WebSphere Studio

VisualAge Generator to Enterprise
Generation Language Migration Guide

Version 5.1.2

<|ll

SC31-6788-00

WebSphere Studio

VisualAge Generator to Enterprise
Generation Language Migration Guide

Version 5.1.2

<|ll

SC31-6788-00

Note

Before using this document, read the general information under [‘Notices” on page 307]

May 2004

This edition applies to the following licensed programs:

* WebSphere Studio Enterprise Developer

IBM welcomes your comments. You can send your comments by mail to the following address:

IBM Corporation, Attn: Information Development, Department 53NA Building 501, P.O. Box 12195, Research
Triangle Park, NC 27709-2195.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Preface

Note: This document is intended for those who want to migrate from VisualAge
Generator 4.5 to the Enterprise Generation Language (EGL).

Who should read this book

This book is intended for programmers or system administrators who want to
migrate code from VisualAge Generator 4.5 to the Enterprise Generation Language
(EGL).

Related information

Related documents are provided in one or more of the following formats:

* Online book files (.pdf) on the product CD-ROM. Adobe Acrobat Reader is used
to view the manuals online and to print desired pages.

e HTML files (.htm) on the product CD-ROM.

* An online book file (.pdf) of this book is also available on the following web
site:

http://www.ibm.com/developerworks/websphere/studio/egldocs.html

© Copyright IBM Corp. 2004 iii

iV WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Contents

Preface. . . . e [
Who should read this book R 411
Related information. iii

Part 1. Migration overview. 1

Chapter 1. Migration Overview .

What is new in EGL that requires migration?

Planning your migration

Determining whether you can mlgrate to EGL
VisualAge Generator features not available in EGL

Terminology differences

N~ w W

Chapter 2. Migration Tool Philosophy 13
Overview of the VisualAge Generator to EGL

Migration Tools e
Migration tool termmology B
Stage 1 Details15
Stage 2 Details18
Stage 3 Details T

Overview of Single File Mlgratlon20

Migration challenges22
Precise EGL Syntax. . . oo 22
When and how part names are resolved .. .23
Common code scenarios24

Techniques used by the VisualAge Generator to EGL

Migration Tool oL 27

Known restrictions for the mlgratlon tools B |
General. . . B N |
Stage 1 on Java and Smalltalk B § |
Stages 2 and 3 on WebSphere Studio41
Syntax migration42

Chapter 3. Handling ambiguous

situations43
Handling ambiguous situations for data items. . .43
Pack data items with evenlength43
Shared edits and messages 44
Map item edit routine for shared data 1terns . .45
Fill characters for shared data items 46
Handling ambiguous situations for records. . . . 47
Redefined records47
Level 77 items inrecords.48
Alternate specification records49
Different definitions with the same record name 50
Handling ambiguous situations for tables51
Reserved words and table names51
Handling ambiguous situations for map groups and
maps51
Reserved words and formGroup names51
Map group and formGroup requirements . . . 52
Floating areas and starting positions53
Map groups, maps, and device sizes53
Map names and help map names54

© Copyright IBM Corp. 2004

Numeric variable fields .o . 56
Variable map fields and edit routines . . 57
Map fields and the numeric hardware attrlbute 58
Map arrays and attributes . 59
Unnamed variable fields . . 59
Unprotected map constants . . 60
Fields at row=0, column=0 .. . 60
Handling ambiguous situations for programs . . 62
Program names and reserved words . . 62
Implicit data items in programs . 62
Associated program parts . .63
Intermediate variables required for rmgratlon . .65
Handling ambiguous situations for functions,
including I/0O statements. . . 66
DISPLAY statement for maps . 66
I/0 error routine .o . 67
SQL I/0O statements . 69
SQL I/0 and missing requlred SQL Clauses .70
SQL I/0O and !itemColumnName . . .72
SQL I/0 with multiple updates . .73
Handling ambiguous situations for other statements 73
Implicit data items in statements .73
Level 77 items in statements. .74
Assignment statements .74
FIND statement . .75
RETR statement . . .75
SET map PAGE statement . 76
SET mapltem attributes .77
Checking for IN literal or scalar .78
Checking SQL and map items for NULL 78
1/0 error values UNQ and DUP .79
I/0 error value LOK . .81
XFER . . 82
Handling ambiguous 51tuat10ns for EZE words . 83
EZESYS . 83
EZEWAIT . . 85
Part 2. Migrating from VisualAge
Generator 4.5 on Java to EGL . . . 87
Chapter 4. Stage 1 — Extracting from
Java. . 89
Installing the Stage 1 mlgratlon tool on VlsualAge
for Java. . . 89
Adding the mlgratlon feature . 89
Setting Stage 1 preferences .90
Build Plans page .91
Mapping page . 93
Renaming page . . %4
Execution page . . . 95
Sample MigPreferences. xml f1le .97
Before you run the Stage 1 tool — hints and tlps .99
Improving performance .99
Saving your workspace . . 100
A\

Running the Stage 1 tool 100

Migration plans and high-level PLP pro]ects ..o 10
Creating a high-level PLP project. 102
Creating a migration plan file manually . . . 103

Part 3. Migrating from VisualAge
Generator 4.5 on Smalltalk to EGL. 105

Chapter 5. Stage 1 — Extracting from

Smalltalk S 174
Installing the Stage 1 rmgratlon tool on VlsualAge
Smalltalk e (04
Loading the mlgratlon feature B (14
Creating the migration database 108
Setting Stage 1 preferences 108
Build Plans page109
Mapping page110
Renaming page.112
Execution page13
Sample MigPreferences. xml flle P 1
Deriving file names from your preferences . . 116
Before you run the Stage 1 tool — hints and tips 116
Improving performance 116
Saving your image . . I i V4
Running the Stage 1 mrgratron tool 117
Migration plans and high-level configuration maps 119
Creating a high-level configuration map . . . 120
Creating a migration plan file manually . . . 121

Part 4. Stages 2 and 3— common
to Java and Smalltalk migration. . 125

Chapter 6. Stage 2—Conversion to

EGL syntax e ... 2127
Setting your workbench preferences oo o127
Start up parameters127
Required EGL preferences127
Recommended preferenceso 128
VAGen Migration Syntax Preferences ... 128
Other recommended settings 129
Setting up the Stage 2 VAGen mlgratlon f11e .. . 130
Running Stage2 134
Running Stage 2 from the user mterface ... 134
Running Stage 2 in batch mode 135

Chapter 7. Stage3—|mport 139

Running the Stage 3 tool 139
Running Stage 3 in batch mode 142
Using the migration sets written to temporary

directories142

Chapter 8. Running migration in

single filemode 143
Running single file migration using the user

interface 143
Running single f11e mlgratlon usmg batch mode 144

Part 5. Completing the migration 147

Chapter 9. Completing your migration 149
Saving a baseline for EGL projects and packages 149
Preliminary steps for completing single file

migration. . . . 149

Common steps for both Stage 1 — 3 and smgle ﬁle

migration. . . .o . . 150
Reviewing your EGL source code ... 0150
Reviewing your EGL build descriptor parts . . 150
Reviewing your EGL linkage option parts. . . 155
Reviewing your EGL resource association parts 156
Preparing for debugging . . . 156
Generating and testing with COBOL generatlon 156
Generating and testing with Java generation . . 157

Part 6. Language and runtime
differences. 159

Chapter 10. Language and runtime
differences 161

Language differences.16l

Runtime differences16l
General differences16l
Differences in debug 162
Differences in generated COBOL163
Differences in generated Java 163
Differences between distributed CICS and native
workstation environments 164
Differences between generated C++ and
generated Java166

Part 7. Appendixes 169

Appendix A. Reserved words 171

EGL reserved words171
SQL reserved words N V4 |
SQL reserved words requiring spec1al treatment 172
Java reserved words173

Appendix B. Relationship of
VisualAge Generator and EGL
Language Elements 175

General syntax conventions176
Dataitems176
Records18
Tables.18
Map groups.191
Maps19
Programs.208
Functions.212
Statements224
EZE words . . . L. 237
Program flow EZE words o237
SQL EZE words L1238
Date and time EZE words L. 0239
Other data EZEwords240
General function EZE words242

Vi WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

String EZE words .
Math EZE words .
User interface EZE words
EZE Java words
Object scripting EZE words
DL/I EZE words .
Service Routines
PSBs
Control parts .
Generation options part
Linkage table parts
Resource association part
Link edit part
Bind control part .
Symbolic parameters .

Appendix C. Messages from the
migration tools. .
Messages from the VisualAge Generator to EGL
migration tool—Stage 1 . .

Stage 1 common messages .

Stage 1 on VisualAge for Java .

Stage 1 on VisualAge Smalltalk

Messages from the VisualAge Generator to EGL

migration tool— Stage 2.

Messages from the EGL into WebSphere Studlo

migration tool—Stage 3 .

. 243
. 243
. 245
. 245
. 245
. 245
. 246
. 247
. 247
. 248
. 261
. 267
. 271
. 271
. 272

. 275
. 275
. 275
. 278
. 279
. 279

. 294

Appendix D. Messages on Tasks list
or from the preprocessor .

Appendix E. IWN.xxx messages on
the Tasks list

Appendix F. Situations where
incorrect External Source Format
causes problems in creation of EGL

Appendix G. Migration Database .
Creating the DB2 migration database
Setting the JDBC level for DB2 7.2

Setting the JDBC level for DB2 8.1 or h1gher .

Using DB2 on Windows XP

Creating the migration database .
Resetting the migration database .
Useful Queries .

Notices .
Trademarks .

Index .

Contents

. 295

. 299

. 301

. 303
. 303
. 303
. 303
. 303
. 303
. 304
. 305

. 307
. 309

. 311

vii

viii WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Part 1. Migration overview

© Copyright IBM Corp. 2004

2 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Chapter 1. Migration Overview

WebSphere Studio with the Enterprise Generation Language (EGL) component is
the successor product for VisualAge Generator. Migration of your VisualAge
Generator (VAGen) source code is required to convert to EGL. This migration
guide provides information about planning your migration, using the migration
tools to convert your source code, and additional steps needed to complete your
migration after running the migration tools.

In addition to this Migration Guide, you should check the following for additional
or more current information:

* The WebSphere Studio online help system.
* The EGL Reference Guide.

¢ The web site and news group for VisualAge Generator. The web site is at:
http:/ /www-306.ibm.com/software /awdtools/visgen/

¢ The web site and news group for the WebSphere Studio product that you are
using.

What is new in EGL that requires migration?

WebSphere Studio and EGL represent major changes and enhancements from
VisualAge Generator, including the following;:

¢ Changes to the VAGen language, including many enhancements such as new
data types, multidimensional arrays, dynamic arrays, the case statement, and
improved web support.

¢ Changes to the user interface you use to develop your programs, including
content assist, code templates to create a part, and a text editor for most part

types.

* Changes to the generation and preparation process, including only Java
generation rather than C++ and Java generation for distributed platforms and
the use of a build server instead of preparation JCL templates for COBOL
generation.

* Changes to runtime, including the use of Enterprise Developer Server for
runtime services.

* Changes to library management, including your ability to choose your own
source code repository to interface with WebSphere Studio.

The differences between the VAGen language and EGL are extensive. In the past
when you upgraded from one version of Cross System Product or VisualAge
Generator to a new version, there were only minor changes to the language. The
previous migration tools were able to migrate each part independently of any
other parts. However, due to the differences between the two languages, the
VisualAge Generator to EGL migration tool must migrate each part in the context
of other referenced or associated parts to determine the following:

* The part type of the referenced part
* Information that must move to the referencing part due to the new EGL syntax
* The location of the referenced part within the WebSphere Studio workspace

Cross-part migration is the term used to describe this situation in which the
migration of one part depends on other parts. Cross-part migration is required to

© Copyright IBM Corp. 2004 3

produce the best possible conversion from the VAGen language to EGL. This in
turn means that you need to carefully consider which groups of parts you migrate
together.

Given the differences between VisualAge Generator and WebSphere Studio and the
need for cross-part migration, this migration is a major undertaking and needs to
be carefully planned.

Planning your migration

You need to consider the following tasks when planning your migration project:
* Plan a pilot project for migration:
— Select the developers and systems support personnel that will be involved in
the pilot project.
— Select a small subset of your source code to use in the pilot project. Use this

small subset to verify your environmental setup and your library
management procedures and tools.

— Review the capabilities of the WebSphere Studio product that you plan to use.
Be sure that it includes the features that you require. For example:
- If you plan to generate COBOL for the zOS environment, you must use the
WebSphere Studio Enterprise Developer product.
- If you plan to use iSeries, you must use the WebSphere Developer Studio
Client for iSeries Advanced Edition.

— Review the prerequisites for the WebSphere Studio product that you plan to
use. In addition, review the prerequisites for your runtime environment. For
example:

- If you plan to generate COBOL for the zOS environment, be sure to review
the prerequisites for the Enteprise Developer Server for zOS product.

- If you plan to generate Java for the Unix System Services(USS)
environment, be sure to review the prerequisites for the Enterprise
Developer Options for zOS components shipped with WebSphere Studio
Enterprise Developer.

- If you plan to generate for iSeries, be sure to review the prerequisites for
the runtime component of the WebSphere Developer Studio Client for
iSeries Advanced Edition

- If you plan to generate Java for a workstation environment, be sure to
review the prerequisites for the runtime component of the WebSphere
Studio product that you plan to use.

* Obtain education for the team that will run the pilot project:
— WebSphere Studio development environment
- EGL language
— VisualAge Generator to EGL migration tools
* Run the pilot project plan to do the following:
— Install WebSphere Studio for the pilot team.

— Run the VAGen Migration Tool for the pilot set of code. See the following
sections for information on the migration tool:

- Chapter 2. Chapter 2, “Migration Tool Philosophy,” on page 13|
- Part 2. [Part 2, “Migrating from VisualAge Generator 4.5 on Java to EGL,’]

|9n page 8Z|

- Part 3.|Part 3, “Migrating from VisualAge Generator 4.5 on Smalltalk to]
[EGL,” on page 105

4 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

- Part 4. |Part 4, “Stages 2 and 3— common to Java and Smalltalk migration,”|

|9n page 125|

- Part 5. |Part 5, “Completing the migration,” on page 147

Create library management processes:

- Select and install a source code repository, including access from the
developer workstations.

- Define change management procedures that work with your corporate
culture and your selected source code repository.

- Develop any tools you need for your change management procedures,
including the following:

¢ Checkin and checkout procedures.
* Version control procedures.

* Tools to retrieve source code from the source code repository and to load
a WebSphere Studio workspace or directory structure if you want to use
batch generation.

zOS COBOL target environments:

- Install prerequisites for the Enterprise Developer Server for zOS V5.0
product, including any changes to your COBOL compiler and runtime.

- Install the Enterprise Developer Server for zOS V5.0 product.

- Install any required PTFs to Enterprise Developer Server for zOS.

- Install the build server. Also customize the pseudo-JCL build scripts.
Java target environments:

- Review the runtime platform differences if you are changing platforms (for
example, from Windows CICS to Windows native). Make any code changes
that result. See [“Differences between distributed CICS and native|
[workstation environments” on page 164|for a list of the differences.

- Obtain JDBC support from your vendor if you are currently using ODBC
support.

Generate and prepare your programs:

- Review and modify your build descriptor parts. See|“Reviewing your EGLJ
[puild descriptor parts” on page 150 for a list of changes that cannot be
handled by the VAGen Migration Tool.

- Optionally, build an EGL batch generation server machine. This requires
the use of a source code repository and the creation of tools to load a
directory with all the parts you need for generation.

Testing:

- Test your development environment to make sure that you can successfully
debug programs. Debugging in the development environment might
require access to DB2, remote VSAM files, and non-EGL programs that only
run in your runtime environment.

- Test at least a representative sample of your programs to ensure you
understand any runtime differences. See[“Runtime differences” on page 161|
for a list of differences.

- Test your library management procedures and tools using typical changes
that you might make to the EGL source code. Be sure to test your
procedures for changing common code, forms, tables, and programs for
each target environment. Also test your procedures for adding common
code, forms, tables, and programs for each target environment.

Refine your library management procedures and tools based on the results of
the pilot project.

Chapter 1. Migration Overview 5

— Document the findings of the pilot project, including:

- Code changes that need to be made, particularly if you are changing target
environments.

- Changes developers need to make to any personal build descriptor parts.

- References to sections of the Migration Guide that are particularly useful
for your developers based on the problems you encountered during the
pilot project.

- Changes in runtime behavior that your end users will notice.

* Build a plan to complete your migration based on the findings from the pilot
project.
* Provide education for the remaining developers:
— WebSphere Studio development environment
- EGL language
— Your new source code repository
— Your new library management process

- Your new generation process

Determining whether you can migrate to EGL

EGL is the strategic component in WebSphere Studio to which VisualAge
Generator customers should migrate. EGL support is not meant to be a complete
replacement for ALL functions and platforms supported by VisualAge Generator
Developer 4.5 (VAGen). Depending on your target environment and the types of
programs you have developed with VisualAge Generator, you might need to wait
for a future release of EGL.

The following list shows VisualAge Generator target environments supported in
the current release of EGL.

* MVS CICS

* MVS Batch

* Unix System Services

* Windows Native

* AIX Native

* Linux on Intel platforms

e iSeries

Note: While VisualAge Generator generates Java and C++ for certain platforms,
EGL only generates Java.

For additional considerations in these supported environments, see the following:

* Special considerations for migrating to EGL — File and data base access,
on page d

* Special considerations for migrating to EGL — User interface, [Table 2 on page 7]

“VisualAge Generator features not available in EGL” on page 7|

The following tables list special considerations for supported environments.

Table 1. Special considerations for migrating to EGL — File and data base access

VAGen file and database access | Special consideration

SQL Supported in EGL.

6 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 1. Special considerations for migrating to EGL — File and data base

access (continued)

VAGen file and database access

Special consideration

Serial, indexed, and relative
records

Supported in EGL.

Message queue records

Supported in EGL.

DL/I Not supported in EGL. You must wait until a future
release to migrate.
GSAM Not supported in EGL. You must wait until a future

release to migrate.

IMS Message Queues

Not supported in EGL. You must wait until a future
release to migrate.

Btrieve

Not supported in EGL

Local VSAM

Supported for COBOL generation and for Java
generation for AIX. Not supported for debug or for Java
generation for other environments.

Table 2. Special considerations for migrating to EGL — User interface

VAGen user interface

Special considerations

Text user interface, including print

Supported in EGL for both COBOL generation
and Java generation.

records

Web transactions and User Interface (UI)

Not supported in EGL. You must wait until a
future release to migrate.

Java wrappers

JSP and Java servlets which use VAGen .

You can migrate your JSP and Java servlets
to WebSphere Studio using the information
provided by WebSphere Studio.

* You can migrate your VAGen server
programs to EGL using this VAGen
migration guide. You can generate the Java
wrappers using EGL.

wrappers.

Java GUI applications or applets that do |,
not use VAGen parts on the free form
surface, but which use VAGen Java

You can migrate your Java applications or
applets to WebSphere Studio using the
information provided by WebSphere Studio
for migrating Java code from VisualAge for
Java.

* You can migrate your VAGen server
programs to EGL using this VAGen
migration guide. You can generate the Java
wrappers using EGL.

Java GUI applications or applets that use
VAGen parts on the free form surface.

Not supported in the current release.

Smalltalk GUI views or visual parts.

Not supported in the current release. The
views with VAGen parts must be migrated to
Java-based solutions. EGL will not have any
Smalltalk-based solutions.

VisualAge Generator features not available in EGL

In addition to the special considerations listed in Tables 1 and 2, if you need any of
the features in the following list, you should assess the impact of migrating now

versus migrating in the future:

Chapter 1. Migration Overview

7

* Specialized editors and lists, including the following;:

- Graphical editor for developing or maintaining maps. EGL provides a text

editor.

— Structure diagram for a program.

— Associates list for a program or for any part.

- Filtering parts by part type or by subtype. EGL provides a search capability
so you might be able to search on a specific part type or subtype.

— Listing of the program produced during generation.

* EBCDIC mode to facilitate testing when accessing host databases, files, or called

programs.

* VisualAge Generator Templates.

* If you plan to use Java generation, also determine if you do any of the

following:

— Substitute your own message text for the EGL runtime messages.

— Use CICS specific functions that cannot be converted to native runtime
environments. See [“Differences between distributed CICS and native]|

[workstation environments” on page 164 for details of the differences.

Terminology differences

VisualAge Generator Developer on Java (VAGen on Java), VisualAge Generator
Developer on Smalltalk (VAGen on Smalltalk), and the EGL support in WebSphere
Studio all use different terminology. To help you relate the VAGen terminology to
the EGL terminology, the following six tables show the three sets of terminology.

Table 3. Code organization terminology differences

VisualAge Generator on
Java

VisualAge Generator on
Smalltalk

Enterprise Generation
Language (EGL)

Workspace Image Workspace
Project Configuration map EGL Project
Package Application EGL source folder and EGL

Package containing one or
more EGL files

(no comparable concept)

(no comparable concept)

File (generally a Java package
or a Smalltalk application will
split into multiple files). An

EGL file contains one or more
EGL parts of one or more part

types.

Class or Type Class EGL part type
Method or Member Method (no comparable concept)
VAGen part VAGen part EGL part within a file

Table 4. VAGen parts and concepts terminology differences

VisualAge Generator on
Java

VisualAge Generator on
Smalltalk

EGL

Shared data item

Shared data item

TypeDef to a Dataltem part

Non-shared data item

Non-shared data item

primitive item definition

Data item part

Data item part

Dataltem part

8 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 4. VAGen parts and concepts terminology differences (continued)

VisualAge Generator on
Java

VisualAge Generator on
Smalltalk

EGL

Map group part

Map group part

FormGroup part

Map part:
* display map

* printer map

Map part:
* display map

° printer map

Form part:
* textForm

* printForm

I/0 option and 1/O object

1/0 option and I/0O object

EGL I/0O statement

Java application or applet
(GUI)

Smalltalk view or visual part
(GUI)

* Smalltalk view and visual
parts are not supported.

* Java applications and
applets are supported if you
did not use VAGen parts on
the free form surface. If you
did use VAGen parts on the
free form surface, then the
Java application or applet is
not supported in the current
release.

Generation options part

Generation options part

Build descriptor part

Generation option

Generation option

Build descriptor option

Linkage table part

Linkage table part

Linkage options part

Table 5. VAGen with IDE Windows terminology differences

VisualAge Generator on | VisualAge Generator on EGL
Java Smalltalk
Log System Transcript Console

* Shows error messages

* Product closes only if
you close BOTH the Log
and the Workbench

* Workspace is ALWAYS
saved when you close
the product

¢ Shows error messages

* Product closes if you close
EITHER the System
Transcript or the VisualAge
Organizer

Image is OPTIONALLY
saved when you close the
product

* Shows messages.
Tasks list

* Shows messages, especially
those related to syntax
validation.

* Workspace is ALWAYS
saved when you close the
product.

Workbench

* Shows the projects and
packages in the

VisualAge Organizer

¢ Shows the applications in
the image.

EGL perspectives:

* Project Navigator view
shows the projects, source

workspace. folders, packages and files
in the workspace.
Scrapbook Workspace No comparable concept in

EGL.

Repository Explorer

Application Editions Browser

No comparable concept in
EGL. The repository you
decide to use might have a
comparable concept.

Chapter 1. Migration Overview 9

Table 5. VAGen with IDE Windows terminology differences (continued)

VisualAge Generator on
Java

VisualAge Generator on
Smalltalk

EGL

VAGen Parts Browser

* 3 panes show package,
part type, and VAGen
parts

* Filtering is included in
the browser

VAGen Parts Browser

* 3 panes show application,
part type, and VAGen parts

¢ Filtering is included in the
browser

EGL Perspectives:

Project Navigator view
shows the projects, source
folders, packages and files
in the workspace.

* Qutline view shows the
parts within a file.

VAGen options

VAGen preferences

EGL preferences

VAJava options

VASmalltalk preferences

Other WebSphere Studio
preferences

Table 6. VAGen Workspace management terminology differences

VisualAge Generator on
Java

VisualAge Generator on
Smalltalk

EGL

Repository

Library

None. CVS and Clear Case
LT are provided depending
on the WebSphere Studio
product that you use. You can
choose your own repository
management system.

Add / Delete

Load / Unload

If you decide to use a
repository, the repository
might have a comparable
concept.

Replace with

Load another edition

Replace with local history
Note: The repository you
decide to use might have
additional facilities.

Compare with

Browse changes

Compare with local history
Note: The repository you
decide to use might have
additional facilities.

Table 7. VAGen Repository management terminology differences

VisualAge Generator on
Java

VisualAge Generator on
Smalltalk

EGL

Administrator

Library Supervisor

If you decide to use a
repository, the repository
might have a comparable
concept.

Repository management:
* Purge / Restore
* Compact

Library management:
* Purge / Salvage
* Clone

If you decide to use a
repository, the repository
might have a comparable

concept.

10 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 8. VAGen source code management terminology differences

VisualAge Generator on
Java

VisualAge Generator on
Smalltalk

EGL

Ownership:
* Project owner
* Package owner

¢ (Class owner

Ownership:
* Configuration map manager
* Application manager

* (Class owner

If you decide to use a
repository, the repository
might have a comparable
concept.

Version and release

Version and release

If you decide to use a
repository, the repository
might have a comparable
concept.

Project:

1. A project is required

2. VAGen Project List
Part

3. The package owner
can always release the
package to the project.

Configuration map:

1. Usage is optional

2. Required map

3. Optionally, you can
delegate the release of
applications or restrict their

release to the configuration
map manager.

Project:

1. A project is required.

2. No comparable concept,
unless provided by the
repository.

3. No comparable concept,

unless provided by the
repository.

Package:

1. No comparable

Application:

1. Prerequisite application

Folder or Package:

* If you decide to use a

concept 2. Subapplications repository, the repository
2. No comparable 3. Privileges might have a comparable
concept concept.
4. Group members
3. No comparable .
5. You must version the
concept .
application before you
4. Group members version the configuration
5. Versioning the project map
automatically versions
the included packages.
Class or Type: Class: EGL part type:

* Versioning the package
or project automatically
versions the included
classes

* You must version and
release the class before you
version the application

* No comparable concept in
EGL.

Chapter 1. Migration Overview

11

Table 8. VAGen source code management terminology differences (continued)

VisualAge Generator on | VisualAge Generator on EGL
Java Smalltalk
VAGen parts: VAGen parts: EGL parts:

¢ There is a date and time
stamp for each part

* Packages containing
duplicate part names
CAN be added to the
workspace.

e There is a duplicate
parts tool to locate the
duplicate parts

There is a date and time
stamp for each part
Applications containing
duplicate part names
CANNOT be loaded into the
image.

* Parts are in EGL files; only
the EGL file has a date and
time stamp.

* You can have duplicate
parts in the workspace.
EGL uses a combination of
a project’s EGL build path,
the file’s import statements,
and the
containerContextDependent
property to determine the
name space that is searched
to resolve references to part
names. Part names must be
unique within the name
space. The EGL build path
for a project limits which
additional projects are
considered when looking
for a part name. The import
statement for a file limits
which additional packages
and/or parts within the
EGL build path are
considered when looking
for a part name. The
containerContextDependent
property for a record or a
function specifies that EGL
should use the EGL build
path and import statements
for the file containing the
program rather than from
the file containing the
record or function.

12 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Chapter 2. Migration Tool Philosophy

The VisualAge Generator to EGL migration tool is actually a series of tools. This
chapter provides a high-level overview of the tools and describes the techniques
used by the tools.

The design of the VisualAge Generator to EGL migration tools has several major
objectives:

Preserve the program behavior from VisualAge Generator to EGL.

Preserve the Java project and package structure from VisualAge Generator to
EGL when appropriate.

Preserve the Smalltalk configuration map and application structure from
VisualAge Generator to EGL when appropriate.

Enable you to perform incremental migration of subsystems, one subsystem at a
time.

Enable you to migrate multiple versions of your subsystems.

The design of the VisualAge Generator to EGL migration tools also has several
secondary objectives:

Use batch mode processing as much as possible with opportunities for you to
optionally review the planned migration at critical points before proceeding to
the next step.

Store information about the planned migration in a database so that it can be
preserved across multiple project versions and multiple subsystems. This also
enables you to save intermediate results as backup. This is important if you have
large numbers of parts in your repository.

Provide a set of sample programs for the tool that extracts the VAGen source
from your repository and loads the migration database. You can optionally tailor
the sample programs to more accurately reflect your environment.

The design of the VisualAge Generator to EGL migration tools is based on the
following assumptions:

Migration is from VisualAge Generator 4.5 using External Source Format that is
produced by VisualAge Generator 4.5.

The parts to be migrated are valid VisualAge Generator parts. Programs, tables,
and map groups can be validated and/or generated in VisualAge Generator 4.5.

There are two methods for using the VisualAge Generator to EGL migration tools:

© Copyright IBM Corp. 2004

Stage 1 to 3 migration, which is described in [“Overview of the VisualAge|

[Generator to EGL Migration Tools” on page 14 This is the primary technique for

migrating your source code.

Single File Migration, which is described in [“Overview of Single File Migration”]
This technique is useful for migrating a few programs to verify that

your environment is working properly.

13

Overview of the VisualAge Generator to EGL Migration Tools

To achieve the objectives listed, the VisualAge Generator to EGL migration tool is
actually a series of tools that are organized into three stages as shown in the
following figure.

Stage 1 _I._ |
(shipped as working sample) 4 Stage 2
convert Convert to EGL
Extract Configuration Information and 5
External Source Format
DB2 Stage 3
B i Database Build EGL files
ENVY populate i WebSphere
. . Studio
retrieve
\ = - = -
Iterate and report User
| Action
VisualAge Generator WebSphere Studio R . -
on Java or Smalltalk Plug-in epository 3

- -

* The tool for Stage 1 runs in the VAGen environment. The Stage 1 tool extracts
information about the organization of your source code and the source code
itself from your Java repository or Smalltalk library. The Stage 1 tool loads this
information into a migration database. The VAGen source code is stored in
External Source Format.

* The tool for Stage 2 runs in the WebSphere Studio environment. The Stage 2 tool
uses the information that is stored in the migration database to create EGL
syntax for the VAGen parts that were stored in the migration database during
Stage 1. The Stage 2 tool stores the resulting EGL source code in the migration
database.

* The tool for Stage 3 also runs in the WebSphere Studio environment. For each
EGL project you want to create, the Stage 3 tool extracts the EGL source for the
parts that belong to that project and creates an EGL project in the file system for
you. Optionally, if you are only working with one version of a set of projects,
the Stage 3 tool can import the projects into your WebSphere Studio workspace.

After you have the projects in your workspace, you can then version the projects
with whatever source code repository you have decided to use. You use the tools
provided by the source code repository to manage your source code.

Migration tool terminology

To achieve a good cross-part migration, when you migrate a part, you must
provide not only the part itself but all parts that it references. For example, when
you migrate a program, you should provide not only the program, but also all the
parts that the program references. For a program, the set of parts that you need
when you migrate the program is the same set of parts that you need when you
generate the program in VisualAge Generator. This set of parts is the program’s
associates list.

In VisualAge Generator, the common techniques for providing all the parts for
generation are as follows:

* Project List Parts (PLPs) in VisualAge Generator on Java

¢ Configuration maps in VisualAge Generator on Smalltalk.

14 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

The migration tool makes use of these two techniques. The tool uses the following
terminology:

* If you are migrating from VisualAge Generator on Java:

— A high-level PLP project is a Java project that contains a Project List Part (PLP)
and is not referenced by any other PLP.

— A migration set consists of all the VAGen projects referenced in a Java
high-level PLP project, including all VAGen projects in the entire PLP chain
starting at the high-level PLP project.

* If you are migrating from VisualAge Generator on Smalltalk:

— A high-level configuration map is a Smalltalk configuration map that is not
listed as a required map by any other configuration map.

— A migration set consists of all the Smalltalk configuration maps listed as
required maps in a Smalltalk high-level configuration map. The migration set
includes all the configuration maps from the entire chain of Smalltalk
required maps starting at the high-level configuration map.

* A migration plan is a file that specifies the information for one or more migration
sets. If you specify a migration plan file name in your Stage 1 preferences then
all the migration sets that match your repository filters are placed in the same
migration plan file. If you do not specify a migration plan file name, then each
migration set is placed in a separate migration plan file.

Note: If you are migrating from VisualAge Generator on Java and do not currently

use PLP projects, you can create PLP projects to use just for migration.

Alternatively, you can do one of the following;:

* If you have information in a database or other system that specifies what is
needed for generation in terms of Java project versions, then you can write a
tool to create the migration plan file (or files) automatically from your database.

* Create the migration plan file (or files) by hand.

If you are migrating from VisualAge Generator on Java, see the section
fplans and high-level PLP projects” on page 101|for more details.

Stage 1 Details

The Stage 1 tool is shipped as a sample program with WebSphere Studio. You
install the sample program to run on either VisualAge Generator Developer on
Java or VisualAge Generator Developer on Smalltalk, depending on the VisualAge
Generator Developer 4.5 product that you currently use. The two sample programs
differ somewhat due to the differences in the Java and Smalltalk environments.
However, the basic steps for using the Stage 1 sample programs are the same in
both environments. The basic steps for Stage 1 are:

* Step 1. Define rules and preferences to direct the Stage 1 migration.
* Step 2. Run the tool and produce one or more of the following outputs:
1. One or more migration plan files
2. A report showing how each migration plan file will be migrated
3. Alog file containing messages about any problems detected
4. A migration database

Step 1
Define rules and preferences that provide the Stage 1 tool with information about
what you want to migrate, including the following:

1. How to filter Java project names so that only the projects you want to migrate
will be considered. For Smalltalk, you specify how to filter the Smalltalk

Chapter 2. Migration Tool Philosophy 15

configuration map names. This improves performance for Stage 1 because the
tool only processes those Java projects or Smalltalk configuration maps that
match your filters.

* From those Java projects that match your filters, the Stage 1 tool selects any
Java projects that contain a high-level Project List Part. A Java project
contains a high-level Project List Part (PLP) if the Java project is not
referenced by any other PLPs.

¢ From the Smalltalk configuration maps that match your filters, the Stage 1
tool selects any high-level configuration maps. A high-level configuration
map is one that is not listed as a required map by any other configuration
map.

2. Whether you want to create one migration plan that reflects everything that
could migrate based on your filter, or whether you want to create multiple
migration plans, with one migration plan for each Java high-level PLP project
version or Smalltalk high-level configuration map version.

3. How to create the EGL project, package, and file names from the Java project
and package names or from the Smalltalk configuration map and application
names. The information you can specify includes the following:

* Rules that indicate which Java projects and packages or Smalltalk
configuration maps and applications contain common code.

* Renaming rules to be used when creating the EGL project and package
names.

¢ Names to be used for the EGL files that contain common parts or unused
parts.

4. The name of the migration database and the user ID and password that are
needed for access to the database.

5. Which outputs you want the Stage 1 tool to produce in Step 2. You can choose
to create all the outputs in a single step or you can create the outputs in
sequence so that you have a chance to review your rules and preferences before
creating the next, more time-consuming output.

Step 2
Based on the rules and preferences you have defined, the Stage 1 tool produces the
following possible outputs:

1. Migration plan file (or files). A migration plan file contains migration sets.
Each migration set is one high-level PLP project version from the Java
repository or one high-level configuration map version from the Smalltalk
repository. The dependent Java project versions or the required Smalltalk
configuration map versions are specified in the migration set.

e If the migration preference file does not specify a value for the migration
plan filename option, then multiple migration plan files are created. Each
high-level PLP project version for Java results in one migration plan file that
contains one migration set. Similarly, each high-level configuration map
version for Smalltalk results in one migration plan file that contains one
migration set version.

* If the migration preference file specifies a value for the migration plan
filename option, then each high-level PLP project version for Java results in a
migration set entry within the single migration plan file. Similarly, each
high-level configuration map version for Smalltalk results in a migration set
entry within the single migration plan file.

* For example, consider an Order Entry system that is made up of 5 Java
projects and a sixth Java project that contains a PLP that specifies the
versions of the other 5 projects. If you request multiple migration plans and

16 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

3 versions, then 3 migration sets will be created -- one for each version of the
Java Order Entry project that contains the PLP part. Similarly for Smalltalk, if
you want to migrate 3 versions of a configuration map that reflects that code
that makes up the Order Entry system, there will be 3 migration sets -- one
for each version of this high-level configuration map

You can direct the Stage 1 tool to stop at this point so you have the opportunity
to review the migration plan file (or files) to ensure that the Java project
versions or Smalltalk configuration map versions that you want to migrate are
correctly reflected in the migration plan file (or files).

. A report showing how each migration set will be migrated. The Stage 1 tool
can produce this report without loading the database. This helps you ensure
that your filters and preferences select the correct set of Java projects or
Smalltalk configuration maps and that you are satisfied with the naming
conventions of EGL projects, packages, and files that resulted from your
renaming rules. Reviewing the report gives you an opportunity to refine your
rules and preferences if you are not happy with the proposed EGL structure
before the Stage 1 tool actually loads the database. You can iterate through the
previous steps as many times as necessary until you are satisfied with what
will be migrated and the proposed EGL structure. The report shows the
following:

* For Java, each migration set lists the project versions that are included. For
each project version, you can see the package versions, and for each package
version, you can see a list of the VAGen parts.

* For Smalltalk, each migration set lists the configuration map versions that are
included. For each configuration map version, you can see the application
versions, and for each application version, you can see a list of the VAGen
parts.

For each VAGen part, you can see the corresponding EGL project, package, and
file name where the part will be placed. See section [“Placing parts in EGL files”|
for information on how the VAGen parts are assigned to files
during Stage 1 - 3 migration.

. A log file provides messages if any of the VAGen program, table, map group,
or control part names conflict with the EGL reserved word list. These parts are
not renamed during migration. You can either rename the parts in VisualAge
Generator or wait until you have migrated to EGL.

. A migration database loaded with the information and VAGen source code
based on the migration plan files. You can select one migration plan to use in
loading the database or all the migration plan files in a directory. The Stage 1
migration tool loads the data base with the following:

* Information about each migration set within the selected migration plan file
(or files).

* The set of associated Java projects or Smalltalk configuration maps for the
migration set.

¢ The VAGen part definitions in External Source Format for each VAGen part
in the set of Java projects or Smalltalk configuration maps.

* The corresponding EGL project, package, and file names for each Java
project, package and VAGen part or each Smalltalk configuration map,
application and VAGen part.

* Areport is also created during this step so that you have a complete record
of what was loaded into the migration database. This report is in the same
format as the previous report.

Chapter 2. Migration Tool Philosophy 17

The Stage 1 tool is shipped as a sample program for both the Java and Smalltalk
versions of VisualAge Generator. You can use the Stage 1 tool "as is” or you can
modify the sample program to better fit your environment. For example, you
might currently store configuration information outside the Java repository or
Smalltalk library. This configuration information might specify which versions of
your source code are required for generation. In this situation, you could use the
sample programs as a guide to writing your own tool to load the migration
database from a combination of your configuration information and your Java
repository or Smalltalk library.

If you modify the Stage 1 sample programs, you might want to modify the
migration database to include additional information to assist in the analysis of
your code. You can add additional columns to the existing SQL tables or you can
add additional tables to the migration database. However, these new columns and
tables will not be used in Stages 2 and 3 of migration. Additionally, if you modify
the Stage 1 sample programs, you must be sure to populate the SQL tables with
the information shown in the sample programs. If you do not, Stages 2 and 3 will
not be able to migrate your code.

See [Chapter 4, “Stage 1 — Extracting from Java,” on page 89| for details about
installing and running the Stage 1 tool on VisualAge Generator Developer on Java.
See [Chapter 5, “Stage 1 — Extracting from Smalltalk,” on page 107 for details
about installing and running the Stage 1 tool on VisualAge Generator Developer
on Smalltalk.

Stage 2 Details

The Stage 2 tool is shipped in the vagenmigration Eclipse plug-in and runs in the
WebSphere Studio environment. Because the information you want to migrate is
now in the migration database, you use the same Stage 2 tool regardless of
whether you are migrating from VisualAge Generator on Java or VisualAge
Generator on Smalltalk. The basic steps for running the Stage 2 tool are as follows:

1. You define rules and preferences to tell the Stage 2 tool what you want to
migrate, including the following:

* Specific details about how you want your EGL source code to be created. For
example, the Stage 2 migration tool must split VAGen working storage
records into two EGL basic records:

a. A record that is named the same as the original working storage record
and which contains all the non-level 77 items.

b. A second record that is named the same as the original working storage
record with a suffix and which contains all the level 77 items.

There is a Stage 2 migration preference that enables you to specify the suffix
you want the Stage 2 tool to use whenever it creates a new record to contain
level 77 items.

* Which migration set or sets you want to migrate. For example, if you created
3 migration sets to migrate 3 different versions of the Order Entry system,
you might only want to migrate one version initially. This gives you the
flexibility to limit migration, without having to migrate everything in the
migration database at the same time.

¢ The name of the migration database and the user ID and password that are
needed for access to the database. All migration stages will attempt the
database logon with the user ID and password used to logon to the windows
machine if no database user ID and password is explicitly specified in the
VGMIG file.

18 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

¢ Whether you want to automatically start the Stage 3 tool after Stage 2
completes. If you run Stage 3 automatically, you can choose to load one
version of the EGL projects into your workspace. You can also choose to load
the EGL projects into a temporary directory so that you can interface with
your source code repository at a later time.

2. Based on the rules and preferences you have defined, the Stage 2 tool does the
following:

a. Retrieves parts for one migration set from the database.
b. Converts the External Source Format source code to EGL source code.

c. Stores the EGL source code in the migration database. Messages associated
with part migration are also stored in the migration database. This improves
performance for Stage 2 because if the same part edition is used in another
Java project version or Smalltalk configuration map version, the EGL source
code is already available and not converted again.

d. Creates a log file of any potential problems that are encountered, including
generatable parts that conflict with the EGL reserved word list or
ambiguous situations that the migration tool is unable to resolve.

e. lIterates to process the next selected migration set.

The Stage 2 migration tool can be run in batch mode. See |[Chapter 6, “Stage
P—Conversion to EGL syntax,” on page 127|for details about installing and
running the Stage 2 tool on WebSphere Studio. You cannot modify the Stage 2
migration tool.

Stage 3 Details

The Stage 3 tool is shipped in the same vagenmigration Eclipse plug-in as the
Stage 2 tool and also runs in the WebSphere Studio environment. Because the
information you want to migrate is now in the migration database, you use the
same Stage 3 tool regardless of whether you are migrating from VisualAge
Generator on Java or VisualAge Generator on Smalltalk. The basic steps for
running the Stage 3 tool are as follows:

1. You define rules and preferences to tell the Stage 3 tool what you want to
migrate, including the following:

* Which migration set or sets you want to migrate. For example, if you created
3 migration sets to migrate 3 different versions of the Order Entry system,
you might have migrated all 3 versions through the Stage 2 tool, but only
want to migrate one version through the Stage 3 tool. The most common
reason for doing just one version in Stage 3 is that you want to version this
code in your source code repository, then migrate the next version with the
Stage 3 tool and version it in your source code repository.

* The name of the migration database and the user ID and password that are
needed for access to the database.

2. Based on the rules and preferences you have defined, the Stage 3 tool does the
following:

a. Creates a "to do” list for the migration set. This "to do” list contains a
consolidated list of the messages produced by Stage 2 that might require
you to perform additional tasks to complete the migration.

b. Creates the EGL project and package structure in your workspace based on
the information stored in the migration database during Stage 1.

c. Creates the .egl source files based on the EGL source code that was stored
for the VAGen parts during Stage 2. The .egl source files include most

Chapter 2. Migration Tool Philosophy 19

import statements that are needed to resolve EGL part references. See
build path and import statements” on page 29|for details about the import
statements.

d. Creates the .eglbld files based on the EGL XML source that was stored for
VAGen control parts during Stage 2. The control parts are generation
options (EGL build descriptor parts), linkage options, resource associations,
bind control and linkedit parts.

3. At this point you should do the following:

a. Review the workspace for any messages on the Tasks list to see if there are
any validation errors. You can do this in conjunction with the log produced
in Stage 2.

b. Generate (without preparing) all programs and tables to ensure proper
migration for your target environment. When you generate the programs,
be sure to use the genFormGroup and genHelpFormGroup build descriptor
options so that all your formGroups are also preprocessed. This step is
optional, but it is strongly recommended.

c. Version or commit the EGL projects into your source code repository.

d. Generate and test the migrated code. This step is also optional, but it is
strongly recommended.

The Stage 3 migration tool can be run in batch mode. See |[Chapter 7, “Stage 3 —|
[Import,” on page 139 for details about running the Stage 3 tool on EGL. The Stage
3 tool is installed automatically at the same time you install the Stage 2 tool. You
cannot modify the Stage 3 migration tool.

Overview of Single File Migration

When you are first getting accustomed to WebSphere Studio and setting up your
environment, you might want to migrate just a few programs to verify your
environment, ensure generation and preparation are working properly, and ensure
your runtime environment is properly configured for EGL. In this case, you might
not want to go through the full Stage 1 to 3 migration. The Stage 2 migration tool
provides a mechanism for you to migrate programs using what is called single file
migration as shown in the following figure:

Extract External Source Format Single File Migration

N

Export External 5 :
S Source Format file %
- 0

WebSphere
Studio

>

Import External h ;
Source Format file Build EGL files

"

User
/Action
VisualAge Generator WebSphere Studio Repository)
on Java or Smalltalk Plug-in — -
e

Single file migration is a more manual process than Stage 1 to 3 migration. In
single file mode, you use VisualAge Generator to export External Source Format
source code to a file. Then you use WebSphere Studio to create an EGL project and
EGL package. From WebSphere Studio, you can then use the Import wizard to
import the External Source Format file. The single file migration tool runs and does
the following:

20 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

* Creates the target EGL source file, if it does not exist. If the file does exist, you
have the option to overwrite or append to the file. Depending on your
preferences and the parts contained in the External Source Format file, the
migration tool might create additional EGL files.

e Converts the External Source Format source code to EGL source code.

* Creates a log file of any potential problems that are encountered, including
generatable parts that conflict with the EGL reserved word list or ambiguous
situations that the migration tool is unable to resolve.

The External Source Format to EGL conversion that occurs during single file
migration is essentially the same syntax conversion that occurs during Stage 2 of
the Stage 1 to 3 migration. However, single file migration has several limitations
that do not make it suitable for large scale migrations. The limitations include:

* Only parts in the single External Source Format file are considered during
migration. To achieve the best possible migration, include a program with all its
associates in the External Source Format file.

¢ The placement of VAGen parts into files is different from that of Stage 1 - 3
migration. In single file mode, assuming you specified targetFile.egl as the target
EGL file name, the following occurs:

— All control parts are placed in a file called targetFile.eglbld.

— If you do not select the preference to separate generatable parts into EGL
files, all the remaining parts are placed in a file called targetFile.egl.

— If you select the preference to separate generatable parts into EGL files, the
following occurs:

- Each program part is placed in a file called programName.egl, where
programName is the name of the program.

- Each table part is placed in a file called tableName.egl, where tableName is
the name of the table.

- Each map group and all maps in the map group are placed in a file called
mapGroupName.egl, where mapGroupName is the name of the map
group.

- All the remaining parts are placed in a file called targetFile.egl. targetFile
can be the same as programName.egl if you want to place all the remaining
parts in the same file as the program. There is no attempt to determine
which parts are shared by multiple generatable parts.

— All the files are placed in same EGL project, source folder, and package.

* Because all the output files are placed in the same EGL package, the migration
tool does not include any import statements. In addition, because all the parts
are placed in the same EGL package, your original Java project and package
structure are not preserved. Similarly, your original Smalltalk configuration map
and application structure are not preserved.

* If the same part occurs multiple times in the External Source Format file, only
the last definition is migrated.

* There are two alternative techniques for dealing with common parts when
migrating in single file mode. Be sure you understand the disadvantages of each
technique before choosing one of them. The two techniques are as follows:

— If you migrate two External Source Format files to the same EGL package and
the two files contain the same part, you will have duplicate parts that cannot
be resolved by EGL. This happens if you migrate a file with Program1 and its
associates and a second file with Program? and its associates and the two
programs share some common parts. You can avoid this problem by
migrating each program with its associates to a separate EGL package. This

Chapter 2. Migration Tool Philosophy 21

will still result in duplicate parts in the workspace, but because they are in
different packages, EGL will be able to resolve the part references.

— If you split the common parts out into a separate External Source Format file,
you might not have all the information necessary to do a good VisualAge
Generator to EGL migration on a single-file basis. For example, if you have an
SQL record in one file, and a function that uses modified SQL for the record
is in a different file, the migration tool cannot completely build the I/O
statement for the function. In addition, if the common parts are in a different
package, you must add EGL import statements to each file that needs to
reference the common package (or packages).

¢ Additional processing that is done by Stages 2 and 3 is also not performed in
single file mode. Some examples are as follows:

— Forms are not nested within form groups.
— Parts are not sorted by part name within part type in the file.

— Only one line is included between the parts in the output files.

See [“Migration challenges” on page 22| and [“Techniques used by the VisualAgel
(Generator to EGL Migration Tool” on page 27 for a better understanding of the
differences between single file migration and Stage 1 to 3 migration.

Migration challenges

There are several differences between the VisualAge Generator and EGL
approaches to writing and managing source code. The following differences are of
particular importance to migration:

* EGL syntax in some cases is more precise than VisualAge Generator
* Differences in when and how part references are resolved

* Differences in handling common code

These differences are explained in more detail in the following sections.

Precise EGL Syntax

Even though the syntax of the two languages differs greatly, the VAGen language
can, for the most part, be migrated to the EGL language while preserving the same
behavior as the original VAGen program. However, there are number of situations
in which the EGL syntax is more precise or more restrictive than in VisualAge
Generator. These situations are rare in typical programs. However, when they do
occur, the migration tool requires cross-part migration to determine the exact EGL
syntax that preserves the behavior you required in VisualAge Generator. Cross-part
migration means that the migration tool needs to have one or more other
referenced parts available to be able to do a correct migration of the current part.
The following are some examples:

* In VisualAge Generator you use the DISPLAY I/O option for both display (text)
and printer maps. EGL provides the display statement for text forms and the
print statement for print forms. To facilitate migration from VisualAge
Generator, there is an EGL preference to indicate that you want VisualAge
Generator Compatibility. The VisualAge Generator Compatibility preference
permits the use of the display statement for print forms. During migration, if the
program, its map group, and the map are all available, then the migration tool
can determine whether to migrate to a display or print statement. However, if
the DISPLAY function is being migrated without a program, then the migration
tool cannot definitively determine whether to use an EGL display or print

22 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

statement. In this situation, the migration tool uses the display statement
because it is tolerated for print forms in VisualAge Generator Compatibility
mode.

* In VisualAge Generator you use the SET map PAGE statement for both display
(text) and printer maps. This causes the screen to be cleared if the next
CONVERSE or DISPLAY is for a display map and a page eject if the next
DISPLAY is for a printer map. EGL provides the clearScreen system library
function for text forms and the pageEject system library function for print forms.
The VisualAge Generator Compatibility preference does not affect the use of
clearScreen or pageEject. During migration, if the program, its map group, and
the map are all available, then the migration tool can determine whether to
migrate to the clearScreen or pageEject system library function. However, if the
SET map PAGE statement is used in a function that is being migrated without a
program, then the migration tool cannot definitively determine whether to use
the clearScreen or pageEject system library function. In this situation, the
migration tool uses EZE_SETPAGE, which is intentionally invalid EGL syntax.
This results in an error on the Tasks list so that you are aware you need to
correct the function.

* In VisualAge Generator, you can specify either an edit table or an edit function
as the edit routine for a map variable field. You cannot specify both. In EGL,
you can specify both the validatorTable and the validator properties. If the edit
table or the edit function is available during migration, the migration tool can
determine whether to set the validatorTable or the validator property. However,
if the part specified by the edit routine is not available, the migration tool cannot
definitively determine whether to set the EGL validatorTable or validator
property. In this situation, the migration tool attempts to determine whether the
edit routine is a table or function by using information such as the length of the
edit routine name and the existence of an edit message. If the migration tool still
cannot make a determination, it uses the validator property. There will only be
an error on the Tasks list if the validator is not a function or cannot be found.

The migration tool uses all the available parts in the migration set to resolve
ambiguous situations. To minimize these ambiguous situations, always include
associated parts when you migrate. For example, when you migrate a program, be
sure to include all the parts that you need to generate the program in VAGen. This
ensures the best possible migration of your parts. For an overview of how the
migration tool resolves ambiguous situations, see the following sections:

* [“Migrating with a program” on page 34|

« |"Migrating with associated parts” on page 35

* [“Migrating without associated parts” on page 35|

See the chapter [Chapter 3, “Handling ambiguous situations,” on page 43| for a
complete list of the situations where the migration tool must do cross-part
migration to achieve a correct migration and the steps the migration tool takes to
try to make an intelligent choice if the additional parts are not available.

When and how part names are resolved

At definition time, VisualAge Generator does not require that all parts exist. In the
program structure diagram, VisualAge Generator indicates missing maps, records,
tables and functions with a question mark. However, in other places such as the
use of a shared data item, there is no indication if the part does not currently exist.
When you save a part in VisualAge Generator, there is some basic syntax
validation, but there is no cross-part validation until you test, validate, or generate.

Chapter 2. Migration Tool Philosophy 23

In EGL, whenever you save a file, there is more extensive validation -- including
validation that all part names can be resolved. This gives you the earliest possible
warning when there is a problem.

VisualAge Generator searches all parts in the workspace to find a particular part
name. If there are duplicate part names in VisualAge for Java, then test and
generation stop until the duplicate part problem is fixed. VisualAge for Smalltalk
does not permit you to load duplicate parts into the image. In EGL, you are
permitted to have duplicate part names in your workspace. EGL uses a
combination of the EGL build path for a project, import statements in a file, and
the containerContextDependent property for records and functions to determine
which definition of a part to use.

The migration tool sets the EGL build path for projects and includes import
statements in files based on the available parts in the migration set. To obtain the
correct EGL build path and import statements, always include all the associated
parts when you migrate. For example, when you migrate a program, be sure to
include all the parts that you need to generate the program in VisualAge
Generator. This ensures the best possible migration of your parts. See the following
sections for more details:

+ [“EGL build path and import statements” on page 29|

+ |“containerContextDependent Property” on page 30|

Common code scenarios

Common code is code that is shared between subsystems or programs. The
following figure shows common code that is shared by two subsystems.

Corporate Common Code

SubsystemB

Corporate
Common Code
shared by both
Subsystems

In this case, there are one or more Java projects or Smalltalk configuration maps
that contain Corporate Common Code. The code in these projects or configuration
maps can be shared by multiple subsystems. In this example, SubsystemA and
SubsystemB use subsets of the common code. Some of the Corporate Common
Code is used by both subsystems. For example, Corporate Common Code might
include SQL record definitions that are used by many subsystems.

24 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

The next figure shows the same basic sharing of Corporate Common Code by the
two subsystems, with SubsystemA shown in more detail.

Corporate Common Code

SubsystemA

Common Code 4.>
. Program?2

~

SubsystemA has SubsystemA Common Code that used by multiple programs
within SubsystemA, but only by programs within SubsystemA. In this case,
Program1 and Program? each make use of some of the SubsystemA Common Code
as well as some of the Corporate Common Code. Between the two programs, there
is some overlap of both the SubsystemA Common Code and the Corporate
Common Code, including overlap with Corporate Common Code that SubsystemB
uses. For example, SubsystemA Common Code might include SQL record
definitions that are used only by programs within SubsystemA. SubsystemA
Common Code might also include a map group definition that is used by several
programs within SubsystemA.

SubsystemB

&

Common code and VisualAge Generator

To facilitate the use of common code, VisualAge Generator determines at test and
generation time how a particular piece of source code should be interpreted. The
advantage of this is that each subsystem or program can make slight variations in
the code, just by varying the specific map group that a program uses or by varying
data item or record definitions that are in the workspace during generation. The
following are three examples:

* Much of the same logic can be shared by an online program that interacts with a
terminal and a batch program that prints a similar report as follows:

— ProgramA is main transaction program using MapGrpA which contains
display maps named HEADER, DETAIL, and TRAILER. ProgramA displays
the partial HEADER map, displays DETAIL lines in a floating area, and then
converses the TRAILER map which contains an input field where the user can
request the next report. ProgramA uses the SET HEADER PAGE statement to
clear the screen.

— ProgramB is a main batch program using MapGrpB which contains printer
maps named HEADER, DETAIL, and TRAILER. Program B produces a
hardcopy version of the same report that ProgramA displays on a terminal.
ProgramB displays the partial HEADER map, displays the DETAIL print lines
in a floating area, and then displays the TRAILER map at the bottom of the
page. ProgramB uses the SET HEADER PAGE statement to force a page eject.

— The number of lines in the floating area differs between the main transaction
and the main batch programs. However, the logic for data retrieval, data
manipulation, and displaying the HEADER and DETAIL maps is the same for
both programs. Because of this, ProgramA and ProgramB were designed to

Chapter 2. Migration Tool Philosophy 25

use common functions to retrieve data from the database, manipulate the
data, and display the HEADER and DETAIL maps.

— This common code technique works in VisualAge Generator because the same
DISPLAY I/0 option can be used for both display and printer maps. In
addition, the same SET HEADER PAGE statement can be used for both
display and printer maps. VisualAge Generator interprets the DISPLAY 1/0
option and the SET map PAGE statement based on the specific program it is
testing or generating.

— EGL requires different statements for display and print forms -- display and
clearScreen for a text form; print and pageEject for a print form. In VisualAge
Generator Compatibility mode, the display statement is tolerated for a print
form. However, clearScreen only applies to text form output, even in
VisualAge Generator Compatibility mode.

* A less typical example is the use of a common error handler function called
SET-MESSAGE-TEXT which retrieves message text from a VAGen table called
MSGTBLE and stores it in a function parameter called MESSAGE-TEXT, where
MESSAGE-TEXT is a shared data item.

— Assume that SubsystemA and SubsystemB run in different CICS regions. In
this case, the two subsystems can each provide their own definition of the
MSGTBLE and their own definition of the MESSAGE-TEXT function
parameter. This might occur if the subsystems provide different size error
message fields on their respective map definitions.

— VisualAge Generator uses the definition that is currently loaded in the
workspace when it generates a program. As long as each subsystem always
loads its own definition of the MESSAGE-TEXT data item into the workspace
before test or generation, VisualAge Generator will use the definition that is
correct for that subsystem. The disadvantages of this technique are that you
must control what is in the workspace when you generate and you cannot
have both subsystems in the workspace at the same time.

— EGL permits you to have both subsystems in the workspace at the same time.
In this situation, EGL uses a combination of the EGL build path, import
statements, and the containerContextDependent property for the
SET-MESSAGE-TEXT function to resolve the reference to the MESSAGE-TEXT
data item definition.

* A slightly different example is the use of a common error record called
ERROR-RECORD which contains a shared data item called MESSAGE-TEXT2.

— Assume that SubsystemA and SubsystemB have different definitions of
MESSAGE-TEXT2. This might occur if the subsystems need to build message
text for different screen sizes.

— VisualAge Generator uses the definition that is currently loaded in the
workspace when it generates a program. As long as each subsystem always
loads its own definition of MESSAGE-TEXT?2, VisualAge Generator will use
the definition that is correct for that subsystem. The disadvantages of this
technique are similar to the SET-MESSAGE-TEXT function example. You must
control what is in the workspace when you generate and you cannot have
both subsystems in the workspace at the same time.

— EGL permits you to have both subsystems in the workspace at the same time.
In this situation, EGL uses a combination of the EGL build path, import
statements, and the containerContextDependent property for the
ERROR-RECORD to resolve the reference to the MESSAGE-TEXT2 data item
definition.

26 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Common code and the migration tool

Common code is generally code that is used in many programs. You need to
include the common code in every migration set because it influences the
migration tool in the following ways:

* If common code is available, the migration tool is able to resolve most
ambiguous situations. This minimizes or eliminates the code changes you must
do manually.

* If common code is available the migration tool can properly set the EGL build
path for projects and include the correct import statements for your EGL files.
This minimizes the number of EGL build path changes and additional import
statements you must do manually.

* The first time the migration tool migrates a part version, the tool stores the EGL
created for the part into the migration database. The original External Source
Format is also retained in the migration database. If another migration set uses
the same part version, the migration tool uses the original External Source
Format for reference when creating EGL for the new parts in the additional
migration set, but does not convert the part to EGL again. The migration tool
also uses the EGL for the part version when building the EGL projects, packages,
and files for the additional migration set. This technique provides the necessary
reference information for the migration tool to resolve ambiguous situations
during cross-part migration, while improving performance by only migrating
each part version one time.

To ensure the best possible migration, when you are migrating a subsystem, you
should always include Corporate Common Code and the Subsystem Common
Code in your migration set.

Techniques used by the VisualAge Generator to EGL Migration Tool

There are a number of techniques that the migration tool uses to determine the
corresponding EGL syntax and to preserve the VisualAge Generator behavior.
These techniques are as follows:

* Editor and build descriptor preferences
* Program properties

* EGL build path and import statements
* containerContextDependent property

* EGL reserved word list

¢ Placing parts in EGL files

* Migrating with a program

¢ Migrating with associated parts

* Migrating without associated parts

¢ Overwriting and merging files.

These techniques are explained in the following sections. There are also some
general rules that govern the migration tool.

Editor and build descriptor preferences

Before you start Stage 2 of migration, you should turn on the VisualAge Generator
Compatibility preference for your WebSphere Studio workspace. The VisualAge
Generator Compatibility preference provides support for the following VAGen
behaviors:

* Use of the hyphen (-) and national language characters @, and # in part names
* The primitive data types numc and pacf

Chapter 2. Migration Tool Philosophy 27

* Defaulting the array index to 1 for single dimension arrays

* The deleteAfterUse property on use declaration for a data table, which is the
replacement for keep after use

* The SQL item property sqlDataCode

* The call statement options of externallyDefined and noRefresh, which are the
replacements for the NONCSP and NOMAPS options

* The transfer and show statement externallyDefined option, which is the
replacement for the NONCSP option on DXFR and XFER statements

* A display printForm statement is implemented the same as a print printForm
statement

* The initial value of a form field is used only when displaying a field on the
screen that has not had a value assigned to it. The preference does not set the
initial value of the field in storage.

e The handleSysLibErrors system variable, which is the replacement for
EZEREPLY

* The handleHardDliErrors system variable which is the replacement for
EZEDLERR

* The getVAGSysType system function, which provides the old VAGen values for
EZESYS

* The connectionService system function, which is the replacement for
EZECONCT

¢ The segmentedMode system variable, which is the replacement for EZESEGM
* The sqllsolationLevel system variable, which is the replacement for EZESQISL.

e Host variables that are not in an SQL record are initialized to blanks or zeros
depending on the primitive type if the value retrieved from the database is null.
Host variables in SQL records are only initialized if the isNullable=yes property is
set for the data item.

* Even precision for decimal fields (VAGen PACK fields) is incremented by 1
except for host variable references in SQL WHERE clauses and the EGL prepare
statement.

The VAGen migration tool automatically adds the vagCompatibility="YES" option

to every VAGen generation option part that it migrates to an EGL build descriptor.
The vagCompatibility build option directs preprocessing and generation to provide
the same support as the VisualAge Generator Compatibility preference.

Program properties

There are two program properties that the migration tool includes for every

program:

* includeReferencedFunctions = yes. The migration tool always includes this program
property so that functions do not have to be nested within the program. This
enables you to keep just one copy of common functions in a separate project or
package and import them, rather than including the common functions in each
program. When you use Stage 1 - 3 migration, the migration tool also includes
any necessary import statements for functions that are in a different package
from the program.

¢ allowUnqualifiedItemReferences = yes. The migration tool always includes this
program property so that references to data items do not need to be qualified.
The EGL rules for unqualified data items incorporate the VAGen rules so that
unqualified items resolve to the same record, table, or map (form) as in
VisualAge Generator. The migration tool does not add qualifications.

28 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

EGL build path and import statements

EGL enables you to have multiple definitions for a part in the workspace at the
same time. The EGL build path for a project limits which other projects will be
considered when looking for a part name. The import statement in a file
determines which packages, other than the current package, and which parts
within the EGL build path will be considered when looking for a part name.

In most situations, the EGL build path and import statements are sufficient to
resolve any part references. For example, the EGL build path and import
statements for a program are sufficient to resolve a record name if you use the
record as a type definition in a record declaration in a program. The EGL build
path and import statements are also sufficient to resolve data item references if you
only have one definition of the item that can be used with a record definition,
function local storage or function parameter list.

For example, you might be working on SubsystemA and SubsystemB which have
two different definitions of RECORDX. All programs in SubsystemA need to use
the SubsystemA definition of RECORDX. This can be achieved as follows:

e The EGL build path property for projects in SubsystemA needs to include the
project that provides SubsystemA’s definition of RECORDX.

* Files for programs in SubsystemA that use RECORDX as a type declaration for a
record need to include an import statement for the package within SubsystemA
that contains the definition of RECORDX.

The EGL build path property for the SubsystemA projects limits the projects that
will be searched to just the projects within SubsystemA and the common projects.
The import statements in the files within SubsystemA limit which packages within
the EGL build path will be considered. Even if RECORDX uses shared data item
ITEM1 and the two subsystems have different definitions of ITEM1, the EGL build
path and import statements are sufficient to resolve the references to ITEM1. The
project that contains RECORDX in each subsystem must specify an EGL build path
property that includes the subsystem project that contains that corresponding
subsystem definition of ITEM1. The file containing RECORDX in each subsystem
must have an import statement that specifies the subsystem package that contains
the corresponding subsystem definition of ITEMI.

When you use Stage 1 - 3 migration, the migration tools do the following:

 Set the EGL build path for each project based on the parts the project needs to
reference in other projects.

* Includes most import package statements for each file based on the parts the file
needs to reference in other packages within the EGL build path for the project
that contains the file. The migration tool does not add import statements for the
following situations because these are not associates in VisualAge Generator:

— For a function that transfers to a program using a CALL, DXFR, or XFER
statement. If you are generating for Java, you must add the import statement
for the package containing the program within the file containing the
function, fully qualify the program name with the package name, or use an
entry in a linkage part to specify the name of the package where the program
is located.

— For a data item that specifies a validatorTable or validator function. You must
add the import statement to the file containing the data item to specify the
name of the package where the validatorTable or validator function is located.

— For build parts in .eglbld files. VAGen control parts, such as the generation
options parts, do not list their associated parts, so the information is not

Chapter 2. Migration Tool Philosophy 29

readily available to the migration tool. In addition, due to the way EGL
processes build descriptor parts, you will likely need to do some reordering
of the nextBuildDescriptor values (VAGen /OPTIONS). This reordering will in
turn require modification of any imports the migration tool might have done.

When you use single file migration, the migration tool functions as follows:

* Does not set the EGL build path because the output is always going into a single
existing project.

* Does not include the import package statements because all the files that are
created go into the same package. Thus, no import statement is required.

containerContextDependent Property

As described in ["EGL build path and import statements” on page 29} the EGL
build path and import statements are generally sufficient to provide the part name
resolution that you need. However, EGL expects to resolve all part name references
whenever you save a file. EGL adds an error message to the Tasks list if it cannot
resolve the part name. Depending on your architecture, you might also need to use
the containerContextDependent property for records or functions.

Consider the situation where RECORDX is used as the type definition for a
function parameter in FUNCTIONY. Assuming that RECORDX and FUNCTIONY
are in different projects and packages, EGL expects the following:

e The EGL build path for the project that contains FUNCTIONY must include the
project that contains the definition of RECORDX

* The file containing FUNCTIONY must include an import statement for the
package that contains RECORDX.

If all subsystems have the same definition of RECORDX, then the EGL build path
and import statements are sufficient, and EGL can resolve the part reference for
RECORDX whenever you save the file containing FUNCTIONY.

However, consider the situation in which SubsystemA and SubsystemB both use
FUNCTIONY, but have different definitions of RECORDX. In this situation, the
EGL build path and import statements cannot point to both subsystems at the
same time. EGL supports the containerContextDependent property for functions. In
this situation, you can specify containerContextDependent=yes for FUNCTIONY. This
specifies that the part name references for the function parameters and local
storage are not to be resolved until FUNCTIONY is used within a program. When
you test or generate a program that uses FUNCTIONY, the EGL build path of the
project containing the program and the import statements of the file containing the
program determine where to find the definition of RECORDX. Using
containerContextDependent=yes enables you to achieve the same flexibility provided
by VisualAge Generator for the function. The EGL build path for each project in
the subsystem and the import statement for any files containing programs in the
subsystem point to that subsystem’s definition of RECORDX.

The containerContextDependent property is also supported for records. For
example, SubsystemA and SubsystemB might both use the same definition of
RECORDZ. However, RECORDZ uses shared data item ITEM1 and the subsystems
have different definitions of ITEM1. In this case, you can specify
containerContextDependent=yes for RECORDZ so that EGL validation will not
attempt to resolve ITEM1 until RECORDZ is used in a program. The EGL build
path of the project containing the program and the import statements of the file
containing the program determine where to find the definition for ITEM1.

30 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

The migration tool does not attempt to set the containerContextDependent
property for you. This is because the migration tool does not require that you
migrate all you subsystems at the same time and does not do a complete analysis
of all definitions of all parts to determine when there are duplicate part definitions.
You can add the containerContextDependent property as necessary if you
determine that there are duplicate part names that need to be resolved at test and
generation time (as in VisualAge Generator) rather than at definition time (as in
EGL).

EGL reserved word list

EGL has a reserved word list. Parts cannot be named the same as any EGL
reserved word. In addition, EGL does not permit the use of the # symbol as the
first character of an EGL part name. The # symbol is permitted as the first
character of an EGL build part name. If a VAGen part is named the same as an
EGL reserved word, or if a VAGen part starts with the # symbol, the migration tool
does the following based on the part type:

* The migration tool does not rename programs, map groups, or tables because
these parts frequently have references from non-VAGen programs or the runtime
environment (for example, a CICS PROGRAM definition).

¢ The migration tool renames data items, records, maps, and functions by
prefixing the part name with a Renaming Prefix. The Renaming Prefix is one of
the VAGen Migration Syntax Preferences that you can specify for Stage 2 or
single file mode migration.

* The migration tool does not rename control parts, except for the following:

— The migration tool removes the .BND suffix from the end of a bind control
part.

— The migration tool removes the .LKG suffix from the end of a link edit part
name.

— The migration tool changes any other dots to underscores in control part
names. The tool also changes dots to underscores in control part names that
are referenced in the /OPTIONS, /RESOURCE, and /LINKEDIT generation
options.

The Stage 1 migration tools provide a list of the program, map group, table, and
control part names that conflict with the EGL reserved word list. If you do not
rename these parts before you migrate, the Stage 2 migration tool (or single file
mode) will also issue an error message. There will be an error on the WebSphere
Studio Tasks list. You can also correct the problem in WebSphere Studio by
renaming the part and optionally using the EGL alias property. .

Placing parts in EGL files

When you migrate using Stage 1 - 3 migration, each Java package or Smalltalk

application migrates to the corresponding EGL package based on your Stage 1

renaming rules. The VAGen parts within the original Java package or Smalltalk
application are placed in one or more EGL files within the corresponding EGL

package based on the following:

* The type of part:
— Generatable part -- program, table, or map group

— Control part -- generation options, resource associations, linkage table,
linkedit, or bind control

— Other migratable parts -- data item, record, map, or function
- Non-migratable parts — PSB and DL/I records are not migrated to any file.

Chapter 2. Migration Tool Philosophy 31

* A Stage 1 preference that enables you to identify Java project or package names
that contain common parts. Similarly, there is a Stage 1 preference for Smalltalk
that enables you to identify configuration map or application names that contain
common parts.

* Whether the part is used by some other part. The Stage 1 migration tool
determines whether a part is used based on the following:

— A part is "used” if it appears on the VAGen associates list of any generatable
part in the migration set.

— A part is "used” if it is in a common Java project or package or in a common
Smalltalk configuration map or application as specified in your Stage 1
preferences.

The Stage 1 migration tool determines the placement of all parts. The Stage 1
migration tool places VAGen parts within a single Java package or Smalltalk
application into EGL files within the corresponding EGL package as follows:

 All control parts are placed in a single file called eglPackageName.eglbld, where
eglPackageName is the name of the corresponding EGL package.

* Each program part is placed in a file called programName.egl, where
programName is the name of the program.

* Each table part is placed in a file called tableName.egl, where tableName is the
name of the table.

* Each map group and all maps in the map group are placed in a file called
mapGroupName.egl, where mapGroupName is the name of the map group. If
there is no map group part, the Stage 1 migration tool creates a dummy map
group part. Because the map group and all maps in the map group must be
placed in the same file, these parts must be considered as a group. This can
result in some parts being moved to a different EGL package or project if the
parts were not originally in the same Java package or Smalltalk application. The
migration tool determines where to place the mapGroupName.egl file as follows:

— If the map group and all its maps are in the same Java package, the
mapGroupName.egl file is placed in the corresponding EGL package.
Similarly, if the map group and all its maps are in the same Smalltalk
application, the mapGroupName.egl file is placed in the EGL package that
corresponds to the Smalltalk application. In this situation, the migration tool
handles the mapGroupName.egl file in the same manner as the program and
table files. This is the most common situation.

— If the map group and its maps are spread across several Java packages
within a project, then the project name, plus a suffix is used to create the
name of a new EGL package to contain the mapGroupName.egl file. This new
EGL package is placed within the original project. Similarly, if the map group
and its maps are spread across several Smalltalk applications within a
configuration map, the configuration map name, plus a suffix is used to
create the name of a new EGL package to contain the mapGroupName.egl
file. For both Java and Smalltalk, you can control the suffix with a Stage 1
preference.

— If the map group and its maps are spread across several Java projects, then
the migration set name, plus a suffix is used to create the name of a new EGL
project that contains the mapGroupName.egl file. Similarly, if the map group
and its maps are spread across several Smalltalk configuration maps, the
migration set name, plus a suffix is used to create the name of a new EGL
project that contains the mapGroupName.egl file. For both Java and Smalltalk,
you can control the suffix with a Stage 1 preference.

* All the remaining parts are placed as follows:

32 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

— If the part is used by only one program in the migration set, the part is
placed as follows:

- If the part is in the same package as the program, then the part is placed in
the same file as the program. For example, the main function of a program
(ProgramA-MAIN) is placed in the same file as the program (ProgramA)
provided the function is not used in any other programs. The file is named
for the program — ProgramA.egl.

- If the part is in a different package from the program that uses it, the part
is placed as follows:

* If the part is in a common project or package, the part is placed in the
file called commonParts.egl in the part’s original package. You control
the name for commonParts with a Stage 1 preference.

e If the part is not in a common project or package, the part is also placed
in the file called commonParts.egl in the part’s original package.

— If the part is used by several programs in the migration set, then the part is
placed in the file called commonParts.egl within its original package. For
example, if ProgramA calls ProgramB and passes RecordR, then RecordR is
placed in the file called commonParts.egl in the EGL package that
corresponds to the original Java package or Smalltalk application that
contains RecordR.

— If the part is not used by any programs in the migration set, the part is
placed into a file as follows:

- If the part is in a common Java project or package, then the part is placed
in the file called commonParts.egl within the EGL package that corresponds
to the original Java package that contains the part. Similarly, if the part is in
common Smalltalk configuration map or application, then the part is placed
the file called commonParts.egl within the EGL package that corresponds to
the original Smalltalk application that contains the part.

- If the part is not in a common Java project or package, then the part is
placed in the file called unusedParts.egl within the EGL package that
corresponds to the original Java package that contains the part. Similarly, if
the part is not in a common Smalltalk configuration map or application,
then the part is placed in the file called unusedParts.egl within the EGL
package that corresponds to the original Smalltalk application that contains
the part. You control the name for unusedParts with a Stage 1 preference.

* There are the following special considerations:

— Any function used as an edit routine on a map contributes to whether the
function is used or not used. However, the migration tool always places the
function with either the program or in the commonParts file. The migration
tool never places the edit function in a file that is created for the map group.

— Any shared item that is used in a table contributes to whether the data item
is used or not used. However, the migration tool always places the data item
with either the program or in the commonParts file. The migration tool never
places the data item in a file that is created for the table.

Note: If you migrate multiple migration sets or migration set versions without
clearing out the migration database, the first migration set version
processed in Stage 1 that contains a part edition controls the project,
package and file name for the EGL part. To ensure that parts are placed
according to the definition of each migration set version, you should clear
out the migration database between versions.

Chapter 2. Migration Tool Philosophy 33

The Stage 1 migration tools for Java and Smalltalk are provided as sample code.
You can modify the Stage 1 migration tools to place parts differently based on your
own library management philosophy. For example:

* If ProgramX calls ProgramY and passes records ProgramY-Parm and
Common-Parm, you might want ProgramY-Parm to be placed in the file with
ProgramY and Common-Parm to be placed in the commonParts file. Given
knowledge of your naming conventions, you can modify the Stage 1 migration
tool to change the file placement algorithm.

 For large packages, you might want to split the parts into separate files by part
type.

¢ If the same part edition appears in multiple migration set versions, but should
be placed in different EGL projects, packages, or files depending on the
migration set version, you might want to update the migration database for the
new EGL project, package, and file name for each part whenever you process a
migration set version. If you make this change, be sure to process each migration
set version completely through Stages 1 - 3 before starting to migrate the next
migration set version.

Migrating with a program

Normally when you migrate, you specify a migration set that identifies all the Java
projects or Smalltalk configuration maps that should be migrated as a group. Using
the migration set, the migration tool migrates programs and their associates first.
This enables the tool to use the context of a specific program to assist in resolving
situations where the EGL language is more precise or more restrictive than
VisualAge Generator. The first program to migrate, together with its associates,
determines the EGL syntax for any ambiguous situation within that program or its
associates. A different program might result in a different resolution for the same
ambiguous situation in a shared data item, common record, map, table or function.
Because a part version is only migrated once, the first program that uses the
common part controls the resolution of any ambiguous situation for its associates.

Consider the example in which ProgramA is a main transaction program using
display maps and ProgramB is a main batch program using printer maps. The
programs share common functions that display the HEADER and DETAIL maps.
The common functions also use the SET map PAGE statement to clear the screen
or force a page eject. In this case, if ProgramA migrates first, the migration tool
creates the EGL source for the functions to use the display statement and
clearScreen system library function. If ProgramB migrates first, the migration tool
creates the EGL source to use the print statement and the pageEject system library
function.

Whenever you migrate programs and their associates, the first program that uses a
shared data item, common record, map, table, or function controls the resulting
EGL code. In most cases, because the programs use the common code in the same
way, this technique provides the most appropriate migration of your VAGen
source. However, as you can see from this example, the specifics of what you
intended the common code to accomplish might not be reflected in the resulting
EGL source. In this example, regardless of which program migrates first, you will
not be able to test or generate the program that migrates second. In VisualAge
Generator Compatibility mode, you can use the display statement to resolve the
problem with the I/O statement. However, to resolve the problem with the choice
of clearScreen or pageEject might require adding a new variable, TEXT-OR-PRINT,
that each program initializes and which the common function tests to determine
whether to execute the clearScreen or pageEject system library function.

34 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Migrating with associated parts

If a program and its associates are not available, the migration tool makes use of
all the parts that are available in the migration set (or in the External Source
Format file if you are migrating in single file mode). In this case, if the additional
part that is needed for cross-part migration is available, the migration tool can
make a decision with a high probability that it is the correct choice.

Consider the example in which a map variable field specifies an edit routine. If a
VAGen table that is named the same as the edit routine is available in the same
migration set (or the External Source Format file), then the migration tool assumes
that this is the table that would always be used and migrates to the validatorTable
property. If there is a function that is named the same as the edit routine, then the
migration tool migrates to the validator property. In either case, because there is a
part with the same name as the edit routine, the migration tool has a high
probability that it made the correct choice. If a table or function with the same
name as the edit routine is not available, then the migration tool processes the map
variable as though it was migrating without associated parts.

In many cases, migration with associated parts can provide very similar migration
to what you would achieve when you migrate programs with their associates. The
disadvantage of migrating without the program is that you can quickly shift from
migrating with associated parts to migrating without associated parts even within
a single function based on the specific statement that is being migrated and the
other parts that are included in the file.

Migrating without associated parts

Sometimes even when a program is available, not all of its associates are included
in the migration set. Or you might be migrating some common parts that were
used in the past by a subsystem, but which are not currently in use. In this case,
the associates of a part that is being migrated might not be available. The
migration tool still converts the part using one of the following techniques:

¢ Flexibility in EGL syntax. For example, a DISPLAY I/O option is migrated
without an associated map. In this case the migration tool makes the choice of
using a display statement and includes a warning message in the migration log.
Even if the migration tool guessed incorrectly, because you use VisualAge
Generator Compatibility mode, the display statement will be accepted even if
the form is a print form.

¢ Intelligent guess. For example, a map variable field specifies an edit routine, but
there is no part named the same as the edit routine in the migration set (or the
External Source Format file). In this case, the migration tool makes use of other
information. The tool looks at the following to try to determine whether to use
the validatorTable or validator property:

— Length of the edit routine name, because 8 or more characters indicate it is a
function.

— Edit routine name is EZEC10 or EZEC11, which indicate it is a function.

— Edit message is also specified, because the message can only be used with an
edit table or EZEC10 or EZEC11.

Any of these enable the migration tool to make an intelligent choice between
setting the validatorTable or validator property. If there is nothing to make a
definitive choice, the migration tool uses the validator property and includes an
error message in the migration log. If the migration tool guessed incorrectly
there should also be an error on the Tasks list.

* Deliberately invalid syntax. For example, a SET map PAGE is migrated without
an associated map. In this case, the migration tool could make the choice

Chapter 2. Migration Tool Philosophy 35

between using an EGL sysLib.clearScreen function for a text form and an EGL
sysLib.pageEject function for a print form. However, both choices are equally
probable. Therefore, the migration tool creates intentionally invalid syntax and
converts to sysLib.EZE_SETPAGE. This results in an error on the Tasks list and
forces you to correct the problem.

