WebSphere Development Studio Client Advanced Edition

for 1Series

EGL Server Guide for 1Series

Version 5 Release 1

<|ll

WebSphere Development Studio Client Advanced Edition

for 1Series

EGL Server Guide for 1Series

Version 5 Release 1

<|ll

Note
FBefore using this document, read the general information under [Chapter 7, “Notices,” on page 29

First Edition (May 2004)

This edition applies to version 5, release 1, modification 2 of WebSphere Development Studio Client Advanced
Edition for iSeries (product number 5724-D46) and to all subsequent releases and modifications until otherwise
indicated in new editions.

© Copyright International Business Machines Corporation 1989, 1998, 2000, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Installing and configuring

EGL Server for iSeries

Installing EGL Server for iSeries . .

Objects created or replaced during mstallatlon .

iSeries library and file setup .

iSeries preparation script file FDAPREP

Customizing EGL. .

General considerations for EGL Server for 1Ser1es .
Using data description specifications generated by

W WN R = -

EGL . .3
Application run- tlme conslderatlons .4
Chapter 2. Reviewing and preparing the
generated output. .7
Outputs of generation . . .7
Objects generated for programs . .8
Objects generated for data tables . 8
Objects generated for form groups . .9
Understanding preparation . .9
Starting the iSeries Remote Build Server 10
Launching the build plan manually 10
Preparing a DB2 application . 10
Chapter 3. Running a generated
application in iSeries . . 1
Making EGL Server for iSeries, COBOL and
generated modules available. . .11

© Copyright IBM Corp. 1989, 1998, 2000, 2004

Establishing a library list forajob.12
Running EGL applications under iSeries.13
EGL run unit concept13
Using activation groups with run umts R ¢

Chapter 4. Moving prepared
applications to other iSeries systems . 15
Moving prepared applications to another iSeries

system15
Moving workstatron code that is part of a EGL
application to an iSeries system.15

Maintaining backup copies of productlon libraries 15

Chapter 5. Diagnosing problems during
runtime e V4
iSeries First Failure Data Capture component . . .17

Chapter6. messages 19
Escape messages. . . e
Diagnostic and mformatronal messages .

Chapter 7. Notices.29

Programming interface information31
Trademarks and service marks31
iii

1V EGL Server Guide for iSeries

Chapter 1. Installing and configuring EGL Server for iSeries

This chapter contains general information on the installation and customization of
EGL Server for iSeries on the host and EGL on the workstation.

Installing EGL Server for iSeries

EGL Server for iSeries is available in the following WDSC plugin, which is in your
installation directory under iseries\eclipse\plugins:

com.ibm.etools.egl.generators.cobol.iseriesruntime

In the plugin, the following binaries are included in the executables directory:

1. QEGL.zip, which contains the java parts for the gateway server. You must ftp
this file (in binary) to the iSeries’ system, and unzip the contents into an
Integrated File System directory named /QEGL

2. QEGL.SAVF, which contains the primary library for those system objects that
constitute the EGL server for iSeries. You must ftp this file (in binary) to the
iSeries system, and use the RSTLIB command to restore the contents into a
library named QEGL

Objects created or replaced during installation

The following list provides a general description of the objects created or replaced
during the installation process:

Table 1. Objects Created or Replaced during the Installation Process

Object and library name | Type Description

QEGL QSYS *LIB The primary library for those system objects that
constitute EGL Server for iSeries.

QVGN* QGPL *FILE Contains various database and source files, some

of which are used during development and run
time of EGL applications. See|“iSeries library and|

for a description of these files.

/QEGL DIR The Integrated File System directory where Java'
parts for the gateway server reside.

iSeries library and file setup

The outputs from generation are placed into files in the library identified in the
build descriptor option destLibrary. The default value of that option is QGPL.

You must create a set of files in that library before the preparation step can run.
The next table lists those files.

Table 2. Generation Output Files

File name Type Description

QVGNCBLS PF-SRC EGL generation COBOL source
QVGNCLS PF-SRC EGL generation CL source
QVGNDDSS PF-SRC EGL generation DDS source file

© Copyright IBM Corp. 1989, 1998, 2000, 2004 1

Table 2. Generation Output Files (continued)

File name Type Description

QVGNEVF PF-SRC EVF parts control file
QVGNMAPG PF-DTA EGL generation form group source
QVGNTAB PF-DTA EGL generation table data
QVGNWORK PE-SRC EGL generation work file

The following commands can be used to create these files:

CRTSRCPF FILE(QGPL/QVGNCBLS) RCDLEN(92) TEXT('EGL GENERATION - COBOL SRC')
CRTSRCPF FILE(QGPL/QVGNCLS) RCDLEN(92) TEXT('EGL GENERATION - CL SRC')
CRTSRCPF FILE(QGPL/QVGNDDSS) RCDLEN(92) TEXT('EGL GENERATION - DDS SRC')
CRTSRCPF FILE(QGPL/QVGNEVF) RCDLEN(92) TEXT('EGL GENERATION - VARIABLES')
CRTSRCPF FILE(QGPL/QVGNWORK) RCDLEN(150) TEXT('EGL GENERATION - WORK FILE')
CRTPF FILE(QGPL/QVGNMAPG) SRCFILE(QEGL/QVGNPDDS) SRCMBR(TBLMAP) MBR(*NONE)
TEXT('EGL GENERATION- MAP GROUP FILE')
MAXMBRS (*NOMAX) AUT (*CHANGE) OPTION(*NOSRC *NOLIST)
CRTPF FILE(QGPL/QVGNTAB) SRCFILE(QEGL/QVGNPDDS) SRCMBR(TBLMAP) MBR(*NONE)
TEXT('VISUALGEN TABLE DATA') MAXMBRS (*NOMAX) AUT (*CHANGE) +
OPTION(*NOSRC *NOLIST)

To avoid member name collisions when multiple application developers are using
the same host iSeries system, it is highly recommended that you copy these
QVGNF files from the QGPL library to the application-developer user library that
is identified in the build descriptor option destLibrary.

To create libraries for multiple users, do as follows:
1. Type the following command on the command line--
CRTLIB xxxxxx
where xxxxxx is the library name

2. Create a duplicate of the VGN files in the new library by typing this
command--

WRKOBJ OBJ (QGPL/QVGN*) OBJTYPE(*FILE)
3. Place option=3 (copy) next to each file, then type this command--
TOLIB(XXXX)

iSeries preparation script file FDAPREP

2

To process the build plan successfully, the preparation script FDAPREP is invoked
on iSeries by the build server. The script normally resides in the QEGL/REXSRC
file, but can be copied to another location and customized.

The script is invoked, by the build server, using the STRREXPRC command:
STRREXPRC SRCMBR'(FDAPREP)” SRCFILE’(*LIBL/QREXSRC)’ ... (other parms)
Thus it is necessary to have the file containing the preparation script in a file
included in *LIBL.

The preparation script is written in standard rexx, and you may want to modify it
for customization purposes. The SYMPARM variables defined by the user in the
build descriptor at generation time are available to this program as standard rexx
variables and they can be used to influence the logic according to your needs. In
addition, some standard variables are always defined, as in the following example:

EGL Server Guide for iSeries

EZENLS="ENU"
EZEPID=""
EZEDATA="31"
EZEENV="ISERIESC"
EZEMBR="iTest"
EZEGTIME="08:57:38"
EZEGMBR="iTest"
EZEGDATE="02/23/04"
EZESQL="N"
EZETRAN="iTest"
EZEFUNCTION="PMN"
EZEDESTLIBRARY="TEST"

The generation step creates a variables file appname.evf, which contains the
variables and is passed to the preparation script.

Customizing EGL

If you have installed EGL Server for iSeries in a language other than the following
languages, EGL Server for iSeries creates an abbreviated conversion table in the file
QVGNSCTB of the QEGL library.

