bridge/gateway

resources

Introduction

to

the

MQ

bridge

This

section

describes

how

MQe

can

be

made

to

interact

with

MQ

using

a

gateway.

v

A

gateway

is

an

MQe

queue

manager

configured

with

a

bridge

that

allows

it

to

interact

with

MQ.

v

The

bridge

is

an

MQe

object

(in

the

same

sense

that

queues,

connections

and

so

on

are

objects).

v

The

MQ

queue

manager

does

not

require

any

special

configuration.

It

is

referred

to

within

MQe

as

the

queue

queue

manager.

v

The

gateway

runs

on

a

machine

acting

as

a

server

that

can

connect

to

another

machine

running

MQ.

The

gateway

cannot

run

on

a

device.

v

The

gateway

and

MQ

can

both

be

running

on

the

same

machine

if

required.

v

In

a

complex

setup,

a

gateway

can

have

multiple

bridges

configured

(this

is

very

unusual).

What

makes

a

queue

manager

bridge-enabled

Some

MQe

queue

managers

are

capable

of

exchanging

messages

with

MQ,

and

some

are

not.

88

Configuring

MQe

Objects

Those

which

can

are

said

to

be

bridge-enabled

or

bridge-capable.

Put

simply,

a

bridge-enabled

queue

manager

is

one

which

runs

in

an

environment

capable

of

supporting

the

MQ

Java

classes,

and

when

the

MQ

bridge

software

is

available

for

the

JVM

to

load.

When

an

MQe

queue

manager

is

activated,

it

attempts

to

load

the

MQ

bridge

software

component.

If

the

MQe

classes

and

dependent

software

are

all

loadable,

then

the

queue

manager

can

later

report

that

it

is

bridge-capable.

If

required

Java

classes

are

not

loadable,

then

error

information

is

traced

at

that

point,

but

the

queue

manager

will

continue

to

activate,

resulting

in

a

queue

manager

which

reports

that

it

is

not

bridge-capable.

Finding

out

if

a

queue

manager

is

bridge-enabled

If

you

apply

an

inquireAll

operation

to

a

queue

manager,

a

bridge-capable

property

is

returned.

This

field

is

boolean.

A

true

value

indicates

that

the

classes

required

to

support

the

bridge

function

are

present

on

the

class

path.

A

false

value

indicates

that

required

classes

are

missing

from

the

class

path.

v

If

the

queue

manager

is

reporting

that

it

is

bridge-capable,

bridge

resources

can

be

configured

and

manipulated

on

that

queue

manager.

v

If

the

queue

manager

reports

that

it

is

not

bridge-capable,

any

attempt

to

administer

bridge

resources

will

fail.

Such

situations

are

often

indicative

that

the

required

MQ

Java

classes,

or

parts

of

the

MQ

bridge

software

are

not

available

on

the

classpath.

Changing

the

classpath

to

reference

the

MQ

Java

and

MQ

bridge

classes,

and

restarting

the

JVM

in

which

the

MQe

queue

manager

is

running

should

result

in

the

queue

manager

reporting

that

it

is

bridge-capable.

The

code

in

examples.mbridge.administration.commandline.IsQueueManagerBridgeCapable

provides

an

example

of

how

to

code

this

query.

Classes

to

bridge-enable

a

queue

manager

To

use

the

MQ

bridge

you

must

have

these

two

arrangements:

1.

MQ

Classes

for

Java

version

5.1

or

later,

installed

on

your

MQe

system,

and

available

on

the

classpath

for

JVMs

to

use.

MQ

Classes

for

Java

is

available

for

free

download

from

the

Web

as

SupportPac™

MA88.

This

can

be

downloaded

free,

see

MQe

SupportPacs.

The

MQ

classes

for

Java

are

also

shipped

with

MQ

software,

but

might

not

be

installed

depending

on

the

options

selected

when

MQ

was

installed.

An

example

script

below

demonstrates

what

might

be

needed

to

set

the

correct

environment

on

a

Windows

system.

This

example

was

taken

from

the

Java\Demo\Windows

folder.

A

similar

bsh

UNIX

example

can

be

found

in

Java\Demo\Unix

directory.

@Rem

Set

up

the

name

of

the

MQ

Series

directory.

@Rem

This

should

be

modified

to

suit

your

installation.

set

MQDIR=C:\Program

Files\IBM\MQSeries

@Rem

If

you

wish

to

use

the

MQ

bridge

then

the

CLASSPATH

also

@Rem

needs

to

know

how

to

get

to

the

MQSeries

Java

Client.

if

Exist

"%MQDIR%\java\lib"∧

set

CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib;

if

Exist

"%MQDIR%\java\lib\com.ibm.mq.jar"∧

set

CLASSPATH=%CLASSPATH%;

%MQDIR%\java\lib\com.ibm.mq.jar

if

Exist

"%MQDIR%\java\lib\com.ibm.mqbind.jar"∧

set

CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\com.ibm.mqbind.jar

if

Exist

"%MQDIR%\java\lib\com.ibm.mq.iiop.jar"∧

set

CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\com.ibm.mq.iiop.jar

if

Exist

"%MQDIR%\java\lib\jta.jar"∧

set

CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\jta.jar

Configuring

MQe

objects

89

if

Exist

"%MQDIR%\java\lib\jndi.jar"∧

set

CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\jndi.jar

if

Exist

"%MQDIR%\java\lib\jms.jar"∧

set

CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\jms.jar

if

Exist

"%MQDIR%\java\lib\com.ibm.mqjms.jar"∧

set

CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\com.ibm.mqjms.jar

if

Exist

"%MQDIR%\java\lib\connector.jar"∧

set

CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\connector.jar

if

Exist

"%MQDIR%\java\lib\fscontext.jar"∧

set

CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\fscontext.jar

if

Exist

"%MQDIR%\java\lib\ldap.jar"∧

set

CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\ldap.jar

@Rem

The

MQSeries

Bridge

also

requires

access

to

the

MQSeries

@Rem

Executables

so

that

native

DLLs

can

be

found.

if

Exist

"%MQDIR%\java\lib"

set

PATH=%PATH%;%MQDIR%\java\lib

if

Exist

"%MQDIR%\bin"

set

PATH=%PATH%;%MQDIR%\bin;

2.

MQe

classes,

of

which

an

example

of

superset

classes

can

be

found

in

the

Java/Jars/MQeGateway.jar

file.

Deploying

this

file

and

adding

it

to

your

classpath

will

provide

the

queue

manager

with

all

the

required

classes

necessary

to

use

bridge

function.

For

example,

set

CLASSPATH=%CLASSPATH%;%MQeDIR%\Java\Jars\MQeGateway.jar

Overview

of

configuring

the

bridge

The

configuration

of

the

MQ

bridge

requires

you

to

perform

some

actions

on

the

MQ

queue

manager,

and

some

on

the

MQe

queue

manager.

The

bridge

can

be

divided

into

two

pieces:

v

Configuration

of

resources

required

to

route

a

message

from

MQe

to

MQ

v

Configuration

of

resources

required

to

route

a

message

from

MQ

to

MQe

Configuration

of

both

types

of

routes

is

discussed

in

the

following

sections.

The

bridge

objects

are

defined

in

a

hierarchy

as

shown

in

the

following

diagram:

WebSphere MQ Everyplace gateway

WebSphere MQ
bridge queue

WebSphere MQ
bridge

transmission queue
listener

WebSphere MQ server

Xmit queue
WebSphere MQ

local queue
WebSphere MQ

Routed
messages

put,
browse,
get

Figure

17.

Bridge

configuration

90

Configuring

MQe

Objects

The

following

rules

govern

the

relationship

between

the

various

objects

in

that

diagram:

v

An

MQe

bridges

object

is

associated

with

a

single

MQe

queue

manager.

v

A

single

bridges

object

may

have

more

than

one

bridge

object

associated

with

it.

You

might

want

to

configure

several

MQ

bridge

instances

with

different

routings.

v

Each

bridge

can

have

a

number

of

MQ

queue

manager

proxy

definitions.

v

Each

MQ

queue

manager

proxy

definition

can

have

a

number

of

client

connections

that

allow

communication

with

MQe.

v

Each

client

connection

connects

to

a

single

MQ

queue

manager.

Each

connection

may

use

a

different

server

connection

on

the

MQ

queue

manager,

or

a

different

set

of

security,

send,

and

receive

exits,

ports

or

other

parameters.

v

An

MQ

bridge

client

connection

may

have

a

number

of

transmission

queue

listeners

that

use

that

bridge

service

to

connect

to

the

MQ

queue

manager.

v

A

listener

uses

only

one

client

connection

to

establish

its

connection.

v

Each

listener

connects

to

a

single

transmission

queue

on

the

MQ

system.

v

Each

listener

moves

messages

from

a

single

MQ

transmission

queue

to

anywhere

on

the

MQe

network,

(through

the

MQe

queue

manager

its

bridge

is

associated

with).

So

an

MQ

bridge

can

funnel

multiple

MQ

message

sources

through

one

MQe

queue

manager

onto

the

MQe

network.

v

When

moving

MQe

messages

to

the

MQ

network,

the

MQe

queue

manager

creates

a

number

of

adapter

objects.

Each

adapter

object

can

connect

to

any

MQ

queue

manager

(providing

it

is

configured)

and

can

send

its

messages

to

any

queue.

So

an

MQ

bridge

can

dispatch

MQe

messages

routed

through

a

single

MQe

queue

manager

to

any

MQ

queue

manager.

WebSphere MQ
Everyplace

queue manager
Bridges

Bridge

WebSphere MQ
queue manager

proxy

Client
connection

Transmission
queue listenerAdapter

Only one queue manager
is allowed per JVM.
However, you may have
multiple JVMs.

Only one bridges object
is allowed per JVM

WebSphere MQ Everyplace server

Figure

18.

Bridge

object

hierarchy

Configuring

MQe

objects

91

The

bridge

configuration

option

allows

an

MQe

queue

manager

to

communicate

with

MQ

host

and

distributed

queue

managers

through

client

channels.

The

bridge

component

manages

a

pool

of

client

channels

that

can

be

attached

to

one

or

more

host

or

distributed

queue

managers.

You

can

configure

multiple

bridge-enabled

MQe

queue

managers

in

a

single

network.

A

gateway

may

have

a

number

of

transmit

queue

listeners

that

use

that

gateway

to

connect

to

the

MQ

queue

manager

and

retrieve

a

messages

from

MQ

to

MQe.

A

listener

uses

only

one

service

to

establish

its

connection,

with

each

listener

connecting

to

a

single

transmission

queue

on

the

MQ

queue

manager.

Each

listener

moves

messages

from

a

single

MQ

transmission

queue

to

anywhere

on

the

MQe

network,

via

its

parent

gateway

queue

manager.

Thus,

a

single

gateway

queue

manager

can

funnel

multiple

MQ

message

sources

into

the

MQe

network.

When

moving

messages

in

the

other

direction,

from

MQe

to

MQ,

the

gateway

queue

manager

configures

one

or

more

bridge

queues.

Each

bridge

queue

can

connect

to

any

queue

manager

directly

and

send

its

messages

to

the

target

queue.

In

this

way

a

gateway

can

dispatch

MQe

messages

routed

through

a

single

MQe

queue

manager

to

any

MQ

queue

manager,

either

directly

or

indirectly.

The

bridge

objects

and

hierarchy

Bridges

resource

The

bridges

resource

is

responsible

for

maintaining

a

list

of

bridge

resources.

It

provides

a

single

resource

which

can

be

started

and

stopped,

where

starting

and

stopping

a

bridges

resource

can

start

and

stop

all

the

resources

beneath

it

in

the

resource

hierarchy.

It

is

owned

by

the

MQe

queue

manager.

If

the

MQe

queue

manager

is

bridge-enabled,

then

a

bridges

resource

is

automatically

created,

and

present.

This

resource

has

no

persistent

information

associated

with

it.

It

has

the

following

properties:

Table

19.

Bridges

properties

Property

Explanation

Bridgename

List

of

bridge

names

Run

state

Status:

running

or

stopped

The

bridges,

and

the

other

bridge

resources

can

be

started

and

stopped

independently

of

the

MQe

queue

manager.

If

such

a

bridge

resource

is

started

(or

stopped)

the

action

also

applies

to

all

of

its

children,

that

is

all

bridges,

queue

manager

proxies,

client

connections,

and

transmission

queue

listeners.

More

detail

of

these

properties

can

be

found

in

the

Java

API

Programming

Reference

in

the

administration

class

com.ibm.mqe.mqbridge.MQeMQBridgesAdminMsg.

The

bridges

resource

supports

the

Inquire

and

InquireAll,

start,

and

stop

operations.

Create,

delete,

and

update

are

not

appropriate

actions

to

use

with

this

resource.

Examples

of

how

to

inquire,

start,

and

stop

a

bridges

resource

can

be

found

in

the

java

class

examples.mqbridge.administration.programming.AdminHelperBridges

Bridge

resource

The

bridge

resource

is

responsible

for

holding

a

number

of

persistent

property

values,

and

a

list

of

MQ

queue

manager

proxy

resources.

If

started

or

stopped,

it

can

act

as

a

single

point

of

control

to

start

and

stop

all

the

resources

beneath

it

in

the

bridge

hierarchy.

Each

bridge

object

supports

the

full

range

of

create,

inquire,

92

Configuring

MQe

Objects

inquire-all,

update,

start,

stop,

and

delete

operations.

Examples

of

these

operations

can

be

found

in

the

java

class

examples.mqbridge.administration.programming.AdminHelperBridge.

The

bridge

resource

has

the

following

properties:

Table

20.

Bridge

properties

Property

Explanation

Class

Bridge

class

Default

transformer

The

default

class,

rule

class,

to

be

used

to

transform

a

message

from

MQe

to

MQ,

or

vice

versa,

if

no

other

transformer

class

has

been

associated

with

the

destination

queue

Heartbeat

interval

The

basic

timing

unit

to

be

used

for

performing

actions

against

bridges

Name

Name

of

the

bridge

Run

state

Status:

running

or

stopped

Startup

rule

class

Rule

class

used

when

the

bridge

is

started

MQ

Queue

Manager

Proxy

Children

List

of

all

Queue

Manager

Proxies

that

are

owned

by

this

bridge

More

detail

of

each

property

can

be

found

in

the

Java

API

Programming

Reference,

in

the

administration

class

com.ibm.mqe.mqbridge.MQeMQBridgeAdminMsg.

In

simple

cases

a

default

transformer

(rule)

can

be

used

to

handle

all

message

conversions.

Additionally

a

transformer

can

be

set

on

a

per

listener

basis

(for

messages

from

MQ

to

MQe)

that

overrides

this

default.

For

more

specific

control

the

transformation

rules

can

be

set

on

a

target

queue

basis

using

bridge

queue

definitions

on

the

MQe

Java

Programming

Reference.

This

applies

both

to

MQe

and

MQ

target

queues.

MQ

queue

manager

proxy

The

MQ

queue

manager

proxy

holds

the

properties

specific

to

a

single

MQ

queue

manager.

The

proxy

properties

are

shown

in

the

following

table:

Table

21.

MQ

queue

manager

proxy

properties

Property

Explanation

Class

MQ

queue

manager

proxy

class

MQ

host

name

IP

host

name

used

to

create

connections

to

the

MQ

queue

manager

via

the

Java

client

classes.

If

not

specified

then

the

MQ

queue

manager

is

assumed

to

be

on

the

same

machine

as

the

bridge

and

the

Java

bindings

are

used

MQ

queue

manager

proxy

name

The

name

of

the

MQ

queue

manager

Name

of

owning

bridge

Name

of

the

bridge

that

owns

this

MQ

queue

manager

proxy

Run

state

Status:

running

or

stopped

Startup

rule

class

Rule

class

used

when

the

MQ

queue

manager

is

started

Client

Connection

Children

List

of

all

the

client

connections

that

are

owned

by

this

proxy

More

detail

of

each

property

can

be

found

in

the

Java

API

Programming

Reference,

in

the

administration

class

com.ibm.mqe.mqbridge.MQeMQQMgrProxyAdminMsg.

Configuring

MQe

objects

93

Each

proxy

object

supports

the

full

range

of

create,inquire,

inquire-all,

update,

start,

stop,

delete

operations.

Examples

of

these

operations

can

be

found

in

the

java

class

examples.mqbridge.administration.programming.AdminHelperMQQMgrProxy.

Client

connection

resource

The

client

connection

definition

holds

the

detailed

information

required

to

make

a

connection

to

an

MQ

queue

manager.

The

connection

properties

are

shown

in

the

following

table:

Table

22.

Client

connection

service

properties

Property

Explanation

Adapter

class

Class

to

be

used

as

the

gateway

adapter

CCSID*

The

integer

MQ

CCSID

value

to

be

used

Class

Bridge

client

connection

service

class

Max

connection

idle

time

The

maximum

time

a

connection

is

allowed

to

be

idle

before

being

terminated

MQ

password*

Password

for

use

by

the

Java

client

MQ

port*

IP

port

number

used

to

create

connections

to

the

MQ

queue

manager

via

the

Java

client

classes.

If

not

specified

then

the

MQ

queue

manager

is

assumed

to

be

on

the

same

machine

as

the

bridge

and

the

Java

bindings

are

used

MQ

receive

exit

class*

Used

to

match

the

receive

exit

used

at

the

other

end

of

the

client

channel;

the

exit

has

an

associated

string

to

allow

data

to

be

passed

to

the

exit

code

MQ

security

exit

class*

Used

to

match

the

security

exit

used

at

the

other

end

of

the

client

channel;

the

exit

has

an

associated

string

to

allow

data

to

be

passed

to

the

exit

code

MQ

send

exit

class*

Used

to

match

the

send

exit

used

at

the

other

end

of

the

client

channel;

the

exit

has

an

associated

string

to

allow

data

to

be

passed

to

the

exit

code

MQ

user

ID*

user

ID

for

use

by

the

Java

client

Client

connection

service

name

Name

of

the

server

connection

channel

on

the

MQ

machine

Name

of

owning

queue

manager

proxy

The

name

of

the

owning

queue

manager

proxy

Startup

rule

class

Rule

class

used

when

the

bridge

client

connection

service

is

started

Sync

queue

name

The

name

of

the

MQ

queue

that

is

used

by

the

bridge

for

synchronization

purposes

Sync

queue

purger

rules

class

The

rules

class

to

be

used

when

a

message

is

found

on

the

synchronous

queue

Run

state

Status:

running

or

stopped

Name

of

owning

Bridge

The

name

of

the

bridge

that

owns

this

client

connection

MQ

XmitQ

Listener

Children

List

of

all

the

listeners

that

use

this

client

connection

The

adapter

class

is

used

to

send

messages

from

MQe

to

MQ

and

the

sync

queue

is

used

to

keep

track

of

the

status

of

this

process.

Its

contents

are

used

in

recovery

situations

to

guarantee

assured

messaging;

after

a

normal

shutdown

the

queue

is

empty.

It

can

be

shared

across

multiple

client

connections

and

across

multiple

bridge

definitions

provided

that

the

receive,

send

and

security

exits

are

the

same.

94

Configuring

MQe

Objects

This

queue

can

also

be

used

to

store

state

about

messages

moving

from

MQ

to

MQe

,

depending

upon

the

listener

properties

in

use.

The

sync

queue

purger

rules

class

is

used

when

a

message

is

found

on

the

sync

queue,

indicating

a

failure

of

MQe

to

confirm

a

message.

The

maximum

connection

idle

time

is

used

to

control

the

pool

of

Java

client

connections

maintained

by

the

bridge

client

connection

service

to

its

MQ

system.

When

an

MQ

connection

becomes

idle,

through

lack

of

use,

a

timer

is

started

and

the

idle

connection

is

discarded

if

the

timer

expires

before

the

connection

is

reused.

Creation

of

MQ

connections

is

an

expensive

operation

and

this

process

ensures

that

they

are

efficiently

reused

without

consuming

excessive

resources.

A

value

of

zero

indicates

that

a

connection

pool

should

not

be

used.

More

detail

of

each

property

can

be

found

in

the

Java

API

Programming

Reference,

in

the

administration

class

com.ibm.mqe.mqbridge.MQeClientConnectionAdminMsg.

Each

client

connection

object

supports

the

full

range

of

create,inquire,

inquire-all,

update,

start,

stop,

delete

operations.

Examples

of

these

operations

can

be

found

in

the

Java

class

examples.mqbridge.administration.programming.AdminHelperMQClientConnection.

Transmit

queue

listener

resource

The

listener

moves

messages

from

MQ

to

MQe.

Table

23.

Listener

properties

Property

Explanation

Class

Listener

class

Dead

letter

queue

name

Queue

used

to

hold

messages

from

MQ

to

MQe

that

cannot

be

delivered

Listener

state

store

adapter

Class

name

of

the

adapter

used

to

store

state

information

Listener

name

Name

of

the

MQ

XMIT

queue

supplying

messages

Owning

client

connection

service

name

Client

connection

service

name

Run

state

Status:

running

or

stopped

Startup

rule

class

Rule

class

used

when

the

listener

is

started

Transformer

class

Rule

class

used

to

determine

the

conversion

of

an

MQ

message

to

MQe

Undelivered

message

rule

class

Rule

class

used

to

determine

action

when

messages

from

MQ

to

MQe

cannot

be

delivered

Seconds

wait

for

message

An

advanced

option

that

can

be

used

to

control

listener

performance

in

exceptional

circumstances

More

detail

of

each

property

can

be

found

in

the

Java

API

Programming

Reference,

in

the

administration

class

com.ibm.mqe.mqbridge.MQeListenerAdminMsg.

Each

transmit

queue

listener

object

supports

the

full

range

of

create,

inquire,

inquire-all,

update,

start,

stop,

delete

operations.

Examples

of

these

operations

can

be

found

in

the

Java

class

examples.mqbridge.administration.programming.AdminHelperMQTransmitQueueListener

Configuring

MQe

objects

95

The

undelivered

message

rule

class

determines

what

action

is

taken

when

a

message

from

MQ

to

MQe

cannot

be

delivered.

Typically

it

is

placed

in

the

dead

letter

queue

of

the

MQ

system.

In

order

to

provide

assured

delivery

of

messages,

the

listener

class

uses

the

listener

state

store

adapter

to

store

state

information,

either

on

the

MQe

system

or

in

the

sync

queue

of

the

MQ

system.

The

transmission

queue

listener

allows

MQ

remote

queues

to

refer

to

MQe

local

queues.

You

can

also

create

MQe

remote

queues

that

refer

to

MQ

local

queues.

These

MQe

remote

queue

definitions

are

called

MQ

bridge

queues

and

they

can

be

used

to

get,

put

and

browse

messages

on

an

MQ

queue.

Bridge

queue

An

MQ

bridge

queue

definition

can

contain

the

following

attributes.

Table

24.