* Direct conversion without information due to missing associates. (The missing
associates can result in problems undetectable by the migration tools.) For
example, RecordA specifies that it is redefining the storage of RecordB. In
VisualAge Generator, the redefinition information is stored in the record
definition for RecordA. When you generate, RecordA and RecordB must be
available and the redefinition is done for the RecordA in the program. In EGL
the redefinition information is only stored in the program. If RecordA is not
available when migrating the program, the migration tool has no way to detect
that RecordA needs to include the redefines property within the program.
Without the redefines property, EGL test and generation treat RecordA and
RecordB as separate data areas. The program will not run the same as in
VisualAge Generator -- data might not be initialized correctly and abends could
occur. This is why we strongly encourage you to generate and test your
migrated programs.

Overwriting and merging files

The Stage 2 and 3 migration wizards provide several related preferences that
control processing for multiple versions of the same migration set. These
preferences are as follows:

* Migrate remaining VAGen parts.
* Import into workspace -- with or without Override existing files.
* Save migrated files to temporary directory.

Migrate remaining VAGen parts controls whether the migration tool converts all
parts in the migration set to EGL.

* If you do not select Migrate remaining VAGen parts, only generatable parts and
their associates are converted into EGL and stored in the migration database.
Data items, records, and functions are not converted unless they are an associate
of one or more generatable parts. Control parts are not converted. Deselecting
Migrate remaining VAGen parts can be useful if you are migrating a subsystem
project and a common project in a single migration set. In this situation, the
following happens:

— For the subsystem project, only parts that are actually used within the
subsystem are converted.

— For the common project, any generatable parts and their associates are
converted. In addition, any data items, records, and functions that are used
by the subsystem are also converted. Other data items, records, and functions
that might be used by other subsystems but which are not used by the
current subsystem are not converted to EGL.

There are two advantages of deselecting Migrate remaining VAGen parts:

— For the subsystem project, you have the opportunity to clean up your code
because the migration tool only converts parts that are actually used.

— For the common project, you can defer converting parts until they are actually
used by another subsystem. When you include the common project in the
migration set for another subsystem, any additional parts used by this
subsystem are converted to EGL and stored in the migration database. This is
particularly useful if your common project has associates in various
subsystems or contains parts that are associates of generatable parts in
various subsystems. Deferring the migration of the common parts until a

36 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

subsystem uses the part enables the common parts to migrate "with
associates.” When you migrate the next migration set that contains the
common project, your selection for Ouverride existing files controls what
happens to the originally migrated common parts files.

* If you select Migrate remaining VAGen parts, the generatable parts and their
associates are converted to EGL and stored in the migration database. Then any
data items, records, and functions that are not associates of generatable parts are
converted to EGL. All control parts are also converted to EGL. There are two
advantages of selecting Migrate remaining VAGen parts:

— For the subsystem project, all the parts are converted to EGL regardless of
whether they are used or not. This is useful if you must preserve code for
historical purposes.

— For the common project, selecting Migrate remaining VAGen parts is
particularly useful if you know that the parts in the common project do not
have associates in the subsystem projects that you plan to migrate in the
future. You can convert all the common parts one time and have the EGL
stored in the migration database. Then if the common project is included in
the migration set for other subsystems, the EGL is already converted and
available to be imported into the workspace or saved into the temporary
directory with the new subsystem.

If you select Migrate remaining VAGen parts for your first migration set version,
you should continue to select Migrate remaining VAGen parts for other migration
set versions. You should also specify Override existing files. By specifying both
options you ensure that all the parts in the migration set are included in the
EGL file.

Import into workspace controls whether the migration tool builds the EGL
projects, packages, and files in your workspace. If you select Import into workspace,
there are additional options that you can select.

 If you are migrating multiple versions of a migration set, you can choose which
version to have imported into your workspace at the end of migration. You can
choose either the Latest version (most recent version) or the Oldest version. The
advantage of selecting the latest version is that this is the version which you are
most likely to want to generate for additional testing. The advantage of selecting
the oldest version is that this positions you to store the EGL projects, packages,
and files that correspond to the oldest version into your source code repository
first.

* You can specify how you want to handle the situation in which an EGL file that
is being created by the current migration already exists in your workspace.

— If you select Override existing files, the EGL file is replaced by a new file
containing only parts in the current migration set. The migration tool does
not convert VAGen part editions again if they were already converted for a
previous migration set. However, the migration tool does include the EGL for
the part editions in the file if the parts are included in the current migration
set. Select Override existing files if you decide to change your VAGen Migration
Syntax Preferences. In this situation, you could restore your database to the
end of Stage 1 and then run Stage 2 and 3 again with your new preferences.
Specifying Override existing files enables you to run Stage 2 and 3 without
having to clean out the EGL workspace first. Selecting Override existing files is
also useful if you specify Migrate remaining VAGen parts. In this situation, if
you migrate another version of a migration set, the EGL files are replaced by
a new file containing only those part editions that are included in the current
migration set version.

Chapter 2. Migration Tool Philosophy 37

— If you do not select Override existing files, the existing EGL file is modified to
contain any additional parts that are in the current migration set. Parts that
are already in the EGL file are not changed, even if the current migration
set uses a different part edition. Deselecting Override existing files is useful
only if you do not specify Migrate remaining VAGen parts and you are
migrating just one version of a common project, but with several different
subsystems. In this situation, you can gradually build up the EGL files for a
common project in stages as you migrate different subsystems. Only the
common parts used by the first subsystem are initially included in the EGL
file. When you migrate the second subsystem, the migration tool adds any
additional parts required for the second subsystem into the EGL file. The
migration tool does a merge of the original file and the additional parts so
that the parts continue to be organized alphabetically within part type.

You can select Import into workspace when you are migrating multiple versions of a
migration set. However, the better technique is to deselect Import into workspace and
instead select Save migrated files to temporary directory. Using the temporary
directory enables the migration tool to create all the migration set versions.

Save migrated files to temporary directory enables you to migrate multiple
versions of a migration set and store all the versions outside the workspace. This
option requires the use of multiple simultaneous instances of WebSphere Studio.
Therefore, due to the large amount of memory resource required, it is
recommended only for batch mode. When you select Save migrated files to temporary
directory, you must also specify a high level directory. The migration tool creates a
subdirectory for each migration set version within this high level directory. Save
migrated files to temporary directory works particularly well if you also specify
Migrate remaining VAGen parts. In this situation, each subdirectory corresponding to
a migration set version contains all the parts from the VAGen project versions that
are included in the migration set version.

General rules
There are some general rules that govern what the migration tool does when
migrating your source code. The rules are as follows:

* Any new variables that are added to support the EZE words or other statements
must be added to the program. They cannot safely be added as local storage in a
function. This is because a segmented converse is not supported if any function
currently in the stack has local storage, parameters, or a return value. Because
the function context is not known, there is no way to determine whether the
function would be in a function stack that leads to a segmented converse.
Therefore any new variables are added to the program, not as function local
storage. See [‘Intermediate variables required for migration” on page 65| for
details.

* You might have parts from Cross System Product or older releases of VisualAge
Generator that were migrated to VisualAge Generator 4.5, but never modified
within VisualAge Generator 4.5. In some cases, information is missing from the
External Source Format or is specified in a way that is not supported in EGL.
The migration tool attempts to supply the missing information or correct the
information. This includes the following:

— For main transactions, if the VAGen segmentation information is missing, the
migration tool defaults the EGL segmented property to no.

— For SQL records, if the SQL data code is missing, the migration tool converts
the item to a fixed length item.

— For SQL functions, the migration tool attempts to create any missing required
SQL clauses based on the record specified as the I/O object.

38 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

* Within a function, the migration tool converts all statements to something. This
preserves your IF / ELSE / END and WHILE / END logic. However, the
resulting statements might not be syntactically correct. For example:

If an EZESYS value is not supported in EGL, the migration tool uses the
VAGen value. There will be a message on the Tasks list if the value is not
supported.

EZE DL/I status words (EZEDL¥) are migrated to EGL system variables even
though DL/I is not currently supported by EGL. The EGL system variables
are a "best guess” as to the possible system variable names. The migration
tool issues an error message. There will also be an error on the Tasks list.

The CONVERSE 1/0 option is always migrated to an EGL converse statement
even though it might be used with a Ul record. The migration tool does not
issue a warning message. If the CONVERSE is for a Ul record, there will be
an error on the Tasks list because the Ul record cannot be migrated.

The XFER is always migrated to an EGL statement even though it might be
used with a Ul record. The migration tool issues an error message. There will
also be an error on the Tasks list.

The EZESCRPT special function word is commented out. There is no
corresponding EGL replacement. Because EZESCRPT could not be used in an
IF, WHILE, or TEST statement the structure of your function’s logic is
preserved. The migration tool issues an error message. There will not be an
error on the Tasks list.

* When trying to resolve a part reference without a program, the migration tool
looks at the parts in the migration set. Therefore it is important that you define
your migration sets to include groups of projects that are reasonable to use
together. For example:

Do not include projects from several subsystems that have conflicting part
names.

Do include common Java project or common Smalltalk applications when
migrating a subsystem.

¢ There are some things the migration tool does not do during migration:

The migration tool does not add import statements for the following
situations because these are not associates in VisualAge Generator:

- For a function that transfers to a program using a CALL, DXFR, or XFER
statement. If you are generating for Java, you must add the import
statement for the package containing the program within the file containing
the function, fully qualify the program name with the package name, or
use an entry in a linkage part to specify the name of the package where the
program is located.

- For a data item that specifies a validatorTable or validator function. You
must add the import statement to the file containing the data item to
specify the name of the package where the validatorTable or validator
function is located.

- For build parts in .eglbld files. VAGen control parts, such as the generation
options parts, do not list their associated parts, so the information is not
readily available to the migration tool. In addition, due to the way EGL
processes build descriptor parts, you will likely need to do some reordering
of the nextBuildDescriptor values (VAGen /OPTIONS). This reordering will
in turn require modification of any imports the migration tool might have
done.

EGL does not permit implicit items. VisualAge Generator permits implicit
items, but does not recommend them. Implicit items are items that are used

Chapter 2. Migration Tool Philosophy 39

in a program, but which are not explicitly defined in a record, table, or map
used by the program. The migration tool does not create definitions for
implicit items due to the performance impact of evaluating every unqualified
data item to determine whether it is an implicit item. You should provide
definitions for implicit items before you migrate. To resolve the problem
before you migrate, validate the program in VisualAge Generator to
determine whether the program actually used implicit items. If implicit items
were used, VAGen validation will provide a message with the correct
definition of the item. If you do not create a definition for the implicit item
before you migrate, there will be an error on the Tasks list and you can
correct the problem in WebSphere Studio.

— The migration tool does not attempt to set the containerContextDependent
property. This is something you can add later to specific common records or
functions that have the need to reference other parts that are provided by a
subsystem. See the section [“containerContextDependent Property” on page 3()
for more details of how to use this property for records and functions.

— The migration tool assumes that the VAGen syntax is valid and that a
program using the parts included in your migration set can be successfully
validated in VisualAge Generator. The migration tool does not attempt to
repair invalid syntax. For example:

- If the elements of a map array have different edit characteristics or
attributes, the characteristics for the first element of the array determine
what is migrated to EGL. The migration tool does not issue a message.

- If the lengths of shared data items in a record have changed so that the
length of a parent item does not match the sum of the lengths of its
substructure, the migration tool does not change any item lengths and does
not issue a message. There will be an error on the Tasks list indicating that
sum of the lengths of the children does not match the length of the parent.

— The migration tool does not attempt to improve inefficient code even if it
results in syntax errors in EGL. For example:

- If the same record is listed twice in a program’s Tables and Additional
Records list, the migration tool does not remove it and does not issue a
message. There will be an error on the Tasks list. Similarly, if the same table
is listed twice in a program’s Tables and Additional Records list, the
migration tool does not remove the extra table and does not issue a
message. There will be an error on the Tasks list.

- If a record is not used in a program, but is listed in a program’s Tables and
Additional Records list, the migration tool does not remove it and does not
issue a message. There will not be an error on the Tasks list. Similarly, if a
table is not used in a program, but is listed in the program’s Tables and
Additional Records list, the migration tool does not remove the table and
does not issue a message. There will not be an error on the Tasks list.

- If a working storage record is listed in the program’s Tables and Additional
Records list and the record only contains level 77 items, the migration tool
does not remove the record and does not issue a message. There will be an
error on the Tasks list indicating the record cannot be found. This is
because the only record that now exists includes your Level77 Suffix
preference as part of the record name.

- If a VAGen program includes a map group or a help map group, an actual
map group part did not have to exist. For example, if the program never
DISPLAYs or CONVERSEs a map or if the program never uses a map as a
called parameter, an actual map group part did not have to exist. In this
situation, the migration tool includes the use statement for the formGroup,
but does not include the import statement in the program because the map

40 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

group was not an associate of the program in VisualAge Generator. The
migration tool does not issue an error message. EGL requires an actual
formGroup part. If there is no formGroup part or if the formGroup part is
not in the same package as the program, there will be an error on the Tasks
list indicating that the formGroup specified in the program’s use
declarations cannot be found.

— The migration tool does not necessarily detect or provide warning messages

for the use of facilities that were not documented in VisualAge Generator,
even if there is no equivalent EGL support. For example:

- The VAGen EZEBYTES function is only documented to support items and

records. There was undocumented support for maps. The EGL sysLib.bytes
function only supports items and records. The migration tool does not
provide a warning message if you used EZEBYTES for a map. There will
be an error on the Tasks list.

If a CALL statement specifies an unqualified item as an argument, and
there are multiple definitions for this item name within the program, the
item is assumed to be a level 77 item in the program’s primary working
storage record. EGL requires that the item be qualified. The migration tool
does not add the qualification for you and does not provide a warning
message. There will be an error on the Tasks list.

Known restrictions for the migration tools

General

Be sure to review the EGL restrictions, specifically any restrictions for validation,
debugging, or generation.

Stage 1 on Java and Smalltalk

* If you migrate multiple migration sets or migration set versions without clearing
out the migration database, the first migration set version that contains a part
edition controls the project, package and file name for the EGL part. This
generally does not cause a problem if the following are true:

If your parts do not move between Java packages and you do not have
differently named migration sets that include the same Java package name.

If your parts do not move between Smalltalk applications and you do not
have differently named configuration maps that include the same Smalltalk
applications.

If your situation differs from what is described above, the workaround is to
migrate one migration set version all the way through Stages 1 - 3, then clear
out the migration database, and then migrate the next migration set version all
the way through Stages 1 - 3.

* If you plan to use a remote DB2 database for the migration database, be sure to
run a very small pilot test of Stage 1 through 3 to ensure that you are able to
access the remote database from Stages 2 and 3.

Stages 2 and 3 on WebSphere Studio

* Restrictions for the VAGen Migration wizards:

— When you enter the Database Information, the information is not validated

for each keystroke. Instead, you must tab out of the field. This avoids
multiple attempts to connect to the database.

Chapter 2. Migration Tool Philosophy 41

— If you are using WebSphere Studio Site Developer or WebSphere Studio
Application Developer, you should always select the Java radio button. For
other WebSphere Studio projects, you should only select COBOL if you plan
to run migration in online mode. Selecting COBOL for batch migration can
result in projects that do not have the required EGL properties and which are
thus not usable.

— The Cancel button on the progress window is inoperable. You cannot cancel
the Stage 2 or 3 migration tool after it starts other than by using the Task
Manager.

 If you run in batch mode, some projects might be created as "closed” projects.
These projects are only visible in the Navigator view. To open the project, select
the project, right-mouse click and then select Open Project from the context
menu. The project should now be visible on the Project Navigator view.

* When you shut down WebSphere Studio the first time after migrating a group of
projects and then bring WebSphere Studio back up, there might be a long start
up time while projects rebuild. The time varies based on the number of projects
and the number of circular project dependencies between the projects. This long
delay does not occur on subsequent start ups.

* You might need to shut down WebSphere Studio to switch between using the
migration database and your application databases.

Syntax migration

* The migration tool correctly converts SQL keywords used as column names
within the SQL record structure. However, the migration tool does not handle
SQL keywords used as column names within the SQL defaultSelectCondition for
a record or within the SQL clauses for a function. The workaround is to modify
the SQL defaultSelect Condition or SQL clause as described in
[words requiring special treatment” on page 172} This section provides a list of
SQL keywords and details of the syntax required for the SQL
defaultSelectCondition and SQL I/0O statements.

* The migration tool converts SQL I/O with execution time statement build to a
prepare statement. However, if any host variables in the SQL statement are
smallint, int, bigint, binary, or decimal fields, the prepare statement is not
correct. The workaround is to change the prepare statement by replacing each
host variable with the ? symbol and then adding the variable names in a using
clause for the execute, open, or get statement that is associated with the prepare
statement. Refer to the "prepare” topic in the online helps for examples of the
correct syntax.

 If you select the preference to Convert shared data items to primitive item definitions,
the migration tool correctly converts the item definitions. However, it does not
remove the corresponding import statements. You can reduce the time it takes to
build a project by removing any import statements that are not required for
other part references.

* Parts are sorted alphabetically by VAGen part name within the part type.

* Bind control parts incorrectly add a DBRMLIB named
%ELA%.NEW.SELADBRM. The correct name is %ELA%.SELADBRM.

42 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Chapter 3. Handling ambiguous situations

There are a number of situations where the migration tool might not have all the
information from VisualAge Generator needed to produce the corresponding EGL
statement. These situations are called ambiguous situations because the
corresponding EGL statement could change or produce different results depending
on the inputs from VisualAge Generator. In these ambiguous situations, the
migration tool might not migrate to EGL statements that match what you intended
in VAGen. In many of the ambiguous situations, the EGL statements that are
produced vary, depending on your migration process:

* Whether you migrate with a program and its associates, and if so, the order in
which programs are migrated.

* Whether you migrate without a program, but with the necessary associated
parts, so that cross-part migration can still be accomplished.

* Whether you migrate without associates, so that the migration tool is limited in
the information it has available to make an intelligent choice.

Migrating with a program and its associates is the preferred way of migrating with
associates because it guarantees the maximum information. The tables that follow
explain the differences between migrating with and without associated parts for
the following part types:

* Shared data items

* Records

* Tables

* Map groups and maps

¢ Programs

* Functions, including 1/0 statements
* Other statements

* EZE words

The tables also show some potential problems that can arise for these ambiguous
situations and suggest possible solutions for these problems. No one solution is
best for every situation. For example, when there are two parts with the same
name, renaming the one that is the least frequently used would have the least
effect in other areas of your code.

Handling ambiguous situations for data items

Pack data items with even length

VisualAge Generator: The length for pack data items is specified as the number of
digits, up to a maximum of 18. Even lengths are recorded within the shared data
item definitions and for nonshared data items within record definitions. However,
in most editors, and in test and generation, the length that is used is the next
higher odd length, with a maximum of 18. Only the SQL Record Editor displays
the even length. For even length items used as host variables in SQL WHERE
clauses or in SQL statements that specify Execution Time Statement Build, test and
generation create a temporary variable with the even length.

© Copyright IBM Corp. 2004 43

EGL: In VisualAge Generator Compatibility mode, EGL test and generation
provide the same support as in VisualAge Generator. For decimal items with even
precision, test and generation increase the precision by one in all records and use a
temporary variable with the even precision in SQL where clauses or prepare
statements. If VisualAge Generator Compatibility mode is not specified, EGL uses
the precision specified for the data item.

Associated part needed for migration: Not applicable.

Table 9. Pack data items with even length

Migrating with the associated part Migrating without the associated part
The migration tool migrates pack data items with The migration tool does the same things as mentioned in the
even lengths as follows: Migrating with the associated part column.

* Uses the even or odd length specified in VisualAge
Generator for shared data item definitions,
regardless of whether the item is ever used in an
SQL row record.

* Uses the even or odd length specified in VisualAge
Generator for nonshared items in all record
definitions, because the item might be used as a
host variable in an SQL where clause or prepare
statement.

* Uses an odd length (or 18 if the item is the
maximum length) for nonshared items in tables,
function parameters, function return values, and
function local storage because the information to
determine an even number of digits was not
recorded in VisualAge Generator in these

situations.
Potential Problem: A problem only arises if you Potential Problem: The same potential problem and solution
eliminate the use of VisualAge Generator as listed in the Migrating with the associated part column

Compatibility mode. In this situation, overflow might |apply.
occur due to having fewer significant digits than in
VisualAge Generator Compatibility mode.

Potential Solution: Before eliminating VisualAge
Generator Compatibility mode, do the following:

* Review your SQL table and view definitions to
determine if you have any SQL columns that
require even precision. If so, assess the SQL
performance impact of using host variable lengths
that do not match the SQL column definition.

e Review all decimal data item definitions and
primitive data item definitions in EGL records for
even length items. Assess whether overflow might
occur for any of these items.

Shared edits and messages

VisualAge Generator: A shared data item definition can specify default edits and
messages for both maps and User Interface (UI) records.

EGL: There is only one set of edit and message properties for a data item. Even
though UI records are not supported in this release of EGL, the migration tool
merges the map and UI properties for the data items. This preserves as much of
your data item information as possible.

44 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Associated part needed for migration: Not applicable.

Table 10. Shared edits and messages

Migrating with the associated part

Migrating without the associated part

The migration tool merges map and Ul edits as follows:

* For each edit or message, the migration tool does the first of the
following that applies:

— If a Ul edit is specified, the migration tool converts the UI edit
and its associated message information to the corresponding
EGL properties.

— If only a map edit is specified, the migration tool converts the
map edit and its associated message to the corresponding EGL
properties.

— If the UI message is specified without its associated UI edit,
the migration tool converts the UI message to the
corresponding EGL property.

— If the map message is specified without its associated map
edit, the migration tool converts the map message to the
corresponding EGL property.

— If UI and map edit and message information are not specified,
the migration tool does not set the corresponding EGL
properties. The normal EGL defaults apply.

* In VisualAge Generator, Justify and Hex edit are only specified
for map edits, so they are always used to set the corresponding
EGL properties.

Except as noted later in this section (Handling
ambiguous situations for data items), the
migration tool migrates the default edits and
messages in the same way both with and
without the associated parts.

Potential Problem 1: A problem only arises if conflicting map edits
and Ul edits exist in VisualAge Generator and you really intend the
edits to differ between maps and UI records. The problem does not
occur until the item is added to a text or print form.

Note: If you never used VAGen Web Transactions, only map edits
should exist in VisualAge Generator and you should not have a
problem.

Possible Solution: Other than adding a comment to the data item
definition to list the VAGen map item edits and messages, there is
nothing you can do for the data item definition. If you add the
item to a text or print form, you can override any properties that
need to differ for that particular form.

Potential Problem 2: A problem can also arise if you use the item
in an EGL UI record. The item might have some additional edits or
messages that were migrated from the VAGen map edits.

Solution: Always review the edits for items in a UI record.

The same potential problems mentioned in the
Migrating with the associated part column apply.
You can use the same solutions.

Map item edit routine for shared data items

VisualAge Generator: A shared data item definition can have a map item edit
routine that is a table, a function, or EZEC10 or EZEC11. The edit message is only
used if the edit routine is EZEC10, EZEC11, or a table.

EGL: A data item can have both a validatorTable and a validator function. The
data item can also have both a validatorTableMsgKey and a validatorMsgKey.

Associated part needed for migration: Either the table or the function part.

Chapter 3. Handling ambiguous situations 45

Table 11. Map item edit routine for shared data items

Migrating with the associated part

Migrating without the associated part

The first time the shared data item is migrated, the

migration tool does the first of the following that

applies:

¢ If the editRoutineName is EZEC10 or EZEC11, the
migration tool sets the validator property to the
EGL equivalent system library function. The
migration tool also sets the validatorMsgKey to the
edit message, if any.

¢ If the editRoutineName is a function, then the
migration tool sets the validator property. The
migration tool omits the validatorMsgKey because
it is not used in VisualAge Generator.

¢ If the editRoutineName is a table, then the
migration tool sets the validatorTable property. The
migration tool also sets the validatorTableMsgKey
to the edit message, if any.

* If the edit routine is not specified but the edit
message is specified, the migration tool sets the
validatorTableMsgKey to the edit message.

Note: Even when migrating in program context, the
editRoutineName might not be available if the shared
item is not used on a map or if its edits on the map
differ from what was specified in the shared item
definition.

If a function or table with the same name as the
editRoutineName is not available, the migration tool does
the first of the following that applies:

e If the editRoutineName is EZEC10 or EZEC11, the
migration tool sets the validator property to the EGL
equivalent system library function name. The migration
tool also sets the validatorMsgKey to the edit message, if
any.

* If the editRoutineName is longer than 7 characters, it
must be a function name, so the migration tool sets the
validator property. The migration tool omits the
validatorMsgKey because it is not used in VisualAge
Generator.

* If an edit message is specified, the migration tool sets the
validatorTable and validatorTableMsgKey:.

* Otherwise, the migration tool sets the validator property
and issues an error message.

If the edit routine is not specified but the edit message is
specified, the migration tool sets the validatorTableMsgKey
to the edit message.

Potential Problem: A problem only arises if a VAGen
function and table have the same name, most likely
in different subsystems. In this situation, one
subsystem uses a function and another subsystem
uses a dataTable. The problem does not occur until
the item is added to a text form.

Possible Solution 1: Rename the dataTable so there
are no longer two parts with the same name. Specify
both a validator and validatorTable property for the
item definition. If you add the item to a text form,
delete the validator or validatorTable property,
whichever is not needed for that particular form.
Disadvantage: You must modify your programs and
forms to use the new dataTable name.

Possible Solution 2: Set both validator and
validatorTable properties to the same name.
Disadvantage: the data item definition is always
listed as an error on the Tasks list.

Potential Problem 1: A problem arises if the migration tool
guesses incorrectly. The problem does not occur until the
item is added to a text form.

Possible Solution: Correct the data item definition.

Potential Problem 2: The same problem listed under the
Migrating with the associated part column can also occur. You
can use the same solutions.

Fill characters for shared data items

VisualAge Generator: The default fill character for map edits is null for character,
mixed or DBCS; blank for numerics; and 0 for hex. The default fill character for Ul
edits is blank for character, mixed, DBCS, unicode, and numerics; and 0 for hex.
Null is not a valid fill character for Ul records. A different fill character can be
specified for map edits and Ul edits.

46 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

EGL: There is only one default fillCharacter property for a data item. Even though
UI records are not supported in this release of EGL, the migration tool merges the
map and Ul fillCharacter properties for the data items. This preserves as much of

your data item information as possible.

Associated part needed for migration: Not applicable.

Table 12. Fill characters for shared data items

Migrating with the associated part Migrating without the associated part

The first time the shared data item is migrated, the The migration tool does the same thing as mentioned in the
migration tool does the first of the following that Migrating with the associated part column.

applies:

* If the Ul edits specify a fill character, the migration
tool migrates the character to the EGL fillCharacter
property.

* If the map edits specify a fill character, the
migration tool migrates the character to the EGL
fillCharacter property.

* If neither the UI edits nor the map edits specify a

fill character, the migration tool does not set the
EGL fillCharacter property.

Potential Problem: A problem only arises if you add |The same problem listed under the Migrating with the
a data item that was migrated using one type of edits | associated part column can occur. You can use the same

to a different type of user interface (form or user solution.
interface record).

Possible Solution: Always review the fill character
when adding a new item to a form or user interface
record.

Handling ambiguous situations for records

Redefined records

VisualAge Generator: The redefined record type provides a different data item
layout for another record. The redefined record specifies the name of the record it
is redefining. For example, RecordA is a REDEFINED record that redefines
RecordB. VisualAge Generator determines whether RecordA is really a redefinition
of RecordB based on the use of RecordA within the program. If RecordA is used as
a called parameter, RecordA is not treated as a redefinition of RecordB.

EGL: RecordA is a basicRecord. Redefinition information is only provided within a
program definition -- not in the definition of RecordA.

Associated part needed for migration:
* When migrating a redefined record: not applicable.
* When migrating a program: the redefined record (RecordA).

Chapter 3. Handling ambiguous situations 47

Table 13. Redefined records

Migrating with the associated part

Migrating without the associated part

When migrating a redefined record, the migration tool
does the following:

* Migrates the redefined record (RecordA) to a
basicRecord.

¢ Includes a VAGen Info comment in Record A
indicating it redefined RecordB.

* Issues an informational message that Record A
redefines RecordB.

When migrating a redefined record, the migration tool does
the same thing mentioned in the Migrating with the
associated part column.

When migrating a program, if RecordA is available,
the migration tool does the following:

e If RecordA is treated as a redefinition of RecordB in
VisualAge Generator, the migration tool includes the
redefines property in the declaration for RecordA.

e If RecordA is not treated as a redefinition of
RecordB in VisualAge Generator, the migration tool
does not include the redefines property in the
declaration for RecordA.

When migrating a program, if RecordA is not available, the
migration tool does not know that RecordA is a redefined
record. The migration tool does not include the redefines
property in the declaration for RecordA.

Considerations for new use: A problem only arises if
you need to use RecordA and RecordB in a new
program. You must remember to include the redefines
property for RecordA whenever you want RecordA to
be treated as a redefinition of RecordB.

Potential Problem 1: A problem arises if the VAGen
program uses RecordA as a redefinition. Immediately after
migration, the program will not be a valid EGL program
because the definition for RecordA and the import
statement will be missing. There will be an error on the
Tasks list. If you migrate RecordA and add the import
statement to the program, this will convert the program
into a valid EGL program. However, there will be two data
areas -- one for RecordA and one for RecordB. EGL will not
detect this change during validation or preprocessing. The
program will not run the same as in VisualAge
Generator.

Solution: If you migrate additional records or add import
statements to a program, review the record definitions for a
VAGen Info comment. If there is a VAGen Info comment
specifying that that RecordA is a redefinition for RecordB,
update the program to include the redefines property for the
declaration of RecordA.

Considerations: The same considerations for new use listed
under the Migrating with the associated part column can also
occur.

Level 77 items in records

VisualAge Generator: Working storage records can have level 77 items.

EGL: Records cannot have level 77 items.

Associated part needed for migration:

* When migrating a working storage record: not applicable.

* When migrating a program: the primary working storage record.

* When migrating a function: the working storage record.

48 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 14. Level 77 items in records

Migrating with the associated part

Migrating without the associated part

When migrating any working storage record that
contains level 77 items, the migration tool does the
following:

* Splits the working storage record that contains
level 77 items into two basicRecords -- one for
the working storage structure and one for the
level 77 items. The new level 77 record name is
the original working storage record name with a
customer-supplied suffix.

* Places the new level 77 record in the same file
with the original working storage record.

* Issues an informational message that the level 77
record is being created.

When migrating any working storage record that contains
level 77 items, the migration tool does the same things
mentioned in the Migrating with the associated part column.

When migrating a program, if the primary working
storage record is available and contains level 77
items, the migration tool adds a record declaration
to the program for the new level 77 record if the
primary working storage record contained level 77
items.

When migrating a program, if the primary working storage
record is not available, the migration tool does not know
whether the primary working storage record contains level 77
items. The migration tool does not include a record declaration
for a level 77 record.

When migrating a function, if the working storage
record is available, the migration tool changes
qualified references to the level 77 items within the
function to use the new level 77 record name.

When migrating a function, if the working storage record is
not available, the migration tool does not change the
qualification of item names.

Potential problem: A problem only arises for the
level 77 item if there are two records of the same
name, possibly in different subsystems, and the
item is a level 77 item in one record and not in
another.

Possible solution: Move the item to a (new)
common record and change the item qualification
in all functions. Alternatively, do not qualify the
item in the functions.

Considerations for new use: There is a potential
problem if you specify the original working storage
record as the inputRecord property for a new
program. Be sure to consider whether you also
need to add a declaration for the new level 77
record.

Potential Problem 1: A problem arises if the primary working
storage record contained level 77s and the program used the
level 77s. Preprocessing for the program will fail due to
missing item definitions.

Solution: Add the level 77 record to the program.

Potential Problem 2: A problem arises for a function if the
qualified data item is really a VAGen level 77 item.

Solution: Modify the function to provide the correct qualifier
for the data item.

Potential Problem 3: The same problem listed under the
Migrating with the associated part column can also occur. You
can use the same solution.

Considerations: The same considerations for new use listed
under the Migrating with the associated part also apply.

Alternate specification records

VisualAge Generator: A record can specify another record as the alternate
specification (altspec) record. For example, if RecordA specifies an altspec of
RecordB, then RecordB provides the structure for RecordA. For SQL records,
RecordB also provides the list of tables and keys for RecordA. If RecordA specifies
a key item, that item is merged with the keys from RecordB when determining the
default selection condition.

EGL: A record can embed another record to obtain the record structure. Only the
record structure is included. Each SQL record must explicitly state its entire set of

tables and keys.

49

Chapter 3. Handling ambiguous situations

Associated part needed for migration: If RecordA is an SQL record, you need the
record specified as the altspec record (RecordB).

Table 15. Alternate specification records

Migrating with the associated part

Migrating without the associated part

If RecordA is an SQL record that specifies an alternate
specification of RecordB and RecordB is available, the
migration tool does the following for RecordA:

¢ Creates the list of table names from the list of tables
specified in RecordB.

Creates the list of keys by merging the following:

— The items, if any, in RecordB that specified
key=yes.

— The item, if any, in RecordA that is specified as
the key item.

The order of the keys is the order in which the
items appear in the structure of RecordB.

Includes the embed statement pointing to RecordB.

Migrates any !itemColumnName variables in the
default selection conditions of RecordA to the
corresponding SQL column names from RecordB.

If RecordA is an SQL record that specifies an alternate
specification of RecordB, and RecordB is not available, the
migration tool does the following for RecordA:

* Sets the tableNames property to
#HH#TABLES_NOT_FOUND###

Sets the keyltems property to
#HKEYS_NOT_FOUND###, followed by the item, if any,
that is specified as the key item in RecordA.

Includes the embed statement pointing to RecordB.
Migrates any !itemColumnName variables in the default
selection conditions of RecordA to !itemColumnName
without any substitution.

Issues error messages that the tables and keys could not
be determined.

Issues an error message if there are any
litemColumnName variables.

Potential Problem: A problem only arises for SQL if
the definition for RecordB differs, generally in different
subsystems. There is no problem for non-SQL records.

Solution: Duplicate the definition of RecordA so that
each subsystem has its own definition of RecordA.
Alternatively, specify containerContextDependent=yes for
RecordA.

Problem: EGL validation for RecordA results in messages
on the Tasks list.

Solution: Edit RecordA and include the appropriate table
and key information based on RecordB. Also replace any
litemColumnName variables in the default selection
condition with the corresponding SQL column name from
RecordB.

Different definitions with the same record name

VisualAge Generator: Records include shared data items based on the projects and
packages currently in the workspace. This enables different subsystems or
programs to have different definitions of the same record name.

EGL: Provides the containerContextDependent=yes property for record definitions.

This property enables you to

specify that the data items used for type definitions

are based on the program’s part space.

Associated part needed for migration: Not applicable. You should have complete
understanding of your VAGen part structure for all subsystems to be able to set

this record property.

Table 16. Different definitions with the same record name

Migrating with the associated part

Migrating without the associated part

The migration tool does not set the
containerContextDependent=yes property for record
definitions. If you need this capability, you must
set the property for each record that requires it.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

50 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Handling ambiguous situations for tables

Reserved words and table names

VisualAge Generator: VisualAge Generator does not have reserved words. The #
symbol is not valid in VAGen table names.

EGL: EGL has reserved words. In addition, EGL does not permit the # symbol as
the first character of a part name. A dataTable name cannot be a reserved word.

Associated part needed for migration: Not applicable.

Table 17. Reserved words and table names

Migrating with the associated part Migrating without the associated part

The migration tool does not rename the table for The migration tool does the same thing as mentioned in the
you. The migration tool used in Stage 1 of migration | Migrating with the associated part column.

issues an error message if the table name matches
the reserved word list. If you do not change the
table name, the migration tool used in Stage 2 of
migration also issues an error message.

Potential Problem: A problem only arises if a The same problem listed under the Migrating with the
dataTable name matches the reserved word list. EGL |associated part column can occur. You can use the same
validation results in a message on the Tasks list. solution.

Solution: Rename the table in VisualAge Generator
before you migrate, or rename the dataTable in EGL
after you migrate. If you change the name in
VisualAge Generator, be sure to change all
references to the table in programs, maps, functions,
and data item definitions. If you change the name in
EGL, you must change the name of the table and all
references to it. This includes references in the
following places:

* Program use declaration statements

* Logic statements in programs and functions

e Data item validatorTable properties

* Form field validatorTable properties

If you want to keep the original table name as the
name for the generated table, set the alias property
to the original table name. If you do not specify the
alias property, be sure to change any non-EGL

references to the table name, including CICS
program definitions.

Handling ambiguous situations for map groups and maps

Reserved words and formGroup names

* VisualAge Generator: VisualAge Generator does not have reserved words. The #
symbol is not valid in VAGen map group names.

* EGL: EGL has reserved words. In addition, EGL does not permit the # symbol as
the first character of a part name. A formGroup name cannot be a reserved
word.

* Associated part needed for migration: Not applicable.

Chapter 3. Handling ambiguous situations 51

Table 18. Reserved words and formGroup names

Migrating with the associated part

Migrating without the associated part

The migration tool does not rename the formGroup for
you. The migration tool used in Stage 1 of migration
issues an error message if the map group name matches
the reserved word list. If you do not change the map
group name, the migration tool used in Stage 2 of
migration also issues an error message.

The migration tool does the same thing as mentioned in
the Migrating with the associated part column.

Potential Problem: A problem only arises if the
formGroup name matches the reserved word list. EGL
validation results in a message on the Tasks list.

Solution: Rename the map group in VisualAge
Generator before you migrate or the formGroup in EGL
after you migrate. If you rename the map group in
VisualAge Generator, be sure to rename all the maps
that belong to the map group. Also change all
references to the map group in all program definitions.
If you rename the formGroup in EGL, you must change
the name of the formGroup and all references to it,
including references in program use declaration
statements. If you want to keep the original map group
name as the name for the generated formGroup, set the
alias property to the original map group (formGroup)
name. If you do not specify the alias property, be sure to
change any non-EGL references to the formGroup
name, including CICS program definitions.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Map group and formGroup requirements

VisualAge Generator: A map group is only required if there is a floating area

specification.

EGL: A formGroup is always required to contain the forms.

Associated part needed for migration: The map group and all maps in the map

group.

Table 19. Map group and formGroup requirements

Migrating with the associated part

Migrating without the associated part

If a map group does not exist, the migration tool does
the following:

Creates a formGroup for all maps with the same
map group name.

Puts all the forms for the same formGroup in the
same EGL file.

Nests the forms within the formGroup definition if
not migrating with single file migration.

Issues an error message indicating that the

formGroup requires editing to nest the forms if
migrating in single file mode.

The migration tool does the same things mentioned in the
Migrating with the associated part column. However, if you
do not have the map group and all its maps in the same
migration set, there can be problems as described below.

52 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 19. Map group and formGroup requirements (continued)

Migrating with the associated part

Migrating without the associated part

Potential Problem: None. All maps for the map group
should be included in the same migration set. Because
the migration set represents what is generated, the
migration set should include all maps in the map

group.

If you are migrating in single file mode, be sure to
include all the maps in the map group in the same
External Source Format file.

Potential Problem: If all maps for the same map group
name are not included in the same migration set (or
External Source Format file for single file mode migration),
the formGroup will not include all the forms.

Possible Solution 1: Be sure the migration set includes all
maps with the same map group name.

Possible Solution 2: Add the missing forms to the EGL file
and nest them within the formGroup definition.

Floating areas and starting positions

VisualAge Generator: VisualAge Generator permits, but does not recommend,
having different floating area sizes and starting positions for different device types
that have the same device size.

EGL: EGL formGroups and print forms only specify the device size. EGL text
forms specify both the device size and the device type. EGL only permits one
floating area size and starting position for a device size.

Associated part needed for migration: Not applicable.

Table 20. Floating areas and starting positions

Migrating with the associated part

Migrating without the associated part

The migration tool does the following:

* Issues an error message if two or more devices have
the same device size but different floating area sizes
or starting positions.

* Includes all of the floating area sizes and starting
positions.

* Includes a warning message in the EGL source.

The migration tool does the same things mentioned in the
Migrating with the associated part column.

Potential Problem: A problem only arises if two or
more devices with the same device size specify
different floating area sizes or starting positions in
VisualAge Generator. EGL validation results in a
message on the Tasks list.

Possible Solution: Review the error messages. Edit the
formGroup definition to specify the one floating area
size and starting position that you require for this
device size. Then delete the warning message from the
EGL source.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Map groups, maps, and device sizes

VisualAge Generator: VisualAge Generator supports device sizes for display maps
with a depth and width of 6x40, 12x40, 16x64, and 255x160.

EGL: EGL supports common device sizes for text forms, but does not permit
device sizes of 6x40, 12x40, 16x64, and 255x160 for COBOL generation. These
devices are supported for Java generation..

Associated part needed for migration: Not applicable.

53

Chapter 3. Handling ambiguous situations

Table 21. Map groups, maps, and device sizes

Migrating with the associated part

Migrating without the associated part

When migrating a map group, the migration tool
includes the original depth and width in the screenSize
property within the ScreenFloatingArea property. The
tool also issues a warning message.

The migration tools does the same thing as mentioned in
the Migrating with the associated part column.

When migrating a display map, the migration tool
includes the original depth and width in the screenSizes
property for the migrated text form. The tool also
issues a warning message.

The migration tools does the same thing as mentioned in
the Migrating with the associated part column.

Potential Problem: These devices are not supported by
EGL COBOL generation. There will be an error during
preprocessing.

Solution: If you generate for COBOL, edit the
formGroup and the text form in EGL and either remove
or change the obsolete screen size.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Map names and help map names

VisualAge Generator: Map names are two-part names consisting of the map group
and the map name. The main map group and the help map group for a program
can both contain a map with the same name. For example, for Program X, main
map group GROUPA and help map group GROUPH can each contain a map
named MAP1. Map names are limited to 8 characters. The # symbol is not valid in
VAGen map group names, but the # symbol is permitted in the map name portion
of a map name.

EGL: Form names do not include the formGroup name. Instead, text and print
forms are defined within a formGroup part. Within a program, all the text form
and help text form names must be unique. EGL also requires that all form names
in the main formGroup and help formGroup be unique (no duplicate form names
in the two formGroups for a program). In addition, EGL does not permit the form
name to be a reserved word or to use the # symbol as the first character of the
form name. EGL allows form names to be longer than 8 characters at definition
time. At generation time, if an alias is specified, the alias is used as the form name.
Duplicate names are permitted in the main formGroup and help formGroup for
the generated code.

Associated parts needed for migration: When migrating a map group, you need
the program and its map group, help map group, and all the maps in both map
groups.

54 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 22. Map names and help map names

Migrating with the associated parts

Migrating without the associated parts

Based on the first program to migrate either the
main map group or the help map group, the
migration tool does the following:

* Performs any renaming for map names due to
reserved words or the # symbol being used as the
first character of the map name portion of the
name. Maps in both the program’s main map
group and help map group are renamed as
necessary.

* Checks the names of all maps in the program’s
help map group for duplicate names with the
main map group.

If a map in the help map group does not have the
same name as any map in the main map group, the
migration tool does not change the help map name.

If a map in the help map group has the same name
as any map in the program’s main map group, the
migration tool does the following:

* If the help map contains only constants, the
migration tool does the following:

— Renames the help map to helpMapName plus
a customer-specified suffix.

— Includes the alias property with the original
help map name.

— Changes the helpForm property for any map to
specify the new help map name.

 If a map in the help map group contains
variables, the migration tool does the following:

— Issues an error message.

— Does not rename the map.

- Migrates the map.

This is because the map could be used by some

other program that specifies the help map group
as that program’s main map group.

When migrating map groups, if a program is not available,
the migration tool does not know that two map groups are
related and does not know whether a map group is ever
specified as a help map group. The migration tool does the
following:

* Performs any renaming for map names due to reserved
words.

* Does not check for additional renaming of help maps.

Chapter 3. Handling ambiguous situations

55

Table 22. Map names and help map names (continued)

Migrating with the associated parts

Migrating without the associated parts

Potential Problem 1: A problem can arise if a
formGroup is used as a main formGroup in one
program and a help formGroup in another program.

Possible Solution: Separate the help formGroup into
two formGroups, one containing only help forms
and the other containing forms with variable fields.
Specify the formGroup that contains only help forms
as the help formGroup for the original program.
Specify the formGroup containing the forms with
variable fields as the main formGroup and the
formGroup containing only the help forms as the
help formGroup for the second program.

Potential Problem 2: A problem arises if a map in
the help formGroup contains variable fields and has
the same name as a map in the main formGroup.

Possible Solution: Same as possible solution for
Problem 1.

Potential Problem 3: A problem can arise if the
same help formGroup is shared by multiple
programs. In this case, the migration tool might not
rename all the help forms that need to be renamed
for the various programs.

Possible Solution: Rename all the necessary forms
in the help formGroup by adding your help map
suffix to the name. Also change all corresponding
text forms in all form groups to specify the new
help form name.

Potential Problem: A problem only arises if the formGroup is
used in a program and there is a conflict between the form
names in the main formGroup and help formGroup.

Possible Solutions: The same solutions as shown for
Migrating with the associated part apply.

Numeric variable fields

VisualAge Generator: A numeric field on a map has one length. The length should
be long enough to allow for all the digits, the decimal point, sign, currency
symbol, and numeric separator. However, if the field is not long enough at
runtime, VisualAge Generator omits the currency symbol and numeric separator.
VisualAge Generator also omits the sign if it is positive. If necessary to fit into the
space allowed, VisualAge Generator drops the high order digits.

EGL: Variable fields on a form specify both a type definition, which includes the
number of digits and decimals, and a fieldLen that specifies the space that the data
occupies on the form. If the fieldLen is not big enough to contain all the digits and
formatting characters at runtime, EGL issues a runtime message.

Associated part needed for migration: Not applicable.

56 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 23. Numeric variable fields

Migrating with the associated part

Migrating without the associated part

When migrating a numeric field on the map, the

migration tool sets the length and fieldLen as follows:

* The migration tool always sets the fieldLen to the
same length as specified for the variable field in
VisualAge Generator.

* The migration tool sets the length and decimals in
the type definition as follows:

— If the variable field does not specify decimals,
the migration tool sets the length in the type
definition to the fieldLen.

— If the variable field specifies decimals, the
migration tool sets the length in the type
definition to fieldLen minus 1 to allow for entry
of the decimal point. This technique avoids any

overflow problems that might occur at run time.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

Potential Problem: If the field length on the form is
not large enough at run time to contain all the digits,
decimal point, sign, currency symbol, and numeric
separator characters, EGL issues a run time error
message.

Solution: Change the form definition so that the
fieldLen is large enough to contain the largest
possible number that will occur at run time and all
the formatting characters that you specify.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Variable map fields and edit routines
VisualAge Generator: A map variable field can have an edit routine that is a table,
a function, EZEC10, or EZEC11. The edit message is only used if the edit routine is
EZEC10, EZEC11, or a table.

EGL: A form field can have both a validatorTable and a validator function. A form
field can also have both a validatorTableMsgKey and a validatorMsgKey.

Associated part needed for migration: Either the table or function part.

Chapter 3. Handling ambiguous situations

57

Table 24. Variable map fields and edit routines

Migrating with the associated part

Migrating without the associated part

The first time the map is migrated, the migration
tool does the first of the following that applies:

¢ If the editRoutineName is EZEC10 or EZEC11,
the migration tool sets the validator property to
the EGLequivalent system library function. The
migration tool also sets the validatorMsgKey to
the edit message, if any.

¢ If the editRoutineName is a function, then the
migration tool sets the validator property. The
migration tool omits the validatorMsgKey
because it is not used in VisualAge Generator.

¢ If the editRoutineName is a table, then the
migration tool sets the validatorTable property.
The migration tool also sets the
validatorTableMsgKey to the edit message, if
any.

If a function or table with the same name as the

editRoutineName is not available, the migration tool does the

first of the following that applies:

¢ If the editRoutineName is EZEC10 or EZEC11, the migration
tool sets the validator property to the EGL equivalent
system library function name. The migration tool also sets
the validatorMsgKey to the edit message, if any.

If the editRoutineName is longer than 7 characters it must
be a function name, so the migration tool sets the validator
property. The migration tool omits the validatorMsgKey
because it is not used in VisualAge Generator.

* If an edit message is specified, the migration tool sets the
validatorTable and validatorTableMsgKey.

* If an edit message is not specified, the migration tool sets
the validator property and issues an error message.

Potential Problem: A problem only arises if a
VAGen function and dataTable have the same
name (most likely in different subsystems) and two
programs share the same formGroup (most likely
in the same subsystem) and one program expects
to use the function and the other program expects
to use the dataTable.

Possible Solution: Review programs that share a
formGroup. If the situation arises, create a separate
formGroup to use the validatorTable.
Disadvantage: There are now two formGroups to
maintain.

Potential Problem: A problem only arises if the migration tool
guesses incorrectly. Any program that uses this map might
expect a table when the migration tool specified a function.

Possible Solution: Review the uses of maps that have error
messages.

Map fields and the numeric hardware attribute

VisualAge Generator: VisualAge Generator supports the numeric hardware
attribute for character constant fields, character variable fields, and numeric
variable fields. The numeric hardware attribute prevents the end user from typing
non-numeric data in a variable field.

EGL: EGL only supports the isDecimalDigit attribute for character variable fields.
Numeric fields have a soft edit to ensure that only valid numeric characters and
formatting characters such as a sign or decimal point are entered into the field.

Associated part needed for migration: Not applicable.

Table 25. Map fields and the numeric hardware attribute

Migrating with the associated part

Migrating without the associated part

The migration tool does the following:

* For any or character variable on a map that
specified the numeric hardware attribute, the tool
includes isDecimalDigit = yes property.

* For any character constant on the map, the tool
always omits the isDecimalDigit property.

* For any numeric variable field on the map, the
tool always omits the isDecimalDigit property.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

58 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 25. Map fields and the numeric hardware attribute (continued)

Migrating with the associated part

Migrating without the associated part

Potential Problem: The end users will notice a slight
change at run time because they will be able to type
non-numeric data into numeric fields. EGL will issue
a runtime error message if this occurs.

Possible Solution: Consider notifying your end
users that this is an expected difference when
changing from VAGen-generated code to
EGL-generated code.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Map arrays and attributes

VisualAge Generator: VisualAge Generator permits, but does not recommend,
using different attributes for the elements of an array. For example, in VisualAge
Generator the protection, input required, require fill on input, numeric hardware
attribute, modified data tag, and light pen detect can vary for each element of the
map array.

EGL: In EGL, the only properties that can be overridden for an array item are the
field presentation properties (color, highlight, intensity, and outline) plus cursor,

position and value.

Associated part needed for migration: Not applicable.

Table 26. Map arrays and attribute fields

Migrating with the associated part

Migrating without the associated part

The migration tool uses the following properties for
the first element of the array (array index 1) to set the
EGL equivalent properties: protection, input required,
require fill on input, numeric hardware attribute,
modified data tag, and light pen detect. EGL uses the
properties for the first element of the array for all the
elements of the array.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

Potential Problem: A problem only arises if you used
different attributes for the elements of the array.

Possible Solution: Change the properties for the first
element of the array to the least restrictive values and
add logic in a validator function to verify that each
element of the array meets the necessary criteria. Also
notify your end users of any differences in the
appearance of the form at runtime.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Unnamed variable fields

VisualAge Generator: VisualAge Generator permits, but does not recommend,
unnamed variable fields on a map. At generation time, unnamed variable fields are
converted into constants. Programs and functions can never reference the unnamed
variable field.

EGL: EGL does not permit unnamed variable fields on a form.

Associated part needed for migration: Not applicable.

59

Chapter 3. Handling ambiguous situations

Table 27. Unnamed variable fields

Migrating with the associated part Migrating without the associated part

For any unnamed variable fields on the map, the The migration tool does the same thing as mentioned in the
migration tool checks to see if any of the following | Migrating with the associated part column.
are specified:

¢ Initial value

* Protect = yes

e Cursor = yes

* Outlining other than "No outlining”

* Highlighting other than "No highlighting”

If any of the above are specified, the migration tool

creates a constant field with the corresponding EGL
properties and issues a warning message.

If none of the properties are specified for the The migration tool does the same thing as mentioned in the
unnamed variable field, the migration tool does the | Migrating with the associated part column.
following:

* Does not create a constant field on the form.

 Issues a warning message.

Potential Problems: None. You could not reference | Potential Problems: None.
the field in VisualAge Generator.

Unprotected map constants

VisualAge Generator: VisualAge Generator supports the use of unprotected
constants on a map. At test and generation time, unprotected constants are treated
as though the protection is set to autoskip.

EGL: EGL does not support the use of unprotected constants on a form. For
constants on text forms, EGL supports both protect=yes and protect=skip. For print
forms, EGL does not support the protect property.

Associated part needed for migration: Not applicable.

Table 28. Unprotected map constants

Migrating with the associated part Migrating without the associated part

When migrating a form, for an unprotected constant | The migration tool does the same thing as mentioned in the
field, the migration tool does the following: Migrating with the associated part column.

* If the form is a text form, the migration tool sets
the EGL protect property to skip and issues an
error message.

e If the form is a print form, the migration tool
omits the protect property and does not issue a
message. The protect property is not used in EGL
print forms.

Potential Problem: None. Potential Problem: None.

Fields at row=0, column=0

VisualAge Generator: VisualAge Generator 4.5 tolerates fields positioned at row=0,
column=0 from older releases of Cross System Product or VisualAge Generator.

60 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

However, VisualAge Generator 4.5 did not provide a way to create fields at this
position. You could not set attribute information for fields positioned at row=0,

column=0.

EGL: EGL does not support fields positioned at row=0, column=0. Every field
must include an attribute byte.

Associated part needed for migration: Not applicable.

Table 29. Fields at row=0, column=0

Migrating with the associated part

Migrating without the associated part

When migrating a form, if a field is positioned at
row=0, column=0, the migration tool does the
following:

e If the field is a constant field and the first
character of the value is blank, the migration tool
does the following;:

— Removes the first character from the value and
reduces the field length by 1.

— Sets the position property to (1,1).

— Includes default presentation properties for the
field.

— Issues a warning message.

e If the field is a constant field and the first
character of the value is not blank OR if the field
is a variable field, the migration tool does the
following:

— Does not change the value or the field length.
— Sets the position property to (0,0).

— Includes default presentation properties for the
fields.

- Issues an error message.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

Potential Problem 1: If the field cannot be changed
and is at position=(0,0), there will be an error on the
Tasks list.

Solution 1: Modify the form and change the
position of the field. You might need to move other
fields or reposition constants to make room for the
attribute byte for the field. Also review the default
presentation properties to ensure that the correct
color, highlighting, and so on are used.

Potential Problem 2: If a constant field is changed
to position=(1,1), there might be a different runtime
appearance due to the default presentation
properties.

Solution 2: Review the migration warning messages
and be sure to test any forms where the migration
tool adjusted the position of a field.

Potential Problem: The same problems listed under the
Migrating with the associated part column can occur. You can
use the same solutions.

Chapter 3. Handling ambiguous situations

61

Handling ambiguous situations for programs

Program names and reserved words

VisualAge Generator: VisualAge Generator does not have reserved words. The #
symbol is not valid in VAGen program names.

EGL: EGL has reserved words. In addition, EGL does not permit the # symbol as
the first character of a part name. A program name cannot be a reserved word.

Associated part needed for migration: Not applicable.

Table 30. Program names and reserved words

Migrating with the associated part

Migrating without the associated part

The migration tool does not rename the program for
you. The migration tool used in Stage 1 of migration
issues an error message if the program name matches
the reserved word list. If you do not change the
program name, the migration tool used in Stage 2 of
migration also issues an error message.

The migration tool does the same as mentioned in the
Migrating with the associated part column.

Potential Problem: A problem only arises if a program
name matches the reserved word list. EGL validation
results in a message on the Tasks list.

Solution: Rename the program. You can do this either
in VisualAge Generator or in EGL after you migrate. If
you rename the program in EGL, you must change the
name of the program and all references to it, including
references on call, transfer, and show statements. If you
want to keep the original program name as the name
for the generated program, set the alias property to the
original program name. If you do not specify the alias
property, be sure to change any non-EGL references to
the program name, including CICS program definitions.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Implicit data items in programs
VisualAge Generator: VisualAge Generator permits, but does not recommend, the
use of implicit data items (items that are not explicitly defined in a record, map,
table, called parameter list, function parameter list, or function local storage).

EGL: EGL does not permit implicit data items.

Associated part needed for migration: Not applicable.

Table 31. Implicit data items in programs

Migrating with the associated part

Migrating without the associated part

The migration tool does not create definitions for
implicit items for you. The migration tool used in
Stage 2 of migration issues a warning message if the
program allows implicit items.

The migration tool does the same thing as mentioned in
the Migrating with the associated part column.

62 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 31. Implicit data items in programs (continued)

Migrating with the associated part

Migrating without the associated part

Potential Problem: A problem only arises if the
program actually uses implicit items. Review the list of
programs that allow implicit items and run
preprocessing for any program on the list.
Preprocessing for the program will fail if there are any
missing item definitions.

Solution: You can add a definition for the implicit
item to the program either in VisualAge Generator or
in EGL. VAGen validation shows the definition that is
needed for the implicit item.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Associated program parts

VisualAge Generator: The program’s associates can be in multiple projects and
packages for VisualAge Java or in multiple configuration maps and applications

for VisualAge Smalltalk.

EGL: The program’s associates can be in multiple projects, folders, packages, and

files.

Associated parts needed for migration: For a program: All associates.

Note: See|“EGL build path and import statements” on page 29| for additional

information on import statements.

Chapter 3. Handling ambiguous situations

63

Table 32. Associated program parts

Migrating with the associated part

Migrating without the associated part

The migration tool does the following:

* Includes a package statement to specify the package
in which the EGL file is to be placed.

* Includes import statements in the EGL file for any
packages that contain associates needed by any of
the parts in the current file and which are in a
different package from the current file. The import
statements are only included if you migrate using
Stages 1 through 3.

* For the program the migration tool does the
following:

— Includes a declaration for the program’s primary
working storage record. If there are level 77s in
the VAGen primary working storage record, the
tool also includes a declaration for the new level
77 item record.

— Includes declarations for all records in the VAGen
Tables and Additional Records list, including the
redefines property, if applicable, for any VAGen
redefined records.

— Includes declarations for all I/O records.

— Includes declarations for records used as
parameters on MQ API calls (the records
specified as attributes of an MQ Message record
in VisualAge Generator).

— Includes use declarations for any tables in the
VAGen Tables and Additional Records list.

- Includes use declarations for the program’s map
group and help map group.

The migration tool makes use of all program associates that
are available.

64 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 32. Associated program parts (continued)

Migrating with the associated part

Migrating without the associated part

Potential problem: None.

Potential Problem 1: A problem only arises if there are
missing parts. If the migration tool detects missing parts, it
issues a warning message that identifies the missing parts.
The migration tool does not make any assumption about
the missing part(s). This can result in a variety of problems
in the migrated program, including the following:

* Missing import statements.

* Missing level 77 record declaration.

* Missing redefines property for VAGen redefined records.

* Missing I/0O record declarations.

* Missing declarations for records used as parameters on
MQ API calls.

Except for the missing redefines property, there will be
errors on the Tasks list to help you identify the problem(s).
Note: the migration tool does not detect all missing parts.

Possible Solution 1A: Change your migration set to
include all the parts that are needed to validate the
program in VisualAge Generator. Migrate the program
again using the new migration set so that all the program’s
associates are migrated together.

Possible Solution 1B: Locate the missing parts in EGL and
correct the EGL program.

Potential Problem 2: For missing level 77 items, see
[77 items in records” on page 48|

Potential Problem 3: For missing redefined records, see
['Redefined records” on page 47}

Intermediate variables required for migration

VisualAge Generator: Some VAGen statements require intermediate variables to
provide the equivalent support in EGL.

EGL: EGL provides system library functions that provide some information
required for VAGen migration. This support is only available in VisualAge
Generator Compatibility mode.

Associated part needed for migration: Not applicable.

Chapter 3. Handling ambiguous situations 65

Table 33. Intermediate variables required for migration

Migrating with the associated part

Migrating without the associated part

When migrating any program, the migration tool
always does the following:

* Includes declarations for the following:
— custPrefixEZESYS
— custPrefixEZEREPLY
— custPrefixEZE_ITEMLEN
— custPrefixEZE_WAIT_TIME

¢ Includes an initialization statement to set the value
of custPrefixEZESYS to the old VAGen EZESYS
value.

custPrefix is the same prefix that is used for changing
part names that conflict with reserved words. Use the
VAGen Migration Syntax Preferences to set its value.

The migration tool does the same things mentioned in the
Migrating with the associated part column.

The 4 variables are used for migrating the following:

e References to EZESYS in statements other than IF,
WHILE, and TEST where the old VAGen value is
required.

* VAGen service routines if the (REPLY option is not
specified. In this situation, the current value of
handleSysLibErrors must be saved and restored.

¢ The TEST nnn, +nnn, or -nnn statement which has
no direct equivalent in EGL. An EGL system
library function is used to determine the length of
the data the user entered.

¢ The EZEWAIT function. In this situation, the
migration tool adds logic to convert the time to
seconds.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Potential Problems: None.

Potential Problems: None.

Handling ambiguous situations for functions, including I/O statements

DISPLAY statement for maps
VisualAge Generator: DISPLAY is used for both display maps and printer maps.

EGL: Two separate statements are used:

e display form is used for text forms.

e print form is used for print forms.

In VisualAge Generator Compatibility mode, display form is accepted if the form is

a print form.

Associated part needed for migration: The map is needed to determine the device
type. The first map with this map name in any available map group is the map
that the migration tool uses. When migrating in program context, the migration
tool only looks at the program’s main map group.

66 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 34. Display statement for maps

Migrating with the associated part

Migrating without the associated part

Based on the first migration of this function, if a map with
this name is available, the migration tool converts to the
following:

e display textForm if the map is a display map
e print printForm if the map is a printer map

If a map with this name is not available, the migration
tool does the following:

* Converts to display form

* Issues a warning message that the map type could
not be determined

Potential Problem 1: The first program that migrated
used a print form so the migration tool migrated to the
print statement. Another program uses the same function,
but with a text form.

Solution 1: Use VisualAge Generator Compatibility mode.
Edit the function and change the print statement to a
display statement.

Potential Problem 2: A problem arises if you want to
eliminate the use of VisualAge Generator Compatibility
mode and two programs use the function -- one with a
text form and one with a print form.

Possible Solution 2A: If a specific target environment
always uses display maps and other environments always
use print maps, you could change the EGL function to
something similar to the following;:

if (sysVar.systemType is zoscics)
DISPLAY_FUNCTION();

else
PRINT_FUNCTION()

end

where DISPLAY_FUNCTION and PRINT_FUNCTION use
the display and print statements, respectively.

Possible Solution 2B: Assuming the function migrated to
a display statement, change the function from the
following:

before-Togic

display textForm;

after-logic

to the following;:
before-logic-function();

display textForm;
after-Togic-function();

Putting the before-logic and after-logic into separate
functions enables you to keep most of the logic in
common functions. Then you can make a copy of the
modified display function and change it to use print map,
but still use the common before-logic-function and
after-logic-function. Disadvantage: This has the potential
to ripple back into functions that use the original
DISPLAY function.

Potential Problem: The same potential problems and
possible solutions as listed in the Migrating with the
associated part column apply.

I/O error routine

VisualAge Generator: A function that does file or database 1/O can specify an I/O
error routine. The I/O error routine can be a main function or a non-main

67

Chapter 3. Handling ambiguous situations

function; the syntax is the same. VisualAge Generator determines at test or
generation time whether the I/O error routine is a main function or non-main
function for the program. When a main function is used as the I/O error routine,
VisualAge Generator pops the function stack back to the top of the stack, starts the
stack over again with only the (I/O error routine) main function on the stack, and
then invokes the main function. When a non-main function is used as the 1/O
error routine, VisualAge Generator adds the non-main function to the current
function stack and then invokes the function.

EGL: The try block and onException statement are used for error handling. The
syntax for an onException statement supports the following:

* Transferring back to a main function using exit stack functionName;

* Invoking a non-main function using nonmainfunctionName();

* Invoking a main function with mainfunctionName(); This form is not supported
by VisualAge Generator. EGL adds the main function to the current function
stack and then invokes the main function.

Associated part needed for migration: The program with its list of main functions.

Table 35. Ambiguous situations for functions—File and database /O error routines

Migrating with the associated part

Migrating without the associated part

Based on the first migration of this function, if there is a
program available, the migration tool does the following;:

* Changes an I/O error routine that specifies a program
main function to:

try

1/0-Statement;

onException exit stack functionName;
end

* Changes an I/O error routine that specifies a non-main
function to:
try
I/0-Statement;
onException functionName();
end

If there is no program available, the migration tool does
the following:

* Assumes that the function named in an I/O error
routine is a non-main function and changes it to the
following:
try

I/0-Statement;
onException functionName();
end

* Does not issue a warning message due to the high
volume of messages that could be issued and the
likelihood that messages will be ignored or hide
other serious error messages.

Potential Problem: A problem arises if this function is
used in a program where the I/O error routine differs in
its use as a main or non-main function from the original
program.

Note: There will not be a message on the Tasks list.
Preprocessing and generation will not detect an error.
However, the program will not run the same as in VisualAge
Generator. Instead of popping the stack as in VisualAge
Generator, EGL will add the main function to the stack.

Possible Solution 1: If this situation arises, create a new
version of this I/O function with the proper syntax for
transferring to a main function. Note that this technique
has the potential to ripple back into other functions that
invoke the I/O function.

Possible Solution 2: If this situation arises, restructure the
program so it does not use the equivalent of VAGen flow
statements.

Potential Problem: A problem arises if this function is
used in a program where the I/O error routine is a
main function.

Note: There will not be a message on the Tasks list.
Preprocessing and generation will not detect an error.
However, the program will not run the same as in VisualAge
Generator. Instead of popping the stack as in VisualAge
Generator, EGL will add the main function to the stack.

Possible Solutions: The same solutions listed for
Migrating with the associated part apply.

68 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

SQL I/0 statements

VisualAge Generator: For SQL I/O, test and generation expand a single I/O
option into multiple SQL statements as needed based on the record definition and
the use of Execution Time Statement Build. Test and generation always create the
tables clause for the I/O statement from the SQL record definition.

EGL: SQL statements must be explicitly specified in the EGL program. If an SQL
statement is modified, all SQL clauses except the into clause are required.
Execution Time Statement Build is replaced by the prepare statement followed by
an open, get, or execute statement.

Associated part needed for migration: The SQL record and the record specified as
the alternate specification record, if any.

Table 36. Ambiguous situations for functions—SQL /O

Migrating with the associated part

Migrating without the associated part

Based on the first migration of this function, if the SQL
record and its alternate specification record are
available, the migration tool creates the corresponding
EGL statement(s) based on the record definition, the
SQL statement within the function, and the use of
Execution Time Statement Build. If the SQL statement
in the function was modified, the migration tool does
the following:

e Builds the EGL SQL statement with all clauses,
including the into clause.

* Creates any required tables clause from the table
names in the SQL record or, if applicable, its
alternate specification record.

* Creates any other missing clauses that are required
for this SQL I/O statement based on the record
definition for the I/O object, or if applicable, the
record definition for the I/O object’s alternate
specification record.

* Converts any !itemColumnNames from the item
name to the corresponding SQL column name.

* Does not review the SQL statement for the SQL
reserved words that require special treatment. See
“SQL reserved words requiring special treatment”]
on page 172|for the list of reserved words and the
changes you must make to your SQL statement if
you use one of these reserved words as a table or
column name.

Note:

* See[”SQL 1/0 and missing required SQL clauses” on|
[page 70| for details on problems related to missing
SQL clauses.

+ See[”SQL 1/0 and !itemColumnName” on page 72|
for details on problems related to using
litemColumnNames.

If the SQL record and its alternate specification record are
not available, the migration tool only has the SQL
statement modifications and Execution Time Statement
Build information to use in creating the EGL SQL
statements. Because the migration tool does not have a
record definition available, the migration tool does the
following:

* Builds the EGL SQL statement with all clauses, including
the into clause.

* Uses EZE_UNKNOWN_SQLTABLE as the table name
and T1 as the table label in any tables clause.

¢ Uses EZE_UNKNOWN_SQL_clausename for any missing
SQL clauses, where clausename is the External Source
Format key word for the missing SQL clause (for
example, SELECT, WHERE, ORDERBY).

* Uses litemColumnNames for any column name
variables.

¢ Issues an error message that the function needs to be
reviewed.

* Does not review the SQL statement for the SQL reserved
words that require special treatment. See |"SQL reservea]
[words requiring special treatment” on page 172|for the
list of reserved words and the changes you must make
to your SQL statement if you use one of these reserved
words as a table or column name.

Note:

* See[’SQL I/0 and missing required SQL clauses” on|
[page 70| for details on problems related to missing SQL
clauses.

* See[“SQL I/0 and !itemColumnName” on page 72|for
details on problems related to using !itemColumnNames.

69

Chapter 3. Handling ambiguous situations

Table 36. Ambiguous situations for functions—SQL I/O (continued)

Migrating with the associated part

Migrating without the associated part

Potential Problem 1: A problem only arises if there are
two records with the same name that have different
SQL table names or table labels. This might occur in
different subsystems or when generating using
different tables for test and production.

Possible Solution 1A: If the problem is due to
changing the qualification for a table name between
test and production, change to use unqualified table
names and specify the qualification information at
BIND time.

Possible Solution 1B: If the problem is due to
different table names in different subsystems, make a
copy of the record and rename it. Then make a copy of
the I/O function to use the new record name. Correct
the new I/O function to have the proper tables clause.
Disadvantage: This has the potential to ripple back
into functions that use this I/O function.

Possible Solution 1C: If the problem is due to
different table names in different subsystems, change
the record to use the tableNameVariables property and
modify all functions that do I/O for this record to set
the table name variable before invoking the 1/0
function -- possibly in each program’s main function.
Alternatively, make the change to table name host
variables in VisualAge Generator and migrate the
program, record and function again. Disadvantage:
There are potential performance implications because
this changes from static to dynamic SQL.

Potential Problem 2: A problem arises if any SQL table
name or column name is one of the SQL reserved
words that requires special treatment. The migration
tool does not enclose these SQL reserved words in
double-quotes. There will be an error on the Tasks list.

Solution 2A: Edit the function and enclose the SQL
table name or column name in double quotes. See
[“SQL reserved words requiring special treatment” on|
|Bage 172| for the list of SQL reserved words and an
example of the required syntax.

Potential Problem 1: A problem arises for any modified
SQL statement or any SQL statement that uses Execution
Time Statement Build. Depending on whether the record is
missing and which specific SQL clauses are missing from
the SQL statement, there might be errors on the Tasks list.

Solution: Review the migration log for any messages
related to missing SQL clauses or table names.
Alternatively, search the workspace for any occurrences of
EZE_UNKNOWN. Determine the proper tables clause
based on the record definition. See [’SQL I/0 and missing]
lrequired SOL clauses” on page 70| for information about
recreating the SQL clause in EGL. See [SQL 1/O and|
[litemColumnName” on page 72| for information about
correcting any !itemColumnName variables.

Other potential problems: The same potential problems
and solutions as shown for Migrating with the associated part

apply.

SQAL I/0 and missing required SQL clauses

VisualAge Generator: VisualAge Generator 4.5 stored all the SQL clauses if you
modified any SQL clause. However, some earlier versions of Cross System Product
and VisualAge Generator only stored the clause that you modified. If a function
from an earlier version was never modified in VisualAge Generator 4.5, then some
of the required SQL clauses might be missing.

EGL: If any SQL clause is modified, all SQL clauses for the SQL statement must be

specified.

Associated part needed for migration: The SQL record and the record specified as
the alternate specification record, if any.

70 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 37. SQL I/O and missing SQL clauses

Migrating with the associated part

Migrating without the associated part

If the SQL record and its alternate specification record
are available, and if any SQL clause is present, but
some clauses are missing, the migration tool creates
the missing clauses as shown in the next rows of this
table. Based on the first migration of this function,
the migration tool uses the SQL record and its
alternate specification record, if any, to create the
missing clauses.

If the SQL record and its alternate specification record are
not available, and if any SQL clause is present, but some
clauses are missing, the migration tool creates the missing
clauses as shown in the next rows of this table. Based on the
first migration of this function, the migration tool creates
intentionally invalid EGL syntax if the SQL record or its
alternate specification record is not available.

Missing SELECT clause: The migration tool creates a
select clause by listing all the SQL column names
from the record in the same order that the items
appear in the record.

Missing SELECT clause: The migration tool sets the SQL
column names for the select clause to
EZE_UNKNOWN_SQL_SELECT and issues an error
message.

Missing INTO clause: The migration tool creates the
into clause by listing all the item names from the
record in the same order that the items appear in the
record.

Missing INTO clause: The migration tool sets the item
names for the into clause to EZE_UNKNOWN_SQL_INTO
and issues an error message.

Missing INSERTCOLNAME clause: The migration
tool creates the list of column names to be inserted
for a VAGen ADD function by listing the SQL column
names from the record in the same order that the
items appear in the record. The migration tool omits
the SQL column name for any item that is identified
as read only.

Missing INSERTCOLNAME clause: The migration tool sets
the SQL column names for the list to
EZE_UNKNOWN_SQL_INSERTCOLNAME and issues a
error message.

Missing VALUES clause: The migration tool creates
the values clause for a VAGen ADD function by
listing the item names from the record in the same
order that the items appear in the record. The
migration tool omits the item name for any item that
is identified as read only.

Missing VALUES clause: The migration tool sets the item
names for the values clause to
EZE_UNKNOWN_SQL_VALUES and issues an error
message.

Missing FORUPDATEOF clause: The migration tool
creates the for update of clause by listing the SQL
column names from the record in the same order that
the items appear in the record. The migration tool
omits the SQL column name for any item that is
included in the EGL keyltems property or any item
that is identified as read only.

Missing FORUPDATEOF clause: The migration tool sets the
SQL column names for the for update of clause to
EZE_UNKNOWN_SQL_FORUPDATEOQOF and issues an error
message.

Missing WHERE clause: The WHERE clause is not
required. The migration tool never creates a where
clause.

Missing WHERE clause: The migration tool does the same
thing as mentioned in the Migrating with the associated part
column.

Missing ORDERBY clause: The ORDERBY clause is
not required. The migration tool never creates an
order by clause.

Missing ORDERBY clause: The migration tool does the
same thing as mentioned in the Migrating with the associated
part column.

71

Chapter 3. Handling ambiguous situations

Table 37. SQL I/O and missing SQL clauses (continued)

Migrating with the associated part

Migrating without the associated part

Potential Problem: A problem only arises if there are
two records with the same name (generally in
different subsystems) that have different item names
or SQL column names.

Possible Solution: Make a copy of the function for
use in the second subsystem and modify the new
function to use the correct item names and SQL
column names. Disadvantage: This has the potential
to ripple back into functions that use this I/O
function.

Potential Problem 1: A problem arises for any modified SQL
statement or any SQL statement that uses Execution Time
Statement Build.

Solution 1A: Review the list of error messages for any
messages related to missing SQL clauses. Modify the SQL
I/0 function to include the missing clauses. The information
you need to build the missing clause is in the corresponding
row in the Migrating with the associated part column.

Solution 1B: Edit the function in VisualAge Generator and
use the SQL Editor to make a trivial change such as adding
a blank at the end of a line. Save the SQL clauses and then
migrate the function again. Be sure to include the record
definition so that the migration tool can include the SQL
table information in the EGL I/O statement.

Potential Problem 2: The same potential problem and
solution as shown for Migrating with the associate part apply.

SQL I/0 and !itemColumnName
VisualAge Generator: For SQL I/0O, VisualAge Generator permits the use of

litemColumnName in some

clauses of the SQL statements. Test and generation

determine the SQL column name that corresponds to the item name in the SQL

row record.

EGL: The use of !itemColumnName is not supported.

Associated part needed for

migration: The SQL record and the record specified as

the alternate specification record, if any.

Table 38. Ambiguous situations for functions—SQL I/O and litemColumnName

Migrating with the associated part

Migrating without the associated part

Based on the first migration of this function, if the SQL
record and its alternate specification record are
available, the migration tool converts any
litemColumnNames to the corresponding SQL column
name based on the SQL record or, if applicable, its
alternate specification record.

If the SQL record and its alternate specification record are
not available, the migration tool does the following:

* Uses litemColumnNames for any column name
variables.

* Issues an error message that the function needs to be
reviewed.

Potential Problem: A problem only arises if there are
two records with the same name (generally in different
subsystems) that have different SQL column names
corresponding to an !itemColumnName.

Possible Solution: Make a copy of the function for use
in the second subsystem and modify the new function
to use the correct SQL column names. Disadvantage:
This has the potential to ripple back into functions that
use this I/O function.

Potential Problem 1: A problem arises for any modified
SQL statement or any SQL statement that uses Execution
Time Statement Build.

Solution: Review the list of error messages for any
messages related to !itemColumnNames. Modify the SQL
I/0 function to include the correct column names based on
the SQL row record.

Potential Problem 2: The same potential problem and
solution as shown for Migrating with the associated part

apply.

72 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

SQL I/0 with multiple updates

VisualAge Generator: For SQL I/O, if there are multiple UPDATE or SETUPD
functions in a program, each SQL REPLACE function must specify the name of its
corresponding UPDATE or SETUPD function. This is not required for non-SQL
I/0O. SETUPD is not supported for non-SQL I/O.

EGL: For SQL I/0, if there are multiple get for update or open for update
statements, each SQL replace statement must specify the name of its corresponding
get or open statement. Each get and open statement specifies a resultSetID. The
replace statement specifies the resultSetID for the corresponding get or open
statement. The resultSetID is not applicable for non-SQL I/O.

Associated part needed for migration: The record that is the I/O object.

Table 39. Ambiguous situations for functions—SQL I/O with multiple updates

Migrating with the associated part

Migrating without the associated part

Based on the first migration of this function, if the
record is available, the migration tool creates the
corresponding EGL statement(s) based on the record

type.

For SQL, the migration tool does the following:

* Always includes a resultSetID when migrating any
UPDATE or SETUPD function. The resultSetID is
created using the function name and a user-specified
suffix.

* Includes the resultSetID when migrating any
REPLACE function that specified a corresponding
UPDATE or SETUPD function name. The resultSelD
is created using the corresponding UPDATE or
SETUPD function name and a user-specified suffix.

For non-SQL, the migration tool always omits the
resultSetID when migrating an UPDATE function.
There are no SETUPD functions for non-SQL I/0O.

When migrating an UPDATE function, if the record is not
available, the migration tool does the following:

* Attempts to determine if this function is for SQL I/O by
checking if the function also has SQL clauses or any
SQL-specific information such as Execution Time
Statement Build, single row select, or cursor with hold.

e If the migration tool can determine that this UPDATE
statement is for an SQL record, the migration tool
includes the resultSetID in the get statement.

* Otherwise, the migration tool does not include the
resultSetID. The migration tool issues a warning
message.

When migrating a SETUPD function, the migration tool
always includes the resultSetID because SETUPD is only
valid for SQL.

When migrating a REPLACE function, the migration tool
includes the resultSetID if the function specifies a
corresponding UPDATE or SETUPD function name.

Potential Problem: None.

Potential Problem: A problem only arises if an unmodified
UPDATE function really does refer to an SQL record and is
used in a program where there are multiple get or open for
update statements. In this case, each replace statement will
include a resultSetID, but the get statement that was
migrated for the VAGen UPDATE statement will not
include the resultSetID. Preprocessing for the program will
fail.

Solution: Modify the function to include the resultSetID for
the get statement.

Handling ambiguous situations for other statements

Implicit data items in statements

VisualAge Generator: VisualAge Generator permits, but does not recommend, the
use of implicit data items (items that are not explicitly defined in a record, map,
table, called parameter list, function parameter list, or function local storage).

Chapter 3. Handling ambiguous situations 73

EGL: EGL does not permit implicit items.

Associated part needed for migration: Not applicable.

Table 40. Implicit data items in statements

Migrating with the associated part Migrating without the associated part

See ['Implicit data items in programs” on page 62| See ["Implicit data items in programs” on page 62|

Level 77 items in statements

VisualAge Generator: Only working storage records can contain level 77 items. A
program can reference level 77 items only in the primary working storage record.

EGL: Level 77 items are not permitted.

Associated part needed for migration: When migrating a function, you need the
working storage record.

Table 41. Level 77 items in statements

Migrating with the associated part Migrating without the associated part

See ['Level 77 items in records” on page 4§ See[“Level 77 items in records” on page 48|

Assignment statements

VisualAge Generator: Assignment statements are permitted for records and maps
and result in a "move corresponding.” MOVE statements are permitted for items.

EGL: Assignment statements can only be used for data items or for a byte-by-byte
move of a record. Assignment statements cannot be used for maps. The move by

name statement is required for a move corresponding of records and maps. The move
statement without a modifier can be used for items, but assignment statements are

preferred.

Associated part needed for migration: Not applicable.

Table 42. Assignment statements

Migrating with the associated part

Migrating without the associated part

To preserve as much common code as possible, the
migration tool does the following if both the source
and target of an assignment or move statement are
unqualified, unsubscripted names:

* Checks the function’s parameter list, local storage,
and I/O object to try to determine whether the
source or target of an assignment or MOVE
statement is an item, record, or map. If the
migration tool can make the determination, it
migrates as follows:

— To an assignment statement if the source or target
is an item.

— To a move by name statement if the source or
target is a record or map.

* If the migration tool cannot determine the part type,
it migrates assignment and MOVE statements to a
move statement without a modifier.

This is handled the same as mentioned in the Migrating
with the associated part column.

74 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 42. Assignment statements (continued)

Migrating with the associated part

Migrating without the associated part

Potential Problem: None. Test and generation convert
the move statement without a modifier to a VAGen
MOVE statement. This is an item to item move or a
move by name (move corresponding), depending on
the actual source and target of the move. Any program
can use the function without modifying it.

Potential Problem: None. The same situation mentioned in
the Migrating with the associated part column applies.