Suffix Language

ENU US. English

ENP Uppercase English
CHS Simplified Chinese
DEU German

DES Swiss German

ESP Spanish

JPN Japanese (Katakana)
KOR Korean

PTB Brazilian Portuguese

General considerations for EGL Server for iSeries

This section describes the general considerations for administering EGL Server for
iSeries.

Using data description specifications generated by EGL

During generation, EGL can generate data description specifications (DDS)
information from EGL record definitions that are used for file I/O operations.

The DDS information generated by EGL is useful only to the iSeries system
administrator or application developer. The system administrator can use the DDS
source members, or modified versions of them, to create the files that do not
already exist on the iSeries system. Using the DDS source information to create the
files qualifies these files for iSeries data management functions, such as specifying
key fields, unique keys, and logical files.

You are not required to use the DDS source information to create files because EGL

does not require that the files an application accesses be externally described. EGL
relies on the record definition, which is built into the *PGM object, for the structure

Chapter 1. Installing and configuring EGL Server for iSeries 3

4

of a record. However, using the DDS information guarantees agreement between
the application’s view of the record structure and the record data stored on the
iSeries system.

Modifying the generated DDS information

Indexed and indexed alternate specification record organizations might require that
you modify the corresponding DDS source member. Adding DDS keywords to the
file- and record-level identifiers in the DDS source member is the minimum
modification necessary. shows the DDS keywords and the conditions under
which they are required.

You can add other DDS keywords to optimize record retrieval and simplify
application logic. For example, logical files can be used to select a subset of
physical file records. You can also to build your own DDS source member, based
on your knowledge of the EGL record definitions in the application. In this case,
individual field names and field lengths in the DDS source need not match those
of the EGL record definition. However, the record length and key field length of
the EGL record definition and the DDS source must be equal.

Table 3. Conditions for using DDS keywords

DDS keyword Condition

PFILE(pfname) When using the DDS information to create a logical file. pfname
identifies the physical file on which the logical file is based. PFILE
is a record-level keyword.

UNIQUE When the application tests for the unique or duplicate record I/O
error conditions. UNIQUE is a file-level keyword.

Restrictions on logical files
EGL supports simple logical files that use only one record format. The DDS source
information specifies only one file on the PFILE keyword.

Changing DDS member types

EGL creates DDS source members without specifying a member type. To assist you
in modifying the DDS source information, change the member type to one of the
following:

* PF for a DDS source member describing a physical file

e LF for a DDS source member describing a logical file

Changing the member type to PF or LF enables the Source Entry Utility (SEU)
prompting to help you to modify the DDS source member.

Application run-time considerations

The following sections describe the considerations to keep in mind during
application run time.

Starting and ending commitment control cycles

To use iSeries Commitment Control Services for single-system iSeries applications,
you must explicitly start and end a commitment control cycle using the start
commitment control (STRCMTCTL) command to start the commitment control and
the end commitment control (ENDCMTCTL) command to end the commitment
control. EGL Server for iSeries does not implicitly start or end commitment control
cycles for single-system iSeries applications. However, DB2® implicitly starts
commitment control automatically for applications that use SQL I/O statements.
After commitment control is started for the job, both native database I/O and SQL
I/0O can use the common commitment control that iSeries provides.

EGL Server Guide for iSeries

For EGL client/server applications and Web applications, commitment control is
started by the run-time CL for the application.

If necessary, the commitment control for an SQL application can be changed by
modifying the FDAPREP REXX program and is further controlled by a
user-defined SYMPARM during generation.

If no commitment control cycle is active and the application attempts to open a file
requiring commitment control, the application ends with an error condition.
Messages in the job log explain the exact nature of the error. The application ends
abnormally under these conditions because it might attempt to explicitly commit
changes to a file, but that is possible only with an active commitment control cycle.

Chapter 1. Installing and configuring EGL Server for iSeries 5

6 EGL Server Guide for iSeries

Chapter 2. Reviewing and preparing the generated output

This chapter provides an overview of the generation output files and describes
how EGL prepares the output files before running your applications.

The format and content of the output files are in COBOL, control language (CL)
source, and structured binary streams. Each output file is described in

Outputs of generation

After you generate an application, a number of objects must be transferred to the
iSeries host system as members in various iSeries physical files. On the iSeries host
system, these members must be prepared before the application can be run.

provides information about the types of files produced by generation,
including the following:

* Type of object produced

* Physical file name where the object is written as a member

* How the member name of the object is derived

¢ Whether production is controlled by a generation option

* Whether the object can be modified after generation is performed

Refer to the EGL Reference Guide for more information on controlling and
modifying generation and preparation of iSeries objects.

Table 4. Objects transferred to an iSeries host by the EGL preparation utility

PF member name and EGL build descriptor
File type Physical file name generated file name option Modifiable
Objects generated for applications
Application ILE QVGNCBLS Application name applname.cbl None No
COBOL program
Run-time CL QVGNCLS Application name applname.clr None Yes
Objects generated for tables
Table Binary Image QVGNTAB Table name tablname.tab genDataTables No
Objects generated for form groups
Print services QVGNCBLS Form group name genFormGroup, No
érogram (See note formgname.cbl genHelpFormGroup
Form group module QVGNMAPG Form group name genFormGroup, No
(See note formgnameFM.fmt genHelpFormGroup

Objects generated for all member types (applications, tables, form groups)

Generation QVGNEVF mbrname.evft None No
variables file

Objects generated for message tables

Message file QVGNMSGS Member specified when genDataTables Yes
generation was requested
tablename.msg

Build plan not applicable appIName.BuildPlan.xml buildPlan No

© Copyright IBM Corp. 1989, 1998, 2000, 2004 7

Table 4. Objects transferred to an iSeries host by the EGL preparation utility (continued)

PF member name and EGL build descriptor
File type Physical file name generated file name option Modifiable
Objects generated for file creation
Data definition QVGNDDSS File name as specified in EGL genDDSFile Yes
specification (DDS) record definitions filename.dds

Notes:
1. The generator produces ILE COBOL for the iSeries environments.

2. Generated application, table, and form group objects are environment dependent. All objects are generated for
one environment and cannot be used in another environment.

3. This object is produced only if the form group contains print maps.

4. This object is produced only if the form group contains terminal maps.

Objects generated for programs
The follow sections describes the objects generated for applications.

Application ILE COBOL program

The generated application is an ILE COBOL program that contains the following;:
* Application control logic

* Logic for application processes, statement groups, and 1/O operations

* Data for both the application and application control

Run-time CL

The run-time CL sets commitment control and adds libraries to the iSeries library
list when an application runs. The CL is generated from the templates efk24ebc.tbl
and efk24eec.tpl, which can be customized.

The name of the run-time CL is as follows:
applname.clr

applname
Name of the application.

Data definition specification (DDS)

The generator produces iSeries data definition specifications (DDS) to create
instances of iSeries physical and logical files that the application uses. The DDS
produced is the result of the indexed, relative, serial, and alternate specification record
types used within the application member being generated. The build descriptor
option createDDS enables the production of the DDS output type. The command
file uploads the DDS files to the host system, but the command file does not
manage processing beyond that point.

Objects generated for data tables

The following section describes the objects generated for data tables.

DataTable binary image file

The dataTable binary image file contains the run-time EGL dataTable member
contents as defined by EGL. The dataTable contents are already converted to the
code page of the target run-time environment. The dataTable contents are
formatted to an application defined structure (possibly containing various data
types) and the contents are treated as binary data. You might not be able to view
the contents outside the scope of EGL and utilities.

8 EGL Server Guide for iSeries

The build descriptor option genDataTables enables the production of the table
binary image files.