MQ

bridge

queue

properties

Property

Explanation

Alias

names

Alternative

names

for

the

queue

Authenticator

Must

be

null

Class

Object

class

Client

connection

Name

of

the

client

connection

service

to

be

used

Compressor

Must

be

null

Cryptor

Must

be

null

Expiry

Passed

to

transformer

Maximum

message

size

Passed

to

the

rules

class

Mode

Must

be

synchronous

MQ

queue

manager

proxy

Name

of

the

MQ

queue

manager

to

which

the

message

should

first

be

sent

MQ

bridge

Name

of

the

bridge

to

convey

the

message

to

MQ

Name

Name

by

which

the

remote

MQ

queue

is

known

to

MQe

Owning

queue

manager

Queue

manager

owning

the

definition

Priority

Priority

to

be

used

for

messages,

unless

overridden

by

a

message

value

Remote

MQ

queue

name

Name

of

the

remote

MQ

queue

Rule

Rule

class

used

for

queue

operations

Queue

manager

target

MQ

queue

manager

owning

the

queue

Transformer

Name

of

the

transformer

class

that

converts

the

message

from

MQe

format

to

MQ

format

Type

MQ

bridge

queue

More

detail

of

each

property

can

be

found

in

the

Java

API

Programming

Reference,

in

the

administration

class

com.ibm.mqe.mqbridge.MQeMQBridgeQueueAdminMsg.

Example

code

which

manipulates

a

bridge

queue

can

be

found

in

the

Java

class

examples.mqbridge.administration.programmingAdminHelperBridgeQueue.

Note:

The

cryptor,

authenticator,

and

compressor

classes

define

a

set

of

queue

attributes

that

dictate

the

level

of

security

for

any

message

passed

to

this

96

Configuring

MQe

Objects

queue.

From

the

time

on

MQe

that

the

message

is

sent

initially,

to

the

time

when

the

message

is

passed

to

the

MQ

bridge

queue,

the

message

is

protected

with

at

least

the

queue

level

of

security.

These

security

levels

are

not

applicable

when

the

MQ

bridge

queue

passes

the

message

to

the

MQ

system,

the

security

send

and

receive

exits

on

the

client

connection

are

used

during

this

transfer.

No

checks

are

made

to

make

sure

that

the

queue

level

of

security

is

maintained.

MQ

bridge

queues

are

synchronous

only.

Asynchronous

applications

must

therefore

use

either

a

combination

of

MQe

store-and-forward

and

home-server

queues,

or

asynchronous

remote

queue

definitions

as

an

intermediate

step

when

sending

messages

to

MQ

bridge

queues.

Applications

make

use

of

MQ

bridge

queues

like

any

other

MQe

remote

queue,

using

the

putMessage,

browseMessages,

and

getMessage

methods

of

the

MQeQueueManager

class.

The

queue

name

parameter

in

these

calls

is

the

name

of

the

MQ

bridge

queue,

and

the

queue

manager

name

parameter

is

the

name

of

the

MQ

queue

manager.

However,

in

order

for

this

queue

manager

name

to

be

accepted

by

the

local

MQe

server,

a

connection

definition

with

this

MQ

queue

manager

name

must

exist

with

null

for

all

the

parameters,

including

the

channel

name.

Note:

there

are

some

restrictions

on

the

use

of

getMessage

and

browseMessages

with

MQ

bridge

queues.

It

is

not

possible

to

get

or

browse

messages

from

MQ

bridge

queues

that

point

to

MQ

remote

queue

definitions.

Nor

is

it

possible

to

use

nonzero

Confirm

IDs

on

MQ

bridge

queue

gets.

This

means

that

the

getMessage

operation

on

MQ

bridge

queues

does

not

provide

assured

delivery.

If

you

need

a

get

operation

to

be

assured,

you

should

use

transmission-queue

listeners

to

transfer

messages

from

MQ.

Administration

of

the

MQ

bridge

is

handled

in

the

same

way

as

the

administration

of

a

normal

MQe

queue

manager,

through

the

use

of

administration

messages.

New

classes

of

messages

are

defined

as

appropriate

to

the

queue.

Naming

recommendations

for

interoperability

with

MQ

To

create

an

MQe

network

that

can

interoperate

with

an

MQ

network

and

avoid

problems,

adopt

the

same

limitations

in

naming

convention

for

both

systems.

The

following

differences

are

relevant:

v

MQ

queue

and

queue

manager

names

can

have

a

forward

slash

(/)

character.

This

character

is

not

valid

in

MQe

object

names.

Do

not

use

this

character

in

the

name

of

any

MQ

queue

or

queue

manager.

v

MQ

queue

and

queue

manager

names

have

a

limit

of

48

characters,

but

MQe

names

have

no

length

restrictions.

Do

not

define

MQe

queues

or

queue

managers

with

names

that

contain

more

than

48

characters.

v

MQ

queue

names

can

have

leading

or

trailing

period

(.)

character.

This

is

not

allowed

in

MQe.

Do

not

define

any

MQ

queue

or

queue

manager

with

a

name

that

starts

or

ends

with

this

character.

v

Name

queue

managers

uniquely,

such

that

a

queue

manager

with

the

same

name

does

not

exist

on

the

MQe

network

and

the

MQ

network.

If

you

choose

not

to

follow

these

guidelines,

then

you

may

experience

problems

when

trying

to

address

an

MQe

queue

from

an

MQ

application.

Configuring

MQe

objects

97

Configuring

a

basic

MQ

bridge

To

configure

a

very

basic

installation

of

the

MQ

bridge

complete

the

following

steps:

1.

Make

sure

you

have

an

MQ

system

installed

and

that

you

understand

local

routing

conventions,

and

how

to

configure

the

system.

2.

Install

MQe

on

a

system

(it

can

be

on

the

same

system

as

MQ)

3.

If

MQ

Classes

for

Java

is

not

already

installed,

download

it

from

the

Web

and

install

it

on

the

MQ

system.

4.

Set

up

your

MQe

system

and

verify

that

it

is

working

properly

before

you

try

to

connect

it

to

MQ.

5.

Update

the

MQe_java\Classes\JavaEnv.bat

file

so

that

it

points

to

the

Java

classes

that

are

part

of

the

MQ

Classes

for

Java,

and

to

the

classpath

for

your

JRE

(Java

Runtime

Environment).

Ensure

that

the

SupportPac

MA88

.jar

files

are

in

the

classpath,

and

that

the

java\lib

and

\bin

directories

are

in

your

path.

This

is

set

by

the

MQE_VM_OPTIONS_LOCN

which

should

be

set

to

point

to

the

vm_options.txt

file

during

installation.

6.

Plan

the

routing

you

intend

to

implement.

You

need

to

decide

which

MQ

queue

managers

are

going

to

talk

to

which

MQe

queue

managers.

7.

Decide

on

a

naming

convention

for

MQe

objects

and

MQ

objects

and

document

it

for

future

use.

8.

Modify

your

MQe

system

to

define

an

MQ

bridge

on

your

chosen

MQe

server.

See

Java

API

Programming

Reference

for

information

on

using

examples.mqbridge.awt.AwtMQBridgeServer

to

define

a

bridge.

9.

Connect

the

chosen

MQ

queue

manager

to

the

bridge

on

the

MQe

server

as

follows:

v

On

the

MQ

queue

manager:

–

Define

one

or

more

Java

server

connections

so

that

MQe

can

use

the

MQ

Classes

for

Java

to

talk

to

this

queue

manager.

This

involves

the

following

steps:

a.

Define

the

server

connections

b.

Define

a

sync

queue

for

MQe

to

use

to

provide

assured

delivery

to

the

MQ

system.

You

need

one

of

these

for

each

server

connection

that

the

MQe

system

can

use.
v

On

the

MQe

server:

a.

Define

an

MQ

queue

manager

proxy

object

which

holds

information

about

the

MQ

queue

manager.

This

involves

the

following

steps:

1)

Collect

the

Hostname

of

the

MQ

queue

manager.

2)

Put

the

name

in

the

MQ

queue

manager

proxy

object.
b.

Define

a

Client

Connection

object

that

holds

information

about

how

to

use

the

MQ

Classes

for

Java

to

connect

to

the

server

connection

on

the

MQ

system.

This

involves

the

following

steps:

1)

Collect

the

Port

number,

and

all

other

server

connection

parameters.

2)

Use

these

values

to

define

the

client

connection

object

so

that

they

match

the

definition

on

the

MQ

queue

manager.
10.

Modify

your

configuration

on

both

MQe

and

MQ

to

allow

messages

to

pass

from

MQ

to

MQe.

a.

Decide

on

the

number

of

routes

from

MQ

to

your

MQe

network.

The

number

of

routes

you

need

depends

on

the

amount

of

message

traffic

(load)

you

use

across

each

route.

If

your

message

load

is

high

you

may

wish

to

split

your

traffic

into

multiple

routes.

98

Configuring

MQe

Objects

b.

Define

your

routes

as

follows:

1)

For

each

route

define

a

transmission

queue

on

your

MQ

system.

DO

NOT

define

a

connection

for

these

transmission

queues.

2)

For

each

route

create

a

matching

transmission

queue

listener

on

your

MQe

system.

3)

Define

a

number

of

remote

queue

definitions,

(such

as

remote

queue

manager

aliases

and

queue

aliases)

to

allow

MQ

messages

to

be

routed

onto

the

various

MQe-bound

transmission

queues

that

you

defined

in

step

b.

1.
11.

Modify

your

configuration

on

MQe

to

allow

messages

to

pass

from

MQe

to

MQ:

a.

Publish

details

about

all

the

queue

managers

on

your

MQ

network

you

want

to

send

messages

to

from

the

MQe

network.

Each

MQ

queue

manager

requires

a

connections

definition

on

your

MQe

server.

All

fields

except

the

Queue

manager

name

should

be

null,

to

indicate

that

the

normal

MQe

communications

connections

should

not

be

used

to

talk

to

this

queue

manager.

b.

Publish

details

about

all

the

queues

on

your

MQ

network

you

want

to

send

messages

to

from

the

MQe

network.

Each

MQ

queue

requires

an

MQ

bridge

queue

definition

on

your

MQe

server.

This

is

the

MQe

equivalent

of

a

DEFINE

QREMOTE

in

MQ.

v

The

queue

name

is

the

name

of

the

MQ

queue

to

which

the

bridge

should

send

any

messages

arriving

on

this

MQ

bridge

queue.

v

The

queue

manager

name

is

the

name

of

the

MQ

queue

manager

on

which

the

queue

is

located.

v

The

bridge

name

indicates

which

bridge

should

be

used

to

send

messages

to

the

MQ

network.

v

The

MQ

queue

manager

proxy

name

is

the

name

of

the

MQ

queue

manager

proxy

object,

in

the

MQe

configuration,

that

can

connect

to

an

MQ

queue

manager.

v

The

MQ

queue

manager

should

have

a

route

defined

to

allow

messages

to

be

posted

to

the

Queue

Name

on

Queue

Manager

Name

to

deliver

the

message

to

its

final

destination.
12.

Start

your

MQ

and

MQe

systems

to

allow

messages

to

flow.

The

MQ

system

client

channel

listener

must

be

started.

All

the

objects

you

have

defined

on

the

MQe

must

be

started.

These

objects

can

be

started

in

any

of

the

following

ways:

v

Explicitly

using

the

Administration

GUI

described

in

MQe

Configuration

Guide.

v

Configuring

the

rules

class,

as

described

in

MQe

System

Programming

Guide,

to

indicate

the

startup

state

(running

or

stopped),

and

restarting

the

MQe

server

v

A

mixture

of

the

two

previous

methods

The

simplest

way

to

start

objects

manually,

is

to

send

a

start

command

to

the

relevant

bridge

object.

This

command

should

indicate

that

all

the

children

of

the

bridge,

and

children’s

children

should

be

started

as

well.

v

To

allow

messages

to

pass

from

MQe

to

MQ,

start

the

client

connection

objects

in

MQe.

v

To

allow

messages

to

pass

from

MQ

to

MQe,

start

both

the

client

connection

objects,

and

the

relevant

transmission

queue

listeners.

Configuring

MQe

objects

99

13.

Create

transformer

classes,

and

modify

your

MQe

configuration

to

use

them.

A

transformer

class

converts

messages

from

MQ

message

formats

into

an

MQe

message

format,

and

vice

versa.

These

format-converters

must

be

written

in

Java

and

configured

in

several

places

in

the

MQ

bridge

configuration.

a.

Create

transformer

classes

v

Determine

the

message

formats

of

the

MQ

messages

that

need

to

pass

over

the

bridge.

v

Write

a

transformer

class,

or

a

set

of

transformer

classes

to

convert

each

MQ

message

format

into

an

MQe

message.

Transformers

are

not

directly

supported

by

the

C

bindings.

SeeMQe

Application

Programming

Guide

for

information

about

writing

transformers

in

Java.
b.

You

can

replace

the

default

transformer

class.

Use

the

administration

GUI

to

update

the

default

transformer

class

parameter

in

the

bridge

object’s

configuration.

c.

You

can

specify

a

non-default

transformer

for

each

MQ

bridge

queue

definition.

Use

the

administration

GUI

to

update

the

transformer

field

of

each

MQ

bridge

queue

in

the

configuration.

d.

You

can

specify

a

non-default

transformer

for

each

MQ

transmission

queue

listener.

Use

the

administration

GUI

to

update

the

transformer

field

of

each

listener

in

the

configuration.

e.

Restart

the

bridge,

and

listeners.

Using

MQe

administration

messages

and

MQ

PCF

messages

PCF

messages

are

administration

messages

used

by

MQ

queue

managers.

SupportPac

MS0B:

″MQSeries

Java

classes

for

PCF″

contains

Java

code,

which

supplies

PCF

message

support.

This

code

is

available

as

a

free

download,

see

MQe

SupportPacs

If

you

download

and

install

it,

and

put

the

com.ibm.mq.pcf.jar

file

on

your

ClassPath

environment

variable,

you

have

access

to

Java

classes,

which

can

dynamically

manipulate

MQ

resources.

When

PCF

messages

are

combined

with

MQe

administration

messages,

complete

programmatic

configuration

of

bridge

resources,

and

corresponding

resources

on

an

MQe

queue

manager

are

possible.

Example

code

contained

in

the

examples.mqbridge.administration.programming.AdminHelperMQ

class,

used

in

conjunction

with

the

examples.mqbridge.administration.programming.MQAgent

demonstrates

how

to

do

this.

This

example

code

has

been

added

to

the

examples.awt.AwtMQeServer

program,

such

that

clicking

menu

View->Connect

local

MQ

default

queue

manager

will:

v

Ensure

that

a

bridge

object

exists,

creating

one

as

required.

v

Query

properties

from

the

default

MQ

queue

manager.

v

Attempt

to

connect

that

queue

manager

to

the

currently

running

MQe

queue

manager.

v

Ensure

a

proxy

object

representing

the

default

MQ

queue

manager

exists,

creating

one

if

necessary.

v

Ensure

an

MQe

client

connection

exists,

and

that

a

corresponding

MQ

server

connection

channel

exists

also,

creating

these

resources

if

necessary.

v

Ensure

a

’sync

queue’

exists

on

the

MQ

queue

manager.

v

Ensure

a

transmit

queue

on

MQ

exists,

and

create

if

necessary.

v

Ensure

a

matching

MQ

transmit

queue

listener

exists

in

the

configuration

of

the

current

MQe

queue

manager,

creating

one

if

necessary.

100

Configuring

MQe

Objects

v

Ensure

all

the

bridge

resources

are

started.

v

Ensure

a

test

queue

on

the

MQ

queue

manager

exists,

creating

one

if

necessary.

v

Ensure

a

matching

MQe

bridge

queue

exists,

which

refers

to

that

test

queue.

v

Send

a

test

MQeMQMsgObject

to

the

test

queue

to

make

sure

the

configuration

is

working.

v

Get

the

test

MQeMQMsgObject

from

the

test

queue

to

make

sure

the

configuration

is

working.

Bridge

configuration

example

This

section

describes

an

example

configuration

of

4

systems.

Requirement

The

requirement

for

this

example

is

that

all

machines

are

able

to

post

a

message

to

a

queue

on

any

of

the

other

machines.

It

is

assumed

that

all

machines

are

permanently

connected

to

the

network,

except

the

MQeMoonQM

machine,

which

is

only

occasionally

connected.

The

four

systems

are:

MQeMoonQM

This

is

an

MQe

client

queue

manager,

sited

on

a

handheld

PC.

The

user

periodically

attaches

the

handheld

PC

to

the

network,

to

communicate

with

the

MQeEarthQM

MQe

gateway.

MQeEarthQM

This

is

on

a

Windows

2000

machine,

with

an

IP

address

of

20.8.9.50

This

is

an

MQe

gateway

(server)

queue

manager.

MQJupiterQM

MQeMoonQM

Hand held PC

MQSaturnQM

WebSphere MQ server
I/P address 20.8.9.51

System 390

WebSphere MQ Everyplace server
I/P address 20.8.9.50

MQeEarthQM

WebSphere MQ
bridge queue

Figure

19.

Configuration

example

Configuring

MQe

objects

101

MQSaturnQM

This

is

an

MQ

queue

manager,

installed

on

a

Windows

NT

platform.

The

IP

address

is

20.8.9.51

MQJupiterQM

This

is

an

MQ

queue

manager,

installed

on

a

System/390®

platform.

Initial

setup

For

this

example,

it

is

assumed

that

there

are

local

queues,

to

which

messages

can

be

put,

on

all

the

queue

managers.

These

queues

are

called:

v

MQeMoonQ

on

MQeMoonQM

v

MQeEarthQ

on

MQeEarthQM

v

MQSaturnQ

on

MQSaturnQM

v

MQJupiterQ

on

MQJupiterQM

Now

any

application

connected

to

any

of

the

queue

managers

can

post

a

message

to

any

of

the

queues

MQeMoonQ,

MQeEarthQ,

MQSaturnQ

or

MQJupiterQ.

MQeMoonQM

to/from

MQeEarthQM

On

MQeMoonQM:

1.

Define

a

connection

with

the

following

parameters:

Target

queue

manager

name:

MQeEarthQM

Adapter:

FastNetwork:20.8.9.50

Note:

Check

that

the

adapter

you

specify

when

you

define

the

connection

matches

the

adapter

used

by

the

Listener

on

the

MQeEarthQM

queue

manager.
Applications

can

now

connect

directly

to

any

queue

defined

on

the

MQeEarthQM

queue

manager

directly,

when

the

MQeMoonQM

is

connected

to

the

network.

The

requirement

states

that

applications

on

MQeMoonQM

must

be

able

to

send

messages

to

MQeEarthQ

in

an

asynchronous

manner.

This

requires

a

remote

queue

definition

to

set

up

the

asynchronous

linkage

to

the

MQeEarthQ

queue.

2.

Define

a

remote

queue

with

the

following

parameters:

Queue

name:

MQeEarthQ

Queue

manager

name:

MQeEarthQM

Access

mode:

Asynchronous

Applications

on

MQeMoonQM

now

have

access

to

the

MQeMoonQ

(a

local

queue)

in

a

synchronous

manner,

and

the

MQeEarthQ

in

an

asynchronous

manner.

MQeEarthQM

to

MQeMoonQM

Because

the

MQeMoonQM

is

not

attached

to

the

network

for

most

of

the

time,

use

a

store-and-forward

queue

on

the

MQeEarthQM

to

collect

messages

destined

for

the

MQeMoonQM

queue

manager.

On

MQeEarthQM:

1.

Define

a

store-and-forward-queue

with

the

following

parameters:

Queue

name:

TO.HANDHELDS

Queue

Manager

Name:

MQeEarthQM

102

Configuring

MQe

Objects

2.

Add

a

queue

manager

to

the

store-and-forward

queue

using

the

following

parameters:

Queue

Name:

TO.HANDHELDS

Queue

manager:

MQeMoonQM

A

(similarly

named)

home-server

queue

is

needed

on

the

MQeMoonQM

queue

manager.

This

queue

pulls

messages

out

of

the

store-and-forward

queue

and

puts

them

to

a

queue

on

the

MQeMoonQM

queue

manager.

On

MQeMoonQM:

1.

Define

a

home-server

queue

with

the

following

parameters:

Queue

Name:

TO.HANDHELDS

Queue

manager

name:

MQeEarthQM

Any

messages

arriving

at

MQeEarthQM

that

are

destined

for

MQeMoonQM

are

stored

temporarily

in

the

store-and-forward

queue

TO.HANDHELDS.

When

MQeMoonQM

next

connects

to

the

network,

its

home-server

queue

TO.HANDHELDS

gets

any

messages

currently

on

the

store-and-forward

queue,

and

delivers

them

to

the

MQeMoonQM

queue

manager,

for

storage

on

local

queues.

Applications

on

MQeEarthQM

can

now

send

messages

to

MQeMoonQ

in

an

asynchronous

manner.

MQeEarthQM

to

MQSaturnQ

On

MQeEarthQM:

1.

Define

a

bridge

with

the

following

parameters:

Bridge

name:

MQeEarthQMBridge

2.

Define

an

MQ

queue

manager

proxy

with

the

following

parameters:

Bridge

Name:

MQeEarthQMBridge

MQ

QMgr

Proxy

Name:

MQSaturnQM

Hostname:

20.8.9.51

3.

Define

a

client

connection

with

the

following

parameters:

Bridge

Name:

MQeEarthQMBridge

MQ

QMgr

Proxy

Name:

MQSaturnQM

ClientConnectionName:

MQeEarth.CHANNEL

SyncQName:

MQeEarth.SYNC.QUEUE

4.

Define

a

connection

with

the

following

parameters:

ConnectionName:

MQSaturnQM

Channel:

null

Adapter:

null

5.

Define

an

MQ

bridge

queue

with

the

following

parameters:

Queue

Name:

MQSaturnQ

MQ

Queue

manager

name:

MQSaturnQM

Bridge

name:

MQeEarthQMBridge

MQ

QMgr

Proxy

Name:

MQSaturnQM

ClientConnectionName:

MQeEarth.CHANNEL

On

MQSaturnQM:

Configuring

MQe

objects

103

1.

Define

a

server

connection

channel

with

the

following

parameters:

Name:

MQeEarth.CHANNEL

2.

Define

a

local

sync

queue

with

the

following

parameters:

Name:

MQeEarth.SYNC.QUEUE

The

sync

queue

is

needed

for

assured

delivery.

Applications

on

MQeEarthQM

can

now

send

messages

to

the

MQSaturnQ

on

MQSaturnQM.

MQeEarthQM

to

MQJupiterQ

On

MQeEarthQM:

1.

Define

a

connection

with

the

following

parameters:

ConnectionName:

MQeJupiterQM

Channel:

null

Adapter:

null

2.

Define

an

MQ

bridge

queue

with

the

following

parameters:

Queue

Name:

MQJupiterQ

MQ

Queue

manager

name:

MQJupiterQM

Bridge

name:

MQeEarthQMBridge

MQ

QMgr

Proxy

Name:

MQSaturnQM

ClientConnectionName:

MQeEarth.CHANNEL

On

MQSaturnQM:

1.