FIND statement

VisualAge Generator: The search column in the FIND statement is optional. The
default is the first column of the table.

EGL: The FIND statement is replaced by an if statement. The search column is

required.

Associated part needed for migration: The table.

Table 43. FIND statement

Migrating with the associated part

Migrating without the associated part

Based on the first migration of this function, if the
search column is not explicitly specified and the table
is available, the migration tool expands the table to get
the name of search column from the first column of
the table.

If the search column is not explicitly specified and the table
is not available, the migration tool does the following:

* Sets the search-column to
EZE_UNKNOWN_SEARCH_COLUMN

* Issues an error message that the function will need to be
modified with the proper column name.

Potential Problem: A problem only arises if two tables,
probably in different subsystems, have the same table
name, but different search column names.

Solution: For the second subsystem, add a data item
as a substructure for the first column in the table. The
name of this new data item should be the same as the
search column in the first subsystem. This technique
enables you to share the common function without
changing any code in the second subsystem.

Potential Problem 1: The search column name must be
provided. There will be an error on the Tasks list.

Solution: Edit the function and specify the correct column
name for the table.

Potential Problem 2: The same potential problem and
solution as shown for Migrating with the associated part

apply.

RETR statement

VisualAge Generator: The search and return columns for the RETR statement are
optional. The search column defaults to the first column of the table. The return
column defaults to the second.

EGL: The RETR statement is replaced by an if statement. The search and return

columns are required.

Associated part needed for migration: The table.

75

Chapter 3. Handling ambiguous situations

Table 44. RETR statement

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the If the search column or return column is not explicitly
search or return column is not explicitly specified and |specified and the table is not available, the migration tool
the table is available, the migration tool expands the does the following;:

table to get the following: * Sets the search column to

¢ The name of search column from the first column of EZE UNKNOWN SEARCH COLUMN
the table. B B B

¢ The name of the return column from the second
column of the table.

* Sets the return column to
EZE_UNKNOWN_RETURN_COLUMN

* Issues an error message that the function will need to be
modified with the proper column names.

Potential Problem: A problem only arises if two tables, | Potential Problem 1: The search and return column names
probably in different subsystems, have the same table |must be provided. There will be an error on the Tasks list
name, but different search and/or return column for each missing column.

names.
Solution: Edit the function and specify the correct column

Solution: For the second subsystem, add a data item names for the table.
as a substructure for the first column in the table. The
name of this new data item should be the same as the |Potential Problem 2: The same potential problem and
search column in the first subsystem. Substructure the |solution as shown for Migrating with the associated part
second column of the table with the name of the apply.

return column in the first subsystem. This technique
enables you to share the common function without
changing any code in the second subsystem.

SET map PAGE statement
VisualAge Generator: SET map PAGE is used for both display and print maps.

EGL: Two separate statements are used. The map name is not specified:
* clearScreen() for text (display) forms
* pageEject() for print forms

Associated part needed for migration: The map is needed to determine the device
type. The first map with this map name in any available map group is the map
that the migration tool uses. When migrating in program context, the migration
tool only looks at the program’s main map group.

Table 45. SET map PAGE statement

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, the If the map is not available, the migration tool does the
migration tool converts SET map PAGE to the following:

following: + Converts SET map PAGE to EZE_SETPAGE().

* clearScreen() for a text form * Includes a comment with the original map name.

* pageEject() for a print form * Issues an error message that it was unable to determine

. . . . the ma e.
The migration tool also includes a comment with the p typ

original map name.

76 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 45. SET map PAGE statement (continued)

Migrating with the associated part

Migrating without the associated part

Potential Problem: Any program that uses a different
map type from what was determined when the
function migrated might behave differently at run time.
This is because clearScreen only applies to text forms
and pageEject only applies to print forms. No error
will appear on the Tasks list. Preprocessing and
validation will not fail for the program.

Possible Solution: If a specific target environment
does printing and other environments always use
display maps, change the EGL function to something
similar to the following:

if (sysVar.systemType is zosbatch)
pageEject();

else
clearScreen();

end

Similar logic can be used based on transaction code,
user ID, and so on, depending on the specific details
of your system.

Potential Problem 1: EGL validation results in a message
on the Tasks list.

Solution: Edit the function and change EZE_SETPAGE() to

either clearScreen() or pageEject(), depending on the map
type.
Potential Problem 2: The same potential problem and

solution as shown for Migrating with the associated part
apply.

SET mapltem attributes

VisualAge Generator: VisualAge Generator tolerates attributes such as protect,
highlighting, and color for variables and constants on printer maps.

EGL: With the exception of underline, EGL does not support attributes for print

forms.

Associated part needed for migration: Not applicable.

Table 46. SET mapltem attributes

Migrating with the associated part

Migrating without the associated part

When migrating a printer map, the migration tool
omits attributes that are not supported by EGL for
print forms.

When migrating a function, the migration tool
migrates the SET statement without regard to whether
the map is a display map or printer map.

The migration tool does the same thing as mentioned in
the Migrating with the associated part column.

Potential Problem: There is no problem for a form. A
problem only arises if the function includes logic to set
attributes such as color, highlight, or protect for a print
form. There will be an error on the Tasks list.

Solution: If the function is only used for print forms,
modify the function to remove the set statement. If the
function is used with both text and print forms, make
a copy of the function for use with print forms.
Modify the new function to remove the set statements
and use this new function for any print forms.
Disadvantage: This has the potential to ripple back
into functions that use the function with the set
statement.

Potential Problem: The same potential problem and
solution as listed in the Migrating with the associated part
column apply.

Chapter 3. Handling ambiguous situations

77

Checking for IN literal or scalar

VisualAge Generator: VisualAge Generator supports the IF or WHILE statement
checking for a data item IN a literal or scalar. In this situation, VisualAge
Generator sets the value of EZETST and does a comparison for equality.

EGL: EGL does not support checking a data item for IN a literal or scalar.

Associated part needed for migration: Not applicable.

Table 47. Checking for IN literal or scalar

Migrating with the associated part

Migrating without the associated part

For an IF or WHILE statement that checks a data item
IN a literal, the migration tool does the following to
match the VAGen behavior:

* Adds a statement to initialize sysVar.arraylndex to 0.

* Changes the if or while statement to compare equal
(For example, if a = "b").

* Adds a statement immediately after the if or while to
set sysVar.arraylndex to 1.

For an IF or WHILE statement that checks a data item
IN another data item, the migration tool does not
attempt to determine if the second data item is an
array or a scalar. The migration tool migrates to an
EGL in comparison. (For example: if a in b).

The migration tool does the same thing as mentioned in
the Migrating with the associated part column.

Potential Problem: There is no problem if the
comparison is for a literal. A problem only arises if the
second data item is actually a scalar. In this case, there
will be an error on the Tasks list.

Solution: Modify the function to initialize
sysVar.arraylndex to 0 before the if or while statement
and to set sysVar.arraylndex to 1 immediately after the
if or while statement. Also change the if or while
statement to compare using = rather than in.

Potential Problem: The same potential problem and
solution as listed in the Migrating with the associated part
column apply.

Checking SQL and map items for NULL
VisualAge Generator: IF, WHILE, and TEST support checking either an SQL item

or a map item for NULL.

EGL: SQL items can be checked for null. Map items can be checked for blanks.

Associated part needed for migration: The record or map. If the item is not
qualified, you need the program and all of its associates.

78 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 48. Checking SQL and map items for NULL

Migrating with the associated part

Migrating without the associated part

Based on the first migration of this function, if the
item is qualified, the migration tool does the following:

* Checks the qualifier to determine if it is a record or
map.

* Converts to checking for null if the qualifier is an
SQL record.

* Converts to checking for blanks if the qualifier is a
map.

The migration tool tries to determine the type of the item
as follows:

¢ If the item is qualified and the qualifier is not available,
the migration tool does the following:

— Checks if the qualifier is also the function’s I/O
object. If so, the CONVERSE and DISPLAY I/0O
options guarantee the I/O object is a map. The
CLOSE 1/0 option is valid for either a record or map.
Other I/O options guarantee the I/O object is a
record.

— Also checks the function’s parameter list and local
storage. If the qualifier is found, the qualifier is a
record.

* If the migration tool can determine that the item is in an

SQL record or on a map, the tool migrates to the

following:

— null for an SQL record
— blanks for a map item

e If the migration tool cannot determine that the item is in
an SQL record or on a map, then the tool does the
following:

— Converts to EZE_NULL.

— Issues an error message indicating that this statement
should be reviewed.

Based on the first migration of this function, if the
item is not qualified, the migration tool does the
following:

* Checks the function’s parameter list to see if the
item is specified there as either an SQLITEM or a
MAPITEM parameter. If so, the tool migrates on
that basis.

* If the program and its associates are available, the
migration tool uses the VAGen qualification rules to
determine which record or map contains the item
and then migrates on that basis.

If the item is not qualified, the migration tool checks the
function’s parameter list to see if the item is specified there
as either an SQLITEM or a MAPITEM.

If the migration tool can determine that the item is in an
SQL record or on a map, the tool migrates to the following:

* null for an SQL record

* blanks for a map item

If the migration tool cannot determine that the item is in an
SQL record or on a map, then the tool does the following:

* Converts to EZE_NULL.

¢ Issues an error message indicating that this statement
should be reviewed.

Potential Problem: None.

Potential Problem 1: A problem arises if the migration tool
uses EZE_NULL. There will be an error on the Tasks list.

Solution: Edit the function and change EZE_NULL to null
for an SQL item or blanks for a form variable field.

I/0 error values UNQ and DUP

VisualAge Generator: UNQ and DUP are always soft errors for non-SQL and hard
errors for SQL. UNQ and DUP are always set for SQL based on the -803 SQL code.
If an I/O error routine is specified for the function, the error routine gets control

for the following:

* any soft error

* any hard error if EZEFEC =1

Chapter 3. Handling ambiguous situations 79

EGL: Duplicate is always a soft error and indicates the I/O was successful. Unique
is always a hard error and indicates the I/O failed. Duplicate is not supported for
SQL. The try block and onException statement are used for error handling. If an
onException statement is specified for the I/O statement, the onException
statement gets control for the following:

* any soft error
* any hard error if handleHardIOErrors = 1

Associated part needed for migration: The record that is used in the statement.

Table 49. I/O error values UNQ and DUP

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the If the record is not available, the migration tool tries to

record is available, the migration tool does the determine the type of the record as follows:

following: ¢ If the statement specifies the same record as the

e If the record is non-SQL, the migration tool changes function’s I/O object, the migration tool checks to see if
DUP to duplicate and UNQ to unique. the function also has SQL clauses, or any SQL-specific

« If the record is SQL, the migration tool changes both information, such as Execution Time Statement Build,
DUP and UNQ to unigue. single row select, cursor with hold or an

UPDATE/SETUPD function. If so, the migration tool
assumes that the record is SQL and converts DUP and
UNQ to unique.

* In other situations such as the following, the migration
tool cannot determine the record type:

— If the record is used as the I/O object of the function
but the function does not have SQL-specific
information.

— If the record is not used as the I/O object of the
function.

In the previous situations, and in other situations when

the migration tool cannot determine the record type, the

migration tool does the following:

— Converts UNQ to unique.

— Converts DUP to EZE_DUPLICATE and issues an
error message.

80 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 49. I/O error values UNQ and DUP (continued)

Migrating with the associated part

Migrating without the associated part

Potential Problem: A problem only arises if the same
record name has different definitions, one for SQL and
one for non-SQL, most likely in different subsystems.
If the non-SQL record is available when the function is
migrated, then there will be an error if the function is
used with an SQL record and checks for duplicate. If
the SQL record is available when the function is
migrated, then the additional information conveyed by
the duplicate check will not be available for the
non-SQL record.

Possible Solution: Copy the function and use the
original function for SQL and the new function for
non-SQL. Disadvantage: This has the potential to
ripple back into functions that use the original
function that checked for UNQ or DUP.

Potential Problem for SQL: None. DUP and UNQ
were always set the same way and unigue continues to
be a hard error.

Potential Problem 1 for non-SQL: A problem arises if
you do not set handleHardIOErrors (EZEFEC) = 1 for
the program. In this case, because unigue is now a hard
error, the onException statement will not get control
and the program will end.

Solution: Make sure your programs specify
handleHardIOErrors = 1;

Potential Problem 2 for nonSQL: A problem also
arises if you are explicitly testing for hardIOError
(HRD). In this case, because unique is now a hard
error, hardIOError will test true in WSED in some
cases, even though it did not test true in the past on
VisualAge Generator. Validation and preprocessing
will not detect an error. However, the program might not
run the same as it did in VisualAge Generator.

Possible Solution: You might need to reorder the
testing of the I/O error values in your program logic.

Potential Problem 1: EZE_DUPLICATE is not valid in EGL.

Solution: Edit the function and change EZE_DUPLICATE
to duplicate or unique based on the record type.

Other Potential Problems: The same potential problems
and solutions as shown for Migrating with the associated part

apply.

I/0O error value LOK

VisualAge Generator: LOK is always a soft error for OS/400. If an I/O error
routine is specified for the function, the error routine gets control for the following:

* any soft error

* any hard error if EZEFEC =1

EGL: LOK is replaced by deadlock, but it is a hard error. The try block and
onException statement are used for error handling. If an onException statement is
specified for the I/O statement, the onException statement gets control for the

following:

* any soft error

¢ any hard error if handleHardIOErrors = 1

Chapter 3. Handling ambiguous situations 81

Associated part needed for migration: Not applicable.

Table 50. I/O error value LOK

Migrating with the associated part

Migrating without the associated part

The migration tool always changes LOK to deadlock.

The migration tool does the same thing as mentioned in
the Migrating with the associated part column.

Potential Problem 1: A problem arises if you do not
set handleHardIOErrors (EZEFEC) = 1 for the
program. In this case, because deadlock is a hard error,
the onException statement will not get control and the
program will end.

Solution: Make sure your programs specify
handleHardIOErrors = 1;

Potential Problem 2: A problem also arises if you are
explicitly testing for hardIOError (HRD) . In this case,
because deadlock is a hard error, hardIOError will test
true in EGL in some cases where it did not test true in
VisualAge Generator. Validation and preprocessing
will not detect an error. However, the program might not
run the same as it did in VisualAge Generator.

Possible Solution: You might need to reorder the
testing of the I/O error values in your program logic.

The same potential problems as in the Migrating with the
associated part column can occur. You can use the same
solutions.

XFER

VisualAge Generator: The XFER statement can be used with both maps and Ul
records to send output to the user and then transfer to another program or
transaction when the user enters input data.

EGL: The show statement is used for sending a form to the user at a terminal and
then transferring to another program or transaction when the user enters input
data. This release of EGL does not support web transactions, UI records, or a

replacement for XFER with a Ul record. However, the forward statement is expected
to be the replacement for XFER with a Ul record. The forward statement is used for

sending a Ul record to a user in a browser window and then transferring to
another program or transaction when the user enters input data.

Associated part needed for migration: Map that is used in the XFER statement. If
a map with the name specified on the XFER statement is not available, the
migration tool converts the XFER statement as described in the Migrating without
the associated part column of the following table.

82 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 51. XFER

Migrating with the associated part Migrating without the associated part
Based on the first migration of this function, the tool If the map or Ul record is not available, the migration tool
migrates as follows: does the following:
* If the second argument is a map, the tool migrates to |* If (NONCSP is included on the XFER statement, the
a show statement. tool migrates to a show statement.
* If the second argument is a Ul record, the tool e If the target of the XFER is " ’, the tool migrates to a
migrates to a forward statement. forward statement.

¢ If the name of the second argument is longer than 8
characters, the tool migrates to a forward statement
because only UI records can have a name longer than 8
characters.

* If the name of the second argument is 8 or fewer
characters, the tool migrates to the forward statement
because XFER with a Ul record is more common than
XFER with a map. The tool also issues a warning
message.

Potential Problem: A problem arises for any program |The same problem listed under the Migrating with the
that uses a Ul record when the migration tool migrated |associated part column can occur. You can use the same
based on a map or vice versa. Preprocessing for the solution.

program will fail.

Solution: If the function was migrated based on a map,
create a second function that contains the forward
statement for the Ul record. Change any program that
uses a Ul record to use this new function. This has the
potential to ripple back into any function that invokes
the original function.

Handling ambiguous situations for EZE words

For some EZE Word replacements, an extra data item must be defined in the
program. The extra data item is never defined as a local item in the function
because a segmented converse cannot be done if there is any function open in the
stack down to the segmented converse that has local storage, parameters or return
values. Adding the extra data item to the program avoids breaking any segmented
converse.

EZESYS

VisualAge Generator: EZESYS is generally used in IF, WHILE, and TEST
statements with literal values specified by VisualAge Generator. However, EZESYS
is permitted in other statements.

EGL: The EGL system variable systemType has different values from VisualAge
Generator. When EZESYS is used in statements other than IF, WHILE, and TEST,
the migration tool does not know what values the program might be expecting
and so must use the original VAGen values. The EGL system library function
getVGSystemType provides the old VAGen values.

Associated part needed for migration: Not applicable.

Chapter 3. Handling ambiguous situations 83

Table 52. EZESYS

Migrating with the associated part

Migrating without the associated part

When migrating any program, the migration tool
always does the following:

* Includes the declaration:
<custPrefix>EZESYS

* Includes a statement to initialize the value of
<custPrefix>EZESYS

to the old VAGen value using the system library
function.

The migration tool does the same thing as mentioned in
the Migrating with the associated part column.

Based on the first migration of the function, the
migration tool does the following:

e If EZESYS is used in an IF, WHILE, or TEST
statement, the migration tool converts EZESYS to

sysVar.systemType

The migration tool converts the EZESYS values to
their EGL equivalent value. If the EZESYS value
does not have an equivalent EGL value, the
migration tool migrates it "as is”. For example, the
migration tool converts MVSBATCH to the EGL
equivalent zosbatch. The migration tool migrates
OS2 and NTCICS to the same value as in VisualAge
Generator. See [Table 101 on page 230|for specifics of
which values are converted.

» If EZESYS is used in any other statement, the
migration tool does the following:

— Issues a warning message that this use will result
in the old VAGen EZESYS values

— Uses
<custPrefix>EZESYS

to replace EZESYS in the statement.

The migration tool does the same thing as mentioned in
the Migrating with the associated part column.

Potential Problem 1: A problem arises for EZESYS
values that migrate as they are and for the EGL
equivalent values (for example, imsvs and imsbmp)
that are not supported in this release. There will be an
error on the Tasks list.

Possible Solution 1: Modify the function and change
the logic so that sysVar.systemType is not checked for
values that are not valid in EGL.

Potential Problem 2: A problem arises if you want to
use the new EGL values in statements other than if
and while.

Possible Solution 2: Modify the function and change
the logic to use sysVar.systemType instead of

<custPrefix>.EZESYS

Be sure to change the old VAGen values to the new
EGL values in any data tables that you use for
comparisons

The same potential problems mentioned in the Migrating
with the associated part column apply. You can use the same
solutions.

84 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

EZEWAIT

VisualAge Generator: EZEWAIT specifies the time to wait in hundredths of a

second.

EGL: sysLib.wait, which is the replacement for EZEWAIT, specifes the time to wait

in seconds.

Associated part needed for migration: Not applicable.

Table 53. EZEWAIT

Migrating with the associated part

Migrating without the associated part

When migrating any program, the migration tool
always includes a declaration for

<custPrefix>EZE_WAIT TIME.

The migration tool does the same thing as mentioned in
the Migrating with the associated part column.

When migrating a function, if EZEWAIT is used, the
migration tool includes logic to calculate the time to
wait in seconds and stores the result in

<custPrefix>EZE_WAIT_TIME.

The migration tool does the same thing as mentioned in
the Migrating with the associated part column.

Potential Problem: None. However, if you use the
function in a new program, be sure to include a
declaration for

<custPrefix>EZE_WAIT_TIME

in the program.

The same potential problem mentioned in the Migrating
with the associated part column applies.

Chapter 3. Handling ambiguous situations 85

86 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Part 2. Migrating from VisualAge Generator 4.5 on Java to
EGL

© Copyright IBM Corp. 2004

87

88 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Chapter 4. Stage 1 — Extracting from Java

Before you can extract your source code from VisualAge Generator, you must
install the Stage 1 migration tool that runs on VisualAge for Java. You must also
create the DB2 migration database that is used to store the data you are migrating
from VisualAge Generator 4.5 (VAGen 4.5) to EGL.

Installing the Stage 1 migration tool on VisualAge for Java

The VisualAge Generator to EGL Stage 1 migration tool is shipped as a
self-extracting file called VAGenMigJava.exe To install this file, do the following;:

1.
2.

On your system, determine where VisualAge for Java is installed.
Run the self-extracting VAGenMig]Java.exe file. This file is in the following
subdirectory under your WebSphere Studio installation directory:
\bin
When the GUI prompt appears, navigate to the drive and directory where

VisualAge for Java is installed. (For example, c:\Program Files\IBM\ VisualAge
for Java.) Then click Extract.

When the self-extracting executable runs, it extracts the following files into your
VisualAge for Java installation directory:

\ide\vgmigration\MigPreferences.xml
\ide\vgmigration\createdatabase.sql
\ide\vgmigration\createtables.sql
\ide\vgmigration\SetupDatabase.bat
\ide\vgmigration\SetupTables.bat
\ide\vgmigration\deletemigsets.bat

\ide\features\com-ibm-vgj-mig\projects.dat.pr\IBM VisualAge Generator EGL
Migration

This last directory contains the .xml files and their corresponding .dtd files that are
used by the Stage 1 migration tool on Java.

Adding the migration feature

To be able to use the Stage 1 migration tool, you must add the IBM VisualAge
Generator EGL Migration feature. To do this, perform the following steps:

1.
2.

© Copyright IBM Corp. 2004

Start VisualAge Generator on Java.
Add the "IBM VisualAge Generator EGL Migration” feature as follows:
a. From the Workbench window, press F2.

b. Select Features in the left column and then Add Feature in the right
column. Click OK.

c. Select IBM VisualAge Generator EGL Migration - versionNumber. Click OK.
The migration feature will be loaded.

d. Click the Projects tab in the Workbench. You should see the "IBM
VisualAge Generator EGL Migration” project in your workspace.

89

Setting Stage 1 preferences

When you installed the Stage 1 migration tool on VisualAge for Java, the
installation process created a sample preferences file called MigPreferences.xml in
the directory VisualAge-Java-installation-directory\ide\vgmigration. You should make
a copy of the MigPreferences.xml file for backup purposes before you modify any
preferences.

You can use a text editor or the GUI editor that is provided with the Stage 1
migration tool to edit the MigPreferences.xml file. To use the GUI editor, do the
following:

1.

Start VisualAge Generator for Java.

2. In the Workbench window, click on the Projects tab.

o ok~ w

© N

Navigate to the IBM VisualAge Generator EGL Migration project.
Expand the migration project and then expand the package com.ibm.vgj.mig.
Within the package, select the PreferencesUI class.

Right-click on the PreferencesUI class and then click Properties from the
context menu.

Select the Program tab.

On the Program page, specify the following in the Command line arguments
field to point the MigPreferences.xml file you want to edit:

-p filename

where filename is the drive, directory, and file name of your
MigPreferences.xml file.
Click on OK to save the properties.

Right-click on the PreferencesUI and then click Run or Run main... (Or you
can pick the running man icon from the tool bar.) The Stage 1 GUI preferences
editor opens and loads the file that you pointed to in the program properties.

Note:

* For preferences that require a drive and directory, you can specify the
information in either of two ways:

— An absolute path. For example: d:\tempMig\MySystem\

— A relative path. In this case the path is relative to the working
directory. For example, ...\tempMig\MySystem results in a path of :

VisualAge-Java-installation-directory\ide\project resources
\IBM VisualAge Generator EGL Migration\tempMig\MySystem.

¢ If you do not specify a drive and directory for the log, debug, and report
files, the files are written to the working directory which is:

VisualAge-Java-installation-directory\ide\project resources
\IBM VisualAge Generator EGL Migration

The preferences you can modify are described in the following sections, based on
the page within the GUI in which the preference appears:

Build Plans
Mapping

Renaming

Execution

90 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Build Plans page

The Build Plans page identifies where the Stage 1 migration tool is to read or write
the migration plan file (or files), as well as which projects and versions you want
to migrate from your repository.

* Migration Specification. The Migration Specification identifies where the
migration tool is to write the migration plan file or files that the Stage 1 tool
creates based on your repository filters. Alternatively, if you have already
created the migration plan file (or files), the Migration Specification identifies
where the migration tool is to read the migration plan file (or files).

Note:
— Migration plan files have the file extension .pln before they are used to
load the migration database and .done after they have been successfully
processed.

— See ["Running the Stage 1 tool” on page 100|for information on setting
the -o (override) option for the VAGenToEGLMigration class, which is
the actual Stage 1 migration tool.

— Plan directory. This is the target directory where you want your migration plan
file (or files) to be placed by the Stage 1 migration tool or in which the Stage
1 tool can find your existing migration plan file (or files).

— Plan file name. An optional file name of the migration plan file you are
creating or using to load the migration database. When you run the Stage 1
migration tool, this file name is used in conjunction with the -0 (override)
option you specify for the VAGenToEGLMigration class as follows:

- If you include the -0 option in the properties for the
VAGenToEGLMigration class, the Stage 1 migration tool does the following
based on the file name you specify in the Migration Specifications:

* If you do not specify a Plan file name, the migration tool deletes all the
.pln files in the specified Plan directory before creating new plan files.
The migration tool creates one plan file for each migration set. In this
case, the migration Plan file names are of the form
migrationSetName_version.pln.

¢ If you specify a Plan file name, the migration tool deletes only the
specified .pln file from the specified Plan directory before creating a new
.pIn file with your specified Plan file name. In this case, the single Plan
file lists all the migration sets.

Use the -0 option if you want the Stage 1 migration tool to create the
migration plan file (or files) for you based on your repository filters.

— If you omit the -0 option from the properties for the VAGenToEGLMigration
class, the Stage 1 migration tool does not create any new migration plan files.
Instead, the Stage 1 migration tool runs based on the Plan directory and Plan
file name you specify in the Migration Specification:

- If you do not specify a Plan file name, the migration tool runs using all of
the .pln files in the specified Plan directory.

- If you specify a Plan file name, the migration tool runs using only that one
.pln file in the specified Plan directory.

Omit the -0 option if you have previously created the migration plan files and
now want to run the Stage 1 migration tool to load the migration database using
these files. See [“Creating a migration plan file manually” on page 103|for details
about creating your own migration plan files.

Chapter 4. Stage 1 — Extracting from Java 91

* Repository filters. The Repository Filters section enables you to control which
projects and versions in your Java repository are considered by the Stage 1
migration tool. Limiting the projects and versions can greatly enhance the
performance of the Stage 1 migration tool. You can specify multiple filters. The
Stage 1 migration tool uses the Projects filter and the Version depth or Version
number filters as follows:

— The migration tool matches each VAGen project in the repository against the
Projects filters.

- If the project name does not match at least one of the Projects filters, the
project is not considered for further processing.

- If the project name matches at least one of the Projects filters, the versions
of the project are processed as follows:

* If you selected the Version depth filter, then the most recent versions of
the project, up to the number specified by the Version depth filter, are
considered for further processing. The default Version depth filter is 1.

* If you selected the Version name filter, then each version name for the
project is matched against the list of Version name filters. If the version
name matches any of the Version name filters, then the version is
considered for further processing.

Note: Version depth and Version name are mutually exclusive. By
default, the Version name filter is included in the
MigPreferences.xml file. If you want to use the Version depth filter,
select the Version depth radio button and specify the number of
versions you want to migrate.

— If the project name and version name result in the project version being
considered for further processing, the Stage 1 migration tool does the
following:

- If the project version is a high-level PLP project, then the Stage 1 migration
tool uses the project version as the basis for creating a migration set. Each
version of the high-level PLP project results in a different migration set,
assuming the version name matches the version filter.

- If the project version is not a high-level PLP project, the project version is
not considered for further processing. The project version might still be
included in other migration sets; there just will not be a migration set
specifically for this project version.

Specify the Repository Filters information as follows:

— Projects filter. The migration tool matches the project names in your repository
to the Projects filter (or filters) that you specify. You can specify multiple
Projects filters. To add or remove filters, use the Add and Remove push
buttons. To update a filter, overtype in the table. The filters are not case
sensitive. You can use wildcards as follows:

- A project filter of *xyz* matches any project name in the repository that has
the string "xyz" anywhere in its name.

- A project filter of xyz* matches any project name in the repository that
begins with "xyz".
- A project filter of *xyz matches any project name in the repository that ends
with "xyz".
— Version depth filter. If a project name matches one of the Projects filters and
you selected the Version depth filter, the Stage 1 migration tool processes the

92 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

number of versions you have specified for the Version depth. The default is 1,
in which case the Stage 1 migration tool only processes the most recent
version of the project.

— Version name filter. If a project name matches one of the Projects filters and
you selected the Version name filter, the Stage 1 migration tool uses the
Version name filter (or filters) to determine which, if any, of the project
versions should be considered for migration. To add or remove filters, use the
Add and Remove push buttons. To update a filter, overtype in the table. The
filters are not case sensitive. You can use wildcards as follows:

- A version name filter of *xyz* matches any project version name that has
the string "xyz" anywhere in the version name.

- A version name filter of xyz* matches any project version name that begins
with "xyz".
- A version name filter of *xyz matches project version name that ends with

Mapping page
The Mapping page enables you to control the placement of parts in EGL files and
the name of some of the EGL projects, packages, and files that are created during
migration.

* File names. The File names section enables you to control the names of two EGL
files that are created during migration.

— Common Parts enables you to specify the name of an EGL file to contain parts
that are common to multiple unique generatable parts within the scope of the
migration set. Specify the file name without an extension or path. The
migration tool creates a common parts file in each EGL package that contains
parts that are used by (associated with) multiple generatable parts in the
migration set or which are in VAGen projects or packages that are identified
as common projects or package. See ["Placing parts in EGL files” on page 31|
for details about whether a part is placed with a program or in the Common
Parts file.

— Unused Parts enables you to specify the name of an EGL file to contain parts
that are not used within the scope of the migration set. Specify the file name
without an extension or path. The migration tool creates an unused parts file
in each EGL package that contains parts that are not used by (associated
with) any generatable part in the migration set, provided the corresponding
VAGen project and package are not identified as common projects of
packages.

* Spanning Maps. The Spanning Maps section enables you to specify suffixes that
are used in the event that one of your map groups includes maps from multiple
projects or packages.

— Project suffix enables you to specify a suffix that the Stage 1 migration tool
concatenates to the migration set name to create a new EGL project name. The
migration tool only creates this new EGL project if a map group and its maps
are in multiple VAGen projects within the migration set. The new project
name is migrationSetName_ProjectSuffix.

— Package suffix enables you to specify a suffix that the Stage 1 migration tool
concatenates to a project name to create a new EGL package name within an
EGL project. The migration tool only creates this new EGL package if a map
group and its maps are in multiple VAGen packages within a project. The
new package name is projectName_PackageSuffix.

Chapter 4. Stage 1 — Extracting from Java 93

* Common Identifiers. The Common Identifiers section enables you to specify a
list of strings with wildcards that the migration tool can use in determining
which VAGen projects and packages contain common (shared) parts.

— The Projects list enables you to specify a list of strings that identifies projects
that contain common parts. The migration tool matches this list of strings to
each project name in the migration set to determine if the project contains
common parts. If any string matches a project name, all parts within the
project are considered to be "used.” Each non-generatable part will either be
placed in a program file or in the file specified by your Common Parts
preference. You can specify multiple Projects filters. To add or remove filters,
use the Add and Remove push buttons. To update a filter, type over it in the
table. The filters are not case sensitive. You can also use an * as a wildcard at
the beginning or end of the string.

— The Packages list enables you to specify a list of strings that identifies
packages that contain common parts. The migration tool matches this list of
strings to each package name in the migration set to determine if the package
contains common parts. If any string matches a package name, all parts
within the package are considered to be "used.” Each non-generatable part
will either be placed in a program file or in the file specified by your
Common Parts preference. You can specify multiple Packages filters. To add
or remove filters, use the Add and Remove push buttons. To update a filter,
type over it in the table. The filters are not case sensitive. You can also use an
* as a wildcard at the beginning or end of the string.

Renaming page

The Renaming page enables you to specify renaming rules for your projects,
packages, and version names. The Renaming Rules section enables you to control
the names of the EGL projects and packages that are derived from your VAGen
project and package names. The number in the order column indicates the order in
which the Stage 1 migration tool is to apply the renaming rules, with the lowest
numbered rule applied first. To add or remove a renaming rule, use the Add and
Remove push buttons. To update a renaming rule, overtype the contents of the
cells in the table. You can double-click on any of the column headings to sort the
rules based on that column. You specify a rule by specifying the following
information:

* order specifies the order in which the rules are to be applied.
* From String specifies the characters in the VAGen name that you want to change.
* To String specifies the characters you want to use in the resulting EGL name.

* String Context specifies the location in the VAGen name where the migration tool
should look for the from string during renaming. The values are as follows:

— front means the rule applies if the from string appears at the beginning of a
project, package, or version name.

— back means that the rule applies if the from string appears at the end of a
project, package, or version name.

— any means that the rule applies if the from string appears anywhere within a
project, package, or version name.

— token means that the rule applies only if the from string is an exact match for
the project, package, or version name.

* Mapping Context indicates whether the migration tool is to apply the renaming
rule to a project, package, or version name. The values for Mapping Context are
as follows:

— project means that the renaming rule only applies to VAGen project names.

94 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

— package means that the renaming rule only applies to VAGen package names.

— both means that the renaming rule applies to both VAGen project names and
VAGen package names.

— version means that the renaming rule applies to the version names for all
project names. Use a version renaming rule if your version names include
special characters such as a semicolon (:) that are not permitted in directory
or file names. The default MigPreferences.xml file includes several version
renaming rules to help ensure that your version names do not result in
invalid directory or file names. The migration tools use the renamed versions
to create the migration plan file name (or names) in Stage 1 and to create
directory names in Stage 3 of migration.

Execution page

* Execution Options. The Execution Options section enables you to specify what
you want the Stage 1 migration tool to do.

— Generate report specifies that you want to create a migration report showing
where each part will be placed in the EGL project, package and file structure.
This report is useful for reviewing the results of preferences you specified for
Common Parts and Unused Parts file names, Spanning maps suffixes,
Common Identifiers for projects and packages, and your renaming rules. If
you select Generate report, the migration tool creates the report in the drive,
directory and file you specify for the Report file name in the Verification
section.

— Update database specifies that you want the Stage 1 migration tool to store the
migration plan information, including the External Source Format for your
parts, into the migration database.

You might run the Stage 1 migration tool in several steps as follows:

— Step 1 -- Deselect both Generate report and Update database. This enables
you to review the migration plan files that are created an ensure that your
Repository Filters are set correctly and will process the project versions that
you want. If you are not satisfied with the project versions that are being
selected, you can refine your Repository Filters and run this step again until
you are satisfied with the project versions that the migration tool will process.

— Step 2 -- Select only Generate report. This enables you to review the report
that shows how your VAGen projects, packages, and parts will be assigned to
EGL projects, packages, and files during migration. If you are not satisfied
with the placement of parts, you can refine your Mapping and Renaming
rules and run the report again until you are satisfied with the placement of
parts.

— Step 3 -- Select both Generate report and Update database. This provides you
with a final report that records the information that is stored in the migration
database.

Note:

— Generating the report can take some time. Therefore it is best to review
the .pln files to be sure that the migration tool will process the project
versions that you intend.

— The report files are overwritten if a report is generated. If you want to
save previous report files, you must move the report files to a different
directory or point to a new directory for your new report. Because the
report files link to other files, renaming the report files will cause the
links to be lost so the files are no longer viewable.

Chapter 4. Stage 1 — Extracting from Java 95

* Database. The Database section enables you to specify details about the
migration database:

— Database driver. This value should always one of the following:

- COM.ibm.db2.jdbc.app.DB2Driver if you are using a local database.

- COM.ibm.db2.jdbc.net.DB2Driver if you are using a remote database.
— Database name. This value should always be one of the following:

- jdbc:DB2:databaseName if you are using a local database.

- jdbc:nodeName:databaseName if you are using a remote database.

Note: In both cases, databaseName is the name of the migration database into
which the migration tool is to write the migration set information. By
default, the databaseName is VGMIG. If you changed the database
name from VGMIG when you created the migration database, you
must change the database name specified by this preference to match
the name you used.

— Schema is the name used as the qualifier for the database tables. By default,
the schema name is MIGSCHEMA. If you changed the schema name from
MIGSCHEMA when you created the migration database, you must change
the schema name specified by this preference to match the name you used.

— Userid is the user ID needed to connect to the migration database. If you not
specify the Userid, the migration tool attempts to connect using your logon
user ID. If this attempt fails, the migration tool displays a dialog window
asking for the information.

— Password is the password needed to connect to the migration database. If you
not specify the password, the migration tool attempts to connect using your
logon password. If this attempt fails, the migration tool displays a dialog
window asking for the information.

Note: The password is not encrypted in the preferences file. If this is a
concern, do not enter the password in the preferences file. Wait for the
prompt.

* Service. The Service section enables you to specify details about the logging and
debug information you want to capture during Stage 1. You can specify the
following:

— Trace level enables you to specify the level of information that you want to
write to the debug file. Use the drop-down list to specify one of the following
values:

1. Fatal error messages are logged. If any of these messages occur, the
migration database might be updated, but the migration plan file (.pln
file) is not changed to have the .done file extension. This enables you to
reprocess the .pln file.

2. Warning messages, as well as fatal error messages are logged.

3. Informational messages, as well as warning and fatal error messages are
logged.

4. Debug information, as well as informational, warning, and fatal error
messages are logged. DEBUG is the only trace level that causes the
migration tool to write information to the debug file.

The Trace level only affects the log and debug files. All the messages are
written to the Console window.

— Log file name enables you to specify the drive, directory, and file name for a
log file. You can create the log file with any file extension, but it is best

96 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

viewed as an .xml file. If you omit the log file name, the migration tool writes
the log information to a file named miglog.xml in the drive and directory that

you specified in the Log file name field. If you do not specify a Log file drive
and directory, the migration tool writes the log file to the working directory.

— Debug file name enables you to specify the drive, directory, and file name for a
debug file that might be needed by IBM support. You can create the debug
file with any file extension, but it is best viewed as an .xml file. Information is
only written to this file if the Trace level preference is set to Debug. If you
omit the debug file name and you specify a Trace level of Debug, the
migration tool writes the debug file information to a file migdebug.xml in the
drive and directory that you specified in the Debug file name field. If you do
not specify a Debug file drive and directory, the migration tool writes the
debug file to the working directory.

* Verification. The Verification section enables you to specify the drive, directory,
and file name for the verification report that is produced when you select the
Generate report preference in the Execution Options section. If you select
Generate report, you must enter a Report file name. You should always specify
the .htm extension. If you do not specify a drive and directory, the migration
tool writes the report file to the working directory.

Sample MigPreferences.xml file

The following is a sample MigPreferences.xml filet:

<preferences>
<database>
<driver>COM.ibm.db2.jdbc.app.DB2Driver</driver>
<uri>jdbc:DB2:VGMIG</uri>
<schema>MIGSCHEMA</schema>
<userid></userid>
<password></password>
</database>
<migrationSpec>
<directory>d:\tempMig\MyMigSet</directory>
<filename></filename>
</migrationSpec>
<repositoryFilters>
<projectName>MyProject*</projectName>
<versionName></versionName>
</repositoryFilters>
<service>
<tracelevel>4</tracelevel>
<debugfile>d:\tempMig\MyMigSet\Stagel\migdebug.xml</debugfile>
<logfile>d:\tempMig\MyMigSet\Stagel\miglog.xml</logfile>
</service>
<eg1Mapping>
<renameRule order = "1">
<fromString> </fromString>
<toString></toString>
<stringContext>any</stringContext>
<mappingContext>both</mappingContext>
</renameRule>
<renameRule order = "101">
<fromString>Project</fromString>
<toString></toString>
<stringContext>any</stringContext>
<mappingContext>project</mappingContext>
</renameRule>
<renameRule order = "301">
<fromString>.pkg</fromString>
<toString></toString>
<stringContext>any</stringContext>
<mappingContext>package</mappingContext>

Chapter 4. Stage 1 — Extracting from Java 97

</renameRule>

<renameRule order = "302">
<fromString>.sql</fromString>
<toString>sql</toString>
<stringContext>any</stringContext>
<mappingContext>package</mappingContext>

</renameRule>

<renameRule order = "501">
<fromString>:</fromString>
<toString> </toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order = "502">

<fromString>/</fromString>
<toString>_</toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order = "503">
<fromString>\</fromString>
<toString> </toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order = "504">
<fromString>|</fromString>
<toString>_</toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order = "505">
<fromString>?</fromString>
<toString> </toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order = "506">
<fromString>*</fromString>
<toString>_</toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order = "507">
<fromString>&1t;</fromString>
<toString>_</toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order = "508">
<fromString>></fromString>
<toString> </toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order = "509">
<fromString>"</fromString>
<toString>_</toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order = "510">
<fromString> </fromString>
<toString> </toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

98 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

<verification>
<generateReport>true</generateReport>
<reportName>d:\tempMig\MyMigSet\report\MyReport.htm</reportName>
</verification>
<dbUpdate>true</dbUpdate>
<spanningMapsProjectSuffix>MapsProject</spanningMapsProjectSuffix>
<spanningMapsPackageSuffix>mapspackage</spanningMapsPackageSuffix>
<commonPartsFileName>CommonParts</commonPartsFileName>
<unusedPartsFileName>UnusedParts</unusedPartsFileName>
<commonParts>
<commonProject>*Common*</commonProject>
<commonPackage>*common*</commonPackage>
</commonParts>
</eg1Mapping>
</preferences>

Before you run the Stage 1 tool — hints and tips

Before you run the Stage 1 migration tool, there are some things you might want
to do to improve performance. You might also want to save your existing
workspace for use after migration is completed.

Improving performance

Performance measurements have shown that the performance Stage 1 migration
tool can be improved dramatically by starting with a clean workspace. In one
series of tests, starting with a clean workspace reduced the time for Stage 1 to 25%
- 30% of the time without a clean workspace. If your existing workspace is larger
than 20 megabytes, starting with a clean workspace might help the Stage 1 tool
performance.

To start with a clean workspace, do the following:
1. Shut down VisualAge Generator.

2. See[’Saving your workspace” on page 100 if you want to keep a backup copy
of your existing workspace to use after migration has completed.

3. Obtain a copy of a clean workspace (file name ide.icx) from the VisualAge
Generator download site at:

ftp://ftp.software.ibm.com/ps/products/visualagegen/fixes/v4.5/FixPack4/win
Delete the features.sav and projects.sav files.

Restart VisualAge Generator.

Add the VisualAge Generator features that you need.

Add the "IBM VisualAge Generator EGL Migration” feature.

Shut down VisualAge Generator.

© N oA

To reduce the time the Stage 1 migration tool spends analyzing which projects and
versions to migrate, consider creating a repository that only contains the project
versions that you want to migrate. If you have ongoing maintenance in VisualAge
Generator while you are migrating, a separate migration repository also has the
following advantages:

* There is a stable set of project versions to migrate. This is particularly important
if you use the Version Number preference to control what is to be migrated.

* You can compare the versions in the new migration repository against your
maintenance repository to determine what additional project versions still need
to be migrated.

Chapter 4. Stage 1 — Extracting from Java 99

Saving your workspace

The Stage 1 migration tool deletes all projects that contain VAGen parts from your
workspace at the beginning and end of Stage 1 processing. This helps to avoid
duplicate parts in the workspace and ensures that only parts in the migration set
are considered for the associate parts list during Stage 1. If you have a workspace
that you wish to save, you should do the following before running the Stage 1
tool:

1. Shut down VisualAge Generator.

2. Save backup copies of the following files in your \VisualAgeForJava-installation-
directory\ide\program:

e features.sav

* projects.sav

* ide.icx

* ide.ini — not necessary to save if you do not change any preferences while
running Stage 1

* hpt.ini — not necessary to save if you do not change any preferences while
running Stage 1

3. Start VisualAge Generator.

When you are finished running the Stage 1 tool, do the following to restore your
workspace:

1. Shut down VisualAge Generator.
2. Restore the files you backed up before running the Stage 1 tool.
3. Start VisualAge Generator.

Running the Stage 1 tool

After you have finished editing your preferences, you are ready to run the Stage 1
migration tool to extract your source code from the Java repository. To do this,
perform the following steps:

1. Navigate to the IBM VisualAge Generator EGL Migration project.

2. Expand the migration project and then expand the package com.ibm.vgj.mig.
3. Within the package, select the VAGenToEGLMigration class.
4

. Right-click on the VAGenToEGLMigration class and then click Properties from
the context menu.

o

Select the Program tab.

6. On the Program page, specify the following in the Command line arguments
field to point the MigPreferences.xml file you want to edit:

Table 54. Valid command line options for VAGentoEGLMigration class

Option Meaning of option

—h Display help information that shows the valid options

—p filename Use "filename” as the name of the preferences file. You
must fully qualify the file name, including the drive and
directory.

—o0 Overwrite the migration files if they exist and recreate
them.

7. If this is the first time you are running the Stage 1 tool, do the following:
a. In the same Properties window, select the Class Path tab.

100 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

b. On the Class Path page, select the Extra directories checkbox and then click
on the Edit button for the Extra directories.

c. Select the Add Jar/Zip button.
d. In the File selection window, navigate to and select the db2java.zip file.

 If you used the default install directory when you installed DB2, the file
should be in the \SQLLIB\java directory.

After you select the db2java.zip file, the file name appears in the Extra
directories window. Click OK on the Extra Directories window.

e. On the Class Path page, click the Compute Now button and then click Yes
at the prompt.

8. Click on OK to save the properties.

9. Right-click on the VAGenToEGLMigration and then click Run or Run main...
(Or you can pick the running man icon from the tool bar.) The Stage 1
migration tool starts and opens a Console window where it reports progress
and any error messages. The migration tool also writes the messages to the log
file you specified in your migration preferences.

When the Stage 1 migration tool finishes, if you selected the update database
preference, then your migration plan information, including your VAGen code in
External Source Format, is stored in the migration database. After reviewing your
report and the Stage 1 messages, you might decide to make changes to your code
in VisualAge Generator and run Stage 1 again. After you are satisfied with the
results of Stage 1 and have your final External Source Format code stored in the
migration database, you are ready to perform Stage 2 of the migration. To run the
Stage 2 migration tool, you use the WebSphere Studio product. See
[“Stage 2—Conversion to EGL syntax,” on page 127 for information about
continuing your migration process.

Migration plans and high-level PLP projects

A migration plan file is simply an XML file that specifies the names of one or more
migration sets and, for each migration set, the list of project names and versions
that make up the migration set. The Stage 1 migration tool is designed to
automatically create a migration plan file for you based on the repositoryFilter
preferences for project and version names. The Stage 1 tool uses these filters to
determine if a project version should be reviewed to determine if the project
version is a high-level PLP project. The Stage 1 tool uses each high-level PLP
project version as the basis for a migration set.

If you use PLP projects when generating your VAGen source code, then these PLP
projects are the same ones you should use for migration. This is because the PLP
projects provide groupings of parts that are used together during generation and
therefore have all the associated parts for a set of programs.

If you do not currently use PLP projects, you can do one of the following:

* Create a high-level PLP project that specifies the list of project versions that you
want to migrate as a group. Then you can use the Stage 1 migration tool to
automatically create the migration plan for you.

* If you prefer not to create a high-level PLP project, you can create the migration
plan file yourself using one of the following techniques:

Chapter 4. Stage 1 — Extracting from Java 101

— If you have information in a database or other system that specifies what is
needed for generation in terms of Java project versions, then you can write a
tool to create the migration plan file or files automatically from your
database.

— Create the migration plan file or files manually.

Creating a high-level PLP project

Note: VisualAge Generator does not support PLPs if the project names or version

names include DBCS characters. If your project or version names include
DBCS characters, see|“Creating a migration plan file manually” on page 103|
for information on how to create the migration plan file without using a
PLP.

To create a high-level PLP project for use in migration do the following in
VisualAge Generator:

1.
2.

From the Workbench window, select the Projects tab.

Create a new Java project to contain the Project List Part. For example, create a
project called MySubsystem1.

Select the new project, right-click and select Manage -> Configure VAGen
Required Projects from the context menu.

In the Configure VAGen Required Projects window, select each project that you
want to include in your migration set. For each project you can select a specific
version to include in the migration set. Alternatively, you can select Most recent
edition, which causes the migration tool to automatically include the version
that is currently at the top of the list whenever you use this project during
migration.

After you have selected all the project versions that you require for the
migration set, click OK.

Version and release the high-level PLP project, for example MySubsystem1.

Test that the PLP project correctly loads the project versions you want for your
migration set as follows:

a. Delete the high-level PLP project from your workspace.
b. Click Selected -> Add -> Project.
c. From the Add Project window, do the following:
1) Select Add projects from the repository.
2) Select the high-level PLP project that you just created and the version
that you created.
3) Also select Add VAGen required projects.
4) Click Finish.
d. The high-level PLP project and all the project versions it specifies are added
to your workspace.

e. From the VAGen Parts Browser, select Tools -> Show Duplicate Parts.
There should not be any parts on the list. If there are, you need to change
the high-level PLP project so that there are no duplicates.

f. You might also want to run validation for your programs and tables to
ensure that they are valid in VAGen and that you are not missing any parts.

You can chain PLP projects. For example, create a PLP project that lists the project
versions for all your common projects. Then, for each subsystem, create a
high-level PLP project for that subsystem that includes all the subsystem-specific

102 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

project versions and the PLP project that specifies all the common project versions.
This way you do not have list each common project version in every subsystem’s
high-level PLP project.

When you are ready to run the Stage 1 migration tool, do the following:

* When you set your Stage 1 preferences, on the Build plans page, in the
Repository Filters section, set the Projects list so that a filter in the list matches
the high-level PLP project you created.

* When you instruct the Stage 1 tool which preferences file to use, also specify the
-0 option. The -0 option instructs the Stage 1 migration tool to create the
migration plan files for you based on your high-level PLP projects and to
overwrite any existing migration plan files.

Creating a migration plan file manually

If you already have external controls that determine what project versions to add
to your workspace when you generate in VisualAge Generator, you might decide
to create the migration plan file manually or to develop a tool to create the
migration plan file automatically from your external information. The migration
plan file must have a .pln file extension and the following format:
<migrationDefinition>
<migrationSet name="migrationSetl" version="migrationSetlVersionl"
vgName="migrationSetl" vgVersion="migrationSetlVersionl">
<project name="projectNamel" version="projectNamelVersionl"></project>
<project name="projectName2" version="projectName2Versionl"></project>

<project name="projectNameN" version="projectNameNVersionl"></project>
</migrationSet>
<migrationSet name="migrationSet2" version="1.1"
vgName="migrationSet2" vgVersion="1.1">
<project name="projectNameA" version="projectNameAVersionl"></project>
<project name="projectNameB" version="projectNameBVersionl"></project>

<project name="projectNameZ" version="projectNameZVersionl"></project>
</migrationSet>
</migrationDefinition>

In the previous example, the following applies:

* migrationSetl is a name that you can use to refer to a group of projects that
must be migrated together. The migration set name is stored in the migration
database and is used in the later stages of migration as follows:

— In Stage 1 migration, if maps in a map group span projects, the migration set
name concatenated with a suffix is used to build the name of a new EGL
project that will contain the map group and all its maps. migrationSet1 is also
used to remove information from the migration database if you change
renaming rules.

— In Stage 2 migration, the migration set name specifies which group of projects
in the migration database that you want to convert to EGL.

— In Stage 3, the migration set name specifies which group of projects in the
migration database you want to use to create EGL projects, packages, and
files in your workspace or in a temporary directory. The migration set name
and the migration set version are also used to create the high-level directory
name if you choose to save the outputs of Stage 3 to a temporary directory.

Chapter 4. Stage 1 — Extracting from Java 103

The migration set name is only used during migration as a way of identifying a
group of projects. Other than the situation in which maps span multiple projects
in VisualAge Generator, the migration set name is not used after migration.

* projectNamel, projectName?2, ..., projectNameN are the projects you want to
migrate as a group. You must only list a projectName once within a migration
set. The migration tool loads all project versions listed under the same migration
set into the workspace and processes them as a group.

* projectNamelVersionl, projectName2Versionl, ..., projectNameN Versionl are the
respective versions of each of these projects. You can only specify one version
for each project within a migration set.

* The project names and version names you specify must exactly match the
project names and version names in your repository. The names are case
sensitive. The information is used to add project versions to the workspace so
that the parts can be analyzed to build the Stage 1 migration report and to load
the database.

You can build a migration plan file that contains just one migration set.
Alternatively, you can build a migration plan file that contains several migration
sets by repeating the information between the <migrationSet> and
</migrationSet> tags for each migration set.

When you are ready to run the Stage 1 migration tool, do the following:

* When you set your Stage 1 preferences, on the Build plans tab, set the Plan
directory name to drive and directory where you stored your migration plan
files. Specify the Plan file name if you want the Stage 1 migration tool to run
only one migration plan that you have created. Leave the Plan file name blank
if you want the Stage 1 migration tool to run using all the migration plan files
in the specified Plan directory.

* When you instruct the Stage 1 tool which preferences file to use, be sure to omit
the -0 option. Omitting the -0 option instructs the Stage 1 tool to use the existing
migration plan files. That is, the tool is not to create any new migration plan
files.

104 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Part 3. Migrating from VisualAge Generator 4.5 on Smalltalk to
EGL

© Copyright IBM Corp. 2004 105

106 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Chapter 5. Stage 1 — Extracting from Smalltalk

Before you can extract your information from VisualAge Generator, you must
install the Stage 1 migration tool that runs on VisualAge Smalltalk. You must also
create the DB2 migration database that is used to store the data you are migrating
from VisualAge Generator 4.5 (VAGen 4.5) to EGL.

Installing the Stage 1 migration tool on VisualAge Smalltalk
The VisualAge Generator to EGL Stage 1 migration tool is shipped as a
self-extracting file called VAGenMigST.exe To install this file, do the following:
1. On your system, determine where VisualAge Smalltalk is installed.

2. Run the self-extracting VAGenMigST.exe file. The file is in the following
subdirectory under your WebSphere Studio installation directory:

\bin

When the GUI prompt appears, navigate to the drive and directory where
VisualAge Smalltalk is installed. Then click Extract.

When the self-extracting executable runs, it extracts the following files into your
VisualAge Smalltalk installation directory:

* import\vgMigSt.dat

e feature\vgMigSt.ctl

* image\Messages.properties
* image\MigPreferences.xml
* createdatabase.sql

* createtables.sql

* SetupDatabase.bat

* SetupTables.bat

* deletemigsets.bat

Loading the migration feature

To be able to use the Stage 1 migration tool, you must load the VAGen EGL
Migration feature. To do this, perform the following steps:

1. Start VisualAge Generator on Smalltalk.
2. Load the VAGen EGL Migration feature by doing the following;:
a. From the System Transcript, select Tools -> Load/Unload Features.
b. On the Selection Required window, do the following:
1) Ensure the Show other features checkbox is selected.

2) In the Available features pane, select Other: VAGen EGL Migration -
versionName.

3) Select the >> button to move Other: VAGen EGL Migration -
versionName to the Loaded features pane.

4) Click OK. The VAGen EGL Migration feature will be imported and
loaded into your image.

3. In the Systems Transcript, you should see messages that the VAGen EGL
Migration feature was loaded successfully. You should also see EGL Migration

© Copyright IBM Corp. 2004 107

Tools on the tool bar. In the VisualAge Organizer, you should see
HptEglMigrationGuiApp in the Applications pane.

4. After the VAGen EGL Migration feature is loaded, you will be prompted to
save your image. Click Yes so you do not have to load the feature again.

Note: If you have a problem loading the feature, check your abt.ini file (contained
in the VisualAge-Smalltalk-installation-directory\image directory). Make sure
the abt.ini file has the following fields filled in under the
[EmLibraryInterface] heading:

* ServerAddress=myserver.somecompay.somewhere.com. This value should
point to the server at your company that runs EMSRV.

¢ DefaultName=path-to-mgr50.dat\mgr50.dat. This value must be the name of
your Smalltalk library.

Creating the migration database

See [“Creating the DB2 migration database” on page 303|for information on
creating the migration database. You need to use the SetupDatabase.bat and the
SetupTables.bat files that were placed in the VisualAge Smalltalk installation
directory when you ran the self-extracting VAGenMigST.exe file.

Setting Stage 1 preferences

When you installed the Stage 1 migration tool on VisualAge Smalltalk, the
installation process created a sample preferences file called MigPreferences.xml in
the directory VisualAge-Smalltalk-installation-directory\image. You should make a
copy of the MigPreferences.xml file for backup purposes before you modify any
preferences.

The VisualAge Generator to EGL migration tool on Smalltalk provides a GUI
editor to assist you in specifying your Stage 1 migration preferences. You can start
the Stage 1 preferences editor in either of two ways:

* From the System Transcript, select EGL Migration Tools -> Preferences Editor.
The EGL Migration Preferences Editor appears. The preferences editor defaults
to the last preferences file that you modified (or to the MigPreferences.xml file
that is shipped with the Stage 1 tool if you have never modified preferences
before). If you need to point to a different preferences file, click the Open...
button.

* From the System Transcript, select EGL Migration Tools -> Migration Driver. In
the Migration File Preference section, specify a file name for your preferences
file and then click Edit. The EGL Migration Preferences Editor appears. The
advantage of this technique is that after you finish modifying the preferences
file, you are positioned to run the Stage 1 migration tool.

Regardless of which technique you use, the EGL Migration Preferences Editor
enables you to set preferences that control the Stage 1 migration tool. When you
are finished editing the preferences, click the Save or Save As... button, and then
close the editor.

Note: For preferences that require a drive and directory, you can specify the
information in either of two ways:

* an absolute path. For example: d:\tempMig\MySystem\

* a relative path. In this case the path is relative to the working directory.
For example:

108 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

- A\tempMig\Systems results in an absolute path of
Visual Age-Smalltalk-installation-directory\image \ tempMig \MySystem

- ..\tempMig\MySystem results in an absolute path of
Visual Age-Smalltalk-installation-directory\tempMig \MySystem

The preferences you can modify are described in the following sections, based on
the page within the GUI in which the preference appears:

* Build Plans
* Mapping
* Renaming
* Execution

Build Plans page

The Build Plans page enables you to specify information about where the
migration plan is to be placed. The Build Plans page also enables you to indicate
which configuration maps and versions in the library you want to consider for
migration. The Build Plans page is organized in the following sections:

* Migration Plan Specification information identifies where the Stage 1 migration
tool is to read or write the migration plan file (or files).

— Plan Directory. This is the target directory where you want your migration
plan file (or files) to be placed.

— Plan File Name. An optional file name of the migration plan file you are
creating and using to load the migration database. You can click the Plan File
Name button to view existing plan files in your plan directory. If you need to
see details within a plan file, click the View Plans button and expand the
plan file to see the migration sets.

- If you specify a file name, the migration tool creates a single file with your
specified file name. In this case, the single file lists all the migration sets.

- If you do not specify a file name, the migration tool creates one plan file
for each migration set. In this case, the file names are of the form
migrationSetName_version.pln.

* Repository Filters information enables you to control which configuration maps
and versions in your Smalltalk library are considered by the Stage 1 migration
tool. Limiting the configuration maps and versions can greatly enhance the
performance of the Stage 1 migration tool. You can specify multiple filters. The
Stage 1 migration tool uses the Configuration Maps filter and the Version Name
or Version Depth filters as follows:

— The migration tool matches each configuration map name in the library
against the Configuration Maps filter.

- If the configuration map name does not match at least one of the
Configuration Maps filters, the configuration map is not considered for
further processing.

- If the configuration map name matches at least one of the Configuration
Map filters, the versions of the configuration map are processed as follows:

* If you specified any Version Name filters, then each version name for the
configuration map is matched against the list of Version Name filters. If
the version name matches any of the Version Name filters, then the
version is considered for further processing.

Chapter 5. Stage 1 — Extracting from Smalltalk 109

* If you specified the Version Depth filter and did not specify any Version
Name filters, then the most recent versions of the configuration map, up
to the number specified by the Version Depth filter, are considered for
further processing.

— If the configuration map name and version name result in the configuration
map version being considered for further processing, the Stage 1 migration
tool does the following:

- If the configuration map version is a high-level configuration map, then the
migration tool uses the configuration map version as the basis for creating
a migration set. Each version of the high-level configuration map results in
a different migration set, assuming the version name matched the version
filter.

- If the configuration map version is not a high-level configuration map, the
configuration map version is not considered for further processing. The
configuration map version might still be included in other migration sets;
there just will not be a migration set specifically for this configuration map
version.

Specify the Repository Filter information as follows:

* Configuration Maps filter. The migration tool matches the configuration map
names in your library to the Configuration Maps filter (or filters) that you
specify. You can specify multiple Configuration Maps filters. To add, change, or
remove filters, right-click on a filter and use the options on the context menu.
The filters are not case sensitive. You can use wildcards in the filters as follows:

— A configuration map filter of *xyz* matches any configuration map name in
the library that has the string "xyz"” anywhere in its name.

— A configuration map filter of xyz* matches any configuration map name in
the library that begins with "xyz".

— A configuration map filter of *xyz matches any configuration map name in
the library that ends with "xyz".

* Version Name filter. If a configuration map name matches the Configuration
Maps filter, the migration tool uses the Version Name filter to determine which,
if any, of the configuration map versions should be considered for migration.
You can specify multiple Version Name filters. To add, change or remove filters,
right-click on a filter and use the options on the context menu. The filters are not
case sensitive. You can use wildcards in the filters as follows:

— A version name filter of *xyz* matches any configuration map version name
that has the string "xyz"” anywhere in the version name.

— A version name filter of xyz* matches any configuration map version name
that begins with "xyz".

— A version name filter of *xyz matches configuration map version name that
ends with "xyz".

— If you leave the Version Name filters field empty, the migration tool uses the
Version Depth filter.

e Version Depth filter. You can specify the number of previous versions you want to
migrate. The default is 1, in which case the migration tool only processes the
most recent version of the configuration map. If any Version Name filters are
specified, the Version Depth filter is ignored.

Mapping page
The Mapping page enables you to specify the following:

* EGL file names for common parts and for unused parts.

110 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

* Suffixes that are used in building EGL project and package names.

* Options that control how your application names are converted to EGL package
names.

* Information about which VAGen configuration maps and applications contain
common parts.

The following describes the preferences on the Mapping page in more detail:
* File Names section contains the following:

— Common Parts enables you to specify the name of an EGL file to contain parts
that are common to multiple unique generatable parts within the scope of the
migration set. Specify the file name without an extension or path. The
migration tool creates a common parts file in any EGL package that contains
parts that are used by (associated with) multiple generatable parts in the
migration set or which are in VAGen configuration maps or applications that
are identified as common configuration maps or applications. See
[parts in EGL files” on page 31| for details about whether a part is placed with
in a file with a program or in the Common Parts file.

— Unused Parts enables you to specify the name of an EGL file to contain parts
that are not used within the scope of the migration set. Specify the file name
without an extension or path. The migration tool creates an unused parts file
in any EGL package that contains parts that are not used by (associated with)
any generatable part in the migration set, provided the corresponding VAGen
configuration map and application are not identified as common
configuration maps or applications.

* Spanning Maps section contains the following;:

— Project Suffix enables you to specify a suffix for the Stage 1 migration tool to
add to the migration set name to create a new EGL project name. The
migration tool only creates this new EGL project if a map group and its maps
are spread across multiple VAGen configuration maps within the migration
set. The migration tool adds the suffix to the migration set name after any
Renaming rules are applied.

— Package Suffix enables you to specify a suffix for the Stage 1 migration tool to
add to a project name to create a new EGL package name within the EGL
project. The migration tool only creates this new EGL package if a map group
and its maps are spread across multiple VAGen applications within a
configuration map. The migration tool adds the suffix after any Renaming
rules are applied to create the EGL project name.

¢ EGL Package Naming Options contains the following;:

— Use package naming dot notation. If you select this option, the migration tool
converts VAGen application names to EGL package names by placing a dot
before each uppercase letter in the application name after the first. For
example, if you select this option, the migration tool changes
MyOrderEntryApp to My.Order.Entry. App.

— Convert package names to lowercase. If you select this option, the migration tool
converts VAGen application names to EGL package names by changing
uppercase letters to lowercase. For example, if you select this option, the
migration tool changes MyOrderEntryApp to myorderentryapp.

In general, you should select both options. If both are selected, the migration
tool changes MyOrderEntryApp to my.order.entry.app. The EGL Package
Naming Options are applied after any Renaming rules.

* Common Identifiers. This section enables you to specify a list of strings with
wildcards that the migration tool can use in determining which configuration

Chapter 5. Stage 1 — Extracting from Smalltalk 111

maps and applications contain common parts. To add or delete a common
identifier, right click on the field and use the options on the context menu. When
you add an identifier, the editor prompts you to enter the following information:

— context indicates whether the string is to be matched to the configuration map

name, application name, or both.

- ConfigMap enables you to specify a string that identifies configuration maps
that contain common parts. The migration tool matches this string to each
configuration map name in the migration set to determine if the
configuration map contains common parts. If the configuration map name
matches any of the strings, all parts within the configuration map are
considered to be "used”. Each part will either be placed in a program file or
in the file specified by your Common Parts File Name preference; the part
will not be placed in the unused parts file even if the part is not used by
any generatable part in the migration set. You can enter multiple ConfigMap
strings.

- Application enables you to specify a string that identifies applications that
contain common parts. The migration tool matches this string to each
application name in the migration set to determine if the application
contains common parts. If the string matches an application name, all parts
within the application are considered to be "used”. Each part will either be
placed in a program file or in the file specified by your Common Parts File
Name preference; the part will not be placed in the unused parts file even
if the part is not used by any generatable part in the migration set. You can
enter multiple Application strings.

- Both enables you to specify a string that the migration tool matches to both
configuration map names and application names within the migration set.
Both is equivalent to specifying the same string with a context of ConfigMap
and a context of Application.

Pattern to identify the common code enables you to specify the string the
migration tool should match based on the context you specified. You can use
the * as a wildcard at either the beginning or end of the string.

Renaming page

The Renaming page enables you to control the names of the EGL projects and
packages that are derived from your VAGen configuration map and application
names. The number in the Order column indicates the order in which the
migration tool is to apply the renaming rules, with the lowest numbered rule
applied first. To add or delete a renaming rule, click on a rule and use the options
on the context menu. Add Rule always puts the new rule at the end of the list.
When you add a rule, the editor prompts you to enter the following information:

* from string specifies the characters in the VAGen name that you want to change.

* to string specifies the characters you want to use in the resulting EGL name.

* string context specifies the location in the VAGen name where the migration tool
should look for the from string during renaming. The values are as follows:

front means the rule applies if the from string appears at the beginning of a
configuration map, application, or version name.

back means that the rule applies if the from string appears at the end of a
configuration map, application, or version name.

any means that the rule applies if the from string appears anywhere within a
configuration map, application, or version name.

token means that the rule applies only if the from string is an exact match for
the configuration map, application, or version name.

112 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

* mapping context indicates whether the migration tool is to apply the renaming
rule to a configuration map, application, or version name. The values for
mapping context are as follows:

configMap means that the renaming rule only applies to VAGen configuration
map names.

application means that the renaming rule only applies to VAGen application
names.

both means that the renaming rule applies to both VAGen configuration map
names and VAGen application names.

version means that the renaming rule applies to the version names for all
configuration maps. Use a version renaming rule if your version names
include special characters such as a semicolon (:) that are not permitted in
directory or file names. The migration tools use the renamed versions to
create the migration plan file name (or names) in Stage 1 and to create
directory names in Stage 3 of migration.

Execution page

The Execution page enables you to specify information about the location of the
migration database, as well as the logging, debug, and report information you
want to capture during Stage 1. The following describes the preferences you can
specify on the Execution page in more detail:

* Database information. This section enables you to specify details about the
migration database:

DB is the name of the migration database into which the migration tool is to
write the migration set information. If you changed the database name from
VGMIG when you created the migration database, you must change the
database name specified by this preference to match the name you used.

Schema is the name used as the qualifier for the database tables. If you do not
specify the schema, the migration tool uses MIGSCHEMA as the default. If
you changed the schema name from MIGSCHEMA when you created the
migration database, you must change the schema name specified by this
preference to match the name you used.

Userid is the user ID needed to connect to the migration database. If you not
specify the Userid, the migration tool attempts to connect using the user ID
specified in your VAGen SQL Preferences as the default. If the connection
fails, the migration tool attempts to use your logon user ID. If both attempts
fail, the migration tool displays a dialog window asking for the information.

Password is the password needed to connect to the migration database. If you
not specify the password, the migration tool attempts to connect using the
password specified in your VAGen SQL Preferences as the default. If the
connection fails, the migration tool attempts to use your logon password. If
both attempts fail, the migration tool displays a dialog window asking for the
information.

Note: The password is not encrypted in the preferences file. If this is a
concern, do not enter the password in the preferences file. Wait for the
prompt.

* Service information. This section enables you to specify details about the logging
and debug information you want to capture during Stage 1. You can specify the
following:

Trace Level enables you to specify the level of information that you want to
write to the debug file. You can specify one of the following values:

Chapter 5. Stage 1 — Extracting from Smalltalk 113

- FATAL (Level 1) -- Error messages are logged.
- WARN (Level 2) -- Warning messages and error messages are logged.
- INFO (Level 3) -- Informational, warning, and error messages are logged.

- DEBUG (Level 4) -- Debug information, as well as informational, warning,
and error messages are logged. DEBUG is the only trace level that causes
the migration tool to write information to the debug file.

Log File Name enables you to specify the drive, directory, and file name for a
log file. You can create the log file with any file extension, but it is best
viewed as an .xml file. If you omit the log file name, a file named migLog.xml
is written to the drive and directory that you specified in the Log File Name
field. If you do not specify a drive and directory, the migration tool writes the
log file to the migration plan directory.

Debug File Name enables you to specify the drive, directory, and file name for
a debug file that might be needed by IBM support. You can create the debug
file with any file extension, but it is best viewed as an .xml file. Information is
only written to this file if the Trace Level preference is set to DEBUG. If you
omit the debug file name and you specify a Trace Level of DEBUG, a file
named migDebug.xml is written to the drive and directory that you specified
in the Debug File Name field. If you do not specify a drive and directory, the
migration tool writes the debug file to the migration plan directory.

e Verification information. This section enables you to specify information about
the report file that can be output from the Stage 1 migration tool. You can
specify the following;:

— Report File Name enables you to specify the drive, directory, and file name to

be used for the report file. This report contains information about how your
VAGen files are going to be migrated. You can create the report file with any
file extension, but it is best viewed as a .htm file. If you omit the report file
name, a file named report\MigrationReport.xml is written to the drive and
directory that you specified in the Report File Name field. If you do not
specify a drive and directory, the migration tool writes the report file to the
migration plan directory.

Sample MigPreferences.xml file

114 WebSphere Studio:

The following is a sample MigPreferences.xml file:
<preferences>

<database>
<uri>VGMIG</uri>
<schema>MIGSCHEMA</schema>
<userid></userid>
<password></password>
</database>
<migrationSpec>
<directory>d:\TempMig\Stagel</directory>
<filename></filename>
</migrationSpec>
<service>
<tracelLevel>4</tracelLevel>
<logfile>d:\TempMig\stagel\migLog.xml</1ogfile>
<debugfile>d:\TempMig\stagel\migDebug.xml</debugfile>
</service>
<repositoryFilters>
<projectName>MyConfigMap*</projectName>
<versionNumber>1</versionNumber>
</repositoryFilters>
<verification>
<reportName>d:\TempMig\report\MigrationReport.htm</reportName>
</verification>

VisualAge Generator to Enterprise Generation Language Migration Guide

<eg1Mapping>

<commonPartsFileName>CommonParts</commonPartsFileName>

<unusedPartsFileName>UnusedParts</unusedPartsFileName>

<spanningMapsProjectSuffix>MapsProject</spanningMapsProjectSuffix>

<spanningMapsPackageSuffix>mapspackage</spanningMapsPackageSuffix>

<packageDotNotation>true</packageDotNotation>

<packagelLowercase>true</packagelLowercase>

<commonParts>
<commonConfigMap>*Common*</commonConfigMap>
<commonApp1ication>*Common*</commonApplication>

</commonParts>

<renameRule order="1">
<fromString></fromString>
<toString></toString>
<stringContext>any</stringContext>
<mappingContext>both</mappingContext>

</renameRule>

<renameRule order="101">
<fromString>CM</fromString>
<toString></toString>
<stringContext>back</stringContext>
<mappingContext>configMap</mappingContext>

</renameRule>

<renameRule order="301">
<fromString>App</fromString>
<toString></toString>
<stringContext>back</stringContext>
<mappingContext>application</mappingContext>

</renameRule>

<renameRule order="501">
<fromString>:</fromString>
<toString>_</toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order="502">
<fromString>/</fromString>
<toString> </toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order="503">
<fromString>\</fromString>
<toString>_</toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order="504">
<fromString>|</fromString>
<toString> </toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order="505">
<fromString>?</fromString>
<toString> </toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order="506">
<fromString>*</fromString>
<toString> </toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order="507">
<fromString>&1t;</fromString>

Chapter 5. Stage 1 — Extracting from Smalltalk

115

<toString>_</toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order="508">
<fromString>></fromString>
<toString>_</toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order="509">
<fromString>"</fromString>
<toString>_</toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

<renameRule order="510">
<fromString> </fromString>
<toString> </toString>
<stringContext>any</stringContext>
<mappingContext>version</mappingContext>

</renameRule>

</eg1Mapping>
</preferences>

Deriving file names from your preferences

The Stage 1 migration tool derives the file names for the log, debug, and report file
names in the same way. The following table shows a name you as you might
specify it in the preferences and the resulting drive, directory and path name that
the migration tool uses. In this example, the Migration Plan Directory is
d:\myVAGenMig.

Table 55. File name derived from preferences

Log File Name Preference File Name used by Stage 1 Migration Tool
Preference is left blank. d:\myVAGenMig\migLog.xml
Note:

* The default file name for the debug file is migDebug.xml.
* The default file name for the report file is \report\MigrationReport.xml

mine.xml d:\myVAGenMig\mine.xml
logs\mine.xml d:\myVAGenMig\logs\mine.xml
.mine.xml Visual Age-Generator-installation-directory\image \mine.xml

Before you run the Stage 1 tool — hints and tips

Before you run the Stage 1 migration tool, there are some things you might want
to do to improve performance. You might also want to save your existing
workspace for use after migration is completed.

Improving performance

To minimize the memory usage, it is best to clean up (or "scrub”) the image before
running the Stage 1 migration tool. To clean up (or "scrub”) the image, do the
following:

1. From the System Transcript, select Tools —> Open VAGen Tools Workspace.
2. Under the "Image Management” section, swipe through:
System abtScrubImage

116 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

3. Then right-click and select Execute to run System abtScrubImage.

4. If you scrub the image, you might need to reload the VAGen EGL Migration
feature. See [“Loading the migration feature” on page 107| for information on
how to load the feature. Alternatively, to add the EGL Migration Tools option
back onto the System Transcript tool bar, do the following:

a. Type the following into the System Transcript window:
HptEgIMigrationGuiApp Toaded
b. Swipe through the line you typed, then right-click and select Execute.

To reduce the time the Stage 1 migration tool spends analyzing which
configuration maps and versions to migrate, consider creating a library that only
contains the configuration map versions that you want to migrate. If you have
ongoing maintenance in VisualAge Generator while you are migrating, a separate
migration library also has the following advantages:

* There is a stable set of configuration map versions to migrate. This is
particularly important if you use the Version Number preference to control what
is to be migrated.

* You can compare the versions in the new migration library against your
maintenance library to determine what additional configuration map versions
still need to be migrated.

Saving your image

The Stage 1 migration tool unloads all applications that contain VAGen parts from
your image at the beginning of Stage 1 processing. Only the last migration set to
be processed is left in your image when the Stage 1 tool finishes. Unloading all
applications ensures that only parts in the migration set are considered for the
associate parts list during Stage 1. If you have an image that you wish to save, you
should do the following before running the Stage 1 tool:

1. Shut down VisualAge Generator.

2. Save backup copies of the following files in your \VisualAgeForSmalltalk-
installation-directory\image:

e abt.icx

* abt.ini — not necessary to save if you do not change any preferences while
running Stage 1

* hpt.ini — not necessary to save if you do not change any preferences while
running Stage 1

3. Start VisualAge Generator.

When you are finished running the Stage 1 tool, do the following to restore your
workspace:

1. Shut down VisualAge Generator.
2. Restore the files you backed up before running the Stage 1 tool.
3. Start VisualAge Generator.

Running the Stage 1 migration tool

After you have finished editing your preferences, you are ready to run the Stage 1
migration tool to extract your source code from the Smalltalk library. To do this,
perform the following steps:

1. Start the EGL Migration Driver View using one of the following techniques:

Chapter 5. Stage 1 — Extracting from Smalltalk 117

a. If you modified the preferences by starting the Preferences Editor, start the
EGL Migration Driver View from the Systems Transcript by selecting EGL
Migration Tools -> Migration Driver.

b. If you modified the preferences by starting the EGL Migration Driver, then
when you saved the preferences file, you are positioned back at the EGL
Migration Driver View.

2. Ensure the File Name for the Migration Preference File points to the file in
which you stored your preferences. Use the Browse... button to point to a
different preferences file. Use the Edit... button to review or make final
modifications to your preferences.

3. When you are satisfied with your preferences, select the Execution Options that
you want to use. The Execution Options control the output of the Stage 1
migration tool as follows:

* Overwrite PLN controls the migration plan file or files as follows:

— If you select Overwrite PLN, the Stage 1 migration tool does the following
to files in the Plan Directory that you specified in your preferences:

- If your preferences file does not specify a file name for your .pln file,
the migration tool deletes all the .pln files in the specified Plan
Directory and creates new files.

- If your preferences file specifies a file name for your .pln file, the
migration tool only deletes a file with the same name from the specified
Plan Directory before creating a new .pln file.

— If you do not select Overwrite PLN, the Stage 1 migration tool does not
create any new migration plan files. Instead, the Stage 1 migration tool
runs based on the Plan Directory and Plan File Name you specified in
your preferences:

- If your preferences file does not specify a file name for your .pln file,
the migration tool runs using all of the plans in the specified Plan
Directory.

- If your preferences file does specify a file name for your .pln file, the
migration tool runs using only that .pln file.

* Generate Report controls whether the migration tool creates the report
specified in the Verification section of the preferences file. If you do not select
this option, the report is not created. If you select this option, the migration
tool creates the report using the Report File Name that you specified in your
preferences. The report shows how your configuration maps, applications,
and VAGen parts will be assigned to EGL projects, packages, and files during
migration. You might deselect this option initially so that you can review the
.pIn files to ensure that the migration tool is planning to process the
configuration map versions that you want. If you are not satisfied with the
configuration map versions that are being selected, you can refine your
preferences and run Overwrite PLN again. When you are satisfied with the
configuration map versions that will be processed, run Stage 1 again with the
Generate Report option selected.

Note:

— Generating the report can take some time, therefore it is best to
review the .pln files to be sure that the migration tool will process
the configuration map versions that you intend.

— If you select the Generate Report option, the Stage 1 migration tool
automatically deletes any existing report files from the report
directory. If you want to save previous report files, you must move
the report files to a different directory or point to a new directory

118 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

for your new report. Because the report files link to other files,
renaming the report files will cause links to be lost and the files to
become unviewable.

* Update Database controls whether the migration tool updates the migration
database with the migration plan information. If you do not select this
option, the migration database will not be updated. If you select this option,
the migration database you specified in your preferences will be updated
with information from the migration plan, including the External Source
Format for every VAGen part in the migration plan. You might deselect this
option initially so that you can review the report to see how your
configuration maps, applications and VAGen parts will be placed into EGL
projects, packages, and files. If you are not satisfied with the placement, you
can refine your preferences and run the report again. When you are satisfied
with the placement, you can run Stage 1 a final time with Update Database

selected so that the migration tool will put the results into the migration
database.

Note:

— If you select the Update Database option and a migration set
already exists in the database, the Stage 1 migration tool

automatically deletes the old information about migration set from
the database and then adds the new information for the migration
set. There is no need for you to clean up a migration set from the

database.

— The migration tool does not automatically clean up an entire
migration plan.

4. After you have selected your Execution Options, click OK to run Stage 1 of the
migration tool. The migration tool writes messages to the log file you specified

in your migration preferences. The tool also puts the same messages in the
System Transcript.

At this point, if you ran the Stage 1 migration tool and selected the Update

Database option, your migration plan information, including your VAGen code in
External Source Format, is stored in the migration database. After reviewing your
report and the Stage 1 messages, you might decide to make changes to your code

in VisualAge Generator and run Stage 1 again. After you are satisfied with the
results of Stage 1 and have your final External Source Format code stored in the

migration database, you are ready to perform Stage 2 of the migration. To run the

Stage 2 migration tool, you use the WebSphere Studio product. See [Chapter 6,
[‘Stage 2—Conversion to EGL syntax,” on page 127|for information about
continuing your migration process.

Migration plans and high-level configuration maps

A migration plan file is simply an XML file that specifies the names of one or more
migration sets and, for each migration set, one high-level configuration map and
version that specifies the applications and their versions for the migration set. The
high-level configuration map can also specify other configuration maps and their

versions as required maps. However, only one high-level configuration map

version can be specified for a migration set. The Stage 1 migration tool is designed

to automatically create a migration plan file for you based on your Repository

Filters preferences for configuration map and version names. The Stage 1 tool uses

these filters to select the configuration map versions that should be reviewed to

determine which ones are high-level configuration map versions. The Stage 1 tool

uses each high-level configuration map version as the basis for a migration set.

Chapter 5. Stage 1 — Extracting from Smalltalk

119

If you use high-level configuration maps when generating your VAGen source
code, then these high-level configuration maps are the same ones you should use
for migration. This is because each high-level configuration map provides a
grouping of parts that are used together during generation and therefore has all
the associated parts for a set of programs.