Message definitions

For message tables, the generator produces a file containing the raw message
definitions. This file is processed by the preparation script file, FDAPREDP, to create
an iSeries native message file object (*MSGF type).

The build descriptor option genDataTables enables the production of the message
file, which is the iSeries implementation of the message table. Execution of the
build plan uploads the message file and invokes the preparation script to generate
the message object on iSeries.

Objects generated for form groups

The following section describes the objects generated for form groups.

Form group format module

The form group format module is a generated structure that describes the form
layout for text forms in the form group. The generator builds the structure as a
binary image file converted to the code page of the target system. This object is
produced when you specify the genFormGroup or genHelpFormGroup build
descriptor options and when the application has defined text forms in the form

group.

Understanding preparation

This section describes the preparation process for a generated application to run in
the iSeries environment. The preparation process is significantly different from that
used in VisualAge® Generator.

The preparation is accomplished by using the iSeries Remote Build Server, which is
a component of the EGL run time. For details, see [’Starting the iSeries Remote|
[Build Server” on page 10,

When an application is generated, an xml file, called the Build Plan, is created in
the generation directory. The build plan is launched to prepare the application on
iSeries, using a Java program called the build plan launcher.

When the application is generated with the build descriptor option prep set to yes,
the build plan is launched automatically at the end of the generation. Otherwise
the build plan can be launched later manually by following the process described
later in this document.

The Build Plan Launcher uses the build plan and communicates with the Build
Server to accomplish the preparation. The build plan contains all the information
necessary to transfer the applicable generated files to iSeries and to build (compile
and bind) the application.

A key component of the preparation is the Preparation Script. This is a Rexx Script,
FDAPREP, which is installed as part of the runtime code and is described in
[“iSeries preparation script file FDAPREP” on page 2|

Chapter 2. Reviewing and preparing the generated output 9

Starting the iSeries Remote Build Server

The Remote Build Server is a program, named CCUBLDS, that runs as a job on the
iSeries. It listens on a tcp/ip port. Once started, it runs continuously until the job is
canceled. Following is an example of the command to start the build server job:

SBMJOB CMD(CALL PGM(*LIBL/CCUBLDS) PARM('-p' '2600')) JOB(CCUBLDS) JOBQ(QSYS/QSYSNOMAX)

Here the server port is 2600, but any available port number can be used. The build
server must be invoked by an administrator userid that is authorized to access user
profiles.

Launching the build plan manually

You may wish to create a build plan and to invoke that plan at a later time. This
case might occur, for example, if a network failure prevents you from preparing
code on a remote machine at generation time.

To launch a build plan in this case, complete the following steps:

1. Make sure that eglbatchgen jar is in your Java classpath, as happens
automatically on the machine where you install EGL. The jar file is in the
WebSphere® Studio installation directory (like c:\myStudio), in the following
subdirectory:
wstools\eclipse\plugins\
com.ibm.etools.egl.batchgeneration_version
version

The installed version of the plugin; for example, 5.1.2

2. Similarly, make sure that your PATH variable includes the following
subdirectory of the WebSphere Studio installation directory:

wstools\eclipse\plugins\
com.ibm.etools.egl.distributedbuild_version

version
The installed version of the plugin; for example, 5.1.2
3. From a command line, enter the following command:
java com.ibm.etools.egl.distributedbuild.BuildPlanLauncher bp

bp The fully qualified path of the build plan file. For details on the name of
the generated file, see the EGL help topic Generated output (reference).

Preparing a DB2 application

10

When you specify an SQL table name in EGL, you can enter the table name on the
Table Specification window using either the SQL naming convention of
collection.tablename or the iSeries SYSTEM naming convention of
collection/tablename. Whichever format you use as the standard to qualify table
names, tailor the OPTION parameter on the FDAPREP script to be *SQL
(collection.tablename) or *SYS (collection/tablename). The default naming
convention is *SQL.

When you tailor the FDAPREP script, ensure that the *APOSTSQL and *QUOTE
values are part of the OPTION parameter.

EGL Server Guide for iSeries

Chapter 3. Running a generated application in iSeries

This chapter describes the information required to run EGL applications on an
iSeries system.

Making EGL Server for iSeries, COBOL, and generated modules

available

The setup tasks that are required to run EGL applications on iSeries are simpler
than with other run-time environments because no run-time setup control
programs are produced, other than the application program itself.

EGL Server for iSeries and the generated COBOL applications use the run-time job
library list (*LIBL) to resolve all named object references

The library list must be set up by the application programmer, system
administrator, or EGL application developer before starting the application. To aid
in the library setup, [Table 5 on page 12| lists the names and types of objects that
EGL might use while running in the iSeries environment. EGL searches for these
objects dynamically when the application is running by scanning the libraries
named in the library list. It is recommended that the installation library, QVGEN,
be added to the library list of the end user when running EGL applications.

EGL uses the first object it finds that matches the target name in the libraries
named in the library list. This first-found object is used in all cases of object
resolution except for objects of *FILE type. In this case, EGL uses the first member
it finds that matches the target name, after the first member have been qualified
with the correct file name. Multiple files with the same name might exist in the
libraries named in the library list. EGL checks each library file until it finds the
first instance of the member name.

© Copyright IBM Corp. 1989, 1998, 2000, 2004 11

12

Table 5. Names and types of objects used by EGL at run time

Object and

library name Type Description

QVGN* QEGL *PGM *SRVPGM | EGL Server for iSeries program and service program
objects.

OVGNMSGF *MSGF EGL Server for iSeries product message file.

QEGL

QVGNMAPG *FILE Members of this file contain the generated

userlib applications 5250 form groups. Members are named
for the form group it contains.

QVGNTAB *FILE Members of this file contain the generated

userlib applications tables. Members are named for the table
it contains.

QVGNPRNT *FILE This is the standard printer device file for

QEGL application use of the Printer file. Usually, all jobs on
the system share one of these objects.

QVGMAP QEGL |*FILE This standard display device file is used for
interactive applications when they display maps.
Usually, all jobs on the system share one of these
objects.

mmmmnls *MSGF A specific application’s message table, where mmmm

userlib is the message table prefix as defined to the
application, and nls is the value of the build
descriptor option targetNLS when the application
was generated.

calltarg userlib *PGM Any target of the call or transfer statements coded
within an application.

filetarg userlib *FILE Any file named on record definitions used by EGL

process options within an application.

Note: The designated library wuserlib in indicates that the object is in a
library named by the application developer at the time the application was

developed.

The two exceptions to using the library list to resolve object references by running
applications are as follows:

* When EGL application tables and map groups reside in the iSeries IFS file
system for improved run-time performance.

¢ When either:

— The object (table or view) was explicitly qualified when an SQL record was

defined during development

— The object was implicitly qualified when the application using the record was

compiled.

In either case, SQL object resolution is independent of the library list.

Establishing a library list for a job

You can establish a library list for a job in several ways, but each method involves
using an iSeries system command. You can also mix the methods. The initial
iSeries library list is contained in the job description referenced by the user profile.
For more information about the following iSeries system commands, enter the
command at a command line entry on OS/400® and request command prompting.

EGL Server Guide for iSeries

ADDLIBLE
Adds a library list entry

CHGCURLIB
Changes the current library

CHGSYSLIBL
Changes the system library list

Running EGL applications under iSeries

To run a EGL application in the iSeries environment, call the *PGM application
object just as you would any other *PGM object on iSeries. You can run EGL
applications from menus, commands, command lines, or interlanguage program
calls. This applies to main and called EGL applications. Examples of how to run a
EGL application from an iSeries command line follow:
* To call an application without the use of arguments, use the following format:
CALL applname
* To call a CALLED application that expects a parameter declared as CHAR(16),
use the following format:
CALL applname ('char arg literal')

* To call a CALLED application that expects two parameters declared as CHAR
(15) and DECIMAL (15,5), use the following format:

CALL applname ('char arg literal' 1234)

EGL run unit concept

EGL applications operate in a run unit much like that of ILE COBOL. EGL’s run
unit can be considered a subset of the ILE COBOL run unit because the COBOL
run unit might exist before and persist longer that EGL’s run unit.