Define

a

remote

queue

definition

with

the

following

parameters:

Queue

Name:

MQJupiterQ

Transmission

Queue:

MQJupiterQM.XMITQ

On

both

MQSaturnQM

and

MQJupiterQM:

1.

Define

a

channel

to

move

the

message

from

the

MQJupiterQM.XMITQ

on

MQSaturnQM

to

MQJupiterQM.

Now

applications

on

MQeEarthQM

can

send

a

message

to

MQJupiterQ

on

MQJupiterQM,

through

MQSaturnQM.

MQeMoonQM

to

MQJupiterQ

and

MQSaturnQ

On

MQeMoonQM:

1.

Define

a

connection

with

the

following

parameters:

Target

Queue

manager

name:

MQSaturnQM

Adapter:

MQeEarthQM

The

connection

indicates

that

any

message

bound

for

the

MQSaturnQM

queue

manager

should

go

through

the

MQeEarthQM

queue

manager.

2.

Define

a

remote

queue

definition

with

the

following

parameters:

Queue

name:

MQSaturnQ

Queue

manager

name:

MQSaturnQM

Access

mode:

Asynchronous

3.

Define

a

connection

with

the

following

parameters:

104

Configuring

MQe

Objects

Target

Queue

manager

name:

MQJupiterQM

Adapter:

MQeEarthQM

4.

Define

a

remote

queue

definition

with

the

following

parameters:

Queue

name:

MQJupiterQ

Queue

manager

name:

MQJupiterQM

Access

mode:

Asynchronous

Applications

connected

to

MQeMoonQM

can

now

issue

messages

to

MQeMoonQ,

MQeEarthQ,

MQSaturnQ,

and

MQJupiterQ,

even

when

the

handheld

PC

is

disconnected

from

the

network.

MQSaturnQM

to

MQeEarthQ

On

MQSaturnQM:

1.

Define

a

local

queue

with

the

following

parameters:

Queue

name:

MQeEarth.XMITQ

Queue

type:

transmission

queue

2.

Define

a

queue

manager

alias

(remote

queue

definition)

with

the

following

parameters:

Queue

name:

MQeEarthQM

Remote

queue

manager

name:

MQeEarthQM

Transmission

queue:

MQeEarth.XMITQ

On

MQeEarthQM:

1.

Define

a

Transmission

queue

listener

with

the

following

parameters:

Bridge

name:

MQeEarthQMBridge

MQ

QMgr

Proxy

Name:

MQSaturnQM

ClientConnectionName:

MQeEarth.CHANNEL

Listener

Name:

MQeEarth.XMITQ

Applications

on

MQSaturnQM

can

now

send

messages

to

MQeEarthQ

using

the

MQeEarthQM

queue

manager

alias

.

This

routes

each

message

onto

the

MQeEarth.XMITQ,

where

the

MQe

transmission

queue

listener

MQeEarth.XMITQ

gets

them,

and

moves

them

onto

the

MQe

network.

MQSaturnQM

to

MQeMoonQ

On

MQSaturnQM:

1.

Define

a

queue

manager

alias

(remote

queue

definition)

with

the

following

parameters:

Queue

name:

MQeMoonQM

Remote

queue

manager

name:

MQeMoonQM

Transmission

queue:

MQeEarth.XMITQ

Applications

on

MQSaturnQM

can

now

send

messages

to

MQeMoonQ

using

the

MQeMoonQM

queue

manager

alias

.

This

routes

each

message

to

the

MQeEarth.XMITQ,

where

the

MQe

transmission

queue

listener

MQeEarth.XMITQ

gets

them,

and

posts

them

onto

the

MQe

network.

Configuring

MQe

objects

105

The

store-and-forward

queue

TO.HANDHELDS

collects

the

message,

and

when

the

MQeMoonQM

next

connects

to

the

network,

the

home-server

queue

retrieves

the

message

from

the

store-and-forward

queue,

and

delivers

the

message

to

the

MQeMoonQ.

MQJupiterQM

to

MQeMoonQ

On

MQJupiterQM:

Set

up

remote

queue

manager

aliases

for

the

MQeEarthQM

and

MQeMoonQM

to

route

messages

to

MQSaturnQM

using

normal

MQ

routing

techniques.

Administration

of

the

bridge

Bridge

administration

actions

Run

state:

Each

administered

object

has

a

run

state.

This

can

be

running

or

stopped

indicating

whether

the

administered

object

is

active

or

not.

When

an

administered

object

is

stopped,

it

cannot

be

used,

but

its

configuration

parameters

can

be

queried

or

updated.

If

the

MQ

bridge

queue

references

a

bridge

administered

object

that

is

stopped,

it

is

unable

to

convey

an

MQe

message

onto

the

MQ

network

until

the

bridge,

MQ

queue

manager

proxy,

and

client

connection

objects

are

all

started.

The

run

state

of

administered

objects

can

be

changed

using

the

start

and

stop

actions

from

the

MQeMQBridgeAdminMsg,

MQeMQQMgrProxyAdminMsg,

MQeClientConnectionAdminMsg,

orMQeListenerAdminMsg

administration

message

classes.

Start

action:

An

administrator

can

send

a

start

action

to

any

of

the

administered

objects.

The

affect

children

boolean

flag

affects

the

results

of

this

action:

v

The

start

action

starts

the

administered

object

and

all

its

children

(and

children’s

children)

if

the

affect

children

boolean

field

is

in

the

message

and

is

set

to

true.

v

If

the

flag

is

not

in

the

message

or

is

set

to

false,

only

the

administered

object

receiving

the

start

action

changes

its

run-state.

For

example,

sending

start

to

a

bridge

object

with

affect

children

as

true

causes

all

proxy,

client

connection,

and

listeners

that

are

ancestors,

to

start.

If

affect

children

is

not

specified,

only

the

bridge

is

started.

An

object

cannot

be

started

unless

its

parent

object

has

already

been

started.

Sending

a

start

event

to

an

administered

object

attempts

to

start

all

the

objects

higher

in

the

hierarchy

that

are

not

already

running.

Stop

action:

An

administered

object

can

be

stopped

by

sending

it

a

stop

action.

The

receiving

administered

object

always

makes

sure

all

the

objects

below

it

in

the

hierarchy

are

stopped

before

it

is

stopped

itself.

Inquire

action:

The

inquire

action

queries

values

from

an

administered

object.

If

the

administered

object

is

running,

the

values

returned

on

the

inquire

are

those

that

are

currently

in

use.

106

Configuring

MQe

Objects

The

values

returned

from

a

stopped

object

reflect

any

recent

changes

to

values

made

by

an

update

action.

Thus,

a

sequence

of:

start,

update,

inquire

returns

the

values

configured

before

the

update,

A

sequence

of:

start,

update,

stop,

inquire

returns

the

values

configured

after

the

update.

You

may

find

it

less

confusing

if

you

stop

any

administered

object

before

updating

variable

values.

Update

action:

The

update

action

changes

one

or

more

values

for

characteristics

for

an

administered

object.

The

values

set

by

an

update

action

do

not

become

current

until

the

administered

object

is

next

stopped.

(See

“Inquire

action”

on

page

106.)

Delete

action:

The

delete

action

permanently

removes

all

current

and

persistent

information

about

the

administered

object.

The

affect

children

boolean

flag

affects

the

outcome

of

this

action.

If

the

affect

children

flag

is

present

and

set

to

true

the

administered

object

receiving

this

action

issues

a

stop

action,

and

then

a

delete

action

to

all

the

objects

below

it

in

the

hierarchy,

removing

a

whole

piece

of

the

hierarchy

with

one

action.

If

the

flag

is

not

present,

or

it

is

set

to

false,

the

administered

object

deletes

only

itself,

but

this

action

cannot

take

place

unless

all

the

objects

in

the

hierarchy

below

the

current

one

have

already

been

deleted.

Create

action:

The

create

action

creates

an

administered

object.

The

run

state

of

the

administered

object

created

is

initially

set

to

stopped.

Bridge

considerations

when

stopping

an

MQ

queue

manager

Before

you

stop

an

MQ

queue

manager,

issue

a

stop

administration

message

to

all

the

MQ

queue-manager-proxy

bridge

objects.

This

stops

the

MQe

network

from

trying

to

use

the

MQ

queue

manager

and

possibly

interfering

with

the

shutdown

of

the

MQ

queue

manager.

This

can

also

be

achieved

by

issuing

a

single

stop

administration

message

to

the

MQeBridges

object.

If

you

choose

not

to

stop

the

MQ

queue-manager-proxy

bridge

object

before

you

shut

the

MQ

queue

manager,

the

behavior

of

the

MQ

shutdown

and

the

MQ

bridge

depends

on

the

type

of

MQ

queue

manager

shutdown

you

choose,

immediate

shutdown

or

controlled

shutdown.

Immediate

shutdown:

Stopping

an

MQ

queue

manager

using

immediate

shutdown

severs

any

connections

that

the

MQ

bridge

has

to

the

MQ

queue

manager

(this

applies

to

connections

formed

using

the

MQSeries

Classes

for

Java

in

either

the

bindings

or

client

mode).

The

MQ

system

shuts

down

as

normal.

This

causes

all

the

MQ

bridge

transmission

queue

listeners

to

stop

immediately,

each

one

warning

that

it

has

shut

down

due

to

the

MQ

queue

manager

stop.

Any

MQ

bridge

queues

that

are

active

retain

a

broken

connection

to

the

MQ

queue

manager

until:

Configuring

MQe

objects

107

v

The

connection

times-out,

after

being

idle

for

an

idle

time-out

period,

as

specified

on

the

client-connection

bridge

object,

at

which

point

the

broken

connection

is

closed.

v

The

MQ

bridge

queue

is

told

to

perform

some

action,

such

as

put

a

message

to

MQ,

that

attempts

to

use

the

broken

connection.

The

putMessage

operation

fails

and

the

broken

connection

is

closed.

When

an

MQ

bridge

queue

has

no

connection,

the

next

operation

on

that

queue

causes

a

new

connection

to

be

obtained.

If

the

MQ

queue

manager

is

not

available,

the

operation

on

the

queue

fails

synchronously.

If

the

MQ

queue

manager

has

been

restarted

after

the

shutdown,

and

a

queue

operation,

such

as

putMessage,

acts

on

the

bridge

queue,

then

a

new

connection

to

the

active

MQ

queue

manager

is

established,

and

the

operation

executes

as

expected.

Controlled

shutdown:

Stopping

an

MQ

queue

manager

using

the

controlled

shutdown

does

not

sever

any

connections

immediately,

but

waits

until

all

connections

are

closed

(this

applies

to

connections

formed

using

the

MQSeries

Classes

for

Java

in

either

the

bindings

or

client

mode).

Any

active

MQ

bridge

transmission

queue

listeners

notice

that

the

MQ

system

is

quiescing,

and

stop

with

a

relevant

warning.

Any

MQ

bridge

queues

that

are

active

retain

a

connection

to

the

MQ

queue

manager

until:

v

The

connection

times-out,

after

being

idle

for

an

idle

time-out

period,

as

specified

on

the

client

connection

bridge

object,

at

which

point

the

broken

connection

is

closed,

and

the

controlled

shutdown

of

the

MQ

queue

manager

completes.

v

The

MQ

bridge

queue

is

told

to

perform

some

action,

such

as

put

a

message

to

MQ,

that

attempts

to

use

the

broken

connection.

The

putMessage

operation

fails,

the

broken

connection

is

closed,

and

the

controlled

shutdown

of

the

MQ

queue

manager

completes.

The

bridge

client-connection

object

maintains

a

pool

of

connections,

that

are

awaiting

use.

If

there

is

no

bridge

activity,

the

pool

retains

MQ

client

channel

connections

until

the

connection

idle

time

exceeds

the

idle

time-out

period

(as

specified

on

the

client

connection

object

configuration),

at

which

point

the

channels

in

the

pool

are

closed.

When

the

last

client

channel

connection

to

the

MQ

queue

manager

is

closed,

the

MQ

controlled

shutdown

completes.

Administered

objects

and

their

characteristics

This

section

describes

the

characteristics

of

the

different

types

of

administered

objects

associated

with

the

MQe

MQ

bridge.

Characteristics

are

object

attributes

that

can

be

queried

using

an

inquireAll()

administration

message.

The

results

can

be

read

and

used

by

the

application,

or

they

can

be

sent

in

an

update

or

create

administration

message

to

set

the

values

of

the

characteristics.

Some

characteristics

can

also

be

set

using

the

create

and

update

administration

messages.

Each

characteristic

has

a

unique

label

associated

with

it

and

this

label

is

used

to

set

and

get

the

characteristic

value.

The

following

lists

show

the

attributes

that

apply

to

each

administered

object.

The

label

constants

are

defined

in

the

header

file

published/MQe_MQBridge_Constants.h.

If

you

include

published/MQe_API.h

in

108

Configuring

MQe

Objects

your

installation,

this

file

is

included

automatically:class

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.

Characteristics

of

bridges

objects

Refer

to

Java

API

Programming

Reference

for

information

on

the

com.ibm.mqe.mqbridge.MQeMQBridgesAdminMsg.

Characteristics

of

bridge

objects

Refer

to

Java

API

Programming

Reference

for

information

on

the

com.ibm.mqe.mqbridge.MQeMQBridgeAdminMsg.

Characteristics

of

MQ

queue

manager

proxy

objects

Refer

to

Java

API

Programming

Reference

for

information

on

the

com.ibm.mqe.mqbridge.MQeMQQMgrProxyAdminMsg.

Characteristics

of

client

connection

objects

Refer

to

Java

API

Programming

Reference

for

information

on

the

com.ibm.mqe.mqbridge.MQeClientConnectionAdminMsg.

Characteristics

of

MQ

transmission

queue

listener

objects

Refer

to

Java

API

Programming

Reference

for

information

on

the

com.ibm.mqe.mqbridge.MQeListenerAdminMsg.

Handling

undeliverable

messages

The

MQ

bridge’s

transmission

queue

listener

acts

in

a

similar

way

to

an

MQ

channel,

pulling

messages

from

an

MQ

transmission

queue,

and

delivering

them

to

the

MQe

network.

It

follows

the

MQe

convention

in

that

if

a

message

cannot

be

delivered,

an

undelivered

message

rule

is

consulted

to

determine

how

the

transmission

queue

listener

should

react.

If

the

rule

indicates

the

report

options

in

the

message

header,

and

these

indicate

that

the

message

should

be

put

onto

a

dead-letter

queue,

the

message

is

placed

on

the

MQ

queue,

on

the

sending

queue

manager.

Bridge

National

Language

Support

This

section

describes

how

the

MQ

bridge

handles

messages

flowing

between

MQSeries

systems

that

use

different

national

languages.

The

following

diagram

depicts

the

flow

of

a

message

from

an

MQe

client

application

to

an

MQ

application.

Configuring

MQe

objects

109

1.

Client

application

a.

The

client

application

builds

an

MQe

message

object

containing

the

following

data:

A

Unicode

field

This

string

is

generated

using

appropriate

libraries

available

on

the

client

machine

(if

C/C++

is

being

used).

A

byte

field

This

field

should

never

be

translated

An

ascii

field

This

string

has

a

very

limited

range

of

valid

characters,

conforming

to

the

ASCII

standard.

The

only

valid

characters

are

those

that

are

invariant

over

all

ASCII

codepages.
b.

The

message

is

put

to

the

Palm

queue

manager.

No

translation

is

done

during

this

put.
2.

Client

queue

manager

puts

to

the

server

queue

manager

The

message

is

not

translated

at

all

through

this

step.

3.

MQe

server

puts

the

message

onto

the

MQ

bridge

queue

The

message

is

not

translated

at

all

through

this

step.

4.

MQ

bridge

passes

the

MQe

message

to

the

user-written

transformer

Note:

The

examples

in

this

section

are

in

Java

because

transformers

can

only

be

written

in

Java.

Refer

to

the

MQe

Application

Programming

Guide

for

more

information.

The

transformer

creates

an

MQ

message

as

follows:

v

The

Unicode

field

in

the

MQe

message

is

retrieved

using:

String

value

=

MQemsg.GetUnicode(fieldname)

v

The

retrieved

value

is

copied

to

the

MQ

message

using

MQmsg.writeChars(

value

)

v

The

byte

field

in

the

MQe

message

is

retrieved

using:

Palm
queue

manager

WebSphere
MQ

bridge

Transformer

WebSphere
MQ

queue
manager

W
eb

S
ph

er
e

M
Q

Ja
va

 C
lie

nt
 /

B
in

di
ng

s

WebSphere
MQ

Everyplace
server
queue

manager

WebSphere MQ
Everyplace server

Palm
application

Palm Pilot WebSphere MQ
server

1

2 3 5

WebSphere
MQ

application

64

Figure

20.

Message

flow

from

MQe

to

MQ

110

Configuring

MQe

Objects

Byte

value

=

MQemsg.getByte(fieldName)

v

The

retrieved

value

is

copied

to

the

MQ

message

using

MQmsg.writeByte(value)

v

The

ascii

field

in

the

MQe

message

is

retrieved

using

either

MQmsg.writeChars(value)

to

create

a

unicode

value,

or

MQmsg.writeString(

value)

to

create

a

code-set-dependent

value,

in

the

MQ

message.

If

using

writeString(),

the

character

set

of

the

string

may

also

be

set.

The

transformer

returns

the

resultant

MQ

message

to

the

calling

MQ

bridge

code.

5.

The

MQ

bridge

passes

the

message

to

MQ

using

the

MQ

Classes

for

Java

Unicode

values

in

the

MQ

message

are

translated

from

big-endian

to

little-endian,

and

vice

versa,

as

required.

Byte

values

in

the

MQ

message

are

translated

from

big-endian

to

little-endian,

and

vice

versa,

as

required.

The

field

that

was

created

using

writeString()

is

translated

as

the

message

is

put

to

MQ,

using

conversion

routines

inside

the

MQ

Classes

for

Java.

ASCII

data

should

remain

ASCII

data

regardless

of

the

character

set

conversions

performed.

The

translations

done

during

this

step

depend

on

the

code

page

of

the

message,

the

CCSID

of

the

sending

MQ

Classes

for

Java

client

connection,

and

the

CCSID

of

the

receiving

MQ

server

connection.

6.

The

message

is

got

by

an

MQ

application

If

the

message

contains

a

unicode

string,

the

application

must

deal

with

that

string

as

a

unicode

string,

or

else

convert

it

into

some

other

format

(UTF8

,

for

example).

If

the

message

contains

a

byte

string,

the

application

may

use

the

bytes

as

it

is

(raw

data).

If

the

message

contains

a

string,

it

is

read

from

the

message,

and

may

be

converted

to

a

different

data

format

as

required

by

the

application.

This

conversion

is

dependent

on

the

codeset

value

in

the

characterSet

header

field.

Java

classes

provide

this

automatically.

Conclusion

If

you

have

an

MQe

application,

and

wish

to

convey

character-related

data

from

MQe

to

MQ,

your

choice

of

method

is

determined

largely

by

the

data

you

wish

to

convey:

v

If

your

data

contains

characters

in

the

variant

ranges

of

the

ASCII

character

codepages,

the

character

for

a

codepoint

changes

as

you

change

between

the

various

ASCII

codepages,

then

use

either

putUnicode,

which

is

never

subject

to

translation

between

codepages,

or

putArrayOfByte,

in

which

case

you

have

to

handle

the

translation

between

the

sender’s

codepage

and

the

receiver’s

codepage.

Note:

DO

NOT

USE

putAscii()

as

the

characters

in

the

variant

parts

of

the

ASCII

codepages

are

subject

to

translation.

v

If

your

data

contains

only

characters

in

the

invariant

ranges

of

the

ASCII

character

codepages,

then

you

can

use

putUnicode

(which

is

never

subject

to

translation

between

codepages)

or

putAscii,

which

is

never

subject

to

translation

between

codepages,

as

all

your

data

lies

within

the

invariant

range

of

the

ASCII

codepages.

Configuring

queue

managers

as

servlets

Introduction

An

MQe

queue

manager

can

run

within

a

servlet.

For

more

information

on

writing

servlets

that

use

MQe

queue

managers,

see

Servlet

in

Queue

manager

operations.

Configuring

MQe

objects

111

Note:

In

MQe

version

2.0,

the

deprecated

jar

must

be

in

the

classpath

for

servlets

to

work.

This

section

describes

an

example

servlet

that

is

included

with

MQe,

and

how

to

configure

it

using

WebSphere

Application

Server

4.0

(WAS).

An

example

servlet

configuration

using

WAS

An

MQe

queue

manager

can

run

within

a

servlet.

For

more

information

on

writing

servlets

that

use

MQe

queue

managers,

see

Servlet

in

Queue

manager

operations.

Note:

In

MQe

version

2.0,

the

deprecated

jar

must

be

in

the

classpath

for

servlets

to

work.

This

section

describes

an

example

servlet

that

is

included

with

MQe,

and

how

to

configure

it

using

WebSphere

Application

Server

4.0

(WAS).

An

example

servlet

that

receives

trace

from

the

com.ibm.mqe.trace.MQeTraceToBinaryMidp

trace

handler

is

included

with

the

example

classes.

It

is

examples.trace.MQeTraceServlet.

Using

this

as

an

example,

the

following

information

explains

how

to

configure

it

to

work

with

WAS

4.0.

Other

application

servers

will

require

different

steps.

Start

the

Application

Assembly

tool

First

of

all,

the

servlet

code

must

be

packaged

into

a

form

that

suits

the

application

server.

This

example

will

create

a

web

module

for

use

with

WAS

4.0.

From

the

WebSphere

Administrative

Console,

choose

the

menu

item

Application

Assembly

tool

from

the

Tools

menu.

The

Application

assembly

tool

should

appear.

Figure

21.

The

WebSphere

administrative

console

112

Configuring

MQe

Objects

Select

″Create

Web

Module

Wizard″,

and

click

OK.

In

specifying

the

properties,

enter

the

file

name,

and

more

information,

if

you

wish.

Specifying

web

module

properties

In

specifying

the

properties,

enter

the

file

name,

and

more

information,

if

you

wish.

Adding

files

to

the

application

The

next

step

is

to

add

files

to

the

application.

The

examples.trace.MQeTraceServlet

is

in

the

MQeExamples.jar

and

relies

on

classes

from

MQeGateway.jar,

MQeExamples.jar

and

MQeTraceDecode.jar.

Since

you’ve

included

all

the

classes

you

need,

the

next

panel

that

asks

you

if

you

want

to

make

distributable,

or

set

a

classpath,

can

be

left

blank,

just

click

next.

The

next

panel

is

to

set

any

icons

for

this

web

application.

If

you

don’t

have

any,

just

click

next.

Figure

22.

Specifying

Web

module

properties

Configuring

MQe

objects

113

Adding

web

components

Next

you

have

to

specify

the

component

properties.

Only

the

component

name

is

compulsory,

but

you

may

want

to

add

a

display

name

and

a

description.

The

next

panel

allows

you

to

specify

which

class

is

the

servlet

to

run.

Figure

23.