If you do not currently use configuration maps at all, you must create a
configuration map to use for migration. In this situation, the easiest technique is to
create one configuration map version that includes all the application versions,
including common application versions, that you want to migrate as a group. See
[“Creating a high-level configuration map” on page 12() for details. After you have
created the configuration map, you can use the Stage 1 migration tool to
automatically create the migration plan for you.

If you currently use configuration maps, you might not have high-level
configuration maps. For example, you might have a configuration map for
common applications and another configuration map for a subsystem. At
generation time you determine which version of each configuration map to load
into your image. In this situation, you can do one of the following to specify what
you want to migrate as a group:

* Create a high-level configuration map to use during migration. This high-level
configuration map can specify a list of application versions, a list of
configuration map versions, or a combination of application versions and
configuration map versions. For example, the high-level configuration map can
list the common configuration map and the subsystem configuration map so that
both configuration maps will be considered as a group when migrating. See
[“Creating a high-level configuration map” on page 120| for details. After you
have created the high-level configuration map (or maps), you can use the Stage
1 migration tool to automatically create the migration plan for you.

* If you prefer not to create a high-level configuration map, you can create the
migration plan file yourself using one of the following techniques:

— If you have information in a database or other system that specifies what is
needed for generation in terms of Smalltalk configuration map versions, then
you can write a tool to create the migration plan file or files automatically
from your database.

— Create the migration plan file or files manually.

Creating a high-level configuration map

To create a high-level configuration map for use in migration do the following in
VisualAge Generator:

1. From the VisualAge Organizer, select Options and be sure that Full Menus is
selected.

2. From the VisualAge Organizer, select Tools -> Configuration Maps.
3. From the Configuration Maps Browser, select Names -> Create.

4. In the Information Required window, enter the name of the configuration map
and then click on OK. A new edition of the configuration map is automatically
created and selected.

5. Select Applications -> Add. Then select each application that you want to
migrate and the version of that application. You can only specify one version
for each application. Click OK when you have selected the version for each
application that you need to include. The application versions that you specify
will be migrated as a group. This group determines the set of parts that the
migration tools use to resolve ambiguous situations.

120 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

6. Version the configuration map by selecting Editions -> Version.

7. Select the configuration map version and load it into your image by selecting
Editions -> Load.

8. After you have loaded your new high-level configuration map, you might also
want to validate your programs and tables to ensure that they are valid in
VAGen and that you are not missing any parts. When you validate your
programs, include /GENMAPS, /GENHELPMAPS, and /NOGENTABLES.
These 2 map options enable you to ensure that the maps are valid for the
programs in which they are used. /NOGENTABLES enables you to validate a
table just one time rather than revalidating the table with every program in
which the table is used.

Chaining configuration maps

You can chain configuration maps. For example, you can create a configuration
map that lists the version for each of your common applications. Then, for each
subsystem, create a high-level configuration map for that subsystem that includes
the version you need of each subsystem-specific application. You can include the
configuration map for the common applications in the subsystem configuration
map as follows:

1. From the Configuration Maps Browser, select an open edition of the subsystem
configuration map.

2. Select Expressions -> Add.
3. In the Information Required window, click OK to accept true as the expression.

4. Select true in the Config. Expressions pane. Then select Required Maps -> Add
-> As First. Then select the configuration map version that contains the
common applications. Version the configuration map by selecting Editions ->
Version.

5. Select the configuration map version and load it into your image by selecting
Editions -> Load With Required Maps.

Using required maps provides a simple way of specifying the common application
versions without having to explicitly list the common application versions in every
subsystem’s high-level configuration map.

Using configuration maps with the Stage 1 tool
When you are ready to run the Stage 1 migration tool, do the following:

* When you set your Stage 1 preferences, on the Build Plans page, in the
Repository Filters section, set the Configuration Maps list so that a filter in the
list matches the high-level configuration map you created.

* When you instruct the Stage 1 tool which preferences file to use, also select the
Overwrite PLN option. This option instructs the Stage 1 migration tool to create
the migration plan files for you based on your high-level configuration maps
and to overwrite any existing migration plan files.

Creating a migration plan file manually

If you already have external controls that determine what configuration map
versions to load into your image when you generate in VisualAge Generator, you
might decide to create the migration plan file by hand or to develop a tool to
create the migration plan file automatically from your external information. The
migration plan file must have a .pln file extension and the following format:
<migrationDefinition>

<migrationSet

name="migrationSet1"
version="migrationSetlVersionl"

Chapter 5. Stage 1 — Extracting from Smalltalk 121

vgName="migrationSetl"
vgVersion="migrationSetlVersionl">
<configMap
name="configurationMapl"
version="configurationMaplVersionl">
</configMap>
<configMap
name="configurationMap2"
version="configurationMap2Versionl">
</configMap>

<configMap
name="configurationMapN"
version="configurationMapNVersionl">
</configMap>
</migrationSet>
</migrationDefinition>

In the previous example, the following apply:

* migrationSet] is a name that you can use to refer to a group of configuration
maps that must be migrated together. The migration set name is stored in the
migration database and is used in the later stages of migration as follows:

— In Stage 1 migration, if maps in a map group span configuration maps, the
migration set name plus a suffix is used to build the name of a new EGL
project that will contain the map group and all its maps.

— In Stage 2 migration, the migration set name specifies which group of
configuration maps in the migration database that you want to convert to
EGL.

— In Stage 3, the migration set name specifies which group of configuration
maps in the migration database you want to use to create EGL projects,
packages, and files in your workspace or in a temporary directory.

The migration set name is only used during migration as a way of identifying a
group of configuration maps. Other than the situation in which maps span
multiple configuration maps in VisualAge Generator, the migration set name is
not used after migration.

* configurationMapl, configurationMap2, ... configurationMapN are the
configuration maps you want to migrate as a group. You must only list a
configurationMap once within a migration set.

* configurationMap1Versionl, configurationMap2Versionl, ...
configurationMapN Versionl1 are the respective versions of each of these
configuration maps. You can only specify one version for each configuration
map within a migration set.

* The configuration map names and version names you specify must exactly
match the configuration map names and version names in your library. The
names are case sensitive. The information is used to add configuration map
versions to the image so that the parts can be analyzed to build the Stage 1
migration report and to load the migration database.

When you are ready to run the Stage 1 migration tool, do the following:

* When you set your Stage 1 preferences, on the Build plans tab, set the Plan
directory name to the drive and directory where you stored your migration plan
files. Specify the Plan file name if you want the Stage 1 migration tool to run
only one migration plan that you have created. Leave the Plan file name blank
if you want the Stage 1 migration tool to run using all the migration plan files
in the specified Plan directory.

122 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

* When you instruct the Stage 1 tool which outputs to produce, be sure to deselect
Overwrite PLN. This causes the migration tool to run using the previously
created .pln file based on your Plan file name preference.

Chapter 5. Stage 1 — Extracting from Smalltalk 123

124 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Part 4. Stages 2 and 3— common to Java and Smalltalk
migration

The remaining steps of the migration are the same whether you are coming from
VisualAge Generator on Java or VisualAge Generator on Smalltalk.

© Copyright IBM Corp. 2004 125

126 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Chapter 6. Stage 2—Conversion to EGL syntax

Stage 2 of migration is the same whether you are migrating from Java or Smalltalk.

You must run another migration tool to convert your source from External Source
Format syntax to EGL syntax. This migration tool is a plug-in that is available after
you install WebSphere Studio. You can run the tool in Batch Mode or Interactive
Mode. You can optionally specify that Stage 3 is to run automatically after Stage 2
completes.

Setting your workbench preferences

Before you start to migrate you should set your workbench preferences. This
includes the following:

e Start up parameters

* Required EGL preferences

* Recommended preferences

* VAGen Migration Syntax Preferences
* Other recommended settings

Start up parameters

To improve the performance of WebSphere Studio, you should set several start up
parameters in the initialization file. The parameters are the same regardless of the
WebSphere Studio product that you use. The initialization file is always in the
WebSphere Studio installation directory, but the name of the file varies with the
product that you are using. For example, if you are using WebSphere Studio
Application Developer, the initialization file is named wsappdev.ini. To set the start
up parameters, do the following:

1. Using a text editor, edit the initialization file.
2. Look for the following line:

VMArgs=-Xj9
3. Change the line to the following:

VMArgs=-Xj9 -Xmx1024m -Xms256m

Setting these additional values increases the available virtual memory and stack
space.

4. Save the initialization file.
5. Start WebSphere Studio.

Required EGL preferences

The following preferences are required when you migrate VAGen programs to
EGL. To set these preferences, from the Workbench window, select Window ->
Preferences -> EGL.

* Be sure that VisualAge Generator Compatibility is selected.

© Copyright IBM Corp. 2004 127

Recommended preferences

The following preferences are recommended to assist you in resolving any EGL
validation messages on the Tasks list. From the Workbench window, select
Window -> Preferences and then the preference page indicated below as follows:

¢ EGL -> Editor. Select Show line numbers.
¢ Workbench -> Editors -> Text Editor. Select Show line numbers.

* Workbench page. Decide whether to select or deselect Perform build
automatically on resource modification. If you select this option, whenever you
save a file, EGL rebuilds everything in the workspace and runs validation. The
advantage of selecting the option is that you get immediate feedback on the
changes you have made. The disadvantage is that rebuilding can take some time
depending on the number of parts in your workspace. If you do not select this
option, EGL does not rebuild anything when you save a file. The advantage of
deselecting the option is that you avoid multiple rebuilds when you are
modifying a number of files. However, you must remember to rebuild the
projects (Project -> Rebuild Project or Project -> Rebuild All) to see the results
of any changes on the messages in the Tasks list. You might want to deselect
Perform build automatically on resource modification while you are working
through the list of messages in the migration log. This enables you to control
when the rebuild occurs. When you are doing normal code development, then
you might want to select this option.

VAGen Migration Syntax Preferences

The preferences listed below control the migration of the VAGen syntax to the EGL
syntax. Unless otherwise noted, these preferences are used in Stage 2 for both a
Stage 1 - 3 migration and for single file migration. To set these preferences, from
the Workbench window, select Window -> Preferences -> VAGen Migration ->
VAGen Migration Syntax Preferences.

* Renaming preferences

— Renaming Prefix. The migration tool uses this prefix whenever a VAGen data
item, record, function or map name is an EGL or SQL reserved word or starts
with the # symbol. The tool adds the Renaming Prefix to the VAGen part
name to create a valid EGL part name. For example, date is an EGL reserved
word. If you have a function named DATE and use the default Renaming
Prefix of VAGen_, then the migration tool changes the function DATE to
VAGen_DATE. The tool also changes all references to the function from DATE
to VAGen_DATE. You can set the Renaming Prefix to any value that you
want other than blank or EZE. In addition, the Renaming Prefix cannot start
with the # symbol. Be sure to select something that will not cause conflicts
with any of your part names.

— Level77 Suffix. The migration tool uses this suffix whenever a VAGen working
storage record contains level 77 items. EGL does not support level 77 items.
The migration tool splits the VAGen working storage record into two EGL
records. The first record is named the same as the original VAGen working
storage record and contains all the non-level 77 items. The second record
contains all the level 77 items. The migration tool names this second record
based on the original working storage record name concatenated with the
Level77 Suffix. For example, if the original working storage record is named
MYRECORD and you use the default Level77 Suffix of _Level77Items, the
EGL record that contains the level 77 items will be named
MYRECORD_Level77Items. You can set the Level77 Suffix to any value that
you want other than blank. However, be sure to select something that will not
cause conflicts with any of your part names.

128 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

— Help Map Suffix. The migration tool uses this suffix whenever the main map
group and the help map group for a program have maps with the same
name. EGL requires that all forms in both form groups for a program have
unique names. The migration tool renames maps in the help group that
conflict with map names in the main map group. Consider the following
example. The main map group for a program is MAPGP1 and contains
MAP1. The help map group for the same program is MAPGP2 and contains
MAP1. Using the default Help Map Suffix of _helpmap, the migration tool
renames the MAP1 in MAPGP2 to be MAP1_helpmap. You can set the Help
Map Suffix to any value that you want other than blank. However, be sure to
select something that will not cause conflicts with any of your part names.

* SQL preferences

— Result Set Suffix. In VisualAge Generator, when an SQL REPLACE function
needs to reference the corresponding UPDATE or SETUPD function, the
REPLACE function must specify the function name. In EGL, multiple I/Os
are supported within a single function. A result set ID is used to uniquely
identify a get or open statement. The migration tool creates the result set ID
from the function name by concatenating the Result Set Suffix. For example, if
there a function is named MY-SETUPD and you use the default Result Set
Suffix of _RSI01, then the result set ID that is included in the open statement
for the function will be MY-SETUPD_RSIO1. You can set the Result Set Suffix
to any value that you want other than blank. However, be sure to select
something that will not cause conflicts with any of your part names.

— Prepare Suffix. In VisualAge Generator, if you need to have an SQL I/O
statement prepared at runtime, you select Execution Time Statement Build.
The corresponding EGL statement is the prepare statement. The prepare
statement includes a prepare statement ID so that other I/O statements such
as close, get, execute, and open can specify which prepare statement they are
associated with. The migration tool creates the prepare statement ID from the
function name by concatenating the Prepare Suffix. For example, if there is a
function named MY-EXEC-TIME-BUILD and you use the default Prepare
Suffix of _PREPO01, then the prepare statement ID that is included in the
prepare statement is MY-EXEC-TIME-BUILD_PREPO1. You can set the Prepare
Suffix to any value that you want other than blank. However, be sure to select
something that will not cause conflicts with any of your part names.

* Data Items preferences

— Convert shared data items to primitive item definition. If you select this
preference, then whenever shared data items are used in records, tables,
function local storage, function parameter lists, or program parameter lists,
the migration tool converts the shared items to primitive item definitions. If
you have current organization standards that discourage the use of shared
data items in new applications, this option enables you to remove the use of
shared data items from existing applications as you migrate.

— Include shared data items in EGL file. This option is preselected. The shared data
items are always included in the EGL file.

Other recommended settings
The following additional settings are recommended:

 If you are not already using the EGL perspective, switch to it by selecting
Window -> Open Perspective -> Other -> EGL -> OK. Alternatively, you might
want to use the EGL Web perspective if you are planning to develop new EGL
page handlers.

Chapter 6. Stage 2—Conversion to EGL syntax 129

If the Navigator view is not already included with the EGL perspective that you
are using, you might want to add this view. To add the Navigator view, select
Window -> Show view -> Other. From the Show View window, expand Basic
and then select Navigator.

On the Tasks view, select the Filters... icon in the upper right corner. In the Filter
Tasks window, select the On selected resource only radio button. This limits the
error messages on the Tasks list to just the messages for the currently selected
file. When there are errors, this can help you focus your attention on a single file
at a time. The title bar of the Tasks view provides a count of the messages that
matched the filter and the total number of messages for all projects in your
workspace.

When you have multiple files open for editing, you can configure the Navigator
view to automatically bring an open file to the foreground (make its editor
session the active editor) every time you select that open file in the Navigator
view. To do this, select the Link with Editor icon on the tool bar of the
Navigator view.

Setting up the Stage 2 VAGen migration file

The tool that performs Stage 2 of the migration can be invoked through a wizard.
To prepare for Stage 2, create a project where you can optionally save Stage 2
preferences for later use. To create the Stage 2 migration preferences, do the
following:

1.

Start WebSphere Studio. Be sure to set your workbench preferences as
explained in section |“Setting your workbench preferences” on page 127

The Stage 2 wizard asks you for your database driver location. You can set a
classpath variable to hold this value so that the wizard will pick it up
automatically. The easiest way to do this is as follows:

a. Under Window->Preferences, expand Java in the left pane and select
Classpath Variables.

b. Click the New button.

c. For Name, enter the following: DB2_DRIVER_PATH

d. For Path, click the File button and navigate to your db2java.zip file. (This is

the same db2java.zip file that you used in Stage 1. By default the file is in
\SQLLIB\java\db2java.zip.)

e. Click OK in the New Variable Entry window, then click OK in the
Preferences window.

Create a simple project that can contain your Stage 2 preferences file if you
choose to save it. This is useful if you want to run Stage 2 in batch mode. Start
the wizard for this by selecting File->New->Project->Simple->Project->Next.
Give the project a name. For example, VAGENMIG. Then click Finish.

If you are not already using the EGL perspective, switch to it by selecting
Window->Open Perspective->Other->EGL->OK. To view your project in the
top left pane, switch to the Navigator view. Right click on the project you just
created.

From the Navigator view, click on New from the context menu.

Click on Other. Select VAGen Migration to EGL in the left pane, and VAGen
Migration File in the right pane. Click Next.

Enter the appropriate Stage 2 preferences:

a. On the first page of the wizard, edit the preferences as described in the
following table. The migration tool does not validate any of the Database

130 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

fields until you tab out of the field. This prevents multiple attempts to
connect to the database while you are entering information.

Table 56. Preferences to enter on first page of wizard

Preference

Meaning

Value

Load Existing File

This allows you to select a
previously saved Stage 2
preferences file. Click the Choose
File button to select an existing
.vgmig file. Click the Load File
button to retrieve the preferences
from that file and display them in
the wizard.

Optionally, choose and load an existing .vgmig file.

Database Driver
Location

This is the location of your DB2
driver.

path_to_db2java.zip\db2java.zip

Database Driver

This is the name of your DB2
driver.

This value should always one of the following:
¢ COM.ibm.db2.jdbc.app.DB2Driver if you are
using a local database.

¢ COM.ibm.db2.jdbc.net.DB2Driver if you are
using a remote database.

Database Name

This is the name of the DB2
database you used in Stage 1 of
migration.

This value should always be one of the following:
* jdbc:DB2:databaseName if you are using a local
database.

* jdbc:nodeName:databaseName if you are using a
remote database.

databaseName is the name of the DB2 database you
used in Stage 1 of migration. VGMIG is the default
value for Stage 1.

Database Schema

This is the name of the DB2
database schema you used in Stage
1 of migration.

MIGSCHEMA, where MIGSCHEMA is the name of
the DB2 schema you used in Stage 1 of migration.
MIGSCHEMA is the default value for Stage 1.

Database User ID

This is the database user ID you
used in Stage 1 of migration.

Use the same database user ID that you used for
Stage 1. (The default value is your logon ID.)

Database Password

This is the database password you
used in Stage 1 of migration.

Use the same database password that you used for
Stage 1. (The default value is your logon password.)

Log File Location

This is the location where a log file
will be written.

Enter a valid location (drive and directory) in the
file system.

Log File Name

This is the name of the log file
where you want the Stage 2
messages to be written.

Enter a valid file name.

b. On the second page of the wizard, edit the preferences as described in the

following table:

Chapter 6. Stage 2—Conversion to EGL syntax 131

Table 57. Preferences to enter on second page of wizard

Preference

Meaning

Value

Java or COBOL radio
button

This choice determines whether the
migration tool creates projects that
include Java Source folders.

If you are using WebSphere Studio Site Developer
or WebSphere Studio Application Developer, you
should always select the Java radio button.

For other WebSphere Studio projects, you can select
COBOL if you only plan to generate COBOL and
you plan to run migration in online mode. Selecting
COBOL for batch migration can result in projects
that do not have the required EGL properties and
which are thus not usable.

Migrate remaining
VAGen parts

This determines whether or not parts
not referenced by any generatable
part in the migration set will be
converted to EGL.

Select the box to convert unreferenced parts to EGL.
Generally, you should select Migrate remaining
parts. If you do not select Migrate remaining parts,
control parts and any other parts that are unused
within the migration set will not be migrated to
EGL source.

Import into workspace

This determines whether or not
Stage 3 (importing EGL into files in
the current workspace) will be
automatically started after Stage 2 is
complete.

Note: If you select this box, you
must select one of the radio buttons
under this checkbox to specify the
version to want to import (latest or
oldest — see description below),
because “only one version of a
project can be in the workspace at a
time.

Select this box to import EGL files directly after the
conversion of parts to EGL. Leave this box
unselected to import files later, during Stage 3.
Note:

* If you select this option, there is no need to run
Stage 3 separately. The migration tool
automatically starts Stage 3 (import) directly after
Stage 2 (conversion) and completes the migration
process.

Latest version

This specifies that the latest version
of the desired migration sets should
be imported.

This option can only be selected if the Import into
workspace checkbox is selected.

Oldest version

This specifies that the oldest version
of the desired migration sets should
be imported.

This option can only be selected if the Import into
workspace checkbox is selected.

Override existing files

Stage 3 (the import process) uses
EGL produced by Stage 2 to create
and import the EGL files specified in
the Stage 1 report. If EGL files with
the same names as the EGL files that
Stage 3 is about to import already
exist in the workspace, this option
determines whether or not those files
will be overwritten.

This option can only be selected if the Import into
workspace checkbox is selected. Override existing files
enables you to specify how you want the Stage 3
migration tool to handle the situation in which the
migration set you are currently migrating contains
parts that should be placed in a file that is already
in your workspace. If you select Override existing
files, the Stage 3 migration tool replaces the existing
file and includes only those parts that are in the
current migration set. If you do not select Override
existing files, the Stage 3 migration tool merges any
new parts into the existing file. The new parts are
placed alphabetically by part type. See
[“‘Overwriting and merging files” on page 36| for a
more complete discussion of the effects of this
option.

132 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 57. Preferences to enter on second page of wizard (continued)

Preference

Meaning

Value

Save migrated files to
temporary directory

This provides the option to save EGL
files to a location in the file system.
This allows you to access EGL files
for multiple versions of a project at
the same time (whereas you can only
see one version at a time in the
workspace). You can move EGL files
directly from here to your repository.

If you plan to migrate multiple versions of a
migration set, then do the following;:

* Select this box so that each version can be written
to a different subdirectory.

* Specify the Folder under which the subdirectories
for the versions will be placed.

* Do not select Migrate Now. If you select Migrate
Now to migrate in online mode, then the Stage 3
migration tool ignores Save migrated files to
temporary directory. Migration to a temporary
directory can only be done in batch mode.

* Select Save current configuration to file. Specify the
project and file name where the current
configuration is to be saved as a .vgmig file.
When you run Stage 2 in batch mode, point to
the saved .vgmig file to specify your migration
preferences.

Folder

This is the directory in which you
want to save EGL files. Each
migration set version becomes a
subdirectory under the directory you
specify for Folder.

Specify an existing directory in your file system.

Migrate Now

This specifies that you want Stage 2
to run at this time, rather than just
setting up the preferences file to
migrate at a later time.

You must select either Migrate Now to run Stage 2
in online mode or Save current configuration to file to
save your preferences so that you can run Stage 2
in batch mode at a later time. You can select both
options if you want to retain a copy of your
preferences for later reference. Do not select Migrate
Now if you have already selected Save migrated files
to temporary directory. Saving to a temporary
directory can only be done in batch mode. Selecting
Migrate Now indicates that you want to migrate in
online mode.

Save current
configuration to file

This allows you to save the
preferences you are specifying in the
wizard to a file. You can later run
Stage 2 again with the saved
preferences by right-clicking on the
saved file and selecting Start
Migration from the context menu.
Note: If you select this box, you
must specify a Path and a File Name.
(See the next two rows in this table.)

You must select either Migrate Now to run Stage 2
in online mode or Save current configuration to file to
save your preferences so that you can run Stage 2
in batch mode at a later time. You can select both
options if you want to retain a copy of your
preferences for later reference. If you select this
option you must also specify the Path and File
Name where the current configuration is to be
saved as a .vgmig file. When you run Stage 2 in
batch mode, point to the saved .vgmig file to
specify your migration preferences.

Path This specifies the project into which | \projectName, where projectName is the name of the
the file should be saved. project that you want to contain your saved file.
File Name This specifies the name of the file to |fileName, where fileName is the desired name for

which preferences will be saved.

your file WITHOUT a file extension. The extension
.vgmig will automatically be appended for you.

€. On the third page of the wizard, the wizard lists the migration sets in the
database you specified. Select the migration sets you want to migrate. If you
do not select any migration sets, then the migration tool migrates all the
migration sets in the database. Click Finish.

Chapter 6. Stage 2—Conversion to EGL syntax 133

The combinations of the check boxes that you select determine the actions that are
performed by the wizard:

* If you select Save current configuration to file, all the options are saved in the file
you specified after you click the Finish button.

* If you select Migrate now, Stage 2 migration runs after you click the Finish
button.

 If you also select either Import into workspace and/or Save migrated files to
temporary directory, Stage 3 will start automatically after Stage 2 completes.

Here is an example of a Stage 2 preferences file, stage2.vgmig:

databaseDriverLocation=d:\SQLLIB\java\java\db2java.zip
databaseDriver=COM.ibm.db2.jdbc.app.DB2Driver
databaseName=jdbc:DB2:VGMIG

databaseSchema=MIGSCHEMA

databaseUserid=myuserID
databasePassword=encoded:AAEDAWQFBwYKCwo+Pw==
configurationPlan=MyMigrationSetA,1.1
migrateRemainingParts=yes

workspaceImport=Tatest

overrideExistingFiles=yes

tempDirectory=
TogFileLocation=D:\tempmig\MyMigrationSetA\stage2\MyMigrationSetA.log
migrateNow=yes

projectType=COBOL

Running Stage 2

The Stage 2 migration tool can be run in batch mode or from the user interface
within WebSphere Studio.

Running Stage 2 from the user interface

The wizard described in [“Setting up the Stage 2 VAGen migration file” on page]
provides the option to save your preferences in a .vgmig file. If you select the
Migrate now box in the wizard, then Stage 2 migration starts when you click the
Finish button in the wizard. If you did not select the Migrate now box in the
wizard, when you are ready to run Stage 2 migration using your saved .vgmig file,
do the following:

1. From the EGL perspective’s Navigator pane, expand the project containing the
Stage 2 preferences file by right-clicking on the + symbol next to the project
name.

2. Right click on the preferences file to get the context menu.
3. Click on Start Migration.

Stage 2 migration starts and converts the External Source Format for your specified
migration sets to EGL source and stores the EGL source in the migration database.
If you selected either Import into workspace or Save migrated files to temporary
directory, Stage 3 automatically starts after Stage 2 completes. After Stage 3, the
migration tool automatically starts a refresh of the workspace. The refresh step can
take some time, particularly if there is a large number of parts. When the refresh
step is complete, a pop-up window appears telling you that migration is complete.
Be sure to wait for the pop-up window.

When migration and the refresh step are complete, the following outputs will be
available:

134 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

¢ The Stage 2 migration log file. The log file is in the directory you specified as the
Log File location. The log file contains information about what parts were
migrated and any informational, warning, or error messages that occurred
during Stage 2 migration.

e The "to do” list log file for the migration set. This "to do” list file is created at
the beginning of Stage 3 and contains a consolidated list of the messages
produced by Stage 2 that might require you to perform additional tasks to
complete the migration. The "to do” list is somewhat similar to the VisualAge
Generator generation messages in that the messages for each generatable part
and its associates are listed as a group. If a part has messages and is an associate
of several programs, the messages are listed once for each program. The "to do”
list differs from the VisualAge Generator generation messages in that messages
for unused, nongeneratable parts are listed by project, package, and file name at
the end of the "to do” list. The "to do” list is placed in the same directory as the
Stage 2 migration log file.

* If you selected Import into workspace, then Stage 3 automatically starts and creates
the EGL projects, source folders, packages, and EGL files that are needed for
your migration set. The Stage 3 tool also imports the projects into your
workspace and rebuilds the projects so that EGL validation is run.

* If you selected Save migrated files to temporary directory, Stage 3 automatically
starts and creates the EGL projects, source folders, packages, and EGL files that
are needed for your migration set. The Stage 3 tool places these projects in the
temporary directory you specified. The Stage 3 migration tool appends the
VAGen version name to the project name when creating the projects in the
temporary directory. This enables you to migrate multiple versions of a project
at one time for later import into your workspace.

Running Stage 2 in batch mode

The Stage 2 wizard enables you to select one or more migration sets for immediate
migration. It also enables you to save the information in a file for later migration
in batch mode. To create a file for later migration, do the following:

1. Follow the steps described in|“Setting up the Stage 2 VAGen migration file” on|
except do the following:

* Select Save current configuration to file and specify the path and file name. The
file that is created automatically has the suffix .ugmig and is the file that you
need to specify as the -importFile when you run Stage 2 or Stage 3 in batch
mode.

* Be sure to deselect Migrate now. Deselecting this option indicates that you
want to save the information for migration at a later time.

* You can define multiple .vgmig files for later migration as a single batch.

2. Create a file with a .bat file extension. The contents of this file should be the
following:

set path=WebSphere_Studio_Install_Directory\eclipse\jre\bin;%path%
set classpath=WebSphere Studio_Install Directory\eclipse\startup.jar;
WebSphere_Studio_Install_Directory\wstools\eclipse\plugins\
com.ibm.etools.egl.vagenmigration_5.1.2\runtime\egIMigration.jar;
cd WebSphere_Studio_Install Directory
java com.ibm.etools.egl.internal.vagenmigration.batch.VGMIG
-importFile Path\vgmigFileName.vgmig
-data Path\workspace
>Path\LogName. log

Repeat the java statement once for each .vgmig file that you want to migrate in
batch mode. However, if you selected Import into workspace when you created
any of your .vgmig files, then be sure that none of the .vgmig files result in the

Chapter 6. Stage 2—Conversion to EGL syntax 135

same EGL project names. If you attempt to migrate multiple .vgmig files for
the same EGL project in the same .bat file, the EGL project will only reflect
the last of the .vgmig files to be migrated.

Note:

* The set classpath statement must be written so that it is all on one
line. The java statement must also be written so that it is all on one
line.

* WebSphere_Studio_Install_Directory is the drive and directory in which
you installed WebSphere Studio. You must include the
WebSphere_Studio_Install_Directory in the set path statement, the set
classpath statement, and the cd (change directory) statement.

» -importFile Path\vgmigFileName.vgmig refers to the drive, directory,
and file name of the .vgmig file that specifies the migration set (or
sets) you want to migrate from the migration database. The directory
must include the workspace name. This is the .vgmig file you saved in
step 1. (For example,
d:\myworkspace\mySimpleProject\myMigrationInformation.vgmig.)

» -data Path\workspace is the drive, directory, and workspace name
where you want to place the EGL files. (For example, the workspace
could be d:\myworkspace.) Any EGL projects and packages that are
used by the migration set(s) are created automatically by the migration
tool. The -data parameter is optional; -data is only required if you need
to specify VAGen Migration Syntax Preferences other than the default
values. If you want to set any VAGen Migration Syntax Preferences,
you must specify them in the workspace specified by the -data
parameter before you run the .bat file. See ["VAGen Migration Syntax|
[Preferences” on page 128|for information about how to set your
preferences.

* Path\LogName.log points to the drive, directory, and file name of the
log file you want to create for the java command. This log file lists any
problems with the java command itself. Any log messages produced
by Stage 2 or Stage 3 are placed in the log file that you specified on
the first page of the wizard and then saved into the .vgmig file. If you
include multiple java commands in the same .bat file, be sure to
specify a different log file name for each java command.

For example, the java command might look something like this (though it
should be all on one line) :
java com.ibm.etools.egl.internal.vagenmigration.batch.VGMIG
-importFile d:\myworkspace\mySimpleProject\myMigrationInformation.vgmig
-data d:\myworkspace\
>d:\migrationLogs\myMigrationInformationPiped.log

3. Shut down WebSphere Studio.

4. Open a Command Prompt window, navigate to the directory containing your
bat file, and run your .bat file.

5. When the process completes, your EGL project, source folders, packages, and
files will be stored in the directories you specified for them respectively. The
log file corresponding to each java command contains a list of the migrated
parts and any error messages. The messages are the same messages that are
written to the log file if you run Stage 2 using the user interface. Similarly, the
"to do” list file contains the same messages that are written to this file if you
run Stage 2 using the user interface.

6. Start WebSphere Studio.

136 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

7. You should see the EGL projects, source folders, packages, and files in your
workspace.

Chapter 6. Stage 2—Conversion to EGL syntax 137

138 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Chapter 7. Stage 3 — Import

Stage 3 of the migration is also run with a plug-in supplied with WebSphere
Studio. In this stage, you run another migration tool that builds EGL files from the
EGL syntax that was stored in the migration database during Stage 2.

Running the Stage 3 tool
From the WebSphere Studio Workbench, do the following;:

1.

From the File menu, select Import.
2. Select VAGen Migration from Database and click Next.
3. Specify your preferences for this stage of migration:

a. Edit the preferences on the first page, which are described in the following
table. The migration tool does not validate any of the Database fields until
you tab out of the field. This prevents multiple attempts to connect to the
database while you are entering information.

Table 58. Preferences to enter on first page of wizard

Preference

Meaning

Value

Load Existing File

This allows you to select a
previously saved Stage 3
preferences file. Click the Choose
File button to select an existing
.vgmig file. Click the Load File
button to retrieve the preferences
from that file and display them in
the wizard.

Optionally, choose and load an existing .vgmig file.

Database Driver
Location

This is the location of your DB2
driver.

path_to_db2java.zip\db2java.zip

Database Driver

This is the name of your DB2
driver.

This value should always one of the following:
* COM.ibm.db2 jdbc.app.DB2Driver if you are
using a local database.

* COM.ibm.db2 jdbc.net.DB2Driver if you are
using a remote database.

Database Name

This is the name of the DB2
database you used in Stage 1 of
migration.

This value should always be one of the following:

¢ jdbc:DB2:databaseName if you are using a local
database.

* jdbc:nodeName:databaseName if you are using a
remote database.

databaseName is the name of the DB2 database you
used in Stage 1. VGMIG is the default value for
Stage 1.

Database Schema

This is the name of the DB2
database schema you used in Stage
1 of migration.

MIGSCHEMA, where MIGSCHEMA is the name of
the DB2 schema you used in Stage 1. MIGSCHEMA
is the default value for Stage 1.

Database User ID

This is the database user ID you
used in Stage 1 of migration.

Use the same database user ID that you used for
Stage 1. (The default value is your logon ID.)

Database Password

This is the database password you
used in Stage 1 of migration.

Use the same database password that you used for
Stage 1. (The default value is your logon password.)

© Copyright IBM Corp. 2004

139

Table 58. Preferences to enter on first page of wizard (continued)

Preference

Meaning

Value

Log File Location

This is the location where a log file
will be written.

Enter a valid location (drive and directory) in the
file system.

Log File Name

This is the name of the log file
where you want the Stage 3
messages to be written.

Enter a valid file name.

Then click Next.

b. Edit the preferences on the second page, which are described in the

following table:

Table 59. Preferences to enter on second page of wizard

Preference

Meaning

Value

Java or COBOL radio
button

This choice determines whether the
migration tool creates projects that
include Java Source folders.

If you are using WebSphere Studio Site Developer
or WebSphere Studio Application Developer, you
should always select the Java radio button.

For other WebSphere Studio projects, you can select
COBOL if you only plan to generate COBOL and
you plan to run migration in online mode. Selecting
COBOL for batch migration can result in projects
that do not have the required EGL properties and
which are thus not usable.

Latest version

This specifies that the latest version
of the desired migration sets should
be imported.

Select one of the radio buttons.

Oldest version

This specifies that the oldest version
of the desired migration sets should
be imported.

Select one of the radio buttons.

Override existing files

Stage 3 (the import process) uses
EGL produced by Stage 2 to create
and import the EGL files specified
in the Stage 1 report. If EGL files
with the same names as the EGL
files that Stage 3 is about to import
already exist in the workspace, this
option determines whether or not
those files will be overwritten.

Ovwerride existing files enables you to specify how
you want the Stage 3 migration tool to handle the
situation in which the migration set you are
currently migrating contains parts that should be
placed in a file that is already in your workspace. If
you select Override existing files, the Stage 3
migration tool replaces the existing file and
includes only those parts that are in the current
migration set. If you do not select Override existing
files, the Stage 3 migration tool merges any new
parts into the existing file. The new parts are placed
alphabetically by part type. See [“Overwriting and)|
[merging files” on page 36| for a more complete
discussion of the effects of this option.

140 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 59. Preferences to enter on second page of wizard (continued)

Preference

Meaning

Value

Save migrated files to
temporary directory

This provides the option to save
EGL files to a location in the file
system. This allows you to access
EGL files for multiple versions of a
project at the same time. (You can
only see one version at a time in
the workspace). You can move EGL
files directly from here to your
repository.

If you plan to migrate multiple versions of a
migration set, then do the following;:

* Select this box so that each version can be written
to a different subdirectory.

* Specify the Folder under which the subdirectories
for the versions will be placed.

* Do not select Migrate Now. If you select Migrate
Now to migrate in online mode, then the Stage 3
migration tool ignores Save migrated files to
temporary directory. Migration to a temporary
directory can only be done in batch mode.

* Select Save current configuration to file. Specify the
project and file name where the current
configuration is to be saved as a .vgmig file.
When you run Stage 3 in batch mode, point to
the saved .vgmig file to specify your migration
preferences.

Folder

This is the directory in which you
want to save the EGL files. Each
migration set version becomes a
subdirectory under the directory
you specify for Folder.

Specify an existing directory in your file system.

Migrate Now

This specifies that you want Stage 3
to run at this time, rather than just
setting up the preferences file to
migrate at a later time.

You must select either Migrate Now to run Stage 3
in online mode or Save current configuration to file to
save your preferences so that you can run Stage 3
in batch mode at a later time. You can select both
options if you want to retain a copy of your
preferences for later reference. Do not select Migrate
Now if you have already selected Save migrated files
to temporary directory. Saving to a temporary
directory can only be done in batch mode. Selecting
Migrate Now indicates that you want to migrate in
online mode.

Save current
configuration to file

This preferences enables you to
save some of the preferences you
are specifying in the wizard to a
file. You can later run Stage 3 again
with the saved preferences by
right-clicking on the saved file and
selecting Start Migration from the
context menu.

Note: If you select this box, you
must specify a Path and a File
Name. (See the next two rows in
this table.)

You must select either Migrate Now to run Stage 3
in online mode or Save current configuration to file to
save your preferences so that you can run Stage 3
in batch mode at a later time. You can select both
options if you want to retain a copy of your
preferences for later reference. If you select this
option, you must also specify the Path and File
Name where the current configuration is to be
saved as a .vgmig file. When you run Stage 3 in
batch mode, point to the saved .vgmig file to
specify your migration preferences.

Path Specifies the project into which the | \projectName, where projectName is the name of the
file should be saved. project that you want to contain your saved file.
File Name This specifies the name of the file to | fileName, where fileName is the desired name for

which preferences will be saved.

your file WITHOUT a file extension. The extension
.vgmig will automatically be appended for you.

Then click Next.

C. Select the migration set to import on the third page. If none are selected,
then all of them will be imported.

Chapter 7. Stage 3 — Import 141

Note: The Import from VAGen Migration from Database wizard grays out
any migration sets for which no parts have been migrated. This
prevents you from running the Stage 3 migration tool without first
running Stage 2 to convert and store EGL source code in the
migration database.

4. Click Finish.
5. The migration tool creates the EGL projects, EGL source folder, and EGL

packages based on the migration set you selected. The tool extracts the EGL
source from the migration database and creates the EGL files based on the
migration set. The migration tool also includes import statements and updates
the project’s EGL build path so that the part references can be resolved.

Running Stage 3 in batch mode

The only difference between running Stage 2 and Stage 3 in batch mode is the
wizard that you use to create the .vgmig file. See ['Running the Stage 3 tool” on|

page 13§| for details on setting up the .vgmig file to run just Stage 3. See |”Running|

Stage 2 in batch mode” on page 135 for details of the commands to include in your

.bat file and descriptions of the options you can specify for batch mode.

Using the migration sets written to temporary directories

If you direct the output of stage 3 to a temporary directory, the migration tool
creates one subdirectory for each migration set version. The subdirectory name is
of the form migrationSetName_versionName. You can use either of the following
techniques to bring the projects into a workspace:

 If you only have a few projects in the subdirectory, you can point an existing
workspace to each of the projects as follows:

1.

4.

5.

From an existing workspace, select Window -> Preferences -> Workbench
and deselect Perform build automatically on resource modification. This avoids
multiple rebuilds while you are bringing in each of the projects.

From the EGL perspective, in the Project Navigator view, select File -> New
-> Project -> EGL -> EGL Project (or EGL Web Project).

Select the Browse button for the Project Location and point to the first
project. Type (or copy and paste) the project name in the Project Name field.
You might also want to select Use build descriptor specified in EGL
preference. Select Finish.

Repeat step 3 for each of the projects within the subdirectory for the
migration set.

Select Project -> Rebuild All to rebuild the workspace with the new projects.

* If there are a number of projects in the subdirectory, you might find it more
convenient to bring up a workspace for the subdirectory as follows:

1.
2.

Start WebSphere Studio.

When you are prompted for the workspace name, point to the subdirectory
containing a migration set version and then select OK.

Change your perspective to the EGL (or EGL Web) perspective.

If you have errors on the Tasks list indicating that projects could not be built,
use the Navigator view to locate any closed projects. Closed projects do not
have the plus (+) symbol to the left of the project name. Select the closed
projects by selecting Open Project from the context menu. The projects
should now be visible on the Project Navigator view.

142 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Chapter 8. Running migration in single file mode

An alternative to running migration using Stages 1-3 is running migration in Single
File Mode. This process allows you to migrate one External Source Format file
directly to an EGL file. To run migration in this mode, you must first export
VisualAge Generator parts to an External Source Format file, and then import that
External Source Format file into WebSphere Studio. During the import process, the
External Source Format file is migrated into one or more EGL files, depending on
your preferences.

To export parts from VisualAge Generator, do the following:

1. Start VisualAge Generator on Java (or VisualAge Generator on Smalltalk) and
open the VAGen Parts Browser.

n

Select the parts you want to export and right-click the selection.

w

From the context menu, select Import/Export —> VAGen Export (or VAGen
Export with Associates).

4. Type a name for the External Source Format file in the box and click the Save
button. (If you type the name of an existing file, you will be asked if you
would like to add parts to the file or overwrite it. Choose whichever is
appropriate for you.)

To set up WebSphere Studio for single file mode, do the following:

1. Start WebSphere Studio and point to your workspace. (For example,
d:\workspaces\myworkspace)

2. Set your migration preferences. See ["'VAGen Migration Syntax Preferences” on|
for information on how to do this.

3. From the Workbench window, select Window -> Preferences -> VAGen
Migration. In general, you should always ensure that the Separate parts into
EGL files preference is selected. When you select this preference, each
program, map group, and table is placed in its own file. This adheres to the
EGL requirement of one generatable part per file. If you do not select Separate
parts into EGL files, all the parts are placed in the same EGL file. See
[“Overview of Single File Migration” on page 20| for specifics of the parts
placement algorithm for single file mode.

>

Change to the EGL perspective. Switch to the Navigator view.

o

Create a new EGL Project. (For example, MyProject.) Alternatively, you might
want to create an EGL Web project if you are planning to develop new EGL
page handlers.

6. Under the EGLSource directory for the EGL project, create a new EGL package.
(For example, my.pkg)

7. See the section [‘Running single file migration using the user interface” on page|
143) for details on running in online mode or ["Running single file migration|
using batch mode” on page 144| for details about creating a batch command file
to process multiple External Source Format files with a single command file.

Running single file migration using the user interface

To import the External Source Format file into WebSphere Studio, do the following:

© Copyright IBM Corp. 2004 143

1. Using the EGL perspective, in the Navigator view, select the EGL package in
which to put the resulting EGL file.

2. Right-click the package. From the context menu, select Import.
3. Select VAGen External Source Format File and select Next.

4. In the Input File Name field, enter the name of the External Source Format
file you want to import.

5. In the Source Folder field, enter the name of the project and source folder in
which to put the EGL file. (For example, MyProject\EGLSource)

6. In the Package Name field, enter the name of the package to be used in the
package statement within the EGL file. (For example, my.pkg)

7. In the EGL File Name field, enter the name of the EGL file that will be
created from your External Source Format file. By default, the EGL file name
will be the same as the External Source Format file, but with the .egl file
extension. See [“Overview of Single File Migration” on page 20| for information
about how the migration tool uses the Separate parts into EGL files preference
and the type of parts in the External Source Format file to determine what
files to create during migration in single file mode.

8. In the Log File Location field, enter the drive and directory where the
migration log file is to be placed. In the Log File Name field, enter the name
for the migration log file. The Log File Name defaults to match the name of
the External Source Format file that you specified. The migration log file
contains any messages written during migration.

9. Click Finish. If the file name you specified in the EGL File Name field already
exists in the container you specified in the Container field, you are prompted
to append or overwrite to the file.

10. When the migration completes, you should notice the following:

* One or more EGL files should be listed in the project, source folder, and
package that you specified. See [’Overview of Single File Migration” on|
for information about how migration tool uses the Separate parts
into EGL files preference and the type of parts in the External Source Format
file to determine what files to create during migration in single file mode.

¢ Any error messages appear in a pop-up window. If you did not specify a
Log File Location, you can use the Save to File button to save the messages
in a file. Be sure to close the pop-up window.

11. Select the project and then select Project —> Rebuild Project. This causes
validation to run so that the Tasks list reflects the most current messages for
all files in the project.

Running single file migration using batch mode

144

The user interface enables you to migrate one External Source Format file at a
time. With batch mode, you can migrate multiple External Source Format files in a
single command file. To use batch mode do the following:

1. Create a file with a .bat file extension. The contents of this file should be:

set path=WebSphere_Studio_Install Directory\eclipse\jre\bin;%path%
set classpath=WebSphere_Studio_Install Directory\eclipse\startup.jar;
WebSphere _Studio Install Directory\wstools\eclipse\plugins\
com.ibm.etools.egl.vagenmigration_5.1.2\runtime\egIMigration.jar;
cd WebSphere_Studio_Install Directory
java com.ibm.etools.egl.internal.vagenmigration.batch.VGMIG
-importFile Path\ExternalSourceFormatFile.esf
-eg1File Path\EGLFile.egl

WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

-data Path\workspace
-package packageName
-overwrite
>Path\LogName .10g

Repeat the java statement once for each External Source Format file you want to

migrate.

Note:

The set classpath must be written so that it is all on one line. The java
statement must also be written so that it is all on one line.

The —overwrite parameter is optional. This parameter tells the
migration tool whether or not to overwrite an existing EGL file in the
specified directory with the specified name.

WebSphere_Studio_Install_Directory is the drive and directory in which
you installed WebSphere Studio.

Path\ ExternalSourceFormatFile refers to the drive, directory, and file
name of the External Source Format file you want to migrate. (For
example, d:\temp\VAGenFiles\PROG1.esf.)

Path\EGLFile.egl refers to the drive, directory, and file name of the
EGL file you want to create. The directory must include the
workspace, EGL source folder, and package where you want to place
the EGL source file. (For example,

d:\myworkspace\MyProject \EGLSource\my\pkg\progl.egl.)
EGLFile.egl is used in the same way as the EGL File Name field you
specify when you use the Import VAGen External Source Format File
wizard. See [‘Overview of Single File Migration” on page 20| for
information about how migration tool uses the Separate parts into EGL
files preference and the type of parts in the External Source Format file
to determine what files to create during migration in single file mode.

Path\workspace is the drive and directory for your workspace. (For
example, d:\workspaces\myworkspace) If you do not specify the -data
option, anything you specified in the VAGen Migration Syntax
Preferences is ignored and the migration tool uses the default VAGen
Migration Syntax Preferences. If you want to specify VAGen Migration
Syntax Preferences, you must specify the -data option and point to the
workspace in which you set the preferences.

packageName is the name of the package with which you want to
associate the EGL file. (For example, my.pkg.) The package name is
also used in the package statement of the .egl files that the migration
tool creates.

Path\LogName refers to the location and file name of the log file you
want to create for the migration of the corresponding External Source
Format file. Sending your migration messages to a log file is also
optional, but it is highly recommended.

For example, the java command might look something like this (though it
should be all on one line):

java com.ibm.etools.egl.internal.vagenmigration.batch.VGMIG
-importFile d:\temp\VAGenFiles\progl.esf
-eglFile d:\workspaces\myworkspace\MyEGLProject\EGLSource\my\pkg\progl.egl
-data d:\workspaces\myworkspace
-package my.pkg -overwrite >d:\temp\EGLLogs\progl.log

. Shut down WebSphere Studio.

. Open a command prompt window, navigate to the directory containing your
bat file, and run your .bat file.

Chapter 8. Running migration in single file mode 145

4. When the process completes, your EGL files and log files will be stored in the
directories you specified for them, respectively. The log file contains a list of the
migrated parts and any error messages. The messages are the same messages
that are listed in the pop—up window when you use the Import Wizard in
online mode.

5. Start WebSphere Studio.

6. Select the project into which you imported External Source Format files, then
right-click and select Refresh. This refreshes the project from the file system so
that the EGL files that were created, appended, or overwritten during migration
in batch mode are recognized by WebSphere Studio. This in turn cases
validation to run so that the Tasks list reflects the most current messages for all
files in the project. Then you can expand the package you created to see your
EGL files.

146 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Part 5. Completing the migration

© Copyright IBM Corp. 2004 147

148 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Chapter 9. Completing your migration

After you have migrated your source code using Stages 1 — 3 migration or single
file migration, there are some additional tasks you should do. This includes the
following:

* Save a baseline for the EGL projects and packages in your source code
repository.

* Preliminary steps for completing single file migration.

* Review your EGL source code.

¢ Review your EGL build descriptor parts.

* Review your EGL linkage option parts.

* Review your EGL resource associations parts.

* Prepare for debugging.

* Generate and test with COBOL generation.

* Generate and test with Java generation.

Saving a baseline for EGL projects and packages

Before you attempt to resolve any messages on the Tasks list or modify any
migrated EGL code, you might want to create a version of the EGL projects and
packages in your source code repository. Storing and versioning the EGL projects
and packages immediately after migration provides a baseline so that you know
exactly what source code was produced by the migration tool. This baseline also
provides a way of tracking any code changes you have to make by hand. This is
especially useful during a pilot project as a way of capturing all the changes so
that you can document the types of changes that were necessary. This
documentation can serve as an aid in migrating additional subsystems.

Preliminary steps for completing single file migration

© Copyright IBM Corp. 2004

Single file migration does not do everything that Stage 1 - 3 migration does. You
must do the following steps manually:

* Nest any forms within their corresponding form group. This is required if you
migrate two form groups to the same package and the two form groups contain
the same form name. (For example, MAP1).

* Resolve any duplicate parts within the same EGL package. This can occur if you
migrate two programs with their associates to the same EGL package and the
two programs share some common parts. You can split the common part
definitions into a centralized common file or you can remove the duplicate parts
from one of the files. If all the files are in the same package, you do not need to
modify the EGL build path property or add import statements.

* Update the EGL build path property for the current project to list all the projects
that the current project needs to reference to resolve any part names. To update
the EGL build path, in the Project Navigator view, select the current project,
right-click the selection, and then select Properties. On the EGL Build Path page,
on the Projects tab, select the additional projects that the current project needs to
reference. Be sure to include in the EGL build path any projects that contain
packages that files in the current project need to import. For example, if FileA is
in ProjectB and FileA needs to import packageC, be sure to include the project
where packageC is located in the EGL build path for ProjectB.

149

* Add any import statements to your EGL file to point to the common packages
that your file needs to reference. The packages that you specify for the import
statement must exist in projects that are specified for the EGL build path of the
project in which the current EGL file is located. For example, if FileA is in
ProjectB, then the import statements in FileA can only reference packages that
are located in projects specified for the EGL build path of ProjectB.

Common steps for both Stage 1 — 3 and single file migration

Reviewing your EGL source code

You need to perform the following steps regardless of whether you used Stage 1 -
3 migration or single file migration:

* Review and resolve the errors in the migration log or the "TODO" list log. These
errors reflect ambiguous situations that the migration tool was not able to
resolve. Modify your EGL source code to resolve these errors. For example, if
you used the VAGen RETR statement and did not explicitly specify a search
column, then if the table was not available during migration, the EGL syntax
includes EZE_UNKNOWN_SEARCH_COLUMN. You must update your EGL
source code with the correct search column name based on the table definition.
See|Appendix D, “Messages on Tasks list or from the preprocessor,” on page 295
for help with resolving specific strings that the migration tool uses when it
creates intentionally invalid EGL syntax.

* If you have program, table, or form group names that are reserved words, you
must change the part name. If you generate COBOL, you might want to set the
alias property for the part to specify the original part name. That will help you
avoid having to change any external references to the program, table, or form
group.

* Review and resolve any additional errors on the Tasks list. See
[“IWN.xxx messages on the Tasks list,” on page 299 for help in resolving
common messages on the Tasks list that are a result of the migration process.

* Determine if you need to set the containerContextDependent property for any
records or functions. For more details, see|”containerContextDependent|
[Property” on page 30}

Reviewing your EGL build descriptor parts

The migration tool converts VAGen generation options parts to EGL build
descriptor parts. However, some VAGen options have no EGL equivalent. In
addition, EGL has several new build descriptor options that you might need to set.
You might see errors on the Tasks list due to either of these changes. See
[Appendix E, “TWN.xxx messages on the Tasks list,” on page 299|for help in
resolving common messages on the Tasks list that are a result of the migration
process. You might need a text editor to resolve some of the problems. You need to
perform the following steps regardless of whether you used Stage 1 - 3 migration
or single file migration:

* Review general build descriptor options.
* Review COBOL generation build descriptor options.
* Review Java generation build descriptor options.

* Establish a debug build descriptor part.

Reviewing general build descriptor options
You need to review the following build descriptor options regardless of whether
you plan to generate COBOL or Java:

150 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

* If you generate for a national language in which the decimal point is the comma
symbol, you must include the decimalSymbol build descriptor option.

 If you use the VAGen EZESYS special function word to determine your runtime
environment, you might want to set the EGL build descriptor option
eliminateSystemDependentCode. Refer to the online helps for more information
about this option.

* Refer to the online helps for information about master build descriptors. This
technique is a replacement for the VAGen preference for the Default generation
options part. The migration tool automatically splits any generation option part
that contains the NOOVERRIDE attribute into two build descriptor parts. One of
the build descriptor parts is named xxxxx, and the other is named
xxxxx_NOOVERRIDE, where xxxxx is the original VAGen generation options
part name. The part named xxxxx contains the EGL replacement for all the
VAGen generation options that did not specify the NOOVERRIDE attribute. The
part name xxxxx_NOOVERRIDE contains the EGL replacement for all the
VAGen generation options that specified the NOOVERRIDE attribute. This split
into two parts is required if you decide to use master build descriptors.

* If you used the VAGen /OPTIONS generation option to chain generation
options parts, review how your EGL build descriptor parts chain using the
nextBuildDescriptor option. You might need to modify this chaining to obtain the
same set of build descriptor options that you had in VisualAge Generator.

* The migration tool does not create a default build descriptor for you when it
creates the EGL projects. You can establish a default build descriptor for a file,
package, EGL source folder, project, or workbench levels. The default build
descriptor that is closest to the generatable part is the one that is used. For
example, you can specify a default build descriptor for just one file and specify a
different default build descriptor for the workbench. In this situation, if you
generate the program contained in the file, the default build descriptor for the
file is used. When you generate any other program, then the workbench default
build descriptor is used.

— To set a preference for a particular file, package, EGL source folder, or project,
select the resource (file, package, folder, or project), then right-click and select
Properties from the context menu. Select EGL Default Build Descriptor in the
left pane. Select the build descriptor that you want to use as the default for
all generatable parts in this resource. Assuming there is no closer EGL default
build descriptor, the Target system build descriptor is the default that will be
used whenever you generate anything in this resource. The Debug build
descriptor is the default that will be used when you use the debugging tool.

— To set a workbench preference for a build descriptor part, select Window ->
Preferences -> EGL -> Default Build Descriptor. This preference applies to
all projects, packages, source folders, and files if you do not specifically
override it. You can set both a Target system build descriptor to use for
generation and a Debug build descriptor to use with the debugging tool.

* If your control parts (build descriptor, linkage options, resource association, bind
control, and linkedit parts) are not all in the same file, you must modify the
current file to include import statements for the files that contain other build
parts that you want to reference from the current file. For example, if
buildDescriptorPartA references a linkageTableB that is in a different file, the file
containing buildDescriptorPartA must include an import statement for the file
that contains linkageTableB. Use the EGL Build Parts Editor to add the import
statement.

Chapter 9. Completing your migration 151

Reviewing COBOL generation build descriptor options
If you plan to generate COBOL, you need to review or set the following build
descriptor options:

* For VisualAge Generator, the outputs of COBOL generation are transferred to
the host to run the preparation steps. EGL uses a build server to handle the
preparation steps. For the EGL build server, there is a port number that must be
specified to transfer the outputs of generation. Contact the person who installed
and configured the Enterprise Developer build server to determine the port
number on which the remote build server is listening for build requests. If the
port is other than 5555, you must add the destPort build descriptor option to set
the value for your organization.

 If you generate COBOL for the zOS environment, you must also do the
following:

— Establish a bind control part to use as a template.
— Establish a program-specific bind control part.
— Review linkedit commands.

Establishing a bind control part to use as a template: VisualAge Generator uses
a bind control template to create default bind control commands. The default
VAGen template binds a DB2 plan, but you might have modified the template so
that it binds a package or made other changes to conform to the standards of your
organization. The VAGen templates are stored outside the workspace in files
named EFK2MBDA.tpl and EGK2MBDD.tpl. Bind control parts are only required if
you need to do a special bind for a particular program.

EGL does not use bind control templates. Instead EGL requires a bind control part.
If you bind packages, you can achieve an effect similar to VisualAge Generator
templates by creating an EGL bind control part that contains a template to use for
all the binds and store this part in your workspace. Note: The technique described
in this section does not work if you bind plans. See |”Establishing 5|
[program-specific bind control part” on page 153 if you bind plans.

If you modified the VAGen bind control template so that you bind a package for
each program, you can adapt that template for use as an EGL bind control part. It
is recommended that you put this bind control part in the same file with other
control parts. For example, you might have a VAGen bind control template that
looks like the following:

DSN SYSTEM(%MYDB2SUBSYSTEMS)

BIND PACKAGE (%MYCOLLECTIONNAME%) -
MEMBER (%EZEMBR%) -

In the previous example, MYDB2SUBSYSTEM and MYCOLLECTIONNAME are
symbolic parameters you set in your VAGen generation options and EZEMBR is
set automatically with the name of the program currently being generated.

For binding packages, the EGL bind control part that you need to create is very
similar to the VAGen template, but requires 3 additional lines and a change to the
EZEMBR symbolic parameter. The corresponding EGL bind control part looks like
the following:

TSOLIB ACTIVATE DA('%DSNLOAD%')

ALLOC FI(DBRMLIB) SHR DA('%EZEPID%.%SYSTEM%.DBRMLIB' +

'%ELA%.SELADBRM')
DSN SYSTEM(%MYDB2SUBSYSTEM%)

152 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

BIND PACKAGE(%MYCOLLECTIONNAME%) -
MEMBER (%EZEALIAS%) -

DSNLOAD, EZEPID, and ELA all have the same meaning as they did in VisualAge
Generator. EZEALIAS is the EGL replacement for EZEMBR when you need the
name of the program being generated in a bind control part. SYSTEM is the EGL
replacement for EZEENV. You might need to modify the first 3 lines of the bind
control part if you use different data set naming conventions on your EGL build
server. Contact the person who installed and configured the Enterprise Developer
build server to determine what the additional 3 lines need to be based on the
naming conventions for your organization. You might also need to modify your
EGL build descriptor options to set the projectID build descriptor option and the
DSNLOAD and ELA symbolic parameters if you did not set these values in
VisualAge Generator. See|“Symbolic parameters” on page 272|for changes to the
names of the symbolic parameters. Also see the online helps for more information
about using a template for the EGL bind control part and setting the values of EGL
symbolic parameters.

In addition to creating the EGL bind control part to serve as a template, you must
also modify your build descriptor parts to include the bind build descriptor option
to point to your bind control part. It is recommended that you add the bind build
descriptor option to one of your existing, common build descriptor parts to
minimize the number of build descriptor parts you need to modify.

Establishing a program-specific bind control part: If you bind plans in
VisualAge Generator, then generally each program requires a different bind
command. In this case, you need a program-specific bind command to bind a plan
for the program with all the other programs that are in the same run unit. The
typical way to do this is to create a bind control part called xxxxx.BND, where
xxxxx is the name of the program. You then set the VAGen generation option
/BIND=BND to specify the suffix that you want VisualAge Generator to use when
searching for a program-specific bind command. The .BND suffix can also be used
if you bind packages for the rare situations in which one program requires
something different from what the template provides.

The EGL bind build descriptor option does not permit you to specify a suffix.
Instead, the bind build descriptor option must specify the name of a specific bind
control part. In EGL, if you do not specify the bind build descriptor option, then
EGL looks for a bind control part with the same name as the program. In general,
the easiest technique is to bind packages and follow the process described in
[“Establishing a bind control part to use as a template” on page 152, However, if
you want to bind plans or if you have the situation in which one program requires
something other than what is provided by the bind control part template, you can
create program-specific bind control parts.

If you have VAGen program-specific bind control parts that used the default .BND
suffix, then the migration tool automatically removes the .BND suffix for you and
adds the additional statements required for an EGL bind control part. Assuming
that your naming convention was programName.BND and you always have
program-specific bind command parts, then you do not need to specify the EGL
bind build descriptor option for this program. However, if you are using the EGL
bind build descriptor to specify a bind control part for most programs to use as a
template and you need to provide a program-specific bind control part for a
program, then you must create a build descriptor part for this specific program

Chapter 9. Completing your migration 153

and set the bind build descriptor option to point to the program-specific bind
control part. Otherwise, EGL will pick up the bind control part that is the template
because that is what your normal bind build descriptor option specifies.

Review linkedit commands: VisualAge Generator provides default linkedit
commands based on the target environment and database access. However, in
some cases, you might have a program that requires specific linkedit commands.
(For example, to link in a PL/I program for the MVS Batch environment.) The
typical way to do this is to create a linkedit part called xxxxx.LKG, where xxxxx is
the name of the program. You then set the VAGen generation option
/LINKEDIT=LKG to specify the suffix that you want VisualAge Generator to use
when searching for the program-specific linkedit command.

The EGL linkEdit build descriptor option does not permit you to specify a suffix.
Instead, the linkEdit build descriptor option must specify the name of a specific
linkedit part. In EGL, if you do not specify the linkEdit build descriptor option,
then EGL looks for a linkedit part with the same name as the program. If EGL
does not find a linkedit part with the same name as the program, then EGL creates
default linkedit commands based on the target environment and database access
similar to what VisualAge Generator does. Therefore, the only time you need to
specify the linkEdit build descriptor option is if you create a linkedit part with a
different name from the program. You might need to do this if you generate the
same program for both the zOS Batch and zOS CICS environments.

If you have VAGen program-specific linkedit parts that used the default .LKG
suffix, then the migration tool automatically removes the .LKG suffix for you.
Assuming that your naming convention was programName.LKG, then you do not
need to specify the EGL linkedit build descriptor option for this program. EGL will
find the program-specific part first, before it attempts to create a default linkedit
command.

Reviewing Java generation build descriptor options

If you plan to generate Java, you need to review or set the following build

descriptor options:

* Be sure to add the genProject build descriptor option to specify where the
outputs of Java generation are to be placed. There is no VAGen generation
option that migrates to the EGL genProject build descriptor option.

* There are some EGL build descriptor options that have somewhat different
behavior from their corresponding VAGen generation option. Refer to the online
helps for information about the following build descriptor options to determine
whether you need to set or modify them for your environment:

— genProperties, which is set by the migration tool based on the VAGen
/genproperties option.

— enableJavaWrapperGen, which is set by the migration tool based on the
VAGen /system=JAVAWRAPPER option.

* There are some new EGL build descriptor options that have no corresponding
VAGen generation option. Refer to the online helps for information about the
following build descriptor options to determine whether you need to set them
for your environment:

- dateMask

— cicsj2cTimeout

- sessionBeanID

- sqlJDBCDriverClass

— sqlJNDIName

154 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

- sqlValidationConnectionURL

Establishing a debug build descriptor part

Create a build descriptor part that contains the build descriptor options that you
want to use during debug. See the online helps for guidance on creating a debug
build descriptor part.

Reviewing your EGL linkage option parts

The migration tool converts VAGen linkage table parts to EGL linkage options
parts. However, some VAGen options have no EGL equivalent. In addition, EGL
has several new linkage options that you might need to set. You might see errors
on the Tasks list due to either of these changes. See |Appendix E, “TWN.xxx|
Imessages on the Tasks list,” on page 299| for help in resolving common messages
on the Tasks list that are a result of the migration process. Also refer to the online
helps for details about the linkage options that are supported for your
environment. You need to perform the following steps regardless of whether you
used Stage 1 - 3 migration or single file migration:

* Review and resolve the messages in the migration log and on the Tasks list. You
might need a text editor to resolve some of the problems.

* For callLink, consider the following:

— Not all of the link types from VisualAge Generator are supported in EGL. For
example, CSOCALL is no longer supported. The migration tool converts
CSOCALL to a remoteCall. However, the attributes you must specify for an
EGL remoteCall differ from those for CSOCALL.

— Not all of the remoteComType values from VisualAge Generator are
supported in EGL. For example, DCE and DCESECURE are no longer
supported. The migration tool converts these unsupported values exactly as
they are, which results in an invalid EGL linkage options part. This ensures
that there is an error on the Tasks list as a reminder that you must modify the
linkage options part to specify the option you want to use with EGL.

— If you change to use remoteComType=CICSECI, you must add the ctgPort
and ctgLocation attributes. This does require the configuration and setup of a
CICS Transaction Gateway server for the invocation of remote CICS
transactions.

— If you change to use remoteComType=CICSSSL, you must add the ctgKeyStore
and ctgKeyStorePassword attributes. In addition, if you have not already
included the ctgPort and ctgLocation attributes in your VAGen linkage table,
you must include them for the EGL remoteComType=CICSSSL.

— conversionTable=BINARY is not supported in EGL. The migration tool
converts this value exactly as it is so that there is a place holder in the EGL
linkage part. However, you must modify the value.

* For fileLink, conversionTable=BINARY is not supported in EGL. The migration
tool converts this value exactly as it is so that there is a place holder in the EGL
linkage part. However, you must modify the value.

* For asynchLink (VAGen crtxlink), conversionTable=BINARY is not supported in
EGL. The migration tool converts this value exactly as it is so that there is a
place holder in the EGL linkage part. However, you must modify the value.

* The EGL Transfer To Program linkage information is the equivalent of the
VAGen dxfrlink entry. If you generate for Java and use the VAGen XFER
statement, you might need to add EGL Transfer to Transaction entries. Refer to
the online helps for information about this new linkage entry.

Chapter 9. Completing your migration 155

Reviewing your EGL resource association parts

The migration tool converts VAGen resource association parts to EGL resource
associations parts. However, some VAGen options have no EGL equivalent. In
addition, EGL has several new resource association options that you might need to
set. You might see errors on the Tasks list due to either of these changes. See
[Appendix E, “IWN.xxx messages on the Tasks list,” on page 299| for help in
resolving common messages on the Tasks list that are a result of the migration
process. Also refer to the online helps for details about the resource association
options that are supported for your environment. You need to perform the
following steps regardless of whether you used Stage 1 - 3 migration or single file
migration:

* Review and resolve the messages in the migration log and on the Tasks list. You
might need a text editor to resolve some of the problems.

* Not all of the file types from VisualAge Generator are supported in EGL. For
example, BTRIEVE and MFCOBOL are no longer supported. The migration tool
converts these unsupported options exactly as they are so that there is a place
holder in the resource association part. This ensures that there is an error on the
Tasks list as a reminder that you must modify the resource associations part to
specify the option you want to use with EGL. Depending on the EGL file type
option you select, there might be additional attributes you must set for the
resource association entry.

* Review the online helps for the FormFeedOnClose and fext attributes to determine
if you need to set these values for your environment. In VisualAge Generator,
the equivalent options, /noff and /text respectively, can only be specified in a
resource association file for the workstation environment. Therefore, these
options are not set by the migration tool because the tool only processes
resource association parts.

Preparing for debugging
You should do the following to prepare for debugging:

* From the workbench window, select Window -> Preferences -> EGL -> Debug.
Refer to the online helps to determine which, if any, of these preferences you
need to set for your environment.

* Also review the EGL-> Default Build Descriptor preferences. You might want
to set the default Debug build descriptor for your entire workspace.
Alternatively, you can set the default Debug build descriptor for a project, EGL
source folder, package, or file.

* If you are calling generated EGL or non-EGL programs on a remote CICS system
from the debugger, you need to configure and use a CICS Transaction Gateway
Server. Direct calls to CICS using CICS Client or CICS Transaction Gateway are
no longer supported.

Generating and testing with COBOL generation
You should do the following to prepare for COBOL generation:

* You might want to create another version of the EGL projects and packages in
your source code repository at this time. This provides another baseline of code
that reflects the changes you made manually and before generation.

* If you are generating for zOS, be sure that the Enterprise Developer Server for
zOS Version 5.0 is installed with all of the latest PTFs.

* If you are generating for iSeries, be sure that the EGL runtime for iSeries has
been installed in your host environment with all the latest PTFs.

156 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

* Be sure the EGL build server is installed and configured in your host
environment. In VisualAge Generator, customization was done to the
preparation process for zOS and iSeries by changing preparation templates on
the workstation. In EGL, this customization is done on the host machine. See the
online helps for more information regarding if customization is still needed and
how the customization is done for each target host environment.

* Contact the person who installed and configured the Enterprise Developer build
server. Be sure you understand any changes to the naming conventions for the
host data sets that contain the outputs of generation and preparation. For
example, in VisualAge Generator when you generate for MVS Batch, the default
name of the data sets is xxxx. MVSBATCH.yyyy, where xxxx is the high-level
qualifier you specify in the /projectid generation option and yyyy is the type of
code. (For example, EZESRC for the COBOL source.) With EGL, because the
target environment names have changed, the corresponding data set names are
xxxx.ZOSBATCH.yyyy. This means that you might need to define a new group of
data sets on the host.

* Generate your programs and tables. When you generate the programs, use the
following build descriptor options:
- genFormGroup="YES"
- genHelpFormGroup="YES"
— genDataTables="NO"

This enables you to generate the form groups with the programs that use them,
but to only generate the tables one time regardless of the number of programs
that use the table. Resolve any validation errors that are caught during
generation.

¢ Test the generated code.

* You might want to create another version of the EGL projects and packages in
your source code repository at this time. This provides another baseline of code
that reflects the changes you made as a result of problems found during
generation and testing.

Generating and testing with Java generation
You should do the following to prepare for Java generation:

* You might want to create another version of the EGL projects and packages in
your source code repository at this time. This provides another baseline of code
that reflects the changes you made by hand and before generation.

¢ Generate your programs and tables. When you generate the programs, use the
following build descriptor options:
- genFormGroup="YES"
- genHelpFormGroup="YES"
— genDataTables="NO"

This enables you to generate the form groups with the programs that use them,
but to only generate the tables one time regardless of the number of programs
that use the table. Resolve any validation errors that are caught during
generation.

¢ Test the generated code.

* You might want to create another version of the EGL projects and packages in
your source code repository at this time. This provides another baseline of code
that reflects the changes you made as a result of problems found during
generation and testing.

Chapter 9. Completing your migration 157

158 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Part 6. Language and runtime differences

There are various language and runtime differences between VisualAge Generator
and EGL.

© Copyright IBM Corp. 2004 159

160 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Chapter 10. Language and runtime differences

Language differences

Refer to[“Determining whether you can migrate to EGL” on page 6|for information
about areas in which WebSphere Studio is not a complete replacement for
VisualAge Generator Developer.

Refer to|Chapter 3, “Handling ambiguous situations,” on page 43| for details about
VAGen language elements or migration strategies that do not allow a precise
migration to the EGL language.

Refer to|Appendix B, “Relationship of VisualAge Generator and EGL Language
[Elements,” on page 175| for details about how each VAGen language element is
migrated to EGL.

Runtime differences

After you have migrated your source code to EGL, you should generate and
thoroughly test your code to ensure that it runs the same as in VisualAge
Generator. The specific runtime differences vary depending on the target
environment as follows:

* General differences.

* Differences in debug.

* Differences in generated COBOL.

¢ Differences in generated Java.

* Differences between distributed CICS and native workstation environments.
* Differences between generated C++ and generated Java.

General differences

The following runtime behavioral differences can occur without any messages in
the migration log or the Tasks list. The problems can occur during debug or when
running the generated Java or COBOL code:

* The following apply to text programs:

— A runtime error occurs if a form field is not long enough to contain all the
digits and formatting information (sign, decimal point, currency symbol, and
numeric separator).

— Non-default fill characters are always honored, even if the program does not
issue a SET formltem FULL statement.

 If a record that is a VAGen REDEFINED record is not available when migrating
a program, the migration tool does not include the EGL redefines property in the
data declarations. This results in two separate record areas, rather than a single
area with two definitions as in VisualAge Generator. Errors, including abends,

can result due to uninitialized or invalid data. See [Redefined records” on page]
for details.

* Hard I/O errors occur in more situations in EGL than in VisualAge Generator:

— In VisualAge Generator, UNQ for non-SQL records is a soft error so the HRD
1/0 error state is not set. In EGL, unigue is a hard error so hardIOError also
tests true. See [“I/O error values UNQ and DUP” on page 79| for details.

© Copyright IBM Corp. 2004 161

— For iSeries, the VAGen 1/0O error value LOK is migrated to the EGL deadlock
I/0 error state. In VisualAge Generator, LOK is a soft error so the HRD 1/O
error state is not set. In EGL, deadlock is a hard error so hardIOError also tests
true. See [’I/O error value LOK” on page 81| for details.

e If the I/O error routine is not available when migrating a function, the migration
tool assumes that the I/O error routine is not a main function and converts to a
function invocation. In VisualAge Generator, if the I/O error routine is a main
function and an error occurs at runtime, VisualAge Generator clears the current
execution stack of functions and starts a new stack with just the main function
that is specified as the 1/O error routine. This also clears out any storage for the
execution stack. In EGL, because the migration tool converted to a function
invocation, if an error occurs at runtime, EGL adds the main function to the
current execution stack rather than cleaning out the stack and starting a new
stack with just the main function. This has the potential for an infinite loop or a
large use of resources if functions have local storage or parameter lists. See
lerror routine” on page 67 for details.

Differences in debug

There are some differences in debug that might affect your testing. If you generate
for COBOL environments, you need to be particularly aware of these differences
because debug does not provide the same support as generated COBOL in the
following areas:

* Differences for maps are as follows:
— Blink is not supported for text forms.

— The isDecimalDigit property is only supported for character fields. It is
implemented as a software edit, not as a hardware attribute. Numeric fields
also have a software edit. See [“Map fields and the numeric hardware|
[attribute” on page 58 for details.

 For indexed records that have an alternate index record defined, the setting for
the DUP 1/0O error value differs from VisualAge Generator. For VisualAge
Generator, for a SET record SCAN followed by a SCAN or SCANBACK I/0O
option, the DUP I/O error value is not set for the SET record SCAN statement.
The DUP I/0O error value is set for each of the duplicate-keyed records other
than the last record retrieved with a duplicate key. For Java generation, a set
record position followed by a get next or get previous statement results in the
duplicate 1/O error state being set on the set record position rather than on the
first duplicate-keyed record retrieved. The remaining duplicate-keyed records
result in the duplicate 1/O error state being set the same as in VisualAge
Generator. The EGL duplicate state is set on all records other than the first and
last of the duplicate-keyed records. See the online helps for more information
about indexed records and alternate index records and their use with set record
position, get next and get previous.

» Differences for SQL are as follows:
— ODBC is not supported in EGL. If you use a SQL database manager other
than DB2, you must obtain a JDBC driver for your database manager.
— JDBC does not support two-phase commit. Therefore, there are the following
differences:

- There are separate calls to the SQL manager and MQ series manager for
commit and rollback. Therefore, if a problem occurs, it is possible for
resource to commit or rollback without the corresponding commit or
rollback for the other resource.

- EZECONCT (EGL sysLib.connectionService). In VisualAge Generator, the R
option for unit of work argument changed the connection to another

162 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

database without ending the current connection. This permitted you to
update multiple databases within the same unit of work. In EGL, the R
option, as well as the D1C, D2A, D2C, and D2E options for the unit of work
argument are all treated as though you specified D1E. D1E is a one-phase
commit, but does not automatically release the database connection. You
must explicitly request the DISC, DCURRENT, or DALL option to
disconnect the database. See the online helps for the
sysLib.connectionService for details.

- EZESQISL (EGL sysVar.sqllsolationLevel). In VisualAge Generator, a value of
1 means you want cursor stability. In EGL a value of 1 means you want
serializable transactions.

— EZESQRRM (EGL sysVar.sqlerrmc) is not supported.

- EZESQWNG6 (EGL sysVar.sqlwarn[7]) is not supported.

- EZESQLCA (EGL sysVar.sqlca) fields are limited. They do not include values
for EZESQRRM and EZESQWNS6.

Differences in generated COBOL
The following differences occur for generated COBOL code:

* EGL generated COBOL text and basic programs are fully compatible with
VisualAge Generator programs. You do not have to regenerate or recompile a
VAGen program for either of the following situations:

— A VAGen program other than a web transaction uses CALL, DXFR, or XFER
as a way of transferring to an EGL text or basic program.

— An EGL program uses call, transfer to program, transfer to transaction, or show as
a way of transferring to a VAGen program.

The restrictions on calling or transferring between EGL and VAGen programs
are similar to those for calling or transferring between two VAGen programs.
For example, a VAGen called program cannot use the DXFR or XFER statements
to transfer to other programs. Similarly, an EGL called program cannot use
transfer to program, transfer to transaction, or show to transfer to other programs.

* Differences for maps are as follows:

— The isDecimalDigit property is only supported for character fields. It is
implemented as the numeric hardware attribute. Numeric fields have a
software edit. See[“Map fields and the numeric hardware attribute” on page]

for details.
— The following device sizes are no longer supported: 6x40, 12x40, 16x64, and
255x60. See ["Map groups, maps, and device sizes” on page 53| for details.

Differences in generated Java
The following differences occur for generated Java code:

* EGL generated Java text and basic programs are fully compatible with VisualAge
Generator programs. You do not have to regenerate a VAGen program for either
of the following situations:

— A VAGen program other than a web transaction uses CALL, DXFR, or XFER
as a way of transferring to an EGL text or basic program.

— An EGL program uses call, transfer to program, transfer to transaction, or show as
a way of transferring to a VAGen program.

The restrictions on calling or transferring between EGL and VAGen programs
are similar to those for calling or transferring between two VAGen programs.
For example, a VAGen called program cannot use the DXFR or XFER statements

Chapter 10. Language and runtime differences 163

to transfer to other programs. Similarly, an EGL called program cannot use
transfer to program, transfer to transaction, or show to transfer to other programs.

Differences between distributed CICS and native workstation
environments

To run generated EGL code in a distributed environment, you must change to run
as a native process instead of having the option to run under Transaction Series
(TX Series or CICS). The following list outlines the differences or changes that are
necessary to move from a CICS environment to a native environment. The list uses
VAGen terminology, but you must make the changes in the corresponding EGL
language elements. Refer to[Appendix B, “Relationship of VisualAge Generator and|
[EGL Language Elements,” on page 175/ to determine the corresponding EGL
language element.

¢ General differences are as follows:

— There is a change from C++ generation to Java generation. Be sure to review
the section on [“Differences between generated C++ and generated Java” on|

h:_)age 166|

— Be sure to test performance and scalability when migrating from CICS to
native environments.

— Communication protocols are different between CICS and native
environments. You must determine which protocol you plan to use and then
change your EGL linkage options parts and resource associations parts
accordingly.

* The following CICS-specific special function words and service routines are not
supported in native environments:

— AUDIT (EGL sysLib.audit) for writing a CICS journal entry. You can create
your own non-EGL program named AUDIT to write similar information to a
file for the native environment.

— EZEPURGE (EGL sysLib.purge) for deleting a temporary storage queue. You
must remove references to sysLib.purge. Alternatively, you can check
sysVar.systemType and only use sysLib.purge when you are running in the
ZOSCICS environment. If you use this technique, be sure to include the EGL
build descriptor option eliminateSystemDependentCode="YES"

- EZELOC (EGL sysLib.remoteSystemID) for setting the location of a remote
file, remote program, or the location at which a remote transaction is to be
started using CREATX (EGL sysLib.startTransaction).

* CICS-specific resource associations are not supported in native environments.
You must change your resource associations part to use options that are
supported for EGL native environments. The following are CICS-specific
resource associations that are not supported for generation for a native
environment:

— CICS spool file.
— Transient data queue, including transient data queue with a trigger level of 1.
— Temporary storage queue.
— Local VSAM files, except for the AIX environment.
¢ The following CICS-supplied features are not supported in native environments:
— Security services.
— Database connection and retention.
— CICS file management, including the use of recoverable files.
— True segmentation support.

164 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

— Program management.
Differences when transferring between programs are as follows:

— For main programs other than web transactions, the XFER statement in CICS
transfers to the next transaction ID. For native environments, the XFER
statement transfers to a program name. Therefore, all the EGL transfer to
transaction and show statements must be modified to specify the program
name.

— XFER or DXFR to non-VAGen programs is supported in the CICS
environment. For native environments, transfer to program, transfer to
transaction, and show are not supported to non-EGL programs.

Commit and rollback differences are as follows:

— CICS supports a two-phase commit. Native environments support only a
single-phase commit.

— Files can be defined to CICS as recoverable files. This is not possible for
native environments.

— Message queues are committed or rolled back at the same time as other
resources in a CICS environment. Native environments support only a
single-phase commit so the message queues might not be committed or rolled
back simultaneously with SQL resources if a problem occurs during commit
or rollback.

CALL CREATX (EGL sysLib.startTransaction) differences are as follows:

— CALL CREATX starts another transaction in CICS and honors the parameters
prid and recip. EGL sysLib.startTransaction starts another program for a native
environment and ignores the parameters prid and recip. As a minimum, you
must change sysLib.startTransaction to specify a program name if you
generate for a native environment.

— CICS supports both local and remote CALL CREATX. EGL
sysLib.startTransaction only supports starting a local program.