EGL’s run unit is bounded by the first EGL application on the iSeries program call
stack for a specific job. Run units are scoped in a single job. As long as a EGL
application is on the program call stack, an EGL run unit is active. Only one EGL
run unit can be active in a job at any time. This is the most obvious difference
between EGL run units and ILE COBOL run units.

Main or called programs applications can initiate a EGL run unit. EGL man
programs can exist in a run unit only if it is the initiating application. Main
programs cannot be called from an application that initiates a EGL run unit, even
if it is called from a non-EGL program while a EGL run unit was active.

Using activation groups with run units

EGL run units normally correlate on a one-to-one basis with ILE COBOL run units
and ILE activation groups. When a EGL application initiates or begins a run unit, a
named activation group is also initiated. Using a named activation group ensures
that all EGL applications that run in the job share the same resources in terms of
ILE resource management.

If your application system consists of non-EGL programs as well as EGL
applications, you can add your non-EGL programs to the named activation group
or use a different activation group. Sharing commitment control logical units of
work and sharing database file Open Data Paths are important aspects to consider
when making your decision. To share either ILE resources, using the same

Chapter 3. Running a generated application in iSeries 13

activation group achieves the above result. Conversely, using different activation
groups keeps the ILE resources isolated in terms of EGL application use and
non-program use.

The ILE activation group name is established when EGL applications are in the
preparation phase of application development. EGL preparation templates, which
create OS/400 program objects, name the activation group in the iSeries command
template for the CRTPGM command. The keyword is ACTGRP and the default is
ACTGRP(QVGN).

14 EGL Server Guide for iSeries

Chapter 4. Moving prepared applications to other iSeries

systems

You can move a prepared application from one iSeries system to another. For
example, you might have the compiler on one host development machine but want
to run the application on several production machines.

The iSeries and EGL Server for iSeries products on the production machine must
be at the same maintenance level as, or at a higher level than, the development
machine.

Moving prepared applications to another iSeries system

After an iSeries EGL application is prepared, you can distribute that application to
other architecturally similar iSeries systems using the following procedures:

1.
2.

Use the CRTSAVF FILE(library/filename) command to create a save file.

Use the SAVOB]J or SAVLIB command to save all the application parts you
want to move to another system in the save file.

Transfer the save file to other iSeries systems by using a communications
network or by using physical media such as a tape.

Use the RSTOBJ (Restore Object) or RSTLIB (Restore Library) command to store
the objects from the save file.

Moving workstation code that is part of a EGL application to an iSeries

system

Moving workstation code that is part of a EGL client/server application to an
0S/400 system can be done using diskettes or shared folders.

To save the workstation code using the iSeries, do the following:

1.

o

Copy the code to a shared folder along with EGL GUI run-time support

2. Create a save file using the iSeries command CRTSAVF
3.
4

. Transfer the save file to another iSeries system by using a communication

Issue the iSeries command SAVDLO

network or by using a physical media such as a tape
Erase the existing shared folder, if one exists

Restore the shared folder using the iSeries command (RSTDLO) on the
production iSeries

Maintaining backup copies of production libraries

Maintaining backup copies of your production libraries can be accomplished by
creating a save file, then issue the SAVLIB command. You can copy the save file to
tape.

© Copyright IBM Corp. 1989, 1998, 2000, 2004 15

16 EGL Server Guide for iSeries

Chapter 5. Diagnosing problems during run time

This chapter contains information to aid in diagnosing problems that you might
encounter while running your EGL applications.

EGL applications are implemented on iSeries just like other third-generation
language (3GL) applications or programs. This is important to remember, should
you or the IBM® Support Center need to collect extra ordinary problem diagnostic
information in the course of investigating a run-time error.

iSeries standard diagnostic commands are available to you when diagnosing
problems with a EGL application. These include such commands as the following;:
* ADDTRC (Add Trace Statement)

* STRJOBTRC (Start Job Trace)

* ENDJOBTRC (End Job Trace)

* PRTJOBTRC (Print Job Trace Data)

* STRDBG (Start Debug)

* ENDDBG (End Debug)

In most error diagnostic cases, you need to have the following information
available when you contact the IBM Support Center:

* The run-time job log, which recorded all messages including second-level text.

To ensure that second-level text is included, change the job before starting the
failed scenario using the command CHGJOB LOG(4 00 *SECLVL). When the job
ends, the job log is spooled to the assigned output queue. Usually, the most
important information in the job log is the escape messages that initiates the
abnormal condition, which caused the EGL application to end. The program
sending the message, the program receiving the message, and the instructions
being sent to the program are the key pieces of diagnostic information. The
other messages are also important. Be sure to inspect and report the entire job
log of information.

¢ The ILE COBOL compiler listing, which includes the following:

- EGL annotated statements and code-production audit comments (use build
descriptor option commentLevel)

— ILE COBOL source statements (use compiler option OPTION(*SOURCE))

* Any additional spooled files that might have been created as a result of the job
ending abnormally, such as dumps or display job snapshots. You can locate all
spooled file output from a job by using the WRKJOB command to work with the
job. Then you can select the option from the job menu to display spooled
output.

iSeries First Failure Data Capture component

EGL applications are linked into the iSeries First Failure Data Capture component
when function checks (abends) occur via the iSeries System Programming Interface
(SPI) called Report Software Error (QpdReportSoftwareError). EGL uses this
function to provide run unit data dumps that can be sent to the IBM Support
Center.

EGL also uses the report software error SPI function when illogical conditions are
detected during run time that might lead to a function check (abend). In these

© Copyright IBM Corp. 1989, 1998, 2000, 2004 17

18

cases, a unique signature associated with the error condition is provided to the
system service. The system service can use the unique signature to scan a service
database for the same signature and possible PTFs that can be applied. This
expedites the process of problem resolution in some cases.

When job log messages indicate that the iSeries system problem log has been
updated, use the iSeries command DSPPRB (Display Problem) to view a list of the
most recent problems captured on the system; then select the option to display the
problem associated with QVGNHS. QVGNHS is the service program that
constitutes the majority of EGL Server for iSeries. A procedure of this service
program issues the SPI function to record the problem. Upon displaying the
problem, the menu selections and function keys enable you to display further
information, such as spooled files, problem history files, and APAR libraries. The
spooled files contain dump data and a copy of the job attributes at the time of the
dump.

For more information on using the system problem log in an automated manner,
refer to the SystemView® System Manager product documentation.

EGL Server Guide for iSeries

Chapter 6. messages

Message text can contain one or more inserts. When the message is displayed, an
insert is used to fill in names, constants, return codes, and other information. For
example, the format of the message insert might look like this: &1

The server messages can be viewed online on iSeries by using the Work with
Message Description command WRKMSGD MSGF(QVGEN/OVGNMSGEF).

EGL applications use the standard iSeries message handling functions to
communicate with calling programs. Diagnostic information is automatically
logged by the job log during run time.

Escape messages

These messages are sent by EGL applications to the program queue of the calling
program as iSeries ESCAPE type messages. The calling program must monitor
these messages to avoid an iSeries function check.

EGL Server MAIN shell cannot invoke
the target program %1.

GEN9001

Explanation: Diagnostic messages preceding this
message in the job log explain the nature of the error.
In most cases, the application or system programmer
will need to adjust your application system to correct
the problem.