Adding

files

to

the

application

Figure

24.

Adding

web

comopnents

114

Configuring

MQe

Objects

Specifying

component

type

and

class

name

The

next

panel

allows

you

to

specify

which

class

is

the

servlet

to

run.

The

next

four

panels

can

safely

be

left

blank,

they

are

for

specifying

icons,

security

roles

and

initialization

parameters.

After

this,

you

must

specify

what

URL

will

map

to

your

servlet.

The

final

URL

will

be

of

the

form

http://hostname:port/specified_dir/specified_url_pattern

Specifying

a

URL

to

map

to

your

servlet

After

this,

you

must

specify

what

URL

will

map

to

your

servlet.

The

final

URL

will

be

of

the

form

http://hostname:port/specified_dir/specified_url_pattern

Figure

25.

Specifying

component

type

and

class

name

Configuring

MQe

objects

115

All

of

the

subsequent

panels

can

be

left

blank.

They

are

for

adding

resources,

context

parameters,

error

pages,

MIME

mappings,

tag

libraries,

welcome

files

and

EJB

references.

Click

Finish,

and

then

save

the

file.

If

you

save

the

file

to

\AppServer\InstallableApps\

where

you

installed

WebSphere

application

server,

then

it

will

automatically

appear

in

the

list

of

servlets

in

the

administration

panel.

Finishing

and

saving

the

file

Click

Finish,

and

then

save

the

file.

If

you

save

the

file

to

\AppServer\InstallableApps\

where

you

installed

WebSphere

application

server,

then

it

will

automatically

appear

in

the

list

of

servlets

in

the

administration

panel.

Figure

26.

Specifying

a

URL

to

map

to

your

servlet

116

Configuring

MQe

Objects

Next,

this

component

needs

to

be

imported

and

started.

From

the

wizards

button,

select

″Install

Enterprise

Application″.

Install

enterprise

application

Next,

this

component

needs

to

be

imported

and

started.

From

the

wizards

button,

select

″Install

Enterprise

Application″.

Install

your

component

as

a

standalone

module.

Installing

your

component

as

a

standalone

module

Install

your

component

as

a

standalone

module.

Figure

27.

Saving

the

file

Figure

28.

Install

enterprise

application

Configuring

MQe

objects

117

Specify

an

application

name,

and

a

root

for

the

web

module.

This

is

the

part

of

the

URL

immediately

after

the

http://hostname:portnumber/

and

shouldn’t

be

left

as

/

Specifying

an

application

name

Specify

an

application

name,

and

a

root

for

the

web

module.

This

is

the

part

of

the

URL

immediately

after

the

http://hostname:portnumber/

and

shouldn’t

be

left

as

/

All

of

the

subsequent

panels

can

be

left

blank,

they

are

about

controlling

users,

EJB

roles,

JNDI

bindings,

EJB

mappings,

resource

references,

datasources

for

EJB,

data

sources

for

CMP,

and

virtual

hosts.

Figure

29.

Installing

your

component

as

a

standalone

module

Figure

30.

Specifying

an

application

name

118

Configuring

MQe

Objects

Finishing

the

configuration

Starting

the

web

module

Next,

the

web

module

has

to

be

started.

Select

the

application

server

that

it

has

been

configured

for.

It

should

appear

under

Installed

Web

Modules.

Figure

31.

Information

dialog

Figure

32.

Starting

the

web

module

Configuring

MQe

objects

119

Start

succeeded

Using

the

servlet

If

everything

went

well,

it

should

now

be

available

for

use

from

the

com.ibm.mqe.trace.MQeTraceToBinaryMidp.

Because

this

servlet

doesn’t

support

get,

then

viewing

the

URL

with

a

web

browser

will

result

in

a

405

error.

This

is

normal.

If

your

application

server

is

set

up

with

the

defaults,

the

URL

for

the

servlet

is

http://localhost:9080/mqetrace/trace.

JMS

(Java

Message

Service)

configuration

JMS

Object

naming

changes

from

V2.0.1

The

following

naming

changes

apply

starting

from

MQe

V2.0.1

(the

old

names

will

still

work

for

backward

compatibility).

Old

name

New

name

QueueConnection

Connection

MQeQueueConnection

MQeConnection

MQeQueueConnectionFactory

MQeConnectionFactory

QueueConnectionFactory

ConnectionFactory

Introduction

to

JMS

For

JMS

applications

to

be

portable,

they

must

be

isolated

from

the

administration

of

the

underlying

messaging

provider.

This

is

achieved

by

defining

JMS

administered

objects

which

encapsulate

provider-specific

information.

Administered

objects

are

created

and

configured

using

provider-specific

facilities,

but

are

used

by

clients

through

portable

JMS

interfaces.

There

are

two

types

of

JMS

administered

object:

Figure

33.

Information

dialog

success

message

120

Configuring

MQe

Objects

v

A

ConnectionFactory,

used

by

a

client

to

create

a

connection

with

a

provider.

v

A

Destination,

used

by

a

client

to

specify

the

destination

of

messages

it

is

sending

and

the

source

of

messages

that

it

receives.

In

MQe

JMS

these

correspond

to

two

classes:

v

MQeConnectionFactory

must

be

configured

so

that

it

can

obtain

a

reference

to

an

MQe

queue

manager.

v

MQeJMSQueue

can

be

configured

with

details

of

an

MQe

queue.

Note:

These

classes

are

typically

placed

in

a

JNDI

namespace

by

an

administrator.

However,

because

on

small

devices

access

to

a

JNDI

namespace

may

be

impractical

or

may

represent

an

unnecessary

overhead,

these

classes

do

not

include

the

necessary

methods

to

allow

them

to

be

bound

by

JNDI.

Instead,

two

subclasses,

MQeJNDIConnectionFactory

and

MQeJMSJNDIQueue

extend

these

classes

to

allow

them

to

be

stored

using

JNDI.

Configuring

MQeConnectionFactory

MQeConnectionFactory

is

the

MQe

implementation

of

the

javax.jms.ConnectionFactory

interface.

It

is

used

to

generate

instances

of

Connection

classes,

which

for

MQe

must

have

a

reference

to

an

active

queue

manager.

The

ConnectionFactory

must

be

able

to

create

a

reference

to

an

active

queue

manager

in

order

to

pass

it

on

to

the

Connection

classes

that

it

generates.

The

MQeConnectionFactory

class

can

be

configured

to

obtain

a

reference

to

a

queue

manager

in

the

following

ways:

v

It

can

start

a

client

queue

manager

itself.

v

It

can

look

for

a

queue

manager

already

running

in

the

JVM.

However,

if

neither

of

these

options

are

suitable

then

the

MQeConnectionFactory

class

can

be

extended

to

provide

the

required

behavior,

see

“Extending

MQeConnectionFactory”

on

page

129.

To

configure

a

connection

factory

to

start

a

queue

manager

itself,

it

must

be

given

a

reference

to

an

initialization

(.ini)

file

that

contains

all

the

information

it

needs

to

start

the

queue

manager.

The

connection

factory

is

configured

using

its

setIniFileName()

method:

(MQeConnectionFactory(factory)).setIniFileName(filename);

where

’filename’

is

the

name

of

the

initialization

file.

When

the

connection

factory

has

been

configured

with

the

name

of

the

initialization

file,

it

can

either

be

stored

in

a

JNDI

directory,

so

that

it

can

be

looked

up

by

application

programs,

or

it

can

be

used

directly

in

an

application

program.

When

the

connection

factory

generates

its

first

Connection

it

starts

the

client

queue

manager

using

the

initialization

file

and

passes

a

reference

to

the

active

queue

manager

to

the

Connection.

If

it

generates

more

Connection

classes,

it

passes

them

a

reference

to

the

same

active

queue

manager.

When

the

last

Connection

is

closed,

the

connection

factory

closes

the

queue

manager.

Note:

Do

not

use

the

MQeQueueManager.close()

methods

to

shut

down

a

queue

manager

started

by

a

connection

factory.

Configuring

MQe

objects

121

To

configure

a

connection

factory

to

look

for

an

existing

queue

manager,

the

initialization

file

name

should

be

set

to

null.

This

is

the

default

value

when

the

MQeConnectionFactory

class

is

created,

and

it

can

also

be

set

explicitly

using

the

setIniFileName()

method:

(MQeConnectionFactory(factory)).setIniFileName(null);

In

this

case,

when

the

connection

factory

generates

a

Connection,

it

looks

for

a

queue

manager

already

running

in

the

JVM

and

passes

the

Connection

a

reference

to

it.

An

exception

is

thrown

if

no

queue

manager

is

running.

If

it

generates

more

Connection

classes,

it

passes

them

a

reference

to

the

same

queue

manager.

When

an

external

queue

manager

is

used,

the

connection

factory

does

not

close

the

queue

manager

when

the

last

Connection

is

closed.

Note:

A

JVM

can

run

only

one

MQe

queue

manager

at

a

time.

Therefore,

if

you

use

a

connection

factory

to

start

a

queue

manager,

it

should

not

be

used

to

start

the

same

queue

manager

in

a

different

JVM,

running

on

the

same

machine,

while

the

first

one

is

still

active.

Configuring

MQeJMSQueue

MQeJMSQueue

is

the

MQe

implementation

of

the

Queue

class.

It

is

used

to

represent

MQe

queues

within

JMS

applications.

It

is

configured

by

its

constructor:

public

MQeJMSQueue(String

mqeQMgrName,

String

mqeQueueName)

throws

JMSException

where:

v

mqeQMgrName

is

the

name

of

the

MQe

queue

manager

which

owns

the

queue

v

mqeQueueName

is

the

name

of

the

MQe

queue

If

the

queue

manager

name

is

null,

the

local

queue

manager

is

used

(that

is,

the

queue

manager

that

JMS

is

connected

to).

If

the

queue

name

is

null,

a

JMSException

is

thrown.

When

the

queue

has

been

configured,

it

can

either

be

stored

in

a

JNDI

directory,

so

that

it

can

be

looked

up

by

application

programs,

or

it

can

be

used

directly

in

an

application

program.

There

is

an

alternative

way

to

configure

a

queue

within

an

application,

by

using

the

QueueSession.createQueue()

method.

This

takes

one

parameter,

which

is

the

name

of

the

queue.

For

MQe

JMS

this

can

either

be

the

queue

manager

name

followed

by

a

plus

sign

followed

by

the

queue

name:

ioQueue

=session.createQueue("myQM+myQueue");

or

just

the

queue

name:

ioQueue

=session.createQueue("myQueue");

If

the

queue

name

is

used

on

its

own,

the

local

queue

manager

is

assumed.

Note:

MQe

JMS

can

only

put

messages

to

a

local

queue

or

an

asynchronous

remote

queue

and

it

can

only

receive

messages

from

a

local

queue.

It

cannot

put

to

or

receive

messages

from

a

synchronous

remote

queue.

The

MQe

administration

tool

for

JMS

The

administration

tool

provides

a

simple

way

for

administrators

to

define

and

edit

the

properties

of

MQe

JMS

administered

objects.

This

tool

is

based

on

the

administration

tool

shipped

with

JMS

for

MQ,

differing

only

in

the

properties

that

can

be

applied

to

JMS

administered

objects.

122

Configuring

MQe

Objects

The

JMS

administration

tool

is

included

in

MQeJMSAdmin.jar.

Configuring

the

JMS

administration

tool

You

must

configure

the

administration

tool

with

values

for

the

following

three

parameters:

INITIAL_CONTEXT_FACTORY

This

indicates

the

service

provider

that

the

tool

uses.

There

are

currently

two

supported

values

for

this

property:

v

com.sun.jndi.ldap.LdapCtxFactory

(for

LDAP)

v

com.sun.jndi.fscontext.RefFSContextFactory

(for

file

system

context)

PROVIDER_URL

This

indicates

the

URL

of

the

session’s

initial

context,

the

root

of

all

JNDI

operations

carried

out

by

the

tool.

Two

forms

of

this

property

are

currently

supported:

v

ldap://hostname/contextname

(for

LDAP)

v

file:[drive:]/pathname

(for

file

system

context)

SECURITY_AUTHENTICATION

This

indicates

whether

JNDI

passes

over

security

credentials

to

your

service

provider.

This

parameter

is

used

only

when

an

LDAP

service

provider

is

used.

This

property

can

currently

take

one

of

three

values:

v

none

(anonymous

authentication)

v

simple

(simple

authentication)

v

CRAM-MD5

(CRAM-MD5

authentication

mechanism)

If

a

valid

value

is

not

supplied,

the

property

defaults

to

none.

If

the

parameter

is

set

to

either

simple

or

CRAM-MD5,

security

credentials

are

passed

through

JNDI

to

the

underlying

service

provider.

These

security

credentials

are

in

the

form

of

a

user

distinguished

name

(User

DN)

and

password.

If

security

credentials

are

required,

then

the

user

will

be

prompted

for

these

when

the

tool

initializes.

Note:

The

text

typed

is

echoed

to

the

screen,

and

this

includes

the

password.

Therefore,

take

care

that

passwords

are

not

disclosed

to

unauthorized

users.

These

parameters

are

set

in

a

plaintext

configuration

file

consisting

of

a

set

of

key-value

pairs,

separated

by

an

″=″.

This

is

shown

in

the

following

example:

#Set

the

service

provider

INITIAL_CONTEXT_FACTORY=com.sun.jndi.ldap.LdapCtxFactory

#Set

the

initial

context

PROVIDER_URL=ldap://polaris/o=ibm_us,c=us

#Set

the

authentication

type

SECURITY_AUTHENTICATION=none

(A

″#″

in

the

first

column

of

the

line

indicates

a

comment,

or

a

line

that

is

not

used.)

An

example

configuration

file

is

included

in

examples/jms/MQeJMSAdmin.config.

Starting

the

JMS

administration

tool

To

start

the

tool

in

interactive

mode,

enter

the

command:

java

com.ibm.mqe.jms.admin.MQeJMSAdmin

[-cfg

config_filename]

Configuring

MQe

objects

123

where

the

-cfg

option

specifies

the

name

of

an

alternative

configuration

file.

If

no

configuration

file

is

specified,

then

the

tool

looks

for

a

file

named

MQeJMSAdmin.config

in

the

current

directory.

After

authentication,

if

necessary,

the

tool

displays

a

command

prompt:

InitCtx>

indicating

that

the

tool

is

using

the

initial

context

defined

in

the

PROVIDER_URL

configuration

parameter.

To

start

the

tool

in

batch

mode,

enter

the

command:

java

com.ibm.mqe.jms.admin.MQeJMSAdmin

<

script.scp

where

script.scp

is

a

script

file

that

contains

administration

commands.

The

last

command

in

this

file

must

be

an

END

command.

JMS

Administration

commands

When

the

command

prompt

is

displayed,

the

tool

is

ready

to

accept

commands.

Administration

commands

are

generally

of

the

following

form:

verb

[param

]*

where

verb

is

one

of

the

administration

verbs

listed

in

Table

25.

All

valid

commands

consist

of

at

least

one

(and

only

one)

verb,

which

appears

at

the

beginning

of

the

command

in

either

its

standard

or

short

form.

The

parameters

a

verb

may

take

depend

on

the

verb.

For

example,

the

END

verb

cannot

take

any

parameters,

but

the

DEFINE

verb

may

take

anything

between

1

and

20

parameters.

Details

of

the

verbs

that

take

at

least

one

parameter

are

discussed

later

in

this

section.

Table

25.

Administration

verbs

Verb

Short

form

Description

ALTER

ALT

Change

at

least

one

of

the

properties

of

a

given

administered

object

DEFINE

DEF

Create

and

store

an

administered

object,

or

create

a

new

subcontext

DISPLAY

DIS

Display

the

properties

of

one

or

more

stored

administered

objects,

or

the

contents

of

the

current

context

DELETE

DEL

Remove

one

or

more

administered

objects

from

the

namespace,

or

remove

an

empty

subcontext

CHANGE

CHG

Alter

the

current

context,

allowing

the

user

to

traverse

the

directory

namespace

anywhere

below

the

initial

context

(pending

security

clearance)

COPY

CP

Make

a

copy

of

a

stored

administered

object,

storing

it

under

an

alternative

name

124

Configuring

MQe

Objects

Table

25.

Administration

verbs

(continued)

Verb

Short

form

Description

MOVE

MV

Alter

the

name

under

which

an

administered

object

is

stored

END

Close

the

administration

tool

Verb

names

are

not

case-sensitive.

Usually,

to

terminate

commands,

you

press

the

carriage

return

key.

However,

you

can

override

this

by

typing

the

″+″

symbol

directly

before

the

carriage

return.

This

enables

you

to

enter

multi-line

commands,

as

shown

in

the

following

example:

DEFINE

Q(BookingsInputQueue)+

QMGR(ExampleQM)+

QUEUE(QUEUE.BOOKINGS)

Lines

beginning

with

one

of

the

characters

*,

#,

or

/

are

treated

as

comments.

Manipulating

subcontexts

You

can

use

the

verbs

CHANGE

,

DEFINE,

DISPLAY

and

DELETE

to

manipulate

directory

namespace

subcontexts.

Their

use

is

described

in

the

following

table

Table

26.

Syntax

and

description

of

commands

used

to

manipulate

subcontexts

Command

syntax

Description

DEFINE

CTX(ctxName)

Attempts

to

create

a

new

child

subcontext

of

the

current

context,

having

the

name

ctxName.

Fails

if

there

is

a

security

violation,

if

the

subcontext

already

exists,

or

if

the

name

supplied

is

invalid.

DISPLAY

CTX

Displays

the

contents

of

the

current

context.

Administered

objects

are

annotated

with

a

’a’,

subcontexts

with

’[D]’.

The

Java

type

of

each

object

is

also

displayed.

DELETE

CTX(ctxName)

Attempts

to

delete

the

current

context’s

child

context

having

the

name

ctxName.

Fails

if

the

context

is

not

found,

is

non-empty,

or

if

there

is

a

security

violation.

CHANGE

CTX(ctxName)

Alters

the

current

context,

so

that

it

now

refers

to

the

child

context

having

the

name

ctxName.

One

of

two

special

values

of

ctxName

may

be

supplied:

=UP

which

moves

to

the

current

context’s

parent

=INIT

which

moves

directly

to

the

initial

context
Fails

if

the

specified

context

does

not

exist,

or

if

there

is

a

security

violation.

Administering

JMS

objects

Two

object

types

can

currently

be

manipulated

by

the

administration

tool.

These

are

listed

in

the

following

table:

Configuring

MQe

objects

125

Table

27.

JMS

administered

objects

Object

type

Keyword

Description

MQeJNDIQueueConnectionFactory

QCF

The

MQe

implementation

of

the

JMS

ConnectionFactory

interface.

This

represents

a

factory

object

for

creating

connections

in

the

JMS

1.02b

Point-to-Point

messaging

domain.

MQeJNDIConnectionFactory

CF

The

MQe

implementation

of

the

JMS

ConnectionFactory

interface.

This

represents

a

factory

object

for

creating

connections

in

the

JMS

1.1

unified

messaging

domain.

MQeJMSJNDIQueue

Q

The

MQe

implementation

of

the

JMS

Queue

interface.

This

represents

a

message

Destination.

Verbs

used

with

JMS

objects

You

can

use

the

verbs

ALTER,

DEFINE,

DISPLAY,

DELETE,

COPY

and

MOVE

to

manipulate

administered

objects

in

the

directory

namespace.

The

following

table

summarizes

their

use.

Substitute

TYPE

with

the

keyword

that

represents

the

required

administered

object,

as

listed

in

the

table

above

in

“Administering

JMS

objects”

on

page

125

above.

Table

28.

Syntax

and

description

of

commands

used

to

manipulate

administered

objects

Command

syntax

Description

ALTER

TYPE(name)

[property]*

Attempts

to

update

the

given

administered

object’s

properties

with

the

ones

supplied.

Fails

if

there

is

a

security

violation,

if

the

specified

object

cannot

be

found,

or

if

the

new

properties

supplied

are

invalid.

DEFINE

TYPE(name)

[property]*

Attempts

to

create

an

administered

object

of

type

TYPE

with

the

supplied

properties,

and

tries

to

store

it

under

the

name

name

in

the

current

context.

Fails

if

there

is

a

security

violation,

if

the

supplied

name

is

invalid

or

already

exists,

or

if

the

properties

supplied

are

invalid.

DISPLAY

TYPE(name)

Displays

the

properties

of

the

administered

object

of

type

TYPE

,

bound

under

the

name

name

in

the

current

context.

Fails

if

the

object

does

not

exist,

or

if

there

is

a

security

violation.

DELETE

TYPE(name)

Attempts

to

remove

the

administered

object

of

type

TYPE,

having

the

name

name,

from

the

current

context.

Fails

if

the

object

does

not

exist,

or

if

there

is

a

security

violation.

126

Configuring

MQe

Objects

Table

28.

Syntax

and

description

of

commands

used

to

manipulate

administered

objects

(continued)

Command

syntax

Description

COPY

TYPE(nameA)

TYPE(nameB)

Makes

a

copy

of

the

administered

object

of

type

TYPE,

having

the

name

nameA,

naming

the

copy

nameB.

This

all

occurs

within

the

scope

of

the

current

context.

Fails

if

the

object

to

be

copied

does

not

exist,

if

an

object

of

name

nameB

already

exists,

or

if

there

is

a

security

violation.

MOVE

TYPE(nameA)

TYPE(nameB)

Moves

(renames)

the

administered

object

of

type

TYPE,

having

the

name

nameA

,

to

nameB

.

This

all

occurs

within

the

scope

of

the

current

context.

Fails

if

the

object

to

be

moved

does

not

exist,

if

an

object

of

name

nameB

already

exists,

or

if

there

is

a

security

violation.

Creating

JMS

objects

Objects

are

created

and

stored

in

a

JNDI

namespace

using

the

following

command

syntax:

DEFINE

TYPE

(name)[property

]*

That

is,

the

DEFINE

verb,

followed

by

a

TYPE

(name)

administered

object

reference,

followed

by

zero

or

more

properties.

LDAP

naming

of

JMS

objects

To

store

your

objects

in

an

LDAP

environment,

their

names

must

comply

with

certain

conventions.

One

of

these

is

that

object

and

subcontext

names

must

include

a

prefix,

such

as

cn=(common

name),

or

ou=(organizational

unit).

The

administration

tool

simplifies

the

use

of

LDAP

service

providers

by

allowing

you

to

refer

to

object

and

context

names

without

a

prefix.

If

you

do

not

supply

a

prefix,

the

tool

automatically

adds

a

default

prefix

(currently

cn=)

to

the

name

you

supply.

This

is

shown

in

the

following

example.

InitCtx>DEFINE

Q(testQueue)

InitCtx>DISPLAY

CTX

Contents

of

InitCtx

a

cn=testQueue

com.ibm.mqe.jms.MQeJMSJNDIQueue

1

Object(s)

0

Context(s)

1

Binding(s),1

Administered

Note

that

although

the

object

name

supplied

does

not

have

a

prefix,

the

tool

automatically

adds

one

to

ensure

compliance

with

the

LDAP

naming

convention.

