
IBM WebSphere Development Studio Client for iSeries

Build a Web user interface for an RPG

application using iSeries Web Tools

Version 6.0

���

IBM WebSphere Development Studio Client for iSeries

Build a Web user interface for an RPG

application using iSeries Web Tools

Version 6.0

���

ii Development Studio Client: iSeries Web tools

Contents

Introduction v

Chapter 1. Module 1. Introducing the

Web customer inquiry application . . . 1

Introducing iSeries Web Application Development . . 1

Introducing the Web customer inquiry application . . 2

Chapter 2. Module 2. Creating an RPG

program 5

Exercise 2.1: Starting the product 6

Exercise 2.2: Opening the Remote System Explorer

perspective 7

Exercise 2.3: Creating a connection to the iSeries

server 9

Exercise 2.4: Finding an iSeries source member . . 11

Exercise 2.5: Opening a source member for edit . . 12

Exercise 2.6: Reviewing Remote System LPEX Editor

features 13

Exercise 2.7: Editing an RPG source member and

creating a *PGM object 16

Chapter 3. Module 3. Creating the RPG

service program for your Web

application (optional) 21

Exercise 3.1: Starting the product 22

Exercise 3.2: Opening the Remote System Explorer

perspective 23

Exercise 3.3: Creating a connection to the iSeries

server 25

Exercise 3.4: Finding an iSeries source member . . 26

Exercise 3.5: Open a source member for edit . . . 27

Exercise 3.6: Reviewing Remote System LPEX Editor

features 27

Exercise 3.7: Editing a member and creating a

service program module 31

Chapter 4. Module 4. Creating a Web

project 39

Exercise 4.1: Opening the Web perspective 39

Exercise 4.2: Creating a dynamic Web project . . . 41

Exercise 4.3: Setting up the iSeries server

information 46

Chapter 5. Module 5. Creating a Web

application 53

Exercise 5.1: Invoking the Web Interaction wizard 54

Exercise 5.2: Specifying the input and output page 56

Exercise 5.3: Defining the iSeries GETDATA

program invocation and parameters 58

Exercise 5.4: Defining the iSeries GETDATAS service

program invocation and parameters 64

Exercise 5.5: Defining the input page content . . . 71

Exercise 5.6: Defining the output page content . . . 73

Exercise 5.7: Specifying error handling 75

Exercise 5.8: Enhancing the output page 77

Exercise 5.9: Ensuring the customer number field

cannot be modified 80

Exercise 5.10: Visualizing the flow structure of your

Web application 82

Chapter 6. Module 6. Running the Web

application 87

Exercise 6.1: Opening the Web perspective 87

Exercise 6.2: Finding the Web application and

running it 87

Chapter 7. Module 7. Debugging a Web

application 93

Exercise 7.1: Introducing the iSeries Integrated

Debugger 93

Exercise 7.2: Starting a Debug session using service

entry points 94

Exercise 7.3: Adding and deleting breakpoints . . . 96

Exercise 7.4: Displaying a variable 97

Exercise 7.5: Viewing the call stack 97

Exercise 7.6: Closing the debug session 98

Chapter 8. Module 8. Adding an error

page 101

Exercise 8.1: Creating the flow control page . . . 101

Exercise 8.2: Modifying your Web interaction . . . 103

Exercise 8.3: Testing the new error page 109

Chapter 9. Module 9. Enhancing the

input page using Web tools 113

Exercise 9.1: Opening Page Designer 114

Exercise 9.2: Working with page properties . . . 115

Exercise 9.3: Linking a cascading style sheet to the

Web page 116

Exercise 9.4: Designing and adding a logo 118

Exercise 9.5: Adding a heading 1 tag to the page 127

Exercise 9.6: Adding a picture to the page 129

Exercise 9.7: Adding moving text to the page . . . 130

Exercise 9.8: Changing the text color 134

Chapter 10. Summary 137

Appendix. Notices 139

Programming interface information 140

Trademarks 141

© Copyright IBM Corp. 2001, 2005 iii

iv Development Studio Client: iSeries Web tools

Introduction

This tutorial teaches you how to create a simple e-business customer inquiry

application that uses a Web-based front end to communicate with the business

logic written in ILE RPG residing on an iSeries™ server. While creating a browser

user interface, you will learn how to use the iSeries Web Interaction wizard to

generate input and output JSP files as well as Page Designer to enhance the input

and output Web pages. You will also add iSeries Web components to your pages,

for example, Web equivalents of iSeries command keys, input fields that accept

only particular types of data, or output fields such as subfile names. You will then

learn how to run the application in the WebSphere® Test Environment that is part

of the product.

Prerequisites

In order to complete this tutorial end to end, you should already have working

knowledge of the following:

v Basic Microsoft® Windows® operations such as working with the desktop and

basic mouse operations such as opening folders and performing drag-and-drop

operations.

v How Web applications work.

v How to use a browser to navigate the Internet.

It is also useful, but not necessary, for you to have basic knowledge of the

following:

v DDS

v Servlets and Java™ Server Pages (to understand the generated output of the Web

Interaction wizard)

The file(s) required for this tutorial are available for download at

http://ibm.com/software/awdtools/wdt400/library.

Time required

To complete the modules of this tutorial, you will need approximately 3 hours and

5 minutes.

Learning objectives

The tutorial is broken into 9 modules, each with its own learning objectives. You

can choose to complete one or all of the modules. Each module contains several

exercises that must be completed in order for the tutorial to work properly.

Chapter 1, “Module 1. Introducing the Web customer inquiry application,” on page

1 teaches you about the completed e-business customer inquiry application that

you will build in this tutorial. In this module, you will:

v View a concept diagram of the Web development tools process

v Recognize the capabilities of the iSeries Web tools

v View the finished Web customer inquiry application

© Copyright IBM Corp. 2001, 2005 v

Chapter 2, “Module 2. Creating an RPG program,” on page 5 teaches you how to

use the Remote System Explorer perspective to edit and compile an iSeries

program that will be invoked by the Web application to get data from the iSeries.

In this module, you will:

v Start the product

v Set the default workspace

v Check the Remote System Explorer perspective is open

v Set up a new connection to an iSeries server

v Locate an RPG source file you want to edit

v Edit an RPG source member with the Remote Systems LPEX Editor

v Highlight the tokens of your RPG source

v Show only comment lines in the RPG source

v Show all lines in the RPG source

v Display a format line

v Compile a program object

Chapter 3, “Module 3. Creating the RPG service program for your Web application

(optional),” on page 21 teaches you how to use the Remote System Explorer

perspective to edit and compile an iSeries service program that will be invoked by

the Web application to get data from the iSeries. In this module, you will:

v Start the product

v Set the default workspace

v Check the Remote System Explorer perspective is open

v Set up a new connection to an iSeries server

v Locate an RPG source file you want to edit

v Edit an RPG source member with the Remote Systems LPEX Editor

v Highlight the tokens of your RPG source

v Show only comment lines in the RPG source

v Show all lines in the RPG source

v Display a format line

v Compile a service program object

Chapter 4, “Module 4. Creating a Web project,” on page 39 teaches you about the

Web perspective and the tools in this perspective to help you create a Web project

to contain your Web application files and to supply the information which the

iSeries server will use for serving business information for this Web application. In

this module, you will:

v Access tools and views for iSeries Web application development

v Know the difference between a static Web project and a dynamic Web project

v Set up a dynamic Web project

v Define where the RPG program or service program resides on an iSeries server

Chapter 5, “Module 5. Creating a Web application,” on page 53 teaches you how to

create a Web interaction to use an input and output page, and to create the servlet

to invoke an RPG program to get data from the iSeries database. You will also

learn how to visualize the flow structure of your Web application using the Web

Diagram editor. In this module, you will:

v Start the Web Interaction wizard

v Create an input page that invokes the interaction

vi Development Studio Client: iSeries Web tools

v Create an output page that displays the results of the interaction

v Get the program interface definitions

v Specify the input and output parameters

v Specify the input parameters to show on the input page

v Specify what data to show on the output page

v Specify what will happen when an incorrect customer number is entered

v Change the background color of the output page

v Make sure the customer number field is read only

v Know what Struts is all about

v View the flow structure of a Struts-based Web application

Chapter 6, “Module 6. Running the Web application,” on page 87 teaches you how

to run the Web application in the WebSphere Test Environment. You also learn

about the WebSphere Test Environment. In this module, you will:

v Check the Web perspective is open

v Locate input page of the Web application

v Invoke the Web application to run in the WebSphere Test Environment

v Test the Web application

Chapter 7, “Module 7. Debugging a Web application,” on page 93 teaches you how

to set up the debug environment, use a service entry point, add and remove

breakpoints, display a variable, and view the call stack. In this module, you will:

v Recognize the features of the iSeries Integrated Debugger

v Set breakpoints

v Monitor an expression

v Expand a thread to show every program, module, procedure and method on the

call stack at the current execution point

v Run the program to termination

Chapter 8, “Module 8. Adding an error page,” on page 101 teaches you how to

create an informative error page for customers when an incorrect customer number

is entered.

v Create an error page using Page Designer

v Change the Web interaction to use the new error page

v View the result of adding flow control to the Web application

Chapter 9, “Module 9. Enhancing the input page using Web tools,” on page 113

explains how to add color and some pictures to make the input page of the Web

application more attractive. You will learn how to use the Page Designer tool and

some other related Web tools. In this module, you will:

v Locate the Web application input page and start Page Designer

v View the title of the input page

v Add a style to the input page

v Preview the new style for the input page

v Start WebArt Designer

v Create a logo

v Resize the logo

v Save the object as a WebArt object

Introduction vii

v Save the object for a Web page

v Place the object on the Design page

v Add a company name to the input page

v Add an image to the input page

v Add a marquee to the input page

v Apply color to certain areas of text

When you are ready, begin Chapter 1, “Module 1. Introducing the Web customer

inquiry application,” on page 1.

viii Development Studio Client: iSeries Web tools

Chapter 1. Module 1. Introducing the Web customer inquiry

application

This module teaches you about the Web customer inquiry application that you will

build in this tutorial. You will also learn about the iSeries Web tools included with

the product.

In this module, you will:

v View a concept diagram of the Web development tools process

v Recognize the capabilities of the iSeries Web tools

v View the finished Web customer inquiry application

Requirement: Before beginning this module, you should have the prerequisite

knowledge outlined in “Introduction” on page v.

Exercises

The exercises within this module must be completed in order:

v “Introducing iSeries Web Application Development”

v “Introducing the Web customer inquiry application” on page 2

Time required

This module will take approximately 5 minutes to complete.

Introducing iSeries Web Application Development

With the product you can make your iSeries applications and data accessible

beyond the green-screen interface. You can create a new Web interface that

connects directly to your program’s input and output parameters.

You can create interactive Web pages using Web development tools. You use the

Web Interaction wizard to define how your pages interact with one or more ILE or

non-ILE applications. This wizard generates Java Action classes and JSP files for

use with data from HTML forms. When the end user enters data in a form, the

input becomes data to your ILE and non-ILE programs, and the output from the

programs is formatted for the Web. Your ILE and non-ILE logic can be separated

into different programs for each stage of input and output (known as a Web

interaction), or can be a single service program with entry points to handle each

Web interaction. The following diagram illustrates the Web development tools

process:

© Copyright IBM Corp. 2001, 2005 1

You can easily customize your HTML and JSP files using the editing tools in Web

development tools. You can use these tools to create and update input forms,

change the appearance or placement of blocks of text, and add backgrounds and

images to your pages. The iSeries-specific Web components help you create Web

versions of your input and output pages with the same kinds of input validation,

output formatting, and subfile controls that native DDS screens provide. You do

not need a detailed knowledge of HTML or Java to accomplish these tasks.

You have an easy test mechanism for your Web-enabled applications. You can

easily run your program in the WebSphere test environment of the workbench,

quickly make changes, and retest, rather than redeploy your application every time

you want to verify functions. When you are finished, you can package and deploy

your Web applications as J2EE-based Web archive (WAR) and Enterprise Archive

(EAR) files, and then install them in a WebSphere Application Server.

You have looked at the concept diagram of the Web development tools process and

can recognize the capabilities of the iSeries Web tools and now you are ready to

begin “Introducing the Web customer inquiry application.”

Introducing the Web customer inquiry application

Before you begin, you must complete “Introducing iSeries Web Application

Development” on page 1.

By the end of this tutorial you will have created a simple e-business customer

inquiry application that uses a Web-based front-end to communicate with RPG

business logic residing on an iSeries server. You will first create the RPG program

or service program for your Web application. You will then create a Web project

and invoke the Web Interaction wizard to create the input and output pages and to

create the servlet to invoke the RPG program or service program to get data from

the iSeries database. Next, you will run the application in the local test

environment on your workstation. You will also create an informative error page

for when a customer enters an incorrect customer number.

Here is what the finished e-business customer inquiry application looks like.

After the WebSphere server has started, your Web application Customer Inquiry

input page (inquiry.jsp) will display in the workbench browser:

2 Development Studio Client: iSeries Web tools

When you enter a customer number and click the Submit push button, the

Customer Details output page (result.jsp) appears.

Next, you click the

Back button in the browser to return to the Customer

Inquiry input page. Here you enter an incorrect customer number and click

Submit.

Chapter 1. Module 1. Introducing the Web customer inquiry application 3

An error message appears.