User Response: Either print the job log or record the
messages along with the following;:

¢ - The from program name.
¢ - The to program name.

e - The instruction numbers.

You can view or print the job log with the DSPJOBLOG
command. If no diagnostic messages precede this
message, ensure that your job logged all messages by
checking the ‘Message Logging’ or LOG value of your
job definition or job description, depending on whether
the job is interactive or batch. For interactive jobs,
command DSPJOB OPTION(*DFNA) will display the
"Message Logging’ value.

Contact your application or system programmer with
the information you gathered.

GEN9002 EGL Server encountered an application

error which caused the run unit to end.

Explanation: Diagnostic messages preceding this
message in the job log explain the nature of the error.
In most cases, the application or system programmer
will need to adjust your application system to correct
the problem.

User Response: FEither print the job log or record the
messages along with the following;:

* - The from program name.
* - The to program name.

¢ - The instruction numbers.

You can view or print the job log with the DSPJOBLOG
command. If no diagnostic messages precede this
message, ensure that your job logged all messages by
checking the ‘Message Logging’ or LOG value of your
job definition or job description, depending on whether
the job is interactive or batch. For interactive jobs,
command DSPJOB OPTION(*DFNA) will display the
"Message Logging’ value.

Contact your application or system programmer with
the information you gathered.

Diagnostic and informational messages

The following messages are sent as DIAGNOSTIC or INFORMATIONAL type
messages to the program queue of the calling program. These messages are
automatically posted in the job log. Programs that call EGL applications cannot
monitor the activities of these messages. Use the WRKJOB(Work with JOB)

command to view the job log. The Message Logging job attribute might filter some
or all of these messages in some way. To ensure you get all messaged posted in the

© Copyright IBM Corp. 1989, 1998, 2000, 2004 19

job log, use a message logging value of LOG(4 00 *SECLVL) in your iSeries jobs.
See the iSeries commands WRKJOB and CHGJOB (Change Job) for more

information.

GENO0002 A new level of EGL Server for iSeries is

required for program %1

Explanation: The generated COBOL program %1,
attempting to run, is not compatible with the installed
version of EGL Server for iSeries.

User Response: Contact the system administrator.
Version %2 of EGL Server for iSeries should be
installed.

Date entered is not valid for defined
date format %1

GENO0005

Explanation: Data entered into a form field defined
with a date edit either does not meet the requirements
of the format specification, or the month or day of the
month is not valid.

It is not necessary to enter the separator characters
shown in the message, but if they are omitted, enter
leading zeros. For example, if the date format is
MM/DD/YY, you can enter 070494.

User Response: Enter the date in the format %1.

GENO0009 Overflow occurred because the target

item is too short

Explanation: The target of a move or assignment
statement is not large enough to hold the result without
truncating significant digits. The value of special
function word sysVar.handleOverflow is 1, which
specifies that the application should end if this
overflow condition occurs.

User Response: Have the application developer do
one of the following;:

* Increase the number of nondecimal digits in the
target data item

* Define the application logic to handle the overflow
condition using the special function words
sysVar.handleOverflow and sysVar.overflowIndicator.

GENO0014 REPLACE attempted without preceding

UPDATE option on %1.

Explanation: A replace option was attempted against a
record that has not been successfully read by a get or
open statement. The read for update might have been
lost as the result of a commit or rollback.

This error also occurs if a replace is associated with a
specific get or open statement, but that get or open
statement was not the one used to select the record.

User Response: Have the application developer run
this application with the test facility, tracing for process

20 EGL Server Guide for iSeries

and statement group flow, to determine the application
logic error.

GEN0021 An error occurred in application %1 on

EGL statement number %2.

Explanation: The actual error identifying the problem
is explained in messages following this message in the
job log.

User Response:

GEN0022 Map group format member %1 could

not be loaded

Explanation: The form group format member is a
generated binary file that contains attributes that
describe the format and constant fields for
character/text based maps in a form group. Form
group format members are stored as members of file
%?2 and are expected to be found by searching the job’s
library list.

Diagnostic messages preceding this message in the job
log explain the nature of the error.

User Response: Contact your application or system
programmer and report the sequence of messages
including and preceding this message.

GEN0023 The table %1 could not be loaded.

Explanation: A table is a generated binary file that
contains application data. Tables are stored as members
of file %2 and are expected to be found by searching
the job’s library list.

Diagnostic messages preceding this message in the job
log explain the nature of the error.

User Response: Contact your application or system
programmer, and report the sequence of messages
including and preceding this message.

GEN0024 EGL conversion table %1 could not be

found

Explanation: Either the name specified on the
sysLib.convert call was not a member of the
QEGL/QEGLSCTB file or the member that was found
is not a conversion table.

User Response: Have the application developer verify
that the correct conversion table name was specified in
the sysLib.convert call. If the table name was not
correct, then change the EGL application and
regenerate it. If the table name is correct, verify that the
correct conversion table was installed. The conversion
table is a member in the file QEGLSCTB in QEGL
library.

d

A calculation caused a "maximum value’
overflow.

GENO0026

Explanation: During a calculation in an arithmetic
statement, an intermediate result exceeded the
maximum value (18 significant digits). This condition
also occurs when division by zero occurs. If the
sysVar.handleOverflow switch is set to either 0 or 1, the
application ends.

User Response: Have the application developer
correct the application logic either to avoid the error or
to handle the error using the special function words
sysVar.handleOverflow and sysVar.overflowIndicator.

The data on character to numeric move
is not valid.

GENO0027

Explanation: The statement in error involves a move
from a character to a numeric data item. The character
data item contains nonnumeric data.

User Response: Have the application developer
change the application to make sure that the source
operand contains valid numeric data.

GENO0031 A call to program %1 failed.

Explanation: Called programs are expected to be
found by searching the job’s library list.

Diagnostic messages preceding this message in the job
log will explain the nature of the error.

User Response: Contact your application or system
programmer, and report the sequence of messages
including and preceding this message.

GENO0033 Call to function %1 returned exception

code %2

Explanation: An exception code was returned on a
call to the specified function, indicating that one of the
arguments passed to the function was invalid. Refer to
the EGL reference guide for further details.

The run unit ends.

User Response: The developer should fix the program
so that it does not pass invalid arguments to the
function.

GENO0034 Application %1 was defined as a MAIN

application and cannot be called.

Explanation: The specified application was defined as
either a main textUI program or as a main basic
program. It cannot be called by another program.

User Response: If using the call statement to invoke
application %]1 is valid, have the application developer
define %1 as a called application. If application %1
must remain a main application, then have the
application developer use transfer statements to invoke

it from another main application.

GENO0035 Data type error in input - enter again

Explanation: The data in the first highlighted field is
not valid numeric data. The field was defined as
numeric.

User Response: Enter only numeric data in this field,
or press a bypass edit key to bypass the edit check. In
either situation, the application continues.

GENO0036 Input minimum length error - enter

again

Explanation: The data in the first highlighted field
does not contain enough characters to meet the
required minimum length.

User Response: Enter enough characters to meet the
required minimum length, or press a bypass edit key to
bypass the edit check. In either situation, the
application continues.

GENO0037 Input not within defined range - enter

again
Explanation: The data in the first highlighted field is
not within the range of valid data defined for this item.

User Response: Enter data that conforms to the
required range, or press a bypass edit key to bypass the
edit check. In either situation, the application continues.

GENO0038 Table edit validity error - enter again

Explanation: The data in the first highlighted field
does not meet the table edit requirement defined for
the variable field.

User Response: Enter data that conforms to the table
edit requirement, or press the bypass edit key to bypass
the edit check. In either situation, the application
continues.

GENO0039 Modulus check error on input - enter

again

Explanation: The data in the first highlighted field
does not meet the modulus check defined for the
variable field.