SQL connection services using EZECONCT (EGL sysLib.connectionService). In
VisualAge Generator, for the CICS environment, EZECONCT ignores the
password. In EGL, for native environments, sysLib.connectionService uses the
password. See[“Differences between generated C++ and generated Java” on page
for aditional differences due to changing to Java generation.

EZE special data word differences are as follows:

— EZEAPP (EGL sysVar.transferName). In VisualAge Generator, for the CICS
environment, when EZEAPP is used with an XFER statement, EZEAPP
contains the name of the new transaction to be started. In EGL, for native
environments, when sysVar.transferName is used with a transfer to
transaction or show statement, sysVar.transferName contains the name of the
new program to be started.

- EZEDEST (EGL sysVar.resourceAssociation). In VisualAge Generator, for the
CICS environment, EZEDEST contains the system resource name associated
with a record while the program is running. In EGL, for native environments,
sysVar.resourceAssociation also contains the system resource name associated
with a record. However, the format of the information varies depending on
the system and the file type. Therefore, because you are changing both the
runtime environment and the file type, you must review any use of
sysVar.resourceAssociation to ensure that the information provided by your
program is correct for your native environment and file type.

— EZEDESTP (EGL sysVar.printerAssociation). In VisualAge Generator, for the
CICS environment, EZEDESTP contains the destination associated with the
print file. In EGL, for native environments, sysVar.printerAssociation also

Chapter 10. Language and runtime differences 165

contains the file name associated with the print file. However, the format of
the information varies depending on the system and the file type. Therefore,
because you are changing both the runtime environment and the file type,
you must review any use of sysVar.printerAssociation to ensure that the
information provided by your program is correct for your native environment
and file type.

— EZELTERM (EGL sysVar.terminalID). In VisualAge Generator, for the CICS
environment, EZELTERM contains the CICS terminal identifier and is
equivalent to EZEUSR. In EGL, for native environments, sysVar.terminallD is
initialized from the Java Virtual Machine system property user.name. If this
property cannot be retrieved, sysVar.terminallD contains blanks.
sysVar.terminallD is not equivalent to sysVar.sessionID (which is the EGL
replacement for EZEUSR).

— EZERCODE (EGL sysVar.returnCode). In VisualAge Generator, for the CICS
environment, the value in EZERCODE is not passed back to the system or
calling program. In EGL, for native environments, the value in EZERCODE is
ignored.

— EZERTS (EGL sysVar.errorCode). In VisualAge Generator, for the CICS
environment, EZERTS is in one of two forms:

- RSnnnnnn, where nnnnnn is a VAGen return code based on file access and
the problem that occurred.

- nnnnnnnn, where the first two characters are the hexadecimal
representation of the first byte of the EIBFN from the CICS EXEC interface
block. The remaining 6 characters contain the hexadecimal representation of
bytes 0-2 of the EIBRCODE from the CICS EXEC interface block.

In EGL, for native environments, the return code information varies based on
the file type. You should review your use of sysVar.errorCode to ensure that
the values you are checking are correct for your environment and file type.

— EZESEGTR (EGL sysVar.transactionID). In VisualAge Generator, for the CICS
environment, EZESEGTR is initialized to the current transaction ID and also
used to set a new transaction ID to take effect after a CONVERSE. EZESEGTR
can be used to control program logic. In EGL, for native environments,
EZESEGTR is ignored and cannot be used to control program logic.

— EZEUSR (EGL sysVar.sessionID). In VisualAge Generator for the CICS
environment, EZEUSR contains the CICS terminal identifier and is equivalent
to EZELTERM. In EGL, for native environments, sysVar.sessionlD is initialized
from the Java Virtual Machine system property username. If this property
cannot be retrieved, sysVar.userID contains blanks.

— EZEUSRID (EGL sysVar.userID). In VisualAge Generator, for the CICS
environment, EZEUSRID contains the CICS user ID if the user is signed on to
the system; otherwise it contains blanks. In EGL, for native environments,
sysVar.userlD is initialized from the Java Virtual Machine system property
user.name. If this property cannot be retrieved, sysVar.userID contains blanks.

Differences between generated C++ and generated Java

The following differences occur if you change from generated C++ to generated

Java:

* Generated Java is not interoperable with VAGen generated C++ programs. An
EGL program that is generated for Java cannot transfer to or from a VAGen
program that is generated for C++. An EGL program that is generated for Java
can call a VAGen called batch program that is generated for C++.

e General differences are as follows:

166 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Resource association is done at runtime when using VisualAge Generator
generated C++ code. In EGL, you have the option to specify resource
association information at generation time and have it generated into the
properties file for you. Set the resource associations build descriptor to point
to your resource associations part. Also set the genProperties build descriptor
to GLOBAL or PROGRAM. Refer to the online helps for details of these build
descriptor options.

* Differences for maps are as follows:

Blink is not supported for text forms.

The isDecimalDigit property is only supported for character fields. It is
implemented as a software edit, not as a hardware attribute. Numeric fields
also have a software edit. See ["Map fields and the numeric hardware]
lattribute” on page 5§ for details.

* For indexed records that have an alternate index record defined, the setting for
the DUP I/O error value differs from VisualAge Generator. For VisualAge
Generator, for a SET record SCAN followed by a SCAN or SCANBACK I/0
option, the DUP I/O error value is not set for the SET record SCAN statement.
The DUP I/0O error value is set for each of the duplicate-keyed records other
than the last record retrieved with a duplicate key. For Java generation, a set
record position followed by a get next or get previous statement results in the
duplicate 1/O error state being set on the set record position rather than on the
first duplicate-keyed record retrieved. The remaining duplicate-keyed records
result in the duplicate 1/O error state being set the same as in VisualAge
Generator. The EGL duplicate state is set on all records other than the first and
last of the duplicate-keyed records. See the online helps for more information
about indexed records and alternate index records and their use with set record
position, get next and get previous.

» Differences for SQL are as follows:

ODBC is not supported in EGL. If you use a SQL database manager other
than DB2, you must obtain a JDBC driver for your database manager.

JDBC does not support two-phase commit. Therefore, there are the following
differences:

- There are separate calls to the SQL manager and MQ series manager for
commit and rollback. Therefore, if a problem occurs, it is possible for
resource to commit or rollback without the corresponding commit or
rollback for the other resource.

- EZECONCT (EGL sysLib.connectionService). In VisualAge Generator, the R
option for unit of work argument changed the connection to another
database without ending the current connection. This permitted you to
update multiple databases within the same unit of work. In EGL, the R
option, as well as the D1C, D2A, D2C, and D2E options for the unit of work
argument are all treated as though you specified D1E. D1E is a one-phase
commit, but does not automatically release the database connection. You
must explicitly request the DISC, DCURRENT, or DALL option to
disconnect the database. See the online helps for the
sysLib.connectionService for details.

EZESQISL (EGL sysVar.sqllsolationLevel). In VisualAge Generator, a value of
1 means you want cursor stability. In EGL a value of 1 means you want
serializable transactions.

EZESQRRM (EGL sysVar.sqlerrmc) is not supported.
EZESQWNG6 (EGL sysVar.sqlwarn[7]) is not supported.

EZESQLCA (EGL sysVar.sqlca) fields are limited. They do not include values
for EZESQRRM and EZESQWNG.

Chapter 10. Language and runtime differences 167

* EZE special data word differences are as follows:

— EZECONVT (EGL sysVar.callConversionTable). In VisualAge Generator for
C++ generation, the conversion table names are in the format ELAxxyyy,
where xx indicates the system and yyy indicates the language. In EGL, for
Java generation, the conversion table names provided by EGL are in the
format CSOBxxxx, where CSO is a fixed prefix, B indicates the byte order of
the target system, and xxxx indicates the code page of the target system. Valid
values for B are X for Unix systems, I for Intel systems, and E for EBCDIC
systems. EGL automatically translates the EGL table names to CSO table
names for you so you do not need to change any code. However, EGL does
not provide the ability for you to create your own CSO conversion table.

— EZERCODE (EGL sysVar.returnCode). In VisualAge Generator, for C++
generation, EZERCODE is passed back to the system or calling program. If
the program ends abnormally, a VAGen return code is passed back rather
than the value in EZERCODE. In EGL, for Java generation, EZERCODE is
ignored.

168 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Part 7. Appendixes

© Copyright IBM Corp. 2004 169

170 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Appendix A. Reserved words

EGL reserved words

There are a large number of reserved words in the EGL. The reserved words
cannot be used as part names. The migration tool renames functions, data items,
records, and maps if the part name is an EGL reserved word. The migration tool
does not rename tables, map groups, or programs. The EGL reserved words are as
follows:

Table 60. EGL reserved words

Letter Reserved words

A absolute, add, after, all, array, at

B before, bigint, bin, blob, by, byName, byPosition, byte

C call, case, char, clob, close, command, continue, converse, current, currentRow

D database, dataltem, dataTable, date, day, dbChar, dbClob, decimal, decimalFloat, decrement, defined,

delete, description, display, dliCall

else, embed, enable, end, every, execute, exit, externallyDefined

field, first, float, for, forEach, form, format, formGroup, forUpdate, forward, freeSql, from, function

get, goto, group
header, help, hex, hide, hold, hour

if, import, in, inOut, insert, int, integerDate, interval, into, is

keys

label, languageBundle, last, library, line

mathLib, mbChar, menu, minute, money, month, move

newLine, next, noDelete, nolnsert, noRefresh, not, nullable, num, number, numc

of, off, on, onException, onKey, open, option, otherwise, out

pacf, package, pageHandler, passing, physical, prepare, previous, print, private, program, prompt, psb

record, relative, replace, report, return, returning, returns, row

scroll, second, set, setOption, show, singleRow, smallFloat, smalllnt, sql, stack, strLib, sysLib, sysVar

this, thru, time, timeStamp, to, trailer, transaction, transfer, try, type

unicode, update, url, use, using, usingKeys

when, where, while, window, with, withinParent, wrap

NEHEEREEEREREREHEREE

year

Note: EGL part names cannot start with EZE or the # symbol.

SQL reserved words

There are a large number of SQL reserved words that cannot be used in SQL
clauses. The migration tool renames functions, data items, records, and maps if the
part name is an SQL reserved word. The migration tool does not rename tables,
map groups, or programs. The SQL reserved words are as follows:

© Copyright IBM Corp. 2004 171

Letter

Reserved words

absolute, action, add, alias, all, allocate, alter, and, any, are, as, asc, assertion, at, authorization, avg

begin, between, bigint, binaryLargeObject, bit, bit_length, blob, boolean, both, by

call, cascade, cascaded, case, cast, catalog, char, char_length, character, character_length,
characterLargeObject, characterVarying, charLargeObject, charVarying, check, clob, close, coalesce, collate,
collation, column, comment, commit, connect, connection, constraint, constraints, continue, convert, copy,
corresponding, count, create, cross, current, current_date, current_time, current_timestamp, current_user,
cursor

data, database, date, dateTime, day, deallocate, dec, decimal, declare, default, deferrable, deferred, delete,
desc, describe, diagnostics, disconnect, distinct, domain, double, doublePrecision, drop

else, end, endExec, escape, except, exception, exec, execute, exists, explain, external, extract

false, fetch, first, float, for, foreign, found, from, full

get, getCurrentConnection, global, go, goto, grant, group

having, hour

—“lm|O|™|

identity, image, immediate, in, index, indicator, initially, inner, input, insensitive, insert, int, integer,
intersect, into, is, isolation

join

key

language, last, leading, left, level, like, local, long, longint, lower, ltrim

match, max, min, minute, module, month

ARGEE

national, nationalCharacter, nationalCharacterLargeObject, nationalCharacterVarying,
nationalCharLargeObject, nationalCharVarying, natural, nchar, ncharVarying, nclob, next, no, not, null,
nulllf, number, numeric

octet_length, of, on, only, open, option, or, order, outer, output, overlaps

pad, partial, position, prepare, preserve, primary, prior, privileges, procedure, public

raw, read, real, references, relative, restrict, revoke, right, rollback, rows, rtrim, runtimeStatistics

wlm|[=]o

schema, scroll, second, section, select, session, session_user, set, signal, size, smallint, some, space, sql,
sqlcode, sqlerror, sqlstate, substr, substring, sum, system_user

—

table, tablespace, temporary, terminate, then, time, timestamp, timezone_hour, timezone_minute, tinyint,
to, trailing, transaction, translate, translation, trim, true

uncatalog, union, unique, unknown, update, upper, usage, user, using

values, varbinary, varchar, varchar2, varying, view

when, whenever, where, with, work, write

year

N[<[=[<[c

zone

SQL reserved words requiring special treatment

The following SQL reserved words require special treatment in EGL if they are
used as SQL table names or column names:

call, from, group, having, insert, order, select, set, union,
update, values, where

To use these SQL reserved words, do the following:
* To specify the column property for an item in an sqlRecord, specify:
column = "\"reservedWord\""

For example:

172 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

column = "\"FROM\""

* To specify the tableNames property for an sqlRecord, specify:

tableNames = "\"reservedWord2\""

For example:
tableNames = "\"ORDER\""

* To use one of the reserved words as an SQL column name in the
defaultSelectionCondition for a record or in an SQL I/O statement, specify:

#sq1{ select "reservedWord"

For example:

#sq1{ select "FROM" from "ORDER"

from "reservedWord2" }

Java reserved words

Java has reserved words that cannot be used for the package names. If you are

generating Java, you may want to avoid using these names:

Letter

Reserved word

abstract

boolean, break, byte

case, catch, char, class, const, continue

default, do, double

else, extends

false, final, finally, float, for

goto

if, implements, import, instanceof, int, interface

long

native, new, null

package, private, protected, public

return

short, static, super, switch, synchronized

this, throw, throws, transient, true

void, volatile

AR EREIEIAEEREREREIE

while

Appendix A. Reserved words

173

174 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Appendix B. Relationship of VisualAge Generator and EGL
Language Elements

The tables in this appendix have 3 columns:

VisualAge Generator 4.5 -- this column shows the VAGen language element. In
the sections related to part type, the organization of the tables and the
terminology used correspond to the VAGen user interface. The tables for
statements, EZE words, and service routines are organized based on the type of
statement, EZE word, or service routine.

EGL produced by the migration tool -- this column shows the corresponding
EGL language element. This column only shows the information needed for
migration and is not intended to be the complete EGL syntax. Additional
properties, values, and options might be available for certain EGL language
elements. For example, the EGL set statement provides additional options that
are not available in VisualAge Generator. The only set statement options listed in
these tables are the ones that correspond to VAGen language elements. Use this
column as a guide for finding more detailed information in the EGL
documentation.

Migration tool considerations -- this column contains additional information
about how the migration tool handles the conversion from VisualAge Generator
to EGL.It also provides references to the sections on ambiguous situations, where
necessary, to provide details about migration with and without the associated
part and the potential problems that can occur when migrating the VAGen
language element.

For each part type, the first row in the first table of the section provides:

VisualAge Generator 4.5 - an overview of the information you can specify in
various windows for the part type in VisualAge Generator.

EGL — the overall EGL syntax for the corresponding EGL part type, using the
syntax that the migration tool uses. Other variations of the syntax might be
possible. For example, when migrating a VAGen table, the migration tool always
places the table contents after the table structure so that is the syntax shown in
the Tables section. EGL syntax also permits the table contents to be placed before
the table structure.

The following syntax is used in the tables:

© Copyright IBM Corp. 2004

| - choice of a few options. The order of the choices is the same in both the
VisualAge Generator 4.5 and the EGL columns.

bullet list - choice of a longer list of options or values. The order of the choices
is the same in both the VisualAge Generator 4.5 and the EGL columns.

italics - values that the migration tool fills in when migrating from VisualAge
Generator or that you fill in when writing new EGL statements.

bold - EGL key words and symbols that must be specified as shown.

{ } - encloses information that can be repeated 0 to n times.

{ } - encloses an EGL property list; properties are always separated by commas.
[] - encloses optional information.

175

General syntax conventions

There are some differences in the overall syntax of VisualAge Generator and EGL.

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Comments are specified in the
following formats:

* Prologs for programs, tables, and
records.

* Descriptions for items and
functions.

¢ Comments within functions are
indicated by:

— a semicolon (;). Everything on
the same line after the
semicolon is treated as a
comment.

- /*. Everything on the same
line after the /* is treated as a
comment.

Comments are specified in the
following formats:

// indicates a line comment.
Everything on the same line after
the // is treated as a comment. The
comment is only for one line.

e /* comment */. Everything after the
/* is treated as a comment until the
next */. The comment can span
multiple lines.

The migration tool converts as follows:

* Prologs and part descriptions are
converted to EGL // line comments.

* Comments within functions are
converted to /* comment */

Decimal point can be either a
period or a comma depending on
your locale.

Decimal point during development is
always the period. Generation and
runtime use either a period or a
comma depending on the runtime
locale.

During migration, if your locale uses
the comma for the decimal point, the
migration tool converts the comma to
a period.

Properties are entered in
specialized editors using check
boxes, drop down lists, and so on.

Properties are entered in a text editor
and must be separated by a comma.

No special considerations.

Data items

The data items section is organized into the following tables:

* Data items - general syntax, data type, length, decimals, and description,

[Table 61 on page 177

e Default map properties and User Interface properties - general information,

[Table 62 on page 179|

* Default map properties and User Interface properties - general edits, [Table 63 o

e Default mai properties and User Interface properties - numeric edits,

* Default map properties and User Interface properties - error messages, [Table 65
‘

* User Interface properties - label and help, [Table 66 on page 182]

Note: There is only one set of edit and message properties for a data item. Even
though this release of EGL does not support Ul records, the migration tool
merges the map and UI properties for the data items. The migration tool
also converts the label and help Ul properties to their EGL equivalent
properties. This preserves as much of your data item information as
possible. You can use this information if you develop any new EGL forms or
page handlers.

176 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 61. Data items — general syntax, data type, length, decimals, and description

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

VAGen data item part:
* itemName
* Basic information:
— Data type
— Length
— Decimals
— Description
* Default Map Properties
* User Interface (UI) Properties

EGL syntax example:

// Description
DataItem itemName
dataType(lengthInformation)
{ [{ formattingProperties }]
[{ validationProperties }]
[{ pageltemProperties }]

end

The migration tool uses the VAGen
data type, length, and decimals to
determine the EGL dataType and
lengthInformation.

The migration tool merges the VAGen
default map properties and the Ul
properties into the single set of EGL
formatting, validation, and pageltem
properties.

Character item types:
* Char

* Hex

* DBCS

* Mixed

* Unicode (VisualAge for Java
only)

Length is the number of
characters. In the record editor you
can also show the number of
bytes.

Corresponding character item types:
* char

* hex

* dbchar

¢ mbchar

* unicode

Length is the number of characters.

The migration tool converts character
data items to the corresponding type
and length.

Numeric character (zoned decimal)
types:
* Num

* Numc

Length is the total number of
digits, with a maximum of 18.
Decimals is the number of digits to
the right of the decimal point. In
the record editor, you can also
show the number of bytes.

Corresponding numeric types:
* num

¢ numc

Precision is the total number of digits,
with a maximum of 18. Scale is the
number of digits to the right of the
decimal point.

The migration tool converts to the
corresponding type, precision, and
scale. The migration tool omits the
scale if decimals is 0.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

177

Table 61. Data items — general syntax, data type, length, decimals, and description (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Packed decimal types:
* Pacf
* Pack

Length is the total number of
digits, with a maximum of 18.
Decimals is the number of digits to
the right of the decimal point. The
length for Pacf must be odd or 18.
The length for Pack can be odd or
even. Except for a length of 18,
even lengths are recorded within
the data item definition, but are
treated as the next higher odd
length for test, generation, and in
the Data Item and Record editors.
Only the SQL Record editor shows
the even lengths and only SQL
records support even length for
test and generation. The even
length is only used in SQL where
clauses and in SQL functions that
use execution time statement
build. In the record editor you can
also show the number of bytes.

Corresponding numeric types:
* pacf

* decimal

Precision is the total number of digits,
with a maximum of 18. Scale is the
number of digits to the right of the
decimal point. The length for pacf must
be odd or 18. The length for decimal
can be odd or even. Even lengths are
supported for data item definitions and
all record types.

At test and generation, if you use
VisualAge Generator Compatibility
mode, EGL does the following for
decimal items with even precision:

Increases the precision by one in all
records.

* EGL uses a temporary variable with
the even precision in SQL where
clauses or prepare statements.

The migration tool converts to the
corresponding type, precision, and
scale. The migration tool omits the
scale if decimals is 0. For a Pack item,
if an even length was recorded in the
data item definition, the migration
tool migrates it as the even length.

Binary item types:

* Bin, length 4, no decimals
* Bin, length 9, no decimals
* Bin, length 18, no decimals

* Bin, length 4, 9, or 18 with
decimals

Corresponding binary types:

* smallint (no precision or scale)
* int (no precision or scale)

* bigint (no precision or scale)

* bin with precision and scale

The migration tool converts binary
data items to the corresponding type
based on the length and number of
decimals. The bin type is only used if
decimals (scale) is specified.

Description

Not applicable.

The migration tool converts the item
description to a comment that
precedes the Dataltem definition.

178 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 62. Default map properties and User Interface properties - general information

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Data items can have both default
map properties and user interface
(UI) properties specified. The
properties include the following:

* formatting edits
e validation edits

¢ error messages

UI properties also include a label
and help text.

Explicitly setting some properties
in VisualAge Generator
automatically causes other
properties to be set. For example,
setting numeric separator also
explicitly sets fill character, input
required, justify, currency symbol,
and sign.

Data items can have the following
properties:

¢ formatting properties

* validation properties

° page item properties

The categories for some properties are
changed from VisualAge Generator.
For example, error messages are
grouped with the validation properties.
Page item properties include the Ul
label and help text. The EGL column
in the following tables shows the
category for the EGL property.

The migration tool merges the default
map properties and Ul properties,
giving precedence to the Ul properties.
Validation edits and their associated
error messages are migrated as a pair.
The migration tool only migrates
properties that were explicitly set in
VisualAge Generator. The tool does not
automatically insert default values for
EGL properties. See information about
Merging map and Ul edits in |”Sharea]

ledits and messages” on page 44|for

details and potential problems.

Also see information about map item
edits for shared data items in[“Map)|

item edit routine for shared data|

items” on page 49 for details and

potential problems.

Table 63. Default map properties and User Interface properties - general edits

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Edit type (UI only) - values:
* None

* Boolean

e Date

e Time

EGL supports multiple properties:
* not applicable

* boolean = yes

* dateFormat = locale

* timeFormat = "hh:mm:ss”

(formatting properties)

No special considerations.

Edit function (UI only)

validator (validation property)

No special considerations.

Edit table (UT only)

validatorTable (validation property)

No special considerations.

Run edit function on web (UI
only)

Not supported.

The migration tool converts to a
comment. The comment includes the
EGL runValidatorFromProgram
property, which is expected to be the
eventual replacement. The EGL
property is the reverse of the VAGen
property. The migration tool converts
yes to no and no to yes when creating
the comment.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

179

Table 63. Default map properties and User Interface properties - general edits (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Edit routine (map only)

validator OR validatorTable

(validation property)

If the UI edit function and edit table
are not specified, the migration tool
does the following;:

* Sets the validator property if the
map edit routine is EZEC10 or
EZECI11.

* Sets the validator property if the
edit routine is a function.

* Sets the validatorTable property if
the edit routine is a table.

If the UI edit function or edit table are
specified, the migration tool does not
migrate the map Edit routine.

Special considerations apply if the edit
routine is not available during
migration. See information about map
edit routines in ["Map item edit routing
[for shared data items” on page 45| for
additional details and potential
problems.

Justify - Left | Right | None (map
only)
Note:

* For map items, the default is
right for numeric fields and left
for all other fields.

* For Ul items, justify is not
supported.

align = left | right | none
(formatting property)

Note:

* For form fields, the default is right
for numeric fields and left for all
other fields

* For page items, align is not
supported.

No special considerations.

Date edit mask (map only)

Valid values are as follows:
* SYSGREGRN

* SYSJULIAN

» dateEditPattern

dateFormat = value

Valid values are as follows:
* systemGregorian

* system]Julian

» "dateEditPattern”

(formatting property)

If the UI edit type does not specify
Date, the migration tool sets the
dateFormat based on the Date edit
mask specified in VisualAge Generator,
if any. If the UI edit type specifies
Date, the migration tool does not
migrate the map Date edit mask.

Minimum input

minimumInput (validation property)

No special considerations.

180 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 63. Default map properties and User Interface properties - general edits (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Fill character
Note:

e The default fill character for
items used in a Ul record is
blank for character, MIXED, and
numeric fields. The default fill
character is zero for hex fields.
Blank is the required fill
character for DBCS and
Unicode fields. Null is not a
valid fill character.

e The default fill character for
items used on a map is null for
character, DBCS, or MIXED
fields. The default fill character
is blank for numeric fields and
zero for hex fields.

fillCharacter (formatting property)
Note: The same default fillCharacter is
used for both page items and form
fields unless overridden in the specific
page or form.

Special considerations apply because
there is only one default fill character
in EGL. See information about
ambiguous data items and fill
characters in[“Fill characters for shared|
|data items” on page 46 for details and
potential problems.

Fold

upperCase (formatting property)

No special considerations.

Hex edit (map only)

isHexDigit (validation property)

No special considerations.

Input required

inputRequired (validation property)

No special considerations.

Check SO/SI space

needsSOSI (validation property)

No special considerations.

Table 64. Default map properties and User Interface properties - numeric edits

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Minimum value and Maximum
value

Note: If either Minimum value or
Maximum value is specified, both
must be specified.

range = (minimumValue,
maximumValue) (validation property)

The migration tool combines the
minimum and maximum value into the
EGL range property.

Sign - None | Leading | Trailing
Note: The default value is None.

sign = none | leading | trailing
(formatting property)
Note: The default value is none.

No special considerations.

Currency (both map and UI)
Currency symbol (UI only)

currency = yes | no |
"currencySymbol"

(formatting property)
Note:

¢ The currencySymbol also applies to
forms.

e If currency = yes, the actual
currency symbol used at runtime is
set the same way it is in VisualAge
Generator.

The migration tool migrates the first of

the following that applies:

e If the UI Currency symbol is
specified, the tool migrates to
currency = "currencySymbol”.

If the UI Currency edit is set to yes
or no, the tool sets the currency
property to yes or no, respectively.

¢ If the map Currency edit is set to yes
or no, the tool sets the currency
property to yes or no, respectively.

Separator numericSeparator (formatting No special considerations.
property)
Zero edit zeroFormat (formatting property) No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

181

Table 65. Default map properties and User Interface properties - error messages

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Edit table (UT only)

validatorTableMsgKey

(validation property)

No special considerations.

EZE function (UI only)

validatorMsgKey (validation property)

No special considerations.

Edit routine (map only)

validatorTableMsgKey OR
validatorMsgKey

(validation properties)

The migration tool only migrates the
map edit routine message if the Ul edit
table, UI edit function, Ul edit table
message and Ul EZE function messages
are not specified. If the migration tool
migrates the map edit routine message,
the tool does the following:

* Sets validatorMsgKey if the edit
routine is EZEC10 or EZECI11.

* Sets validatorTableMsgKey if the edit
routine is a table.

¢ Does not migrate the edit routine
message if the edit routine is a
function because the message is not
used in this situation in VisualAge
Generator.

Special considerations apply. See
information about ambiguous data
items and map edit routines in |“Map|

item edit routine for shared data items”|

on page 45for additional details and
potential problems.

Minimum input

minimumInputMsgKey

(validation property)

No special considerations.

Input required

inputRequiredMsgKey

(validation property)

No special considerations.

Data type

typeChkMsgKey (validation property)

No special considerations.

Numeric range

rangeMsgKey (validation property)

No special considerations.

Table 66. User Interface properties - label and help

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

UI label

displayName (page item property)

No special considerations.

Help text

help (page item property)

No special considerations.

Records

The records section is organized into the following tables:

* Records - general syntax, record type, properties, and prolog, [Table 67 on page|

* Records - record structure for most record types, [Table 68 on page 184|
* Records - SQL properties and SQL record structure, [Table 69 on page 186|

182 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 67. Records - general syntax, record type, properties, and prolog

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

VAGen record part:
* recordName
* Basic information
— Record type
— Record structure (item list)
* Properties (vary based on record type)

* Prolog

The record structure can be given by
specifying an alternate specification
record or by including the item list.

EGL record example:

//*** Record=recordNamex**
// prolog

[] *HFrkk kg kk ok kk ok k kK
Record recordName
type recordType
{ [recordProperties] }
recordStructure
end // end recordName

Note: The record structure can be
given by specifying an embed
statement or by including the item list.

No special considerations.

Record types:

* Working Storage
* Redefined

* Serial

* Indexed

* Relative

* Message Queue
* SQL Row

* User Interface

* DL/I Segment

EGL Record types:

* basicRecord

* basicRecord

* serialRecord

» indexedRecord

* relativeRecord

* mqRecord

* sqlRecord

* Not supported in this release.

* Not supported in this release.

The migration tool migrates a
redefined record to a
basicRecord. The tool includes
a comment with the record
definition to provide the name
of the record that was
redefined. Special
considerations apply for
redefined records. See the
information in |“Redefineal
[records” on page 47| for details
and potential problems.

Working storage record properties:

* Alternate specification

basicRecord properties:

* embed statement

The migration tool migrates an
alternate specification to the
embed statement.

Redefined record properties:

* Redefinition

Note: The Redefinition property specifies
the name of another record that provides
the physical storage. The current record
provides a different data item layout of
the same physical storage.

basicRecord properties:

* Not applicable. Redefinition
information is only specified in
programs that use the record. The
same record can be used as a
redefinition of another record or as a
normal record.

The migration tool includes a
comment with the record
definition to provide the name
of the record that was
redefined.

The migration tool also
includes the redefines property
on the declaration statement
for the record in programs that
use the record.

Special considerations apply
depending on how the record
is used in the program and on
whether the record is available
during migration. See the
information in Im
[records” on page 47|for details
and potential problems.

Serial record properties:
 File name

 Alternate specification
* Variable length item

e Occurrences item

serialRecord properties:
 fileName

* embed statement

* lengthltem

* numkElementsltem

The migration tool migrates an
alternate specification to the
embed statement.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

183

Table 67. Records - general syntax, record type, properties, and prolog (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Indexed record properties:
» File name

* Record ID

* Alternate specification
* Variable length item

¢ Occurrences item

indexedRecord properties:
* fileName

* keyltem

* embed statement

* lengthltem

¢ numElementsltem

The migration tool migrates an
alternate specification to the
embed statement.

Relative record properties:
* File name
* Record ID

 Alternate specification

relativeRecord properties:
e fileName
* keyltem

* embed statement

The migration tool migrates an
alternate specification to the
embed statement.

Message Queue record properties:
* File name

* Alternate specification

* Include message in transaction
* Open queue for exclusive use on input
* Record length item

e Occurrences item

* Queue descriptor record

* Open options record

* Message descriptor record

* Get options record

* Put options record

mqRecord properties:
 fileName

* embed statement

* includeMsgInTransaction
* openQueueExclusive
* lengthltem

* numElementsltem

* queueDescriptor

* openOptions

* msgDescriptor

* getOptions

* putOptions

The migration tool migrates an
alternate specification to the
embed statement.

SQL row record properties:
* See|Table 69 on page 186

SQL row record properties:
* See|Table 69 on page 186

No special considerations.

Prolog

Not applicable.

The migration tool converts the
prolog to a comment that
precedes the record definition.

Table 68. Records - record structure for most record types

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Record structure - variation 1:

Record structure - variation 1: The EGL

The migration tool migrates an

Alternate specification. If Record A
specifies an alternate specification
of RecordB, RecordB provides all
the items for RecordA. There is no
item structure in RecordA.

embed statement specifies the record
that provides the item structure for the
current record. RecordA embeds
RecordB. For example:

alternate specification to the embed
statement.

Special considerations apply for level
77 items in working storage records.
See information in [‘Level 77 items in|
[records” on page 48| for details and
potential problems.

embed RecordB;

If RecordB contains level 77 items,
RecordA only contains the
non-level 77 items from RecordB.

184 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 68. Records - record structure for most record types (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Record structure - variation 2 with
Shared Items:

e itemName
e Occurs
e Shared

e levelNumber
Note: levelNumber is hidden,
but it is based on the data item
hierarchy within the record.

Note: Type, Length, Decimals and
Description are visible in the
record editor, but are not stored in
the record.

Record structure - variation 2 with EGL
type definitions example:

levelNumber itemname
itemname [occurs];

Note: Note: Type, Length, Decimals
and Description are not visible in the
editor.

The migration tool migrates shared
items to an EGL variable that is
defined using a type definition. For
migration, the type definition is
always the same as the item name.

The migration tool omits the occurs
information if occurs is 1.

Special considerations apply for level
77 items in working storage records.
See information in [‘Level 77 items in|
[records” on page 48 for details and
potential problems.

Record structure - variation 2 with
Nonshared Items:

e itemName
* Occurs

* Type

* Length

* Decimals
* Nonshared
* Description

¢ levelNumber is hidden, but is
based on the data item
hierarchy within the record

Note: Type, Length, Decimals and
Description are stored with the
item in the record.

Record structure - variation 2 with EGL

primitive types example:

levelNumber itemName
dataType(lengthInformation)
[occurs];
// Description

Note: Type, Length, Decimals and
Description are visible in the editor.

The migration tool migrates
nonshared items to an EGL variable
that is defined using a primitive type.
Migration of type, length, and
decimals information is the same as
described in|Table 61 on page 177,
Data items - general syntax, data type,
length, decimals, and description.

The migration tool omits the occurs
information if occurs is 1.

Special considerations apply for level
77 items in working storage records.
See information in [‘Level 77 items in|
[records” on page 48[for details and
potential problems.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

185

Table 69. Records - SQL properties and SQL record structure

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

SQL record properties:
* Default key item
* Alternate specification
e SQL tables:
— Label

— Name

Note:

* If a record does not specify an
alternate specification, the key
items are the items in the record
structure that specify key=yes.
The Default key item is ignored.

* If a record specifies an alternate
specification, the key items are
the Default key item in the
current record merged with the
items in the alternate
specification record that specify
key=yes. The keys are merged
in the order in which the items
appear in the record structure. If
the Default key item in the
current record is also specified
as key=yes in the alternate
specification record, the item is
only included once in the
merged list of keys.

¢ SQL table names can be an
actual table name (normal
situation) or a table name host
variable that will be substituted
at run time. Table name host
variables start with a semicolon

).

sqlRecord properties:

keyltems
embed statement

tableNames and / or
tableNameVariables

Note:

keyltems is a list of all keys for the
record. key=yes is not specified for
items in the record structure.

* The tableNames property is a list of

the table names and table labels
when the table name is not a host
variable. The tableNameVariables
property is a list of the table names
and table labels when the table name
is a host variable that will be
substituted at run time. The table
names in the tableNameVariables
property do not start with a
semicolon. tableNames and
tableNameVariables can both be used
in the same record definition.

The migration tool builds the
keyltems property as follows:

* If the VAGen alternate specification
is not included, the tool uses any
items from the record structure that
specify key=yes, but does not
include the VAGen default key
item.

If the VAGen alternate specification
is included, the tool merges any
items from the alternate
specification record that specify
key=yes and the default key item
from the current record. The keys
are listed in the same order as the
items appear in the record
structure. If the default key item
from the current record is the same
as one of the key items from the
alternate specification record, the
item is only included once in the
keyltems list.

The migration tool builds the lists for
tableNames and tableNameVariables
as follows:

* tableNames is built from the table
names and table labels when the
table name is not a host variable.

* tableNameVariables is built from
the table names and table labels
when the table name is a host
variable.

Special considerations apply. See
information about SQL alternate
specification in |“A1ternate|
[specification records” on page 49| for
details and potential problems.

186 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 69. Records - SQL properties and SQL record structure (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

SQL Default Conditions:

whereClauseText

Note:

The SQL default conditions
enable you to specify a where
clause, most typically for join
conditions when multiple tables
are used in the SQL row record.
The syntax is SQL syntax.

litemColumnName variables are
permitted. These variables
specify the name of an item in
the SQL row record. At test or
generation time, VisualAge
Generator substitutes the
corresponding SQL column
name.

Example of default selection conditions:
defaultSelectCondition =

#sql1{
whereClauseText
}
Note:

* The defaultSelectCondition is used
for the same purpose as in
VisualAge Generator.

* litemColumnName variables are not
supported. Actual SQL column
names must be used.

The migration tool converts any
litemColumnName variables to their
corresponding SQL column name.

Special considerations apply. See
information about SQL alternate
specification in |“Alternate|
[specification records” on page 49 for
details and potential problems.

Record structure - variation 1:
Alternate specification. If RecordA
specifies an alternate specification
of RecordB, RecordB provides all
the items for RecordA. There is no
item structure in RecordA.

Record structure - variation 1: The EGL
embed statement specifies the record
that provides the item structure for the
current record. RecordA embeds
RecordB. For example:

embed RecordB;

The migration tool migrates an
alternate specification to the embed
statement.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

187

Table 69. Records - SQL properties and SQL record structure (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Record structure - variation 2 with
Shared Items:

* itemName

* Read Only

* Key

¢ SQL Column Name
* SQL Code

e Shared

Note:

* Type, Length, Decimals and
Description are visible in the
record editor, but are not stored
in the record.

 VisualAge Generator always
includes the null indicator
variable for SQL items.

¢ The SQL Code is not included in
the External Source Format for
pack and binary fields. If the
SQL Code is not included in the
External Source Format for char,
dbchar, or unicode fields, the
field is treated as a fixed length
field. This only occurs for
records that were migrated from
earlier releases of VisualAge
Generator and never modified
using VisualAge Generator 4.5.

Record structure - variation 2 with EGL
type definitions example:

itemName itemName
{ [sql1DataCode=sqlCodeNumber]
column="SQLColumnName"
[isReadOnly=yes]
isNullable = yes
[sqlvar = yes] };

Note:

¢ Type, Length, Decimals and
Description are not visible in the
editor.

isNullable = no is supported.

If you selected the Migration Syntax
Preference Convert shared data items to
primitive item definitions and the data
item part is available, the migration
tool does the following:

e Converts the shared item to an EGL
variable that is defined using a
primitive definition based on the
type, length, and decimals specified
for the data item part.

* Includes the sqlDataCode property
for hex items.

* Sets the sqlVar=yes property for
char, dbchar, or unicode fields if the
VAGen SQL data code indicates the
item is variable length. The
migration tool omits the sqlVar
property if the VAGen SQL data
code indicates the item is fixed
length.

If you did not select the Migration
Syntax Preference to Convert shared
data items to primitive item definitions or
the data item part is not available, the
migration tool does the following:

» Converts the shared item to an EGL
variable that is defined using a type
definition. For migration, the type
definition is always the same as the
item name.

¢ Includes the sqlDataCode property
if it is included in the External
Source Format and is not one of the
values for VAGen binary or packed
fields.

* Sets the sqlVar=yes property if the
VAGen SQL data code indicates the
item is variable length. The
migration tool omits the sqlVar
property if the VAGen SQL data
code indicates the item is fixed
length.

The migration tool always does the
following:

* Includes any key=yes items in the

EGL keyltems property for the
sqlRecord.

* Always sets isNullable=yes because
VisualAge Generator always
includes the null indicator variable.

¢ Only Includes isReadOnly if the
value is yes.

188 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 69. Records - SQL properties and SQL record structure (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Record structure - variation 2 with
Nonshared Items:

* itemName

* Type

* Length

* Decimals

* Read Only

* Key

¢ SQL Column Name
* SQL Code

* Nonshared

* Description

Note:

* Type, Length, Decimals and
Description are stored with the
item in the record.

* VisualAge Generator always
includes the null indicator
variable for SQL items.

e The SQL Code is not included in
the External Source Format for
pack and binary fields. If the
SQL Code is not included in the
External Source Format for char,
dbchar, or unicode fields, the
field is treated as a fixed length
field. This only occurs for
records that were migrated from
earlier releases of VisualAge
Generator and never modified
using VisualAge Generator 4.5.

Record structure - variation 2 with EGL
primitive types example:
i temName
dataType(lengthInformation)
// Description
{ [sqlDataCode=sqlCodeNumber]
column="SQLColumnName"
[isReadOnly=yes]
isNullable = yes
[sqlvar = yes] };

Note:

* Type, Length, Decimals and
Description are visible in the editor.

* isNullable = no is supported.

The migration tool migrates
nonshared items to an EGL variable
that is defined using a primitive type.
Migration of type, length, and
decimals information is the similar to

what is described in [Table 61 on paggj

177

The migration tool includes the
sqlDataCode property only for hex
items.

The migration tool sets sqlVar=yes for
char, dbchar, and unicode data items
if the VAGen SQL data code indicates
the item is variable length. The
migration tool omits the sqlVar
property if the VAGen SQL data code
indicates that the item is fixed length.

The migration tool includes any
key=yes items in the EGL keyltems
property for the sqlRecord.

The migration tool always sets
isNullable=yes because VisualAge
Generator always includes the null
indicator variable.

The migration tool only includes
isReadOnly if the value is yes.

VAGen data type - Char
e data code - 453
e data code - 449 or 457

EGL data type:
¢ char; omit sqlVar

e varchar, sqlVar = yes

No special considerations.

VAGen data type - DBCS
e data code - 469
* data code - 465 or 473

EGL data type:
¢ dbchar; omit sqlVar
¢ vardbchar, sqlVar = yes

No special considerations.

VAGen data type - Unicode
e data code - 469
e data code - 465 or 473

EGL data type:
* unicode; omit sqlVar

¢ varunicode, sqlVar = yes

No special considerations.

Tables

The VAGen tables section is organized into the following tables:

* VAGen tables - general syntax, table type, properties, and prolog, Table 70 o

* VAGen tables - table structure, [Table 71 on page 190)
* VAGen tables — table contents, [Table 72 on page 191

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

189

Table 70. Tables — general syntax,

table type, properties, and prolog

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

VAGen table part:
* tableName
* Basic information
— Table type
— Table structure (item list)
* Properties
* Prolog
e Table Contents

EGL syntax example:

//*** DataTable=tableName*xx*
/] prolog
[[FFF ke dkkk ke kk kg kkk
DataTable tableName
type tableType
{ [otherTableProperties]
[alias =
"originalTableName"] }
tableStructure
[{ contents =
[{rowContents}] }]
end // end tableName

The migration tool does not rename
tables for you even if they conflict with
the EGL reserved word list. The
migration tool does not set the alias
property. If you must rename a table,
you can use the alias property to specify
the original name of the VAGen table.
See information about table names in

“Reserved words and table names” on|

page 51| for details.

Table types:

* Unspecified

* Match Invalid

* Match Valid

* Range Match Valid

* Message

DataTable types:

* basicTable

* matchInvalidTable
¢ matchValidTable
¢ rangeChkTable

* msgTable

No special considerations.

Properties — Runtime attributes:
¢ Resident
¢ Shared

DataTable properties:
* resident

* shared

No special considerations.

Properties - Fold table contents

Not applicable. If you want the table
contents to be folded, you must enter
the contents in upper case.

If the VAGen table specifies that the
table contents should be folded, the
migration tool ensures that the char, hex,
and mixed data in the table contents is
converted to upper case.

Prolog

Not applicable.

The migration tool converts the prolog
to a comment that precedes the
DataTable definition.

Table 71. Tables — Table structure

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

VAGen Table structure - with
Shared Items:

¢ itemName
¢ Shared

¢ levelNumber
Note: levelNumber is hidden,
but it is based on the data item
hierarchy within the record.

Note: Type, Length, Decimals
and Description are visible in the
table editor, but are not stored in
the table.

DataTable structure - with EGL type
definitions:

levelNumber itemName
itemName

Note: Type, Length, Decimals and
Description are not visible in the
editor.

The migration tool migrates shared
items to an EGL variable that is defined
using a type definition. For migration,
the type definition is always the same as
the item name.

190 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 71. Tables — Table structure (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

VAGen Table structure — with
Nonshared Items:

* itemName
* Type

* Length

* Decimals
* Nonshared
* Description

¢ levelNumber
Note: levelNumber is hidden,
but it is based on the data item
hierarchy within the table.

Note: Type, length, decimals, and
description are stored with the
item in the table.

DataTable structure — with EGL
primitive types:
levelNumber itemName
dataType(lengthInformation) ;
// Description

Note: Type, length, decimals and
description are visible in the editor.

The migration tool migrates nonshared
items to an EGL variable that is defined
using a primitive type. Migration of
type, length, and decimals information

is the same as described in [Table 61 o

Table 72. Tables — table contents

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Table contents:

e Table contents are entered in a
formatted editor. Table contents
are entered for the top level
(parent) items in the table
structure.

e Character and hex data is not
enclosed in quotes.

DataTable contents:

* Each row’s contents is enclosed in
square brackets. There is an outer
set of square brackets that encloses
the entire set of rows.

e Values within the row contents
must be separated by commas.

* Character data including hex data

must be enclosed in double-quotes.

Example:

contents = [[rowContents]
{ , [rowContents] }
1

where

rowContents = value { , value}

If the VAGen table specifies that the
table contents should be folded, the
migration tool ensures that the char, hex,
and mixed data in the table contents is
converted to upper case.

The migration tool also encloses
character data, including hex data, in
double-quotes.

Map groups

The map groups section is organized into the following tables.

* Map Groups — general information, [Table 73 on page 192|

* Map Groups — general syntax and floating areas, [Table 74 on page 193|

* Map Groups — device names, types, and sizes, [Table 75 on page 194

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

191

Table 73. Map Groups — general information

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

The map group part is only
required if there are floating areas.

If there is no map group part,
VisualAge Generator automatically
generates all maps with the same
map group name as though the
map group part did exist.

The formGroup is required.

The migration tool creates a
formGroup part if one does not exist
in the migration set.

Map names consist of a map group
name and a map name.

The form name does not include the
formGroup name.

A form can be defined (nested) within
a form group.

Alternatively, a form can be outside the
formGroup part. In this case, the
formGroup part must include a use
statement to specify the form name and
an import statement import the
package in which the form located.
This technique enables you to have one
definition of a common form (for
example, a pop-up list form) and make
it available in many different form
groups.

The migration tool migrates all maps
to forms. The tool does not attempt
to identify common, identical map
definitions across multiple map
groups.

If you migrate in single file mode,
the migration tool includes a use
statement for each form within a
form group. You should move the
forms so that they are nested within
their formGroup part.

If you migrate using Stage 1 - 3
migration, the migration tool
automatically nests all forms within
the formGroup part.

When a program specifies a map
group, the program can use any
map within the map group just by
referencing the map name.

When a program includes a use
statement to indicate which formGroup
it is using, the program can reference
any map within the formGroup just by
referencing the form name.

No special considerations.

192 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 74. Map Groups — general syntax and floating areas

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

The map group part can contain
the following:

* Map group name
* Floating area information
— Device name
— Device size
— Size
- Lines
- Columns

Position

- Starting line

- Starting column

The formGroup part can contain the
following:

* Form group name

¢ Form group properties

* Screen floating area information
* Print floating area information

* Use statements for the forms that are
included in the form group.

An example of the format of a form group
part is as follows:

FormGroup groupName {
[alias="generationName"]
[screenFloatingArea
{screenFloatingArealnformation}]
[printFloatingArea
{printFloatingAreaInformation}]
Form formName type textForm
{formProperties}
[variableFields]
[constantFields]
end // end formName
use formName2;
end // end groupName

The migration tool uses the
VAGen device type to determine
whether the floating area
information is for a Display map
(screenFloatingArea) or a Printer
map (printFloatingArea).

See [Table 75 on page 194 about
setting deviceType.

Not applicable.

alias

The migration tool does not
rename map groups even if they
conflict with an EGL reserved
word. Special considerations apply.
See |“Reserved words and|
[formGroup names” on page 51| for
details and potential problems.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

193

Table 74. Map Groups — general syntax and floating areas (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Floating area information includes
the following:

* Device name
* Device size (rows x columns)
* Floating area specification
— Size
- Lines
- Columns
— Position
- Starting line

- Starting column

Note:

* In VisualAge Generator, you
define the size and starting
position of the floating area.

* Different floating area
specifications are permitted, but
not recommended, for devices
that have the same size.

Floating area information includes the
following:

* Device size

* Margin information

Print floating area information also
includes the device type.

Here is an example of the screen floating
area that is used for text forms:

screenFloatingArea {
screenSize=(Tines,columns)
topMargin=nn,
bottomMargin=nn,
leftMargin=nn,
rightMargin=nn

Here is an example of the print floating
area that is used for print forms:

printFloatingArea {
deviceType=singleByte,
pageSize=(lines,columns)
topMargin=nn,
bottomMargin=nn,
leftMargin=nn,
rightMargin=nn

Note: Only one floating area specification
is permitted for a screenSize or pageSize.

The migration tool uses the
VAGen device type to determine
whether the floating area
specification is for display maps
(screenFloatingArea) or print maps
(printFloatingArea).

The migration tool computes the
margin information as follows:

¢ The topMargin is set to the
VAGen floatingAreaStartingLine
- 1.

* The bottomMargin is set to the
VAGen deviceRows -
(floatingAreaStartingLine +
floatingAreaLines) + 1.

* The leftMargin is set to the
VAGen
floatingAreaStartingColumn - 1.

* The rightMargin is set to the
VAGen deviceColumns -
(floatingAreaStartingColumn +
floatingAreaColumns) + 1.

See [Table 75 on page 194 for
information about setting the
deviceType.

Printer type can be one of the
following:

¢ Printer
* DBCS printer

deviceType=singleByte | doubleByte
Note: The deviceType property is only
specifed for print forms.

The migration tool sets the
EGLdeviceType property based on
the VAGen printer type.

Table 75. Map Groups — device names, types, and sizes

VisualAge Generator Device Size Device Type Migration tool considerations
Device Name (lines x
columns)

3643-2 6 x 40 Display This device size is not supported for COBOL
generation.

3277-1 12 x 40 Display This device size is not supported for COBOL
generation.

36434 16 x 64 Display This device size is not supported for COBOL
generation.

3278-1, 3278-1B, 12 x 80 Display No special considerations.

ANY-1D

3278-2, 3278-2B, 24 x 80 Display No special considerations.

ANY-2D

3278-3, 3278-3B, 32 x 80 Display No special considerations.

ANY-3D

194 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 75. Map Groups — device names, types, and sizes (continued)

VisualAge Generator

Device Size

Device Type

Migration tool considerations

Device Name (lines x

columns)
3278-4, 3278-4B, 43 x 80 Display No special considerations.
ANY-4D
3278-5, 3278-5B, 27 x 132 Display No special considerations.
ANY-5D
ANY-D (3290 configured | 255 x 160 Display This device size is not supported for COBOL
as 62x160) generation.
5550D 24 x 80 DBCS Display No special considerations.
3767, PRINT-B, 255 x 132 Printer For the printFloatingArea, the EGL
PRINTER deviceType=singleByte
5550P 255 x 158 DBCS Printer For the printFloatingArea, the EGL

deviceType=doubleByte

Maps

The maps section is organized into the following tables.

Maps — general information, [Table 76 on page 195|

Display maps — general syntax, map type, and properties, [Table 77 on page 196

Printer maps — general syntax, map type, and properties, [Table 78 on page 198|

Map constant and variable fields — general information, [Table 79 on page 199

Map constant and variable fields — general syntax, data type, length, decimals,
and description, [Table 80 on page 201|

Map constant and variable fields — attributes, [Table 81 on page 204|

Map variable fields — general edits, [Table 82 on page 206

Map variable fields — numeric edits, | [able 83 on page ZOZI
Map variable fields — error messages, |Eable 84 on page 208|

Table 76. Maps — general information

VisualAge Generator 4.5

EGL produced by the migration tool Migration tool considerations

There are two types of maps:

* Display maps

* Printer maps

There are two types of forms:
e Text forms

e Print forms

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 195

Table 76. Maps — general information (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Map names consist of a map

group name and a map name.

The form name does not include the
formGroup name.

A form can be defined (nested) within a
form group.

Alternatively, a form can be outside the
formGroup part. In this case, the
formGroup part must include a use
statement to specify the form name and
an import statement import the package
in which the form located. This
technique enables you to have one
definition of a common form (for
example, a pop-up list form) and make
it available in many different form
groups.

The migration tool migrates all maps to
forms. The tool does not attempt to
identify common, identical map
definitions across multiple map groups.

If you migrate in single file mode, the
migration tool includes a use statement
for each form within a form group. You
should move the forms so that they are
nested within their formGroup part.

If you migrate using Stage 1 - 3
migration, the migration tool
automatically nests all forms within the
formGroup part.

When a program specifies a map
group, the program can use any
map within the map group just
by referencing the map name.

When a program includes a use
statement to indicate which formGroup
it is using, the program can reference
any map within the formGroup just by
referencing the form name.

No special considerations.

Table 77. Display maps — general syntax, map type, and properties

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

following:

name
* Map properties
— General properties
- Help map name
- Help key
- Bypass keys
- Variable field folding
— Layout properties
- Map size
- Starting position
- Floating map

— Devices

- Supported devices
¢ Constant fields
¢ Variable fields

Display maps can contain the

* Map group name and map

- Type (Display or Print)

¢ Field edit order for variable

Text form parts can contain the
following:

* Form name

* Form type

* Form properties
» Constant fields
* Variable fields

e Validation order for variable fields

An example of the format of a text form
created by the migration tool is as
follows:

Form mapName type textForm

{ screenSizes=(sizelist),
formSize=(24,80), position=(1,1),
helpForm=helpFormName,
helpKey=pfl,
validationBypassKeys=(pf3),
msgField=VAGen_EZEMSG }
[variableFields]
[constantFields]

end // end mapName

The migration tool uses the VAGen
device type to determine whether the
map is a Display map (text form) or a
Printer map (print form).

See [Table 75 on page 194 for
information about determing whether
the device is a display or printer.

fields
Help map name helpForm No special considerations.
Help key helpKey No special considerations.

196 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 77. Display maps — general syntax, map type, and properties (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Bypass keys

You can specify a maximum of 5
Bypass keys for a map.

validationBypassKeys

You can specify a maximum of 5
validationBypassKeys for a form.

No special considerations.

Variable field folding

Not supported for a form. Each char or
mbchar variable field on the form must
specify whether the data the user enters
is to be automatically converted to
upper case.

The migration tool does the following:

e If Variable field folding is specified
for the entire map, the migration tool
includes upperCase=yes for every
character and mixed field.

¢ If Variable field folding is not
specified for the entire map, the
migration tool uses the Fold
information specified for each
character or mixed field to determine
whether to set the upperCase
property for that field.

Map size — Lines and Columns

size = (Lines, Columns)

No special considerations.

Starting position - Line and
Column NEXT,SAME is required
if the map ia a floating map.

position = (Line, Column)

If the position information is omitted,
the form is a floating form

If Floating map is selected, the
migration tool omits the position
information.

Floating map

Not applicable. If the position
information is omitted, the form is a
floating form.

If Floating map is selected, the
migration tool omits the position
information.

Device Type - Display or DBCS
Display

type textForm

The migration tool uses the Device
Type information to determine whether
to migrate the map to a text or print
form.

Supported devices

Note: Supported devices shows
the device type, number of lines,
and number of columns

((Lines, Columns),
(Lines, Columns))

screenSizes =

Note: Include a (Lines, Columns) pair
for each screen size that you want to
have supported for the form.

The migration tool uses the device type
information to determine the
corresponding screenSizes property. If
several VAGen devices have the same
screen Size, the migration tool only
includes the screen size once.

Special considerations apply because
not all of the devices supported by
VAGen are supported for COBOL
generation in EGL. See |”Map groups]
[maps, and device sizes” on page 53 for
details.

Not applicable. In VisualAge
Generator, the message field is
always named EZEMSG.

msgField

This is the name of the field that is to
contain any EGL error messages.

The migration tool sets the msgField
property if EZEMSG is anywhere on
the map.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

197

Table 77. Display maps — general syntax, map type, and properties (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Not applicable.

alias

The migration tool includes the alias
property if the map has to be renamed
due to a conflict with an EGL reserved
word or because the map name starts
with the # symbol. The migration tool
also includes the alias property for a
map in a program’s help map group if
the map has to be renamed due to a
conflict with the name of a map in the
program’s main map group.

Special considerations apply. See |”Map|

names and help map names” on page|

54 for details.

Table 78. Printer maps — general

syntax, map type, and properties

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Printer maps can contain the
following:

* Map group name and map
name

* Map properties
— General properties
- Help map name
- Help key
- Bypass keys
- Variable field folding
- SO/SI take position
— Layout properties
- Map size
- Starting position
- Floating map
— Devices
- Type (Display or print)
- Supported devices
* Constant fields
* Variable fields

¢ Field edit order for variable
fields

Print forms can contain the following;:
¢ Form name

* Form properties

* Constant fields

* Variable fields

An example of the format of a text form
created by the migration tool is as
follows:

Form mapName type printForm
{size=(255,158), position=(1,1),
addSpaceForS0SI=yes }
[variableFields]
[constantFields]
end // end mapName

The migration tool uses the VAGen
device type to determine whether the
map is a Display map (text form) or a
Printer map (print form).

The migration tool always omits the
following properties for print forms:

* General properties

Help map name

Help key
— Bypass keys
Variable field folding

* Devices

— Supported devices
» Field edit order for variable fields

See [Table 74 on page 193|for
information about determining whether
the device is a display or printer.

Help map name

Not applicable for a print form.

The migration tool omits this property
for a print form.

Help key

Not applicable for a print form.

The migration tool omits this property
for a print form.

Bypass keys

Not applicable for a print form.

The migration tool omits this property
for a print form.

Variable field folding

Not applicable for a print form.

The migration tool omits this property
for a print form.

SO/SI take position

addSpaceForSOSI

No special considerations.

Map size — Lines and Columns

size = (Lines, Columns)

No special considerations.

198 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 78. Printer maps — general syntax, map type, and properties (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Starting position - Line and
Column NEXT,SAME is required
if the map is a floating map.

position = (Line, Column)

If the position information is omitted,
the form is a floating form.

If Floating map is selected, the
migration tool omits the position
information.

Floating map

Not applicable.

If the position information is omitted,
the form is a floating form.

If Floating map is selected, the
migration tool omits the position
information.

Device Type - Printer or DBCS
Printer

type printForm

The migration tool uses the Device
Type information to determine whether
to migrate the map to a text or print
form.

Supported devices

Not applicable for a print form.

The migration tool omits this property
for a print form.

Not applicable. In VisualAge
Generator, the message field is
always named EZEMSG.

msgField

This is the name of the field that is to
contain any EGL error messages.

The migration tool sets the msgField
property if EZEMSG is anywhere on
the map.

Not applicable.

alias

The migration tool includes the alias
property if the map has to be renamed
due to a conflict with an EGL reserved
word or because the map name starts
with the # symbol. The migration tool
also includes the alias property for a
map in a program’s help map group if
the map has to be renamed due to a
conflict with the name of a map in the
program’s main map group.

Special considerations apply. See |”Ma 3|

names and help map names” on page

5

Table 79. Map constant and variab

le fields — general information

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

All positions on a map must be

accounted for as one of the

following:

e a variable field

* a constant field

* an attribute byte at the
beginning of a constant or
variable field

All positions on a form do not have to
be accounted for. Blank constants that
have the default properties
(noHighLight, normallntensity,
protect=skip, defaultColor, no outlining,
and no cursor) do not need to be
specified.

The migration tool omits blank
constants that have the default
properties.

Constant fields on display maps
can have attributes specified that
do not really apply to constants.
For example:

* Unprotected

* Input required

* Require fill on input
* Numeric attribute

* Modified data tag

Constant fields on text forms cannot
specify properties that do not make
sense for a constant.

The migration tool omits properties for
constants on text form if the properties
are not supported.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

199

Table 79. Map constant and variable fields — general information (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Constant field on printer maps
can have attributes that do not
really apply to printers. For
example:

* Color
* Intensity

* Highlighting other than
underscore

* Protection
e Initial cursor field

* Light pen detect

Constant fields on print forms cannot
specify properties that do not make
sense for a constant.

The migration tool omits properties for
constants on print forms if the
properties are not supported.

Variable fields on printer maps
can specify attributes that do not
really apply to printers. For
example:

* Color
* Intensity

* Highlighting other than
underscore

* Protection

 Initial cursor field

* Input required

* Require fill on input
* Numeric attribute

* Modified data tag

* Light pen detect

Variable fields on print forms cannot
specify properties that to not make sense
for a print form.

The migration tool omits properties for
variable fields on print forms if the
properties are not supported.

Variable fields on printer maps
can specify edits that do not
really apply to printers. For
example:

* Minimum input
e Fold

* Hex edit

* Input required
* Minimum value
* Maximum value

» Edit messages

Variable field on print forms cannot
specify properties that to not make sense
for a print form.

The migration tool omits properties for
variable fields on print forms if the
properties are not supported.

200 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 80. Map constant and variable fields — general syntax, data type, length, decimals, and description

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

A variable on a map has the
following information:

* Name

* Information based on what
you dropped on the map:

— Data type
— Position
* Basic information:
— Descripton
— Initial value
- Length in bytes
— Array index
— Numeric edit
» Attributes

 Edits, including number of
decimals

* Error messages

Note: position is the position of
the attribute byte. The length in
bytes is the length of the field in
bytes, excluding the attribute
byte. The length in bytes is also
used for the length of the data
value.

The information for a variable field on a
map includes the following:

* Name

* Type and length in characters for
character fields

* Type, precision, and scale for numeric
fields

* Position

* Field length in bytes

* Presentation properties
* Formatting properties
* Validation properties

e Value

In general, the following is true:

* VAGen attributes correspond to EGL
presentation properties.

* VAGen edits and messages
correspond to EGL formatting
properties or validation properties.

* However, some of the VAGen
attributes and edits are merged into a
single EGL property or moved to a
different category.

Here is an example of an EGL variable
field:

itemName

dataType(lengthInformation)

// description

{ position=(row,column),
fieldLen=Tength
validationOrder=n
[presentationProperties]
[formattingProperties]
[value="initialValue"] }
[arrayInformation]

Note: position is the position of the
attribute byte. fieldLen is the length of
the field in bytes, excluding the attribute
byte. The primitive type information
given in dataType(lengthInformation) is
the length of the data value.

The migration tool sets the EGL
fieldLen property to the VAGen Length
in bytes. The tool sets the
lengthInformation for the dataType as
follows:

e For char, dbchar, and mbchar fields,
migration tool sets the
lengthInformation to the number of
characters, not the number of bytes.

* For VAGen char fields that specify
the Numeric edit, the migration tool
does the following:

— Converts the field to the EGL
num type.

— Sets the precision to the VAGen
length in bytes and then reduces
the precision by one if decimals
are specified for the field in
VisualAge Generator.

— Sets the scale to the number of
decimals specified in VisualAge
Generator.

Special considerations apply. See
|“Numeric variable fields” on page 56|
for details.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

201

Table 80. Map constant and variable fields — general syntax, data type, length, decimals, and

description (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

A constant on a map has the
following information:

¢ Information based on what
you dropped on the map:

— Data type

— Position
* Basic information:

— Initial value

- Length in bytes
e Attributes
Note: position is the position of
the attribute byte. The length in
bytes is the length of the field in

bytes, excluding the attribute
byte.

The information for a constant field on a
map includes the following:

* Position

* Field length

* Presentation properties

e Value

In general, the following is true:

* VAGen attributes correspond to EGL
presentation properties.

* Attributes that apply only to input
editing are not supported for EGL
constant fields.

The data type for a constant is
determined based on the value property.

Here is an example of an EGL constant

field:

{ position=(row,column),
fieldLen=Tength,
[presentationProperties]
[value="initialValue"] }

Note: position is the position of the
attribute byte. fieldLen is the length of
the field in bytes, excluding the attribute
byte.

The migration tool sets the EGL
fieldLen property to the VisualAge
Generator Length.

Data type:

e Character constant

e Character variable

* DBCS constant

» DBCS variable

* Mixed constant

* Mixed variable

e Character variable with the

Numeric edit selected

Note: The type is determined
based on the type of field you
drop on the map and whether

you select the Numeric edit box.

EGL data type:

* Not applicable
* char

* Not applicable
* dbchar

* Not applicable
* mbchar

° num

No special considerations.

Description

Not applicable.

The migration tool converts the
description to a comment that follows
the data type and length information.

202 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 80. Map constant and variable fields — general syntax, data type, length, decimals, and
description (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Initial value

value
Note:

* In VisualAge Generator Compatibility
mode, the value property is only used
when displaying a field on the screen
that has not had a value assigned to
it. The value property is not used to
set the initial value of the field in
storage.

* When VisualAge Generator
Compatibility mode is not specified,
the wvalue property provides the initial
value of field in the program when
the program starts.

No special considerations.

Length

An EGL variable has the following:
* A length, which is the number of
characters or digits in the field.

* A fieldLen, which is the space the
field occupies on the map, excluding
the attribute byte.

The migration tool uses the VAGen
length to set both the EGL length and
the EGL fieldLen properties. Special
considerations apply for numeric fields.
See [‘Numeric variable fields” on page|

for detalils.

Array index
Note:

The array size is determined
based on the highest array
index for the variable field.

You can override some
attributes such as cursor
position, color, highlighting,
intensity, protection, and
cursor position for elements
of the array.

You can also override the
initial value for elements of
the array.

itemName
datatype(lengthInfo)
[arraySize]
{ properties for index 1 }
itemName[n]
{ properties for index n }

Note:

* The array size is specified
immediately after the datatype and
length information.

* You can override cursor location, and
presentation properties such as color,
highlighting, intensity, and protect.

* You can also override the value
property.

* You can specify the position of each
element by doing the following:

— Specifying the explicit position of
each element with
position(row,column,).

- Specifying the following additional
properties for index 1: columns,
linesBetweenRows,
spacesBetweenColumns, and
indexOrientation.

The migration tool always explicitly
sets the position for each element of
the array.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

203

Table 80. Map constant and variable fields — general syntax, data type, length, decimals, and

description (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Field Edit Order
Note:

* Field Edit Order is specified
from the Define pulldown.

e The default Field Edit Order
is based on the position of the
variable fields on the map,
left to right, then top to
bottom.

* Some versions of Cross
System Product and
VisualAge Generator did not
record the field edit order in
the External Source Format.

validationOrder

Note: The default validationOrder is
based on the position of the variable
fields on the map, left to right, then top
to bottom.

The migration tool omits the
validationOrder if it is not included in
the External Source Format for the
map.

Table 81. Map constant and variab

le fields — attributes

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

¢ Underscore

¢ underline

(presentation property)

Intensity: intensity: No special considerations.
* Normal * normallntensity
* Dark * invisible
* Bright * bold
(presentation property)
Highlight: highlight: No special considerations.
* No highlight * noHighlight
* Blink * blink
* Reverse video * reverse

(presentation property)

Protection: protect: No special considerations.
* Unprotected * no
* Protected ° yes
* Autoskip * skip
(presentation property)
Color: color: No special considerations.
* Mono * defaultColor
* Blue * blue
* Red e red
* Pink * magenta
e Green * green
* Turquoise * cyan
* Yellow * yellow
* White * white

204 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 81. Map constant and variable fields — attributes (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Initial cursor field cursor = yes | no No special considerations.

(form field property)

Input required inputRequired (validation property) The migration tool merges the VAGen
Input required attribute and the Input
required edit as follows:

¢ If either the Input required attribute
or the Input required edit is selected,
the migration tool includes
inputRequired.

e If neither is selected, the migration
tool omits inputRequired.

Require fill on input fill (validation property) No special considerations.

Numeric attribute isDecimalDigit (validation property) If the Numeric attribute is selected, the
Note: This property is Note: This property is only supported | migration tool does the following:
supported for CHA fields, for char fields. .

Includes isDecimalDigit for char
including CHA fields that have fields.

Numeric edit selected. I . i .
* Omits isDecimalDigit for numeric

fields. EGL provides a software edit
for numeric fields to maintain
compatibility with VAGen.

See [“Map fields and the numerid
[hardware attribute” on page 58|for
additional details.

Modified data tag modified (presentation property) No special considerations.
Light pen detect detectable (presentation property) No special considerations.
Outlining: outline: No special considerations.
o left o left

* right * right

e over e over

* under * under

* box * box

(presentation property)

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 205

Table 82. Map variable fields — general edits

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Edit routine

validator OR validatorTable

(validation property)

The migration tool does the following:

* Sets the validator property if the
map edit routine is EZEC10 or
EZEC11.

* Sets the validator property if the edit
routine is a function.

* Sets the validatorTable property if
the edit routine is a table.

Note: Special considerations apply if
the edit routine is not available during
migration. See[“Variable map fields|
|and edit routines” on page 57| for
additional details and potential
problems.

Justify - Left | Right | None
Note: For map items, the
default is right for numeric
fields and left for all other fields.

align = left | right | none

(formatting property)

Note: For form fields, the default is
right for numeric fields and left for all
other fields.

No special considerations.

Date edit mask

Values are as follows:
* SYSGREGRN

* SYSJULIAN

» dateEditPattern

dateFormat = value

Values are as follows:
* systemGregorian
* systemJulian

» "dateEditPattern”

(formatting property)

No special considerations.

Minimum input

minimumInput (validation property)

No special considerations.

Fill character

Note: The default fill character
for items used on a map is null
for character, DBCS, or MIXED
fields; blank for numeric fields;
and 0 for hex fields.

fillCharacter (formatting property)

Note: The default fill character for items
used on a map is null for character,
DBCS, or MIXED fields; blank for
numeric fields; and 0 for hex fields.

No special considerations.

Fold

upperCase (formatting property)

The migration tool does the following:

* If Variable field folding is specified
for the entire map, the migration tool
includes upperCase=yes for every
character and mixed field.

e If Variable field folding is not
specified for the entire map, the
migration tool uses the Fold
information specified for each
character or mixed field to determine
whether to set the upperCase
property for that field.

Hex edit

isHexEdit (validation property)

No special considerations.

206 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 82. Map variable fields — general edits (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Input required

inputRequired (validation property)

The migration tool merges the VAGen
Input required attribute and the Input
required edit as follows:

e If either the Input required attribute
or the Input required edit is selected,
the migration tool includes
inputRequired.

¢ If neither is selected, the migration
tool omits inputRequired.

Check SO/SI space

needsSOSI (validation property)

No special considerations.

Table 83. Map variable fields — numeric edits

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Minimum value and Maximum
value

Note: If either Minimum value
or Maximum value is specified,
both must be specified.

range = (minimumValue, maximumValue
) (validation property)

The migration tool combines the
Minimum value and Maximum value
into the EGL range property.

Sign:

* None

* Leading
* Trailing

Note: The default is None.

sign:

* none

* leading
* trailing

(validation property)
Note: The default is none.

No special considerations.

Currency currency = yes | no (formatting property) | The migration tool only sets currency
Note: to yes or no. The tool never sets
* If currency = yes, the actual currency C.urrency:"symbol” for form variable
symbol used at runtime is set the same | fields.
way it is in VAGen.
* Alternatively, you can specify
currency="symbol” for a form variable
field.
Separator numericSeparator (formatting property) | No special considerations.
Zero edit zeroFormat (formatting property) No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

207

Table 84. Map variable fields — error messages

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations
Edit routine validatorMsgKey OR validatorTableMsgKey | The migration tool migrates the
(validation properties) edit routine message as follows:

* Sets validatorMsgKey if the edit
routine is EZEC10 or EZEC11.

¢ Sets validatorTableMsgKey if the
edit routine is a table.

¢ Does not migrate the edit routine
message if the edit routine is a
function because the message is
not used in this situation in
VisualAge Generator.

See [“Variable map fields and edif]
froutines” on page 57| for additional
details and potential problems.

Minimum input minimumInputMsgKey (validation property) | No special considerations.
Input required inputRequiredMsgKey (validation property) |No special considerations.
Data type typeChkMsgKey (validation property) No special considerations.
Numeric range rangeMsgKey (validation property) No special considerations.
Programs

The programs section is organized into the following tables:

* Programs - general syntax, program type, called parameters, and prolog [Table 85

* Programs - program specifications, properties, tables and additional records list
[Table 86 on page 210]

* Programs - main functions and flow statements [Table 87 on page 212|

208 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 85. Programs — general syntax, program type, called parameters, and prolog

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Programs part:
* programName
* Program type
* Specifications (vary based on
program type):
— Working Storage record
- PSB
— Firstmap
— First UI Record
- Map Group
- Help Map Group
* Tables and Additional Records
* Called Parameters
* Prolog
* Properties (vary based on program
type)
* Structure diagram
- Main Functions

— Flow Statements (hidden in the
structure diagram, but can be
specified for any main function)

EGL syntax sample:

//*** Program=programName
/1 prolog
[] *HFrkk gk ok kk ok k kK
Program programName
type eglProgramType
//vagenProgramType
[(calledParameters)]
{
[alias= "originalProgramName"]
includeReferencedFunctions
=yes,
allowUnqualifiedItemReferences
=yes
[propertiesBasedOnType]
}

[dataDeclarations]

[useDeclarations]
function main ()

{ functionLabel:

functionName() 3
[{functionFlowStatements}]}
end // end main
end // end programName

The migration tool does not rename
programs for you even if they conflict
with the EGL reserved word list. The
migration tool does not set the alias
property. If you must rename a
program, you can use the alias
property to specify the original name
of the VAGen program. See["Program|
names and reserved words” on page|
6

The migration tool includes the
VAGen program type as a comment in
the program definition.

The migration tool migrates the Tables
and Additional Records list as follows:

* Records migrate to
dataDeclarations.

* Tables migrate to useDeclarations.

The migration tool always includes
the following properties to preserve
VAGen behavior:

* includeReferencedFunctions

* allowUnqualifiedItemReferences

Programs types:

* Main transaction

» Called Transaction

* Main Batch

* Called Batch

* Web Transaction

Note: See later row on "Main

Transaction Exection Mode Values”
for additional details.

EGL program types:
* textUIProgram
* textUIProgram
* basicProgram
* basicProgram

* Not supported in this release.

The migration tool includes the
VAGen program type as a comment in
the program definition. See
for information on how
the segmentation values correspond to
EGL properties.

Called Parameters
Note:

* Called parameters are entered in a
special window.

e The parameter type indicates
whether the parameter is an item,
record, or map.

* The parameter name is always the
name of another VAGen part.
There is no equivalent of an EGL
type definition or primitive type.

EGL called parameters example:

(parameterName typelnfo
{ , parameterName typelnfo })

* Parameters must be separated by
commas.

* A parameter can be an item,
record, or form. There is no direct
correspondence to the VAGen
parameter types.

* The EGL typelnfo can be:

— a primitive type for an item

- a type definition for an item,
record, or form.

The migration tool includes the
original VAGen parameter type as a
comment. The migration tool always
migrates called parameters with type
definitions. The migration tool does
not use primitive types for item
parameters.

Special considerations apply. See
['Redefined records” on page 47 for
details and potential problems.

Prolog

Not applicable.

The migration tool converts the prolog
to a comment that precedes the
program definition.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

209

Table 86. Programs — program specifications, properties, tables and additional records list

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

General information:

* Some VAGen specifications and
properties information migrates to
EGL properties, data declarations,
or use declarations.

General information:

e The rows that follow indicate
whether the corresponding EGL
language element is a program
property, data declaration, or use
declaration.

No special considerations.

Main Transaction Execution Mode
values:

* Nonsegmented
* Segmented
* Single segment

Note: Called transactions always run
in nonsegmented mode.

segmented — values:
* segmented = no
* segmented = yes
* segmented = yes
(program property)

Note: The segmented property is not
specified for called programs.

If the segmented information is not in
the External Source Format file, the
migration tool defaults to segmented =
no.

Working Storage record

(Specifications)

* The Working Storage record can be
specified for both main and called
programs. It is sometimes referred
to as the program’s primary
working storage record.

* The primary working storage
record is always initialized.

inputRecord (program property)

e The inputRecord property can
only be specified for main
programs.

* The inputRecord is always
initialized.

* A data declaration is also required.

The migration tool converts the
primary working storage record to the
inputRecord property for main
programs.

The migration tool also includes a
data declaration for the primary
working storage record for both main
and called programs. The tool
includes the initialized = yes property
for the data declaration in called
programs.

If the primary working storage record
contains level 77 items, the migration
tool includes a data declaration
statement for the level 77 record.

See|“Level 77 items in records” on|
|Eage 4§| for details and potential
problems.

PSB (Specifications)

Not supported in this release.

The migration tool comments out a
use declaration for the PSB. If the
program does not use DL/I, you
might be able to generate and run it
in this release.

Firstmap (Specifications)

inputForm (program property)

No special considerations.

First UI Record (Specifications)

Not supported in this release

No special considerations.

Map Group (Specifications)

use formGroup (use declaration)

No special considerations.

Help Map Group (Specifications)

use formGroup { helpGroup=yes }
(use declaration)

No special considerations.

Message table prefix (Program
property)

msgTablePrefix (program property)

No special considerations.

Allow implicit data items (Program
property)

Not supported.

The migration tool does not create
implicit definitions for you. See
“Implicit data items in programs” on|
page 62| for details and potential
problems.

210 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 86. Programs — program specifications, properties, tables and additional records list (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Keys assignment:

* Help key (1 key)

* Bypass keys (up to 5 keys)
* F1-12 = F13-24

(Program property)

Note: The keys assignment is
specified once for the program and
applies to both the map group and
the help map group.

EGL keys assignment example:

use formGroup
{ [helpGroup = yes]
helpKey = pfNumber,
validationBypassKeys =
(pfNumberList) ,
pfKeyEquate = yes | no } ;

(Use declaration properties for the

program’s form group and help form

group.)

Note:

* The values in the
validationBypassKeys list must be
separated by commas.

* The validationBypassKeys
property is not specified for the
program’s help form group.

The migration tool includes the EGL
equivalent of the keys assignment
information on the use declaration
statements for both the form group
and the help form group. The
migration tool omits the
validationBypassKeys property from
the use declaration for the help form

group.

Tables and Additional Records:

¢ Records

Note:

e Redefinition information is stored
in the VAGen Redefined record,
not in the program.

¢ Records that are used as I/O
objects are never included in the
Tables and Additional Records list.

EGL additional record example:
recordName recordName

[{ redefines =
otherRecord }] ;

(data declaration)
Note:

* The redefines property must be
specified on the program’s data
declaration if the record provides a
different record layout for the
same physical storage as another
record.

* Data declarations are required for
all records used in the program,
including the I/O records.

The migration tool always uses the
same record name as the type
definition.

If a VAGen record is used in the
program as a redefined record, the
migration tool includes the redefines
property on the data declaration
statement. See [“Redefined records” on
|Eage 42] for details and potential
problems.

The migration tool also includes data
declarations for all records that are
used as I/O objects by the program.

The migration tool includes data
declarations for records that are
specified as attributes of any MQ
Message record that is used as an I/O
object by the program.

Tables and Additional Records:
¢ Tables

* You can specify Keep After Use for
each table.

EGL use declaration example:

use tableName
[{deleteAfterUse = yes}];
(use declaration)

The migration tool converts tables on
the Tables and Additional Records list
to use declarations.

DeleteAfterUse has the opposite
meaning from the VAGen Keep After
Use. The migration tool reverses yes
and no.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

211

Table 87. Programs — main functions and flow statements

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

VAGen programs specify the main
functions as the top-level functions
in the VAGen Structure Diagram. All
other functions appear only when
you expand the Structure Diagram.

Each main function can have flow
statements. These statements do not
appear in the Structure Diagram, but
can be accessed from the diagram.

EGL programs specify only one main
function. This function is always
named main.

There are no flow statements.

An example of the syntax for the
program’s main function is as
follows:

function main ()
{ functionLabel:
functionName() ;
[{ functionFlowStatements }] }
end // end main

The migration tool builds the EGL
main function. The tool includes the
following within the main function for
each VAGen main function:

* functionLabel so that the VAGen
main function can be referenced in
an EGL exit stack functionLabel
statement. The tool always sets the
functionLabel to the functionName.

e function invocation statement to
invoke the VAGen main
functionName.

 flow statements, if any, for the
VAGen main function.

See the following for details on the
migration of flow statements:

* Seel|“Statements” on page 224|
+ See|“EZE words” on page 237|
* See|“Service Routines” on page 246

Functions

The following tables compare the VAGen function part with the EGL function part
and describe how the migration tool handles the conversion.

The functions section is organized into the following tables:

* Functions - general syntax, description, parameters, return value, and local

storage, [Table 88 on page 213|

« Functions - EXECUTE 1/O option, [Table 89 on page 215|
* Functions - I/O options for maps and UI records, [Table 90 on page 215

+ Functions - I/O error routine for records, [Table 91 on page 216

* Functions - I/O options for serial, indexed, relative, and message queue records,

[Table 92 on page 216

* Functions - I/O options for default (unmodified) SQL statements, without
Execution Time Statement Build, [Table 93 on page 217]

* Functions - I/0O options for modified SQL statements, without Execution Time
Statement Build, [Table 94 on page 219

* Functions - I/O options for SQL statements with Execution Time Statement

Build, [Table 95 on page 222|

Note: This release of EGL does not support web transactions, Ul records, or a
replacement for CONVERSE UI record. However, the EGL converse
statement is expected to be the same for both a map and a UI record. The
migration tool converts the CONVERSE 1/0 option without regard to
whether the I/O object is a map or a Ul record. This preserves as much of
your logic as possible.

212 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 88. Functions — general syntax, description, parameters, return value, and local storage

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Function parts can contain the
following:

¢ Function name
* I/0 option
* I/0 object
* Properties:
— Error routine
— Description
* Function return value
* Function parameters
* Function local storage
* SQL statement
* Statements before the I/O option
+ Statements after the I/O option
e DL/I call

Function parts can contain the
following:

* functionName

* functionParameterList

* returnltemType

» dataDeclarations

» Statements before the I/O statement
* I/0 statement

» Statements after the I/O Statements

An example of the format of a
function invocation statement created
by the migration tool is as follows:

// Description
Function functionName
(functionParamterList)
[returns(returnltemType)]
[dataDeclarations]
[beforeStatements]
[1/0 Statement]
[afterStatements]
end // end functionName

Note:

* The VAGen I/0O option, I/O object,
error routine, and SQL statement are
used to create the EGL I/O
statement.

e DL/I call is not supported in this
release.