You then add a new output error page to improve the message information so that

if a wrong customer number is entered,

an error page opens instead of a message.

Module recap

You have completed Chapter 1, “Module 1. Introducing the Web customer inquiry

application,” on page 1. You have learned how to:

v View a concept diagram of the Web development tools process

v Recognize the capabilities of the iSeries Web tools

v View the finished Web customer inquiry application

 Now that you have this introductory knowledge of the product iSeries Web application

development, you can continue with Chapter 2, “Module 2. Creating an RPG program,”

on page 5 if you want to work with an RPG program or Chapter 3, “Module 3. Creating

the RPG service program for your Web application (optional),” on page 21 if you want

to work with an RPG service program.

4 Development Studio Client: iSeries Web tools

Chapter 2. Module 2. Creating an RPG program

This module teaches you how to create the iSeries program that you will be using

for your Web application using the Remote System Explorer perspective. Remote

System Explorer provides a PDM like environment but with a GUI interface, and

full integration with all iSeries programmer tools in the workbench.

In this module, you will:

v Start the product

v Set the default workspace

v Check the Remote System Explorer perspective is open

v Set up a new connection to an iSeries server

v Locate an RPG source file you want to edit

v Open an RPG source member with the Remote Systems LPEX Editor

v Highlight the tokens of your RPG source

v Show only comment lines in the RPG source

v Show all lines in the RPG source

v Display a format line

v Edit an RPG source member with the Remote Systems LPEX Editor

v Compile a program object

 If you want to work with a procedure in a service program instead, go to Chapter 3,

“Module 3. Creating the RPG service program for your Web application (optional),” on

page 21.

If you haven’t used the LPEX editor before, you may want to spend some time

trying some LPEX editor features.

Exercises

The exercises in this module must be completed in order:

v “Exercise 2.1: Starting the product” on page 6

v “Exercise 2.2: Opening the Remote System Explorer perspective” on page 7

v “Exercise 2.3: Creating a connection to the iSeries server” on page 9

v “Exercise 2.4: Finding an iSeries source member” on page 11

v “Exercise 2.5: Opening a source member for edit” on page 12

v “Exercise 2.6: Reviewing Remote System LPEX Editor features” on page 13

v “Exercise 2.7: Editing an RPG source member and creating a *PGM object” on

page 16

Time required

This module will take approximately 30 minutes to complete.

© Copyright IBM Corp. 2001, 2005 5

Exercise 2.1: Starting the product

Now go ahead and start the product.

On your desktop taskbar:

1. Click Start > Programs > IBM® Rational® > IBM WebSphere Development

Studio Client for iSeries V6.0 > WebSphere Development Studio Client for

iSeries

A dialog for workspace selection will appear asking you for the workspace

location, unless you used the product before and selected not to show this

dialog again.

The workspace contains all the information about your Development Studio

projects. You can accept the default or store the work related to this tutorial, in

a separate workspace.

2. To name the directory of the workspace as shown above, use the directory

name WSSLABxx.

3. Click OK.

After a few moments of loading, the workbench opens, and the initial window

of the product appears on your desktop.

6 Development Studio Client: iSeries Web tools

You have just started the product, set the default workspace and now you are

ready to begin “Exercise 2.2: Opening the Remote System Explorer perspective.”

Exercise 2.2: Opening the Remote System Explorer perspective

Before you begin, you must complete “Exercise 2.1: Starting the product” on page

6.

Check if the window title bar says: Remote System Explorer. If it does all you need

to do is close the Welcome view.

Skip the next steps and go directly to “Exercise 2.3: Creating a connection to the

iSeries server” on page 9.

To open the Remote System Explorer perspective:

Chapter 2. Module 2. Creating an RPG program 7

1. In the workbench, check whether you have the Remote System Explorer

perspective already open. Look for the icon in the taskbar of the workbench.

2. If you cannot see the icon because the Welcome view is open, click X to close

the Welcome view.

3. If you see it click the

RSE icon.

4. Otherwise, click Window > Open Perspective > Remote System Explorer on

the workbench menu.

The Remote System Explorer perspective opens.

8 Development Studio Client: iSeries Web tools

You have checked that the Remote System Explorer perspective is open and now

you are ready to begin “Exercise 2.3: Creating a connection to the iSeries server.”

Exercise 2.3: Creating a connection to the iSeries server

Before you begin, you must complete “Exercise 2.2: Opening the Remote System

Explorer perspective” on page 7.

1. Click the plus sign + beside iSeries under New Connection in the Remote

Systems view.

2. Accept the default profile name.

Chapter 2. Module 2. Creating an RPG program 9

3. Click Next.

In this exercise s400a is used as the name for the iSeries server. You will need

to use the name or IP address of your particular iSeries server.

4. Type a host name, for example, s400a in the Host name field.

5. The Connection name field will be filled automatically with the same entry.

6. Click Finish.

Your new connection appears in the Remote Systems view and you are ready

to work with objects on this iSeries system.

You have set up a new connection to an iSeries server and now you are ready to

begin “Exercise 2.4: Finding an iSeries source member” on page 11.

10 Development Studio Client: iSeries Web tools

Exercise 2.4: Finding an iSeries source member

Before you begin, you must complete “Exercise 2.3: Creating a connection to the

iSeries server” on page 9.

You will see a list of libraries under Library list in the Remote Systems view. Now

you locate the source you want to edit.

To find an iSeries source member:

Note: If you don’t see WSSLABxx in your library list, then you need to add the

library. You can right-click the Library list and click Add Library List Entry

from the pop-up menu to add WSSLABxx to your library list.

1. Expand your iSeries connections.

2. Expand iSeries Objects by clicking the plus sign + beside it.

3. Expand Library List.

4. Expand the library WSSLABxx.

You will see all objects in this library.

5. Expand the source file QRPGLESRC.

Chapter 2. Module 2. Creating an RPG program 11

6. Scroll down to the source members in the expanded list.

You have located an RPG source member you want to edit and now you are ready

to begin “Exercise 2.5: Opening a source member for edit.”

Exercise 2.5: Opening a source member for edit

Before you begin, you must complete “Exercise 2.4: Finding an iSeries source

member” on page 11.

A shell source member is provided for you to use.

To edit a source member:

1. Right-click member GETDATA.

2. Click Open with > Remote Systems LPEX Editor on the pop-up menu.

12 Development Studio Client: iSeries Web tools

The Editor window opens and you are ready to write your program.

Note: You can also double-click on a member to open the Remote Systems

LPEX editor.

You have opened an RPG source member for edit and now you are ready to begin

“Exercise 2.6: Reviewing Remote System LPEX Editor features.”

 Before you work with the RPG program source, if you have not worked with the

Remote Systems LPEX editor; go to “Exercise 2.6: Reviewing Remote System LPEX

Editor features.”

If you already know the LPEX editor, then you are ready to write the RPG program; go

to .“Exercise 2.7: Editing an RPG source member and creating a *PGM object” on page

16

Exercise 2.6: Reviewing Remote System LPEX Editor features

Before you begin, you must complete “Exercise 2.5: Opening a source member for

edit” on page 12.

Before you start, here are some useful tips on using the LPEX editor. Let’s look at

some of the features of the LPEX editor, so you can later easily find your way

around and use them:

v ALT+L marks a line

v ALT+U unmarks selection

v ALT+D deletes a selected text

v ALT+C copies selected text

v ALT+M moves selected text

v Enter inserts a new line

Highlighting specification fields

Chapter 2. Module 2. Creating an RPG program 13

The LPEX editor highlights the Tokens (specification fields) of your RPG program

source, providing a separate color for each, improving readability. When you make

changes to a line, the token colors get updated only after you move your cursor off

the line.

To see how token highlighting works:

1. Move the cursor to a Calculation statement.

2. Position the cursor to column 7 (right next to the C).

3. Type an asterisk (*).

4. Move the cursor off the line and watch what happens.

The line where you typed the asterisk (*) becomes a comment line and its color

changes accordingly.

5. Move the cursor back to column 7 and remove the asterisk (*).

6. Move the cursor off that line of code and the statement is tokenized.

The token highlighting changes to reflect that this is a non-commented C

specification.

Displaying types of lines

Using the LPEX editor, it is possible to have only particular types of source lines

displayed at a time.

To display types of lines:

1. Right-click anywhere in the Editor window.

2. Click Filter view on the pop-up menu.

The menu items list the types of line selections that can be made.

3. Click Comments.

The Editor window now contains only those RPG statements that are

comments.

14 Development Studio Client: iSeries Web tools

4. Right-click anywhere in the Editor window.

5. Click Show all on the pop-up menu.

All statements types are displayed. In addition, the choices in the pop-up menu

can be used to include only control specifications, user subroutines, and

procedures and others. The Filter Selection option under the Selected option in

the Edit menu allows the selection of only those lines containing a particular

selected character string.

Checking the syntax of a file

Syntax checking is available for RPG code, and by default will be active. The

syntax of RPG code is checked automatically when a change is made to a line, and

the cursor is moved off the line.

When errors are found, they are displayed following the statement with the error.

Keeping track of columns in a specification line

The format line is at the top of the Editor window, just above the first statement. A

format line is used to help keep track of the columns in a particular specification

Chapter 2. Module 2. Creating an RPG program 15

line. The content of the format line can vary to reflect the particular type of

specification being keyed such as F specs, C specs, D specs and so on.

To display a format line:

1. Click a line or use the arrow keys and click the left mouse button to make a

line active.

The format line gets updated as a line gets focus.

You can move the cursor right or left with the arrow keys to go from character

to character, or with the Tab key to go from field to field. An indicator on the

format line moves with the cursor to show in which column the cursor is

positioned.

You can select a format line for any specification you want.

2. Click Source from the Editor menu.

3. Click Select Format Line on the pop-up menu.

The Format Line Selection window opens.

Now you can start and create the RPG program.

4. Click OK.

You have highlighted tokens of your RPG source, shown only comment lines,

shown all lines, displayed a format line and now you are ready to begin “Exercise

2.7: Editing an RPG source member and creating a *PGM object.”

Exercise 2.7: Editing an RPG source member and creating a *PGM

object

Before you begin, you must complete “Exercise 2.5: Opening a source member for

edit” on page 12 and if you were unfamiliar with the editing features of the

Remote Systems LPEX Editor then you must complete“Exercise 2.6: Reviewing

Remote System LPEX Editor features” on page 13.

16 Development Studio Client: iSeries Web tools

To make it easier for you, most of the RPG source is already prepared for you. You

have already opened the correct source member GETDATA in a previous exercise

using the Remote Systems view.

Read through the source. It contains an F spec to access file CUSTOML3, which

contains the customer data keyed by customer number. The D specs define the

data structure CSTRUC that you pass back to your Web page and the CUSTNOI

variable that gets passed from the Web page to this program. As well the

FEEDBACK variable is defined as a 20 length character field.

The Entry parameter list is defined as:

v CUSTNOI field (this is the input parameter).

v CSTRUC structure (this is the data structure for the customer output data).

v Feedback field to indicate no success for file access.

The code you have to write here, fetches a customer record by chaining to the

file with the CUSTNOI that gets passed into the program.

To edit then create a *PGM object with RPG:

1. Add the code to get the customer record and check whether the chain was

successful.

Your coding is complete, so let’s create the program.

2. Click the Save

icon on the workbench toolbar to save the member.

3. Click the X in the Editor window title bar to close the member.

Be careful not to click the X on the workbench window title bar.

Chapter 2. Module 2. Creating an RPG program 17

4. In the Remote Systems view, right-click the GETDATA member in source file

QRPGLESRC and click Compile (Prompt) > CRTBNDRPG on the pop-up

menu.

The Create Bound RPG Program (CRTBNDRPG) dialog opens.

18 Development Studio Client: iSeries Web tools

5. In the Debugging views list, select *ALL

6. Click OK to start to compile.

After compile, the iSeries Error List view is shown, listing all compile errors.

You may see only information and warning messages which means your

compile was completed and the program object was created.

7. Click the iSeries Commands Log tab to check that the compile was successful.

This log shows the Remote System Explorer job messages.

Chapter 2. Module 2. Creating an RPG program 19

If you get a message that there are errors in your program, go through the edit

compile fix cycle.

Fixing errors

In the error list view, check the errors:

1. Double-click the error.

This positions the cursor in the Editor window on the statement that is wrong.

2. Fix all errors.

3. Save the source member.

4. Go back to the Remote Systems view.

5. Right-click the member to run the CRTBNDRPG command.

6. Continue this cycle until you get a clean compile.

You have edited an RPG source member and created a program object.

Module recap

You have completed Chapter 2, “Module 2. Creating an RPG program,” on page 5.

You have learned how to:

v Start the product

v Set the default workspace

v Check the Remote System Explorer perspective is open

v Set up a new connection to an iSeries server

v Locate an RPG source file you want to edit

v Open an RPG source member with the Remote Systems LPEX Editor

v Highlight the tokens of your RPG source

v Show only comment lines in the RPG source

v Show all lines in the RPG source

v Display a format line

v Edit an RPG source member with the Remote Systems LPEX Editor

v Compile a program object

Now that you have created the RPG program, you can continue to Chapter 4,

“Module 4. Creating a Web project,” on page 39.

 Skip Chapter 3, “Module 3. Creating the RPG service program for your Web application

(optional),” on page 21 as you don’t need to do this set of exercises.