User Response: Enter data that conforms to the
modulus check requirements, or press a bypass edit key
to bypass the edit check. In either situation, the
application continues.

GEN0040 No input received for required field -

enter again

Explanation: No data was typed in the field
designated by the cursor. The field is required.

Chapter 6. messages 21

User Response: Enter data in this field, or press a
bypass validation key to bypass the edit check. Blanks
or nulls will not satisfy the data input requirement for
any type of field. In addition, zeros will not satisfy the
data input requirement for numeric fields. The
application continues.

GENO0041 A message file prefix was not specified
for an application: EZEMNO = %1, NLS

code = %2.

Explanation: A user message was requested, but a
user message table prefix was not defined for the
application.

User Response: Have the application developer do
one of the following;:

* Add the message table prefix to the application
specifications and then generate the application
again.

¢ Change the application to not request the message.

GENO0045 Error retrieving user application
message, EZEMNO = %1, NLS code %?2.

See previous messages.

Explanation: A user message was requested. The
previous message in the job log explains the reason for
the error.

User Response: Most problems occur because the
message file or the specific message cannot be found or
access to the message file is not authorized. If the
application can not find the message file and you know
the library name that contains the message file, you can
add the library to your library list (ADDLIBLE
command). For other problems, contact your system or
application programmer.

GENO0046 Call to printer mapping services

program %1 failed.

Explanation: Printer mapping services programs are
expected to be found by searching the job’s library list.

Diagnostic messages preceding this message in the job
log explain the nature of the error.

User Response: Contact your application or system
programmer and report the sequence of messages
including and preceding this message.

GENO0050 Number of allowable significant digits

exceeded - enter again

Explanation: The user entered data into a numeric
field that was defined with decimal places, a sign,
currency symbol, or numeric separator edits. The
number of significant digits that can be displayed
within the editing criteria was exceeded by the input
data; the number entered is too large. The number of
significant digits cannot exceed the field length, minus

22 EGL Server Guide for iSeries

the number of decimal places, minus the places
required for editing characters.

User Response: Enter a number with fewer significant
digits.

GENO0051 Map %1 was not found in map group

%2.

Explanation: The specified form name is not in the
form group.

User Response: Have the application developer
generate the form group and the application again.

GENO0057 DELETE attempted without preceding

UPDATE on record %1.

Explanation: A delete statement ran for a record that
was not successfully read by an open or get statement.
The read for update might have been lost as the result
of an commit or rollback.

User Response: Have the application developer run
this application in the EGL debugger to determine the
application logic error.

GENO0073 SQL error, command = %1, SQL code =

%2

Explanation: The SQL database manager returned an
error code for an SQL statement. Application
processing ends following an SQL request whenever
the SQLCODE in the SQL communications area
(SQLCA) is not 0, and either of the following is true:

* - No error routine is specified for the process

e - The SQLCODE indicated a hard (terminating) error
and the special function word
sysVar.handleHardIOErrors was set to 0, indicating
that the application should end on SQL error
conditions.

This message is followed by the actual DB2 message
describing the SQL error code.

User Response: Have the application developer or
system programmer determine the cause of the
problem from the SQL code and the SQL error
information. Either correct the application or the
database definition. Refer to the appropriate Database
Manager messages and codes manual for information
on the SQL code and SQL error information.

GENO0074 SQL error message: %1

Explanation: This message accompanies message
GENO0073 when an SQL error occurs. It displays the
relational database manager description of the error
and is repeated as many times as necessary to display
the complete description.

User Response: Use the information from this

message and GEN0073 to correct the error.

The data on character to hexadecimal
move or compare is not valid.

GENO0076

Explanation: The current statement involves either a
move from a character data item to a hexadecimal data
item, or a comparison between a character data item
and a hexadecimal data item. The characters in the
character data item all must occur in the following set
for the move or compare to complete successfully:

abcdefABCDEF0123456789

One or more of the characters in the character data
item is not in this set. This condition causes an
application program error.

User Response: Have the application developer
change the application to make sure that the character
data item contains valid data when the character to
hexadecimal move compare operation occurs. To do so,
the application developer can use the hexadecimal map
edit characteristic to make sure that input from a
variable field contains valid characters.

GENO0080 Hexadecimal data is not valid

Explanation: The data in the variable field identified
by the cursor must be in hexadecimal format. One or
more of the characters you entered does not occur in

the following set:

abcdefABCDEF0123456789

User Response: Enter only hexadecimal characters in
the variable field. The characters are left-justified and
padded with the character zero. Embedded blanks are
not allowed.

GENO0086 %1 - No active SETINQ, SETUPD, or

UPDATE

Explanation: A get, get next, replace, or delete
statement cannot run because a required get or open
statement was not run previously in the same
application. All rows selected for scanning or updating
are released when an application returns to a calling
application.

User Response: Have the application developer
modify the application.

GENO0093 An error occurred in application %1,

process or group %?2.

Explanation: An error occurred in the specified
application. Other information about the error is given
in the messages that follow this message.

User Response: Refer to the error messages following
this message to determine the cause of the error.

GENO00%6 A mixed data operand is not valid

Explanation: An operand in a move statement
involving an item of type MBCHAR contains an invalid
mixture of double-byte and single-byte data.

User Response: Have the application developer verify
that all operands in the move statement contain valid
data.

GENO0109 FIRST MAP must be map %1, not map

%2, for application %3.

Explanation: The initial form expected by this
application is not the form identified in the message.
This error occurs when the application starts.

User Response: Record what function you were using
before the error occurred, and have the application
developer correct the arguments used to start program
%3.

GENO0111 Length of FIRST MAP %1 is not valid.

Explanation: The length of the form %1 received by
an application is not the length defined for the form in
application %2.

User Response: Have the application developer
generate both the application receiving the form and
the application that shows the form.

GENO0119 Applications %1 and %2 are not

compatible.

Explanation: An application started by a transfer or
call statement is not compatible with the initial
application in the transaction or job because the
application was generated for a different environment.

User Response: Have the application developer
regenerate one or both applications so that the target
environments for the applications are the same.

GENO0127 A requested function is not supported

for map %1, map group %2.

Explanation: An application requested an action that
is not supported for the specified form and form group.
The form group was modified after it was generated
and before the application was generated. Some aspects
of the form group when the application was generated
(for example, use of help maps or use of the msgField
property) were not in the form group when the form
group was generated.

User Response: Have the application developer
generate the form group and the application again.

Chapter 6. messages 23

GENO0137 SQL error occurred in work database

operation

Explanation: An error occurred during use of the
work database when it was implemented using SQL.
This message is accompanied by additional SQL
diagnostic messages, including GEN0073, that provide
additional information about the error.

The run unit ends. Messages are logged.

User Response: Determine the cause of the problem
from the SQL code and the SQL error information in
related message GEN0074, and correct the database
definition.

GENO0184 Application %1 and mapping services

program %2 are not compatible.

Explanation: The specified application and mapping
services program are generated for different systems.

User Response: Have the application developer
generate the mapping services program for the same
environment as the application.

GENO0185 Length of %1 for record %2 is not valid

and conversion ended.

Explanation: Conversion of a variable length record
between the workstation format and host format cannot
be performed because of one of the following
conditions:

¢ - The record is longer than the maximum length
defined for the record.

e - The record data ends in the middle of a numeric
field.

e - The record data ends in the middle of a DBCHAR
character.

e - The record data ends in the middle of a SO/SI
string.

User Response: Have the application developer
modify the application to set the record length so that
it ends on a valid field boundary.

GENO0186 A mixed string in a conversion

operation is not valid

Explanation: Conversion of a mixed field from
EBCDIC to ASCII or from ASCII to EBCDIC cannot be
performed because the double-byte data value is not
valid.