The migration tool uses the I/O
option, I/O object, and error routine to
build the EGL I/0 statement. See
[Table 91 on page 216|

For details on how the migration tool
handles the Description, Function
return value, Function parameters, and
Function local storage, see the
following rows in this table.

See the following for details on the
migration of before and after
statements:

e For statements, see|“Statements” on
* For EZE words, see|“EZE words”

* For service routines, see f’Servicel
[Routines” on page 246|

See the following for details on I/O
options and error routines:

+ See [Table 89 on page 215|for the
EXECUTE 1/0 option.

See [Table 90 on page 215|for I/O
options for maps and UI records.

* See[Table 91 on page 216|for I/O
error routine for records.

* See [Table 92 on page 216|for I/O
options for serial, indexed, relative,
and message queue records.

For details on SQL statements, see the

following tables in this section:

* See [Table 93 on page 217|for I/O
options for unmodified SQL
statements.

* See [Table 94 on page 219|for I/O
options for modified SQL
statements without Execution Time
Statement Build.

* See [Table 95 on page 222|for /O
options for SQL statements with
Execution Time Statement Build.

Description

Not applicable

The migration tool converts the
function description to a comment that
precedes the Function definition.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

213

Table 88. Functions — general syntax, description, parameters, return value, and local storage (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Function parameters:

* Function parameters are entered
in a special window.

e Ttems used as function
parameters can be shared or
nonshared. The definition for
nonshared functions is stored in
the function.

Function parameters:

* Parameters must be separated by
commas.

* Each parameter has type
information.

* Optionally, each parameter has
parameter type information.

An example of the format of function
parameters is as follows:

(parameterName typelnfo
[parameterType]
{ , parameterName typelInfo
[parameterType] 1})

A specific example of function
parameters is as follows:

(parmSharedItem parmSharedItem
field,

parmNonSharedItem char(10)
nullable,

parmRecord parmRecord)

Function parameters:
* Function parameter types:
— Record
— Item
— Map item
— SQL item

Function parameters:

¢ Function parameter types:

Not applicable
— Not applicable
- field

— nullable

Function parameters:
* Special item types, length is not
specified:
— AnyChar
- AnyDBCS
- AnyMix
— AnyHex
- AnyUnicode
— AnyNumeric

Function parameters:
* Special item types, length is not
specified:
- char
— dbchar
— mbchar
— hex
— unicode

— number

Function parameters:

The migration tool sets the type
information as follows:

* For a record, the typelnfo is a type
definition that specifies the same
record name.

e If the item type is one of the VAGen
Any* types, the typelnfo is the
corresponding EGL special item
type.

e If the item is a shared data item,
then the typelnfo is the itemName
used as a type definition.

» If the item is a nonshared data item,
then the typelnfo is migrated based
on the item type, length, and
decimals, and follows the rules
described in [Table 61 on page 177]

Function return value:
e Data type
* Length

¢ Decimals

* Description

EGL returns value:

* The following is an example of the
returns statement format:

returns(returnItemType)
// Description

If the function includes a return value,
the migration tool migrates the data
type, length, and decimals based the

rules described in [Table 61 on page

214 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 88. Functions — general syntax, description, parameters, return value, and local storage (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Function local storage:

* Function local storage is entered
in a special window.

e Ttems used as function local
storage can be shared or
nonshared. The definition for
nonshared items is stored in the
function.

Function variable declarations:

* Function variable declarations must
include variable names and their
associated type information.

¢ An example of the format of
function variable declarations is as
follows:
// Function Declarations

variableName typeInfo ;
{ variableName typeInfo ; }

Function local storage:
* Function local storage types:
- Record

— Item

Function local storage:
* Function local storage types:

— Not applicable

— Not applicable

Function local storage:

The migration tool sets the typelnfo as
follows:

* For a record, the typelnfo is a type
definition that specifies the same
record name.

e If the item is a shared data item,
then the typelnfo is the itemName
used as a type definition.

* If the item is a nonshared data item,
then the typelnfo is migrated based
on the item type, length, and
decimals, and follows the rules
described in [Table 61 on page 177]

Table 89. Functions — EXECUTE I/O option

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

* I/0O object: none
* I/0 option: EXECUTE

No equivalent statement.

The migration tool eliminates the
EXECUTE 1/0 option.

Table 90. Functions — I/O options for maps and Ul records

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

* I/0O object: mapName
* 1/0 option: DISPLAY

Note: DISPLAY is used for both
display and printer maps.

To display a text form, use the display
statement. To print a print form, use
the print statement.

The following are examples of a
display statement and a print
statement:

display mapName;

print mapName;

Note: In VisualAge Generator
Compatibility mode, display printForm
is treated as though it is print
printForm.

The migration tool converts to the
display or print statement based on
the map type. See["DISPLAY]
|statement for maps” on page 66| for
details and potential problems.

* I/O object: mapName
* 1/0 option: CONVERSE

Use the converse statement.

The following is an example of a
converse statement:

converse mapName;

No special considerations.

* I/0O object: UIRecordName
* I/0 option: CONVERSE

Use the converse statement. The
following is an example of a converse
statement:

converse UIRecordName;

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

215

Table 91. Functions — I/O for records — general information and I/O error routine

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

VAGen record 1/0:
* I/0 option
* I/0 object (always a record)

* I/0O error routine (optional)

EGL record 1/0:
* An I/O statement
* Record name

e try onException end statement with
error routine name (optional)

If an I/O error routine is specified, the
statements are enclosed within a
try...end block. An example of record
1/0 with an error routine is as follows:
try

add recordName ;

[onException error-routine ;]
end

The migration tool does the following:

* Changes the VAGen I/O option to
the corresponding EGL 1/0O
statement.

An error routine is optional for
functions that do I/0 for records.
Note: The error routine is invoked
if there is a soft error or if
EZEFEC = 1.

An error routine is optional for
functions that do I/O for records. An
I/0 example without an error routine
is as follows:

add recordName;

An I/0 example with an error routine
is as follows:

try
add recordName ;
onException error-routine ;
end

Note: The onException statement is
invoked if there is a soft error or if
handleHardIOErrors = 1.

Error routine values:

EZECLOS

EZEFLO

EZERTN
mainFunctionName

nonmainFunctionName

onException block statements:

onException exit program;

onException exit stack;

Omit the onException statement.

onException exit stack
mainFunctionlLabel;

onException
nonmainFunctionName () ;

The migration tool does the following:

e If the error-routine is not specified,
the tool does not include the try,
onException, or end statements.

* If an error-routine is specified, the
tool includes the try and end
statements.

¢ The migration tool converts to the
onException statement based on the
VAGen error routine name. When
the migration tool migrates
programs, it always migrates the
VAGen main function names to both
the main function label and the
main function invocation statement.
That way, when migrating a
function’s I/O error routine, the
mainFunctionLabel is always the
same as the mainFunctionName.

Special considerations apply for the
migration of error routines that are
function names. See ['1/0 erroq
[routine” on page 67|for details and
potential problems.

Table 92. Functions — I/O options for serial, indexed, relative, and message queue records

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

* 1/0O object: recordName
* 1/0 option: ADD

Use the add statement. The following is
an example:

add recordName;

No special considerations.

* I/0O object: recordName
* I/0 option: SCAN

Use the get next statement. The
following is an example:

get next recordName;

No special considerations.

* 1/0O object: recordName
* I/0 option: SCANBACK

Use the get previous statement. The
following is an example:

get previous recordName;

No special considerations.

216 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 92. Functions — I/O options for serial, indexed, relative, and message queue records (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

* I/0O object: recordName
* I/0 option: CLOSE

Use the close statement. The following
is an example:

close recordName;

No special considerations.

* 1/0 object: recordName
* 1/0 option: INQUIRY

Use the get statement. The following is
an example:

get recordName;

No special considerations.

* I/0O object: recordName
* I/0 option: UPDATE

Use the get forUpdate statement. The
following is an example:

get recordName forUpdate;

No special considerations.

* I/0O object: recordName
* I/0 option: DELETE

Use the delete statement. The following
is an example:

delete recordName;

No special considerations.

* I/0O object: recordName
* I/0O option: REPLACE

Use the replace statement. The
following is an example:

replace recordName;

No special considerations.

Table 93. Functions — I/O options for default (unmodified) SQL statements without Execution Time Statement Build)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

* 1/0O object: recordName
* 1/0 option: ADD

Use the add statement. The following is
an example:

add recordName;

No special considerations.

* I/0O object: recordName
* I/0O option: SCAN

Use the get next statement. The
following is an example:

get next recordName;

No special considerations.

* I/0O object: recordName
* I/0 option: CLOSE

Use the close statement. The following
is an example:

close recordName;

No special considerations.

* 1/0O object: recordName
* I/0 option: INQUIRY

(with and without Single row

select)

Use the get statement. If you are doing
a single row select, also use singleRow.
An example without single row select
is as follows:

get recordName;

An example with single row select is
as follows:

get recordName singleRow;

If Single row select is specified in
VisualAge Generator, the migration
tool includes the EGL singleRow
option.

* I/0 object: recordName
* 1/0 option: UPDATE

Use the get forUpdate statement. The
following is an example:

get recordName forUpdate
resultSetID;

The migration tool always includes the
resultSetID when migrating an SQL
UPDATE statement. The tool sets the
resultSetID to the function name
followed by a customer-specified
suffix. You can control the suffix with
the Stage 2 VAGen Migration Syntax
Preferences.

Special considerations apply if the
migration tool cannot determine if the
record is SQL or non-SQL. Seel“SQL

[/O with multiple updates” on page

73| for details and potential problems.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 217

Table 93. Functions — I/O options for default (unmodified) SQL statements without Execution Time Statement

Build) (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

* I/0O object: recordName
* I/0 option: DELETE

Use the delete statement. The following
is an example:

delete recordName;

No special considerations.

* 1/0O object: recordName
* 1/0 option: REPLACE

(with or without
UPDATE/SETUPD functionName

Use the replace statement. The
following are some examples:

replace recordName;

replace recordName from
resultSetID;

If the UPDATE/SETUPD function
name was included in VisualAge
Generator, the migration tool includes
the resultSetID and sets the resultSetID
to the UPDATE/SETUPD function
name followed by a customer-specified
suffix. You can control the suffix with
the Stage 2 VAGen Migration Syntax
Preferences.

* 1/0 object: recordName
* I/0 option: SETINQ

(with and without Declare cursor
with hold)

Use the open statement. If you are
doing a Declare cursor with hold, also
use the hold option. The following are
examples of both types of statement:

open resultSetID for recordName;

open resultSetID hold
for recordName;

The migration tool sets the resultSetID
to the function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Syntax Preferences.

If Declare cursor with hold is selected in
VisualAge Generator, the migration
tool includes the EGL hold option.

* 1/0 object: recordName
* I/0 option: SETUPD

(with and without Declare cursor
with hold)

Use the open forUpdate statement. If
you are doing a Declare cursor with
hold, also use the hold option. The
following are examples of both types
of statement:

open resultSetID forUpdate
for recordName;

open resultSetID hold forUpdate
for recordName;

The tool sets the resultSetID to the
function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Syntax Preferences.

If Declare cursor with hold is selected in
VisualAge Generator, the migration
tool includes the EGL hold option.

* I/0O object: recordName
* 1/0 option: SQLEXEC

with Model SQL Statement
Note:

¢ The SQL record name is
included in this form of
SQLEXEC.

* The values for the model type
are:
- None
- Update
— Delete

e If the model type is None,
VisualAge Generator does not
do any I/0. Generation still

processes the I/O error routine,
but there will not be an error.

Use the execute statement. The
following is an example:

execute modelType for recordName;

Note: modelType is either update or
delete.

The migration tool sets the EGL
modelType based on the VAGen Model
SQL Statement value.

If the VAGen Model SQL Statement is
None, the migration tool omits the I/O
statement because the VAGen 1/0
statement did not do anything. The
migration tool includes the try,
onException, and end statements based
on the function’s I/O error routine.

218 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 94. Functions — I/O options for modified SQL statements, without Execution Time Statement Build

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

General Information for modified
SQL statements:

* VisualAge Generator builds the
table clause from the SQL row
record at test and generation
time. The table clauses are as
follows:

- insert into sqlTableName for
the ADD I/O option

- from sqlTableName
sqlTableLabel for the
INQUIRY, UPDATE,
SETINQ, and SETUPD 1/0
options

- update sqlTableName for the
REPLACE 1/0 option

* Depending on when the
function was last modified,
other SQL clauses might not be
stored in the function
definition. If the SQL clause is
not stored, VisualAge
Generator creates a default
clause based on the record
definition of the I/O object.

* litemColumnName variables
are permitted. These variables
specify the name of an item in
the SQL row record. At test or
generation time, VisualAge
Generator substitutes the
corresponding SQL column
name.

* sqlClauses are written in SQL
syntax.

General Information for modified SQL
statements:

* If you need to modify any SQL
clause, EGL requires that all clauses
be explicitly specified. The table
clause must be explicitly included in
the SQL statement. The table clauses
are as follows:

— insert into sqlTableName for the
add statement.

— from sqlTableName sqlTableLabel for
the get and open statements.

— update sqlTableName for the
replace statement.

* EGL requires that all clauses be
explicitly specified if any SQL clause
is specified. The required SQL
clauses vary with the type of 1/0.

* EGL requires that the SQL column
names be explicitly included in the
SQL statement. !itemColumnName
variables are not supported.

* sqlClauses are written in SQL syntax.

The migration tool uses the tables and
table labels from the SQL row record to
build the tables clause for the EGL 1/0
statement. Both table names and table
name host variables are included in the
table clause of the EGL I/0O statement.

If a required SQL clause is not stored
in the function definition, the migration
tool creates a default clause based on
the record definition in the same way
as in VisualAge Generator.

The migration tool converts any
litemColumnName variables to their
corresponding SQL column name.

The migration tool converts VAGen
comments (/*) to SQL comments (—)

Special considerations apply if the SQL
record and its alternate specification
record, if any, are not available during
migration. See|“SQL I/O statements”]
[on page 69| for details and potential

problems.

* 1/0 object: recordName
* I/O option: ADD

Clauses that can be modified:
¢ Columns
* VALUES

Use the add statement. The following is
an example:

add recordName
with #sq1{
insert into
sqlTablename
(columnNamel, columnName?2)
values
(valueInfol, valueInfo2)

}s

The migration tool creates the insert
into clause based on the table name in
the record definition. Special
considerations apply. See ['SQL 1/0]
|statements” on page 69| for details and
potential problems.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

219

Table 94. Functions — I/O options for modified SQL statements, without Execution Time Statement Build (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

I/0 object: recordName
1/0 option: INQUIRY

(with and without Single row
select)

Clauses that can be modified:

SELECT

INTO

WHERE, GROUP BY, HAVING
ORDER BY

Use the get statement.

The following is an example without
single row select:

get recordName singleRow
with #sql1{
select
Namel,
Name2,
Age
from
sqlTablel sqllLabell,
sqlTable2 sqlLabel2
where
Namel =
order by
Age

:Namex

}
into
nameA, nameB, myage;

If Single row select is specified in
VisualAge Generator, the migration
tool includes the EGL singleRow
option.

The migration tool creates the from
clause based on the table names and
table labels in the record definition.
Special considerations apply. See ['SQT]
[L/O statements” on page 69 for details
and potential problems.

I/0 object: recordName
1/0 option: UPDATE

Clauses that can be modified:

SELECT

INTO

WHERE

FOR UPDATE OF

Use the get forUpdate statement .

The following is an example:

get recordName forUpdate
resultsetID
with #sql1{
select
Namel, Name2, Age
from
sqlTablel sqllLabell
where
Namel = :Namex
for update of
Name2, Age
}
into
Namel, Name2, Age;

The migration tool always includes the
resultSetID when migrating an
UPDATE statement for an SQL record.
The tool sets the resultSetID to the
function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Syntax Preferences.

The migration tool creates the from
clause based on the table name or table
label in the record definition. Special
considerations apply. See |”SQL 1/ O|
[statements” on page 69| for details and
potential problems.

1/0 object: recordName
I/0 option: REPLACE

(optional UPDATE/SETUPD
functionName)

Clause that can be modifed:

SET

Use the replace statement.

The following is an example of the
replace statement:

replace recordName

with #sql1{
update
sqlTableName
set
columnNamel = valuel,
columnName2 = value2

}

from resultSetID;

If an UPDATE/SETUPD function name
is included in VisualAge Generator, the
migration tool includes the from
resultSetID clause. The migration tool
sets the resultSetID to the
UPDATE/SETUPD function name
followed by a customer-specified suffix.
You can control the suffix with the
Stage 2 VAGen Migration Syntax
Preferences.

The migration tool creates the update
clause based on the table name in the
record definition. Special considerations
apply. See["SQL 1/0O statements” onf
page 69and [’'SOL I/0O and missing|
required SQL clauses” on page 70| for
details and potential problems.

220 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 94. Functions — I/O options for modified SQL statements, without Execution Time Statement Build (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

* I/0O object: recordName

* I/0O object: SETINQ

(with or without Declare cursor
with hold)

* I/0O object: recordName

* 1/0 object: SETINQ

(with or without Declare cursor
with hold)

Clauses that can be modified:

* SELECT

* INTO

* WHERE, GROUP BY, HAVING
* ORDER BY

Use the open statement. If you are
doing a Declare cursor with hold, also
use the hold option.

The following is an example of an open
statement using the hold option:

open resultSetID hold
with #sql1{

select
Namel, Name2

from
sqlTablel sqllLabell,
sqlTable2 sqllabel?2

where
Namel >

order by
Namel

}

into Namel, Name2
for recordName;

:Name2

The tool sets the resultSetID to the
function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Syntax Preferences.

If Declare cursor with hold is selected in
VisualAge Generator, the migration
tool includes the EGL hold option after
the resultSetID.

The migration tool creates the from
clause based on the table names and
table labels in the record definition.
Special considerations apply. See |”SQL|
[L/O statements” on page 69 for details
and potential problems.

* 1/0 object: record
* 1/0 option: SETUPD

(with or without Declare cursor
with hold)

Clauses that can be modified:
* SELECT

* INTO

« WHERE

* FOR UPDATE OF

Use the open forUpdate statement. The
following is an example using the hold
option:
open resultSetID hold forUpdate
with #sq1{
select
CoTumnl, Column2
from
sqlTablel sqllabell,
sqlTable2 sqllabel?
where
CoTumnl > :Iteml
for update of
Column2

into Iteml, Item2
for recordName;

The migration tool sets the resultSetID
to the function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Syntax Preferences.

If Declare cursor with hold is selected in
VisualAge Generator, the migration
tool includes the EGL hold option.

The migration tool creates the from
clause based on the table name or table
label in the record definition. Special
considerations apply. See |“SQL 1/ Ol
|statements” on page 69| for details and
potential problems.

* I/0O object: record

* I/0 option: SQLEXEC
with Model SQL Statement
Note:

* The SQL record name is
optional in this form of
SQLEXEC.

* The values for the model type
are as follows:

— None
- Update
— Delete

Use the execute sql statement. The
following is an example of the
statement:

execute modelType
#sql1{
UPDATE mysqltable
set Columnl = Columnl * 2
where Column2 = :Column2

}

for recordName;

Note: The values for model type
include Update and Delete.

The migration tool does the following:

* Converts SQLEXEC to the execute
statement.

* Uses the I/0O object, if it is specified,
as the recordName in the for clause.

The migration tool includes the VAGen
Model SQL Statement value, if any, as
a comment on the EGL execute
statement.

The migration tool migrates the VAGen
SQLEXEC clauses to EGL SQL clauses.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

221

Table 95. Functions - I/O options for modified SQL statements with Exection Time Statement Build

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Execution time statement build
can only be used with the
following I/O options:

* INQUIRY

e UPDATE

e SETINQ

* SETUPD

* SQLEXEC

You specify Execution time
statement build to cause
VisualAge Generator to prepare
the SQL statement dynamically
every time the I/O statement is
executed.

In EGL, you code the SQL prepare
statement directly whenever you want
the SQL statement to be dynamically
prepared. You must also code the open,
execute, or get statement that follows
the prepare. For example, the EGL
equivalent of a VAGen INQUIRY I/0
option with Execution time statement
build is as follows:

prepare prepID from
"sqlStatementString"
for recordName;

get recordName with prepID
into itemlList;

Note:

* The sqlStatementString in the
prepare statement is a concatenated
string of constants and variables that
is written in SQL notation. An
example of a where clause that uses
both column names and variable is
as follows:

[other clauses]

+ " where columnName = "

+ itemName

+ " AND columnName2 = "

+ itemName2

+ [other clauses]

* The examples shown in the rest of
this table do not include splitting the
variables outside the double quotes.

The migration tool uses the SQL
clauses in the function and the table
names and /or table name variables in
the record definition to build the
sqlStatementString. The migration tool
builds the sqlStatementString as
follows:

* Does all the processing as though the
Execution time statement build were
not specified, including the
following:

— Using the table names and / or
table labels from the SQL row
record to build the tables clause
for the EGL I/0O statement. Both
table names and table name host
variables are included in the
tables clause of the EGL I/0O
statement.

— Creating default clauses as
necessary based on the record
definition.

— Converting any
litemColumnName variables to
their corresponding SQL column
name.

— Converting VAGen comments (/*)
to EGL comments (//) in the
prepare statement.

Then the migration tool does additional
processing to create the
sqlStatementString, including;:

* Enclosing constants, column names
and SQL operators in double quotes.

* Placing variables outside double
quotes.

* Using the + string concatenation
operator to concatenate the strings
and variables together.

Special considerations apply if the SQL
record and its alternate specification

record, if any, are not available during
migration. See[’SQL I/O statements”

on page 69and [SQL 1/0O and missing]

required SQL clauses” on page 7(| for

details and potential problems.

222 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 95. Functions - I/O options for modified SQL statements with Exection Time Statement Build (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

* I/0O object: record
* I/0 option: INQUIRY

with and without Single row
select

Clauses that can be modified:

e SELECT

e INTO

« WHERE, GROUP BY, HAVING
* ORDER BY

Use the prepare statement. The
following is an example:

prepare prepID from

" select columnName "

", columnName2 "

" from tablel t1 "

"[where whereClause 1"

"[order by orderByClause 1"

for recordName];

get recordname with prepID
into itemlList;

— + + + +

No special considerations.

* 1/0 object: record
* I/0O option: UPDATE

Clauses that can be modified:
e SELECT

« INTO

« WHERE

FOR UPDATE OF

Use the prepare statement. The
following is an example:

prepare prepID from

" select columnName
, columnName2 "
" from tablel t1 "
"[where whereClause 1"
" for Update of columnList "
[for recordName];

+ 4+ + +

get recordName forUpdate
resultSetID
with preplID
into itemlList;

The migration tool always includes the
resultSetID when migrating an
UPDATE statement for an SQL record.
The tool sets the resultSetID to the
function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Syntax Preferences.

* 1/0O object: record
* I/0 option: SETINQ

with or without Declare cursor
with hold

Clauses that can be modified:

* SELECT

* INTO

« WHERE, GROUP BY, HAVING
* ORDER BY

Use the prepare statement. The
following is an example:

prepare prepID from
" select columnName "
", columnName2 "
" from tablel t1 "
"[where whereClause 1"
"[order by orderByClause 1"
for recordName];
en resultSetID [hold]
with prepID
into itemlList
[for recordName];

T+ + + +

o]

The migration tool sets the resultSetID
to the function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Syntax Preferences.

If Declare cursor with hold is selected in
VisualAge Generator, the migration
tool includes the EGL hold option after
the resultSetID.

* 1/0O object: record
* 1/0 option: SETUPD

with or without Declare cursor
with hold

Clauses that can be modified:
* SELECT

* INTO

« WHERE

* FOR UPDATE OF

Use the prepare statement. The
following is an example:

prepare prepID from
" select columnName
", columnName2 "

" from tablel t1 "
"[where whereClause] "

" for update of columnList "
[for recordName] ;
open resultSetID [hold]
forUpdate

with prepID

into itemlList

[for recordName] ;

+ + + +

The tool sets the resultSetID to the
function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Syntax Preferences.

If Declare cursor with hold is selected in
VisualAge Generator, the migration
tool includes the EGL hold option after
the resultSetID.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 223

Table 95. Functions - I/O options for modified SQL statements with Exection Time Statement Build (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

* I/0O object: record

* I/0 option: SQLEXEC
with Model SQL Statement
Note:

¢ The SQL record name is
optional in this form of
SQLEXEC.

* The values for the model type
are as follows:

— None
- Update
— Delete

Use the prepare statement. The
following is an example:

prepare prepID from
" grant " + group_privileges
+ " on " + table_name
+ " to " + userid
[for recordName] ;
execute preplID
[for recordName] ;
// model = type

The migration tool includes the VAGen
Model SQL Statement value, if any, as
a comment on the EGL execute
statement.

The migration tool converts the VAGen
SQLEXEC clauses to EGL SQL clauses.

Statements

The statements section is organized into the following tables:

* General rules - data item qualification and numeric literals, [Table 96 on page 225|

« Function invocation, [Table 97 on page 225|

+ Assignment, MOVE, and MOVEA, [Table 98 on page 226

* SET, [Table 99 on page 227

* RETRIEVE and FIND, [Table 100 on page 229
» IF, WHILE, and TEST, including EZEAID, EZESYS, and 1/O error values,

[Table 101 on page 230|

* CALL,
* DXFR,

Table 102 on page 235|

Table 103 on page 235

XFER, [Table 104 on page 236]

224 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 96. Statements - General rules - data item qualification and numeric literals

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Data item qualification rules: If an
item is not qualified, VisualAge
Generator looks for the item in the
following order:

* Items in the function’s local
storage or parameter list.

* The function’s I/O object and
records in the function’s local
storage or parameter list. If the
item name is not unique in this
category, the item name must be
qualified.

* Records, maps, and tables in the
program’s primary working
storage record, called parameter
list, table and additional records
list, and all I/O objects. If the
item name is not unique in this
category, the item name must be
qualified.

e If the item name is not found
within the program and the
program allows implicit items,
VisualAge Generator creates a
data item definition based on the
use of the item.

Data item qualification rules: If an item
is not qualified, EGL looks for the item
in the following order:

Items in the function’s local storage
or parameter list.

The records and forms used in the
function’s 1/O statements and
records in the function’s local storage
or parameter list. If the item name is
not unique in this category, the item
name must be qualified.

Records, forms, and tables in the
program’s data declarations, use
declarations, and parameter list. If
the item name is not unique in this
category, the item name must be
qualified.

EGL does not permit implicit items.

Every item must be explicitly
defined.

See[“Level 77 items in records” on|

page 48hnd [“Implicit data items in|

programs” on page 62| for details

and potential problems.

Numeric literals:

* Not enclosed in quotes.

* Can use either a period (.) or a
comma (,) as the decimal point,
depending on the national
language.

Numeric literals:

Not enclosed in quotes.

Must use the period as the decimal
point. At generation time, the
decimalSymbol build descriptor
option determines whether the
period or comma is used as the
decimal point in the generated Java
or COBOL code.

The migration tool converts the
commas used as decimal points to a
period except for initial values of
form variable fields.

Table 97. Statements — Function invocation

VisualAge Generator4.5

EGL produced by the migration tool

Migration tool considerations

VAGen syntax example:
functionName([argumentList]);

EGL syntax example:

functionName([argumentlist]);

See ['EZE words” on page 237] for
the EGL equivalent system library
functions.

See [Table 91 on page 216 for
function invocations from an I/O
error routine.

In flow statements:
functionName();

Flow statements are not supported.

goto functionName;

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

225

Table 98. Statements — Assignment, MOVE, and MOVEA

VisualAge Generator 4.5 EGL produced by the migration tool | Migration tool considerations
VAGen syntax example: EGL syntax example: See ["EZE words” on page 237] for
target = functionName target = functionName the EGL equivalent system library
([argumentList]) ; ([argumentList]) ; functions.
target = numericExpression; target = numericExpression ; If the (R option is specified, the
or or migration tool converts the option
target = numericExpression (R; target = sysLib.round to the EGL round system function.
(numericExpression) ;
target = source; target = source ; The migration tool considers the
or or following EGL rules when migrating
MOVE source [TO] target; move source to target byName ; assignment and move statements:
or .

EGL prefers that the assignment

Note: move source to target ; statement be used for

* The target can be a record, map, Note: item-to-item moves.
data item, or certain EZE data o * The move byName statement is
words. * For assignment statements: required for moves involving

* The source can be a record, map, — The target can be a record, data records or forms to preserve the
literal, data item, or certain EZE item, or certain system variables. VAGen move corresponding
data words. If the target is a record, the source behavior.

must also be a record; the source |« Move without a modifier is

e If the target is a record or map, is moved to the target on a

the source must also be a record tolerated and treated as an

or map. A move corresponding byte-by-byte basis. item-to-item move or a move

occurs. — The source can be a record, literal, corresponding depending on the
data item, or certain system part type of the source.
variables.

Therefore, the migration tool does

— Forms cannot be used in the following:

assignment statements.
* Converts to an assignment

statement for any of the
following:

— Move corresponding is never done
for an assignment statement.

* For move statements: .
— The source or target is an EZE

— The target and source can be the data word (for example:
same as in VisualAge Generator EZEAPP).

i t or MOVE stat ts.
assighment or statements — The source is a literal.

— If byName is specified, EGL does a

. — The source or target is a
move corresponding.

qualified or subscripted item.
- If no modifier is specified, the

move is either an item to item
move or a move corresponding

depending on the part type of the
source. * Converts to a move byName if

the source or target is the
function’s I/O object or a record
in the function’s parameter list or
local storage.

— The source or target is an item
in the function’s parameter list
or local storage.

The data conversion and truncation
rules are the same as in VisualAge
Generator.

* Converts to a move without a
modifier in all other situations.

See | Assignment statements” onl
[page 74 for details and potential
problems.

226 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 98. Statements — Assignment, MOVE, and MOVEA (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

MOVEA source [TO] target;

or

MOVEA source [TO] target
FOR occurrence;

Note: The source can be an array or
a scalar.

move source to target for all ;
or
move source to target

for occurrence ;

The migration tool converts the
MOVEA statement to a move
statement with the for modifier. The
tool also does the following;:

¢ Includes the for all option if the
FOR occurrence option was not
specified in VisualAge Generator.

¢ Includes the for occurrence option
if the FOR occurrence option was
specified in VisualAge Generator.

* Sets the target subscript to 1 if the
subscript was not previously
specified.

* Does not set the subscript to 1 for
the source because the source can
be an array or a scalar item.

Table 99. Statements — SET

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

General information:

e Commas or blanks can be used to
separate multiple options on a
single SET statement.

General information:

Commas are required to separate
multiple options on a single set
statement.

No special considerations.

SET record SCAN;
OR
SET record EMPTY;

Note: SET record EMPTY does not
affect level 77 items.

set record position;

OR

set record empty;

The migration tool does not add a
statement for the level 77 record.

SET sqlltem NULL;

Note: sglltem can be an item in an
SQL row record or an SQLITEM
parameter for a function.

set sqglltem null ;

Note: sglltem can be an isNullable=yes
item in an SQL row record or a nullable
parameter for a function.

No special considerations.

SET map [ALARM

[CLEAR | EMPTY]] ;

Note:
* CLEAR and EMPTY are mutually
exclusive.

¢ ALARM and either CLEAR or
EMPTY can be combined with the
PAGE option.

set form [alarm |

[initial | empty]] ;
Initial and empty are mutually
exclusive.

The replacement for the PAGE option
cannot be combined with any other
options.

If ALARM, CLEAR, or EMPTY are
used in combination with the PAGE
option, the migration tool splits the
VAGen statement into two EGL
statements.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

227

Table 99. Statements — SET (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

SET map PAGE ;

Note: PAGE can be combined with
ALARM and with either CLEAR or
EMPTY.

sysLib.clearScreen();

// display form
or
sysLib.pageEject();

// printer form

Note: The replacement for the PAGE
option cannot be combined with any
other options.

The migration tool migrates SET
map PAGE as follows:

 If SET map PAGE is used in
combination with any other
options, the migration tool splits
the VAGen statement into two
EGL statements.

* If the map is a display map, the
migration tool converts the
statement to sysLib.clearScreen();

e If the map is a printer map, the
tool converts the statement to
sysLib.pageEject();

e If the map is not available to
determine the map type, the
migration tool converts the
statement to
sysLib.EZE_SETPAGE();

See |[“SET map PAGE statement” on|
|Eage 7§| for details and potential
problems.

SET mapItem
[CURSOR | FULL |
[NORMAL | DEFINED 1 1] ;

Note:

* mapltem can be an item on a map
or a MAPITEM parameter for a
function.

* NORMAL and DEFINED are
mutually exclusive.

¢ CURSOR and FULL can be
combined with either NORMAL
or DEFINED.

* VisualAge Generator tolerates
setting CURSOR, FULL,
NORMAL, and DEFINED for
print maps, but they had no effect
on the printed output.

set formField
[cursor | full |
[normal initialAttributes]] ;

Note:

* formField can be a variable field on a
form or a field parameter for a
function.

e normal and initial Attributes are
mutually exclusive.

* cursor and full can be combined with
either normal or initial Attributes.

* EGL does not support setting cursor,
full, normal, or initial Attributes for
print forms.

The migration tool migrates to the
EGL equivalent of each option
without regard to whether the
formField is on a text or print form.
See |[“SET mapltem attributes” on|
[page 77] for details and potential
problems.

228 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 99. Statements — SET (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

SET mapItem
[CURSOR | FULL |
color | extendedHighlight |
MODIFIED |
[BRIGHT | DARK]
[PROTECT | AUTOSKIP] 7] ;

Note:

* mapltem can be an item on a map
or a MAPITEM parameter for a
function.

* BRIGHT and DARK are mutually
exclusive.

* PROTECT and AUTOSKIP are
mutually exclusive.

* Any of the other options can be
combined.

* VisualAge Generator tolerates
setting these attributes for print
maps. However, only the
extended highlighting option of
USCORE has any effect on the
printed output.

set formField
[cursor | full |
color | extendedHighlight |
modified |
[bold | invisible] |
[protect | skip]] ;

Note:

* formField can be a variable field on a
form or a field parameter for a
function.

Bold and invisible are mutually
exclusive.

Protect and skip are mutually
exclusive.

Any of the other options can be
combined.

Except for the extended highlighting
option of underline, EGL does not
support setting these attributes for
print forms.

The migration tool migrates to the
EGL equivalent of each option
without regard to whether the
formField is on a text or print form.
See |“SET mapltem attributes” on|
[page 77] for details and potential
problems. See later rows in this
table for color and extendedHighlight
information.

color: MONO | color: defaultColor | No special considerations.
BLUE | blue |
GREEN | green |
PINK | magenta |
RED | red |
TURQ | cyan |
YELLOW | yellow |
WHITE white
extendedHighlight: extendedHighlight: No special considerations.
NOHILITE | noHighLight |
BLINK | blink |
RVIDEO | reverse |
USCORE underline

Table 100. Statements — RETRIEVE and FIND

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

RETR datalteml
table[.searchColumn]
dataltem2
[returnColumn] ;

Note:

e If the searchColumn is not
specified, the default is the first
column in the table.

o If the returnColumn is not
specified, the default is the
second column in the table.

if (datalteml in
table.searchColumn)
dataltem2 =

table.returnColumn[sysVar.arrayIndex];

end

Note: The searchColumn and returnColumn are

required.

The migration tool converts
the RETR statement to an if
statement and an assignment
statement.

Special considerations apply if
the table is not available
during migration. See “RETii]
|statement” on page 75 for
details and potential
problems.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

229

Table 100. Statements — RETRIEVE and FIND (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

FIND dataltem
table[.searchColumn]
trueStatement;

OR

FIND dataltem
table[.searchColumn]
, falseStatement ;

OR

FIND dataltem
table[.searchColumn]
trueStatement

[,] falseStatement ;

Note:

e If the searchColumn is not
specified, the default is the first
column in the table.

 If FIND is used in program flow,
the trueStatement and the
falseStatement can be the name of
a main function or EZECLOS.

¢ If FIND is used in a function, the
trueStatement and the
falseStatement can be the name of
any function, EZECLOS,
EZEFLO, or EZERTN.

if (dataltem in table.searchColumn)
EGLtrueStatement ;
end

OR

if (dataltem in table.searchColumn)
else

EGLfalseStatement ;
end

OR

if (dataltem in table.searchColumn)
EGLtrueStatement ;

else
EGLfalseStatement ;

end

Note: The searchColumn is required.

The migration tool converts
the FIND statement to an if
statement and the EGL
equivalent of the true and
false statements. See later
rows in this table for
conversion of the
trueStatement and
falseStatement to the
corresponding EGL
statements.

true/falseStatement in flow:
* functionName() (main only)
* EZECLOS

Corresponding EGL replacements:
e goto functionName;

* exit program;

No special considerations.

true/falseStatement in a function:
* functionName (any function)

* EZECLOS

« EZEFLO

* EZERTN

Corresponding EGL replacements:
* functionName();

* exit program;

e exit stack;

¢ return;

No special considerations.

Table 101. Statements — IF, WHILE, and TEST, including EZEAID, EZESYS, and I/O error values

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

IF logicalExpression ;
{ statement ; }
[ELSE;
{ statement ; }]
END;

if (EGLLogicalExpression)
{ EGLStatement ; }
[else
{ EGLStatement ; }]
end

See later rows in this table for the
relationship between the VAGen
logical expressions and the EGL
logical expressions.

WHILE TogicalExpression ;
{ statement ; }
END;

while (EGLLogicalExpression)
{ EGLStatement ; }
end

See later rows in this table for the
relationship between the VAGen
logical expressions and the EGL
logical expressions.

230 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 101. Statements — IF, WHILE, and TEST, including EZEAID, EZESYS, and I/O error values (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

TEST testCondition
trueStatement ;

TEST testCondition
, falseStatement ;

TEST testCondition
trueStatement
[,] falseStatement ;

Note:

¢ The TEST statement is similar to
an IF ... IS statement. The
exception to this is TEST
mapltem nnn, +nnn, and -nnn,
which does not have an IF
statement equivalent.

» If TEST is used in program flow,
the trueStatement and the
falseStatement can be the name of
a main function or EZECLOS.

e If TEST is used in a function, the
trueStatement and the
falseStatement can be the name of
any function, EZECLOS,
EZEFLO, or EZERTN.

if (EGLLogicalExpression)
EGLtrueStatement ;
end

if (EGLLogicalExpression)
else

EGLfalseStatement ;
end

if (EGLLogicalExpression)
EGLtrueStatement ;

else
EGLfalseStatement ;

end

With the exception of TEST
mapltem nnn, +nnn, and -nnn, the
migration tool converts the TEST
statement to the equivalent if ... is
statement and the EGL equivalent
of the true and false statements.

See later rows in this table for the
relationship between the VAGen
logical expressions and the EGL
logical expressions.

See later rows in this table for
conversion of the trueStatement and
falseStatement to the corresponding
EGL statements.

VisualAge Generator boolean
operators for IF and WHILE:

- AND
* OR

Corresponding EGL boolean operators
for if and while:

c &&
e I

No special considerations.

VisualAge Generator relational
operators for IF and WHILE:

e EQand =

* NE and "=

* LE and <= and =<
e LT and <

* GE and >= and =>
* GT and >

Corresponding EGL relational operators
for if and while:

.
o I=
. <=
<

°« >—

>

No special considerations.

VisualAge Generator state operators
for IF and WHILE:

- IS
- NOT

Corresponding EGL state operators for if
and while:

° is

* not

The migration tool always migrates
a VAGen TEST statement to an EGL
if ... is statement.

VisualAge Generator array operator
for IF and WHILE:

* IN

Corresponding EGL state operators for if
and while:

* in

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

231

Table 101. Statements — IF, WHILE,

and TEST, including EZEAID, EZESYS, and I/O error values (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

VisualAge Generator mapltem state
conditions:

* BLANK or BLANKS
* CURSOR

« DATA

* MODIFIED

* NULL or NULLS

* NUMERIC

Corresponding EGL formField state
conditions:

* blanks

* cursor

* data

* modified
* blanks

* numeric

The migration tool converts to the
equivalent EGL state conditions.

Special considerations apply to
mapltem NULL. See ["Checking SOI]

and map items for NULL” on page

78 for details and potential
problems.

Special mapltem state condition for
the TEST statement: nnn | +nnn |
-nnn

Note: This compares the length of
the data the user entered to nnn.
The test is =, >, or < corresponding
to nnn, +nnn, or -nnn.

EGL does not provide direct support for
this state condition. However, you can
achieve the equivalent function by doing
the following:

* Use the system library function
sysLib.fieldInputLength, which returns
the length of the data entered by the
user.

* Use an if statement to compare the
resulting length for =, >, or <
corresponding to nnn, +nnn, or -nnn,
respectively.

When migrating any program, the
migration tool always includes a
declaration for:

<custPrefix>EZE_ITEMLEN

The migration tool does the
following for TEST nnn, +nnn, or
-nnn:

* Adds an extra statement just
before the TEST statement to set

<custPrefix>EZE_ITEMLEN

using the system library function
sysLib.fieldInputLength(item).

* Changes the TEST statement to
an if statement and compares

<custPrefix>EZE_ITEMLEN

to = nnn, > nnn, or < nnn.

VisualAge Generator map state
conditions:

* MODIFIED

Corresponding EGL form state
conditions:

* modified

No special considerations.

VisualAge Generator EZEAID state
conditions:

 ENTER

* BYPASS

* PAn, wheren=1,2,3
e PFn, where nis 1 to 24
* PA

* PF

Corresponding EGL sysVar.eventKey state
conditions:

* enter

* bypass

e pan, wheren=1,2,3
* pfn, where nis 1 to 24
* pakey

* pfkey

No special considerations.

VisualAge Generator sglltem state
conditions:

* BLANK or BLANKS
- NULL

* NUMERIC

* TRUNC

Corresponding EGL sqlltem state
conditions:

* blanks
* null
* numeric

¢ trunc

The migration tool converts to the
equivalent EGL state conditions.

Special considerations apply to
sqlltem NULL. See [“Checking SQI]

and map items for NULL” on pagd

78 for details and potential
problems.

232 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 101. Statements — IF, WHILE,

and TEST, including EZEAID, EZESYS, and I/O error values (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

VisualAge Generator record state
conditions:

» DED
- DUP
* EOF
* ERR
* FMT
* FNA
* FENF
« FUL
e HRD
« LOK
* NRF
« UNQ
Note:

* DUP is supported for both SQL
and non-SQL records.

e For SQL records, DUP and UNQ
are equivalent and are always
hard errors.

e For non-SQL records, DUP and
UNQ are not equivalent; both are
soft errors.

* LOK is only supported on
0S/400 and is a soft error.

Corresponding EGL record state
conditions:

» deadLock

* duplicate or unique
* endOfFile

* ioError

* invalidFormat
* fileNotAvailable
* fileNotFound

o full

* hardIOError

» deadLock

* noRecordFound
* unique

Note:

duplicate is only supported for
non-SQL records and is a soft error.

unique is a hard error for both SQL
and non-SQL records.

¢ LOK is converted to deadLock, which
is always a hard error.

The migration tool converts to the
equivalent EGL state conditions.

Special considerations apply to
migrating DUP based on the record
type. See|”1/O error values UNQ)
|and DUP” on page 79|for details
and potential problems.

Special considerations also apply to
migrating LOK. Seelm%%
[value LOK” on page 81| for details
and potential problems.

User Interface record state
conditions:

* MODIFIED

Corresponding EGL uiRecord
conditions:

* modified

This release of EGL does not
support web transactions or Ul
records. However, testing the Ul
record state for MODIFIED is
expected to be the same for both a
map and a Ul record. The migration
tool converts a logical expression
that tests for MODIFIED without
regard to whether the part being
tested is a map or a Ul record. This
preserves as much of your logic as
possible.

VisualAge Generator dataltem state
conditions:

* BLANK or BLANKS
* NUMERIC

Corresponding EGL dataltem state
conditions:

* blanks

* numeric

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

233

Table 101. Statements — IF, WHILE,

and TEST, including EZEAID, EZESYS, and I/O error values (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

VisualAge Generator EZESYS state
conditions:

e AIX

* AIXCICS
 HP

* IMSBMP

* IMSVS

* MVSBATCH
* MVSCICS
* NTCICS

* 052

* OS2CICS
* 0OS2GUI

* 05400

* SCO

* SOLACICS
* SOLARIS
e TSO

* VMCMS

* VMBATCH
* VSEBATCH
* VSECICS
* WINGUI

* WINNT

» ITF

Corresponding sysVar.systemType state
conditions:

* aix

* AIXCICS
* hp

* imsbmp

* imsvs

* zosbatch

* ZO0scics

* NTCICS

* OS2

* OS2CICS
* OS2GUI

* iseriesc

* SCO

* SOLACICS
* solaris

* TSO

* VMCMS

« VMBATCH
* VSEBATCH
» VSECICS
* WINGUI
* win

* debug

The migration tool converts to the
equivalent EGL state conditions.

Special considerations apply to
checking the state for EZESYS. See

“EZESYS” on page 83| for details

and potential problems.

Note: Not all of the VAGen runtime
environments are supported by this
release. However, the migration tool
always converts to an equivalent
value, even if it will not be valid in
EGL. There will be an error on the
Tasks list if the old VAGen value is
not currently supported.

true/falseStatement in flow:
* functionName() (main only)
* EZECLOS

Corresponding EGL replacements:
* goto functionName ;

* exit program;

No special considerations.

true/falseStatement in a function:
* functionName (any function)
 EZECLOS

« EZEFLO

« EZERTN

Corresponding EGL replacements:
» functionName();

* exit program;

* exit stack;

¢ return;

No special considerations.

234 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 102. Statements — CALL

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

CALL programName argument

[{ [,] argument}]
[(options] ;

OR

CALL serviceRoutine argument

[{ [,] argument}]
[(options] ;

Note: Commas to separate the
arguments are optional.

call programName argument
[{, argument }]
[options 1

Note:

* Commas to separate the arguments
are required.

* The programName cannot be a
reserved word. If the program is a
non-EGL program, use a linkage
table entry to specify the real name.

See later rows in this table for
conversion of the options to the
corresponding EGL statements or
options.

See |“Service Routines” on page 246|
for information on migrating the
CALL statement for them.

REPLY option

If the REPLY option is specified in
VisualAge Generator, the corresponding
EGL statements are as follows:

try
call programName argument
[{, argument }]
[otherOptions]
end

The migration tool includes the
try...end block if the REPLY option is
specified.

otherOptions:
* NOMAPS
* NONCSP

Corresponding EGL otherOptions:
* noRefresh

* externallyDefined

No special considerations.

Table 103. Statements — DXFR

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

DXFR target
[recordName]
[(NONCSP]

where target is

programName

OR
EZEAPP

Note:
* Any record can be passed.

* If a working storage record is
passed, any level 77 items are not
included.

transfer to program target
[passing recordName]
[externallyDefined] ;

where target is

programName

OR
sysVar.transferName

Note: Any record can be passed.

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

235

Table 104. Statements — XFER

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Variation 1 - Migrate to Transfer
(no map or UI record)

XFER target
[recordName]
[(NONCSP] ;

where target is

transactionName

OR
EZEAPP

Note:

e This format of XFER does not
include a map or UI record.

* Any record can be passed. If a
working storage record is passed,
any level 77 items are not
included.

e transactionName is the
programName in nontransactional
runtime environments.

EGL syntax for transfer statement:

transfer to transaction target
[passing recordName]
[externallyDefined] ;

where target is

transactionName

OR
sysVar.transferName

Note:
* Any record can be passed.

* transactionName is the program name
in nontransactional runtime
environments.

If there is no comma in the
statement, the migration tool
converts the XFER to an EGL
transfer to transaction statement.

Variation 2 - Migrate to Show
(XFER with map)

XFER target
[recordName]
, map
[(NONCSP]

where target is

transactionName

OR
EZEAPP

Note:

* Any record can be passed. If a
working storage record is passed,
any level 77 items are not
included.

e transactionName is the
programName in nontransactional
target environments.

EGL syntax for show statement:

show formName
returning to target
[passing recordName]
[externallyDefined] ;

where target is

transactionName

OR

sysVar.transferName

Note:
* Any record can be passed.

* transactionName is the programName in
nontransactional target environments.

The migration tool distinguishes
between Variation 2 (XFER with a
map) and Variation 3 (XFER with a
UI record) as follows:

* Use Variation 2 (XFER with a
map) if any of the following are
true:

— (NONCSP is specified.
— The second argument is a map.

» Use Variation 3 (XFER with a Ul
record), if any of the following
are true:

— The target is " .

— The name of the second
argument is longer than 8
characters.

— The second argument is a Ul
record.

* If the migration tool is unable to
determine if the second argument
is a map or Ul record, the tool
uses variation 3.

Special considerations apply if the
migration tool cannot distinguish
between a map and a Ul record. See
[“XFER” on page 82|for details and
potential problems.

236 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 104. Statements — XFER (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Variation 3 - Migrate to Show
(XFER with UI Record)

XFER target [record]
, UIRecord

where target is

transactionName

OR

EZEAPP

OR

Note:

* Any record can be passed. If a
working storage record is passed,
any level 77 items are not
included.

* transactionName is the
programName in nontransactional
target environments.

EGL syntax for forward statement:

forward UIRecord
[returning to target]
[passing recordName] ;

where target is

transactionName

OR

sysVar.transferName

OR
UI record

Note:
* Any record can be passed.

* transactionName is the programName in
nontransactional target environments.

This release of EGL does not
support web transactions, Ul
records, or a replacement for XFER
with a UI record. However, the
forward statement is expected to be
the replacement for XFER with a UI
record. The EGL syntax might not
be correct. However, using this
migration technique preserves as
much of your logic as possible. The
migration tool distinguishes
between Variation 2 (XFER with a
map) and Variation 3 (XFER with a
UI record) as follows:

* Use Variation 2 (XFER with a
map) if any of the following are
true:

— (NONCSP is specified.
— The second argument is a map.

» Use Variation 3 (XFER with a Ul
record), if any of the following
are true:

— The target is " "

— The name of the second
argument is longer than 8
characters.

— The second argument is a Ul
record.

* If the migration tool is unable to
determine if the second argument
is a map or Ul record, the tool
uses variation 3.

Special considerations apply if the
migration tool cannot distinguish
between a map and a Ul record. See
["’XFER” on page 82|for details and
potential problems.

EZE words

Note: VAGen EZE words in the left column of the tables are matched with their
EGL equivalents in the right column.

Program flow EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

237

Table 105. Program flow EZE words

EZE word in VisualAge Generator 4.5

EGL

EZECLOS

This depends on the location:

» If used as an I/O error routine, the
migration tool converts EZECLOS to the
following, within the try...end block:
onException exit program;

* Used anywhere else, including use as the
true or false operand of a TEST or FIND, the
migration tool converts EZECLOS to the
following:

exit program;

Note: The exit program has a default return
code of <ezeDataPrefix>.returnCode, which is
the equivalent of EZERCODE. This default
provides the same capability as VisualAge
Generator.

EZEFLO
Note: EZEFLO cannot be used in flow
statements.

This depends on the location:

e If used as an I/O error routine, the
migration tool converts EZEFLO to the
following, within the try...end block:
onException exit stack;

* Used anywhere else, including use as the
true or false operand of a TEST or FIND, the
migration tool converts EZEFLO to the
following:

exit stack;

EZERTN or EZERTN(return value)
Note:

¢ EZERTN cannot be used in flow
statements.

* EZERTN(return value) cannot be used
as an I/O error routine.

EZERTN — This depends on the location:

e If used as an I/O error routine, the
migration tool includes the try...end block
but omits the onException statement.

¢ Used anywhere else, the migration tool
converts EZERTN to the following;:

return;
OR

return(returnValue);

Note: If the returnValue is EZESYS, see
EZESYS for additional considerations.

SQL EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL.

238 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 106. SQL EZE words

EZE word in VisualAge Generator 4.5

EGL definition

» For VisualAge Generator 4.5,
EZESQISL is supported for use with
ODBC.

or is ignored in VisualAge Generator
for all environments, but it has been
kept for compatablity.

EZECONCT sysLib.connectionService
The arguments are the same as in VAGen.
However, for debug and Java generation, not all
of the values for the unit of work argument are
supported. JDBC only supports single-phase
commit.

EZESQCOD sysVar.sqlcode

EZESQISL sysVar.sqllsolationLevel

Note:

* Otherwise, EZESQISL is not supported

EZESQLCA sysVar.sqlca
Note: sysVar.sqlca is only partially supported in
EGL. For debug and Java generation, EGL does
not set the fields within sysVar.sqglca that
contain the values for sysVar.sqlerrmc and
sysVar.sqlwarn[7].

EZESQRD3 sysVar.sqlerrd[3]
Note: The migration tool changes this to an
array reference.

EZESQRRM sysVar.sqlerrmc
Note: sqlerrmc is not supported for debug on
Java generation.

EZESQWN1 sysVar.sqlwarn[2]
Note: The migration tool changes this to an
array reference.

EZESQWN6 sysVar.sqlwarn[7]
Note: The migration tool changes this to an
array reference. sqlwarn[7] is not supported for
debug on Java generation.

N/A sysVar.sqlState

Note: This is new for EGL and has no
equivalent in VisualAge Generator 4.5. The
migration tool does not convert anything to this.

Date and time EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL.

Table 107. Date and time EZE words

EZE word in VisualAge Generator |EGL definition

4.5

EZEDAY sysVar.currentShortJulianDate
EZEDAYL sysVar.currentJulianDate

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

239

Table 107. Date and time EZE words (continued)

EZE word in VisualAge Generator |EGL definition

4.5

EZEDAYLC sysVar.currentFormattedJulianDate
EZEDTE sysVar.currentShortDate
EZEDTEL sysVar.currentDate

EZEDTELC sysVar.currentFormattedDate
EZETIM sysVar.currentFormatted Time

Other data EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL.

Table 108. Other data EZE words

EZE word in VisualAge Generator

EGL definition

4.5
EZEAID sysVar.eventKey
EZEAPP sysVar.transferName
EZECNVCM sysVar.commitOnConverse
EZECONVT sysVar.callConversionTable
record. EZEDEST record.resourceAssociation
Note: The qualification is still the record name.
EZEDESTP sysVar.printerAssociation
EZEFEC sysVar.handleHardIOErrors
EZELOC sysVar.remoteSystemID
EZELTERM sysVar.terminallD
EZEMNO

» If EZEMNO is used as the target of a MOVE or
assignment, the following occurs:

— If EZEMNO is set from a numeric literal other
than 9999, EZEMNO becomes:
validationFailed(numericLiteral);

— If EZEMNO is set from numeric literal 9999,
EZEMNO becomes:
validationFailed();

— If EZEMNO is set from an item, EZEMNO
becomes:

if (itemName = 9999)
validationFailed();

else
validationFailed(itemName);

end

» If EZEMNO is used anywhere else, it is replaced

with:
sysVar.validationMsgNum

240 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 108. Other data EZE words (continued)

EZE word in VisualAge Generator
4.5

EGL definition

EZEMSG

Note: EZEMSG as a data item exists
only if it is placed on a map. If it is
placed on multiple maps, EZEMSG
must be qualified.

<custPrefix>EZEMSG

Note:

¢ There is no dot between <custPrefix> and
EZEMSG

¢ Where EZEMSG is used in functions, the
migration tool keeps the same qualifications for
<custPrefix>EZEMSG that were used by EZEMSG
in those functions. For example, xxxx.EZEMSG
becomes xxxx.<custPrefix>EZEMSG

* Where EZEMSG is used in maps, the migration
tool does the following:

— Changes the field name to

<custPrefix>EZEMSG
— Sets the map msgField property to
<custPrefix>EZEMSG
EZEOVER sysVar.handleOverflow
EZEOVERS sysVar.overflowIndicator
EZERCODE sysVar.returnCode

Note: VisualAge Generator
permitted, but did not recommend,
negative values and values greater
than 512 for EZERCODE.

Note: EGL does not permit negative values or
values greater than 512 for
sysVar.handleSysLibErrors.

EZEREPLY

sysVar.handleSysLibErrors

EZERT2

Note: In VisualAge Generator 4.5,
EZERT?2 is used only as the
condition code for MQ Series access.

sysVar.mgConditionCode

EZERTS8

Note: EZERTS is set for the

following:

* CALL statements if the (REPLY
option is specified.

* EZE system function invocations
if EZEREPLY is set to 1.

¢ I/O statements for serial, indexed,
relative, and message queue
records.

sysVar.errorCode
Note: sysVar.errorCode is set for the following:

e All CALL statements.

* All sysLib system function invocations.

¢ I/0 statements for serial, indexed, relative, and
message queue records.

The value of sysVar.errorCode changes more
frequently in EGL than it did in VisualAge
Generator.

EZESEGM

sysVar.segmentedMode

EZESEGTR

sysVar.transactionID

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

241

Table 108. Other data EZE words (continued)

EZE word in VisualAge Generator |EGL definition
4.5

EZESYS To use the EGL values in an if or while statement,
use:

sysVar.systemType

To get the old VAGen values for use in any other
statement, use:

myItem = <ezeSysLib>.getVAGSysType();

and then use myltem in the statement.

If you need to use the old VAGen value in a
migrated VAGen program, use:

<custPrefix>EZESYS

where <custPrefix> is the Renaming Prefix you
specified during Stage 2 of migration. The migration
tool always includes a data declaration for
<custPrefix>EZESYS and a statement to initialize it
to the old VAGen value.

See|[“EZESYS” on page 83| for details and potential
problems.

EZETST sysVar.arraylndex
Note: Set for IF..IN, and MOVEA. |Note: arrayIndex is int (4-byte binary).
EZETST is 2-byte binary.

EZEUSR sysVar.sessionlD
EZEUSRID sysVar.userID

General function EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL. Except
where noted, the argument lists are the same in VisualAge Generator as they are in
EGL, so they are omitted from the table.

Table 109. General function EZE words

EZE word in VisualAge EGL definition
Generator 4.5

result = result = sysLib.bytes(itemOrRecord)
EZEBYTES(itemOrRecord) Note: EGL does not support a map as the argument for
Note: VisualAge Generator sysLib.bytes. The migration tool converts the argument

documents that only items and | without regard to whether it is an item, record, or map.
records can be used as
arguments for EZEBYTES.
However, VisualAge Generator
tolerates a map as the argument
for EZEBYTES.

EZECOMIT() sysLib.commit()
EZECONV/(target,direction, sysLib.convert
conversionTable)

EZEC10(xxx, yyy, zzz) sysLib.verifyChkDigitMod10

242 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 109. General function EZE words (continued)

EZE word in VisualAge
Generator 4.5

EGL definition

EZEC11(xxx, yyy, zzz)

sysLib.verifyChkDigitMod11

EZEG10(xxx, yyy, zzz)

sysLib.calculateChkDigitMod10

EZEG11(xxx, yyy, zzz)

sysLib.calculateChkDigitMod11

String

EZEPURGE(queueName) sysLib.purge
EZEROLLB() sysLib.rollback()
EZEWAIT(variableName) sysLib.wait(variableName);
Note: variableName provides the |Note:

time in hundredths of a second. |+ yyrighleName provides the time in seconds.

¢ The migration tool converts the time to seconds. See
[“EZEWAIT” on page 85| for details and potential
problems.

EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL. The
argument lists are the same in VisualAge Generator as they are in EGL, so they are
omitted from the table.

Table 110. String EZE words

EZE word in VisualAge Generator 4.5 | EGL definition
EZESBLKT strLib.setBlankTerminator
EZESCCWS strLib.concatenateWithSeparator
EZESCMPR strLib.compareStr
EZESCNCT strLib.concatenate
EZESCOPY strLib.copyStr

EZESFIND strLib.findStr

EZESNULT strLib.setNullTerminator
EZESSET strLib.setSubStr
EZESTLEN strLib.strLength
EZESTOKN strLib.getNextToken

Math EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL. Except
where noted, the argument lists are the same in VisualAge Generator as they are in
EGL, so they are omitted from the table.

Table 111. Math EZE words — General math functions

EZE word in VisualAge Generator 4.5 | EGL definition
EZEABS mathLib.abs
EZECEIL mathLib.ceiling
EZEEXP mathLib.exp
EZEFLOOR mathLib.floor

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

243

Table 111. Math EZE words — General math functions (continued)

EZE word in VisualAge Generator 4.5

EGL definition

EZEFREXP mathLib.frexp
EZELDEXP mathLib.Idexp
EZELOG mathLib.log
EZELOG10 mathLib.log10
EZEMAX mathLib.maximum
EZEMIN mathLib.minimum
EZEMODF mathLib.modf
EZENCMPR mathLib.compareNum
EZEPOW mathLib. pow
EZEPRSCN mathLib.precision
EZEROUND mathLib.round
Note: mathLib.round is also used to replace
VAGen statements with the (R option. The
assignment statement migration for those
statements has the following syntax:
result =
mathLib.round(numericExpression);
EZESQRT mathLib.sqrt

Table 112. Math EZE words — Trigonometric math functions

EZE word in VisualAge Generator 4.5

EGL definition

EZEACOS

mathLib.acos

EZEASIN mathLib.asin
EZEATAN mathLib.atan
EZEATAN2 mathLib.atan2
EZECOS mathLib.cos
EZECOSH mathLib.cosh
EZESIN mathLib.sin
EZESINH mathLib.sinh
EZETAN mathLib.tan
EZETANH mathLib.tanh

Table 113. Math EZE words — Floating point math functions

EZE word in VisualAge Generator 4.5

EGL definition

EZEFLADD

mathLib.floatingSum

EZEFLDIV mathLib.floatingQuotient
EZEFLMOD mathLib.floatingMod
EZEFLMUL mathLib.floatingProduct
EZEFLSET mathLib.floatingAssign
EZEFLSUB mathLib.floatingDifference

244 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

User interface EZE words

This release of EGL does not support web transactions or Ul records. However,
there are replacements for the VisualAge Generator EZEUIxxx special function
words for use in the new EGL page handlers. The migration tool converts the
EZEUIxxx special function words to their EGL equivalent. This preserves as much
of your logic as possible. You might be able to use the function if you develop any
new EGL page handlers.

Table 114. User interface EZE words

EZE word in VisualAge Generator 4.5 |EGL definition
EZEUIERR sysLib.setError
EZEUILOC sysLib.setLocale

EZE Java words

Table 115. EZE Java words
EZE word in VisualAge Generator 4.5 EGL definition

EZEJAVA**##26* sysLib.java*******

Note: There are a variety of Java words. The
migration tool deletes the EZE and
concatenates the prefix in its place.

Object scripting EZE words

Table 116. Object scripting EZE words
EZE word in VisualAge Generator 4.5 |EGL definition

EZESCRPT((targetScriptName) The migration tool issues an error message. The
function part cannot be migrated correctly. The
original EZESCRPT statement is included as a
comment in the EGL source code.

DL/l EZE words

Note: This release of EGL does not support DL/I. However, if any of the EZEDL
words are used in your functions, the migration tool migrates the EZEDL
word as shown in the following table. The migration tool uses what is
currently expected to be the EZEDL status word replacement in a future
release of EGL. This preserves as much of your logic as possible. The
migration tool also issues an error message. You cannot test, generate, or run
any program that uses the function in this release of EGL.

Table 117. DL/| EZE words

EZE word in VisualAge Generator 4.5 Expected definition in future release of EGL
EZEDLCER sysVar.dliCicsErrorCode

EZEDLCON sysVar.dliCicsConditionCode

EZEDLDBD sysVar.dliDbdName

EZEDLERR sysVar.handleHardDliErrors

EZEDLKEY sysVar.dliKey

EZEDLKYL sysVar.dliKeyLength

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 245

Table 117. DL/I EZE words (continued)

EZE word in VisualAge Generator 4.5

Expected definition in future release of EGL

EZEDLLEV

sysVar.dliLevel

EZEDLPCB
Note: This is an array with a default
subscript of 1.

sysVar.dliPcb
Note: If no subscript was specified, the tool
changes this to sysVar.dliPcb[1].

EZEDLPRO sysVar.dliPcbOptions
EZEDLPSB sysVar.dliPsbName

EZEDLRST sysVar.dliCicsProgramRestarted
EZEDLSEG sysVar.dliSegmentName
EZEDLSSG sysVar.dliSegmentCount
EZEDLSTC sysVar.dliStatusCode
EZEDLTRM sysVar.commitOnConverse

Note: EZEDLTERM is equivalent to
EZECNVCM. Both are converted to
commitOnConverse at migration.

Note: This prefix is for general data EZE
words, not for DL/I specifically.

Service Routines

The service routines section is organized into the following tables:

» Service Routines - general syntax, [Table 118 on page 246
* Service Routines - VisualAge Generator and EGL equivalent routines, [Table 119

Table 118. Service Routines - general syntax

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

CALL serviceRoutine
[argumentList] ;

syslib.EGLSystemFunction
[(argumentLlist)] ;

Generator.

Note: EGL system functions use the
same argument list as in VisualAge

No special considerations.

CALL serviceRoutine

[argumentList] (REPLY ;

try

[(argumentList)] ;
end;

Generator.

sysLib.EGLSystemFunction

Note: EGL system functions use the
same argument list as in VisualAge

If the (REPLY option is included in
VisualAge Generator, the migration
tool includes a fry... end block.

Table 119. Service Routines - VisualAge Generator and EGL equivalent routines

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

this release.

Note: CSPTDLI is not supported in

CALL AUDIT sysLib.audit No special considerations.
CALL COMMIT sysLib.commit No special considerations.
CALL CREATX sysLib.startTransaction No special considerations.
CALL CSPTDLI sysLib.callDli The migration tool converts the call to

sysLib.callDIi and issues an error
message. You cannot run the program.

246 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 119. Service Routines - VisualAge Generator and EGL equivalent routines (continued)

VisualAge Generator 4.5

EGL produced by the migration tool | Migration tool considerations

CALL EZCHART call EZCHART [arguments] The VAGen migration tool converts
externallyDefined ; EZCHART to a call to an externally
defined program.
Note: There is no replacement for L. .
EZCHART in EGL. If. the REPLY option is spec1f1ed in
VisualAge Generator, the migration
tool nests the call statement within a
try ... end block.
CALL RESET sysLib.rollback No special considerations.

PSBs

PSBs are not supported in this release of EGL.

Control parts

In VisualAge Generator, control parts are entered using a free-form text editor. The
control parts are not validated until they are actually used during generation.
Whether something is in upper or lower case is not significant. In EGL, control
parts are stored in .eglbld files in XML notation, with a special editor for each type
of control part. In EGL, upper and lower case are significant. The tables in this
section compare the information you enter in the VisualAge Generator free-form
text editor with the XML tag or attribute value that is used in EGL. The tables only
show the tag or attribute values, not the actual XML syntax.

Note:

* Where possible, the migration tool migrates generation options, linkage

table options, and resource association options for runtime environments
that are not supported at this time, but which are currently planned for
support. This preserves as much of your information as possible in as
useful a way as possible. For example, most IMS generation options are
migrated even though IMS is not a currently supported runtime
environment. These options are not displayed when you use the normal
EGL Build Part Editor. However, you can see the options if you open the
file with the Text Editor.

The migration tool includes as comments those generation options,
linkage table options, and resource association options that have no
corresponding EGL replacement but which might be useful to you in
determining related information that is required for EGL. For example,
the /MFSDEV generation option that is used for the IMS environment
cannot be migrated at this time. The migration tool includes the option as
a comment to preserve the information for future use. These comments
are not displayed when you use the normal EGL Build Part Editor.
However, you can see the comments if you open the file with the Text
Editor.

The migration tool eliminates generation options that have no
corresponding EGL replacement if the information is not useful in
determining current or future EGL options. For example, there is no
replacement for /lineinfo, which was an option to assist IBM support in
debugging the VAGen generator. This option is not useful for the EGL
generator, so the migration tool does not include it as a comment.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 247

¢ The migration tool does not rename control parts. The tool issues an error

message of the part name conflicts with an EGL reserved word.

The control parts section is organized into the following tables:

* General control part information, [Table 120 on page 248§

* Generation options, [Table 121 on page 248§

» Generation options - conversion table values, [Table 122 on page 261|

+ Linkage table options for :calllink, [Table 123 on page 261]|

* Linkage table options for :filelink, [Table 124 on page 265

+ Linkage table options for :crixlink, [Table 125 on page 265

* Linkage table options for :dxfrlink, [Table 126 on page 266|

* Resource association, [Table 127 on page 267|
» Link edit options, [Table 128 on page 271|
* Bind control, [Table 129 on page 271]

Table 120. General control part information

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

VAGen control part names:

* Can include the period (.) in
the name.

* For bind and linkedit parts,
any portion of the name after
the first period is treated as a
suffix. The suffix can be
specified in the /bind and
/linkedit generation options.

EGL build parts:

* The period (.) is not valid in a build
part name.

The migration tool changes the period
() to an underscore (_).

Upper and lower case are not
significant in VAGen control part
tags and values.

Upper and lower case are significant in
EGL control part tags and values.

The migration tool converts the
control part tags and values to the
correct case required for EGL.

Generation options part

Table 121. Generation options

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

VAGen generation options part:

* Contains one or more
generation options.

* Can be chained using the
/options generation option.

* Can reference any other
control part that is included in
the workspace at generation
time. The referenced control
parts are not considered to be
associates of the generation
options part.

EGL build descriptor part:

* Contains one or more build descriptor
options.

* Can be chained using the
nextBuildDescriptor build descriptor
option

¢ Can only reference other build parts
where one of the following is true:

— The build parts are included in the
same .eglbld file.

— The build parts are in files that are
imported by the .eglbld file.

If your VAGen control parts are all in
the same VisualAge Java package or
VisualAge Smalltalk application, the
control parts will all be placed in the
same .eglbld file. In this situation, no
import statements are required.

If your VAGen control parts are in
different VisualAge Java packages or
VisualAge Smalltalk applications, the
migration tool does not create the
import statements. You will need to
add the import statements. There will
be an error on the Tasks list if EGL is
unable to resolve references to other
control parts.

248 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 121. Generation options (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

VAGen generation option values
are only enclosed in quotes if
they contain special characters
for a directory or file name.

EGL build descriptor option values must
be enclosed in quotes. However, if you
use the EGL Build Parts Editor, the editor
automatically inserts the quotes for you
into the XML source. You do not see the
quotes in the editor.

The migration tool includes the
quotes automatically when it builds
the XML source for the .eglbld file.

Many VAGen generation options
can be specified as /xxxx or
/noxxxx to reflect the positive or
negative of the generation option.
The following is an example:

* /prep indicates that you want
the preparation step to be
automatically started
immediately after generation.

* /noprep indicates that you do
not want the preparation step
to be started automatically
because you plan to run it at a
later time.

Many EGL build descriptor options can
be specified as xxxx="YES" or
xoxx="NO" to reflect the positive or
negative of the build descriptor option.
The following is an example:

* prep="YES" indicates that you want the
preparation step to be automatically
started immediately after generation.

¢ prep="NO" indicates that you do not
want the preparation step to be started
automatically because you plan to run
it at a later time.

The migration tool processes the
options as follows:

* The migration tool converts /xxxx
to the corresponding xxxx="YES"
option unless otherwise indicated.

* The migration tool converts
/noxxxx to the corresponding
xxxx="NO" option unless otherwise
indicated.

/ansisql

Not supported.

The migration tool includes this
option as a comment.

/bidicontable=xxxx

bidiConversionTable="xxxx"

No special considerations.

/bind=xxxx

In VisualAge Generator, xxxx is
the suffix of the bind part. The
bind part for a program is named
pgmname.xxxx, where xxxx is
the suffix specified by the /bind
option. The reasons you might
have specified a /bind=suffix are
as follows:

1. A special bind is needed for
the program because you
bind the program into
multiple DB2 plans, and

2. VisualAge Generator did not
enable you to easily create a
bind part with exactly the
same name as the program.

bind="xxxx"

The meaning of the bind option is not
the same as in VisualAge Generator. In
EGL, xxxx is the full name of the bind
part. The bind option only needs to be
specified if the bind part name differs
from that of the program. In most cases,
the program and bind part will have the
same name, so there is no need to
include the bind option.

The bind option is only necessary if you
generate the same program for multiple
runtime environments and require
special bind commands for each
environment.

Another use for the bind option is to
specify the name of a part that contains a
template for your bind command. A
project administrator or DBA can define
a bind part that includes substitutable
SYMPARMS for member-specific
parameters. You can use the EGL bind
option to point to this template part. This
technique works well if you bind a
package for each program.

Because the value for bind has
different meanings in VisualAge
Generator and EGL, the migration
tool cannot migrate this option. The
migration tool includes /bind as a
comment.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

249

Table 121. Generation options (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

/checktype=xxxx

xxxx is one of the following:

checkType="xxxx"

xxxx is one of the following:

No special considerations.

* none * NONE

e low « LOW

e all * ALL

/cicsdbes Not supported. The migration tool does not include

this option as a comment because all
supported CICS translators now
include support for DBCS.

/cicsentries=xxxx

xxxx is one of the following:
* none
* rdo

°* macro

cicsEntries="xxxx"

xxxx is one of the following;:
* NONE

* RDO

* MACRO

No special considerations.

/cobollevel=le | vs

Not supported.

The migration tool includes this
option as a comment.

commentlevel=n or
/commentlevel=commentText

n or commentText are one of the
following:

* 0 or minimum
e 1 or info
* 2 or logic
* 3 or data

* 4 or statements

Note:

* Either the numeric value or its
equivalent commentText can be
specified.

* 0 = genoption comments only

¢ 1 = alias names, standard
generation information

* 2 = program and table prolog,
and function descriptions

* 3 = record prologs and data
item descriptions

e 4 = source statements and
comments

* For C++, the only valid values
are 0 = none and 1 =
comments

commentLevel="n"

n is one of the following:
0

—_ R R

Note:
* 0 = no comments

* 1 = comments are included

The migration tool migrates
/commentlevel=0 or minimum to 0
and all other values to 1.

/configmapname="xxxx"

xxxx is the name of a VisualAge
Smalltalk configuration map.

Not supported.

The migration tool includes this
option as a comment because it might
be useful in determining groups of
related EGL projects that should be
checked into your source code
repository as a unit.

250 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 121. Generation options (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

/configmapversion="xxxx"

xxxx is the version name of the
VisualAge Smalltalk
configuration map specified by
/configmapname.

Not supported.

The migration tool includes this
option as a comment because it might
be useful in determining groups of
related EGL projects that should be
checked into your source code
repository as a unit.

/contable=xxxx

xxxx is the name of a conversion
table.

clientCodeSet="yyyy"
serverCodeSet="zzzz"

yyyy and zzzz are the names of the client
and server conversion tables,
respectively.

The migration tool sets both the
clientCodeSet and the serverCodeSet
options from the VAGen /contable
generation option. See
for the correspondence
between the VAGen and EGL values.
If the value for /contable=xxxx is not
in[Table 122 on page 261} the
migration tool sets both clientCodeSet
and serverCode to xxxx.

/createdds

genDDSFile="YES" | "NO”
Note: This is for ISERIESC.

No special considerations.

/currency=xxx (1 to 3 characters)

currencySymbol="xxx"

No special considerations.

/data =24 | 31

data="24" | "31"

No special considerations.

/dbms=xxxx

xxxx is one of the following:
e db2
* oracle

e odbc

dbms="xxxx"

xxxx is one of the following:
- DB2

* ORACLE

* DB2

Note: EGL Java generation supports
JDBC instead of ODBC.

The migration tool changes odbc to
DB2 and issues a warning message.

/ dbpassword=xxxx

sqlPassword="xxxx"

The migration tool merges the VAGen
/dbpassword and /sqlpassword
options into the EGL sqlPassword
option. If a generation options part
includes both /dbpassword and
/sqlpassword, the migration tool
includes the sqlPassword twice. There
should be an error on the Tasks list.

/dbuser=xxxx

sqlID="xxxx"

The migration tool merges the VAGen
/dbuser and /sqlID options into the
EGL sqlID option. If a generation
options part includes both /dbuser
and /sqlID, the migration tool
includes the sqlID twice. There
should be an error on the Tasks list.

/debugtrace

debugTrace="YES" | "NO”

No special considerations.

/destaccount=xxxx

Not supported.

The migration tool includes this
option as a comment.

/destdir=xxxx

destDirectory="xxxx"

No special considerations.

/ desthost=xxxx

destHost="xxxx"

No special considerations.

/destlib=xxxx

destLibrary="xxxx"
Note: This is for ISERIESC.

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

251

Table 121. Generation options (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

/ destpassword=xxxx

destPassword="xxxx"

No special considerations.

/destuid=xxxx

destUserID="xxxx"

No special considerations.

/dxfrcancel

cancel AfterTransfer="YES" | "NO”

No special considerations.

/dxfrxctl

useXctlForTransfer="YES"” | "NO”

No special considerations.

/ ejbgroup=xxxx

Not supported.

The migration tool includes this
option as a comment.

/endcommarea

endCommarea="YES" | "NO”

No special considerations.

/errdest=xxxx

errorDestination="xxxx"
Note: This is for IMS.

No special considerations.

/fastpath imsFastPath="YES" | "NO” No special considerations.
Note: This is for IMS.
/fold Not supported. The migration tool includes this

option as a comment.

/ ftptranslationecmddbes=xxxx

Not supported. EGL only supports

TCP/IP for transferring files to the host.

The migration tool includes this
option as a comment.

/ ftptranslationemdsbes=xxxx

Not supported. EGL only supports

TCP/IP for transferring files to the host.

The migration tool includes this
option as a comment.

/genauthortimevalues Not supported. The migration tool includes this
option as a comment.

/genhelpmaps genHelpFormGroup="YES" | "NO” No special considerations.

/genmaps genFormGroup="YES" | "NO” No special considerations.

/ genout=xxxx

genDirectory="xxxx"

No special considerations.

Note: This is for Ul records only.

/genproperties genProperties="GLOBAL" The migration tool converts
/nogenproperties genProperties="N0" / genproperties to the EGL
genProperties="GLOBAL" because this
EGL also provides is the closest value in terms of what
genProperties="PROGRAM". is generated.
/ genresourcebundle Not supported. The migration tool includes this
option as a comment.
/genret genReturnImmediate="YES" | "NO” No special considerations.
/gentables genDataTables="YES" | "NO” No special considerations.
/ genuirecords genUIRecords="YES" | "NO” No special considerations.

/ groupname=xxxx

Not supported.

The migration tool includes this
option as a comment.

/inedit=all
/inedit=inonly

validateOnlyIfModified="NO"
validateOnlyIfModified="YES"

No special considerations.

252 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 121. Generation options (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

/initaddws

In VisualAge Generator, the
primary working storage record
is always initialized. The
/initaddws generation option
provides initialization of other
working storage records specified
on the Tables and Additional
Records list.

initNonIOData="YES" | "NO"

In EGL, the record specified as the
inputRecord for main programs is always
initialized. The initNonlOData build
descriptor option provides initialization
of other basic records specified in the
data declarations for the program. In
addition, EGL enables you to specify the
initialized property for any record
declaration in the program. The
initialized property provides a finer
control than the initNonIOData build
descriptor option.

The migration tool migrates the
primary working storage record for
main programs to the EGL
inputRecord property and also
includes the record declaration
without the initialized property. The
migration tool migrates the primary
working storage record for called
programs to a record declaration with
the initialized property. If the
migration tool created an additional
record for level 77 items, the
migration tool includes a data
declaration for the record and also
includes the initialized property. This
provides the same initialization for
primary working storage records as
in VisualAge Generator. All other
basic records are initialized based on
the initNonlOData build descriptor
option.

/initrecd

initlORecords="YES" | "NO"

No special considerations.

/javadestdir=xxxx

Not supported.

The migration tool includes this
option as a comment.

/javadesthost=xxxx

Not supported.

The migration tool includes this
option as a comment.

/javadestpassword=xxxx

Not supported.

The migration tool includes this
option as a comment.

/javadestuid=xxxx

Not supported.

The migration tool includes this
option as a comment.

/javasystem=xxxx

Not supported.

The migration tool includes this
option as a comment.

/jobcard=xxxx

Not supported. The MVS build server
handles the jobcard.

The migration tool includes this
option as a comment.

/jobname=xxxx

Not supported. However, you can use
$USERID as the job name in the build
script. EGL generation substitutes
$USERID with the value from the
destUserID build descriptor option
concatenated with a number to provide a
unique job name.

Note: The VAGen /destuid generation
option migrates to the EGL destUserID.

The migration tool includes this
option as a comment.

d

/jspreldir="xxxx"

Not supported. The JSP is no longer
generated from EGL source.

The migration tool includes this
option as a comment.

/leftjust

leftAlign="YES" | "NO”

No special considerations.

/lineinfo

Not supported.

The migration tool does not include
this option as a comment because the
option was only meanighful for IBM
support to debug the VAGen
generator. It had no effect on the
generated COBOL.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

253

Table 121. Generation options (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

/lines=nn

Not supported.

The migration tool includes this
option as a comment.

/Tinkage=xxxx

xxxx is the name of a VAGen
linkage table part.

linkage="xxxx"

xxxx is the name of an EGL linkage
options part.

No special considerations.

/Tinkedit=xxxx

In VisualAge Generator, xxxx is
the suffix of the linkedit part.
The linkedit part for a program is
named pgmname.xxxx, where
xxxx is the suffix specified by the
/linkedit option. The reasons you
might have specified a
/linkedit=suffix are as follows:

1. A special linkedit is needed
for the program such as for
static linkedit to PL/I, and

2. VisualAge Generator did not
enable you to easily create a
linkedit part with exactly the
same name as the program.

TinkEdit="xxxx"

The meaning of linkEdit is not the same
as in VisualAge Generator. In EGL, xxxx
is the full name of the linkedit part. The
linkEdit option only needs to be
specified if the linkedit part name differs
from that of the program. In most cases,
the program and linkedit part will have
the same name, so there is no need to
include the linkEdit option. The linkEdit
option is only necessary if you generate
the same program for multiple runtime
environments.

Because the value for linkedit has
different meanings in VisualAge
Generator and EGL, the migration
tool cannot migrate this option. The
migration tool includes /linkedit as a
comment.

/listing
/Tistingonerror
/nolisting

Note: This is a three-way switch.

Not supported.

The migration tool includes this
option as a comment.