20 Development Studio Client: iSeries Web tools

Chapter 3. Module 3. Creating the RPG service program for

your Web application (optional)

 You do not need to do this module if you have done Chapter 2, “Module 2. Creating an

RPG program,” on page 5.

This module teaches you how to add the iSeries service program to your Web

application using the Remote System Explorer perspective. Remote System

Explorer provides a PDM like environment but with a GUI interface, and full

integration with all iSeries programmer tools in the product workbench.

In this module, you will:

v Start the product

v Set the default workspace

v Check the Remote System Explorer perspective is open

v Set up a new connection to an iSeries server

v Locate an RPG source file you want to edit

v Open an RPG source member with the Remote Systems LPEX Editor

v Highlight the tokens of your RPG source

v Show only comment lines in the RPG source

v Show all lines in the RPG source

v Display a format line

v Edit an RPG source member with the Remote Systems LPEX Editor

v Compile a service program object

If you haven’t used the LPEX editor before, you may want to spend some time

trying some LPEX editor features.

Exercises

The exercises in this module must be completed in order:

v “Exercise 3.1: Starting the product” on page 22

v “Exercise 3.2: Opening the Remote System Explorer perspective” on page 23

v “Exercise 3.3: Creating a connection to the iSeries server” on page 25

v “Exercise 3.4: Finding an iSeries source member” on page 26

v “Exercise 3.5: Open a source member for edit” on page 27

v “Exercise 3.6: Reviewing Remote System LPEX Editor features” on page 27

v “Exercise 3.7: Editing a member and creating a service program module” on

page 31

Time required

This module will take approximately 30 minutes to complete.

© Copyright IBM Corp. 2001, 2005 21

Exercise 3.1: Starting the product

Now go ahead and start the product.

On your desktop taskbar:

1. Click Start > Programs >IBM Rational > IBM WebSphere Developer for

iSeries Entry V6.0 > IBM WebSphere Developer for iSeries Entry

A dialog for workspace selection will appear asking you for the workspace

location, unless you used the product before and selected not to show this

dialog again.

The workspace contains all the information about your Development Studio

projects. You can accept the default or store the work related to this tutorial, in

a separate workspace.

2. To name the directory of the workspace as shown above, use the directory

name WSSLABxx.

3. Click OK.

After a few moments of loading, the workbench opens, and the initial window

of the product appears on your desktop.

22 Development Studio Client: iSeries Web tools

You have just started the product, set the default workspace and now you are

ready to begin “Exercise 3.2: Opening the Remote System Explorer perspective.”

Exercise 3.2: Opening the Remote System Explorer perspective

Before you begin, you must complete “Exercise 3.1: Starting the product” on page

22.

Check if the window title bar says: Remote Systems Explorer. If it does you are all

set. Skip the next steps and go directly to “Exercise 3.3: Creating a connection to

the iSeries server” on page 25.

To open the Remote System Explorer perspective:

1. In the workbench, check whether you have the Remote System Explorer

perspective already open. Look for the icon in the left taskbar of the

workbench.

2. If you see it, click the

RSE icon.

Chapter 3. Module 3. Creating the RPG service program for your Web application (optional) 23

3. Otherwise, click Window > Open Perspective > Remote System Explorer on

the workbench menu.

The Remote System Explorer perspective opens.

You have checked that the Remote System Explorer perspective is open and now

you are ready to begin “Exercise 3.3: Creating a connection to the iSeries server”

on page 25.

24 Development Studio Client: iSeries Web tools

Exercise 3.3: Creating a connection to the iSeries server

Before you begin, you must complete “Exercise 3.2: Opening the Remote System

Explorer perspective” on page 23.

To create a connection:

1. Click the plus sign + beside iSeries under New Connection in the Remote

Systems view.

2. Accept the default profile name.

3. Click Next.

In this exercise s400a is used as the name for the iSeries server. You will need

to use the name or IP address of your particular iSeries server.

Chapter 3. Module 3. Creating the RPG service program for your Web application (optional) 25

4. Type a host name, for example, s400a in the Host name field.

5. The Connection name field will be filled automatically with the same entry.

6. Click Finish.

Your new connection appears in the Remote Systems view and you are ready

to work with objects on this iSeries system.

You have set up a new connection to an iSeries server and now you are ready to

begin “Exercise 3.4: Finding an iSeries source member.”

Exercise 3.4: Finding an iSeries source member

Before you begin, you must complete “Exercise 3.4: Finding an iSeries source

member.”

You will see a list of libraries under Library list in the Remote Systems view. Now

you locate the source you want to edit.

To find an iSeries source member:

Note: If you don’t see WSSLABxx in your library list, then you need to add the

library. You can right-click the Library list and click Add Library List Entry

from the pop-up menu to add WSSLABxx to your library list.

1. Expand your iSeries server. Use the same server that you have used to specify

the reference fields in the data structure.

2. Expand iSeries Objects by clicking the plus sign + beside it.

3. Expand Library List.

4. Expand the library WSSLABxx.

You will see all objects in this library.

5. Expand the source file QRPGLESRC.

26 Development Studio Client: iSeries Web tools

6. Scroll down to the source members in the expanded list.

You have located an RPG source member you want to edit and now you are ready

to begin “Exercise 3.5: Open a source member for edit.”

Exercise 3.5: Open a source member for edit

Before you begin, you must complete “Exercise 3.4: Finding an iSeries source

member” on page 26.

One shell source member is provided for you to use.

To open a source member for edit:

1. Right-click member GETDATAS.

2. Click Open with > Remote Systems LPEX Editor on the pop-up menu.

The Editor window opens and you are ready to write your program.

Tip: You can also double-click on a member to open the Remote Systems LPEX

editor.

You have opened an RPG source member for edit and now you are ready to begin

“Exercise 3.7: Editing a member and creating a service program module” on page

31.

 Now before you edit the member, if you have not worked with the Remote Systems

LPEX editor, go to “Exercise 3.6: Reviewing Remote System LPEX Editor features”.

If you already know the LPEX editor, you are ready to write your service program, go to

“Exercise 3.7: Editing a member and creating a service program module” on page 31.

Exercise 3.6: Reviewing Remote System LPEX Editor features

Before you begin, you must complete “Exercise 3.5: Open a source member for

edit.”

Chapter 3. Module 3. Creating the RPG service program for your Web application (optional) 27

Before you start, here are some useful tips on using the LPEX editor. Let’s look at

some of the features of the LPEX editor, so you can later easily find your way

around and use them:

v ALT+L marks a line

v ALT+U unmarks selection

v ALT+D deletes a selected text

v ALT+C copies selected text

v ALT+M moves selected text

v Enter inserts a new line

Highlighting specification fields

The LPEX editor highlights the Tokens (specification fields) of your RPG program

source, providing a separate color for each, improving readability. When you make

changes to a line, the token colors get updated only after you move your cursor off

the line.

To see how token highlighting works:

1. Move the cursor to a Calculation statement.

2. Position the cursor to column 7 (right next to the C).

3. Type an asterisk (*).

4. Move the cursor off the line and watch what happens.

The line where you typed the asterisk (*) becomes a comment line and its color

changes accordingly.

5. Move the cursor back to column 7 and remove the asterisk (*).

6. Move the cursor off that line of code and the statement is tokenized.

The token highlighting changes to reflect that this is a non-commented C

specification.

28 Development Studio Client: iSeries Web tools

Displaying types of lines

Using the LPEX editor, it is possible to have only particular types of source lines

displayed at a time.

To display types of lines:

1. Right-click anywhere in the Editor window.

2. Click Filter view on the pop-up menu.

The menu items list the types of line selections that can be made.

3. Click Comments.

The Editor window now contains only those RPG statements that are

comments.

4. Right-click anywhere in the Editor window.

5. Click Show all on the pop-up menu.

Chapter 3. Module 3. Creating the RPG service program for your Web application (optional) 29

All statements types are displayed. In addition, the choices in the pop-up menu

can be used to include only control specifications, user subroutines, procedures

and others. The Filter Selection option under the Selected option in the Edit

menu allows the selection of only those lines containing a particular selected

character string.

Checking the syntax of a file

Syntax checking is available for RPG code, and by default will be active. The

syntax of RPG code is checked automatically when a change is made to a line, and

the cursor is moved off the line.

When errors are found, they are displayed following the statement with the error.

Keeping track of columns in a specification line

The format line is at the top of the Editor window, just above the first statement. A

format line is used to help keep track of the columns in a particular specification

line. The content of the format line can vary to reflect the particular type of

specification being keyed such as F specs, C specs, D specs and so on.

To display a format line:

1. Click a line or use the arrow keys and click the left mouse button to make a

line active.

The format line gets updated as a line gets focus.

You can move the cursor right or left with the arrow keys to go from character

to character, or with the Tab key to go from field to field. An indicator on the

format line moves with the cursor to show in which column the cursor is

positioned.

30 Development Studio Client: iSeries Web tools

You can select a format line for any specification you want.

2. Click Source from the Editor menu.

3. Click Select Format Line on the pop-up menu.

The Format Line Selection window opens.

Now you can start and create the service program.

4. Click OK.

You have highlighted tokens of your RPG source, shown only comment lines,

shown all lines, displayed a format line and now you are ready to begin “Exercise

3.7: Editing a member and creating a service program module.”

Exercise 3.7: Editing a member and creating a service program module

Before you begin, you must complete “Exercise 3.5: Open a source member for

edit” on page 27 and if you were unfamiliar with the editing features of the

Remote Systems LPEX Editor then you must complete “Exercise 3.6: Reviewing

Remote System LPEX Editor features” on page 27.

Chapter 3. Module 3. Creating the RPG service program for your Web application (optional) 31

To make it easier for you most of the RPG source is already prepared for you. You

have already opened the correct source member GETDATAS in a previous exercise

using the Remote Systems view. Read through the source. It contains an F spec to

access file CUSTOML3 which contains the customer data keyed by customer

number. The D specs define the data structure CSTRUC that gets passed back to

your Web page and the CUSTNOI variable that gets passed from the Web page to

this program. Also variable FEEDBACK is defined as 20 characters, to return

message id and customer number in case the customer record was not found.

The prototype for procedure getrecord with the parameters is defined as the:

v CUSTNOI field (this is the input parameter)

v CSTRUC structure (this is the data structure for customer data)

v FEEDBACK field (returns error or success)

Note: The external name is case sensitive. It has to match exactly what you

specified in the Web Interaction wizard.

The procedure interface defines the parameters in the same way as the prototype.

Inside the procedure after the procedure interface you need to add the RPG code.

Adding RPG code

To add the RPG code:

1. You do a CHAIN to the database and move the database fields to the local

procedure structure. If the database access fails, move the MSGID and

Customer number to the FEEDBACK variable.

Your coding is complete, so let’s create the service program module.

Creating the service program module

To create the service program module:

1. Click the Save

icon on the workbench toolbar to save the member.

2. Click X in the Editor window title bar to close the member.

Be careful, don’t click the X on the workbench window title bar.

3. In the Remote Systems view, right-click GETDATAS member in QRPGLESRC

and select Compile (Prompt) > CRTRPGMOD on the pop-up menu.

32 Development Studio Client: iSeries Web tools

The Create RPG Module (CRTRPGMOD) dialog opens.

Chapter 3. Module 3. Creating the RPG service program for your Web application (optional) 33

4. In the Debugging views list, select *ALL

5. Click OK to submit the command.

After the compile the iSeries Error List view is shown, listing all compile errors.

You may only see information and warning messages that means your compile

was completed and the program module was created.

6. Click the iSeries Commands Log tab to check if the compile was successful.

This log shows the Remote System Explorer job messages. If you get a message

that there have been errors found in your program, go through the edit compile

fix cycle.

Fixing errors

In the iSeries Error List view, check the errors:

1. Double-click on the error.

This positions the cursor in the Editor window on the statement that is wrong.

2. Fix all errors.

3. Save the source member.

4. Go back to the Remote Systems view.

5. Right-click the member to run the CRTRPGMOD command.

6. Continue this cycle until you get a clean compile.

Creating a service program

To create a service program:

1. In the Remote Systems view find the GETDATAS module in library

WSSLABxx.

Note: If you don’t see the module, right-click library WSSLABxx and click

Refresh on the pop-up menu.

2. Right-click GETDATAS module and click Create > Service Program on the

pop-up menu.

34 Development Studio Client: iSeries Web tools

The Create Service Program (CRTSRVPGM) dialog opens.

Chapter 3. Module 3. Creating the RPG service program for your Web application (optional) 35

3. For the service program name, leave GETDATAS.

4. For the library name, leave WSSLABXX.

5. In the Export list, select *ALL.

6. Click OK.

7. Click the iSeries Commands Log tab at the bottom of the workbench.

You should see a message that the Service program was created.

36 Development Studio Client: iSeries Web tools

You have edited an RPG source member and created a service program object.

Module recap

You have completed Chapter 3, “Module 3. Creating the RPG service program for

your Web application (optional),” on page 21. You have learned how to:

v Start the product

v Set the default workspace

v Check the Remote System Explorer perspective is open

v Set up a new connection to an iSeries server

v Locate an RPG source file you want to edit

v Open an RPG source member with the Remote Systems LPEX Editor

v Highlight the tokens of your RPG source

v Show only comment lines in the RPG source

v Show all lines in the RPG source

v Display a format line

v Edit an RPG source member with the Remote Systems LPEX Editor

v Compile a service program object

Now that you have created a RPG service program, you can continue to Chapter 4,

“Module 4. Creating a Web project,” on page 39.