User Response: Have the application developer
modify the application to make sure that the records to
be converted contain valid data.

24 EGL Server Guide for iSeries

GENO0187 Conversion table %1 does not support

DBCS character conversion.

Explanation: Conversion of a mixed or DBCHAR field
from ASCII to EBCDIC or EBCDIC to ASCII cannot be
performed because the specified conversion table does
not include conversion tables for double-byte
characters.

User Response: Have the application developer
modify the application to specify a conversion table
that contains the double-byte conversion tables valid
for the DBCHAR or MBCHAR data being converted.

GENO0188 Conversion Error. Function: %1, Return

Code: %2, Table: %3

Explanation: A system function was called to perform
code page conversion for data used in a client/server
program. The function failed.

Possible causes for the failure are:

¢ The code pages identified in the conversion table are
not supported by the conversion functions on your
system.

* For DBCHAR conversion where the source data is in
ASCII format, the source data was created under a
different DBCHAR code page than the code page
that is currently in effect on the system.

User Response: Correct the cause of the error.

GENO0191 Application %1, generation date %2,

time %3.

Explanation: An error in application %1 has occurred.
Diagnostic messages in the job log explain the nature of
the error. Changes to individually generated
components of the application may have caused the
erTor.

User Response: Have the application developer verify
the generation date and time of the application with
that of other generated components.

GENO0192 Mapping services program %1,

generation date %2, time %3.

Explanation: An error in mapping services program
%1 has occurred. Diagnostic messages in the job log
explain the nature of the error. Changes to individually
generated components of the application may have
caused the error.

User Response: Have the application developer verify
the generation date and time of the mapping services
program with that of other generated components in
the application.

GENO0195 Map format member %1, generation

date %2, time %3.

Explanation: An error in map format member %1 has
occurred. Diagnostic messages in the job log explain
the nature of the error. Changes to individually
generated components of the application may have
caused the error.

User Response: Have the application developer verify
the generation date and time of the map format
member with that of other generated components in
the application.

GENO0210 EGL Server number %1 is not valid.

Explanation: An attempt was made to start an EGL
routine that does not exist or that is not valid.

User Response: Have the application developer
generate and compile the application again to ensure
the generated COBOL code has not been modified.
Afterward, run the refreshed application. If the problem
persists, have the system administrator do all of the
following:

* 1 - Record the service number from this message.

e 2 - Print the job log.

* 3 - Record the scenario under which this message
occurs.

* 4 - Obtain the COBOL listing and source for the
failing application.

e 5 - Use your electronic link with IBM Service (for

example, IBMLINK) if one is available, or contact the
IBM Support Center.

GENO0232 Map %1 in map group %2 is not

defined or is not supported.

Explanation: The specified form does not exist or is
not defined for the type of device being used.

User Response: Have the application developer either
define the form for your device type or select the
device for the form. Generate the form group again.

GENO0233 %1 error on file %2, EZERTS8 = %3.

Explanation: An I/O operation failed for the specified
file. This message specifies the COBOL verb performed
and the EGL file name associated with the operation.

sysVar.errorCode contains either the COBOL status key
value or EGL file return code.

User Response: Use the appropriate COBOL
publication or the EGL reference guide to diagnose the
error, and take the recommended corrective action.

GENO0260 %1 bytes of UI record won't fit in %2

byte buffer.

Explanation: The program issued a statement for
presenting a Ul record. There was not enough room in
the communications buffer for the record. The buffer
needs space for the record plus any message
information written using function sysLib.setError.

User Response: Modify the program to reduce the
size of the user interface record or write fewer or
smaller error messages.

GENO0261 EZEUIERR message information and

inserts won't fit in %1 byte buffer.

Explanation: The program issued one or more calls to
the system function sysLib.setError to write messages
associated with a UI record. The information associated
with the last message written will not fit in the buffer
used by the program for communicating with user.

User Response: Modify the program to write fewer or
smaller error messages.

GENO0262 Web transaction program and user
interface record bean %1 are

incompatible.

Explanation: An action program was started with
information from a UI record bean that isn’t known to
the program or whose definition is not compatible with
the UI record declaration with which the program was
generated.

User Response: Insure that the specified bean is
defined as the inputPageRecord for the program.
Regenerate the program and the Java Beans from the
same user interface record declaration.

GENO0263 Number of occurs value %1 is out of

range for record array at offset %2

Explanation: An action program could not write a Ul
record because the "number of elements” value set by
the program for an array was less than 0 or greater
than the maximum number of elements defined for the
array.

User Response: Correct the program logic so that it
sets the number of elements to a value within the
allowed range.

GENO0264 Input data entered by the user doesn’t

fit in user interface record.

Explanation: An action program received input data
from the Web server that doesn’t fit in the UI record.
The transaction program and the Java Bean associated
with the UI record record may have been generated at
different times with incompatible UI record
declarations.

Chapter 6. messages 25

User Response: Regenerate the program and the Java
Beans from the same definitions. Contact your IBM
representative if this doesn’t correct the problem.

GENO0265 Segmented converse is not supported

within current function stack.

Explanation: The program issued a converse
statement with sysVar.segementedMode set to 1
(segmented converse) and at least one of the functions
in the current function stack uses parameters or local
items or records. The generated program is not able to
save parameters or local storage data over a segmented
converse.

User Response: Modify the program so that the
converse statement is not used within a function that
has parameters or local data.

GENO0266 MQ function %1, Completion Code %2,

Reason Code %3.

Explanation: The MQ function did not complete
successfully, as indicated by the following completion
codes:

* 1 MQCC_WARNING
* 2 MQCC_FAILED

The reason for the completion code is set in the reason
code field by MQSeries. Some common reason codes
are:

* 2009 (Connection broken)

¢ 2042 (Object already open with conflicting options)
* 2045 (Options not valid for object type)

e 2046 (Options not valid or not consistent)

e 2058 (Queue manager name not valid or not known)
e 2059 (Queue manager not available for connection)
¢ 2085 (Unknown object name)

* 2086 (Unknown object queue manager)

* 2087 (Unknown remote queue manager)

e 2152 (Object name not valid)

e 2153 (Object queue-manager name not valid)

¢ 2161 (Queue manager quiescing)

* 2162 (Queue manager shutting down)

* 2201 (Not authorized for access)

e 2203 (Connection shutting down)

User Response: Please refer to the MQSeries

Application Programming Reference for further
information on MQSeries completion and reason codes.

GENO0267 Queue Manager Name %1.

Explanation: This is the name of the queue manager
associated with the failing MQ function call listed in
message GENO0266.

26 EGL Server Guide for iSeries

If the failing MQ function was MQOPEN, MQCLOSE,
MQGET, or MQPUT, the name identifies the name
identifies the queue manager specified with the object
name when the queue was opened. Otherwise, the
name is the name of the queue manager to which the
program is connected (or trying to connect).

If the queue manager name is blank, the queue
manager is the default queue manager for your system.

User Response: Please refer to the MQSeries
Application Programming Reference for further
information on the MQSeries completion and reason
code listed message GENO0266.

GENO0268 Queue Name %1.

Explanation: This is the name of the queue object
associated with the failing MQ function call listed in
message GEN0266.

User Response: Please refer to the MQSeries
Application Programming Reference for further
information on MQSeries completion and reason codes
reported in message GEN0266.

GEN2001 The table %1 is not valid for application

%2

Explanation: The reason code is %3. The explanations
follow:

¢ 1 - The dataTable version is not compatible with the
current level of IBM EGL Server and the running
application.

¢ 2 - The dataTable was generated for an ASCII-based
EGL runtime environment.

* 3 - The data itself is corrupted.
* 4 - The dataTable could not be opened.

User Response: Have the application developer
replace dataTable %1 with a correctly generated
version.