Likewise,

submitting

the

command

DISPLAY

Q(testQueue)

also

causes

this

prefix

to

be

added.

You

may

need

to

configure

your

LDAP

server

to

store

Java

objects.

Information

to

assist

with

this

configuration

is

provided

in

“LDAP

schema

definition

for

Java

object

storage”

on

page

130.

Configuring

MQe

objects

127

JMS

object

properties

A

property

consists

of

a

name-value

pair

in

the

format:

PROPERTY_NAME(property_value)

Names

and

values

are

not

case

sensitive,

but

are

restricted

to

a

set

of

recognized

names

shown

in

the

following

table:.

Table

29.

Property

names

and

valid

values

Property

Short

form

Valid

values

AUTHENTICATOR

AUTH

Any

String

CLIENTID

CID

Any

String

DESCRIPTION

DESC

Any

String

DUPSOKCOUNT

DOC

Any

positive

integer

INIFILE

INI

Any

String

ISMQNATIVE

ISMQ

″True″

or

″False″

JMXENABLED

JMSX

″True″

or

″False″

QUEUE

QU

Any

String

QMANAGER

QMGR

Any

String

SHUTDOWN

SHUT

Any

positive

integer

Most

of

these

properties

apply

only

to

specific

object

types,

but

note

that

ConnectionFactory

properties

apply

also

to

QueueConnectionFactory

properties.

The

properties

and

the

types

they

apply

to

are

listed

in

the

following

table,

together

with

a

short

description.

Two

columns

indicate

the

properties

that

apply

to

QCF/CF

(QueueConnectionFactory

or

ConnectionFactory)

and

Q

(Queue).

Table

30.

Property

names

and

descriptions

Property

QCF/CF

Q

Description

AUTHENTICATOR

Y

Fully-qualified

class

name

implementing

com.ibm.mqe.jms.MQeJMSAuthenticator

interface.

CLIENTID

Y

A

string

identifier

for

the

client

DESCRIPTION

Y

Y

A

description

of

the

stored

object

DUPSOKCOUNT

Y

The

number

of

messages

to

receive

before

acknowledgment

in

a

DUPS_OK_ACKNOWLEDGE

Session.

INIFILE

Y

An

initialization

(.ini)

file

for

an

MQe

Queue

Manager

ISMQNATIVE

Y

The

destination

is

a

non-JMS,

MQ,

queue.

JMSXENABLED

Y

Enable

JMSX

properties.

QUEUE

Y

The

name

of

an

MQe

queue

QMANAGER

Y

The

name

of

an

MQe

queue

manager

SHUTDOWN

Y

Delay

before

connection

shutdown,

in

milliseconds.

128

Configuring

MQe

Objects

Extending

MQeConnectionFactory

By

default

MQeConnectionFactory

will

either

look

for

a

queue

manager

already

running

in

the

JVM,

or

will

start

its

own

using

an

initialization

(.ini)

file.

A

third

option

is

to

extend

MQeConnectionFactory

to

provide

the

desired

behavior.

The

preferred

way

to

do

this

is

to

override

two

internal

methods,

startQueueManager()

and

stopQueueManager().

The

first

method

is

called

to

start

and

configure

an

MQe

queue

manager

when

a

Connection

is

first

created,

while

the

second

shuts

it

down

cleanly

when

the

final

Connection

is

closed.

These

methods

are

both

public

to

make

them

easy

to

override,

but

they

should

not

normally

be

called

by

an

application.

The

following

class

shows

a

simple

way

of

extending

MQeConnectionFactory

to

start

its

own

queue

manager

without

the

need

for

an

initialization

file:

import

javax.jms.*;

import

examples.config.*;

import

com.ibm.mqe.jms.MQeConnectionFactory;

import

com.ibm.mqe.MQeQueueManager;

import

java.io.File;

//

type

on

one

line:-

public

class

MQeExtendedConnectionFactory

extends

MQeConnectionFactory

{

//

Queue

Manager

Name

-

private

static

final

String

queueManagerName

=

"ExampleQM";

//

Location

of

the

registry

-

private

static

final

String

registryLocation

=

".\\ExampleQM";

//

Queue

store

-

private

static

final

String

queueStore

=

"MsgLog:"

+

registryLocation

+

File.separator

+

"Queues";

//

the

MQe

Queue

Manager

-

private

static

MQeQueueManager

queueManager

=

null;

public

MQeQueueManager

startQueueManager()

throws

JMSException

{

try

{

CreateQueueManager.createQueueManagerDefinition(

queueManagerName,

registryLocation,

queueStore);

queueManager=CreateQueueManager.startQueueManager(

queueManagerName,

registryLocation);

}

catch

(Exception

e)

{

JMSException

je

=

new

JMSException("QMgr

start

failed");

je.setLinkedException(e);

throw

je;

}

return

queueManager;

}

public

void

stopQueueManager()

throws

Exception

{

CreateQueueManager.stopQueueManager(queueManager);

}

}

In

this

example

the

actual

queue

manager

startup

and

shutdown

has

been

delegated

to

the

CreateQueueManager

examples

described

in

an

earlier

chapter.

Configuring

MQe

objects

129

LDAP

schema

definition

for

Java

object

storage

This

section

gives

details

of

the

schema

definitions

(attribute

and

objectClass

definitions)

needed

in

an

LDAP

directory

in

order

for

it

to

store

Java

objects.

These

are

required

if

you

wish

to

use

an

LDAP

server

as

your

JNDI

service

provider

for

storing

MQe

JMS

administered

objects.

Some

servers

may

already

contain

these

definitions

in

their

schema.

The

exact

procedure

to

check

whether

your

server

contains

them,

and

to

add

them

if

they

are

not

there,

will

vary

from

server

to

server.

Please

read

the

documentation

that

comes

with

your

LDAP

server

and

your

LDAP

JNDI

service

provider.

Much

of

the

data

contained

in

this

section

has

been

taken

from

RFC

2713

Schema

for

Representing

Java

Objects

in

an

LDAP

Directory,

which

can

be

found

at

http://www.faqs.org/rfcs/rfc2713.html.

Please

note

that

some

LDAP

servers

may

require

you

to

turn

off

schema

checking,

even

after

these

definitions

have

been

added.

Attribute

definitions

Table

31.

Attribute

settings

for

javaCodebase

Attribute

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.1.7

Syntax

IA5

String

(1.3.6.1.4.1.1466.115.121.1.26)

Maximum

length

2,048

Single/multi-valued

Multi-valued

User

modifiable?

Yes

Matching

rules

caseExactIA5match

Access

class

Normal

Usage

userApplications

Description

URL(s)

specifying

the

location

of

class

definition

Table

32.

Attribute

settings

for

javaClassName

Attribute

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.1.6

Syntax

Directory

String

(1.3.6.1.4.1.1466.115.121.1.15)

Maximum

length

2,048

Single/multi-valued

Single-valued

User

modifiable?

Yes

Matching

rules

caseExactMatch

Access

class

Normal

Usage

userApplications

Description

Fully

qualified

name

of

distinguished

Java

class

or

interface

130

Configuring

MQe

Objects

http://www.faqs.org/rfcs/rfc2713.html

Table

33.

Attribute

settings

for

javaClassNames

Attribute

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.1.13

Syntax

Directory

String

(1.3.6.1.4.1.1466.115.121.1.15)

Maximum

length

2,048

Single/multi-valued

Multi-valued

User

modifiable?

Yes

Matching

rules

caseExactMatch

Access

class

Normal

Usage

userApplications

Description

Fully

qualified

Java

class

or

interface

name

Table

34.

Attribute

settings

for

javaFactory

Attribute

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.1.10

Syntax

Directory

String

(1.3.6.1.4.1.1466.115.121.1.15)

Maximum

length

2,048

Single/multi-valued

Single-valued

User

modifiable?

Yes

Matching

rules

caseExactMatch

Access

class

Normal

Usage

userApplications

Description

Fully

qualified

Java

class

name

of

a

JNDI

object

Factory

Table

35.

Attribute

settings

for

javaReferenceAddress

Attribute

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.1.11

Syntax

Directory

String

(1.3.6.1.4.1.1466.115.121.1.15)

Maximum

length

2,048

Single/multi-valued

Multi-valued

User

modifiable?

Yes

Matching

rules

caseExactMatch

Access

class

Normal

Usage

userApplications

Description

Addresses

associated

with

a

JNDI

Reference

Table

36.

Attribute

settings

for

javaSerializedData

Attribute

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.1.8

Syntax

Octet

String

(1.3.6.1.4.1.1466.115.121.1.40)

Single/multi-valued

Single-valued

User

modifiable?

Yes

Configuring

MQe

objects

131

Table

36.

Attribute

settings

for

javaSerializedData

(continued)

Attribute

Value

Access

class

Normal

Usage

userApplications

Description

Serialized

form

of

a

Java

object

objectClass

definitions

Table

37.

objectClass

definition

for

javaSerializedObject

Definition

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.2.5

Extends/superior

javaObject

Type

AUXILIARY

Required

attributes

javaSerializedData

Table

38.

objectClass

definition

for

javaObject

Definition

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.2.4

Extends/superior

Top

Type

ABSTRACT

Required

attributes

javaClassName

Optional

attributes

javaClassNames,

javaCodebase,

javaDoc

description

Table

39.

objectClass

definition

for

javaContainer

Definition

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.2.1

Extends/superior

Top

Type

STRUCTURAL

Required

attributes

cn

Table

40.

objectClass

definition

for

javaNamingReference

Definition

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.2.7

Extends/superior

javaObject

Type

AUXILIARY

Optional

attributes

attrs

javaReferenceAddress

javaFactory

JMX

(Java

Management

Extensions)

interface

This

section

describes

the

MQe

Java

Management

Extensions

interface.

The

name

is

shortened

in

the

text

to

MQe

JMX.

The

MQe

JMX

interface

provides

a

JMX

instrumentation

level

for

MQe

resources

(queue

managers,

queues,

and

so

on).

This

JMX

instrumentation

level

facilitates

the

132

Configuring

MQe

Objects

local

and

remote

configuration

and

administration

of

MQe

queue

managers

and

their

associated

objects,

such

as

queues,

connections,

listeners

and

bridge

objects.

In

order

to

validate

the

operation

of

the

network,

test

messages

can

be

sent

to

queues

within

the

MQe

network.

This

feature

facilitates

the

management

of

MQe

resources

through

JMX

from

all

platforms

that

are

supported

for

JMX.

For

further

information

on

platform

support

for

JMX,

see

the

JMX

specification

V1.2

at

http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html

.

(Note

that

queue

managers

and

their

resources

on

platforms

which

are

not

supported

by

JMX

can

still

be

remotely

administered

via

JMX.)

For

those

who

are

familiar

with

either

the

MQe_Explorer

tool

(IBM

SupportPac

ES02)

or

the

MQe_Script

tool

(IBM

SupportPac

ES04),

the

MQe

JMX

interface

facilitates

the

equivalent

configurative

and

administrative

functionality.

Objects

created

using

MQe_Script,

MQe_Explorer

(version

2

or

later)

and

the

MQe

JMX

interface

can

interact

together.

The

MQe

JMX

interface

includes

full

support

for

the

configuration

and

management

of

gateway

queue

managers,

that

is,

those

MQe

queue

managers

that

can

bridge

to

MQ

queue

managers

and

queues.

The

interface

does

not

support

the

configuration

of

the

MQ

queue

managers

themselves,

as

these

should

be

configured

using

the

various

MQ

management

tools

and

protocols.

Introduction

to

MQe

JMX

The

Java

Management

Extensions

(also

called

the

JMX

specification)

define

an

architecture,

the

design

patterns,

the

APIs,

and

the

services

for

application

and

network

management

in

the

Java

programming

language.

The

JMX

specification

provides

Java

developers

across

all

industries

with

the

means

to

instrument

Java

code,

create

smart

Java

agents,

implement

distributed

management

middleware

and

managers,

and

smoothly

integrate

these

solutions

into

existing

management

systems.

The

JMX

architecture

provides

the

following

benefits:

v

Enables

Java

applications

to

be

managed

without

heavy

investment

A

Java

application

simply

needs

to

embed

a

managed

object

server

and

make

some

of

its

functionality

available

as

one

or

several

Manageable

Beans

registered

in

the

object

server;

that

is

all

it

takes

to

benefit

from

the

management

infrastructure.

v

Provides

a

scalable

management

architecture

Every

JMX

agent

service

is

an

independent

module

that

can

be

plugged

into

the

management

agent,

depending

on

the

requirements.

This

component-based

approach

means

that

JMX

solutions

can

scale

from

small

footprint

devices

to

large

telecommunications

switches

and

beyond.

v

Integrates

existing

management

solutions

JMX

smart

agents

are

capable

of

being

managed

through

HTML

browsers

or

by

various

management

protocols

such

as

SNMP

and

WBEM.

The

JMX

APIs

are

open

interfaces

that

any

management

system

vendor

can

leverage.

v

Can

leverage

future

management

concepts

Configuring

MQe

objects

133

http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html

The

APIs

of

the

JMX

specification

can

implement

flexible

and

dynamic

management

solutions

through

the

Java

programming

language

which

can

leverage

emerging

technologies.

The

goal

of

the

JMX

API

for

MQe

is

to

provide

a

JMX

instrumentation

level

for

MQe

resources

(queue

managers,

queues,

and

so

on).

The

instrumentation

is

designed

to

have

a

small

footprint,

and

to

be

flexible,

easy

to

use

and

JMX

compliant.

v

Small

footprint

The

JMX

API

for

MQe

and

the

JMX

implementation

minimize

resource

demands

in

terms

of

size

and

memory

requirements.

v

Flexible

The

implementation

is

modular

so

that

MQe

developers

can

choose

to

use

the

API

when

manageability

is

desired

and

the

overhead

of

the

JMX

implementation

is

within

the

capabilities

of

their

target

platforms.

Or

they

can

choose

to

leave

it

out

without

incurring

any

memory

or

performance

penalty.

v

Easy

to

use

The

API

is

simple

and

easy

to

use:

it

is

possible

to

enable

an

existing

MQe

application

for

JMX

with

only

a

few

lines

of

code.

v

JMX

compliant

JMX

compliance

is

virtually

guaranteed

by

using

the

reference

implementation

developed

by

Sun

Microsystems.

From

JMX

v.1.2

onwards,

open

MBeans

are

a

mandatory

part

of

any

JMX

implementation,

so

we

adhere

to

the

data

types

required

for

open

MBean

instrumentation.

Thus,

all

operation

parameters

and

attributes

are

of

the

following

data

types:

–

Simple

data

types:

-

java.lang.Void

-

java.lang.Boolean

-

java.lang.Byte

-

java.lang.Character

-

java.lang.String

-

java.lang.Short

-

java.lang.Integer

-

java.lang.Long

-

java.lang.Float

-

java.lang.Double
–

Arrays

of

the

above

types:

-

javax.management.ObjectName

-

javax.management.openmbean.CompositeData

-

javax.management.openmbean.TabularData

JMX

architecture

The

JMX

architecture

is

multilayered,

as

shown

in

the

following

diagram:

Distributed

Services

level

Web

browser

Other

JMX-compliant

management

applications

Proprietary

management

applications

Agent

level

Protocol

adapters

Connectors..

JMX

manager

..

MBeanServer...

...

Agent

Services

134

Configuring

MQe

Objects

Instrumentation

level

Instrumentation

strategy

(MQe

JMX

implementation)

Application

Resources

The

scope

of

the

MQe

JMX

implementation

is

limited

to

the

Instrumentation

level

and

Instrumentation

strategy

(MQe

JMX

implementation).

The

following

are

explanations

of

some

of

the

terms

used

in

the

diagram:

Distributed

services

level

The

distributed

services

level

of

the

JMX

architecture

contains

the

middleware

that

connects

agents

to

management

applications.

Agent

level

The

agent

level

of

the

JMX

architecture

provides

a

registry

for

handling

the

manageable

resources,

called

the

MBeanServer,

as

well

as

several

agent

services

which

are

themselves

MBeans.

JMX

agent

A

JMX

agent

is

a

combination

of

an

instance

of

the

MBeanServer,

its

registered

MBeans

and

any

agent

services

within

a

single

JVM.

Managed

Beans

(MBeans)

Resources

instrumented

according

to

the

rules

of

the

JMX

specification.

There

are

two

main

categories

of

MBeans:

v

Standard

MBeans

implement

their

own

interface,

and

are

static.

v

Dynamic

MBeans

(of

which

there

are

several

sub-categories)

implement

a

JMX

interface

called

DynamicMBean.

This

interface

contains

methods

that

allow

the

management

interface

of

the

managed

resource

to

be

discovered

at

run-time.

Instrumentation

level

The

instrumentation

level

of

the

JMX

architecture

is

the

level

at

which

resources

to

be

managed

are

instrumented

for

JMX

management.

To

make

this

possible,

the

resources

must

be

instrumented

as

MBeans.

Resource

Any

entity

that

needs

to

be

monitored

or

controlled

by

a

management

application.

In

the

context

of

this

implementation,

MQe

queue

managers,

queues,

and

so

on,

are

all

resources.

Instrumenting

your

MQe

resources

as

JMX

MBeans

In

your

application,

load

or

create

your

queue

manager

and

activate

it

as

usual.

Now,

create

JMX

MBeans

for

your

queue

manager

and

its

resources

as

follows:

MQeQueueManagerJmx.createMQeMBeans(mbServer);

where

mbServer

is

your

instance

of

MBeanServer.

This

method

creates

and

registers

MBeans

for

all

of

your

queue

manager

resources:

queues,

bridge

objects,

connections

and

listeners.

Note:

Whenever

MQe

resources

are

created

or

removed

from

this

point,

corresponding

MBeans

are

also

registered

with

or

deregistered

from

the

MBeanServer

instance.

It

is

strongly

recommended

that

you

do

not

create

and

register

or

deregister

MQe

MBeans

independently

of

using

the

MQe

interface,

otherwise

the

MQe

MBean

representations

may

not

be

consistent

and

may

not

function

as

intended.

For

example,

you

should

not

use

the

register/unregister

facilities

offered

by

various

adapters.

Using

the

MQe

Configuring

MQe

objects

135

JMX

interface

to

create

and

delete

methods

ensures

that

MBeans

are

registered

and

unregistered

in

the

approved

manner.

However,

the

AdminBean

is

an

exception

to

this

rule

–

see

“ObjectName”

on

page

138.

You

need

to

create

one

or

more

connectors

or

adaptors

to

allow

JMX

management

clients

to

connect

to

and

manage

your

MQe

applications.

Both

the

Sun

and

Tivoli

JMX

Reference

Implementations

provide

adaptors

which

allow

you

to

manage

your

MQe

application

through

a

web

browser.

Please

refer

to

the

reference

implementations

for

documentation

and

examples.

In

addition

to

the

HtmlAdaptorServer,

the

Sun

JDMK

provides

the

HttpConnectorServer,

HttpsConnectorServer,

the

RmiConnectorServer,

and

the

SnmpAdaptorServer.

These

allow

JMX

management

clients

to

connect

to

and

manage

JMX

manageable

resources

using

the

HTTP,

HTTPS,

RMI,

and

SNMP

protocols.

Refer

to

the

JDMK

for

documentation

and

examples.

Once

you

have

your

connector(s)

or

adaptor(s),

or

both,

you

are

in

a

position

to

access

the

MQe

MBeans

as

specified

in

the

JMX

specification.

You

need

to

have

all

of

the

following

queues

set

up:

v

An

admin

queue

on

your

local

queue

manager

for

local

administration.

The

default

assumes

that

this

queue

is

named

AdminQ

but

you

can

re-set

this

using

the

Admin

MBean

(see

Admin

MBean).

v

An

admin

reply

queue

called

AdminReplyQ.

v

Queues

named

AdminQ

and

AdminReplyQ

on

any

remote

queue

managers

that

you

wish

to

manage

via

the

JMX

interface.

If

either

of

these

queues

does

not

exist

(or

the

relevant

connection

definitions

and

listeners

for

remote

two-way

admin-adminReply

communication

do

not

exist),

you

may

experience

problems

when

performing

remote

administration.

When

you

have

closed

your

MQe

queue

manager

at

the

end

of

your

application,

you

must

invoke

the

following

static

method

to

ensure

that

all

MQe

JMX

resources

are

cleaned

up:

MQeQueueManagerJmx.endMQeJMXSession()

It

is

important

that

this

method

is

called

after

the

queue

manager

has

been

closed.

Typographical

conventions

in

this

JMX

documentation

Text

enclosed

in

angle

brackets

and

italicized,

for

example

<QMName>,

represents

a

symbolic

name,

the

value

of

which

should

be

substituted

with

a

value

provided

by

the

user

as

the

command

is

typed.

Text

written

using

a

monospaced

font,

for

example

getMBeanInfo,

represents

user

input,

code

in

files,

or

text

entered

into

a

browser

textbox.

Setting

up

the

MQe

JMX

interface

The

MQe

JMX

interface

executes

as

an

application

running

in

a

Java

Virtual

Machine

(JVM).

All

it

requires

is

an

activated

local

queue

manager.

Given

this,

the

interface

can

then

manage

the

instrumented

local

queue

manager,

and

the

queue

manager’s

resources.

It

can

also

manage

any

remotely

activated

MQe

queue

managers

(and

their

resources)

for

which

the

local

queue

manager

is

able

to

connect

directly

to

the

MQe

network.

Note:

Before

you

can

use

JMX

you

must

make

sure

certain

properties

files

exist

on

your

classpath.

See

“Translation”

on

page

153

for

details.

136

Configuring

MQe

Objects

MQe

JMX

v

A

JVM

version

1.2

or

later

v

A

compliant

implementation

of

the

JMX

specification.

The

jar

files

provided

by

the

JMX

specification

implementation

must

be

added

to

the

CLASSPATH

before

you

attempt

to

use

the

MQe

JMX

interface

APIs.

The

JMX

Reference

Implementation

provided

by

Sun

is

freely

available

and

redistributable

(http://java.sun.com/products/JavaManagement/).

To

install

it:

1.

Download

the

Reference

Implementation

binary

code,

which

comes

in

a

ZIP

file

2.

Extract

the

contents

to

a

directory

3.

Copy

lib/jmxri.jar

and

lib/jmxtools.jar

into

the

extension

directory

of

your

Java

runtime

environment,

or

make

sure

they

are

in

your

classpath.

The

JMX

API

for

MQe

has

been

developed

in

compliance

with

the

JMX

specification

v.1.2.

The

Tivoli

Implementation

of

the

JMX

specification

is

also

freely

available

(http://www.alphaworks.ibm.com/tech/TMX4J).

To

install

it:

1.

Download

the

binary

code,

which

comes

in

a

ZIP

file.

2.

Extract

the

contents

to

a

directory

3.

Copy

the

relevant

jars

for

your

platform

into

the

extension

directory

of

your

Java

runtime

environment,

or

make

sure

they

are

in

your

classpath.