Chapter 3. Module 3. Creating the RPG service program for your Web application (optional) 37

38 Development Studio Client: iSeries Web tools

Chapter 4. Module 4. Creating a Web project

This module teaches you how to create a Web project and then supply the

information which the iSeries server will use for serving the business information

for this Web application. You will also learn about perspectives, J2EE settings, Web

projects, and the iSeries Web Tools Run-Time Configuration wizard.

In this module, you will:

v Access tools and views for iSeries Web application development

v Know the difference between a static Web project and a dynamic Web project

v Set up a dynamic Web project

v Define where the RPG program or service program resides on an iSeries server

Exercises

The exercises in this module must be completed in order.

v “Exercise 4.1: Opening the Web perspective”

v “Exercise 4.2: Creating a dynamic Web project” on page 41

v “Exercise 4.3: Setting up the iSeries server information” on page 46

Time required

This module will take approximately 15 minutes to complete.

Exercise 4.1: Opening the Web perspective

In this exercise you will use the Web perspective. This allows you to access tools

and views specifically related to Web application development. However, you are

still in the Remote System Explorer (RSE) perspective which gives you the tools to

do your iSeries programming tasks as you have discovered in the previous

module.

Perspectives

Before you go further, let’s review perspectives. Perspectives are a collection of

views and tools assembled to help different kinds of users to do their job when

they use the workbench. These workbench users will have different jobs (roles), for

example, one user needs to work with iSeries objects related to RPG/COBOL,

another user is dealing with Java programs, and another user with Web page

development. Each of these different user types will need different views of the

files/objects they are working with and they need different tools. The perspectives

present the user with a selection of specific views/tools geared towards the

different roles the users have. The workbench has many predefined perspectives,

like the:

v Web perspective for Web developers.

v Remote System Explorer perspective for iSeries programmers.

You can also create your own perspective by using the Save Perspective as option

under the Window menu in the workbench, after you have modified a perspective.

© Copyright IBM Corp. 2001, 2005 39

Now that you know what a perspective is you can go ahead with our exercise. You

are a Web developer in this tutorial and that is the reason you will select the Web

perspective. The Web environment provides its own perspective since it needs to

give its users access to unique views and tools targeted towards Web tasks. You

create a Web project in the Web perspective.

To open the Web perspective:

1. Click Window > Open Perspective on the workbench menu.

2. Then click Other on the pop-up menu.

The Select Perspective dialog opens.

3. Select Web from the list.

4. Click OK.

The workbench will now show the Web perspective with the Project Explorer

view open on the left hand side.

40 Development Studio Client: iSeries Web tools

You have accessed tools and views for iSeries Web application development and

now you are ready to begin “Exercise 4.2: Creating a dynamic Web project.”

Exercise 4.2: Creating a dynamic Web project

Before you begin, you must complete “Exercise 4.1: Opening the Web perspective”

on page 39.

Web projects hold all of the Web resources that are created and used when

developing your Web application. The first step to creating or importing a Web

application is to create either a static or a dynamic Web project. Static Web projects

are meant to contain only simple Web site resources, such as HTML files. Dynamic

Web projects are used to structure Web applications that will use more

complicated, dynamic Web technologies, such as JavaServer Page files, and

possibly data access resources.

To create a dynamic Web project:

 1. Click File > New on the workbench menu.

 2. Then click Dynamic Web Project on the pop-up menu.

Chapter 4. Module 4. Creating a Web project 41

This starts the Dynamic Web Project wizard. The initial page of the wizard

opens.

 3. Accept the default value in the Project location field.

This is where your project is stored in your file system.

 4. In the Project name field, type WSSLABxx.

 5. Click Show Advanced to specify the servlet version of your Web project.

 6. Leave the Servlet version as 2.4.

 7. Leave the Target server as WebSphere Application Server v6.0.

42 Development Studio Client: iSeries Web tools

8. Click New next to the EAR project field.

 9. Click Show Advanced to specify the J2EE version of your Web project.

These options allows you to specify the J2EE version for the Web project. If

you plan to use the WebSphere Application Server Version 6 only, then you

select J2EE version 1.4. If you are using previous versions of WebSphere

Application Server in your environment and are planning to deploy the Web

application to these versions then you use J2EE version 1.3 or 1.2 since these

earlier versions of WebSphere Application Server don’t support the J2EE

version 1.4. In this exercise you use the Web application in the WebSphere

Application Server (also known as the WebSphere Test Environment), which is

Version 6.0, so you use J2EE version 1.4 which is the default.

Chapter 4. Module 4. Creating a Web project 43

10. Leave the default value for the Name field.

A new or existing Enterprise Application project must be associated with your

new Web project for purposes of deployment.

The Enterprise Application project is new, so you typed the name of the new

project. When your Web project is created at the end of the wizard, the new

Enterprise Application project (EAR file) is also created. The default is an

Enterprise Application project named DefaultEAR located in the same

directory as your new Web project.

11. Leave the default value in the J2EE version list.

By default, the Web project’s J2EE level is set to the Workbench’s J2EE version.

Any new servlets and JSP files that you create should adhere to the latest

specification level available; previous specification levels are offered to

accommodate any legacy dynamic elements that you expect to import into the

project.

12. Click Finish on the Enterprise Application Project page.

13. Click Next.

The Features page opens.

14. Leave the Default style sheet (CSS) check box selected to create a default CSS

file (called Master.css) for any HTML and JSP files included in the project.

15. Select the iSeries Web Components Tag Library check box as you want to

add iSeries fields and controls to the Web pages of your Web application.

16. Select the Struts check box as you want to create a project that uses Struts

technology.

17. Leave the Web Diagram check box selected to create a Web diagram in the

project.

18. Click Next to go to the Select a Page Template for the Web Site page.

44 Development Studio Client: iSeries Web tools

19. Select the Use a default Page Template for the Web site check box.

20. Click the A_blue.htpl thumbnail.

21. Click Next.

22. On the Struts Settings page, ensure that Create a Resource Bundle is selected.

If not, select the Override default settings check box and then select Create a

Resource Bundle for the Struts project.

23. Click Finish to create the Web project.

Now you are back in the workbench and your new project and project files

appear in the Project Explorer.

Chapter 4. Module 4. Creating a Web project 45

You know the difference between a static Web project and a dynamic Web project

and have set up a dynamic Web project and now you are ready to begin “Exercise

4.3: Setting up the iSeries server information.”

Exercise 4.3: Setting up the iSeries server information

Before you begin, you must complete “Exercise 4.2: Creating a dynamic Web

project” on page 41.

Before you can start creating your application, you will need to define where the

RPG program you will connect to later on in this tutorial is located. You need to

specify the iSeries server name and the user-ID and password to be used when

starting the job on the iSeries to run your program.

To set up the iSeries server:

 1. In the Web perspective, right-click the WSSLABxx project in the Project

Explorer.

46 Development Studio Client: iSeries Web tools

2. Click Specify iSeries Web Tools Run-Time Configuration on the pop-up

menu.

Tip: You could also use the

button from the workbench toolbar to open

the Run-Time Configuration wizard.

The iSeries Web Tools Run-Time Configuration wizard opens.

Chapter 4. Module 4. Creating a Web project 47

You use this wizard to specify how Web interactions that perform program

calls to an iSeries host should be connected and authenticated.

 3. In the Host name field, type the name of the iSeries host where your program

is located, for example s400a.

 4. Enter your user ID and password for the iSeries host in the appropriate fields.

You need to ensure that your User ID has been set up in a way that it

contains the correct library list. If not, you will have to use the table on the

next page to add a library to the library list when the job gets started to run

your program.

 5. Enable password-encoding is selected by default. This option ensures that the

password appears in encoded format in the web.xml file. If you clear the

check box for this option, the password appears as plain text in the web.xml

file.

 6. Click Next.

 7. (Optional) If you need to add WSSLABxx to your library list, then type

WSSLABxx in the Library field and click Add.

 8. Select the Display detailed run-time errors check box to see the details for

any errors that occur during the runtime of your Web application. This is

useful for tracing and debugging development errors that may occur.

48 Development Studio Client: iSeries Web tools

9. Select the Use iSeries message file check box to retrieve error messages from

the iSeries host.

10. Click Browse to specify the iSeries message file.

11. Click the plus sign + beside s400a.

12. Click the plus sign + beside *LIBL.

Chapter 4. Module 4. Creating a Web project 49

13. Drill down to WSSLABXX > MYMSGF.*msgf.

14. Click OK.

15. Click Finish to define authentication and run-time values for your host

program or procedure call to be made by your Web interaction in the Web

project.

50 Development Studio Client: iSeries Web tools

You have defined where the RPG program or service program resides on the

iSeries server.

Module recap

You have completed Chapter 4, “Module 4. Creating a Web project,” on page 39.

You have learned how to:

v Access tools and views for iSeries Web application development

v Know the difference between a static Web project and a dynamic Web project

v Set up a dynamic Web project

v Define where the RPG program or service program resides on an iSeries server

Now that you have created a Web project, you can continue to Chapter 5, “Module

5. Creating a Web application,” on page 53.

Chapter 4. Module 4. Creating a Web project 51

52 Development Studio Client: iSeries Web tools

Chapter 5. Module 5. Creating a Web application

This module teaches you how to create the interaction to use an input and output

page, and to create the servlet to invoke an RPG program to get data from the

iSeries database. You will also learn about interactions, Web input and output

pages and Program Call Markup Language (PCML). Finally you will learn how to

see the flow structure of your Web application.

In this module, you will:

v Start the Web Interaction wizard

v Create an input page that invokes the interaction

v Create an output page that displays the results of the interaction

v Get the program interface definitions

v Specify the input and output parameters

v Specify the input parameters to show on the input page

v Specify what data to show on the output page

v Specify what will happen when an incorrect customer number is entered

v Change the background color of the output page

v Make sure the customer number field is read only

v Know what Struts is all about

v View the flow structure of your Struts-based Web application

Exercises

The exercises in this module must be completed in order.

v “Exercise 5.1: Invoking the Web Interaction wizard” on page 54

v “Exercise 5.2: Specifying the input and output page” on page 56

v “Exercise 5.3: Defining the iSeries GETDATA program invocation and

parameters” on page 58

v “Exercise 5.4: Defining the iSeries GETDATAS service program invocation and

parameters” on page 64

v “Exercise 5.5: Defining the input page content” on page 71

v “Exercise 5.6: Defining the output page content” on page 73

v “Exercise 5.7: Specifying error handling” on page 75

v “Exercise 5.8: Enhancing the output page” on page 77

v “Exercise 5.9: Ensuring the customer number field cannot be modified” on page

80

v “Exercise 5.10: Visualizing the flow structure of your Web application” on page

82

Time required

This module will take approximately 30 minutes to complete.

© Copyright IBM Corp. 2001, 2005 53

Exercise 5.1: Invoking the Web Interaction wizard

During this exercise you will use the Web Interaction wizard to create the interface

description for parameters to be passed to an iSeries program. You will also

generate a Web page based on the parameters definition used by the program.

Some of the parameters will be defined based on existing iSeries database field

definitions.

To invoke the Web Interaction wizard:

1. Right-click WSSLABxx in the Project Explorer.

2. Click New > Other on the pop-up menu.

3. Expand Web in the list.

54 Development Studio Client: iSeries Web tools

4. Select Web Interaction from the list.

5. Click Next.

An interaction is the span between the submit of a request from the current

Web page to the post of a new Web page. An interaction could be a simple

request to the HTTP server to load another page. In this environment an

interaction will be made up of a call to an iSeries program, waiting for the

return of the program with data and then invoking a JSP to show the next Web

page containing the data returned from the program.

First you have to give the interaction a name so you can reference it later on.

The Specify a Name and Location for your Web Interaction page opens.

Chapter 5. Module 5. Creating a Web application 55

6. Type custInquiry in the Web Interaction name field.

7. Click Next in the Web Interaction wizard.

The Specify the Input and Output Pages for your Web Interaction page opens.

You have started the Web Interaction wizard and now you are ready to begin

“Exercise 5.2: Specifying the input and output page.”

Exercise 5.2: Specifying the input and output page

Before you begin, you must complete “Exercise 5.1: Invoking the Web Interaction

wizard” on page 54.

The next page of the Interaction wizard asks for information about the Web pages

that are involved in this interaction. You have an input page that invokes the

interaction and an output page that displays the results of the interaction. The

output page shows in the browser at the end of the interaction. The wizard

generates both Web pages for you.

56 Development Studio Client: iSeries Web tools

1. Click the Generate input page radio button.

2. Click the Generate output page radio button.

3. Select custInquiryInput.jsp and click Rename.

4. Enter inquiry.jsp as the new input JSP file name.

5. Click OK.

6. Select custInquiryResults.jsp and click Rename.

7. Enter result.jsp as the new output JSP file name.

8. Click OK.

9. Click Next.

The Specify the Input and Output Parameters for your iSeries Host Program

page opens.

You have created an input page that invokes the interaction and an output

page that displays the results of the interaction and now you are ready to begin

“Exercise 5.3: Defining the iSeries GETDATA program invocation and

parameters” on page 58.