If the reason code indicates that the table data is
corrupted, ensure that the table was transmitted to the
host system as a binary image file.

If the reason code indicates the table was generated for
an ASClII-based host system, ensure that the table is
regenerated for the same target system as the
application attempting to use it.

If the reason code indicates the table could not be
opened see previous messages in the job log.

GEN2002 EGL Server does not support DBCS data
type.

Explanation: EGL Server does not support the
DBCHAR data type because COBOL does not support
DBCHAR.

User Response: Have the application developer

change EGL DBCHAR primitive types to MBCHAR
data types and regenerate the application.

Character conversion from CCSID %1 to
%2 is not supported

GEN2004

Explanation: Character conversion is not supported
between the two Coded Character Set IDs (CCSID) %1
and %?2.

User Response: Have the application developer verify
that the specified Coded Character Sets IDs (CCSID)
are valid and that conversion between the two CCSIDS
is supported. The EGL application may have to be
regenerated.

GEN2005 Error %1 occurred when converting

record %?2.

Explanation: sysLib.convert encountered error code
%1 during the call.

User Response: Have the application developer verify
that the application logics record %2 with data that
matches its definition. The EGL application then needs
to be regenerated.

GEN2006 The map group %1 is not valid for

application %2.
Explanation: The reason code is %3. The explanations
follow:
¢ 1-Reserved.
¢ 2 - Reserved.
* 3 - The form group data is corrupted.
* 4 - The form group could not be opened.
User Response: Have the application developer

replace form group %1 with a correctly generated
version.

If the reason code indicates that the form group data is
corrupted, ensure that the form group was transmitted
to the host system as a binary image file.

If the reason code indicates the form group could not
be opened see previous messages in the job log.

GEN2007 Press Enter to continue.
Explanation:

User Response:

GEN7025 Error encountered allocating memory.

Explanation: An error was encountered while
allocating memory. The system has run out of memory.

User Response: Make sure that you have enough
memory on your system as specified in the
Software/hardware requirements for the product. Stop

the execution of some of your other applications on
your system.
Do as follows:

1. Record the message number and the message text.
(The error message includes the information on
where the error occurred and the type of internal
error.)

2. Record the situation in which this message occurs.

3. Contact your IBM representative.

GEN7030 The format of the data descriptor is
incorrect. The hex value of the data

descriptor in error is %1.

Explanation: The format of the data descriptor is
incorrect. A header descriptor is found within the data
descriptor.

User Response: Do as follows:

1. Record the message number and the message text.
(The error message includes the information on
where the error occurred and the type of internal
error.)

2. Record the situation in which this message occurs.
3. Contact your IBM representative.

GEN7035 The format of the data descriptor is

incorrect.

Explanation: The format of the data descriptor is
incorrect. An End Of Description descriptor is not
found.

User Response: Do as follows:

1. Record the message number and the message text.
(The error message includes the information on
where the error occurred and the type of internal
error.)

2. Record the situation in which this message occurs.

3. Contact your IBM representative.

GEN7040 The format of the data descriptor is
incorrect. An unknown data code %1

was found.

Explanation: The format of the data descriptor is
incorrect. An unknown data code was found in the
data description.

User Response: Do as follows:

1. Record the message number and the message text.
(The error message includes the information on
where the error occurred and the type of internal
error.)

2. Record the situation in which this message occurs.

3. Contact your IBM representative.

Chapter 6. messages 27

GEN7055 The Conversion Descriptor structure is

not valid.

Explanation: The Conversion Descriptor structure
CMCVOD required by the conversion routine is
incorrect.

User Response: Do as follows:

1. Record the message number and the message text.
(The error message includes the information on
where the error occurred and the type of internal
error.)

2. Record the situation in which this message occurs.

3. Contact your IBM representative.

GEN?7065 The data descriptor for parameter %1 is

not valid.

Explanation: The data descriptor for the parameter is
not valid.
User Response: Do as follows:

1. Record the message number and the message text.
(The error message includes the information on
where the error occurred and the type of internal
error.)

2. Record the situation in which this message occurs.

3. Contact your IBM representative.

GEN9003 EGL Server encountered a critical

internal processing error.

Explanation: A critical internal processing error was
detected. This may include such things as corrupted
run unit control blocks, an unexpected return code
from an internal function, or illogical code path entry.

Diagnostic messages preceding this message in the job
log explain the nature of the error. In most cases, the
application or system programmer will need to adjust
your application system to correct the problem.

User Response: Either print the job log or record the
messages along with the following;:

e - The from program name.
¢ - The to program name.

e - The instruction numbers.

You can view or print the job log with the DSPJOBLOG
command. If no diagnostic messages precede this
message, ensure that your job logged all messages by
checking the ‘Message Logging” or LOG value of your
job definition or job description, depending on whether
the job is interactive or batch. For interactive jobs,
command DSPJOB OPTION(*DENA) will display the
"Message Logging’ value.

Contact your application or system programmer with
the information you gathered.

28 EGL Server Guide for iSeries

GEN9004 EGL Server COBOL error handler was

invoked to end the run unit.

Explanation: A function check has caused the run unit
to end. A database rollback has been issued and heap
storage released.

Diagnostic messages preceding this message in the job
log explain the nature of the error. In most cases, the
application or system programmer will need to adjust
your application system to correct the problem.

User Response: Either print the job log or record the
messages along with the following;:

¢ - The from program name.
* - The to program name.

* - The instruction numbers.

You can view or print the job log with the DSPJOBLOG
command. If no diagnostic messages precede this
message, ensure that your job logged all messages by
checking the ‘Message Logging’ or LOG value of your
job definition or job description, depending on whether
the job is interactive or batch. For interactive jobs,
command DSPJOB OPTION(*DENA) will display the
"Message Logging’ value.

Contact your application or system programmer with
the information you gathered.

Chapter 7. Notices

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1989, 1998, 2000, 2004 29

30

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

EGL Server Guide for iSeries

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 2000, 2004. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

* DB2

* IBM

e iSeries

* 0S/400

e SystemView

* VisualAge

* WebSphere

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product or service names, may be trademarks or service marks of
others

Chapter 7. Notices 31

32 EGL Server Guide for iSeries

Program Number: 5724-D46

Printed in USA

	Contents
	Chapter 1. Installing and configuring EGL Server for iSeries
	Installing EGL Server for iSeries
	Objects created or replaced during installation
	iSeries library and file setup
	iSeries preparation script file FDAPREP
	Customizing EGL
	General considerations for EGL Server for iSeries
	Using data description specifications generated by EGL
	Modifying the generated DDS information
	Restrictions on logical files
	Changing DDS member types

	Application run-time considerations
	Starting and ending commitment control cycles

	Chapter 2. Reviewing and preparing the generated output
	Outputs of generation
	Objects generated for programs
	Application ILE COBOL program
	Run-time CL
	Data definition specification (DDS)

	Objects generated for data tables
	DataTable binary image file
	Message definitions

	Objects generated for form groups
	Form group format module

	Understanding preparation
	Starting the iSeries Remote Build Server
	Launching the build plan manually
	Preparing a DB2 application

	Chapter 3. Running a generated application in iSeries
	Making EGL Server for iSeries, COBOL, and generated modules available
	Establishing a library list for a job

	Running EGL applications under iSeries
	EGL run unit concept
	Using activation groups with run units

	Chapter 4. Moving prepared applications to other iSeries systems
	Moving prepared applications to another iSeries system
	Moving workstation code that is part of a EGL application to an iSeries system
	Maintaining backup copies of production libraries

	Chapter 5. Diagnosing problems during run time
	iSeries First Failure Data Capture component

	Chapter 6. messages
	Escape messages
	Diagnostic and informational messages

	Chapter 7. Notices
	Programming interface information
	Trademarks and service marks