Enabling

MQe

applications

for

JMX

managment

To

enable

your

MQe

applications

for

JMX

management:

1.

Obtain

a

compliant

implementation

of

the

JMX

specification

and

set

up

your

Java

development

environment

so

that

the

JMX

and

MQe

JMX

class

libraries

are

accessible

(as

described

in

“Setting

up

the

MQe

JMX

interface”

on

page

136).

2.

Create

your

MQe

application

as

usual,

ensuring

that

your

queue

manager

is

loaded,

then

call

the

following

static

method,

passing

it

your

MBeanServer

instance,

to

create

MBeans

for

all

of

the

queue

manager’s

resources:

MQeQueueManagerJmx.createMQeMBeans(MBeanServer

mbServer);

Each

of

the

MBeans

is

registered

with

your

MBeanServer

instance.

For

further

details

see

“Instrumenting

your

MQe

resources

as

JMX

MBeans”

on

page

135.

3.

Create

one

or

more

connectors

or

adaptors

to

allow

JMX

management

clients

to

connect

to

and

manage

your

MQe

applications.

For

further

details

on

creating

connectors

and

adaptors,

see

“Instrumenting

your

MQe

resources

as

JMX

MBeans”

on

page

135.

You

are

now

in

a

position

to

manage

all

of

your

MQe

resources

via

JMX

using

the

interface

corresponding

to

your

chosen

connector

or

adaptor.

It

is

also

very

important

that

you

invoke

the

following

static

method

at

the

end

of

your

application

to

ensure

that

all

MQe

JMX

resources

are

cleaned

up:

MQeQueueManagerJmx.endMQeJMXSession()

Accessing

MQe

MBeans

via

the

MBeanServer

The

MQe

JMX

interface

provides

the

instrumentation

level

of

the

JMX

architecture.

We

are

not

providing

an

implementation

of

the

agent

level,

which

is

made

up

of

the

MBeanServer

and

the

JMX

agent

services.

Since

the

role

of

the

MBean

server

is

to

act

as

a

registry

for

MBeans,

the

user’s

instance

of

MBean

server

has

to

be

Configuring

MQe

objects

137

passed

to

the

instrumentation

code

via

the

MQeQueueManagerJmx.createMQeMBeans()

method

described

in

this

section.

All

instrumented

MQe

MBeans

are

then

registered

with

this

MBeanServer

instance.

An

instance

of

an

MBeanServer

is

created

using

one

of

two

static

methods

of

the

MBeanServerFactory

class:

createMBeanServer()

or

newMBeanServer().

Once

this

instance

has

been

created,

MBeanServer

methods

can

be

used

to

access

and

manipulate

the

MBeans

registered

with

the

MBeanServer.

In

particular,

the

following

methods

allow

the

user

to

retrieve

and

set

MQe

MBean

attributes

and

invoke

operations.

(The

method

names

below

assume

that

mbeanServer

is

the

instance

of

MBeanServer.)

mbeanServer.getAttribute(ObjectName

objName,

String

attributeName);

mbeanServer.getAttributes(ObjectName

objName,

String[]

attributeNames);

mbeanServer.setAttribute(ObjectName

objName,

Attribute

attribute);

mbeanServer.setAttributes(ObjectName

objName,

AttributeList

attributes);

mbeanServer.invoke(

ObjectName

name,

String

operationName,

Object

params[],

String

signature[]

);

For

further

details

on

the

parameter

types

Attribute

and

AttributeList,

see

“Related

information

on

JMX”

on

page

154.

The

concept

of

an

MBean’s

ObjectName

is

central

to

the

MQe

JMX

interface

and

is

discussed

in

the

following

section.

ObjectName

An

MBeanServer

instance

interacts

with

the

MBeans

registered

with

it

via

their

ObjectNames.

When

an

MBean

is

registered

with

an

MBeanServer,

both

the

MBean

object

instance

and

the

corresponding

MBean

ObjectName

instance

are

passed

as

parameters

to

the

registration

method.

From

this

point

onwards,

the

ObjectName

is

passed

to

all

MBeanServer

methods

pertaining

to

this

MBean.

ObjectNames

are

also

returned

from

query

methods

on

the

MBeanServer

instance

which

are

designed

to

inquire

upon

the

MBeans

registered

with

the

MBeanServer.

A

form

of

pattern

matching

can

be

used

in

these

methods.

Therefore

the

ObjectName

hierarchy

corresponding

to

MQe

instrumented

resources

has

been

designed

to

facilitate

queries

on

types

of

MQe

resource

such

as

Application

Queue

and

Indirect

Connection.

An

object

name

consists

of

a

string

made

up

of

two

components:

the

domain

name

and

the

key

property

list.

It

has

the

format:

Domain-name:key1=value1[,key2=value2,...keyX=valueX]

A

domain

name

corresponds

to

a

namespacing

prefix

which

identifies

a

group

of

MQe

resources.

The

following

table

provides

a

full

description

of

the

MQe

JMX

object

naming

conventions.

Table

41.

MQe

JMX

Object

Naming

Conventions

MQe

Resource

ObjectName

Local

Queue

Manager

com.ibm.MQe_LocalQueueManager:name

=

<QMName>

Remote

Queue

Manager

com.ibm.MQe_RemoteQueueManagers:name

=

<QMName>

Local

Queue

Manager

Alias

com.ibm.MQe_LocalQueueManager:name

=

<QMAliasName>,

type

=

alias,

resourceName

=

<QMName>

138

Configuring

MQe

Objects

Table

41.

MQe

JMX

Object

Naming

Conventions

(continued)

MQe

Resource

ObjectName

Remote

Queue

Manager

Alias

com.ibm.MQe_RemoteQueueManagers:name

=

<QMAliasName>,

type

=

alias,

resourceName

=

<QMName>

Application

Queue

com.ibm.MQe_<OwningQMName>_ApplicationQueues:name

=

<QName>

Application

Queue

Alias

com.ibm.MQe_<OwningQMName>_ApplicationQueues:name

=

<QAlias>,

type

=

alias,

resourceName

=

<QName@OwningQMName>

Sync

Proxy

Queue

com.ibm.MQe_<OwningQMName>_SyncProxyQueues:name

=

<QName>,

DestinationQMgr

=

<DestinationQMgrName>

Sync

Proxy

Queue

Alias

com.ibm.MQe_<OwningQMName>_

SyncProxyQueues:name

=

<QAlias>,

type

=

alias,

resourceName

=

<QName@DestinationQMgrName>

Async

Proxy

Queue

com.ibm.MQe_<OwningQMName>_

AsyncProxyQueues:name

=

<QName>,

DestinationQMgr

=

<DestinationQMgrName>

Async

Proxy

Queue

Alias

com.ibm.MQe_<OwningQMName>_

AsyncProxyQueues:name

=

<QAlias>,

type

=

alias,

resourceName

=

<QName@DestinationQMgrName>

Admin

Queue

com.ibm.MQe_<OwningQMName>_AdminQueues:name

=

<QName>

Admin

Queue

Alias

com.ibm.MQe_<OwningQMName>_

AdminQueues:name

=

<QAlias>,

type

=

alias,

resourceName

=

<QName@OwningQMName>

Home

Server

Queue

com.ibm.MQe_<OwningQMName>_HomeServerQueues:name

=

<QName>,

GetFromQMgr

=

<GetFromQMgr>

Store

Queue

com.ibm.MQe_<OwningQMName>_StoreQueues:name

=

<QName>

Forward

Queue

com.ibm.MQe_<OwningQMName>_ForwardQueues:name

=

<QName>,

ForwardToQMgr

=

<ForwardToQMgrName>

MQeMQBridge

Queue

com.ibm.MQe_<OwningQMName>_BridgeQueues:name

=

<QName>,

DestinationQMgr

=

<DestinationQMgrName>

MQeMQBridge

Queue

Alias

com.ibm.MQe_<OwningQMName>_BridgeQueues:name

=

<QAlias>,

type

=

alias,

resourceName

=

<QName@DestinationQMgrName>

Alias

Connection

com.ibm.MQe_<OwningQMName>_MQConnections:name

=

<ConnectionName>

Alias

Connection

Alias

com.ibm.MQe_<OwningQMName>_MQConnections:name

=

<AliasName>,

type

=

alias,

resourceName

=

<ConnectionName>

Direct

Connection

com.ibm.MQe_<OwningQMName>_DirectConnections:name

=

<ConnectionName>

Configuring

MQe

objects

139

Table

41.

MQe

JMX

Object

Naming

Conventions

(continued)

MQe

Resource

ObjectName

Direct

Connection

Alias

com.ibm.MQe_<OwningQMName>_DirectConnections:name

=

<AliasName>,

type

=

alias,

resourceName

=

<ConnectionName>

Indirect

Connection

com.ibm.MQe_<OwningQMName>_IndirectConnections:name

=

<ConnectionName>

Indirect

Connection

Alias

com.ibm.MQe_<OwningQMName>_IndirectConnections:name

=

<AliasName>,

type

=

alias,

resourceName

=

<ConnectionName>

MQ

Connection

com.ibm.MQe_<OwningQMName>_MQConnections:name

=

<ConnectionName>

MQ

Connection

Alias

com.ibm.MQe_<OwningQMName>_MQConnections:name

=

<AliasName>,

type

=

alias,

resourceName

=

<ConnectionName>

Communications

Listener

com.ibm.MQe_<OwningQMName>_CommunicationsListeners:name

=

<ListenerName>

MQ

Bridge

com.ibm.MQe_<OwningQMName>_Bridges:name

=

<BridgeName>

MQ

QMgrProxy

com.ibm.MQe_<OwningQMName>_MQQueueManagerProxies:name

=

<ProxyName>,

bridge

=

<BridgeName>

MQ

Client

Connection

com.ibm.MQe_<OwningQMName>_MQClientConnections:name

=

<ClientConnName>,

bridge

=

<BridgeName>,

qmgrProxy

=

<ProxyName>

MQ

Listener

com.ibm.MQe_<OwningQMName>_MQListeners:name

=

<ListenerName>,

bridge

=

<BridgeName>,

qmgrProxy

=

<ProxyName>,

clientConnection

=

<ClientConnName>

MQe

Admin

bean

com.ibm.MQe_Admin:name

=

AdminBean

From

the

application,

using

this

schema,

queries

may

be

done

on

the

MBeans

using

the

name

or

type

fields

or

wildcards

in

the

string

preceding

the

colon

(this

string

is

known

as

the

Domain).

Thus

it

is

easy

to

search

for

all

application

queues,

all

proxy

queues,

all

connection

aliases,

and

so

on.

There

are

some

important

points

to

note

about

the

use

of

ObjectNames

for

MQe

resources:

v

There

are

no

spaces

in

these

names

since

these

make

queries

more

difficult.

Therefore,

you

must

ensure

that

no

spaces

are

accidentally

inserted

into

object

names

used

as

parameters

to

methods,

or

exceptions

will

arise

due

to

the

resource

not

being

found.

v

Object

names

are

case

sensitive.

v

When

a

queue

has

an

alias,

the

resourceName

property

key

in

the

alias

MBean

object

name

has

a

value

which

is

composed

of

a

string

of

the

form

queueName@queueManagerName.

The

MQe

JMX

interface

provides

a

helper

method

to

instrument

a

queue

manager’s

resources

as

MBeans

(The

MQeQueueManagerJmx

method

140

Configuring

MQe

Objects

createMQeMBeans()).

When

this

method

is

used,

all

of

the

MBeans

have

object

names

following

the

pattern

specified

above.

However,

it

would

also

be

possible

for

an

application

to

instantiate

instances

of

MQe

MBeans

by

calling

the

appropriate

constructor

and

it

would

then

be

possible

to

register

the

resultant

MBean

with

the

MBeanServer

with

an

object

name

chosen

by

the

application.

It

is

strongly

recommended

that

you

adhere

to

the

naming

conventions

described

above

and

do

not

register

or

unregister

MQe

MBeans

independently

of

the

MQe

JMX

interface.

The

MQe

JMX

interface

helper

method

MQeQueueManagerJmx.createMQeMBeans()

should

always

be

used

to

instrument

your

MQe

resources

as

MBeans.

The

only

instance

where

calling

the

constructor

to

create

a

MQe

MBean

is

supported

is

to

change

defaults

of

the

Admin

MBean.

This

can

be

seen

in

the

example

code

provided

in

the

examples\jmx

directory.

For

example,

the

register/unregister

facilities

offered

by

various

adaptors

should

not

be

used

-

going

via

the

MQe

JMX

interface

create

and

delete

methods

ensures

that

MBeans

are

registered

and

unregistered

in

the

approved

manner

(the

AdminBean

is

an

exception

to

this

rule).

These

conventions

are

used

within

the

MQe

code

and

the

processing

of

MBeans

may

not

be

consistent

if

a

different

naming

pattern

is

used.

Using

the

helper

method

ensures

a

consistency

of

behavior,

for

example,

when

a

refresh

occurs

on

remote

queue

manager

MBeans

due

to

a

resource

having

been

added

or

removed

by

some

method

other

than

via

JMX.

The

object

name

patterns

described

above

have

been

selected

with

a

view

to

facilitating

queries

on

the

MBeanServer

instance

for

its

registered

MBeans.

Such

queries

allow

for

pattern-matching

based

on

the

object

names.

(See

the

JMX

resource

documentation

listed

in

the

preface

for

descriptions

of

how

MBeanServer

queries

work).

For

example,

to

get

a

subset

of

registered

MBeans

corresponding

to

a

local

queue

manager’s

application

queues,

the

following

query

could

be

made:

//

set

up

a

filter

for

retrieving

MyLocalQM’s

Application

Queue

MBeans

ObjectName

scope

=

new

ObjectName("com.ibm.MQe_MyLocalQM_ApplicationQueues:*");

//

use

the

JMX

MBeanServer

API

to

make

the

query

Set

results

=

mbeanServer.queryNames(scope,null);

//

iterate

through

the

results

Iterator

iter

=

results.iterator();

ObjectName

objName

=

null;

while(iter.hasNext())

{

objName

=

(ObjectName)iter.next();

//

process

each

result

...

}

The

following

example

shows

how

to

find

out

which

resources

actually

represent

queue

aliases:

//

set

up

a

filter

for

retrieving

all

aliases

for

queues

ObjectName

scope

=

new

ObjectName("*Queues:*,type=alias");

//

use

the

JMX

MBeanServer

API

to

make

the

query

Set

results

=

mbeanServer.queryNames(scope,null);

//

etc.

Configuring

MQe

objects

141

Useful

MBeanServer

methods

Once

you

have

called

the

helper

method

MQeQueueManagerJmx.createMQeMBeans(),

which

instruments

all

of

your

queue

manager

resources

as

MBeans,

you

are

in

a

position

to

manipulate

those

resources

using

the

standard

MBeanServer

API.

In

general

terms,

this

manipulation

involves

either

the

setting

or

getting

of

MBean

resource

attributes

or

the

invocation

of

MBean

resource

operations.

The

attributes

and

operations

for

each

MQe

JMX

resource

are

listed

in

the

reference

JMX

Attributes

and

operations.

All

attribute

and

operation

manipulation

at

this

level

is

done

via

the

following

agent-layer

API.

getMBeanInfo:

public

MBeanInfo

getMBeanInfo(ObjectName

objName)

throws

InstanceNotFoundException,

IntrospectionException,

ReflectionException;

In

order

to

use

some

of

the

other

MBeanServer

methods

described

in

this

section,

such

as

the

invoke()

method,

you

need

information

about

the

relevant

input

parameters.

For

example,

you

may

need

to

know

what

operations

can

be

invoked

upon

a

given

resource,

what

input

parameters

are

required

for

a

particular

operation,

what

the

type

of

each

of

these

parameters

is

and

what

the

return

value

type

is.

There

are

two

ways

in

which

you

can

obtain

this

information.

Firstly,

you

can

use

the

list

of

attributes

and

operations

for

each

MQe

JMX-instrumented

resource

in

JMX

Attributes

and

operations.

You

can

look

up

the

information

that

you

need

and

hard-code

it

into

an

application

as

required.

Alternatively,

you

can

use

the

getMBeanInfo()

MBeanServer

method

that

the

agent

layer

provides

to

retrieve

the

input

parameter

information.

This

method

takes

as

its

sole

parameter

the

ObjectName

instance

that

corresponds

to

the

equivalent

MQe

resource.

The

method

returns

a

complex

structure

that

contains

information

on

the

following

properties

of

an

MBean:

class

name,

description,

attributes,

constructors,

operations,

notifications.

The

information

that

the

getMBeanInfo()

method

returns

on

attributes,

constructors,

operations

and

notifications

consists

of

further

structures

of

types

MBeanAttributeInfo,

MBeanConstructorInfo,

MBeanOperationInfo

and

MBeanNotificationInfo.

The

method

can

also

retrieve

an

MBeanParameterInfo

instance

that

corresponds

to

each

MBeanOperationInfo

instance,

and

so

on.

Below

is

one

example

of

how

to

use

the

getMBeanInfo()

method.

Given

the

complexity

of

the

MBeanInfo

object,

you

will

also

find

it

helpful

to

refer

to

the

JMX

information

sources

listed

in

the

Related

Material

section.

Suppose

you

know

that

an

instrumented

MQe

application

queue

MBean

has

an

addAlias

method

but

you

want

to

check

the

return

type

of

this

method.

To

do

this,

you

would

use

the

getMBeanInfo()

method

as

follows:

/*

call

the

getMBeanInfo()

method

on

*/

/*

the

MBeanServer

instance

for

the

queue

MBean

*/

MBeanInfo

beanInfo

=

mbeanServer.getMBeanInfo(queueObjName);

/*

retrieve

information

on

operations

for

that

MBean

*/

142

Configuring

MQe

Objects

MBeanOperationInfo[]

beanOps

=

beanInfo.getOperations();

/*

loop

through

the

operations

until

we

find

the

one

we

want

*/

for(int

i

=

0;

i

<

beanOps.length;

i++)

{

if(beanOps[i].getName().equals("addAlias"))

{

/*

get

the

return

type

for

that

operation

*/

String

retval

=

beanOps[i].getReturnType();

System.out.println(retval);

break;

}

A

very

useful

aspect

of

these

information

structures

is

the

description

parameter.

Instances

of

MBeanAttributeInfo,

MBeanParameterInfo,

MBeanConstructorInfo

and

MBeanOperationInfo

all

have

a

getDescription()

method,

which

you

can

use

to

return

a

text

description

of

the

item

in

question.

getAttribute:

public

Object

getAttribute(ObjectName

objName,

String

attrname)

throws

MBeanException,

AttributeNotFoundException,

InstanceNotFoundException,

ReflectionException;

This

API

allows

the

agent

layer

to

retrieve

the

value

of

an

MBean

attribute.

(See

the

JMX

documentation

on

the

Attribute

class

for

further

details.)

From

the

point

of

view

of

the

MQe

JMX

interface,

the

most

important

properties

of

this

class

are

name

and

value.

The

getAttribute()

method

takes

two

parameters:

an

ObjectName

corresponding

to

the

resource

in

question

(a

JMX-instrumented

queue,

for

example)

and

a

String

parameter

corresponding

to

the

Attribute

name.

The

method

returns

an

Object

which

must

be

cast

to

the

expected

type

of

the

Attribute

value.

So,

for

example,

if

a

MQe

queue

MBean

has

an

attribute

named

Description

of

type

java.lang.String,

the

value

for

that

attribute

would

be

retrieved

at

the

agent

layer

as

follows

(assuming

that

the

ObjectName

for

the

queue

in

question

has

been

retrieved

from

a

query):

String

queueDesc

=

(String)mbeanServer.getAttribute(

queueObjName,

"Description");

This

method

throws

exceptions

of

type:

AttributeNotFoundException,

MBeanException,

or

ReflectionException.

MQe

Exceptions

are

returned

wrapped

in

MBeanExceptions.

See

“Error

handling”

on

page

149.

Note:

For

the

sake

of

convenience,

the

try/catch

blocks

needed

to

catch

exceptions

thrown

by

these

MBeanServer

methods

are

omitted

in

the

examples

in

these

sections.

See

“Error

handling”

on

page

149.

Some

adapters

such

as

the

Sun

HtmlAdaptorServer

invoke

the

getAttribute()

and

setAttribute()

methods

recursively

when

getting

or

setting

several

attributes

rather

than

invoking

getAttributes()

or

setAttributes().

This

may

result

in

a

high

overhead.

In

this

case,

it

is

advisable

to

increase

the

cacheInterval

attribute

in

the

Admin

MBean

(see

the

reference

Admin

MBean).

Caching

attribute

values

decreases

the

amount

of

work

being

done

by

the

adaptor.

getAttributes:

public

AttributeList

getAttributes(

ObjectName

name,

String[]

attributes)

throws

InstanceNotFoundException,

ReflectionException;

Configuring

MQe

objects

143

The

attributes

parameter

consists

of

an

array

of

the

names

of

attributes

to

be

retrieved.

The

relevant

names

are

listed

in

reference

JMX

Attributes

and

operations.

The

return

value

is

of

type

javax.management.AttributeList

extends

java.util.ArrayList

and

provides

methods

for

adding

Attribute

objects

to

an

AttributeList.

Attributes

are

retrieved

from

an

AttributeList

using

an

instance

of

Iterator

and

the

Attribute

class

methods

getName()

and

getValue().

String[]

attributeNames

=

{"Description","Expiry"};

AttributeList

myAttrs

=

mbeanServer.getAttributes(queueObjName,attributeNames);

Iterator

myIter

=

myAttrs.iterator();

while(myIter.hasNext())

{

Attribute

attribute

=

(Attribute)myIter.next();

System.out.println("Attribute

name:

"

+

attribute.getName());

System.out.println("Attribute

value:

"

+

attribute.getValue());

}

The

corresponding

method

for

getAttributes()

at

the

instrumentation

level

cannot

throw

user

exceptions.

This

limits

the

usefulness

of

getAttributes()

at

the

agent

layer

as,

for

example,

MQe

exceptions

cannot

be

retrieved.

Instead

of

using

getAttributes(),

it

may

be

more

useful

to

loop

through

the

String

array

of

attribute

names

(attributeNames),

calling

getAttribute()

for

each,

though

this

increases

the

overhead.

The

same

applies

to

setAttributes().

setAttribute:

public

void

setAttribute(

ObjectName

name,

Attribute

attribute)

throws

InstanceNotFoundException,

AttributeNotFoundException,

InvalidAttributeValueException,

MBeanException,

ReflectionException;

This

method

is

used

to

set

the

name

and

value

of

a

new

Attribute

or

to

update

the

current

value

of

an

Attribute.

The

following

example

shows

how

to

use

the

JMX-instrument

MQe

queue

MBean

known

by

object

name

queueObjName

to

set

the

Description

attribute

at

the

agent

level:

Attribute

descAttr

=

new

Attribute("Description","A

description

for

my

queue");

mbeanServer.setAttribute(queueObjName,

descAttr);

Some

adapters

such

as

the

Sun

HtmlAdaptorServer

invoke

the

getAttribute()

and

setAttribute()

methods

recursively

when

getting

or

setting

several

attributes

rather

than

invoking

getAttributes()

or

setAttributes().