Chapter 5. Module 5. Creating a Web application 57

To define the iSeries GETDATA program invocation and parameters go to “Exercise 5.3:

Defining the iSeries GETDATA program invocation and parameters.”

To define the iSeries GETDATAS service program invocation and parameters go to

“Exercise 5.4: Defining the iSeries GETDATAS service program invocation and

parameters” on page 64.

Exercise 5.3: Defining the iSeries GETDATA program invocation and

parameters

Before you begin, you must complete “Exercise 5.2: Specifying the input and

output page” on page 56.

The next page asks you to define the parameters you want to pass between the

Web pages and the iSeries program that processes the requests.

Here you will re-use the PCML program interface definition that was created when

you compiled your source member.

Getting the program interface definitions

To get the program interface definitions that you want to call on the iSeries:

1. Click Import PCML

The Import PCML dialog opens.

58 Development Studio Client: iSeries Web tools

2. Click the arrow on the Select PCML file from field

3. Select Remote/Local File System from the list.

The Browse For File dialog opens.

4. Expand the tree view of *LIBL and then look for the library WSSLABxx where

the RPG source is stored. You will use the source file to generate the PCML.

Chapter 5. Module 5. Creating a Web application 59

It should be in WSSLABXX/QRPGLESRC/GETDATA

5. Select the correct file.

6. Click OK.

7. The Import PCML dialog appears with a list of the program interface

constructs. You will import PCML directly from ILE RPG source code

GETDATA.

60 Development Studio Client: iSeries Web tools

v A data structure

v A call interface
8. Click Select All.

9. Click OK.

Specifying the input and output parameters

The Specify the Input and Output Parameters for your iSeries Host Program page

opens again, now containing the program description you just imported.

Chapter 5. Module 5. Creating a Web application 61

1. Expand GETDATA in the left pane under Program call definitions.

The PCML information from the source file gets included in the right pane

and the parameters defined for this program appear.

 2. Select the first parameter CUSTNOI.

 3. In the right pane, change the Usage field from input & output to input to

indicate that this parameter is used to pass a value from the Web page to the

program.

 4. Click OK

62 Development Studio Client: iSeries Web tools

5. In the left pane select the CSTRUC parameter.

 6. In the right pane, change the Usage field from input & output to output,

indicating that this parameter is used to pass a value from the program to the

result Web page.

 7. Click OK.

 8. Do the same for the FEEDBACK parameter.

Chapter 5. Module 5. Creating a Web application 63

9. Now select GETDATA in the left pane under Program call definitions.

This will fill the right pane with program information.

10. In the right pane, select the check box Associate this program with the

interaction.

11. Click OK.

12. Click Next.

You have defined the program interface definitions and now you are ready to

begin “Exercise 5.5: Defining the input page content” on page 71.

 Skip the next exercise and continue with “Exercise 5.5: Defining the input page content”

on page 71.

Exercise 5.4: Defining the iSeries GETDATAS service program

invocation and parameters

Before you begin, you must complete “Exercise 5.2: Specifying the input and

output page” on page 56.

The next page asks you to define the parameters you want to pass between the

Web pages and the iSeries service program that processes the requests.

Here you will re-use the PCML program interface definition that was created when

you compiled your source member.

64 Development Studio Client: iSeries Web tools

Getting the program interface definitions

To get the program interface definitions that you want to call on the iSeries:

1. Click Import PCML.

The Import PCML dialog opens.

Chapter 5. Module 5. Creating a Web application 65

2. Click the arrow on the Select PCML file from field.

3. Select Remote File System from the list.

The Browse For File dialog opens.

66 Development Studio Client: iSeries Web tools

4. Expand the tree view of *LIBL and then look for the library WSSLABxx where

the RPG service program source is stored. You will use the source file to

generate the PCML.

It should be in WSSLABxx/QRPGLESRC/GETDATAS.

5. Select the correct file.

6. Click OK.

7. The Import PCML dialog appears with a list of the program interface constructs

contained in the PCML file.

Chapter 5. Module 5. Creating a Web application 67

v A data structure

v A call interface
8. Click Select All.

9. Click OK.

Specifying the input and output parameters

The Specify the Input and Output Parameters for your iSeries Host Program page

opens again, now containing the program description you just imported.

68 Development Studio Client: iSeries Web tools

1. Expand GETRECORD in the left pane under Program call definitions.

The information from the PCML file gets included in the right pane and the

parameters defined for this program appear.

 2. Select the first parameter CUSTNOI.

 3. In the right pane, change the Usage field from input & output to input to

indicate that this parameter is used to pass a value from the Web page to the

program.

 4. Click OK

Chapter 5. Module 5. Creating a Web application 69

5. In the left pane select the CUST1 parameter.

 6. In the right pane, change the Usage field from input & output to output,

indicating that this parameter is used to pass a value from the program to the

result Web page.

 7. Click OK.

 8. Do the same for the FEEDBACK parameter.

70 Development Studio Client: iSeries Web tools

9. Now select GETRECORD in the left pane under Program call definitions.

This will fill the right pane with the program information.

10. Change the name of the service program to GETDATAS.

11. Select the Program type *SRVPGM.

12. In the right pane, select the check box Associate this program with the

interaction.

13. Click OK.

14. Click Next.

You have defined the program interface definitions and now you are ready to

begin “Exercise 5.5: Defining the input page content.”

Exercise 5.5: Defining the input page content

Before you begin, you must complete “Exercise 5.3: Defining the iSeries GETDATA

program invocation and parameters” on page 58 or “Exercise 5.4: Defining the

iSeries GETDATAS service program invocation and parameters” on page 64.

Now you need to specify which of the input parameters you want to see on the

input page for this interaction that gets generated by the wizard. This is easy in

this application since you only have the customer number input field to handle.

You also have the capability to enhance the page layout by changing colors of the

page background and changing the heading. The Design the Input Form page

contains a properties table that shows all input capable parameters, and a sample

of the Web page that will be created.

Chapter 5. Module 5. Creating a Web application 71

Changing the heading

To change the heading:

1. Click the field beside the Page Title property in the Property table and type

Customer Inquiry.

2. Press Enter to apply this change to the sample page.

Now you want to change the customer number field properties.

3. Click the Fields tab on the Properties table.

This opens the field properties for the selected field in the list.

Changing a field label

To change a field label:

72 Development Studio Client: iSeries Web tools

1. In the left pane of the Design the Input Form page, select CUSTNOI.

2. Click the field beside the Label property, and type Enter customer number.

3. Press Enter.

4. Click Next to advance to the next wizard page.

You have specified the input and output parameters and the input parameters to

show on the input page and now you are ready to begin “Exercise 5.6: Defining

the output page content.”

Exercise 5.6: Defining the output page content

Before you begin, you must complete “Exercise 5.5: Defining the input page

content” on page 71.

Note: If you chose to work with a service program (GETDATAS) then you will see

the output parameters begin with the name CUST1. All the screen shots for

the remaining exercises show the parameters for the GETDATA program.

Now you can specify what data should be displayed on the output Web page

generated for you. In the right pane of the wizard you see a sample of the page

that will be generated. First, change the Input style of the output parameter

CSTRUC.CUSTNO. This will enable you to use customer number as an input

parameter to future features of your Web project.

To define the output page:

Chapter 5. Module 5. Creating a Web application 73

1. Select CSTRUC.CUSTNO.

2. Click the Fields tab.

3. From the Input Style list, select Text Entry.

By default all output parameters will be added to the Web page, but you don’t

want the data in the FEEDBACK parameter to be displayed.

Let’s go through the steps to erase the FEEDBACK parameter from the output

page.

4. In the left pane of the Design the Result Form, clear the FEEDBACK check box.

This will remove it from the Web page.

You will stay on this page to specify the error handling.

74 Development Studio Client: iSeries Web tools

You have specified what data to show on the output page and now you are ready

to begin “Exercise 5.7: Specifying error handling.”

Exercise 5.7: Specifying error handling

Before you begin, you must complete “Exercise 5.6: Defining the output page

content” on page 73.

Now you can specify what should happen in case a customer number didn’t match

the customer numbers in your database.

 1. In the left pane of the Design the Result Form, select the FEEDBACK

parameter.

You will see the properties for this variable in the Properties table.

 2. Locate the Message Controller heading in this Properties table.

 3. Click the field beside the Message Controller and set it to true.

 4. Click New.

 5. Set the Parameter Value to *OTHER from the list.

Chapter 5. Module 5. Creating a Web application 75

6. Set the Message ID to *SELECT from the list.

This opens a Message Selection window.

 7. Drill-down to s400a > WSSLABXX/MYMSGF > MYMSGF > CUS0001

 8. Click OK.

 9. Leave the default value of the Web Component.

10. Click New.

11. Enter 0 as the Parameter Value.

76 Development Studio Client: iSeries Web tools

12. Press Enter.

13. Set Message ID to *NONE using the list.

14. Set Web Component to result.jsp-DEFAULT using the list.

15. Click OK.

Here is what you just did:

v If the return value of the FEEDBACK parameter is 0, display the customer

details in the result.jsp Web page.

v Any other return value in the FEEDBACK parameter, use the message ID

CUS0001 in the specified message file, place the Customer number input in

the message substitution variable, and display the Web page inquiry.jsp

with the error message CUS0001.

The message handling is defined.

You have specified what will happen when an incorrect customer number is

entered in the customer number field and now you are ready to begin “Exercise

5.8: Enhancing the output page.”

Exercise 5.8: Enhancing the output page

Before you begin, you must complete “Exercise 5.7: Specifying error handling” on

page 75.

Next you enhance the look of the Web page.

To enhance the output page:

 1. Click the Page tab in the Properties table.

Chapter 5. Module 5. Creating a Web application 77

2. Click the field beside the Page title and type Customer Details.

 3. Click the field beside the Background Color and click the selection button on

the right side of the field.

The Color palette opens.

 4. Select a light yellow from the Color palette.

 5. Click OK on the Color palette.

 6. Click the field beside the Title Color and click the selection button on the

right side of the field.

 7. Select Blue from the Color palette.

78 Development Studio Client: iSeries Web tools

8. Click OK on the Color palette.

You notice the sample page gets updated as you choose different properties.

If you don’t like the suggested color choices, go ahead and create your own

design.

You need to modify the labels of the fields that show up on the output JSP.

 9. Click the Fields tab.

10. Select each field in the top left, and for each one, change the Label value to

the values described in the table below.

 CUSTNO Customer Number

CUSTNA Customer Name

REPNO Representative Number

CONTAC Contact

CPHONE Phone Number

CFAX Fax Number

CADDR Address

CCITY City

CCOUNT Country

CZIP Zip

11. In the left pane of the Design the Result Form page, clear the

CSTRUC.CZIPLO check box. You don’t need to display this variable.

12. Click Finish on the Design the Result Form page.

The Interaction wizard creates the necessary files for your application:

Chapter 5. Module 5. Creating a Web application 79

v The file custInquiry.wit is created in the project. This file reflects the data

you entered on the pages of the Web Interaction wizard for the interaction

you identified as custInquiry. To modify these settings, double-click on the

file to open the Web Interaction wizard.

v The default package under the Java Source folder contains the .java files

generated by the wizard.

v The classes folder under Web Content/WEB-INF contains the .class files

generated from the .java files that were created by the wizard.

You have enhanced the output page and now you are ready to begin “Exercise 5.9:

Ensuring the customer number field cannot be modified.”

Exercise 5.9: Ensuring the customer number field cannot be modified

Before you begin, you must complete “Exercise 5.8: Enhancing the output page” on

page 77.

Let’s make sure that the Customer Number field on your results.jsp page cannot be

modified.

To ensure the customer number field cannot be modified:

1. In the Project Explorer, expand WebContent and locate result.jsp.

2. Right-click result.jsp.

80 Development Studio Client: iSeries Web tools

3. Click Open on the pop-up menu.

This opens the result.jsp page on the Page Designer.

4. Select the Text Entry field of Customer Number in Page Designer.

Notice the Properties view of that Text field appears.

5. Select the Read-only check box.

This prevents any modifications to the Customer Number.

6. Save your changes and close result.jsp.

You have made sure that the customer number field is read only and now you are

ready to begin “Exercise 5.10: Visualizing the flow structure of your Web

application” on page 82.

Chapter 5. Module 5. Creating a Web application 81

Exercise 5.10: Visualizing the flow structure of your Web application

Before you begin, you must complete “Exercise 5.9: Ensuring the customer number

field cannot be modified” on page 80.

A Web diagram is a view that helps you visualize the flow structure of a

Struts-Based Web Application. Because of the indirectness involved with a Struts

application, being able to visually see the application’s flow can help you to better

understand the application.

Struts

Before you create a Web diagram, let’s first look at what Struts is all about. First,

Struts is a set of Java classes and JSP tag libraries that provide a conceptual

framework for developing Web applications. The Struts technology is open source

and was developed as part of the Apache Software Foundation’s Jakarta project.

Second, Struts provides numerous, custom JSP tags that are simple to use but are

powerful in the sense that they hide information. The Page Designer does not need

to know much about form beans, for example, beyond the bean names and the

names of each field in a given bean.

Third, you can use the diagram editor to show all or part of a Struts application.