/locvalid

Not supported.

The migration tool includes this
option as a comment.

/Tog=xx
OR

/nolog

imsLogID="xx"
OR

include /nolog as a comment

Note: This is for IMS.

The migration tool processes this
option as follows:

* /log=xx is converted to
imsLogID="xx"

* /nolog is converted to a comment.

/math=xxxxx

xxxxx is one of the following:
e cobol

* cspae

math="xxxxx"

xxxxx is one of the following;:
+ COBOL
* CSPAE

No special considerations.

/mfsdev=list-of-devices

list-of-devices provides device
information for generating
VAGen maps into MFS source
code for the IMS environment.

Not currently supported.
Note: This is for IMS.

The migration tool includes this
option as a multi-line comment.

254 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 121. Generation options (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

/mfseattr
/nomfseattr
/mfseattrncd

In VisualAge Generator, these 3
options provide a 3-way switch
to give information that is
needed to generate extended
attribute support for maps in
MFS format.

mfsExtendedAttr="YES"
mfsExtendedAttr="NO"
mfsExtendedAttr="NCD"

Note: This is for IMS.

No special considerations.

/mfsignore mfslgnore="YES" | "NO”" No special considerations.
Note: This is for IMS
/mfstest mfsUseTestLibrary="YES" | "NO" No special considerations.

Note: This is for IMS

/msgtableprefix=xxxx

In VisualAge Generator, the
message table prefix is specified
on the program. When you
generate the Ul record by itself
you must specify the message
table prefix during generation.

Not supported.

The migration tool includes this
option as a comment.

/msp=xxxx

xxxx is one of the following:

formServicePgmType="xxxx"

xxxx is one of the following:

No special considerations.

+ all * ALL
* gsam * GSAM
* mfs s MFS
* seq * SEQ
Note: This is for IMS.
/nullfill fillWithNulls="YES" | "NO” No special considerations.
/numovifl checkNumericOverflow="YES" | "NO" No special considerations.

/options=xxxx

xxxx is the name of another
VAGen generation options part.

nextBuildDescriptor="xxxx"

xxxx is the name of another EGL build
descriptor part.

No special considerations.

/packagename=xxxx

Not supported.

The migration tool includes this
option as a comment.

/possign=x

x is one of the following:

positiveSignIndicator="x"

x is one of the following:

No special considerations.

o f * F
°c - C
Note: This is for ISERIESC.
/prep prep ="YES" | "NO” No special considerations.
/prepfile buildPlan="YES"” | "NO” No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

255

Table 121. Generation options (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

/printdest=xxxx
xxxx is one of the following:
* ezeprint

e termid

printDestination="xxxx"

xxxx is one of the following:
* PROGRAMCONTROLLED
e TERMINALID

No special considerations.

/project="xxxx"[,"version"]

xxxx is the name of a VisualAge
for Java project, and version is the
version name for the specified
project.

Not supported.

The migration tool includes this
option as a comment because it might
be useful in determining groups of
related EGLprojects that should be
checked into your source code
repository as a unit.

/projectid=xxxx

projectID="xxxx"

No special considerations.

/recovery

restoreCurrentMsgOnError="YES" |
NNON
Note: This is for IMS.

No special considerations.

/resource=xxxx

xxxx is the name of a VAGen
resource associations part.

resourceAssociations="xxxx"

xxxx the name of an EGL resource
associations part.

No special considerations.

/resourcebundlelocale=xxxx

Not supported.

In EGL this information is specified on
the PageHandler part.

The migration tool includes this
option as a comment.

/resvword=xxxx

reserved Word="xxxx"

No special considerations.

/Tt=xXXX

returnTransaction="xxxx"

No special considerations.

/runfile

genRunFile="YES" | "NO”

No special considerations.

/sendtranslationcmddbcs=xxxx

Not supported.

EGL only supports TCP/IP for
transferring files to the host.

The migration tool includes this
option as a comment.

/ session=xxxx

Not supported.
Note: EGL only supports TCP/IP for
transferring files to the host.

The migration tool includes this
option as a comment.

/setfull setFormltemFull="YES" | "NO”" No special considerations.
/sp checkToTransaction="YES" | "NO" No special considerations.
/spa=xxxx spaSize="nnnn" No special considerations.

Note: This is for IMS.
/spzero spacesZero="YES" | "NO”" No special considerations.
/sqldb=xxxx sqlDB="xxxx" No special considerations.
/sqlid=xxxx sqlID="xxxx" The migration tool merges the VAGen

/dbuser and /sqlID options into the
EGL sqlID option. If a generation
options part includes both /dbuser
and /sqlID, the migration tool
includes the sqglID twice. There
should be an error on the Tasks list.

256 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 121. Generation options (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

/sqlpassword=xxxx

sqlPassword="xxxx"

The migration tool merges the VAGen
/dbpassword and /sqlpassword
options into the EGL sglPassword
option. If a generation options part
includes both /dbpassword and
/sqlpassword, the migration tool
includes the sqlPassword twice. There
should be an error on the Tasks list.

/sqlvalid

validateSQLStatements="YES" | "NO"

No special considerations.

/symparm=pppppppp, ‘vvvv'

* pppppppp is the name of the
symbolic parameter. pppppppp
is 1 - 8 characters.

e povw is the value. Two
consecutive single-quotes
within the value is one
single-quote.

EGL supports many of the same
predefined symbolic parameters as
VisualAge Generator. You can also use
any user-defined symbolic parameters as
long as they do not conflict with any of
the new EGL symbolic parameters.

The migration tool processes symbolic
parameters as follows:

* The migration tool converts any
VAGen-defined symbolic
parameters to the corresponding
EGL symbolic parameter.

e If there is no corresponding EGL
symbolic parameter, VisualAge
Generator migrates to the syntax of
an EGL symbolic parameter
without changing the parameter
name or value. The migration tool
also issues an error message.

* The migration tool converts any
user-defined symbolic parameters
to the syntax of an EGL symbolic
parameter without changing the
parameter name or value.

/SYMPARM=EZALTXTR, xxxx’

transferErrorTransaction="xxxx"

No special considerations.

/SYMPARM=EZONEAS2, xxxx’

oneFormltemCopybook="YES"

No special considerations.

/syncdxfr

synchOnPgmTransfer="YES" | "NO”
Note: This is for DL/I for the CICS
environment.

No special considerations.

/syncxfer

synchOnTrxTransfer="YES" | "NO”"

No special considerations.

/syscodes

sysCodes="YES" | "NO"

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

257

Table 121. Generation options (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

/system=xxxx

xxxx is one of the following:
* MVSBATCH

* MVSCICS

e AIX

* JAVAWRAPPER

« WINNT

* LINUX

e (OS400

The following environments can
also be specified in VAGen, but
not in EGL: IMSBMP, IMSVS,
JAVA, HP, JAVAGUI, WINGUI,
0S2GUI, 0S2, OS2CICS,
AIXCICS, NTCICS, SOLARIS,
SOLACICS, TSO, VMCMS,
VMBATCH, VSEBATCH.
VSECICS

system="xxxx"

xxxx is one of the following:
« ZOSBATCH

« ZOSCICS

« AIX

« WIN

« WIN

* LINUX

* ISERIESC

The migration tool processes this
option as follows:

¢ If /systemxxxx has a corresponding
value in EGL, the migration tool
migrates to the corresponding EGL
value.

 If /system=xxxx does not have a
corresponding value in EGL, the
migration tool includes
/system=xxxx as a comment.

¢ For /system=]JAVAWRAPPER, the
migration tool also includes the
EGL build descriptor option
enableJavaWrapperGen="ONLY". This
specifies that the you want to
generate only the Java wrapper for
a program.

* For /system=MVSBATCH or
/system=MVSCICS, the migration
tool issues a warning message that
you need to set the destPort build
descriptor option.

/targnls=xxx

xxx is a 3-character national
language code.

targetNLS="xxx"

xxx is the 3-character national language
code. All the values except ENP
(uppercase English) are identical in
VisualAge Generator and EGL. ENP does
not have a counterpart in EGL.

The migration tool uses the VAGen
value as the targetNLS value. If the
value is ENP, there will be an error
on the Tasks list. You can edit the
.eglbld file and change the value. You
might want to use ENU (mixed case
English) as a replacement for ENP.

/templates=xxxx

In VisualAge Generator,
templates are used to generate
the preparation and runtime JCL,
as well as to generate CICS
transaction and program entries.

templateDir="xxxx"

In EGL, build scripts replace build
templates. The only templates that are
used are to produce runtime JCL for the
ZOSBATCH and ISERIESC target
environment.

No special considerations.

/trace=xxxx,yyyy

xxxx is one of the following:
* none

* sqlerr

* sqlio

yyyy is optional. If yyyy is
present, it is set to stmt.

Any combination of none, sqlerr,
or sqlio, with or without ,stmt , is
valid.

/trace splits into multiple build
descriptor options:

e If sqlerr is included --
sqlErrorTrace="YES"

e If sqlio is included ---
sqllOTrace="YES"

e if stmt is included ---
statementTrace="YES"

No special considerations.

258 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 121. Generation options (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

/transfertype=xxxx

xxxx is one of the following:

* tcpip

® Sna

Not supported.

EGL only supports TCP/IP for
transferring files to the host.

The migration tool includes this
option as a comment.

/transid=primaryID,restartID

In VisualAge Generator,
Jtransid=,restart is valid, with the
primary transaction defaulting to
the first 4 characters of the
program name.

/transid splits into multiple build

descriptor options:

e If primary is included --
startTransactionID="primaryID"

o If ,restart is included ---
restartTransactionID="restartID"

No special considerations.

/twaoff=nnnn

twaOffset="nnnn"

No special considerations.

/unload

In VisualAge Generator /unload
directed batch generation to
unload all VisualAge Java
projects or VisualAge Smalltalk
configuration maps that
contained VAGen parts before
loading the projects or
configuration maps being
requested for the current
generation process.

Not supported.

The migration tool does not include a
comment for this option.

/validmix

validateMixedItems="YES" | "NO”

No special considerations.

/vmloadlib=xxxx

Not supported.

The migration tool includes this
option as a comment.

/vselib=xxxx

Not supported.

The migration tool includes this
option as a comment.

Jworkdb=xxxx

xxxx is one of the following:

workdb="xxxx"

xxxx is one of the following:

The migration tool processes this
option as follows:

e If /workdb=aux or /workdb=main,

* aux ¢ AUX the migration tool converts
. main « MAIN /workdb to the corresponding EGL
value.
o dli . DLI ,
» If /workdb=dli or /workdb=sq]l,
* sql * SQL the migration tool includes this
Note: The values for DLI and SQL are option as a comment.
for IMS and are not currently supported
in EGL.
Not used. vagCompatibility="YES" The migration tool always adds this

option to every build descriptor part.

In VisualAge Generator,
decimalSymbol was a runtime
property used when assigning or
comparing CHA and NUM
values in Java.

decimalSymboTl="x"

x is one of the following:
* a period (.)
* acomma (,)

In EGL, you can specify this information
at generation time or at runtime.

The migration tool does not set the
decimalSymbol. You can add this
property to your build descriptor part
if you plan to generate Java source. If
you do this, the decimalSymbol will
be generated into any EGL properties
files. Alternatively, you can add the
property directly to the generated
EGL properties file.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 259

Table 121. Generation options (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Not used.

destPort="xxxx"

In EGL, destPort specifies the port to use
when transferring generation outputs to
a host system to prepare them for
execution. The destPort build descriptor
option is required for the ZOSCICS and
ZOSBATCH target environments.

The migration tool does not set
destPort and there is no default value.
However, the sample JCL for starting
an MVS build server uses the default
port of 5555.

Not supported.

In VisualAge Generator, even if
your program checks the value of
EZESYS, all the VAGen source
code must be valid for every
target environment for which
you might generate the program.

eliminateSystemDependentCode=
"YES" | ||No||

In EGL, if your program checks the value
of systemType, you can choose to omit
source code that can never be run for
your current target generation
environment. This can make the resulting
COBOL or Java source code smaller.

The migration tool does not set
eliminateSystemDependentCode. The
default value is "YES".

Not used.

sessionBeanID="xxxx"

The migration tool does not set
sessionBeanID. If you are generating
Java or Java wrappers, see the EGL
online helps to determine if you need
to set the sessionBeanID build
descriptor option.

In VisualAge Generator, you
include the SQL JDBC driver
class, JNDI name, and connection
URL information in a properties
file that is used at runtime.

sq1JDBCDriverClass="xxxx"
sq1JNDIName="xxxx"
sqlValidationConnectionURL="xx"

In EGL, you can specify this information
at generation time or at runtime.

The migration tool does not set the
sql]DBCDriverClass, sql]NDIName, and
sqlValidationConnectionURL. If you
want to specify these values at
generation time, you can do the
following:

* Specify workspace preferences. This
technique only works if you are
generating in the Eclipse
environment.

* Specify the build descriptor options
in your build descriptor parts. This
technique works when you
generate in the Eclipse environment
as well as when you generate in
batch.

In either case, you must also include
the genProperties="YES" build
descriptor option so that the
properties file will be generated.

If you want to specify the value at
runtime, you can modify the runtime
properties in either the J2EE
deployment descriptor or a properties
file.

Not supported.

cicsj2cTimeout="nnnn"

The migration tool does not set the
cicsj2cTimeout value. If you are
generating Java, see the EGL online
helps to determine if you need to set
the cicsj2cTimeout build descriptor
option.

260 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 122. Generation options - conversion table values

Language Conversion Table VAGen EBCDIC Character Set EGL ASCII Character Set EGL

/contable value serverCodeSet clientCodeSet
Arabic ELACNARA IBM-420 IBM-1256
Chinese, simplified | ELACNCHS IBM-935 IBM-1381
Chinese, simplified | ELACNGBK IBM-1388 IBM-1386
Chinese, traditional |ELACNCHT IBM-937 IBM-950
Danish ELACNDKN 1BM-277 IBM-1252
Eastern European | ELACNS870 IBM-870 IBM-1250
English (UK) ELACN285 IBM-285 IBM-1252
English (US) ELACNENU IBM-037 IBM-1252
Finnish ELACNFIN IBM-298 IBM-1252
French ELACNFRA IBM-297 IBM-1252
German ELACNDEU IBM-273 IBM-1252
Greek ELACNGRE IBM-875 IBM-1253
Hebrew ELACNHEB IBM-424 IBM-1255
Ttalian ELACNITA IBM-280 IBM-1252
Japanese, Katakana |ELACN]JPN IBM-930 IBM-943
Japanese, Latin ELACNJPL IBM-939 IBM-943
Korean ELACNKOR IBM-933 IBM-949
Norwegian ELACNDKN IBM-277 IBM-1252
Portuguese ELACNPTB IBM-037 IBM-1252
Russian ELACNCYR IBM-1025 IBM-1251
Spanish ELACNESP IBM-284 IBM-1252
Swedish ELACNSWE IBM-278 IBM-1252
Swiss German ELACNDES IBM-500 IBM-1252
Turkish ELACNTUR IBM-1026 IBM-1254
User—defined (not | XXXXXXXX XXXXXXXX XXXXXXXX
in the above list)

Linkage table parts
The linkage table parts are Calllink, Filelink, Crtxlink, and Dxfrlink.

callLink

Table 123. Linkage table options for :calllink

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

:calllink

callLink

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

261

Table 123. Linkage table options for :calllink (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Tinktype=xxxx

xxxx is one of the following:
* dynamic

* static

* cicslink

* remote

* csocall

* sessionejb

Type of call, where the EGL equivalent
options are the following:

* localCall
* localCall
e localCall
* remoteCall
e remoteCall
* ejbCall

If the VAGen linktype is omitted, the
migration tool uses localCall. The
migration tool also uses linktype in
additional places to set other
properties for the EGL CallLink
information.

applname=programName

programName is the name of the
program being called. Wildcards
are permitted.

pgmName="programName"

No special considerations.

externalname=applname

alias="applname”

If your VAGen program had to be
renamed because the name was an
EGL reserved word, you can use the
alias property either on the program
definition or in the linkage table to
provide the original VAGen name for
the program as the name of the
generated program. Either technique
can help you avoid having to modify
non-VAGen programs that call the
VAGen program.

package=packageName

package="packageName"

No special considerations.

library=TibraryName

OR

d1Tname=11ibraryName

In VisualAge Generator, library
and dllname are treated as
synonyms.

library="libraryName"

The migration tool merges the VAGen
library or dllname into the EGL
library property.

Tinktype=xxxx

xxxx is one of the following:
* dynamic
* static

e cicslink

linkType="xxxx"

xxxx is one of the following:
* DYNAMIC

e STATIC

* CICSLINK

No special considerations.

parmform=xxxx

xxxx is one of the following:
* oslink
* commptr

¢ commdata

¢ cicsoslink

parmForm="xxxx"

xxxx is one of the following:
* OSLINK

» COMMPTR

« COMMDATA

* CICSOSLINK

No special considerations.

262 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 123. Linkage table options for :calllink (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

contable=xxxx

xxxx is one of the following:

a conversionTableName
&

EZECONVT

BINARY

NONE

conversionTable="xxxx"

xxxx is one of the following:
* converstionTableName

.

* PROGRAMCONTROLLED
* not supported

* not supported

The migration tool uses the same
conversionTableName when creating the
EGL CallLink information.

The migration tool migrates the
VAGen contable=BINARY to BINARY,
which is an unsupported value in
EGL. The migration tool also issues an
error message. There will be an error
on the Tasks list. You must correct the
error by editing the .eglbld file and
selecting the supported value that you
want to use.

The migration tool omits the
conversionTable property if the VAGen
contable=NONE.

lTocation=xxxx

xxxx is one of the following:

systemName
EZELOC

lTocation="xxxx"

xxxx is one of the following:
¢ systemName
* PROGRAMCONTROLLED

No special considerations.

remotecomtype=xxxx

xxxx is one of the following:

appcims
ca400
cicsclient
dce
dcesecure
direct
exci

ipc
java400
u2

tcpip

remoteComType="xxxx"

xxxx is one of the following:
* not supported
* not supported
» CICSECI

* not supported
* not supported
» DIRECT

* not supported
» DISTINCT

* JAVA400

* not supported
» TCPIP

The migration tool converts cicsclient
to CICSECI because that is the closest
corresponding EGL value. If the
VAGen :calllink entry did not already
specify the ctgport and ctglocation,
the migration tool issues an error
message to remind you to specify
these values.

The migration tool migrates the
values listed as not supported "as is”
and issues a message. You must
determine what communications
protocol you want to use now and
then update the EGL CallLink entry
with the correct information. There
will be an error on the Tasks list until
you correct the CallLink information.

If you decide to use CICSSSL, you
must add the ctgPort, ctgLocation,
ctgKeyStore, and ctgKeyStorePassword
properties to the EGL CallLink
information.

If you decide to use CICS]2C, you
must add the pgmName,
conversionTable, remotePgmType,
luwControl, remoteBind, location, and
parmForm properties to the EGL
CallLink information.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 263

Table 123. Linkage table options for :calllink (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

remoteapptype=xxxx

xxxx is one of the following:
. vg

* nonvg

* vgjava

o itf

remotePgmType="xxxx"

xxxx is one of the following:
- EGL

* EXTERNALLYDEFINED
* not applicable

* not supported

If the VisualAge Generator
remoteapptype=vgjava, the migration
tool migrates the :calllink entry, but
omits the remotePgmType property.

If remoteapptype=itf, the migration
tool turns the entire :calllink entry
into a comment.

serverid=serverName

serverID="serverName"

No special considerations.

Tuwcontrol=xxxx

xxxx is one of the following:
* client

* server

TuwControl="xxxx"

xxxx is one of the following:
* CLIENT
* SERVER

No special considerations.

remotebind=xxxx

xxxx is one of the following:
* generation

* runtime

remoteBind="xxxx"

xxxx is one of the following:
* GENERATION
* RUNTIME

No special considerations.

providerURL=URLName

providerURL="URLName"

No special considerations.

ctglocation="tcpipInfo’

ctgLocation="tcpipInfo”

No special considerations.

ctgport=portID

ctgPort="portID"

No special considerations.

bitmode=nn

nn is one of the following:
* 16
e 32

Not supported.

The migration tool includes this
option as a comment.

binform=xxxx

xxxx is one of the following:
* intel

* host

Not supported.

The migration tool includes this
option as a comment.

Not supported.

In VisualAge Generator, you
specify the NOMAPS option on a
CALL statement to achieve better
performance if the called
program does not send any maps
to the screen.

refreshScreen="YES" | "NO”

The migration tool does not set this
property. If you previously specified
NOMAPS for a VAGen call statement,
you can continue to use the noRefresh
option on the EGL CALL statement if
you use the vagCompatibility="YES"
build descriptor option. Alternatively,
you can obtain the same support by
specifying refreshScreen="NO" on the
CallLink entry for the called program.

Not used.

None of the communication
protocols supported by VisualAge
Generator required this
information.

ctgKeyStore
ctgKeyStorePassword

The migration tool does not set this
property. ctgKeyStore and
ctgKeyStorePassword are required if
you decide to use
remoteComType="CICSSSL".

264 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 123. Linkage table options for :calllink (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Not used.

In VisualAge Generator, you use
the /system=JAVAWRAPPER
generation option whenever you
want to generate a Java wrapper
for a called batch program.

javaWrapper="YES" | "NO”"

The migration tool does not set this
property. You must specify
javaWrapper="YES" if you want a Java
wrapper to be generated whenever
you generate the called program.

fileLink

Table 124. Linkage table options for filelink

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

filelink

fileLink

No special considerations.

Tinktype=xxxx

xxxx is one of the following:
* local
* remote

In VisualAge Generator, the
default is local.

Type of file, where the EGL equivalent
options are as follows:

¢ localFile

¢ remoteFile

If the VAGen linktype is not
specified, the migration tool converts
to localFile.

filename=fileName

fileName is the name of a file in a
VAGen record definition.
Wildcards are permitted.

fileName="fileName"

No special considerations.

contable=xxxx

xxxx is one of the following:
* a conversionTableName

o ¥

* EZECONVT

* BINARY

conversionTable="xxxx"

xxxx is one of the following:
» conversionTableName

o *

* PROGRAMCONTROLLED
* not supported

The migration tool uses the same
conversionTableName when creating the
EGL FileLink information.

The migration tool migrates the
VAGen contable=BINARY to BINARY,
which is an unsupported value in
EGL. The migration tool also issues an
error message. There will be an error
on the Tasks list. You must correct the
error by editing the .eglbld file and
selecting the supported value that you
want to use.

lTocation=xxxx

xxxx is one of the following:
- CICS
* EZELOC

locationSpec="xxxx"

xxxx is one of the following:
+ CICS
* PROGRAMCONTROLLED

No special considerations.

Crixlink

Table 125. Linkage table options for :crixlink

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

:crixlink

asynchLink

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

265

Table 125. Linkage table options for :crixlink (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Tinktype=xxxx

xxxx is one of the following:
e local
¢ remote

Note: In VisualAge Generator the
default is local.

Type of file, where the EGL equivalent
options are the following:

* localAsynch

* remoteAsynch

If the VAGen linktype is not specified,
the migration tool converts to
local Asynch.

recdname=recordName

recordName is the name of a
VAGen record definition.
Wildcards are permitted.

recordName="recordName"

No special considerations.

contable=xxxx

xxxx is one of the following:
* a conversionTableName

o *

* EZECONVT

* BINARY

conversionTable="xxxx"

xxxx is one of the following:
* conversionTableName

. *

* PROGRAMCONTROLLED

* not supported

The migration tool uses the same
conversionTableName when creating the
EGL AsynchLink information.

The migration tool converts the
VAGen contable=BINARY to BINARY,
which is an unsupported value in
EGL. The migration tool also issues an
error message. There will be an error
on the Tasks list. You must correct the
error by editing the .eglbld file and
selecting the supported value that you
want to use.

location=xxxx

xxxx is one of the following:
» CICS
* EZELOC

locationSpec="xxxx"

xxxx is one of the following:
» CICS
* PROGRAMCONTROLLED

No special considerations.

package=packageName

package="packageName"

No special considerations.

Dxfrlink

Table 126. Linkage table options for :dxfrlink

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

:dxfrlink

transferToProgram

No special considerations.

fromappl1=programName

programName is the name of the
program that is transferring with
a DXFR to another program.
Wildcards are not permitted.

fromPgm="programName"

No special considerations.

toappl=programName2

programName? is the name of the
program to which the transfer is
occurring.

toPgm="programName2"

No special considerations.

266 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 126. Linkage table options for :dxfrlink (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

Tinktype=xxxx

xxxx is one of the following:
* dynamic
* static

* noncsp

TinkType="xxxx"

xxxx is one of the following:
* DYNAMIC

* STATIC

* EXTERNALLYDEFINED

If you previously specified NONCSP
for a VAGen DXFR statement, you can
continue to use the externallyDefined
option on the EGL transfer to
program statement if you include
vagCompatibility="YES" in your build
descriptor options. Alternatively, you
can obtain the same support by
specifying linkType=
"EXTERNALLYDEFINED" on the
transferToProgram entry for the
program to which you are
transferring.

Not supported.

alias="applname”

If your VAGen program had to be
renamed because the name was an
EGL reserved word, you can use the
alias property either on the program
definition or in the linkage table to
provide the original VAGen name for
the program as the name of the
generated program. Either technique
can help you avoid having to modify
non-VAGen programs that call the
VAGen program.

Resource association part

Table 127. Resource association

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

In VisualAge Generator, a
resource association part specifies
how a file is to be implemented
for a specific target environment.
The file is the File Name specified
in a VAGen record definition.

The resource association part can
also specify how print output is
to be implemented for a specific
target environment.

When generating a program, the
fileName for each indexed, serial,
relative or print output is
matched to the resource
association part. The first entry
that matches based on the
fileName and generation target
environment is the entry that is
used for that file.

The EGL resource association part
specifies how a file is to be implemented
for a specific target environment. The
file is the fileName property that is
specified in an EGL record definition.

The resource association part can also
specify how print output is to be
implemented for a specific target
environment.

When generating a program, the
fileName for each indexed, serial,
relative or print output is matched to
the resource association part. The first
entry that matches based on the
fileName and generation target
environment is the entry that is used for
that file.

No special considerations.

For VisualAge Generator,
resource association files are also
used at runtime.

For EGL, resource association
information is stored in EGL parts.

The migration tool includes support
for converting additional options that
were only valid in VAGen resource
association files.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

267

Table 127. Resource association (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

/system=targetSystem

targetSystem is one of the
following:

o AIX*

* AIXCICS *
e HP-UX*

* IMSBMP

* IMSVS

e LINUX **
* MVSBATCH
* MVSCICS
* NTCICS *
« OS2 %

* OS2CICS

* 05400

e SCO*

* SOLACICS *
* SOLARIS *
* TSO

- VMCMS

* VMBATCH
* VSEBATCH
* VSECICS

e WINNT **

Note:

e * — Indicates environments
used for C++ generation.

* ** — Indicates environments
used for Java generation.

* /system is optional.

* VisualAge Generator supports
an * as a wildcard in the target
system. (For example, MVS* or
*CICS).

This is the EGL target environment.

The corresponding environment values
are as follows:

* aix

* not supported
* not supported
* not supported
* not supported
* linux

* zosbatch

* zoscics

* values will not be valid
* not supported
* not supported
* iseriesc

* not supported
* not supported
* not supported
* not supported
* not supported
* not supported
* not supported
* not supported

° win

Note: Wildcards are not supported.

The migration tool processes the
/system option as follows:

For a target system that is listed as
not supported, the migration tool
includes the information for the
VAGen resource association entry
as a comment in the EGL resource
association part. This helps preserve
as much of your information as
possible.

If the /system option is omitted
from the VAGen resource
association entry, the migration tool
uses any as the EGL resource
association target environment.

If the /system option uses a
wildcard, the migration tool
migrates the option exactly as it is,
including the wildcard (for
example, mvs* or *cics). The
migration tool also issues an error
message.

268 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 127. Resource association (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

filetype=fileType

fileType is one of the following:
* BTRIEVE

+ GSAM

* IBMCOBOL
* MFCOBOL
* MMSGQ

« MQ

+ 0OS2COBOL
* SEQ

* SEQRS

* SMSGQ

* SPOOL

* TEMPAUX
* TEMPMAIN
* TRANSIENT
* VSAM

* VSAMRS

The EGL file type, where the
corresponding values are in the
following list:

* not supported
* not supported
* ibmcobol

* not supported
* not supported
+ mq

* not supported
* seq or seqws
* seqrs

* not supported
* spool

* tempaux

* tempmain

* transient

* vsam

® vsamrs

The migraton tool processes the
/filetype option as follows:

* If the /system option specifies a
host target environment, the
migration tool converts the VAGen
SEQ file type to the EGL seq file
type.

* If the /system option is a
workstaton environment, the

migration tool converts the VAGen
SEQ file type to the EGL sequws file
type.

e If the /system is MVSBATCH and
the filetype is GSAM, the migration
tool migrates the resource
association entry as a comment.

¢ For all other unsupported file type
values, if the resource association is
for a /system that is supported, the
migration tool creates an EGL
resource association entry using the
VAGen file type and issues an error
message. There will also be an error
on the Tasks list. You must fix this
error before you can use the EGL
resource association part.

sysname=systemName

systemName="systemName"

The migration tool converts any
symbolic parameters that are used
within the /system option to the
corresponding EGL replacement
symbolic parameter.

/replace
/noreplace

replace="YES"
replace="N0O"

No special considerations.

/dup duplicates="YES" No special considerations.
/nodup duplicates="NO"

Note: This is for ISERIESC.
/commit commit="YES" No special considerations.
/nocommit commit="NO"

These options are only used for
the OS/400 target environment.

Note: This is for ISERIESC.

/noff

There is no /FF option in
VisualAge Generator. This option
is only supported in VAGen
resource association files.

FormFeedOnClose="N0O"
FormFeedOnClose="YES"

The migration tool converts /noff to
FormFeedOnClose="NO".

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

269

Table 127. Resource association (continued)

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

/text

There is no /NOTEXT option in
VisualAge Generator. This option
is only supported in VAGen
resource association files.

text="YES"
text="NO"

The migration tool converts /text to
text="YES".

/basename=xxxx

In VisualAge Generator, this
option is only used for the OS/2
target environment. This option is
only supported in VAGen
resource association files.

Not supported.

The migration tool comments out any
entry for the OS/2 target
environment.

/contable=xxxx

xxxx is one of the following:
* a conversionTableName
« EZECONVT

This option is only supported in
VAGen resource association files.

conversionTable="xxxx"

xxxx is one of the following:
¢ a conversionTableName
¢ PROGRAMCONTROLLED

The migration tool uses the same
conversionTableName when creating the
EGL resource association entry.

/keys=xxxx

In VisualAge Generator, this
option is only used with
/filetype=BTRIEVE. This option
is only supported in VAGen
resource association files.

KEYS="xxxx"

Because BTRIEVE is used in
supported target environments, the
migration tool migrates the /keys
option to an EGL keys option.

/blksize
/sysnum

These options are only used for
VSE target environments.

Not supported.

The migration tool comments out the
resource association entry for target
environments that are not supported.

/pcbno=n

This is only valid for IMSVS or

IMSBMP target environments or
for MVS Batch if the file type is
GSAM.

Not supported.

The migration tool comments out the
resource association entry for target
environments that are not supported
or for MVS Batch if the file type is
GSAM.

270 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Link edit part

Table 128. Link edit part

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

In VisualAge Generator, the link
edit part is typically named
programName.suffix, where the
first part of the name is the same
as the VAGen program name and
the suffix is LKG. The VAGen
/linkedit generation option
specifies the value for the suffix.

By default, in EGL the link edit part
name must be the same name as the
program name. If this is the case you do
not need to specify the link edit build
descriptor option.

If you have multiple link edit parts for a
program, then you must use different
part names for the program’s link edit
build descriptor option parts. In this
case, you must specify the complete link
edit part name in the linkedit build
descriptor option.

If the suffix is .LKG, the migration
tool removes the suffix when creating
the new EGL link edit part. If the
suffix is anything other than .LKG, the
migration changes .suffix to _suffix
because periods (.) are not valid
characters in EGL part names.

A VAGen link edit part contains
the link edit statements needed
for linkediting a program during
the preparation process in a host
environment.

In EGL, a link edit part contains the link
edit statements needed for linkediting a
program during the build process in a
host environment

The migration tool does the following;:

¢ Converts any symbolic parameters
that are used within the link edit
part to the corresponding EGL
replacement symbolic parameter.

* Uses the same indentation as in the
VAGen part.

Bind control part

Table 129. Bind control part

VisualAge Generator 4.5

EGL produced by the migration tool

Migration tool considerations

In VisualAge Generator, the bind
control part is typically named
programName.suffix, where the
first part of the name is the same
as the VAGen program name and
the suffix is BND. The VAGen
/bind generation option specifies
the value for the suffix.

By default, in EGL the bind control part
name must be the same name as the
program name. If this is the case you do
not need to specify the bind control
build descriptor option.

If you have multiple bind control parts
for a program, then you must use
different part names for the program’s
bind control parts. In this case, you
must specify the complete bind control
part name in the bind build descriptor
option.

If the suffix is .BND, the migration
tool removes the suffix when creating
the new EGL bind control part. If the
suffix is anything other than .BND,
the migration changes .suffix to _suffix
because periods (.) are not valid
characters in EGL part names.

A VAGen bind control part
contains the DB2 bind commands
needed for binding the DB2
DataBase Resource Module
(DBRM) for a program during the
preparation process in an MVS
host environment.

In EGL, a bind control part contains the
bind commands needed for binding the
DBRM for a program during the build
process in a ZOS host environment.

The migration tool does the following:

* Adds additional commands at the
beginning of the bind control part.
These commands are needed by the
build server.

* Converts any symbolic parameters
that are used within the bind
control part to the corresponding
EGL replacement symbolic
parameter.

* Uses the same indentation as in the
VAGen part.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

271

Symbolic parameters

The following tables show the relation between VAGen symbolic parameters and
EGL symbolic parameters.

Table 130. Part-related symbolic parameters

Part-related symbolic parameters Corresponding EGL symbolic parameter
EZECOBOLTYPE Not supported

EZEDATA DATA

EZEDBCS Not supported
EZEDESTLIB Not supported
EZEDESTNAME Not supported

EZEDLI Not applicable — DL/I only
EZEENTRY Not supported

EZEENV SYSTEM

EZEGDATE EZEGDATE

EZEGENOUT Not supported

EZEGMBR EZEGMBR

EZEGTIME EZEGTIME

EZEMBR In a linkedit or bind part, EZEALIAS. Otherwise, EZEMBR
EZEMBRPATH Not supported

EZEMSG Not supported

EZEPID EZEPID
EZEPREPDESTACCOUNT Not supported
EZEPREPDESTHOST Not supported
EZEPREPDESTDIR Not supported
EZEPREPDESTPASSWORD Not supported
EZEPREPDESTUID Not supported
EZEPREPFTPCMDSBCS Not supported
EZEPREPFTPCMDBCS Not supported
EZEPREPSENDCMDDBCS Not supported
EZEPREPSESSION Not supported

EZEPREPSP Not supported
EZEPREPSQLDB Not supported
EZEPREPWORKDB Not supported

EZEPSB Not applicable — DL/I and IMS only
EZEPTYPE Not supported

EZESQL EZESQL

EZETBLNAME Not supported

EZETPROC Not supported

EZETRAN Not supported
EZETRANSFERTYPE Not supported
EZETWASIZE Not supported

272 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 130. Part-related symbolic parameters (continued)

Part-related symbolic parameters

Corresponding EGL symbolic parameter

EZEUSERID

Not supported

EZEVMLOADLIB Not applicable — VM only
EZEVSELIB Not applicable — VSE only
EZEXAPP Not supported.

Table 131. File-related symbolic parameters

File-related symbolic parameters

Corresponding EGL symbolic parameter

EZEBLK EZEBLK

EZEDBD Not applicable — DL/I only
EZEDD EZEDD

EZEDLBL Not applicable — VSE only
EZEDSN EZEDSN

EZELRECL EZELRECL

EZERECFM EZERECFM

Table 132. User-defined symbolic parameters

User-defined symbolic parameters

Corresponding EGL symbolic parameter

COB2LIB COBCICS

COBLIST Not supported

DBDLIB Not applicable — DL/I only

DSNLOAD DSNLOAD

DSYS DSYS

ELA ELA

EZALTXTR Special migration to normal build option—see Generation Options
section, transferErrorTransaction="xxx"

EZONEAS2 Special migration to normal build option -- See Generation Options
section, oneFormItemCopybook="YES"

EZUAUTH EZUAUTH

EZUINST EZUINST

PSBLIB Not applicable — DL/I only

PROCLIB Not applicable — VSE only

PWRCLASS Not applicable — VSE only

RESLIB Not applicable — DL/I and IMS only

SQLDBNAM Not applicable — VM and VSE only

SQLPKGNM Not applicable — VM and VSE only

SQLPROPT Not applicable — VM and VSE only

SQLSTMDE Not applicable — VM and VSE only

SQLSTOPT Not applicable — VM and VSE only

SQLUSRPW Not applicable — VM and VSE only

VMFMODE Not applicable — VM only

VMDISKADDR Not applicable — VM only

Appendix B. Relationship of VisualAge Generator and EGL Language Elements

273

Table 132. User-defined symbolic parameters (continued)

User-defined symbolic parameters Corresponding EGL symbolic parameter

VUSERLIB Not applicable — VSE only

274 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Appendix C. Messages from the migration tools

This section contains the messages that are issued by the migration tools. You can
find the messages based on their prefix in the following sections:

* HPT.EGL.00xxx - Stage 1 Common Messages

* HPT.EGL.01xxx - Stage 1 on VisualAge for Java
* HPT.EGL.02xxx - Stage 1 on VisualAge Smalltalk
* IWN.MIG - Stages 2 and 3 on WebSphere Studio

The character in the last position of each message number is a suffix that indicates
the severity of the message:

* i — Informational message to indicate status or that the migration tool
eliminated information during migration due to the differences between the
VisualAge Generator and EGL languages. No user action is required.

* w — Warning message to indicate a possible problem. For example, the
migration tool made a best guess for the EGL syntax. User action is only
required if validation or preprocessor detects an error.

* ¢ — Error message. The migration tool was unable to make a reasonable guess
for the EGL syntax. User action is required to provide missing or incomplete

information.

* t - Trace message to indicate more detailed status than is provided by the
informational messages. The trace message include details about when commit
points are taken. The trace messages are self-explanatory and are not included in

this migration guide.

Messages from the VisualAge Generator to EGL migration tool—Stage

1

The Stage 1 migration tools are shipped as samples. The messages are not
translated within the sample tool itself. However, the messages as shipped with
the samples are translated here in the Migration Guide.

Stage 1 common messages

The following messages are common to the VAGen migration tool on both
VisualAge for Java and VisualAge Smalltalk

HPT.CM.215.e File filename cannot be opened. The

return code is returnCode (returnCodeText).

Explanation: The specified file cannot be opened. The
returnCode and returnCodeText indicate the reason why.
returnCode 2 indicates the file cannot be found.

User Response: Provide a valid file for the migration
tool.

HPT.EGL.0001.w Table name tableName is a reserved
word. It must be renamed.

Explanation: The migration tool does not rename
tables for you.

© Copyright IBM Corp. 2004

User Response: You must change the name of the
table and all references to it, including references in any
program’s table and additional records list, logic
statements, data item edit routines, and map edit
routines. Be sure to change any non-VAGen references
to the table name, including CICS program definitions.
Alternatively, you can wait until you have migrated,
rename the table in WebSphere Studio, and use the
EGL alias property to specify the original table name.

HPT.EGL.0002.w Map group name mapGroupName is
a reserved word. It must be renamed.

Explanation: The migration tool does not rename map
groups for you.

275

User Response: You must change the name of the
map group, the names of all maps in the map group,
and all references to the map group, including
references as any program’s map group or help map
group. Be sure to change any non-VAGen references to
the map group name, including CICS program
definitions. Alternatively, you can wait until you have
migrated, rename the form group in WebSphere Studio,
and use the EGL alias property to specify the original
map group name.

HPT.EGL.0003.w Program name programName is a
reserved word. It must be renamed.

Explanation: The migration tool does not rename
programs for you.

User Response: You must change the name of the
program and all references to it, including references on
CALL, DXFR, and XFER statements. Also change the
names of any bind control or linkedit parts that
correspond to this program. Be sure to change any
non-VAGen references to the program name, including
CICS program definitions. Alternatively, you can wait
until you have migrated, rename the program in
WebSphere Studio, and use the EGL alias property to
specify the original program name.

HPT.EGL.0004.w Control part name partName is a
reserved word. It must be renamed.

Explanation: The specified control part name uses dot
notation, where the name before the dot is a reserved
word. The migration tool assumes that the name before
the dot is a program name and that this control part is
closely tied to a program. Because the migration tool
does not rename programs, it also does not rename
control parts that are in dot notation.

User Response: You must change the name of the
program and all references to it, including references on
CALL, DXFR, and XFER statements. Also change the
names of any bind control or linkedit parts that
correspond to this program. Be sure to change any
non-VAGen references to the program name, including
CICS program definitions. Alternatively, you can wait
until you have migrated, rename the program in
WebSphere Studio, and use the EGL alias property to
specify the original program name. Refer to Appendix
[Appendix A, “Reserved words,” on page 171 that lists
the EGL reserved words.

HPT.EGL.0005.w UI Record partName is a reserved
word or starts with the # symbol. It
must be renamed.

Explanation: The specified Ul record conflicts with the
EGL naming conventions. This release of EGL does not
support web transactions or Ul records. The Stage 1
migration tool includes the Ul record in the migration
set. The Stage 2 and 3 migration tools filter out the Ul
records, without migrating them to EGL source.

User Response: None. There is no need to rename the
Ul record in VisualAge Generator. The expectation is
that the Stage 2 and 3 migration tools will handle
renaming for Ul records just as they do for other
records.

HPT.EGL.0006.i Migration of preferenceFile will
produce outputList.

Explanation: Migration of preferenceFile will produce
outputList. Possible outputs are migration plans, report,
and database updates.

User Response: None.

HPT.EGL.0007.w No migration files were created
based on the current filters.

Explanation: No migration files were created based on
the current filters.

User Response: Change the filter preferences.

HPT.EGL.0008.e PreferenceValue is an invalid value for
preference option preferenceOption.

Explanation: The value is invalid for the preference
option.

User Response: Changes the preference option value
in the preferences file.

HPT.EGL.0009.e Migration set migrationSetName
requires the preferences for the
spanning maps suffixes be specified.

Explanation: The specified migration set contains one
or more map groups that span multiple projects or
multiple packages. The migration tool requires you to
specify the spanning maps suffix preferences so that it
can create the project or package necessary for the map
group.

User Response: Edit the Stage 1 migration preferences
file. On the Mapping page, in the Spanning Maps
section, specify values for the Project suffix and
Package suffix fields. See ["Mapping page” on page 93|
for Java or ["Mapping page” on page 110| for Smalltalk
for more details.

HPT.EGL.0010.w No migration action was requested.

Explanation: You have not selected any output
options for the Stage 1 migration tool.

User Response: Select one or more options. The
options enable you to create a migration plan file,
create a report, or update the database.

276 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

HPT.EGL.0011.i Starting the database clean up of
migration set migrationSetName.

Explanation: The migration database already
contained information for the specified migration set.
The migration tool deleted the migration set
information in preparation for running Stage 1 with a
new set of preferences.

User Response: None.

HPT.EGL.0012.i Completed the database clean up of
migration set migrationSetName.

Explanation: The migration database already
contained information for the specified migration set.
The migration tool deleted the migration set
information in preparation for running Stage 1 with a
new set of preferences.

User Response: None.

HPT.EGL.0013.e Each renaming rule must have a
unique order value.

Explanation: Two or more renaming rules have the
same order number.

User Response: Edit the Stage 1 migration preferences
file and change the renaming rules so that each rule
has a unique order number.

HPT.EGL.0014.i Migration set migrationSetName-
migrationSetVersion produced n error
messages, 1 warning messages, and 71
informational messages.

Explanation: 7 is the number of messages issued by
the Stage 1 migration tool for the specified migration
set. The count for the informational messages includes
message HPT.EGL.0014.i.

User Response: None.

HPT.EGL.0015.e Derived EGL project name
eglProjectName contains invalid
character(s): characterList.

Explanation: Using the renaming rules that you
specified, the Stage 1 migration tool has created a
proposed EGL project name that does not meet the
EGL project naming conventions. The characters that
are invalid shown in the characterList.

User Response: Edit the Stage 1 migration preferences
files and modify the project renaming rules so that they
result in valid EGL project names. When you modify
the renaming rules, be sure to consider the effect of any
renaming rules that specify a Mapping Context of both.

HPT.EGL.0016.e Derived EGL package name
eglPackageName contains invalid
character(s): characterList.

Explanation: Using the renaming rules that you
specified, the migration tool has created a proposed
EGL package name that does not meet the EGL
package naming conventions. The characters that are
invalid shown in the characterList.

User Response: Edit the Stage 1 migration preferences
files and modify your package renaming rules so that
they result in valid EGL package names. When you
modify the renaming rules, be sure to consider the
effect of any renaming rules that specify a Mapping
Context of both.

HPT.EGL.0017.e Derived EGL project name
eglProjectName cannot end with a period

().

Explanation: Using the renaming rules that you

specified, the migration tool has created a proposed
EGL project name that ends in a period. This name
does not meet the EGL project naming conventions.

User Response: Edit the Stage 1 migration preferences
files and modify your project renaming rules so that
they result in valid EGL project names. When you
modify the renaming rules, be sure to consider the
effect of any renaming rules that specify a Mapping
Context of both. Also consider the effect of any
renaming rules that specify a String Context of any, back
or token.

HPT.EGL.0018.e Derived EGL package name
eglPackageName cannot begin with a digit
or end with a period (.).

Explanation: Using the renaming rules that you
specified, the migration tool has created a proposed
EGL package name that ends in a period or begins with
a digit. This name does not meet the EGL package
naming conventions.

User Response: Edit the Stage 1 migration preferences
files and modify your package renaming rules so that
they result in valid EGL package names. When you
modify the renaming rules, be sure to consider the
effect of any renaming rules that specify a Mapping
Context of both.

HPT.EGL.0019.i The Migration Feature featureName
versionName is loaded.

Explanation: This informational message provides the
migration feature name and version that is currently
loaded into your Java workspace or Smalltalk image.

User Response: None.

Appendix C. Messages from the migration tools 277

HPT.EGL.0020.i The Migration Feature featureName
versionName is not loaded. listOfNames
are not loaded.

Explanation: This informational message provides the
migration feature name and version that should be
added to your Java workspace or loaded into your
Smalltalk image. However, one or more Java packages
or Smalltalk applications are not at the version
expected for the migration feature. The listOfNames
provides the list of Java packages or Smalltalk

applications that are currently loaded but which are not
at the expected version.

User Response: If you have not modified the Stage 1
migration tool, try adding the migration feature again
for Java or loading the migration feature again for
Smalltalk. If you have modified the Stage 1 migration
tool, then this message serves as a reminder of the Java
packages or Smalltalk applications that you have
modified.

Stage 1 on VisualAge for Java

The following messages occur only in the VisualAge for Java version of the
VisualAge Generator to EGL migration tool.

HPT.EGL.0101.e Current package name
vagenPackageName - results in EGL
package name eglPackageName, which
starts with # or uses reserved word(s)
reservedWordList. It must be renamed.

Explanation: EGL reserved words cannot be used as
any word in the dot notation for EGL package names.

User Response: Use the Stage 1 renaming rules to
create an EGL package name that does not violate the
EGL naming restrictions. Refer to Appendix

[Appendix A, “Reserved words,” on page 171 that lists
the EGL reserved words. Be sure that the resulting EGL
package name does not start with the # symbol.

HPT.EGL.0102.e Migration Set migrationSetName -
migrationSetVersion references version
projectVersionl and projectVersion2 of
project projectName. The migration set
was not created.

Explanation: The migration tool expanded the
high-level PLP project for the specified migration set
version. The expanded high-level PLP project contains
multiple versions of the same project name. Migration
cannot continue.

User Response: If you are using PLP projects, modify
the high-level PLP project and any lower-level PLP
projects that it references so that only one version of
each project is included in the PLP chain. If you created
the migration plan file by hand, modify the migration
plan file so that only one version of each project is
specified for the migration set.

HPT.EGL.0103.e An error occurred while loading the
database driver. driver: driverName.
Please check to ensure that the
db2java.zip file is in the classpath.

Explanation: The database driver that is specified in
the Stage 1 preferences file could not be found.

User Response: Modify the Stage 1 preferences file to

point to the correct driver name and location.

HPT.EGL.0104.e An error occurred while connecting
to the database. database: databaseName.

Explanation: The Stage 1 migration tool was not able
to connect to the migration database.

User Response: Make sure that the specified database
has been created. Also review your user ID and
password settings in the Stage 1 preferences file to
ensure that they are correct.

HPT.EGL.0105.e Error occurred when closing the
database connection.

Explanation: The Stage 1 migration tool was not able
to close the connection to the migration database.

User Response: The Stage 1 migration tool does any
commits before it tries to close the database connection.
You should be able to shut down VisualAge Generator
to force the connection to close.

HPT.EGL.0106.e Error accessing repository in method
methodName.

Explanation: The specified method for the Stage 1
migration tool was not able to access the repository.

User Response: Verify that your repository is
accessible and that there are no network problems if
you are using a remote repository. Then try migrating
again.

HPT.EGL.0107.e Error occurred while writing out
XML file fileName.

Explanation: The Stagel migration tool was not able
to write the specified file name.

User Response: Verify that there is sufficient space
available for the file. Then try migrating again.

278 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Stage 1 on VisualAge Smalltalk

The following messages occur only in the VisualAge Smalltalk version of the
VisualAge Generator to EGL migration tool.

HPT.EGL.0201.e Current application name
vagenApplicationName - results in EGL
package name eglPackageName, which
starts with # or uses reserved word(s)
reservedWordList. It must be renamed.

Explanation: EGL reserved words cannot be used as
any word in the dot notation for EGL package names.

User Response: Use the Stage 1 renaming rules to
create an EGL package name that does not violate the
EGL naming restrictions. Refer to Appendix

[Appendix A, “Reserved words,” on page 171] that lists
the EGL reserved words. Be sure that the resulting EGL
package name does not start with the # symbol.

HPT.EGL.0202.e Migration set migrationSetName
references Configuration map
configurationMapName, which is not
defined in the repository.

Explanation: The Stage 1 migration tool expanded the
high-level configuration map for the specified
migration set. However, when the tool expanded the
high-level configuration map and the chain of required
maps and applications, one or more required maps was
not available in the library.

User Response: Determine whether the required map
should be included in the migration set. If so, check to
see whether the requested version of the configuration
map has been purged from the library. If so, salvage
the requested configuration map and then migrate
again.

HPT.EGL.0203.e ProgramContext encountered a
database error errorMessage.

Explanation: A database error occurred. Possible
problems are invalid schema name, user authority
restrictions, or missing tables.

\\\

User Response: Correct the migration preferences file.
If the problem persists, contact IBM support for
assistance.

HPT.EGL.0204.e An error occurred while connecting
to the database. ErrorMessage.

Explanation: A database error occurred on connect.
Possible problems are invalid userid or password name
or invalid database name.

User Response: Correct the migration preferences file.
If the problem persists, contact IBM support for
assistance.

HPT.EGL.0205.i Migration produced n migration sets
from the v versions of configuration
map configMapName. The preference file
specified the version depth as d.

Explanation: The Stage 1 migration preferences file
specified that you wanted to migrate the number of
versions specified by d. The Stage 1 migration tool
should have produced d migration sets -- one for each
version of the specified configuration map. However,
the migration tool only created the number of
migration sets specified by n. The number specified by
v is the number of versions of the specified
configuration map that the migration tool found in the
library. If v is less than d, this means that there were
not as many versions of the configuration map as you
anticipated. In this case, n and v should be equal,
indicating that all the configuration map versions
resulted in migration sets. If v is greater than d, this
means that there are more versions of the configuration
map in the library. In this case, n and d should be
equal, indicating that your version depth preference
was met.

User Response: None.

Messages from the VisualAge Generator to EGL migration tool— Stage

2

The message inserts are always the VAGen part name, before any required
renaming for EGL reserved words.

IWN.MIG.0001.e Exception parsing External Source
Format file fileName - invalid External
Source Format header.

Explanation: The migration tool only processes
External Source Format that is exported from VisualAge
Generator 4.5. The first line of the specified External

Source Format file does not have the proper header for
a VisualAge Generator 4.5 External Source Format file.

User Response: Import the External Source Format file
into VisualAge Generator 4.5. This converts your
current parts to VisualAge Generator 4.5 format. Then

Appendix C. Messages from the migration tools 279

export the parts using VisualAge Generator 4.5 and run
migration again.

IWN.MIG.0002.e Exception parsing External Source
Format file fileName, partType, partName -
exceptionText

Explanation: A problem occurred parsing the External
Source Format syntax from VisualAge Generator.
Possible causes of this problem are:

* Mismatched quote marks, including the following;:
currency field for a data item

¢ Mismatched comment delimiters in a control part.

* National language characters that are not valid for
your locale. For example, attempting to migrate
VAGen source code that uses double-byte characters
such as Chinese on a workstation that is not set for a
double-byte locale.

User Response: Correct the part in VisualAge

Generator and export the External Source Format again.

Then run the Stage 2 migration tool to process the file.
If you are unable to correct the part in VisualAge
Generator, contact IBM support for assistance. Be
prepared to provide the External Source Format source
for the file.

IWN.MIG.0003.e Exception converting to EGL for
file fileName, partType, partName -
exceptionText

Explanation: A problem occurred during the creation
of the EGL source. The exceptionText identifies the
specific problem that occurred.

User Response: Contact IBM support for assistance.
Be prepared to provide the External Source Format
source for the file.

IWN.MIG.0047.i Migration set Name — migration
started.

Explanation: This is an informational message to
indicate status from the migration tool.

User Response: None.

IWN.MIG.0048.i Migration set Name - migration
completed.

Explanation: This is an informational message to
indicate status from the migration tool.

User Response: None.

IWN.MIG.0049.i partType partName for EGL
projectName, packageName, fileName -
Migration started

Explanation: This is an informational message to
indicate status from the migration tool. The partType is
one of the following: Program, Map Group, or Table.

The associates for the specified partName will be
migrated at the same time. The associates might be in
the same file as the partName or in different projects,
packages, or files based on information in the migration
database. When migration of a program starts, each
associated map group is migrated, followed by each
associated table. Finally, any remaining associates
(records, shared items, and functions) are migrated.

User Response: None.

IWN.MIG.0050.i Program programName - Migration of
other associates started

Explanation: This is an informational message to
indicate status from the migration tool. When migration
of a program starts, each associated map group is
migrated, followed by each associated table. Finally,
any remaining associates (records, shared items, and
functions) are migrated. Message IWN.MIG.0050.i is
issued when the migration of the remaining associates
for the program starts.

User Response: None.

IWN.MIG.0051.e Exception parsing migration set
planName, partType, partName - invalid
External Source Format header.

Explanation: The migration tool only processes
External Source Format that is exported from VisualAge
Generator 4.5. The first line of the External Source
Format for the specified part does not have the proper
header for a VisualAge Generator 4.5 External Source
Format file. This might occur if you modified the
sample Stage 1 migration tool or if you wrote your
own Stage 1 migration tool to load the migration
database.

User Response: Import the External Source Format file
into VisualAge Generator 4.5. This converts your
current parts to VisualAge Generator 4.5 format. Then
use the Stage 1 migration tool to export the migration
set.

IWN.MIG.0052.e Exception parsing migration set
planName, partType, partName -
exceptionText.

Explanation: A problem occurred parsing the External
Source Format syntax from VisualAge Generator.
Possible causes of this problem are:
* Mismatched quote marks, including the following:

— currency field for a data item
¢ Mismatched comment delimiters in a control part.

* National language characters that are not valid for
your locale. For example, attempting to migrate
VAGen source code that uses double-byte characters
such as Chinese on a workstation that is not set for a
double-byte locale.

User Response: Correct the part in VisualAge

280 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Generator and run Stage 1 migration again to correct
the database. Then run the Stage 2 migration tool again
to process the updated parts. If you are unable to
correct the part in VisualAge Generator, contact IBM
support for assistance. Be prepared to provide a small
repository (.dat file) containing the parts that have
problems.

IWN.MIG.0053.e Exception converting to EGL for
migration set planName, partType,
partName - exceptionText.

Explanation: A problem occurred during the creation
of the EGL source. The exceptionText identifies the
specific problem that occurred.

User Response: Contact IBM support for assistance.
Be prepared to provide the External Source Format
source for the part.

IWN.MIG.0054.e Invalid External Source Format for
migration set migrationSetName, partType,
partName.

Explanation: The External Source Format stored for
the specified part is not valid. The migration tool
continues processing other parts in the specified
migration set. For the purposes of migrating with
associated parts, the migration tool considers the
specified part to be unavailable. The migration tool
stores intentionally invalid EGL in the migration
database for the specified part. The EGL that is stored
is EZE_UNKNOWN_PARTTYPE partName; This ensures
that there will be an error on the Tasks list.

User Response: Review the specified part in
VisualAge Generator. Try exporting External Source
Format for the part and migrating the part in single file
mode.

IWN.MIG.0055.e Migration halted - error limit
exceeded.

Explanation: The error threshold has been exceeded
for parts with invalid External Source Format. The
migration tool stops processing.

User Response: Review all occurrences of message
IWN.MIG.0054.e. If you created your own tool to load
the migration database, there might be a problem with
the way the tool is loading External Source Format
code into the migration database. See [Appendix G}
["Migration Database,” on page 303 for some queries
that might be useful in determining what is causing the
problem.

IWN.MIG.0080.i VAGen Migration Preferences file
pref_store.in not found; defaults
assumed.

Explanation: There is no VAGen migration preferences
file. The migration tool uses the default values for the

preferences (for example, the renaming suffix and help
map suffix). This might be because you specified a new
workspace during migration so that preferences do not
exist. The preferences file is located in
workspace-directory\.metadata\plugins

\com.ibm.etools.egl.vagenmigration
\pref_store.ini

User Response: See ['VAGen Migration Syntax|
[Preferences” on page 12§ for information about the
default values for the migration preferences.

IWN.MIG.0081.i File fileName - migration completed.

Explanation: The migration tool has completed
processing for the specified file.

User Response: Review the log messages to see the
results of the migration.

IWN.MIG.0082.e File fileName - required parameters
are not specified.

Explanation: One or more required parameters have
not been specified. The -importFile parameter is always
required. If the -importFile parameter specifies an
External Source Format file, then the -eglFile and
-package parameters are also required.

User Response: Review the batch command file to
determine which parameters were not specified. Add
the parameters and then run the batch command file
again.

IWN.MIG.0083.e File fileName - parameter parmName
has not been assigned a value.

Explanation: parmName is one of the following:
-importFile, -eglFile, -package.

User Response: Correct the batch command file and
then run it again.

IWN.MIG.0084.e File fileName - parameter parmName,
value value is not valid.

Explanation: parmName is one of the following:
-importFile, -eglFile, -package. The parameter names
are case sensitive.

User Response: Correct the batch command file and
then run it again.

IWN.MIG.0085.e File fileName - invalid parameters
are passed in the parameter list.

Explanation: There is a problem with the batch
command file. One or more of the parameters is
entered incorrectly. The only valid parameters are:
-importFile, -eglFile, -package, and -overwrite.

User Response: Correct the batch command file and
then run it again.

Appendix C. Messages from the migration tools 281

IWN.MIG.0090.e Program programName - is a web
transaction program, which is not
supported for migration.

Explanation: The specified program is a web
transaction program. The migration tool does not
migrate the program part.

User Response: None. You must wait until a future
release of EGL to be able to migrate this program.

IWN.MIG.0091.e Record recordName - is a Ul record,
which is not supported for migration.

Explanation: The specified record is a User Interface
(UI) record. The migration tool does not migrate the
record part.

User Response: None. You must wait until a future
release of EGL to be able to migrate this record.

IWN.MIG.0092.e Function functionName - uses XFER
with a UI record, which is not
supported for migration.

Explanation: The specified function contains an XFER
statement that uses a Ul record. This release of EGL
does not support web transactions or UI records. The
migration tool migrates the function, but the EGL
syntax that is produced might not be the correct
replacement for the XFER with a Ul record statement.
However, this technique preserves as much of your
logic as possible.

User Response: Review the EGL function. You will
not be able to migrate any web transaction programs or
UI records that use this function. Therefore, you will
not be able to use this function until a future release of
EGL. You might want to move the function to a
different project to avoid having errors on the EGL
Tasks list.

IWN.MIG.0093.w Function functionName - uses one or
more EZEUIxxx special function words.

Explanation: The specified function contains
statements that use the special function words
EZEUIERR or EZEUILOC. Web transactions and Ul
records are not supported by this release of EGL.
However, there are EGL replacements for the EZEUIxxx
special function words. The migration tool migrates the
function and converts the EZEUIxxx word to the EGL
equivalent system library function. This preserves as
much of your logic as possible.

User Response: Review the EGL function. You will
not be able to migrate any web transaction programs or
UI records that use this function. However, you might
be able to use the function if you create any new EGL
page handlers.

IWN.MIG.0094.e PSB psbName is not supported for
migration.

Explanation: PSB parts are not currently supported by
the migration tool. The migration tool does not migrate
the PSB part.

User Response: Review the PSB and any programs
that use this PSB. If the PSB only contains TP PCBs you
might be able to generate the program for another
environment if all of the following are true:

* The program does not perform any DL/I 1/0.
* The program does not pass EZEDLPSB or
EZEDLPCB as an argument on a call.

* The program does not expect to receive EZELDPSB
or EZEDLPCB as a called parameter.

¢ The program does not use any EZEDLxxx status
words (for example, EZEDLKEY or EZEDLSTC).

* The program does not use a resource association part
to associate a file or print output with an IMS
message queue, GSAM or MFS.

* The program does not expect to call or be called by a
program that only runs in the IMS or IMS BMP
environment.

IWN.MIG.0095.e Function functionName - EZESCRPT
is not supported for migration.

Explanation: The specified function contains
statements that use the EZESCRPT special function
word. EZESCRPT is not currently supported by the
VAGen migration tool. The migration tool migrates the
function, but comments out the statement that uses
EZESCRPT.

User Response: Review the EGL function. You will
not be able to generate or run programs that use this
function in this release.

IWN.MIG.0096.e Function functionName - uses one or
more EZEDLxxx status words, which are
not supported for migration.

Explanation: The specified function contains
statements that use one or more of the EZEDLxxx
special function words (for example, EZEDLKEY and
EZEDLSTC). DL/I is not currently supported by the
VAGen migration tool. The migration tool migrates the
function, but the EGL syntax that is produced might
not be the correct replacement for this EZEDLxxx
special function word.

User Response: Review the EGL function. You will
not be able to generate or run programs that use this
function in this release. You might want to move the
function to a different project to avoid having errors on
the EGL Tasks list.

282 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

IWN.MIG.0097.e Program programName - called
parameter parmName is not supported
for migration.

Explanation: A VAGen program specifies either
EZEDLPSB or EZEDLPCB as a called parameter. DL/I
and the IMS runtime environment are not currently
supported by the migration tool. The migration tool
migrates the program, but comments out the use of this
called parameter.

User Response: Review the program. You will not be
able to test or generate it at this time.

IWN.MIG.0098.e Record recordName is a DL/I record,
which is not supported for migration.

Explanation: The specified record name is a DL/I
record. DL/I is not currently supported by the
migration tool. The migration tool does not migrate the
record.

User Response: Review any programs that use this
record. You will not be able to test or generate the
programs at this time.

IWN.MIG.0099.e Function functionName - DL/I I/O is
not supported for migration.

Explanation: The specified function performs I/O on
an DL/I record. DL/I is not currently supported by the
VAGen migration tool. The migration tool migrates the
function, but the information for the I/O statement is
not correct.

User Response: Review the EGL function. You will
not be able to generate or run programs that use this
function in this release. You might want to move the
function to a different project to avoid having errors on
the EGL Tasks list.

IWN.MIG.0101.e Data item dataltemName - Unable to
determine edit routine type for
editRoutineName; function assumed.

Explanation: VisualAge Generator supports EZEC10,

EZEC11, a function or a table as the map edit routine

for a data item. EGL supports both a validator function

and a wvalidatorTable property for a data item. The

migration tool converts the map edit routine as follows:

* EZEC10 and EZEC11 migrate to the validator
property.

* If the part specified by editRoutineName is available
during migration and is a function, the
editRoutineName migrates to the validator property.
The migration tool also migrates the edit routine to
the validator property if the editRoutineName is longer
than 7 characters because table names are limited to
7 characters in VisualAge Generator.

e If the part specified by editRoutineName is available
and is a table, the editRoutineName migrates to the

validatorTable property. The migration tool also
migrates the edit routine to the validatorTable
property if an edit message is specified for the item
because VisualAge Generator only uses the edit
message in conjunction with EZEC10, EZEC11, or a
table.

e If the part specified by the editRoutineName is not
available during migration and the editRoutineName
is 7 or fewer characters and an edit message is not
specified, the migration tool assumes that
editRoutineName is a function and migrates to the
validator property. Message IWN.MIG.0101.e is only
issued in this situation.

User Response: If the specified edit routine is not a
function, modify the data item definition and change
the validator property to the validatorTable property. For
additional considerations, see the information on edit
routines in [“Map item edit routine for shared datal
litems” on page 45|

IWN.MIG.0102.w Part partName uses shared data
item dataltemName - Unable to migrate to
a primitive definition; using a type
definition

Explanation: You selected the preference that migrates
VAGen shared data items to EGL primitive definitions
whenever a shared data item is used in a record, table,
function parameter list, or function local storage. The
item specified by dataltemName is used in the part
specified by partName. However, the data item
definition is not available during migration. The
migration tool uses the data item name as a type
definition so that the migrated code will be valid.

User Response: No action is required if you want to
use the type definition. If you want to use a primitive
definition, modify the specified part to use the correct
item characteristics. Alternatively, include the shared
data item in your migration set (or the External Source
Format file if you are migrating in single file mode)
and migrate again.

IWN.MIG.0201.i Record recordName contains level 77
items; creating additional record named
level77RecordName.

Explanation: VisualAge Generator supports level 77
items in working storage records. EGL does not
support level 77 items. EGL does permit the definition
of independent data items. The migration tool splits
working storage records that contain level 77 items into
2 separate basicRecords -- one containing the non-level
77 items and one containing the level 77 items. If the
working storage record contains only level 77 items,
then the migration tool only creates the level 77
basicRecord. If a program specifies a primary working
storage record that contains level 77 items, the
migration tool includes declarations for both the
original basicRecord and the level 77 basicRecord in the
program definition.

Appendix C. Messages from the migration tools 283

User Response: None. For additional considerations,
including the effect if recordName is not available
during the migration of programs and statements, see
the information on level 77 items in records in
[77 items in records” on page 48

IWN.MIG.0202.i Record recordName redefines
redefinedRecordName.

Explanation: recordName is a VAGen Redefined record
that specifies redefinedRecordName as the record being
redefined. recordName provides a different item layout
for the same physical storage that is used by the
redefinedRecordName. EGL does not retain redefinition
information in the records. That information is kept
only in the programs. The migration tool includes a
comment in recordName to provide the original VAGen
redefinedRecordName information. When migrating
programs, if recordName is available and results in an
overlay definition in VisualAge Generator, the
migration tool includes the redefines property for the
recordName declaration.

User Response: None. For additional considerations,
including the effect if recordName is not available
during migration of a program, see the information on
redefined records in [“Redefined records” on page 47

IWN.MIG.0203.e Record recordName — Does not
contain any items.

Explanation: VisualAge Generator permits you to save
a record part that does not contain any items. However,
the record cannot be used in any programs because it is
invalid. The migration tool migrates the record.

User Response: Determine whether you still need to
have the record. If so, edit the record and add one or
more data items. If not, delete the record.

IWN.MIG.0204.e Record recordName - alternate
specification record altspecRecord is not
available; SQL table names cannot be
determined.

Explanation: The record recordName specifies an
alternate specification record named altspecRecord,
which provides the item structure for recordName. In
VisualAge Generator, for SQL records, the alternate
specification record also provides the SQL table names.
In EGL, the alternate specification record only provides
the structure by using the embed statement. The table
names must be specified in each SQL record definition.
When migrating recordName, the record specified as the
alternate specification record is not available during
migration. The migration tool cannot determine the
correct table names and sets the tableNames property to
##TABLES_NOT_FOUND##. The definition for
recordName is invalid.

User Response: Edit recordName and copy in the
tableNames and/or tableNameVariables properties from

the alternate specification record. The tableNames
property provides the actual SQL table names. The
tableNameVariables property provides table name host
variables. Both the tableNames and the
tableNameVariables properties can be used if the
recordName references a mixture of actual SQL table
names and SQL table name host variables. For
additional considerations, see the_e information on
alternate specification records in ["Alternate]
[specification records” on page 49

IWN.MIG.0205.e Record recordName - alternate
specification record altspecRecord is not
available; SQL key items cannot be
determined.

Explanation: The record recordName specifies an
alternate specification record named altspecRecord,
which provides the item structure for recordName.
When VisualAge Generator determines the default
selection condition for an SQL record, VisualAge
Generator merges any items that specify key=yes in the
alternate specification record with the key item, if any,
specified in recordName. The keys are merged based on
the order in which the items are listed in the record
structure. In EGL, the alternate specification record only
provides the structure by using the embed statement. All
key items must be specified in each record definition.
When migrating recordName, the record specified as the
alternate specification record is not available during
migration. The migration tool cannot determine the
correct key items and sets the keyltems property to
#HHKEYS_NOT_FOUND###, followed by the key item,
if any, from recordName. The definition for recordName is
invalid.

User Response: Edit recordName and change the
keyltems property to replace ##KEYS_NOT_FOUND###
with the list of item names that specified key=yes in
the VAGen alternate specification record (altspecRecord).
Be sure to merge the key items from the alternate
specification record with the key item specified in the
VAGen definition for recordName so that the keyltems
property lists the items in the same order they appear
in the record structure. If an item is specified as
key=yes in the alternate specification record and as the
key item in recordName, only include the item once in
the merged list of keyltems in recordName. For additional
considerations, see the section on "Alternate
specification records” on[”Alternate specification|
[records” on page 49,

IWN.MIG.0206.i SQL Record recordName — Contains
a key item keyltem without specifying an
alternate specification record.

Explanation: VisualAge Generator permits you to save
an SQL record that specifies a key item even if you do
not specify an alternate specification record. However,
in this situation, VisualAge Generator ignores the key
item during test and generation. The key item only has

284 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

meaning when there is also an alternate specification
record.

User Response: None. The key item was ignored in
VisualAge Generator. The migration tool eliminates it
during migration.

IWN.MIG.0207.i Record recordName - Specifies
alternate specification record
altspecRecord with only level 77 items;
embed statement omitted.

Explanation: The record specified by altspecRecord is a
working storage record that only contains level 77
items. When recordName specifies a working storage
record as the alternate specification, VisualAge
Generator uses only the structure (the non-level 77
items) from altspecRecord. The migration tool omits the
embed statement because there are no items in the
structure of altspecRecord.

User Response: None. However, you might want to
delete recordName because it is an empty record. Be
sure to delete all references to recordName in your
programs.

IWN.MIG.0208.e Record recordName - Alternate
specification record altspecRecord is not
available; cannot determine SQL column
name for !litemColumnName variables.

Explanation: The record recordName specifies an
alternate specification record named altspecRecord,
which provides the item structure for recordName.
When VisualAge Generator determines the default
selection condition for an SQL record, VisualAge
Generator converts any !itemColumnName variables to
the corresponding SQL column name. In EGL,
litemColumnName variables are not supported. The
SQL columns must be explicitly named in the default
selection condition for each SQL record definition.
When migrating recordName, the record specified as the
alternate specification record is not available during
migration. The migration tool cannot determine the
correct SQL column name that corresponds to one or
more !itemColumnName variables in the default
selection condition. The migration tool uses
litemColumnName in the EGL default selection
condition. The definition for recordName is invalid.

User Response: Edit recordName and change the
defaultSelectCondition property to replace the
litemColumnName variables with the corresponding
SQL column names from the VAGen alternate
specification record (altspecRecord). For additional
considerations, see the information on
litemColumnName variables in|’Alternate specification|
frecords” on page 49|

IWN.MIG.0209.e Record recordName - Alternate
specification record altspecRecord has no
items; embed statement omitted.

Explanation: The record recordName specifies an
alternate specification record named altspecRecord,
which provides the item structure for recordName.
However, the alternate specification record does not
have any data items. The migration tool omits the
embed statement from the definition for recordName.

User Response: None. However, you should review
recordName and altspecRecord to determine whether you
need to include data items or whether the two records
can be deleted. Be sure to delete all references to these
records in your programs.

IWN.MIG.0301.e Table name fableName is a reserved
word. It must be renamed.

Explanation: The migration tool does not rename
tables for you.

User Response: You must change the name of the
table and all references to it. This includes references in
the following places:

* Program use declaration statements

* Logic statements in programs and functions

* Data item validatorTable properties

* Form field validatorTable properties

If you want to keep the original table name as the
name for the generated table, set the alias property to
the original table name. If you do not specify the alias

property, be sure to change any non-EGL references to
the table name, including CICS program definitions.

IWN.MIG.0401.e Map group (form group) name
mapGroupName is a reserved word. It
must be renamed.

Explanation: The migration tool does not rename map
groups (form groups) for you.

User Response: You must change the name of the
form group and all references to it, including references
in program use declaration statements. If you want to
keep the original map group name as the name for the
generated form group, set the alias property to the
original map group (form group) name. If you do not
specify the alias property, be sure to change any
non-EGL references to the form group name, including
CICS program definitions.

IWN.MIG.0402.e Map group mapGroupName -
Multiple devices have the same depth
and width, but different floating areas;
devices are: devicesList

Explanation: VisualAge Generator permits, but does
not recommend, different floating area sizes for device
types that have the same device size. EGL only permits

Appendix C. Messages from the migration tools 285

one floating area for each device size. The migration
tool migrates the floating area size for each device type.
The form group definition is invalid. This message is
repeated for each group of same-size device types that
specified different floating area information in
VisualAge Generator.

User Response: Edit the form group and delete all
except one floating area specification for each group of
same-size devices.

IWN.MIG.0403.e Form Group formGroupName -
Requires editing to nest forms within
the form group.

Explanation: When you migrate in single file mode,
the migration tool does not nest forms within the form
group. Instead, the migration tool inserts an EGL use
statement to indicate the name of the forms that belong
to the form group. The migration tool includes
comments at the beginning and end of each form to
indicate its form group.

User Response: Edit the file containing the form
group part and move the form parts so that they are
nested within the form group part. The use statements
in the form group part indicate where the forms should
be moved. After you have nested the form within the
form group, remove the use declaration statement.

IWN.MIG.0404.w Map Group mapGroupName - Uses
device deviceName and size depth,width
which is no longer supported. It must
be changed.

Explanation: VisualAge Generator permits some
device types which EGL COBOL generation no longer
supports for floating areas and text forms. The
migration tool includes the original depth and width in
the screenSize property within the ScreenFloatingArea
property. However, this screenSize is no longer
supported in EGL COBOL generation. If you generate
for COBOL, there will be an error message from the
preprocessor.

User Response: If you plan to generate for COBOL,
edit the formGroup in EGL and either remove the
ScreenFloatingArea property for this depth and width or
change the depth and width to a size that is supported.
You might also need to modify the text forms within
the formGroup to reposition the variables and constants
to better fit the new depth and width.

IWN.MIG.0501.e Help map group mapGroupName
contains map mapName with variable
fields — mapName conflicts with the
same map name in the program’s main
map group.

Explanation: VisualAge Generator permits the same
map name to be used in a program’s main map group
and its help map group. EGL does not permit any

duplicate form names in the program’s two form
groups. This restriction applies even if the forms with
duplicate names are not used by the program. The
migration tool renames maps in a program’s help map
group if they conflict with maps in the program’s main
map group and only contain constant fields. The
migration tool does not rename a map in the program’s
help map group if it contains variable fields, even if the
name conflicts with a map name in the program’s main
map group.

User Response: Edit the help form group and change
the name of the form. Also be sure to change the form
definition and all references to this form in all
programs that use the form group. For additional
considerations, see the information on map names in
[“Map names and help map names” on page 54}

IWN.MIG.0502.e Map group mapGroupName, map
mapName and variable field mapltemName
- Unable to determine edit routine type
for editRoutineName; function assumed.

Explanation: VisualAge Generator supports EZEC10,

EZEC11, a function or a table as the map edit routine

for a map variable. EGL supports both a validator

function and a validatorTable property for a form field.

The migration tool converts the map edit routine as

follows:

¢ EZEC10 and EZEC11 migrate to the validator
property.

¢ If the part specified by editRoutineName is available
during migration and is a function, the
editRoutineName migrates to the validator property.
The migration tool also migrates the edit routine to
the validator property if the editRoutineName is longer
than 7 characters because table names are limited to
7 characters in VisualAge Generator.

e If the part specified by editRoutineName is available
and is a table, the editRoutineName migrates to the
validatorTable property. The migration tool also
migrates the edit routine to the validatorTable
property if an edit message is specified for the item
because VisualAge Generator only uses the edit
message in conjunction with EZEC10, EZEC11, or a
table.

e If the part specified by the editRoutineName is not
available during migration and the editRoutineName
is 7 or fewer characters and an edit message is not
specified, the migration tool assumes that
editRoutineName is a function and migrates to the
validator property. Message msgPrefix.0502.e is only
issued in this situation.

User Response: If the specified edit routine is not a
function, modify the form field and change the validator
property to the validatorTable property. For additional
considerations, see the information on edit routines in
|“Variable map fields and edit routines” on page 57|

286 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

IWN.MIG.0503.w Map group mapGroupName, map
mapName - Unnamed variable field
converted to constant field at
position(row,column).

Explanation: VisualAge Generator permits, but does
not recommend, unnamed variable fields on maps. The
program cannot access these unnamed variable fields.
At test and generation, unnamed variable fields are
converted to constants. The migration tool converted
this unnamed variable field to a constant because one
or more properties are non-default values.

User Response: Review the form definition and
ensure that a constant field is the correct migration for
this field. For additional considerations, see the

information on unnamed variable fields in

|variable fields” on page 59|.

IWN.MIG.0504.w Map group mapGroupName, map
mapName - Unnamed variable field
removed from position(row,column).

Explanation: VisualAge Generator permits, but does
not recommend, unnamed variable fields on maps. The
program cannot access these unnamed variable fields.
At test and generation, unnamed variable fields are
converted to constants. The migration tool removed
this unnamed variable field because all of its properties
specify the default values for a constant field. EGL does
not require that constants with default properties be
explicitly defined for the form.

User Response: Review the form definition and
ensure removing this field is the correct migration. For
additional considerations, see the information on
unnamed variable fields in ['Unnamed variable fields”|

IWN.MIG.0505.w Map Group mapGroupName, map
mapName - Uses device deviceName and
size depth,width which is no longer
supported. It must be changed.

Explanation: VisualAge Generator permits some
device types which EGL COBOL generation no longer
supports for text forms. The migration tool includes the
original depth and width in the screenSizes property for
the migrated text form. However, this screen size is no
longer supported in EGL COBOL generation. If you
generate for COBOL, there will be an error message
from the preprocessor.

User Response: If you plan to generate for COBOL,
edit the text form in EGL and remove the depth and
width from the screenSizes property or change the depth
and width to a size that is supported. You might also
need to modify the text form to reposition the variables
and constants to better fit the new depth and width.

IWN.MIG.0506.e Map Group mapGroupName, map
mapName - Unprotected constant at row,
column; changed to protect=skip.

Explanation: VisualAge Generator permits
unprotected constants on both display and printer
maps. EGL requires that constants be specified as either
protect=skip or protect=no. The migration tool sets
protect=skip for the field.

User Response: No action is required if protect=skip
is acceptable. With protect=skip, the end user can
continue typing at the end of any immediately
preceding variable field and the additional characters
will be placed in the next unprotected variable field.
Protect=no prevents the end user for continuing to type
at the end of any immediately preceding variable field.
The end user must tab to the next variable field to
continue typing.

IWN.MIG.0507.w Map Group mapGroupName, map
mapName - constant at row=0, column=0
changed to row=1, column=1.

Explanation: VisualAge Generator tolerates, but does
not fully support, a constant at position row=0,
column=0 on a map. Fields at row=0, column=0 cannot
specify any attribute information. EGL does not
support any field at row=0, column=0. The field at
row=0, column=0 is a constant and the first byte is
initialized to blank. The migration tool changes the
position to row=1, column=1 and deletes the first byte
of the constant value. The migration tool does not
include any field presentation properties such as color
or highlighting for the field because this information
was not recorded in the External Source Format file.

User Response: Test any programs that use this form
to determine if there is a change in the appearance of
the display. If there is, edit the form and set the field
presentation properties to obtain the desired
appearance.

IWN.MIG.0508.e Map Group mapGroupName, map
mapName - constant at row=0, column=0
cannot be changed.

Explanation: VisualAge Generator tolerates, but does
not fully support, a constant at position row=0,
column=0 on a map. Fields at row=0, column=0 cannot
specify any attribute information. EGL does not
support any field at row=0, column=0. The field at
row=0, column=0 is a constant and the first byte is not
initialized to blank. The migration tool does not change
the position for the field because this could cause the
constant to be moved or eliminated from the form and
change the appearance. The migration tool does not
include any field presentation properties such as color
or highlighting for the field because this information
was not recorded in the External Source Format file.
There will be an error on the Tasks list.

Appendix C. Messages from the migration tools 287

User Response: Edit the form and change the constant
field to position the field at row=1, column = 1. If
necessary, modify the constant field to eliminate one
byte to compenstate for the attribute byte that now
occupies row=1, column=1. Be sure to test any
programs that use this form to determine if there is a
change in the appearance of the display. If there is, edit
the form and set the field presentation properties to
obtain the desired appearance.

IWN.MIG.0509.e Map Group mapGroupName, map
mapName - variable at row=0, column=0
cannot be changed.