This

may

result

in

a

high

overhead.

In

this

case,

it

would

be

a

good

idea

to

increase

the

cacheInterval

attribute

in

the

Admin

MBean

(see

reference

Admin

MBean).

Caching

attribute

values

will

decrease

the

amount

of

work

being

done

by

the

adaptor.

setAttributes:

public

AttributeList

setAttributes(

ObjectName

name,

AttributeList

attribute)

throws

InstanceNotFoundException,

ReflectionException;

This

method

is

used

to

set

or

update

several

Attributes

at

once.

The

following

example

shows

how

to

use

the

JMX-instrumented

MQe

queue

MBean

known

by

object

name

queueObjName,

to

set

the

Description

and

Expiry

attributes

at

the

agent

level:

144

Configuring

MQe

Objects

/*create

the

attributes

to

update

*/

Attribute

descAttr

=

new

Attribute("Description","A

new

description

for

my

queue");

Attribute

expiryAttr

=

new

Attribute("Expiry",

new

Long(1000));

/*create

the

input

parameter

AttributeList

*/

/*

and

add

our

Attributes

to

the

List

*/

AttributeList

toUpdate

=

new

AttributeList();

toUpdate.add(descAttr);

toUpdate.add(expiryAttr);

/*

call

setAttributes()

and

check

results

if

required

*/

AttributeList

updates

=

mbeanServer.setAttributes(queueObjName,

toUpdate);

/*

can

now

process

updates

as

shown

in

getAttributes()

*/

Note:

The

same

limitations

apply

to

error

handling

for

setAttributes

as

those

described

earlier

for

getAttributes().

invoke:

public

Object

invoke(

ObjectName

name,

String

operationName,

Object[]

params,

String[]

signature)

throws

InstanceNotFoundException,

MBeanException,

ReflectionException;

This

method

is

used

to

invoke

JMX-wrappered

MQe

operations

on

MQe

JMX-instrumented

resources.

The

input

parameters

are:

name

the

ObjectName

corresponding

to

the

MQe

resource

to

be

administered.

operationName

the

name

of

the

operation

to

be

invoked,

for

example:

addAlias.

params

an

array

representing

the

input

parameters

to

the

operation.

signature

an

array

representing

the

data

types

corresponding

to

each

parameter.

Note:

The

indices

for

entries

in

params

and

signature

must

correspond:

the

entry

at

index

j

in

signature

must

represent

the

data

type

of

the

entry

at

index

j

in

params.

Suppose

you

want

to

invoke

the

addAlias()

method

on

a

MQe

queue

represented

by

object

name

queueObjName

where

there

is

one

input

parameter

of

type

String,

which

represents

the

alias

name.

The

following

example

shows

how

to

do

this:

Object[]

params

=

{new

String("myAlias")};

String[]

signature

=

{new

String("java.lang.String")};

mbeanServer.invoke(queueObjName,

"addAlias",

params,

signature);

In

this

case,

there

is

no

return

value

to

worry

about.

However,

although

this

is

a

relatively

simple

example,

it

illustrates

the

principles

which

apply

to

all

operations

invoked

using

this

method.

Configuring

MQe

objects

145

Data

types

In

the

example

for

the

MBeanServer

invoke()

method

in

the

previous

subsection,

the

input

parameter

String[]

signature

represents

the

data

types

of

all

input

parameters

to

the

method

being

invoked.

In

order

to

ensure

compliance

with

the

OpenMBean

model,

we

only

use

the

approved

data

types

for

our

attribute

getter()

and

setter()

methods

and

for

operation

parameters.

The

data

types

specified

when

invoke()

is

called

are

therefore

always

limited

to

a

set

of

approved

types

as

follows:

v

Simple

data

types:

–

java.lang.Void

–

java.lang.Boolean

–

java.lang.Byte

–

java.lang.Character

–

java.lang.String

–

java.lang.Short

–

java.lang.Integer

–

java.lang.Long

–

java.lang.Float

–

java.lang.Double
v

Arrays

of

the

above

types:

–

javax.management.ObjectName

–

javax.management.openmbean.CompositeData

–

javax.management.openmbean.TabularData

The

class

name

literals

for

each

type

have

a

specific

format

as

follows:

v

The

simple

data

types

listed

above

are

returned

as

described,

for

example

″java.lang.Byte″

v

For

arrays

of

these

types,

the

situation

is

more

complex.

For

the

purpose

of

the

MQe

JMX

types,

the

only

array

types

are

of

types

java.lang.String

and

java.lang.Short.

These

array

types

are

defined

as

follows:

Table

42.

Data

Types

and

Class

Name

Literal

Strings

Data

Type

Class

Name

Literal

String

String[]

″[Ljava.lang.String;″

Short[]

″[Ljava.lang.Short;″

Note:

Notice

the

semi-colon

as

the

end

of

the

class

name.

In

all

contexts

where

a

data

type

has

to

be

specified

throughout

the

JMX

instrumentation

and

agent

layers,

the

class

name

literal

format

must

be

used.

Divergence

from

MQe

Administration

Interface

This

section

describes

those

aspects

of

the

MQe

JMX

interface

that

differ

in

their

implementation

from

the

MQe

administrative

interface.

Messaging

operations

The

MQe

JMX

interface

is

intended

as

an

administrative

resource

to

assist

in

the

configuration

and

management

of

MQe

resources

via

JMX.

Messaging

operations

do

not

therefore

fall

into

its

brief

and

such

messaging

operations

as

are

provided

are

intended

only

for

test

purposes.

putMessage()

and

deleteMessage()

operations

are

provided

for

permitted

queue

types.

These

messaging

operations

provide

a

146

Configuring

MQe

Objects

very

limited

scope

for

testing

a

network’s

connectivity

and

configuration.

As

the

messaging

operations

are

minimal

it

is

not

possible

to

test

the

operation

of

a

network

using

store

or

forward

queues.

The

putMessage()

method

takes

a

single

java.lang.String

parameter

representing

the

text

of

a

message

body.

The

user

can

only

provide

this

single

String

–

no

further

customization

of

the

test

message

can

take

place.

This

message

is

put

to

the

queue

represented

by

the

MBean

upon

which

the

method

is

invoked.

The

MBean

representing

the

queue

in

question

also

has

an

attribute

called

Messages

(to

qualify

this

statement,

only

MBeans

representing

queues

of

a

type

on

which

browse

is

permitted

have

this

attribute).

This

attribute

is

of

type

[Ljava.lang.String;

and

can

be

retrieved

using

getAttribute()or

getAttributes().

Each

item

in

the

String

array

represents

the

text

of

the

message

body

put

to

the

queue

using

the

putMessage()

method.

If

messages

are

put

to

the

queue

in

question

by

any

means

other

than

the

JMX

interface

putMessage()

method,

the

text

body

will

not

be

readable

by

the

JMX

interface

and

the

value

returned

for

Messages

will

reflect

this.

The

index

of

a

message

body

in

the

Messages

array

can

be

used

to

delete

that

message

from

the

queue

using

the

deleteMessage()

method.

The

index

is

passed

in

as

the

only

parameter

to

the

deleteMessage()

method.

Note

that

both

the

putMessage()

and

the

deleteMessage()

methods

should

only

be

invoked

via

the

MBeanServer

invoke()

method.

This

is

true

for

all

operations

listed

in

this

section.

Store

and

Forward

queues

In

MQe,

there

is

a

single

queue

class,

MQeStoreAndForwardQueue,

which

encompasses

the

functionality

of

both

Store

Queues

and

Forward

Queues

in

the

MQe

JMX

interface.

This

type

of

queue

has

the

capacity

to

do

both

of

the

following:

v

Forward

messages

either

to

the

target

queue

manager

(which

MQe

JMX

calls

ForwardToQMgr),

or

to

another

queue

manager

between

the

sending

and

the

target

queue

managers.

In

this

case

the

store-and-forward

queue

pushes

messages

either

to

the

next

hop

or

to

the

target

queue

manager.

v

Hold

messages

until

the

target

queue

manager

can

collect

the

messages

from

the

store-and-forward

queue.

This

can

be

accomplished

using

a

home-server

queue.

Using

this

approach

messages

are

pulled

from

the

store-and-forward

queue.

The

target

queue

manager,

in

this

case,

is

included

in

what

MQe

JMX

calls

the

DestinationQMgrList.

MQeStoreAndForwardQueues

have

a

property

identifying

their

set

of

target

queue

managers

(Queue_QMgrNameList).

In

the

case

of

the

Store

Queue

MBean,

there

is

no

ForwardToQMgr.

The

sole

purpose

of

this

queue

is

to

store

messages

for

the

queues

in

its

DestinationQMgrList.

The

Forward

Queue

MBean

instance,

by

contrast,

has

a

ForwardToQMgr

as

well

as

a

DestinationQMgrList.

Thus

it

has

both

the

forward

and

store

capabilities

of

the

MQeStoreAndForwardQueue

while

the

Store

Queue

just

has

the

store

capability.

This

division

of

functionality

between

queue

MBean

representations

is

intended

to

simplify

the

roles

of

the

queues

in

question.

The

Store

Queue

is,

in

effect,

a

″storing″

queue

without

the

″forwarding″

capacity

of

the

Forward

Queue.

Configuring

MQe

objects

147

Programmatic

interface

versus

user

interface

terminology

Queue

references:

When

programming

in

MQe,

you

refer

to

different

types

of

queues

by

the

references

used

in

this

documentation.

When

a

queue

is

displayed

in

the

JMX

user

interface,

however,

it

is

given

a

different

reference.

The

following

table

shows

the

relationship

between

the

user

interface

references

and

the

programmatic

references.

Table

43.

Queue

reference

mapping

User

interface

queue

reference

Programming

interface

queue

reference

MQeAdminMessage

class

Admin

Admin

MQeAdminQueueAdminMsg

Application

Local

MQeQueueAdminMsg

Async

Proxy

Remote

(where

the

mode

is

asynchronous)

MQeRemoteQueueAdminMsg

Bridge

Bridge

MQeBridgeQueueAdminMsg

Forward

Store

and

Forward

(different

owning

queue

manager

name

from

local

queue

manager)

MQeStoreAndForwardQueueAdminMsg

Home

Server

Home

Server

MQeHomeServerQueueAdminMsg

Proxy

Remote

(incorporates

both

queue

modes)

MQeRemoteQueueAdminMsg

Store

Store

and

Forward

(same

owning

queue

manager

name

as

local

queue

manager)

MQeStoreAndForwardQueueAdminMsg

Sync

Proxy

Remote

(where

the

mode

is

synchronous)

MQeRemoteQueueAdminMsg

Queue

queue

manager

references:

When

programming

in

MQe,

you

use

the

term

queueqm

—

most

queues

have

an

associated

queue

manager

and

this

is

the

queueqm.

You

refer

to

these

different

types

of

queue

managers

by

the

references

used

in

this

documentation.

However,

when

a

queueqm

is

displayed

in

the

JMX

user

interface

it

is

given

a

different

reference.

The

following

table

shows

how

the

queueqm

is

referred

to

for

each

type

of

queue,

using

the

user

interface

references

for

both.

Table

44.

Queueqm

reference

mapping

User

interface

queue

reference

User

interface

queueqm

reference

Description

Admin

none

Same

as

the

local

queue

manager

name

Application

none

Same

as

the

local

queue

manager

name

Async

Proxy

DestinationQMgr

The

name

of

the

queue

manager

that

holds

the

corresponding

application

queue

148

Configuring

MQe

Objects

Table

44.

Queueqm

reference

mapping

(continued)

User

interface

queue

reference

User

interface

queueqm

reference

Description

Bridge

DestinationQMgr

The

name

of

the

MQ

queue

manager

that

holds

the

corresponding

MQ

queue

Forward

ForwardToQMgr

The

name

of

the

queue

manager

that

messages

arriving

on

this

queue

will

be

forwarded

to

Home

Server

GetFromQMgr

The

name

of

the

queue

manager

that

messages

on

store

or

forward

queues

will

be

pulled

from

Store

none

Same

as

the

local

queue

manager

name

Sync

Proxy

DestinationQMgr

The

name

of

the

queue

manager

that

holds

the

corresponding

application

queue

Error

handling

The

MBeanException

class

is

defined

in

the

Sun

JMX

Specification

(1.2)

as

follows:

This

class

represents

″user

defined″

exceptions

thrown

by

MBean

methods

in

the

agent.

It

″wraps″

the

actual

″user

defined″

exception

thrown.

This

exception

will

be

built

by

the

MBeanServer

when

a

call

to

an

MBean

method

results

in

an

unknown

exception.

There

are

methods

in

the

MBeanException

class

that

will

return

the

original

exception

class

and

any

message

that

was

inside

the

exception:

public

Exception

getTargetException();

public

Throwable

getCause();

Therefore,

an

application

can

retrieve

and

handle

any

MQe

(or

other)

exceptions.

However,

it

may

be

the

case

that

exceptions

caught

at

the

agent

layer

may

not

be

adequately

displayed

via

the

adapter

or

connector

used.

For

example,

the

Sun

RI

HtmlAdaptorServer

does

not

retrieve

and

display

exceptions

wrappered

in

MBeanExceptions.

This

impacts

the

usefulness

of

using

the

HtmlAdaptorServer

to

get

back

MQeExceptions

when

setting

attributes.

For

example,

MQe

throws

an

exception

if

you

attempt

to

set

a

queue

priority

outside

the

range

0-9.

All

that

the

HtmlAdaptorServer

shows

is

that

the

Priority

attribute

value

has

not

been

set.

This

is

an

unfortunate

limitation

to

this

specific

adapter.

If

a

null

value

is

entered

for

a

required

parameter

on

an

operation

a

NullPointerException

will

be

inside

the

wrapped

MBeanException.

Any

exception

returning

from

MQe

after

an

operation

or

an

attempt

to

set

an

attribute

is

made

will

be

of

type

MQeException

inside

the

MBeanException.

Notifications

The

JMX

specification

provides

a

notification

mechanism

which

has

been

implemented

in

the

MQe

JMX

interface.

Configuring

MQe

objects

149

This

interface

implements

the

JMX

NotificationBroadcaster

class

and

can

therefore

send

notifications

to

any

applications

which

implement

the

corresponding

JMX

NotificationListener

class.

A

notification

in

this

context

is

a

message

sent

by

a

notification

broadcaster

to

a

notification

listener

via

the

JMX

infrastructure.

Notifications

of

two

classes

which

subclass

the

JMX

Notification

class

are

sent

from

the

MQe

JMX

interface.

These

classes

are:

v

com.ibm.mqe.jmx.MQeAliasNotification;

v

javax.management.AttributeChangeNotification.

MQeAliasNotification

This

class

extends

javax.management.Notification

and

provides

the

following

notification

types:

v

mqe.connection.alias.added:

when

an

alias

is

added

to

a

connection.

v

mqe.connection.alias.removed:

when

an

alias

is

removed

from

a

connection.

v

mqe.queue.alias.added:

when

an

alias

is

added

to

a

queue.

v

mqe.queue.alias.removed:

when

an

alias

is

removed

from

a

queue.

v

mqe.queuemanager.alias.added:

when

an

alias

is

added

to

a

queue

manager.

v

mqe.queuemanager.alias.removed:

when

an

alias

is

removed

from

a

queue

manager.

AttributeChangeNotification

This

class

is

used

to

notify

interested

JMX

listeners

when

the

value

of

an

MBean

attribute

changes.

It

provides

the

following

notification

type:

v

jmx.attribute.changed:

when

the

value

of

an

attribute

changes.

If

an

exception

occurs

when

an

attempt

is

made

to

change

an

attribute,

the

text

of

the

exception

will

be

passed

back

to

the

user

via

the

notification

’message’.

The

getMessage()

method

can

thus

be

used

to

retrieve

the

exception

text.

The

AttributeChangeNotification

class

also

provides

getOldValue()

and

getNewValue()

methods

to

return

the

original

attribute

value

and

the

value

to

which

it

is

being

changed.

In

the

event

of

an

error,

getNewValue()

will

not

return

the

actual

attribute

value

(since

the

attempt

to

change

the

attribute

has

not

succeeded)

–

in

this

case,

getOldValue()

returns

the

actual

attribute

value

at

the

point

of

notification.

Using

notifications

In

order

to

receive

notifications,

a

user

(at

the

Agent

layer)

implements

the

JMX

NotificationListener

interface

and

then

invokes

the

addNotificationListener

on

the

MBeanServer

instance:

public

void

addNotificationListener(

ObjectName

objName,

NotificationListener

listener,

NotificationFilter

filter,

Object

handback);

where

v

objectName

represents

the

MBean

from

which

notifications

are

to

be

received

v

listener

is

the

user’s

instance

of

NotificationListener

v

filter

is

an

optional

filter

used

if

only

a

subset

of

possible

notifications

is

required

(may

be

null)

150

Configuring

MQe

Objects

v

handback

is

an

object

which

can

be

used

to

hold

private

data

that

the

handler

of

the

received

notification

wants

to

access

(may

be

null)

Note:

There

is

an

alternative

addNotificationListener()

method

on

the

MBeanServer

which

passes

the

ObjectName

for

the

listener

rather

than

the

actual

NotificationListener

instance.

This

can

be

used

if

the

NotificationListener

instance

is

itself

a

registered

MBean.

If

you

have

any

resources

with

aliases,

and

you

add

listeners

for

notifications

from

both

a

resource

and

its

aliases,

you

will

receive

multiple

identical

notifications.

It

is

a

good

idea

to

ensure

that

object

names

passed

as

parameters

to

the

addNotificationListener()

method

do

not

contain

the

property

key-value

pair

″type=alias″.

Having

called

this

API,

the

user’s

listener

will

now

be

added

to

the

broadcaster’s

table

of

listeners.

In

order

to

handle

received

notifications,

the

user

also

has

to

implement

the

following

method:

public

void

handleNotification

(

Notification

notification,

Object

handback);

where:

v

notification

is

the

Notification

instance

sent

by

the

NotificationBroadcaster

object

v

handback

is

an

object

which

can

be

used

to

hold

private

data

which

the

handler

of

the

received

notification

wishes

to

access

(may

be

null)

This

method

is

where

the

received

notifications

are

processed.

The

Notification

class

provides

several

useful

methods

which

may

be

used

to

extract

information

about

the

notification:

public

String

getType();

//

returns

the

notification

type

public

Object

getSource();

//

returns

the

source

of

the

notification

public

long

getSequence();

//

returns

the

sequence

number

of

//

the

notification

[1]

public

String

getMessage();

//

returns

a

text

message

associated

with

//

the

notification

public

Object

getUserData();

//

returns

the

handback

object

Note:

1.

The

sequence

number

provides

information

on

the

occurrence

of

the

notification

but

is

not

set

in

this

MQe

JMX

implementation

so

will

always

have

a

value

of

0.

The

following

example

shows

how

the

agent

could

set

up

listeners

for

certain

MQe

MBeans.

In

this

example,

the

user

is

only

interested

in

receiving

notifications

from

MBeans

representing

application

queues

belonging

to

the

local

queue

manager

TestQueueManager:

/*

find

all

the

mbeans

and

set

up

listeners

for

them

*/

ObjectName

scope

=

new

ObjectName("com.ibm.MQe_TestQueueManager_ApplicationQueues:*");

Set

results

=

mbeanServer.queryNames(scope,null);

Iterator

iter

=

results.iterator();

while(iter.hasNext())

{

/*

for

each

bean,

check

that

it

is

not

an

alias

MBean

–

*

these

beans

have

type=alias

in

the

ObjectName

*/

ObjectName

objName

=

(ObjectName)iter.next();

Configuring

MQe

objects

151

String

type

=

objName.getKeyProperty("type");

if(type

==

null

||

!type.equals("alias"))

{

/*

add

a

listener

*/

mbeanServer.addNotificationListener(objName,this,null,null);

}

}

Other

Issues

Setting

attributes

of

array

type

It

is

possible

for

attributes

of

array

type

(for

example,

[Ljava.lang.String;

)

to

be

written

to

as

well

as

read

from.

So,

it

is

possible,

for

instance,

to

update

a

queue’s

array

of

aliases

using

the

MQe

JMX

interface.

However,

there

are

limitations

to

the

manner

in

which

some

adapters

allow

the

user

to

make

such

updates.

For

example,

the

Sun

RI

HtmlAdaptorServer

adapter

will

only

provide

an

array

for

the

update

which

is

of

the

same

dimensions

as

the

current

array.

Thus,

if

a

queue

has

no

existing

aliases,

the

array

for

update

will

be

of

size

zero,

and

hence

no

new

alias

can

be

added

for

the

queue

using

the

queue

alias

attribute.

However,

in

this

case,

an

alias

can

be

added

using

the

addAlias()

operation.

If

a

queue

has

two

existing

aliases,

then

the

array

provided

for

the

alias

attribute

update

is

of

size

two.

One

or

both

of

the

two

aliases

can

be

changed

using

the

writable

array.

However,

some

adapters

do

not

allow

the

user

to

clear

the

contents

of

the

array

cells

and

pass

back

an

array

containing

empty

string(s).

This

will

cause

an

exception.

Hence

these

adapters

will

only

allow

an

update

which

keeps

the

number

of

existing

aliases

constant.

Since

these

are

limitations

of

specific

adapters

only,

we

have

decided

to

allow

such

array

attributes

to

be

updated

where

appropriate.

The

alternative

would

be

to

force

users

to

use

operations

for

adding

aliases

rather

than

using

the

attribute

update

potential.

This

specific

example

may

also

be

extended

to

situations

where

the

capability

of

the

adapter

or

connector

does

not

match

the

capability

of

a

programmatic

interface.

We

are

not

in

a

situation

to

predict

such

limitations

in

advance

and

hence

there

may

be

features

of

our

implementation

which

are

not

ideally

suited

to

some

adaptors

and

connectors.

We

have

decided

against

constricting

the

functionality

of

our

instrumentation

layer

to

match

the

capabilities

of

specific

adapters.

Alias

MBeans

Certain

MQe

resources

–

queues,

queue

managers

and

connections

–

can

have

aliases,

other

names

by

which

they

can

be

known.

In

order

to

facilitate

administration,

the

MQe

JMX

interface

re-registers

MBeans

which

have

aliases

under

an

object

name

corresponding

to

the

alias.

Thus

for

example

if

the

JMX

interface

is

used

to

add

an

alias

myAlias

to

an

application

queue

myQueue,

the

queue

MBean

is

actually

registered

twice,

once

with

object

name

com.ibm.MQe_<OwningQMName>_ApplicationQueues:name=myQueue

and

once

with

object

name

152

Configuring

MQe

Objects

com.ibm.MQe_<OwningQMName>_ApplicationQueues:name=myAlias,

type=alias,

resourceName=myQueue@<OwningQMName>.