For example, suppose you have a three-part Struts application. One part handles

the login process, one part handles product inquiries, and a third part handles

product updates. In this case you could draw three diagrams to represent this

system, or you could draw the entire system in a single diagram. Because one

diagram can be included inside another, it would probably make more sense to

represent this Struts application using a set of three diagrams.

Now, that you know what Struts is, you can go ahead with this exercise.

You will now create a Web diagram that will show you the visual components of

the Web application you just created.

An empty Web diagram should have been generated for you during project

creation.

To create a Web diagram:

1. If you don’t see Web Diagram in the editor, in the Project Explorer view,

expand WSSLABxx.

82 Development Studio Client: iSeries Web tools

2. Locate and double-click Web Diagram.

You will now see the Web Diagram in the editor.

Now, let’s populate the Web diagram:

1. Locate inquiry.jsp under WSSLABxx and then WebContent in the Project

Explorer.

2. Click inquiry.jsp and drag it to Web Diagram. You will notice the cursor change

from

to

.

3. In the Web diagram, right click inquiry.jsp.

Chapter 5. Module 5. Creating a Web application 83

4. Click Draw > Draw All From on the pop-up menu.

You will now see the custInquiry interaction.

5. Right-click custInquiry and click Draw > Draw Selected.

6. Select the result.jsp check box

7. Click OK.

You should now see the graphical representation of the Web interaction that

you’ve created in a previous exercise.

84 Development Studio Client: iSeries Web tools

8. Save and close Web Diagram.

You have seen the flow structure of your Struts-based Web application.

Module recap

You have completed Chapter 5, “Module 5. Creating a Web application,” on page

53. You have learned how to:

v Start the Web Interaction wizard

v Create an input page that invokes the interaction

v Create an output page that displays the results of the interaction

v Get the program interface definitions

v Specify the input and output parameters

v Specify the input parameters to show on the input page

v Specify what data to show on the output page

v Specify what will happen when an incorrect customer number is entered

v Change the background color of the output page

v Make sure the customer number field is read only

v Know what Struts is all about

v View the flow structure of your Struts-based Web application

You have created your Web application. Continue to Chapter 6, “Module 6.

Running the Web application,” on page 87.

Chapter 5. Module 5. Creating a Web application 85

86 Development Studio Client: iSeries Web tools

Chapter 6. Module 6. Running the Web application

This module teaches you how to test the Web application locally without

deploying the files in the Web project to the host server. Testing your Web

application locally includes using the iSeries Web Tools Run-time Configuration

wizard to specify the authentication and run-time values for every host program or

procedure call made by any Web interaction in the Web project. This is something

you have already done in Chapter 2, “Module 2. Creating an RPG program,” on

page 5 or Chapter 3, “Module 3. Creating the RPG service program for your Web

application (optional),” on page 21.

In this module, you will:

v Check the Web perspective is open

v Locate input page of the Web application

v Invoke the Web application to run in the WebSphere Test Environment

v Test the Web application

Exercises

The exercises in this module must be completed in order:

v “Exercise 6.1: Opening the Web perspective”

v “Exercise 6.2: Finding the Web application and running it”

Time required

This module will take approximately 10 minutes to complete.

Exercise 6.1: Opening the Web perspective

To open the Web perspective:

1. Click the Web perspective

icon, on the left taskbar of the workbench.

2. If there is no Web perspective icon, select Window > Open Perspective > Web

from the workbench menu.

You have checked that the Web perspective is open and now you are ready to

begin “Exercise 6.2: Finding the Web application and running it.”

Exercise 6.2: Finding the Web application and running it

Before you begin, you must complete “Exercise 6.1: Opening the Web perspective.”

To test your application locally using the WebSphere test environment:

 1. In the Project Explorer, expand your project WSSLABxx.

 2. Expand the WebContent folder.

 3. Right-click inquiry.jsp and click Run > Run on Server on the pop-up menu.

© Copyright IBM Corp. 2001, 2005 87

You will see a message to select the Server to run. You will run your

application in the WebSphere Test Environment. This is shown as WebSphere

Application Server v6.0.

 4. Leave the default Choose an existing server radio button selected.

 5. Make sure WebSphere Application Server v6.0 is selected under Select the

server type you want to use.

88 Development Studio Client: iSeries Web tools

6. Select the Set server as project default (do not prompt) check box.

 7. Click Finish to configure and launch the server.

 8. A Server Selection message dialog appears indicating the operation is in

progress.

After the WebSphere server has started, your Web application input page will

display in the workbench browser.

 9. Type 0010100 as the Customer Number.

10. Click Submit.

This launches the generated output or result page.

a. If you see a Page not found error, go to the Servers view.

Chapter 6. Module 6. Running the Web application 89

b. Restart the server instance. Then go back and try the Run > Run on

Server option again; the Server sometimes needs to be restarted to pick up

the changes.

You will see the Result page with customer data appearing in the workbench

browser.

Next, test the message handling.

11. Click the

Back button in the browser to get back to the first page.

12. Enter a wrong customer number, for example, 9999.

90 Development Studio Client: iSeries Web tools

13. Click Submit.

An error message appears.

This capability is generated by the Web Interaction wizard. Remember that

you specified something for the feedback field; you specified the message file

to be accessed if the feedback field contains a non 0 value; in this case the

feedback parameter will contain the message ID to be used for the error

message.

You have found and run the Web application.

Module recap

You have completed Chapter 6, “Module 6. Running the Web application,” on page

87. You have learned how to:

v Check the Web perspective is open

v Locate input page of the Web application

v Invoke the Web application to run in the WebSphere Test Environment

v Test the Web application

Now that you have run your Web application you learn how to debug your Web

application. Continue to Chapter 7, “Module 7. Debugging a Web application,” on

page 93.

Chapter 6. Module 6. Running the Web application 91

92 Development Studio Client: iSeries Web tools

Chapter 7. Module 7. Debugging a Web application

This module teaches you how to debug a Web application. You will learn how to

set up the debug environment, use a service entry point, add and remove

breakpoints, display a variable, and view the call stack.

You will debug a Web application that invokes the iSeries GETDATA program.

In this module, you will:

v Recognize the features of the iSeries Integrated Debugger

v Start a debug session with service entry points

v Set breakpoints

v Monitor an expression

v Expand a thread to show every program, module, procedure and method on the

call stack at the current execution point

v Run the program to termination

Exercises

The exercises in this module must be completed in order.

v “Exercise 7.1: Introducing the iSeries Integrated Debugger”

v “Exercise 7.2: Starting a Debug session using service entry points” on page 94

v “Exercise 7.3: Adding and deleting breakpoints” on page 96

v “Exercise 7.4: Displaying a variable” on page 97

v “Exercise 7.5: Viewing the call stack” on page 97

v “Exercise 7.6: Closing the debug session” on page 98

Time required

This module will take approximately 15 minutes to complete.

Exercise 7.1: Introducing the iSeries Integrated Debugger

The Integrated Debugger is a source-level debugger that enables you to debug and

test an application that is running on an iSeries system. It provides a functionally

rich interactive graphical interface that allows you to:

v View source code or compiler listings, while the program is running on the

iSeries system.

v Set, change, delete, enable and disable line breakpoints in the application

program. You can easily manage all your breakpoints using the Breakpoints

view.

v Set watch breakpoints to make the program stop whenever a specified variable

changes.

v View the call stack of your program in the Debug view. As you debug, the call

stack gets updated dynamically. You can view the source of any debug program

by clicking on its call stack entry.

v Step through your code one line at a time.

v Step into or step over program calls and ILE procedure calls.

© Copyright IBM Corp. 2001, 2005 93

v Display a variable and its value in the Monitors view. The value can easily be

changed to see the effect on the program’s execution.

v Locate procedure calls in a large program quickly and easily using the

Modules/Programs view.

v Debug multithreaded applications, maintaining separate stacks for each thread

with the ability to enable and disable any individual thread.

v Load source from the workstation instead of the iSeries – useful if you don’t

want the source code on a production machine.

v Debug client/server and distributed applications.

The Debugger supports RPG/400® and ILE RPG, COBOL and ILE COBOL, C, C++

and CL.

In the following exercises you will be given the opportunity to learn about some of

the basic features of the Debugger.

You have been introduced to the debugger and now you are ready to begin

“Exercise 7.2: Starting a Debug session using service entry points.”

Exercise 7.2: Starting a Debug session using service entry points

Before you begin, you must complete “Exercise 7.1: Introducing the iSeries

Integrated Debugger” on page 93.

In this exercise you will use service entry points to debug a Web application. The

service entry point feature is designed to allow easy debugging of Web

applications that invoke business logic written in RPG, COBOL, CL, or even C or

C++. The service entry point is a special kind of entry breakpoint that can be set

directly from the Remote System Explorer. It is triggered when the first line of a

specified procedure is executed in a job that is not under debug. Service entry

points allow you to gain control of your job at that point. A new debug session

gets started and execution is stopped at that location.

To start a debug session:

 1. In the Remote System Explorer perspective, expand the iSeries server icon

(s400a) if not already expanded.

 2. Expand iSeries Objects if not already expanded.

 3. Expand the Library List if not already expanded.

If prompted, type your User-ID and password.

 4. Expand the library WSSLABxx if not already expanded.

You will see all objects in this library.

Now you will start the debug session and set a service entry point.

 5. Right-click GETDATA.*pgm.rpgle.

 6. Click Debug (Service Entry) Point > Set Service Entry Point on the pop-up

menu.

A message displays indicating the service entry point entry was successful.

94 Development Studio Client: iSeries Web tools

7. Click OK.

 8. Click the Web Browser tab to switch back to the Web browser.

 9. Type 0010100 in the Enter customer number field.

10. Click the Submit button, which will invoke GETDATA*pgm.rpgle on the

iSeries host.

At this point, the Service Entry point is hit and the debug session is started.

Notice that it also opens an instance of the GETDATA source code in the

debug editor. You now have the access to debug this source.

Let’s look at some more debug features.

You have started a debug session with service entry points and now you are ready

to begin “Exercise 7.3: Adding and deleting breakpoints” on page 96.

Chapter 7. Module 7. Debugging a Web application 95

Exercise 7.3: Adding and deleting breakpoints

Before you begin, you must complete “Exercise 7.2: Starting a Debug session using

service entry points” on page 94.

Breakpoints are markers you place in your program to tell the debugger to stop

your program whenever execution reaches that point. For example, if you suspect

that a particular statement in your program is causing problems, you could set a

line breakpoint on the line containing the statement, then run your program.

Execution stops at the breakpoint before the statement is executed. You can then

check the contents of variables and view the call stack, and execute the statement

to see how the problem arises.

You can only set breakpoints at executable lines. All executable lines are displayed

in blue. The easiest way to set a breakpoint is to right-click on the line in the

Source view.

To set a breakpoint:

1. Click anywhere on line 8.

2. Right-click and click Add breakpoint on the popup menu.

A dot with a check mark in the prefix area indicates that a breakpoint has been

set for that line. The prefix area is the small grey margin to the left of the

source lines.

3. Click on line 32.

4. Right-click and click Add breakpoint on the pop-up menu.

5. Click the Breakpoints tab in the upper right pane of the workbench.

6. In the Breakpoints view right-click the breakpoint for line 8.

Here you can manage your breakpoints. You can disable, or remove

breakpoints accordingly.

96 Development Studio Client: iSeries Web tools

You have set breakpoints and now you are ready to begin “Exercise 7.4: Displaying

a variable.”

Exercise 7.4: Displaying a variable

Before you begin, you must complete “Exercise 7.3: Adding and deleting

breakpoints” on page 96.

You can monitor variables in the Monitors view. Now you will monitor the

variable CUSTNOI.

To monitor a variable:

1. In the Source view double-click the variable CUSTNOI on line 22.

2. Right-click CUSTNOI.

3. Click Monitor Expression on the pop-up menu.

The variable appears in the Monitors view.

If you quickly want to see the value of a variable without adding it to the

Monitor, you can place the cursor on a variable to see its value in a pop-up

window. This works well for scalars, but not for arrays or data structures.

You have monitored an expression and now you are ready to begin “Exercise 7.5:

Viewing the call stack.”

Exercise 7.5: Viewing the call stack

Before you begin, you must complete “Exercise 7.4: Displaying a variable.”

The Debug view in the upper left pane, lists all call stack entries. It contains a tree

view for each thread. The thread can be expanded to show every program,

module, procedure and method that is on the stack at the current execution point.

If you double-click a stack entry that has debug data, the corresponding source

will show up. Otherwise the message No Debug data available appears in the

debug editor. In the Debug view, expand the stack entry of Thread:1 if it is not

expanded already, by clicking the plus sign + in front of it.

Chapter 7. Module 7. Debugging a Web application 97

You have expanded a thread to show every program, module, procedure and

method on the call stack at the current execution point and now you are ready to

begin “Exercise 7.6: Closing the debug session.”

Exercise 7.6: Closing the debug session

Before you begin, you must complete “Exercise 7.5: Viewing the call stack” on

page 97.

To close a debug session:

 1. Click Resume on the Debug toolbar.

The session will stop at the first breakpoint on line 8.

 2. Click Resume again.

The session will stop at the breakpoint on line 32.

 3. Click Resume again.

 4. Click OK on the Program terminated window.

Next, close the Debug perspective.