Explanation: This map might be from an older version
of Cross System Product or VisualAge Generator.
VisualAge Generator 4.5 does not support variables at
row=0, column=0. Fields at row=0, column=0 cannot
specify any attribute information. EGL does not
support any field at row=0, column=0. The field at
row=0, column=0 is a variable field. The migration tool
does not change the position for the field because this
would either cause the field to be moved or result in
the loss of the first byte of data. The migration tool
does not include any presentation properties such as
color or highlighting for the field because this
information was not recorded in the External Source
Format file. There will be an error on the Tasks list.

User Response: Edit the form and change the field to
position the field at row=1, column=1. If necessary,
modify other fields around the variable field to avoid
the loss of any data due to the attribute byte that now
occupies row=1, column=1. Be sure to test any
programs that use this form to determine if there is a
change in the appearance of the display. If there is, edit
the form and set the field presentation properties to
obtain the desired appearance.

IWN.MIG.0510.e Map Group mapGroupName, map
mapName - mapName conflicts with
program name.

Explanation: The program uses a map group or help
map group that contains a map that is named the same
as the program. VisualAge Generator permits the map
name to be the same as the program name. EGL does
not permit the form name to be the same as the
program name. The migration tool renames a map in
the program’s help map group if the map name is the
same as the program name and the map does not have
any variable fields. However, the migration tool does
not rename a map in the following situations:

* The map is a map with variable fields in the
program’s help map group.

¢ The map is any map in the program’s main map
group.

User Response: Edit the form group and change the

name of the form. Also be sure the change the form
definition and all references to this form in all

programs that use the form group. For additional
considerations, see the information on map names in
[“Map names and help map names” on page 54}

IWN.MIG.0601.w Function functionName, I/O object
recordName - Unable to determine record
type for UPDATE option; non-SQL
record assumed.

Explanation: For SQL, if there are multiple UPDATE
or SETUPD statements in a program, VisualAge
Generator requires that the REPLACE function specifies
the name of the corresponding UPDATE or SETUPD
statement. EGL uses the resultSetID for SQL statements
to specify the relationship between a replace statement
and its corresponding get or open statement. The
record specified by recordName is not available during
migration. The migration tool assumed that the
UPDATE function is for a non-SQL record and did not
include the resultSetID.

User Response: If validation or preprocessing flag an
error because there are multiple get or open statements
for the same record in the program, edit the function
and add a resultSetID to the get for update statement.
The resultSetID must be unique within the program.
The recommended resultSetID is the the function name
followed by the Result Set Suffix preference you used
during migration. For additional considerations, see the
section on "SQL I/0O with multiple updates” on
[I/O with multiple updates” on page 73

IWN.MIG.0602.w Function functionName - Unable to
determine map type for I/O object
mapName; display map assumed.

Explanation: VisualAge Generator uses the DISPLAY
I/0 option for both display and printer maps. EGL
uses the display statement only for text forms and the
print statement for print forms. In VisualAge Generator
Compatibility mode, the display statement can also be
used for print forms. The map specified as mapName is
not available during migration. The migration tool
assumes that the map is a display map and migrates to
the EGL display statement.

User Response: No action is required as long as you
continue to use VisualAge Generator Compatibility
mode or if the map is a display map. If the map is a
print map and you want to discontinue use of
VisualAge Generator Compatibility mode, you must
change the function to use the print statement. For
additional considerations, see ['DISPLAY statement for|
[maps” on page 66|

IWN.MIG.0603.e Function functionName, SQL 1/O
object recordName - Unable to determine
SQL table name(s).

Explanation: VisualAge Generator determines the SQL
table names from the SQL record at test and generation
time. EGL requires that the table names be included in

288 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

any modified SQL statement. The record specified by
recordName is not available during migration. The
migration tool uses EZE_UNKNOWN_SQLTABLE for
the table name to insure that validation and
preprocessing will flag an error. The migration tool also
sets the table label for the statement to T1.

User Response: Edit the function and specify the
correct table name(s) and table label(s) based on the
record definition. The table names are in either or both
of the tableNames and tableNameVariables properties in
the EGL record definition. For additional
considerations, see the information on SQL I/O options
in[’SQL I/O and litemColumnName” on page 72

IWN.MIG.0604.e Function functionName, SQL 1/O
object recordName - Unable to determine
column names for !itemColumnName
variable(s).

Explanation: The modified SQL statement used one or
more VAGen !itemColumnName variables. A VAGen
litemColumnName variable specifies the name of an
item in the SQL record definition which corresponds to
the actual SQL column name. VisualAge Generator
determines the actual SQL column names for any
litemColumnName variables from the SQL record at
test and generation time. EGL does not support
litemColumnName variables. Instead, EGL requires that
the actual SQL column names be used in any modified
SQL statement. The record specified by recordName is
not available during migration. The migration tool uses
the litemColumnNames in the modified SQL statement
to provide as much information as possible.

User Response: Edit the function and specify the SQL
column names based on the record definition. For each
litemColumnName, locate the corresponding item in
the SQL record definition. The column name for that
item is the column name you need to use in the EGL
1/0 statement. For additional considerations, see the
information on !itemColumnNames in |”SQL 1/0 andl

[litemColumnName” on page 72

IWN.MIG.0605.w Function functionName, SQL 1/O
object recordName - SQLEXEC with
model=none and no SQL clauses.

Explanation: The SQLEXEC statement specifies a
model type of none, but does not contain any SQL
clauses. VisualAge Generator in effect generates a no
op for this statement. The migration tool generates an
EGL no op statement (just a semi-colon) and includes a
VAGen Info comment to indicate that the model type
was none. If the VAGen function specifies an error
routine, the migration tool includes the try, onException,
and end statements appropriate for that error routine.

User Response: Review the function to determine
whether the I/O statement should be eliminated or
expanded.

IWN.MIG.0606.w Function functionName - Unable to
determine I/O object type for
ioObjectName for CONVERSE; map
assumed.

Explanation: VisualAge Generator uses the
CONVERSE 1/0 option for both display maps and Ul
records. EGL uses the converse statement, but with
different syntax, for both text forms and pageHandlers.
The part specified as the ioObjectName is not available
during migration. The migration tool assumes that the
I/0 object is a display map and migrates to the EGL
converse statement using the syntax required for a text
form.

User Response: If EGL validation or preprocessing
flag an error, then change the converse statement to the
EGL syntax required for a pageHandler.

IWN.MIG.0607.e Function functionName, SQL 1/O
object recordName - Unable to determine
SQL I/O clause clauseName.

Explanation: In VisualAge Generator, at some points
in time, only the SQL clause that was modified was
saved with the function. In this situation, VisualAge
Generator creates the remaining clauses from the record
definition that is specified as the I/O object for the
function. The specified recordName is not available
during migration. The migration tool is unable to create
the SQL clause. The clauseNames that might be listed in
this message include: SELECT, INTO, WHERE,
ORDERBY, INSERTCOLNAME, VALUES,
FORUPDATEOF, and SET. The migration tool builds a
skelton clause and includes
EZE_UNKNOWN_SQL_CLAUSENAME.

User Response: Locate the record specified in the
message. Edit the function to include the missing SQL
clauses. To determine what the missing SQL clauses
need to be, use VAGen SQL Statement Editor to view
the SQL clauses. See ['SQL 1/0 and missing required|
[SQL clauses” on page 7(| for more details and potential
problems.

IWN.MIG.0608.e Function functionName, SQL I/O
object recordName - Unable to determine
SQL I/O clause clauseName for alternate
specification altspecRecordName.

Explanation: In VisualAge Generator, at some points
in time, only the SQL clause that was modified was
saved with the function. In this situation, VisualAge
Generator creates the remaining clauses from the record
definition that is specified as the I/O object for the
function. The specified recordName is available during
migration. However, recordName specifies an alternate
specification record altspecRecordName which is not
available during migration. The migration tool is
unable to create the SQL clause. The clauseNames that
might be listed in this message include: SELECT, INTO,
WHERE, ORDERBY, INSERTCOLNAME, VALUES,

Appendix C. Messages from the migration tools 289

FORUPDATEOF, and SET. The migration tool builds a
skelton clause and includes
EZE_UNKNOWN_SQL_CLAUSENAME.

User Response: Locate the alternate specification
record specified in the message. Edit the function to
include the missing SQL clauses. To determine what the
missing SQL clauses need to be, use VAGen SQL
Statement Editor to view the SQL clauses. See |”SQL|
[[/O and missing required SQL clauses” on page 7(] for
more details and potential problems.

IWN.MIG.0701.e Function functionName - Unable to
determine map type for mapName used
in SET map PAGE statement; used
sysLib.EZE_SETPAGE();

Explanation: VisualAge Generator uses SET map
PAGE to indicate that the screen is to be cleared for a
display map or that a page eject is to occur for a
printer map. EGL uses the sysLib.clearScreen() statement
only for text forms and the sysLib.pageEject statement
for print forms. The map specified as mapName is not
available during migration. The migration tool does not
make an assumption about the map type. Instead, the
migration tool uses the sysLib.EZE_SETPAGE()
statement to insure that validation and preprocessing
will flag an error. The migration tool includes the
original map name as a comment.

User Response: Review the function and determine
whether clearScreen() or pageEject() is the correct choice.
For additional considerations, see the information on
the SET map PAGE statement in["SET map PAGH
[statement” on page 76

IWN.MIG.0702.e Function functionName - Unable to
determine return column name for
RETR statement due to missing table
tableName.

Explanation: If the return column is not specified on a
RETR statement, VisualAge Generator automatically
determines the return column name based on the
second column of the specified table. The EGL
replacement for RETR is an if statement, followed by an
assignment statement. The return column name must
be explicitly specified in the assignment statement. The
table specified by tableName is not available during
migration. The migration tool uses
EZE_UNKNOWN_RETURN_COLUMN to insure that
validation and preprocessing will flag an error. If this
problem occurs in program flow statements, the
program name appears in the message instead of a
function name.

User Response: Edit the function and specify the
correct return column based on the table definition. The
second column in the table is the default return column
that is used in VisualAge Generator. For additional
considerations, see the information on the RETR
statement in I"RETR statement” on page 75|

IWN.MIG.0703.e Function functionName - Unable to
determine search column name for
RETR statement due to missing table
tableName.

Explanation: If the search column is not specified on a
RETR statement, VisualAge Generator automatically
determines the search column name based on the first
column of the specified table. The EGL replacement for
RETR is an if statement, followed by an assignment
statement. The search column name must be explicitly
specified in the if statement. The table specified by
tableName is not available during migration. The
migration tool uses
EZE_UNKNOWN_SEARCH_COLUMN to insure that
validation and preprocessing will flag an error. If this
problem occurs in program flow statements, the
program name appears in the message instead of a
function name.

User Response: Edit the function and specify the
correct search column based on the table definition. The
first column in the table is the default search column
that is used in VisualAge Generator. For additional
considerations, see the information on the RETR
statement in the section[RETR statement” on page 75

IWN.MIG.0704.e Function functionName - Unable to
determine search column name for
FIND statement due to missing table
tableName.

Explanation: If the search column is not specified on a
FIND statement, VisualAge Generator automatically
determines the search column name based on the first
column of the specified table. The EGL replacement for
FIND is an if statement, followed by a function
invocation statement. The search column name must be
explicitly specified in the if statement. The table
specified by tableName is not available during
migration. The migration tool uses
EZE_UNKNOWN_SEARCH_COLUMN to insure that
validation and preprocessing will flag an error. If this
problem occurs in program flow statements, the
program name appears in the message instead of a
function name.

User Response: Edit the function and specify the
correct search column based on the table definition. The
first column in the table is the default search column
that is used in VisualAge Generator. For additional
considerations, see the information on the FIND
statement in [“FIND statement” on page 75

IWN.MIG.0705.e Function functionName — Uses
CALL CSPTDLI statement.

Explanation: The specified function contains a CALL
CSPTDLI statement which is not supported in this
release of EGL.

User Response: You must wait until a future release

290 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

of EGL to test or generate any program that uses this
function.

IWN.MIG.0706.e Function functionName - Unable to
determine record type for recordName
used in IF, WHILE, or TEST DUP
statement; used EZE_DUPLICATE.

Explanation: VisualAge Generator supports checking
both DUP and UNQ for both non-SQL and SQL
records. For SQL records, DUP and UNQ are identical.
EGL supports both duplicate and unique for non-SQL
records. EGL only supports unique for SQL records.
The record specified by recordName is not available
during migration. The migration tool migrates DUP to
EZE_DUPLICATE to insure that validation and
preprocessing will flag an error.

Note: The migration tool migrates the TEST statement
to an if statement.

User Response: Edit the function and change
EZE_DUPLICATE to one of the following:

* unique for an SQL record
* duplicate for a non-SQL record

For additional considerations, see the information on

IWN.MIG.0708.w Function functionName - Uses
EZESYS in statement other than IF,
WHILE, or TEST; old VAGen values
will be used.

Explanation: VisualAge Generator supports the use of
EZESYS in statements other than IF, WHILE, and TEST.
The migration tool migrates EZESYS based on the
statement type. In IF, WHILE, and TEST statements, the
migration tool converts EZESYS to sysVar.systemType
and also converts the values to the new EGL values.
For statements other than IF, WHILE, or TEST, the
migration tool converts to custPrefixEZESYS, where
custPrefix is the Renaming Prefix preference you set for
migration. When migrating programs, the migration
tool always includes a declaration for custPrefixEZESYS
and a statement to initialize custPrefixEZESYS to the
original VAGen values. The original VAGen values will
be used in this statement.

User Response: Review the function and determine
whether you want to use the original VAGen values or
the new EGL values. If you want to use the VAGen
values, no change is required. If you want to use the
new EGL values, change custPrefixEZESYS to
sysVar.systemType.

checking for DUP in ['I/O error values UNQ and DUP’|

IWN.MIG.0707.e Function functionName - Unable to
determine if item itemName is in a
record or map when used in IF, WHILE,
or TEST NULL statement; used
EZE_NULL.

Explanation: VisualAge Generator supports checking
for NULL for both a map item and an SQL item.
Checking a map item for NULL is equivalent to
checking it for blanks. Checking an SQL item for NULL
checks the null indicator variable to determine if the
column is null in the database. The equivalent EGL
statement is to check a map item for blanks and an
SQL item for null. The item specified in itemName is not
available during migration. The migration tool migrates
NULL to EZE_NULL to insure that validation and
preprocessing will flag an error.

Note: The migration tool migrates the TEST statement
to an if statement.

User Response: Edit the function and change
EZE_NULL to one of the following:

* blanks for a map item

* null for an SQL item

For additional considerations, see the information on

checking for NULL in[“Checking SQL and map items|
[for NULL” on page 78

IWN.MIG.0709.e Function functionName - Unable to
determine type for part partName for an
XFER; UI record assumed.

Explanation: VisualAge Generator uses the XFER
statement to transfer to another program or transaction
while first presenting either a map or a Ul record to the
end user. This release of EGL does not support web
transactions or UI records. The migration tool is unable
to determine that a map is being used. The migration
tool assumes the statement is XFER with a UI record
because that is more frequently used than XFER with a
map. The migration tool migrates the function, using a
forward statement. This is an intelligent guess as to
EGL syntax that will replace XFER with a UI record in
a future release. This preserves as much of your logic
as possible.

User Response: Review the function. If the function is
intended for use with maps, change the forward
statement to a show statement. See|"XFER” on page 82|
or the online EGL helps for details of the show
statement syntax. If the function is intended for use
with web transactions, you might want to move it to a
different project to avoid having errors on the EGL
Tasks list.

IWN.MIG.0801.e Program name programName is a
reserved word. It must be renamed.

Explanation: The migration tool does not rename
programs for you.

User Response: You must change the name of the
program and all references to it, including references on

Appendix C. Messages from the migration tools 291

call, transfer, and show statements. Also change the
names of any bind control or linkedit parts that
correspond to this program. If you want to keep the
original program name as the name for the generated
program, you can specify the alias property. If you do
not specify the alias property, be sure to change any
non-EGL references to the program name, including
CICS program definitions.

IWN.MIG.0802.w Program programName — Allows
implicit items. Migration does not create
definitions for implicit items.

Explanation: In VisualAge Generator, a program can
specify that it allows implicit data items. If a program
that allows implicit data items actually uses an item
without defining it, VisualAge Generator automatically
creates the definition for you at test and generation
time. EGL does not allow implicit items. The migration
tool does not create implicit definitions for you.

User Response: Validate the program in VisualAge
Generator to determine if any implicit items are being
used. If so, VisualAge Generator provides the
definitions for the implicit items in the validation
messages. In WebSphere Studio, edit the program
definition and add the corresponding EGL data item
declarations. You do not need to create a record to
contain the items. You can add the item declarations
directly to the program definition.

IWN.MIG.0803.w Program programName — Uses PSB
psbName.

Explanation: The program specifies a PSB name in its
program definition. EGL does not support the IMS and
IMS BMP environments in this release. EGL also does
not support DL/I in this release. The migration tool
creates a use declaration statement for the PSB but
comments it out. The program might or might not be a
valid program, depending on its intended runtime
environment and its use of DL/I.

User Response: Review the program to determine its
intended runtime environment and whether it uses
DL/I, including any use of CSPTDLI. If the VAGen
program is generated for both the IMS and CICS
environments and does not use DL/I, the PSB is used
only to interface to the IMS environment. You can
generate the EGL program for the CICS environment in
this release. You must wait until a future release of EGL
to generate for the IMS environment. If the program
uses DL/I, you must wait until a future release of EGL
to generate the program for either the CICS or IMS
environments.

IWN.MIG.0804.w Program programName - Unable to
determine part type for I/O object
partName used with CLOSE I/O option;
record assumed.

Explanation: In VisualAge Generator, the I/O objects
are automatically included at test or generation time.
The CLOSE I/0 option can be used for both records
and print maps. In EGL, records used in I/O
statements must be explicitly declared in the program.
Forms are not explicitly declared, but there must be a
use declaration for the form group. The CLOSE 1/0O
option is used in the specified program and the
specified partName is used as the I/O object for the
CLOSE. However, the specified partName is not
available during migration. The migration tool assumes
that the part is a record and includes the data
declaration.

User Response: If the migration tool guesses
incorrectly, there will be an error on the Tasks list. Edit
the program and remove the data declaration for the
print form.

IWN.MIG.0805.w Program programName - execution
mode not specified; nonsegmented
assumed.

Explanation: In VisualAge Generator, at some points
in time, the execution mode was not saved with the
program part. Execution mode only applies to main
transaction programs. The specified programName is a
main transaction program, but does not include the
execution mode in the external source format. The
migration tool assumes that the execution mode is
nonsegmented and includes the segmented=no
property in the EGL source.

User Response: No action is required if the program
should run in nonsegmented mode. If the program
should run in segmented mode, edit the program and
change the segmented property to segmented=yes.

IWN.MIG.1001.e Generation options part partName is
a reserved word. It must be renamed.

Explanation: The migration tool does not rename
programs for you. Because a program might have a
special generation options part named as
programName.opt, the migration tool also does not
rename generation options parts.

User Response: When you change the program name,
be sure to change the name of the corresponding
generation options part.

IWN.MIG.1002.w Generation options part partName -
/dbms=odbc is migrated to
dbms="DB2".

Explanation: The specified generation options part
includes the VAGen generation option /dbms=odbc.

292 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

EGL only supports DB2 or Oracle. The migration tool
converts /dbms=odbc to dbms="DB2" in the EGL build
descriptor part. EGL provides DB2 support by using a
JDBC driver. If you have a JDBC driver for your
database, you might be able to use the build descriptor
option dbms="DB2" as the database type.

User Response: Be sure to migrate, generate, and test
a variety of VAGen programs that used ODBC support
to ensure that all the functions you require work
correctly with your JDBC driver.

IWN.MIG.1003.e Generation options part partName -
Isystem=systemType is not supported.

Explanation: The specified generation options part
includes the VAGen /system generation option and
specifies a runtime environment that is not supported
by EGL. The migration tool converts the /system
generation option to a comment in the EGL build
descriptor part.

User Response: Determine whether this build
descriptor part is used by other build descriptor parts.
If not, you can delete the build descriptor part.
Alternatively, you might want to keep the build
descriptor part for reference if EGL supports this
runtime environment at sometime in the future.

IWN.MIG.1004.w Generation options part partName -
[system=systemType requires that
destPort be set.

Explanation: The specified generation options part
includes the /system generation option and specifies
either MVSCICS or MVSBATCH as the runtime
environment. The EGL build process requires you to
specify a destination port using the destPort build
descriptor option. If you do not specify the destPort
build descriptor option, the default port is 5555.

User Response: Modify the build descriptor part that
corresponds to the generation options part and include
the destPort build descriptor option. If the default port
of 5555 is acceptable, you do not need to modify the
build descriptor part.

IWN.MIG.1005.e Generation options part partName -
[system=systemType is not currently
supported.

Explanation: The specified generation options part
includes the VAGen /system generation option and
specifies a runtime environment that is not currently
supported by EGL. The migration tool converts the
/system generation option to the EGL build descriptor
option for future use. However, because the runtime
environment is not currently supported by EGL, the
value will not appear in the Build Descriptor Parts
Editor. You can see the value by using a text editor.

User Response: None. You should keep this build

descriptor part for possible use in future releases of
EGL.

IWN.MIG.1099.e Control part partName - symparm
symparmName is not supported.

Explanation: The specified control part uses or sets a
symparm which is not supported in EGL. The
migration tool migrates the symparm "as is” using the
original VAGen symparm name. However, this
symparm is not set during generation.

User Response: Modify the control part to set a
default value for the symparm. Alternatively, modify
the control part so that it no longer uses the specified
symparm.

IWN.MIG.1101.e Linkage table part partName is a
reserved word. It must be renamed.

Explanation: The migration tool does not rename
control parts for you.

User Response: Modify the linkage options part name
so that it is not a reserved word. When you change the
linkage options part name, be sure to change all the
build descriptor parts that reference the linkage options
part.

IWN.MIG.1102.e Linkage table partName -
/contable=BINARY is not supported. It
must be changed.

Explanation: VisualAge Generator supports
/contable=BINARY in the linkage table part. EGL does
not support this value. The migration tool includes the
conversionTable="BINARY"” value in the EGL linkage
table part. This value is invalid, but will not be
detected until generation.

User Response: You must change the conversionTable
value to a value that is supported by EGL. Refer to the
information about linkage parts in the online helps for

details about the EGL conversionTable attribute and the
options that are available.

IWN.MIG.1103.e Linkage table part partName -
/remotecomtype=CICSCLIENT is not
supported. Defaulted to CICSECI.

Explanation: VisualAge Generator supports
/remotecomtype=CICSCLIENT in the linkage table
part. EGL does not support this value. The migration
tool includes the remoteComType="CICSECI" in the
EGL resource assocations part. This value is valid, but
might not be what you plan to use. If you want to use
CICSECI, you need to set the ctgPort and ctgLocation.

User Response: If you plan to use CICSECI, modify
the linkage table part and set the values of ctgPort and
ctgLocation for the entry that specifies CICSECI as the
remoteComType. If you do not plan to use CICSECI,
refer to the information about linkage parts in the

Appendix C. Messages from the migration tools 293

online helps for details about the EGL remoteComType
attribute and the options that are available in EGL.

IWN.MIG.1104.e Linkage table part partName -
/remotecomtype=communicationType is
not supported. It must be changed.

Explanation: VisualAge Generator supports
/remotecomtype=communicationType in the linkage table
part. EGL does not support this communications
protocol. The migration tool includes the
remoteComType="communicationType" in the EGL
linkage table part. This value is not valid and must be
changed.

User Response: Determine the communication
protocol that you plan to use. Then edit the part and
change the remoteComType to a value that is
supported by EGL. Refer to the information about
linkage parts in the online helps for details about the
EGL remoteComType attribute and the options that are
available in EGL.

IWN.MIG.1201.e Resource association part partName
is a reserved word. It must be renamed.

Explanation: The migration tool does not rename
control parts for you.

User Response: Modify the resource association part
name so that it is not a reserved word. When you
change the resource associations part name, be sure to
change all the build descriptor parts that reference the
resource association part.

IWN.MIG.1202.e Resource association part partName -
[filetype=fileType is not supported. It
must be changed.

Explanation: VisualAge Generator supports
/filetype=BTRIEVE and /filetype=MFCOBOL for some
workstation environments. EGL does not support these
file types. The migration tool includes the filetype
information in the EGL resource association part. The
value is invalid and will cause an error on the Tasks
list.

User Response: You must change the filetype value to
a value that is supported by EGL. Refer to the
information about resource association parts in the
online helps for details about the EGL filetype attribute

and the options that are available.

IWN.MIG.1203.e Resource association part partName -
[system is targetSystem, which is not
supported; migrated based on /filetype
fileType information.

Explanation: The resource association part contains an
entry that uses the specified targetSystem. This target
system is not supported in EGL. The migration tool
migrates the resource association entry based on the
fileType. For example, if the targetSystem is mvs* and
the fileType is transient, the migration tool creates an
EGL resource association entry and sets the EGL system
to mvs*. This will be invalid and result in an error on
the Tasks list. You can correct the entry by specifying a
valid EGL system (zoscics for this example). If the
targetSystem is ims* and the fileType is smsgq, the
migration tool migrates the resource association entry
to a comment to preserve as much of your information
as possible for future reference.

User Response: If there is an error on the Tasks list,
correct the entry in the resource associations part by
specifying a valid target system.

IWN.MIG.1301.e Linkedit part partName is a reserved
word. It must be renamed.

Explanation: The migration tool does not rename
programs for you. Because the program name must
match its corresponding linkedit part, the migration
tool also does not rename the linkedit part.

User Response: When you change the program name,
be sure to change the name of the corresponding
linkedit part.

IWN.MIG.1401.e Bind control part partName is a
reserved word. It must be renamed.

Explanation: The migration tool does not rename
programs for you. Because the program name must
match its corresponding bind control part, the
migration tool also does not rename the bind control
part.

User Response: When you change the program name,
be sure to change the name of the corresponding bind
control part.

Messages from the EGL into WebSphere Studio migration tool—Stage

3

The only messages produced by Stage 3 are trace messages.

294 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Appendix D. Messages on Tasks list or from the preprocessor

In an ambiguous situation, the migration tool is not always able to determine the
correct EGL syntax to build during migration. This typically occurs when an
associated part is not available during migration. In these cases, the migration tool
sometimes creates intentionally invalid EGL syntax so that an error will appear on
the Tasks list. The table below lists the specific text string that will cause an error
in EGL validation or preprocessing. The specific EGL error message might vary,
but the text string listed in the left column will appear near the EGL statement that
is flagged as an error. Whenever the migration tool includes these text strings, the
tool also issues a message to the migration log.

Table 133. VAGen migration text that causes EGL syntax errors

VAGen migration text in EGL syntax

Problem and Solution

#H##HKEYS_NOT_FOUND###

Problem: The current SQL record embeds another record’s structure.
During migration the record named on the embed statement was not
available. Any key item specified for the current SQL record in
VAGen is included in the keyltems property, but the keys from the
embedded record are missing.

Solution: Find the record named on the embed statement. Replace
the ##KEYS_NOT_FOUND### text with the keys listed in the
embedded SQL record. Be sure to merge the embedded record keys
with the current record’s key item in the order that the items appear
in the record structure of the embedded record. If the current record’s
key item is also specified as key=yes in the embedded record, only
include the item once in the EGL keylterms property.

#HHTABLES_NOT_FOUND/#H#

Problem: The current SQL record embeds another record’s structure.
During migration the record named on the embed statement was not
available.

Solution: Find the record named on the embed statement and copy
the fableNames and tableNameVariables properties into the current SQL
record.

EZE_DUPLICATE

Problem: The record named on a VAGen IF, WHILE, or TEST
statement was not available during migration.

Solution: Find the record named on the EGL if or while statement.
Change EZE_DUPLICATE to one of the following;:
* duplicate for a non-SQL record

* unique for an SQL record

EZE_NULL

Problem: The migration tool could not determine whether the item
named on a VAGen IF, WHILE, or TEST statement is in an SQL
record or on a map.

Solution: Review the program and determine whether the item is in
an SQL record or on a form. Replace EZE_NULL with null for an SQL
item or blanks for a form field.

© Copyright IBM Corp. 2004

295

Table 133. VAGen migration text that causes EGL syntax errors (continued)

VAGen migration text in EGL syntax

Problem and Solution

EZE_SETPAGE();

Problem: The map named on a VAGen SET map PAGE statement
was not available during migration.

Solution: Find the map named on the // VAGen Info comment that
accompanies the EZE_SETPAGE() statement. Change EZE_SETPAGE
to one of the following;:

* clearScreen() for a display map
* pageEject() for a printer map

EZE_UNKNOWN_PARTTYPE

Problem: The External Source Format stored in the migration
database was not valid. The migration tool was not able to determine
the part type and was not able to convert the part to EGL syntax.

Solution: The part named on the EZE_UNKNOWN_PARTTYPE
statement is not valid. If this problem only occurs for a few parts, try
exporting External Source Format from VisualAge Generator and
migrating these parts in single file mode.

If you created your own tool to load the migration database, there
might be a problem with the way the tool is loading External Source
Format code into the migration database. See |[Appendix G, “Migration|
[Database,” on page 303|for some queries that might be useful in
determining what is causing the problem.

EZE UNKNOWN_RETURN_COLUMN

Problem: The VAGen table named on the VAGen RETR statement
was not available during migration.

Solution: Find the EGL Data Table named on the assignment
statement and replace EZE_UNKNOWN_RETURN_COLUMN with
the name of the second column in the table.

EZE_UNKNOWN_SEARCH_COLUMN

Problem: The VAGen table named on the VAGen FIND or RETR
statement was not available during migration.

Solution: Find the EGL Data Table named on the if statement and
replace EZE_UNKNOWN_SEARCH_COLUMN with the name of the
first column in the table.

EZE_UNKNOWN_SQLTABLE

Problem: The SQL record named as the I/O object was not available
during migration. The migration tool was not able to determine the
correct tables clause for the EGL I/O statement.

Solution: Find the record named on the I/0O statement and determine
the correct tables clause from the record’s tableNames and / or
tableNameVariables properties.

296 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Table 133. VAGen migration text that causes EGL syntax errors (continued)

VAGen migration text in EGL syntax

Problem and Solution

EZE_UNKNOWN_SQL_FORUPDATEOF

Problem: VisualAge Generator created a default for update of clause
for the SQL UPDATE or SETUPD 1/0O option. The SQL record named
as the I/O object was not available during migration. Therefore, the
migration tool was not able to determine the correct for update of
clause for the EGL I/O statement.

Solution: Find the record named on the I/O statement and determine
the correct for update of clause from the record’s data items list. The
default for update of clause in VisualAge Generator is the list of
column names from the record in the same order as the items are
listed in the record, but omitting the following:

* Any column name that is listed in the EGL keyltems property for
the record.

* Any column name that is specified with the EGL isReadOnly=yes
property.

If the record named on the I/O statement embeds another SQL

record, do the following:

e Use the record named on the embed statement to determine the
order of the columns and the isReadOnly=yes property.

* Use the record named on the I/O statement (the embedding
record) to determine the keyltems property.

If the for update of clause is used in an EGL prepare statement, enclose
the list of column names within double-quotes.

EZE_UNKNOWN_SQL_INSERTCOLNAME

Problem: VisualAge Generator created a default list of columns for
the SQL ADD I/0O option. The SQL record named as the I/O object
was not available during migration. Therefore, the migration tool was
not able to determine the correct list of column names for the EGL
add statement.

Solution: Find the record named on the I/0O statement and determine
the correct list of columns from the record’s data items list. The
default list of column names in VisualAge Generator is the list of
column names from the record in the same order as the items are
listed in the record, but omitting any column name that is specified
with the EGL isReadOnly=yes property. If the record named on the
1/0 statement embeds another record, use the record named on the
embed statement to determine the order of the columns and the
isReadOnly=yes property. This list of column names is never used in
an EGL prepare statement.

EZE_UNKNOWN_SQL_INTO

Problem: VisualAge Generator created a default list of data items for
the into clause for the SQL INQUIRY, SETINQ, UPDATE, or SETUPD
I/0 option. The SQL record named as the I/O object was not
available during migration. Therefore, the migration tool was not able
to determine the correct into clause for the EGL I/O statement.

Solution: Find the record named on the I/0O statement and determine
the correct list of items for the into clause. The default list of item
names in VisualAge Generator is the list of items from the record in
the same order as the items are listed in the record. If the record
named on the I/O statement embeds another record, use the record
named on the embed statement to determine the order of the data
items. The into clause is never included on an EGL prepare statement.

Appendix D. Messages on Tasks list or from the preprocessor 297

Table 133. VAGen migration text that causes EGL syntax errors (continued)

VAGen migration text in EGL syntax

Problem and Solution

EZE_UNKNOWN_SQL_SELECT

Problem: VisualAge Generator created a default list of data items for
the select clause for the SQL INQUIRY, SETINQ, UPDATE, or
SETUPD I/0O option. The SQL record named as the I/O object was
not available during migration. Therefore, the migration tool was not
able to determine the correct select clause for the EGL I/O statement.

Solution: Find the record named on the I/O statement and determine
the correct list of column names for the select clause. The default list
of column names in VisualAge Generator is the list of column names
from the record in the same order as the items are listed in the
record. If the record named on the I/O statement embeds another
record, use the record named on the embed statement to determine the
order of the columns. If the select clause is used in an EGL prepare
statement, enclose the list of column names within double-quotes.

EZE_UNKNOWN_SQL_VALUES

Problem: VisualAge Generator created a default list of data items to
provide the values for the SQL ADD I/O option. The SQL record
named as the I/O object was not available during migration.
Therefore, the migration tool was not able to determine the correct
list of item names for the EGL add statement.

Solution: Find the record named on the I/O statement and determine
the correct list of items from the record’s data items list. The default
list of item names in VisualAge Generator is the list of item names
from the record in the same order as the items are listed in the
record, but omitting any item name that is specified with the EGL
isReadOnly=yes property. If the record named on the I/O statement
embeds another record, use the record named on the embed statement
to determine the order of the columns and the isReadOnly=yes
property. The values clause is never used in an EGL prepare statement.

298 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Appendix E. IWN.xxx messages on the Tasks list

Some IWN.SYN, IWN.VAL, and INN.XML messages are more likely to occur for
EGL source code that was migrated from VisualAge Generator than for code that
you develop completely within EGL. This section lists messages that have a special

meaning for migrated code.

IWN.VAL.4929.e The use statement for
formGroupName in program programName
does not resolve.

Explanation: The program specified a map group in
VisualAge Generator but did not have any display or
converse I/O options in the program, nor any maps as
a called parameter.

User Response: Change the program to do one of the
following: Remove the use statement for the
formGroup or add an import statement for the package
containing the formGroup. You might need to create a
formGroup part if one did not exist in VisualAge
Generator.

IWN.VAL.5100.e sysVar is an invalid qualifier for the
xxxxx system word.

Explanation: An EZE word that was valid in
VisualAge Generator is not currently supported by
EGL. The migration tool migrates the EZE word,
making a "best guess” as to what the EGL replacement
might be in the future. This preserves your program
logic.

User Response: Edit the function and make logic
changes so that this value is no longer used.
Alternatively, create a new project to preserve migrated
functions that cannot currently be used. Move all
functions that contain VAGen values that are not
currently supported to this new project.

IWN.VAL.5101.e mainFunctionName It is invalid to
use the xxxxx system word in this
statement location.

Explanation: The program that uses that uses the
specified main function in turn invokes other functions.
One of the functions in the function invocation chain
uses the specified system word in a statement. The
migration tool always qualifies the EGL system words
that are replacements for the VAGen EZE words. If the
xxxxx system word is not qualified with sysLib, sysVar,
mathLib, or strLib, the most likely causes are as
follows:

* The VAGen program permitted implicit data items
and the definition of xxxxx was automatically created
during generation. EGL does not permit implicit data

© Copyright IBM Corp. 2004

items. The migration tool also does not create
implicit data item definitions for you.

* The record, map, or table was not included in the
migration set so the migration tool could not include
the necessary import statement in the program.

User Response: Check whether the VAGen program
allowed implicit items. If so, validate the program in
VisualAge Generator. There will be a message on the
VAGen View Messages list that provides the correct
definition of the implicit data item. Add the definition
for the data item to the declarations section of the
program. If the VAGen program did not allow implicit
items, create an associates list for the program in
VisualAge Generator. From the associates list, use the
VAGen References tool to search for the specified data
item. The results of the References tool provide a clue
to which record, map, or table might be missing from
the migration set.

IWN.VAL.5168.e xxxxx is not valid for use within an
Is/Not expression.

Explanation: In VisualAge Generator, the specified
value was a valid value for EZESYS. This value has no
corresponding value in EGL. The migration tool
migrates the VisualAge Generator values to preserve
your program logic.

User Response: Edit the function and make logic
changes so that this value is no longer used.
Alternatively, create a new project to preserve migrated
functions that cannot currently be used. Move all
functions that contain VAGen values that are not
currently supported to this new project.

IWN.VAL.6620.e functionName - The variable access
xxxxx is ambiguous.

Explanation: Determine if the problem occurs for a
call statement and xxxxx is an unqualified data item. If
the problem is for a call statement, check to see if the
data item is in the Level 77 record associated with the
program’s inputRecord property. VisualAge Generator
gives precedence to Level 77 items in the program’s
primary working storage record if an unqualified item
is used on a CALL statement. However, EGL does not
provide the same precedence for the call statement.

User Response: If the problem is for a call statement,
you might be able to use the Level 77 record name as

299

the qualification for this item. However, you must be
sure that all programs that invoke this function use the
same Level 77 record.

IWN.VAL.6695.e functionName - The state INVISIBLE
is not allowed for this item data
reference.

Explanation: If state is PROTECT, SKIP, INVISIBLE,
BLINK, or a color, the data item is on a print form.
VisualAge Generator tolerated setting these attributes
for printer forms. EGL does not.

User Response: Modify the function to remove the
statement. Alternatively, if the same function is used
with both a text form and a print form, you must
create a copy of the function for use with print forms.

IWN.XML.3997.e XML Validation Error - Attribute
"yyyyy” must be declared for element
type "xxxxx".

Explanation: In VisualAge Generator, the option yyyyy
is valid for element xxxxx. This combination is not
supported by EGL. The migration tool migrates the
value even though it is invalid so there will be an error
on the Tasks list to remind you to resolve the problem.

User Response: Review the EGL online helps for the
options that are valid for xxxxx. When you decide
which option (or options) to use, you might need to
open the build descriptor file with the Text Editor to be
able to make the necessary change.

IWN.XML.3998.e XML Validation Error - Attribute
"system” with value "xxxxx" must have a
value from the list "ZOSCICS WIN USS
ISERIES] ZOSBATCH AIX LINUX".

Explanation: In VisualAge Generator, the value xxxxx
is a valid target environment. This environment is not
currently supported by EGL. The migration tool
migrates the information for certain target
environments to preserve the information for possible
future use.

User Response: Create a new project to preserve
migrated build descriptors that cannot currently be
used. Move all build descriptor parts that contain
VAGen values that are not currently supported to this
new project. To move the part, use a text editor to open
the build descriptor file to copy and paste the part that
has the error.

IWN.XML.3999.e XML Validation Error - The content
of element type "xxxxx" must match
"(listOfValues)".

Explanation: In VisualAge Generator, one or more of
the values specified for a resource association is a valid
value. This value is not supported by EGL. The
migration tool migrates the value even though it is

invalid so there will be an error on the Tasks list to
remind you to resolve the problem.

User Response: Review the EGL online helps for the
options that are valid for xxxxx. When you decide
which option to use, you might need to open the build
descriptor file with the Text Editor to be able to make
the necessary change.

300 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Appendix F. Situations where incorrect External Source
Format causes problems in creation of EGL

There are some situations in which the External Source Format produced after
running the Stage 1 migration tool will cause problems when running the
migration tool that produces EGL. Those situations, which are very rare and
unlikely, are discussed here.

¢ Data item part

© Copyright IBM Corp. 2004

— The map range edit (minimum and maximum values) can cause an exception

in Stage 2 due to invalid External Source Format. The problem occurs if
External Source Format is imported into VisualAge Generator and the data
item is never modified. When the External Source Format is exported in Stage
1 of the migration, the map range edit is in an invalid format. Modify the
data item in VisualAge Generator and save the item. For example, add and
remove a blank from the item description. Alternatively, before you run Stage
1 of migration, install the fix for VisualAge Generator APAR PQ75621 or
APAR PQ79914.

For VisualAge Generator on Java, data items with similar part names can
cause unpredictable results when the # symbol is used in one of the names.
For example, DATAITEM#A, DATAITEM@A, and DATAITEM$A can result in
the wrong External Source Format code being stored in the migration
database for DATAITEM#A. If you have used the # symbol in data item
names, review the resulting EGL source code to ensure that the correct
information was migrated. Alternatively, before you run Stage 1 on Java,
install the fix for VisualAge Generator APAR PQ85794.

301

302 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Appendix G. Migration Database

Creating the DB2 migration database

Except where noted, the following instructions apply regardless of whether you are
migrating from Java or Smalltalk. Even if you are migrating from Smalltalk, you
must set the JDBC driver level on the machine where you plan to run Stage 2 and
3 of migration.

Setting the JDBC level for DB2 7.2

The migration tool requires that db2java.zip be at the JDBC 2.0 level. DB2 7.2 ships
with two db2java.zip files -- one at the JDBC 1.1 level and one at the JDBC 2.0
level. To configure DB2 7.2 for JDBC 2.0, do the following:

1. Stop all DB2 processes.

a. Navigate to the Control Panel and then select Administrative Tools ->
Services.

b. You might have to stop the DB2 - DB2 process last if it does not stop on
your first attempt.

2. Open a DOS command prompt window and navigate to directory that contains
the usejdbc2.bat file. If you used the default install directory when you installed
DB2 7.2, the file should be in the \SQLLIB\javal2 directory.

3. Run the wusejdbc2.bat file.
4. Start everything you stopped in the first step.

Setting the JDBC level for DB2 8.1 or higher

If you have DB2 8.1 or higher installed, the db2java.zip file is already at the correct
level.

Using DB2 on Windows XP

The migration tool requires the following:

* The user ID that is used to access the migration database must not contain any
blanks.

* The Windows user ID needs to have administrator authority, not limited
authority, for the migration sets to be visible in the migration tool wizards in
Stages 2 and 3.

Creating the migration database

To create the migration database, do the following:

1. Make sure that DB2 and any other applications that use it are shut down. For
example, shut down VisualAge Generator and WebSphere Studio.
2. Open a DB2 Command Window.
 If you are migrating from Java, navigate to the VisualAgeJava-installation-
directory\ide\vgmigration directory.
 If you are migrating from Smalltalk, navigate to the VisualAge-Smalltalk-
installation-directory.

3. Run the file named SetupDatabase.bat. This runs a file in the same directory
called createdatabase.sql and saves the output to a file called createdatabase.out
in the same directory. This creates a DB2 database called VGMIG, connects to

© Copyright IBM Corp. 2004 303

the database, and configures the database parameters. It might take up to a
minute to create the database. Be sure to wait until all the commands finish
executing.

Note:

* The first command that appears in the console might result in an error
message. You can ignore this message. It simply means that the
VGMIG database did not already exist.

* If you want to create a database with a name other than VGMIG, you
must change all occurrences of VGMIG in createdatabase.sql to your
desired database name. You must also remember to change VGMIG in
your Stage 1 - 3 migration tool preferences.

* By default the VGMIG database is not password protected. If you
need password protection, you must change the database to be
password protected.

4. Run the file named SetupTables.bat. This runs a file in the same directory called
createtables.sql and saves the output to a file called createtables.out in the same
directory. This creates all the tables and views that the migration tool needs in
the migration database. The tables are crated with a high-level qualifier (a
schema) called MIGSCHEMA. It might take up to a minute to create the
database. Be sure to wait until all the commands finish executing.

Note:

* The first commands that appear in the console might result in error
messages. You can ignore these messages. They simply mean that the
tables and views did not already exist.

* If you want to create a schema with a name other than MIGSCHEMA,
you must change all occurrences of MIGSCHEMA in createtables.sql to
your desired schema name. You must all remember to change
MIGSCHEMA in your Stage 1 - 3 migration preferences.

* If you ever need to completely clean out the migration database, you
can rerun the SetupTables.bat file from a DB2 Command Window.

5. Close the DB2 Command Window.

At this point the migration database, schema, tables, and views have been created.

You are now ready to create a preferences file for the Stage 1 migration tool to use.
If you are migrating from Java, see|”Setting Stage 1 preferences” on page 90} If you
are migrating from Smalltalk, see [‘Setting Stage 1 preferences” on page 108

Resetting the migration database

If you need to reset the migration database (for example, due to changing your
renaming rules), use one of the following techniques:

* Use the tool that deletes and recreates all the tables in the migration database.
Use this tool in the following situations:
— If you need to delete all your migration plans.
— If you have migrated multiple versions of a Java project.
— If you have migrated multiple versions of a Smalltalk configuration map.
To run the tool that deletes and recreates all the tables, do the following;:

1. From a DB2 Command Window, navigate to the directory where
SetupTables.bat is located.

— For Java, this is your Visual Age-for-Java-install-directory\ide\vgmigration.

304 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

— For Smalltalk, this is your VisualAge-Smalltalk-install-directory.
2. Run SetupTables.bat.

* Use the tool that deletes a specified migration set. Use this tool if you need to
delete only a few migration sets. To run the tool that deletes a specified
migration set, do the following:

1. Determine the migration set ID that you need to delete from the migration
database as follows:

a. Using the DB2 Control Center or an SQL query, look at the
CONFIGPLAN table.

b. Find the CONFIGPLANNAME that you want to delete.

c. The migration set ID you need to specify is the value in the
corresponding CONFIGPLANID column.

2. From a DB2 Command Window, navigate to the directory where
deletemigsets.bat is located.

— For Java, this is your Visual Age-for-Java-install-directory\ide\vgmigration.
— For Smalltalk, this is your VisualAge-Smalltalk-install-directory.
3. Run the deletemigsets.bat file, using one of the following formats:
— If you want to delete just one migration set, use the following format:
deletemigsets n

where 7 is the migration set ID that you want to delete.
— If you want to delete several migration sets, use the following format:
deletemigsets "nI,n2"

where n1 and n2 are the migration set IDs that you want to delete.

Useful Queries

If you modify the sample Stage 1 migration tool or develop your own Stage 1
migration tool, the following SQL queries might be useful in verifying your
changes.

Note:
* These examples can run from a DB2 Command Window.

* These examples assume that you use the default migration database name
(VGMIG) and the default schema (MIGSCHEMA).

* Unless noted otherwise, the entire DB2 command must be entered on one
line. The commands shown later in this document might be on several
lines due to space limitations.

* These examples require that you connect to the database first. To connect
to the database, run the following:

db2 connect to VGMIG

To verify the first few characters of the External Source Format for all parts in the
migration database:

db2 select vgpartname, cast(vgesfsource as char(n)) from migschema.vgpart

n is a number between 1 and 256 and is the number of characters you want to
display.

Appendix G. Migration Database 305

To determine if any parts in the migration database do not begin with valid
External Source Format tags:

db2 select vgpartname, cast(vgesfsource as char(n))
from migschema.vgpart where vgesfsource not Tike ':%'

n is a number between 1 and 256 and is the number of characters you want to
display.

To reset all parts in the migration database if you want to rerun Stage 2 and 3 of
migration without rerunning Stage 1:

db2 update migschema.vgpart set is_migrated = 'N', eglsource = NULL
db2 delete from migschema.translation_msgs

To backup the migration database:
db2 backup database vgmig to x:\mybackups\backupName

x:\mybackups\backupName is the drive and directory where you want the backup to
be placed. Several subdirectories will be created under x:\mybackups\backupName.

To restore the migration database that you previously backed up:
db2 restore database vgmig from x:\mybackups\backupName REPLACE EXISTING

x:\mybackups\backupName is the drive and directory where you want the backup to
be placed. Several subdirectories will be created under x:\mybackups\backupName.

306 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Notices

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM® may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

SWS General Legal Counsel
Department TL3 Building 062

P. O. Box 12195

Research Triangle Park, NC 27709-2195

© Copyright IBM Corp. 2004 307

IBM has made reasonable efforts to ensure the accuracy of the information
contained in this publication. If a softcopy of this publication is provided to you
with the product, you should consider the information contained in the softcopy
version the most recent and most accurate. However, this publication is presented
“as is” and IBM makes no warranties of any kind with respect to the contents
hereof, the products listed herein, or the completeness or accuracy of this
publication.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

IBM may change this publication, the product described herein, or both.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

308 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries:

© AIX®

* iSeries

.« CICS®

« CICS Operating System /2%
* CICS/ESA®

* CICS/MVS®

+ CICS/VM™

+ CICS/VSE®

¢ Client Access/400

« COBOL/370"

+ COBOL/400”

- DB2®

« DB2/2

« DB2/400

« IBM

* IBMLink™"

e ILE

« IMS™

* IMS/ESA®

* Language Environment®
« MVS™

« MVS/ESA™

* Operating System/2

* Operating System/400®
« 0s/2°

+ 0S/390

* OS/400”

* SAA®

+ SQL/DS™

* SQL/400°

* 5/390

* VisualAge®

* VisualGen®

* VM/ESA®

+ VSE/ESA™

+ WebSphere®

* z/0S

The following are trademarks of other companies:

Micro Focus COBOL Micro Focus Limited
HP-UX Hewlett-Packard Company

Microsoft®, Windows®, Windows NT®, the Windows 95 logo, and the Windows 98
logo are trademarks or registered trademarks of Microsoft Corporation.

Solaris, Java ", and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX® is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Notices 309

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

310 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Index
A

ambiguous situations
120, 150, 175
data items 43
EZE words 83
functions 66
map groups and maps 51
other statements 73
programs 62
records 47
tables 51
appendix index entry 171, 176, 182, 189,
192, 195, 212, 224, 237, 246, 247, 275,
295, 301
array 28, 201, 202, 203, 204, 226, 227,
230, 231, 232, 233, 234, 239
dynamic 3
map 40
multidimensional 3
associated parts 3, 23, 24, 27, 29, 39, 43,
101, 120, 281
migrating with 35
migrating without 35
associated program parts 63
AUDIT 164

19, 21, 23, 27, 43,

batch mode 13, 19, 20, 127, 130, 134,
135, 144, 146
bind control 151
bind control part 152, 153
program-specific 153
using as template 152
build descriptor 151
debug 155
default 156
default 151
EGL 153
build descriptor option 153
bind 153
genproject 154
linkedit 154
build descriptor options
COBOL generation
reviewing 152
Java generation
reviewing 154
reviewing
general 150
build descriptor parts 149
reviewing 150
build parts 29, 39, 248, 249, 250, 251,
252, 253, 254, 255, 256, 257, 258, 259, 260
build path 11, 12, 24, 26, 27, 29, 30, 142,
149

150, 154, 157

© Copyright IBM Corp. 2004

C

CALL AUDIT 246, 247
CALL COMMIT 246, 247
CALL CREATX 246, 247
CALL CSPTDLI 246, 247
CALL EZCHART 246, 247
CALL RESET 246, 247
CICS 5,6,8, 26,31, 51, 52, 62, 161, 248,
249, 250, 251, 252, 253, 254, 255, 256,
257, 258, 259, 260, 261, 262, 263, 264,
265, 266, 267, 268, 269, 270, 273, 274,
275, 276, 285, 291, 292, 293
CALL CREATX differences 165
commit differences 165
EZE special data word differences
EZEAPP 165
EZEDEST 165
EZEDESTP 165
EZELTERM 165
EZERCODE 165
EZERT8 165
EZESEGTR 165
EZEUSR 165
EZEUSRID 165
EZECONCT differences 165
features not supported
native environments 164
function words
not supported, native
environments 164
resource associations
not supported, native
environments 164
rollback differences 165
service routines
not supported, native
environments 164
XFER, DXFR 165
COBOL generation
generating and testing 156
common code 5, 16, 22, 24, 25, 26, 27,
34,74,75, 112
common parts 93, 95, 110, 111
configuration map 8, 11, 12, 13, 14, 15,
16, 17, 19, 21, 24, 32, 33, 34, 63, 109, 110,
111, 112, 113, 117, 118, 119, 120, 121, 140,
141, 248, 249, 250, 251, 252, 253, 254,
255, 256, 257, 258, 259, 260, 304
containerContextDependent property 11,
12, 24, 26, 27, 30, 40
control part 17, 21, 32, 132, 133, 247,
248, 276, 293
bind control 20, 31, 271, 294
generation option 20, 31
generation options 29, 31, 39, 247,
248
link edit 20, 31, 271, 293, 294
linkage option 20
linkage table 261
Calllink 261
Crixlink 265

control part (continued)
linkage table (continued)
Dxfrlink 266
Filelink 265
linkage table options 247
resource association 20, 31, 267
resource associations 247
converse 23, 25, 38, 40, 79, 83, 215, 289
cross-part migration 3, 14, 22, 23, 27, 35,
43

D

data item 8, 9, 25, 28, 29, 31, 39, 40, 43,
44, 47,78, 83, 176, 224, 225, 275, 280,
283, 284, 285, 295, 296, 297, 298, 301

assignment statements 74

implicit 62, 73, 292

preferences 129

renaming 31, 128, 171

shared 23, 26, 30, 33, 34, 43, 44, 45,
46, 50

database 6,7, 13, 14, 15, 17, 25, 67, 68,
95, 102, 104, 130, 131, 133, 134, 139, 140,
248, 249, 250, 251, 252, 253, 254, 255,
256, 257, 258, 259, 260, 276, 279, 291, 293

debug

EZESQLCA 162
EZESQRRM 162
EZESQWNG6 162
runtime differences 162
maps 162
SQL 162

display 22, 23, 25, 26, 28, 34, 35, 40, 53,
54, 66, 67, 76, 193, 194, 195, 196, 197,
198, 199, 200, 215, 287, 288, 289, 290,
295, 296, 297, 298

E

edit function 23
edit routine 23, 33, 35, 45, 57, 182, 206,
207, 208, 275, 283, 286
edit table 23, 35, 179, 180, 181, 182
export 20, 143, 279, 280
External Source Format 14, 17, 19, 20,
21, 27, 35, 38, 52, 53, 69, 70, 95, 101, 119,
127, 134, 143, 144, 201, 202, 203, 204,
279, 280, 281, 283, 287, 288, 292, 295,
296, 297, 298, 301, 305
EZE words 38, 43, 175, 237
date and time
EZEDAY 239
EZEDAYL 239
EZEDAYLC 239
EZEDTE 239
EZEDTEL 239
EZEDTELC 239
EZETIM 239

311

EZE words (continued)

DL/I
EZEDLCER 245
EZEDLCON 245
EZEDLDBD 245
EZEDLERR 245
EZEDLKEY 245
EZEDLKYL 245
EZEDLLEV 245
EZEDLPCB 245
EZEDLPRO 245
EZEDLPSB 245
EZEDLRST 245
EZEDLSEG 245
EZEDLSSG 245
EZEDLSTC 245
EZEDLTRM 245

EZESYS
ambiguous situations 83

EZEWAIT
ambiguous situations 85

floating point math functions

EZEFLADD 244
EZEFLDIV 244
EZEFLMOD 244
EZEFLMUL 244
EZEFLSET 244
EZEFLSUB 244
general function
EZEBYTES 242
EZEC10 242
EZEC11 242
EZECOMIT 242
EZECONV 242
EZEG10 242
EZEG11 242
EZEPURGE 242
EZEROLLB 242
EZEWAIT 242
general math functions
EZEABS 243, 244
EZECEIL 243, 244
EZEEXP 243, 244
EZEFLOOR 243, 244
EZEFREXP 243, 244
EZELDEXP 243, 244
EZELOG 243, 244
EZELOG10 243, 244
EZEMAX 243, 244
EZEMIN 243, 244
EZEMODEF 243, 244
EZENCMPR 243, 244
EZEPOW 243, 244
EZEPRSCN 243, 244
EZEROUND 243, 244
EZESQRT 243, 244
Java
EZEJAVA 245
math 243
object scripting
EZESCRPT 245
other data 240
program flow
EZECLOS 237
EZEFLO 237
EZERTN 237

EZE words (continued)
SQL
EZECONCT 238
EZESQCOD 238
EZESQISL. 238
EZESQLCA 238
EZESQRD3 238
EZESQRRM 238
EZESQWN1 238
EZESQWN6 238
string
EZESBLKT 243
EZESCCWS 243
EZESCMPR 243
EZESCNCT 243
EZESCOPY 243
EZESFIND 243
EZESNULT 243
EZESSET 243
EZESTLEN 243
EZESTOKN 243
trigonometric math functions
EZEACOS 244
EZEASIN 244
EZEATAN 244
EZEATAN2 244
EZECOS 244
EZECOSH 244
EZESIN 244
EZESINH 244
EZETAN 244
EZETANH 244
user interface
EZEUIERR 245
EZEUILOC 245
EZELOC 164
EZEPURGE 164

F

fill character 46, 179, 180, 181, 206, 207
filter 15, 16, 17, 130, 276
configuration map 109
configuration maps 110
packages 94
projects 92, 94
repository 15, 91, 92, 95, 101, 103,
109, 119, 121
version 92
version depth 92, 109, 110
version name 93, 109, 110
version number 92
form group 149
formGroup 51, 52
function 11, 12, 22, 23, 24, 28, 29, 30, 31,
33, 34, 35, 38, 39, 43, 45, 46, 48, 49, 51,
57,58, 59, 67,68, 71,72,73,74,75,76,
77,79, 80, 81, 83, 84, 85, 129, 208, 209,
212, 213, 214, 215, 216, 224, 225, 280,
282, 283, 286, 288, 289, 290, 291, 299
common 25, 34, 40
1I/0 216, 217
renaming 31, 128, 171
SQL 38, 129
SQLI/O 217,218, 219, 220, 221, 222,
223, 224

functions
handling ambiguous situations 66
SQLI/O 69,70

G

general function EZE words 242
generate 23, 24, 26, 30, 34, 36, 289

program 5, 14, 23, 282, 283, 286, 287,

290, 292, 293

programs 20

report 95,97, 118

tables 20

VisualAge Generator 103
generation option 8, 9, 247, 248, 271,

292, 293

conversion table values 261

VisualAge Generator 28
generation option part 8,9
generation options 150

H

help map 55, 56, 196, 197, 198, 199, 209
help map group 40, 54, 129, 276, 286,
288
help map names 54
high-level PLP project 15, 16, 92, 101,
102
creating 102

implicit item 39, 74, 292
in programs 62, 63
import 28, 132, 133, 135, 139, 140, 141,
143, 279, 280
External Source Format 20
Stage 3 tool 14
import into workspace 132, 133, 134, 135
import statement 19, 21, 24, 26, 27, 28,
29, 30, 39, 40, 64, 65, 142, 150, 192, 195,
196, 248, 249, 250, 251, 252, 253, 254,
255, 256, 257, 258, 259, 260
isDecimalDigit 58, 204, 205

J

Java and C++ differences
EZE special data words
EZECONVT 168
EZERCODE 168
general 166
maps 167
SQL
EZESQLCA 167
EZESQRRM 167
EZESQWN6 167
Java generation
generating and testing 157
JDBC level, setting 303

312 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

L

library 10, 109, 110, 117, 261, 262, 263,
264, 265
management 3, 4, 5, 6, 10, 34
Smalltalk 14, 18, 108, 109, 117
linkage option parts 149
linkage options 151
linkage options parts
reviewing 155
linkedit 151
log file 15,17, 19, 21, 101, 119, 136, 144,
145, 146
name 96, 114, 131, 139, 140
name preference 116
Stage 2 migration 135

M

map 21, 23, 28, 33, 34, 39, 43, 44, 45, 53,
55, 56, 66, 74, 75, 103, 149, 171, 226, 227,
288, 289, 290, 291, 295, 296, 297, 298

assignment statements 74

constant field 199, 200, 201, 202, 203,

204, 205

display 23, 26, 34

general syntax, map type, and
properties 196, 197, 198

EZEMSG
EZEAID 240, 241, 242
EZEAPP 240, 241, 242
EZECNVCM 240, 241, 242
EZECONVT 240, 241, 242
EZEDEST 240, 241, 242
EZEDESTP 240, 241, 242
EZEFEC 240, 241, 242
EZELOC 240, 241, 242
EZELTERM 240, 241, 242
EZEMNO 240, 241, 242
EZEMSG 240, 241, 242
EZEOVER 240, 241, 242
EZEOVERS 240, 241, 242
EZERCODE 240, 241, 242
EZEREPLY 240, 241, 242
EZERT2 240, 241, 242
EZERTS8 240, 241, 242
EZESEGM 240, 241, 242
EZESEGTR 240, 241, 242
EZESYS 240, 241, 242
EZETST 240, 241, 242
EZEUSR 240, 241, 242
EZEUSRID 240, 241, 242

numeric hardware attribute 58

print 292

printer 22, 23, 26, 34
general syntax, map type, and

properties 198, 199

range edit 301

renaming 31, 128, 171

spanning 111

unnamed variable fields 59

unprotected constants 60

variable field 23, 35, 57, 199, 200,

201, 202, 203, 204, 205, 206, 207

error messages 208

XFER statement 82

XFER with 236, 237

map edits 46
map group 21, 22, 25, 31, 32, 43, 52, 53,
103, 275, 280, 285, 286, 287, 288
general syntax and floating
areas 193, 194
renaming 171
spanning 93, 111
map group part 8,9
map groups 191
ambiguous situations 51
device names, types, sizes
general information 192
map item
checking for NULL 78
edit routine 45
implicit 62
map names 54
map part 8,9
map properties
error messages 182
general edits 179, 180, 181
general information 179
numeric edits 181
maps 195
ambiguous situations 51
functions and 1/0O options 215
general information 195, 196
messages 17, 44, 50, 53, 58, 61, 71, 72,
101, 107, 119, 136, 144, 146, 179, 196,
197, 198, 199, 200, 201, 202, 203, 204, 275
debug 96, 114
fatal 96, 114
from migration tools 275
informational 96, 114
IWN.xxx 299
Preprocessor 295
Stage 1 common 275
Stage 1 on VisualAge for Java 278
Stage 1 on VisualAge for
Smalltalk 279
Stage 2 135, 279
Stage 3 131, 139, 140
trace 294
Tasks list 20, 128, 130, 146, 295
warning 96, 114
MigPreferences.xml
107, 108
sample 97, 114
migration database 15, 16, 17, 18, 19, 27,
89, 91, 96, 101, 103, 107, 108, 109, 113,
119, 136, 139, 142, 280, 281, 295, 296,
297, 298, 303, 305, 306
creating 303
resetting
tables 304
tables 304
views 304
migration feature 107
adding 89
loading 107
migration plan 15, 16, 17, 91, 95, 96, 101,
104, 109, 113, 114, 118, 119, 121, 276, 304
creating manually 103
high-level configuration maps 119
multiple 16

194, 195

89, 90, 92, 95, 100,

migration set 15, 16, 17, 18, 19, 23, 24,
27,32, 33, 34, 35, 39, 40, 52, 53, 64, 65,
91, 92, 93, 94, 100, 101, 102, 103, 104,
109, 110, 111, 112, 113, 117, 119, 132, 133,
134, 135, 136, 141, 192, 277, 280, 281, 305

(0

output files 21, 22
Overwrite PLN 118, 121

P

package 8,9, 10, 11, 12, 13, 16, 17, 19,
20, 21, 27, 28, 29, 30, 31, 32, 33, 39, 40,
50, 63, 64, 65, 90, 93, 94, 95, 100, 103,
111, 118, 119, 135, 136, 142, 143, 144, 145,
146, 149, 150, 173, 192, 248, 249, 250,
251, 252, 253, 254, 255, 256, 257, 258,
259, 260, 261, 262, 263, 264, 265, 266,
278, 279, 280

naming 111
renaming 94, 112
part name 11, 12, 22, 27, 29, 31, 149
conflicting 39, 66, 129, 248
duplicate 24, 31
invalid 31, 51, 62, 171, 271, 293, 294
renaming 128, 171
resolution 23, 30, 31
VisualAge Generator 279
parts 16
large numbers 13
non-migratable 31
placement 31
single file mode 21
Stages 1, 2,3 21,31
placing 27
single file mode 143, 144
Stages 1to 3 31
Project List Parts (PLP) 14
Stages 1,2 ,3 19
Stages 1,2,3 14
planning your migration 3, 4
preference file 279
migration 118
Java 16
preferences 16, 21, 139, 140, 141, 276,
279
build descriptor 27
deriving file names 116
editor 27
recommended 128
renaming 128
repository filters 119
required EGL 127
sample file 90
setting 143
SQL 113, 129
Stage 1 15,17, 32,121
Java 15
setting 103, 104
setting on Java 90
setting on Smalltalk 108
Stage 2 18,19, 134
setting 130
Stage 3 19

313

Index

preferences (continued)
VAGen Migration Syntax

Preferences 31, 128, 222, 223, 224
VAGen Syntax Migration

Preferences 145, 217, 218, 219, 220,

221
workbench

setting 127

program 22, 23, 24, 25, 27, 31, 32, 33, 35,
40, 43, 47, 54, 64, 65, 68, 78, 102, 149,

209, 210, 211, 212, 276, 280, 283, 291, 292

behavior 13, 22
implicit data items 62
migrating with 34
properties 27, 28
renaming 171
sample

Stage 1 tool 15, 18
XFER 82
programs 208
sample 13
single file migration 20
project list part 11, 12

Repository Filter 110
repository management 10
reserved word list 31
reserved words 17, 19, 21, 27, 31, 171,
190, 196, 197, 198, 199, 209, 276
EGL
list 171
formGroup names 51
Java
list 173
program names 62
SQL 128
list 171
table names 51
resource association 151, 248, 249, 250,
251, 252, 253, 254, 255, 256, 257, 258,
259, 260, 267, 282, 294, 300
resource association parts
EGL
reviewing 156
resource associations parts 149
results
intermediate 13

source code (continued)

extracting from Java 89, 100
extracting from Smalltalk 117
pilot project 4

reviewing 150

SQL 6,7,22,177,178, 183, 184, 248, 249,

250, 251, 252, 253, 254, 255, 256, 257,
258, 259, 260, 284, 285, 289
checking item for NULL 291
checking items for NULL 78
hard errors 79
statements 43
WHERE clause 28, 43

SQL clauses

FOR UPDATE OF 219, 220, 221, 222,
223, 224

GROUP BY 219, 220, 221, 222, 223,
224

HAVING 219, 220, 221, 222, 223, 224

INTO 219, 220, 221, 222, 223, 224

ORDER BY 219, 220, 221, 222, 223,
224

SELECT 219, 220, 221, 222, 223, 224

WHERE 219, 220, 221, 222, 223, 224

project list part (PLP) 16, 102

project name 15, 32, 92, 93, 94, 101, 102,
104, 111, 135

PSB 31, 210, 211, 247, 282, 292

migration 281
pilot project 5
reviewing 95
Stage 1 101
migration database 119
running the tool
R Stage 1 18, 117, 301

SQL EZE words 238
SQLI/O 288, 289

Execution Time Statement Build 129
SQL I/0 and !itemColumnName 72
SQL I/0 and missing SQL clauses 70
SQL 1/0 options

record 23, 28, 39
renaming 31
records 23, 24, 43, 46, 50, 64, 65, 74, 75,
83, 182, 183, 184, 283, 284, 285, 291, 292
alternate specification 49, 50, 184,
185
assignment statements 74
common 40

Java 100

Smalltalk 117
Stage 2 18, 134

batch mode 19, 135

user interface 134
Stage 3 19, 139

batch mode 20

runtime differences

ADD 217, 218, 219, 220, 221, 222,
223,224

CLOSE 217, 218, 219, 220, 221, 222,
223, 224

DELETE 217, 218, 219, 220, 221, 222,
223,224

INQUIRY 217, 218, 219, 220, 221,
222,223, 224

1/0 216 COBOL REPLACE 217, 218, 219, 220, 221,
indexed 216, 217 CALL 163 222, 223, 224
12‘,;)(;7 items 48 49 DXFR 163 SCAN 217, 218, 219, 220, 221, 222,
¢ maps 163 223, 224
iﬂzsesf?f:dquz;le%zm’ 27 XFER 163 SETINQ 217, 218, 219, 220, 221, 222,
; ! Java 223,224
ﬁeft;ifn 21?’712 v CALL 163 SETUPD 217, 218, 219, 220, 221, 222,
serial 216, 217 DXFR 163 223,224
’ XFER 163 SQLEXEC 217, 218, 219, 220, 221,
S%L8 186, 187, 188, 189, 295, 296, 297, s ot
Ul s UPDATE 217, 218, 219, 220, 221, 222,
User Interface (UI) 31, 215, 276 S 223, 224

SQL I/O statements 69
SQL I/0O with multiple updates 73
SQL query 305
SQL record 38, 284
SQL record definition 24, 25
SQL records
alternate specification 49
SQL row record 44
SQL statements
modified
without Execution Time Statement
Build 219, 220, 221
modofied
with Execution Time Statement
Build 222, 223, 224

service routine 66, 175, 246
general syntax 246
VisualAge Generator and EGL
Renaming page 94, 112 equivalent routines 246, 247
Renaming Prefix 31, 128, 240, 241, 242, SET map PAGE 76
291 single file migration
renaming rules 95, 111, 278, 279, 304 batch mode 144
report 15, 17, 25, 90, 101, 119, 276 user interface 143
Stage 1 migration 104, 113, 114, 116, single file mode 20, 21, 22, 31, 35, 52, 53,
119, 132, 133, 140, 141 144, 145, 192, 195, 196, 281, 283, 286,
repository 10, 11, 12, 13, 91, 99, 104, 132, 295, 296, 297, 298
133 migration 143
Java 14, 16, 18, 100 parts placement 143
source code 3,5, 6, 14, 19, 20, 248, set up 143
249, 250, 251, 252, 253, 254, 255, 256, source code 3,5, 13, 14, 17, 18, 19, 20,
257, 258, 259, 260 22,25, 38,101, 119, 149, 150, 161, 245,
Repository explorer 9, 10 299

working storage 18, 128
renaming 16, 17, 31, 55, 56, 90, 94, 95,
109, 118, 279, 281

314 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

SQL statements (continued)
unmodified
without Execution Time Statement
Build 217, 218
SQL table 284
SQL tables 18, 69, 70
Stage 1 14
Java 89
preferences 32, 90
running 100
Smalltalk 107
preferences
running 117
Stage 2 14, 127
preferences
setting 130
running 134
batch mode 135
user interface 134
Stage 3 14, 139
preferences
running 139
statements 38, 39, 83, 175, 209, 216, 224
use declaration 51
ambiguity in I/O 66
assignment, MOVE, MOVEA 226,
227
CALL 235, 240, 241, 242
CALL, DXFR, XFER 276
call, transfer, show 62, 291
display 66
DXFR 28, 235
FIND 75
flow 208, 212, 238
function invocation 225
general rules
data item qualification and
numeric literals 225
1/0 43,129, 240, 241, 242, 292
IF, WHILE, TEST 230, 231, 232, 233,
234
level 77 items 74
link edit 271
print 66
produced in ambiguous situations 43
RETRIEVE, FIND 229, 230
SET 227,228, 229
SETUPD, UPDATE 288
SQL 72,73,212
use declaration 52, 210, 211, 285
XFER 28, 236, 237
subsystem 13, 24, 25, 26, 27, 29, 30, 31,
35, 39, 40, 46, 49, 50, 58, 69, 70, 71, 72,
75,76, 102, 121, 149
symbolic parameters 248, 249, 250, 251,
252, 253, 254, 255, 256, 257, 258, 259,
260, 267, 268, 269, 270, 271, 272
file-related 273
part-related 272, 273
user-defined 273, 274
syntax 21, 67, 289, 291
assignment, MOVE, MOVEA
examples 226, 227
data item examples 177, 178
EGL 3, 14, 22, 23, 27, 34, 128, 139,
150, 175, 275, 282, 295, 296, 297, 298
conversion (Stage 2) 127

32,108

139, 140

syntax (continued)
EGL (continued)
errors 40
invalid 71, 72
precise 22
general conventions
differences between VisualAge
Generator and EGL 176
general display map examples 196,

197, 198

general function examples 213, 214,
215

general printer map examples 198,
199

general program examples 209
general record examples 183, 184
general table examples 190

map group examples 192

program main function example 212
service routine general examples 246

SET examples 227, 228, 229
statement examples
function invocation 225
tables 175
VAGen 23, 40, 128, 280
XFER examples 236, 237
system library function 23, 34, 46, 65,

83, 225, 226, 227, 230, 231, 232, 233, 234

T

table 23, 28, 31, 39, 102
tables 43, 44, 50, 69, 189, 285
database 96, 113
FIND statement 75
renaming 171
RETR statement 76
Tables and Additional Records list 40,
64, 65, 210, 211, 248, 249, 250, 251, 252,
253, 254, 255, 256, 257, 258, 259, 260

Tasks list 9, 10, 23, 30, 31, 35, 39, 40, 46,

50, 52, 53, 61, 62, 68, 69, 70, 75, 76, 77,
78,79, 128, 144, 149, 150, 156, 248, 249,
250, 251, 252, 253, 254, 255, 256, 257,
258, 259, 260, 261, 262, 263, 264, 265,

266, 281, 287, 288, 292, 294, 295, 299, 300

trace 248, 249, 250, 251, 252, 253, 254,
255, 256, 257, 258, 259, 260
level 96, 113, 114
messages 275

U

unused parts 16, 93, 95, 110, 111, 112
update database 95, 119

\'

VAGen Migration Syntax
Preferences 136

w

Windows XP
using DB2 303

wizard
import 20, 146
workbench
preferences
setting 127
workspace 3,5, 8,9, 10, 14, 19, 20, 25,
26, 27, 29, 50, 89, 99, 102, 103, 104, 128,
130, 135, 136, 137, 140, 141, 143, 145,
248, 249, 250, 251, 252, 253, 254, 255,
256, 257, 258, 259, 260, 277, 278, 281
clean 99
duplicate parts 21, 24
restoring 100, 117
saving 100, 116

315

Index

316 WebSphere Studio: VisualAge Generator to Enterprise Generation Language Migration Guide

Readers’ Comments — We’d Like to Hear from You

WebSphere Studio
VisualAge Generator to Enterprise Generation Language Migration Guide
Version 5.1.2

Publication No. SC31-6788-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Overall satisfaction]]] O O

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Accurate] O O]]
Complete O O]]]
Easy to find]]] O]
Easy to understand O O U U U
Well organized O O O] 0 U
Applicable to your tasks O]] |]

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? [] Yes [] No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You

SC31-6788-00

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

SC31-6788-00

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G71A / Bldg.
P.O. Box 12195

503

Research Triangle Park, NC

27709-2195

Please do not staple

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

-

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Printed in USA

SC31-6788-00

	Preface
	Who should read this book
	Related information

	Contents
	Part 1. Migration overview
	Chapter 1. Migration Overview
	What is new in EGL that requires migration?
	Planning your migration
	Determining whether you can migrate to EGL
	VisualAge Generator features not available in EGL

	Terminology differences

	Chapter 2. Migration Tool Philosophy
	
	Overview of the VisualAge Generator to EGL Migration Tools
	Migration tool terminology
	Stage 1 Details
	Step 1
	Step 2

	Stage 2 Details
	Stage 3 Details

	Overview of Single File Migration
	Migration challenges
	Precise EGL Syntax
	When and how part names are resolved
	Common code scenarios
	Common code and VisualAge Generator
	Common code and the migration tool

	Techniques used by the VisualAge Generator to EGL Migration Tool
	
	Editor and build descriptor preferences
	Program properties
	EGL build path and import statements
	containerContextDependent Property
	EGL reserved word list
	Placing parts in EGL files
	Migrating with a program
	Migrating with associated parts
	Migrating without associated parts
	Overwriting and merging files
	General rules

	Known restrictions for the migration tools
	General
	Stage 1 on Java and Smalltalk
	Stages 2 and 3 on WebSphere Studio
	Syntax migration

	Chapter 3. Handling ambiguous situations
	Handling ambiguous situations for data items
	Pack data items with even length
	Shared edits and messages
	Map item edit routine for shared data items
	Fill characters for shared data items

	Handling ambiguous situations for records
	Redefined records
	Level 77 items in records
	Alternate specification records
	Different definitions with the same record name

	Handling ambiguous situations for tables
	Reserved words and table names

	Handling ambiguous situations for map groups and maps
	Reserved words and formGroup names
	Map group and formGroup requirements
	Floating areas and starting positions
	Map groups, maps, and device sizes
	Map names and help map names
	Numeric variable fields
	Variable map fields and edit routines
	Map fields and the numeric hardware attribute
	Map arrays and attributes
	Unnamed variable fields
	Unprotected map constants
	Fields at row=0, column=0

	Handling ambiguous situations for programs
	Program names and reserved words
	Implicit data items in programs
	Associated program parts
	Intermediate variables required for migration

	Handling ambiguous situations for functions, including I/O statements
	DISPLAY statement for maps
	I/O error routine
	SQL I/O statements
	SQL I/O and missing required SQL clauses
	SQL I/O and !itemColumnName
	SQL I/O with multiple updates

	Handling ambiguous situations for other statements
	Implicit data items in statements
	Level 77 items in statements
	Assignment statements
	FIND statement
	RETR statement
	SET map PAGE statement
	SET mapItem attributes
	Checking for IN literal or scalar
	Checking SQL and map items for NULL
	I/O error values UNQ and DUP
	I/O error value LOK
	XFER

	Handling ambiguous situations for EZE words
	EZESYS
	EZEWAIT

	Part 2. Migrating from VisualAge Generator 4.5 on Java to EGL
	Chapter 4. Stage 1 — Extracting from Java
	Installing the Stage 1 migration tool on VisualAge for Java
	Adding the migration feature

	Setting Stage 1 preferences
	Build Plans page
	Mapping page
	Renaming page
	Execution page
	Sample MigPreferences.xml file

	Before you run the Stage 1 tool — hints and tips
	Improving performance
	Saving your workspace

	Running the Stage 1 tool
	Migration plans and high-level PLP projects
	Creating a high-level PLP project
	Creating a migration plan file manually

	Part 3. Migrating from VisualAge Generator 4.5 on Smalltalk to EGL
	Chapter 5. Stage 1 — Extracting from Smalltalk
	Installing the Stage 1 migration tool on VisualAge Smalltalk
	Loading the migration feature

	Creating the migration database
	Setting Stage 1 preferences
	Build Plans page
	Mapping page
	Renaming page
	Execution page
	Sample MigPreferences.xml file
	Deriving file names from your preferences

	Before you run the Stage 1 tool — hints and tips
	Improving performance
	Saving your image

	Running the Stage 1 migration tool
	Migration plans and high-level configuration maps
	Creating a high-level configuration map
	Chaining configuration maps
	Using configuration maps with the Stage 1 tool

	Creating a migration plan file manually

	Part 4. Stages 2 and 3— common to Java and Smalltalk migration
	Chapter 6. Stage 2—Conversion to EGL syntax
	Setting your workbench preferences
	Start up parameters
	Required EGL preferences
	Recommended preferences
	VAGen Migration Syntax Preferences
	Other recommended settings

	Setting up the Stage 2 VAGen migration file
	Running Stage 2
	Running Stage 2 from the user interface
	Running Stage 2 in batch mode

	Chapter 7. Stage 3 — Import
	Running the Stage 3 tool
	Running Stage 3 in batch mode
	Using the migration sets written to temporary directories

	Chapter 8. Running migration in single file mode
	Running single file migration using the user interface
	Running single file migration using batch mode

	Part 5. Completing the migration
	Chapter 9. Completing your migration
	Saving a baseline for EGL projects and packages
	Preliminary steps for completing single file migration
	Common steps for both Stage 1 — 3 and single file migration
	Reviewing your EGL source code
	Reviewing your EGL build descriptor parts
	Reviewing general build descriptor options
	Reviewing COBOL generation build descriptor options
	Reviewing Java generation build descriptor options
	Establishing a debug build descriptor part

	Reviewing your EGL linkage option parts
	Reviewing your EGL resource association parts
	Preparing for debugging
	Generating and testing with COBOL generation
	Generating and testing with Java generation

	Part 6. Language and runtime differences
	Chapter 10. Language and runtime differences
	Language differences
	Runtime differences
	General differences
	Differences in debug
	Differences in generated COBOL
	Differences in generated Java
	Differences between distributed CICS and native workstation environments
	Differences between generated C++ and generated Java

	Part 7. Appendixes
	Appendix A. Reserved words
	EGL reserved words
	SQL reserved words
	SQL reserved words requiring special treatment

	Java reserved words

	Appendix B. Relationship of VisualAge Generator and EGL Language Elements
	General syntax conventions
	Data items
	Records
	Tables
	Map groups
	Maps
	Programs
	Functions
	Statements
	EZE words
	Program flow EZE words
	SQL EZE words
	Date and time EZE words
	Other data EZE words
	General function EZE words
	String EZE words
	Math EZE words
	User interface EZE words
	EZE Java words
	Object scripting EZE words
	DL/I EZE words

	Service Routines
	PSBs
	Control parts
	Generation options part
	Linkage table parts
	callLink
	fileLink
	Crtxlink
	Dxfrlink

	Resource association part
	Link edit part
	Bind control part

	Symbolic parameters

	Appendix C. Messages from the migration tools
	Messages from the VisualAge Generator to EGL migration tool—Stage 1
	Stage 1 common messages
	Stage 1 on VisualAge for Java
	Stage 1 on VisualAge Smalltalk

	Messages from the VisualAge Generator to EGL migration tool— Stage 2
	Messages from the EGL into WebSphere Studio migration tool—Stage 3

	Appendix D. Messages on Tasks list or from the preprocessor
	Appendix E. IWN.xxx messages on the Tasks list
	Appendix F. Situations where incorrect External Source Format causes problems in creation of EGL
	Appendix G. Migration Database
	Creating the DB2 migration database
	Setting the JDBC level for DB2 7.2
	Setting the JDBC level for DB2 8.1 or higher
	Using DB2 on Windows XP
	Creating the migration database

	Resetting the migration database
	Useful Queries

	Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