This

means

that

the

administrator

does

not

have

to

be

aware

of

the

real

name

of

the

resource

in

order

to

administer

it

via

JMX.

Likewise,

when

aliases

are

removed

from

resources,

the

corresponding

ObjectName

is

de-registered.

One

side-effect

of

this

practice

is

that

if

a

user

chooses

to

create

and

register

some

MQe

MBeans

without

using

the

helper

method

createMQeMBeans(),

this

may

result

in

an

inconsistent

picture

where

some

resources

are

registered

with

alias

names

while

others

are

not.

This

enforces

the

argument

for

using

the

helper

method

to

create

and

register

all

MQe

MBeans.

Translation

Description

attributes

for

MQe

resources

are

available

in

all

the

different

MQe

supported

languages,

in

translated

properties

files.

The

language

used

for

the

descriptions

will

be

selected

according

to

the

default

locale

of

your

machine,

using

the

normal

Java

convention,

as

described

briefly

below.

You

must

provide

appropriate

properties

files

on

your

classpath

for

all

languages,

including

US

English.

The

properties

files

can

be

found

in

the

folder

Java/com/ibm/mqe/properties

below

the

folder

in

which

MQe

was

installed.

This

directory

contains

two

required

properties

files

in

all

the

supported

languages:

v

AdminDescBundle

v

JMXDescBundle

Either

all

the

properties

files

can

be

added

to

the

classpath

or

just

the

files

required

for

your

language.

There

are

two

default

files:

v

AdminDescBundle.properties

v

JMXDescBundle.properties

that

contain

the

English

descriptions.

These

files

will

be

used

if

there

is

no

matching

translated

file

for

your

locale.

All

other

files

have

a

country

code

XX

appended

to

the

first

part

of

the

filename

to

make

JMXDescBundle_XX.properties

where

XX

is

one

of

the

following

country

codes:

Code

Language

de

German

es

Spanish

fr

French

it

Italian

ja

Japanese

ko

Korean

Configuring

MQe

objects

153

Code

Language

pt_BR

Brazilian

Portuguese

zh

Chinese

zh_TW

Traditional

Chinese

The

Java

system

for

selecting

the

language

is

as

follows:-

1.

determine

the

computer’s

default

locale,

for

example

fr_FR

2.

Search

for

that

locale

through

the

files

provided,

checking

the

language

code

on

each:

v

If

a

fully-qualified

language

code

file,

for

example

file_fr_FR

is

not

found,

then

it

will

use

the

semi-qualified

code

file,

if

it

exists

—

in

that

example

file_fr

v

When

a

file

with

a

fully-qualified

code

is

found,

only

the

fully

matching

locale

will

select

it,

for

example

locale

pt_BR

will

use

the

file

file_pt_BR,

but

locale

pt_PT

will

not,

and

will

hence

default

to

English.

Note:

The

JTC

recommend

that

when

a

fully-qualified

language

code

file

exists,

the

semi-qualified

code

file

must

also

exist,

even

if

it

is

empty.

For

full

information

on

this,

see

these

websites:

http://oss.software.ibm.com/icu/userguide/design.html

http://java.sun.com/products/jdk/1.2/docs/api/java/util/ResourceBundle.html

v

v

Related

information

on

JMX

This

section

lists

various

sources

of

information

that

you

might

find

useful.

Books

v

Perry,

J.

Steven,

Java

Management

Extensions:

Managing

Java

Applications

with

JMX

(O’Reilly

&

Associates,

Inc:

2002)

v

Jasnowski,

Mike.

JMX

Programming

(Wiley

Publishing,

Inc:

2002)

Articles

v

http://java.sun.com/products/JavaManagement/

(Sun

articles,

downloads,

resources

for

JMX)

v

http://www.sys-con.com/Java/articlenews.cfm?id=1922

v

http://mx4j.sourceforge.net/

(Open

Source

JMX

http://mx4j.sourceforge.net/)

v

http://www-106.ibm.com/developerworks/library/j-jmx1/

v

http://www-106.ibm.com/developerworks/library/j-jmx2/

v

http://www-106.ibm.com/developerworks/library/j-jmx3/

(Article:

From

black

boxes

to

enterprises

Parts

1-3)

v

http://www.informit.com/content/index.asp?session_id={61F6D302-4F4F-4D68-
96D8-AD545B00CA28}&product_id={583CB44A-AC47-4959-9C01-FA8DF0884EEE}

(Article:

Managing

Complex

systems

with

JMX)

v

http://jcp.org/aboutJava/communityprocess/maintenance/jsr003/jmx1.2-
change-log.txt

(Changes

between

JMX

1.1

and

1.2)

154

Configuring

MQe

Objects

http://oss.software.ibm.com/icu/userguide/design.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/ResourceBundle.html
http://java.sun.com/products/JavaManagement/
http://www.sys-con.com/Java/articlenews.cfm?id=1922
http://mx4j.sourceforge.net/
http://www-106.ibm.com/developerworks/library/j-jmx1/
http://www-106.ibm.com/developerworks/library/j-jmx2/
http://www-106.ibm.com/developerworks/library/j-jmx3/
http://www.informit.com/content/index.asp?session_id={61F6D302-4F4F-4D68-96D8-AD545B00CA28}&product_id={583CB44A-AC47-4959-9C01-FA8DF0884EEE}
http://www.informit.com/content/index.asp?session_id={61F6D302-4F4F-4D68-96D8-AD545B00CA28}&product_id={583CB44A-AC47-4959-9C01-FA8DF0884EEE}
http://jcp.org/aboutJava/communityprocess/maintenance/jsr003/jmx1.2-change-log.txt
http://jcp.org/aboutJava/communityprocess/maintenance/jsr003/jmx1.2-change-log.txt

Other

resources

v

http://www.alphaworks.ibm.com/tech/TMX4J

(IBM

Tivoli

Tivoli’s

implementation

of

the

JMX

Specification)

v

http://www.jguru.com/forums/JMX

(JGuru

JMX

forum).

Configuring

MQe

objects

155

http://www.alphaworks.ibm.com/tech/TMX4J
http://www.jguru.com/forums/JMX

156

Configuring

MQe

Objects

Glossary

This

glossary

describes

terms

used

in

this

book,

and

words

used

with

other

than

their

everyday

meaning.

In

some

cases,

a

definition

might

not

be

the

only

one

applicable

to

a

term,

but

it

gives

the

particular

sense

in

which

the

word

is

used

in

this

book.

If

you

do

not

find

the

term

you

are

looking

for,

try

a

softcopy

search,

or

see

the

hardcopy

index,

or

see

the

IBM

Dictionary

of

Computing,

New

York:.

McGraw-Hill,

1994.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

application

programming

interface

(API)

An

application

programming

interface

consists

of

the

functions

and

variables

that

programmers

are

allowed

to

use

in

their

applications.

asynchronous

messaging

A

method

of

communication

between

programs

in

which

programs

place

messages

on

message

queues.

With

asynchronous

messaging,

the

sending

program

proceeds

with

its

own

processing

without

waiting

for

a

reply

to

its

message.

Contrast

with

synchronous

messaging.

authenticator

A

program

that

verifies

the

senders

and

receivers

of

messages.

B

bridge

A

component

that

can

be

added

to

an

MQe

queue

manager

to

allow

it

to

communicate

with

MQ.

See

MQe

queue

managers.

C

channel

See

dynamic

channel

and

MQI

channel.

channel

manager

an

MQe

object

that

supports

logical

multiple

concurrent

communication

pipes

between

end

points.

class

An

encapsulated

collection

of

data

and

methods

to

operate

on

the

data.

A

class

may

be

instantiated

to

produce

an

object

that

is

an

instance

of

the

class.

client

In

MQ,

a

client

is

a

run-time

component

that

allows

local

user

applications

to

send

messages

to

a

server.

compressor

A

program

that

compacts

a

message

to

reduce

the

volume

of

data

to

be

transmitted.

connection

Links

MQe

devices

and

transfers

synchronous

and

asynchronous

messages

and

responses

in

a

bidirectional

manner.

©

Copyright

IBM

Corp.

2000,

2004

157

cryptor

A

program

that

encrypts

a

message

to

provide

security

during

transmission.

D

device

platform

A

small

computer

that

is

capable

of

running

MQe

only

as

a

client,

that

is,

with

a

device

queue

manager

only.

device

queue

manager

See

MQe

queue

managers.

E

encapsulation

An

object

oriented

programming

technique

that

makes

an

object’s

data

private

or

protected

and

allows

programmers

to

access

and

manipulate

the

data

only

through

method

calls.

G

gateway

A

computer

of

any

size

running

an

MQe

gateway

queue

manager,

which

includes

the

MQ

bridge

function.

See

MQe

queue

managers.

gateway

queue

manager

A

queue

manager

with

a

listener

and

a

bridge.

See

MQe

queue

managers.

H

Hypertext

Markup

Language

(HTML)

A

language

used

to

define

information

that

is

to

be

displayed

on

the

World

Wide

Web.

I

instance

An

object.

When

a

class

is

instantiated

to

produce

an

object,

the

object

is

an

instance

of

the

class.

interface

A

class

that

contains

only

abstract

methods

and

no

instance

variables.

An

interface

provides

a

common

set

of

methods

that

can

be

implemented

by

subclasses

of

a

number

of

different

classes.

internet

A

cooperative

public

network

of

shared

information.

Physically,

the

Internet

uses

a

subset

of

the

total

resources

of

all

the

currently

existing

public

telecommunication

networks.

Technically,

what

distinguishes

the

Internet

as

a

cooperative

public

network

is

its

use

of

a

set

of

protocols

called

TCP/IP

(Transport

Control

Protocol/Internet

Protocol).

J

Java

Development

Kit

(JDK)

A

package

of

software

distributed

by

Sun

Microsystems

for

Java

developers.

It

includes

the

Java

interpreter,

Java

classes

and

Java

development

tools:

compiler,

debugger,

disassembler,

appletviewer,

stub

file

generator,

and

documentation

generator.

158

Configuring

MQe

Objects

Java

Naming

and

Directory

Service

(JNDI)

An

API

specified

in

the

Java

programming

language.

It

provides

naming

and

directory

functions

to

applications

written

in

the

Java

programming

language.

L

Lightweight

Directory

Access

Protocol

(LDAP)

A

client/server

protocol

for

accessing

a

directory

service.

M

message

In

message

queuing

applications,

a

communication

sent

between

programs.

message

queue

See

queue.

message

queuing

A

programming

technique

in

which

each

program

within

an

application

communicates

with

the

other

programs

by

putting

messages

on

queues.

method

The

object

oriented

programming

term

for

a

function

or

procedure.

MQ

bridge

A

computer

with

a

gateway

queue

manager

that

can

communicate

with

MQ.

See

MQe

queue

managers.

MQ

and

MQ

family

Refers

to

WebSphere

MQ,

which

includes

these

products:

v

WebSphere

MQ

Workflow

simplifies

integration

across

the

whole

enterprise

by

automating

business

processes

involving

people

and

applications.

v

WebSphere

MQ

Integrator

is

message-brokering

software

that

provides

real-time,

intelligent,

rules-based

message

routing,

and

content

transformation

and

formatting.

v

WebSphere

MQ

Messaging

provides

any-to-any

connectivity

from

desktop

to

mainframe,

through

business

quality

messaging,

with

over

35

platforms

supported.

MQ

Messaging

Refers

to

the

following

WebSphere

MQ

messaging

product

groups:

v

Distributed

messaging:

MQ

for

Windows

NT

and

Windows

2000,

AIX®,

iSeries®,

HP-UX,

Solaris,

and

other

platforms

v

Host

messaging:

MQ

for

z/OS®

v

Pervasive

messaging:

MQe

MQe

Refers

to

WebSphere

MQ

Everyplace,

the

MQ

pervasive

messaging

product

group

.

MQI

channel

Connects

an

MQ

client

to

a

queue

manager

on

a

server

system

and

transfers

MQI

calls

and

responses

in

a

bidirectional

manner.

O

object

(1)

In

Java,

an

object

is

an

instance

of

a

class.

A

class

models

a

group

of

things;

an

object

models

a

particular

member

of

that

group.

(2)

In

MQ,

an

object

is

a

queue

manager,

a

queue,

or

a

channel.

Glossary

159

P

package

A

package

in

Java

is

a

way

of

giving

a

piece

of

Java

code

access

to

a

specific

set

of

classes.

Java

code

that

is

part

of

a

particular

package

has

access

to

all

the

classes

in

the

package

and

to

all

non-private

methods

and

fields

in

the

classes.

personal

digital

assistant

(PDA)

A

pocket

sized

personal

computer.

private

A

private

field

is

not

visible

outside

its

own

class.

protected

A

protected

field

is

visible

only

within

its

own

class,

within

a

subclass,

or

within

packages

of

which

the

class

is

a

part.

public

A

public

class

or

interface

is

visible

everywhere.

A

public

method

or

variable

is

visible

everywhere

that

its

class

is

visible.

Q

queue

A

queue

is

an

MQ

object.

Message

queueing

applications

can

put

messages

on,

and

get

messages

from,

a

queue.

queue

manager

A

queue

manager

is

a

system

program

that

provides

message

queuing

services

to

applications.

queue

queue

manager

This

term

is

used

in

relation

to

a

remote

queue

definition.

It

describes

the

remote

queue

manager

that

owns

the

local

queue

that

is

the

target

of

a

remote

queue

definition.

See

more

at

Configuring

remote

queues

-

Introduction.

device

queue

manager

On

MQe:-

A

queue

manager

with

no

listener

component,

and

no

bridge

component.

It

therefore

can

only

send

messages,

it

cannot

receive

them.

server

queue

manager

On

MQe:-

A

queue

manager

that

can

have

a

listener

added.

With

the

listener

it

can

receive

messages

as

well

as

send

them.

gateway

queue

manager

On

MQe:-

A

queue

manager

that

can

have

a

listener

and

a

bridge

added.

With

the

listener

it

can

receive

messages

as

well

as

send

them,

and

with

the

bridge

it

can

communicate

with

MQ.

R

registry

Stores

the

queue

manager

configuration

information.

S

server

1.

An

MQe

server

is

a

device

that

has

an

MQe

channel

manager

configured,

and

responds

to

requests

for

information

in

a

client-server

setup.

2.

An

MQ

server

is

a

queue

manager

that

provides

message

queuing

services

to

client

applications

running

on

a

remote

workstation.

160

Configuring

MQe

Objects

3.

More

generally,

a

server

is

a

program

that

responds

to

requests

for

information

in

the

particular

two-program

information-flow

model

of

client-server.

4.

The

computer

on

which

a

server

program

runs.

server

queue

manager

A

queue

manager

with

a

listener

that

can

therefore

receive

messages

as

well

as

send

them.

See

MQe

queue

managers.

server

platform

A

computer

of

any

size

that

is

capable

of

running

MQe

as

a

server

or

client.

servlet

A

Java

program

which

is

designed

to

run

only

on

a

Web

server.

subclass

A

subclass

is

a

class

that

extends

another.

The

subclass

inherits

the

public

and

protected

methods

and

variables

of

its

superclass.

superclass

A

superclass

is

a

class

that

is

extended

by

some

other

class.

The

superclass’s

public

and

protected

methods

and

variables

are

available

to

the

subclass.

synchronous

messaging

A

method

of

communicating

between

programs

in

which

programs

place

messages

on

message

queues.

With

synchronous

messaging,

the

sending

program

waits

for

a

reply

to

its

message

before

resuming

its

own

processing.

Contrast

with

asynchronous

messaging.

T

Transmission

Control

Protocol/Internet

Protocol

(TCP/IP)

A

set

of

communication

protocols

that

support

peer-to-peer

connectivity

functions

for

both

local

and

wide

area

networks.

transformer

A

piece

of

code

that

performs

data

or

message

reformatting.

W

Web

See

World

Wide

Web.

Web

browser

A

program

that

formats

and

displays

information

that

is

distributed

on

the

World

Wide

Web.

World

Wide

Web

(Web)

The

World

Wide

Web

is

an

Internet

service,

based

on

a

common

set

of

protocols,

which

allows

a

particularly

configured

server

computer

to

distribute

documents

across

the

Internet

in

a

standard

way.

Glossary

161

162

Configuring

MQe

Objects

Appendix.

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

United

Kingdom

Laboratories,

Mail

Point

151,

©

Copyright

IBM

Corp.

2000,

2004

163

Hursley

Park,

Winchester,

Hampshire

England

SO21

2JN

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Trademarks

The

following

terms

are

trademarks

of

International

Business

machines

Corporation

in

the

United

States,

or

other

countries,

or

both.

AIX

Everyplace

IBM

iSeries

MQSeries

WebSphere

z/OS

zSeries

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States

and/or

other

countries.

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States

and/or

other

countries.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

164

Configuring

MQe

Objects

����

Printed

in

USA

	Contents
	About this topic collection
	How to configure MQe objects
	Introduction
	Overview of MQe objects
	Queue managers
	Connections
	Client-to-server connections
	Adapters, routing and aliases

	Queues
	Local queue
	Message store
	Creating a local queue
	Queue security
	Other queue characteristics
	Aliases
	Action restrictions

	Home-server queue
	MQ bridge queue
	Administration queue

	Security and administration

	Configuring with messages
	Configuration by messages overview
	The administration queue
	The administration reply-to queue
	Create the appropriate administration message
	Set the required fields in a message - Java
	The basic administration message
	Base administration fields
	Fields specific to the managed resource
	Other useful fields
	Administration message Java examples 1
	Put the message on the target queue
	Wait for an administration reply message

	Set the required fields in the message - C
	Analyzing the data in the reply message
	The basic administration reply message
	Outcome of request fields
	Administration message Java examples - 2
	Decorating the queue manager
	Putting the administration message
	Waiting for the administration reply
	Analyzing the reply message
	Updating a queue manager description

	Configuring with the C administrator API
	Creating an administrator handle
	Using the administrator handle
	Freeing the administrator handle

	Configuring from the command line
	Example use of command-line tools
	Script files required
	MQe and MQ objects defined by the scripts
	How to use the script files
	How to use MQe_Explorer to view the configuration

	Configuring MQe objects
	Configuring queue managers
	Introduction to configuring queue managers
	Java
	C

	Queue manager attributes
	Java
	C

	Create a queue manager
	Java
	C

	Delete a queue manager
	Java
	C

	Inquire and inquire all
	Java
	C

	Update
	Java
	C

	Add alias
	Java
	C

	Remove alias
	Java
	C

	List alias names
	Java
	C

	IsAlias
	Java
	C

	Configuring a queue manager using memory only

	Configuring local queues
	Introduction
	Java
	C

	Local queue properties
	Java
	C

	Create a local queue
	Java
	C

	Delete a local queue
	Java
	C

	Add alias
	Java
	C

	List aliases
	Java
	C

	Remove alias
	Java
	C

	Update
	Java
	C

	Inquire and inquire all
	Java
	C

	Message storage adapter

	Configuring remote queues
	Introduction
	Structures
	Synchronous and asynchronous
	Setting the operation mode
	Creating a remote queue
	Java
	C

	Create synchronous
	Java
	C

	Create asynchronous
	Java
	C

	Transporter
	Queue aliases

	Configuring home server queues
	Introduction
	Configuration messages
	Message transmission
	Java
	C

	Creating a home server queue
	Java
	C

	Configuring store-and-forward queues
	Introduction
	Store and forward queue attributes
	Java

	Create store and forward queue
	Java

	Delete store and forward queue
	Java

	Add queue manager
	Java

	Remove queue manager
	Java

	Update
	Java

	Inquire
	Java

	Configuring connection definitions
	Introduction
	Direct connection definition
	Indirect connection definition

	Configuring connection definitions in Java
	Creating a connection definition
	Altering and deleting connection definitions

	Configuring connection definitions in C
	Creating a connection definition
	Altering and deleting connection definitions

	Configuring a listener
	Java

	Configuring bridge/gateway resources
	Introduction to the MQ bridge
	What makes a queue manager bridge-enabled
	Finding out if a queue manager is bridge-enabled
	Classes to bridge-enable a queue manager
	Overview of configuring the bridge
	The bridge objects and hierarchy
	Bridges resource
	Bridge resource
	MQ queue manager proxy
	Client connection resource
	Transmit queue listener resource
	Bridge queue

	Naming recommendations for interoperability with MQ
	Configuring a basic MQ bridge
	Using MQe administration messages and MQ PCF messages
	Bridge configuration example
	MQeMoonQM to/from MQeEarthQM
	MQeEarthQM to MQeMoonQM
	MQeEarthQM to MQSaturnQ
	MQeEarthQM to MQJupiterQ
	MQeMoonQM to MQJupiterQ and MQSaturnQ
	MQSaturnQM to MQeEarthQ
	MQSaturnQM to MQeMoonQ
	MQJupiterQM to MQeMoonQ

	Administration of the bridge
	Bridge administration actions
	Run state
	Start action
	Stop action
	Inquire action
	Update action
	Delete action
	Create action

	Bridge considerations when stopping an MQ queue manager
	Immediate shutdown
	Controlled shutdown

	Administered objects and their characteristics

	Handling undeliverable messages
	Bridge National Language Support

	Configuring queue managers as servlets
	Introduction
	An example servlet configuration using WAS
	Start the Application Assembly tool
	Specifying web module properties
	Adding files to the application
	Adding web components
	Specifying component type and class name
	Specifying a URL to map to your servlet
	Finishing and saving the file
	Install enterprise application
	Installing your component as a standalone module
	Specifying an application name
	Finishing the configuration
	Starting the web module
	Start succeeded
	Using the servlet

	JMS (Java Message Service) configuration
	JMS Object naming changes from V2.0.1
	Introduction to JMS
	Configuring MQeConnectionFactory
	Configuring MQeJMSQueue
	The MQe administration tool for JMS
	Configuring the JMS administration tool
	Starting the JMS administration tool
	JMS Administration commands
	Manipulating subcontexts
	Administering JMS objects
	Verbs used with JMS objects
	Creating JMS objects
	LDAP naming of JMS objects
	JMS object properties

	Extending MQeConnectionFactory
	LDAP schema definition for Java object storage
	Attribute definitions
	objectClass definitions

	JMX (Java Management Extensions) interface
	Introduction to MQe JMX
	JMX architecture
	Instrumenting your MQe resources as JMX MBeans
	Typographical conventions in this JMX documentation

	Setting up the MQe JMX interface
	Enabling MQe applications for JMX managment
	Accessing MQe MBeans via the MBeanServer
	ObjectName
	Useful MBeanServer methods
	getMBeanInfo
	getAttribute
	getAttributes
	setAttribute
	setAttributes
	invoke

	Data types

	Divergence from MQe Administration Interface
	Messaging operations
	Store and Forward queues
	Programmatic interface versus user interface terminology
	Queue references
	Queue queue manager references

	Error handling
	Notifications
	MQeAliasNotification
	AttributeChangeNotification
	Using notifications

	Other Issues
	Setting attributes of array type
	Alias MBeans

	Translation
	Related information on JMX

	Glossary
	Appendix. Notices
	Trademarks