 5. Right-click the Debug icon.

 6. Click Close on the pop-up menu.

 7. Switch to the Remote System Explorer perspective to remove the Service Entry

Point on GETDATA.*pgm.rpg.

 8. Drill down to s400a > iSeries Objects > Library List > WSSLABXX >

GETDATA.*pgm.rpg

 9. Right-click on GETDATA.*pgm.rpg

98 Development Studio Client: iSeries Web tools

10. Click Debug (Service Entry) > Remove Service Entry Point on the pop-up

menu.

You have run the program to termination.

Module recap

You have completed Chapter 7, “Module 7. Debugging a Web application,” on

page 93. You have learned how to:

v Recognize the features of the iSeries Integrated Debugger

v Start a debug session with service entry points

v Set breakpoints

v Monitor an expression

v Expand a thread to show every program, module, procedure and method on the

call stack at the current execution point

v Run the program to termination

Now that you have debugged your Web application, you learn how to create an

informative error page using Page Designer. Continue to Chapter 8, “Module 8.

Adding an error page,” on page 101.

Chapter 7. Module 7. Debugging a Web application 99

100 Development Studio Client: iSeries Web tools

Chapter 8. Module 8. Adding an error page

This module teaches you how to create an informative error page using Page

Designer for when a customer enters an incorrect customer number. This way, the

customer won’t just be given an error message, but will have a more informative

and helpful response from the Web Application, which is easy to customize. You

will also learn how to add the error page to your existing Web application using

the Web Interaction wizard and to use the RSE perspective to modify the program

or service program to call the error page. In this module, you will:

v Create an error page using Page Designer

v Change the Web interaction to use the new error page

v View the result of adding flow control to the Web application

Exercises

The exercises in this module must be completed in order.

v “Exercise 8.1: Creating the flow control page”

v “Exercise 8.2: Modifying your Web interaction” on page 103

v “Exercise 8.3: Testing the new error page” on page 109

Time required

This module will take approximately 20 minutes to complete.

Exercise 8.1: Creating the flow control page

First you need to create the error page using Page Designer.

To create the error page:

 1. In the Web Perspective, expand your project and drill down to the Web

Content folder.

 2. Right-click the Web Content folder and click New > JSP on the pop-up menu.

The New JSP File page opens.

© Copyright IBM Corp. 2001, 2005 101

3. In the File Name field, type RecordNotFound.

 4. Click Finish.

The Page Designer automatically opens.

Your window will look like this.

 5. Click on the words Place content here. and change it to something like Sorry,

there is no record for that customer number.

 6. Press Enter.

 7. Type Please check the number and try again.

 8. Highlight the words try again and right-click.

 9. Select Insert Link on the pop-up menu.

102 Development Studio Client: iSeries Web tools

The Insert Link window opens.

10. Click Browse next to the URL field.

11. Click File on the pop-up menu.

The File Selection window opens.

12. Select inquiry.jsp.

13. Click OK.

14. Click OK in the Insert Link dialog.

You have completed creating the flow control page.

15. Save and close the file.

You could spend more time customizing this page, but for the purpose of this

exercise you will leave the page as is.

You have created an error page using Page Designer and now you are ready to

begin “Exercise 8.2: Modifying your Web interaction.”

Exercise 8.2: Modifying your Web interaction

Before you begin, you must complete “Exercise 8.1: Creating the flow control page”

on page 101.

Now you need to change the Web interaction to use the new error page.

To modify the Web interaction:

 1. Expand your project WSSLABxx if not already expanded.

 2. Right-click custInquiry.wit and click Open With > iSeries Web Interaction

Wizard on the pop-up menu.

Chapter 8. Module 8. Adding an error page 103

The Web Interaction wizard opens.

The name and location of your Web interaction are already specified.

 3. Click Next to add a new output page.

 4. Next to the result.jsp section, click Add.

The Output JSP window opens.

104 Development Studio Client: iSeries Web tools

5. Select RecordNotFound.jsp.

 6. Click OK to add the new output page.

 7. Click Next in the Web Interaction wizard.

You will re-use the Feedback parameter to control which page the Web

Interaction will send next after it performs its action; the result.jsp or the

RecordNotFound.jsp. So you don’t have to add another parameter or change

the parameters, you just change the values the feedback parameter returns

depending on whether a customer record was found or not found.

 8. Click Next since you don’t need to define the program interface.

Chapter 8. Module 8. Adding an error page 105

This opens the Input Parameters page.

 9. Click Next again since you don’t need to change any input parameters.

This opens the Output Parameters page.

10. Select FEEDBACK under the Output Parameters list.

11. Change the Message Controller property to false. Click OK.

12. Select feedback under the Output Parameters list again.

Now a Flow controller property is added to the Properties table.

106 Development Studio Client: iSeries Web tools

13. Change the Flow Controller property to true.

The Flow Control Specification dialog opens.

14. The value *OTHER is already in the Value field for the /error.jsp.

15. Click the /error.jsp field to change the Output JSP page.

16. Select RecordNotFound.jsp from the list.

17. Click New.

This creates a new flow condition. The default page is result.jsp.

18. The value 0 is already in the Value field with result.jsp in the Output JSP

field.

19. Click OK.

Chapter 8. Module 8. Adding an error page 107

This will set the flow control such that if the value of Feedback is 0, then the

program will output the customer information to the result.jsp page and

display it.

However, if the customer number doesn’t exist in the database, the Feedback

value will be something else other than 0, and instead of displaying a message

near the input field, it will show the user the RecordNotFound.jsp page for a

more helpful response.

20. Click Finish on the Output Parameters page to apply your changes to the

Web Interaction.

You have changed the Web interaction to use the new error page and now you are

ready to begin “Exercise 8.3: Testing the new error page” on page 109.

108 Development Studio Client: iSeries Web tools

Exercise 8.3: Testing the new error page

Before you begin, you must complete “Exercise 8.2: Modifying your Web

interaction” on page 103.

Now that the flow control is in place, if you enter a wrong customer number,

you will get the error page instead of a message.

Now follow the instructions below to run the modified project on the WebSphere

Test Environment to see the result of adding flow control to your Web application.

The server should still be running from the last time you ran the Web application.

Every time you make a change to the Web application, you need to restart the

server to pick up the changes.

To restart the server:

Chapter 8. Module 8. Adding an error page 109

1. Click the Servers tab to open the Servers view.

2. Select the server instance. Right-click and click Restart on the pop-up menu.

The server instance should restart.

3. In the Web perspective Project Explorer locate the Web Content folder, and

right-click inquiry.jsp.

4. Click Run > Run on Server on the pop-up menu.

You have viewed the results of adding flow control to the Web application.

 Module recap

110 Development Studio Client: iSeries Web tools

You have completed Chapter 8, “Module 8. Adding an error page,” on page 101.

You have learned how to:

v Create an error page using Page Designer

v Change the Web interaction to use the new error page

v View the result of adding flow control to the Web application

Now that you have added an error page to your Web application to handle

incorrect customer numbers, you can learn how to customize your input page.

Continue to Chapter 9, “Module 9. Enhancing the input page using Web tools,” on

page 113.

Chapter 8. Module 8. Adding an error page 111

112 Development Studio Client: iSeries Web tools

Chapter 9. Module 9. Enhancing the input page using Web

tools

This module teaches you how to use the Web tools in the workbench to update the

input page of your customer inquiry Web application. The input page named

inquiry.jsp is one of the files created by the Web Interaction wizard. This page is

very plain. You will learn how to use Page Designer and some related Web tools in

the workbench to add some color to the input page, as well as add some pictures

to make it a more interesting Web page.

In this module, you will:

v Locate the Web application input page and start Page Designer

v View the title of the input page

v Add a style to the input page

v Preview the new style for the input page

v Start WebArt Designer

v Create a logo

v Resize the logo

v Save the object as a WebArt object

v Save the object for a Web page

v Place the object on the Design page

v Add a company name to the input page

v Add an image to the input page

v Add a marquee to the input page

v Apply color to certain areas of text

Exercises

The exercises in this module must be completed in order

v “Exercise 9.1: Opening Page Designer” on page 114

v “Exercise 9.2: Working with page properties” on page 115

v “Exercise 9.3: Linking a cascading style sheet to the Web page” on page 116

v “Exercise 9.4: Designing and adding a logo” on page 118

v “Exercise 9.5: Adding a heading 1 tag to the page” on page 127

v “Exercise 9.6: Adding a picture to the page” on page 129

v “Exercise 9.7: Adding moving text to the page” on page 130

v “Exercise 9.8: Changing the text color” on page 134

Time required

This module will take approximately 30 minutes to complete.

© Copyright IBM Corp. 2001, 2005 113

Exercise 9.1: Opening Page Designer

The first step is to locate the inquiry.jsp file and to start Page Designer. In Page

Designer you will link the page to a cascading style sheet that comes as a sample

with the workbench.

To open the Web perspective:

1. In the workbench, open the Web perspective:

You should now have the Project Explorer in your workbench.

2. Expand the WSSLABxx web project.

3. Expand the Web Content folder.

4. Right-click inquiry.jsp and click Open on the pop-up menu.

114 Development Studio Client: iSeries Web tools

The Page Designer appears in the upper right pane of the workbench and

shows the inquiry.jsp page as the Web Interaction wizard created it.

Make sure that you are on the Design page in Page Designer.

5. Click the Design tab.

You have located the Web application input page and started Page Designer and

now you are ready to begin “Exercise 9.2: Working with page properties.”

Exercise 9.2: Working with page properties

Before you begin, you must complete “Exercise 9.1: Opening Page Designer” on

page 114.

Next you move the form down.

To work with page properties:

1. Click underneath the heading Customer Inquiry.

2. Press Enter number of times as shown above.

3. To change the page properties, right-click the background of the inquiry.jsp

page in Page Designer.

Chapter 9. Module 9. Enhancing the input page using Web tools 115

4. Click Page Properties on the pop-up menu.

The Page Properties window opens.

This window allows you to change some of the page properties.

For example you could change the title. When this page is shown in a browser,

the Window title bar of the browser will display Customer Inquiry.

You have viewed the title of the input page and now you are ready to begin

“Exercise 9.3: Linking a cascading style sheet to the Web page.”

Exercise 9.3: Linking a cascading style sheet to the Web page

Before you begin, you must complete “Exercise 9.2: Working with page properties”

on page 115.

Now you will add a style to the input page. You can use a style that is used in

your company or you can use one of the sample style sheets that are provided in

the product.

116 Development Studio Client: iSeries Web tools

To link a style sheet to an input page:

1. Click the Gallery tab, if the Gallery view isn’t already displayed.

2. Click the Style Sheet icon in the Gallery list.

3. Click the Thumbnails tab in the left bottom stacked view in the workbench.

You should see thumbnail icons of all the styles available as shown above.

4. In the thumbnail view, scroll down to the bottom, until you see style sheet

denim001.css in the list, or select a style sheet that you like best.

5. Click the thumbnail picture of denim001.css.

6. Hold the left mouse button down and drag the mouse cursor to the Page

Designer window.

The cursor will change from this shape

, to this shape

. When the

latter cursor shape appears in the Page Designer window then, let go of the

mouse left button.

After a short while the Style sheet properties will be applied.

7. Click the Preview tab.

You will see the colors in the page have changed to the style sheet definitions.

Chapter 9. Module 9. Enhancing the input page using Web tools 117

8. Click the Design tab to get back to the Design page.

You have added a style to the input page and previewed the new style for the

input page and now you are ready to begin “Exercise 9.4: Designing and adding a

logo.”

Exercise 9.4: Designing and adding a logo

Before you begin, you must complete “Exercise 9.3: Linking a cascading style sheet

to the Web page” on page 116.

Now that you have the overall Web page look specified you will use the WebArt

Designer to create a Logo that you then will add to this page.

Starting the WebArt Designer

To start the WebArt Designer:

1. Make sure the Page Designer is in focus.

2. Click Tools > WebArt Designer in the workbench menu.

118 Development Studio Client: iSeries Web tools

The WebArt designer opens.

The WebArt Designer shows the Template Gallery on the left, where you find

samples of logos, buttons, rollovers, images and more. The large white area in

middle of the dialog is the canvas that is used to work with objects that you

want to create or change. Now you will create a logo from scratch.

You could also select one from the template gallery as the base for your own

logo.

Creating the logo

To create the logo:

 1. Click the Create Logo button above the canvas or click Object > Create Logo.

The Logo Wizard opens.

Chapter 9. Module 9. Enhancing the input page using Web tools 119

2. In the Text field, type your company name and in the next line in the Text

field, type WSSLABxx.

 3. In the Font name list, select Comic Sans MS.

 4. In the Font size list, select 46.

 5. Under Alignment, select the Center radio button.

Notice in the upper right corner of the dialog, a sample of the logo as

specified is displayed.

 6. Click Next to go to the next page of the wizard.

The Select Color page opens.

120 Development Studio Client: iSeries Web tools

7. Select the gradation type button; the middle one of the three type push

buttons.

Tip: The other buttons select color types: solid and textured.

 8. Select beer from the colors available, or any other color you like best, just

scroll through the list to find a gradation you like.

Tip: You can change the colors by clicking the Others button on this dialog

and create you own gradation.

 9. Click Next to go to the next page of the wizard.

The Select Outline page opens.

Chapter 9. Module 9. Enhancing the input page using Web tools 121

10. Select the Seal outline from the list, or any outline you like best.

11. Click Next.

The Select Text Effect page opens.

12. Select the Emboss text effect, or one that you like best.

13. Click Finish.

You return to the WebArt designer window.

122 Development Studio Client: iSeries Web tools

Resizing the logo

To resize the logo object on the canvas:

1. Click the logo object to select it.

2. Move the cursor to the rectangle at the right bottom corner of the object; watch

the cursor changing shape.

3. Drag the rectangle up and to the left so the object becomes smaller.

Saving the object as a WebArt object

Now you need to save this object. First save it as a WebArt object. This allows you

later on to work with the object again in WebArt Designer, but you can’t use that

format for your Web page.

To save this object:

1. Click File > Save Canvas As on the WebArt Designer menu.

The Save Canvas As window opens. Make sure you see the WebContent folder

in the Save Canvas As window.

2. In the File name field, type mylogo.

3. Click Save.

Chapter 9. Module 9. Enhancing the input page using Web tools 123

Now you need to save the object in a form that can be displayed on a Web

page.

Saving the object for a Web page

To save the logo for a Web page:

 1. Click the logo object on the canvas.

 2. Click File > Save Wizard for Web from the WebArt Designer menu.

The Save Wizard opens.

 3. Click the Save the selected object radio button.

 4. Click Next.

The Select File Format page opens.

124 Development Studio Client: iSeries Web tools

5. Click the GIF radio button.

 6. Click Next.

The GIF Format page opens.

 7. Click Finish.

Chapter 9. Module 9. Enhancing the input page using Web tools 125

The Save As window opens.

Make sure the directory is pointing to the Web Content directory in the

workspace where your Web project is located.

 8. In the File name field, type mylogo.

 9. Click Save.

Close the WebArt designer.

10. Select File > Exit from the menu.

You return to the workbench in the Web perspective and see the Project

Explorer.

Placing the logo on the Design page

To place the logo on the Design page:

1. Make sure you switch from the Gallery view to the Project Explorer.

2. Expand the WSSLABxx Web project.

3. Expand the Web Content folder.

The mylogo.gif file should appear in the list as shown below. If it doesn’t

appear, the list might need to be refreshed.

4. Right-click the Web Project WSSLABxx folder icon.

5. Select Refresh.

126 Development Studio Client: iSeries Web tools

Hopefully you can see the file now in the Web Content folder, if not, go to

Windows Explorer and search for the mylogo.gif on your hard drive. Move it

to the Web Content folder in the product workspace. If you didn’t use the

default location as shown above, do a search for the workspace and the

WSSLABxx directory in it. Move the mylogo.gif file into the Web Content sub

directory under the WSSLABxx directory. Now you can take the logo and put it

on your Web page that is still open in Page Designer. If Page Designer has been

closed just open the inquiry.jsp file.

Note: Make sure your are on the Design page, not the Preview page.

6. In the Project Explorer view select the mylogo.gif file.

7. Hold the left mouse button down.

8. Drag the file to the upper left side in the Page Designer window.

9. Release the mouse button.

The logo is placed on the Design page.

You have started WebArt Designer, created a logo, resized a logo, saved the object

as a WebArt object, saved the logo for a Web page, placed the object on the Design

page and now you are ready to begin “Exercise 9.5: Adding a heading 1 tag to the

page.”

Exercise 9.5: Adding a heading 1 tag to the page

Before you begin, you must complete “Exercise 9.4: Designing and adding a logo”

on page 118.

Now you want to insert a heading below the logo.

To add a heading 1 tag:

1. Position the cursor just below the logo at the first BR tag.

Chapter 9. Module 9. Enhancing the input page using Web tools 127

2. Click Insert from the workbench menu.

3. Click Paragraph > Heading 1 from the pop-up menu.

A frame appears that allows you to enter text.

4. Enter your company name.

Now you want to use one of the sample pictures that comes with the product

and place this picture on the page.

You have added a company name to the input page and now you are ready to

begin “Exercise 9.6: Adding a picture to the page” on page 129.

128 Development Studio Client: iSeries Web tools

Exercise 9.6: Adding a picture to the page

Before you begin, you must complete “Exercise 9.5: Adding a heading 1 tag to the

page” on page 127.

To add a picture to the page:

1. In the Project Explorer, click the Gallery tab.

2. Expand the Image folder.

3. Select the Illustration folder.

4. On the Design page beside the Gallery view select one of the sample

illustrations, for example, use file u013cut.gif.

5. Drag the picture onto the Design page beside the logo.

The Design page now contains a picture.

Chapter 9. Module 9. Enhancing the input page using Web tools 129

You are almost done. Next you add moving text to the page.

You have added an image to the input page and now you are ready to begin

“Exercise 9.7: Adding moving text to the page.”

Exercise 9.7: Adding moving text to the page

Before you begin, you must complete “Exercise 9.6: Adding a picture to the page”

on page 129.

To add moving text:

 1. Back to the Design page, position the cursor underneath your company name.

 2. Click Insert from the workbench menu.

 3. Click Paragraph > Heading 3 on the pop-up menu.

130 Development Studio Client: iSeries Web tools

4. Leave the cursor positioned inside the heading 3 frame.

 5. Click Insert from the workbench menu.

Chapter 9. Module 9. Enhancing the input page using Web tools 131

6. Click Others > Marquee on the pop-up menu

The Insert Marquee window opens.

132 Development Studio Client: iSeries Web tools

7. Enter into the Text field Please enter customer number and press Submit

button to start application.

 8. Select Slide from the Movement list.

 9. Select Finite from the Repetition list.

10. Select 1 from the Count list.

The two last selections just avoid the text sliding in forever and not standing

still. If you want more movement on the page, you can change these settings.

11. Select Lime in the Background color list.

12. Click OK.

The Design page should look like:

To save some space, you can remove some of the line break tags.

13. Position the cursor on the BR tag.

14. Press the Delete key until the entry field and push buttons appear on your

page:

Next you view the page as it would appear in a browser.

15. Click the Preview tab at the bottom of the Design page.

You will notice that your heading 3 text is sliding in.

Chapter 9. Module 9. Enhancing the input page using Web tools 133

You have added a marquee to the input page and now you are ready to begin

“Exercise 9.8: Changing the text color.”

Exercise 9.8: Changing the text color

Before you begin, you must complete “Exercise 9.7: Adding moving text to the

page” on page 130.

Sometimes you want to change the text color. There is an easy way to apply

another color to certain areas of text. To do that you return to the Design page.

To change the text color:

 1. Click the Design tab.

134 Development Studio Client: iSeries Web tools

2. Select the company text (IBM) you want to change color on, by swiping the

text area with the mouse cursor.

Below the Page Designer window there are several tabs.

 3. Click the Colors tab.

If you don’t see the Colors tab, click Windows > Show View > Colors from

the Workbench menu.

 4. Select a color from the Color palette.

 5. Click Text color from the Color menu.

 6. Click Set as Text Color on the pop-up menu.

You are done; now the selected text will be displayed with the color you

selected for it.

 7. Click the Preview tab to view your completed page.

 8. Save the file inquiry.jsp.

 9. Exit Page Designer.

10. In the Project Explorer expand the WSSLABxx folder.

11. Expand the Web content folder.

Chapter 9. Module 9. Enhancing the input page using Web tools 135

12. Right-click inquiry.jsp.

13. Click Run > Run on server on the pop-up menu.

Your new designed input page opens and you can run your Web application.

You have applied color to certain areas of text on the input page.

Module recap

You have completed Chapter 9, “Module 9. Enhancing the input page using Web

tools,” on page 113. You have learned how to:

v Locate the Web application input page and start Page Designer

v View the title of the input page

v Add a style to the input page

v Preview the new style for the input page

v Start WebArt Designer

v Create a logo

v Resize the logo

v Save the object as a WebArt object

v Save the object for a Web page

v Place the object on the Design page

v Add a company name to the input page

v Add an image to the input page

v Add a marquee to the input page

v Apply color to certain areas of text

Finish your tutorial by reviewing the materials in Chapter 10, “Summary,” on page

137.

136 Development Studio Client: iSeries Web tools

Chapter 10. Summary

In this tutorial you learned how to create a simple e-business customer inquiry

application that used a Web-based front end to communicate with the business

logic written in ILE RPG residing on an iSeries server. While creating a browser

user interface, you used the iSeries Web Interaction wizard to generate input and

output JSP files as well as Page Designer to enhance the input and output Web

pages. You also added iSeries Web components to your pages, for example, Web

equivalents of iSeries command keys, input fields that accept only particular types

of data, or output fields such as subfile names. You then ran the application in the

WebSphere Test Environment that is part of the product.

Completed learning objectives

If you have completed all of the modules, you should now be able to:

v Use the Remote System Explorer perspective to edit and compile an iSeries

program or service program

v Use the Web perspective tools and views to create a Web project for your Web

application

v Create a Web interaction to use an input page and an output page and to create

a servlet to invoke an RPG program or service program to get data from the

iSeries

v Run the Web application in the WebSphere Test Environment

v Use service entry breakpoints to debug your Web application

v Create an informative error page for customers when an incorrect customer

number is entered

v Add color, pictures, change text to make the input page more attractive

More information

For more information on the product and the iSeries Web Tools, see

http://ibm.com/software/adwtools/iseries.

© Copyright IBM Corp. 2001, 2005 137

138 Development Studio Client: iSeries Web tools

Appendix. Notices

Note to U.S. Government Users Restricted Rights — Use, duplication or disclosure

restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2001, 2005 139

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario

Canada

L6G 1C7

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 1992, 2005. All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information is intended to help you create application

software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

140 Development Studio Client: iSeries Web tools

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks

IBM

iSeries

RPG/400

Rational

WebSphere

 Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

ActiveX, Microsoft, SourceSafe, Visual C++, Visual SourceSafe, Windows, Windows

NT®, Win32, Win32s and the Windows logo are trademarks of Microsoft

Corporation in the United States, other countries, or both.

UNIX® is a registered trademark of The Open Group.

Other company, product, and service names may be trademarks or service marks

of others.

Appendix. Notices 141

142 Development Studio Client: iSeries Web tools

����

Printed in USA

	Contents
	Introduction
	Chapter 1. Module 1. Introducing the Web customer inquiry application
	Introducing iSeries Web Application Development
	Introducing the Web customer inquiry application

	Chapter 2. Module 2. Creating an RPG program
	Exercise 2.1: Starting the product
	Exercise 2.2: Opening the Remote System Explorer perspective
	Exercise 2.3: Creating a connection to the iSeries server
	Exercise 2.4: Finding an iSeries source member
	Exercise 2.5: Opening a source member for edit
	Exercise 2.6: Reviewing Remote System LPEX Editor features
	Exercise 2.7: Editing an RPG source member and creating a *PGM object

	Chapter 3. Module 3. Creating the RPG service program for your Web application (optional)
	Exercise 3.1: Starting the product
	Exercise 3.2: Opening the Remote System Explorer perspective
	Exercise 3.3: Creating a connection to the iSeries server
	Exercise 3.4: Finding an iSeries source member
	Exercise 3.5: Open a source member for edit
	Exercise 3.6: Reviewing Remote System LPEX Editor features
	Exercise 3.7: Editing a member and creating a service program module

	Chapter 4. Module 4. Creating a Web project
	Exercise 4.1: Opening the Web perspective
	Exercise 4.2: Creating a dynamic Web project
	Exercise 4.3: Setting up the iSeries server information

	Chapter 5. Module 5. Creating a Web application
	Exercise 5.1: Invoking the Web Interaction wizard
	Exercise 5.2: Specifying the input and output page
	Exercise 5.3: Defining the iSeries GETDATA program invocation and parameters
	Exercise 5.4: Defining the iSeries GETDATAS service program invocation and parameters
	Exercise 5.5: Defining the input page content
	Exercise 5.6: Defining the output page content
	Exercise 5.7: Specifying error handling
	Exercise 5.8: Enhancing the output page
	Exercise 5.9: Ensuring the customer number field cannot be modified
	Exercise 5.10: Visualizing the flow structure of your Web application

	Chapter 6. Module 6. Running the Web application
	Exercise 6.1: Opening the Web perspective
	Exercise 6.2: Finding the Web application and running it

	Chapter 7. Module 7. Debugging a Web application
	Exercise 7.1: Introducing the iSeries Integrated Debugger
	Exercise 7.2: Starting a Debug session using service entry points
	Exercise 7.3: Adding and deleting breakpoints
	Exercise 7.4: Displaying a variable
	Exercise 7.5: Viewing the call stack
	Exercise 7.6: Closing the debug session

	Chapter 8. Module 8. Adding an error page
	Exercise 8.1: Creating the flow control page
	Exercise 8.2: Modifying your Web interaction
	Exercise 8.3: Testing the new error page

	Chapter 9. Module 9. Enhancing the input page using Web tools
	Exercise 9.1: Opening Page Designer
	Exercise 9.2: Working with page properties
	Exercise 9.3: Linking a cascading style sheet to the Web page
	Exercise 9.4: Designing and adding a logo
	Exercise 9.5: Adding a heading 1 tag to the page
	Exercise 9.6: Adding a picture to the page
	Exercise 9.7: Adding moving text to the page
	Exercise 9.8: Changing the text color

	Chapter 10. Summary
	Appendix. Notices
	Programming interface information
	Trademarks

